
Chapter 11
Co-operative Populations of Neurons: Mean
Field Models of Mesoscopic Brain Activity

David T.J. Liley, Brett L. Foster, and Ingo Bojak

Abstract While the basic units of computation in the brain are the neuronal
cells, their sheer number, complexity of structural organisation and widespread
connectivity make it difficult, if not impossible, to perform realistic simulations of
activity at millimetre range or beyond. Furthermore, it is becoming increasingly
clear that a range of non-neuronal and stochastic factors influence neuronal ex-
citability, and must be taken into account when developing models and theories
of brain function. One answer to the these persistent difficulties is to model cortical
tissue not as a network of spike-based enumerable neurons, but to take inspiration
from statistical physics and model directly the bulk properties of the populations
constituting the cortical tissue. Such an approach proves compatible with many
experimental recording techniques and has led to a successful class of so-called
“mean field theories” that, when constrained by meaningful physiological and
anatomical parameterisations, reveal a rich repertoire of biologically plausible and
predictive dynamics. The aim of this chapter is to outline the historical genesis of
this important modelling framework, and to detail its many successes in accounting
for the experimentally observed neuronal population activity in cortex.
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Not only is it not proven, but it is highly unlikely on general biological considerations, that
a special sensory function is related to a cell type of a particular structure. The essential for
the elaboration of any cortical function, even the most primitive sensory perception, is not
the individual cell type but cell groupings.

Korbinian Brodmann (1909)

. . . the effective unit of operation in such a distributed system is not the single neuron and
its axon, but groups of cells with similar functional properties and anatomical connections.

Vernon B. Mountcastle (1997)

11.1 Introduction

Ever since the formulation of the neuron doctrine by Santiago Ramón y Cajal,
Rudolf von Kolliker and others (López-Muñoz et al. 2006), neuroscience has
strived to understand how consciousness and cognition arises out of the myriad and
complex interactions between neurons of the central nervous system. Beginning
with the work of McCulloch and Pitts (1943), in which single neurons were
conceived as simple fixed threshold binary state devices organized into networks
of great structural complexity, and culminating in the massively detailed single
neuron models of the Blue Brain Project headed by Henry Markram (2006), brain
function has been assumed to emerge out of the activity of networks of neurons.
This has been an enormously successful paradigm and has led to models of great
computational complexity and sophistication. However, it is becoming increasingly
clear that a range of non-neuronal and stochastic factors and elements influence
neuronal excitability and that these must be taken into account when developing
models and theories of brain function, if we are to meaningfully simulate emergent
neuronal activity. For example, it is now known that the supporting non-neuronal
elements of cortical tissue, the glial cells (Perea et al. 2009; Perea and Araque 2010),
interact synaptically with cortical neurons to influence the patterns of neuronal
firing. Further, while the firing of individual neurons is regulated by deterministic
factors their synaptic interactions may well not be – the reliability of synapses can
be as low as 1%, i.e., only 1 in 100 pre-synaptic action potentials actually elicits a
postsynaptic response (Branco and Staras 2009).

The problem is how to deal with this significant added complexity in the presence
of often limited and non-specific empirical data. One possible solution has been
to not consider cortical tissue as an network of enumerable neurons interacting
by the transmission of spikes, and instead consider cortex in terms of a bulk
or ensemble dynamics, such as the mean firing rate (and/or its moments) of a
spatially circumscribed population of neurons (Freeman 1975; Nunez 1995; Deco
et al. 2008; Coombes 2010). Such a rate-based reconfiguration has a number of
advantages: (1) modelling populations of neurons corresponds more closely with
the generally accepted contention that behaviour emerges out of the macroscopic
manifestations of neuronal activity, (2) modelling the behaviour of populations of
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neurons implicitly deals with the unreliability of synaptic interconnections and
incorporates the effects of non-neuronal elements, and (3) the spatial scale of
modelled populations of neurons corresponds closely with the milli- to centimetre
scales of spatial resolution of the non-invasive neuroimaging modalities typically
utilised to interrogate brain function, like functional magnetic resonance imaging
(fMRI), MEG (magnetoencephalogram) and EEG (electroencephalogram).

Describing cortical neuronal activity in terms of population averages gives rise
to a class of models broadly known as mean field theories (Deco et al. 2008).
Originally arising out of mathematical models of ferromagnetism in statistical
physics, such models approximate the specific input a neuron receives from other
neurons by the average activity in a neuronal surround defined by patterns of
axonal and dendritic branching. In this way interactions between individual neurons
are replaced by effective averages – the mean fields, i.e., cortical neurons can be
viewed as “sampling” the activity of nearby populations of neurons based on the
mean geometry of the axonal and dendritic arborisations. Thus the dynamics of
populations of neurons are driven by mean fields, which are in turn determined
by the activity of populations of neurons. The current mathematical approach
for formulating equations of motion for the activity of neuronal populations or
“masses” stems principally from the work of Wilson and Cowan (1972, 1973),
Nunez (1974a), Freeman (1975) and Amari (1975, 1977). The resulting so-called
mass action or neural field theories have formed a basis for the biomathematical
exploration of macro- and mesoscopic neuronal dynamics. Mesoscopic neuronal
activity is typically defined to be intermediate in scale between the activity of
single neurons and the activity of large areas of cortex, i.e., at roughly millimetre
scale.

The aim of this chapter is to outline in some detail the formulation of physio-
logically relevant mean field theories and how they can be utilised to account for
a range of mesoscopic brain activity that includes the spatiotemporal dynamics of
the resting EEG/electrocorticogram (ECoG), its perturbation during diseases such
as epilepsy, and its modulation by a range of drugs that most importantly include
anaesthetic and sedative agents. The chapter is organized into three main sections.
The first describes the anatomical and physiological basis for modelling mesoscopic
neuronal activity in mammalian cortex and the bulk and discrete approaches that
have typically been employed to model it. It then focuses on the advantage of
bulk approaches in the context of limited empirical knowledge and outlines the
implicit microscopic constraints necessary in formulating the corresponding mean
field theories. The second section outlines the existing mean field approaches by
way of their historical development, firstly by describing the foundational models,
and then their subsequent elaboration and development to include greater levels of
physiological veracity. Finally, the third section details the patterns and types of
mesoscopic brain activity that can provisionally be accounted for by the various
mean field models.
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11.2 Mesoscopic Neural Activity

Because the structure and function of the mammalian brain resists any simplistic
representation or definition it has been difficult to conceive of generative theoretical
frameworks to account for human behaviour on the basis of neural activity. The
activity of human brains encompasses many aspects and spatial and temporal scales:
from the millisecond flurry of the opening and closing of transmembrane ionic chan-
nels to socio-political machinations that can extend over many decades. Typically
one wants to explain the behaviour observed at a higher, more meaningful level in
terms of activity occurring at a lower, more mechanistically accessible level. In the
case of neuroscience the long-term aim is to relate human intentional behaviour to
the activity of neurons. However the gulf between the local actions of individual
neurons (microscopic) and the intentional patterns of activity evinced by non-
invasive neuroimaging modalities such as positron emission tomography (PET),
single-photon emission computed tomography (SPECT) and fMRI (macroscopic)
is too wide to bridge with current theories. An intermediate level of description is
hence required. This mesoscopic level of the neuronal ensemble, mass or population
is best justified on the basis of the anatomical structure of cortical tissue, which we
proceed to outline, but can also be motivated using statistical mechanics (Deco et al.
2008).

11.2.1 Anatomical and Physiological Organization
of the Cerebral Cortex at Different Scales

The thin outer rind of the mammalian brain, the neocortex, is generally thought
to be the principle structure responsible for the generation and elaboration of
purposeful activity. For a structure that is between 1 and 5 mm thick and has a
surface area of only �0:19 m2 (Van Essen 2005), it has a truly staggering degree
of structural complexity with about �2 � 1010 neurons (Pakkenberg and Gundersen
1997) divided into six horizontal layers with at least a dozen major neuronal
subtypes (Markram et al. 2004), each interacting via on average 6,900 synaptic
connections with other neurons (Tang et al. 2001), synapses that utilise an array
of chemical messengers and can be individually modified. Add in the non-neuronal
glia known to influence cortical neuronal activity (Ben Achour and Pascual 2010;
Araque and Navarrete 2010), astrocytes and microglia, which are equivalent in
number and density to the neurons (Miguel-Hidalgo 2005; Azevedo et al. 2009),
then the task of simulating cortical neuronal activity appears daunting, if not
intractable. Fortunately, mammalian cerebral cortex is sufficiently well organized
over a number of relatively distinct spatial scales to enable the construction of
tractable models and theories of brain activity beyond that of the enumerable neural
network. Furthermore, despite great variations in the size of the cortex among
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the various mammalian groups (Herculano-Houzel 2009), it nevertheless remains
remarkably consistent in terms of its cellular elements, and its vertical and horizontal
organization.

11.2.1.1 The Cellular Composition of Cortex

Cortex is comprised of neuronal and non-neuronal components with the neurons
being broadly classified as belonging to two types: pyramidal and non-pyramidal
cells. Pyramidal cells are the most numerous neuronal class making up somewhere
between 60% and 85% (Braitenberg and Schüz 1998; Nieuwenhuys et al. 2008)
of all cortical neurons. A typical pyramidal neuron is composed of a cell body
from which a single axon descends and branches before exiting cortex, as well as
a dendritic tree composed of two main branching structures (1) an apical dendritic
tree composed of a trunk ascending in the direction of the pial surface and (2) a
basal dendritic tree composed of multiple trunks giving rise to a cloud of local
dendritic branches about the cell body. Both dendritic structures are typically
extensively covered with small excrescences called spines where synapses form
(Spruston 2008). Particularly in sensory cortices the apical dendrites of 50 or so
pyramidal neurons distributed throughout the thickness of cortex can be clustered
together into distinct and regularly spaced cylindrical groupings. These cylindrical
groupings, referred to as dendrons by Eccles (1992), constitute a core component
of the hypothesised “minicolumn”: a barrel shaped region representing the basic
modular unit of neocortex (Rockland and Ichinohe 2004).

While pyramidal neurons generally show a fair degree of morphological vari-
ability the only atypical variant is the spiny stellate cell, an interneuron (see
below) which lacks the characteristic ascending apical dendritic tree and descending
axon. Pyramidal neurons constitute a functionally homogeneous group as they all
exclusively release the excitatory monoamine glutamate from their axonal terminals.
It is also worth noting that pyramidal neurons can be functionally subdivided
based on their steady state firing pattern in response to step depolarising currents
(Contreras 2004). As will be discussed later in Sects. 11.2.1.2 and 11.2.1.3, the
branching pattern of pyramidal cell axons and the minicolumn form two possible
characteristic scales for the spatial organization of cortex.

Despite their smaller numbers non-pyramidal cells are a morphologically much
more differentiated class of cortical neuron that have a number of features in
common (Nieuwenhuys et al. 2008): their dendrites are often spine free, their axons
do not leave cortex (hence often called local circuit or interneurons), most release
the inhibitory neurotransmitter ��amino butyric acid (GABA) and a certain fraction
(25–30%) also express one or more neuropeptides such as vasoactive intestinal
polypeptide (VIP) or cholecystokinin, and various subpopulations show differential
immuno-reactivity to one or more intracellular calcium binding proteins which can
be used as subpopulation specific markers. It has been estimated that a dozen or
so non-pyramidal cell sub-types can be identified morphologically (Markram et al.
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2004), the most numerous of which are basket cells, whose axons form basket-
like plexuses around pyramidal cells bodies, Martinotti cells, which project their
axons to the superficial layers of cortex to interact with apical dendrites of pyramidal
neurons, and bitufted cells, which have dendrites arising from upper and lower poles
of the cell body.

Other notable non-pyramidal cells include the Chandelier, bipolar and double
bouquet cells. Chandelier cells produce a profusely ramifying axonal tree with
“candles”, short vertical axonal segments containing rows of synaptic boutons,
that are the pre-terminal components of axo-axonic synapses at initial segments of
pyramidal neurons. Bipolar neurons, which are similar in morphology to bitufted
neurons, represent the single known example in which a non-pyramidal neuron can
be excitatory by releasing only VIP. They can also be inhibitory by releasing only
GABA, while also expressing VIP (Markram et al. 2004). Double bouquet cells have
a similar dendritic morphology to bitufted cells but produce radially (vertically) ori-
ented dense axonal plexuses consisting of bundles of thin parallel axonal branches.
Because the axonal system of a single double bouquet cell is closely associated
with the apical dendrites of pyramidal neurons in a minicolumn and has a relatively
well defined lateral extent of arborisation, their spacing (30–50 �m) provides a
characteristic tangential (horizontal) scale for cortical organization. Like pyramidal
neurons the non-pyramidal neurons can also be electrophysiologically classified.

The non-neuronal components of cortical tissue can be divided into the neuroglia
and the cells of the perforating blood vessels. The neuroglia are comprised of
astrocytes, microglia, oligodendrocytes and ependymal cells. Classically it used to
be thought that the activity of these neuroglia did not contribute in any meaningful
way to brain function: astrocytes, star shaped cells with multiple processes, provided
biochemical, metabolic and structural support to the neurons and their interactions;
microglia are the brain’s macrophages; oligodendrocytes produced the myelin
sheaths around axons to increase conduction velocities; and epithelial ependymal
cells lining the ventricles produced the cerebral spinal fluid. However, beginning
in the early 1990s research has revealed that astrocytes, like neurons, are excitable
(with respect to intracellular Ca2C levels) and respond to, and are influenced by,
neuronal activity at the level of the synapse. To conceptualise this evidence the term
“tripartite synapse” has been proposed (Perea et al. 2009), defined as consisting
of one or more glial processes chemically interacting with the pre- and post-
synaptic components of a synapse. Such ‘synapses’ seem to occur at the synapses
of all neurons in cortex and have been shown to regulate interneuronal synaptic
transmission and plasticity. Given these interactions and the fact that astrocyte–
astrocyte interactions can be demonstrated (Dienel and Cruz 2003), it follows that
functionally cortical tissue is more than just a network of neurons.

11.2.1.2 Vertical/Radial Organization of Neocortex

Beginning with Theodor Meynert and Vladamir Betz and culminating in the 1909
work of Korbinian Brodmann (Brodmann and Garey 2006), cerebral cortex was
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found to be divided into vertically stacked cellular laminae, the number, size and
organization of which show substantial horizontal (regional) variation.1 From an
ontogenetic (developmental) perspective two broad structural forms of cerebral
cortex can be identified based on the genesis of their laminar organization –
homogenetic cortex and heterogenetic cortex. Homogenetic cortex, which is more
commonly referred to as neocortex or isocortex, makes up the bulk of cerebral cortex
and either consists of six reasonably well defined cellular laminae (homotypical
cortex) or began as a six-layered cortex but during development addition or
elimination of layers occurred (heterotypical cortex). In contrast, heterogenetic
cortex is divided into primitive (or paleo-) cortex, in which there is no clear laminar
cellular organization, and rudimentary (or archi-) cortex, in which there are only the
crude beginnings of lamination. The olfactory bulb and amygdala are examples of
paleocortex, whereas the hippocampus is an example of archicortex, in which there
are only three identifiable cellular layerings.

The six neocortical layers labelled I–VI, see Fig. 11.1, are characterised by
variations in cellular densities, types and morphologies as well as the patterns
of termination and generation of cortical and subcortical afferents and efferents.
Non-pyramidal cells occur in all layers and pyramidal cells in layers II–VI. Layer
IV of sensory cortices is notable for the large numbers of tightly packed spiny
stellate neurons, which are only found there, and the termination of sensory
thalamocortical afferents on these neurons and the dendrites of other neurons
passing through this layer (Thomson and Bannister 2003). In contrast it has been
observed that associational and callosal cortico-cortical efferents arising from layer
II and III pyramidal neurons preferentially terminate in layers IV, whereas layer
V/VI pyramidal neuron long-range axons preferentially terminate in layers I and VI
(Rockland and Pandya 1979).

While such cortical lamination suggests discrete horizontally arranged neuronal
populations, such a distinction becomes less convincing when other radially orga-
nized cortical elements are included. Among the most (histologically) prominent
of these are clusters or bundles of apical dendrites of layer V pyramidal neurons
(Fleischhauer et al. 1972), bundles of descending myelinated axons of pyramidal
cells generally referred to as the “radiations of Meynert” and column-like arrays of
pyramidal cell bodies thought to be direct developmental descendants of organized
clusters of cells in the embryonic precursor of the cerebrum. In addition, double
bouquet interneurons (see Sect. 11.2.1.1), which are abundant in primate neocortex,
give rise to tightly packed bundles of vertically oriented axonal collaterals called
“horses tails” that span multiple laminae. Multiple radially organized cellular ele-
ments therefore bind pyramidal and non-pyramidal components across the various
cortical laminae. Horizontal (or areal) periodicities in the radial organization of
these neocortical cellular elements may provide a structural basis for defining the
modular organization of neocortex.

1Here and in the following we mean by “vertically/radially” through the several millimetres
thickness of cortex and by “horizontally/tangentially” parallel to its pial surface.



324 D.T.J. Liley et al.

Fig. 11.1 Highly simplified sketch of the hypothetical modular organization of neocortical tissue.
(a) The minicolumn was originally defined as a narrow chains of 100–200 neurons extending
across layers II–IV and organized into repeating patterns (Mountcastle 1979). A variety of
radially oriented units have a similar scale to the putative minicolumn. These include pyramidal
(PYR) cell dendritic (dendron) and axonal (radiations of Meynert) bundles, as well as lateral
arborisations of double bouquet neurons (DBQ). A macrocolumn binds together laterally about
thousand minicolumns by recurrent axonal collaterals of an intracortical pyramidal axon. (b)
The cortico-cortical column is defined by the lateral extent of intracortical terminations of
afferent cortico-cortical fibres (associational and callosal). (c) Other hypothetical scales of modular
organization include the lateral extent of thalamocortical afferents, shown here to principally
synapse with spiny stellate cells (SSC), and the layer I plexiform arborisations of the axons of
inhibitory Martinotti neurons

11.2.1.3 Horizontal/Tangential Organization of Neocortex

The idea that cortex is horizontally parcellated into anatomically well defined
radially oriented columnar units has become virtual dogma. Commencing with the
work of Lorente de Nó, who first proposed that a small radially oriented cylinder
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of cells extending through the full extent of cortex with a single thalamocortical
axon as its axis defined an “elementary unit” of neocortical organization, the
intervening years have seen a panoply of attempts to define a “basic modular unit”
of cortical organization. Amongst the most well known are the micro-, mini-, macro-
and cortico-cortical columns. Micro- and minicolumns typically refer to radially
organized chords of � 10–200 cells that span layers II–VI, arranged as horizontal
mosaics with periodicities of the order of 15–80 �m (Jones 2000; Buxhoeveden
and Casanova 2002; Rockland and Ichinohe 2004; Nieuwenhuys et al. 2008). In
addition, there are a range of other elements repeating at this scale that could be
said to define micro-/macrocolumnar organization. These include the periodically
repeating bundles of radially oriented dendrites (pyramidal cell) and axons (double
bouquet) mentioned above.

Columns were first hypothesised by Mountcastle (1957) on the basis of electro-
physiological evidence in which radially co-localized neurons in cat somatosensory
cortex shared receptive field properties in response to tactile stimulation. The lateral
extent of this shared receptive field was estimated to be of the order of 0.5 mm. These
columns, later designated macrocolumns (Mountcastle 1979), were subsequently
considered by Mountcastle to be anatomically comprised of aggregations of several
hundred minicolumns bound together by short range horizontal excitatory and
inhibitory connections (Mountcastle 1997). In contrast to macrocolumns whose
lateral extent is defined by the scale of short range horizontal connectivity, cortico-
cortical columns (also referred to as neocortical columns) are typically defined
in terms of the cylindrical aborisation volumes of either a single afferent cortico-
cortical fibre or closely packed bundles of such fibres (Jones et al. 1975; Goldman
and Nauta 1977; Szentágothai 1983). Estimates of the radial extent of such columns
varies from 200 to 800 �m.

While some areas of cortex have a greater claim to displaying some form of
columnar organization than others, visual and somatosensory in particular, cortical
columns of any form or variety have not been substantiated by unequivocal anatom-
ical evidence and therefore remain hypothetical. Neocortical columns (Markram
2008), intensely studied in barrel cortex (Petersen 2007; Lübke and Feldmeyer
2007), are perhaps closest to being established. What however is abundantly clear is
that neocortex consists of populations of vertically well connected cellular elements
interacting horizontally over a range of spatial scales. In general it is the lateral
axonal ramifications of neocortical pyramidal neurons that define the spatial scales
of horizontal connectivity within neocortex. The axons of all typical (i.e., not spiny
stellate) pyramidal cells produce a number of horizontal branches (collaterals) in
cortex before entering subcortical white matter where they form the long-range
cortico-cortical fibres systems (see Fig. 11.1). Intracortical horizontal branches can
either ramify in close proximity to the parent cell body or travel laterally for many
millimetres depending on species, cortical area and layer (Nieuwenhuys et al. 2008).
In general, it appears that the longer the branch the more likely it is to be myelinated.

Pyramidal axonal collaterals provide local input to GABAergic interneurons,
which in turn form reciprocal synapses with pyramidal neurons (White 1989). In
contrast, cortico-cortical axons can travel for many centimetres in subcortical white
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matter before re-emerging in cortex to form synaptic connections with all neuronal
cell types, and in particular with the apical dendrites of typical pyramidal neurons.
The cortico-cortical system of connectivity can be divided into commissural and
associational fibre systems, depending on whether they respectively pass through
the corpus callosum or remain ipsilateral. Somewhat arbitrarily, associational fibres
can be divided into short- and long-range. The short-range system is believed to
be fairly isotropic and homogenous in its distribution, while the long-range one
is readily identified from gross dissection and non-invasive tractographic methods
based on diffusion MRI (Johansen-Berg and Rushworth 2009). In humans the
majority of commissural axons are myelinated (Aboitiz et al. 1992a,b) and based
on measurements of fibre diameter are expected to have broadly distributed range
of conduction velocities (Bojak and Liley 2010). Anatomical evidence suggests that
the density of excitatory synapses arising from cortico-cortical afferents is similar
to those made by recurrent axonal collaterals (Liley and Wright 1994; Braitenberg
and Schüz 1998).

The lateral axonal ramifications of certain interneurons provide additional
characteristic scales for the horizontal organization of cerebral cortex. We have
encountered one such interneuron type previously – that of the layer II/III double
bouquet cell whose descending bundles of axons have been shown to disperse
horizontally in deeper layers. Peters and Sethares (1997) have estimated that the
spacing of these so-called “horse tails”, and by inference the extent of their terminal
axonal arborisations, is 23 �m in rhesus monkey primary visual cortex. Another
interneuron cell type that has been described as giving rise to extensive lateral axonal
arborisations is the Martinotti cell. Martinotti cells, which occur in layers II–VI give
rise to one or more ascending axons that project to laminae I, where they give rise to
long horizontal branches that can run for several millimetres making synapses with
the apical dendrites of pyramidal neurons. Szentágothai (1978) defined the “surface
parallel intracortical system” to be comprised of these axons.

In addition, there have been attempts to topographically parcellate cerebral cortex
according to shared anatomical, histological or histochemical features. The most
consequential of these are those concerned with horizontal (areal) variations in
the cellular architecture of the various neocortical laminae (cytoarchitectonics),
in the organization of radially oriented bundles of myelinated fibres called radii
or radiations of Meynert (myeloarchitectonics) and in the temporal order in
which subgriseal white matter becomes myelinated during development. Of these
architectonic parcellations the 1909 Brodmann map is still widely used (Zilles and
Amunts 2010). By observing differences in the relative thickness and cell density
of various layers and the size, shape and arrangement of neuronal cell bodies,
Brodmann delineated 44 (paired) areas in the human neocortex (Nieuwenhuys et al.
2008; Brodmann and Garey 2006). However, because he and others only used a
single stain (Nissl) and a limited number of brains, determined areal boundaries
subjectively and ignored sulcal cortex, Nieuwenhuys et al. (2008) conclude that
existing architectonic parcellations may substantially underestimate the number of
juxtaposed structural areas. For example, modern approaches provide probabilistic
maps of eight subdivisions of Brodmann areas 5 and 7 in the human superior parietal
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Table 11.1 Major structural units of organization in mammalian neocortex
and their approximate characteristics, see text

Unit Neurons per unit No. of unitsb Scale
M

ic
ro Neuron (soma) 1 2 � 1010 15 �m

Microcolumna 20 109 15 �m
Minicolumn 100 2 � 108 35 �m

M
es

o

Dendritic tree – – 0.15 mm
Cortico-cortical column 104 2 � 106 0.35 mm
Intracortical axonal tree – – 0.5 mm
Macrocolumn 2 � 105 105 1.5 mm
Martinotti axonal tree – – 2 mm

M
ac

ro

Architectonic area 2 � 108 100 5 cmb

Cortico-cortical axon – – 10 cmb

Brain region 2 � 109 10 15 cmb

Neocortex 2 � 1010 1 50 cmb

The table has been adapted from Nunez (1995), Jones (2000), Buxhoeveden
and Casanova (2002) and Nieuwenhuys et al. (2008).
For neuronal groupings the diameter of a disk with equivalent cortical surface
area is given as scale.
aThe term “microcolumn” is sometimes used to refer to our “minicolumn”.
bFigures are given for the human neocortex.

cortex (Scheperjans et al. 2008). The future of brain mapping efforts however likely
belongs to comprehensive multimodal approaches, which for example integrate
MRI data (Toga et al. 2006).

Table 11.1 summarises the various horizontal scales that have been identified or
proposed on the basis of anatomical evidence. Based on this, and for the purposes
of what follows, we choose to define the microscopic scale as commensurate
with the level of the single neuron, micro- and minicolumn, whereas we establish
the macroscopic scale as corresponding to the scale of the variously identified
cyto/myelo-architectonic areas or larger. The mesoscopic level will thus represent
an intermediate spatial scale including cortico-cortical and macrocolumns.

11.2.2 Enumerable Network vs. Bulk Modelling Approaches

The principle cellular substrate underlying brain function is without doubt the
cortical neuron. On this basis, the most logical way forward to understanding
the emergence of brain function is to simulate the activity of networks of neu-
rons by modelling the properties and features of the individual neurons and
the micro-circuitry of their connectivity. Yet such a research program faces a
number of theoretical and practical problems: There are good reasons to believe
that non-neuronal components of the brain, like the cortical astrocytes, play an
important role in regulating interneuronal interactions, and thus neuronal activity.
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Furthermore, cooperative neuronal activity dominates non-invasive measurements
(e.g., EEG/MEG, fMRI BOLD) but often transcends the activity of the individual
neuron. Practically, we have the problem of knowing how much detail to include –
if the behaviour of individual neurons is believed crucial to understanding say
the EEG, then the behaviour of individual ionic channels may be crucial to
understanding the behaviour of individual neurons, and so forth. We soon find that
trying to understand the behaviour of cortical tissue in terms of enumerating the
functionally important components and their interactions leads to a combinatorial
explosion in complexity. This is quite the opposite to what we want to achieve using
modelling. Fortunately there is a way out of this epistemological bog.

Just as Waage and Guldberg in 1864 (Waage et al. 1986) sought to understand
the kinetics of chemical reactions in bulk terms by defining the principle of mass
action so a range of researchers, most notably Freeman (1975), have attempted to
understand the dynamics of cortical neural activity in terms of the bulk interactions
of functionally circumscribed masses or populations of neurons. The motivation for
such masses in cortex depends upon two well established physiological principles:
(1) firstly the vast majority of neurons in cortex chemically communicate using
only a single neurotransmitter, and (2) the radial and horizontal organization of
cortex (Sects. 11.2.1.2 and 11.2.1.3) defines domains of co-operative neural activity
by virtue of synaptic interactions. Thus we can view cortex, at mesoscopic spatial
scales, as networks of interacting populations or masses of excitatory (typical and
atypical pyramidal) and inhibitory (non-pyramidal) neurons. In this way the cortical
microcircuit is replaced by, and subsumed into, a cortical mesocircuit, see Fig. 11.2.

11.2.3 Population Densities, Mean Fields,
and Continuum Approaches

One way forward to quantifying the dynamics of cortical mesocircuits is the en-
semble density approach in which the time evolution of the probabilistic behaviour
of large, potentially infinite, populations of neurons is quantified under the action
of particular kinds of physiologically defined “forces” (Deco et al. 2008). Such an
approach can include known stochastic fluctuations, such as variations in quantal
transmitter release, as well as dynamically evolving the probability distributions
associated with neuronal ensemble dynamics with all their moments and couplings.
While providing a potentially rigorous approach to quantifying the dynamics of
neuronal populations, in the context of empirical measurement problems arise:
Firstly, probabilistic evolution, particularly in the presence of non-linearity, depends
sensitively on initial states which in biological systems are in general unknowable.
Secondly, actual measurements of the behaviour of populations of neurons will in
general reflect only certain moments of the corresponding probability distributions,
most prominently first moments (i.e., means). For example, a single EEG electrode
records synaptically induced currents averaged over many thousands of neurons.
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Fig. 11.2 Schematic representation of the circuit topologies of typical mean field models,
segregated by their model for the postsynaptic response. All approaches consider two functionally
differentiated neuronal populations: excitatory (E) and inhibitory (I) ones. Open circles represent
excitatory connections, filled circles inhibitory ones, and half-filled circles both

For this and other reasons (Deco et al. 2008), approaches in which the dynamics
of some appropriately defined first moment are tracked are often preferable. Such
quantities typically include the “mean soma membrane potential” (Liley et al.
2002, 2003) and the “mean firing rate” (Wilson and Cowan 1972, 1973) of
appropriately defined neuronal ensembles. These can be defined as either time- or
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space-averaged, depending on the what spatiotemporal scales are intended to be
modelled. For example, the passive membrane time constant of single neurons can
furnish a characteristic time scale for the construction of a time-averaged neuronal
ensemble; whereas the scale of intracortical connectivity or columniation can define
a characteristic scale for space-averaged neuronal ensembles. Usually the averaging
is performed over either time or space, but not both, leaving the respective other
dimension at (theoretically) infinite resolution.

In the case that averaged neuronal ensembles are considered as localized,
separable populations, the resulting formulations are often referred to as “neural
mass (action) models”. These neural masses can be connected in a one-to-one
fashion in order to represent their causal influence on each other through synaptic
connectivity. However, neurons in cortex communicate with a very dense collection
of short and long range fibres; hence it is often advantageous to envisage the activity
of neuronal ensembles as conditioning entire regions of cortical space to a degree
varying with connectivity. The mean activity of a particular neuronal ensemble then
defines a distributed causal influence, a field, that is propagated and dispersed in a
manner representing the dense synaptic connectivity. All other neuronal ensembles
that are connected to it region are then subject to “forcings” from this field. The
resulting models, which are continuous in space and time, are therefore referred to
as “neural/mean field models”.

11.2.4 Microscopic Constraints on Mean Field Models

The strength of the mean field approach is also its weakness. Mean fields make
the complexity of the cortex tractable, but do so at the expense of subsuming the
effects of fluctuations and correlations in single neuronal activity that are known
to affect emergent mesoscopic and macroscopic neuronal population dynamics
(Wolfe et al. 2010). For instance, in a synergetic perspective (Haken 1983), the
effects of upwards (microscopic ! mesoscopic ! macroscopic) and downwards
(macroscopic! mesoscopic! microscopic ) causation, and the feedback between
the two (circular causality), are believed to be crucial in accurately understanding
the dynamics of multiscale neural architectures. This cannot be included into mean
field models without making a range of additional assumptions that have, at present,
only weak physiological support. Nevertheless, mean field models do provide a
convenient starting point through the study of first and possibly second order
moments (Faugeras et al. 2009; Buice et al. 2010).

11.3 History of Mean Field Innovations

The earliest models of neural mass action applied to the cortex that attempted to
describe the spatial and temporal behaviour of these aggregate masses dealt mainly,
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if not exclusively, with excitatory interactions. Later models incorporated inhibitory
interactions, paying more attention to the anatomical topology of connections
between the neural masses, and took into account the conversion of efferent
axonal activity into afferent dendritic activity (and the converse process), dendritic
integration, axonal dispersion and synaptic delays. In what follows we will look at
these developments in their historic context.

11.3.1 Foundations: Beurle, Griffith, Wilson and Cowan,
Amari, Freeman

Perhaps the first approach to developing a mean field continuum theory of neural
activity is that of Beurle (1956). In this theory, continuously distributed populations
of excitatory neurons having a fixed firing threshold were considered in which
the strength of interaction between individual neurons falls off exponentially with
distance. By focusing on the fraction of excitatory neurons becoming active per
unit time Beurle was able to show that this spatially continuous neural mass could
produce propagating macroscopic waves of activity. While introducing a formalism
that would later prove to be of great utility, the omission of inhibitory interactions
meant its behaviour would be of no subsequent physiological significance. The later
theory of Griffith (1963, 1965) suffered from the same problem, though he
briefly discusses incorporating the influence of inhibition. However, his work is
most notable for providing the first comprehensive derivation of a model for the
spatiotemporal spreading of activation by using an equivalent partial differential
equation (PDE). It was only through the later introduction by Jirsa and Haken
(1996) of essentially the same idea that this approach became commonplace. We
will discuss this in more detail below. The lack of an inhibitory component was
subsequently rectified by the efforts of Wilson and Cowan (1972, 1973), Amari
(1975, 1977) and Freeman (1975), who explicitly modelled inhibitory interactions.

Wilson and Cowan (1972, 1973) modelled cortical (and thalamic) neural tissue
as comprised of two interacting, but functionally distinct, excitatory and inhibitory
neuronal populations. The state of their bulk neuronal population model neural
tissue was defined in terms of the time-averaged fraction of excitatory, E.t/, and
inhibitory, I.t/, neurons firing per unit time, following the work of Beurle (1956).
For point neural masses they were able to derive the following equations of motion

�E

dE

dt
D �E C .1 � rEE/SEŒcEEE.t/ � cIEI.t/C P.t/� (11.1)

�I

dI

dt
D �I C .1 � rI I /SI ŒcEI E.t/ � cII I.t/CQ.t/� (11.2)

where �E;I are nominally the membrane time constants of the respective neural
populations and determine their characteristic response times to incoming activity.
The corresponding absolute refractory periods are denoted by rE;I . The connectivity
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coefficients cEE;IE;EI;II � 0 quantify the interactions, whereas the functions SE;I

describe the relationship between neuronal population input and output in the
absence of refractory effects. Because firing rates are bounded below by a zero and
above by some physiological maximum, the SE;I are typically chosen as sigmoidal
functions of their arguments e.g. SE � 1=.1 C expŒ�a.E � �E/�. P.t/ and Q.t/

define the external input to the excitatory and inhibitory sub-populations.
While no analytical solutions exist for these equations they can, like most

two-dimensional nonlinear systems, be analysed qualitatively in the phase plane.
A considerable body of work has been devoted to such analyses of Eqs. 11.1 and
11.2, determining the number, type and properties of the equilibria of the system,
bifurcations, and the behaviour of multiply coupled Wilson-Cowan type systems.
For an in depth review of these results and related modelling approaches see
Ermentrout (1998). The work of Wilson and Cowan (1972, 1973) introduced a
number of conceptual innovations that virtually all subsequent mean field formu-
lations have retained: the sigmoidal firing rate function and the cortical mesocircuit
defined by all possible feedforward and feedback connections between spatially
circumscribed populations of excitatory and inhibitory neurons. In the Wilson
and Cowan model, equations of motion for time-averaged neuronal firing rates
were derived. This and related models are therefore referred to as activity based
models. However there also exists an alternative way of formulating mean field, or
continuum, models, referred to as voltage based models. These are arguably more
pertinent to modelling, and thereby understanding, the genesis of EEG dynamics.
In this modelling approach the resulting equations of motion instead describe the
spatiotemporal evolution of the average membrane potential of neurons.

One of the biomathematically most influential voltage based continuum models
of cortical dynamics is that of Amari (1975, 1977). In its most general form, this
model considers m distinct spatially distributed neuronal populations, in which the
average membrane potential impulse response to incoming (axonal) input from
other neuronal populations is expŒ�t=��. The resulting field equations can then
be written as

�i

@ui

@t
D si .x; t/ � ui .x; t/C

mX

j D1

Z
dt 0

Z
dx0 wij

�
x; x0I t � t 0� fj

�
uj

�
x0; t 0��

(11.3)

where ui .x; t/ is the average membrane potential of neurons of type i at time t

and position x, si represents extracortical input and fi is a nonlinear function that
describes the average firing rate (pulse emission rate) as a function of ui . The
functions wij .x; x0I t � t 0/ define the strength of connectivity between neuronal
populations, i.e., they determine the input to neurons of type i at x from the pulse
emission rate of neurons of type j at x0, incorporating the effects of conduction and
synaptic delays t � t 0. As will be discussed below, the delay dependence is often
factored out or simply ignored. The resulting function wij .x; x0/ is then referred
to as the synaptic footprint. A further common simplification is to consider the
synaptic footprint as function of only the distance r D jx � x0j. The function w.r/
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is then often defined to be excitatory w.r/ > 0 (inhibitory w.r/ < 0) for some
defined neighbourhood r < r0 and inhibitory w.r/ < 0 (excitatory w.r/ > 0) for
more distant neurons r > r0; this pattern of connectivity is typically referred to as
(inverted) Mexican hat connectivity. For a detailed review of Amari-type models
and their dynamics the reader is encouraged to consult Coombes (2005).

In contrast to the previous mathematical and constructive approaches, Freeman
(1975) developed a schematic but empirically constrained mass action framework
in order to explain the electrocortical dynamics of the mammalian olfactory bulb
and pre-pyriform cortex. He developed a hierarchy of neural interaction – the well-
known K-set hierarchy – in which functionally differentiated populations of neurons
interact over progressively larger physical scales. The purpose of this hierarchy
was to facilitate a more systems-oriented description. The simplest form of neural
set that Freeman considered was the non-interactive or KO set. Members of this
set have a common source of input and a common sign of output (excitatory or
inhibitory), but do not interact synaptically or by any other means with co-members.
At this level the characteristic form of the neuronal population response to incoming
activity is specified. Unlike the first-order response of Wilson and Cowan, Eqs. 11.1
and 11.2, or Amari, Eq. 11.3, Freeman argued on the basis of detailed experiment
that these population responses (or in his terminology “pulse-to-wave” conversion)
could be described by third-order linear, time invariant, differential equations.

The K-set hierarchy was next extended to a non-zero level of functional
interaction between members of the set. This defines the KI sets, broadly divided
into mutually excitatory KIe and inhibitory KIi types. When there exists dense
functional interaction between two KI sets, a KII set is formed. All possible
interactions are in principle allowed to occur between the KI members of a KII set,
which can be viewed as some local part of neocortex. The K-set hierarchy extends
similarly to KIII and KIV sets, which nominally correspond to cortical areas and
regions. The KII set of Freeman is equivalent physiologically and anatomically to
the topology of cortex considered by Wilson and Cowan. Mathematically, the KII
set is defined by four nonlinearly coupled sets of third order differential equations.
The nonlinear couplings define how the induced population response to incoming
synaptic activity is transduced into a neural population firing rate output. Freeman
(1979) referred to the corresponding nonlinear function as the “wave-to-pulse”
conversion function and has argued that such a function is an asymmetric sigmoid
of the form f .v/ / expŒ�a exp.�bv/�.

11.3.2 Synaptic Dynamics: Lopes da Silva, Jansen
and Rit, Wendling

While early models were successful in elaborating a cortical mesocircuit suitable for
mean-field and mass action modelling, with the exception of Freeman (1975) they
unrealistically assumed that the effects of synaptic activity are felt instantaneously at
the neuronal soma. However, experiment suggests that the response of the neuronal
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membrane potential (and by inference the average membrane potential of a neuronal
population) to incoming pre-synaptic spikes is at the very least second order:
membrane potential rises to a peak and then decays away with characteristic time
courses (Kandel et al. 2000). These “impulse” responses are referred respectively
to as excitatory (EPSP) or inhibitory postsynaptic potentials (IPSP), depending on
whether the spike arose from an excitatory or inhibitory neuron. Freeman (1975)
calls this transduction of pre-synaptic activity into post-synaptic (soma) membrane
variation “pulse-to-wave”. Such PSP delays are thought, on both empirical and
theoretical grounds, to be important in defining the characteristic time scales of
a range of electrocortical oscillatory phenomena that include alpha (8–13 Hz) and
gamma (>30 Hz), and their modulation by, e.g., anaesthetic agents.

Probably the first to explicitly include PSPs in a mean field model were Lopes da
Silva et al. (1974), cf. van Rotterdam et al. (1982), who constructed a bulk model
of the EEG in which lumped or spatially distributed populations of excitatory and
inhibitory neurons synaptically interacted via EPSPs and IPSPs having the form
PSP.t/ D VPSP t expŒ�t=�PSP�, and where the mean neuronal population firing
rate was a nonlinear (sigmoidal) function of the average membrane potential. The
inclusion of such lumped postsynaptic dynamics was found sufficient to produce
oscillatory activity in the alpha (8–13 Hz) electroencephalographic band. Jansen
and Rit (1995), in a comprehensive extension of this model, investigated systematic
variations of the model PSP parameters in order to account for observed changes in
the visual evoked potential. Others have sought to better define the shape of the PSP
in terms of a bi-exponential PSP.t/ / expŒ�t=�1� � expŒ�t=�2� with �1 > �2, see
for example Robinson et al. (2001) and Bojak and Liley (2005), or included IPSPs
with different time scales in order to incorporate the effects of fast (GABAA) and
slow (GABAB) inhibitory neurotransmitter kinetics (Wendling et al. 2005).

11.3.3 Activity Propagation: Nunez, Wright and Liley,
Jirsa and Haken, Bojak and Liley

Consider a signal Sj .x0; t 0/, for example a brief “pulse” of excitatory (j D e)
activity Se.x0; t 0/ D ı.2/.x0�x0/ı.t 0� t0/ which is generated at t 0 D t0 and x0 D x0.
How does this signal, and others generated in the brain, relate to the input received
by a neural population k at position x and time t? A general expression is

�jk .x; t/ D
Z

dt 0
Z

dx0 Gjk

�
x; x0; t; t 0� Sj

�
x0; t 0� ; (11.4)

i.e., an integration of signals from all times t 0 and places x0 with a function Gjk

weighting how much these signals contribute to the input. For a discretized model
the integrals would be replaced by sums. The impact of this pulse on an inhibitory
population k D i is �ei .x; t/ D Gei .x; x0; t; t0/, i.e., the response to the pulse
is given by the corresponding G value. Such G functions are called “Green’s
functions”.
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Since the brain is a finite physical object, Gjk .x; x0; t; t 0/ � 0 for t 0 � t

and x0 62 C , i.e., future brain activity does not influence earlier one and only
connected sources contribute. One also often assumes continuous time invariance:
Gjk .x; x0; t; t 0/ D Gjk .x; x0; t � t 0/. This means activity propagation depends on
conduction delays only. A typical model of this kind contains three factors

Gjk

�
x0; x; t � t 0� D

Z 1

0

dv fjk

�
v j x; x0� wjk

�
x; x0� ı

�
t � t 0 � jx � x0j

v

�
:

(11.5)
The first factor gives the distribution of conduction velocities v of connecting
fibres with

R 1
0 dv fjk .v j x; x0/ D 1. The second factor is the synaptic footprint,

which models the strength and distribution of the these connections. The last factor
calculates the delay by dividing (Euclidean) distance by the conduction velocity.2

Only the synaptic footprint wjk .x; x0/ would be modified by synaptic plasticity
or neuromodulation, whereas the other two factors express the arrangement and
properties of the fibre tracts. If their speed of change is slow compared to
propagation, then one can use a delay form and simply change the parameters of
the synaptic footprint with time as needed.

Further simplifications come at the price of less biological fidelity. Continuous
translation invariance Gjk .x; x0; t � t 0/ D Gjk .x � x0; t � t 0/ implies homogeneity
of the cortex, i.e., signal transmission then depends only on the vector distance
between points, not on their location. Clearly this assumption does not hold true
for specific connectivity between particular brain areas, yet it can be a reasonable
approximation for the dense local “background” connectivity one finds all over the
brain. One can further impose continuous rotation invariance: Gjk .x � x0; t � t 0/ D
Gjk .jx � x0j ; t � t 0/. This establishes isotropy, i.e., independence of fibre direction.
Even for background connectivity this does not hold true everywhere in the brain,
e.g., primary visual cortex can be modelled by homogeneous but anisotropic
connectivity (Robinson 2006; Coombes et al. 2007; Bojak and Liley 2010). Models
that are both homogeneous and isotropic are limited to describing qualitative
features of brain activity, e.g., the existence of “brain waves” (Robinson et al. 1997;
Wu et al. 2008) or drug effects on power spectra (Bojak and Liley 2005).

The “global” theory of Nunez (1974a,b, 1981, 1995), reviewed by Nunez and
Srinivasan (2006), ignores the local neural dynamics and focuses on Eq. 11.4:

Se .x; t/ D p .x; t/C
X

j De;i

qj �je .x; t/ ; Si .x; t/ D
X

j De;i

qj �j i .x; t/ ; (11.6)

Gje

�ˇ̌
x � x0 ˇ̌ ; t � t 0� D

NX

nD1

Z 1

0

dv fn.v/wn

�ˇ̌
x � x0ˇ̌� ı

�
t � t 0 � jx � x0j

v

�
;

(11.7)

2For realistic cortical geometries Euclidean distance is not a good approximation to axonal fibre
length. However, one can adjust the fjk .v j x; x0/ to compensate for geometry.



336 D.T.J. Liley et al.

Gj i

�ˇ̌
x � x0 ˇ̌ ; t � t 0� D wi

�ˇ̌
x � x0 ˇ̌� ı

�
t � t 0� ; wl .r/ � 1

2
�l 	le

�	l r (11.8)

We see that excitatory and inhibitory (j; kD e; i ) neuronal populations are being
considered. Their output Sk is directly determined by the inputs �jk , where excita-
tory contributions are weighted positively qe > 0 and inhibitory ones negatively
qi < 0. In addition, the excitatory population receives excitatory extracortical
innovations p as independent input. Propagation is in delay form, as well as
homogeneous and isotropic. Inhibitory connectivity is taken as instantaneous due to
a very short characteristic length 1=	i ' 30 �m. Excitatory connectivity consists
of N distinct long range fibre systems.

For a (convoluted) strip of cortex of length L' 0.5–1 m, functionally closed
by excitatory fibre connections with a single conduction velocity ve' 6–9 m/s,
one can estimate that the lowest “standing wave” mode oscillates at frequencies
of f1 = ve=L' 6–18 Hz consistent with awake EEG (Nunez 1995). An interesting
consequence is that larger cortices (larger L) are predicted to oscillate at lower
frequencies. It was hence suggested that people with larger heads have lower alpha
rhythms (Nunez 1974b; Nunez et al. 1978). An experimental study by Valdés-
Hernández et al. (2010) has shown recently that the size of the cortical surface does
not correlate with the observed frequency of the alpha rhythm. However, Nunez’
prediction can be rescued simply by assuming that axonal conduction velocity grows
in tune with cortical size ve � L. This prediction could be tested experimentally,
and raises interesting questions about brain development.

In the following we will consider activity propagation with equivalent PDEs.
A Fourier transform of Eq. 11.4 for a homogeneous delay form Gjk .x � x0; t � t 0/
has convolution structure,3 hence

�jk .k; !/ D
Z

dt

Z
dx e�i.!tCk�x/�jk .x; t/ D Gjk.k; !/Sj .k; !/

� Z.k; !/

P.k; !/
Sj .k; !/; (11.9)

For non-zero P.k; !/ we can then write

P

�
�ir;�i

@

@t

�
ei!teik�x�jk .k; !/ D Z

�
�ir;�i

@

@t

�
ei!teik�xSj .k; !/

) P

�
�ir;�i

@

@t

�
�jk .x; t/ D Z

�
�ir;�i

@

@t

�
Sj .x; t/ ; (11.10)

where we have integrated over ! and k to perform the inverse Fourier transform.
Equation 11.10 provides a “mathematically equivalent” PDE formulation wherein
the structure of the differential operators P and Z reflects the chosen G . Why is this

3For Gjk to be homogeneous, the connected region must be a closed (hyper)surface, e.g., a sphere.
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rewriting helpful? The connected region C may well encompass the entire brain, and
conduction delays can extend to several tens of milliseconds. This makes Eq. 11.4
difficult to evaluate, whereas the PDE evaluation is non-local only in proportion
to the order of its differential operators. Using equivalent PDEs can hence greatly
simplify analysis and speed up numerical computations.

As mentioned above, Griffith (1963, 1965) was the first to derive the commonly
used kind of equivalent PDE, which we will briefly discuss below. However, the
PDE approach became popular only through its reintroduction by Jirsa and Haken
(1996), and was then investigated further by Robinson et al. (1997) and Liley et al.
(2002, 2003). Consider the following

OG .r; �/ D w0

2
 O�2
e�r= O� � ı

�
� � r

Ov
	 FH) OG .k; !/ D

w0

�
O�
Ov i! C 1
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Ov i! C 1

	2 C O�2k2

�3=2
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r
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r
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2
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O�2
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QG .r; �/ D w0

2
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e�Qv�=Q� �

�
� � r

Qv
�

q
�2 � r2

Qv2

F�1

(H QG .k; !/ D w0
�
Q�
Qv i! C 1

	2 C Q�2k2

�

(11.11)

where r � jx � x0j, � � t � t 0, k � pk � k and subscripts are left out for notational
simplicity.

Firstly, the homogeneous and isotropic delay ansatz OG .r; �/ propagates activity
with a single velocity Ov, and has an exponential decay with characteristic length O�
as the synaptic footprint. Secondly, the Fourier transform OG .k; !/ of this ansatz
includes a fractional power 3=2 that would translate into an infinite series of
differential operators, negating any practical advantage of the PDE formulation.
Hence thirdly, an expansion QG .k; !/ for small wavenumbers (i.e., long wavelengths
	 D 2
=k) is performed, leading to the following equivalent PDE:

"� Q�
Qv

@

@t
C 1

�2

� Q�2r2

#
� .x; t/ D w0S .x; t/ : (11.12)

This “long-wavelength propagator” is an inhomogeneous telegraph equation well
suited for analysis and numerics.

However, consider a gamma rhythm ! D 2
 � 38:2 Hz ' 240:0=s with Ov D
600 cm=s and O� D 3:33 cm. The “long wavelength expansion” only holds for k �
0:5=cm or 	 	 13 cm. Even taking cortical folding into account, coherent gamma
activity at such scales seems unlikely. It is hence better to consider QG .k; !/ not as
an expansion, but as a new ansatz in its own right, merely “inspired” by the original
OG .r; �/. Then fourthly, we can compute its QG .r; �/, which is easier to interpret in

the form of Eq. 11.5:
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Qw.r/ D w0

2
 Q�2
K0

� r

Q�
	

; Qf .v j r/ D Qv
v

exp .�r= Q� � Qv=v/

K0 .r= Q�/

� .Qv � v/pQv2 � v2
; (11.13)

with the Heaviside step function �. The distance-dependent velocity distribution
Qf .v j r/ has a complicated distance dependence. However, we can see that the in-

finitely sharp Of .v j r/ D ı .Qv � v/ has been softened into a divergence� 1=
pQv � v

towards lower velocities v < Qv, whereas no v > Qv are allowed. Thus most activity
will arrive after a delay � D r=Qv, but some will arrive more slowly. The synaptic
footprint has become a modified Bessel function. Since K0.x/ � e�x=x for large x,
this implies a more rapid decay of connectivity with distance.

Most spatially extended simulations use some variant of Eq. 11.12 for activity
propagation, because the original ansatz OG .r; �/ in Eq. 11.11 is intuitive and the
equivalent PDE Eq. 11.12 is easy to use. Yet we have argued here that their connec-
tion is questionable due to the necessary long wavelength expansion. Furthermore,
Bojak and Liley (2010) calculated the resulting marginal velocity distribution

Qf .v/ D
Z 1

0

dr 2
r
Qw.r/ Qf .v j r/

w0

D v

Qv
� .Qv � v/pQv2 � v2

; (11.14)

and showed that it is severely incompatible with experimental data on axonal
diameter distributions in both rat and human. They proposed new PDEs compatible
with the data, in particular the so-called “dispersive propagator” of power n > 0:
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with the Gamma function  . Comparing Gn.r; �/ of Eq. 11.15 with OG .r; �/ in
Eq. 11.11, we see that the first factor remains unchanged. The second factor of
Gn.r; �/ turns into a normal distribution of delays n�. N� ; �2

� / for n D 1:5, with
mean N� D r=vn but delay-dependent standard deviation �� D

p
��1:5=v1:5. For

longer delays, hence larger distances, the distribution of delays becomes broader.
At other n, in particular integer ones providing convenient PDEs, this remains the
case qualitatively.

We can furthermore see that for n D 1 and �n D Q� , the synaptic footprints
Qw of Eq. 11.13 and wn of Eq. 11.16 agree. Furthermore, in that case the equivalent
PDEs Eqs. 11.12 and 11.17 agree but for the acceleration term, if vn D Qv as well.
However, from fits to myelinated fibre data from human corpus callosum, Bojak
and Liley (2010) rather suggest n D 3 with v3 D 14:91 m/s, and as best comparable
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Fig. 11.3 Pulse spreading with the dispersive and long-wavelength propagators. (a) The activation
delivery of the dispersive n D 3 propagator Eq. 11.17 is shown by integrating its Green’s function,
cf. Eq. 11.18. (b) Likewise for the long-wavelength propagator Eq. 11.12. Synaptic footprints
of both propagators approximate an exponential decay with characteristic length 18 mm. The
median conduction velocity of both propagators is 7.601 mm/ms. The colour scale is normed to
the respective maximum values as indicated by the central colourbar

values for the long-wavelength propagator Qv D 8:782 m/s and Q� D 4:930�3. The
former leads to the same median velocity 7.601 m/s for both propagators. The latter
means that the synaptic footprint of both approximates the same exponential decay,
e.g., �3 D 0:871 cm and Q� D 4:29 cm both approximate an exponential decay with
a characteristic length of 1.8 cm. Such an effective length scale can be motivated
functionally by noting that the coherence of subdural electrode recordings falls
to 0.25 at about 2–3 cm (Bullock et al. 1995). Note also the significant difference
between the long-wavelength Q� and the exponential scale, which had been ignored
in the literature prior to Bojak and Liley (2010).

In Fig. 11.3 on the left we show the function

G3 .i; j / D
Z ��

0

dt

Z �r

0

dx
1

w0

G3 .i ��r C x; j ��� C t/ (11.18)

with G3 of Eq. 11.15 and i; j D 0; 1; 2; : : : specify the discretized values. Note thatP1
iD0

P1
j D0 G3.i; j / D 1, i.e., this shows the spatiotemporal delivery of activity

from a single pulse in a properly normed fashion. For comparison we show on
the right of Fig. 11.3 the function QG.i; j / defined in a like manner using the QG
of Eq. 11.11. This method integrates out the discontinuity of QG at r D v� and hence
facilitates a meaningful comparison of the two propagators. We have used the values
mentioned above for comparable median velocity 7.601 mm/ms and characteristic
length 18 mm, as well as �r D 157:1 �m and �� D 23:41 �s. The sum of the
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shown values of G3.i; j / is 99.04% but of QG.i; j / only 62.51%, i.e., the dispersive
propagator has delivered most of the input in the shown spatiotemporal range, the
long-wavelength propagator extends further out. We also see the clear difference in
overall structure: the long-wavelength propagator is highly concentrated around a
line of constant conduction velocity, whereas the dispersive propagator is concen-
trated in a “blob” around the maximum at r D 11:6 mm and � D 2:22 ms. These
different characteristics for example are hypothesised to allow spontaneous pattern
formation with the expenditure of less energy (Bojak and Liley 2010).

Finally we briefly consider the earlier work of Wright and Liley (1995, 1996).
In contrast to the equivalent PDE approach so far discussed, these authors explicitly
discretized the cortical sheet and consequently the activity propagation of Eq. 11.4.
A 20 by 20 matrix of neural mass units was used to represent a square cortical
sheet, where every unit corresponds to a square with side length 2.79 cm, yielding a
total area equivalent to roughly one human hemisphere. Axonal conduction delays
were then simply calculated from the Euclidian distance between the centers of
the units by dividing with a uniform conduction velocity. Furthermore, the strength
of connectivity was determined by a normal distribution with this distance. These
assumptions specify two matrices (the strength of connectivity between any two
units, as well as their assumed conduction delay), but could easily be replaced
with other matrices implying inhomogeneity and anisotropy of the connectivity and
complicated conduction velocity profiles with positional dependence.

While this approach is very flexible, it suffers from two fundamental drawbacks:
First, the number of possible connections grows with the square of the number
of units. Hence increasing the spatial resolution typically comes at a significant
computational costs. Second, one needs to keep track of past output from every
unit as far back as the maximum conduction delay. If the conduction delays
are sizable, then a lot of past values must be kept in memory. It is hence not
surprising that in 1995 the chosen grid size was fairly small. While equivalent
PDEs numerics employs spatial grids as well, their computation is much less
costly. To evaluate Eq. 11.12, minimally one needs to keep track of only two past
values of � at every grid point for the time derivatives and consider the four
nearest neighbours of every grid point for the Laplacian. Nevertheless, this localized
PDE computation instantiates large scale, dense connectivity. However, with ever
increasing computational power the greater flexibility of the discretized approach
is becoming more important, hence as discussed below this approach is making a
comeback in cortical mesh computations.

11.3.4 Realistic Geometry and Connectivity: Robinson
et al., Kötter et al., Sotero et al., Bojak et al.

Prior to Robinson et al. (2001), all mean field formulations of cortical activity had
posited that any emergent dynamics arises through reverberant interactions between
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at least two spatially distributed, functionally differentiated, cortical or thalamic,
neuronal populations. However, there exists significant reciprocal connectivity
between cortex and the subcortical structure that determines and controls its input,
the thalamus. Robinson et al. (2001) have argued that the inclusion of such cortico-
thalamic feedback in a bulk or mean-field theory is crucial in order to plausibly
model the essential dynamical features of normal (e.g., alpha rhythm) and abnormal
(e.g., spike wave epilepsy) EEG activity (Rodrigues et al. 2006; Breakspear et al.
2006). van Albada and Robinson (2009) have extended the subcortical extent of this
model by including interactions between the nuclei of the basal ganglia and cortex
and thalamus. We will discuss the influence of subcortical structures on cortical
activity further below.

The description of cortical connectivity itself is also far from optimal. While
“background connectivity” in cortex (Liley and Wright 1994; Hellwig 2000; Kaiser
et al. 2009) is roughly compatible with assumptions of homogeneity and isotropy,
a functionally significant part of the connectivity in the brain is more specific
(Biswal et al. 2010): it connects only particular brain regions to each other and then
often over long distances (Hagmann et al. 2008). While it is possible to simulate
anisotropy with PDE approaches (Robinson 2006; Coombes et al. 2007; Bojak and
Liley 2010), this requires simple periodicity to limit computational expense, since
the number of necessary PDEs grows with the complexity of the angular profile.
Furthermore, the requirement of homogeneity cannot be relaxed, hence this method
is only applicable where the anisotropic pattern of connectivity (roughly) repeats
across a patch of cortex, like for example in primary visual cortex. The long-range
specific connectivity in the brain however does not repeat in this manner.

In order to localize specific cortical connectivity appropriately, one needs
anatomically accurate representations of cortex. A first crucial step is hence the
extraction of cortical geometry. The imaging technique of choice is structural MRI,
which can distinguish different brain tissues on a voxel basis. However, cortical
grey matter is basically a layered sheet (2–5 mm thick with 0:2 m2 total area),
and often a representation as two-dimensional surface is more suitable. Several
software packages are available for extracting triangular mesh surfaces from voxels
identified with structural MRI, for example, the Civet pipeline (Kim et al. 2005), see
Fig. 11.4a. Often these meshes need some post-processing, e.g., in order to reduce
the number of vertices to limit computational cost, see Fig. 11.4b. It should be
noted that proper modelling of EEG/MEG requires oriented local current dipoles as
sources. Their orientation is ultimately dependent on dendritic arborization growing
roughly perpendicular to the pial surface. Hence a pure voxel-based approach is
insufficient for EEG/MEG signal prediction, and must anyhow be augmented with
some estimate of surface normals.

Once one has obtained a cortical surface, the question becomes how to employ it
for anatomical mapping. Two methods have been explored: The first is to deform
the cortical surface into simpler geometries for computation, e.g., representing
each brain hemisphere by a sphere (Jirsa et al. 2002). The two hemispheres are
deformed separately to avoid strong distortions from inflating the compact callosal
pathway. However, consider a source point on the simulation sphere, and two target
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Fig. 11.4 Extraction of a cortical triangular mesh. (a) Cross-section of a Civet (Kim et al.
2005) extraction of grey matter interfaces with white matter (blue) and cerebrospinal fluid
(red), respectively, in the left hemisphere. Layers can be introduced along vectors connecting
corresponding vertices; here a halfway one (green) is shown. (b) Custom decimation algorithm
(Bojak et al. 2011) working on the right hemisphere (red) of a Civet cortical mesh. The number of
vertices is reduced fivefold while the minimum edge length is increased sevenfold, yet the surface
loss is only about 10%

points equidistant along the spherical surface. Given equal conduction velocities,
a signal from the source points will reach the target points at the same time. The
deformation to the real cortical surface is non-conformal, thus in general the target
points will be at different distances from the source point. However, the signal
will still arrive at the same time in both, hence the deformation has implicitly
made the conduction velocities differ. Such uncontrolled changes to the connectivity
are unacceptable beyond qualitative studies. One could ameliorate the situation by
introducing compensatory tuning of the conduction velocity. But then one would
need to consider conduction between points individually, in effect turning the first
method into the second.

The second method works directly on the discretized cortical surface. Then
connectivity is instantiated by transferring activity signals from any vertex to each
connected vertex, where conduction delays determine the time when the signal is
actually released to the receiving vertices. Exactly the same method can be used
for connecting grey matter voxels, if one does not extract a cortical surface first
(Sotero et al. 2007). This second method is basically the anatomically realistic
version of the method introduced by Wright and Liley (1995, 1996), which we
have discussed previously. However, as mentioned this method scales badly if
connectivity is not sparse. For example, Bojak et al. (2010, 2011) were forced to
include about 30 million connections for 17,000 vertices just in order to approximate
the dense local connectivity implicit in typical PDE approaches (Bojak and Liley
2010). Furthermore, unlike for networks of spiking neurons, for neural populations
typically firing rate information and hence functions continuous in time need to be
transferred. This means an event-based approach is impossible, and hence that the
necessary parallelization on compute clusters is more difficult.

A series of works involving the late Rolf Kötter (Honey et al. 2007; Ghosh
et al. 2008; Deco et al. 2009) established the idea of using tracer connectivity data
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from macaque monkey collected in the CoCoMac database (Stephan et al. 2001),
by using a “regional map” of brain areas (Kötter and Wanke 2005) across species.
See also the extensive review of Deco et al. (2011) focusing on these papers. This
may appear odd, since diffusion MRI tractography is readily available (Mori et al.
2005) and there are some interspecies differences that clearly cannot be accounted
for in such a mapping, for example concerning areas involved in speech production.
However, diffusion MRI is incapable of determining in which direction information
flows along reconstructed fibre tracts. This is a major drawback, since it generally
makes a significant difference whether a connection is A! B , A B or A$ B .
Furthermore, diffusion MRI tends to be biased to short distance connections. Tracer
data does not have these drawbacks, which explains its continued popularity in spite
of the uncertainties of cross-species mapping (Bojak et al. 2010, 2011).

While modelling is still rapidly improving concerning anatomical fidelity, the
basic building blocks are now in place: The geometry of cortical and potentially
subcortical structures – as well as skull and scalp for volume conduction for the
EEG signal expression – are typically extracted from structural MRI. Gray matter
activity is then predicted by assigning neural masses at the chosen resolution level
to voxels or mesh vertices. The long-range connectivity of these masses is estimated
from diffusion MRI tractography or tracer data. Finally, activity propagation is then
performed directly in terms of this discretization, rather than by an equivalent PDE
formalism. Nevertheless, the simplicity of the equivalent PDE approach means that
we should expect it to remain superior for gaining qualitative understanding or
modelling gross changes to the overall brain state, e.g., due to potent drugs.

11.3.5 Bayesian Inversion: Friston et al., David et al., Moran
et al., Daunizeau et al.

A particular problem encountered in all modelling efforts, including the mean field
approach, is to fit the parameters of the model to available experimental data. This
is difficult enough in the case of a single model, if it contains a large number of
parameters – as is invariably the case for attempts at “biological realism”. The
anatomical and physiological constraints on the parameters are then typically weak.
Furthermore, as argued in more detail by Liley et al. (2011), projecting parameter
space from an “ideal” model to the actual one under investigation generally results
in a complicated distribution of the resulting dynamics in parameter space. This
may foil straightforward attempts at fitting parameters, potentially requiring novel
methods like the “metabifurcation analysis” of Frascoli et al. (2011) to make any
further progress.

Hence it may seem hopeless then to fit entire networks of neural masses to
experimental data. However, progress has been made in this direction thanks to
the invention of Dynamic Causal Modelling (DCM) by Friston et al. (2003). This
original work was intentionally abstract in its assumptions about local dynamics,
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positing a bilinear form that connected local neural dynamics and external stimuli.
Furthermore, it was targeted at fMRI BOLD rather than EEG or MEG. Yet a crucial
novelty was the ability to estimate both parameters of the local bilinear model and
of the effective connectivity between several “regions of interest” (ROIs) based on
data. To this end advanced Bayesian parameter and model estimation was used,
cf. Friston (2002) and Friston et al. (2002, 2007). Briefly, these methods consist
in making reasonable assumptions expressed via probability distributions for model
parameters, the so-called “prior densities”, followed by an estimate of how likely the
available evidence (e.g., experimental data) is given these assumption, the so-called
“likelihood”. The probability distributions are then updated according to Bayes’ rule
to take the evidence into account, resulting in the so-called “posterior densities”.

Soon after DCM was invented, David and Friston (2003) studied a modification
of the mean field model of Jansen and Rit (1995) with two separated ROIs, and
later extended it to model event-related responses in EEG and MEG (David et al.
2005). It was then only natural to combine these efforts with DCM (David et al.
2006; Kiebel et al. 2006). The fused model included state equations based on the
mean field model and observer equations based on an electromagnetic forward
model, in effect providing a neurobiologically constrained source reconstruction
scheme for the EEG/MEG inverse solution problem. Using this approach, David
et al. (2006) were for example able to demonstrate learning-related changes in
connectivity for an auditory oddball paradigm. Next Moran et al. (2007) constructed
a frequency-domain version of the Jansen and Rit (1995) model, in order to
investigate steady-state spectral responses. Again Bayesian parameter estimation
(Moran et al. 2008) and integration with DCM (Moran et al. 2009) followed. They
used this DCM to analyze multi-channel local field potentials from mice. A final
crucial step was then taken by Daunizeau et al. (2009): instead of considering
sources as point processes, i.e., as equivalent current dipoles, they were distributed
over the cortical surface by using a standing wave approximation of the long-
wavelength equivalent PDE we have discussed above. Thus one can now say that
the entire range of mean field descriptions has been given a DCM-style counterpart
suitable for Bayesian inversion.

However, some limitations must be mentioned. Firstly, DCM-style approaches
will remain limited to a handful of ROIs for the foreseeable future. The combi-
natorial explosion of possible connectivity and the per se difficult computation of
Bayesian estimates mean that DCMs rapidly become unwieldy when more ROIs
are introduced. Secondly, the dependence on prior densities for a specified model
structure means that the posterior estimates should not be considered as the ground
truth. Thirdly, it seems likely that the present Bayesian inversions gloss over the
complexity of the underlying mean field model parameter space to some extent. For
the Jansen and Rit (1995) model used throughout the DCM work discussed above,
Spiegler et al. (2010) have demonstrated the expected complicated dependence of
dynamics on parameter values in the physiological range (Liley et al. 2011). It
hence remains to be seen how comprehensively Bayesian inversion can probe the
full dynamical repertoire of mean field models. Nevertheless, the mentioned works
represent a pioneering effort in matching mean field models to experimental data.
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11.4 Understanding Mesoscopic Brain Activity

Much of what we know about human brain function is derived from non-invasive
recording methods that are able to sensitively measure changes in electromagnetic
and hemodynamic cortical activity that attend behaviour and cognition. The EEG
and MEG measure the spontaneous and evoked electromagnetic activity of large
populations of cortical neurons whereas fMRI, based on blood oxygen-level
dependent (BOLD) contrast, and near infrared spectroscopy (NIRS) quantify local
variations in cerebral blood flow in response to such population activity. Thus the
mean field modelling approach, having roughly the same spatiotemporal scales as
these recording techniques, is ideally placed to provide physiological explanations
of a range of empirical phenomena, some examples of which we discuss below. We
believe however that this is just the beginning, agreeing with Freeman (1975) that
the field of neurodynamics, of which mean field models are an integral part, “still
can be regarded as a giant sleeping in infancy”.

11.4.1 EEG Alpha Rhythm: Stochastic, Non-linear, or Both?

The alpha rhythm is arguably the most ubiquitous rhythm seen in scalp recorded
EEG. First discovered by Berger (1929, 1930), see also Gloor (1969), and later
confirmed by Adrian and Matthews (1934), it has played a central role in phe-
nomenological descriptions of brain electrical activity in cognition and behaviour
ever since. While the definition of classical alpha is restricted to 8–13 Hz oscillatory
activity recorded over the occiput, which is reactive to eyes opening and closing,
activity in the same frequency range can be recorded from multiple cortical areas.
However, despite decades of detailed empirical research involving the relationship
of this rhythm to cognition, we remain essentially ignorant regarding the mecha-
nisms underlying its genesis and its relevance to brain information processing and
function (Steriade 2005).

To date two broad approaches have emerged for explaining the origin of the
alpha rhythm and similar activity. The first approach conceives of alpha as arising
from cortical neurons being paced or driven at alpha frequencies: either through the
intrinsic oscillatory properties of other cortical neurons (Llinás 1988; Silva et al.
1991), or through the oscillatory activity of a feed-forward subcortical structure
such as the thalamus (Hughes and Crunelli 2005, 2007). In contrast, the second
approach assumes that alpha emerges through the reverberant activity generated
by reciprocal interactions of synaptically connected neuronal populations in cortex,
and/or through such reciprocal interactions between cortex and thalamus (Nunez
et al. 2001). Two principle lines of evidence have arisen in support of the latter
view. Firstly, multichannel MEG (Williamson and Kaufman 1989; Ciulla et al.
1999) and high density EEG (Nunez et al. 2001) have revealed that scalp recorded
alpha activity arises from a large number or continuum of equivalent current sources
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(ECD) in cortex. Secondly, a raft of physiologically plausible computational (Liley
et al. 1999a) and theoretical models (Nunez 1981; van Rotterdam et al. 1982;
Robinson et al. 1997, 2001; Liley et al. 2002, 2003), reveal that electroencephalo-
graphically realistic oscillatory activity can arise from the synaptic interactions
between distributed populations of excitatory and inhibitory neurons.

The work of Robinson et al. (2001) suggests that characteristic loop delays in
cortico-thalamic and thalamocortical connectivity are responsible for the generation
of alpha, and beta (13–30 Hz) electroencephalographic activity. In contrast the work
of Liley et al. (2002, 2003) suggests that alpha emerges principally through the
reciprocal interactions of populations of inhibitory neurons. In the this case the
alpha rhythm can either arise as noise induced perturbations of a cortical system
at steady state having an intrinsic alpha resonance or as deterministic (limit cycle
or chaotic) oscillation of a far from equilibrium system. Noise driving is more in
line with empirical evidence that finds, except for short bursts of subdural and
scalp-recorded EEG, that the alpha rhythm is indistinguishable from linearly filtered
white noise (Stam et al. 1999; Stam 2005). Other more recent work (Liley et al.
2010) suggests that resting alpha represents a combination of noise-driven and
deterministic dynamics and that transitions between the two are not only possible,
but are a regular occurrence in resting EEG.

11.4.2 Drug Effects: Anaesthesia, Sedatives, Stimulants

Efforts to maintain biological plausibility in mean field models have enabled the
exploration of physiological dynamics during a range of specific brain states.
Researchers have therefore focused on how key dynamical attributes are changed
during parametric perturbations which attempt to simulate genuine physiological
events. As is often customary in neurophysiology, the core of these efforts have
focused on changes in excitability through selective modification of inhibitory and
excitatory processes. Shifts in brain excitability can occur both through endogenous
mechanisms, such as sleep, or pathological conditions, such as seizures (both
discussed below) – however, drug induced changes in excitability are another typical
starting point. Particular attention has been placed on the modelling of depressant
agents like anaesthetics and conversely stimulants such as pro-convulsants (Foster
et al. 2008; Liley et al. 2011).

Anaesthesia induced changes are a preferable domain for mean field simulation
for several reasons. Firstly, the cellular and molecular targets of anaesthetics
are selective and known in some detail. This allows not only meaningful model
parameterization, but furthermore enables the use of empirical data to explore the
effects of model perturbation within meaningful physiological ranges. Secondly, the
effects of anaesthetics at the cellular level produce clear changes in macroscopic
scale activity, such as the EEG, in a dose-dependent manner, allowing fairly
straightforward experimental validation of the simulations. Finally, the mechanisms
by which the cellular or microscopic targets of anaesthetic drugs relates to the
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observed macroscopic effects recorded by the EEG are far less clear, promoting
the use of mesoscopic methods to help link these physical scales and elucidate the
intriguing processes occurring during the transition to unconsciousness.

Generally, anaesthetics, as well as sedatives (e.g. benzodiazepines), produce their
depressant effects by targeting inhibitory neurotransmission through enhancement
of GABAA receptor function. By potentiating GABAA receptor based IPSPs,
anaesthetics can progressively suppress neural firing. Less obviously, one also
finds a slowing of the EEG that appears in the time domain as a shift from
low amplitude desynchronised EEG to large amplitude slow oscillations, and
in the frequency domain as a shift from peaked alpha power spectra to ones
dominated by the delta band (0–4 Hz). This overall cortical slowing of activity has
been successfully modelled by a number of investigators, however explanations
for the spectral changes which occur during the transition between wakeful rest
and deep anaesthesia are somewhat more controversial. During the induction of
anaesthesia, the EEG in humans (Kuizenga et al. 1998) and other species (Dutta
et al. 1997) show a rise in power prior to the onset of slow wave activity, which
approximately coincides with the loss of consciousness (LOC). Typically referred
to as the biphasic response, studies have shown that a variety of anaesthetic agents
produce transient increases in EEG activity in the frequency ranges more associated
with alertness and arousal during both induction and emergence (Kuizenga et al.
1998, 2001; Feshchenko et al. 2004). Interestingly, because such effects may
be more pronounced during emergence than induction, a number of modelling
approaches have taken this as an explanatory predicate in simulations of the
biphasic response and its hypothesised hysteresis (system dependence on prior
history).

Steyn-Ross et al. (1999, 2004) modelled the biphasic response as a first-order
phase transition using the mean field cortical model of Liley et al. (1999b). By
selectively modifying the inhibitory neurotransmitter decay rate constant, they
found three stages of analytic equilibrium for changes in the level of anaesthesia
defined by 	, a scaling-factor representing the fractional change in IPSP duration
from the non-anaesthetized state. These stages were termed (1) “coma” (high
anaesthesia 	 > 1:53); (2) “awake” (low/no anaesthesia 	 D 1), and (3) “seizure”
(retracted inhibition 	 < 0:3). During the transitions between these states estimated
EEG spectra were shown to display a clear biphasic response. It was therefore
posited that the biphasic response was coincident with the transition between stable
states, from (2) to (1) or (3), via a saddle node bifurcation, reflecting a phase
transition in the mean soma membrane potential. While this phase transition theory
was an innovative and appealing integration of the biphasic response and the loss
of consciousness during anaesthesia, the model depended upon neural firing rate
parameters outside physiological ranges with “awake” power spectra devoid of any
resting alpha activity.

Subsequent work by Bojak and Liley (2005) showed that biphasic phenomena
can still be simulated without the occurrence of a phase transition and within
plausible firing rate ranges. They used mean field model parameter sets restricted by
physiological limits with proper resting state behaviour, and realistically modelled
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the effects of the anaesthetic agent isoflurane by allowing independent modifications
of IPSP amplitude, rise and decay times based on empirical data. The simulated
biphasic response was then not coincident with rapid shifts in firing rates, but
rather consistent with empirical observations of progressive dose dependent spike
suppression. Bojak and Liley (2005) were also pioneering in the mean field context
by using a large number of base parameter sets to gain an understanding of the
robustness of the predictions under conditions of typical biological variability. This
approach has become popular in the field of individual neuron models (Marder
and Taylor 2011). Molaee-Ardekani et al. (2007) later showed that the application
of a slow adaptive function for the modelling of firing rates was capable of both
simulating biphasic spectral activity and relating the slowing of firing rates to the
well know occurrence of up/down state firing modes during anaesthesia and slow
wave sleep. More recently Hutt and Longtin (2010) have sought to connect both
descriptions of biphasic activity. For a simplified model they were able to derive
conditions under which the anaesthetic agent propofol causes the biphasic effect
either by a phase transition or without.

The possibility of linking the biphasic response of cortical populations with the
LOC is a fascinating area for future computational research. Yet it remains unclear
if the biphasic changes in EEG spectral power are even causally linked to LOC or
whether these two events arise independently in response to pharmacological action.
For example, empirical and theoretical work has shown that benzodiazepines such
as diazepam and alprazolam, which also selectively target GABAA receptors, can
produce arousal responses in EEG spectral power producing acceleration of peak
alpha frequency into the low beta range (Liley et al. 2003b). This “beta buzz” is not
greatly different from that produced by alcohol, a GABAA agonist also. Therefore
the occurrence of this form of biphasic response is interpreted as being reflective
of low dose anaesthesia and not as a marker of a specific dynamical transition, for
this effect may extended over a period far greater than the interval associated with
the loss of consciousness. Such effects can be informed by the observed sensitivity
of inhibitory synapses and the time delays associated with their reverberant activity
(Liley et al. 2003b): enhancement of inhibitory–inhibitory coupling through GABA
agonists will strengthen, and therefore shorten, the interactions of this population
shifting alpha power to higher frequencies (Liley et al. 2002, 2003).

There has been little application of mean field modelling to understanding
the macroscopic action of stimulants, because the involved pharmacological and
physiological mechanisms are less straightforward to include in the established
formulations. Interestingly, the study by Rowe et al. (2005) concerning the action of
stimulants in attention deficit hyperactivity disorder points to yet another inhibitory
effect, namely decreased firing activity in the locus coeruleus. The authors speculate
that more generally stimulants could act to suppress the activity of the thalamic
reticular nucleus, thereby increasing thalamocortical and synaptic activity. If true,
then once more one would find that inhibitory control is a key locus for the control
of brain dynamics.
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11.4.3 Cognitive States: Sleep, Rest, Memory, Attention

Following progress in the mean field modelling of anaesthesia, a number of
researchers have gone on to theoretically account for human sleep cycles and a
range of other cognitive phenomena. Some investigators have extended existing
mean field models to incorporate further differentiated neural populations (typically
subcortical nuclei), whereas others have focused on purely parametric perturbation
of a putative (noise driven) cortex alone. Regarding the modelling of sleep cycles,
Steyn-Ross et al. (2005a) have explored the latter approach by modelling the
role somnogenic (sleep promoting) factors have in modulating cortical arousal.
Conversely Phillips and Robinson (2007) have explored the former approach by
applying mean field theory to simulate the modulatory effects of ascending brain
stem projection systems. We will discuss each of these approaches in turn.

Steyn-Ross et al. (2005a) model sleep states with particular attention to the
transition between slow wave sleep (SWS) and rapid eye movement (REM) phases.
In this approach the authors employ a macrocolumn whose characteristic time
scales have been greatly increased from their standard parameter values in order
to better incorporate the time courses associated with the ultradian human sleep
cycle (�90 min). Subsequently, the transition between SWS and REM states are
parameterized as arising from the differential modulation of the basal KC leak
currents by the somnogenic adenosine ("KC leak) and activating acetylcholine
(ACh; #KC leak). In combination, these effects were best captured through
modification of the coupling strength at excitatory synapses with a factor 	ACh

scaling the excitatory synaptic gain. Similar to their work in anaesthesia, this
parameterization produced a first-order phase transition, typified by a rapid shift
from coherent slow firing (SWS) to a classical desynchronized high firing state.
Approaching the point of transition between these two states was characterized
by increasing coherent frequency power in progressively slower frequencies. This
system also supports the occurrence of K-complexes (transient spike-like waves),
which typically occur during sub-arousal stimulation (e.g., auditory) during REM
sleep. Wilson et al. (2006), explored the response of cortex to such transient kicks in
input. It was found that depending on system state (SWS or REM), transient shifts
in membrane potential cause different spatiotemporal oscillations.

Finally, these authors have also explored the capacity of putative Hebbian
learning in such systems in relation to memory consolidation during sleep. Steyn-
Ross et al. (2005b) postulate a mechanism for memory erasure or unlearning
during the suppressive dynamics occurring during the approach to the SWS-REM
transition. Then SWS oscillations become more coherent and expanded in phase-
space, producing a state preferentially enhancing inhibitory synaptic weights, after
which the REM sleep will reset synaptic weights back to a state capable of learning.
Wilson et al. (2007) extended their model to allow estimation of synaptic weight
distribution and other statistical attributes, which help to link Hebbian network
descriptions with mesoscopic columnar field models.
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In contrast to the previous approach, Phillips and Robinson (2007) have included
the cortically ascending projections of the various brain stem nuclei which are
involved in mediating arousal and therefore the sleep-wake cycle. This ascend-
ing arousal system has cortical projections which terminate diffusely across the
cerebrum. Phillips and Robinson (2007) model this group of nuclei by defining
a monoamine group (MA) and a ACh group, both of which receive driving (e.g.,
circadian) inputs from the ventrolateral preoptic area (VLPO; hypothalamus). Since
the interaction of the defined MA and ACh groups reflect nuclei whose reciprocal
action is thought to control SWS-REM switching, Phillips and Robinson (2007)
focus only on interactions between the VLPO and MA groups, while setting the
ACh group constant. Thus they focus on the transition between waking and sleeping
states and not the ultradian sleep cycle (i.e., sleep stages). The mutual inhibition
between the MA group (wake promoting) and the VLPO (sleep promoting) are
parametrically explored as putative sleep-wake cycling. By modulating the driving
input, they observed clear changes in the mean soma membrane potential of the
MA group, such that wake-sleep transitions occur as a saddle node bifurcation
at several driving values which produces a hysteresis in the return from sleep to
waking states. This hysteresis produces a zone wherein the transition between awake
and sleep states is more easily achieved and more sensitive to noise. This unstable
transition is suggested by the authors to dynamically underpin the phenomenon of
narcolepsy.

Attempts to model learning process through the modification of synaptic prop-
erties represents one example of how mean field theories may begin to make
contact with cognition and cognitive systems. However, it remains difficult to
meaningfully capture the dynamics of cognitive activity with these simple biological
models. Currently the focus is on explaining activity patterns and to use data-
driven approaches to help identify physiological parameters that sensitively control
neuronal population dynamics. For example, Steyn-Ross et al. (2009) have explored
the utility of mean field models to capture differing dynamical properties associated
with activity patterns during resting and cognitive states. In brief, this work
suggests that the ongoing activity of the brain may be the result of spatiotemporal
instabilities, with idling activity slowly oscillating (1 Hz) around a rest state that can
be perturbed into an active cognitive state defined by faster (40 Hz) activity. Such
slow oscillations may relate to those observed during resting state neuroimaging
(Steyn-Ross et al. 2009, 2011) – the so called “default mode” (Raichle et al.
2001). Concrete studies of cognitive action have also been performed, in particular
of (visual) attention (Deco and Rolls 2005; Mavritsaki et al. 2011). Interestingly
in these cases, hybrid descriptions in terms of both spiking neurons and mean
field models were employed, which interacted consistently with each other by
construction (Brunel and Wang 2001). It is likely that such hybrid approaches will
become more common in the future.
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11.4.4 Special Dynamics: Metastability, Gamma
Synchrony, Epilepsy

Although early attempts to dynamically describe brain function sought to prescribe
explicit attractor dynamics to neural activity, more recent thinking focuses on tran-
sitory non-equilibrium behaviour (Rabinovich et al. 2008a). Neuronal population
dynamics are conceived as evolving transiently, rarely reaching stability. On this
basis a number of authors have opted to describe this type of dynamical regime
as metastability (Kelso 1995; Friston 1997; Bressler and Kelso 2001; Freeman and
Holmes 2005; Rabinovich et al. 2008b). Common to many of these descriptions is
an ongoing occurrence of transitory neural events, or state transitions, which define
the flexibility of cognitive and sensori-motor function. Some dynamical examples
include the chaotic itinerancy of Tsuda (2001), in which neural dynamics transit
in a chaotic motion through unique Milnor attractors, or the liquid-state machine
of Rabinovich et al. (2008a), where a more global stable heteroclinic channel
is comprised of successive local saddle states. More specific neurodynamical
approaches include the work of Kelso (1995), Friston (2000) and Freeman and
Holmes (2005).

The idea that the brain activity switches between qualitatively different states
is reflected in the dynamical behaviour of many mean field model formulations.
For this reason it has been conjectured that mean field models may offer a suitable
explanatory framework in which to understand the genesis and evolution of epileptic
activity (Wendling et al. 2000; Robinson et al. 2002; Lopes da Silva et al. 2003;
Suffczyński et al. 2005; Kramer et al. 2005; Liley and Bojak 2005; Breakspear et al.
2006; Marten et al. 2009; Molaee-Ardekani et al. 2010) as well as the formation
of coherent mesoscopic gamma band activity (Wright 1997; Rennie et al. 2000;
Robinson 2006; Bojak and Liley 2007). What relates these two topics is that such
dynamics are typically conceived as limit cycle (or chaotic) behaviour to which the
brain transits from a regular state under certain conditions, e.g., the change of some
physiological parameter. The difference between epilepsy and gamma synchrony is
then mainly related to the dominant frequency of these “special” dynamics. That the
dominant frequency typically can be adjusted with some model parameter suggests
that these phenomena may indeed be physiologically related.

However, a general caveat applies to such studies: it is often comparatively
easy to obtain activity that resembles epilepsy or coherent gamma oscillations from
complicated (mean field) models. That per se should hence not count as a success
of the model. Rather, it is precisely the mechanistic explanation of the transit from
regular to special dynamics which then becomes a hallmark of biological fidelity.
For example, Liley and Bojak (2005) showed that seizure-inducing properties of
some general anaesthetic agents could be reproduced with the Liley mean field
model, rather than just that the model supported seizure-like limit cycles. At the very
least the switching mechanism should be post hoc interpreted, like the emergence
of large scale gamma synchrony in terms of changes in presynaptic thalamocortical
input (Bojak and Liley 2007).
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11.4.5 Beyond Electrical Activity: fMRI BOLD
and Multimodal Integration

The EEG’s continued popularity in research and clinical practice (Niedermeyer and
Lopes da Silva 2005) is largely due to its excellent time resolution, which allows for
example the tracking of evoked potentials (Regan 1989; Rennie et al. 2002). EEG
taken with a large number of electrodes and MEG can provide data of brain activity
with comparatively high spatial resolution in the centimetre range. However, due
to its millimetre resolution fMRI BOLD has taken over as the de facto standard for
researching cognition (Norris 2006; Matthews et al. 2006), in spite of weak temporal
resolution and uncertainties concerning its genesis (Logothetis 2008). The rapidly
growing field of multimodal imaging (Stufflebeam and Rosen 2007; Shibasaki 2008;
Mulert et al. 2008; Blinowska et al. 2009; Freeman et al. 2009) also promises to
combine the excellent temporal resolution of EEG with the good spatial resolution
of fMRI BOLD. This combination is particularly attractive because it is possible to
record EEG and fMRI BOLD simultaneously (Laufs et al. 2008), which avoids all
the issues of brain state dependence that arise in combining data sets recorded at
different times (or even from different people). Furthermore, the relation of fMRI
resting state networks to EEG cortical microstates (Britz et al. 2010; Musso et al.
2010) suggests close dynamical links between data recorded with these modalities.

Therefore it is of obvious interest to extend the mean field formalism first
to the description of fMRI BOLD, and then to the predicition of simultaneous
EEG/fMRI. The first issue to confront is the addition of appropriate hemodynamics.
Almost all mean field modellers have adopted the so-called “Balloon-Windkessel”
hemodynamic model in the form introduced by Friston et al. (2000, 2003) based on
prior work by Buxton and Frank (1997), Buxton et al. (1998) and Mandeville et al.
(1999). The main reason is that this model merely adds four ordinary differential
equations (ODEs) to the equations, with specified (prior) parameter values. The
Balloon-Windkessel model will predict the BOLD contrast based on neural activity
innovations, making it most suited for task paradigms. It is somewhat less suited for
resting state activity (Bojak et al. 2010, 2011), a point that will require scrutiny in
future. Note that these equations are local, hence in a large scale model comprising
many neural masses or in a continuous formulation discretized for numerical
computation, the ODE systems must be evaluated at every unit. Furthermore, the
question arises what neural activity to use as input for the Balloon-Windkessel
hemodynamics, or in other terms, how the neurovascular coupling is modelled. In
the works we will describe below, a bewildering variety of models have been used,
though conceptually they reduce to either total synaptic activity, glutamate release or
energy consumption. We believe that this confusion reflects our limited knowledge
about the genesis of the BOLD signal and refrain here from commenting further
on this issue. Suffice to say that all current modelling efforts must be considered
speculative concerning the fMRI signal generation.

We have already mentioned the works using CoCoMac connectivity (Honey
et al. 2007; Ghosh et al. 2008; Deco et al. 2009), recently reviewed by Deco et al.
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Fig. 11.5 Simultaneous EEG/fMRI BOLD prediction. The top row shows snapshots of EEG scalp
potentials, as well as EEG time traces from three electrodes (purple). The bottom row shows
corresponding fMRI BOLD predictions (Bojak et al. 2010, 2011). Columns from left to right
show results for specific connectivity at 60%, 85%, and 90% strength relative to that of local
(“background”) connectivity. Scales vary between panels and are indicated by colourbars. A clear
jump in fMRI BOLD contrast occurs for increasing the strength from 85% to 90%

(2011). They all provide multimodal EEG and fMRI predictions, whereas the related
paper by Honey et al. (2009) used diffusion MR tractography and predicted only
fMRI signals. The focus of these works is on resting state oscillations and the
so-called “default mode network” (Raichle et al. 2001). General experimentally
observed features were reproduced; however, Honey et al. (2009) raises questions
about the dependence of such dynamics on the cortical parcellation. Babajani
et al. (2005), Babajani and Soltaninan-Zadeh (2006) and Babajani-Feremi et al.
(2008) convincingly fit both MEG and fMRI BOLD data arising from an auditory
task with a single underlying model. Recently Babajani-Feremi and Soltaninan-
Zadeh (2010) also extended the electrocortical part of this model to multiple areas.
Riera et al. (2005, 2006, 2007) have successfully fit simultaneous EEG/fMRI
data in visual and auditory tasks, though their focus was more on the technical
development of inversion and neurovascular coupling models. Sotero et al. (2007),
Sotero and Trujillo-Barreto (2008) and Valdes-Sosa et al. (2009) pioneered highly
resolved descriptions of the brain geometry and obtained intriguing results on “alpha
blocking” and BOLD-alpha rhythm (anti-)correlation, respectively. Deneux and
Faugeras (2010) studied in-depth the extent to which simultaneous EEG/fMRI can
extract information beyond the use of single modalities. To this end they developed
Kalman filters and smoothers for the inverse problem. Finally, Bojak et al. (2010,
2011) show that minor changes in the implemented effective connectivity can lead
to drastic changes in the simulated dynamics, see Fig. 11.5.
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11.5 Conclusions

Mesoscopic and coherent neural activity is important for three distinct but intimately
related reasons. Firstly, the brain appears to have multiple anatomical structures that
bind together larger groups of neurons in a “columnar” fashion and so parcellate
cortex into units. A corresponding degree of functional coherence can be assumed
to follow, and to some extent has been shown to exist. Secondly, non-invasive
neuroimaging is at least for the time being limited to a spatial resolution of larger
than 1 mm for fMRI, and worse for the other modalities, e.g., in the centimetre range
for EEG. Furthermore, coherent microscopic activity dominates such macroscopic
signals for statistical reasons. Thirdly, theoretical descriptions at the level of
individual neurons (or smaller) scale badly in computational costs for a variety of
reasons. Yet even if large scale simulations of this kind increasingly become possible
in a computational sense, they remain questionable for the foreseeable future: one
cannot expect to ever gather enough data to fully specify any sizable part of the
brain, in particular not a single actual structure, rather than some statistics about a
large number of similar structures.

Bulk models of neural activity try to describe mesoscopic activity directly,
eschewing a description in terms of enumerable microscopic units. Yet they
typically retain selected “microscopic features” that are salient for the description
of the phenomena of interest. Thus for example if it is known that some drugs
affects the PSPs of individual neurons, then it is advantageous if the bulk approach
employed contains a PSP description that can be matched to this “microscopic”
knowledge. The simplest bulk models consider only the mean (i.e., first moment)
properties of neuronal ensembles. Here the connection to the microscopic world
is generally direct, replacing a microscopic quantity by its mesoscopic mean. We
have described in great detail how these models developed historically, and what
sort of brain activity they are able to describe successfully. We will not repeat our
observations here. Suffice to say that mathematical and computational progress has
been good and seems to be accelerating still, and a great number of applications
have been found already.

To this clear success story we have told in the preceding pages we now wish
to add a more critical perspective and some caveats. Firstly, the microscopic-
mesoscopic connection remains fairly ill-defined. It is unclear to what extent a
population description can and should be made “consistent” with existing single
neurons models: the brain consists of much more than just neurons and bulk
approaches should subsume these non-neural contributions in their “effective
equations”. The necessity to maintain salient microscopic features however means
that the bulk descriptions often closely resemble single neuron models after all, to
allow direct mapping of known effects. Yet it is unclear to what extent this similarity
of form remains justified for an effective description that includes other elements.
Indeed, as comparing Newton’s equations with the ideal gas law suggests, it is
far from certain that the best mesoscopic description of even a purely neuronal
and homogeneous population would resemble the individual neuron model at all.
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A certain amount of “hand-waving” seems to be required at the moment to motivate
all bulk models. We suggest that much future work is required to clarify the
situation.

Secondly, applications of bulk models have yet to deliver an insight of such
obvious neuroscientific or medical impact that their future importance is established
beyond reasonable doubt. In other words, this field still requires an universally
accepted breakthrough. An important limiting factor in this regard is the lack of
information intrinsically associated with the predicted activity. While the single
neuron modeller can dream of cracking the “spike code” of information processing
in the brain, it is currently not obvious what bulk activity means. We need to learn
better how to associate computation with bulk activity, how to assign meaning to
the energtic flows that are presently being modelled. There seem to be two ways
forward here: On one hand one can try to elucidate further the effect of coherent
group activity on single neurons, and thus establish a meaning for the mesoscopic
activity in terms of whatever meaning single neuron activity may have. On the
other hand one can try to connect to the more abstract models of psychology
and psychophysics. Their natural “neural basis” may very well be found in bulk
approaches. It seems to us that both paths to greater impact must now be pursued
vigorously.

Thirdly, at the cutting edge of technical development, bulk approaches are
meeting challenges that are rather reminiscent of the problems single neuron
modellers face. If one attempts to describe the entire brain at mesoscopic resolution
in the millimetre range, one ends up with about the same number of mesoscopic
units (many tens of thousands) as large scale single neuron simulations. Thus the
same issues of computational cost, combinatorial explosion of connectivity and
experimental indeterminacy arise. We cannot, and likely will not ever, simulate this
brain here and now even at a mesoscopic level, just as attempts to simulate this
macrocolumn here and now are doomed to failure. What we need to work out is
hence the appropriate level of detail: where can and should we introduce individual
features, where should we stick to stereotypical and qualitative descriptions.
Furthermore, the issue of fitting to experimental data the many parameters of a large
number of functional units in a complicated network remains unresolved, and limits
progress at both the mesoscopic and microscopic level. We will likely need the help
from experts in the statistical field to break this gridlock.

However, such technical challenge also provide chances for future growth,
and the need for bulk approaches becomes increasingly clear. We would like to
particularly encourage our experimental colleagues to consider the mesoscopic level
of investigation as a field with enormous growth potential. Mesoscopic theory is now
getting to a level where it can speak to experimental recordings from multi-electrode
arrays recording LFPs in stimulated slice preparations all the way to complex task
paradigms tracked with fMRI BOLD. Modern experimental technologies can go
in many ways beyond the patch-clamping of a single neuron, and most of those
involve the consideration of the collective activity of neurons. The marriage of
experiment and theory has not always been easy in the neurosciences, but there is a
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clear convergence of interest here concerning the activity of many neurons working
together. As neuroscientists we should respond to this opportunity by working
together as well.
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Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn.
Springer, Berlin

Branco TP, Staras K (2009) The probability of neurotransmitter release: variability and feedback
control at single synapses. Nat Rev Neurosci 10:373–383

Breakspear M, Roberts JAG, Terry JR, Rodrigues S, Mahant N, Robinson PA (2006) A unifying
explanation of primary generalized seizures through nonlinear brain modeling and bifurcation
analysis. Cereb Cortex 16:1296–1313

Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci
5:26–36

Britz J, Van De Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid
resting-state network dynamics. NeuroImage 52:1162–1170

Brodmann K, Garey LJ (2006) Brodmann’s localisation in the cerebral cortex: the principles of
comparative localisation in the cerebral cortex based on cytoarchitectonics – translated with
editorial notes and an introduction, 3rd edn. Springer, New York

Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network model of object
working memory dominated by recurrent inhibition. J Comput Neurosci 11:63–85

Buice MA, Cowan JD, Chow CC (2010) Systematic fluctuation expansion for neural network
activity equations. Neural Comput 22:377–426

Bullock TH, McClune MC, Achimowicz JZ, Iragui-Madoz VJ, Duckrow RB, Spencer SS (1995)
EEG coherence has structure in the millimeter domain: subdural and hippocampal recordings
from epileptic patients. Electroencephalogr Clin Neurophysiol 95:161–177

Buxhoeveden DP, Casanova MF (2002) The minicolumn and evolution of the brain. Brain Behav
Evol 60:125–151

Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen
metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

Buxton RB, Wong ECC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during
brain activation: the balloon model. Magn Reson Med 39:855–864

Ciulla C, Takeda T, Endo H (1999) MEG characterization of spontaneous alpha rhythm in the
human brain. Brain Topogr 11:211–222

Contreras D (2004) Electrophysiological classes of neocortical neurons. Neural Netw 17:633–646
Coombes S (2005) Waves, bumps, and patterns in neural field theories. Biol Cybern 93:91–108
Coombes S (2010) Large-scale neural dynamics: simple and complex. NeuroImage 52:731–739
Coombes S, Venkov NA, Shiau LJ, Bojak I, Liley DTJ, Laing CR (2007) Modeling electrocortical

activity through improved local approximations of integral neural field equations. Phys Rev E
76:051901

Daunizeau J, Kiebel SJ, Friston KJ (2009) Dynamic causal modelling of distributed electromag-
netic responses. NeuroImage 47:590–601

David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics.
NeuroImage 20:1743–1755

David O, Harrison LM, Friston KJ (2005) Modelling event-related responses in the brain.
NeuroImage 25:756–770

David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal
modeling of evoked responses in EEG and MEG. NeuroImage 30:1255–1272

Deco GR, Rolls ET (2005) Neurodynamics of biased competition and cooperation for attention: a
model with spiking neurons. J Neurophysiol 94:295–313



358 D.T.J. Liley et al.

Deco GR, Jirsa VK, Robinson PA, Breakspear M, Friston KJ (2008) The dynamic brain: from
spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4:e1000092

Deco GR, Jirsa VK, McIntosh AR, Sporns O, Kötter R (2009) Key role of coupling, delay, and
noise in resting brain fluctuations. Proc Natl Acad Sci USA 106:10302–10307

Deco GR, Jirsa VK, McIntosh AR (2011) Emerging concepts for the dynamical organization of
resting-state activity in the brain. Nat Rev Neurosci 12:43–56

Deneux T, Faugeras O (2010) EEG-fMRI fusion of paradigm-free activity using Kalman filtering.
Neural Comput 22:906–948

Dienel GA, Cruz NF (2003) Neighborly interactions of metabolically-activated astrocytes in vivo.
Neurochem Int 43:339–354

Dutta S, Matsumoto Y, Gothgen NU, Ebling WF (1997) Concentration-EEG effect relationship of
propofol in rats. J Pharm Sci 86:37–43

Eccles JC (1992) Evolution of consciousness. Proc Natl Acad Sci USA 89:7320–7324
Ermentrout BG (1998) Neural networks as spatio-temporal pattern-forming systems. Rep Prog

Phys 61:353–430
Faugeras O, Touboul J, Cessac B (2009) A constructive mean-field analysis of multi-population

neural networks with random synaptic weights and stochastic inputs. Front Comput Neu-
rosci 3:1

Feshchenko VA, Veselis RA, Reinsel RA (2004) Propofol-induced alpha rhythm. Neuropsychobi-
ology 50:257–266

Fleischhauer K, Petsche H, Wittkowski W (1972) Vertical bundles of dendrites in the neocortex.
Z Anat Entwicklungsgesch 136:213–223

Foster BL, Bojak I, Liley DTJ (2008) Population based models of cortical drug response: insights
form anaesthesia. Cogn Neurodyn 2:283–296

Frascoli F, van Veen L, Bojak I, Liley DTJ (2011) Metabifurcation analysis of a mean field model
of the cortex. Physica D 240:949–962. doi:10.1016/j.physd.2011.02.002

Freeman WJ (1975) Mass action in the nervous system: examination of the neurophysiological
basis of adaptive behavior through the EEG, 1st edn. Academic Press, New York, also electronic
edn.: http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html,2004

Freeman WJ (1979) Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern
33:237–247

Freeman WJ, Holmes MD (2005) Metastability, instability, and state transition in neocortex. Neural
Netw 18:497–504

Freeman WJ, Ahlfors SP, Menon V (2009) Combining fMRI with EEG and MEG in order to relate
patterns of brain activity to cognition. Int J Psychophysiol 73:43–52

Friston KJ (1997) Transients, metastability, and neuronal dynamics. NeuroImage 5:164–171
Friston KJ (2000) The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R

Soc B 355:215–236
Friston KJ (2002) Bayesian estimation of dynamical systems: an application to fMRI. NeuroImage

16:513–530
Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: The Balloon

model, Volterra kernels, and other hemodynamics. NeuroImage 12:466–477
Friston KJ, Penny WD, Phillips C, Kiebel SJ, Hinton GE, Ashburner J (2002) Classical and

Bayesian inference in neuroimaging: theory. NeuroImage 16:465–483
Friston KJ, Harrison LM, Penny WD (2003) Dynamic causal modelling. NeuroImage 19:

1273–1302
Friston KJ, Mattout J, Trujillo-Barreto NJ, Ashburner J, Penny WD (2007) Variational free energy

and the Laplace approximation. NeuroImage 34:220–234
Ghosh A, Rho YA, McIntosh AR, Kötter R, Jirsa VK (2008) Noise during rest enables the

exploration of the brain’s dynamic repertoire. PLoS Comput Biol 4:e1000196
Gloor P (1969) Hans Berger on the electroencephalogram of man. Electroencephalogr Clin

Neurophysiol S28:350

http://sulcus.berkeley.edu/MANSWWW/MANSWWW.html, 2004


11 Mean Field Population Models 359

Goldman PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibers in the frontal
association, limbic, and motor cortex of the developing rhesus monkey. Brain Res 122:
393–413

Griffith JS (1963) A field theory of neural nets: I: derivation of field equations. Bull Math Biol
25:111–120

Griffith JS (1965) A field theory of neural nets: II: properties of the field equations. Bull Math Biol
27:187–195

Hagmann P, Cammoun L, Gigandet X, Meuli RA, Wedeen VJ, Sporns O (2008) Mapping the
structural core of human cerebral cortex. PLoS Biol 6:e159

Haken H (1983) Synergetics: an introduction. Nonequilibrium phase transitions and self-
organization in physics, chemistry, and biology, 3rd edn. Springer, Berlin

Hellwig B (2000) A quantitative analysis of the local connectivity between pyramidal neurons in
layers 2/3 of the rat visual cortex. Biol Cybern 82:111–121

Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front
Hum Neurosci 3:31

Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes
functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104:10240–10245

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli RA, Hagmann P (2009)
Predicting human resting-state functional connectivity from structural connectivity. Proc Natl
Acad Sci USA 106:2035–2040

Hughes SW, Crunelli V (2005) Thalamic mechanisms of EEG alpha rhythms and their pathological
implications. Neuroscientist 11:357–372

Hughes SW, Crunelli V (2007) Just a phase they’re going through: the complex interaction of
intrinsic high-threshold bursting and gap junctions in the generation of thalamic alpha and
theta rhythms. Int J Psychophysiol 64:3–17

Hutt A, Longtin A (2010) Effects of the anesthetic agent propofol on neural populations. Cogn
Neurodyn 4:37–59

Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a
mathematical model of coupled cortical columns. Biol Cybern 73:357–366

Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77:
960–963

Jirsa VK, Jantzen KJ, Fuchs A, Kelso JAS (2002) Spatiotemporal forward solution of the EEG and
MEG using network modeling. IEEE Trans Med Imaging 21:493–504

Johansen-Berg H, Rushworth MFS (2009) Using diffusion imaging to study human connectional
anatomy. Annu Rev Neurosci 32:75–94

Jones EG (2000) Microcolumns in the cerebral cortex. Proc Natl Acad Sci USA 97:5019–5021
Jones EG, Burton H, Porter R (1975) Commissural and cortico-cortical “columns” in the somatic

sensory cortex of primates. Science 190:572–574
Kaiser M, Hilgetag CC, van Ooyen A (2009) A simple rule for axon outgrowth and synaptic

competition generates realistic connection lengths and filling fractions. Cereb Cortex 19:
3001–3010

Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill,
New York

Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. The MIT Press,
Cambridge

Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in
EEG/MEG with lead field parameterization. NeuroImage 30:1273–1284

Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald DJ, Lee JM, Kim SI, Evans AC
(2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using
a Laplacian map and partial volume effect classification. NeuroImage 27:210–221

Kötter R, Wanke E (2005) Mapping brains without coordinates. Philos Trans R Soc B 360:751–766
Kramer MA, Kirsch HE, Szeri AJ (2005) Pathological pattern formation and cortical propagation

of epileptic seizures. J R Soc Interface 2:113–127



360 D.T.J. Liley et al.

Kuizenga K, Kalkman CJ, Hennis PJ (1998) Quantitative electroencephalographic analysis of the
biphasic concentration-effect relationship of propofol in surgical patients during extradural
analgesia. Br J Anaesth 80:725–732

Kuizenga K, Wierda JMKH, Kalkman CJ (2001) Biphasic EEG changes in relation to loss of con-
sciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br
J Anaesth 86:354–360

Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt AK (2008) Recent advances in recording
electrophysiological data simultaneously with magnetic resonance imaging. NeuroImage
40:515–528

Liley DTJ, Bojak I (2005) Understanding the transition to seizure by modeling the epileptiform
activity of general anesthetic agents. J Clin Neurophysiol 22:300–313

Liley DTJ, Wright JJ (1994) Intracortical connectivity of pyramidal and stellate cells: estimates of
synaptic densities and coupling symmetry. Netw Comput Neural Syst 5:175–189

Liley DTJ, Alexander DM, Wright JJ, Aldous MD (1999a) Alpha rhythm emerges from large-scale
networks of realistically coupled multicompartmental model cortical neurons. Netw Comput
Neural Syst 10:79–92

Liley DTJ, Cadusch PJ, Wright JJ (1999b) A continuum theory of electro-cortical activity.
Neurocomputing 26-27:795–800

Liley DTJ, Cadusch PJ, Dafilis MP (2002) A spatially continuous mean field theory of electrocor-
tical activity. Netw Comput Neural Syst 13:67–113

Liley DTJ, Cadusch PJ, Dafilis MP (2003) Corrigendum. Netw Comput Neural Syst 14:369
Liley DTJ, Cadusch PJ, Gray M, Nathan PJ (2003b) Drug-induced modification of the system

properties associated with spontaneous human electroencephalographic activity. Phys Rev E
68:05190

Liley DTJ, Bojak I, Dafilis MP, van Veen L, Frascoli F, Foster BL (2010) Bifurcations and
state changes in the human alpha rhythm: theory and experiment. In: Steyn-Ross DA, Steyn-
Ross ML (eds) Modeling phase transitions in the brain. Springer series in computational
neuroscience, vol 4. Springer, New York, pp 117–145

Liley DTJ, Foster BL, Bojak I (2011) A mesoscopic modelling approach to anaesthetic action
on brain electrical activity. In: Hutt A (ed) Sleep and anesthesia: neural correlates in theory
and experiment. Springer series in computational neuroscience, vol 15. Springer, New York,
pp 139–166

Llinás RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights
into central nervous system function. Science 242:1654–1664

Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869–878
Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity: the

alpha-rhythm of the thalamus. Kybernetik 15:27–37
Lopes da Silva FH, Blanes W, Kalitzin SN, Parra J, Suffczyński P, Velis DN (2003) Dynamical
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