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Foreword

At a time when the world’s population has reached seven billion people,
sustainable design and environmental protection are critical to ensure that water
resources will be available for future generations. It is well recognized that there is
an energy/water nexus. It takes water to generate energy and energy to treat water.
There is great opportunity to make wastewater treatment plants net energy users
and even producers since there is 2–4 times the amount of energy embedded in
wastewater than it takes to treat it. As we design wastewater treatment plants, it is
important to consider the kinds of treatment that will allow us to recover energy.
It is also important to recover nutrients for use as fertilizers and to reclaim water
for irrigation, since there is also a water/food nexus. Technology exists which
allows wastewater to be treated to a level which removes micro-contaminants such
as endocrine disruptors and pharmaceuticals which not only impacts receiving
waters and their uses, but also limits the ability for direct and indirect water reuse
to ensure adequate supply of water. The editor, my friend and colleague Dr. Giusy
Lofrano, in the framework of this book not only discusses the problems and issues
associated with wastewater treatment but also offers technologically sound
solutions. This book is an asset to all water professionals so they can become
knowledgeable in the issues and develop sustainable design for wastewater
treatment plants.

Jeanette A. Brown
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Preface

Engineering and sustainable development are intrinsically linked. Many aspects of
sustainable development depend directly on appropriate and timely actions made
by engineers. Green engineering focuses on how to achieve sustainability through
science and technology for it is one of its fundamental principle to consider the
environment when designing products and technologies.

Today, the term ‘green’ is used widely (and often inappropriately) in connec-
tion with many types of technologies. Generally, a technology is defined ‘green’
because it requires less non-renewable energy sources than others or reduces the
use of hazardous chemicals. However, a truly ‘‘green’’ technology should consider
the recycling potential, the nutrient and the energy recovery as well as ensure the
preservation of ecosystems. It can be argued that green engineering is not simply
good chemical engineering or industrial ecology, which alone is not enough to
achieve sustainability. Indeed, even systems with efficient material and energy use
can overwhelm the recovery capacity of a region or lead to other socially unac-
ceptable outcomes.

As the quantity and quality of the resources and the resilience of the environ-
ment changes over time, the most sustainable technological solutions will change
accordingly.

Green engineering was originally defined by the U.S. Congress Office of
Technology Assessment as ‘‘green design involving two general goals: waste
prevention and better material management’’. More recently, green engineering
was more broadly defined by the U.S. Environmental Protection Agency (EPA) as
‘‘the design, commercialization, and use of processes and products that are feasible
and economical while minimizing: generation of pollution at the source and risk to
both human health and to the environment’’. However, sustainability is not only an
issue for green engineering.

The design, the development, and the implementation of chemical products are
also looking at reducing or even eliminating the use and generation of substances
that may be hazardous to both human health and the environment, and therefore to
green chemistry.
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According to U.S. EPA, ‘‘green chemistry is required to promote innovative
chemical technologies aimed at reducing or eliminating the use or generation of
hazardous substances in the design, manufacture and use of chemical products.’’
Both green engineering and green chemistry are based on twelve principles and the
terms are often used interchangeably. However, although some principles may be
common to both disciplines, it is clear that there are significant differences in their
philosophy. Disciplines such as toxicology and thermodynamics play important
roles in green chemistry despite they are not specifically included within the
principles. Chapter 1 introduces green chemistry and its principles in relation to
the technologies for the removal of emerging compounds from water and
wastewater.

How to evaluate and to achieve sustainability in wastewater treatment plants
(WWTPs)? Their crucial role in protecting human and environmental health is
widely recognized. However, their impacts have simply been shifted to another
part of the overall life cycle when wastewater treatment is carried out by using
hazardous or non-renewable materials. Therefore, in evaluating the sustainability
of WWTPs, engineers should consider the entire life cycle, including those of
materials and of energy inputs. Chapter 2 reviews the removal of emerging con-
taminants and industrial pollutants in general from water and wastewater by using
natural materials or agricultural waste as adsorbents. The problem associated with
current treatment technologies lies in their lack of sustainability. If we look at
centralized systems, for instance, it is clear that they are not always the best
solution. The reasons are many:

• they flush contaminants out of residential areas by using large amounts of water;
• they often combine domestic wastewater with rainwater, causing the discharge

of large volumes of polluted wastewater;
• they can contribute to spread a contained domestic health problem to an entire

settlement or even to a region.

Furthermore, many treatment systems are functioning properly but are never-
theless unsustainable as they do not take into account the culture, the land, the
climate, and the energy consumption of the country.

Chapter 3 focuses on the fate of organic chemicals in constructed wetlands and
aims at improving their assessment in full-scale studies. The removal of some
categories of trace contaminant of worldwide relevance, classified as Endocrine
Disruptor Compounds (EDCs) and Pharmaceuticals and Personal Care Products
(PPCPs), has been reviewed together with the mechanisms associated to their
removal.

When a wastewater treatment technology has a high removal efficiency for
contaminants, but consumes high amount of energy, this contributes to atmo-
spheric carbon dioxide emissions. Thus, there is no net sustainability advantage in
the treatment technology. In Chap. 4, the authors highlight some of the science and
technology being developed to improve the solar photocatalytic decontamination
of water-containing pesticides. The potential of oxidative photochemical methods
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using sunlight as promising alternatives to non-efficient conventional treatments is
discussed in Chap. 5.

In an era when there is growing concern for the impact that our current envi-
ronmental strategies has at both local and global level, it is crucial to develop more
environmentally friendly wastewater treatment technologies. The hope is for these
technologies to reach the environmental, economic, and societal sustainability that
will contribute to reduce sanitation problems, diseased, and poverty.

Salerno, Italy, November 2011 Giusy Lofrano
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Chapter 1
Green Chemistry for Green Treatment
Technologies

Ceyda Senem Uyguner-Demirel and Miray Bekbolet

Abstract The implementation of clean, eco-friendly, less energy and waste
producing processes and technologies is realized today with an increasing interest.
In order to provide a sustainable development, environmentally friendly sub-
stances, novel technologies and new green chemistry options should be exploited.
In that respect, in this chapter green chemistry and its principles are reviewed in
relation to green technologies for the removal of emerging compounds from water
and wastewater.

Keywords Oxidation processes � Green chemistry � Green technology �
Treatment

1.1 Introduction

Population growth, global warming, resource scarcity, requirements for more energy
and power bring about adverse effects of developments achieved in science and
technology. The manufacture, use and disposal of chemicals obviously consume
large amounts of resources, and thereby originate emissions of pollutants to all
environmental compartments. With continuing innovation, each year, several hun-
dred new chemicals are introduced while thousands of new stacks and pipes release
chemical effluents into the environmental compartments i.e.; air, soil, and water.
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The global demand of chemical products will keep growing in this century, and
it is expected to increase even faster than the world’s population as well as gross
domestic product [1]. Consequently, a shift toward a more efficient and sustainable
chemistry is needed to avoid an environmental threat.

An emerging environmental philosophy first started in 1962 with the publica-
tion of Rachel Carson’s ‘‘Silent Spring’’ which detailed the adverse effects of
certain pesticides on the eggs of various birds and their spread throughout the food
chain [2]. As a result of the controversy generated by this book, the use of most
well-known insecticide dichlorodiphenyltrichloroethane (DDT) was banned first in
the United States in 1973. Subsequently, it was also forbidden for agricultural use
worldwide under the Stockholm Convention on Persistent Organic Pollutants [3],
but its limited use in disease vector control continues to this day in undeveloped
countries and remains controversial. In 1970, a book entitled ‘‘Since Silent
Spring’’ [4] was published claiming that there was even more cause for alarm
since ‘‘Silent Spring’’ was written. Another incident was the poisoning caused by
consumption of contaminated fish in Minamata bay in Japan, where mercury
discharged to the bay from an adjacent chemical facility was bioaccumulated and
biomagnified in fish, resulting in the death of more than 100 people and the
paralysis of thousands since 1956 [5].

The late sixties and early seventies were times when the environment received
attention including the foundation of the Environmental Protection Agency (EPA)
and the celebration of the first Earth Day on March 21, 1970. In the light of the
concepts such as ecological paradigms, environmentally friendly analytical
chemistry and green chemistry, advances in the improvement of new methodol-
ogies and regulatory norms that control laboratory activities can be expected in the
years ahead. The literature on the subjects of clean analytical chemistry, green
analytical chemistry or environmentally friendly analytical methods has grown
exponentially since the 1990s due to the increasing concern of the scientific
community about the environmental impact of their activity [6]. A literature
survey of journals from Science Citation Index (SCI) and Science Citation Index
Expanded (SCIE) database that have been published since 2000 reveals approxi-
mately 6,000 publications with keywords ‘‘green chemistry’’, 300 articles with
keywords ‘‘green chemistry and green technology’’, and 22 articles when the two
phrases are simultaneously searched within the titles of the publications. A number
of books addressing different topics under the domain of ‘‘green chemistry’’
can also be attained [5, 7]. Most of them cover topics of alternative water and
wastewater treatment technologies and emerging trends in environmental science
[8–12]. Nameroff et al. [13] analyzed the trends and distribution of US green
chemistry patents based on activity by sector and region. Moreover, only 8 articles
are available in SCI-SCIE database on the topics of ‘‘green chemistry and
advanced oxidation processes’’ all of which were published after 2006 [14, 15].

The implementation of clean, eco-friendly, less energy, and waste producing
processes and technologies is realized today with an increasing interest. In order to
provide a sustainable development and cope with the adverse effects of science
and technology, it is a responsibility for the scientific community to work with
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environment friendly substances as well as novel technologies and develop new
green chemistry options. In that respect, in this chapter green chemistry and its
principles will be reviewed in relation to green technologies for the removal of
emerging compounds from water and wastewater.

1.2 Green Chemistry

Green chemistry is defined as the practice of chemical science and manufacturing
in a sustainable, safe, and non-polluting manner that consumes minimum amounts
of materials and energy while producing little or no waste material. It can be
considered as a rapidly evolving and developing subdiscipline in the field of
chemistry.

Green chemistry involves a set of established principles for reducing or elim-
inating the use or generation of hazardous substances in the design, manufacture or
application of chemical products. Moreover, it looks for alternatives on the earliest
stage of materials and process design so that conventional treatment technologies
can be avoided [8]. It is a highly effective approach to pollution prevention
because it applies innovative scientific solutions to real-world environmental sit-
uations. Anastas and Warner [7] have given a broad definition of green chemistry
based on 12 principles that relate to several steps from chemical synthesis to
chemical usage describing what could be done in future for pursuing greener
technologies (Table 1.1). These principles are widely accepted as a universal code
of practice [16]. Considering that a green chemical should be synthesized in a safe
and energy efficient manner, its toxicity should be minimal, biodegradation should
be optimal and its impact to the environment should be as low as possible. In other
words, it provides a road map for scientists to implement green chemistry and
promotes innovation while protecting human health and the environment.

However, it is not expected that new chemical processes should always satisfy
all 12 principles, but the checklist provides a rough idea of whether one process is
greener than another.

The principles outlined in Table 1.1 are briefly explained and should be kept in
mind in relation to topics covered throughout the manuscript. It is evident from
these principles that green chemistry encompasses much more of the concepts of
sustainability than simply preventing pollution.

Failure to follow the simplest rule of green chemistry (Principle 1) that is waste
prevention has resulted in most of the troublesome hazardous waste sites that are
causing problems throughout the world today. This was recognized in United
States with the passage of the 1990 Pollution Prevention Act. This principle
explicitly states that, wherever possible, wastes are not to be generated and their
quantities are to be minimized. The means for accomplishing this objective can
range from very simple measures, such as careful inventory control and reduction
of solvent losses due to evaporation, to much more sophisticated and drastic
approaches, such as complete redesign of manufacturing processes with waste
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minimization as a top priority. One of the most effective ways to prevent gener-
ation of wastes is to ensure, as much as possible, the incorporation of all raw
materials into the final product. In that respect, the concept of atom economy
defined as Principle 2 is a key component of green chemistry [5]. The remaining
principles are focused on issues such as toxicity, solvent and other media using
consumption of energy, application of raw materials from renewable sources and
degradation of chemical products to simple, nontoxic substances that are friendly
for the environment.

Today, the practice of green chemistry enables designing chemicals and new
approaches in a way that effectiveness is retained and even enhanced while tox-
icity is reduced. Chemical syntheses as well as many manufacturing operations
make use of auxiliary substances that are not part of the final product. The use or
generation of substances that pose hazards to humans and the environment should
be minimized or totally avoided where the connection between green chemistry
and environmental chemistry is especially strong. Utilization of environmentally
acceptable additives for water treatment is one important area where green
chemistry can potentially find applications. Alternative solvents such as super-
critical fluids and ionic liquids represent another major entry in the green chem-
istry. The use of supercritical CO2 as an environmentally friendly reaction medium
for chemical synthesis, product separation and catalyst recycling has recently been
revealed as an interesting clean alternative to classical organic solvents. Among

Table 1.1 The 12 principles of green chemistry ‘Reproduced from Ref. [7] with kind permission
of � Oxford University Press (1998)’

Principle 1. It is better to prevent waste than to treat or clean up waste after it is formed
Principle 2. Synthetic methods should be designed to maximize the incorporation of all materials

used into the final product as expressed by ‘‘atom economy’’
Principle 3. Wherever practicable, synthetic methodologies should be designed to use and

generate substances that possess little or no toxicity to human health and the environment
Principle 4. Chemical products should be designed to preserve efficacy of function while reducing

toxicity
Principle 5. The use of auxiliary substances (e.g. solvents, separation agents) should be made

unnecessary wherever possible and, innocuous when used
Principle 6. Energy requirements should be recognized for their environmental and economic
impacts and should be minimized. Synthetic methods should be conducted at ambient
temperature and pressure

Principle 7. A raw material of feedstock should be renewable rather than depleting wherever
technically and economically practicable

Principle 8. Unnecessary derivatization (blocking group, protection/deprotection, temporary
modification of physical/chemical processes) should be avoided whenever possible

Principle 9. Catalytic reagents (as selective as possible) are superior to stoichiometric reagents
Principle 10. Chemical products should be designed so that at the end of their function they do not

persist in the environment and break down into innocuous degradation products
Principle 11. Analytical methodologies need to be developed to allow for real-time, in-process

monitoring and control prior to the formation of hazardous substances
Principle 12. Substances and the form of a substance used in a chemical process should be chosen

so as to minimize the potential for chemical accidents, including releases, explosions and fires
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various approaches, combinations of ionic liquids with supercritical fluids,
particularly supercritical CO2, offer a highly attractive choice [17].

On the other hand, from safety limits and regulations point of view, application
of analytical techniques for the quantitative and qualitative determination of
pollutants constitutes an important concern. To reduce the amount of solvent
required for sample pretreatment, the application of microwave energy for sample
digestion was proposed in 1975 [18]. Compared to traditional sample-preparation
methods, microwave-assisted extraction saves solvent, and is rapid and efficient
from the used energy point of view. Concerning the measurement step, greener
analytical procedures are inherent to automated flow-based methodologies, due to
their capability of reducing reagent and solvent consumption. The use of instru-
mental methods instead of wet chemistry, automation, and minimization is a new
trend in analytical chemistry. Online classical techniques such as liquid chroma-
tography and capillary electrophoresis have been upgraded by reducing the size of
the chromatographic column, the particle size of the stationary phase or integrating
the whole system on a chip. In situ monitoring allows for continuously optimizing
the efficient use of reagents and permits determination of the composition of waste
and effluents and their variation over time. The ability of mass spectrometry to
provide fingerprints for trace level analyte is invaluable. Moreover, combinations
with gas chromatography, liquid chromatography, and inductively coupled plasma
(ICP) have enabled simultaneous detection and characterization of a wide range of
analytes in very complex matrices. Examples of methodologies based on direct
measurement are applications of spectroscopic techniques such as infrared,
Raman, UV–Vis, fluorescence and nuclear magnetic resonance spectroscopy. The
main advantage of these methods is to avoid sample pretreatment, thus reducing
the use of solvents and reagents as well as the analysis time [6, 19]. Moreover, the
recovery of reagents provides a satisfactory way to cut down the side effects of
analytical methods, as it is an important step toward achieving zero emissions in
research. However, there are still few of these techniques implemented in routine
environmental analysis. New research in this field is now focused on improving
robustness, stability, and sensitivity by using nanomaterials.

Energy consumption poses economic and environmental costs in almost all
synthesis and manufacturing processes. In a broader sense, energy requirements
should be minimized to avoid potential threats to the environment. One way to
accomplish this goal could be the use of processes that occur at ambient conditions,
rather than options requiring elevated temperature or pressure. A successful
approach has been the application of biological processes for water and wastewater
treatment, which, because of the conditions under which organisms grow, must
occur at moderate temperatures and in the absence of toxic substances (Principle 6).

Raw materials extracted from earth are from a finite supply that cannot be
replenished once they are used. So, wherever possible, renewable raw materials
should be used. From the green chemistry point of view, combustion of fuels
obtained from renewable feedstocks is preferred to combustion of fossil fuels from
depleting finite sources. For example, many vehicles around the world are fueled
with diesel oil, and the production of biodiesel oil is a promising possibility.
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Hydrogen gas is used today primarily for manufacturing chemicals, but a bright
future is predicted for it as a vehicle fuel in combination with fuel cells.

Synthesis of an organic compound often results in the generation of byproducts
that may require disposal. Products that must be dispersed into the environment
should be designed to break down rapidly into innocuous products. An example is
the synthesis of biodegradable polymers [20]. Another example would be the
modification of the poorly biodegradable surfactant used in household detergents.
Their widespread consumption caused severe problems of foaming in wastewater
treatment plants and contamination of water supplies. Hence, 15 or 20 years after
their introduction, they were chemically modified to yield a product that was a
biodegradable substitute.

Attaining ‘‘real-time’’ control of chemical processes by modern computerized
systems is important for efficient and safe operation with minimum production of
wastes. However, accurate knowledge on the concentrations of materials used in
the system is required. Therefore, the successful practice of green chemistry
requires real-time, in-process monitoring techniques (Principle 11) coupled with
process control.

Accidents, such as spills, explosions, and fires, are a major hazard in the
chemical industry. They are not only potentially dangerous, but also tend to spread
toxic substances into the environment and increase exposure of humans and other
organisms to these substances. For this reason, it is best to avoid the use or
generation of substances that are likely to react violently, burn, build up excessive
pressures, or otherwise cause unforeseen incidents in the manufacturing process.

The critical review of Hjeresen [10] discusses in detail green chemistry as a
scientifically based set of solutions to protect water quality and prevent the
growing global crisis in water resources. Warner et al. [12] address the environ-
mental stakeholder interests in reinventing chemistry and its material inputs,
products, and waste in relation to the ‘‘12 Principles of Green Chemistry’’.
Selected examples of the implementation of green chemistry principles in every-
day life in industry, laboratory, and in education were revealed in detail by
Wardencki et al. [21]. Centi and Perathoner [9] introduced concepts of green
chemistry with emphasis on assessment of new sustainable chemical technologies
especially catalytic technologies for scaling-down chemical processes. Catalysis is
a key technology to achieve the objectives of sustainable (green) chemistry, but an
innovative effort is necessary in the design of new catalysts and catalytic tech-
nologies (including reactor engineering) and also in reconsidering all chemical
production processes with the objective of developing small and delocalized plants
for on-site production. This long-term objective requires an even more innovative
effort in the direction of using catalysis in unconventional conditions. The central
role of heterogeneous and homogeneous catalysis as a primary tool for achieving
all of the 12 principles of green chemistry was discussed by various researchers
[9, 22].

During the last two decades, with the establishment of sustainable development
as a goal for society, several concepts for environmental management, that look
for strategies different than just complying with environmental regulations have
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evolved. Aiming to achieve sustainability by introducing environmental consid-
erations in human activities, the specific response of the chemical industry in this
context has become to apply the concept of green chemistry. A definition of the
most common and accepted concepts of green chemistry for environmental
management as presented by Muñoz [23] are introduced in Table 1.2.

In general, these concepts aim at achieving sustainability by introducing
environmental considerations in human activities. The underlying idea is the same
in all of the concepts presented. Only differences on methodology, scale of
application or target user can be found.

Unfortunately, the twelve principles of green chemistry do not explicitly
include a number of important concepts, highly relevant to environmental impact;
for example, the inherency of a product or process, the need for life cycle
assessment, or the possibility of heat recovery from an exothermic reaction or heat
integration. For this reason, Anastas and Zimmerman [24] subsequently proposed a
set of 12 principles of green engineering (Table 1.3).

Green engineering, along with green chemistry [7], are engaged through science
and technology on ensuring that quality of life, or state of economic development
is increasing through benign chemicals, materials and life cycle-based design
[7, 25].

The 12 Principles of green engineering (Table 1.3) provide a framework for
scientists and engineers for designing effective, ecologically intelligent materials,
products, and systems [26]. This approach builds on the technical excellence,
scientific accuracy, and systematic thinking that have addressed in recent years the
issue of science and technology for sustainability and sustainable development.
Green engineering addresses the key issues at all levels of innovation.

Table 1.2 Concepts related to green chemistry [23]

Green
engineering

Green engineering is the design, commercialization and use of economically
feasible processes and products while minimizing pollution and any threat
to human and the environment

Cleaner
production

Continuous use of an integrated and preventive environmental strategy to
processes, products and services to increase the eco-efficiency and reduce
risks to population and the environment

Eco-efficiency It is achieved by the delivery of competitively priced goods and services that
satisfy human needs and bring quality to life while reducing ecological
impacts throughout life cycle in line with Earth’s estimated carrying
capacity

Industrial
ecology

Examination of industry and environment where industrial system is visualized
as a producer of both products and wastes and understanding the
relationship between producers, consumers, other entities and the natural
world

Ecodesign Designing products and minimizing their direct or indirect impacts at every
possible opportunity

Life cycle
thinking

A way of addressing environmental issues and opportunities from a systematic
perspective. It involves evaluating a product or service with the goal of
reducing potential environmental impacts over the entire life cycle
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The application of the principles across disciplines has been documented in
detail with case studies from a variety of sectors [24, 25].

Incorporating green engineering design principles within engineering education
with specific examples for chemical engineering was revealed by Shonnard et al.
[27]. The application and efficacy of green chemistry and other green design
principles were documented for many case studies, including biodegradable
polymers, and the production of polymers from biomaterials [28].

The need to use resources efficiently and reduce environmental impacts of
industrial products and processes is becoming increasingly important in engi-
neering design; therefore, green engineering principles are gaining prominence.

1.3 Green Technology

The objectives of water and wastewater treatment green technologies are: (i) to
reduce and conserve the use of water and associated non-renewable energy
sources; (ii) to prevent contamination and misuse of water and other natural
resources; (iii) to protect biodiversity, habitats, and ecosystems, and (iv) to ensure
that future generations can meet their own needs.

Taking into account current public concern on environmental matters, the
consequent use of toxic reagents and solvents have increased to a point at
which they became unsustainable to continue without an environmentally friendly

Table 1.3 12 Principles of green engineering. Reprinted with permission from Anastas and
Zimmerman [24]. Copyright (2003) American Chemical Society

Principle 1. Designers need to strive to ensure that all material and energy inputs and outputs are
as inherently non hazardous as possible

Principle 2. It is better to prevent waste than to treat or clean up waste after it is formed
Principle 3. Separation and purification operations should be a component of the design

framework
Principle 4. System components should be designed to maximize mass, energy and temporal

efficiency
Principle 5. System components should be output pulled rather than input pushed through the use

of energy and materials
Principle 6. Embedded entropy and complexity must be viewed as an investment when making

design choices on recycle, reuse or beneficial disposition
Principle 7. Targeted durability, not immortality, should be a design goal
Principle 8. Design for unnecessary capacity or capability should be considered a design flaw

which includes engineering ‘‘one size fits all’’ solutions
Principle 9. Multi component products should strive for material unification to promote

disassembly and value retention (minimize material diversity)
Principle 10. Design of processes and systems must include integration of interconnectivity with

available energy and materials flows
Principle 11. Performance metrics include designing for performance in commercial ‘‘after life’’
Principle 12. Design should be based on renewable and readily available inputs throughout the

life cycle
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perspective. More recently, Montreal Protocol [29] has led to the successful
replacement of chlorofluorocarbons by compounds that do not affect the ozone
layer appreciably. Nevertheless, many recently developed processes and products
fulfill most of these principles.

The concept of embodying the chemical water treatment in green chemistry
was presented by Ghernaout et al. [30] with a specific example addressing
the unavoidable role of chlorination. Detailed investigation was devoted to the
question of how the chemical water treatment with its chlorination in the forms of
pre-disinfection, disinfection, and post-disinfection and coagulation using alum
could be turned in a green water treatment.

The potential role of membranes and membrane reactors in green technologies
and for water reuse were discussed in the study of Howell [31]. Examples were
presented from Middle East where there is an increasing large scale use of
membranes to supply potable water via reverse osmosis on brackish groundwater
supplies, and for seawater desalination. It is very well established that it would be
possible to reduce water use via membrane technologies such as microfiltration,
ultrafiltration, nanofiltration, and reverse osmosis. With the modern developments
in membrane science, fouling control is possible, membrane life times are
increased and unit costs are reduced with the application of large-scale modules.
Further improvement will lead to other uses of membranes that will contribute
significantly to dealing with some of the major water shortage problems of the
world.

Another emerging field for water and wastewater treatment is the application of
advanced oxidation oxidation processes (AOPs) which are very potent in oxida-
tion, decolorization, degradation, and mineralization of organic pollutants. Key
AOPs include heterogeneous and homogeneous photocatalysis utilizing near
ultraviolet or solar visible irradiation, electrolysis, ozonation, Fenton’s reagent,
ultrasound, and wet air oxidation, while less conventional but evolving processes
include ionizing radiation, microwaves, pulsed plasma, and the ferrate reagent.
The fundamental mechanisms, advantages and drawbacks, as well as the state of
the art of advanced oxidation processes such as heterogeneous photocatalysis,
ozonation, Fenton, and photo-Fenton processes have been documented elsewhere
[32, 33]. In the study of Muñoz [23], ‘‘greenness’’ of these AOPs compared to
other technologies for wastewater treatment were assessed using Life Cycle
Assessment (LCA) as a quantitative tool. Moreover, approaches toward the
development of numerous green chemical processes and wastewater treatment
technologies i.e. potential applications of ozone for several types of industrial
wastewaters containing recalcitrant pollutants were revealed by da Silva and
Jardim [34].

Photochemistry offers numerous advantages over conventional treatment
methods such as lower reaction temperatures and control of selectivity. State of the
art of photochemical processes were addressed and future trends were explained in
detail [35]. Implementation of UV irradiation in sample-preparation and sample-
introduction systems provides remarkable improvements in analytical character-
istics as well as green methods for trace-element analysis and speciation [14].
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There has been an increasing interest in the publications related to photocata-
lytic oxidation that emphasize the process as green chemistry. Twenty five papers
have been found in SCI-SCIE database most of which were published in the last
5 years. TiO2 photocatalysis has shown great promise as an innovative and
‘‘green’’ technology due to its ability to generate electrons and holes under UV
illumination, which can produce OH• radicals and initiate redox reactions to
degrade trace level environmental pollutants [36, 37, 38]. The total degradation of
organic pollutants such as dyes, pesticides, surfactants, phenolic compounds,
aromatic, and aliphatic compounds, haloaromatics, nitrohaloaromatics, and amides
that can be photodegraded using TiO2 as catalyst were revealed by Blake [39].
However, the use of artificial UV light makes it difficult for this method to
compete with existing ones in terms of environmental impact. In the review of
Herrmann et al. [37] the photocatalytic oxidation of 4-tert-butyl-benzaldehyde was
presented as an example of ‘‘green chemistry’’ based on the reasons that air is used
and titania catalyst is a cheap, stable, and recyclable material. Moreover, the
process does not require the use of solvents or heat treatment but utilizes UVA
lamps the technology of which is gradually improving. It was concluded that
photocatalysis addresses most of the twelve principles of ‘‘green chemistry’’,
especially complying with the first nine principles [37, 38].

Various applications of solar photocatalysis for the decontamination of
wastewater have been revealed by Robert and Malato [40]. Since then,
improvement in efficiency of photocatalysis with advances in material’s science,
utilization of solar energy was achieved. Setting up a ‘green’ procedure requires
that energy and reagents used at each stage should have an environmental
cost with benefits. Amongst advanced oxidation processes, the applicability of
photocatalysis as a technology for water and wastewater treatment is not
yet successful because most data at present refer only to laboratory scale and
upscaling has received only a limited attention. In the recent review of Ravelli
et al. [15] environmental impact of photocatalysis was discussed. Potentially, the
characteristic versatility of titania photocatalysis in the choice of conditions
make the method appealing.

In the study of Mason [41] the future contribution of sonochemistry to green
and sustainable science was discussed and claimed to be dependent upon the
possibility of scaling up excellent laboratory results for industrial use. Some
industrial scale examples from the fields of environmental protection and process
technology were presented.

Electrochemistry is a rather neglected technology in the context of organic
chemicals manufacturing but the green chemistry revolution opens a new door to
its better exploitation. Examples of electrochemical synthesis are preparation of
metal salts, in situ generation of reagents and organic electro synthesis that were
described in detail in various studies [42].

As stated by Clark [43] the recipe for the twenty-first century is based on (i)
designing the molecule with properties such as biodegradability and short resi-
dence time to have minimal impact on the environment, (ii) manufacturing from a
renewable feedstock i.e. carbohydrate, (iii) using a long life catalyst, (iv) using no
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solvent or totally recyclable solvent, (v) using the smallest possible number of
steps in the synthesis, (vi) manufacturing the product as required and as close as
possible to where it is required.

1.4 Concluding Remarks

The chemical industry of 21st century needs to fully embrace the principles of
green chemistry and engineering for production of minimum waste, use of simpler
and safer products, an increasing utilization of raw materials, renewable sources,
and new technologies.

Green chemistry should focus in near future on development of economically
feasible conversion of solar energy into chemical energy and improvement in the
conversion of solar energy to electrical energy. Polluting technologies should be
replaced by benign alternatives. Achieving the goals of green chemistry and green
engineering involves the combined roles to be played at all aspects of society,
government, and industry. Innovation and application of new cleaner technologies
will probably lead to the success realization of the benefits to society and future
generations.

Increasing knowledge on the production of oxidative species with higher yields,
reaction pathways, reactor design, process combination, as well as applications for
water reuse make AOPs a promising green treatment technology. Specifically,
commercialization of photocatalysis for water and wastewater treatment could be
possible on large scale in near future with the improvements in efficiency of
catalyst, advances in material science and utilization of solar energy.
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Chapter 2
Removal of Emerging Contaminants
from Water and Wastewater
by Adsorption Process

Mariangela Grassi, Gul Kaykioglu, Vincenzo Belgiorno
and Giusy Lofrano

Abstract Emerging contaminants are chemicals recently discovered in natural
streams as a result of human and industrial activities. Most of them have no
regulatory standard and can potentially cause deleterious effects in aquatic life at
environmentally relevant concentrations. The conventional wastewater treatment
plants (WWTPs) are not always effective for the removal of these huge classes of
pollutants and so further water treatments are necessary. This chapter has the aim
to study the adsorption process in the removal of emerging compounds. Firstly,
a brief description of adsorption mechanism is given and then the study of
conventional and non-conventional adsorbents for the removal of emerging
compounds is reviewed with the comparison between them.
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2.1 Introduction

Since the end of the last century a large amount of products, such as medicines,
disinfectants, contrast media, laundry detergents, surfactants, pesticides, dyes,
paints, preservatives, food additives, and personal care products, have been released
by chemical and pharmaceutical industries threatening the environment and human
health. Currently there is a growing awareness of the impact of these contaminants
on groundwater, rivers, and lakes. Therefore the removal of emerging contaminants
of concern is now as ever important in the production of safe drinking water and the
environmentally responsible release of wastewater [1, 2].

Although very little investment has been made in the past on water treatment
facilities, typically water supply and treatment often received more priority than
wastewater collection and treatment. However, due to the trends in urban devel-
opment along with rapid population increase, wastewater treatment deserves greater
emphasis. Several research studies showed that, treated wastewater, if appropriately
managed, is viewed as a major component of the water resources supply to meet the
needs of a growing economy. The greatest challenge in implementing this strategy is
the adoption of low cost wastewater treatment technologies that will maximize the
efficiency of utilizing limited water resources and ensuring compliance with all
health and safety standards regarding reuse of treated wastewater effluents.

Treatment options which are typically considered for the removal of emerging
contaminants from drinking water as well as wastewater include adsorption,
Advanced Oxidation Processes (AOPs), Nanofiltration (NF), and Reverse
Osmosis (RO) membranes [3, 4]. However, the shortcomings of most of these
methods are high investment and maintenance costs, secondary pollution (gen-
eration of toxic sludge, etc.) and complicated procedure involved in the treat-
ment. On the other hand physicochemical treatments such as coagulation/
flocculation processes were generally found to be unable to remove Endocrine
Disrupting Compounds (EDCs) and Pharmaceuticals and Personal Care Products
(PPCPs). Although AOPs can be effective for the removal of emerging com-
pounds, these processes can lead to the formation of oxidation intermediates that
are mostly unknown at this point.

Conversely adsorption processes do not add undesirable by-products and have
been found to be superior to other techniques for wastewater treatment in terms of
simplicity of design and operation, and insensitivity of toxic substances [5].
Among several materials used as adsorbents, Activated Carbons (ACs) have been
used for the removal of different types of emerging compounds in general but their
use is sometimes restricted due to high cost. Furthermore when AC has been
exhausted, it can be regenerated for further use but regeneration process results in
a loss of carbon and the regenerated product may have a slightly lower adsorption
capacity in comparison with the virgin-activated carbon. This has resulted in
attempts by various workers to prepare low cost alternative adsorbents which may
replace activated carbons in pollution control through adsorption process and to
overcome their economic disadvantages [6].
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Recently natural materials that are available in large quantities from agricul-
tural operations have been evaluated as low cost adsorbents and environmental
friendly [7]. Moreover the utilization of these waste materials as such directly or
after some minor treatment as adsorbents is becoming vital concern because they
represent unused resources and cause serious disposal problems [8–11]. A growing
number of studies have been carried out in recent years to evaluate the behavior of
emerging adsorbents such as agricultural products and by-product for emerging
contaminants removal.

On the other hand industrial wastes, such as, fly ash, blast furnace slag and sludge,
black liquor lignin, red mud, and waste slurry are currently being investigated as
potential adsorbents for the removal of the emerging contaminants from wastewater.

This chapter presents the state of art of wastewater treatment by adsorption
focusing in special way on removal of emerging contaminants. A brief introduc-
tion of the process is first given and then the use of commercial (activated carbons,
clay and minerals) and unconventional adsorbents (agricultural and industrial
waste) is discussed, taking into account several criteria such as adsorption
capacities (qe), equilibrium time (te) and emerging contaminant removal effi-
ciency, which make them more or less suitable to be considered green.

2.2 Adsorption Process

2.2.1 Mechanisms and Definitions

Adsorption is a mass transfer process which involves the accumulation of substances
at the interface of two phases, such as, liquid–liquid, gas–liquid, gas–solid, or liquid–
solid interface. The substance being adsorbed is the adsorbate and the adsorbing
material is termed the adsorbent. The properties of adsorbates and adsorbents are
quite specific and depend upon their constituents. The constituents of adsorbents are
mainly responsible for the removal of any particular pollutants from wastewater [7].

If the interaction between the solid surface and the adsorbed molecules has a
physical nature, the process is called physisorption. In this case, the attraction
interactions are van der Waals forces and, as they are weak the process results are
reversible. Furthermore, it occurs lower or close to the critical temperature of the
adsorbed substance. On the other hand, if the attraction forces between adsorbed
molecules and the solid surface are due to chemical bonding, the adsorption
process is called chemisorption. Contrary to physisorption, chemisorption occurs
only as a monolayer and, furthermore, substances chemisorbed on solid surface are
hardly removed because of stronger forces at stake. Under favorable conditions,
both processes can occur simultaneously or alternatively. Physical adsorption is
accompanied by a decrease in free energy and entropy of the adsorption system
and, thereby, this process is exothermic.
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2.2.2 Adsorption Isotherms

In a solid–liquid system adsorption results in the removal of solutes from solution
and their accumulation at solid surface. The solute remaining in the solution
reaches a dynamic equilibrium with that adsorbed on the solid phase. The amount
of adsorbate that can be taken up by an adsorbent as a function of both temperature
and concentration of adsorbate, and the process, at constant temperature, can be
described by an adsorption isotherm according to the general Eq. (2.1):

qt ¼
C0 � Ctð ÞV

m
ð2:1Þ

where qt (mg/g) is the amount of adsorbate per mass unit of adsorbent at time t, C0

and Ct (mg/L) are the initial and at time t concentration of adsorbate, respectively,
V is the volume of the solution (L), and m is the mass of adsorbent (g).

Taking into account that adsorption process can be more complex, several
adsorption isotherms were proposed. Among these the most used models to
describe the process in water and wastewater applications were developed by (i)
Langmuir, (ii) Brunauer, Emmet, and Teller (BET), and (iii) Freundlich.

The Langmuir adsorption model is valid for single-layer adsorption, whereas
the BET model represents isotherms reflecting apparent multilayer adsorption. So,
when the limit of adsorption is a monolayer, the BET isotherms reduce to the
Langmuir equation. Both equations are limited by the assumption of uniform
energies of adsorption on the surface.

The Langmuir isotherm is described by the Eq. (2.2):

qe

qm
¼ bCe

1þ bCe
ð2:2Þ

where qe (mg/g) is the amount of adsorbate per mass unit of adsorbent at
equilibrium, Ce is the liquid-phase concentration of the adsorbate at equilibrium
(mg/L), qm is the maximum adsorption capacity (mg/g) and b is the Langmuir
constant related to the energy of adsorption (L/mg).

With the additional assumption that layers beyond the first have equal energies
of adsorption, the BET equation takes the following simplified form:

q#e
�

q#m ¼ BC#e
� ��

C#S� C
� �

1þ B� 1ð Þ½ C#e
�

C#S
� �� �� �

ð2:3Þ

in which CS is the saturation concentration of the solute, B is a constant which
takes into account the energy of interaction with the surface, and all other symbols
have the same significance as in Eq. (2.2).

The data related to adsorption from the liquid phase are fitted better by
Freundlich isotherm equation [12]. It is a special case for heterogeneous surface
energies. Freundlich isotherm is described by the Eq. (2.4):

qe ¼ KF C1=n
e ð2:4Þ
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where KF (mg/g) (L/mg)1/n is the Freundlich capacity factor and 1/n is the
Freundlich intensity parameter. The constants in the Freundlich isotherm can be
determined by plotting log qe versus log Ce.

2.2.3 Factors Affecting Adsorption

The factors affecting the adsorption process are: (i) surface area, (ii) nature and
initial concentration of adsorbate, (iii) solution pH, (iv) temperature, (v) interfering
substances, and (vi) nature and dose of adsorbent.

Since adsorption is a surface phenomenon, the extent of adsorption is propor-
tional to the specific surface area which is defined as that portion of the total
surface area that is available for adsorption [13, 14]. Thus more finely divided and
more porous is the solid greater is the amount of adsorption accomplished per unit
weight of a solid adsorbent [15]. The major contribution to surface area is located
in the pores of molecular dimensions. For example, the surface area of several
activated carbon used for wastewater treatment is about 1,000 m2/g, with a mean
particle diameter of about 1.6 mm and density of 1.4 g/cm3. Assuming spherical
particles, only about 0.0003% of the total surface is the external surface of the
carbon particle [16].

The physicochemical nature of the adsorbent drastically affects both rate and
capacity of adsorption. The solubility of the solute greatly influences the adsorp-
tion equilibrium. In general, an inverse relationship can be expected between the
extent of adsorption of a solute and its solubility in the solvent where the
adsorption takes place. Molecular size is also relevant as it relates to the rate of
uptake of organic solutes through the porous of the adsorbent material if the rate
is controlled by intraparticle transport. In this case the reaction will generally
proceed more rapidly with decrease of adsorbate molecule [15, 17–19].

The pH of the solution affects the extent of adsorption because the distribution
of surface charge of the adsorbent can change (because of the composition of raw
materials and the technique of activation) thus varying the extent of adsorption
according to the adsorbate functional groups [15, 20–22]. For example Hamdaoui
[23] showed that adsorption of methylene blue on sawdust and crushed brick
increased by increasing pH (until a value of 9). For pH lower than 5 both
adsorbents were positively charged: in this case, the adsorption decreased because
methylene blue is a cationic dye.

Another important parameter is the temperature. Adsorption reactions are
normally exothermic; thus the extent of adsorption generally increases with
decreasing temperature [15, 24–26].

Finally, the adsorption can be affected by the concentration of organic and
inorganic compounds. The adsorption process is strongly influenced by a mixture
of many compounds which are tipically present in water and wastewater. The
compounds can mutually enhance adsorption, may act relatively independently, or
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may interfere with one other. In most cases, as also shown hereinafter, natural
organic matter (NOM) negatively affects the adsorption of emerging compounds in
surface waters and wastewaters [22, 27, 28].

2.3 Removal of Emerging Compounds by Adsorption

Emerging contaminants are defined as compounds that are still unregulated or in
process of regularization and that can be a threat to environmental ecosystems and
human health [29, 30]. The words ‘‘emerging compounds’’ encompass a huge
quantity of pollutants, including PPCPs, synthetically and naturally occurring
hormones, industrial and household chemicals, nanomaterials, and some disin-
fection by-products (DBPs), as well as their transformation products [30]. Sources
and pathways of emerging compounds into the environment depend on how
(and where) they are used and how the products containing them are disposed.
Figure 2.1 shows the possible contamination pathways of emerging contaminants.

The most of emerging compounds are sent to conventional Wastewater
Treatment Plants (WWTPs) that allow only partial removal of micropollutants by
stripping, sorption, and biological degradation.

Stripping is negligible compared with the other ones because most of emerging
compounds are characterized by low volatility property. It has been demonstrated
that stripping efficiency is not relevant even for musk fragrances which are slightly
volatile with an Henry constant (H) value about of 0.005 [31, 32].

Sorption on primary and secondary sludge is more important than stripping
process. It occurs like absorption on the lipid fraction of the sludge, especially on
the primary sludge, and adsorption onto sludge through electrostatic interactions
between positively charged compounds and negatively charged microorganisms
surface [32]. So acid and lipophilic compounds (e.g. hormones, anti-inflammato-
ries, fluoroquinolones) are efficiently removed in WWTPs unlike basic (clofibric
acid, bezafibrate), neutral (diazepam, phenazone, and carbamazepine), and polar
compounds (beta-lactam antibiotics) [33, 34].

In addition to chemical properties of specific compounds, WWTPs operating
conditions are also important to study the adsorption onto sludge of emerging
compounds. For example, ciprofloxacin, a polar compound, sorbed very well onto
suspended solids [34], while diclofenac, which is an acid drug, is characterized
from a strong variability in the removal percentage (15–80%) because of different
WWTPs conditions [33, 35].

Another mechanism removal is biological degradation which is described by
reaction rate constant kbiol. According to this parameter, compounds can be clas-
sified in [31, 32]:

• Highly biodegradable kbiol [ 10 L/gSS d;
• Moderately biodegradable 0.1 \ kbiol \ 10 L/gSS d;
• Hardly biodegradable kbiol \ 0.1 L/gSS d.
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Also in this case biological operating conditions are of relevant importance.
Indeed, biological decomposition increases with the age of sludge [31, 34] and
hydraulic retention time [36]. Some compounds are removed with low sludge age
(2–5 days), other ones are hardly degradable also with sludge age greater than
20 days [34]. So, in many cases, WWTPs do not have right operating conditions to
remove well-defined emerging compounds. This implies the upgrading of the plant
or the use of a tertiary treatment to avoid the input of pollutants into the
environment.

In the last years many studies were carried out to remove emerging pollutants
by adsorption process. The most used adsorbents were commercial ones (such as
natural clays, minerals, and activated carbons).

2.3.1 Commercial Adsorbents

2.3.1.1 Activated Carbon

Activated carbon prepared from different source materials (e.g. coal, coconut
shells, lignite, wood, etc.) is the most popular and widely used adsorbent in
wastewater treatment throughout the world. Its application in the form of

Fig. 2.1 Potential sources and pathways of emerging compounds into the environment
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carbonized wood (charcoal) has been described first in the Sanskrit medical lore
and then in the Egyptian papyrus. Sanskrit writings, dating about 2,000 BC, tell
how to purify impure water by boiling it in copper vessels, exposure to sunlight,
and filtering through charcoal [6].

Activated carbon is produced by a process consisting of pyrolysis of raw
material followed by activation with oxidizing gases. The product obtained is
known as activated carbon and generally has a very porous structure with a large
surface area ranging from 600 to 2,000 m2/g.

Most studies concerning the removal of micropollutants in aqueous solution by
adsorption are carried out by using activated carbon. However, with the aim of
implementing the technology at full scale application, studies of water and waste-
water are most significant. For this reason in this section only works concerning
emerging contaminants found in drinking water and in wastewater will be discussed.

Redding et al. [37] evaluated the efficiency of rapid small-scale column for the
treatment of a lake water spiked with 29 EDCs and PPCPs with concentration
values of 100–200 ng/L. Authors studied the behavior of two kinds of carbons: a
conventional activated carbon and two modified lignite carbons prepared utilizing
a high-temperature steam and methane/steam. The conventional one showed a
shorter bed life than modified lignite carbons. Indeed lignite variants removed
EDCs/PPCPs 3–4 times longer than did commercial carbon. Furthermore the most
adsorbed compounds were steroids (androstenedione, estradiol, estriol, estrone,
ethynylestradiol, progesterone, and testosterone) which are characterized by quite
similar molecular volume, which averaged 80 mL/mol.

The removal of 17b-estradiol from a raw drinking water was studied from
Yoon et al. [22] using 5 mg/L of PAC (coal-based). The removal percentage
was [90% regardless contact times and at a very low pollutant concentration
(27 ng/L). This compound was also studied in the work of Yoon et al. [17].
In this study two raw drinking waters were spiked with three contaminants:
17b-estradiol, 17a-ethynylestradiol, and bisphenol A. They were removed by
adsorption on several different PAC coal-based except a wood-based one. After
1 h contact time and 45 mg/L of PAC the removal was 99% for all compounds.
Increasing contact time (4 and 24 h) PAC doses were reduced (15 and 9 mg/L
respectively). It is evident that contact time and adsorbent dose are important
parameters in the adsorption process [28, 38]: a right combination of each allows
to reach the right operating conditions in a full-scale plant.

Another important parameter is water-octanol partition coefficient (log Kow).
In particular, depending on log Kow, hydrophobic pollutants (log Kow [ 4) have
higher adsorption capacity [39–41], also if this is not always true [42, 43]. For
example, Westerhoff et al. [42] evaluated the removal of 62 different EDCs/PPCPs
(10–250 ng/L) in three drinking water sources. Results showed a relation between
percentage EDCs/PPCPs removal and log Kow, but not for all compounds (e.g.
caffeine, pentoxyfilline). This may be related to the difficulties to accurately
estimate the log Kow for some heterocyclic or aromatic nitrogen-containing
compounds. Some results obtained by Westerhoff et al. [42] are reported in
Fig. 2.2.
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As previously said, another parameter which can negatively affect adsorption
process is NOM, which competes with the specific compounds for adsorption sites.
It is obvious that the presence of organic matter can block pores of activated
carbon and, for this reason, the removal percentage decreases if compared with
results of tests carried out on model water [18, 22, 28, 44].

The problem of organic materials in water gets worse for wastewater treatment
and greater carbon doses or a combination of different treatments are needed to
reach a good removal percentage and to control the problem of fast deterioration of
adsorbents. For instance, Hartig et al. [45] investigated the removal by PAC
adsorption of two micropollutants (N–n-butylbenzenesulphonamide and sulpha-
methoxazole) from tertiary wastewater effluents prior to and after filtration with a
tight ultrafiltration membrane. The results showed that membrane filtration prior to
PAC adsorption may lead to improved elimination rates for adsorbable and low
molecular weight micropollutants. Another example was reported by Baumgarten
et al. [46] who examined the removal of floxacins and their precursors present in
wastewater by a combination of membrane biological reactor (MBR) with PAC
adsorption. PAC addition into wastewater of MBR pilot plant significantly
improved removal rates (floxacins [95% and fluoroquinolonic acid as high as 77%
removals at 50 mg/L initial PAC dose). Furthermore, PAC adsorption process was
used to treat the permeate of MBR plant. In this case two kinds of PACs were
used. The best adsorbent allowed to reach removal percentages [70% with a PAC
dose of 50 mg/L. Increasing PAC dose up to 500 mg/L, a nearly complete elim-
ination of fluoroquinolonic acids and floxacins was achieved.

The removal of micropollutants from wastewater was also carried out by the
addition of commercial PAC directly to the activated sludge system with and
without the adsorbent recycling to biological process [47]. Results showed that the

Fig. 2.2 Removal percentages correspond to 1 mg/l dose ofactivated carbon CC-AC, 100 mg/l
dose of Z1 and Z2 and three weeks contact time, 5 mg/l dose of PAC and 4 h contact time.
Amended from Ref. [4] with kind permission of � Elsevier (2009)
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removal efficiency increased from 30 to 50% with PAC (10 mg/L) recycling into
the biological tank. Increasing PAC concentration to 15 mg/L and with PAC
recycling all compounds were removed by more than 80%.

2.3.1.2 Clays

Natural clay minerals are well known from the earliest day of civilization. Because
of their low cost, high surface area, high porosity, and abundance in most conti-
nents, clays are good candidates as adsorbents. There are many kinds of clay:
smectites (montmorillonite, saponite), mica (illite), kaolinite, serpentine, pylo-
phyllite (talc), vermiculite, sepiolite, bentonite, kaolinite, diatomite, and Fuller’s
earth (attapulgite and montmorillonite varieties) [6]. The adsorption capacities
depend on negative charge on the surface, which gives clay the capability to
adsorb positively charged species.

Putra et al. [21] investigated the removal of amoxicillin from aqueous solutions
by adsorption on bentonite. A quite high value of initial amoxicillin concentration
(300 mg/L) was chosen to represent pharmaceutical wastewater. Adsorption of
amoxicillin was strongly affected by pH because it can alter the charge of
amoxicillin molecule. In particular, qe values increased as the pH value decreased.
In this study, adsorption capacity of bentonite was compared with a commercial
GAC. Both adsorbents were found to be quite effective because removal per-
centage as high as 88% was achieved. qe value was comparable (around 20 mg/g
for bentonite and 25 mg/g for commercial activated carbon), but adsorption
equilibrium time for activated carbon was only 35 min compared to 8 h of ben-
tonite. The main reason could be the different surface area of the two adsorbents:
92 m2/g for bentonite and 1,093 m2/g for GAC.

Bekçi et al. [24, 48] investigated montmorillonite as adsorbent in the removal of
trimethoprim, one of the main antibacterial agents used in human and veterinary
medicine worldwide. Results showed that the process was exothermic because of
adsorption efficiency increased as temperature decreased. As a consequence of
thermodynamic studies, the authors demonstrated that physisorption was the main
mechanism of adsorption. Another parameter that affected adsorption of trimeth-
oprim was pH. At low pH conditions (in an aqueous solution montmorillonite has a
pH value of 3.31), trimethoprim is in the protonated form, so it was strongly
adsorbed to the negatively charged surface of the montmorillonite. In the best
conditions, the amount of drug adsorbed was 60 mg/g for 1 h of contact time
(initial compound concentration was 290.3 mg/L).

2.3.1.3 Minerals

Another class of adsorbents includes natural minerals. Among these zeolite and
goethite have been investigated in the adsorption of pharmaceuticals. Zeolite is
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typically used for the removal of dyes and heavy metals. Like clay minerals,
adsorption capacity is linked to negative charge on the structure.

Ötker and Akmehmet-Balcioğlu [26] investigated the adsorption of enrofloxa-
cin, a fluoroquinolone group antibiotic, onto natural zeolite and subsequent
adsorbent regeneration by ozone treatment. The best results were achieved for
lower pH values (pH investigated values were 5, 7, and 10) because of enro-
floxacin is in the cationic form and so the adsorption onto negatively charged
zeolite surface was better. Unlike adsorption clays, the process was endothermic,
with higher enrofloxacin removal at higher investigated temperature. However, the
results obtained with varying temperature (28, 37, 45, and 50 �C) showed a little
change in the adsorbed amount, ranging from 16 to 18 mg/g. Adsorption equi-
librium was reached at 200 min and the adsorbed amount at equilibrium was
about 18 mg/g. The regeneration process by ozone oxidation (1.4 g/h) was able to
decompose enrofloxacin adsorbed onto zeolite as well as to affect zeolite pore
structure by decreasing pore size.

Really interesting is the study of Rossner et al. [4] concerning a lake water
spiked by a mixture of 25 emerging contaminants at varying concentration
(200–900 ng/L). The adsorbents used were one coconut-shell-based GAC
(CC-AC), one carbonaceous resin and two high-silica zeolites, Z1 (modernite
zeolite) and Z2 (Y zeolite). The order of process efficiency was activated car-
bon [ carbonaceous resins [ zeolites. Carbonaceous adsorbents were more
effective for micropollutants removal probably because activated carbons exhibit a
broader micropore size distribution, in which compounds of different shapes and
sizes can be effectively accommodated. High-silica zeolites, on the contrary, have
uniform pore sizes, which is effective for the removal of a specific compound but
not for a broad mixture of contaminants.

In Fig. 2.2 results were compared with the average removal percentages
obtained in four natural waters treated with 5 mg/L of powdered activated carbon
(PAC) [42]. Removal values obtained with CC-AC and PAC were comparable also
if the brand and the concentration of two adsorbents were different. Z1 allowed to
reach high removal percentage of micropollutants but not for all compounds such
as activated carbons. Z2 was the worst adsorbent and removal values were really
different from Z1 (only fluoxetine, oxybenzone and triclosan were removed
by Z2).

Zhang and Huang [19] investigated the removal of seven fluoroquinolones
(FQs) and five structurally related model amines with Fe oxides, using two sources
of goethite, with a focus on both adsorption and oxidation by Fe oxides. The
authors found out that flumequine can be adsorbed more strongly to goethite than
other FQs, due to effects of speciation and molecular size. Under investigated
conditions (pH 5), adsorbent was positively charged, flumequine in neutral form,
and the other FQs in cationic form, thus explaining the lower adsorption for the
latter. Furthermore, in terms of molecular size, the other FQs being characterized
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by a larger molecule structure than flumequine may obstruct adsorption active
sites.

In Table 2.1 are shown initial concentration of some emerging compounds and
adsorption capacities (reached at a fixed equilibrium time) of some adsorbents.

2.3.2 Low Cost Adsorbents

Although, activated carbon is undoubtedly considered as universal adsorbent for
the removal of diverse kinds of pollutants from water, its widespread use is
sometimes restricted due to the high costs [8, 9, 49]. Attempts have been made
to develop low-cost alternative adsorbents which may be classified in two ways
(Fig. 2.3) either (i) on basis of their availability, i.e., (a) natural materials
(wood, peat, coal, lignite etc.), (b) industrial/agricultural/domestic wastes or
by-products (slag, sludge, fly ash, bagasse flyash, red mud etc.), and (c) syn-
thesized products; or (ii) depending on their nature, i.e., (a) inorganic and (b)
organic material [6, 8, 10, 11].

2.3.2.1 Agricultural Waste

The basic components of the agricultural waste materials include hemicellulose,
lignin, lipids, proteins, simple sugars, water, hydrocarbons, and starch, containing a
variety of functional groups [10]. In particular agricultural materials containing
cellulose show a potential sorption capacity for various pollutants. If these wastes
could be used as low-cost adsorbents, it will provide a two-fold advantage to envi-
ronmental pollution. Firstly, the volume of waste materials could be partly reduced
and secondly the low-cost adsorbent, if developed, can reduce the treatment of
wastewaters at a reasonable cost [9, 50]. Agricultural waste is a rich source for
activated carbon production due to its low ash content and reasonable hardness [51].

The agricultural solid wastes from cheap and readily available resources such as
almond shell, hazelnut shell, poplar, walnut sawdust [52], orange peel [53, 54],
sawdust [55], rice husk [56], sugarcane bagasse [57], coconut burch waste [58],
and papaya seed [59] have been investigated for the removal of pollutants from
aqueous solutions.

Table 2.1 Adsorption capacity (qe), initial contaminant concentration (C0), and equilibrium time
of some adsorbents investigated

Adsorbent Adsorbate C0 (mg/L) te (min) qe (mg/g) Reference

Bentonite Amoxicillin 300 &500 20 [21]
Montmorillonite Trimethoprim 290.3 60 60 [24]
Natural zeolite Enrofloxacin 200 200 18 [26]
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Sawdust [55] is one of the most appealing materials among agricultural waste
materials, used for removing pollutants, such as, dyes, salts, and heavy metals
from water and wastewater. The material consists of lignin, cellulose, and hemi-
cellulose, with polyphenolic groups playing important role for binding dyes
through different mechanisms. Generally the adsorption takes place by complex-
ation, ion exchange and hydrogen bonding.

The agricultural waste materials have been used in their natural form or after
some physical or chemical modification. Pretreatment methods using different
kinds of modifying agents such as base solutions (sodium hydroxide, calcium
hydroxide, sodium carbonate) mineral and organic acid solutions (hydrochloric
acid, nitric acid, sulfuric acid, tartaric acid, citric acid), organic compounds
(ethylenediamine, formaldehyde, epichlorohydrin, methanol), oxidizing agent
(hydrogen peroxide), and dyes for the purpose of removing soluble organic
compounds, color and metal from the aqueous solutions have been performed.

Shells of almond and hazelnut, poplar, and walnut sawdust were investigated by
Aydin et al. [52] for the removal of acid green 25 and acid red 183 from aqueous
solution. Equilibrium isotherms were determined and analyzed using the
Freundlich equation. Capacities of adsorbent were found to be in the order:
walnut [ poplar [almond [ hazelnut for acid green 25 and almond [ wal-
nut [ poplar [ hazelnut for acid red 183, respectively.

Orange peel as adsorbent has also been studied by Arami et al. [53] for the
removal of direct dyes: direct red 23 and direct red 80. The authors investigated
the effects of initial dye concentration (50, 75, 100, 125 mg/L), pH, mixing rate,

Fig. 2.3 Possible classification of low-cost adsorbents
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contact time, and quantity of orange peel at 25 �C. The adsorption capacity was
found to be 10.72 and 21.05 mg/g at initial pH 2 (15 min), for direct red 23 and
direct red 80, respectively.

Hamdaoui [23] studied the removal of methylene blue, from aqueous solution
(40 mg/L) onto cedar sawdust in order to explore their potential use as low-cost
adsorbents for wastewater dye removal. Adsorption isotherms were determined at
20 �C and the experimental data obtained were modeled with the Langmuir,
Freundlich, Elovich, and Temkin isotherm equations. The authors concluded that
equilibrium data were well represented by a Langmuir isotherm equation with
maximum adsorption capacity of 142.36 mg/g.

Rice husk as obtained from a local rice mill grounded, sieved, washed and then
dried at 80 �C was used by McKay et al. [60] for removal of two basic dyes: safranine
and methylene blue and adsorption capacity of 838 and 312 mg/g was found.

Batzias and Sidiras [61] studied beech saw dust as low-cost adsorbent for the
removal of methylene blue and basic red 22 (1.4–14, 2.1–21 mg/L). In order to know
the effect of chemical treatment and to improve its efficiency the authors also tested
the potential of the adsorbent by treating it with CaCl2 [61], using mild acid
hydrolysis [62] and found it to increase the adsorption capacity. Further studies to
evaluate the effect of pH were also carried out by Batzias et al. [63].

Shi et al. [64] improved the adsorption capacity of sunflower stalks by chem-
ically grafting quaternary ammonium groups on them. The modified sunflower
stalks exhibited increased adsorption capacity for anionic dyes, due to the exis-
tence of quaternary ammonium ions on the surface of the residues. The maximum
adsorption capacities on modified sunflower stalks were found to be 191.0 and
216.0 mg/g for Congo red and direct blue, respectively, which were at least four
times higher than that observed on unmodified sunflower stalks. Further, the same
authors observed that adsorption rates of two direct dyestuffs were much higher on
the modified residues than on unmodified ones. A comparison of various low-cost
adsorbents derived from different agricultural wastes for the removal of diverse
types of aquatic pollutants is summarized in Table 2.2.

2.3.2.2 Industrial Waste

Widespread industrial activities generate huge amount of solid waste materials as
by-products. Industrial wastes such as sludge, fly ash, and red mud are classified as
low-cost materials, locally available and can be used as adsorbents for removal of
pollutant from aqueous solution [65].

Fly ash is a waste material originating in combustion processes. Although it may
contain some hazardous substances, such as heavy metals, it has been showing good
adsorption qualities for phenolic compounds [66]. The maximum phenol adsorption
capacity has been found to be 27.9 mg/g for fly ash and 108.0 mg/g for granular
activated carbon at initial phenol concentration of 100 mg/L.

Wang et al. [67] used fly ash as adsorbent for the removal of methylene blue
from aqueous solution reporting an adsorption capacity of 4.47 mg/g. The effect
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of physical (heat) and chemical treatment was also studied on as-received fly ash.
The heat treatment was reported to have adverse effect on the adsorption capacity
of fly ash but acid treatment (by nitric acid) resulted in an increase of adsorption
capacity of fly ash (7.99 mg/g).

Bhatnagar and Jain [9] investigated steel and fertilizer industries wastes, as an
adsorbent for the adsorption of cationic dyes. It was found that the adsorbents
prepared from blast furnace sludge, dust and slag have poor porosity and low
surface area, resulting in very low efficiency for adsorption of dyes.

Smith et al. [76] reported that chemical activation using alkali metal hydroxide
reagents, especially KOH, was found to be the most effective technique for pro-
ducing high BET surface area sludge-based adsorbents (in excess of 1,800 m2/g).

Red mud is a waste material formed during the production of alumina [77]. Red
mud has been explored as an alternate adsorbent for arsenic. An alkaline aqueous
medium (pH 9.5) favored As(III) removal, whereas the acidic pH range (1.1–3.2)
was effective for As(V) removal [78, 79]. A comparison of various low-cost
adsorbents derived from different industrial wastes for the removal of diverse types
of aquatic pollutants is summarized in Table 2.3.

2.4 Adsorption as Green Technology

The literature studies showed above highlighted that adsorption process can be
considered an efficient treatment for the removal of emerging compounds from
water. It allows to reach good removal percentage and, furthermore, being a physical
process, does not imply by-products formation, which could be more toxic than
parent compounds. It is obvious that adsorption process is encompassed in an
integrated treatment system which involves many factors, such as available space for
the construction of treatment facilities, waste disposal constraints, desired finished
water quality, and capital and operating costs. All these factors imply the achieve-
ment of the optimal operating conditions for low-cost high efficiencies [10, 80].

The most used and studied adsorbents are certainly activated carbons both for
synthetic and real water (surface water and wastewater). In spite of large use of
them, the overall idea is to reduce the use of activated carbon because of high
costs. Therefore, scientific world is looking for low-cost adsorbents for water
pollution. In addition to cost problem, another important factor pushing toward
low-cost adsorbents is the use of agricultural and industrial waste products in order
to extend the life of waste materials without introducing into the environment new
materials as adsorbents and to reduce costs for waste disposal therefore contrib-
uting to environmental protection. Anyway a suitable non-conventional low-cost
adsorbent should:

(1) be efficient to remove many and different contaminants,
(2) have high adsorption capacity and rate of adsorption, and
(3) have high selectivity for different concentrations.
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It is very difficult to understand which adsorbent is better because they have
different properties (porosity, surface area, and physical strength) as well as dif-
ferent adsorption capacities related to experimental conditions [94].

Adsorbent cost is an important parameter to compare different materials.
In Fig. 2.4 costs of several low-cost and commercial adsorbents are shown.

They should be considered indicative because of adsorbent costs depend on
many factors such as its availability, its source (natural, industrial/agricultural/
domestic wastes or by-products or synthesized products), treatment conditions, and
recycle and lifetime issues. Furthermore, the cost also depends on when adsorbents
are produced in (or for) developed, developing, or underdeveloped countries [95].
Finally, a right cost evaluation is related to the application scale and, although
many studies about non-conventional low-cost adsorbents are available in the
literature, they are limited to laboratory scale. Thus, cost estimation is not strictly
right and pilot-plant studies should also be conducted utilizing low-cost adsorbents
to check their feasibility on commercial scale.

2.5 Concluding Remarks

The economical and easily available adsorbent would certainly make an adsorp-
tion-based process a viable alternative for the treatment of wastewater containing
pollutants. Selection of an appropriate adsorbent is one of the key issues to achieve
the maximum removal of type of pollutant depending upon the adsorbent and

Fig. 2.4 Cost of several adsorbents. The image contains the references to the respective
absorbents in square brackets [6, 49, 50, 86–93]
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adsorbate characteristics. The effectiveness of the treatment depends not only on
the properties of the adsorbent and adsorbate, but also on various environmental
conditions and variables used for the adsorption process, e.g. pH, ionic strength,
temperature, existence of competing organic or inorganic compounds in solution,
initial adsorbate and adsorbent concentration, contact time and speed of rotation,
particle size of adsorbent, etc.
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Chapter 3
Removal of Trace Pollutants from
Wastewater in Constructed Wetlands

Günay Yıldız Töre, Süreyya Meriç, Giusy Lofrano
and Giovanni De Feo

Abstract The first experiments using constructed wetland for wastewater treatment
were carried out in Germany in the early 1950s. Since then, their potential for
removal conventional contaminants from wastewater is well established, making of
them a technology suitable to fulfill important remediation strategies. Furthermore
recent studies assessed the ability of CWs to remove trace pollutants. This chapter
focuses on the fate of trace pollutants in constructed wetlands and aims at improving
their assessment in full-scale studies. The removal of some categories of trace
contaminant of worldwide relevance, classified as endocrine disruptors compound
(EDCs) as well as pharmaceuticals and personal care products (PPCPs), has been
reviewed together with mechanisms associated to their removal.
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3.1 Introduction

During the last decade, the occurrence of organic micropollutants into the envi-
ronment gained growing interest since a generalized concern arises about the
possible undesirable effects of many of these contaminants on human health [1].
These trace pollutants, usually known as emerging pollutants, mainly consist of
compounds of anthropogenic origin such as pharmaceutical (PhACs) and personal
care products (PCPs), pesticides, surfactants and plasticizers that are continuously
discharged into the environment as a result of consumer activities, waste disposal,
accidental releases and purposeful introduction [2–4]. Most of these organic pol-
lutants are only partially eliminated in conventional wastewater treatment plants
(WWTPs). Therefore one of the main sources of these pollutants into the envi-
ronment is the discharge of effluents from WWTPs, where they have been detected
in concentrations ranging from ng/1 to low lg/l [5, 6]. Despite their low concen-
trations, their ecotoxicological effects are unpredictable because of the large number
of compounds possibly present and their design as biologically active molecules [7].

In order to decrease the load of organic pollutant discharge into the environ-
ment, a number of technologies have been attempted, as shown in the other
chapters of this book, however the potential use of constructed wetlands has been
only partially explored.

Up till now, due to the high surface/equivalent-inhabitant ratio required to
achieve wastewater quality parameters, CWs are only feasible in small commu-
nities or as tertiary treatments dealing with a small, diverted fraction of conven-
tional WWTPs effluents [5]. However, both alternatives are attractive because
CWs show a high capacity to remove organic micropollutants, particularly phar-
maceutical and personal care products (PPCPs), consuming few energy and with
relatively low maintenance costs, representing a green technology indeed.

The chapter introduces the technological aspects of constructed wetlands,
discussing drawbacks and advantages. Successively it summarizes the results of
literature studies on removal of trace pollutants from wastewater in constructed
wetlands, together with recent progresses made toward understanding the mech-
anism attributed to organic chemicals removal.

3.2 Constructed Wetlands

3.2.1 Technological Aspects

Constructed wetlands (CWs) are engineered systems that have been designed and
constructed to reproduce the processes occurring in natural wetland within a more
controlled environment. Wastewater treatment is achieved through an integrated
combination of biological, physical and chemical interactions among plants,
substrate and soil [8, 9].
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The soil is the main supporting material for plant growth and microbial films.
Moreover, the soil matrix has a decisive influence on the hydraulic processes. Both
chemical soil composition and physical parameters such as grain-size distributions,
interstitial pore spaces, effective grain sizes, degrees of irregularity and the coefficient
of permeability are all important factors influencing the biotreatment system [9].

The main mechanisms of contaminants removal from wastewater in constructed
wetlands are microbial processes such as nitrification and denitrification for
nitrogen as well as physicochemical processes such as the fixation of phosphate by
iron and aluminum in the soil filter. Moreover, plant nutrient uptake and tissue
storage of nutrients as well as heavy metals play an important role in the treatment
processes plants. The role of macrophytes in constructed treatment wetlands is
acknowledged by several authors [8–10]. Fifteen years ago Brix [8] firstly sug-
gested that as wetlands plants are very productive, considerable amounts of
nutrients can be bound in the biomass. Since that time, metabolic transformations
of different organic chemicals have been shown to occur in a variety of plants
[11, 12], including typical constructed wetland plants like the common reed
(P. australis), the broad-leaved cattail (Typha latifolia) and some popular species
(Populus p.) [13, 14]. The extent to which plants can degrade organic chemicals
mainly depends on the specific compound of interest [9].

According to the life form of the dominating macrophyte, CWs may be
classified into systems with free-floating, floating leaved, rooted emergent and
submerged macrophytes [15].

Further division could be made according to the wetland hydrology (free water
surface and subsurface systems) and subsurface flow CWs could be classified
according to the flow direction [16] as vertical or horizontal (Fig. 3.1). In surface-
flow wetlands (FWS) the wastewater flows through a shallow basin planted with
emergent and submerged macrophytes. This kind of system is mainly exploited for
tertiary treatment or polishing stage and also in several cases of diffuse pollution. In
subsurface flow or ‘‘Reed-bed’’ treatment systems (RBTS), the wetland is filled with
gravel or sand or similar substrates, and the plants, most commonly Reeds
(P. australis or communis), grow rooted in the filling medium. The direction of the
water flow provides the names of the two most diffused designs for RBTSs, the
horizontal flow (HSSF-CWs) and vertical flow (VSSF-CWs) systems.

The first experiments aimed at the possibility of wastewater treatment by
wetland plants were undertaken by Käthe Seidel in Germany in the early 1950s at
the Max Planck Institute in Plön [17]. Seidel then carried out numerous experi-
ments aimed at the use of wetland plants for treatment of various types of
wastewater, including phenol wastewaters [18], dairy wastewaters [19] or live-
stock wastewater [20].

Most of her experiments were carried out in constructed wetlands with either
horizontal subsurface (HSSF-CWs) or vertical subsurface (VSSF-CWs) flow, but
the first fully constructed wetland was built with free water surface (FWS) in the
Netherlands in 1967 [21]. However, FWS CWs did not spread substantially in
Europe where subsurface flow constructed wetlands prevailed in the 1980s and
1990s [16].
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3.2.2 Drawbacks and Advantages

After five decades of research and implementation, CWs have been recognized
as a reliable wastewater treatment technology and, at present, they represent a
suitable solution for treatment of many types of wastewater. Most former
concerns regarding their safe and reliable application have been refuted
[16, 22, 23].

Compared with other treatment technologies, CWs present several advantages
such as low required energy input, low operational cost, and simple operation
and maintenance (O/M), which make them particularly suitable for wastewater

(a) 

(b) 

h

(c) 

(d) 

Fig. 3.1 Constructed
wetlands for wastewater
treatment. a CW with free-
floating plants (FFP). b CW
with free water surface and
emergent macrophytes
(FWS). c CW with horizontal
subsurface flow (HSSF, HF).
d CW with vertical
subsurface flow (VSSF, VF)
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treatment in urban and rural areas [24–29]. The low cost, easy construction
(no advanced technology needed) and operation (no chemical use, no qualified
personnel requirement) as well as high performance for removal of conventional
and toxic pollutants and pathogens [30, 31] make constructed wetlands preferable
to other treatment options as shown in Table 3.1

On the other hand several reports on CWs performance in different locations
have noted several disadvantages [34–41]. First, studies have shown that the
worst problem for CW is the progressive clogging that occurs near the inlet,
resulting from solids entrapment and sedimentation, biofilm growth, plant decay
products, granular medium properties and chemical precipitation [34, 38, 39, 42].
One significant factor influencing the clogging process is total suspended solid
(TSS) load in wastewater [36, 41, 43]. Second, temperature influences the per-
formance of constructed wetlands, especially in winter. Phosphate removal
efficiency decreases rapidly with decreasing temperature. Third, CWs also have
relatively low or unstable performance in the start-up period due to immature
rhizosphere environments. Finally, CWs need large areas of land and a longer
retention time to achieve acceptable effluent water quality. Thus, pre-treatment
technologies for constructed wetlands are needed to polish and lower the pol-
lution load [35, 44, 45].

3.2.3 Plants Configuration

Wastewater treatment technologies, such as septic tanks (or Imhoff tanks) for
small-scale installations and primary decanters for larger installations have been
used in CWs pre-treatment. When septic tanks are properly operated, TSS removal

Table 3.1 Comparison of removal efficiency of some parameters for common biological treat-
ment systems

Treatment systems Removal efficiency (%)

BOD N P Coliforms

SP 75–90a 30–50a 20–60a 60–90a

LFRT 85–90a 30–40a 30–45a 60–90a

AT 60–80a 10–25a 10–20a 60–90a

AS 85–95a 30–40a 30–35a 60–90a

CWs 60–85b 79–94e* 28–41c [95d

SP Stabilization ponds, LRTF Low rate trickling filters, AT Anaerobic treatment, AS Activated
sludge, CW constructed wetlands-emergent macrophytes
a [28]
b [32]
c [33]
d [30] (102 -103 CFU/100 ml final level)
e [6]* (N-NH4)
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efficiency is only 50–70%, and phosphate and organic matter removal is also very
limited [46–48]. The worst problem in using primary decanters is the large amount
of primary sludge produced [49].

Compared with the above conventional technologies, chemical coagulation pre-
treatment for CWs has some advantages [50–52]. First, through the coagulation
flocculation processes, the added chemicals agglomerate the suspended solid
particles and increase their sedimentation rate [53, 54].

This treatment allows higher removal efficiency of TSS, and lower chemical
oxygen demand (COD), phosphorus and turbidity [35, 50, 51, 53, 54]. For
example, studies have shown that the coagulation flocculation process allows the
removal of 80–90% of TSS and 40–70% of BOD [49, 55]. This demonstrates
potential to reduce the contaminant load to CWs. Second, chemical coagulation as
a CWs pre-treatment has been shown to require only half the sedimentation pond
volume of other conventional methods [56].

Constructed wetlands could be combined in order to achieve a higher treatment
effect by using advantages of individual systems. Most hybrid constructed wet-
lands combine VSSF and HSSF stages but, in general, all types of constructed
wetlands could be combined [44, 45].

The VSSF-HSSF system was originally designed by Seidel as early as in the
late 1950s and the early 1960s [57] but the use of hybrid systems was then very
limited. In the 1980 s VSSF-HSSF hybrid constructed wetlands were built in
France [58] and United Kingdom. At present, hybrid constructed wetlands are in
operation in many countries around the world and they are used especially when
removal of ammonia-N and total-N is required [16].

Besides sewage, hybrid constructed wetlands have been used to treat a variety
of other wastewaters, for example, landfill leachate [59, 60], compost leaching
[61], slaughterhouse [62], shrimp and fish aquaculture [63, 64] or winery [65].

3.2.4 Worldwide Diffusion

The widespread diffusion of constructed wetlands in projects of sustainable
wastewater management for wastewater reclamation and reuse relies on their
compliance with water quality guidelines to minimize human and ecosystem
health risks [30, 31].

India is one of the first developing countries where a full-scale constructed
wetland was installed. The plant was found to be efficient in removal of BOD and
N with low costs and low energy requirements [33]. Constructed wetland have
been commonly used even in countries with high population densities, such as
Denmark or The Netherlands [10, 66].

In North America, FWS CWs started with the ecological engineering of natural
wetlands for wastewater treatment at the end of the 1960s and beginning of the
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1970s [67–69]. This treatment technology was adopted in North America not only
for municipal wastewaters but all kinds of wastewaters [22]. Subsurface flow
technology spread more slowly in North America but, at present, thousands of
CWs of this type are in operation [15].

In the Mediterranean basin, very successful experiences with CWs have
been reported for France [70–73], Spain [74], Portugal [75], Morocco [76], Italy
[65, 77–80], Egypt [25, 81], Israel [82], Slovenia [83, 84], Croatia [85], Greece
[86], Turkey [87].

The CWs have been used for different kind of wastewaters such as municipal
and domestic wastewater gray water, rain water, landfill as well as industrial and
agricultural wastewater, urban and highway run-off [8, 31, 88].

When the efficiency of constructed wetlands to transform and recycle nutrients
from wastewater is well known [8, 89–91]. It is not necessary to achieve high
removal of nutrients for the purpose of effluent reuse for irrigation such as before
to discharge in water bodies [92].

Regarding pathogen removal, the constructed wetlands are able to furnish
an effluent corresponding to B category which could be reused for irrigation of
crops, fodder and trees [93–95]. The high removal efficiency of pathogens which
allows achieving fecal coliform concentrations between 100 CFU/100 ml and
1000 CFU/100 ml [30, 31] is compatible with a wide range of reuse applications
including irrigation.

Although it is currently being researched, there is still no consensus regarding
the threshold for PPCPs in reclaimed water reuse.

Tables 3.2 and 3.3 reports examples of the use of subsurface horizontal flow
systems (HSSF-CWs) and FWS for various type of industrial wastewater.

Table 3.2 Examples of the use of HSSF-CWs for various types of industrial wastewater
([96]—reprinted from Ref. [48] with kind permission of the American Chemical Society 2002)

Type of wastewater Location References

Petrochemical USA, China [97, 98]
Chemical industry United Kingdom [99]
Paper and pulp wastewaters USA [100]
Abattoir (Slaugheterhouse) Mexico, Ecuador [101, 102]
Textile industry Australia [103]
Tannery industry Portugal [104]
Food industry Slovenia, Italy [105, 106]
Distillery and winery India, Italy [65, 107]
Pig farm Australia, Lithuania [108, 109]
Fish farm Canada, Germany [110, 111]
Dairy US, Germany, Uruguay [112–114]

All references cited are reported in Vymazal [96]
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3.3 Trace Pollutants Removal by CWs

3.3.1 Endocrine Disruptors Compounds (EDCs) Removal

According to COM (1999) 706 ‘‘Community Strategy for Endocrine Disrupters’’,
a potential endocrine disrupter is an exogenous substance or mixture that possesses
properties that might be expected to lead to endocrine disruption in an intact
organism, or its progeny or sub population. Their class includes phthalates,
alchiphenol ethoxylates, phenols and phenols compounds, natural and syntheti-
cally produced hormones, estrogens, polychlorobiphenils (PCB), pesticides,
polycyclic aromatic hydrocarbons (PAHs). Nowadays there are still no reuse
standards for municipal sewage containing hazardous substances such as xenobi-
otic or endocrine disrupters (EDCs) in many countries.

The behavior of some of them has been studied in constructed wetlands
pointing out that reed beds are effective in the removal of phthalates, alkylphenol
ethoxylates, estrogens, PAHs and several types of pesticides [1–3, 130, 131].
The removal of linear alkylbenzene sulphonates (LAS) was also investigated
[96, 130, 132, 133]. LAS are the most widely used synthetic anionic surfactants.
Due to their frequent use in laundry and cleaning products, LAS are a common
constituent of municipal and industrial wastewaters. Table 3.4 reports range of
removal efficiency of some EDCs in constructed wetlands.

According to Table 3.4, a relatively large variation in the wastewater concen-
tration of PAHs can be observed among the studies of Masi et al. [131] and
Fontoulakis et al. [130]. However it is almost common for PAHs because urban
wastewater receives deposits of PAHs from different sources such as car traffic,
industries, waste incinerators and domestic heating via both atmospheric transport
and local activity [130]. It is worth to notice that independently from the initial
concentration, the removal of PAHs was similarly high. According to these studies
the main removal mechanisms for PAHs and LAS seem to be adsorption in solid
media and secondly biodegradation. Whereas the removal of PAHs increased with

Table 3.3 Examples of the use of FWS CWs for various types of industrial wastewater
([96]—Reprinted from Ref. [48] with kind permission of the American Chemical Society 2002)

Type of wastewater Location References

Animal wastes USA [115–117]
Dairy pasture runoff New Zealand [118]
Acid coal mine drainage USA, Spain [32, 119]
Metal ores mine drainage Germany, Ireland, Canada [120–122]
Refinery process waters USA, Hungary [123, 124]
Paper and pulp wastewaters USA [125]
Sugar factory Kenya [126]
Olive mill Greece [127]
Metallurgic industry Argentina [128, 129]

All references cited are reported in Vymazal [96]
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mass loading rate in subsurface constructed wetlands and decreased in FWS, LAS
were poorly removed in FWS even at low or high mass loading rates [130].
Studying the removal of bisphenol A (BPA), a phenolic estrogenic compound
in a pilot scale horizontal subsurface flow constructed wetlands, Avila et al. [1]
suggested the biodegradation and association to the particulate matter as the most
likely processes involved in the elimination of BPA. The removal of estrone, 17
beta-estradiol and 17 alpha-ethynylestradiol in three CWs with different filter layer
depth (7.5, 30 and 60 cm) was investigated by Song et al. [3]. Together with the
result that the performance of wetlands when operating in unsaturated condition
was superior to that when operating in water-saturated condition, the authors
observed that maintaining sufficient aerobic circumstance in constructed wetlands
was important for estrogens removal. The highest efficiency of estrogen removal
was achieved in extremely shallow wetland might be due partly to the highest root
density, besides the superior condition for penetration of oxygen. The adsorbed
estrogens in sand accounted for less than 12% of the removed estrogens irre-
spective of the depth, indicating biotic processes play a major role in the estrogens
removal.

Constructed wetlands have also been evaluated to treat wastewater contami-
nated with pesticides.

Agudelo et al. [2] reported the results obtained from a 6 months run study with
simultaneous removal of chlorpyrifos (used in agriculture to prevent and control
pests, cattle parasites and as a pesticide for a wide variety of crops) and dissolved
organic matter in water using four horizontal subsurface flow constructed wetlands
(HSSF-CW) at a pilot scale, that were planted with P. australis, at 20 ± 2� C
water temperature. The removals were assumed possibly due to mineralization
processes, biological decomposition and sorption in plants.

Table 3.5 reports removal efficiency in constructed wetlands of some common
used pesticides.

Table 3.4 Range of removal efficiency of some EDCs in CWs

Parameter Values Unit Removal (%)

PAHs 15–180 ng/l 60–70a

786 ± 514 ng/l 68–79b

Steroid estrogens 164–259 ng/l 100a

Estrone 0.39–10.49 ng/l 67.8 ± 28c

17 beta-estradiol 1.35–9.05 ng/l 84 ± 15.4c

17 alpha-ethynylestradiol 0.59–6.56 ng/l 75.3 ± 17.6c

Diethylphthalate 151–3,788 ng/l 80–100a

Di-n-butylphatalate 43–6,134 ng/l 100a

Bisphenol A 0.05–0.3 lg/l 80–100d

Linear alkylbenzene sulphonates (LAS) 1.2–17.2 mg/l 30–55b

a [131]
b [130]
c [3]
d [1]
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3.3.2 Pharmaceuticals and Personal Care Products (PPCPs)
Removal

PPCPs constitute a large and diverse group of organic compounds used throughout
the world. These substances are excreted by humans in varying degrees of deg-
radation and discharged directly into the sewerage systems and wastewater
treatment plants. The world wide occurrence of PPCPs such as hormones, non-
steroidal antiinflammatory drugs, fragrance, lipid regulators, beta blockers and
psychiatric drugs has been recently reported by Fatta-Kassinos et al. [4]. There has
been an intensive effort to study the factors such as plant type, design criteria,
hydraulic regimes, carrier materials affecting the removal mechanisms of specific
PPCPs in constructed wetlands in different design and application. Table 3.6
reports range of removal efficiency in constructed wetlands of some PPCS.

Conkle et al. [136] showed that the percent reductions of pharmaceuticals
(PhACs) observed in the Mandeville lagoon constructed wetlands system were
greater than reduction rates reported for conventional WWTPs; perhaps due to the
longer treatment time ([[30 days). Most target PhACs were not completely
removed before discharge into Lake Pontchartrain, although their collective annual
loading was reduced to less than 1 kg and down to ppb with significant potential
for dilution in the large lake.

The sorption capacity of light expanded clay aggregates (LECA) was evaluated
to remove mixtures of ibuprofen, carbamazepine, considered one of the most
recalcitrant pharmaceuticals and clofibric acid, a metabolite of blood lipid regu-
lator drugs, in view of using these materials in CWs [137]. High removal effi-
ciencies were attained for carbamazepine and ibuprofen while a less satisfactory
performance was observed for clofibric acid. In a mixture of the three compounds
in water a slight decrease in the sorbed amounts was observed in comparison with
solutions of the single compounds, indicating some competitive sorption. When
two other clay materials—sepiolite and vermiculite—were tested for the removal
of the more recalcitrant clofibric acid, vermiculite exhibited higher removal effi-
ciency than LECA. A study by Dordio et al. [138] was also conducted to assess
Typha spp.’s ability to withstand and remove, from water clofibric acid (CA). At a

Table 3.5 Range of removal efficiency of some pesticides in CWs (SF surface CW–SSF
subsurface CW)

Pesticides Concentration (lg/l) Removal (%)

SF SSF

Chlorpyrifos 268, 49a [96a

Mecoprop 7.80 ± 3.24b 79–91b 22c

MCPA 2.01 ± 1.50b 79–93b

Tertbutulazine 2.30 ± 1.82b 80b

a [2]
b [6]
c [134]
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concentration of 20 lg/L, Typha had removed [50% of CA within the first 48 h,
reaching a maximum of 80% by the end of the assay.

A continuous injection experiment was implemented in a pilot-scale horizontal
subsurface flow constructed wetland system to evaluate the behavior of four
pharmaceuticals and personal care products (i.e. ibuprofen, naproxen, diclofenac

Table 3.6 Range of removal efficiency of some PPCPs in CWs (SF surface CW—SSF
subsurface CW)

PPCPs Use Concentration (lg/l) Removal (%)

SF SSF

Ibuprofen Analgesic 0.04 ± 0.03a,b,c – 71a

96 ± 2b –
95–96c –

1.5–56.5d – 50–100d

4.3–7.3e – 71–79.7e

Naproxen Analgesic 0.34 ± 0.06a,b,c – 85a

52–92b –
72 ± 28c –

0.3–2.2d – 80–100d

2.6–4.3e – 82.8–91.3e

Diclofenac Analgesic 1.25 ± 0.11a,b,c – n.ra

73–96b –
85 ± 16c –

0.003–0.3d – 80–100d

11.3–12.8e – 47–55e

Ketoprofen Analgesic 2.10–0.70a,b,c – n.ra

97–99b –
98 ± 1c –

Clofibric acid Antilipidic 0.07 ± 0.01a,b,c – n.ra

32–36b –
34 ± 3c –

Carbamazepine Antiepileptic 0.37 ± 0.08a,b,c – 16a

30–37b –
39 ± 12c –

17–17.9e – 26.7–28.4e

Tonalide Fragrance 0.86 ± 0.10a,b,c – 88a

88–90b –
89 ± 1c –

0.04–0.1d – 80–100d

Galaxolide Fragrance 2.86 ± 0.10a,b,c – 86
– 88–90b –
– 87 ± 2c –

a [134]
b [6]
c [31]
d [1]
e [135]
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and tonalide) and a phenolic estrogenic compound [1]. Naproxen and diclofenac
were efficiently removed (93%) after preanaerobic degradation. Tonalide was
readily removed in the small wetlands where the removal of total suspended solids
was 93%. Given its high hydrophobicity, sorption onto the particulate matter
stands for the major removal mechanism.

Horizontal subsurface flow constructed wetlands were evaluated to remove
carbamazepine, ibuprofen and clofibric acid by Matamoros et al. [5]. The removal
efficiencies were found to be independent of the organic matter type (i.e. dissolved
or particulate). Carbamazepine was removed inefficiently (5%) by bed sorption,
whereas ibuprofen was removed by degradation (51%). In addition, the behavior
of the two main ibuprofen biodegradation intermediates (carboxy and hydroxy
derivatives) supported that the main ibuprofen elimination pathway occurs in
aerobic conditions. A further study carried out by the same authors [6], analysing
both the dissolved and particulate phases from the influent and effluent of a sub-
surface CWs, confirmed that whereas a major proportion of emerging pollutants
occurred in the dissolved phase, galaxolide and tonalide were strongly associated
with the particulate phase due to their high hydrophobicity (log Kow � 5.7–5.9).

The ability of tropical horizontal subsurface constructed wetlands (HSSF-CWs)
planted with Typha angustifolia to remove four widely used pharmaceutical
compounds (carbamazepine, declofenac, ibuprofen and naproxen) at the relatively
short hydraulic residence time of 2–4 days was documented by Zhang et al. [135]
too. For both ibuprofen and naproxen, pharmaceutical compounds with low Dow
values, the planted beds showed significant (p \ 0.05) enhancement of removal
efficiencies (80 and 91%, respectively, at the 4 day HRT), compared to unplanted
beds (60 and 52%, respectively). The more oxidizing environment in the rhizo-
sphere might have played an important role, but other rhizosphere effects, beside
rhizosphere aeration, appeared to be important also. Carbamazepine and dec-
lofenac showed low removal efficiencies in CWs, and this is attributable to their
higher hydrophobicity. The fact that the removal of these compounds could be
explained by the sorption onto the available organic surfaces, explains why there
was no significant difference (p [ 0.05) in their removal efficiencies between
planted as compared to unplanted beds.

Two pilot scale horizontal subsurface flow constructed wetlands (HSSF-CWs)
near Lecce, Italy, planted with different macrophytes (P. australis and T. latifolia)
and an unplanted control were assessed for their effectiveness in removing para-
cetamol. The P bed exhibited a range of paracetamol removals from 51.7% for a
hydraulic loading rate (HLR) of 240 mm/d to 87% with 120 mm/d HLR and
99.9% with 30 mm/d. The Typha bed showed a similar behavior with percentages
of removal slightly lower, ranging from 46.7% (HLR of 240 mm/d) to [99.9%
(hydraulic loading rate of 30 mm/d). At the same HLR values the unplanted bed
removed between 51.3 and 97.6% of the paracetamol [139].

Hijosa-Valser et al. [88] run seven mesocosm-scale CWs, differing in their
design characteristics to assess their efficiency to remove antibiotics from urban
raw wastewater. All the studied types of CWs were efficient for the removal of
sulfamethoxazole (59 ± 30–87 ± 41%), as found in the WWTP, and, in addition,
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they removed trimethoprim (65 ± 21–96 ± 29%). The elimination of other
antibiotics in CWs was limited by the specific system-configuration: amoxicillin
(45 ± 15%) was only eliminated by a free-water (FW) subsurface flow (SSF) CW
planted with T. angustifolia; doxycycline was removed in FW systems planted
with T. angustifolia (65 ± 34–75 ± 40%), in a P. australis-floating macrophytes
system (62 ± 31%) and in conventional horizontal SSF-systems (71 ± 39%);
clarithromycin was partially eliminated by an unplanted FW-SSF system
(50 ± 18%); erythromycin could only be removed by a P. australis-horizontal
SSF system (64 ± 30%); and ampicillin was eliminated by a T. angustifolia-
floating macrophytes system (29 ± 4%). Lincomycin was not removed by any of
the systems (WWTP or CWs).

A surface flow constructed wetland in Can Cabanyes (Granollers, Catalonia,
northeastern Spain) was created as a part of a series of activities aimed at
restoring a highly impacted fluvial peri-urban zone [31]. The system was fed with
a small part of the secondary effluent, which was not completely nitrified, from a
urban wastewater treatment plant. The results for PPCPs demonstrated that the
wetland has a good capacity for removing a large variety of these compounds;
the removal efficiencies were higher than 70% for most of them, with the
exception of clofibric acid (34%) and carbamazepine (39%). These results were
in agreement with the studies of Matamoros et al. [6] carried out at the same
initial concentration as shown in Table 3.6. The effect of ciprofloxacin on the
development, function and stability of bacterial communities in four mesocosm
wetlands planted with P. australis was investigated [140]. The results showed
that ciprofloxacin exposure may have an adverse effect on the inherent bacterial
communities in wetland systems initially reducing their ability to assimilate
anthropogenic carbon-based compounds; however, normal functionality may
resume after a 2–5 week period.

3.4 Concluding Remarks

Constructed wetlands technology for removal of trace pollutants is an emerging
field. However as shown in this chapter, recent studies proved that CWs have a
high capacity for removing a large range of these compounds, some of them taken
in consideration for their regulation by the European Commission (i.e. galaxolide,
diclofenac and carbamazepine).

The mechanisms governing the removal of organic chemicals are not well
established yet. There is no agreement on physical, chemical and biological pro-
cesses that attend to attenuation in constructed wetlands. Their knowledge is
crucial for further optimization of system designs and operational models.
Therefore much research needs to be addressed in this field.
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Chapter 4
Removal of Pesticides from Water
and Wastewater by Solar-Driven
Photocatalysis

Sixto Malato, Manuel I. Maldonado, Isabel Oller and Ana Zapata

Abstract This chapter deals with the use of sunlight to produce •OH radicals
by photocatalysis and its application to the removal of pesticides from water.
The systems necessary for performing solar photocatalysis based on compound
parabolic collectors are described and it outlines the basic components of these
plants. It reports a step-by-step research methodology describing the analytical
tools to infer the reaction mechanisms, pathway and kinetics and the application
of various techniques for determining biodegradability and toxicity. Besides, it
underlines the importance of: (i) using acute toxicity bioassays, for stating
biocompatibility of the treated water with the environment and (ii) using photo-
catalysis as a pre-treatment step, if the intermediates resulting from the reaction
are readily degraded by microorganisms (biotreatment).

Keywords Advanced oxidation processes � Compound parabolic concentrators �
Photo-Fenton � Titanium dioxide

4.1 Introduction

Advanced Oxidation Processes (AOPs) may be used for decontamination of water
containing organic pollutants, classified as biorecalcitrant. These methods rely on
the formation of highly reactive chemical species which degrade even the most
recalcitrant molecules into biodegradable compounds. Although there are different
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reacting systems [1], all of them are characterised by the same chemical feature:
production of hydroxyl radicals (•OH), which are able to oxidise and mineralise
almost any organic molecule, yielding CO2 and inorganic ions. Rate constants
(kOH, r = kOH [•OH] C) for most reactions involving hydroxyl radicals in aqueous
solution are usually on the order of 106–109 M-1 s-1. They are also characterised
by their not-selective attack, which is a useful attribute for wastewater treatment
and solution of pollution problems. The versatility of the AOPs is also enhanced
by the fact there are different ways of producing hydroxyl radicals, facilitating
compliance with the specific treatment requirements. Methods based on UV, H2O2

and O3 combinations use photolysis of H2O2 and ozone to produce the hydroxyl
radicals. Other methods, like heterogeneous photocatalysis and homogeneous
photo-Fenton, are based on the use of a wide-band-gap semiconductor and addition
of H2O2 to dissolved iron salts, respectively, and irradiation with UV–VIS light
[2]. Both processes are of special interest since sunlight can be used for them.

The use of pesticides has risen dramatically, with the production nearly doubled
every 5 years since 1975. UN reports estimates that of all pesticides used in
agriculture, less than 1% actually reaches the crops. This results in the uncon-
trolled disposal of used products that will produce contaminated soils and waters
close to the contaminant source. Their persistence in natural waters [3] has led to a
search for a method to degrade them into environmentally compatible compounds.
Unlike the low-level contamination involved in drinking water, wastewater from
agricultural or industrial activities may be highly contaminated. The major sources
of pollution are wastewater from agricultural industries, pesticides formulating and
manufacturing plants. Wastewater from those sources may contain pesticides at
levels as high as several hundred of mg/L. The main characteristics of them are
extreme toxicity, low volume and well-defined location. Such sources may be
ideally treated in small-scale treatment units. As consequence, low cost and at
hand technologies are strongly urged to be developed to on site treatment. AOPs,
are well known for their capacity to oxidize and mineralise pesticides [4].
As the process costs may be considered the main obstacle to their commercial
application, several promising cost-cutting approaches have been proposed, such
as integration of AOPs as part of a treatment train. In the typical basic process
design approach an AOP pretreats pesticide wastewater, and once biodegradability
has been achieved, the effluent is transferred to a cheaper biological treatment.
Other proposed cost-cutting measures are the use of renewable energy sources,
i.e., sunlight as the irradiation source for running the AOP.

The publications regarding the photocatalytic process rose continuously over
the last years surpassing meanwhile a total number of more than 3,000 peer-
reviewed publications per year. Though such a simple search does not necessarily
include every single article correctly, it still serves to prove the general trend of an
increasing interest of the scientific community. Figure 4.1 shows the evolution of
these publication activities. Figure 4.1 also illustrates the literature that takes into
account the possibility of driving the process with solar radiation. This fact is
due to that a priori the photocatalytic processes (TiO2 photocatalysis and
photo-Fenton) seems to be the most apt of all AOPs to be driven by sunlight.
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In this chapter we highlight some of the science and technology being developed to
improve the solar photocatalytic decontamination of water containing pesticides.

4.2 Solar Photocatalysis Fundamentals

The heterogeneous solar photocatalytic detoxification process consists of making
use of the near-ultraviolet (UV) band of the solar spectrum (wavelength shorter
than 400 nm), to photo-excite a semiconductor catalyst in contact with water and
in the presence of oxygen. Under these circumstances, oxidizing species, either
bound •OH or free holes, react with oxidizable contaminants. With a typical
UV-flux near the surface of the earth of 20–30 W/m2 the sun puts 0.2–0.3 mol
photons m-2 h-1 in the 300–400 nm range at the process disposal [5]. Although
there are many different sources of TiO2, Degussa (now Evonik) P25 TiO2 has
effectively become a standard [6] because it has (i) a reasonably well-defined
nature (i.e. typically a 70:30 anatase:rutile mixture, non-porous, BET surface area
55 ± 15 m2/g, average particle size 30 nm) and (ii) a substantially higher pho-
tocatalytic activity than most other readily available (commercial) TiO2. Other
semiconductor particles, e.g., CdS or GaP absorb larger fractions of the solar
spectrum and can form chemically activated surface-bond intermediates, but
unfortunately, these photocatalysts are degraded during the repeated catalytic

Fig. 4.1 Publications treating photocatalysis and the share treating solar-driven photocatalysis
(source: www.scopus.com, 2011. All rights reserved)
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cycles involved in heterogeneous photocatalysis generating toxic dissolved heavy
metals in water.

For the treatment of industrial wastewater Fenton and Fenton-like processes are
probably among the since longest and most applied advanced oxidation processes
[7] and first proposals for wastewater treatment applications were reported in the
sixties of the past century. Yet, it was not until the early nineties of the last
century, when the discoveries of scientists working in the field of environmental
sciences published results on the role of iron in atmospheric chemistry, which
called the attention of scientists and engineers working in the wastewater treatment
field. Soon afterwards, the first reports of the application of the photo-Fenton
process (or photoassisted/light enhanced Fenton process) in wastewater treatment
were published by the groups of Pignatello, Lipcznska-Kochany, Kiwi, Pulgarín
and Bauer [7]. The primary step of the photoreduction of dissolved ferric iron is a
ligand-to-metal charge-transfer reaction. Subsequently, intermediate complexes
dissociate by means of irradiation forming Fe+2. The ligand can be any Lewis base
able to form a complex with ferric iron (OH-, H2O, R–COO-, R–OH, R–NH2

etc.). Depending on the reacting ligand, the product may be a hydroxyl radical
such as in Eq. 4.1 or another radical derived from the ligand. The direct oxidation
of an organic ligand is possible as shown for carboxylic acids in Eq. 4.2.
Depending on the ligand the ferric iron complex has different light absorption
properties and consequently, the pH plays a crucial role in the efficiency of the
photo-Fenton reaction, because it strongly influences which complexes are formed.
Thus, pH 2.8 was frequently postulated as an optimum pH for photo-Fenton
treatment, because at this pH precipitation does not take place yet and the
dominant iron species in solution is [Fe(OH)]2+, the most photoactive ferric
iron-water complex.

½Fe(OH)]2þ þ hv ! Fe2þ þ OH� ð4:1Þ

½Fe(OOC� R)]2þ þ hv! Fe2þ þ CO2 þ R� ð4:2Þ

4.3 Solar Photocatalysis as Green Technology

Since 1990 there has been a clarification of the kind of solar technology, which
should be involved, in solar AOPs [8]. The question was if it is necessary to
concentrate the radiation for the photocatalysis technology and if a non-concen-
trating collector can be as efficient as concentrating ones. The reason of using
one-sun systems for water treatment is firmly based on two factors, first the high
percentage of UV photons in the diffuse component of solar radiation and second
the low order dependence of rates on light intensity. For many of the solar
detoxification system components, the equipment is identical to that used for other
types of water treatment and construction materials are commercially available.
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Most piping may be made of polyethylene or polypropylene, avoiding the use of
metallic or composite materials that could be degraded by the oxidant conditions
of the process. Neither must materials be reactive, interfering with the photocat-
alytic process. All materials used must be inert to degradation by UV solar light.
Photocatalytic reactors must transmit UV light efficiently because of the process
requirements. The choice of materials that are both transmissive to UV light and
resistant to its destructive effects is limited. Common materials that meet these
requirements are fluoropolymers, acrylic polymers and several types of glass.
Borosilicate glass has good transmissive properties in the solar range with a cut-off
of about 285 nm. Therefore, such a low-iron-content glass would seem to be the
most adequate. With regard to the reflecting/concentrating materials, aluminium is
the best option due to its low cost and high reflectivity in the solar UV spectrum on
earth surface.

The original solar photoreactor designs for photochemical applications were
based on line-focus parabolic-trough concentrators (PTCs) [5]. But there is a
category of low concentration collectors, called Compound Parabolic Concentra-
tors (CPCs), that are a good option for solar photochemical applications [9]. If the
CPC is designed for an acceptance angle of +90 to -908, all incident solar diffuse
radiation can be collected (Fig. 4.2). The light reflected by the CPC is distributed
all around the tubular receiver so that almost the entire circumference of the
receiver tube is illuminated. They do so illuminating the complete perimeter

Fig. 4.2 Design concepts for solar water photocatalytic reactors: a compound parabolic
collector, b schematic drawing of CPC with a semi-angle of acceptance of 908, c, d photographs
of compound parabolic collector during fabrication and installed
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of the receiver, rather than just the ‘‘front’’ of it, as in conventional flat plates.
These concentrating devices have ideal optics, thus maintaining both the advan-
tages of the PTC and static systems. The concentration factor (RC) of a two
dimensional CPC collector is given by Eq. 4.3. They can make highly efficient use
of both direct and diffuse solar radiation, without the need for solar tracking.
There is no evaporation of possible volatile compounds and water does not heat up.
They have high optical efficiency, since they make use of almost all the available
radiation, and high quantum efficiency, as they do not receive a concentrated flow of
photons. Flow also can be easily maintained turbulent inside the tube reactor.
Reports exist that provide excellent reviews of the needs towards the solar hardware
for photocatalytic processes based on TiO2 and photo-Fenton application including
aspects of optics, geometry and reactor materials [8, 10–12].

RC;CPC ¼
1

sin ha
¼ A

2pr
ð4:3Þ

Nevertheless, the design procedure for a photocatalytic system requires the
selection of a reactor, catalyst, reactor-field configuration (series or parallel),
treatment-system mode (once-through or batch), flow rate, pH control, etc., so a
plant has to be as versatile as possible and provide sufficient confidence. Usually, a
photocatalysis plant is constructed with several solar collectors. All the modules
are connected in series, but with valves that permit to bypass any number of them.
All the connection tubes and valves are strongly resistant to chemicals, weather-
proof and opaque, in order to avoid any photochemical effect outside of the col-
lectors. The most important sensors required for the system are temperature,
pressure and dissolved oxygen. A UV-radiation sensor must be placed in a position
where the solar UV light reaching the photoreactor can be measured. Solar plants
are frequently operated in a recirculating batch mode. In this situation, the fluid is
continuously pumped between the reactor and a tank in which no reaction occurs,
until the desired degradation is achieved. Each collector (see Fig. 4.2c) consists of
Pyrex tubes (installed in the axis of the CPC) connected in series and mounted on a
fixed platform tilted at local latitude (see Fig. 4.2d). The total volume (VT) of the
reactor is separated in: total irradiated volume (Pyrex tubes, Vi) and the dead
reactor volume (tank ? connecting tubes).

Solar UV is usually measured by a global UV radiometer mounted on a plat-
form tilted at the same angle as the CPCs, which provides data in terms of incident
W m-2. This gives an idea of the energy reaching any surface in the same position
with regard to the sun. With Eq. 4.4, evaluation of the data is possible, where tn is
the experimental time, UV is the solar ultraviolet radiation measured during Dtn,
and t30W is a ‘‘normalized illumination time’’. In this case, time refers to a constant
solar UV power of 30 W m-2.

t30W; n ¼ t30W; n�1 þ Dtn
UV

30
Vi

VT
; Dtn ¼ tn � tn�1 ð4:4Þ
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4.4 Photocatalytic Degradation of Pesticides

In general, the types of pesticides that have been degraded by photocatalysis
include a large number of structures [4]. Until now, the absence of total miner-
alisation has been observed only in s-triazine herbicides, for which the final
product obtained was essentially 1,3,5-triazine-2,4,6, trihydroxy (cyanuric acid),
which is, fortunately, nontoxic [13]. In photocatalysis, transformation of the parent
organic compound is desirable in order to eliminate its toxicity and persistence, but
the principal objective is to mineralise all pollutants. For chlorinated pesticides,
Cl- ions are easily released in the solution and are the first of the ions appearing
during the photocatalytic degradation. This could be interesting in a process, where
photocatalysis would be associated with a biological treatment which is generally
not efficient for chlorinated compounds. Nitrogen-containing pesticides are min-
eralised mostly into NO3

- and NH4
+. Ammonium ions are relatively stable, and

the proportion depends mainly on the oxidation stage of organic nitrogen and
irradiation time [14]. The formation of N2 in azo bounds can be accounted for by
the same processes responsible for NH4

+ formation [15]. N2 evolution constitutes
the ideal case for a decontamination reaction involving totally innocuous nitrogen-
containing final product.

Organophosphorous pesticides produce phosphate ions. However, in the pH
range used (usually [ 4), phosphate ions remain adsorbed on TiO2. This strong
adsorption somewhat inhibits the reaction rate, though it is still acceptable. In
photo-Fenton, phosphate sequestrates iron forming the corresponding non-soluble
salt and retarding the reaction rate. Therefore, more iron is necessary when water
containing phosphates is treated by photo-Fenton. Pesticides containing sulphur
atoms are mineralised into sulphate ions. The release of SO4

2- can be accounted
by an initial attack by a photo-induced •OH radical. In all the studies the formation
of SO4

2- was always observed and in most cases its stoichiometric formation was
found in the final steps of the photoreaction when organic intermediates were still
present. Initial rate was high indicating that SO4

2- ions are initial products,
directly resulting from the initial attack on the sulfonyl group. Non-stoichiometric
formation of sulphate ions is usually explained by a strong adsorption on the
photocatalyst surface.

Sulphate, chloride and phosphate ions, especially at concentrations greater than
1 mM can reduce the rate due to the competitive adsorption at the photoactivated
reaction sites of TiO2. It has been also reported that photo-Fenton process
efficiency is noticeably lowered in presence of chloride and sulfate ions [16].
There are two different reasons for this: (i) decreased generation of hydroxyl
radicals because of the formation of chloro- and sulfato-Fe(III) complexes that
affect the distribution and reactivity of the iron species, (ii) scavenging of hydroxyl
radicals and formation of inorganic radicals (Cl2

•- and SO4
•-), which are less

reactive than •OH.
The effectiveness of degradation is not demonstrated only because the

entire initial compound is decomposed. Reactants and products might be lost
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(evaporation, adsorption on reactor components, etc.) which introduces uncertainty
in results. The mineralisation rate is determined by monitoring inorganic com-
pounds, such as CO2, Cl-, SO4

2-, NO3
-, etc. When pesticides decompose, a

stoichiometric increase in the concentration of inorganic anions is produced in the
water treated (Fig. 4.3). For this reason, the analysis of these products of the
reaction is of interest for the final mass balance.

Preliminary research is always required to assess pesticides treatments and
optimise the best option for any specific problem, on a nearly case-by-case basis.
In general, the types of pesticides which have been degraded include s-triazines,
sulfonylureas, anilide and amide herbicides, carbamates, phenylureas, organo-
phosphorous, organochlorines, chlorophenols, etc. Eq. 4.5 generally holds true for
an organic compound of general formula CnHmOp. In the case of pesticides con-
taining halogens, Eq. 4.6 shows how the corresponding halide is formed. Sulphur
is recovered as sulphate in sulphur containing pesticides according to Eq. 4.7.

CnHmOp þ
ðm� 2pÞ

4
þ n

� �
O2 ! nCO2 þ

m

2
H2O ð4:5Þ

CnHmOpXq þ
ðm� 2pÞ

4
þ n

� �
O2 ! nCO2 þ

m� q

2
H2Oþ qHX ð4:6Þ

CnHmOpSr þ xO2 ! nCO2 þ yH2Oþ zH2SO4 ð4:7Þ

The oxidation of carbon atoms into CO2 is relatively easy. In general, at low
reactant levels or for compounds which do not form important intermediates,

CH3NHCO2 N=C
SCH3

CH3

0 50 100 150 200 250 300

0

5

10

15

20

25

30

35

TOC

NH
4

+

SO
4

2-

[NH
4

+]
max

[SO
4

2-
]

max

C
, m

g/
L

t
30W

, min

Fig. 4.3 Degradation of methomyl (mineralisation and production of inorganic species).
Methomyl structure is also shown

66 S. Malato et al.



complete mineralisation and reactant disappearance proceed with similar half
lives, but at higher reactant levels where important intermediates occur, miner-
alisation is slower than the degradation of the parent compound. However, before
photocatalytic treatment can be proposed as a general and trouble free method, it is
required that the chemistry of various classes of pollutants under these conditions
is known in detail. Since the chemistry of such processes is complex, careful
analytical monitoring using different techniques is essential in order to control all
transformation steps, to identify harmful intermediates and to understand and
interpret the reaction mechanism. The assessment of pesticides disappearance in
the early steps is not sufficient to ensure the absence of residual products because
the photocatalytic treatment may give rise to a variety of organic intermediates
which can themselves be toxic, and in some cases, more persistent than the ori-
ginal substrate [4]. From an analytical viewpoint, the task that entails the most
difficulty is, without doubt, qualitative and quantitative evaluation of the inter-
mediates or degradation products (DPs). As hydroxyl radicals are not selective in
their attacks, numerous DPs form on the path towards complete mineralisation.
There are five main types of DPs: (i) hydroxylated and dehalogenated products; (ii)
products from the oxidation of the alkali chain, if it had one; (iii) products derived
from the opening of the aromatic ring in aromatic contaminants; (iv) products of
decarboxylation; (v) products of isomerization and cyclation. The chemical
analysis of these complex reaction mixtures is difficult. However, a greater
knowledge of the DPs originated would be necessary. It may be observed in
Figure 4.4 that most of the DPs with high molecular weight appear after exposure
to sunlight and reach their maximum concentration at short treatment time. From
here on, they begin to decrease and carboxylic acids appear. Until now, the
analyses of fragments resulting from the degradation of the aromatic ring
have revealed formation of aliphatics (organic acids and other hydroxylated
compounds), which explains why total mineralisation takes much longer than
dearomatization, as mineralisation of aliphatics by photocatalysis is the slowest
step [17].

To shorten phototreatment time is of major concern for the cost and energy
efficiency benefits of the overall treatment process. Therefore, to investigate tox-
icity could be considered as a suitable overall indicator capable of giving infor-
mation on the evolution of biocompatibility of the water solution contaminated
with pesticides during the phototreatment in order to dispose to the environment or
promote biotreatment. But due to the complexity of the studied process and the
specificity and sensitivity of the toxicity test, this approach has to be considered
and discussed with caution. Besides, a more detailed study of DPs as well as other
inorganic species produced in addition with toxicity analyses should be achieved
in order to improve the knowledge of the implicated degradation pathways and
molecular interactions. Considering the removal of the initial contaminants on one
hand and the mineralisation of the organic carbon on the other hand, two main
categories of behaviours can be outlined. When the DPs demineralise shortly,
toxicity usually decreases gradually in the course of the photodegradation. But
when the reaction intermediates degradation takes a long time (after disappearance
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of the target contaminants), the level of toxicity is not predictable. However at the
end, the toxicity tends to decrease.

Toxicity assessment of a chemical using a single species test reflects the sen-
sitivity of that test only; it may overestimate or underestimate the potential toxicity
for that particular substance. Accordingly, recent research has focused on the
development of representative, cost-effective and quantitative test bioassays,
which can detect different effects using a variety of endpoints [18]. Figure 4.5
shows the evolution of representative toxicity curves (% inhibition) for bioassays
performed during solar photocatalytic experiments. Chemicals added to the water
for photocatalysis were removed prior to bioassay and the pH was neutralised.
TiO2 was removed by filtration, H2O2 by quenching with catalase and iron by

0.0 2.5 5.0 7.5 10.0 12.5 90 95
0.0

0.2

0.4

0.6

4.5

5.0
 1
 2
 3
 4
 5
 6

In
te

rm
ed

ia
te

s,
 m

g/
L

t 30W, min
0 100 200 300

0.0

1.0

2.0

3.0

4.0

5.0

 Formate
 Acetate
 Oxalate

C
,  

m
g/

L

t 30W , min

N

Cl CH2 N N

N NO 2

Imidacloprid

C9HxClNyOz

5

N

Cl COOH

6-chloronicotinic acid

6

N

Cl COH

6-chloronicotinic aldehide

2
N

Cl CH2 N NH

O
(1-(6-chloro-3pyridilmethyl)-imidazolidin-2-one

4

NH

O

1

2-pyrrolidinoneN

Cl C

O

NH 26-chloronicotinamide

3

(a)

(b)

Fig. 4.4 a Scheme of the degradation pathway for Imidacloprid under solar photocatalytic
treatment with photo-Fenton in water. b Formation and degradation of DPs

68 S. Malato et al.



coagulation and filtration after neutralising the samples. These are not the results of
a single toxic response, because in the experiments they are affected not only by the
parent compound, but also by the presence of other intermediate compounds
produced during its photodegradation. Daphnia magna was biochemically the most
complex test system and also the most sensitive. Selenastrum capricornotum
(microalgae) behaviour is different. At the beginning, diuron was toxic
(100% inhibition) for both microorganisms. A very toxic intermediate (at least for
Selenastrum capricornotum) is formed after the complete disappearance of diuron
(at around 35 min by photo-Fenton and 75 min by TiO2). This intermediate
(or intermediates) may also be removed, because toxicity is reduced after a few
minutes more of photo treatment. It can therefore be deduced that a very toxic
(highly toxic at very low concentrations) unknown DP is formed at the end of photo
treatment, but is degraded after a few minutes more of photo treatment. This is a
clear demonstration that complete control of the degradation process must be
achieved in order to guarantee overall AOP treatment. Toxicity could also be an
alternative indicator for biodegradation assessment of partially photo-treated
wastewaters [19]. Overall, acute toxicity testing has been shown to represent
dynamics and efficiency of photo treatment. Very often toxicity changes continu-
ously during the treatment, and therefore, toxicity evaluation is not a suitable way to
determine the moment when biodegradability is most enhanced. However, reduced
toxicity results are indicative of an extended biodegradability achieved during the
process. These assays must therefore be complemented with biodegradability
studies. Thus even if it cannot provide a reliable biodegradability assessment
by itself, toxicity can help identifying samples to be tested by biodegradability
assessment methods, which are quite time-consuming.
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4.5 Photocatalytic Degradation of Wastewater Containing
Pesticides

Several ways exist to enhance the performance of pesticides treatment by an AOP.
The first possibility is to position the AOP in a sequence of physical, chemical and
biological treatments (not necessarily in this order). Many times such a treatment
approach will at least involve an AOP step and a biological treatment step. Either
way, putting AOP or biological treatment first in the treatment train, the global
objective of minimal costs will closely resemble minimising the treatment degree
in the AOP and maximising the treatment in the biological treatment, because of
the large differences in costs of the two different treatments [20]. The key issue is
the correct design of the process, so that the process will be best in terms of overall
economic and ecological performance.
A second option would be the real integration with another process, which may
again be of physical, chemical or biological nature and we will first review several
proposed possibilities for process integration.

Several authors have proposed the direct interaction of the oxidative mecha-
nisms of photocatalysis with other chemical processes [21]. A series of integration
approaches exist for the simultaneous application of photocatalysis and physical
separation processes (e.g. activated carbon, nanofiltration [22] or membrane dis-
tillation [23]. Furthermore, there exist plenty of examples, which focus on the
sequential combination of photo-Fenton treatment and biological treatment (aer-
obic in most cases). A general approach for the development of the combined
treatment for wastewater containing pesticides will be discussed here.

The use of AOPs as a pre-treatment step to enhance the biodegradability of
waste water containing pesticides can be justified if the resulting intermediates are
readily degradable by microorganisms in further biological treatment. Today
combined photo-assisted AOP and biological processes are gaining in importance
as treatment systems [20, 24–32] as one of the main urban waste water treatment
obligations imposed by European Union Council Directive 91/271/EEC is that
waste water collecting and treatment systems (generally involving biological
treatment), must be in place in all agglomerations since 31st December 2005 [33].
This means that nowadays, provided that the regulations have been implemented,
AOP plants developed in the EU can discharge pre-treated waste water into a
nearby conventional biological treatment plant. The same is true for many other
locations all over the world.

When preliminary chemical oxidation is applied in a combination treatment
line, sometimes its effect is insignificant or even harmful to the properties of the
original effluent, even though it is conceptually advantageous. There are several
reasons for this, the most common of which are: (i) formation of stable interme-
diates which are less biodegradable than the original molecules; (ii) lack of
selectivity for preferential attack on the more bioresistant fractions of the waste-
water during chemical treatment; (iii) poor selection of treatment conditions as, for
example, excessive pre-oxidation can lead to generation of an effluent with too
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little metabolic value for the microorganisms; (iv) too much oxidant and/or
catalyst used for oxidation remained in the pre-treated wastewater. Compounds
such as ozone and hydrogen peroxide (both known as biocides), metals, metal
oxides and metal salts (catalysts in many processes), are normally toxic to
microorganisms.

These limitations underline the need to establish a step-by-step research
methodology which takes these effects into account, because operating conditions
effect on the original properties of the pre-treatment stream (contact time, oxidant
and/or catalyst type, dose and toxicity, temperature, etc.) must be known. Such
studies must employ analytical tools to infer the reaction mechanisms, pathway
and kinetics, evaluate the effect of the chemical pre-treatment on toxicity and
biodegradability, the effect of cations and anions in the wastewater matrix, and the
application of various techniques for determining biodegradability and toxicity.

TOC (or COD) as a general parameter of wastewater treatment should always
be known. If the wastewater is not biodegradable and TOC is high ([100 mg/L)
AOP pre-treatment before biotreatment should be envisaged (AOP/BIO). After the
treatment the effluent quality has to be checked, to decide if it complies with legal
requirements for effluent discharge. If the wastewater is not biodegradable but
TOC is low (\100 mg/L), one should design the appropriate AOP treatment but
without a subsequent biotreatment, because such a low TOC would not produce
pre-treated effluent (this means, with lower TOC) suitable for a biotreatment.
Very often this wastewater could be disposed to the environment after the AOP
treatment or, which is more convenient, to a public sewage treatment system for
polishing it.

To develop and optimise coupling strategy (AOP/BIO) is truly multidisciplin-
ary and requires knowledge of the biological and the chemical process. A series of
analytical parameters needs to be measured ranging from chemical sum parameters
(total organic carbon or chemical oxygen demand), chromatographic methods
(HPLC–UV to quantify specific contaminants of interest), acute toxicity tests
(typically various, e.g. Vibrio Fischeri and Daphnia Magnae) to biodegradability
tests (BOD5, Zahn-Wellens test, respirometry). This whole series of analytical
parameters will satisfy the needs for engineering purposes to design the coupling
strategy. In coupled systems, the AOP pretreatment is meant to modify the
structure of pesticides by transforming them into less toxic and easily biode-
gradable intermediates, which allows the subsequent biological degradation to be
achieved in a shorter time and in a less expensive way.

These requirements, together with information concerning the evolution of
toxicity and biodegradability of the phototreated solutions, allow the determination
of an optimal phototreatment time, which corresponds to the best cost-efficiency
compromise. However, if the fixed pretreatment time is too short, the intermedi-
ates remaining in solution could still be structurally similar to initial biorecalcitrant
compounds and therefore, non-biodegradable.

In the OECD guidelines biodegradation tests are divided into three principal
categories: tests for ready biodegradability, tests for inherent biodegradability and
simulation tests. Tests for inherent biodegradability such as the Zahn-Wellens
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(Z-W) procedure is the most appropriate method for biodegradation assessment of
partially photodegraded solutions of pesticides. But this analytical tool is quite time-
consuming, typically between a few days in the case of quick evidence of biode-
gradability (i.e. samples with ready biodegradability) and in the case of a continuing
negative test response the test must be prolonged for 4 weeks, which is the test
duration according to the standard protocol. Therefore, to limit the amounts of
samples to be processed by the Zahn-Wellens test (Z-W), we propose as an indicator
of partially phototreated waters the complementary use of acute toxicity techniques,
which yield a comparably quick response. A series of acute toxicity tests are avail-
able [34], but an interesting cross between ready biodegradability tests and acute
toxicity tests are short-term respirometric tests performed with activated sludge [35].
Figure 4.6 shows toxicity results on samples taken at different stages of the photo-
Fenton as a percentage of bacteria inhibition when exposed to samples for 30 min.
Inhibition decreased from 80% for the non-treated pesticide wastewater to 50% after
phototreatment (final TOC of 50 mg/L), but in between there were stages when
toxicity was lower. Interestingly, toxicity reduction was more pronounced in those
samples where complete elimination of the active ingredients was achieved. With
longer phototreatment treatment, toxicity increased slightly, presumably due to the
formation of toxic end products. The most important result of the toxicity tests was
that it changed continuously during the treatment indicating that biodegradability
should change dramatically during the process. These assays must therefore be
complemented with biodegradability studies, as stated in the following paragraph.

The Z-W test was performed on six samples taken at different stages of the photo-
Fenton process to check their aerobic biodegradability. Sample 1 is the original
pesticide wastewater, while 2 has been subjected to mild phototreatment and both of
them contain active ingredients. Other samples are free of pesticides. Therefore, as
expected, pesticides were nonbiodegradable. As shown in Fig. 4.6, samples 1 and 2
were hardly biodegradable, with only 50 and 60% biodegradability after 28 days of
biotreatment, respectively. On the other hand, all samples without pesticides reached
at least 70% of biodegradability in 9 days (TOC \ 175 mg/L, see Fig. 4.6). The
continuous enhancement of biodegradability fits well with reduction in toxicity.
Feasible combination of phototreatment and a biological treatment was demon-
strated but in order to optimise the combined system and reduce costs, the photo-
Fenton process should be as short as possible, so as much TOC as possible must
be eliminated by the biotreatment, which has been demonstrated to be more cost
efficient and environmentally friendly [36].

4.6 Concluding Remarks

The proposed technology could also be applicable to other organic hazardous
contaminants, such as solvents, detergents and a variety of industrial chemicals,
which are capable of deep penetration into the soil and reach groundwater.
Solar AOPs have the advantage over other AOPs of using sunlight and having as
its main characteristic that it is an environmentally friendly technology.
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Contaminant treatment, in its strictest meaning, is the complete mineralisation
(TOC = 0) of the contaminants, but when feasible, biological treatment is the
cheapest treatment and also the most compatible with the environment. Therefore,
biologically recalcitrant compounds could be treated with photocatalytic
technologies until biodegradability is achieved, later transferring the water to a
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conventional biological plant. Such a combination reduces treatment time and
optimises the overall economics, since the solar detoxification system can be
significantly smaller. Due to the kinetic mechanism, the first part of the photo-
catalytic process is the quickest. As it can be seen in the figures presented, when
the active component disappears, TOC remains for a long time. Therefore, the use
of AOPs as a pre-treatment step can be justified if the intermediates resulting from
the reaction (more oxidised compounds as carboxylic acids, alcohols, etc.) are
readily degraded by microorganisms. The feasibility of such a photocatalytic-
biological process combination must always be assessed, because it could provide
an important cost reduction by reducing the size of the necessary solar collector
field. It must be taken into account that, as with most solar systems, economics of
the water detoxification systems are dominated by their capital cost.

Determining the toxicity of the water, at different stages of AOP treatment,
using different microorganisms is another way to decrease AOP operating costs.
In this case, biocompatibility with the environment can be stated. Toxicity testing
of the photocatalytically treated wastewater is therefore necessary, particularly
when incomplete degradation is planned. Recently, the use of acute toxicity
bioassays has meant an important improvement in the evaluation of AOPs because
of their reproducibility, adequate format for quick analysis, short analysis time, as
well as well-defined analytical protocols.
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Chapter 5
Removal of Pharmaceutics
by Solar-Driven Processes

Antonio Arques and Ana Maria Amat

Abstract Pharmaceuticals in wastewater constitute an increasing environmental
concern as a consequence of human consumption, veterinary use and industrial
production of these compounds. Although they are commonly found at low
concentration, their effect on human health and environment is not yet established.
Oxidative photochemical methods using sunlight constitute promising alternatives
to non-efficient conventional treatments. Titanium dioxide and photo-Fenton have
been employed to remove a number of pharmaceuticals from water. Although
most experiments involve model compounds at relatively high concentrations,
some information is available on the treatment of real effluents or to determine the
effect of the water-matrix on the processes. In view of their practical application,
the processes have been scaled-up to pilot plant and preliminary economic
evaluations are available. Finally, photolysis of pharmaceuticals, although cannot
be considered as an actual treatment technology, is of paramount importance
because of its contribution to the self-cleaning of aqueous ecosystems.
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5.1 Introduction

In recent years, the presence of an increasing number of chemical substances at
low concentrations in surface waters and wastewaters because of human activities
has become a serious environmental concern as they might represent a threat
for natural ecosystems and a limitation for the potential re-use of wastewaters.
Perfluorinated compounds, pharmaceuticals, hormones, endocrine disruptors,
drinking water and swimming pool disinfection byproducts, sunscreens, flame
retardants, algal toxins, dioxane, pesticides or nanomaterials are examples of these
chemicals and they are commonly classified as emerging pollutants (EPs) [1, 2].

Among the emerging pollutants, pharmaceuticals constitute a major problem as
increasing amounts of these drugs are released into the environment. Main sources
of these chemicals in water are excretion of non-metabolized drugs by humans or
animals, and flushing of unused medication or discharge of wastewaters from
pharmaceutical industry [3]. As a consequence of this, analgesics, antibiotics,
anticonvulsants, cytostatics, hormones, bb-blockers, antihypertensives, antihista-
mines, lipid regulators, stimulants or fragrances have been detected in urban
wastewaters entering wastewater treatment plants at concentrations ranging from a
few ng/l until more than 100 lg/l [4].

Conventional methods for wastewater treatment are not always suitable to
remove pharmaceuticals and hence, they are systematically found at the effluents
of wastewater treatment plants and then released into the environment or re-used
for other human activities [5]. These chemicals show resistance to microbial
biodegradation, and chronic exposure might produce adverse effects on aquatic
life; some drugs or their metabolites have been even found to reach significant
concentrations in surface and drinking water which might constitute a risk for
human health [3, 6]. For this reason alternative methods are needed to deal with
this concern. Among the treatments that have been tested are coagulation-
floculation, bioprocesses based on membrane biological reactors or constructed
wetlands, nanofiltration, reverse osmosis, ozonation or chlorination [3, 4, 7].

5.2 Solar-Based Advanced Oxidation Methods

The use of photochemical methods involving sunlight for wastewater treatment
has deserved increasing attention from researchers in recent years; these treatments
are able to generate highly oxidizing species upon solar irradiation in the presence
of a photocatalyst [8]. Titanium dioxide is the most widely employed photocatalyst
[9]; it is a solid semiconductor that upon UV irradiation generates highly energetic
electrons in the conduction band and holes in the valence band (Fig. 5.1). The
holes behave as electron acceptors, which can oxidize the substrate via an electron
transfer process between the adsorbed pollutant and TiO2 (Eq. 5.1); in addition,
other reactive species, such as hydroxyl radicals can be formed (Eq. 5.2); on the
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other hand, recombination of electron and holes results in a loss of efficiency of the
process (Eq. 5.3).

hþ þ pollutant! oxid: pollutant ð5:1Þ

e� þ H2O2 ! OH� þ �OH ð5:2Þ

e� þ hþ ! recombination ð5:3Þ

The photocatalyst is added in slurry, although some experiments can be found
using supported TiO2 (see Sect. 5.4). Different amounts of TiO2 have been tested
to treat water polluted with pharmaceuticals, generally in the range 0.2–2.0 g/l;
higher amounts of photocatalyst are inefficient because photons are not able to
reach the inner particles, which are shadowed by the outer ones. In some cases,
hydrogen peroxide has been added in order to enhance the effect of the photo-
catalyst: this compound is able to react with excited electrons found in the con-
duction band of the semiconductor (see Eq. 5.2); this prevents recombination of
the excited electrons with the holes of TiO2, and improves the efficiency of the
photocatalyst; furthermore, highly reactive�OH are formed in the process.

Other solid semiconductors have been tested for the treatment of pharmaceu-
ticals. For instance ZnO has been reported to catalyze the photo-oxidation of some
compounds such as carbamazepine [10] or the antibiotic tetracycline [11]. In fact,
faster removal of tetracycline was measured with ZnO under optimized conditions
(basic pH), although the major drawback of this material is that suffers corrosion at
lower pH values.

A promising alternative to semiconductor-based solar photocatalysis is the
photo-Fenton process; Fenton process consists in a mixture of iron salts and

e

h+

Fig. 5.1 Scheme of the band
diagrams for TiO2: upon
irradiation, an electron is
promoted from the valence
band to the conduction band,
generating a hole (h+) in the
valence band. Some reactions
of holes and electrons are also
given (Eqs. 5.1–5.3)
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hydrogen peroxide. In this process, iron is able to catalyze decomposition of
hydrogen peroxide into highly reactive hydroxyl radicals; the most important steps
of the process are given by Eqs. 5.4 and 5.5 [12]. Although the Fenton reaction
occurs in the dark, it is greatly enhanced by irradiation. Photo-Fenton is not
considered a photocatalytic method by all authors, as stoichiometric amounts of
peroxide are needed; however, there is no doubt that it is a solar-driven oxidative
process and hence, it must be included in this chapter.

Fe2þ þ H2O2 ! Fe3þ þ OH� þ OH ð5:4Þ

Fe OHð Þ2þþhm! Fe2þOH ð5:5Þ

For the remediation of water-containing pharmaceuticals the iron concentra-
tions used, generally added as ferrous sulfate, are commonly in the range of
10–50 mg/l. As hydrogen peroxide is consumed in the reaction, the added amount
of this reagent is strongly dependent on the amount of organic matter and on the
intensity of treatment that is required.

Maybe one of the major drawbacks of the photo-Fenton process is that a highly
acidic medium is required, as the optimal pH is 2.8. Hence, the effluent has to be
acidified to reach this value and then neutralization is required before discharge.
However, important efforts are being devoted to develop photo-Fenton processes
under milder conditions.

5.3 Treatment of Model Compounds

The treatment of pharmaceuticals with titanium dioxide or photo-Fenton has been
assayed using model compounds. For this purpose the concentrations of chemicals
employed (typically mg/l) are several orders of magnitude above the concentra-
tions found in natural waters or at the outlet of wastewater treatment plants
(lg/l or ng/l), as higher concentrations can be submitted to a more accurate
analyses (see Fig. 5.2 for the range of concentrations of pharmaceuticals found in
different media). Irradiations can be performed using lamps emitting in the UVA
range of the spectrum, with solar simulators or under solar irradiation.

The concentration of the pollutants has been usually determined by HPLC
analysis and kinetic data can be fitted to a pseudo-first-order law or to Langmuir–
Hinshelwood kinetic model in the case of TiO2. Among the pharmaceuticals
whose elimination with real or simulated sunlight has been studied are analgesics,
stimulants, anti-inflammatories, anticonvulsants, antibiotics, steroid hormones,
ID ¼ }IEqb} > b-blockers, and cholesterol-lowering statins. A non-exhaustive list
of these chemicals is given in Table 5.1.

Primary removal of the pollutants can be achieved after relative short irradia-
tion periods, ranging from a few minutes to some hours, depending on the initial
concentration of sample, the irradiation source, the sample matrix and the
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treatment that has been used; for example, photo-Fenton has been demonstrated to
be faster than TiO2. However, total abatement of the drug does not guarantee
decontamination of the effluent, as other organic by-products are formed in the
oxidative process. Mineralization of organic matter can be evaluated by means of
Dissolved Organic Carbon (DOC) analysis. Although significant decrease in DOC
has been observed in most cases, this process is slower than pharmaceuticals
removal. Other gross-parameter that can be employed to monitor the process is
Chemical Oxygen Demand (COD).

By-products formed in the photochemical process have been identified using
gas or liquid chromatography equipped with a mass detector (GC–MS or LC–MS).
These analyses have been performed with some pharmaceuticals. For example,
intermediates formed in the TiO2-mediated photo-oxidation of chemicals such
as carbamazepine [10], ciprofloxacine [13], fluoroquinolone [14], atenolol [15],
trimethoprim [16] or lovastatin, pravastatin and sinvastatin [17]. In the case of
photo-Fenton, by-products generated from ampicillin [18] have also been studied.
In some cases a reaction mechanism has been proposed. For instance, Trovó et al.
proposed a mechanism for the photo-oxidation of sulfamethoxazole by means of a
solar photo-Fenton process (see Fig. 5.3); the identification of by-products was
based on a sophisticated Liquid Chromatography Electrospray Time of Flight
Mass Spectrometry (LC-ESI-TOF–MS) analysis [19].

Detoxification assessment of the effluents is a necessary step prior discharge in
fresh waters or application of a consecutive biological treatment if mineralization
has not been accomplished. Toxicity of solutions containing the pharmaceuticals
has been monitored along the solar-driven process according to different bioassays,
such as inhibition of the luminescence of Vibrio fischeri bacteria [16, 17, 20], on
Vibrio quing-haiensi [21], or the mobility of Daphnia magna [15, 22]. Elimination
of the parent pollutant did not always result in a decrease in the toxicity; in some
cases, an enhanced toxicity has been observed at the early stages of the reaction,
which has been attributed to the formation of highly toxic intermediates. For
instance, the elimination of diclofenac photocatalyzed by TiO2 resulted in an
enhanced toxicity according to the inhibition of the mobility of D. magna [22].
However, longer periods of irradiation have been usually demonstrated to be able
to destroy these compounds and to form more biocompatible products; hence,

Fig. 5.2 Typical range
of concentrations of
pharmaceuticals in different
media: synthetic water
prepared for laboratory
experimentation,
pharmaceutical wastewaters,
influent and effluent of
wastewater treatment plants
and natural ecosystems
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Table 5.1 Classification and chemical structures of some pharmaceuticals whose elimination by
solar-driven photochemical processes has been studied

Analgesic 

Acetaminophen Antipyrine Paracetamol 
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Ibuprofen 
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detoxification occurs. It is interesting to point that in the case of antibiotics,
remaining antibiotic activity has been monitored by adding the photo-treated
mixture to agar plates which were inoculated with micro-organisms such as
Staphylococcus aureus or E. coli [11, 23] and the effect of the mixture on the
microorganisms is evaluated according to the size of the inhibition halo they
produce.

Biodegradability has also been determined in some cases; however, this
parameter is only interesting when solar photocatalysis is designed as a pretreat-
ment of a biological process. This is not the case of the effluents of wastewater
treatment plants, where photocatalysis is a tertiary treatment but these tests could
be of interest for effluents of pharmaceutical industries. For instance, an
enhancement of the biodegradability was determined during the treatment of
paracetamol at relatively high concentration (157 mg/l) by means of a photo-
Fenton process using a bioassay with the bacterium Pseudomonas putida, which
was based on DOC consumption [24]; the BOD5/COD ratio has been employed in
the photo-Fenton treatment of metoprolol [20] and a long-term biodegradability
assays, namely Zahn-Wellens test, has been used to evaluate the biocompatibility
of nalidixic acid after solar photo-Fenton [25].

An important number of operational variables have a remarkable influence on
the performance of the solar treatment. In order to optimize the process, statistical
methods, generally based in a surface response methodology, have been applied.
For instance, the effect of pH and TiO2 concentration has been determined in the
degradation of flumequine using this methodology [26]. In the case of photo-
Fenton, variables such as pH and iron concentration of H2O2 have been optimized
for the elimination of ampicillin [27].

Table 5.1 (continued)

- blocker 
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5.4 Toward Real Applications. Green Aspects of the Technology

As stated above, solar-driven processes can be considered as a green technology as
they employ sunlight as irradiation source, avoiding the use of highly energy
consuming UV-lamps; furthermore hazardous chemicals are not involved in the
process as the oxidative species are generated ‘‘in situ’’; finally robust set-ups are
employed, which results in low maintenance costs and potential installation in
isolated rural areas. However, results of laboratory experiments cannot be
extrapolated straightforward to real scenarios; hence, extra research is still
required to solve important practical problems.

In most of the experiments involving model compounds, distilled water has
been used as solvent. However, the effect of the matrix on the photochemical
reaction has been investigated in some cases. For instance, the effect of the
presence of some anions, such as nitrate or carbonate, or natural organic matter
(humic acids) on the elimination of clofibric acid by TiO2 and ZnO under sunlight
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Fig. 5.3 Reaction pathway for the photochemical oxidation of sulfamethoxazole in the presence
of TiO2 under sunlight irradiation
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was investigated; while the inorganics played a detrimental role, in the case of
humic acids was not so evident and depended on the experimental conditions
because of the existence of antagonic effects that will be described in Sect. 5.5
[28]. In other works, tap water has been used in the experiments or the effluent of a
wastewater treatment plant has been spiked with relatively high concentrations of
selected chemicals. For instance, Xekoukoulotakis et al. studied the elimination of
sulfamethoxazole with TiO2 at different pH values and compared the results
obtained with three water matrixes: ultrapure water, ground water and treated
wastewater, the authors attributed the lower reaction rates measured in ground
water and treated wastewater to the aggregation of the TiO2 particles in the
presence of larger ion strengths [29]. In the case of photo-Fenton, the presence of
the water-matrix composition is also of importance, as some ions, namely chloride
act as scavengers of the reactive species.

In this context, the study of the applicability of solar-driven processes for the
removal of pharmaceuticals in marine water is of interest, as large amounts of
antibiotics are employed in intensive aquiculture. Hence, important volumes of
salty water polluted with these chemicals are formed. It has been observed that
although elimination of the pharmaceuticals was achieved, the process was less
efficient, both using titanium dioxide [16] and photo-Fenton [19], and longer
periods of irradiation would be required to decontaminate those effluents.

The treatment of solutions containing mixtures of several pollutants has also
been investigated. Although this approach involves the study of a more complex
system, it is closer to the real situation. For instance, Klamerth et al. studied the
degradation of mixture of 15 emerging pollutants that belong to different families
by means of a solar photo-Fenton process [30]: analgesics (acetaminophen, anti-
pyrine), herbicides (atrazine, isoproturon), a biocide (hydroxybiphenyl), a stimu-
lant (caffeine), an anticonvulsant (carbamazepine), anti-inflammatory drugs
(diclofenac, ibuprofen, ketorolac), antibiotics (flumequine, ofloxacin, sulfameth-
oxazole and triclosan) and a steroid hormone (progesterone). In another paper,
Bernabeu et al. spiked an effluent from a wastewater treatment plant with 5 mg/l of
six emerging pollutants and treated with TiO2 in order to obtain accurate kinetics
[31]: antibiotics (trimethoprim), analgesic (acetaminophen), anti-inflammatory
drug (diclofenac), stimulating drug (caffeine), fungicide (thiabendazole) and a
pesticide (acetamiprid). As can be observed, when mixtures are studied, other
types of emerging pollutants, such as insecticides, herbicides, personal care
products or stimulating agents are also present in addition to pharmaceuticals.

There are some papers reporting on the treatment of emerging pollutants at low
concentrations (a few lg/l); in some cases real effluents form wastewater treatment
plants have been treated [31]. A more sophisticated analytical methodology is
required to deal with those concentrations, as they are close to the quantition limits
of conventional techniques: injection of higher volumes in HPLC, pre-concentration
of samples by liquid phase extraction or analysis by LC–MS.

The elimination of pharmaceuticals by solar processes, not only has been
studied at laboratory scale, but it has also been scaled-up employing pilot plants.
The most widely employed plants are based in compound parabolic collectors,
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CPCs (see Fig. 5.4). Briefly, each CPC consist in two parabolic aluminum surfaces
which concentrate direct and diffuse radiation in the axis, where is placed a Pyrex
glass tube through which the reaction to be treated flows [32]. Bernabeu et al.,
employed a CPC plant to treat by means of titanium dioxide a real effluent from a
wastewater treatment plant [31]. Different emerging pollutants were detected in
this effluent in concentration between 0.03 and 15 lg/l: antibiotics (trimethoprim,
ofloxacin, enrofloxacin, claritromicin and erythtomycin), analgesic (acetamino-
phen), anti-inflammatory drugs (diclofenac), psychiatric drugs (carbamazepine),
stimulant (caffeine), fungicide (thiabendazole) and pesticides (acetamiprid). The
final concentrations were systematically below 50 ng/l at the end of the process;
the percentages of elimination depended on the initial concentration of the pol-
lutants, and ranged from the 99% determined for caffeine (whose initial concen-
tration was above 1 lg/l) to the 70% measured for claritrhomycin (33 ng/l at the
beginning of the experiment).

Real effluents from a pharmaceutical industry have been treated by means of a
solar photo-Fenton process using a pilot plant. The main pollutant was nalidixic
acid (ca. 50 mg/l) although the effluent was a complex mixture also containing
other organic and inorganic species. Nalidixic was removed after ca. 3 h of irra-
diation and an increase in the biodegradability of the effluent was observed
according to the Zahn-Wellens test. Finally, the possibility of coupling a bio-
process after the photochemical treatment was investigated employing a immo-
bilized biomass reactor; ca. 95% mineralization of the organics was achieved
following this approach [25].

Fig. 5.4 Picture of a pilot plant for solar detoxification of wastewater based on CPC technology.
The plant works in batch mode and it is able to contain 25 l in each process
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However, for real applications with effluents at low concentrations of pollutants
exploring treatments at milder conditions appears convenient. Klamerth et al.
studied the elimination of a mixture of nine emerging pollutants at pilot plant scale
with low amounts of TiO2 (5 mg/l) and photo-Fenton at natural pH values and low
iron concentrations (5 mg/l) [30]. Pollutants removal was faster in the case of
neutral photo-Fenton than for TiO2; however, this process is limited by the low
solubility of iron at neutral pH and by the inefficient formation of hydroxyl radicals
under these conditions. It has been observed that the presence of natural organic
matter able to form complexes with iron, such as humic acids enhances the effi-
ciency of the process. On the other hand, carbonates and bicarbonates, which are
not present in the highly acidic conditions required in conventional photo-Fenton
have been described to play a radical scavenging role at neutral pH.

The use of supported titanium dioxide might be advantageous from the practical
point of view, as the difficult recovery of the particles of this semiconductor would
not be necessary. TiO2 has been immobilized using sintered glass cylinders to
eliminate the antibiotic oxolinic acid under black light irradiation [23]. Titania
onto borosilicate glass spheres has been employed in a recent work to treat
in a solar pilot plant a mixture of 15 emerging pollutants at low concentration
(100 lg/l), most of them, pharmaceuticals. Complete removal of twelve pollutants
was reached after 50 min of irradiation and only atrazine, carmamazepine and
antipyrine remained in the solution; nevertheless, their concentrations were below
50 lg/l. The possibility of using the supported catalyst in different cycles was also
demonstrated [33].

Finally, an economic evaluation of a solar photo-Fenton treatment of high
concentrations of paracetamol (157 mg/l) in pilot plant has been recently pub-
lished [24]. They have evaluated that reaction time is the main parameter in the
cost of the process; hence, the proposed strategy is to finish the treatment once
the effluent is biodegradable enough to be discharged in a biological reactor.
Following this procedure a cost of 3.45 €/m3 was estimated.

5.5 Photolysis of Pharmaceuticals

A chapter dealing with the use of sunlight for the elimination of pharmaceuticals
would not be complete without writing at least a few paragraphs on the self-
cleaning of surface waters by solar irradiation. Although it is not actually a method
for wastewater treatment, solar photolysis is a common fate for emerging pollu-
tants, and pharmaceuticals in particular, in the environment. Hence, it constitutes
an important process for the self-remediation of aquatic natural ecosystems, such
as rivers, lakes or seas. These processes are of paramount interest in environmental
chemistry although their study is not easy because of the low concentration that
pollutants reach in real samples, typically a few ng/l [34] that require sophisticated
analytical equipment; additionally, the involvement of transitory species with short
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lifetimes, whose detection is essential to gain further insight into the fundamentals
of these processes, requires application of photophysical measurements.

Direct and indirect mechanisms have been described for the photolysis of
pharmaceuticals [3, 35]. In the first case, direct photolysis of the pollutants occurs
upon absorption of sunlight. The indirect mechanisms involve generation of highly
reactive species, such as hydroxyl radical, superoxide anion or singlet oxygen,
which are able to react efficiently with organic matter [36].

Among the species that promote this indirect mechanism are humic acids. They
constitute a group of colored substances which are formed by biological processes
from vegetal or animal residues; they have been reported to be the major fraction
of natural dissolved organic matter in the environment. For instance, it has been
found that excited states of natural organic matter promoting removal of amoxi-
cillin under sunlight in aquatic environments [37]. However, humic acid can also
absorb light in the UVA-visible range, producing a screen effect on the sample
because of light absorption, diminishing direct photolysis; hence, their actual role
has to be carefully determined. In this context, Andreozzi et al. found that the
presence of humic acids promoted the photo-oxidation of some pharmaceuticals
(ofloxacin, sulfamethoxazole, propranolol and clofibic acid) while they inhibited
the photo transformation of other drugs (carbamazepine and diclofenac). These
authors also reported that some inorganics, such as nitrate, are also able to
photogenerate hydroxyl radicals, enhancing the indirect photolysis of pharma-
ceuticals [38].

Photolytic removal of pollutants can benefit from the synergetic effect of biotic
process occurring in the aquatic environment. However, this possibility strongly
depends on the toxicity and biodegradability of the parent pollutants and the
intermediates formed in the process. As a result of the photolysis of certain
chemicals such as sulfamethoxazole [39] an enhancement of the toxicity of the
sample was observed according to V. fischeri assay, the elimination of the tri-
methoprim did not result in a significant variation in toxicity [17] and the
photolysis of the antibiotic gatifloxacin produced sequential increases and
decreases of toxicity, according to the predominating intermediates that are formed
after different irradiation periods [40]. Hence, detection of major by-products
and elucidation of reaction mechanisms are also important in those cases; how-
ever, generally initial concentrations of pollutants higher than the few nanograms
detected in surface waters have been employed [17], in order to make detection of
the formed intermediates possible.

5.6 Concluding Remarks

The ability of titanium dioxide and photo-Fenton to achieve primary removal of
pharmaceuticals under solar irradiation is well established. However, most
experiments have been carried out at laboratory scale and under experimental
conditions, which are far from those of real effluents containing those pollutants.

88 A. Arques and A. M. Amat



Hence more effort is required to work with complex mixtures of pollutants with
different aqueous matrixes. In addition, it also seems convenient from the technical
point of view to work with supported materials in the case of TiO2 and to develop
more efficient photo-Fenton processes at mild conditions. Another important issue
is to employ analytical techniques (bioassays and chromatographic methods)
which permit to rule out the presence of toxic by-products in the treated sample
and to gain further insight into the fundamentals of the processes. In conclusion,
based on the state of the art the implementation of these processes as tertiary
treatments for wastewater treatment plant effluents could be expected in the next
future, once the problems described above have been solved.
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Chapter 6
Outlook

Giusy Lofrano

Significant progress has been made in the recent decades in recognising and
understanding the issues in sustainability. The rate of population growth, the level
of economic development, often equated with quality of life, and environmental
protection have long been recognised challenges to mutually create a sustainable
future. Historical evidences proved that an increasing human population has put an
increasing demand on natural resources used for consumption and waste man-
agement. The challenge of green engineering decouples the historical relationship
of population growth and environmental degradation on the path towards sus-
tainability that means an improved quality of life.

Among several green technologies applied to wastewater treatment for
emerging compounds removal, this book focuses on natural (adsorption and
constructed wetlands) and advanced solar-based treatments because their charac-
teristics make them inherently green.

Many studies of non-conventional treatments are available in the literature;
nevertheless, they are often limited to laboratory scale. Indeed, the cost estimation
of adsorption processes utilising low-cost adsorbents is not strictly right and pilot-
plant studies should also be carried out to check their feasibility on commercial
scale.

Interesting results on removal of organic micropollutants, particularly Phar-
maceutical and Personal Care Products (PPCPs), came out from constructed
wetlands. Their application to small communities or as tertiary treatments dealing
with a small, diverted fraction of conventional effluents from Wastewater Treat-
ment Plants (WWTP) appears quite attractive both due to the limited energy
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required and to the relatively low maintenance costs, which contribute to make this
technology a unique green technology.

From the studies provided in this book it can be seen that solar-advanced
oxidation processes are effective treatment methods for the removal of trace
pollutants. However, there are a number of issues to be solved pertaining these
treatment methods, involving the identification of the oxidation by-products as
well as intermediates, the evaluation of biodegradability, and potential estrogenic
activity of these compounds. Furthermore, as the process costs may be considered
the main obstacle to their commercial application, several promising cost-cutting
approaches have been proposed, such as integration of Advanced Oxidation
Processes AOPs as a part of a treatment train.

Even more in the near future, green chemistry should focus on the development
of economically feasible conversion of solar energy into chemical energy and
improvement in the conversion of solar energy to electric power.

Testing sustainability requires to think long and hard. It is the time to begin.
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