
The Conception, Gestation, Birth, and Infancy
of FCT

David L. Book

Abstract How Flux-Corrected Transport came to be, as recalled by one of the
innovators: recollections of how FCT was developed and of the individuals respon-
sible.

1 Conception

In 1970 there was essentially no reliable way to solve fluid equations numerically.
By 1971 there was one. Flux-Corrected Transport (FCT) was the first method de-
veloped that yielded physically acceptable results for such equations. The present
paper describes how Jay Boris and I developed FCT, with what I hope is an ac-
curate account of our thinking at the time, the path we followed in the course of
the development, including the missteps and blind alleys, and the roles of the other
individuals who were involved.

Fluid or hydrodynamic equations are partial differential equations dominated by
convective motion, that is, equations in which convective derivative terms of the
form

∂f

∂t
+ v · ∇f

play a decisive role, where f is one of the dependent fluid variables (density of mass,
momentum, energy, or charge; pressure, entropy, species concentration, etc.), t is
time, v is the flow velocity, ∇ ≡ ∂

∂r , and r is position. Examples are the continuity
equation for a compressible medium with mass density ρ,

∂ρ

∂t
+ ∇ · ρv = 0,

the Euler (momentum) equation in the presence of a scalar pressure p and a constant
gravitational acceleration g, which can be written

∂(ρv)

∂t
+ ∇ · ρvv + ∇p + ρg = 0,

D.L. Book (�)
Enigmatics, Inc., P.O. Box 8610, Monterey, CA 93943, USA
e-mail: davidbook@enigmatics.com

D. Kuzmin et al. (eds.), Flux-Corrected Transport, Scientific Computation,
DOI 10.1007/978-94-007-4038-9_1, © Springer Science+Business Media Dordrecht 2012

1

mailto:davidbook@enigmatics.com
http://dx.doi.org/10.1007/978-94-007-4038-9_1

2 D.L. Book

and the Navier–Stokes equation (the Euler equation with the inclusion of viscosity),

ρ
∂v
∂t

+ ρv · ∇v + ∇p = μ∇2v.

Such equations are also called convective or hyperbolic, although strictly speak-
ing the Navier–Stokes equation is parabolic in regions where the Laplacian term
dominates. In general, the equation expressing the transport of any continuously
distributed quantity, together with terms describing sources and losses, is of this
form. This category includes all of the familiar conservation laws.

A third of a century ago computer resources were meager by comparison with
today’s technology, but most of the general computational approaches in use today
were known, at least in broad outline, and the first steps had already been taken to-
ward applying them. Finite differences and finite elements (the distinction between
them then was somewhat blurred, though now people usually associate these terms
with differencing schemes on structured and unstructured grids, respectively), char-
acteristics, quasiparticles, and spectral methods had all been invented, and all of
these tools were being applied to the problem of finding computational solutions to
fluid equations. Dozens of Fortran codes based on each of these methods, or com-
binations of several of them, were in existence. They all fell short of what I feel is
the goal of any numerical treatment of evolution equations: using limited, i.e., dis-
cretized, information about the dependent variables in order to predict the values of
those variables at a later time with the same accuracy or level of confidence.

The presence of convective derivatives is what makes fluid equations difficult to
solve numerically. Because of them the characteristics, the space–time trajectories
along which the values of the fluid variables are constant, slope. In order to predict
the values at a position r of the fluid variables at a time t ′ later than a time t for
which their values are known, it is necessary to use information from the points
through which the characteristics passed at time t , which are in general different
from r. Thus, to predict the values of the fluid variables at a particular point on, e.g.,
a finite-difference grid may require knowing their values at an earlier time from a
location that was not on the grid.

In thinking about the implications of sloping characteristics I like to use an anal-
ogy with what I call the window problem. Suppose you are in a room with several
windows looking out onto a nearby railroad track. When a train comes by each car
in succession appears at a given window. Let’s say that the train is moving from
your left to your right. If you want to know what car is going to appear next at the
window in front of you, you can look out the window to the left of it. You don’t have
to keep a continuous watch; it suffices to glance over at the second window at in-
tervals, which correspond to the discrete timesteps in a finite-difference scheme. Of
course, if the windows are too widely spaced, or if you are too close to them, there
may be several cars hidden out of sight between the two windows. This is analogous
to using too coarse a mesh in your difference scheme. Likewise, you may miss a car
if the intervals between glances are too long, which corresponds to using too long a
timestep Δt .

But the information you get is limited in another way, because the window is
narrow and you can’t see a whole railroad car at one time. In order to make good

The Conception, Gestation, Birth, and Infancy of FCT 3

Fig. 1 Pathological railcars

predictions you have to know something about the kinds of railroad cars that the
train is allowed to have. A glimpse may be all you need to know that a car is a
boxcar or a tank car or a flat car, but what if it’s a car of a type you’ve never seen
before, say, one carrying a crane to lift up wrecks? Or one with unusual dimensions
or proportions (Fig. 1)? Your prediction is implicitly based on a bias or prejudice in
favor of the kinds of cars you expect to see.

In the same way, a numerical technique must contain a built-in bias about the
form solutions can take, because the available information is limited by discretiza-
tion. No technique can handle all situations. Each one must be tailored to fit a par-
ticular class of problems.

The problems Jay and I were interested in were time-dependent fluid problems,
especially those involving supersonic flow, and more generally, systems with dis-
continuities or steep gradients. These include not just shocks (which can occur only
when there is supersonic flow), but also contact and tangential discontinuities and
abrupt changes in temperature, species concentration, etc. We opted to employ a
finite-difference approach because it simplified coding, particularly in multidimen-
sions and at boundaries, and because that was what we were most comfortable with.

The naïve approach to finding a finite-difference approximation to differential
equations on a mesh with a uniform spacing Δx is to expand the derivatives in
Taylor series:

f (x ± Δx) = f (x) ± ∂f

∂x
Δx + 1

2

∂2f

∂x2
(Δx)2 ± · · · .

Thus,

f (x + Δx) − f (x − Δx) = 2
∂f

∂x
Δx + O(Δx)3

or
∂f (x, t)

∂x
= 1

2Δx

[
f (x + Δx, t) − f (x − Δx, t)

] + O(Δx)2,

and similarly

∂f (x, t)

∂t
= 1

2Δt

[
f (x, t + Δt) − f (x, t − Δt)

] + O(Δt)2.

4 D.L. Book

Hence a straightforward finite-difference approximation to the 1-D passive advec-
tion equation

∂ρ

∂t
+ u

∂ρ

∂x
= 0

is

ρ(x, t + Δt) = ρ(x, t − Δt) − ε
[
ρ(x + Δx, t) − ρ(x − Δx, t)

]
,

where ε = uΔt/Δx is the Courant number. The resulting finite-difference approxi-
mation is of course just second-order leapfrog, a useful scheme that has been widely
adopted.

The Taylor-series approach has a number of strengths. It yields difference
schemes (such as leapfrog) that are accurate for problems with slowly varying pro-
files, i.e., those in which discontinuities are absent. Also, it facilitates the analysis
of amplitude and phase errors. Thus, assume a sinusoidal density profile

ρ0
j = ρ0 exp(2πijκ/N),

where jΔx is position, κ is the mode number and N is the number of mesh points.
If

ρ1
j = ρ1 exp(2πijκ/N)

is the corresponding profile found after one timestep, then the amplification fac-
tor is Aκ = |ρ1/ρ0| and the relative phase error (the error in the speed with
which features are advected numerically, divided by the correct speed) is Rκ =
(κε)−1 tan−1(Imρ1/Reρ0) − 1.

But the Taylor-series expansion approach also has some notable deficiencies. It
works only when “order” makes sense, i.e., when the scale of variation is large
compared with the mesh spacing, so that the neglect of higher-order terms (“trun-
cation errors”) is justified. Consequently, it breaks down at discontinuities, where
“dispersive” ripples make their appearance. (The finite-interval Gibbs effect, the
analog for discrete Fourier transforms of the well-known Gibbs phenomenon, can
also contribute to errors in the vicinity of a discontinuity. I will return to this topic
below.)

The key insight (which to the best of my knowledge originated with Jay) is that
the Taylor-series approach fails because it does not enforce positivity, a property
sometimes called monotonicity. For physical reasons some variables can only take
on positive values. Examples are mass and energy density (but not charge or mo-
mentum density), temperature, and pressure. Nothing in the Taylor-series approach
ensures this. Positivity violations are found to be worst near discontinuities. At dis-
continuities formal high-order accuracy is less important than maintaining positiv-
ity.

This may be an appropriate time to try to spell out what is meant by the term
“discontinuity.” Shocks, contact discontinuities, and slip lines (tangential disconti-

The Conception, Gestation, Birth, and Infancy of FCT 5

nuities) would be physically discontinuous in the absence of dissipation. Because
dissipation can never be totally absent, however, no physical quantity is ever truly
discontinuous, at least in classical physics. There are no discontinuities in nature.

In finite-difference approximations, on the other hand, all changes are discontin-
uous, but some are more discontinuous than others. A criterion is needed to deter-
mine when a discontinuity is “real.” This criterion may involve calculating whether
the relative or absolute change in a variable exceeds some threshold value, or it may
be more complicated. The exact definition, as always, depends on the nature of the
problem and one’s expectations about the solution being sought.

In the absence of a specific criterion a finite-difference scheme will not be able
to distinguish a weak physical discontinuity from a smooth feature or from noise.
As I will show, there are several reasons why a profile that should be smoothly
varying might develop ripples or “bumps” in a computational treatment. Hence in
any scheme susceptible to such errors nonphysical features will be treated just like
physical ones. The trick is to avoid, as much as possible, developing them in the first
place.

The simplest system of equations that models shocks is that of ideal hydrody-
namics. This consists of the continuity and Euler equations and an equation for the
energy density

E = 1

2
ρv2 + p

γ − 1
.

The energy equation follows from the adiabatic law (pressure equation) in the form

∂p

∂t
+ v · ∇p + γp∇ · v = 0,

where γ is the ratio of specific heats.
These three equations express the conservation of mass, momentum, and en-

ergy. That they are conservative is important; if the adiabatic law is used instead
of the formally equivalent energy equation, then pressure remains positive but the
Rankine–Hugoniot (jump) conditions are violated. If the energy equation is chosen
as one of the fundamental evolution equations, then energy is conserved and shocks
obey the Rankine–Hugoniot conditions, but pressure is a derived quantity which can
become negative. The Rankine–Hugoniot conditions imply that the jump in entropy
varies as (M − 1)3, where M is the Mach number. Using the adiabatic law means
that only weak shocks (M → 1) are calculated correctly. This dilemma confronts all
finite-difference schemes.

Physically, viscous dissipation is responsible for creating entropy at a shock
front. This is what allows shocks to satisfy the Rankine–Hugoniot conditions. The
equations of ideal hydrodynamics in conservative form contain no explicit viscos-
ity terms, but nevertheless admit solutions that satisfy the Rankine–Hugoniot con-
ditions. These so-called weak solutions represent a zero-viscosity limit. Physical
shocks in systems with nonzero viscosity differ in having nonzero thickness; that is,
the jump takes place over a region of finite extent.

6 D.L. Book

Any numerical scheme must include some dissipation if it is going to allow the
jump conditions to be satisfied. Before the invention of FCT the most successful
finite-difference treatments of supersonic flow, developed at Los Alamos and widely
employed elsewhere, introduced an artificial viscosity term, typically in the form of
a velocity-dependent coefficient multiplying the second difference of the velocity.
This forced the production of entropy at places where the velocity underwent abrupt
change and allowed the Rankine–Hugoniot conditions to hold.

The trouble with this approach was that in order to generate enough entropy the
coefficient had to be large. This in turn caused the shock to be spread out over sev-
eral or many mesh spaces. That was fine if the physical viscosity in the problem was
large, i.e., if the Reynolds number Re was of order unity. But for realistic problems
of high-Reynolds-number flow—say, Re > 100—it was hopelessly inaccurate. To
reduce the shock thickness to reasonable values would require being able to deter-
mine where shocks were located or were about to form or introducing thousands
of grid points in each coordinate direction, which would have been prohibitively
expensive. (Remember, this was in 1970.)

There is another downside to using artificial viscosity. The timestep limit in
finite-difference problems arises because information can travel no faster than one
mesh space per timestep (assuming three-point difference schemes), which means
that the Courant number must not exceed unity. Violating this condition in explicit
finite-difference treatments of the ideal hydrodynamic equations leads to catas-
trophic numerical instability. If the spatial mesh in a calculation is refined the
timestep must shrink proportionately to stay within safe limits. But when diffu-
sion terms of the form μ∇2v dominate, then the timestep scales with the square
of the mesh space. Consequently, in methods using artificial viscosity even re-
fining the mesh locally near the shocks becomes much more expensive if the
diffusion terms are differenced explicitly. (Implicit differencing has problems of
its own.)

A shock wave heats the medium through which it is traveling, which causes the
speed of sound to increase. Hence information propagates faster, so that signals in
the region behind a shock tend to catch up with the shock. This means that shocks
are self-steepening. Other discontinuities, such as contact surfaces, are not. As a
result, shear surfaces and interfaces between two different media or between two
regions in the same medium with different properties tend to be smeared out by
numerical diffusion and are more difficult to model than shocks.

The passive advection equation models advection and propagates contact dis-
continuities, but in contrast to the system of hydrodynamic equations it has no
self-steepening mechanism. Consequently, it is a more stringent test of numerical
fluid-equation solvers. In addition it is simpler to work with than a set of nonlinear
equations. Thus, it was natural for us to choose it as our test bench instead of the
full set of hydrodynamic equations. We felt that if we could do a good job solving
this equation numerically we could solve most fluid problems.

For our basic test problem we chose to propagate a square wave 20 mesh spaces
in width across a grid 100 mesh spaces wide (Fig. 2) for 800 timesteps with a con-
stant Courant number ε = 0.2, using periodic boundary conditions in order to al-

The Conception, Gestation, Birth, and Infancy of FCT 7

Fig. 2 Initial conditions for
the square-wave test

Fig. 3 Square-wave test of
donor cell (first-order
accuracy)

low the profile to reenter the system. As a quantitative figure of merit we used the
average absolute value of the error (the L1 norm), abbreviated A.E. This test prob-
lem subsequently became a kind of universal standard in the computational physics
community.

When various numerical methods are evaluated using this problem one can read-
ily discern their strengths and shortcomings. Those that are inaccurate to zeroth or-
der in terms of Taylor-series expansions in kΔx, the nondimensionalized wavenum-
ber, fail to track the analytical solution correctly, yielding profiles that move either
too fast or too slow. Those that are first-order accurate, such as donor-cell (upwind
differencing), yield profiles that move at the right speed and maintain positivity, i.e.,
ρ(x) > 0 everywhere, but become smeared out over an ever-increasing portion of
the grid (Fig. 3). In other words, they are highly diffusive.

Methods that are second-order accurate, such as leapfrog or Lax–Wendroff, yield
profiles that develop multiple ripples (Fig. 4). These arise because the various
Fourier harmonics that make up the square wave propagate at different speeds. The
long-wavelength components propagate at nearly the right speed, while the short-
wavelengths usually lag behind. In other words, the errors are dispersive. The rip-

8 D.L. Book

Fig. 4 Square-wave test of
leapfrog (second-order
accuracy)

ples grow in amplitude until the profile can become negative in some places. Thus,
second-order algorithms do not maintain positivity. Notice that introducing a small
amount of smoothing (ν = 0.01) not only eliminates these negative values but also
reduces the A.E. The optimum choice of the smoothing coefficient ν is, however,
problem-dependent.

It is difficult to say which is worse, diffusive or dispersive errors, Scylla or
Charybdis. Going to higher than second order doesn’t solve the problem. Every
technique that can be expressed in terms of linear finite-difference operations on
the dependent variable—including every finite-difference treatment of the passive
advection equation and its hydrodynamic kin in existence prior to the invention of
FCT—suffers from one or the other failing.

2 Gestation

FCT was the first nonlinear finite-difference technique. In my view there were three
main steps in our thinking that led to its development: expressing all operations in
terms of fluxes, certainly not a new idea at the time; a transport algorithm called
SHASTA, which is highly diffusive even in the limit of zero velocity, suggesting
the use of “antidiffusion” to cancel out the diffusive errors; and the idea of correct-
ing (limiting) the antidiffusive fluxes in order to maintain positivity (the nonlinear
ingredient).

Fluxes are quantities of an extensive variable (e.g., mass, momentum, energy)
that pass from one cell or grid point to another. If a finite-difference algorithm can be
expressed entirely in terms of fluxes then it is guaranteed to be conservative, because

The Conception, Gestation, Birth, and Infancy of FCT 9

Fig. 5 Finite-difference
approximation represented by
rectangles and by trapezoids

what is removed from one place reappears in another. Thus, advection (transport
only) can be approximated using transportative fluxes:

ρT
j = ρj − φT

j+1/2 + φT
j−1/2,

where

φT
j+1/2 = εj+1/2ρj+1/2,

with εj+1/2 = uj+1/2Δt/Δxj+1/2 and ρj+1/2 defined on the cell boundary,
xj+1/2 = 1

2 (xj + xj+1), and Δxj+1/2 = xj+1 − xj .
Similarly, diffusion can be expressed in terms of diffusive fluxes:

ρD
j = ρj + φD

j+1/2 − φD
j−1/2,

where

φD
j+1/2 = νj+1/2(ρj+1 − ρj).

In both instances what is subtracted from one cell is added to its neighbor, so the
total “mass” is conserved.

The second ingredient, SHASTA, was Jay’s idea. He devised it by means of a ge-
ometric approach. Imagine a finite-difference approximation ρj to some continuous
variable ρ(x), represented by histograms or rectangles (the broken lines in Fig. 5).
Connect the points denoting the values of ρj with straight lines to form trapezoids.
The area contained in the resulting trapezoids is the same as that contained in the
rectangles.

If this profile is then transported across the grid with some velocity u(x), in gen-
eral each trapezoidal packet of fluid undergoes advection together with compression
or expansion. Each mesh point xj moves to a new location x′

j . In one timestep the
two vertical sides xj and xj+1 of a trapezoid thus move in general by different dis-
tances, causing it to be deformed as well as translated. The condition x′

j < x′
j+1,

which is necessary to ensure positivity, imposes the limitation ε < 0.5. At the end
of each timestep the mass contained in the trapezoid is reassigned to the two rectan-
gles it straddles: the portion to the left of the boundary between two cells is assigned
to the left-hand cell and the portion to the right is assigned to the right-hand cell
(Fig. 6).

10 D.L. Book

Fig. 6 SHASTA contains a
zeroth-order diffusion

It is easy to see that the process of creating trapezoids and reassigning their mass
is highly diffusive. In fact, in the limit when the velocity is identically zero the new
value of ρj equals the old value plus a second difference with coefficient of 0.125:

ρn+1
j = ρn

j + 1

8

(
ρn

j+1 − 2ρn
j − ρn

j−1

)
.

Since this algorithm is diffusive, the natural thing to do is to subtract the excess dif-
fusion, or to put it another way, to apply antidiffusion. Antidiffusion is just diffusion
with a negative coefficient:

∂ρ

∂t
= −A

∂2ρ

∂x2
, A > 0.

Whereas diffusion erodes features, antidiffusion steepens them. Discontinuities be-
come sharper and new extrema can occur. If this process is sufficiently drastic it can
violate positivity (Fig. 7).

The Conception, Gestation, Birth, and Infancy of FCT 11

Fig. 7 Antidiffusion can
violate positivity

One way to look at this is to recognize that diffusion converts a second-order
algorithm like Lax–Wendroff or leapfrog that has wiggles into one that is first-order
like donor cell. Hence taking out the excess diffusion changes it back into a second-
order algorithm and restores the wiggles.

Jay recognized that by correcting or limiting the antidiffusive fluxes before they
are applied he could avoid restoring the wiggles. A flux large enough to push a point
j down below its neighbors will create a new minimum that might go negative, so
it is necessary to reduce the size of this flux. If the profile already has a minimum
at j , then allowing it to be pushed further down is dangerous, so it is necessary
to zero any flux that tends to do so. Likewise, it is necessary to avoid enhancing
maxima on negative profiles. The two rules can be combined into one: replace the
“raw” antidiffusive fluxes with fluxes “corrected” so that no new extrema can form
and existing extrema cannot grow. Figure 8 illustrates the four different situations a
limiter can face when dealing with the flux between the points j and j +1, assuming
the gradient is positive there: (a) no pre-existing extrema; (b) a maximum present at
j + 1; (c) a minimum present at j ; or (d) both.

This was the first flux limiter that gave satisfactory results. We eventually realized
that there are other workable variants, but this one, in which each flux is corrected
without reference to others, is arguably the simplest. Because its action sometimes
amounts to overkill (in ways I will describe shortly) I called it “strong” flux limiting.

The idea of using a flux limiter was the crucial ingredient in FCT. Some of the
credit for it should go to the late Klaus Hain, our colleague at the Naval Research
Laboratory. At the time Klaus was also trying to develop an algorithm to solve con-
vective equations. I believe he was the first to recognize that some sort of adjustment
or correction in the fluxes was needed, but he had not yet found the right formula-
tion. Jay picked up the idea from him and made it work.

In some ways we were Klaus’s competitors more than his collaborators. Klaus
was an extremely able numericist, and Jay clearly wanted to be the first to find a
successful algorithm. Jay and I worked closely together, but Klaus worked almost
entirely alone. I thought it was because Klaus, German-born and about two decades

12 D.L. Book

Fig. 8 Possible actions of a
“strong” flux limiter on a
positive flux

older than us, had trouble speaking and writing English. His wife Gertie, however,
assured everyone that he was uncommunicative in German too.

3 Birth

By mid-1971 we had a working one-dimensional flux-corrected version of SHASTA.
The name SHASTA supposedly came not from the famous mountain, but from the
nom de guerre of a topless dancer. (I cannot confirm this from my own experi-
ence.) Possibly because he thought this lacking in dignity Jay contrived the acronym
“SHarp And Smooth Transport Algorithm,” which is how we presented it to the
world.

Initially Jay had been unwilling to reveal the secret of FCT to outsiders, but one
day he said to me, “Here comes Super-Klaus!” He suspected that Klaus was writing
up his work for publication, and that was what changed his mind. We decided that
one paper was not enough. Instead there would be a series, which became the cel-
ebrated FCT-1, FCT-2, and FCT-3. Jay was the obvious choice as the senior author
of the first paper, most of which he drafted, but he must have felt a little guilty about
scooping Klaus, because he suggested that the subsequent papers should bear the
names of all three of us. Each of us would write the first draft of one of them; Klaus
would be lead author of one and I would be lead author of the other. In the event
though, Klaus—true to form—never did write anything, and his name appeared only
on the second paper.

The Conception, Gestation, Birth, and Infancy of FCT 13

Actually, the first publications describing FCT appeared not in 1973, but two
years earlier. (Hence the workshop for which I prepared the present paper should
properly be called FCT-32, which is a more computational-sounding name than
FCT-30 anyway.) I wrote the first journal article, which closely followed the manu-
script we were preparing for submission to the Journal of Computational Physics at
the time. It appeared in the November issue of NRL Reports of Progress, a house
organ read by almost nobody. The only reason I wrote it was because I was then
serving on a committee set up in order to make the Reports of Progress more rele-
vant and better known.

But our very first publication was oral and never found its way into print. The
application for which FCT was intended was modeling the atmospheric nuclear ex-
plosions that would have resulted from the infamous antiballistic missile program.
The 1971 Symposium on High-Altitude Nuclear Effects (HANE), held at Stanford
in August, was the first exposure of FCT to the computational community at large.
The meeting was attended by government and private contractors funded by the De-
fense Atomic Support Agency, which that year became the Defense Nuclear Agency
(DNA), afterward called the Defense Special Weapons Agency, and currently the
Defense Threat Reduction Agency.

Several people from NRL were there, presenting results on various aspects of
HANE. The attendees from other organizations were of course competing with us
for DNA support. We wanted to impress them and our sponsor, but not to tell them
too much. I gave the talk on the design of FCT. Jay was very insistent that I not
reveal any secrets, and I didn’t. I showed the results of the square-wave tests, I de-
scribed SHASTA, but I didn’t explain how the flux limiter worked, nor did I mention
an embellishment called a “steepener.” A lot of what I said was sheer doubletalk.
I have a vivid recollection of a frustrated Greg Canavan from the Air Force Weapons
Laboratory standing in the audience, asking question after question, trying to pin me
down. Finally he said, “You keep saying, ‘Another way to look at it is so-and-so.’
Just tell us how it works!”

The meeting was a triumph for FCT and for our group at NRL. Our co-authors on
that initial publication, Carl Wagner and Ed McDonald, were among the first users
of SHASTA. Carl later worked on controlled fusion in private industry; Ed, who is
still at NRL, changed fields and is now widely known for his work modeling sound
propagation in the ocean. Jay and I both began applying SHASTA to a variety of
problems, as did at least half a dozen of our colleagues in the Plasma Dynamics
Branch. Many of these led to plasma and ionospheric physics papers.

At the same time we continued to refine and extend the method while preparing
for publication in JCP. Some of the improvements resulted in making the code more
efficient. Jay found that the flux limiter, which originally required a nested sequence
of IF statements, could be expressed by a one-line formula:

φc
j+1/2 = σj+1/2 max

[
0,min(σj+1/2Δj−1/2, |φj+1/2|, σj+1/2Δj+3/2)

]
.

Here

Δj+1/2 = ρT D
j+1 − ρT D

j ,

φj+1/2 = μ
(
ρT D

j+1 − ρT D
j

)
or φj+1/2 = μ

(
ρT

j+1 − ρT
j

)
,

14 D.L. Book

Fig. 9 The effect of
introducing an artificial
steepener

where ρT
j is the transported density, ρT D

j is the transported diffused density, and

σj+1/2 = sign(φj+1/2).

The two versions given here for the raw antidiffusive flux both use the same dimen-
sionless coefficient μ, but the second version, which we called phoenical, has the
advantage that when the flow velocity u vanishes ρT

j → ρj . This permits the profile,
which has been smeared out by diffusion, to be restored “like a phoenix,” so that the
algorithm reduces to the identity operation.

There was one aspect of the early versions of FCT that I felt uneasy about, the
use of steepeners. In FCT-1 the antidiffusion coefficient μ was given as “1/8.” We
wrote “The quotation marks indicate that more exact cancellation of errors can be
achieved if one expends a small amount of computational effort by including at
least rough approximations to the velocity- and wavenumber-dependent corrections
[11].” Footnote 11 explained just what was meant by wavenumber dependence: The
antidiffusion coefficient was bigger than the diffusion coefficient by an amount that
depended on the size of the discontinuity. Naturally, this yielded very nice square
waves (Fig. 9). The drawback was that it turned every bump into a square wave!

The steepener was Jay’s idea. The rationale for it was that our tests produced
profiles that were actually less sharp than shocks calculated with FCT because,
as I mentioned earlier, the passive advection equation has no mechanism for self-
steepening. The steepener was supposed to model this mechanism, but to me it
seemed an out-and-out kludge, and people who read footnote 11 apparently agreed.
In the event steepeners disappeared after FCT-1 and were never mentioned again.

4 Infancy

As we continued to improve and extend SHASTA we gradually realized that what
we had was more widely applicable and more general than a mere algorithm. Jay
insisted on using the name “flux-corrected transport,” but it was several years before
the rest of the community distinguished between FCT and SHASTA. (Jay also tried

The Conception, Gestation, Birth, and Infancy of FCT 15

to reserve the term “scheme” for competing algorithms, while referring to FCT as
a “method” or “technique,” but that invidious distinction, not surprisingly, never
caught on. Neither did the term “Flux-Uncorrected Transport,” which he used once
in a talk.)

My first contribution to helping transform FCT from an algorithm into a method
was to derive a formula for the diffusive transport step of SHASTA, i.e., the result of
assigning mass to the trapezoids, transporting them, and reassigning it to the mesh.
(The original code simply followed the geometric construction.) This formula can
be expressed algebraically as

ρn+1
j = 1

2
Q2−

(
ρn

j − ρn
j−1

) + 1

2
Q2+

(
ρn

j+1 − ρn
j

) + (Q− + Q+)ρn
j ,

where

Qσ = 1/2 − σujΔt/Δx

1 + σ(uj+σ − uj)Δt/Δx
, σ = ±1.

For a uniform velocity field, uj = u, it reduces to

ρn+1
j = ρn

j − ε

2

(
ρn

j+1 − ρn
j−1

) +
(

1

8
+ ε2

)(
ρn

j+1 − 2ρn
j + ρn

j−1

)
,

which is just Lax–Wendroff plus a zeroth-order (in ε) diffusion with coefficient 1/8.
So, Jay thought, why not use Lax–Wendroff as the transport algorithm even when
the flow field is nonuniform, adding diffusion to it and then applying antidiffusion?
This worked just as well as SHASTA.

We tried flux-correcting leapfrog, and that worked fine too. Initially we used a
diffusion/antidiffusion coefficient of 0.125 because that was what SHASTA used. It
turned out that the limit on the Courant number in order to ensure positivity, ε < 0.5,
is the same as for SHASTA, although the geometric interpretation no longer holds.
Why is 1/8 the best choice? Wouldn’t it be better to use less diffusion sometimes, es-
pecially when the flow velocity is very small and less is needed to ensure positivity?
I tried running our standard test using different values of the diffusion/antidiffusion
coefficient (Fig. 10). It is evident that the best results come from using 1/8, and that
using too much can be as bad as using too little.

We noticed that combining a velocity-dependent antidiffusion with donor cell
created a second-order-accurate algorithm formally identical to Lax–Wendroff. If
the antidiffusive fluxes are limited with the same prescription that was used in
SHASTA the result is a flux-corrected version of donor cell. In this algorithm the
diffusion and antidiffusion coefficients vanish when the flow velocity does. In fact,
for any value of u flux-corrected donor cell embodies the smallest diffusion coef-
ficient consistent with positivity. But when we tested the new algorithm on square
waves we found that the results were inferior to those obtained with flux-corrected
Lax–Wendroff or leapfrog. Evidently minimizing the diffusion does not produce the
best algorithm.

Jay found the explanation: phase accuracy is more important than amplitude ac-
curacy. This is because the cumulative residual diffusion due to flux limiting results
from mashing down the short-wavelength harmonics, which always propagate too

16 D.L. Book

Fig. 10 Result of varying the diffusion/antidiffusion coefficient

slowly or too fast in a finite-difference algorithm. Minimizing the relative phase
error works better (because fewer harmonics need mashing) than making the am-
plification factor as close as possible to unity. In fact, the amplification factor must
go to zero for very short wavelengths, or else they wouldn’t get mashed. For good
results an FCT algorithm should have phase error that is at least second-order (i.e.,
proportional to k2 when expanded in powers of wavenumber).

Another lesson we learned from these experiments was that the diffusion and
antidiffusion coefficients can be velocity-dependent, provided that the diffusive and
antidiffusive fluxes cancel out. This gave us an extra degree of freedom, an addi-
tional knob to turn in fine-tuning algorithms.

While musing on an algorithm called hopscotch I had read about in JCP I
dreamed up “reversible FCT,” which is basically flux-corrected Crank–Nicolson.
It applies half the transport step to the old values and half to the new, together with
a diffusion/antidiffusion that is also symmetric between the old and new values:

ρT
j + ε

4

(
ρT

j+1 − ρT
j−1

) + ν
(
ρT

j+1 − 2ρT
j + ρT

j−1

)

= ρ0
j − ε

4

(
ρ0

j+1 − ρ0
j−1

) + ν
(
ρ0

j+1 − 2ρ0
j + ρ0

j−1

)
.

The Conception, Gestation, Birth, and Infancy of FCT 17

Fig. 11 Reversible FCT

The transported diffused density ρT D
j is found by adding ν(ρT

j+1 − 2ρT
j + ρT

j−1)

to ρT
j . Then the raw antidiffusive flux φj+1/2 = ν(ρT

j+1 − ρT
j) is corrected with

respect to ρT D
j and reapplied. This algorithm is second-order for any choice of ν

because of symmetry. Setting ν = 1/6 + ε2/12 makes the phase error fourth-order.
With this choice the square-wave test yielded an A.E. of 0.033, the best we had yet
found (Fig. 11).

Even without flux correction the underlying transport routine in an FCT algo-
rithm gives better results than conventional algorithms. In a sense it should, be-
cause conventional algorithms are based on three-point stencils (they involve only
the mesh point in question and its two nearest neighbors), while the extra antidiffu-
sion step in FCT introduces information from next-nearest neighbors as well. Can
FCT algorithms be made even more accurate by using more complicated stencils?

Thinking about this led me to invent Fourier-transform FCT. Start by Fourier-
transforming the density ρ:

ρj =
N∑

κ=1

ρ̃κ exp(2πijκ/N).

(This is of course implies an N -point stencil, but with fast transforms the compu-
tational overhead is acceptable.) Advance each component according to the exact
solution of the transformed advection equation:

ρ̃κ (t + Δt) = ρ̃κ (t) exp(−2πiκuΔt/Δx).

Now transform back to x space. The resulting solution has no dissipation and no
phase error. On the face of it this algorithm should be error-free, at least for passive
advection with a uniform velocity. Indeed, if ε = uΔt/Δx is an integer the solution
reproduces the analytic solution exactly. There is no need for additional diffusion,
antidiffusion, or flux correction.

18 D.L. Book

Fig. 12 Continuous function
obtained from the discrete
Fourier transform of a jump

If uΔt/Δx is not an integer, however, the solution that results from inverting the
Fourier transform has ripples. Jay called this the finite-interval Gibbs effect. These
ripples are related to the “window problem,” i.e., the impossibility of knowing what
goes on between the mesh points. Plotting the inverse of the discrete Fourier trans-
form over the entire interval on which the original discrete function is defined yields
a continuous curve. This can be shown to be the smoothest function that passes
through the values of the function on the mesh. If the original function contains
a sharp discontinuity, this plot not only exhibits the usual Gibbs over- and under-
shoots at the top and bottom of the jump, but also has wiggles between the mesh
points (Fig. 12).

Translating the profile over a fraction of a mesh space exposes these wiggles to
view. The Fourier transform thinks a function should behave this way in order to
be as smooth as possible, whereas the physics favors one that has as few wiggles
as possible. But we know how to fix that: flux-correct it. In other words, add some
diffusion, then apply an equal amount of antidiffusion with a flux limiter. Nothing
dictates the choice of the coefficient, so we used μ = ν = 1/8. (Why not? It worked
in other algorithms.) The resulting value of 0.022 for the A.E. is the smallest one we
ever found (Fig. 13). Thus, at the cost of a higher operation count, Fourier-transform
FCT emerged as the optimum FCT algorithm, at least for this test problem.

The three JCP papers focused almost entirely on how FCT worked and on the
design of FCT algorithms. In 1976 we contributed an article to the series Methods
of Computational Physics. It appeared as a chapter in volume 16, which surveyed
numerical techniques for plasma physics problems. This article (which perhaps de-
serves to be designated FCT-4) reviewed our previously published work, but also
discussed some of the codes incorporating FCT and the problems to which we had
applied them.

When it came to real applications we found that FCT is not perfect. One source
of error is something than can be called residual diffusion, which results when an-
tidiffusion fails to completely cancel diffusion.

The Conception, Gestation, Birth, and Infancy of FCT 19

Fig. 13 The optimum FCT
algorithm

Fig. 14 Result of 20
repetitions to profile (a) of
diffusion and (b) explicit;
(c) phoenical; (d) implicit
antidiffusion with strong flux
limiting, using coefficients
μ = ν = 0.2

The most dramatic manifestation of this is “clipping.” An extremum loses a little
bit of amplitude each timestep, even if it isn’t being advected across a grid, be-
cause diffusion squashes the extremum down and strong flux limiting doesn’t allow
the antidiffusion to push it back up. Ultimately the peak changes into a charac-
teristic flat-topped structure, which we called a plateau. For example, an initially
sharp maximum subjected to repeated diffusion and antidiffusion operations grad-
ually flattens out until it forms a plateau three points across (Fig. 14), which is
stable.

Figure 14 shows that this flattening is less severe with phoenical or implicit anti-
diffusion than with the original explicit form of antidiffusion, in which the raw flux
is calculated from the diffused profile. The reason is obvious. If T stands for the
transport operation, D stands for a three-point centered second difference with co-

20 D.L. Book

efficient ν, and A represents the same operation with coefficient μ = −ν, the three
versions of FCT can be represented symbolically as

Explicit: ρ1 = (1 + A)ρT D = (1 + A)(1 + T + D)ρ0;
Phoenical: ρ1 = [

(1 + A)(1 + T) + D
]
ρ0;

Implicit: ρ1 = (1 + D)−1ρT D = (1 + D)−1(1 + T + D)ρ0.

It is clear that in the limit T → 0 phoenical and implicit FCT reduce to the identity
operation, or would except for the action of the flux limiter, but explicit FCT does
not. (This is of course why phoenical antidiffusion was invented.)

In an effort to eliminate clipping we tried a number of different flux limiters. One
of my early attempts was the one-sided flux limiter. This involved changing the flux
limiter so that maxima could grow on positive profiles but minima could not (and
vice-versa for negative profiles). The resulting algorithm preserved positivity, but
gave rise—unsurprisingly—to one-sided ripples.

Another idea of mine that didn’t work out was called “flux-limited diffusion.”
The innovation here was to apply diffusion only where needed to prevent extrema
from growing relative to their original values, rather than put it in everywhere and
remove it where it was not needed. The test results, however, were disappointing.
Square waves propagated using flux-limited diffusion were badly eroded. The trou-
ble with this approach was that it failed to ensure high phase accuracy in the under-
lying transport scheme. Ultimately we decided to stick with strong flux limiting. It
was easier to live with the symptoms of the disease than with the side effects of the
cures.

Another form of residual diffusion is more subtle. If the antidiffusion coefficient
is smaller than the diffusion coefficient, some residual diffusion is present even in
the absence of flux limiting. The algorithm with fourth-order phase accuracy de-
scribed in FCT-3 has an amplification factor that just barely—by less than 0.5%—
exceeds unity. (We didn’t know this until Phil Colella pointed it out years later.)
Because of this it was found that codes yielded the best results when the antidif-
fusion coefficient was reduced slightly by multiplying by a factor called a “mask.”
(The name arose because the correction was applied using MASK, a Fortran IV
bit-manipulating instruction.)

An annoying but fairly innocuous departure from realism arises because the flux
limiter stops dispersive ripples from growing on the slopes of hills or valleys only
when they are about to form new extrema. This leaves flat “terraces” on the slopes,
which I like to think of as the ghosts of departed ripples. Improving the phase ac-
curacy of the algorithm helps reduce terracing, but the only real cure is to use a
more elaborate form of flux limiting that takes into account second derivatives of
the profile.

When we started using FCT for two-dimensional problems a new and much more
serious question arose: How could we generalize the flux limiter to multidimen-
sions? Should all the fluxes be corrected in one sweep? In applying antidiffusive
fluxes in, say, the x direction, should we worry about extrema only along that axis,
or should we look at all points in the neighborhood? The coding was tortuous, and
every prescription we tried seemed to fail in some combination of circumstances.

The Conception, Gestation, Birth, and Infancy of FCT 21

Finally we gave up and decided to use coordinate splitting. That is, on each
timestep we treated each coordinate independently, carrying out 1-D transport and
1-D flux limiting first in the x direction and then in y. Symbolically this can be
written, e.g.,

ρT D = (1 + Tx + Dx)(1 + Ty + Dy)ρ
0;

ρ1 = (1 + Ax)(1 + Ay)ρ
T D.

Obviously this introduces spurious terms, e.g., AxAy . Most of the time they do no
great harm because the errors tend to cancel out, but there are some situations where
splitting creates unphysical effects. One example is when plateau formation occurs
in both coordinate directions at the same time, for example on a hilltop. The result is
that contours of constant density (or pressure, etc.) become square. I got very tired
of going to meetings where I had to explain why my code generated square fireballs.

5 The Next Generation

Despite all our efforts we never found a way around the problem of creating a multi-
dimensional flux limiter. Eventually I decided that it was insoluble, and I told every
colleague who expressed an interest in it not to waste his time. As is well known, the
problem turned out not to be insoluble. Likewise, the “pioneering idea of blending
high- and low-order discretizations,” cited on the FCT-30 web page, was not part
of the original concept. It was a later development, due to the same individual who
created the multidimensional flux limiter, Steve Zalesak. But that is his story to tell.

References

1. Book, D.L., Boris, J.P., McDonald, B.E., Wagner, C.E.: SHASTA, a transport algorithm that
works. In: Proc. Symposium on High-Altitude Nuclear Effects, Stanford, CA, August 10–12
(1971)

2. Book, D.L., Boris, J.P.: A transport algorithm that works. NRL Reports of Progress (Nov. 1971),
p. 1

3. Boris, J.P., Book, D.L.: Flux-corrected transport: I. SHASTA, a fluid transport algorithm that
works. J. Comput. Phys. 11, 38–69 (1973) [FCT-1]

4. Book, D.L., Boris, J.P., Hain, K.: Flux-corrected transport: II. Generalizations of the method.
J. Comput. Phys. 18, 248–283 (1975) [FCT-2]

5. Boris, J.P., Book, D.L.: Flux-corrected transport: III. Minimal-error FCT algorithms. J. Comput.
Phys. 20, 397–431 (1976) [FCT-3]

6. Boris, J.P., Book, D.L.: Solution of continuity equations by the method of flux-corrected trans-
port. In: Alder, B., Fernbach, S., Rotenberg, M., Killeen, J. (eds.) Methods in Computational
Physics, vol. 16. Academic Press, New York (1976)

	The Conception, Gestation, Birth, and Infancy of FCT
	1 Conception
	2 Gestation
	3 Birth
	4 Infancy
	5 The Next Generation
	References

