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Abstract Non-classical Large Eddy Simulation (LES) approaches based on us-
ing the unfiltered flow equations instead of the filtered ones have been the sub-
ject of considerable interest during the last decade. In the Monotonically Integrated
LES (MILES) approach, flux-limiting schemes are used to emulate the characteris-
tic turbulent flow features in the high-wavenumber end of the inertial subrange re-
gion. Mathematical and physical aspects of implicit SGS modeling using non-linear
flux-limiters are addressed using the modified LES-equation formalism. FCT based
MILES performance is demonstrated in selected case studies including (1) canoni-
cal flows (homogeneous isotropic turbulence and turbulent channel flows), (2) com-
plex free and wall-bounded flows (rectangular jets and flow past a prolate spheroid),
(3) very-complex flows at the frontiers of current unsteady flow simulation capabil-
ities (submarine hydrodynamics).

1 Background

High Reynolds (Re) number turbulent flows are of considerable importance in many
fields of engineering, geophysics, and astrophysics. Turbulent flows involve mul-
tiscale space/time developing flow physics largely governed by large-scale vorti-
cal Coherent Structures (CS’s). Typical turbulent energy spectra exhibit a large-
wavelength portion dependent on the flow features imposed by geometry and bound-
ary conditions, followed by an intermediate inertial subrange—which becomes
longer for higher Re and characterizes the virtually inviscid cascade processes, and
then by much-faster decaying portion in the dissipation region (e.g., Sect. 5.1.1 be-
low).
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Capturing the dynamics of all relevant scales based on the numerical solution of
the Navier-Stokes Equations (NSE) constitutes Direct Numerical Simulation (DNS),
which is prohibitively expensive for practical flows at moderate-to-high Re. On the
other end of computer simulation possibilities, the industrial standard is Reynolds-
Averaged Navier-Stokes (RANS) modeling, which involves simulating only the
mean flow and modeling the effects of the turbulent scales.

Large Eddy Simulation (LES) is an effective intermediate approach between
DNS and RANS, capable of simulating flow features which cannot be handled
with RANS such as flow unsteadiness and strong vortex-acoustic couplings. Fur-
thermore, LES provides higher accuracy than RANS at reasonable cost but still typ-
ically an order of magnitude more expensive. Desirable modeling choices involve
selecting an appropriate discretization of the flow problem at hand, such that the
LES cutoff lies within the inertial subrange, and ensuring that a smooth transition
can be enforced at the cutoff. The main assumptions of LES are that: (i) transport is
largely governed by large-scale unsteady features and that such dominant features
of the flow can be resolved, (ii) the less-demanding accounting of the small-scale
flow features can be undertaken by using suitable Sub Grid Scale (SGS) models.

In the absence of an accepted universal theory of turbulence to solve the problem
of SGS modeling, the development and improvement of such models must include
the rational use of empirical information. Several strategies to the problem of SGS
modeling are being attempted, see e.g., [1], for a recent survey. After more than
thirty years of intense research on LES of turbulent flows based on eddy-viscosity
models there is now consensus that such approach is subject to fundamental limita-
tions [2]. It has been demonstrated, for a number of flows, that the eigenvectors of
the SGS stress and rate-of-strain tensors involved in SGS eddy-viscosity models are
not parallel, rendering eddy-viscosity models to be inaccurate.

There have been other proposals that do not employ the assumption of co-
linearity of SGS stress and rate-of-strain embedded in the eddy-viscosity mod-
els, e.g. the scale-similarity model (SSM) [3] and the Approximate Deconvolution
Method (ADM) [4]. Such models may however be numerically unstable, and the
more recent efforts have focused on developing mixed models, combining in essence
the dissipative eddy-viscosity models with the more accurate but unstable SSM’s.
The results from such mixed models have been mostly satisfactory but the imple-
mentation and computational complexity of these improved combined approaches
have limited their popularity. In fact, because of the need to distinctly separate (i.e.
resolve) the effects of explicit filtering and SGS reconstruction models from those
due to discretization, carrying out such well-resolved LES can typically amount in
practice to performing a coarse DNS. As a consequence, it has been argued that the
use of hybrid RANS/LES models for realistic whole-domain complex configura-
tions might be unavoidable in the foreseeable future, e.g., [5].

Recognizing the aforementioned difficulties but also motivated by new ideas pio-
neered at NRL by Boris and collaborators [6, 7], several researchers have abandoned
the classical LES formulations and started employing the unfiltered flow equations
instead of the filtered ones. Major focus of the new approaches [8, 9] has been on the
inviscid inertial-range dynamics and regularization of the under-resolved flow, based
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on ab initio scale separation with additional assumptions for stabilization, or apply-
ing monotonicity via non-linear limiters that implicitly act as a filtering mechanism
for the small scales—the original proposal of Boris et al. [7]. The latter concept
goes back to the 50’s to von Neumann and Richtmyer [10], who used artificial dissi-
pation to stabilize finite-difference simulations of flows involving shocks. This arti-
ficial dissipation concept also motivated Smagorinsky [11] in developing his scalar
viscosity concept based upon the principles of similarity in the inertial range of 3D
isotropic turbulence. However, the recognition of the more broadly defined implicit
LES (ILES) framework is more recent [12]. In ILES, the effects of the SGS physics
on the resolved scales are incorporated through functional reconstruction of the con-
vective fluxes using non-oscillatory—but not necessarily monotonic—finite-volume
(NFV) algorithms.

In what follows, we use the modified LES equation formalism to carry out a
formal comparative analysis of conventional LES and MILES. The performance of
MILES is demonstrated for selected representative case studies including canoni-
cal flows, moderately complex free and wall-bounded flows, and extremely com-
plex flows at the frontiers of current flow simulation capabilities. We conclude our
presentation by addressing fundamental challenges for further development of the
concept of nonlinear Implicit LES (ILES).

2 Conventional LES

For simplicity, we restrict the discussion to incompressible flows described by the
Navier-Stokes momentum balance equation,

∂t (v) + ∇ · (v ⊗ v) = −∇p + ∇ · S, (1)

in conjunction with the incompressibility (or divergence) constraint ∇ ·v = 0, where
⊗ denotes the tensorial product, and S = 2νD and D = 1

2 (∇v + ∇vT ) are the
viscous-stress and strain-rate tensors. The conventional LES procedure [1] involves
three basic ingredients:

(i) low-pass filtering by the convolution

f̄ (x, t) = G ∗ f (x, t) =
∫

D

G
(
x − x′,Δ

)
f

(
x′, t

)
d3x′,

with a prescribed kernel G = G(x,Δ) of width Δ,
(ii) finite volume, element or difference discretization,

(iii) explicit SGS modeling to close the low-pass filtered equations.

Applying (i) and (ii), using a second order accurate finite volume algorithm, to (1),
and rewriting the results in terms of the modified equations approach, i.e., the equa-
tion satisfied by the numerical solutions being actually calculated yields [13, 14],

∂t (v̄) + ∇ · (v̄ ⊗ v̄) = −∇p̄ + ∇ · S̄ − ∇ · B + mv + τ, (2)
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Fig. 1 Grid schematic. P and
N denote typical
computational cell centers
and f an interface; n denotes a
unit vector normal to the
interface, and A its area; d is
the topological vector
connecting neighboring cells

where,

B = v ⊗ v − v̄ ⊗ v̄, mv = [G∗,∇](v ⊗ v + pI − S),

τ = ∇ ·
[[

1

6
ν∇3v − 1

8
∇2v

]
(d ⊗ d) + · · ·

] (3)

are the SGS stress tensor, commutation error term, and the total (convective, tem-
poral and viscous) truncation error, respectively, I is the unit tensor, and d is
the topological vector connecting neighboring control volumes (see Fig. 1), and,
[G∗,∇]f = ∇f − ∇f̄ . The commutation error term is often lumped together with
the SGS force ∇ · B, prior to modeling, and hence a generalized SGS stress tensor
B needs to be prescribed in terms of discretized filtered fields for closure of the new
equations—which constitutes (iii) above.

Functional modeling consists of the modeling action of the SGS’s on the re-
solved scales. It involves modeling of energetic nature, by which balances of en-
ergy are transferred between resolved and subgrid scale ranges, thus accounting
for the SGS effects. The energy transfer mechanism from resolved to SGS’s is as-
sumed analogous to a Brownian motion superimposed on the large-scale motion.
An example of this is the eddy-viscosity approach, in which B = −2νkD̄ where νk

is the SGS viscosity—for example, using the Smagorinsky model [11] or the one
equation eddy-viscosity model (OEEVM) [15], its principal drawback is the well-
established lack of collinearity between B and D̄. Natural improvements to these
models use anisotropic counterparts based on tensor forms of the SGS turbulent vis-
cosity [16]. These more sophisticated closures involve structural modeling, which
attempts to model B without incorporating the interactions between SGS and re-
solved scales. By relying on actual SGS’s in the upper resolved subrange—rather
than on those modeled through dissipative eddy viscosity—we can better emulate
scatter and backscatter, and the modeling procedures won’t require assumptions
on local isotropy and inertial range. Potential drawbacks arise, however, because
structural models are computationally more expensive and typically not dissipative
enough; accordingly, mixed models, combined with an eddy-viscosity model, are
often used instead.
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3 Implicit LES

A key self-consistency issue required in the conventional LES approach involves
separating the computing effects of its three basic elements: filtering, discretization,
and reconstruction. Filtering and reconstruction contributions must be resolved, i.e.,
their effective contributions in (2) must be larger than the total truncation error τ .
Also, their upper range of represented (but inaccurate) scales interactions must be
addressed—in addition to those between resolved and SGS’s. Thus, it is useful to
examine B written in the following way,

B = v ⊗ v − v̄ ⊗ v̄ = (v ⊗ v − vP ⊗ vP ) + (vP ⊗ vP − v̄ ⊗ v̄) = B1 + B2, (4)

where v̄P denotes the (grid) represented velocity scales, B1 the interaction between
represented and nonrepresented scales—which is not known a priori, and therefore
must be modeled—whereas B2 relates to the interaction between filtered and dis-
cretized represented scales, and it can be approximated by prescribing an estimated
vP in the represented-velocity space (i.e., the solution to the so-called soft decon-
volution problem) [4]. In this framework, a basic structural SGS model, such as the
scale-similarity model, provides B2, and the eventual need of mixed models results
from the recognition that B2 is not dissipative enough so a secondary regularization
through B1 is needed—i.e., an approximation to v in physical-velocity space must
be prescribed (the hard deconvolution problem).

Traditional approaches, motivated by physical considerations on the energy
transfer mechanism from resolved to SGS’s, express B1 with an appropriately func-
tional model (for example, an eddy-viscosity SGS model), and seek sufficiently
high-order discretization and grid resolution to ensure that effects due to τ are suffi-
ciently small. However, we could argue that discretization could implicitly provide
B1 if nonlinear stabilization can be achieved algorithmically via a particular class
of numerical algorithms or based on regularizing the discretization of the conser-
vation laws. In fact, (2) suggests that most schemes can potentially provide built-in
or implicit SGS models enforced by the discretization errors τ , provided that their
leading order terms are dissipative. We are thus led to the natural question: To what
extent can we avoid the (explicit) filtering and modeling phases of LES (i.e., B2 ≡ 0
and mv ≡ 0) and focus on the implicit B1 provided by a suitably chosen discretiza-
tion scheme?

Not all implicitly implemented SGS models are expected to work: good or bad
SGS physics can be built into the simulation model depending on the choice of
numerics and its particular implementation. Moreover, the numerical scheme has
to be constructed such that the leading order truncation errors satisfy physically
required SGS properties, and hence non-linear discretization procedures will here
be required. The analogy to be recalled is that of shock-capturing schemes designed
under the requirements of convergence to weak solution while satisfying the entropy
condition [17].
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4 Monotonically Integrated LES (MILES)

The relevancy of NFV algorithms for ILES of turbulent flows have been motivated
[14, 18] by proposing to focus on two distinct inherent physical SGS features to be
emulated:

• the anisotropy of high-Re turbulent flows in the high-wave-number end of the
inertial subrange region, characterized by very thin filaments of intense vortic-
ity and largely irrelevant internal structure, embedded in a background of weak
vorticity, e.g., [19],

• the particular (discrete) nature of laboratory observables (only finite fluid portions
transported over finite periods of time can be measured) [18].

We thus require that ILES be based on NFV numerics having a sharp velocity-
gradient capturing capability operating at the smallest resolved scales. By focusing
on the inviscid inertial-range dynamics and on adaptive regularization of the under-
resolved flow, ILES thus follows very naturally on the historical precedent of using
this kind of schemes for shock capturing—in the sense that requiring emulation
(near the cutoff) of the high wavenumber-end features of the inertial subrange region
of turbulent flows is analogous to spreading the shock width to the point that it can
be resolved by the grid.

Although the history of ILES draws on the development of shock-capturing
schemes, the MILES concept—as originally introduced by Boris and his col-
leagues [7] and further developed in our previous work [13, 14]—embodies a com-
putational procedure for solving the NSE as accurately as possible by using a par-
ticular class of flux-limiting schemes and their associated built-in (or implicit) SGS
models. An intriguing MILES feature is the convection discretization that implic-
itly generates a nonlinear tensor-valued eddy-viscosity, which acts predominantly to
stabilize the flow and suppress unphysical oscillations.

MILES draws on the fact that FV methods filter the NSE over nonoverlapping
computational cells ΩP , with the typical dimension |d|—using a top-hat-shaped
kernel, fP = 1

δVP

∫
ΩP

f dV . In the finite-volume context, discretized equations are
obtained from the NSE using Gauss’s theorem and by integrating over time with a
multistep method parametrized by m, αi , and βi ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βiΔt

δVP

∑
f

[
F

C,ρ
f

]n+i = 0,

m∑
i=0

(
αi(v)n+i

P + βiΔt

δVP

∑
f

[
F

C,ρ
f vf + FD,v

f

]n+i + βi(∇p)n+i
P Δt

)
= 0,

(5)

where α, β and m are parameters of the scheme, and F
C,ρ
f = (v · dA)f and FC,v

f =
F

C,ρ
f vf are the convective and FD,v

f = (ν∇v)f dA the viscous fluxes. To complete
the discretization, all fluxes at face ‘f’ need to be reconstructed from the dependent
variables at adjacent cells. This requires flux interpolation for the convective fluxes
and difference approximations for the inner derivatives in the viscous fluxes.



On Monotonically Integrated Large Eddy Simulation of Turbulent Flows 73

For conventional LES, it is appropriate to use linear (or cubic) interpolation for
the convective fluxes and central difference approximations for the inner gradients
in the viscous fluxes. This then results in a cell-centered second- or fourth-order
accurate scheme. Scheme stability can be enforced not only by conserving momen-
tum, but also kinetic energy, which ensures robustness without numerical dissipation
(which compromises accuracy).

Given (5), the methods available for constructing implicit SGS models by means
of the leading order truncation errors are generally restricted to nonlinear high-
resolution methods for the convective flux FC,v

f to maintain second-order accuracy
in smooth regions of the flow (such high-resolution methods are at least second-
order accurate on smooth solutions while giving well-resolved, non-oscillatory dis-
continuities) [17]. In addition, these schemes are required to provide a leading order
truncation error that vanishes as d → 0 so that it remains consistent with the NSE
and the conventional LES model. We focus here on the certain flux-limiting and
correcting methods.

To this end, we introduce a flux-limiter Γ that combines a high-order convective
flux-function vH

f which is well-behaved in smooth flow regions, with a low-order

dispersion-free flux-function vL
f , being well-behaved near sharp gradients, so that

the total flux-function becomes vf = vH
f − (1 − Γ )[vH

f − vL
f ]. Choosing the par-

ticular flux limiting scheme also involves specific selections for vL
f and vH

f . In the

analysis that follows, vH
f and vL

f are assumed to be based on linear interpolation,
and upwind-biased piecewise constant approximation, respectively, e.g.,⎧⎪⎨

⎪⎩
FC,v,H

f = F
C,ρ
f

[
�vP + (1 − �)vN − 1

8
(d ⊗ d)∇2v + O

(|d|3)
]
,

FC,v,L
f = F

C,ρ
f

[
β+vP + β−vN + (

β+ − β−)
(∇v)d + O

(|d|2)],
(6)

where β± = 1
2 (vf · dA ± |vf · dA|)/|vf · dA|, and − 1

8 (d ⊗ d)∇2v and (β+ −
β−)(∇v)d are the leading order truncation errors. The flux limiter Γ is to be for-
mulated as to allow as much as possible of the correction [vH

f − vL
f ] to be included

without increasing the variation of the solution—e.g., to comply with the physical
principles of causality, monotonicity and positivity [7] (when applicable) and thus
to preserve the properties of the NSE. To see the effects of this particular convec-
tion discretization we consider the modified equations corresponding to the semi-
discretized equations (5) with the flux-limiting functions in (6) being used for the
convective fluxes,

∂t (v) + ∇ · (v ⊗ v) = −∇p + ∇ · S + ∇ ·
[

C(∇v)T + (∇v)CT

+ χ2(∇v)d ⊗ (∇v)d +
[

1

6
ν∇3v − 1

8
∇2v

]
(d ⊗ d) + · · ·

]
,

(7)

with ∇ ·v = 0, and where C = χ(v⊗d) and χ = 1
2 (1−Γ )(β− −β+). In particular,

we note that in smooth regions, Γ = 1 implies that χ = 0 and C = 0, and the lead-
ing order truncation error becomes τ = ∇ · [[ 1

6ν∇3v − 1
8∇2v](d ⊗ d)]. Comparing
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with the analysis of the momentum equation in the framework of the conventional
LES approach (equation (2)) suggests that the MILES modified equation incorpo-
rates additional dissipative and dispersive terms, and we can consistently identify
the implicit SGS stress term,

B = C(∇v)T + (∇v)CT + χ2(∇v)d ⊗ (∇v)d. (8)

The implicit SGS stress tensor can according to (8) be decomposed into B(1) =
C(∇v)T + (∇v)CT and B(2) = χ2(∇v)d ⊗ (∇v)d, in which the former is a tensor-
valued eddy-viscosity model, while the latter is of a form similar to the scale sim-
ilarity model. The decomposition in (8) can also be interpreted as breaking B into
its slow and rapid varying parts—relative to the time scale of its response to vari-
ations in the mean flow [20]. In MILES, the rapid part that cannot be captured by
isotropic models relates to B(2), while the slow part relates to B(1). Borue and Orszag
[21] have shown that a B(2) type term improves the correlations between the exact
and modeled SGS stress tensor. A closely-related view further explaining the effec-
tiveness of ILES formulations based on local monotonicity (or sign) preservation
concepts has been given by Margolin and Rider [18]; they argued that the leading
order truncation error introduced by NFV algorithms represents a physical flow reg-
ularization term, providing necessary modifications to the governing equations that
arise when the motion of observables—finite volumes of fluid convected over finite
intervals of time—is considered.

Detailed properties of the implicit SGS model are related to the flux limiter Γ

and to the choice of low- and high-order schemes; they also relate as well to other
specific features of the scheme—e.g., such as monotonicity, l1-contraction, local
monotonicity preservation, and griding. We have illustrated above in (8) and dis-
cussed elsewhere [13, 14] how some of these properties can directly affect the im-
plicit SGS modeling effectiveness in the MILES context. MILES performance as a
function of flux limiter is discussed further below; dependence on the choice of low
order scheme has been examined in Ref. [22].

In what follows we address effects of variations in the flux-limiter Γ . To this end
we consider first high-resolution schemes that can be formulated using the ratio of
consecutive gradients,

r = δvn
P−1/2

δvn
P+1/2

= (vn
P − vn

P−1)

(vn
P+1 − vn

P )
.

Examples of well-known flux-limiters that fit into this category are:

1. the minmod flux-limiter of Roe, e.g. [23], with

Γ = max
(
0,min(1, r)

)
,

2. the van-Leer flux-limiter, e.g. [23], with

Γ = r + |r|
1 + |r| ,

3. the superbee flux-limiter, Roe, e.g. [23], with

Γ = max
(
0,max

(
min(2r,1),min(r,2)

))
,
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Fig. 2 TVD regions for first
and second order accurate
TVD schemes together with
selected limiters

4. the van-Albada flux-limiter, e.g. [24], with

Γ = r + r2

1 + r2
,

5. the GAMMA flux-limiter, e.g. [25], with

Γ = 1 − k

k
r

[
θ(r) − θ

(
r − k

1 − k

)]
+ θ

(
r − k

1 − k

)
,

where k is a parameter of the scheme such that k ∈ [0,1], and θ is the Heaviside
function. Note that when k = 0.5 this scheme becomes TVD.

Some of these limiters are compared in Fig. 2 together with the r-independent lim-
iting cases—the first-order upwind (UD, Γ = 0) and the second-order central dif-
ference (CD, Γ = 1) schemes. In Fig. 2 the TVD constraint

TV
(
vn+1) ≤ TV

(
vn

)
, where TV

(
vn

) =
∑
P

∥∥vn
P+1 − vn

P

∥∥,

reformulated as 0 ≤ |Γ (r),Γ (r)/r| ≤ 2 [23] is satisfied in the region bounded by
the traces associated with the minmod and superbee limiters, which includes the
van-Leer, van-Albada and (k = 0.5) GAMMA limiters. The diffusivity decreases
as the flux-limiters approach that of the superbee limiter, which results in the least
diffusive scheme.

We can also consider other high-resolution schemes, such as FCT [26] and
PPM [27], which can also use a similar flux-limiting type formalism based on
vf = vH

f − (1 − Γ )[vH
f − vL

f ], but for which the flux limiter cannot simply be
formulated in terms of the ratio of consecutive gradients, r . In the present study
we have however only included the FCT-limiter [26]. Some of these schemes (e.g.
FCT, PPM) are locally monotonicity-preserving, i.e. given the solution vn+1

P =
H(vn

P−k,vn
P−k+1, . . . ,vn

P+k) then if v0
P ≥ v0

P+1 then vn
P ≥ vn

P+1 for all P and n.
The global performance of MILES as a function of flux-limiter is documented in

Fig. 3, showing studies of fully developed turbulent channel flow at a friction veloc-
ity based Re-number of Reτ = 590, compared with DNS results [27]. The channel
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Fig. 3 MILES of Reτ = 590
channel flow; dependence on
choice of flux-limiter

flow calculations will be discussed in detail below, and are carried out on 603 and
483 grids with uniform spacing the streamwise and spanwise directions. Periodic
boundary conditions are employed in both streamwise and spanwise directions, to-
gether with no-slip conditions in the wall-normal directions. The influence of the
flux limiter is comparatively small but has been observed to be sensitive to the
wall-normal resolution (cf. [28]). From this comparison it is evident that the van-
Leer limiter is too diffusive, producing poor velocity profiles, while both FCT and
GAMMA produce velocity profiles that agree well with the reference DNS data.
Reported ILES work surveyed in [12] involved a broad range of NFV methods,
including among others, use of locally-monotonicity-preserving FCT [13, 14] and
PPM-based studies of homogeneous turbulence [29], locally-sign-preserving MP-
DATA [18], TVD-based turbulence studies [30], and studies of channel flows using
Godunov’s exact Riemann solver [31]. The following section discusses applications
involving FCT-based MILES.

5 MILES Applications

The first category of applications discussed below comprises what we regard to
be the traditional Computational Fluid Dynamics (CFD) role. For these cases, lab-
oratory experiments can be carried out exhibiting the effects of flow dynamics
and instabilities—typically demonstrating only the end outcome of complex three-
dimensional (3D) physical processes. Time-dependent experiments based on numer-
ical simulations with precise control of initial and boundary conditions, are ideally
suited to supplement these laboratory studies, providing insights into the underlying
flow dynamics and topology. Three groups of such examples are provided: (i) canon-
ical flows to demonstrate MILES benchmark studies; (ii) mixing layer and jet flows
to demonstrate MILES ability to capture complex flow physics; (iii) external flows
to demonstrate the MILES ability to deal with moderately complex geometries.
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Fig. 4 Forced homogeneous isotropic turbulence: (a) iso-surfaces of Q; (b) energy spectra

5.1 Canonical Cases

MILES of free shear flows have been extensively benchmarked and/or compared
with laboratory flows in various different flow configurations at moderately-to-high
Re numbers. Recent studies of forced and decaying homogeneous isotropic turbu-
lence, studies of wakes, subsonic and supersonic mixing layers, jet flows, and chan-
nel flows demonstrated that MILES can be successfully used to simulate (and eluci-
date) the governing features of the unsteady flow dynamics. Selected representative
examples are discussed in what follows.

5.1.1 Forced Homogeneous Turbulence

First, we consider forced homogeneous isotropic turbulence for a Taylor Re-number
of ReT = 96 at 323 and 643 resolution, for which DNS data is available [19]. The
body force, f, is here used to create random forcing of the large scales. For this pur-
pose we use the forcing scheme of Eswaran and Pope [32], to drive the largest flow
scales, see [33] for further details. The initial velocity field v̄ = v̄(x,0) is created
by superimposing Fourier modes, having a prescribed energy spectrum but random
phases.

Figure 4(a) shows typical visualizations at 643 resolution of the second invariant
of the velocity gradient, i.e., Q = 1

2 (‖W̄‖2 −‖D̄‖2). The observed vortical structure
implies that weak and strong vortices have different topologies while there is no
evident structure in the lower intensity regions. The higher intensity regions tend to
be organized in slender tubes or elongated filaments as found with other LES stud-
ies. The vortical structures predicted by LES are considerably thicker than those
obtained by DNS. However, filtering the DNS data results in thicker vortical struc-
tures, qualitatively very similar to those obtained by the LES. It is virtually impossi-
ble to distinguish between different SGS models by inspecting such visualizations,
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but by comparing Probability Density Functions (PDFs) of, e.g., the resolved vor-
ticity magnitude |ω̄| (not shown) we find that MILES and LDKM [33, 34] result in
somewhat larger fractions of small-scale vorticity than conventional eddy-viscosity
models such as the OEEVM [15].

Figure 4(b) presents the time-averaged energy spectra for the ReT = 305 case at
643 resolution together with a DNS spectrum [19] and the theoretical model spec-
trum of Driscoll and Kennedy [35]. The energy spectra are found to depend on the
effects of the LES models only towards the high wavenumber end of the inertial
range, and into the viscous subrange. A larger fraction of the turbulence is resolved
in the 643 case as compared to the 323 results, and hence the influence of the SGS
model is comparatively smaller in the former case. In general, we find that the spec-
tra from MILES and LDKM are in better agreement with DNS data than, e.g., the
OEEVM, at high wavenumbers.

5.1.2 Turbulent Channel Flow

Next we focus on fully developed turbulent channel flow at (bulk) Re-numbers be-
tween Re = 15,000 and 400,000. The channel of length 6h and width 3h is confined
between two parallel plates 2h apart, where h is the channel half-width. The flow
is driven by a fixed mass flow in the streamwise (ex ) direction. We use no-slip con-
ditions in the cross-stream (ey ) direction and periodic conditions in the (ex ) and
spanwise (ez) directions. The friction velocity is uτ = √

τw , where τw is the wall-
shear stress. We vary the mass flow to obtain three target friction-velocity-based Re
numbers: Reτ ≈ 395, 2000, and 10,000 (the first corresponds to the DNS data [27],
and the second to the laboratory data [36]). The grid consists of 603 cells with uni-
form spacing in the stream- and spanwise directions, whereas we use geometrical
progression in the ey -direction to appropriately cluster the grid near the walls to
resolve the velocity gradients.

Figure 5(a) shows the main channel flow features in terms of vortex lines, con-
tours of the streamwise velocity component v̄x and isosurfaces of the second in-
variant of the velocity gradient Q. By correlating isosurfaces of Q with the velocity
fluctuations close to the wall, we found that vortices above the low-speed streaks are
often ejected away from the wall, producing hairpin vortices stretched by the ambi-
ent shear. Using this mechanism, vorticity produced in the viscous region is advected
into the boundary layer, making it turbulent. The spanwise resolution appears more
important for accurate large-scale-dynamics prediction than the streamwise resolu-
tion. The wall-normal resolution is critical for the correct wall-shear stress τw pre-
diction, which, in turn, is important for making correct estimates of, for example,
the drag.

In Fig. 5(b), we compare LES mean velocity 〈v̄x〉 predictions (integrated over
time, x, and z) with DNS data [27] and experimental data [36]. For Reτ = 395, all
LES models used show very good agreement with the DNS data. When the flow is
well resolved, the SGS model details are of little importance to the resolved flow,
because most of the energy (about 98 percent) and structures are resolved on the
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Fig. 5 Fully developed channel flow: (a) instantaneous visualization in terms of contours of v̄x ,
vortex lines, and isosurfaces of Q; (b) vertical profiles of mean streamwise velocity 〈v̄x〉

grid. For Reτ ≈ 1800, we still see good agreement between LES and experimental
data, but with somewhat larger scatter in the LES data. This case is well resolved,
with about 87 percent of the energy belonging to the resolved scales. We do not
have any data to compare with, for Reτ = 10,000, but we may compare it (asymp-
totically) with the lower Reτ number velocity profiles and the log law. The scatter
among the LES models is now larger, and we find that the best agreement with
the log law is obtained by using Detached Eddy Simulation (DES) [37] and the
localized dynamic (LDKM) subgrid turbulence model [34] followed, in turn, by
MILES+WM, OEEVM+WM [38] and OEEVM [15] where WM denotes the wall
model [38]. However, for the second order statistical moments, MILES+WM and
OEEVM+WM provide better agreement with data.

The eddy-viscosity models are successful because νk responds to energy ac-
cumulation in the small scales by adjusting the dissipation before it contami-
nates the resolved scales. MILES performs well because it mimics the resolved
flow anisotropies. MILES turns out also to be computationally competitive, with
typical work figures of OEEVM = 1.00, MILES = 0.95, OEEVM+WM = 1.05,
DES = 1.10, and LDKM = 1.15.

5.2 Free Shear Flows: Global Instabilities and Vorticity Dynamics

Characterizing the local nature of free-shear-flow instabilities and their global non-
linear development in space and time is of fundamental importance for practical
shear-flow control. Linear inviscid stability analyses have shown the convectively
unstable nature of the spatially evolving subsonic mixing layer with respect to vor-
tical fluctuations. Consequently, except in rare configurations with global-absolute
instabilities, we expect environmental disturbances to drive turbulent mixing layers;
self-sustained instabilities have generally not been expected. Mechanisms influenc-
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ing re-initiation of the instabilities and transition to turbulence in free-shear flows
are:

• disturbances in the free streams,
• disturbances due to boundary layers, wakes, small recirculation zones, or acoustic

environmental disturbances, and
• disturbances fed back from downstream events in the flow.

Isolating these mechanisms is difficult because turbulence in free streams and
boundary layers cannot be eliminated. Numerical simulations of spatially evolv-
ing shear flows can be essentially eliminated, the first two disturbances and the third
can be addressed through careful control of the imposed boundary conditions.

5.2.1 Global Instabilities in Free Flows

An important question is whether a free mixing layer can be globally unstable with
the self-excitation upstream induced by pressure disturbances generated via finite-
amplitude fluid accelerations downstream. A previous study successfully addressed
this question with FCT based MILES of spatially evolving flows [39]. Numerical
simulations of compressible, subsonic, planar shear-flows were used to investigate
the role of feedback in the re-initiation of the vortex roll-up. The study dealt with
unforced, spatially evolving mixing layers for which the acoustic disturbance propa-
gation can be appropriately resolved; and boundary effects were ensured to be negli-
gible. The simulation shows global self-sustaining instabilities, in which new vortex
roll-ups were triggered in the initial shear layer by pressure disturbances originating
in the fluid accelerations downstream. This re-initiation mechanism, absent in linear
treatments of stability, was demonstrated conclusively and examined as a function
of Mach number and free-stream velocity ratio.

Another study demonstrated similar self-excited global instabilities in super-
sonic, countercurrent jets, based on upstream feedback mechanisms acting on the
subsonic outer jet regions (see Fig. 6) [40]. Recognition of these global instabilities
provided new insights to explain previously unresolved discrepancies between lab-
oratory and theoretical studies, suggesting practical approaches to active control of
these jets. A key computational capability used in both of these global instability
studies was the ability to isolate the generation of propagation of acoustical distur-
bances correlated with the large-scale vortex dynamics. Relevant features accurately
captured with MILES included the quadrupole pattern of acoustic production associ-
ated with vortices, the significantly more intense dilatation and pressure fluctuations
associated with vortex pairing, as well as the very low fluctuation levels involved
(for example, four orders of magnitude smaller than ambient values [39, 40]).

Accurate resolution of the small characteristic fluctuation levels, typically asso-
ciated with acoustical radiation from flow accelerations, involves major challenges:

• Complex vortex dynamics associated with acoustical production must be cap-
tured.
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Fig. 6 MILES studies of global instabilities in a countercurrent supersonic cold square jet in terms
of instantaneous visualizations [40]

• The numerical algorithm’s dispersiveness should be minimized to ensure good
modeling of the acoustical propagation properties of the small wavelengths.

• Because of the very small energy of the acoustic field compared to that of the flow
field, there is a potential for spurious sound sources due to numerical discretiza-
tion.

Because of the tensorial nature of its implicit SGS model, and the inherently low nu-
merical diffusion involved, the use of flux limiting in MILES offers an overall effec-
tive computational alternative to conventional SGS models in this context. MILES
was used to extensively investigate the natural mechanisms of transition to turbu-
lence in rectangular jets evolving from laminar conditions [41], in compressible
(subsonic) jet regimes with aspect ratio AR = 1 to 4 and moderately high Re. The
studies demonstrated qualitatively different dynamical vorticity geometries charac-
terizing the near jet, involving

• self-deforming and splitting vortex rings,
• interacting ring and braid (rib) vortices, including single ribs aligned with corner

regions (AR ≥ 2), and rib pairs (hairpins) aligned with the corners (AR = 1), and,
• a more disorganized flow regime in the far jet downstream, where the rotational

fluid volume is occupied by a relatively weak vorticity background with strong,
slender tube-like filament vortices filling a small fraction of the domain.

Figure 7(a) illustrates characteristic axis-switching and bifurcation phenomena from
visualizations of laboratory elliptical jets subject to strong excitation at the preferred
mode [42, 43]. We compare it to the carefully developed simulation results (see
Figs. 7(b) and 7(c)) designed to address unresolved issues in vortex dynamics. De-
tailed key aspects—namely, reconnection, bridging, and threading (see Fig. 7(b))—
could not be captured in the laboratory studies and were first demonstrated by the
simulations.

Jet flows develop in different possible ways, depending on

• their particular initial conditions,
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Fig. 7 Vortex dynamics and
transition to turbulence in
subsonic noncircular jets;
(a) laboratory studies
[42, 43], (b) and (c) detailed
vortex dynamics elucidated
by simulations [41]

• nozzle geometry and modifications introduced at the jet exit,
• the types of unsteady vortex interactions initiated, and
• local transitions from convectively to absolutely unstable flow.

Taking advantage of these flow control possibilities is of interest to improve the
mixing of a jet, or plume, with its surroundings in practical applications demanding:

• enhanced combustion between injected fuel and background oxidizer,
• rapid initial mixing and submergence of effluent fluid,
• less intense jet noise radiation,
• reduced infrared plume signature.
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Fig. 8 Visualizations of non-premixed combustion regions as a function of aspect ratio [41]. Tem-
perature distributions (color) in the back half of the visualized subvolume are superimposed to
isosurfaces of the vorticity magnitude (gray)

For example, the jet entrainment rate—the rate at which fluid from the jet becomes
entangled or mixed with that from its surroundings—can be largely determined
by the characteristic rib-ring coupling geometry and the vortex-ring axis-switching
times (see Fig. 8) [40].

5.3 Moderately Complex Geometry: Flow Over a Prolate Spheroid

Crucial additional issues of LES of inhomogeneous high-Re flows to be addressed
relate to boundary condition (supergrid) modeling and overall computational model
validation [42, 43]. From the practical point of view, it is of utmost importance to
consider how the non-linear combination of all—algorithmic, physics-based, SGS,
and supergrid—aspects of the model affect the simulation of complex systems for
which detailed DNS-type approaches are not possible and for which only limited
experimental data might be available at best.

Despite its simple geometry, the flow around a prolate spheroid at an incidence
(see Fig. 6(a)) contains a rich gallery of complex 3D flow features. These include:

• stagnation flow,
• 3D boundary layers under influence of pressure gradients and streamline curva-

ture
• cross-flow separation, and
• the formation of free vortex sheets producing streamwise vortices.
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Fig. 9 Flow around a prolate spheroid: (a) perspective view and contours of the vorticity magni-
tude |ω| at x/L = 0.772; (b) velocity comparison at x/L = 0.772 and ϕ = 60◦ between experi-
mental (! and 1) and predicted data at α = 10◦ (black) and α = 20◦ (gray). (—) OEEVM+WM
on grid A, (- - -) MILES+WM on grid A, (-.-.) LDKM on grid A, (· · ··) LDKM on grid B and (· · ·)
DES on grid A

These features are archetypes of flows over more complicated airborne and un-
derwater vehicles warranting in-depth study. Previously [42, 43] we studied the flow
around a 6 : 1 prolate spheroid mounted in a wind tunnel with a rectangular cross-
section [44] at α = 10◦ and 20◦ angles of attack. Based on the free-stream veloc-
ity v0 and the body length L, the Re number is ReL = 4.2 · 106. The domain is
discretized with a block-structured mesh, supported by a double O-shaped block
structure. Two meshes are used in order to parameterize effects of the grid on the
boundary layer resolution. Mesh A has 0.75 · 106 cells and y+ ≈ 25 and mesh B has
1.50 · 106 cells with y+ ≈ 5. At the inlet, v̄ = v0n and ∂p̄/∂n = 0, where n is the
outward pointing unit normal, and at the outlet p̄ = p∞ and ∂(v̄ · n)/∂n = 0. On the
body, no-slip conditions are used.

Figure 9(a) shows perspective views from the port side of the prolate spheroid
at α = 20◦. The flow is represented by surface streamlines, stream-ribbons, and
contours of the vorticity magnitude |ω̄| at x/L = 0.772, where ω̄ = 1

2∇ × v̄ is the
vorticity. The stream-ribbons show the complexity of the flow. On the windward
side, an attached 3D boundary layer is formed, while on the leeward side, the flow
detaches from the hull—because of the circumferentially adverse pressure gradi-
ent, and rolls up into a counterrotating pair of longitudinal spiraling vortices on the
back of the body. Furthermore, fluid from the windward side is advected across the
spheroid, engulfed into the primary vortices and subsequently ejected into the wake.

Figure 9(b) shows the time-averaged velocity components (U,V,W) at x/L =
0.772 and at ϕ = 90◦. The velocity components are presented in the body-surface
coordinate system [44]. For V and W , we see good agreement between predic-
tions and measurements for all models—with DES providing the least accurate
comparison. We obtained the best agreements with OEEVM and MILES with a
wall-model [38] on grid A (OEEVM+WM and MILES+WM). Concerning U , we
found significant differences as a function of the various models and grid resolu-
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tions. We found best agreements for MILES+WM and OEEVM+WM, whereas the
LDKM and DES predictions show larger deviations from the experimental data. The
LDKM appears to require better resolution than what we have provided because
it underpredicts the boundary layer thickness. The results from MILES+WM and
OEEVM+WM appear virtually unaffected by resolution, which is expected because
the wall model is designed to take care of the errors introduced by poor resolution
in the boundary layer. Also interesting is that the effects of changing the angle of
attack α—very important when studying, for example, maneuvering—are very well
reproduced in the simulations.

5.4 Challenging New Role of Simulations

For the studies of submarine hydrodynamics and flows in urban areas discussed
separately in this volume [22], it is unlikely that we will ever have a deterministic
predictive framework based on computational fluid dynamics. This is due to the
inherent difficulty in modeling and validating all the relevant physical sub-processes
and acquiring all the necessary and relevant boundary condition information. On
the other hand, these cases are representative of very fundamental ones for which
whole-domain scalable laboratory studies are impossible or very difficult, but for
which it is also crucial to develop predictability.

5.4.1 Submarine Hydrodynamics

The flow around a submarine is extremely complicated and characterized by very
high Re, O(109). Full-scale experiments are complicated and very expensive and
are of limited value due to the difficult measurement settings. RANS of full-scale
submarine hydrodynamics are barely within reach, whereas LES is currently out of
reach due to the wide range of scales present. For model-scale situations (Re ≈ 107),
it might be possible to conduct LES and DES [45]. In particular, if we’re interested
in vortex dynamics, flow noise, and the coupling between the propeller dynamics
and the flow around the hull, LES and DES are our only alternatives for the foresee-
able future.

As Fig. 7(a) shows, each appendage generates a wake and several vortex sys-
tems. A horseshoe-vortex pair is formed in the junction between the hull and the
appendage, whereas a tip-vortex pair is formed at the tip of the appendage. Addi-
tional vortex systems can be formed, e.g., on the side of the sail towards the trailing
edge or in the boundary layer of the tapered sections of the hull. These vortex sys-
tems can interact with each other and with the (unsteady) boundary layer to form
a very complex flow entering the propeller, thus causing vibrations and noise. In
addition, the ocean water is usually stratified, with density variations caused by dif-
ferences in temperature and salinity between ocean currents, or between the surface
water and deeper water. Stratification influences the turbulence and the large flow
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Fig. 10 Submarine hydrodynamics: the main flow features represented by stream-ribbons and
contour plots of the vorticity magnitude in three cross-sections

structures in the wake, typically resulting in horizontally flattened flow structures
(so-called pancake vortices), which would not occur in nonstratified waters.

The case discussed here is the fully appended DARPA Suboff configuration [46]
constructed from analytical surfaces, and shown in Fig. 10. Experimental data, using
hot-film techniques, are provided at Re = 12 ·106 based on the overall hull length L,
the free-stream velocity u0 and ν [47]. The total measurement uncertainty in the ve-
locity data—i.e., the geometrical mean of the bias and precision errors, is estimated
to be about 2.5% of u0. The computational domain consists of the submarine model
mounted in a cylinder having the same hydraulic diameter as the wind tunnel used
in the scale model experiments. The cylinder extends one hull-length upstream and
two hull-lengths downstream, thus being 4L in overall length. For the hull an O-O
topology is used, while for the sail and stern appendages C-O topologies are used
and care is taken to ensure that the cell spacings and aspect ratios are suitable for
capturing the boundary layers along the hull.

Typically, about 20 cells are contained within the thickness of the boundary layer
on the parallel midsection of the hull, having a typical wall distance for the first
cell y+ ≈ 8. Two grids of about 3 · 106 and 6 · 106 nodes were used. At the inlet
boundary, v̄ = u0n and (∇p̄ · n) = 0, at the outlet p̄ = p0 and (∇v̄) · n = 0, whereas
free-slip conditions are used at the wind-tunnel walls, and no-slip conditions are
used on the hull. All LES are initiated with quiescent conditions and the unsteady
flow in LES is allowed to evolve naturally (i.e., without any external forcing).

In Figs. 11(a) and 11(b) we show typical comparisons between predictions of
towed and self-propelled cases and experimental data [47] of the distribution of the
time-averaged static pressure coefficient CP = 2(〈p̄〉 − p0)/u

2
0 along the meridian

line of hull and of the circumferentially averaged velocity in the propeller plane.
Very good agreement between the measurement data and the computations is ob-
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Fig. 11 Submarine hydrodynamics: comparison of the mean pressure and mean velocity: (a) along
the meridian line of the hull; (b) in the propeller plane

served along the entire hull section for the towed case. Virtually no differences
in the CP distribution can be observed between the towed and the self-propelled
cases—with the exception of the far-end of the tapered section of the stern, nor do
we see significant differences between the MILES+WM and LDKM predictions.
Concerning the velocity distributions, the differences are attributed to the presence
of the propeller (or rather the actuator-disc used to model the effects of the pro-
peller), and show the effects of the axial pressure gradient, as implicitly imposed
by the propeller causing a suction effect along the stern part of the hull. Based on
the secondary velocity vector field (not shown) the location of the horseshoe-vortex
pair is estimated in the case of the towed case from predictions (measurements) to
be at r/R ≈ 0.41 (0.38) and ϕ ≈ ±23◦ (±22◦), respectively.

6 Outlook

In the absence of an accepted universal theory of turbulence, the development and
improvement of SGS models are unavoidably pragmatic and based on the ratio-
nal use of empirical information. Classical approaches have included many pro-
posals ranging from inherently limited eddy-viscosity formulations to more sophis-
ticated and accurate mixed models. The main drawback of mixed models relates
to their computational complexity, and ultimately, to the fact that well-resolved
(discretization-independent) LES is prohibitively expensive for the practical flows
of interest at moderate-to-high Re. This has recently led many researchers to aban-
don the classical LES formulations, shifting their focus directly to the SGS modeling
implicitly provided by nonlinear stabilization achieved algorithmically, through the
use of a particular class of numerical schemes, or based on regularization of the
discretization of conservation laws.

In ILES (MILES), the effects of SGS physics on the resolved scales are incor-
porated in the functional reconstruction of the convective fluxes using NFV meth-



88 F.F. Grinstein and C. Fureby

ods. Analysis based on the modified equations shows that ILES provides implicitly
implemented anisotropic SGS models dependent on the specifics of the particular
numerical scheme—i.e., on the flux limiter, on the choice of low- and high-order
schemes, and on the griding. By focusing on the inviscid inertial-range dynamics
and on regularization of the underresolved flow, ILES follows up very naturally on
the historical precedent of using this kind of numerical schemes for shock captur-
ing. Challenges for ILES include constructing a common appropriate mathematical
and physical framework for its analysis and development, further understanding the
connections between implicit SGS model and numerical schemes, and, in particular,
how to address building physics into the numerical scheme to improve global ILES
performance, i.e., on the implicitly-implemented SGS dissipation & backscatter fea-
tures. Moreover, additional (explicit) SGS modeling might be needed to address in-
herently small-scale physical phenomena such as scalar mixing and combustion—
which are actually outside the realm of any LES approach: how do we exploit the
implicit SGS modeling provided by the numerics, to build “efficient mixed” (ex-
plicit/implicit) SGS models?
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