
41F. Maggino and G. Nuvolati (eds.), Quality of life in Italy: Research and Refl ections,
Social Indicators Research Series 48, DOI 10.1007/978-94-007-3898-0_4, 
© Springer Science+Business Media B.V. 2012

              1   Introduction 

 The present debate on well-being measurement is clearly pointing out that a valuable 
evaluation process has to take into account many different and complementary 
aspects, in order to get a comprehensive picture of the problem and to effectively 
support decision-making. Assessing well-being requires sharing a conceptual 
framework about its determinants and about society and needs the identi fi cation of 
the most consistent and effective methodologies for building indicators and for 
communicating purposes. From a statistical perspective, one of the critical points con-
cerns the preservation of the true nature of the socio-economic phenomena to be anal-
ysed. This calls for an adequate methodological approach. Several socio-economic 
phenomena have an intrinsic ordinal nature (e.g. material deprivation, democratic 
development, employment status), and correspondingly, there has been an increasing 
availability of ordinal datasets. Nevertheless, ordinal data have been often conceived 
as just a rough approximation of truly numerical and precise, yet non-observable, 
features, as if a numerical latent structure would exist under ordinal appearances. 
As a result, the search for alternative statistical procedures has been slowed down, 
and many epistemological, methodological and statistical problems regarding ordinal 
data treatment are still open and unsolved: 
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     1.     Methodological approaches: between objectivity, subjectivity and arbitrariness . 
The epistemological research of the last century has focused on the role of 
the subject in knowledge production and has clearly showed how pure objectiv-
ism cannot account for the knowledge process, even in scienti fi c disciplines. 
This is particularly evident when observing and analysing socio-economic 
phenomena. Given the complexity and the nuances of socio-economic issues, 
data can often be considered as a (fragmented) “text” to be “read” by the 
researcher, in search for a “sense” and a structure in it. This “sense structuring” 
process is not an arbitrary one, but necessarily involves some subjectivity. 
To make an example, think about the issue of de fi ning poverty thresholds in 
deprivation studies, both in a monetary and in a multidimensional setting, 
with the consequences that different choices have in the  fi nal picture. 
Admittedly, in many applied studies, subjectivity is generally felt as an issue 
to be removed, and many evaluation procedures are designed to accomplish 
this task. Ironically, removing subjectivity is not an objective process and 
often produces arbitrary results. Thus, it is important to distinguish between a 
necessary “objectivity” of the research methodology (e.g. observation and data 
collection procedures) and an unavoidable “subjectivity” related, for instance, to 
the de fi nition and choice of the conceptual framework and the analytical 
approaches. The real methodological issue is not removing subjectivity; 
rather, it is building a sound statistical process, where subjective choices are 
clearly stated and their consequences can be clearly worked out in a formal 
and unambiguous way.  

    2.     Ordinal data: between accuracy and ambiguity . A great part of the methodological 
and statistical efforts has been dedicated to the issue of making measures 
quantitatively more precise. In practice, this has often been turned into applying 
multivariate statistical tools to ordinal data, after transforming, or interpreting, 
them in cardinal terms, through more or less sophisticated scaling procedures. 
These procedures may sometimes lead to useful results, but they are often quite 
questionable, not being consistent with the intrinsic nature of data. De facto, the 
efforts for getting more precise measures have the effect of frequently forcing 
the true nature of socio-economic phenomena. On the contrary, it could be wise 
to realize that the great part of socio-economic phenomena is characterized by 
nuances and “ambiguities”, which are not obstacles to be removed, but often 
represent what really matters.  

    3.     Ordinal data: technical issues . Transformed or not in quantitative terms, ordinal 
data are generally submitted to traditional statistical tools, typically designed for 
quantitative data analysis and usually based on the analysis of linear structures. 
The results are quite arbitrary and questionable, since the data are forced into a 
conceptual and technical framework which is ultimately poorly consistent. 
Although these problems are well known, and new methodologies are continu-
ously being developed, they are still unsolved. Basically, it can be asserted that 
the issue of ranking and evaluation in an ordinal setting is still an open problem, 
even from a pure data treatment point of view.     
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 Motivated by these issues and by the relevance of the topic, in this chapter we 
introduce new tools for ranking and evaluation of ordinal data, with the aim to over-
come the main problems of the classical methodologies and, particularly, of the 
composite indicator approach. We address the evaluation problem through a bench-
mark approach. Each statistical unit in the population is described in terms of its 
pro fi le, that is, in terms of the sequence of its scores on the evaluation dimensions; 
pro fi les are then assessed against some reference sequences, chosen as benchmarks, 
to get the evaluation scores. We address the comparison of pro fi les to benchmarks 
in a multidimensional setting by using tools and results from  partially ordered set 
theory  ( poset  theory, for short). Indeed, through poset tools, sequences of scores can 
be assessed without involving any aggregation of the underlying variables since the 
evaluation is performed by exploiting the relational structure of the data, which 
involves solely the partial ordering of the pro fi les. The remainder of this chapter is 
organized as follows. Section  2  gives a brief account of the composite indicator 
approach, highlighting its main criticalities, particularly in the ordinal case. Section  3  
introduces a few basic concepts from poset theory. Section  4  describes the basic 
evaluation strategy and the procedure to compute the evaluation scores. Section  5  
tackles the problem of “weighting” evaluation dimensions. Section  6  specializes the 
methodology to the fundamental case of binary variables. Section  7  concludes. The 
aim of this chapter is primarily methodological, leaving to future works the system-
atic application of the evaluation procedure to real data. Nevertheless, for sake of 
clarity, all the basic concepts and the key ideas behind the methodology are intro-
duced by examples, all of which pertain to material deprivation and multidimen-
sional poverty.  

    2   The Composite Indicator Approach and Its Critical Issues 

 Addressing the complexity of socio-economic phenomena for evaluation aims is a 
complex task, often requiring the de fi nition of large systems of indicators. Frequently, 
the complexity of the indicator system itself leads to the need of computing composite 
indicators in order to (Noll  2009  ) : 

   Answer the call by “policy makers” for condensed information.   –
  Improve the chance to get into the media.   –
  Allow multidimensional phenomena to be synthesized.   –
  Allow easier time comparisons.   –
  Compare cases (e.g. nations, cities, social groups) in a transitive way (e.g. through  –
rankings).    

 Despite its spreading, the composite indicator approach is currently being deeply 
criticized as inappropriate and often inconsistent (Freudenberg  2003  ) . Critics point 
out conceptual, methodological and technical issues, especially concerning the 
dif fi culty of conveying into unidimensional measures, all the relevant information 
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pertaining to phenomena which are complex, dynamic, multidimensional and full of 
ambiguities and nuances. The methodology aimed at constructing composite indi-
cators is very often presented as a process needing speci fi c training, to be performed 
in a scienti fi c and objective way. Actually the construction procedure, even though 
scienti fi cally de fi ned, is far from being objective and aseptic. Generally, it com-
prises different stages (Nardo et al.  2005 ; Sharpe and Salzman  2004  ) , each intro-
ducing some degree of arbitrariness to make decisions concerning: 

   The analytical approach to determine the underlying dimensionality of the avail- –
able elementary indicators and the selection of those to be used in the evaluation 
process.  
  The choice of the weights used to de fi ne the importance of each elementary  –
indicator.  
  The aggregation technique adopted to synthesize the elementary indicators into  –
composite indicators.    

  Indicator selection . Selecting the indicators to be included in the composite 
represents a fundamental stage in the construction process since it does operation-
ally de fi ne the latent concept that the composite is supposed to measure. Selection 
criteria should consider (Nardo et al.  2005  )  the issues of reducing redundancies, 
allowing both comparability among statistical units and over time and should be 
oriented to obtaining politically relevant results. From a statistical point of view, 
indicator selection often involves a principal component analysis or a factor analysis, 
to reveal correlations and associations among evaluation variables and to perform 
some dimensionality reduction. Irrespective of the statistical tool adopted, dimen-
sionality reduction raises some relevant questions, concerning its consequences on 
the composite indicator construction. If the concept to be measured turns out to be 
actually unidimensional, computing a single composite indicator could be justi fi able. 
But when concepts are truly multidimensional, then singling out just one, albeit 
composite, indicator is very questionable. The nuances and ambiguities of the data 
would in fact be forced into a conceptual model where all the features con fl icting 
with unidimensionality are considered as noise to be removed. Moreover, synthetic 
scores could be biased towards a small subset of elementary indicators, failing to 
give a faithful representation of the data. 

  Weighting variables . When constructing composite indicators, particular atten-
tion is paid to the weighting process, which gives different importance to the ele-
mentary indicators forming the composite. The necessity of choosing weights based 
on objective principles is frequently asserted (Nardo et al.  2005 ; Ray  2008 ; Sharpe 
and Salzman  2004  ) , leading to a preference for statistical tools like correlation 
analysis, principal component analysis or data envelopment analysis, to mention a 
few. However, adopting purely statistical methods in the weighting process must be 
carefully considered. Removing any control over the weighting procedure from the 
analyst gives a possibly false appearance of objectivity that is actually dif fi cult to 
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achieve in social measurement (Sharpe and Salzman  2004  ) . Moreover, since de fi ning 
weights is often interpreted in the perspective of identifying personal and social 
values, the procedure should necessarily involve individuals’ judgments. If indica-
tors concern societal well-being, their construction turns out to be not just a techni-
cal problem, being part of a larger debate aimed at obtaining a larger legitimacy. In 
this perspective, the weighting issue can be even considered as a leverage of demo-
cratic participation to decisions. For example, Hagerty and Land  (  2007  )  stresses that 
building composite indicators should take into account and maximize the agreement 
among citizens concerning the importance of each elementary indicator. Choosing 
consistent weighting criteria is thus a critical issue, largely subjective and possibly 
data independent. 

  Aggregating indicators . Further criticisms concern the aggregation process 
(Munda and Nardo  2009  ) , needed to get unidimensional scores out of multidimen-
sional data, and which raises methodological dif fi culties when dealing with ordinal 
data. The process is in fact quite controversial since: 

    The indicators to be aggregated are rarely homogeneous and need not share  –
common antecedents (Howell et al.  2007  ) .  
  The aggregation technique might introduce implicitly meaningless compensa- –
tions and trade-offs among evaluation dimensions.  
  It is not clear how to combine ordinal variables, using numerical weights.     –

 Even using scaling tools, turning ordinal scores into numerical values is not sat-
isfactory; it forces the nature of the data and is not de fi nitely a clear process, since 
different choices of the scaling tools may imply very different  fi nal results. 

 Composite indicators represent the mainstream approach to socio-economic 
evaluation, yet the discussion above shows how many critical issues affect their 
computation. The dif fi culties are even greater when ordinal variables are dealt with 
since statistical tools based on linear metric structures can be hardly applied to 
non-numeric data. In a sense, socio-economic analysis faces an  impasse : (1) 
implicitly or not, it is generally taken for granted that “evaluation implies aggrega-
tion”; thus (2) ordinal data must be scaled to numerical values, to be aggregated 
and processed in a (formally) effective way; unfortunately (3) this often proves 
inconsistent with the nature of the phenomena and produces results that may be 
largely arbitrary, poorly meaningful and hardly interpretable. Realizing the weak-
ness of the outcomes based on composite indicator computations, statistical 
research has focused on developing alternative and more sophisticated analytic 
procedures, but almost always assuming the existence of a cardinal latent structure 
behind ordinal data. The resulting models are often very complicated and still 
affected by the epistemological and technical issues discussed above. The way out 
to this  impasse  can instead be found realizing that evaluation need not imply aggre-
gation and that it can be performed in purely ordinal terms. This is exactly what 
poset theory allows to do.  
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    3   Basic Elements of Partial Order Theory 

 In this section, we introduce some basic de fi nitions pertaining to partially 
ordered sets. In order to avoid collecting too much technicalities in a single 
paragraph, other results, needed in subsequent developments, will be presented 
along this chapter. 

 A partially ordered set (or a  poset )  P  = ( X ,  £  ) is a set  X  (called the  ground set ) 
equipped with a partial order relation  £ , that is, a binary relation satisfying the prop-
erties of  re fl exivity ,  antisymmetry  and  transitivity  (Davey and Priestley  2002  ) :

    1.     x   £   x  for all  x  ∈  X  (re fl exivity).  
    2.    If  x   £   y  and  y   £   x , then  x  =  y ,  x ,  y  ∈  X  (antisymmetry).  
    3.    If  x   £   y  and  y   £   z , then  x   £   z ,  x ,  y ,  z  ∈  X  (transitivity).     

 If  x   £   y  or  y   £   x , then  x  and  y  are called  comparable ; otherwise, they are said 
 incomparable  (written  x   | |   y ). A partial order  P  where any two elements are 
comparable is called a  chain  or a  linear order . On the contrary, if any two ele-
ments of  P  are incomparable, then  P  is called an  antichain . A  fi nite poset  P  (i.e. 
a poset over a  fi nite ground set) can be easily depicted by means of a  Hasse dia-
gram , which is a particular kind of directed graph, drawn according to the fol-
lowing two rules: (1) if  s   £   t , then node  t  is placed above node  s ; (2) if  s   £   t  and 
there is no other element  w  such that  s   £   w   £   t  (i.e. if  t covers s ), then an edge is 
inserted linking node  t  to node  s . By transitivity,  s   £   t  (or  t   £   s  ) in  P , if and only 
if in the Hasse diagram there is a descending path linking the corresponding 
nodes; otherwise,  s  and  t  are incomparable. Examples of Hasse diagrams are 
reported in Fig.  4.1 . As any binary relation, a partial order ( X ,  £  ) can be regarded 
as a subset of the Cartesian product  X  2 ; we will write ( x ,  y ) ∈  £  if and only if  x   £  
 y  in  P . With this notation, the poset axioms read: (1) ( x ,  x ) ∈  £ , for all  x  ∈  X ; (2) 
if ( x ,  y ) ∈  £  and ( y ,  x ) ∈  £ , then  y  =  x ; and (3) if ( x ,  y ) ∈  £  and ( y ,  z ) ∈  £ , then ( x , 
 z ) ∈  £ , for  x ,  y ,  z  ∈  X . It is then meaningful to consider expressions like “a subset 
of partial order” or “the intersection of a family of partial orders” or similar since 
they reduce just to ordinary set operations.   

  Fig. 4.1    Hasse diagrams of a poset ( a ), a chain ( b ) and an antichain ( c )       
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    4   Evaluating Multidimensional Ordinal Phenomena 
Through Poset Theory 

    4.1   Representing Ordinal Data as Posets 

 In this paragraph, we use poset theory to give a simple and effective representation 
of multidimensional ordinal data which proves essential for the development of the 
evaluation procedure. The presentation follows mainly Fattore et al.  (  2011  ) , 
generalizing and extending it in many directions. 

 Let  v  
1
 ,  … ,  v  

 k 
  be  k  ordinal evaluation variables. Each possible sequence  s  of scores 

on  v  
1
 ,  … ,  v  

 k 
  de fi nes a different  pro fi le . Pro fi les can be (partially) ordered in a natural 

way, by the dominance criterion given in the following de fi nition: 

  De fi nition 1.   Let  s  and  t  be two pro fi les over  v  
1
 ,  … ,  v  

 k 
 ; we say that  t  dominates  s  

(written  s  �  t ) if and only if  v  
 i 
 ( s )  £   v  

 i 
 ( t )     1, ,∀ = …i k   , where  v  

 i 
 ( s ) and  v  

 i 
 ( t ) are the 

scores of  s  and  t  on  v  
 i 
 .  

 Clearly, not all the pro fi les can be ordered based on the previous de fi nition; as 
a result, the set of pro fi les gives rise to a poset (in the following, called the  pro fi le 
poset ). 

  Example 1 (Material deprivation).   Let us consider the following three deprivation 
dimensions from the Italian EU-SILC survey:

    1.    HS120 –  The household makes ends meet with dif fi culty .  
    2.    DIFCIB –  The household has received food donations over the last year .  
    3.    DIFDEN –  The household has received money donations over the last year .     

 Variable HS120 is coded in binary form 1  (“0 – No”, “1 – Yes”). Variables 
DIFCIB and DIFDEN are recorded on a four-grade scale, (“0 – Never”, “1 – Seldom”, 
“2 – Sometimes”, “3 – Often”). The 32 pro fi les resulting from considering all the 
sequences of scores over HS120, DIFCIB and DIFDEN can be partially ordered 
according to De fi nition  1 . The Hasse diagram of the resulting poset is shown in 
Fig.  4.2 . The top node (�) represents the  completely deprived  pro fi le (133); cor-
respondingly, the bottom node (�) represents the  completely non-deprived  
pro fi le (000).   

   1   In the original dataset, variable HS120 is recorded on a six grade scale; to reduce the number of 
pro fi les, in this example it has been recorded in a dichotomous form. Original grades 1–3 have 
been collapsed into “1 – Yes” and original grades 4–6 have been collapsed into “0 – No”.  
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    4.2   The Evaluation Strategy 

 Since ordinal phenomena cannot be measured against an absolute scale, the evaluation 
scores of the statistical units are computed comparing them against some reference 
units, assumed as benchmarks. 2  In operative terms, the procedure is organized in 
three steps:  

     1.    Given the evaluation dimensions, reference pro fi les are selected, identifying 
benchmarks in the pro fi le poset.  

    2.    Given the benchmarks, the evaluation function is computed assigning a score to 
each pro fi le in the poset. This score depends upon the “position” of the pro fi le 
with respect to the benchmarks and is computed analysing the partial order 
structure.  

    3.    Once the scores of the pro fi les are computed, each statistical unit is assigned the 
score corresponding to its pro fi le. This way, the evaluation is extended from the 
poset to the population.     

  Fig. 4.2    Hasse diagram 
for the poset of material 
deprivation pro fi les       

   2   In this chapter, we do not deal with the problem of the identi fi cation of such benchmarks and 
assume them as given. In practice, however, reference units should be determined through some 
preliminary analysis based on both the socio-economic context and the goals pursued by the deci-
sion-makers interested in the evaluation process.  
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 In this chapter, we focus on assessing the elements of the pro fi le poset. It is worth 
noticing that the computation of the evaluation scores depends only upon the benchmarks 
and the structure of the pro fi le poset, but not upon the statistical distributions of the 
evaluation variables on the population. Thus, our procedure is in a sense halfway 
between an absolute and a relative approach to evaluation and can be tuned in one 
direction or the other, with a convenient choice of the benchmarks.  

    4.3   The Evaluation Function 

 The evaluation function  h (·) assigns a score to each element in the pro fi le poset  P . 
Formally, it is an  order-preserving  map from  P  to [0,  M ], that is, a map 

     →
�: [0, ]

: ( )

P M

s s

h
h    

(4.1)
  

such that 

     ⇒ ≤� ( ) ( ),s t s th h    (4.2)  

where  M  > 0 represents the maximum evaluation score and can be seen as a scaling 
factor. 

 Condition ( 4.2 ) states the minimal consistency requirement that the score 
computed through  h (·) increases as we move towards the top of the pro fi le poset. 

 Given  h (·), the pro fi le poset  P  is naturally partitioned into the union of the following 
disjoint subsets: 

   The set   – D  of pro fi les such that  h ( s ) =  M   
  The set   – W  of pro fi les such that  h ( s ) = 0  
  The set   – A  of pro fi les such that 0 <  h ( s ) <  M     

 Sets  D  and  W  have the following useful property: if  s  ∈  D  and  s  �  t , then, according 
to ( 4.2 ),  h ( t ) =  M , that is,  t  ∈  D ; similarly, if  s  ∈  W  and  t  �  s , then  h ( t ) = 0 and 
 t  ∈  W . In poset theoretical terms, sets like  D  and  W  are called  up-sets  and  down-sets , 
respectively.  

    4.4   Benchmarks and Poset Thresholds 

 To pursue a benchmark approach to evaluation, the concept of evaluation threshold, 
typical of quantitative evaluation studies, must be extended to the ordinal case. To 
this goal, we draw upon the following nice property of up-sets and down-sets. Given 
the up-set  D , there is a unique subset     ⊆d D   of mutually incomparable elements 
(i.e. an antichain), such that  s  ∈  D  if and only if  d  �  s  for some     ∈d d   (Davey and 
Priestley  2002  ) . The up-set  D  is said to be generated by     d   (in formulas,     =↑D d   ). 
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Excluding trivial cases, any element of the generating antichain is below only elements 
of  D  and is above only elements of  P  �  D , so that it shares, in the pro fi le poset, the 
same role of a numerical threshold in the quantitative case. Thus,     d   will be called 
the  superior threshold . The same result can be dually stated for the down-set  W : an 
antichain     ⊆w W   can be found such that  s  ∈  W  if and only if  s  �  w  for some     ∈w w   . 
 W  is said to be generated by     w   (in formulas,     =↓W w   ), and     w   will be called the 
 inferior threshold . 

  Example 1 (continuation).   Given the deprivation poset, at a pure illustrative level we 
can identify the superior (deprivation) threshold and the inferior (non-deprivation) 
threshold as 

     = (121,112),d    (4.3)  

     = (011).w    (4.4)   

 In other words, we state that any statistical unit having pro fi le 121 or 112 is 
considered as completely deprived and will be assigned a deprivation score equal to 
 M . Similarly, any statistical unit having pro fi le 011 will be assigned a deprivation score 
equal to 0. The sets  D  of completely deprived pro fi les and  W  of completely non-deprived 
pro fi les are represented by the black nodes in Fig.  4.3 . Note that for logical consistency 
any element of     d   is unambiguously more deprived than the element of     w   .   

  Fig. 4.3    Thresholds for the 
deprivation poset and 
corresponding sets  D  and  W  
(black nodes)       
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    4.5   Computation of the Evaluation Function 

 In the socio-economic literature, evaluation is often performed according to a 
“response from a population” approach (Cerioli and Zani  1990  ) . In the language of 
social choice, this means that a set of judges is identi fi ed, each assigning an evalua-
tion score to the statistical units. Judges’ scores are then averaged in the  fi nal evalu-
ation scores. Usually, judges coincide with the evaluation dimensions, leading to the 
de fi nition of a composite indicator (Alkire and Foster  2007  ) . In the ordinal case, this 
choice is unsatisfactory since it is unclear how to aggregate ordinal scores. Although 
also our methodology follows a “response from a population” approach, it over-
comes the problem of ordinal score aggregation selecting the set of judges in a dif-
ferent way. The key idea behind judge selection can be explained as follows. Judges 
produce rankings of pro fi les out of the poset  P ; when accomplishing this task, they 
are free to order incomparable pairs as preferred (no ties are allowed), but they can-
not violate the constraints given by the pro fi le poset, that is, if  s  �  t  in  P , then any 
judge must rank  t  above  s  in his own ranking. Thus, the set of all possible different 
judges (i.e. judges not producing the same rankings) coincides with the set of all the 
 linear extensions  of  P . A linear extension of a poset  P  is a linear ordering of the 
elements of  P  which is consistent with the constraints given by the partial order rela-
tion. For example, if  P  is composed of three elements  x ,  y  and  z , with  y   £   x ,  z   £   x  and 
 y  | |  z , only two linear extensions are possible, namely,  z   £   y   £   x  and  y   £   z   £   x , since 
 x  is greater than both  y  and  z  in  P . The set of all the linear extensions of a poset  P  is 
denoted by   W  ( P ); it comprises all the linear orders compatible with  P  and identi fi es 
uniquely the partial order structure (Neggers and Kim  1998 ; Schroeder  2003  ) . Thus, 
considering the set of linear extensions of  P  is just a different way to consider the 
whole poset; in other words, the set of judges  exploits all the information contained 
in the original partial order .  

 In view of the de fi nition of the evaluation function, it must be determined (1) how 
each linear extension (i.e. each “judge”)  w  ∈   W  ( P ) assigns a score  h  

 w 
 ( s ) to each 

pro fi le  s  ∈  P  and (2) how such scores are aggregated into the  fi nal evaluation score 
 h ( s ). The two steps are described in sequence. 

 Let     d   be the superior threshold. If in  w  a pro fi le  t  is ranked above a pro fi le     ∈d d   , 
 that judge  (i.e.  w ) must assign a score  M  to  t , consistently with ( 4.2 ). Similarly, for 
the inferior threshold, judge  w  will assign evaluation score equal to 0 to any pro fi le 
ranked, in  w , below a pro fi le     ∈w w   . On the contrary, if in  w  a pro fi le  s  falls below 
any element of     d    and above any element of     w   , then it can receive neither a score 
equal to  M  nor a score equal to 0. As a consequence, it will be assigned an evalua-
tion score equal to 3  0.5 M , to re fl ect the uncertainty in the evaluation. This way, ele-
ments of  D  and  W  are assigned scores equal to  M  and 0, respectively, by any judge 
 w . On the contrary, elements of  A  are assigned scores equal to  M , 0, or 0.5 M  

   3   The choice of the value 0.5 M  can be justi fi ed according to a fuzzy approach, as the simplest way 
to represent numerically the judges’ uncertainty.  
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by  w  according to whether they are ranked, in the linear extension  w , over elements 
of     d   , below elements of     w   or in between (Fig.  4.4 ).  

 Formally, let  w  ∈   W  ( P ) and let us de fi ne the following sets: 

     { }: in ,for at least one ;D s d s d dw w w= ∈ ∈�
   (4.5)  

     { }: in , for at least ;one = ∈ ∈W s s w w ww w w�
   (4.6)  

     { }: .A s s D W∈= ∉ ∪w w ww    (4.7)  

Then the evaluation function  h  
 w 
 (·) associated to judge  w  is de fi ned by  

     

,

( ) 0.5 ,

0 .

M s D

s M s A

s W

∈⎧
⎪= ∈⎨
⎪ ∈⎩

w

w w

w

h    (4.8)   

 Given  h  
 w 
 (·) for each single judge  w  Î   W  ( P ), an aggregation function  g (·,  … ,·) is 

to be selected in order to de fi ne the evaluation function  h (·) as 

     1
( )( ) ( , , ),( )

n
s g s s= …w wh h h    (4.9)  

where  n  is the number of linear extensions of the pro fi le poset  P . 
 To restrict the possible forms of the aggregation function, we impose the follow-

ing list of axioms on  g ( ·,  … , ·):

    1.     g ( x ,  … ,  x ) =  x ,  
    2.     g ( k  · x  

1
 ,  … ,  k  · x  

 n 
 ) =  k  · g ( x  

1
 ,  … ,  x  

 n 
 ).  

    3.    Other things being equal, if     ˆ
i ix x<   , then     1 1

ˆ( , , , ) ( , , , )i n i ng x x x g x x x… … ≤ … …   .  
    4.     g (·,  … , ·) must be quasi-linear.  
    5.        1 1( , , ) ( , , )n ng z x z x z g x x− … − = − …   .     

 The  fi rst three axioms are self-evident; quasi-linearity means that the computa-
tion of the evaluation function is consistent with grouping judges into disjoint 

  Fig. 4.4    Exempli fi cative 
linear extension  w  of a poset 
with 12 elements and 
corresponding evaluation 
function  h  

 w 
 (·), when 

    1 2( , )=d d d    and     1 2( , )=w w w          
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classes. The  fi fth axiom requires a deeper explanation. Consider the complement to 
 M  of the evaluation function  h (·):  

     1
(·) (·) ( (·), , (·)).

n
M M g= − = − …w wq h h h    (4.10)   

 If  h (·) measures (say) the deprivation degree,  q (·) consistently measures the 
non-deprivation degree. Alternatively, the non-deprivation degree could also be 
obtained as  

     1
(·) ( (·), , (·))

n
g M M∗ = − … −w wq h h    (4.11)   

 since     (·)
i

M − wh    is the complement to  M  of     (·)
iwh   . Axiom 5 requires  q (·) and  q (·) *  

to coincide, which is a logical consistency requirement. Using a theorem by de 
Finetti  (  1931  ) , the only functions satisfying axioms (1)–(5) turn out to belong to 
the class of the weighted arithmetic means, so that the following proposition can 
be stated: 

   Proposition 1 .    The evaluation function  h (·) must be computed as a weighted 
arithmetic mean of the evaluation functions  h   

 w 
  (·),  w  in  W (P).   

 Since there is no reason to treat judges asymmetrically (i.e. judges are  anony-
mous ), we adopt a uniform weighting scheme and compute the evaluation function 4  
for pro fi le  s  as  

     P

s d w s d w
P ∈

=
Ω ∑

( )

1
( | , ) ( | , ).

| ( ) | w
w W

h h
   (4.12)   

 In the following, we set  M  = 1, so that  h ( s ) Î [0, 1]. 
 In principle, to compute the evaluation function, it would be necessary to list all 

the linear extension of  P , assigning the corresponding score to any pro fi le of the 
poset. In practice, listing all the linear extensions of real posets is computationally 
unfeasible, so that the evaluation function must be estimated, based on a sample of 
linear extensions. Many algorithms exist to perform this task, but the most ef fi cient 
is known to be the Bubley-Dyer algorithm (Bubley and Dyer  1999  )  and all the com-
putations presented in this chapter have been performed using it. 

   Example 1 (continuation) .   Given the deprivation and non-deprivation thresholds, 
the evaluation function has been computed sampling 10 8  linear extensions out of the 
deprivation pro fi le poset. Results are reported in Table  4.1  and depicted in Fig.  4.5 . 
As expected, pro fi les in  D  and pro fi les in  W  are assigned deprivation scores equal 
to 1 and 0, respectively. All other pro fi les have deprivation scores in (0, 1). It is worth 
noticing that (1) the evaluation function increases gradually over the deprivation 
poset and (2) pro fi les sharing the same level in the Hasse diagram may receive 
different scores. This shows how the evaluation procedure is effective in extracting 

   4   We write the evaluation functions explicating the thresholds, to recall that they depend upon 
them.  
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information out of the data structure, reproducing the nuances of multidimensional 
deprivation.  

   Remark .   Differently from other approaches, our procedure extracts the evaluation 
information directly out of the data structure, so that no aggregation of ordinal 
variables is required. In fact, once the thresholds are identi fi ed, the problem of 
computing evaluation scores is solved assessing the “relational position” of each 
element of the pro fi le poset, with respect to the benchmarks. Since the structure of 
the pro fi le poset can be rigorously investigated through poset theory tools, numerical 

   Table 4.1    Evaluation function  h ( s  | 121, 112;  011) for the deprivation poset   

  s   000  001  010  100  011  020  002  110 
  h ( s )  0.000  0.000  0.000  0.073  0.000  0.174  0.174  0.269 
  s   101  030  003  120  111  102  012  021 
  h ( s )  0.269  0.390  0.390  0.427  0.5  0.427  0.512  0.512 
  s   022  121  112  130  103  031  013  131 
  h ( s )  0.668  1.000  1.000  0.682  0.683  0.696  0.696  1.000 
  s   113  122  032  023  033  123  132  133 
  h ( s )  1.000  1.000  0.864  0.864  0.912  1.000  1.000  1.000 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
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  Fig. 4.5    Graph of  h ( s  | 121, 112; 011) (deprivation pro fi les are listed on the  x  axis according to 
increasing deprivation scores)       
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evaluation scores are obtained without scaling the original ordinal dimensions into 
cardinal variables.   

 The effectiveness of poset methodologies is even more clearly revealed when 
addressing one of the main problems in evaluation studies, namely, how to account 
for the different relevance of the evaluation dimensions, when computing the evalu-
ation scores. We refer to this issue as the “weighting” problem, and we explore it in 
the next section.    

    5   The “Weighting” Problem 

 The methodology introduced in the previous paragraphs assumes the evaluation 
dimensions to share the same relevance. As a matter of fact, some asymmetry among 
the dimensions is only implicitly introduced when the thresholds are identi fi ed. As 
a legacy of the composite indicator methodology, the problem of accounting for the 
relevance of the evaluation dimensions is usually tackled using numerical weights, 
even in an ordinal setting (Cerioli and Zani  1990 ; Lemmi and Betti  2006  ) . As we 
show in the following, an alternative and more consistent solution comes from poset 
theory. However, before introducing it, the weighting problem must be carefully 
reconsidered. 

    5.1   Extension of a Poset 

 Generally, weighting schemes are introduced in order to improve the informative 
content of the analysis and to reduce ranking ambiguities (often, weights are com-
puted through a principal component analysis, so as to maximize the variance, i.e. the 
informative power, of the  fi nal index). Ambiguity reduction is the key to address the 
weighting problem also in an ordinal setting. The pro fi le poset  P , built as described 
in Sect.  4 , comprises only those comparabilities which are implied by the purely 
logical ordering criterion stated in De fi nition  1 . Still, many ambiguities, that is, 
incomparabilities, remain in  P , since the ordering criterion is not enough informative 
to “resolve” all of them. Adding information to the evaluation procedure should 
therefore yield a reduction of the set of incomparabilities in the pro fi le poset. This 
idea can be formally stated, through the concept of  extension  of a partial order. 

   De fi nition 2 .   Let  P  
1
  = ( X ,  £   

1
 ) and  P  

2
  = ( X ,  £   

2
 ) be two posets over the same ground 

set  X . If  a   £   
1
  b  implies  a   £   

2
  b , for any  a ,  b  Î  X , then  P  

2
  is called an  extension  of  P  

1
 .  

 In set terms,  P  
2
  is an extension of  P  

1
  if and only if  P  

1
  Í  P  

2
  as subsets of  X  2 . In 

general, a poset  P  has many extensions, and clearly, if  P  
1
  and  P  

2
  are extensions of  P , 

then also is  P  
1
  Ç  P  

2
 . 

   Example 2 .   Let  X  = {  a ,  b ,  c } and let  P  = {  a   £   a ;  b   £   b ;  c   £   c ;  b   £   a }.  P  admits  fi ve 
extensions, as reported in Fig.  4.6 .   
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    5.2   The Weighting Procedure 

 We are now in the position to outline how new ordinal information can be added to 
the pro fi le poset; for sake of clarity, we introduce the “weighting” procedure through 
a simple example.  

   Example 3 .   Consider two variables  v  
1
 ,  v  

2
  each recorded on a three-grade scale: 0, 

1 and 2. The corresponding pro fi le poset is depicted in Fig.  4.7 a. Suppose that, 
based on some exogenous considerations, pro fi le 12 is regarded as more deprived 
than pro fi le 21. Poset  P  is then enlarged, with the addition of a new comparability, 
namely, (21, 12), (i.e. 21 � 12). Unfortunately,  P  È (21, 12) is not a poset, since it 
does not satisfy the transitivity axiom. In fact, since 20 � 21 in  P , from 21 � 12 it 
follows that also 20 � 12 must be added to  P , so as to restore transitivity and to get 
a partial order  P    which is an extension of  P . Technically, considering  P*    =  P  È (12, 
21) È (20, 12) de fi nes  P*    as the  transitive closure      (12,21)P ∪    of  P  È (12, 21), that 
is, as the  smallest  extension of  P , comprising 21 � 12. The extension is depicted 
in Fig.  4.7b . It is important to realize that there are other extensions of  P  comprising 
21 � 12, but each of them would also comprise comparabilities not directly 
implied by it. Therefore. choosing an extension different from the transitive 
closure would be arbitrary.  

 The procedure outlined in the example can be generalized allowing more compa-
rabilities at a time. If  C  is the set of new comparabilities to be added, it is in fact 
suf fi cient to consider  P  È  C  and to compute the transitive closure     P C∪   , so as to 
get the desired extension. 5   

 After extending the pro fi le poset to the transitive closure, the evaluation process 
may proceed as before, with the selection of the benchmarks and the computation 
of the scores. As  P  is turned into  P   , the number of incomparabilities reduces and the 
partial order structure changes. Correspondently, the number of linear extensions 
decreases, modifying the ranking distribution of the pro fi les and the evaluation 
scores of the statistical units. 

  Fig. 4.6    Poset  P  and its  fi ve extensions  P  
1
 ,  … ,  P  

5
        

   5   It is worth noticing that in extending the partial order, care must be taken not to add con fl icting 
comparabilities; otherwise,  P    would contain loops and would not be a poset. Therefore, the com-
parabilities to add cannot be chosen arbitrarily, since the partial order structure imposes logical 
constraints to the extension procedure.  
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   Example 1 (continuation) .   Let us consider the deprivation poset introduced in the 
previous sections. Suppose to consider dif fi culties to make ends meet to be more 
relevant than seldom receiving both food and money donations. Correspondently, 
pro fi le 100 is ranked as more deprived than pro fi le 011, and 011 � 100 is added to 
the poset  P . By transitivity, also 010 � 100 and 001 � 100 are added to  P , so as to 
get the transitive closure     (011 100)∗ = ∪P P �   , whose Hasse diagram is depicted 
in Fig.  4.8 . As it can be seen, the symmetric structure of the original pro fi le poset 
is broken by the addition of the new comparabilities and the evaluation function, 
given the same thresholds, is slightly more polarized, being steeper in the left part 
(Table  4.2  and Fig.  4.9 ).   

   Remark .   In real cases, posets consist of more pro fi les than those discussed in these 
examples. In such cases, transitive closures cannot be computed by inspection, as 
done in this chapter. However, the computations involved in the weighting procedure 
are very easily accomplished, drawing on the matrix representation of a poset. Let 
 P  = ( X , � ) be a poset over a set of  n  pro fi les  s  

1
 ,  … ,  s  

 n 
 . To  P , it is associated an  n  × n  

binary matrix  Z , de fi ned by  Z  
 ij 
  = 1 if  s  

 i 
  �  s  

 j 
  and  Z  

 ij 
  = 0 otherwise. When a new 

comparability  s  
 h 
  �  s  

 k 
  is added to  P ,  Z  

 hk 
  is set to 1. If  C  is the set of new comparabilities 

added to  P , and     Ẑ    is the matrix corresponding to  P  È C , the matrix  Z *    associated 
to the transitive closure     ∗ = ∪P P C    is obtained as   

     

�
1

0

,
−

∗

=

⎛ ⎞
= ⎜ ⎟⎝ ⎠∑

�

�

n

Z Bin Z
  

 (4.13)
  

where  Bin (·) is the operator that sets to 1 all the non-null elements of its argument 
(Patil and Taillie  2004  ) . 

   Remark .   The weighting procedure described above is based on a subjective 
judgment, pertaining to the ordering of incomparable pro fi les. The identi fi cation of 
the comparabilities to be added to the pro fi le poset should be performed based on 
some kind of socio-economic analysis; nevertheless, it necessarily involves values 
judgment and includes individuals’ contribution in attributing importance to 
different domains. Such a subjectivity should not be an issue: it is in fact 

  Fig. 4.7    Addition of 
comparabilities to a poset ( a ) 
and Hasse diagram of the 
transitive closure ( b )       
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responsibility of the decision-maker to make a stand on these aspects turning a 
“pre-policy” pro fi le poset into a “policy-oriented” pro fi le poset, useful as an 
evaluation tool.   

 Checking the incomparabilities of a partial order to decide how and whether 
to extend, it is not any easy task, particularly when the number of pro fi les is 
large. Moreover, socio-economic scientists are likely to tackle the weighting 

  Fig. 4.8    Extension 
of the deprivation poset and 
corresponding sets  D  and  W  
(black nodes)       

   Table 4.2    Evaluation function  h ( s  | 121, 112;  011) for the extended deprivation poset   

  s   000  001  010  100  011  020  002  110 
  h ( s )  0.000  0.000  0.000  0.500  0.000  0.254  0.254  0.500 
  s   101  030  003  120  111  102  012  021 
  h ( s )  0.500  0.412  0.412  0.536  0.500  0.536  0.584  0.509 
  s   022  121  112  130  103  031  013  131 
  h ( s )  0.642  1.000  1.000  0.762  0.763  0.672  0.672  1.000 
  s   113  122  032  023  033  123  132  133 
  h ( s )  1.000  1.000  0.845  0.845  0.901  1.000  1.000  1.000 

 



594 From Composite Indicators to Partial Orders…

problem at the evaluation variable level, rather than at the pro fi le level. Therefore, 
it would be desirable to have a procedure capable to extend the pro fi le poset  P  
directly based on the assessment of the relative importance of the evaluation 
dimensions. In the following section, we build such a procedure in the funda-
mental case of binary data.    

    6   Binary Variables 

 In many socio-economic studies, the evaluation dimensions have a simple binary 
form. Typical examples can be found in surveys about material deprivation, where 
information pertaining to the ownership of goods (e.g. car, telephone, television) are 
collected as dichotomous data. All the concepts and tools described in the previous 
paragraphs apply to binary variables as well, but the simpler structure of the binary 
case makes it possible to further develop the methodology, particularly concerning 
the weighting problem. 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Evaluation function
1

0
1 2 3 4 5

  Fig. 4.9    Graph of  h ( s  | 121, 112; 011) for the extended deprivation poset (deprivation pro fi les are 
listed on the  x  axis according to increasing deprivation scores)       
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    6.1   The Structure of the Hasse Diagram for Binary Data 

 When the  k  variables  v  
1
 ,  … ,  v  

 k 
  are binary, the set  X  of possible pro fi les has cardinality 

2  k   and becomes a poset  P  = ( X , � ) under the usual order relation de fi ned by  

     ( ) ( ), 1, , .i iu w v u v w i k⇔ ≤ ∀ = …�    (4.14)   

 The Hasse diagram of  P  has a simple and symmetrical structure since each level 
of the graph comprises pro fi les with the same number of 0s and 1s, so that two 
pro fi les  u  and  w  share the same level in the diagram if and only if one is a permuta-
tion of the other. 

   Example 4 (Binary material deprivation) .   Let us consider the following set of  fi ve 
deprivation variables, from the EU-SILC survey for Italy:

    1.    HS160 –  Problems with the dwelling: too dark, not enough light   
    2.    HS170 –  Noise from neighbours or from the street   
    3.    HS180 –  Pollution, grime or other environmental problems   
    4.    HS190 –  Crime, violence or vandalism in the area   
    5.    UMID –  Dampness in walls,  fl oor, ceiling or foundations      

 All  fi ve variables are coded in a binary form: 0 if the household does not report 
the issue and 1 if it does. The set  X  comprises 2 5  = 32 pro fi les. The Hasse diagram 
of the pro fi le poset  P  is depicted in Fig.  4.10 . For future reference, we have com-
puted the degree of deprivation of each pro fi le, when the superior (deprivation) 
threshold is set to     = (01110,11001)d    and the inferior (non-deprivation) threshold 
to     = 01000w   . The result is reported in Table  4.3  and depicted in Fig.  4.11 .   

 Clearly, the variables considered in the example have different relevance. For 
instance, dampness in the house may be considered as less relevant than living in 
an area affected by crime or pollution, and the pro fi le poset should be extended 
accordingly. In the next paragraph, we show how this extension can be accomplished, 
directly based on the existence of (partial) hierarchies among binary evaluation 
dimensions.    

    6.2   The Weighting Procedure in the Binary Case: 
The Connection Rule 

 Let  V  = { v  
1
 ,  … ,  v  

 k 
 } be the set of binary evaluation variables. The set  V  can be turned 

into a poset   P   = ( V , ≺ ) (in the following, called the  relevance poset ), de fi ning the 
strict partial order ≺ through  

     
is less relevant thanj i j iv v v v⇔≺

   (4.15)   
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  Fig. 4.10    Hasse diagram of 
deprivation pro fi les, built on 
 fi ve binary deprivation 
variables       

   Table 4.3    Evaluation function  h ( s  | 01110, 11001;  01000) for the deprivation poset built on  fi ve 
binary variables   

  s   00000  00001  00010  00011  00100  00101  00110  00111 
  h ( s )  0.000  0.222  0.223  0.462  0.223  0.463  0.447  0.742 
  s   01000  01001  01010  01011  01100  01101  01110  01111 
  h ( s )  0.000  0.526  0.526  0.800  0.526  0.800  1.000  1.000 
  s   10000  10001  10010  10011  10100  10101  10110  10111 
  h ( s )  0.222  0.446  0.463  0.741  0.464  0.741  0.742  0.881 
  s   11000  11001  11010  11011  11100  11101  11110  11111 
  h ( s )  0.526  1.000  0.800  1.000  0.800  1.000  1.000  1.000 

 Given the relevance poset, the next step is to de fi ne a way to link its structure to 
the extension of the pro fi le poset. This is done introducing the following  connection 
rule  that we present in three steps.   

  Step 1.    For  v  
 i 
  Î  V , let us consider the set  L  

 i 
 , de fi ned as  

     
= ∈ ≺{ : },i j j iL v V v v

   (4.16)   

 that is, the set of variables less relevant than  v  
 i 
  (in the following,  v  

 i 
  is called the 

 pivot ). An incomparable pair  s  | |   t  such that

   1.     v  
 i 
 ( s ) <  v  

 i 
 ( t )  

   2.     v  
 j 
 ( t ) <  v  

 j 
 ( s ), for  v  

 j 
  Î  L  

 i 
   

   3.     v  
 j 
 ( s ) =  v  

 j 
 ( t ) for  v  

 j 
  ¹  v  

 i 
 ,  v  

 j 
 Ï L  

 i 
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 is turned into the comparability  s  �  t  and added to  P . Let us denote by  CR  
  P  
 ( P ,  v  

 i 
 ) 

the set of comparabilities added to  P , when  v  
 i 
  is selected as the pivot. It can be 

easily checked that  CR  
  P  
 ( P ,  v  

 i 
 ) can be de fi ned in a more compact way as  

     

= ∈ < ⇔ =

< ⇒ ∈

2( , ) {( , ) : ( ) ( )

( ) ( ) }.

P i j j

j j j i

CR P v u w X v u v w j i

and v w v u v L
      

  Step 2.    The procedure described in Step 1 is repeated, selecting each variable in   P   
as the pivot. This way, the set  CR  

  P  
 ( P ), comprising all of the new comparabilities 

directly implied by   P  , is obtained as  

     1( ) ( , ).k
i iCR P CR P v== ∪P P    (4.17)     

  Step 3.    The set  CR  
  P  
 ( P ) is then added to  P , getting  P  È CR  

  P  
 ( P ), that is, enriching 

the pro fi le poset with the comparabilities derived by   P  . In general,  P  È CR  
  P  
 ( P ) is 

not a partial order, since the transitivity properties need not be ful fi lled. Therefore, 
we  fi nally compute the transitive closure  

     ( ) ( ).CR P P CR P= ∪P P    (4.18)   
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  Fig. 4.11    Graph of  h ( s  | 01110, 11001;  01000) for the deprivation poset built on  fi ve binary vari-
ables (deprivation pro fi les are listed on the  x  axis according to increasing deprivation scores)       
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 The set     ( )CR PP    is the desired extension of the original pro fi le poset  P  and 
includes all the comparabilities comprised in  CR  

  P  
 ( P ) and all those implied by 

transitivity. 
 We are now in the position to state the  connection rule  formally.     

   De fi nition 3 .   Connection rule. Let   P   = ( V , ≺ ) be the relevance poset over a set  V  = 
{  v  

1
 ,  … ,  v  

 k 
 } of binary variables and let  P  = ( X , � ) be the original pro fi le poset. Then 

the information contained in   P   is added to  P  extending  P  to     ( )CR PP   .  

 We now give some examples to show how the connection rule works in 
practice. 

   Example 5.    Consider a set of three binary variables  v  
1
 ,  v  

2
  and  v  

3
  and consider the 

corresponding pro fi le poset  P , whose Hasse diagram is reported in Fig.  4.12 a. 
Suppose to consider variable  v  

1
  as more relevant than variable  v  

2
  (in symbols, 

 v  
2
  ≺ v  

1
 ), while no criterion to order  v  

3
  with respect to  v  

1
  or  v  

2
  is provided. Quite naturally, 

any incomparability in  P , due to a “disagreement” between  v  
1
  and  v  

2
  only, can be 

eventually turned into a comparability since  v  
1
  “prevails” on  v  

2
 . Explicitly, the 

incomparabilities 101 | | 011 and 100 | | 010 turn into 011 � 101 and 010 � 100, 
respectively. Adding these new comparabilities to  P  and taking the transitive closure, 
a new poset  P    is produced, as the smaller extension of  P  consistent with the 
additional information conveyed by  v  

2
  ≺  v  

1
  (Fig.  4.12 b).  

   Example 6 .   Example  5  can be easily generalized considering, for instance,  v  
2
  ≺  v  

1
  

and  v  
3
  ≺  v  

1
 . In this case, the incomparability 100 | | 011 is turned into 011 � 100 

since  v  
1
  “prevails” on both  v  

2
   and v  

3
 . Adding this comparability to  P  and taking the 

transitive closure, six other comparabilities are added to  P , namely, 011 � 110, 011 
� 101, 010 � 100, 011 � 100, 001 � 110 and 010 � 101. The Hasse diagrams of 
the pro fi le poset and the resulting extension  P    are depicted in Fig.  4.13 .  

 Figure  4.14  reproduces the Hasse diagrams for the relevance posets   P   
1
  and   P   

2
 , 

implicitly de fi ned in Examples  5  and  6 .    

   Example 7 .   Let  V  = {  v  
1
 ,  v  

2
 ,  v  

3
 } be the set of three binary variables of Examples  5  

and  6 . In addition to the posets of Fig.  4.14 , three other posets can be de fi ned on  V  
(a part from label permutations), namely, the antichain   P   

3
  = ( v  

1
  | |  v  

2
  | |  v  

3
 ), the poset 

  Fig. 4.12    Hasse diagrams of 
 P  and its extension  P   , when 
 v  

2
  ≺  v  

1
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  P   
4
  given by ( v  

3
  ≺  v  

1
 ,  v  

3
  ≺  v  

2
 ) and the chain   P   

5
  = ( v  

3
  ≺  v  

2
  ≺  v  

1
 ). The corresponding 

extensions     ( )CR PP    for each case are represented in Fig.  4.15 .  
 As these examples make clear, when the relevance poset is an antichain (i.e. when 

no information on the relative importance of the evaluation variables is available), the 
transformation     (·)CRP    has no effect and leaves the pro fi le poset unchanged. At the 
opposite, when   P   is a chain (i.e. when the evaluation variables are ranked in a com-
plete hierarchy), then     (·)CRP    transforms  P  in a linear order. 

  Remark.   Comparing the transformations     (·)iCRP    described in Examples  5 – 7 , it 
can be directly checked that if   P   

1
  Í   P   

2
 , then     1 2( ) ( )⊆CR P CR PP P   . Since any 

poset   P   can be extended to a linear order, from the discussion above it follows 
that     ( )CR PP    is always comprised in some linear extension of  P . This ensures 
that applying the connection rule, no loops are accidentally introduced in the 
pro fi le poset.  

  Fig. 4.13    Hasse diagrams of 
 P  and its extension  P   , when 
both  v  

2
  ≺  v  

1
  and  v  

3
  ≺  v  

1
        

  Fig. 4.14    Hasse diagrams of 
the relevance posets   P   

1
  and 

  P   
2
        

  Fig. 4.15    Extensions of  P  through   P   
3
 ,   P   

4
  and   P   

5
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 We end this section applying the connection rule to the data of Example  4 . 

   Example 4 (continuation) .   Suppose to (partially) order the  fi ve evaluation variables 
according to the poset   P   depicted in Fig.  4.16 .  

 The relevance poset comprises two levels, and all the variables in the upper level 
dominate each variable in the lower. 6  An application of the connection rule directly 
gives the extension presented in Fig.  4.17 . As can be directly seen, the extended 
poset  P  *  has far less incomparabilities that the original pro fi le poset. In particular, 
it is worth noticing that, in  P  * , 11001 � 01110, so that the deprivation threshold 
reduces to just a single pro fi le, namely, 11001.    

 Table  4.4  reports the deprivation scores computed on the extended poset. As it 
can be easily checked (Fig.  4.18 ), the scores are more polarized towards the extreme 
values 0 or 1, than in the case of the original pro fi le poset. As expected, the added 
information has reduced the ambiguity of the original partial order, resulting in a 
much steeper evaluation function.    

  Fig. 4.16    Relevance poset 
for the deprivation example       

  Fig. 4.17    Extension of the 
binary deprivation poset       

   6   We recall that the aim of this chapter is mainly methodological and that the relevance poset intro-
duced in the text has just an exempli fi cative purpose.  
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    7   Conclusions and Perspectives 

 In this chapter, we have introduced a new methodology for evaluation purposes in 
multidimensional systems of ordinal data. The methodology is based on a bench-
mark approach and draws upon poset theory, so as to overcome the conceptual and 
computational drawbacks of the standard aggregative procedures, which involve 

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Evaluation function
1

0
1 2 3 4 5

  Fig. 4.18    Graph of  h ( s  | 01110, 11001; 01000) for the extended deprivation poset, built on  fi ve 
binary variables (deprivation pro fi les are listed on the  x  axis according to increasing deprivation 
scores)       

   Table 4.4    Evaluation function  h ( s  | 01110, 11001; 01000) for the extended deprivation poset, 
built on  fi ve binary variables   

  s   00000  00001  00010  00011  00100  00101  00110  00111 
  h ( s )  0.000  0.000  0.186  0.364  0.186  0.364  0.670  0.709 
  s   01000  01001  01010  01011  01100  01101  01110  01111 
  h ( s )  0.000  0.500  1.000  1.000  1.000  1.000  1.000  1.000 
  s   10000  10001  10010  10011  10100  10101  10110  10111 
  h ( s )  0.000  0.000  0.365  0.533  0.364  0.533  0.709  0.717 
  s   11000  11001  11010  11011  11100  11101  11110  11111 
  h ( s )  0.500  1.000  1.000  1.000  1.000  1.000  1.000  1.000 
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composite indicators. Poset tools allow to describe and to exploit the relational 
structure of the data, so as to compute evaluation scores in purely ordinal terms, 
avoiding any aggregation of variables. The effectiveness of the partial order approach 
is particularly evident in the way the “weighting” problem is addressed and solved. 
Exogenous information pertaining to the relevance of the evaluation dimensions is 
in fact taken into account modifying the structure of the pro fi le poset, through the 
transitive closure device, avoiding the introduction of numerical weights in the 
computations. Although simpli fi ed, the examples discussed in this chapter show 
how the methodology can be applied in practice and to real datasets. The software 
routines needed for the computations can also be easily implemented through stan-
dard programming languages. As any novel proposal, our methodology can be 
improved in many respects and extended in many directions, both at theoretical and 
applied level. These are interesting avenues for future research.       
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