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Foreword

It is now well accepted that the concept “one gene-one protein-one function” is
largely inadequate to understand life. The corresponding biomedical concept “one
gene-one phenotype-one disease” is even more problematic. Many diseases are
multifactorial, but moreover, mono- or multifactorial, the expression of almost
all dysfunctions depends on the person and its environment. Systems Biology is
a discipline born after second world war, based on control theory, in particular
cybernetics, and systems theory. Systems Biology can be briefly summarised as
the study of the emerging properties of a biological system taking into account all
the necessary constituents, their relationships and their temporal variation. It relies
on integration between experimental observations of different types and computer
simulations of the system’s dynamics. The field stayed relatively ignored during a
few decades, mainly restricted to quantitative analysis of metabolic systems in 1970s
and 1980s, as well as signalling pathways a bit later. The conjunction of increased
computer power and high-throughput quantitative data production allowed the
subject to become in a decade (1998–2008) the new paradigm in biology. A systems
approach could allow significant progress in the understanding and treatment of
numerous pathologies, and in particular in the field of neurological diseases.
One of the consequences of the rise of Systems Biology has been a change of
attitude towards mathematical models in biology (and the corresponding computer
simulations). Not only are those models now used routinely, but their size has
increased and they are often accompanied by an important semantic layer allowing
a link to biological knowledge. Therefore it became crucial to be able to exchange
and reuse those models. This need has triggered the creation of an entire domain
of research and development, the “computational systems biology”, comprising
research groups, companies, scientific events, etc., an evolution reminiscent of the
bioinformatics explosion at the beginning of 1990s.

Among the key concepts in systems biology are quantitative modelling and
simulations of biological systems’ behaviour, the necessity to integrate processes at
different scales and the emergence at the system level of behaviours unpredictable
on the basis of the behaviours of isolated components. Neurosciences occupy a
unique position on the three points. Since the work of Alan Hodgkin and Andrew
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vi Foreword

Huxley half a century ago, modelling is a recognised component of research
in the domain. Quantitatively describing a cellular behaviour emerging from the
interaction between two different molecular components, a potassium and a sodium
channel, the work of Hodgkin-Huxley can be seen as the beginning of computational
systems biology. Moreover, this modelling activity is frequently pursued together
with experimental work. Realistic models are developed at all scales, molecu-
lar (signalling pathways), cellular (electrophysiology, growth and differentiation),
multicellular (neural networks) and tissular (cerebral electric activity). Synaptic
plasticity, neuroadaptation, memory, cognition or consciousness are all emergent
phenomena. Neuroscience is therefore the ideal domain where systems biology
concepts can be applied.

Computational studies of neuronal systems, or computational systems neurobiol-
ogy, require descriptions spanning 12 orders of magnitude in space and 24 orders of
magnitude in time. Accordingly, the methods employed are extremely diverse and
focus on a subset of the scale considered. When a newcomer enters the field, whether
students entering Ph.D. studies or experienced researchers reorientering, the choice
of reference books is overwhelming. When I started my group at the EMBL-EBI,
I used to buy for each student the “yellow book”, “Computational Cell Biology”, by
Fall et al. As the research activities of my group expanded, I progressively added
other volumes, until the reading list was sufficient to populate half a shelf above
each desk. Each book targeting a given audience, its content was highly technical
and challenging. I dreamt of a book that I could buy for any of my students, whatever
the envisioned Ph.D. topic was. This book would introduce the many different types
of computational studies of neuronal systems and would aim to be an entry point
for the more specific textbooks of the field, which would be chosen by each student
based on their project. Since I could not find any, I decided to contact my colleagues
and friends and built it. You have the result in your hands.

The first part of the book deals with molecular systems biology. Functional
genomics is presented through examples of transcriptomics and proteomics studies
of neurobiological interest. Quantitative modelling of biochemical systems is
presented in homogeneous compartments and using spatial descriptions. The second
part presents the various approaches to model single neuron physiology. The
following part is naturally devoted to neuronal networks. The penultimate division
is focused on the development of neurons and neuronal systems. The book closes
on a series of methodological chapters. A significant freedom was granted to the
authors, and the chapters are of very variable lengths and technical levels. The order
is chosen so that one could start from the first chapter and read through until the
end. However, each chapter is an independent entity, and you are welcome to read
in the order you fancy.

Nicolas Le Novère
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Chapter 1
Functional Genomics and Molecular Networks
Gene Expression Regulations in Complex
Diseases: Down Syndrome as a Case Study

Marie-Claude Potier and Isabelle Rivals

1.1 Introduction

Functional genomics has been or is being applied to complex diseases in the hope
of finding molecular networks that are altered, as well as gene targets for treatment.
The experiments were initiated as soon as tools were available, and this field of
research has exploded with the commercialization of DNA microarrays and their
relative affordability. Since the first development of DNA microarrays more than
20 years ago (Schena et al. 1995), the technology has improved in many aspects.
Genome annotations are being updated and the probes associated to individual genes
have been optimized for their selectivity and sensitivity. Although probe collections
covering all the genes corresponding to various genomes are not fully optimized
(Golfier et al. 2009) the data are improving and becoming consistent for powerful
statistical analysis. The initial studies aiming at defining lists of differentially
expressed genes have been disappointing and revealed that data analysis had to
be extended using other tools than statistical tests. Many clustering methods and
network analysis have been applied since. In parallel, gene ontology categorization
has allowed a more functional view on the list of differentially expressed genes.
Gene ontology now groups 37,078 terms with 23,050 for biological process, 2,993
for cellular component and 9,391 for molecular function (www.geneontology.org
05/30/2012).
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2 M.-C. Potier and I. Rivals

Nowadays, researchers who envision gene expression studies have always the
same question in mind which is: what are the genes differentially expressed between
various samples? But they want to know the answer beyond the list, meaning that
they want to know what are the functions of these genes, and if they belong to a
particular network or pathway. Knowing this pathway will eventually give them
the key for tuning it. Of course, the first question to ask is: has it been done,
published and deposited in public databases (GEO www.ncbi.nlm.nih.gov/geo/ or
Arrayexpress www.ebi.ac.uk/microarray-as/ae/)? If the answer is yes, there are data
available on the subject; one should then plan to produce a different set of data,
keeping in mind that this new set will need to be integrated with data sets available
for the ultimate meta-analysis. It is just not possible to ignore other data sets since
the power of analysis will be increased along with the size of samples. Then, of
course, data need to be comparable, meaning preferably performed on the same type
of microarray and possibly on the same platform. If not, then microarray annotation
becomes a real issue that will have to be improved in the future. Isn’t it surprising
that with 746,694 samples (30,299 series) in GEO the number of meta-analyses is so
low? There are nowadays 95 datasets with 100–200 samples, 33 with 1,000–7,000
samples but none with more than 7,000 samples.

1.1.1 Alzheimer’s Disease (AD)

Let us take the example of AD, a neurodegenerative disease which affects 25
millions of individuals worldwide, and which is becoming a real societal problem.
Many gene profiling studies have been performed on AD patient samples (brain,
peripheral cells) but no coherent picture of gene expression regulation in AD was
obtained (Maes et al. 2007; Nagasaka et al. 2005 ; Blalock et al. 2004 ; Emilsson
et al. 2006 ; Lu et al. 2004). One could argue that small sample size together
with manipulating human tissues with artifacts associated to post-mortem delay
have minimized the power of analysis because of high variability. Also analysis
of brain samples with very heterogeneous cell composition brings another level
of variability. One way around would be to analyze gene expression at the single
cell level. Such analyses are still under development and will bring answers to
this major problem (Bontoux et al. 2008). It might be though that the control of
cellular function has both deterministic and stochastic elements: complex regulatory
networks define stable states that drive individual cells, whereas stochastic fluctu-
ations in gene expression ensure transitions and coherence at the population level
(Macarthur et al. 2009). Stochastic “noise” arises from random fluctuations within
the cell and is an unavoidable aspect of life at the single-cell level. Evidence is
accumulating that this noise crucially influences cellular auto-regulatory circuits
and can “flip” genetic switches to drive probabilistic fate decisions (Singh and
Weinberger 2009). Stochastic noise in gene expression propagates through active,
but not inactive, regulatory links and it was recently shown that extrinsic noise
sources generate correlations even without direct regulatory links (Dunlop et al.

www.ncbi.nlm.nih.gov/geo/
www.ebi.ac.uk/microarray-as/ae/
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2008). In bacteria, it was shown that noise in expression of specific genes selects
cells for competence, and experimental reduction of this noise decreases the number
of competent cells (Maamar et al. 2007). This stochastic noise could have an impact
on cell fate not only during development but also during disease progression. It is
assumed that during development, cells acquire their fate by virtue of their lineage or
their proximity to an inductive signal from another cell. However, cells can choose
one or another pathway of differentiation stochastically, without apparent regard
to environment or history, and this stochastic character could be critical for the
maintenance of species (Losick and Desplan 2008). Although these aspects have
been studied in bacteria and yeasts, it is still particularly difficult to explore in
multicellular organisms and in diseases.

The experimental design applied to complex human diseases has focused on
gene expression regulation in tissues or cultured cells, thus excluding the single cell
resolution. Although stochastic gene expression was mentioned, it is not possible
to differentiate single cell level noise from tissue complexity, cellular heterogeneity
and inter-individual variability.

Recently, with the use of systems biology approaches, two studies have revealed
new interesting molecular networks related to AD. The first study applied weighted
gene coexpression network analysis (WGCNA) to microarray datasets analyzing
brain samples (the CA1 region of the hippocampus) from AD patients and compar-
ing to brain samples (frontal lobe) from normal elderly people (Miller et al. 2008).
This analysis produced modules of co expressed genes that are functionally related
with some relevant to disease progression and others conserved between AD and
normal aging. In the second study, gene profiling of laser microdissected samples
from the entorhinal cortex were analyzed slightly differently. Modules of highly
correlated genes were constructed and among these genes regulatory cis elements
were identified. New links have been identified between cardiovascular diseases,
AD and diabetes (Ray et al. 2008).

Genome wide association studies (GWAS) have recently revealed the power of
analyzing a very large number of samples (>1,000) (Harold et al. 2009; Lambert
et al. 2009). Although getting genomic DNA samples is far much easier than getting
brain samples, one would imagine that larger sample gene profiling datasets with
less heterogeneous samples will improve the readout of the analysis.

1.1.2 Down Syndrome (DS)

We have been interested in another complex disease, namely Down syndrome. DS
results from the presence in three copies of human chromosome 21, the smallest
human autosome containing about 350 known protein-coding genes (Antonarakis
et al. 2004; Epstein 1990; Lejeune et al. 1959). The mechanisms by which this
aneuploidy produces the complex and variable phenotype observed in DS patients
are still under discussion. The use of large scale gene expression methods such
as microarrays were expected to shed light on which genes (within or outside
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chromosome 21) contribute to the DS phenotype as well as to the phenotypic
variability. For the genes on chromosome 21, all studies have confirmed a general
increase of transcription following the chromosomal imbalance, the “primary gene
dosage effect”. RNA samples prepared from cells or tissues of DS patients or
mouse models showed a global over-expression of the three-copy genes (Ait Yahya-
Graison et al. 2007; Amano et al. 2004; Dauphinot et al. 2005; FitzPatrick et al.
2002; Giannone et al. 2004; Lockstone et al. 2007; Mao et al. 2003, 2005; Potier
et al. 2006; Saran et al. 2003). However, even if the mean over-expression we and
others reported to be close to the expected value of 1.5, recent studies in DS cell lines
have reported that about 70% of the three-copy genes were significantly below the
1.5 ratio. In these particular cell lines at least, a large proportion of the chromosome
21 transcripts were compensated for the primary gene dosage effect (Ait Yahya-
Graison et al. 2007; Prandini et al. 2007).

As for non-chromosome 21 genes, results are less consistent. The aneuploidy
of an entire chromosome could affect the expression of either a limited number of
genes, or a large number in a more random and extensive way (Mao et al. 2005;
Saran et al. 2003). Conversely classification of samples on the basis of their whole
transcriptome has not been applied systematically in the published gene expression
studies of DS. Rather it was unfortunately wrongly applied such as in Slonim
et al. (2009). In this study they conclude to a widespread differential expression
between trisomic and euploid samples based on clustering of genes differentially
expressed between trisomic and euploid, excluding the chromosome 21 genes. It
seems obvious that differentially expressed genes between two conditions would
be able to differentiate the two conditions. Nevertheless this question regarding the
regulation of gene expression for non-chromosome 21 genes is still debated, and
more comprehensive studies assessing the variability among samples, tissues and
development stages are needed.

We have designed several large scale gene expression studies in which we could
measure the effects of trisomy 21 on a large number of samples in tissues or cells
that are affected in DS (Dauphinot et al. 2005; Laffaire et al. 2009; Moldrich
et al. 2009). All were performed with the Ts1Cje mouse model of DS which
is a segmental trisomy of mouse chromosome 16 (MMU16) with many genes
orthologous to human chromosome 21 (HSA21) present in three copies (about 95).
This mouse model has the advantage of being available as large colonies of mice on
B6C3SnF1/Orl mixed genetic background and rapidly screened (Sago et al. 2000).
Experiments were designed in order to correlate gene expression changes with
the phenotype observed. Two data sets focused on cerebellum since adult Ts1Cje
mice show a reduction in cerebellar volume that parallel the observations in DS
patients and in another mouse model of DS (Ts65Dn mice) (Baxter et al. 2000;
Olson et al. 2004). The reduced size of the cerebellum and the reduced cerebellar
granule cell number in Ts65Dn adults originate around birth because of a defect in
granule cell precursor proliferation (Roper et al. 2006). In our studies, three early
postnatal time points that are crucial for cerebellar development were investigated
which could provide a read-out of genes involved in cerebellar hypoplasia in DS.
These three time points correspond to birth (P0) and postnatal days 15 (P15) and
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30 (P30). During the P0-P10 time period granule cells proliferate and migrate from
the external to the internal granule cell layer and Purkinje cells start differentiating
and growing their highly dense dendritic tree. We quantified the proliferation of
granule cell precursors on fixed cerebellum slices of Ts1Cje and euploid mice at P0,
P3 and P7 using immunohistochemistry and histology. A significant 30% decrease
of their mitotic index was observed at P0 but not at P3 and P7, in agreement with
the results obtained in Ts65Dn mice (Roper et al. 2006). Finally and in order to
find gene expression variations in cerebellar regions rich in granule cell precursors,
external granule cell layers of newborn Ts1Cje and euploid mice were dissected and
analyzed on microarrays.

We also integrated data sets that contained a number of samples that was
sufficient for statistical analysis (n� 4). These included the studies of Mao et al.
and Saran et al. from 2003 (Mao et al. 2003; Saran et al. 2003). The first dataset
contains gene expression profiles of human fetal cortex and cultured astrocytes
from four Down syndrome cases and four controls. The second study produced gene
expression profiles of the adult cerebellum from the Down syndrome mouse model
Ts65Dn.

We included in the meta analysis the data set from Amano et al. (2004) from
whole brain of newborn Ts1Cje mice (Amano et al. 2004), the one from 2007 of
Lockstone et al. (2007) and Pevsner et al. (unpublished GEO GSE9762) on adult
cortex and cultured fibroblasts respectively, from DS patients and controls. Finally,
we failed to analyze the data set from Slonim et al. (2009) on uncultured amniotic
fluid supernatants from DS and euploid fetuses (Slonim et al. 2009). Indeed, from
all the samples published, less than 1,000 genes were expressed in all experiments,
which were not representative enough for the analysis to be meaningful.

1.2 Elements of Microarray Statistical Analysis

The aim of this section is not to propose an exhaustive panorama of the existing
methods for the analysis of microarray data, but rather to give the necessary and
sufficient technical elements needed in order to understand and to reproduce the
statistical treatments that we or the authors we cite have applied to the various data
sets surveyed in this chapter.

1.2.1 Data Normalization

In addition to the variability of interest that is due to the difference between
diseased (here DS) and normal tissue, observed expression levels are also subject
to the variability introduced during sample preparation, the manufacture and the
processing of the arrays (labeling, hybridization and scan). Even if some of this
unwanted variability can be controlled using appropriate experimental design and
procedures, for example by having all experiments performed at a single time point
by a single operator, some of it can not be controlled, but still needs to be corrected.
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The most famous of these sources is perhaps the dye bias for cDNA microarray
experiments, where the efficiency, heat and light sensitivities differ for Cy3 and
Cy5, resulting in a systematically lower signal for Cy3. For cDNA microarrays,
the normalization procedure proposed in (Dudoit et al. 2002) was shown to be
efficient. It is based on Cleveland’s robust locally weighted regression for smoothing
scatterplots (Cleveland 1979), and consists in fitting a lowess curve to the MA plot
of log intensities1 of the red and green labels and considering the residuals as the
normalized log ratios.

This approach is not directly applicable to single color arrays, such as the
Affymetrix or Illumina arrays considered in this chapter. However, contrarily to
the current perception that the lowess normalization is only suited for normalizing
two single color arrays at a time, Sasik et al. (2004) showed that lowess can indeed
be applied across n > 2 arrays, assuming that most genes expressions do not change
notably across the n experiments.

In practice, multiple lowess proves quite similar to quantile normalization, which
is a much lighter procedure. The principle of quantile normalization is to make the
distribution of the probe intensities equal to a reference distribution for each of the n
arrays. This reference distribution is the mean distribution of the n arrays, computed
by sorting all p probe intensities of each array in increasing order, and computing the
ith reference intensity value as the mean of the ith intensity values of the n arrays.
Boldstad et al. showed the efficiency of the method, which is commonly used for
the normalization of Affymetrix data (Bolstad et al. 2003).

Let us illustrate this efficiency with an example exhibiting a known undesirable
effect. Gene expression was measured twice on cell lines from 12 DS patients at a 2
month interval on Illumina chips with 48,701 probes, the labeling being the same for
the two hybridizations. Figure 1.1a shows the raw intensity values for the 24 arrays,
those of the first hybridization in black, those of the second in grey: the two groups
differ visibly. One also notices differences among the first and second hybridization,
the arrays being located on two different Illumina chips (there were up to six arrays
on the considered Illumina chips). Figure 1.1b shows the mean distribution used for
quantile normalization.

In order to demonstrate the efficiency of quantile normalization, we performed
a PCA (see next section for further technical details about PCA) of the raw and of
the quantile normalized data. Both are shown in Fig. 1.2. Whereas the arrays are
grouped according to the hybridization when considering the raw data (Fig. 1.2a),
they are clearly grouped two by two when using the normalized data (Fig. 1.2b),
i.e. two arrays corresponding to the same tissue are now very close. Furthermore,
the markers used for the arrays correspond to the chip they belong to. With the raw
data, a chip effect can be noted (for arrays 1, 2 and 3 for example), which lessens
considerably after normalization.

1Transforming expression data to a log scale (any base) reduces the asymmetry of the distribution
of the intensities and homogenizes their variance. Here, probe intensities are systematically log2

values.
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Fig. 1.1 Distributions of the probe intensities for the 12 DS patients in black for the first
hybridization, and in grey for the second one. (a) Raw data; (b) Mean distribution

Fig. 1.2 PCA of the 24 arrays along the first two principal axes, each sample being originally
represented by the intensities of 48,701 probes. The arrays that where first hybridized are shown
in black, the second in grey. Identical markers denote arrays located on the same Illumina chip.
(a) Raw data (48,701 transcripts); (b) Normalized data (48,701 transcripts)

This illustration using PCA leads us to the second part of the analysis, that of
data visualization prior to differential analysis.

1.2.2 Dimensionality Reduction and Data Visualization

The result of a microarray experiment involving n arrays with p probes presents
itself as a n � p matrix of – now normalized – intensities, which can be viewed as
the representation of n tissues by the intensities of their p genes or probes (typically
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hundreds or thousands), or conversely, as the representation of the p probes by their
expression in n tissues (typically tens or even less). In this chapter, we will focus on
the first view, which raises the problem of visualizing objects in a high dimension
space, see McLachlan et al. for an exhaustive analysis of both views (McLachlan
et al. 2004).

A common way to reduce dimensionality is to carry out a principal component
analysis (PCA): the principle of PCA is precisely to project multidimensional data
to a lower dimension space retaining as much as possible of the variability of the
data.

A first purpose of such a PCA prior to differential analysis is to detect outliers
and possible biases, as well as to validate their correction by a proper normalization:
in the previous example, PCA showed the reduction of the effect of having different
hybridizations by quantile normalization.

A second goal may be to exhibit groups of tissues, especially according to the
known differences between them, such as normal and DS tissues. In this context,
we must insist that PCA is an unsupervised procedure, whose only property is
that the projection in the d-dimension space generated by the d first principal
axes has the highest variance among all possible projections in a d-dimension
space. The direction of maximum variance being composed of variance within the
groups and variance between the groups, the first principal components need not
necessarily reflect the direction in the probe space that is best for revealing the
group structure of the tissues. However, conversely, if PCA indeed reveals clusters, it
implies a large variance between the groups, i.e. the presence of many differentially
expressed probes. In this chapter, whose main object is the characterization of
DS versus normal tissues, we will systematically present three different PCA of
the data: the PCA on all transcripts, the PCA on the HSA21 chromosome (or
the equivalent part of MMU16 chromosome in three copies in the case of mouse
models) transcripts, and the PCA on the remaining euploid transcripts. Because of
the gene dosage effect, PCA on the three-copy transcripts systematically separates
normal from DS tissues. If PCA without the three-copy transcripts does, it means
that the whole transcriptome is affected by DS. This might be a useful and
complementary information to differential analysis, especially in the case of less
powerful experiments (i.e. with too few samples) where only a few genes can
be determined as significantly differentially expressed. We could have completed
the PCA with a cluster analysis, however for all the data sets presented in the
next section, hierarchical clustering never exhibits two separate clusters of DS and
euploid samples when PCA does not (while the opposite case often occurs).

Now, a few technical details need to be clarified. The lower dimensional space
used for the PCA projection is the space generated by the eigenvectors of the feature
(probe) correlation matrix corresponding to its largest eigenvalues, called principal
axes, see for example Johnson and Wichern (2002). In many applications, it happens
that some features have completely different scalings. For example, one of the
features may have been measured in meters and another one, by design or accident,
in micrometers. Since eigenvalues are scale dependent, it might be appropriate in
such cases to rescale all features to the same scale, which amounts to use the
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Fig. 1.3 Same as in Fig. 1.2, except that the PCA is performed on the correlation matrix (i.e.
with rescaled probe intensities). (a) Raw data (48,701 transcripts); (b) Normalized data (48,701
transcripts)

correlation matrix of the features, instead of their covariance matrix. In the case of
gene expression, rescaling leads to give low- or unexpressed genes (the variance of
which corresponds to noise) the same importance as highly expressed genes, which
is indeed not desirable.

To illustrate this, Fig. 1.3 shows the two PCA of the 12 DS tissues hybridized
twice, this time with rescaled intensities. On the raw data, the main variability
being due to the different hybridizations, the projection is quite similar as when
performed on the un-rescaled data. But on the normalized data, where this effect
has been removed, we see that we have lost the close neighborhood of the couples
of arrays corresponding to the same tissue. Thus, all PCA presented in this chapter
are performed on the normalized, un-rescaled probe intensities. On PCA figures,
the percentage indicated in parentheses in a principal axis label corresponds to the
proportion of the variance explained by this axis.

Finally, whatever the platform, intensity values are usually provided with “calls”
(present, absent, marginal) and/or detection p-values. The PCA shown in the
next section have been performed on the transcripts considered present or with
expression p-values lower than 5% or 1% for all n arrays (when the p–values
were not available, we chose a cutoff on the probe intensity so as to obtain the
same proportion of expressed transcripts). For our example, 10,626 transcripts are
considered present on all arrays with a threshold of 5% on the detection p-value, and
the PCA on these 10,626 transcripts is shown on Fig. 1.4. The benefit of removing
the non-expressed genes is especially noticeable on the raw data, where the couples
are now visible (though still much less than on the normalized data).
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Fig. 1.4 Same as in Fig. 1.2, but only for the 10,626 transcripts considered present on all 24 arrays.
(a) Raw data (10,626 transcripts); (b) Normalized data (10,626 transcripts)

1.2.3 Differential Analysis at the Gene Level

The purpose of differential analysis at the gene (or transcript) level is to identify
genes whose expression level differs from a condition to another, based on statistical
hypothesis testing. Almost all experiments analyzed in this chapter involve two
groups of tissues, normal and DS tissues, usually unpaired. Thus, the traditional
t-test is relevant for our purpose, which reformulates the question of differential
expression of gene i in terms of a null hypothesis H0i “there is no difference of mean
expression for the transcript i between the normal and the DS tissues”. Student’s
t-test is indeed the test that was used in almost all reviewed papers, and that we
used for the experiments for which no analysis was published. Once the t-statistic is
computed, the classical decision rule to accept or reject H0i consisting in controlling
the type I error probability can be applied for declaring each gene differentially
expressed (DE) or not.

However, the specificity of microarray differential analysis lies in the large
number of tests to be performed: as many as probes on the array, or at least, as
expressed transcripts. The question of differential expression must hence be restated
as a multiple testing problem. The first attempts to solve this problem aimed at
controlling the Family Wise Error Rate (FWER), that is the probability to have at
least one false positive, and the procedures of Bonferroni and Sidak are the most
widely used to this end. An alternative approach has been proposed in Benjamini
and Hochberg, based on the principle that the designer of a microarray experiment is
ready to accept some type I errors, provided that their number is small as compared
to the total number of rejected hypotheses (i.e. of genes decided DE) (Benjamini and
Hochberg 1995). This approach aims at controlling the False Discovery Rate (FDR),
i.e. the expected proportion of false positives among the total number of positives.
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Fig. 1.5 Histograms of the p-values of three statistical hypothesis tests: (a) Student’s test of
equality of the means, (b) Fisher’s test of equality of the variances, (c) Wilcoxon’s non parametric
rank sum test

Storey and Tibshirani proposed to define an equivalent of the p-value for the control
of the FDR, the q-value (Storey and Tibshirani 2003). If genes with q-values smaller
than 5% are decided DE, then there is a FDR of 5% among the DE genes. In practice,
the q-values can be computed from the p-values, and are often called “adjusted
p-values”. Most papers reviewed here use the q-values corresponding to Benjamini
and Hochberg’s rule to control the FDR, possibly with an estimation of the number
m0 of true null hypotheses H0i (i.e. the number of not DE genes), see Storey and
Tibshirani (2003).

Let us take the example of Pevsner’s data available on GEO without published
analysis. We analyze the expression of human skin fibroblasts, from five normal and
five DS individuals, as measured by Affymetrix arrays involving 54,675 probes (we
use the calls and normalized intensity values calculated by the MAS 5 or GCOS
software as available on GEO).

We performed the t-test for the transcripts which were considered present at least
three times in both conditions, i.e. for 22,606 transcripts. The histogram of the
corresponding p-values is shown in Fig. 1.5a. Their distribution is far from being
uniform, which means that many genes are differentially expressed. As a matter of
fact, when controlling only an individual type I error risk of 5% using the p-values,
2,938 transcripts are decided DE.

The number of true null hypotheses m0 is roughly given the number of p-values
in the flat part of the histogram (the ones which would correspond to the uniform
distribution). It can be estimated at 17,108 according to Storey and Tibshirani (2003)
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(with the tuning parameter œD 0.5). Using this estimate for the computation of the
q-values, only 11 transcripts are decided DE when imposing a FDR of 5% (76 with
a FDR of 10%).

Let us now discuss the relevance of the t-tests. For a t-test to be valid, in addition
to the absence of correlation of the measurements, two assumptions are supposed
to be true: the normality of the data, and the equality of the variance in the two
conditions. If, like here, the number of measurements is small, the normality can
hardly be tested efficiently. But (assuming normality), the Fisher test of the equality
of the variances can indeed be performed. For our example, the histogram of its
p-values is shown on Fig. 1.5b. The distribution being uniform, as would be the case
if all null hypotheses were true, we can conclude that the variances are equal in the
two conditions, and this justifies the use of the t-test.

If the previous Fisher test establishes that many variances are different, or if
non-normality is suspected, a solution could be to use Wilcoxon’s non parametric
rank sum test. A problem then arises with small samples that is clearly visible on
Fig. 1.5c: the Wilcoxon statistic being discrete, so are the p-values and hence the
q-values. Here, the smallest q-value equals 0.26, one cannot impose the FDR to be
smaller than 26% (627 transcripts are DE with a FDR of 26%).

Thus, in the situations where the assumptions that the data is normal and/or that
the variances are unequal are really unsuitable, the best alternative is to estimate the
empirical distribution of the t-statistics using permutation methods such as bootstrap
or permutations, see Westfall and Young (1992). A particularly popular and efficient
permutation method is the Significance Analysis of Microarrays (SAM) proposed
by Tusher et al. (2001).

1.2.4 Differential Analysis at the Gene Set Level

In order to take full advantage of the differential analysis at the gene level, which
merely provides an unstructured list of DE genes, an integration at a higher level is
necessary. Thus, the identification of predefined sets of biologically related genes
enriched or depleted with DE genes has become a routine part of the analysis and
of the interpretation of microarray data.

Gene sets can be built on several criteria. These criteria can be based on
the available annotation sources such as GO, the Gene Ontology project, KEGG,
the Kyoto Encyclopedia of Genes and Genomes, or GenMAPP for example. In the
case of DS studies, other gene sets of interest are the HSA21 genes, or even genes
belonging to the specific bands of HSA21, as analyzed in Slonim et al. (2009).

The first and most common approaches used to identify gene sets enriched or
depleted in DE genes are based on the two-by-two contingency table obtained by
classifying the genes into “being DE or not DE” on one hand, and “belonging to
the gene set S of interest or not” on the other hand. The statistical significance
of the overlap between being DE and belonging to S can be established more or
less equivalently using the hypergeometric test, Fisher’s exact test or chi-square



1 Functional Genomics and Molecular Networks Gene Expression... 13

Fig. 1.6 Percentage of DE transcripts for each chromosome (the 23th is the X)

tests, as proposed by many GO processing tools, see Rivals et al. (2007) for a
review. Though these approaches are quite efficient, their limitation is to require
a preliminary categorization into DE and not DE genes, i.e. they necessitate the
choice of a significance cutoff (be it in the form an individual type I error risk, or of
a FDR), which is always arbitrary.

More recently, several methods have been proposed that avoid categorizing the
genes into DE and not DE, by simply using the t-statistics or the associated p-values.
For example, Sartor et al. (2009) propose a very intuitive logistic regression
approach, LRpath. Given a gene set S of interest, a target variable y is defined as
having value 1 for the genes in S, and value 0 for the others. The –log(p-value)
is used as explanatory variable x, and y is modeled by a logistic function of x,
1/(1C exp(�(axC b)). If the slope a is found significant according to a classic Wald
test, the subset is decided significantly enriched (a > 0) or depleted (a < 0) in DE
genes.

Let us illustrate the enrichment/depletion analysis using the hypergeometric test
and LRpath on the example of Pevsner’s data, simply defining the gene subsets
of interest according to the chromosomes they belong to. For the hypergeometric
test, we define a threshold of 5% for the p-values, i.e. genes with p� 5% are
considered DE. The percentage of DE transcripts for each chromosome is shown
on Fig. 1.6: with 49% of DE transcripts, chromosome 21 appears clearly enriched.
But is chromosome 3 significantly depleted with 10.6%?

The p-values of the hypergeometric test and of LRpath are shown in Table 1.1.
It is interesting to note that they often disagree (Spearman’s �D 0.34), hence the
interest for the recent approaches avoiding categorization into DE/not DE.

On the other hand, we have computed Wilcoxon’s rank sum statistic for the
p-values (one group being the set S corresponding to one chromosome, the second
all the other transcripts), which is in good agreement with LRpath (Spearman’s
�D 0.80): we see that this simple test is a good indicator for enrichment/depletion.

For the chromosomes for which the three tests agree (chromosomes 3, 1 and 21),
Fig. 1.7 shows the results of the logistic regression for LRpath. Chromosomes 3 and
15 are depleted in DE genes, whereas chromosome 21 is enriched, as expected.

Gene set enrichment analysis (GSEA), in the version proposed by Subramanian
et al. (2005), is used for example in Slonim et al. (2009) in order to detect
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Table 1.1 Enrichment/depletion tests for the chromosomes (except chromosome Y with
too few transcripts)

p

Chromosome Transcripts DE transcripts Hypergeometric LRpath Wilcoxon

1 2;087 291 0:44 0:63 0:058

2 1;461 190 0:7 0:36 0:36

3 1;184 125 0:003 7:210�4 0:0054

4 788 105 1 0:031 0:015

5 1;054 130 0:33 0:32 0:12

6 1;079 155 0:35 0:18 0:2

7 954 117 0:32 0:42 0:87

8 712 94 0:94 0:56 0:3

9 823 102 0:43 0:99 0:65

10 839 123 0:29 0:14 0:18

11 1;103 134 0:23 0:28 0:92

12 1;095 154 0:52 0:072 0:061

13 430 50 0:31 0:59 0:5

14 700 103 0:32 0:042 0:073

15 675 106 0:085 0:92 0:78

16 839 92 0:037 0:0045 0:035

17 1;117 143 0:6 0:44 0:34

18 329 45 0:92 0:67 0:35

19 1;109 135 0:24 0:029 0:058

20 561 62 0:11 0:2 0:13

21 219 107 7:9e�11 0 0

22 427 64 0:36 0:93 0:86

X 665 82 0:46 0:037 0:038

Fig. 1.7 Logistic regression on �log10(p) for the chromosomes significantly enriched or depleted
in DE transcripts

enriched bands on chromosome 21. Like the Wilcoxon test, GSEA uses the complete
distribution of the p-values, divides the genes into the set S of interest and the rest,
and ranks them according to the p-value. But the enrichment score is computed
by walking down the list, increasing a running sum statistic when a gene in S
is encountered, and decreasing it when the gene is outside S; the enrichment
score is the maximum deviation from zero encountered during the walk, and its
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significance is evaluated by estimating the null distribution through permutations
(i.e. the correlation structure of the gene expression is taken into account, what the
simple Wilcoxon test does not).

Finally, let us mention ProbeCD, the method proposed by Vencio and
Schmulevitch (2007). ProbCD not only presents the advantage of not requiring
the choice of a significance cutoff, but it is also able to take the uncertainty in the
gene annotation into account.

1.3 Results

Table 1.2 summarizes the data sets considered in this study. As detailed in the
previous section, PCA was applied to the normalized datasets, on the transcripts
expressed across all arrays. Three different PCA were systematically performed:
one with all expressed transcripts, another with the expressed three-copy transcripts
only (those of HSA21 or of the triplicated part of MMU16), and the last with the
remaining euploid transcripts. The ultimate goal of this analysis was to visualize
whether samples would be grouped according to their genotype (DS or control)
and in which conditions (with all genes, with triplicated genes only and/or with the
euploid genes only). Figures 1.8, 1.9, 1.10, 1.11, 1.12, 1.13 and 1.14 show the results
from these PCA applied to the data sets. On all of them, DS samples are shown in
black, control samples in white.

From the analysis including the three copy genes only, samples from DS models
are very clearly separated from samples from euploid controls. This is due to
the global overexpression of the three copy genes that has been largely described
previously. Indeed, in DS, three-copy genes are globally over-expressed by a mean
factor of 1.5. However at the single gene resolution, this 1.5 overexpression does
not strictly apply and several comprehensive studies have shown that compensation
and amplification mechanisms do exist. Compensated three-copy genes will not be
over-expressed while amplified three-copy genes will be over-expressed by a factor
significantly higher than 1.5 (Ait Yahya-Graison et al. 2007; Prandini et al. 2007).

When comparing the PCA performed on all expressed genes and applied to
the various sets of data, the results are quite different. With three sets of data
(Figs. 1.8, 1.9, 1.10), samples from DS models are separated from samples from
euploid controls, although comparatively less than when the analysis is applied to
three copy genes only. With one set of data (Fig. 1.11), the separation is present in
a lesser extent. Finally, with the last three sets of data all samples are mixed and no
separation is clearly depicted (Figs. 1.12, 1.13 , 1.14).

For the datasets with a clear separation, we tested the influence of the three-copy
genes. We removed them and run the PCA on all expressed genes except the three-
copy genes. The right panels of Figs. 1.8, 1.9 and 1.10 show the same projections
than the right panels, thus suggesting that the categorization into normal and DS
samples is not due to the overexpression of the three-copy genes only but rather to
a modification of the whole transcriptome.
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Fig. 1.8 PCA of the data described in Lockstone et al. ( 2007)

Fig. 1.9 PCA of the data described in Pevsner (GEO GSE9762)

Fig. 1.10 PCA of the data described in Saran et al. (2003)

We tried to analyze the reasons why datasets would behave differently towards
PCA. One obvious reason would be that there is a factor which is stronger than the
genotype (DS or control) that drives the separation of samples. This is the case for
samples that include different time points during development in the same analysis
(Figs. 1.13, 1.14). On Fig. 1.13, samples segregate with the litter. In this particular
analysis the external granular layer of the cerebellum was dissected at birth (P0)
from the Ts1Cje mice. What is called P0 can in fact be between birth and P1
depending on the time of birth during the day or during the night. According to
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Fig. 1.11 PCA of the data described in Mao et al. (2003)

Fig. 1.12 PCA of the data described in Amano et al. (2004)

Fig. 1.13 PCA of the data described in Laffaire et al. (2009). The three markers correspond to
three different litters

the PCA, samples were separated according to the litter, indicating that the up to
12–24 h can impact seriously on the transcriptome of this particular cell type. On
Fig. 1.14, it is clear that the impact of development on gene expression is much
bigger than the impact of trisomy 21, as was discussed previously (Dauphinot et al.
2005).

In the case of the data set from Amano et al., again whole brains were obtained
at birth with possibly an up to 24 h difference between litters and even between
pups. It is known that the embryos from a litter are not totally equivalent in term of
development depending on their position in the uterus.
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Fig. 1.14 PCA of the data described in Dauphinot et al. (2005). The three markers correspond to
three different developmental stages (P0, P15, P30)

1.4 Conclusion

Functional genomics needs to be applied to complex diseases. In the case of Down
syndrome, we have used gene expression profiling in various human samples or
in mouse models and shown that, when we selected the three-copy genes for the
analysis, samples were separated according to their genotype (DS or euploid) in
all data sets. This is due to the global over-expression of the three-copy genes in
DS or in mouse models. When using all expressed genes, samples were separated
according to their genotype only in some datasets. This suggests that, in the datasets
with no separation, there is a factor other than trisomy that strongly impacts on the
transcriptome. We have shown that this factor can be the postnatal development of
the cerebellum.

It now remains to be shown whether, beside the global over-expression of the
three-copy genes, there will be a common set of genes that is modified in all samples
analyzed. We and others have tried to search for this group of genes without any
frank success. To get a more precise answer, very large sets of data will need
to be generated, or alternatively, gene profiling should be obtained from single
cells either trisomic or euploid. At the present time, gene expression profiles are
obtained from samples that are too variable (different tissues or cells, different
time points during development, different individuals with too many inter-individual
variations and not enough samples). If the common set of dysregulated genes does
not exist, it suggests that the most important trend is the overexpression of the three-
copy genes themselves that secondarily impacts on the whole transcriptome in a
“stochastic” way.
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20 M.-C. Potier and I. Rivals

References

Ait Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G et al. (2007)
Classification of human chromosome 21 gene-expression variations in Down syndrome: impact
on disease phenotypes. Am J Hum Genet 81(3):475–491

Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N et al. (2004) Dosage-
dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down
syndrome. Hum Mol Genet 13(13):1333–1340

Antonarakis SE, Lyle R, Dermitzakis ET, Reymond A, Deutsch S (2004) Chromosome 21 and
Down syndrome: from genomics to pathophysiology. Nat Rev Genet 5(10):725–738

Baxter LL, Moran TH, Richtsmeier JT, Troncoso J, Reeves RH (2000) Discovery and genetic
localization of Down syndrome cerebellar phenotypes using the Ts65Dn mouse. Hum Mol
Genet 9(2):195–202

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J R Stat Soc B 57(1):289–300

Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient
Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor
suppressor responses. Proc Natl Acad Sci U S A 101(7):2173–2178

Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for
high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–
193

Bontoux N, Dauphinot L, Vitalis T, Studer V, Chen Y, Rossier J et al. (2008) Integrating whole
transcriptome assays on a lab-on-a-chip for single cell gene profiling. Lab Chip 8(3):443–450

Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat
Assoc 74:829–836

Dauphinot L, Lyle R, Rivals I, Dang MT, Moldrich RX, Golfier G et al. (2005) The cerebellar
transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model
for Down syndrome. Hum Mol Genet 14(3):373–384

Dudoit S, Yang YH, Callow MJ, Speed T (2002) Statistical methods for identifying genes with
differential expression in replicated cDNA microarray experiments. Stat Sin 12:111–139

Dunlop MJ, Cox RS 3rd, Levine JH, Murray RM, Elowitz MB (2008) Regulatory activity revealed
by dynamic correlations in gene expression noise. Nat Genet 40(12):1493–1498

Emilsson L, Saetre P, Jazin E (2006) Alzheimer’s disease: mRNA expression profiles of multiple
patients show alterations of genes involved with calcium signaling. Neurobiol Dis 21(3):
618–625

Epstein CJ (1990) The consequences of chromosome imbalance. Am J Med Genet 7(Suppl):31–37
FitzPatrick DR, Ramsay J, McGill NI, Shade M, Carothers AD, Hastie ND (2002) Transcriptome

analysis of human autosomal trisomy. Hum Mol Genet 11(26):3249–3256
Giannone S, Strippoli P, Vitale L, Casadei R, Canaider S, Lenzi L et al. (2004) Gene expression

profile analysis in human T lymphocytes from patients with Down syndrome. Ann Hum Genet
68(Pt 6):546–554

Golfier G, Lemoine S, van Miltenberg A, Bendjoudi A, Rossier J, Le Crom S et al. (2009) Selection
of oligonucleotides for whole-genome microarrays with semi-automatic update. Bioinformatics
25(1):128–129

Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML et al. (2009) Genome-
wide association study identifies variants at CLU and PICALM associated with Alzheimer’s
disease. Nat Genet 41(10):1088–1093

Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis. Prentice-Hall, Upper
Saddle River

Laffaire J, Rivals I, Dauphinot L, Pasteau F, Wehrle R, Larrat B et al. (2009) Gene expression
signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal
development. BMC Genom 10:138



1 Functional Genomics and Molecular Networks Gene Expression... 21

Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M et al. (2009) Genome-wide
association study identifies variants at CLU and CR1 associated with Alzheimer’s disease.
Nat Genet 41(10):1094–1099

Lejeune J, Gautier M, Turpin R (1959) Study of somatic chromosomes from 9 mongoloid children.
C R Hebd Seances Acad Sci 248(11):1721–1722

Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S (2007) Gene expression
profiling in the adult Down syndrome brain. Genomics 90(6):647–660

Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320(5872):65–68
Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J et al. (2004) Gene regulation and DNA damage in

the ageing human brain. Nature 429(6994):883–891
Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus

subtilis. Science 317(5837):526–529
Macarthur BD, Ma’ayan A, Lemischka IR (2009) Systems biology of stem cell fate and cellular

reprogramming. Nat Rev Mol Cell Biol 10(10):672–681
Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM (2007) Transcriptional profiling of

Alzheimer blood mononuclear cells by microarray. Neurobiol Aging 28(12):1795–1809
Mao R, Zielke CL, Zielke HR, Pevsner J (2003) Global up-regulation of chromosome 21 gene

expression in the developing Down syndrome brain. Genomics 81(5):457–467
Mao R, Wang X, Spitznagel EL Jr, Frelin LP, Ting JC, Ding H et al. (2005) Primary and secondary

transcriptional effects in the developing human Down syndrome brain and heart. Genome Biol
6(13):R107

McLachlan GJ, Do K-A, Ambroise C (2004) Analyzing microarray gene expression data. Wiley,
New York

Miller JA, Oldham MC, Geschwind DH (2008) A systems level analysis of transcriptional changes
in Alzheimer’s disease and normal aging. J Neurosci 28(6):1410–1420

Moldrich RX, Dauphinot L, Laffaire J, Vitalis T, Herault Y, Beart PM et al. (2009) Proliferation
deficits and gene expression dysregulation in Down’s syndrome (Ts1Cje) neural progenitor
cells cultured from neurospheres. J Neurosci Res 87(14):3143–3152

Nagasaka Y, Dillner K, Ebise H, Teramoto R, Nakagawa H, Lilius L et al. (2005) A unique gene
expression signature discriminates familial Alzheimer’s disease mutation carriers from their
wild-type siblings. Proc Natl Acad Sci U S A 102(41):14854–14859

Olson LE, Roper RJ, Baxter LL, Carlson EJ, Epstein CJ, Reeves RH (2004) Down syndrome
mouse models Ts65Dn, Ts1Cje, and Ms1Cje/Ts65Dn exhibit variable severity of cerebellar
phenotypes. Dev Dyn 230(3):581–589

Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J et al. (2006) Transcriptional
disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal
development. J Neurochem 97(Suppl 1):104–109

Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C, Delorenzi M et al. (2007)
Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage
imbalance. Am J Hum Genet 81(2):252–263

Ray M, Ruan J, Zhang W (2008) Variations in the transcriptome of Alzheimer’s disease reveal
molecular networks involved in cardiovascular diseases. Genome Biol 9(10):R148

Rivals I, Personnaz L, Taing L, Potier MC (2007) Enrichment or depletion of a GO category within
a class of genes: which test? Bioinformatics 23(4):401–407

Roper RJ, Baxter LL, Saran NG, Klinedinst DK, Beachy PA, Reeves RH (2006) Defective
cerebellar response to mitogenic Hedgehog signaling in Down [corrected] syndrome mice. Proc
Natl Acad Sci U S A 103(5):1452–1456

Sago H, Carlson EJ, Smith DJ, Rubin EM, Crnic LS, Huang TT et al. (2000) Genetic dissection of
region associated with behavioral abnormalities in mouse models for Down syndrome. Pediatr
Res 48(5):606–613

Saran NG, Pletcher MT, Natale JE, Cheng Y, Reeves RH (2003) Global disruption of the cerebellar
transcriptome in a Down syndrome mouse model. Hum Mol Genet 12(16): 2013–2019

Sartor MA, Leikauf GD, Medvedovic M (2009) LRpath: a logistic regression approach for
identifying enriched biological groups in gene expression data. Bioinformatics 25(2):211–217



22 M.-C. Potier and I. Rivals

Sasik R, Woelk CH, Corbeil J (2004) Microarray truths and consequences. J Mol Endocrinol
33:1–9

Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression
patterns with a complementary DNA microarray. Science 270(5235):467–470

Singh A, Weinberger LS (2009) Stochastic gene expression as a molecular switch for viral latency.
Curr Opin Microbiol 4:460–466. http://www.doodle.com/yix62vkik5gks8v612

Slonim DK, Koide K, Johnson KL, Tantravahi U, Cowan JM, Jarrah Z et al. (2009) Functional
genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant
in Down syndrome fetuses. Proc Natl Acad Sci U S A 106(23):9425–9429

Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci
U S A 100(16):9440–9445

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005) Gene
set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing
radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121

Vencio RZ, Shmulevich I (2007) ProbCD: enrichment analysis accounting for categorization
uncertainty. BMC Bioinforma 8:383

Westfall PH, Young SS (1992) Resampling-based multiple testing. Wiley, New York

http://www.doodle.com/yix62vkik5gks8v612


Chapter 2
Reconstructing Models from Proteomics Data

Lysimachos Zografos, Andrew J. Pocklington, and J. Douglas Armstrong

Abstract The synaptic proteome is a highly complex and dynamic structure
composed of more than 2,000 distinct proteins. The constant improvement of
synaptic fraction preparation, protein complex isolation and mass spectrometry
identification methods has led to a great accumulation of synaptic proteomics data.
In order to gain a better insight of how the synaptic proteome is organised in
molecular complexes identified from the biochemical analysis of neural tissues we
have developed and combined a series of methods for reconstructing and analysing
protein interaction network models from synaptic proteomics data. These methods
cover every aspect of the reconstruction, ranging from how to annotate the proteins
and acquire the protein interaction data to how to interpret and analyse the resulting
models. This chapter gives a detailed overview of these methods as well as example
applications to case study proteomics datasets.

2.1 Introduction

2.1.1 The Synapse and the Postsynaptic Density

Information in the nervous system is encoded in patterns of action potentials –
electrical pulses generated in neurons, and transmitted from one to another at
specialised junctions known as synapses. At chemical synapses, the most abundant
type in the nervous system, action potentials propagating through the presynaptic
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neuron are converted into release of a neurotransmitter, such as glutamate. This
diffuses across the synaptic cleft and binds to receptors on the postsynaptic
cell, resulting in transient local depolarization of the cell membrane. When the
postsynaptic neuron becomes sufficiently depolarised, due to input from one or more
synapses, a new action potential is generated. Synaptic input is also processed by the
postsynaptic signalling machinery, which is closely linked to the intracellular side of
the post-synaptic membrane in a structure known as the postsynaptic density (PSD).
The PSD is a complex, dynamic structure composed of �2,000 distinct proteins
(Bai and Witzmann 2007; Choudhary and Grant 2004; Li et al. 2004; Collins et al.
2006; Emes et al. 2008; Li and Jimenez 2008; Trinidad et al. 2008; Fernández et al.
2009; Croning et al. 2009), of which�100 are thought to be present at an individual
synapse (Sheng and Hoogenraad 2007; Selimi et al. 2009). Physical interactions
organise these proteins into signalling pathways that coordinate changes in synaptic
strength (the amount of depolarisation caused by activation of the synapse) in
response to patterns of neuronal activity. These changes in synaptic strength, known
as synaptic plasticity, alter the flow of activity in neuronal networks and are widely
thought to form the basis of behavioural learning and memory.

2.1.2 Mental Disease and the Synapse

Given the importance of synaptic signalling to normal brain function and develop-
ment, it is natural to expect that mutations affecting synapse proteins may contribute
to human psychiatric disorders. Indeed, functional genetic studies have shown that
disruption of PSD proteins linked to glutamate receptor signalling alters cognitive
function in rodents (Migaud et al. 1998; Husi et al. 2000; Grant 2003), while drugs
acting at synapses via antagonism of the glutamatergic NMDA receptors have long
been known to result in a schizophrenia-like psychosis with cognitive disturbance.
However it is only comparatively recently that clear evidence has started to appear
for a specifically synaptic involvement in complex psychiatric disorders such as
autism (Jamain et al. 2003; Moessner et al. 2007; Berkel et al. 2010; Pinto et al.
2010; Hamdan et al. 2011) and schizophrenia (Kirov et al. 2009b). The earliest
genetic studies, focusing on candidate genes, were based on small samples with
only sufficient power to reliably detect disease-relevant mutations of relatively large
effect. As a result, most reported genes failed to replicate in subsequent studies, and
there was little consensus on which genes were the most strongly supported (for
a review of schizophrenia studies see Harrison and Weinberger 2005). To support
the equivocal genetic data, comparisons were also made of gene expression and
protein abundance between affected and unaffected individuals, some identifying
differences in synaptic proteins. These studies were also of limited impact due to
small sample sizes and problems in interpretation, it being unclear if the changes
identified were primary causes of disease or secondary effects due to compensatory
mechanisms, medication, etc. When genome-wide association studies (GWAS)
of common single nucleotide polymorphisms (SNPs) started to be performed, it
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became clear that conditions such as schizophrenia and bipolar disorder are highly
polygenic, with potentially thousands of SNPs of small effect contributing to
susceptibility (Purcell et al. 2009). With the exception of late-onset Alzheimer’s
disease, where evidence points to disruption of cholesterol and immune pathways
(Jones 2011), the SNPs that have so far reached genome-wide levels of significance
have not yet converged on a clear set of disease-relevant processes. Arguably the
most productive area of research to date has been the study of rare structural variants,
with early studies identifying a translocation of DISC1 (Millar et al. 2000), and
a microdeletion causing Velocardiofacial syndrome as conferring increased risk
of schizophrenia (for a recent review see Karayiorgou et al. 2010). Genome-wide
studies of copy number variants (CNVs), in which extended genomic sequences
are duplicated or deleted, have discovered that large, rare CNVs contribute to both
autism and schizophrenia (Redon et al. 2006; Walsh et al. 2008; Stone et al. 2008).
Many CNVs disrupt multiple genes, making identification of the underlying risk
factors difficult. Where it has been possible to link a CNV to disruption of a
single gene, strong evidence for involvement of the trans-synaptic machinery has
been found, with the identification of rare mutations in NRXN1 (Kim et al. 2008),
NLGN3 (Jamain et al. 2003), NLGN4X (Jamain et al. 2003), SHANK2 (Berkel et al.
2010; Pinto et al. 2010), SHANK3 (Moessner et al. 2007), SYNGAP1 (Hamdan
et al. 2011; Pinto et al. 2010) and DLGAP2 (Pinto et al. 2010) in autism, and
NRXN1 (Kirov et al. 2009a) in schizophrenia. Interestingly, almost all of these
genes regulate synapse structural organisation: the presynaptic neurexins (NRXN)
and their postsynaptic binding partners the neuroligins (NLGN) are cell-adhesion
molecules with a key role in synapse development and differentiation (Craig
and Kang 2007); while SHANK2, SHANK3 and DLGAP2 are PSD scaffolding
molecules organising postsynaptic signal transduction pathways (SYNGAP1 being
one important component of such pathways). Psychiatric genetics is now beginning
to explore whole exome/genome sequencing, which will allow the identification
of rare SNPs and small insertions and deletions. Understanding the functional
organisation of the synapse should help elucidate the mechanisms by which these
novel mutations contribute to disease and isolate the specific aspects of neuronal
function being disrupted in different disorders and cross-disorder phenotypes.

2.1.3 Proteomics of the Synapse

The characterisation of synaptic complexes has generally been performed by mass
spectrometry (MS) applied to a protein sample: enzymes cut the proteins into
fragments which are then ionized, fired through an electromagnetic field and their
mass to charge ratio measured by a detector. The abundance of individual peptides
is calculated from the resulting spectrum, and clusters of peptides corresponding to
individual proteins (or sets of closely related proteins) identified. Care must be taken
that ambigiously identified sets of proteins do not overly influence the results of any
subsequent analysis, e.g. by removal, or creation of a single composite ‘protein’
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which reflects the functional properties of the set as a whole. The ability to reliably
detect a protein will depend on its abundance, the number of characteristic peptide
fragments it is cleaved into, and how well these peptides ionise and ‘fly’ within
the machine. With improving technology it has become possible to identify low
abundance proteins, an inevitable side-effect of which is the increased identification
of trace contaminants. This problem may be reduced by improvements in isolation
techniques, more extensive validation of identified proteins and the removal of
known common contaminants from results. The most prevalent MS method is
liquid chromatography-mass spectrometry (LC-MS), although matrix-assisted laser
desorption/ionization reflector time-of-flight mass spectrometry (MALDI-TOF-
MS) has also been used, primarily in early publications.

A broad overview of synapse composition can be obtained by extracting synaptic
fractions from homogenised brain tissue through synaptosome isolation methods
such as the one described by Carlin et al. (1980) and Wu et al. (1986). In order
to isolate specific components of the synaptic machinery, affinity or immunopre-
cipitation methods can be used, in which a “bait” protein is immobilised on resin
via interaction with an antibody against an epitope or a genetically engineered
tag; contaminants are removed with repeated washes; then the complex of “prey”
proteins binding to the bait (both directly and through interactions with other
proteins) are eluted and characterised. A similar approach is the use of resin with
a bound synthetic peptide acting as an artificial protein interaction domain. In
analysing the composition of such complexes, it must be remembered that affinity
and immunoprecipitation based methods are susceptible to biases ranging from non-
specificity of the affinity reagent to potential inability of a genetically tagged protein
to be post-translationaly modified in order to interact with some of its partners.
Additional problems may arise if the immunoprecipitation epitope or affinity tag
overlap interaction domains required by prey proteins or from the presence of
promiscuous non-specific interactors. The transgenic Tandem Affinity Purification
(TAP) method (Puig 2001) can tackle some of these issues by using two consecutive
purifications with two different affinity tags.

There have been several global studies of synapse composition, predominantly
in mouse or rat. One of the earliest high throughput studies identified proteins in
a series of 26 prominent multi-protein bands from synaptosome preparations using
MALDI-TOF-MS (Walikonis et al. 2000). Other proteomic studies focusing on the
PSD followed, including Jordan et al. (2004), Peng et al. (2004), Yoshimura et al.
(2004) and Collins et al. (2006). Although isolation and identification methods have
improved over the years, the latter studies revealed protein sets with an overlap in
the area of 50%. An attempt to define a consensus PSD was made by Collins et
al. (2006). Utilizing 1D gel electrophoresis of synaptosome protein extracts and
LC-MS, 698 proteins were identified in the mouse postsynaptic terminal, of which
620 had previously been found in PSD preparations. These were combined with
data from other studies (Walikonis et al. 2000; Jordan et al. 2004; Peng et al.
2004; Yoshimura et al. 2004) to produce a list of 1,126 postsynaptic proteins, of
which 446 were found in two or more studies. More recent additions to these lists
come from Hahn et al. (2009) and Bayés et al. (2010) who studied the human
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PSD, Trinidad et al. (2008) and Coba et al. (2009), with the latter two focusing on
phopshorylation and signaling associated proteins. With these constant additions the
total number of proteins in the PSD has risen to more than 2,000 (Bayés and Grant
2009). Studies of the presynaptic machinery have also been made, with synaptic
vesicles being characterised by Morciano et al. (2005), Burre et al. (2006), Takamori
et al. (2006) and Grønborg et al. (2010) while the presynaptic active zone was
studied by Morciano et al. (2009). Variations in synapse composition are likely
to be of fundamental importance in shaping the transmission and processing of
information between different cell-types. Recent studies have sought to characterise
the synaptic machinery present at a single synapse type (Selimi et al. 2009) and
to compare the composition of synaptic vesicles at GABA and glutamate synapses
(Grønborg et al. 2010).

The first studies to isolate protein complexes from within the PSD focused
on the NMDA receptor (NMDAR), which is coupled to signalling pathways via
MAGUK-family (and other) scaffold proteins and plays a major role in the induction
of synaptic plasticity. Initially 100 proteins were identified in isolates using an
antibody to the NR1 subunit of the receptor then 170 by peptide-affinity purification
using a MAGUK-binding peptide from the C-terminus of the NR2B subunit (see
Husi and Grant 2001). The combined set of 186 proteins, referred to as NMDA
Receptor Complex/MAGUK-Associated Signalling Complex (NRC/MASC) has
been the subject of a number of subsequent analyses and will appear as an
example in following sections. Other complexes isolated using similar approaches
include the glutamatergic mGluR5 (Farr et al. 2004), serotonergic 5HT-2C (Bécamel
et al. 2002), and nicotinic alpha-7 receptor complexes (Paulo et al. 2009). More
recently the transgenic TAP technique was applied by Fernández et al. (2009)
to characterize 118 proteins in complexes containing PSD-95, one of the most
abundant postsynaptic scaffold proteins at excitatory synapses (Nourry et al. 2003;
Peng et al. 2004).

2.1.4 Organisation and Analysis of the Synapse Proteome

Physical interactions are central to synapse functional organisation, shaping the
synaptic machinery into localised signalling microdomains. Postsynaptically, these
domains are centred upon cell-surface channels and receptors. The structural core
of the PSD is composed of cytoskeletal, scaffold and adaptor proteins that connect
and organise the various receptors, channels, cell adhesion and membrane bound
proteins. The scaffold also regulates interaction of the receptors and membrane
bound proteins with various signaling molecules and enzymes including kinases,
phosphatases, proteases and G-protein signalling molecules. The proteomic studies
outlined above give multiple, sometimes contrasting views of this machinery. For
example, PSD-95 has been shown to form a lattice-like structure directly under
the postsynaptic membrane (Kim and Sheng 2004; Sheng and Hoogenraad 2007).
This is reflected in the composition of the PSD-95 complex, which contains diverse
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channels and receptors and upstream signalling proteins (Fernández et al. 2009).
This ‘horizontal’ section through the postsynaptic apparatus is complemented
by the ‘vertical’ sections provided by isolation of receptor complexes such as
NRC/MASC, which retrieve a greater depth of downstream signal transduction
molecules recruited by the receptor.

Ultimately, biophysically realistic models of the synapse must take this spatial
organisation into account, along with the stoichiometry of synapse proteins and the
rate constants determining their interaction. While modelling environments have
been developed (Franks and Sejnowski 2002), much of the detailed information
they require has yet to be gathered. Given the importance of interactions in shaping
the synaptic machinery, much can be learned from the analysis of protein–protein
interaction networks (PPINs). These can be used to create static models onto which
detailed annotations concerning the functions and phenotypes of synapse proteins
can be mapped and then analysed using a combination of visaulisation, graph theory
and statistics methods. The following sections provide a step-by-step overview of
network reconstruction and analysis, using examples from our own work on the
NRC/MASC and PSD-95 associated proteins complexes (Collins et al. 2006; Husi
and Grant 2001; Pocklington et al. 2006; Fernández et al. 2009).

2.1.5 The Modelling Pipeline

The process of network reconstruction and analysis is summarised in Fig. 2.1.
To analyse the PSD we designed a custom workflow and applied it to multiple
proteomics datasets. There are various commercial tools available that can perform
similar tasks such as Ingenuity’s IPA (http://www.ingenuity.com/) and GeneGo’s
MetaCore (http://www.genego.com/) which incorporate custom databases of anno-
tations and interactions. While these tools can be used to quickly construct annotated
PPINs, care must be taken that the data is of the correct type (e.g. excluding
genetic interactions when reconstructing a protein complex) and quality (e.g. is
computational annotation acceptable?) for your purpose. They typically provide
a fixed workflow which offers some alternative options and a good GUI, but are
generally not very customisable. Before spending large sums of money on such
software, it is worth making sure that it is sufficiently flexible. Depending on your
needs this flexibility, usually offered by custom, rather than commercial tools, may
include the ability to: check data provenance (e.g. via linked PubMed ids, virtually
indispensable); filter the data based on your quality requirements, both manually
and through simple rule-based filtering; incorporate qualitative/quantitative data of
your own (e.g. task-specific annotations, expression data); combine annotations with
each other or with quantitative data to generate new annotations (e.g. all channels
and receptors with high expression in hippocampus); and give sufficient control
over statistical testing (the ability to define an appropriate reference set is vital
when performing enrichment analyses). It is also worth noting that the information
incorporated in such tools can be biased towards particular areas of research,

http://www.ingenuity.com/
http://www.genego.com/
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Fig. 2.1 The modelling pipeline applied to PSD proteomics data

which may not overlap well with your own. We have found that while commercial
software might be fine for a quick first-pass analysis (if one can afford the licenses),
having control over all components of the workflow allows for efficient, agile and
potentially more insightful research. The following sections provide a step-by-step
overview of the modelling pipeline, using examples from our own work (Husi and
Grant 2001; Collins et al. 2006; Pocklington et al. 2006; Fernández et al. 2009).

2.2 Data Annotation

The first step when faced with a set of proteins is to collate information concerning
their biological roles. Relevant features include known functional characteris-
tics, phenotypes and disease associations, patterns of expression and evolution.
Analysing these annotations can often yield insight into a complex even before
constructing a network model. Databases dedicated to synapse-related genes that
draw upon these resources include G2CDB (Croning et al. 2009) (http://www.
genes2cognition.org/db/) and SynDb (Zhang et al. 2007) (http://syndb.cbi.pku.edu.
cn/). Techniques for manual literature curation, suitable for small complexes or
obtaining more comprehensive coverage for specific annotations of interest, will
be discussed in Sect. 2.4.

http://www.genes2cognition.org/db/
http://www.genes2cognition.org/db/
http://syndb.cbi.pku.edu.cn/
http://syndb.cbi.pku.edu.cn/
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2.2.1 Molecular Function and Pathways

Functional information can range from a broad classification of molecular function,
to presence of functional domains and motifs, to involvement in biological processes
and pathways. The most commonly used source of gene and protein annotations is
the Gene Ontology (Ashburner et al. 2000) (GO, http://www.geneontology.org), a
hierarchical ontology of controlled terms organised into three independent domains:
cellular component; biological process; and molecular function. With thousands of
terms and up to 12 levels of specificity, GO can potentially provide quite detailed
annotation. However, some terms are applied to only a handful of molecules while
others are so non-specific as to be virtually meaningless, and there can be extreme
variability even between terms at the same level of the hierarchy. This is in part
due to the perennial problem of literature bias – some genes have been subject
to much greater research than others, which will be reflected in the reliability and
depth of their annotation. Utilised in its entirety GO imposes a large multiple testing
burden on statistical analyses, and strategies for identifying a subset of meaningful,
relatively independent terms must be devised (e.g. the various GO Slim subsets
found at http://www.geneontology.org/GO.slims.shtml) in order to maximise the
power of any test. More recent functional ontologies, such as PANTHER (Thomas
et al. 2003; Mi et al. 2006) (http://www.pantherdb.org/), have tried to deal with some
of the above issues. While PANTHER terms fully map to a subset of GO (and are
backed up by the same types of evidence) they are much better balanced, being only
three levels deep with more evenly sized gene sets at each level. The PANTHER
ontology also attempts to predict the functions of uncharacterized genes based on
their evolutionary relationship to those with experimentally determined functions.

Protein domains – peptide sequences encoding structured, functional units –
provide another important source of information (especially where gene-level data
is poor). Sources of domain classifications include InterPro (Hunter et al. 2009)
and PFAM (Finn et al. 2010). The Uniprot database (Magrane and Consortium
2011) annotates the amino acid sequence of each protein for known domains and
other functional features such as binding and phosphoylation sites. These more
detailed annotations will become increasingly useful as researchers investigate the
role of alternative splicing, posttranslational modification and genetic variation on
the functional properties of complexes. Tools such as ELM (Gould et al. 2010) can
also be used to identify short linear peptide motifs regulating subcellular targeting,
physical interactions, phosphorylation and other processes. As these are short and
often highly degenerate they can easily occur by chance and many predicted sites
will not be functional. Similar caveats apply to some gene regulatory elements, such
as the transcription factor binding motifs found in TRANSFAC (Matys et al. 2003)
and JASPAR (Sandelin et al. 2004), which may also be of interest.

Information on involvement in biological processes and ‘pathways’ can be
obtained from GO, PANTHER, KEGG (Kanehisa et al. 2010) and Reactome
(Matthews et al. 2009). However, with the exception of well studied metabolic
processes (and even here novel observations are still being made), most functional
pathways are still poorly defined. To use an example from our own experience,

http://www.geneontology.org
http://www.geneontology.org/GO.slims.shtml
http://www.pantherdb.org/
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where single gene studies have painstakingly sketched out the relationships between
major components of synaptic signalling pathways, high-throughput assays reveal
a much greater range of molecules and interactions (Coba et al. 2008). We think it
is fair to say that the full molecular complexity of many biological processes has
yet to be uncovered, and is not captured by pathway definitions currently found in
databases.

For compactness some annotation files will only contain the lowest level terms
for each gene, in which case it will be necessary to download the full ontology and
assign all parent terms. None of the annotation resources mentioned above capture
the entire literature, and the overlap between similar terms in different ontologies
can be surprisingly low in some cases. Although all annotations can be improved
by manual curation, this is a time-consumming process best reserved for highly
focussed studies, such as refining the results of analyses based on one of the compre-
hensive ontologies. Evidence codes summarising the type of information linking an
annotation to a gene (e.g. as supplied by GO) can be very useful for simple filtering
without recourse to manual checking of references. Since each gene can have
multiple functional annotations, these may capture pleiotropic effects in diverse cell-
types that in some cases can be misleading (Inlow and Restifo 2004). On the other
hand, this can be hard to disentangle from genes which truly have multiple functions
– some of which were first noted in one cell-type, some in another – and whose
disruption may have a more widespread effect on a complex than disruption of a
highly specialised, single-function gene. The question of literature bias must always
be kept in mind, especially when analysing the overlap between annotations. The
fact that a gene has been extensively studied in one context (e.g. synaptic signalling)
may make it more likely to have been studied in another (e.g. as a candidate gene
for schizophrenia), making annotations based on these studies non-independent.

When annotating the NRC/MASC and PSD-95 associated proteins complexes
we drew heavily upon manual literature curation. To save time we only gave a
single functional classification to each molecule (which was rather problematic
for some), although this was supplemented by protein domain annotation. Curation
and checking were admittedly rather laborious (not to say mind-numbingly tedious
at times), but it did allows us to get a much better feel for the complex as a
whole. As we started to work with much larger datasets manual annotation became
more problematic, and we have since tended to use annotation databases (GO,
PANTHER, InterPro, OMIM among others) more extensively. However, when
asking a highly specific question where data quality is paramount, we still consider
focused literature curation (perhaps drawing upon pre-compiled annotations to get
a head start) to be the best option.

2.2.2 Diseases and Phenotypes

Data covering involvement of genes in human mendelian disorders is collated in the
Online Mendelian Inheritance in Man (OMIM) database (McKusick and Amberger
1994; McKusick 2007) (http://www.ncbi.nlm.nih.gov/omim/). OMIM also covers

http://www.ncbi.nlm.nih.gov/omim/
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complex disorders, but these are better dealt with by other resources. There are
now a number of sites, e.g. Alzgene (Bertram et al. 2007) (http://www.alzgene.org),
PDgene (Yu et al. 2008c) (http://www.pdgene.org) and SZgene (Allen et al. 2008)
(http://www.szgene.org) , that collate the results of genetic association studies for
a particular disorder, perform meta-analyses and provide ranked lists of associated
genes or loci, making them a useful gateway into the field for non-experts. While it
is possible to use the top hits from these or other lists as a disease annotation, this
does throw away a lot of information and can introduce the problem of literature
bias. With many genome-wide studies of SNPs and CNVs now available through
dbGAP (Wooten and Huggins 2011) (http://www.ncbi.nlm.nih.gov/gap) it makes
much more sense to use individual studies in their entirety, with access to multiple
datasets allowing replication of results. It can take a while for access to genetic data
to be approved, so it is best to identify the resources you will need and apply well
in advance.

Genetic and pharmacological manipulations of model organisms have uncovered
developmental, physiological and behavioural roles for many genes. A substantial
amount of this phenotypic data is available from organism-specific databases such
as MGI (Blake et al. 2002; Eppig et al. 2005, 2007; Bult et al. 2008) (Mouse
Genome Informatics, http://www.informatics.jax.org/), RGD (Shimoyama et al.
2011) (http://rgd.mcw.edu), Flybase (Gelbart et al. 1997) (http://www.flybase.org)
and Wormbase (Stein et al. 2001) (http://www.wormbase.org). MGI and RGD both
use the Mammalian Phenotype ontology (Smith and Eppig 2009), allowing them to
be easily combined if necessary. As with virtually all resources, the databases listed
above do not encapsulate the entire literature and can always be supplemented by
text mining. As noted earlier, the representation of genes in the literature may be
biased. Depending on the source, phenotype annotations can be based on a diverse
array of evidence, and the ability to filter out certain types of study and refer back
to the original literature are essential for ensuring data quality. We would strongly
recommend separating single gene data from multi-gene manipulations, and suggest
that the relevance of transgenic studies be carefully considered. Some additional
resources have appeared in the literature (e.g. PhenomicDB Kahraman et al. 2005;
Groth et al. 2007, http://www.phenomicdb.de/) that integrate data from multiple
sources (including the databases listed above). These may also be of use, although
care must still be taken to ensure data quality.

When collating NRC/MASC genes linked to human disease, we did not have
access to GWAS data (the earliest studies had yet to be published). Instead we
employed literature curation to identify cases where disease association had been
directly linked to a genetic variant. The results of analysing these annotations were
highly speculative, as we would be the first to admit, and have yet to be confirmed in
a more robust dataset. Rodent phenotypes (synaptic plasticity and behaviour) were
also manually curated, being derived from single-gene studies, and we would still
perform their curation this way today.

http://www.alzgene.org
http://www.pdgene.org
http://www.szgene.org
http://www.ncbi.nlm.nih.gov/gap
http://www.informatics.jax.org/
http://rgd.mcw.edu
http://www.flybase.org
http://www.wormbase.org
http://www.phenomicdb.de/
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2.2.3 Gene and Protein Expression

Complexes are typically isolated from either whole brain preparations, or in some
cases a particular anatomical region. Analysis of expression data can indicate
the ways in which complex composition and function may vary across brain
regions, cell-types and developmental stages. Expression can be measured in
multiple ways. Western blots can detect the presence of a protein in a tissue,
while immunohistochemistry allows its localisation to be determined as well. These
methods are semi-quantitative at best, as is in-situ hybridisation which highlights
mRNA localisation in a tissue. Microarrays and RNA sequencing (RNAseq) both
measure RNA abundance in a quantitative manner. In addition to producing
more detailed information, exon arrays give more accurate gene-level expression
measurements compared to older microarray chips, with the emerging RNAseq
technology providing the cleanest data to date. When drawing upon multiple types
of expression data it must be kept in mind that neurons can span multiple anatomical
regions, with their cell-body (and most of the RNA) in one and axons and dendrites
(and many proteins) extending into others. Useful resources include the MGI gene
expression database (Ringwald et al. 1997, 2001; Smith et al. 2007; Finger et al.
2011), the Brain Gene Expression Map (BGEM) (Magdaleno et al. 2006) and
GENSAT (Heintz 2004) (http://www.gensat.org/index.html) for mouse, and the
Allen Brain Atlas (Jones et al. 2009) (http://www.brain-map.org/) for both mouse
and human. Individual high quality datasets (Doyle et al. 2008) can also be identified
in the literature. Many of these can be downloaded from the large public repositories
ArrayExpress (Parkinson et al. 2009) and the Gene Expression Omnibus (Barrett
et al. 2009, 2011) (GEO, http://www.ncbi.nlm.nih.gov/geo/), both of which can be
searched directly.

When investigating NRC/MASC variation between brain regions (Emes et al.
2008), expression data was experimentally collected using western blotting, im-
munohistochemistry or in-situ hybridisation on any genes/proteins for which the
necessary reagents were available, and also extracted from an early microarray
study comparing mouse brain regions (Zapala et al. 2005). Each of these datasets
was analysed separately and the results evaluated for consistency. To make them
comparable, expression levels for each type of data were converted to a rough semi-
quantitative scale (‘none’, ‘low’, ‘medium’ and ‘high’) prior to analysis. Microarray
expression levels were also analysed in a quantitative fashion, to ensure our results
were not an artefact of the discrete scale we had to impose on the other datasets.
The generation of this data was a mammoth task, one that is unlikely to be repeated
now that transcriptome-wide expression studies are commonplace.

2.2.4 Evolution and Orthology

Nervous systems and the behaviours they support vary tremendously in complexity.
By identifying and comparing orthologous genes we can start to investigate the
functionality out of which a complex may have evolved and the way its various

http://www.gensat.org/index.html
http://www.brain-map.org/
http://www.ncbi.nlm.nih.gov/geo/
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Fig. 2.2 Comparison of PSD and MASC orthologues across species. The occurrences of human
PSD and MASC orthologues found in each of the 19 species are shown as a percentage of those
found in human. Black arrows mark major events of gene family expansions (Data from Emes
et al. 2008)

components have developed. This may in turn shed light on the relative importance
of particular complexes or classes of molecules in the behavioural complexity
of different species. More pragmatically, identifying orthologous genes allows
annotations to be transferred from one species to another e.g. when wanting to
investigate the relevance to human disorders of complexes characterised in rodents.
The Ensembl Compara database (Vilella et al. 2009, http://www.ensembl.org/)
concentrates upon vertebrates, but also contains a number of invertebrate and
unicellular species comonly used as model organisms. The Inparanoid database
(Berglund et al. 2008; Ostlund et al. 2010) covers a more diverse range of organisms.
Information retrieved from these databases will typically contain a large number
of many-to-one and many-to-many mappings. These will need to be resolved,
identifying the most closely related cross-species pair. If this sounds like a lot of
work (which it can be), MGI has pairwise one-to-one mappings betweem mouse,
human and rat that can be downloaded.

In an attempt to investigate the evolutionary origins of the PSD and its archi-
tecture a comparative genomics approach was proposed and applied by Emes et al.
(2008). In their work one-to-one mappings of orthologues of genes encoding for
proteins in the PSD were retrieved for 19 species (Fig. 2.2). The species studied
comprised a wide range of animals with nervous systems of differing anatomical
complexity, including invertebrates, non-mammalian vertebrates, mammals and also
an out-group that does not possess a nervous system (S. cerevisiae). The authors
observed that approximately 23% of all mammalian synapse proteins were detected

 http://www.ensembl.org/
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in yeast (21.2% MASC, 25.0% PSD) and 45% were detected in invertebrates (46.2%
MASC, 44.8% PSD). Therefore, a substantial proportion of genes encoding MASC
and PSD orthologues precede the origins of the nervous system, with apparent
stepwise expansions following the divergence of metazoans from eukaryotes and
vertebrates from invertebrates. Further investigation suggested that most functional
types of synaptic proteins were present in early metazoans and that the proto-
synapse constructed from this core functionality has been elaborated on during
the evolution of invertebrates and vertebrates. Other studies confirmed that many
families of synapse and cell signalling genes are present in the phylum Porifera
(sponges), supporting the hypothesis that core synaptic signalling components were
present at the base of animal kingdom (Yasuyama et al. 2002; Ruiz-Cañada et al.
2002; te Velthuis et al. 2007). A more careful examination of the appearance of in-
dividual functional families of PSD genes shows that this expansion appears to have
primarily involved gene family expansion and diversification among upstream sig-
nalling and structural components (receptors, scaffolding proteins, and cytoskeletal,
adhesion and signal transduction molecules). The main gene expansions can be seen
in Fig. 2.2 as “jumps” in percentage of human PSD genes marked by the arrows.

2.2.5 Notes on Data Annotation

Various issues can arise during the annotation process. We have found that a typical
problem in data annotation is keeping the protein and gene identifiers up-to-date.
This type of analysis is done at a later stage, after the proteomics results have
been obtained and it is very usual for some of the database IDs of the proteins
or associated genes to have changed or become “stale” resulting to a chain of
misannotation events. A solution to this can be automated by running sanity check
scripts on the dataset frequently and manually checking any inconsistencies. Also
choosing a database which uses identifiers that do not become “stale” often is
suggested. We have found that MGI identifiers rarely become “stale”.

Other issues that we have encountered involved the use of annotation resources
such as GO and PANTHER. The reader has to keep in mind that these annotations
are based on various types of evidence which are denoted by an attached evidence
code (http://www.geneontology.org/GO.evidence.shtml). We suggest the reader
chooses a set of standards as to which evidence codes they deem acceptable and
apply the systematically throughout the annotation procedure. The same standards
should be applied in cases of ambiguous annotation or similar issues that can only
be resolved by a human annotator.

Also, sometimes there are cases where an annotation will not fit the ontology
format of GO or PANTHER since the user will want to have more control over
parameters. An example of that would be differential expression of a gene in
different cell types, where the user would want to control things like the threshold
of the ratio of gene expression in different brain areas for example. These types of
annotations have to be accommodated manually.

http://www.geneontology.org/GO.evidence.shtml
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The process of annotating is lengthy. Rigorous systematic annotation can be
augmented and assisted by partial automation. Services like Ensembl’s Biomart
(http://www.ensembl.org/biomart/) can simplify and streamline the retrieval of such
information. However we suggest, specially in cases of smaller datasets, that
everything is manually checked. This manual curation has to be done using a set
of rules as to what is accepted and what not and these rules have to be followed for
all the annotation curation so everything under scrutiny is evaluated meaningfully.
As an extension of that we should note that reusing annotations from old data can
save a lot of time and effort, so good archiving and regular updating of central data
repository is imperative.

As a final point, the reader should note that cases of imbalances in literature
affects most annotations. These imbalances range from bias towards the study of
specific genes and their products, or specific contexts of the latter. Sources of
imbalance, however, could be even more subtle and could for example have to do
with biases in the experimental methods uses to study specific gene products.

2.2.6 Statistical Significance

2.2.6.1 Annotation Significance

Once the constituent protein parts of a complex have been annotated with specific
attributes regarding for example their functional classification or involvement in
a certain phenotype, questions arise regarding the relation of these attributes. For
instance we can ask questions like is a functional family A significantly associated
more with module K? Here the notion of significance represents a number of co-
occurrences that is higher than expected at random. The simplest approach is to use
Fisher’s exact test (Fisher 1922), either one- or two-sided depending on whether the
test is specifically for enrichment, or fro both enrichment and depletion.

2.2.6.2 Considerations

When implementing this method the reader has to take a few things into account.
The first is that sets of annotation variables are seldom independent and they range
from mutually exclusive (e.g. the chromosomal location of the gene a protein is
associated with) to redundant and overlapping. Another issue in the use of the
method is our partial knowledge of the datasets. For example if a protein is not
known to be associated with a disease mechanism, that could be either, a true
negative or the result of a bias of the experimental observations (false negative).
For these reasons this method should be used carefully and its results should be
trusted if appearing consistently and repeatedly.

http://www.ensembl.org/biomart/
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2.2.6.3 Multiple Testing

Multiple testing is a general statistical concept of considering multiple statistical
inferences simultaneously. In a more specific context, when dealing with annotation
data, one can use multiple replicates of randomized data point sets in order to assess
the a null hypothesis, e.g. of an annotation having a high count due to chance. An
example of that is that if an annotation appears k times in a protein list of N proteins,
one can randomly sample multiple N sized samples the proteome in hand and see
how many of the protein possess that annotation.

Another important application of multiple testing, summarised by Noble (2009)
is correcting p-values obtained from tests like the one mentioned above – partic-
ularly in the cases of larger datasets. The most popular multiple testing p-value
correction methods are Bonferoni and false discovery rate (FDR) estimation
(Benjamini and Hochberg 1995). Application of the Bonferoni method means that
a p-value p is accepted if p < a=n, where a is the confidence threshold and n the
number of separate tests. This approach can sometimes be too strict so the FDR
estimation method or the Benjamini–Hochberg variation of the FDR procedure can
be used as an alternative. In the former the FDR is computed using the empirical
distribution of the null hypothesis while the latter uses the p-values (see also
Benjamini and Yekutieli 2001).

2.2.6.4 Software Alternatives

A number of tools have been developed to perform gene set enrichment analyses
including DAVID (Dennis et al. 2003; Hosack et al. 2003), FuncAssociate (Berriz
et al. 2003), MAPPFinder (Doniger et al. 2003), GoMiner (Zeeberg et al. 2003),
GoSurfer (Zhong et al. 2004), FatiGO (Al-Shahrour et al. 2004) and BINGO
(Maere et al. 2005). These tools used similar variants of Fisher’s exact test or
the Hypergeometric test and the Z-statistic. The Hypergeometric test is identical
to the corresponding one-tailed version of Fisher’s exact test. Additionally other
alternatives for computing annotation significance are available including Barnard’s
test (Barnard 1945), Chi-square tests (e.g. Vêncio and Shmulevich 2007; Prifti et al.
2008) and Bayesian methods (e.g. Antonov et al. 2008). At the time we chose to
develop our own approach in a bottom-up manner and also in order to be able to
easily incorporate in our workflows. However, currently there are many tools that
implement all the above methods. Of these we highlight GSEA (Subramanian et al.
2005) and a later updated version of DAVID (Huang et al. 2009). Computations in
the former are based on a variation of the Kolmogorov-Smirnov test while the latter
uses a Fisher’s exacts test in combination with multiple testing p-value correction
(Benjamini, Bonferoni and false discovery rate methods). A large and constantly
updated list of these tools can be found on the gene ontology website (http://www.
geneontology.org/GO.tools.shtml).

http://www.geneontology.org/GO.tools.shtml
http://www.geneontology.org/GO.tools.shtml
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Table 2.1 Ten most common protein domains in NRC/MASC proteins

n-fold enrichment
Domain compared to genome

IQ calmodulin-binding region 12.1
PDZ/DHR/GLGF 7.3
Serine/threonine-protein kinase domain 6
C2 calcium-dependent membrane targeting 5.9
Src homology-3 domain 5.3
Pleckstrin homology 4.7
Pleckstrin homology-type 4.5
Small GTP-binding protein 3.2
Protein kinase, catalytic domain 3.1
Calcium-binding EF-hand 2.9

Table 2.2 Ten most common protein domains in the PSD-95 associated
proteins complex

n-fold enrichment
Domain compared to genome

Ionotropic glutamate receptor 77.7
NMDA receptor 77.7
Glutamate receptor-related 77.7
Extracellular ligand-binding receptor 28.1
Serine/threonine-protein kinase domain 6.4
Pleckstrin homology 4.3
Serine/threonine-protein kinase, active site 4.3
Src homology-3 domain 4.1
Protein kinase, ATP binding site 3.1
Protein kinase, catalytic domain 2.9

2.2.7 Analysis of Synapse Complexes

For both the NRC/MASC and the PSD-95 associated proteins complexes membrane
spanning channels, receptors and adhesion proteins, together with their associated
signal transduction machinery, including adaptors and enzymes, account for the
majority of the proteins, revealing the central role of those families for the function-
ality of the PSD molecular machine. The protein domains most commonly found
in NRC/MASC and the PSD-95 associated proteins complex (Tables 2.1 and 2.2)
were highly enriched (3–77-fold) when compared to their occurrence frequency
in the genome as a whole. In both datasets, these top ten domains represent key
functionality associated with synaptic signalling: calcium binding (calcium-binding
EF hand, C2, IQ calmodulin-binding region), G-protein-coupled signal transduc-
tion (small GTP-binding protein domain, extracellular ligand-binding receptor),
phosphorylation (serine/threonine protein kinase, protein kinase, catalytic domain),
scaffolding (SH3, PDZ/DHR/GLGF), membrane localisation (Pleckstrin homol-
ogy type, Pleckstrin type, C2) and neurotransmitter related signaling (ionotropic
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glutamate receptor, NMDA receptor, glutamate receptor-related). Based on this kind
of annotation one can also compare different bait proteins and proteomics protocols.
For example in this case if one compare the family and subfamily distributions
for the two complexes, some of the basic differences can be highlighted. In the
case of family distribution (Fig. 2.3) one can see what are the main types of
proteins found in these two PSD sub-complexes. Big differences are observable
in the Enzymes and Receptors/Channels/Transporters families. If we focus on the
Receptors/Channels/Transporters family in Fig. 2.4 one can observe cases like the
Voltage-gated KC channels and the Inward rectifying KC channels as extreme
examples that are absent from the MASC dataset. Differences like these can be
attributed to the nature of the bait proteins and their interactors. When one compares
the two complexes there is an overlap of 48 proteins. The differences between the
complexes highlight the different sets of protein isolated by the different complex
purification methods. For example an important set of proteins that was recovered
using the TAP method consisted of the AMPA receptors and KC channels, which
are very significant factor of synaptic signal transduction.

2.3 Protein Interactions

Once a list of constituent parts of a protein complex is obtained and annotated
the next step is gathering the connectivity information in order to produce a
PPIN model. Connectivity in the case of PPINs comes from binary interaction
information. The following section describes the ways that interaction data may be
obtained. There is a wide variety of data resources for protein–protein interactions
ranging from single interaction studies to high throughput whole interactome
studies.

2.3.1 Experimental Data Resources

The constant improvement of protein complex affinity purification, mass spectrom-
etry identification and other high throughput methods like Yeast Two-Hybrid (Y2H)
screening (Young 1998) and the mammalian protein interaction oriented LUMIER
method (Barrios-Rodiles et al. 2005) have resulted in a great accumulation of
protein–protein interaction data. Beyond the volume of research done on smaller
complexes and interactions in a low throughput manner (e.g. affinity purification
methods), as of today there are also a number of whole interactomes available,
including organisms like yeast (Uetz et al. 2000; Schwikowski et al. 2000; Ho et al.
2002; Gavin et al. 2002, 2006; Krogan et al. 2006; Yu et al. 2008a), C. elegans
(Walhout et al. 2000, 2002), D. melanogaster (Stuart et al. 2007), H. pylori (Rain
et al. 2001) and human (Bouwmeester et al. 2004; Barrios-Rodiles et al. 2005;
Rual et al. 2005; Lim et al. 2006; Ewing et al. 2007). Several issues have been
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raised over the years with regard to Y2H screening, which at the moment is the
most high throughput of the experimental methods. The critique has focused on
the high rate of false positives, analysed by Vidalain et al. (2004) as biological and
technical false-positives and has caused dispute over the use of Y2H screening data
in manually curated interaction models unless there is other supporting evidence.
The first category includes interactions that occur in yeast cells, but do not occur
in vivo in the organism of study, because there is no way to simulate differential
gene expression and protein localisation. The only way to eliminate these is by
obtaining this type of information regarding the studied proteins, which is not
always available. The second category of technical false positives includes protein
interactions that are identified in Y2H screens due to technical limitations of the
system. Various approaches and frameworks have been proposed to minimise the
false positives. These involve changes in the method itself (Vidalain et al. 2004), the
use of combined results obtained by other methods (Mering et al. 2002) or the use
of statistical methods in combination with functional annotation in order to estimate
the quality parameters of a Y2H screening experiment (Venkatesan et al. 2009).

2.3.2 Databases

Database technology allows us to take advantage of the accumulation of data coming
from low and high throughput methods by organising it in databases. Because of
the various different experimental approaches and data sources there is a lot of
variety in the available data as well. This variety stems from the methods, different
species, types of interactions (binding, phopshorylation etc), dataset quality, data
point confidence and type of experiments.

Although several protein interaction databases are publicly available (see http://
ppi.fli-leibniz.de/jcb ppi databases.html), we will focus on databases that include
mammalian data. Databases have two major focuses, either being central protein
complex repositories or curated databases of protein interactions focused on a
specific set of organisms or type of interaction. An example of the former is
IntAct (Hermjakob et al. 2004) (http://www.ebi.ac.uk/intact/) which is the one of
the central repositories for protein interactions. It is managed by the European
Bioinformatics Institute (EBI) and contains a mixture of literature curated entries
and data submissions. The other category of databases include entries that usually
come from manual or semi-automated curation of the literature or collections of
high throughput interaction screening experiments. Examples of such databases are
can be seen on Table 2.3.

UniHi is a very comprehensive database of the computational and experimental
based human protein interaction networks and has been extensively used in our
workflows. It is based on merging different whole interactome maps from different
data sources. These include interactions from BioGrid, IntAct and DIP among others
as well as Y2H screening data.

http://ppi.fli-leibniz.de/jcb_ppi_databases.html
http://ppi.fli-leibniz.de/jcb_ppi_databases.html
http://www.ebi.ac.uk/intact/
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Table 2.3 Protein interaction databases used for the reconstruction of PSD PPIs

Database URL Reference

BioGRID http://www.thebiogrid.org/ (Stark et al. 2006)
DIP http://dip.doe-mbi.ucla.edu/dip/ (Salwinski et al. 2004)
HOMOMINT http://mint.bio.uniroma2.it/ (Persico et al. 2005)

HomoMINT/
HPRD http://www.hprd.org/ (Peri et al. 2003)
MINT http://mint.bio.uniroma2.it/mint/ (Ceol et al. 2010; Cesareni et al. 2008)
UniHi http://www.mdc-berlin.de/unihi (Chatr-aryamontri et al. 2007, 2008)

Parsing data from these resources can usually be done automatically – when the
data is available as for download or bulk searches. This is done by mapping gene
IDs to the database’s internal IDs and then retrieving all the relevant interactions.
In some cases, where it is possible, setting confidence cut-offs is very useful since
many of the interactions have a low confidence score.

2.3.3 Homology Data

When two pairs of orthologue proteins from different species interact they are re-
ferred to as interlog pairs. Interlog prediction is a good way of inferring interactions
but is also a thorny subject when only using the sequence homology as a criterion of
similarity between interacting pairs. There are cases of very big length and sequence
differences between orthologues in distant lineages, for example the NR2 subunit of
the NMDA receptor in mice and flies (Ryan and Grant 2009) and in these cases not
all interlog interactions might take place. Interlog data should be used carefully and
ideally filtered using a confidence score based on homology but also correlation
of gene expression or functional annotations. An example of this approach has
been implemented in DroID (Yu et al. 2008b), a database of interactions for D.
melanogester.

2.3.4 Other Ways of Acquiring Interaction Data

While protein interaction databases like the ones mentioned in the previous
paragraphs rapidly provide a useful set of candidate interactions their coverage
is far from complete. A large body of molecular interaction data is effectively
buried within a corpus of hundreds of thousands of scientific papers in the existing
literature. The volume of this corpus along with other issues (e.g. ambiguous terms
and non-machine readable formats) makes the application of text-mining methods
for information extraction imperative (Rzhetsky et al. 2008). This will be thoroughly
described in more detail in Sect. 2.4.3.

http://www.thebiogrid.org/
http://dip.doe-mbi.ucla.edu/dip/
http://mint.bio.uniroma2.it/
HomoMINT/
http://www.hprd.org/
http://mint.bio.uniroma2.it/mint/
http://www.mdc-berlin.de/unihi


44 L. Zografos et al.

2.4 Mining Data from the Literature

2.4.1 Text Mining

Text mining is the derivation of information from a corpus of text with the appli-
cation of natural language processing (NLP) tools and computational search and
classification methods. The use of text mining is imperative for the augmentation
of annotations and identification of interactions between proteins when dealing
with large complexes. Although a discipline by itself, we will briefly present the
principles we followed in order to perform text mining for the reconstruction of
PSD complexes in the following paragraphs.

2.4.1.1 Corpus Compilation and Indexing

For biomedical text mining applications, local mirrors of PubMed are the standard
type of corpus. These include all the information and meta-information, e.g. MeSH
terms of the article along with the relevant abstract. It has also been empirically
found that figure legends provide an excellent additional corpus as well, although
correctly extracting them from the papers still poses a challenge. Regardless of the
goal and the methods used for text mining, the corpus in hand has to be indexed
in order to optimise the search of terms. This can be achieved with freely available
software like Lucene (http://lucene.apache.org/). There are also some optional steps
in order to maximise the efficiency of text mining. These include the processing of
the corpus with NLP tools for the purposes of: tokenisation and sentence detection,
part of speech (POS) tagging and abbreviation detection. It also includes the step
of named entity recognition (NER). In NER parts of the text referring to biological
entities are tagged using a classifier trained for the biomedical domain (Alex et al.
2007), identifying terms the represent protein names or interaction terms. Currently
there are freely available tools like the ones offered by NaCTeM (http://www.
nactem.ac.uk) which can be used for all the NLP steps. This collection of tools
could perform most of the text tokenisation and POS tagging. The aforementioned,
used in combination with tools like Biothesaurus (Liu et al. 2006) or Biotagger-GM
(Torii et al. 2009) for the NER can potentially provide higher efficiency.

2.4.1.2 Queries and Query Expansion

After analysing the corpus queries are submitted to retrieve abstracts containing
information on the gene or gene product of choice. Obtaining the right keywords
to retrieve “relevant” abstracts is another challenge. This is mainly because of the
number of potential synonyms every gene or protein might have, as well as their
potential spelling variations. For some common terms or initials lists of variations
can be manually compiled and combined with a list of synonyms for each protein

http://lucene.apache.org/
http://www.nactem.ac.uk
http://www.nactem.ac.uk
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and its associated gene name. Acquiring the gene and protein synonyms can be
done by mining public database entries’ “name”, “synonyms” and “gene name”
fields or using some specialised service like BioMinT/GPSDB (Pillet et al. 2005)
(http://biomint.pharmadm.com/). Query expansion is a key step in compiling the
list of synonyms. The simplest form of query expansion would be to try all possible
combinations of spelling taking special characters like spaces and hyphens as well
as spelling variations generated by converting trailing numbers to Roman numerals
or vice versa into account. Although other than pre-compiled thesauruses which
can be very useful (Sasaki et al. 2010) there is no stand-alone solution for this
problem. We have found that collecting all available synonyms for a gene and
protein entity and applying rules like the one mentioned above will generate rich
enough lists. An alternative to this is using the EFetch utility, as mentioned above,
which uses PubMed’s built in query expansion system although that was recently
found to reduce precision in some cases (Schuemie et al. 2010). More recent
innovations addressing this problem are based on the query itself, expanding it
based on the biological context of the gene or protein, like for example QuExT
(Matos et al. 2010).

2.4.1.3 Overview of the Text Mining Process

Once the corpus is prepared and the list of queried terms is compiled it is easy
to programmatically automate a process of submitting queries with the keywords of
interest to the corpus. If attempting to mine for protein annotations these queries will
include all the synonyms of a specific gene or gene product (after query expansion)
in all combinations with all the annotation terms of interest (e.g. (“gene name” or
“synonym 1”) and “disease”). If mining for protein interactions these queries will
include all combinations of synonyms for a given pair of potentially interacting
proteins. This will generate lists of results or “hits” which can then be prioritsed and
curated.

2.4.2 Mining the Literature for Annotations of PSD Proteins

Although annotation retrieval can be more difficult than protein interaction re-
trieval due to the more evasive nature of the types of annotations, annotating for
specific features can be easier once the keywords are defined. In the case of the
PSD annotation we initially used a combination of Lucene, Rainbow (Andrew
McCallum, http://www.cs.cmu.edu/�mccallum/bow/) and Weka (Hall et al. 2009)
for text classification. At a later stage and in order to look for newer data the
EFetch utility (http://eutils.ncbi.nlm.nih.gov/entrez/eutils)provided by PubMed was
used. EFetch utilises PubMed’s search function but can be used in programmatic
workflows. The abstracts retrieved from this process should always be manually
checked.

http://biomint.pharmadm.com/
http://www.cs.cmu.edu/~mccallum/bow/
http://eutils.ncbi.nlm.nih.gov/entrez/eutils
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2.4.3 Mining the Literature for Protein Interactions
of PSD Proteins

2.4.3.1 Interaction Retrieval

We have used two text-mining solutions for the reconstruction of the PSD com-
plexes. These solutions were the TXM pipeline (Alex et al. 2008), as well as a
simpler solution developed in house using Lucene, query expansion and a Weka
based text classifier. Application of TXM proved to be useful since it included a
Relation Extraction (RE) analysis feature. This analysis utilises information within
the structure of the text in order to compute a confidence for each hit, based among
others on the proximity of the references of the two potentially interacting entities
in the text or the presence of interaction associated terms.

2.4.3.2 Interaction Curation and Curation Standards

Text-mining tools and methods keep getting more accurate, however the results
always contain false positive hits and have to be quality controlled manually.
Furthermore, it is good practice to recheck the evidence supporting interactions
retrieved from databases using the same criteria as in the text mining result check.
This curation is a form of manual quality control, which is performed by reading the
abstract of the paper linked as supporting evidence and verifying that interaction is
between the proteins and the methods used for verifying it are reliable. This manual
checking of individual papers, although in 90% of the cases just the abstract provides
the related information, is the single major bottleneck of the modelling pipeline.
Given the size of the text-mining task and volume of resulting hits, combined with
the data retrieved from databases, the procedure of quality control needs to be
stream-lined.

Stream-lining the curation process can be done using computer assistance. Since
curation has to be manual the assistance will be in managing the curated data and
allowing multiple experts to collaborate. This can be easily managed by a server side
application that includes a web-based curation interface, where curators can log in
and a database manipulation back-end to store and manage the curated text-mining
results. Any such application should be designed to provide an easy way to perform
the quality control. After noticing that there is a lack of freely available software to
assist with this process the authors of this chapter have implement a free software
solution which is available upon request.

When multiple curators collaborate, curation standards are imperative. These
standards dictate if a potential physical interaction is accepted as a true positive
or not and should be followed as an intact set of instructions throughout the data
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curation. The common curation standard used for the PSD complexes includes the
following rules:

• Clear mention of physical interaction in the abstract or full text (any evidence
except “prior experimental knowledge”, unless backed up by experimental
evidence).

• Do not accept as true positive if the only supporting data only comes from
colocalisation, protein complex pulldown, interlog pairs from distant lineages
or Y2H with no other supporting evidence. Regarding the last point we refer the
reader to the relevant paragraphs of Sect. 2.3.1. We advice that if Y2H data is
used then it should be coming from datasets that have been thoroughly reviewed
and shown to consider and tackle the caveat of false positives successfully.

2.4.3.3 Interaction Mining for the PSD Complexes

The manual curation procedure for the NRC/MASC and PSD-95 associated proteins
complexes lasted for 2 weeks or so per complex and required going through all
the abstracts and papers, where needed, provided as evidence in protein interaction
databases entries (UniHi, BioGRID, MINT, IntAct) plus all the set of hits produced
by the text mining. Out of the 186 proteins in NRC/MASC 248 interactions were
found between 105 proteins. In the PSD-95 associated proteins complex, we found
163 interactions between 50, out of which 40 form a major connected component
(MCC). The volume of evidence one needs to curate is in the area of 3,000 or 4,000
papers (for a high confidence cut off). This might sound like a daunting task, but
in most of the cases the abstract alone is enough to verify an interaction as a true
positive.

2.5 Model Analysis

The premise of network biology is that we can integrate the data in a network model
(e.g. a protein–protein interaction network) and abstract this network to a graph.
The term graph is used as the mathematical equivalent of the network. Application
of the modelling pipeline up to this point would result to a “coloured” graph. The
term coloured in graph theory refers to specific attributes (colours) of the nodes and
edges. Attributes can be of any type (i.e., gene name, family, subfamily, disease
correlation). Graphs are useful data abstractions because they can be manipulated
by a wide variety of algorithms with which, combined with visualisation, we can ask
questions about the topology, architecture and most importantly latent structures or
patterns in the network that we could not be seen otherwise.
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2.5.1 Biological Networks and Basic Graph Theory Terms

Before we discuss any specific algorithms or workflows its critical to mention some
principles and central concepts of graph theory that are the basis of any analysis
performed to protein interaction networks. The foremost important is the definition
of a graph. A graph is an abstract representation of a set of objects, called nodes or
veritces, where some pairs of the objects are connected by links, called edges. These
links could have or not have a specific direction, resulting to directed and undirected
graphs respectively (there are “mixed” graphs as well).

The formal definition of a graph G is: G D fN; Eg, where N is a set of k nodes,
N D fn1; nkg and E is a set of l edges, E D fe1; elg. Each edge e is defined as a
relation of incidence that connects two nodes from N . The graphs resulting from the
PPINs usually (1) finite: i.e. have a finite set of nodes and edges, (2) unweighted, i.e.
no special value is associated with each edge, for example an association coefficient
(not easy to obtain for all edges of networks of this size) representing the strength
of the interaction and (3) undirected, since binding is an bidirectional process.
Note that the last is not true when modification (e.g. phopshorylation) interactions
are included.

Graphs can be used for computations but first they have to be represented in a
manipulatable form. This form is the adjacency matrix, A. A is a symmetric matrix
defined as:

Aij

(
D 1 if there is an edge between ni and nj

D 0 otherwise

So for example for the G graph in Fig. 2.5 (top left panel) would be:

A B C D E
A 0 1 0 1 0
B 1 0 1 1 1
C 0 1 0 0 0
D 1 1 0 0 0
E 0 1 0 0 0

There are a number of ways to describe and summarise a network, its topology
and overall architecture. First we will look at the methods that describe the global
topology of a graph as well as some basic properties of the nodes. Graph metrics of
this type that are used for biological networks are:

• Degree: the degree of node i , ki s the number of edges connected to it. (Fig. 2.5
top right panel).

• Distance: the distance dij between nodes i and j is the shortest path (counted in
edges) between length them (Fig. 2.5 bottom left panel).

• Diameter: the network’s diameter is the greatest path length distance between
any two nodes in the network (Fig. 2.5 bottom right panel). Formally D D
maxfdij ji; j 2 N g.
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Fig. 2.5 Illustration of central graph concepts: graph as represented by an adjacency matrix (top
left), degree of a node (top right), distance (bottom left) and network diameter (bottom right)

• Clustering coefficient: this measure is calculated for each node and shows the
degree to which the neighbors of a particular node are connected to each other.
It is defined as Ci D 2ei

.k.ki �1/
, where ei are the number of edges between the ki

nodes that connect to node i .

Distance in networks is measured by the path length, which tells us how many
edges we need to cross in order to travel between any two nodes. As there are
many alternative paths between two nodes, we chose the shortest path, i.e the path
with the smallest number of links between the selected nodes. Formally the shortest
path problem is the problem of finding a path between two nodes such that the
sum of the weights of its constituent edges is minimized. In unweighted graphs like
most protein interaction networks all edge weights are 1. The shortest path problem
is subdivided into four categories: (a) the single source (all shortest paths from a
given node), (b) the single destination (all shortest paths to a given node), (c) the
single pair and (d) all-pairs shortest path problems. There are different algorithmic
approaches that can solve some of the categories. Some of these algorithms are:
Dijkstra’s algorithm (Dijkstra 1959), the Bellman–Ford algorithm (Bellman 1958)
and the A* search algorithm (Hart et al. 1968) among others.

The concept of shortest paths allows us to introduce the notion of betweeness in
graphs. Betweeness is a measurable property of nodes and edges. More specifically
there are two types of betweenness in a graph:

• Node betweeness, which for a node l is defined as:

bn
l D

X
ij

pij .l/=pij (2.1)
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Fig. 2.6 An illustration of
community structure

where pij .l/ is the number of shortest paths between nodes i and j that go
through node l and pij is the total number of shortest paths between nodes i

and j .
• Edge betweeness, which for a node l is defined as:

be
k D

X
ij

pij .k/=pij (2.2)

where pij .k/ is the number of shortest paths between nodes i and j that include
edge k and pij is the total number of shortest paths between nodes i and j .

2.5.2 Community Structure in Protein Interaction Networks

2.5.2.1 Community Structure

Studies on all types of networks have shown that one of the properties that seems
to be universal in complex networks is community structure (Ravasz et al. 2002;
Guimerà and Amaral 2005; Lagomarsino et al. 2007). Community structure is
the segregation of nodes into groups, sometimes called clusters or communities.
The characteristic feature of network clusters is that the nodes form densely
connected groups or sub-graphs with sparse connections between them. An example
of that can be see in Fig. 2.6. Notice how the three communities in the orange,
yellow and red circles have more intra-connections rather than inter-connections
between them.
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2.5.2.2 Clustering Algorithms

The identification of clusters or “clustering” within networks is a well known
problem. Since it is a more general data analysis problem numerous solutions have
been proposed over the years. Clustering in biological networks is similar to the
problem of graph partitioning in computer science and hierarchical clustering in
the social sciences. In this section we will focus on clustering solution presented
in the domain and context of Systems Biology. However these approaches almost
fully overlap with approaches used for the network sciences. Due to the very high
number of algorithms available we refer the reader to an excellent recent review
by Wang et al. (2010) and in this section we will present some of the widely used
algorithms based on the classification used to present them in the aforementioned
review. The algorithms can be split into two major categories: graph-based and
combination based. The first category encompasses algorithms that are based solely
on the structure of the graph and act independently of the annotation of the nodes
and the second category encompasses algorithms that use such information. We
should also mention that, depending on their definition of a cluster, these algorithms
can either identify overlapping or non-overlapping clusters. Overlapping clusters
can potentially represent multiple complexes that a protein can belong to as a result
of transient associations, differential expression or presence of all the components.

Furthermore we should add that clustering, independently of which method is
being used, has to performed with two problems taken into account. These are (1)
the presence of false positive and negative interaction data (2) the fact that we, in
reality, do not know the number of clusters an algorithm should produce. Although
these cannot be eradicated the former can be partially minimized with careful data
curation. Regarding the second, it has to be taken into account that the results of
clustering algorithms represent a mathematical computation or optimisation and do
not necessarily accurately reflect biological reality since an algorithm will always
generate an output.

Graph-Based Algorithms

These algorithms are based on local search around dense sub-graphs, hierarchical
clustering or parameter optimisation.

Local search algorithms: In this category the clusters are define as densely
connected sub-graphs of the main network. The density of a sub-graph is defined as
d D 2nedges=.nnodes � 1/nnodes (Spirin and Mirny 2003) and reaches its maximum
of 1 in a sub-graph where every two nodes are connected by an edge. In this
case the sub-graph is called a clique (Erdös and Szckeres 1987). Enumerating
cliques in a graph is an NP-complete problem, however protein networks make the
enumeration less difficult because of their sparseness. Various solutions have been
proposed implementing clique based methods including supermagnetic clustering
(SPC) with Monte Carlo (MC) optimisation (Spirin and Mirny 2003) and a quasi
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clique based method (Bu et al. 2003) among others. A widely used algorithm of this
type is the molecular complex detection (MCODE) algorithm (Bader and Hogue
2003). Although these algorithms tackle the issue of missing edges – or unknown
interactions – in proteins interaction networks they suffer from issues related to the
topology of the graphs as illustrated by Altaf-UI-Amin et al. (2006).

Hierarchical clustering algorithms: Hierarchical clustering algorithms, widely
used in other disciplines, can be either agglomerative or divisive, depending on
whether it adds or removes edges to or from the network. For a network of n nodes,
in agglomerative methods, node similarity is computed with some method, either
distance or some other similarity metric and an edge is then added to a network of
n nodes and no edges. The complete process is mapped to a dendrogram, which
when cut at a certain level, can give specific community configurations. In divisive
methods on the other hand, we start from a full network and remove edges between
the least similar nodes. One type of divisive algorithms are clustering coefficient
based algorithms. Clustering coefficient represents a more local view of the network
centered around a node and has been used as the basis for algorithms proposed by
Radicchi et al. (2004) and Li et al. (2008). Newman and Girvan (2004) proposed
a betweeness based divisive hierarchical clustering algorithm. We have chosen this
for our approach because it is a simple and elegant algorithm that allows not only to
group proteins in clusters but to tease out hierarchical structures via the use of the
dendrogram. Also this is a non-heuristic algorithm that runs within tractable time
for the dataset sizes in hand and when tested it produced biologically meaningful
results for our models . The metric used in this case is edge betweenness. Edges
with high betweenness tend to be edges where the flow of information converges.
This is because according to Eq. 2.2, more shortest paths pass from these edges,
thus they are parts of the path of least resistance. An interesting property of these
paths is that they usually are tend to connect the segregated clusters of the network,
as more thoroughly discussed in Sect. 2.5.3. The authors propose three different
flavours of betweeness metrics for the implementation of the algorithm: based on
shortest paths, random walk betweeness and current flow betweeness. The steps of
the Newman and Girvan algorithm are:

1. Compute betweeness score for all edges in the network
2. Find the edge of highest betweeness and remove it
3. Recomputes betweeness score for all edges in the network
4. Repeat from 2

Up to this point application of the algorithm would eventually start breaking up
the network in sub-networks. If one a priori knew how many communities were in
a network the algorithm would be stopped when reaching that number. However,
this is not the case in most practical applications. For that reason the authors also
define a modularity measure or modularity quantity, Q. If one considers a particular
division of a network into k communities, we can define a k x k, e matrix whose
elements eij are the fractions of edges all edges in the network that connect nodes in
ki with nodes in kj , considering all edges in the original network including the ones
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removed so far. The trace of the aforementioned matrix, Tr e D P
i ei i would, in

practice give the fraction of edges in the network that connect nodes from the same
community. However the trace is not a good indicator because there are cases where
Tr e D 1, without that being the best configuration, e.g. if all nodes were in the same
community. For that reason the authors define the row or column sums ai DPj eij ,
which represent the fraction of edges that connect to nodes in community i . In a
network where all edges connect nodes without regard to which community they
belong to, that would mean eij D ai aj . Thus Q is defined as:

Q D
X

i

.eij � a2
i / D Tr e � jjejj2

where jjejj is the sum of elements of e.
In practice Q measures the fraction of edges between nodes of the same

community over the edges between nodes of different communities. Q is monitored
as the algorithm progresses and once all edges have been removed we can trace
back to the configuration that resulted to the maximum value of Q, which also is the
optimal community structure. By definition Q is found to be between 0 and 1, with
low values reflecting configurations that are no better than random. Empirically, in
biological networks the value of Q lies between 0.3 and 0.7

The Newman and Girvan algorithm can be easily implemented in most pro-
gramming using libraries that perform the basic graph computations, like the Graph
C++ library from Boost (http://www.boost.org/) and its port for Matlab (Mathworks
Inc, http://www.mathworks.com/) MatlabBGL (http://www.stanford.edu/�dgleich/
programs/matlab bgl/). It should be noted that this algorithm has heavy demands
on computational resources, running in O.e2n/ time on an arbitrary network with
e edges and n nodes, or O.n3/ on a sparse network, where n � e. This restricts
the algorithm to networks of a few thousand nodes. For that reason there has been a
later modification (Clauset et al. 2004) based on more sophisticated data structures.

Along similar lines, authors have proposed other divisive algorithms as well with
variations on the distance measures. These include HCS (Przulj et al. 2004) which is
based on the minimum cut heuristic rule for grouping nodes, i.e. a configuration that
separates two groups of nodes with the minimum number of edges between them
(Hartuv and Shamir 2000) and UVCLUSTER (Arnau et al. 2005) which is based on
shortest paths instead of edge betweeness.

Parameter optiomisation algorithms: From a machine learning perspective pa-
rameter optiomisation is based on the definition of a cost function which is then
minimized searching through different cluster configurations. An example of such
cost function is modularity Q discussed earlier. In these algorithms different
configurations are randomly sampled and the cost function is optioned by selection.
Newman (2004) proposed a greedy optimization of the modularity (Q) quantity
and exploitation of shortcuts in the aforementioned optimization problem. Different
approaches to the optiomisation of Q have been proposed by various authors includ-
ing external optiomisation and spectral approach (Brandes et al. 2006; Newman and

http://www.boost.org/
http://www.mathworks.com/
http://www.stanford.edu/~dgleich/programs/matlab_bgl/
http://www.stanford.edu/~dgleich/programs/matlab_bgl/
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Girvan 2004; Ruan and Zhang 2007). Markov Cluster Algorithm (MCL) (Enright
et al. 2002) is also a widely used parameter optimisation algorithm which uses
random walks on the network and then computing all the transition probabilities
between nodes in the network. It is also worth mentioning that in the case of directed
networks other measures can be used like, for example, the paths of least resistance
in the information flow between two nodes (Hwang et al. 2006, 2008).

Combination Based Algorithms

Unlike graph-based algorithms, combination based algorithms are not solely based
on the graph that the protein interaction network represents but also the properties
of its nodes. By taking the latter into account these algorithms reduce the effects of
false positive or false negative interactions. Properties can include genomic data
(Jiang and Keating 2005; Zhang et al. 2008), structural features of the proteins
(Dittrich et al 2008), gene co-expression data (Jansen et al. 2002; Hanisch et al.
2002; Ideker et al. 2002; Segal et al. 2003; Cho et al. 2006; Cline et al. 2007;
Maraziotis et al. 2007; Lu et al. 2006; Ulitsky and Shamir 2009; Jung et al. 2008)
and ontology annotations (Lubovac et al. 2006; Ulitsky and Shamir 2009). These
properties are integrated into frameworks like AVID (Jiang and Keating 2005),
PSIMAP (Park et al. 2005) and MATISSE (Ulitsky and Shamir 2009) which usually
utilise graph-based algorithms in light of the node properties data. Although these
methods are evolving constantly the fact that all the availability of data of all
properties examined is not always guaranteed and that has to be taken into account.

Within the class of combination based algorithms there is the variation of ensem-
ble frameworks which use combinations of clustering methods and integrate their
results into a common consensus. This type of approach was first proposed by Asur
et al. (2007), followed by Greene et al. (2008) and Simpson et al. (2010). Although
still in development as an approach ensemble clustering shows promise, if the choice
of parameters, like which basic clustering methods to use and how to build the
consensus, is done with care. Another consideration is to be taken into account is
how well these algorithms take that into account pleiotropic function of proteins.

2.5.3 Network Topology Features

A widely reported feature of many networks, including biological, are their “scale-
free architectures” (Barabási and Albert 1999; Albert et al. 2000; Jeong et al. 2001;
Barabási et al. 2003). The scale-free architecture of biological networks implies
that the great majority of nodes only have a few edges connecting them to other
nodes. On the contrary there are a few nodes in the network that have many edges
connection them to other nodes (Barabási and Albert 1999). The scale-free property
of the architecture can formally described by the degree distribution of nodes which
approximates a power law, P.k/ � k�� , where k the node degree. The “scale-free”
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Fig. 2.7 Degree distribution in scale-free network. The network has 5,000 nodes and was
generated using the Barabasi–Albert (Barabási and Albert 1999) model of preferential attachment
(2 nodes per step). Notice how the probability of a node connecting with many nodes decreases
according to the k�� power law

term comes from the dependence of the P.ak/

P.k/
ratio only from a. This is illustrated

in Fig. 2.7. Power law curve fitting has been addressed many times in the literature
with different methods, including least squares fitting as the most popular approach.
The choice of method however is crucial since substantial inaccuracies might arise
(Clauset et al. 2007). Also, we have to note two important points. The first is that
the intuitive assumption that a scale-free network’s sub-networks are scale-free does
not always hold (Stumpf et al. 2005). The second point applies to datasets that
give rise to scale-free networks. In this cases the reader must be aware that the
scale-free architecture might be an artifact caused by regularities and biases in the
selection of the dataset (Han et al. 2005) and not reflect any biological importance.
An observable consequence of the scale-free structure in biological networks is that
only a few nodes have many interactions and this can attribute to robustness against
random mutations (Albert et al. 2000). Except robustness again random mutations
the scale-free architecture implies, by definition, that there are nodes in the network
that have more connections than others. When this is interpreted in the context of
community structure of networks the notion of hub nodes emerges. Hub nodes are
nodes that interact with many partners. For that reason and in contrast with non-
hub nodes, hub nodes are extremely sensitive to the targeted mutation (Jeong et al.
2001). Hub nodes are points of convergence and in some cases connect different
functional modules of the network that appear in the form of communities. There are
two types of hubs in biological networks: party hubs, where most of the interactions
are simultaneous, and date hubs, where different interactions take place at different
times (Han et al. 2004).
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Although the high degree of nodes in biological networks could imply impor-
tance of a specific node, betweenness is often used as a measure as well. By
definition, nodes and edges of high betweenness accumulate the majority of shortest
paths passing through them. Therefore, seen by a “path of least resistance” principle
these nodes become the central points controlling the direction of information
passing in the network. Newman and Girvan argue that high betweenness implies
nodes or edges that connect modules in the network (Newman and Girvan 2004) and
thus possibly promote their crosstalk. Additionally it has found that clustering on
betweenness results to clusters with similar functional annotation (Dunn et al. 2005).
However, although these claims might seem intuitive, there has been a lack of direct
supporting evidence. Yu et al. presented some evidence by bioinformatic analysis of
yeast protein interaction networks (Yu et al. 2007). In their work, Yu et al. defined
high betweenness nodes as “bottleneck” nodes and dissected the types of nodes to
hub bottleneck, non-hub bottleneck, hub non-bottleneck, non-hub non-bottleneck.
They showed evidence that non-hub bottleneck nodes tend to be essential when
involved in non-transient interactions, are rarely parts of large complexes and are
joints for crosstalk.

Taking all this into account as well as some contradicting evidence in the
literature, like the findings of Goh et al. (Kahng et al. 2003), who showed a
correlation between betweenness and degree in social networks, the reader has to
be cautious about the use of these measures for such predictions. Yu et al. (2007)
also argue that degree might be a better predictor for protein interaction networks
specifically. In any case even partial corroboration of predictions by previous
biological knowledge is advised.

2.5.4 Patterns in Networks: Motifs and Graphlets

2.5.4.1 Network Motifs

Introduced by Uri Alon’s group (Milo et al. 2002; Shen-Orr et al. 2002; Alon 2007)
in 2002, network motifs are significantly enriched reoccurring connectivity patterns
of sub-graphs that are found in networks and have become a concept widely applied
in the analysis of the architecture of all types of, including biological, networks.
An example of a network motif can be seen in Fig. 2.8. These small circuits are
the building blocks of networks and their functional significance is reinforced by
the high degree of evolutionary conservation in the yeast interactome (Wuchty
et al. 2003; Meshi et al. 2007) and the convergent evolution patters observed in
transcription regulation networks (Hinman et al. 2003; Conant and Wagner 2003;
Hinman and Davidson 2007).

The premise of the proposed motif detection algorithm by Milo et al. (2002)
is based on a simple, but yet very computationally intense graph theory anal-
ysis. Initially the network is scanned and all sub-graphs of size n, with n D
f1; 2; : : : ; nmaxg are enumerated. In practice this is very hard for nmax > 7. Any
given observed network might contain any number of n-sized sub-graphs, so in order
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Fig. 2.8 An example of multiple occurrence of a simple triangular motif (in box) in a network

to focus on the significant ones, the authors validate significance by multiple testing.
This validation is done, by creating an ensemble of randomised versions of the
original observed network and re-enumerating the occurrences of each different type
of n-sized sub-graph found in the observed network. These randomised versions
have the same number of nodes and edges, the same degree for each node and
the same number of .n � 1/-sized motif appearances but different configuration
of edges. This way the randomised networks have the same node characteristics and
also ensure that there is no high significance assigned to n-sized motif patterns just
because their .n�1/-sized sub-patterns appear more frequently. Network motifs are
those patterns for which the probability P of appearing in the randomised networks
an equal or greater number of times than in the real network is lower than a cutoff
value p-value ˛, which indicates the significance of the motif. There are several
implementations of motif detection algorithms, based on the original proposed in
(Milo et al. 2002). Here we will mention MFINDER (Kashtan et al. 2004), a
command line tool easily integrated in workflows and FANMOD (Wernicke and
Rasche 2006), which offers a graphical user interface (GUI) application with more
versatile output capabilities.

2.5.4.2 Graphlets

Graphlets are based on a concept almost identical to motifs, initially proposed by
Przulj in 2006 (Przulj et al. 2006; Przulj 2007). Graphlets are small connected non-
isomorphic sub-graphs of the network. The difference in definition with motifs is
that they do not have to be significantly enriched. However the main difference is
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in the manner of use. Graphlets can be used as systematic measures of a network’s
local topology (Przulj et al. 2006) by generalising the concept of degree distribution.
In particular, the degree distribution of the nodes is computed by enumerating the
number of nodes in contact with k edges. Extending from that concept, Milenković
et al. (2008) developed an algorithm that enumerated the number of nodes in contact
with a specific position or orbit within a graphlet, without counting automorphic or
symmetric orbits and computed the graphlet degree distribution (GDD). Computing
and normalising the GDD provides a measure that can then be used to compare two
networks by comparing their GDDs by means of distribution comparison.

Using graphlets will be a valuable tool in the near future, when there are high
confidence models of PSDs from other organisms or different brain regions. Once
this type of data is available, we will be able to address questions rearing the
differential organisation and topology of PSD networks.

2.5.5 Network Analysis of the Reconstructed PSD Protein
Complexes Network Models

2.5.5.1 Network Topology

Examining the shortest paths in both networks shows how the modules and
pathways involved interact. The average number of interactions separating any pair
of proteins is very low, with the average shortest path (ASP) length between any
two nodes being 3.3 for NRC/MASC and 2.25 for the PSD-95 associated proteins
interaction network. These short average distances between proteins nodes in both
networks imply a crosstalk between the signal transduction pathways. Also one can
notice how specific proteins have central positions in the architecture of the network
and how these positions reflect their functionality. PSD-95 for example, which was
also used as the bait for the isolation of the PSD-95 associated proteins complex,
has an ASP to all other proteins of 1.3 edges showing how central that protein is for
the organisation of these complexes – since as a central member of the membrane-
associated guanylate kinase (MAGUK) family, it operates as a scaffolding and is
involved in anchoring many cental PSD molecules such as NMDA and AMPA
receptors and ion channels.

2.5.5.2 Modular Structure

In the NRC/MASC network, the connected component was found to possess
a clearly modular structure (QD 0.56) (Fig. 2.10), with �75% of its proteins
contained in the five largest clusters. Cluster 1 contains all ionotropic glutamate
receptor proteins (p<10�3) and a large number of scaffolding molecules. In total,
�50% of its proteins are essential to normal synaptic plasticity .p<10�2/ and
�40% are implicated in schizophrenia (p<10�2). Cluster 2 appears specialised
for metabotropic/G-protein coupled signalling (p<10�2 for both) with half of its
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proteins having known behavioural phenotypes (p<10�2). Cluster 3, the largest, is
strongly connected to clusters 1 and 2. Its size and centrality within the network
suggest that it assimilates signals from various sources and co-ordinates common
effector mechanisms. The cluster also contains a concentration of tyrosine kinases
(p<10�3) which are a point of convergence for multiple signalling pathways
regulating NMDA receptor activity (Salter and Kalia 2004). This could suggest
that cluster 3 integrates the ionotropic and metabotropic signals of clusters 1
and 2. Cluster 4 encapsulates the well-studied MAPK–ERK signalling pathway.
ERK activation has been linked to transcription, protein synthesis, regulation of
AMPA receptors and structural plasticity (Thomas and Huganir 2004). Cluster 5
is another MAPK pathway (Ser/Thr kinases, p<10�2). Clusters 6, 7, 11 and 13
mediate interactions with the cytoskeleton. One other interesting feature of the
modular structure of the NRC/MASC network is that clusters can be grouped
based on their functionality annotation to two components, the upstream and the
downstream, with three major cluster groups: input, information processing and
output or effector clusters. Input clusters are part of the upstream component
and relay the extracellular message of neurotransmitter release. The information
processing clusters are also part of the upstream component and propagate that
signal and take molecular decisions that affect similar future propagations. Finally
the output clusters which form the downstream component have the role of effectors
which produce the desired changes according to the aforementioned decisions. This
meta-structure is highlighted in Fig. 2.10.

The PSD-95 associated proteins complex network (Fig. 2.11) also has a clear
modular structure (QD 0.37). One can note the location and proximity of the
receptors and channels responsible for the postsynaptic depolarization and sub-
sequent action potential generation. All NMDA, AMPA and kainate glutamate
receptors were restricted to Cla and Clb and the voltage-dependent KC channels
were found in Cla and Clc (entirely comprised of KC channels). These channels are
known to couple to plasticity mechanisms (Kim et al. 2007). It must be also noted
that Cla contains important signalling enzymes involved in plasticity, including
CAMKII (Frankland et al. 2001) and SYNGAP (Komiyama et al. 2002). It therefore
seems that Cla, Clb and Clc are enriched with membrane proteins responsible for
the electrical properties of the postsynaptic terminal. Out of 28 schizophrenia-
implicated proteins, 20 were mapped into the network model (see also Fig. 2.12).
It is worth mentioning that comparing the NRC/MASC and PSD-95 associated
proteins complex networks revealed an overlap between the two datasets that was
withing the major connected components was centered around Clusters 1 and Cla
respectively (10/16 proteins, p<10�3).

2.5.5.3 Effect of Topology on Function

An important aspect of the networks topology emerges when we overlay electro-
physiology data on the network. In contrast with annotation correlations which
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Fig. 2.9 Absolute change (% baseline) in 100 Hz LTP is shown as a function of the degree of the
protein disrupted. A significant linear fit was also evident for the full data set of 36 points (Data
from Pocklington et al. 2006)

have are the more predictive side of these models, we can also demonstrate the
effect on of a node’s position and importance in the network on physiology.
Quantitative data on the perturbation of LTP/LTD caused by disruption of individual
proteins by mutation were available for a subset of MASC proteins with synaptic
plasticity phenotypes. Despite the inherent variability of this data due to differences
in experimental protocols, protein degree and quantitative perturbation of LTP
on disruption were found to be strongly correlated (linear fit: p<10�3; Pearson
correlation 0:85). Figure 2.9 illustrates this concept by showing the absolute change
(% baseline) in 100 Hz LTP as a function of the degree of the protein disrupted.
What is visible in this figure is that the higher the degree of a node the higher is the
effect of its disruption to the function of the network as a whole.

2.6 Visualisation

2.6.1 Visualisation Software

In the data intense environment of modern science, data visualisation is an inde-
pendent branch by itself. It is of great importance to Systems Biology and data
driven science in general. Since the models discussed in this work are descriptive
and integrate annotations from various sources , this means that they carry a lot
of information. Good and informative visualisation can convey abstract, complex
information in intuitive ways, taking advantage of the human eye’s bandwidth and
allow us to understand large amounts of information at once.
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There are many software solutions for data visualisation. These vary from general
graph visualisation tools that implement graph drawing algorithms like GraphViz
(http://www.graphviz.org/) to more biologically oriented software, on which we
will focus. The former can be applied as parts of workflows since they can be
integrated in many scripting languages. The latter allow interaction with the model
via a graphical user interface and a set of different functionalities such as a selection
of drawing algorithms, analysis plug-ins and visualisation schemes and options.
Although interactive interface design allows some exploratory analysis to the
models the choice of tool is mostly a matter of preference (note: tool performance
varies with the dataset size and the type of information available).

Cytoscape (Shannon et al. 2003) is an open source platform for visualizing
molecular interaction networks and biological pathways and integrating these
networks with annotations, gene expression profiles and other state data. Features
that make Cytoscape a useful tool are the support of many different formats and
standards for input and output (e.g. plain text, csv, spreadsheets, gml, xgmml) as
well as an application programming interface (API) which allows easy integration
in all workflows, an intuitive graphical interface, support of database web services
for data import, efficient 2D visualisation with most visual parameters (graphics,
colours, sizes, transparency, etc.) customisable according to attributes, a variety
of layout algorithms and enhanced navigation. Its plug-in architecture is probably
the strongest feature of Cytoscape, because it allows the community to design and
implement freely available add-ons. These plug-ins can perform functions such as
community search or annotation and streamline the network analysis process. Bio-
Layout3D (Theocharidis et al. 2009) is the continuation of the BioLayout (Enright
and Ouzounis 2001) project, which started as an implementation of a graph layout
algorithm. BioLayout3D offers rendering in 3D, which is useful for navigating
in and exploring larger networks. Although BioLaoyout3D offers some network
analysis features, due to its non plug-in based architecture, these capabilities are
more limited. Beyond just visualising PPINs the concept of connections (edges
or interactions) between agents (nodes or proteins) has been expanded by Köhler
et al. (2006) into a wider concept of relations between entities, where an entities
can be proteins and the relation an interaction or entities can be an annotation and
a protein and the relation an association. This more complicated knowledge model
is implemented in Ondex (http://www.ondex.org), a software package that allows
data from diverse biological data sets to be linked, integrated and visualised through
graph analysis techniques.

2.6.2 Visualising Networks

There can be many different approaches in visualising a protein interaction network.
The typical approach is to draw the network in some informative manner, e.g. the
nodes separated in communities or by subcellular location and highlight nodes with
specific features, e.g. of a specific classification or associated with some disease.

http://www.graphviz.org/
http://www.ondex.org
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Sometimes, when the datasets are too big its more informative to visualise more
collapsed versions of a network. Minimizing the clutter of visualisation by making
the infomation more compact without reducing it can give a quick overview of a
dataset or even provide a collapsed representation that can tease information out of
the model. That could be achieved in the form of a meta-network. Meta-networks are
the same models visualised with the methods mentioned earlier, but in a collapsed
form. An example of such collapsed form can be obtained for example by grouping
the nodes based on a common property (e.g. family) and assigning a meta-edge if
nodes with that property interact in the network. Information is visualised in order
to make a structured collection of data shorter and concise. In the same spirit visu-
alising networks using meta-networks is a way of summarising the existent model
into something even more concise. This higher-level view might allow observations
that could not be made otherwise due to limitations in visualising large datasets.

A more sophisticated concept of visualisation which stands between collapsed
representation, network layout algorithm and clustering is power graph (Royer et al.
2008). Power graph analysis is based on the concept of power node and power edge
representation. A power node represents a fully connected clique, i.e. a group of
nodes that are fully connected and this representation can be used to generate graph
primitives like the one of a star motif or a biclique. A power edge represents the
case of two power nodes of any size, where all the respective member nodes are
connected. Royer et al. presented an algorithm that scans the graph for power nodes
and generates a layout using power edges. Power graphs can compress up to 85%
of the edges in a network while retaining all the information.

2.6.3 Visualisations of PSD Protein Interaction Networks

The NRC/MASC and PSD-95 associated proteins complex interaction networks can
be seen in Figs. 2.10 and 2.11 respectively. Different illustrations of a network allow
the researcher to focus on different features or properties of a network. Take for
example the illustrations of NRC/MASC and PSD-95 associated proteins complex
interaction networks in Figs. 2.12, where nodes involved in schizophrenia are
highlighted. Just by examining them its easy to spot the correlations of the disease
with specific clusters in the networks. These observations are also corroborated by
the statistical analysis.

The concept of a collapsed visual representation using meta-networks is illus-
trated in Fig. 2.13. The latter figure also illustrates how while the NRC/MASC
protein interaction network has similar representation of all proteins families except
Enzymes, interconnected with a meta-edges of a similar weight, the PSD-95
associated proteins complex interaction network is slightly more dominated by
Siganlling molecules and Enzymes, Cytoskeletal/Structural/Cell adhesion, Adap-
tor/Regulatory and Receptors/Channels/Transporters families, the self-interactions
of the latter two families as well as interactions of the Kinases family with the
Receptors/Channels/Transporters family.
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Fig. 2.12 Proteins implicated in schizophrenia (highlighted in red) in the NRC/MASC (top) and
PSD-95 associated proteins complex (bottom) interaction networks
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Fig. 2.13 NRC/MASC (top) and PSD-95 associated proteins complex (bottom) interaction net-
works collapsed by protein family. The node size and edge width are according to the percentage
of nodes in the datasets and the number of interactions between nodes of two types respectively
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2.7 Discussion

Systems Biology (and Systems Medicine) analysis of the brain aims to provide a
framework upon which we can understand it at all levels of its complexity from
bio-molecular events at synapses through complex networks of neurons, brain
regions and systems and ultimately to individual and social behaviour. Here we have
focussed on strategies and methods that help us capture, explore and understand
molecular complexes identified from primary biochemical analysis of neural tissues.
Protein interaction network models provide a powerful scaffold for knowledge
integration and hypothesis generation. By combining data annotation, analysis and
protein interaction network reconstruction researchers can model and investigate
proteomics datasets. Utilising the resulting models as integrative descriptive tools
can also offer an overview of the major constituent parts of molecular machines
and also insight on how these parts get combined to give rise to the properties of
a complex system such as the receptor signalling complexes embedded in synapse
proteomes. Closer examination of these models can also be used to explore the
validity of disease hypotheses. In the case of the PSD for example using models like
the ones described here one can see that the primary interactors of genes associated
with disease, e.g. schizophrenia, are spread throughout many modules within the
network. This suggests that the overall network and its various clusters might play a
role in schizophrenia, and while enriched, the glutamate receptors are not the entire
story, as was might be considered in the “glutamate hypothesis” of schizophrenia
(Greene 2001; Coyle 2006; Lisman et al. 2008). We can also start to query common
mechanisms that might be shared across multiple diseases. For example, the
reconstructed PSD models uncover 43 proteins linked by various lines of evidence
(all individually weak) to schizophrenia of which 20 are also implicated in other
diseases as well (bipolar disorder, depression mental retardation). As confidence in
the data underpinning these models increases with time, these methods will start
to deliver on their potential. However, as mentioned throughout, one must always
bear in mind the significant limitations of these models when making any decisions
based upon them. The list of components and their interactions are first and foremost
limited by the sensitivity and the accuracy of the methods used to identify them and
these are all developing technologies. Perhaps more importantly, we have described
the use of a static modelling framework to analyse what is fundamentally an adaptive
and highly dynamic structure. The spatio-temporal characteristics of the synapse
are what gives it its function and while we can map some high level aspects of
this onto static models as annotation, we are acutely aware that in the longer term
we need to look to more dynamic modelling approaches. Dynamic models will
require even more parameters (e.g. binding site affinities, quantitative proteomics
etc.) and so extending from reduced pathway models of a few molecules to the scale
of models described here (>100s of molecules) will take a significant investment in
both modelling and biochemical characterisation.
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Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature
433(7028):895–900

Hahn CG, Banerjee A, Macdonald ML, Cho DS, Kamins J, Nie Z, Borgmann-Winter KE,
Grosser T, Pizarro A, Ciccimaro E, Arnold SE, Wang HY, Blair IA, Fox D (2009) The post-
synaptic density of human postmortem brain tissues: an experimental study paradigm for
neuropsychiatric illnesses. PLoS ONE 4(4):e5251

Hall M, Frank E, Holmes G, Pfahringer B (2009) The weka data mining software: an update. ACM
SIGKDD Explor 11:10–18

Hamdan FF, Daoud H, Piton A, Gauthier J, Dobrzeniecka S, Krebs MO, Joober R, Lacaille JC,
Nadeau A, Milunsky JM, Wang Z, Carmant L, Mottron L, Beauchamp MH, Rouleau GA,
Michaud JL (2011) De novo syngap1 mutations in nonsyndromic intellectual disability and
autism. Biol Psychiatry 69(9):898–901

Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJM, Cusick
ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast
protein–protein interaction network. Nature 430(6995):88–93

Han JDJ, Dupuy D, Bertin N, Cusick ME, Vidal M (2005) Effect of sampling on topology
predictions of protein–protein interaction networks. Nat Biotechnol 23(7):839–844

Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene
expression data. Bioinformatics 18(Suppl 1):S145–S154

Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology:
on the matter of their convergence. Mol Psychiatry 10(1):40–68; image 5

Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans Syst Sci Cybern SSC4 4(2):100–107

Hartuv E, Shamir R (2000) A clustering algorithm based on graph connectivity. Inf Process Lett
76:175

Heintz N (2004) Gene expression nervous system atlas (gensat). Nat Neurosci 7(5):483
Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron

M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G,
Sherman D, Apweiler R (2004) Intact: an open source molecular interaction database. Nucleic
Acids Res 32(Database issue):D452–D455

Hinman VF, Davidson EH (2007) Evolutionary plasticity of developmental gene regulatory
network architecture. Proc Natl Acad Sci USA 104(49):19404–19409

Hinman VF, Nguyen AT, Cameron RA, Davidson EH (2003) Developmental gene regulatory
network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci
USA 100(23):13356–13361

Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K,
Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart
J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR,
Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H,
Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sørensen BD, Matthiesen J, Hendrickson
RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CWV, Figeys D, Tyers
M (2002) Systematic identification of protein complexes in saccharomyces cerevisiae by mass
spectrometry. Nature 415(6868):180–183

Hosack DA, Dennis G, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes
within lists of genes with ease. Genome Biol 4(10):R70

Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the
comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13



2 Reconstructing Models from Proteomics Data 73

Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L,
Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I,
Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A,
Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD,
Valentin F, Wilson D, Wu CH, Yeats C (2009) Interpro: the integrative protein signature
database. Nucleic Acids Res 37(Database issue):D211–D215

Husi H, Grant SG (2001) Isolation of 2000-kda complexes of n-methyl-d-aspartate receptor and
postsynaptic density 95 from mouse brain. J Neurochem 77(1):281–291

Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of nmda
receptor-adhesion protein signaling complexes. Nat Neurosci 3(7):661–669

Hwang W, Cho Y, Zhang A, Ramanathan M (2006) A novel functional module detection algorithm
for protein–protein interaction networks. Algorithms Mol Biol 1(1):24

Hwang W, Cho YR, Zhang A, Ramanathan M (2008) Cascade: a novel quasi all paths-based
network analysis algorithm for clustering biological interactions. BMC Bioinformatics 9:64

Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits
in molecular interaction networks. Bioinformatics 18(Suppl 1):S233–S240

Inlow JK, Restifo LL (2004) Molecular and comparative genetics of mental retardation. Genetics
166(2):835–881
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Chapter 3
Using Chemical Kinetics to Model Neuronal
Signalling Pathways

Lukas Endler, Melanie I. Stefan, Stuart J. Edelstein, and Nicolas Le Novère

Abstract Understanding the physical principles and mechanisms underlying
biochemical reactions allows us to create mechanistic mathematical models of
complex biological processes, such as those occurring during neuronal signal
transduction. In this chapter we introduce basic concepts of chemical and enzyme
kinetics, and reaction thermodynamics. Furthermore, we show how the temporal
evolution of a reaction system can be described by ordinary differential equations
that can be numerically solved on a computer. Finally we give a short overview of
different approaches to modelling cooperative binding to, and allosteric control of,
receptors and ion channels.

The transduction of neuronal signals and their effects on the behaviours and
phenotypes of neurons involve many biochemical entities that interact, diffuse and
transform, with different intensities and on different timescales. To understand
those biological processes, dynamical and quantitative descriptions are necessary.
However, a mere reproduction of experimental observations by non-mechanistic
models often is not sufficient, as many experimental results represent averages
over time. Furthermore, as the observables are emerging from complex biological
systems, in general their behaviour can only be predicted and fully understood by
considering the underlying reactions and biophysical processes.

Numerical simulations of models founded in chemical kinetics have been used
successfully to describe neuronal signalling for a few decades. Early models
concentrated on a single given entity, such as the models of acetylcholine receptors
at the neuromuscular junction by Land et al. (1981). Later, models of complex
pathways were designed that made full use of the wealth of data accumulated in
the field of molecular neurobiology (Bhalla and Iyengar 1999).
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In this chapter we introduce basic concepts of chemical and enzyme kinetics, and
show how the temporal evolution of a reaction system can be described by ordinary
differential equations. Finally we give an overview of different approaches to model
cooperative binding to, and allosteric control of, receptors and ion channels.

3.1 Introduction to Chemical Kinetics

A neuron, as any living cell, is built up as a series of compartments of various dimen-
sions. The post-synaptic membrane is an example of a bi-dimensional compartment
surrounding the cytosol of the dendritic spine, which is itself a tri-dimensional
compartment. Microtubules are examples of uni-dimensional compartments. These
compartments can be considered both as containers—we can count the number of
instances of a certain type of entity present in, or attached to, a compartment—and
as diffusional landscapes—the movements of the entities within the compartment
depend on its properties. Within the compartments, the entities can move and react
with each other. The object of chemical kinetics is to study the temporal evolution of
the positions and quantities of the entities contained in a compartment, sometimes
called a reactor.

In this chapter, we will not deal with the displacement of the chemical entities
within a compartment. This question will be treated in Chap. 5. We will assume that
an entity-pool, that is a set of entities that are indistinguishable as far as the model is
concerned, is distributed homogeneously within the compartment. This hypothesis
is known as the well-stirred approximation (Fig. 3.1). This approximation is based
on the assumption that there is no diffusional anisotropy in the compartment, i.e. the
molecules move randomly in any dimension.

3.1.1 Chemical Reactions

A chemical reaction is the transformation of one set of substances called reactants
into another set called products. At a microscopic scale, such a transformation
is in general reversible, although there are many cases in which the reverse
reaction is of negligible importance compared to the forward one. In all cases,
a reversible reaction can be split into forward and reverse reactions. For a given
reaction, reactants generally combine in discrete and fixed ratios to form products.
These ratios indicate the amount of each substance involved in the reaction. The
amounts consumed or produced in one reaction event are called the stoichiometric
coefficients or numbers, �X , and are positive for products, and negative for reactants.
If a substance is neither consumed or produced by a reaction, its stoichiometric
coefficient is 0. Equation 3.1 depicts a general reaction, in which A and B are
reactants combining to form the product P. �A would be �a, �B D �b and �P D p.
The list f�a;�b; pg is also called the stoichiometry of the reaction.

aAC bB �����! pP (3.1)
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Fig. 3.1 Representation of a well-stirred container with two types of entities, represented by
empty and filled circles. The arrows represent the direction and speed of their movements

P.reaction �/ D P.find �/ � P.� reacts/

P.reaction � C�/ D P.find �/ � P.find another �/ � P.� reacts with �/

P.reaction � Cı/ D P.find �/ � P.find ı/ � P.� reacts with ı/

and P.find �/ / n.�/

V
D Œ��

where V is the volume of the container

In many cases in biology only an overall transformation consisting of many
sequential reactions is experimentally observable. In the finest grained form these
reactions are also known as elementary reactions. An elementary reaction is
defined as a minimal irreversible reaction with no stable intermediary products. The
lumped stoichiometric coefficients of the overall reaction consist of the sums of the
stoichiometric coefficients for each reactant over all elementary reactions.

Chemical kinetics is concerned with the velocity of such transformations, the
rates with which substances are consumed and produced. As the rate of change for a
reagent depends on its stoichiometric coefficients, it can be different for individual
substances. Therefore it is convenient to define the reaction rate, v, as the rate of
change of a substance divided by its stoichiometric coefficient. This effectively
represents the number of reaction events taking place per unit of time and unit of
compartment size.

v D 1

�a

dŒA�

dt
D 1

�b

d ŒB�

dt
D 1

p

dŒP�

dt
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Therefore, we can compute the change of each substance as the product of the
reaction rate and its stoichiometric coefficient for this reaction.

dŒA�

dt
D �a � v;

d ŒB�

dt
D �b � v;

d ŒP�

dt
D p � v

Reaction rates depend on many factors, and can effectively take any form for
the purpose of modelling. In the following subsections, we will describe the simple
cases where the reaction rates depend solely on the concentrations of the reacting
substances.

3.1.2 Mass-Action Kinetics

For a chemical reaction to take place, the participants have to collide, or come into
close vicinity of each other. The probability of such collisions depends, among
other parameters, on the local density of the reactants, and hence, in well stirred
environments, on their concentrations.1 This relationship was first described by
Guldberg and Waage in the second half of the nineteenth century in a series of
articles on the dynamical nature of the chemical equilibrium (Waage and Guldberg
1864). They assumed that at equilibrium both the forward and backward reaction
forces or velocities were equal, and that these velocities where proportional to the
concentrations of the reactants to the power of their stoichiometric coefficients. The
relationship of reaction velocities and concentrations is called the “Law of Mass-
Action”, and rate expressions equivalent to the ones employed in their articles are
sometimes referred to as “Mass-Action Kinetics”.2

The rates of simple unidirectional chemical reactions are usually proportional to
the product of the concentrations of the reactants to the power of constant exponents,
called partial reaction orders or nX . The sum of all partial orders is called the order

1Under non-ideal conditions, as found in biology, activities instead of concentrations should
actually be used both for describing rate equations and equilibria. As this is not common practise in
biological modelling, we do not distinguish between activities and concentrations in the following.
It should be noted, though, that activities can differ significantly from concentrations in cellular
environments.
2The term mass-action stems from the proportionality of the so called reaction “force” to the mass
of a substance in a fixed volume, which is proportional to the molar concentration of a substance.
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n of a reaction, and the proportionality factor is called the rate constant k. For
example, for the reaction described in Eq. 3.1 assuming mass action kinetics the
reaction rate appears as follows:

v D k � ŒA�nA � ŒB�nB

The reaction has an order of n D nA C nB . In general, the order of elementary
reactions is equal to the number of molecules interacting, also known as the
molecularity. A unimolecular reaction A ! P for example would have an order
of one, a bimolecular reaction, such as 2A! P or ACB ! P would be a second
order reaction etc. However, this equivalence is not always true, and anisotropy or
crowding of the reaction environments may affect the motion of molecules, resulting
in different, and sometimes non-integral, reaction orders.

While mass-action kinetics are only strictly valid for elementary reactions, they
are widely and successfully applied in various fields of mathematical modelling in
biology. Especially for large and vaguely defined reaction networks, as found in
signal transduction, mass action kinetics are commonly employed as a very general
initial approach. Most often, the partial orders are taken to be identical to the stoi-
chiometric coefficients. The rate constants can either be calculated from separately
measured equilibrium constants and characteristic times, or computationally fitted
to reproduce experimental results.

3.1.2.1 Zeroth Order Reactions

Reactions of order zero have a reaction rate that does not depend on any reactant.
Zeroth order reactions can be used for instance to represent constant creations from
boundary condition reactants, such as:

X
k�����! P

where X represent a set of source reactants that are not depleted by the reaction. The
reaction rate is then equal to:

v D k � ŒX�0 D k

in which k is the rate constant, and has the units of a concentration per time. The
solution describing the evolution of P is of course a monotonic increase:

ŒP�.t/ D ŒP0�C kt

3.1.2.2 First Order Reactions

In general unimolecular reactions are modelled using first order mechanisms. In irre-
versible first order reactions, the reaction rate linearly depends on the concentration
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of the reactant. Many decay processes show such kinetics, for example, radioactive
decay, dissociation of complexes, or denaturation of proteins. For a simple reaction:

A
k�����! P

the following rate law applies:
v D k � ŒA�

in which k is the first order rate constant, and has the units of a reciprocal time,
Œ1=time�. If this is the only reaction affecting the concentration of A in a system, the
change of [A] equals the negative reaction rate. Similarly, the change of [P] equals
the reaction rate.

dŒA�

dt
D �v D �kŒA�

d ŒP�

dt
D v D CkŒA�

The first equation above can be easily rearranged and analytically solved,
assuming an initial concentration ŒA0� at time t D 0. Furthermore, since ŒP�t C
ŒA�t D ŒP0�C ŒA0�:

ŒA�t D ŒA0� � e�kt

ŒP�t D ŒP0�C ŒA0� � .1 � e�kt /

The rate constant in first order kinetics is directly related to some characteristic
times of substances, which are often readily available. For example the average life
time of the reactant, � , and the time it takes for its concentration to halve, the half-
life t 1

2
, can be derived as (see Fig. 3.2):

� D 1

k

t 1
2
D ln2

k

3.1.2.3 Second Order Reactions

Second order reactions are often used to model bimolecular reactions, either be-
tween different types of molecules or between two instances of the same molecule.
Examples are complex formation and dimerisation reactions. For a simple reaction:

AC B
k�����! P

the following rate law applies:

v D k � ŒA� � ŒB�
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Fig. 3.2 Decay of a reactant A, that is consumed by a first order reaction with a constant k from
an initial concentration of ŒA0�. The average lifetime of a given molecule of A is given by 1=k. ŒA�

tends toward 0 while ŒP� tends towards ŒA0� C ŒP0�

in which k is the second order rate constant, and has the unit of Œ1=.time �
concentration/�. The change of [P] with time is described by the following
differential equation:

dŒP�

dt
D v D k � ŒA� � ŒB�

Integration of the above expression using the initial concentrations [A0], [B0] and
[P0] leads to a hyperbolic time dependency:

ŒP�.t/ D ŒP0�C ŒA0�ŒB0�
e�kt ŒB0� � e�kt ŒA0�

ŒA0�e�kt ŒB0� � ŒB0�e�kt ŒA0�

Different from first order reactions, the characteristic times in second order
reactions are not independent of the initial conditions, but depend on both the rate
constant and the initial concentrations of the reactants. The half life of the limiting
reactant, that is B in the case that ŒA0� � ŒB0�, is given by the following expression:

t 1
2
D

ln
�
1C ŒA0��ŒB0�

ŒA0 �

�
.ŒA0� � ŒB0�/k

A special case of bimolecular reaction, in which two reactant molecules of the
same type react to form the product, occurs quite commonly in biology, for example
in protein dimerisation reactions. For the general reaction:

2A
k�����! P
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the reaction velocity and the temporal development of [A] and [P] are given by the
following equations:

v D k � ŒA� � ŒA�

d ŒA�

dt
D �2v D �2kŒA�2

d ŒP�

dt
D v D kŒA�2

Again, these differential equations can be integrated and, assuming the initial
concentrations to be [A0] and [P0], resulting time courses for [A] and [P] are
described by the following hyperbolic functions:

ŒA�.t/ D ŒA0�

2kŒA0�t C 1

ŒP�.t/ D ŒP0�C 2ŒA0�kt

2kŒA0�t C 1

The half life, t 1
2

of [A] again depends on the initial concentration:

t 1
2
D 1

2kŒA0�

3.1.3 The Thermodynamics of Reactions

The field of thermodynamics is concerned with the interconversion of different
forms of energy, subsumed mainly under the notions of heat and work, and
relates them to changes in observable properties of a system, such as temperature,
electrochemical potentials, osmotic pressure, and concentrations of substances. The
tools provided by chemical thermodynamics allow us to explore the energetics
of a biochemical system and to determine the direction of coupled reactions
and processes, such as the transport of ions across a membrane coupled to an
electrochemical potential.

3.1.3.1 Energetics and Equilibrium

Central in chemical thermodynamics is the notion of the chemical equilibrium, a
state in which all concentrations stay constant over time. While this means that all
net reaction fluxes are zero, forward and reverse reactions can still occur, but simply
cancel out. Solutions of reacting compounds in a closed environment tend towards a
state of equilibrium at which the time evolution of their concentrations stops. In their
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work on the dynamical equilibrium Guldberg and Waage found that at equilibrium
a certain ratio of the products and reactants, the so called mass action ratio, � , was
constant for specific conditions. This value is called the equilibrium constant, Keq .
For a reversible reaction, � is defined as the product of all product concentrations,
divided by the product of the reactants, with each concentration taken to the power
of their stoichiometric coefficients. For the general reaction described in Eq. 3.1 �

appears as follows:

� D ŒP�p

ŒA�a � ŒB�b

and at equilibrium:

�eq D Keq D ŒPeq�p

ŒAeq�a � ŒBeq�b
(3.2)

The disequilibrium ratio, � D � =Keq, gives the direction of a reaction. For
� < 1, a reaction tends towards the products, while for � > 1 the reverse reaction
rate is greater than that of the forward reaction.

The original derivation of Keq by Guldberg and Waage was based on setting
the forward rate of a reaction equal to the backward rate under the assumption of
mass action kinetics. While this approach strictly speaking is only valid for simple
elementary reactions, the derived expression for the equilibrium constant, which
today is also called the Law of Mass action (3.2), is still valid under the caveat that
under non–ideal conditions activities, rather than concentrations, have to be used.
For the following reaction with mass action kinetics

AC B�)������*� C

with W �f D kf � ŒA� � ŒB�

�r D kr � ŒC�

the following relationship between the rate constants can be derived, by setting the
forward and reverse rate equal:

�f Dkf � ŒAeq� � ŒBeq� D �r D kr � ŒCeq�

Keq D ŒCeq�

ŒAeq�ŒBeq�
D kf =kr

Keq is related to the Gibb’s free energy G, which describes the potential of a
system to perform usable work, or equivalently, to undergo spontaneous change.
The change of G, �G, accompanying a process, indicates whether this process
is spontaneous and how much non-expansive work can be obtained during this
change. Non-expansive work can be, for example, the movement of ions to create
an electrochemical potential, fuelling of other non-spontaneous processes, such as
synthesis of ATP, or mechanical work, such as muscle contraction. At equilibrium,
the Gibb’s free energy of a system is minimal and �G D 0 for all processes.
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The change of G for a reaction can be defined independent of the reactants’
stoichiometries, so that �rG is the change of G per defined amount of reaction
turnover, e.g. 1 mol. These so called reaction Gibb’s free energies can be calculated
by subtracting the sum of the reactants’ free energies times their stoichiometric
coefficients from the products’ free energies. For the general reaction described
above (3.1) this would mean:

�rG D pGP � .aGA C bGB/

In the literature, in general, free energies are given for standard conditions, such
as room temperature and substance concentrations of 1 M. These standard reaction
free energies, �rG

0, can be used to calculate �rG for other concentrations of
substances, simply by using their mass action ratios � . In general, if a reaction
has a �rGX at a state X with a mass action ratio of �X , then �rGY at state Y with
�Y can be written as

�rGY D �rGX C RT ln.�Y =�X/

In this R is the universal gas constant, and T stands for the absolute temperature.
As at equilibrium the reaction free energy, �rGeq , equals 0 and for standard reaction
free energies, �rG

0, the mass action ratio, � 0, is in general equal to 1, the following
relation between Keq and �rG

0 can be derived:

�rGeq D0 D �rG
0 C RT ln.Keq=� 0/

�rG
0 D� RTlnKeq

It is also possible to calculate a reaction Gibb’s free energy of a solution from the
reaction’s mass action ratio � and the equilibrium constant:

�rG D RT ln
�

Keq

D RT ln�

For coupled reactions, the free energy changes, �G, of the individual reactions
add up to give the overall change. As reaction free energies are proportional to
the logarithm of the equilibrium constants, the overall equilibrium constant can be
obtained as the product of the different individual reaction Keqs. In the case of cyclic
reaction systems that are not driven by an external energy source, the overall reaction
free energy, �rG, is zero, and therefore the product of all equilibrium constants has
to equal unity. As the product of all equilibrium constants Ki in a reaction cycle
has to equal unity, the same holds true for the product of the ratio of the reverse
and the forward rate constants k�i and ki , respectively. For a cycle of n reactions
this leads to the following relationship, also known as detailed balance relation or
Wegscheider’s cyclicity condition (Heinrich and Schuster 1996):

nY
iD1

Ki D 1 D
nY

iD1

k�i

ki
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Fig. 3.3 Reaction diagram
for binding of a ligand L to
two distinct sites on a
receptor R. Assuming
detailed balance allows us to
express one equilibrium
constant as a function of the
others (After Colquhoun et al.
2004)

Applications of this principle to ions binding to a receptor are shown in
Colquhoun et al. (2004). Figure 3.3 illustrates the method for binding of a ligand
L to two, distinct binding sites on a receptor R. The detailed balance relation allows
us to express one of the equilibria, or one of the rate constants through the other
ones.

For binding reactions the inverse of the equilibrium constant, Keq , also known
as dissociation constant, Kdiss is commonly used. In case of a simple complex
formation reaction of a receptor R and a ligand L the dissociation constant would be
defined as follows:

RC L
kon�)������*�
koff

RL

Kdiss D 1

Keq

D ŒReq�ŒLeq�

ŒRLeq�
D koff

kon

with kon and koff being the complex association and dissociation rate constants.

3.1.3.2 Transition State and Temperature Dependence of Reaction Rates

Rate constants, in general, show a strong positive temperature dependence, that is,
they increase with rising temperatures. This relation was studied in detail in the latter
part of the nineteenth century first by Jacobus van’t Hoff and Svante Arrhenius.
Arrhenius derived an empirical expression for the temperature dependence of the
rate constant, k, and postulated a general mechanism underlying this relationship.
He assumed that a reaction could only occur if the reacting molecules possessed
enough internal energy to overcome a threshold termed activation energy, Ea, and
that the proportion of such molecules was given by a Boltzmann distribution.

k D Ae�Ea=RT
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Fig. 3.4 Schematic free energy diagram for the reaction S ! P without (solid) and with a
catalyst (dashed), E . The reaction coordinate is a one-dimensional abstraction of the progress
of the reaction. S spontaneously reacts to P via a transition state S	. The catalyst E binds S

and stabilises the transition state, leading to intermediate steps with a much smaller activation free
energy �G	, thereby accelerating the reaction. The reaction energy �r G is the same in both cases

In this relation, called Arrhenius equation, A is simply called the pre-exponential
or frequency factor. It can be interpreted as the total frequency of reactant collisions
in the correct constellation to react, but not necessarily possessing sufficient energy.
A later and more detailed theory is the Transition State Theory, TST, initially
pioneered by Henry Eyring and Michael Polanyi in the 1930s. Its basic assumption
is that an elementary reaction runs over an unstable activated or transition state
(see Fig. 3.4), with a free energy of G	. Therefore, to reach the transition state, the
participating reactants need at least an activation free energy of �G	 D G	 �Ggs ,
with Ggs being the free energy of the ground state of the reactants. The Eyring
equation derived using TST relates k to the free activation energy �G	 and the
temperature similar to the Arrhenius equation:

k D 

kBT

h
e��G	=RT

Here 
 is called the transmission coefficient and indicates the proportion of
transition states reacting to give products, kB is the Boltzmann and h the Planck
constant.

Catalysts, such as enzymes, work by reducing the free activation energy �G	.
One common possibility for this is to stabilise the transition state. It should always
be kept in mind, though, that the reaction free energy, �rG, and with it the
equilibrium constant, Keq , is not affected by enzymes.
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3.1.4 Representing the Evolution of Multi-reaction Systems

In the sections above, we only derived expressions describing the temporal evolution
of species altered by single reactions. In biological systems, substances are involved
in many different processes, leading to complex ordinary differential equation sys-
tems, that normally can only be solved numerically and with the help of computers.

3.1.4.1 Reconstruction of a System of Ordinary Differential Equations

Having carefully designed the elementary processes composing the system, re-
constructing the differential equations representing the evolution of the different
substances is a systematic and easy procedure. We already saw in Sect. 3.1.2.2 that
the reaction:

A
k�����! P

could be modelled by the system:

dŒA�

dt
D �1v D �1kŒA�

d ŒP�

dt
D 1v D C1kŒA�

If the reaction is reversible, such as:

A
kf�)������*�
kr

P

then we can consider it as a combination of two irreversible reactions, the rates of
which depend on ŒA� and ŒP �:

vf D kf � ŒA�

vr D kr � ŒP�

The evolution of both substances therefore depends on the forward and reverse
reaction rates. A is consumed by the forward reaction and produced by the reverse
reaction. It is the other way around for P.

dŒA�

dt
D �1vf C 1vr D �1kf ŒA�C 1krŒP�

d ŒP�

dt
D C1vf � 1vr D C1kf ŒA� � 1krŒP�
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To understand how to handle non-unity stoichiometric numbers, consider the
following dimerisation:

2A
kf�)������*�
kr

P

The forward reaction will be modelled using second-order kinetics, and the rates
will therefore be:

vf D kf � ŒA�2

vr D kr � ŒP�

As above the evolution of both substances therefore depends on the forward and
reverse reaction rates. But this time two molecules of A are consumed by each
forward reaction and produced by each reverse reaction. Therefore:

dŒA�

dt
D �2vf C 2vr D �2kf ŒA�2 C 2kr ŒP�

d ŒP�

dt
D C1vf � 1vr D C1kf ŒA�2 � 1kr ŒP�

This approach can then be extended, independently of the size of the system
considered. An ODE system will contain (at most) one differential equation for each
substance. This equation will contain components representing the involvement
of the substance in the different reactions of the system. For the substance Sn,
involved in a system containing r reactions, the differential equation takes the
following form:

dŒSn�

dt
D

rX
iD1

�ni vi

�ni denotes the stoichiometric coefficient of Sn in reaction i , vi the rate of this
reaction. The resulting ODE system can also be represented in matrix notation,
by introducing the stoichiometric matrix, N, and the reaction rate vector, v. The
stoichiometric matrix, N, contains a row for each of the n species in the system,
and a column for each of the r reactions. Its entries, Nij , are the stoichiometric
coefficients, �ni , of substance i in reaction j . v is a column vector with each
element vi indicating the rate of the i th reaction. Using the above, the change of
the concentration vector S over time is described by:

dŒS�

dt
D N � v

3.1.4.2 Numerical Integration of ODE Models

Besides the most elementary systems containing only few well-behaved reactions,
we cannot generally solve a system of ordinary differential equations analytically.
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Fig. 3.5 Graphical representation of the forward Euler method to integrate ordinary differential
equations. The thick curve represents ŒX� D f .t/, and the vectors its derivative. Note the
progressive error introduced by the coarse time discretization

We have to resort to numerical integration, a method that goes back to the origin of
differential calculus, where we approximate the current values of the variables based
on the knowledge we have of their values in the (close) past. Many approximations
have been developed. The simplest and easiest to grasp is the forward Euler rule. If
we discretize the time, one can make the following approximation:

dŒX�

dt
� �ŒX�

�t
D .ŒX�tC�t � ŒX�t /

�t

We can rearrange the equation above and extract the concentration as follows:

ŒX�tC�t � ŒX�t C
dŒX�

dt
.t/ ��t

We know dŒX�=dt as a function of the vector of concentrations, obtained with
the method described in Sect. 3.1.4.1, and can therefore compute the difference
introduced during one �t . This procedure is represented in Fig. 3.5. We can see
on the figure that a systematic error is introduced by the time discretization.
Such an error becomes larger for more complex dynamics, such as non-monotonic
behaviours, or systems with fast and slow components. One can address the error by
using tiny time steps but at the expense of computational efficacy. Many methods
have been developed over the years to address this problem. A good introduction is
given in LeMasson and Maex (2001) and a more comprehensive survey of the field
by Hairer et al. (1993) and Hairer and Wanner (1996).
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Biological modelling tools such as COPASI (Hoops et al. 2006), JDesigner/
Jarnac (Sauro 2000), E-Cell (Takahashi et al. 2003) or CellDesigner (Funahashi
et al. 2008) have their own in-built numerical ODE solver. They also generate the
system of ODE to be solved automatically, so the user input that is required usually
consists of a list of chemical reactions in some defined format and of the parameters
governing those reactions.

3.2 Modelling Biochemical Networks

Modelling the biochemical pathways involved in neuronal function does not require
much more than what has been presented in Sect. 3.1. The only complexity we will
introduce in the following sections are slightly more complex expressions for the
reaction rates.

3.2.1 Basal Level and Homoeostasis

Before modelling the effect of perturbations, such as extracellular signals, it is
important to set up the right basal level for the substances that we will consider in the
model. This basal level is obtained when the processes producing the substance and
the processes consuming it are compensating each other. We then reach a steady-
state, where input and output are equal. To illustrate this, we will build the simplest
system possible that permits to have a steady basal concentration of calcium. The
system is made up of a continuous creation of calcium, for instance due to leaky
channels in the plasma membrane or in the internal stores, modelled as a zeroth
order reaction (see Sect. 3.1.2.1). The calcium is then removed from the system
for instance by pumps or buffers in excess, modelled as a first order reaction (see
Sect. 3.1.2.2).

; kin�����! Ca2C kout�����! ;
The instantaneous changes of calcium concentration then result from the combi-

nation of the two reaction rates (Fig. 3.6).

dŒCa2C�

dt
D kin � koutŒCa2C�

The steady-state level is reached when the changes are null, that is ŒCa2C� D
kin=kout. If the concentration of calcium is higher than this ratio, the second term
wins and the concentration decreases. In contrast, if the concentration of calcium
is lower than this ratio, the first term wins and the concentration increases. kout
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t1

Ca2+

t0

kin

kin

kout

t2

Fig. 3.6 Evolution of calcium concentration over time. Between t0 and t1, the extrusion is stronger
than the creation. At t1, kin strongly decreases, for instance by a block of leak channels, and the
concentration is brought to a lower steady-state value. At t2 the block is removed. The creation
becomes stronger than extrusion, and brings back the concentration to the initial steady-state.
Vertical arrows represent the intensity and direction of the reaction’s flux for a given concentration
of calcium

can be estimated from the decay observed after stimulation. kin can therefore be
computed from the steady-state. Changing kin in a discrete manner is a simple way
of modelling the opening or closing of calcium channels.

Such a homoeostatic control is extremely simple. More complex schemes can be
designed, with control loops such as negative feed-backs on the creation steps and
positive feedforwards on the extrusion steps.

3.2.2 Representing Enzymatic Reactions

In order to accelerate chemical reactions and select among different isomers, cells
use enzymes, which are protein-based catalysts. They can increase reaction rates
to a tremendous degree and often are essential to making reactions occur at a
measurable rate. Enzyme catalysed reactions tend to follow complex sequences
of reaction steps, and the exact reaction mechanisms are generally unknown. The
single reaction steps can be contracted into an overall description with lumped
stoichiometries. However, since the detailed reaction mechanisms are most often
unknown, and also parameters for each of these steps are hard to come by, such
reactions can rarely be modelled considering each single step and using mass
action kinetics. Depending on how much detail is known, an enzyme catalysed
reaction can be described on different levels. The reaction equations for a simple
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conversion of a substrate S to a product P catalysed by an enzyme E, for example,
can vary depending on the consideration of intermediate enzyme complexes and
reaction reversibility:

SC E �)������*� ES �)������*� EP �)������*� EC P

SC E �)������*� ES �����! EP �)������*� EC P

SC E �)������*� ES �)������*� EC P

SC E �)������*� ES �����! EC P

SC E �����! EC P (3.3)

Knowledge of the mechanism of an enzymatic reaction can be used to derive
compact and simplified expressions fitting the overall kinetics. The alternative is
to use generic rate laws that are known to loosely fit wide classes of reaction
mechanisms, and to choose the ones that seem most appropriate for the reaction
in question. The kinetics of the overall reaction are determined by the reac-
tion mechanisms of the elementary steps, but exact derivations can become quite
complex and cumbersome to handle. In general it is safer and more convenient
to use approximate expressions in biological modelling, even more so as exact
mechanisms are rarely known.

Two assumptions are available to simplify complex enzymatic reaction descrip-
tions. The more general one is the quasi steady state approximation, QSSA. The
QSSA considers that some, or all, of the intermediary enzyme substrate complexes
tend to a near constant concentration shortly after the reaction starts. The other
widely used assumption, called the rapid equilibrium assumption, is that some steps
are much faster than the overall reaction, meaning that the participating enzyme
forms are virtually at equilibrium and that their concentrations can be expressed
using equilibrium constants. This approach is often used to model fast reactant or
modulator binding to the enzyme. The application of these techniques depends very
much on how much of the reaction mechanism is known. An excellent introduction
into enzyme kinetics is given by Cornish-Bowden (2004). For a more exhaustive
treatment with detailed derivations of rate laws for a multitude of mechanisms please
refer to the standard work by Segel (1993).

3.2.2.1 Henri-Michaelis-Menten Kinetics

At the beginning of the twentieth century, Henri (1902) proposed a reaction scheme
and an accompanying expression for describing the rate of sucrose hydrolysis
catalysed by invertase. This reaction showed a deviation from normal second-order
kinetics and tended to a maximal velocity directly proportional to the enzyme
concentration. Making use of the existence of an intermediary substrate-enzyme
complex, ES, and assuming that the substrate S and the enzyme E were in a rapid
binding equilibrium with the complex, he could derive an expression fitting the
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experimental observations. A similar approach was taken and expanded in 1913
by Michaelis and Menten (1913), who proposed the current form of the reaction
rate based on a rapid equilibrium between enzyme and substrate.

EC S
k1�)������*�

k�1

ES
k2�����! EC P

(k2 is the catalytic constant, or turnover number, and often called kcat .)
A more general derivation, using the QSSA, was proposed by Briggs and

Haldane (1925). The substrate binding and dissociation, as well as the product
formation step, lead to the following expression for the time dependence of [ES]:

dŒES�

dt
D k1ŒE�ŒS� � k�1ŒES� � k2ŒES�

At steady state, the concentration of the intermediate complex,[ES], is constant
hence dŒES�=dt D 0. Rearranging this equation and setting KM D k

�1Ck2

k1
, we

obtain ŒE� D ŒES� � KM =ŒS�. Furthermore, because the concentration of enzyme
is constant, we have ŒE� D ŒEt � � ŒES�. Equating both, we obtain:

v D dŒP�

dt
D k2ŒES� D k2ŒEt�

ŒS�

KM C ŒS�
(3.4)

k2 � ŒEt � is sometimes called the maximal velocity vmax.
This rate expression is often used—and abused—when modelling biochemical

processes for which the exact mechanisms are unknown. However, one has to realise
that it only holds true if the concentration of the enzyme-substrate complex stays
constant, which in turns implies that the concentration of substrate is in large excess.
Those conditions are very rarely met in signal transduction systems, resulting in
many artifacts.

Plotting the reaction velocity, v, against the substrate concentration, [S], gives
a rectangular hyperbolic curve (see Fig. 3.7). The parameter KM has the unit of a
concentration and is of central importance in describing the form of the substrate
dependence of the reaction velocity. As can be seen by inserting KM for [S] in
Eq. 3.4, it denotes the substrate concentration at which the reaction speed is half of
the limiting velocity. If ŒS� 	 KM , then [S] in the denominator can be disregarded
and the reaction becomes linear with regard to S, showing first order characteristics:

ŒS�	 KM ) v � vmax

KM

� ŒS�

On the other extreme, for high substrate concentrations, ŒS�
 KM , the reaction
speed becomes virtually independent of [S] and tends toward vmax.

ŒS�
 KM ) v � vmax D kcat � ŒEt�
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Fig. 3.7 Dependence of the reaction velocity, v, of the irreversible Michaelis Menten equation on
the concentration of the substrate, S. The left graph shows the uninhibited case. On the right various
forms of inhibition are shown in a semi-logarithmic plot. The horizontal dotted lines indicate
the apparent half maximal velocities, the vertical ones the apparent KM s. Competitive inhibition
does not alter the maximal velocity, but shifts the KM to higher values, while non-competitive
inhibition simply decreases the apparent vmax. The special case of uncompetitive inhibition leads
to an apparent increase of substrate affinity of the enzyme, that is a lower KM , but a reduction
of the apparent vmax. Mechanistically this is due to the unproductive enzyme-substrate-inhibitor
complex (KM D 1; [I]D 1; comp., uncomp. and non-comp. inhib.: KI D 1)

Most enzyme catalysed reactions show a similar rate behaviour inasmuch as they
exhibit first or higher order dependencies on the substrate at lower substrate con-
centrations and tend to a limiting rate depending only on the enzyme concentration
when the reactant concentrations are high.

While the original Michaelis–Menten equation was derived to describe the initial
velocity of the enzymatic reaction in absence of product, allowing the reverse
reaction to be neglected, the QSSA can also be used to derive a reversible Michaelis–
Menten equation describing the most extensive reaction scheme in Eq. 3.3.

Using the same procedure as above, the following expression for the reaction
velocity in dependence of ET, S and P can be derived:

v D
vfwd

ŒS�

KMS
� vrev

ŒP�

KMP

1C ŒS�

KMS
C ŒP�

KMP

(3.5)

As the net rate of a reversible reaction has to vanish at equilibrium, one of
the parameters of Eq. 3.5 can be expressed using the equilibrium constant by
setting the numerator of the expression to zero. The so called Haldane relationship
connects kinetic and thermodynamic parameters of an enzymatic reaction. While
some mechanisms lead to much more complicated expressions, at least one Haldane
relationship exists for every reversible reaction.

Keq D vfwdKMP

vrevKMS
D k2KMP

k�1KMS
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Fig. 3.8 Reversible
inhibition of an enzyme E

by binding of an inhibitor I .
Depending on the values of
the dissociation constants
KIa and KIb , the inhibition
can be of competitive,
uncompetitive or mixed type

3.2.2.2 Enzyme Regulation

An important aspect of enzyme catalysed reactions is the regulation of enzyme
activity by effectors or modifications. There are many possible mechanisms for both
activation and inhibition of enzymes, often leading to complicated and unwieldy
mathematical expressions. Luckily, for modelling purposes crude approximations
can be sufficient in many cases.

Alteration of an enzyme’s activity by covalent modifications, such as phosphory-
lation of cyclin dependent kinases or cleavage in the case of caspases often have to
be modelled directly using explicit differential equations for each state. As binding
processes are normally much faster, regulation by reversible binding of effectors is
more amenable to using rapid equilibrium and steady state assumptions and deriving
compact mathematical expressions.

Inhibition can be either irreversible or reversible, depending on whether the in-
hibitor disrupts enzyme activity permanently or not. For reversible inhibition, three
basic cases can be distinguished, competitive, uncompetitive and noncompetitive
inhibition. For these cases, minimal mechanisms can be assumed in combination
with the Michaelis Menten scheme as depicted in Fig. 3.8. In this scheme, inhibitor
binding is characterised by using the dissociation constants, KIa and KIb of the
enzyme inhibitor complexes.

In competitive inhibition, the inhibitor does not alter the limiting rate, but
increases the effective Michaelis constant, KM , the concentration of substrate
needed to reach half maximal activity. One possible explanation for this behaviour
is that the inhibitor competes with the substrate for the enzyme by binding the
same site and blocking it. In the scheme in Fig. 3.8 this corresponds to the inhibitor
exclusively binding the free enzyme, 1

KIb
D 0 and k4 D k�4 D 0. Under a quasi

steady-state assumption the following dependence of the velocity on the substrate,
S, and inhibitor, I, concentrations can be derived:

v D vmax
ŒS�

KM

�
1C ŒI�

KIa

�
C ŒS�

The effect of uncompetitive inhibitors on the other hand cannot be counteracted
by higher substrate concentrations. They alter both the apparent limiting rate as
well as the effective Michaelis constant. In the case of the simple Michaelis Menten
mechanism, both vmax and Km are altered by the same factor. This behaviour can
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be explained by exclusive binding of the inhibitor to the enzyme substrate complex.
In the scheme in Fig. 3.8 this corresponds to 1

KIa
D 0 and k4 D k�4 D 0 and the

following expression can be derived for the velocity:

v D vmax
ŒS�

KM C ŒS�
�
1C ŒI�

KIb

�
Noncompetitive inhibition is a rarely occurring case, in which the inhibitor only

alters the apparent limiting velocity. A possible mechanism would be that inhibitor
binds the enzyme independent of the substrate, totally abolishing the enzyme’s
activity. In the scheme in Fig. 3.8 this would correspond to KI D KIa D KIb

and k4 D k1; k�4 D k�1 and an expression for the velocity of the form:

v D vmax
ŒS�

KM C ŒS�

1�
1C ŒI�

KIb

�
The more realistic scenario, in which inhibitor binding depends on substrate

binding, is called mixed inhibition. With this form of inhibition both the apparent
limiting rate and KM are altered by the inhibitor. This scenario subsumes all
three other forms of inhibition as special cases with the proper KIa and KIb .
An expression for the mixed type mechanism with the scheme in Fig. 3.8 can be
derived by using the steady state assumptions equivalent to those used for derivation
of the irreversible Michaelis–Menten equation (3.4) and considering all possible
enzyme states. This gives an expanded conservation relation for the total enzyme
concentration, ŒET� D ŒE�CŒES�CŒEI�CŒEIS�. Taking a rapid equilibrium approach
for inhibitor binding, [EI] and [EIS] can be expressed using their dissociation
constants, KIa and KIb respectively, and the concentrations of free enzyme and
inhibitor:

ŒEI� D ŒE� � ŒI�

KIa

and ŒEIS� D ŒES� � ŒI�

KIb

Proceeding as for Eq. 3.4 the rate law for the simple mixed type inhibition
mechanism in Fig. 3.8 results as:

v D kcat ŒET�
ŒS�

KM

�
1C ŒI�

KIa

�
C ŒS�

�
1C ŒI�

KIb

�

3.2.3 Modelling Simple Transport Processes

Compartmentalisation of molecular species and transport across membranes is of
great importance in biological systems, and often needs to be implicitly accounted
for or explicitly included into models.
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Transport across membranes can either occur passively by simple diffusion, or be
coupled to another reaction to actively move molecules against a chemical potential
gradient. In the simplest form of passive diffusion, molecules just directly pass
through a membrane or an open channel or pore. As the connected compartments in
general have differing volumes, the change of concentration of a substance flowing
from one compartment to another is not equal in both compartments. Therefore the
rate of translocation is commonly described by the flux, j , of a substance, that is
the amount of a substance crossing a unit area per time unit. In case of no other
influences on the translocation, but simple diffusion, the flux of a substance S into a
cell through a membrane follows a variant of Fick’s first law:

ŒSout��)*� ŒSin�

jS D pS.ŒSout� � ŒSin�/

in which [Sout] and [Sin] are the concentrations of S on the exterior and inside
the cell, respectively. pS denotes the permeability of the membrane for S. The
permeability for direct diffusion is proportional to the diffusion coefficient of S and,
for pores or channels, to the number of open channels per area.

To derive an expression of the change of concentration of S, it is important to
consider that the flux is given as amount per area and time and not as concentration
per time. Therefore the volumes of the exterior and the cell have to be included in
the differential expressions of concentrations. The overall rate of translocation, vt ,
depends on the surface area, A, of the membrane, and the permeability and area can
be contracted to a transport rate constant, kS D pS �A. For the change of [Sout] and
[Sin], respectively, the following expressions can be derived:

dŒSout�

dt
D � vT

Vout
D � kS

Vout
.ŒSout� � ŒSin�/

d ŒSin�

dt
D vT

Vin

with Vout and Vin being the volumes of the exterior and the cell.
In the case of a molecule that does not simply diffuse through a membrane

or pore, but needs to bind a carrier to be translocated from one compartment to
the other, the kinetic expressions depend on the exact mechanism of translocation.
The simplest case of facilitated, or carrier-mediated, diffusion consists of a carrier
with a single binding site, C, which can bind a substance A with equal affinity on
each side of the membrane, and flips from one side of the membrane to the other.
Using the steady state approach the following expression can be derived for the
translocation rate:

vt D vmax .ŒAout� � ŒAin�/

KM C ŒAout�C ŒAin�C Ki ŒAout �ŒAin �

KM
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In this equation vmax is the limiting rate of translocation and depends mostly on
the amount of carrier. KM is the concentration of A on one side at half maximal
translocation in case of zero concentration on the other side of the membrane, and
Ki , called the interactive constant, depends on the relative mobility of the free and
loaded carrier (for details see Kotyk 1967).

3.3 Modelling Cooperative Modulation of Dynamical
Processes

Reactions in biological systems are not only regulated by the availability of reactants
and catalysts, but also by compounds modulating the activity of channels and en-
zymes, often without any direct involvement in the specific reactions. Examples are
neurotransmitters, such as acetylcholine and gamma-aminobutyric acid, that alter
the flow of ions through channels, without direct involvement in the translocation
process.

Often, these processes display cooperativity. Intuitively, one can imagine a
cooperative scenario as one where the modulating effect of a compound depends
on its concentration in a non-linear manner, where the whole is more (or less)
than the sum of its parts. In this section, we will first introduce useful measures
of ligand binding and conformational state, and then examine how cooperativity
can be modelled using different frameworks.

3.3.1 Binding of Modulators and Conformational State

The activities of receptors, channels, and enzymes are often regulated by ligands
binding to them. One important characteristic of such binding processes is the
fractional occupancy, NY , of the bound compound. It is defined as the number of
binding sites occupied by a ligand, divided by the total number of binding sites.
For a ligand X binding to a single binding site of a protein P, we can express [PX]
and NY as follows, using the dissociation constant Kdiss D koff

kon
and the total protein

concentration ŒPt� D ŒP�C ŒPX�:

PC X
kon�)������*�
koff

PX

ŒPX� D ŒPt�ŒX�

Kdiss C ŒX�

NY D ŒPX�

ŒPt�
D ŒX�

Kdiss C ŒX�
: (3.6)
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Equation 3.6, also known as the Hill-Langmuir equation, is very similar to the
Michaelis–Menten equation. Like [S] in Eq. 3.4, [X] stands for the concentration
of free ligand, but can be substituted with the total ligand concentration ŒXt� D
ŒX�C ŒPX� in case that ŒXt�
 ŒPT�.

Often, a protein can exist in various distinct states, only one of which can
perform a specific function. Many enzymes, for example, have an inactive state,
in which their active site is blocked and an active state, in which this block is
relieved. Ion channels can be open and closed. Some proteins exist in two (or more)
distinct structural conformations that favour distinct binding partners. We call such
a conformation of interest the R state for reasons that will become apparent later
in this chapter. Since not all proteins in a population of protein P are necessarily
in the same conformation, it is useful to define a fractional conformational state,
analogous to the previous definition of the fractional occupancy. We denote
fractional conformational state by NR and define it as follows:

NR D ŒR�

ŒPt�

It is important to note that fractional occupancy and fractional conformational
state do not necessarily coincide. Occupancy is usually easier to measure, but
the conformational state might be more relevant (and, indeed, sufficient) in some
modelling scenarios. Both ligand binding and conformational change can display
cooperative behaviour.

In the case of multiple ligand binding sites on a protein, cooperativity can
arise if the binding of a ligand to one site influences binding to the others. If the
binding of a ligand increases the affinity to other ligands, the binding is said to
exhibit positive, if it decreases the affinity, negative cooperativity. Effects of ligands
binding to a protein on an activity physically separated from their binding sites
are called allosteric. They often occur in the regulation of channels by ligands that
are structurally unrelated to the transported compounds. Depending on the kind of
ligands that influence each others’ binding, allosteric and cooperative effects are
called homotropic, if a ligand influences the binding of ligands of the same kind, or
heterotropic, if it influences the affinity to ligands of a different kind.

3.3.2 The Hill Equation

The first description of cooperative binding to a multi-site protein was developed
by Hill (1910). Drawing on observations of oxygen binding to hæmoglobin, Hill
suggested the following formula for the fractional occupancy NY of a protein with
several ligand binding sites:

NY D
ŒX�h

KH

1C ŒX�h

KH

D ŒX�h

KH C ŒX�h
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where ŒX� denotes ligand concentration, KH is an apparent dissociation constant
(with the unit of a concentration to the power of h) and h is the Hill coefficient, which
need not be an integer. The Hill coefficient h indicates the degree of cooperativity,
and in general is different from the number of ligand binding sites, n. While n is an
upper bound for h, it is not possible to estimate the binding sites from measurements
of the Hill coefficient alone. This is exemplified in Hill’s original analysis, in which
he found exponents ranging from h D 1:6 to 3.2 for the binding of oxygen to
hæmoglobin, while the heterotetrameric protein possesses four binding sites for O2.
The Hill equation can show positive and negative cooperativity, for exponent values
of h > 1 and 0 < h < 1, respectively. In case of h D 1 it shows hyperbolic binding
behaviour. With increasing exponents, the ligand binding curve becomes more and
more sigmoid, with the limit of a step function with a threshold value of h

p
KH . The

number Kh D h
p

KH gives the ligand concentration at which half the binding sites
are occupied, or, in purely phenomenological uses, activation or inhibition by the
effector is half maximal.

It is important to note that the above formula, known as the Hill equation is
a purely phenomenological description of Hills observations of oxygen binding
to hæmoglobin. It does not offer a mechanistic description of the underlying
processes. Because it is a purely phenomenological description, however, it can
be used to describe the cooperativity of conformational change as a function of
ligand concentration just as well as it can be used to describe the cooperativity
of ligand binding. It is enough to replace KH by a phenomenological constant
pertaining to conformational change (the physical equivalent of which we need
not worry about) and h by an appropriate Hill coefficient that fits the data for
conformational change. Note, however, that the Hill framework does not offer a
way of relating ligand saturation and conformational change.

Because the Hill framework is not concerned with a mechanistic explanation of
cooperative ligand binding, all binding sites are treated as equal and cooperativity
itself does not change with ligand saturation. In other words: Cooperativity in
the Hill model is solely a property of ligand molecules, rather than a property of
binding sites.

3.3.2.1 Using Hill Functions to Model the Regulation of Biochemical
Processes

Hill functions can easily be adapted for use in modelling and to describe interactions
with little prior knowledge. Let us assume a channel C transporting a substance
S, that is regulated in a nonlinear fashion by a ligand A, for example by direct
binding. If the channel is activated with increasing concentrations of A, sometimes
this behaviour can be approximated using a Hill function:

vT .ŒC�; ŒA�; ŒS�/ D vT max.ŒC�; ŒS�/
ŒA�h

Kh
h C ŒA�h
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Fig. 3.9 Activation (left) and inhibition (right) modelled using Hill functions with a Hill exponent,
nh of 2. The concentration of the ligand is shown in units of the concentration of half maximal
activation or inhibition, respectively, Kh on a logarithmic scale, the velocity v in percent of the
fully activated or uninhibited velocity, vmax. The dashed line shows cases with a basal rate, vbas , of
25% of vmax (b D vbas

vmax
D 0:25)

Here vT is the actual flux rate of S through the channel C. vT max indicates
the maximal flux rate at high concentrations of A. Kh and h indicate the ligand
concentration of half maximal activation and the Hill coefficient.

An inhibitory effect of a ligand I on the flux through a channel C can often be
described using a similar expression:

vT .ŒC�; ŒI�; ŒS�/ D vT max.ŒC�; ŒS�/
1

Kh
h C ŒI�h

In this equation Kh stands for the concentration at which the ligand I shows half
maximal inhibition.

In case of non-essential activation or leaky inhibition, a process still proceeds at
a basal rate vbas in absence of the activator or at high concentrations of the inhibitor.
This can be accounted for by using the relative basal rate, b D vbas

vmax
:

v D vmax .b C .1 � b/�.ŒX�//

in which �.ŒX�/ is a function describing the relative activity in dependence of
the concentration of the regulating ligand X (Fig. 3.9). In the simplest case for an
activating ligand A or an inhibitory ligand I, � takes the following form:

�.ŒA�/ D ŒA�h

Kh
h C ŒA�h

�.ŒI�/ D 1

Kh
h C ŒI�h
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The Hill equation is widely used in neuronal modelling, especially for the
kinetics of ligand-gated channels. An example containing two different types of
activation is given in Borghans et al. (1997) for the Ca2C induced Ca2C release
(CICR) via the inositol triphosphate (InsP3) receptor. Equation 19 in that article
describes the release of calcium from a calcium sensitive pool with a flux rate
given by:

vInsP3R D vmax
ŒCap�2

K2
1 C ŒCap�2

ŒCac�
2

K2
2 C ŒCac�

2

In this equation vmax denotes the maximal release rate, and [Cap] and [Cac]
the Ca2C concentrations in the pool and the cytoplasm. The release is regulated
by the Ca2C concentrations on both sides of the membrane separating the pool
and the cytosol, and K1 and K2 stand for the threshold concentrations for these
activations.

Parthimos et al. (2007) used an even more complex expression for the CICR
from the sarcoplasmic reticulum via the InsP3 receptor. The receptor was modelled
to be both activated and inactivated by cytosolic Ca2C, Cac, using two Hill functions
involving Cac. A possible mechanistic explanation for this form would be the
existence of independent activation and inhibition sites, with different affinities and
degrees of cooperativity for Ca2C. In the flux rate through the InsP3 receptor

vInsP3R D vmax
ŒCas�

2

K2
1 C ŒCas�

2

ŒCac�
4

K4
2 C ŒCac�

4

K4
3

K4
3 C ŒCac�

4
(3.7)

K2 and K3 indicate the cytosolic Ca2C concentrations at which activation and
inhibition of CICR, respectively, are half maximal. If they are chosen in such a
way that K2 < K3, the flux rate through the receptor reaches a maximum for
concentration values between the values of the two constants and vanishes for higher
cytosolic Ca2C concentrations (see Fig. 3.10), creating a complex on-off behaviour
of the InsP3 receptor in dependence of the Ca2C concentration.

3.3.3 The Adair-Klotz Framework

Adair (1925) and Klotz (1946) (reviewed in Klotz 2004) further explored the notion
of cooperative binding. According to their framework, cooperativity was no longer
fixed, but dependent on saturation: Binding of the first ligand molecule would alter
the affinity of the protein for the following ligand molecules.

This type of cooperative binding can be elucidated in the simplest case of a
protein possessing two identical ligand binding sites. Assuming that the first ligand
molecule, X can bind either site of P with a dissociation constant K1 to give the
complex PX and the second molecule with a dissociation constant K2 to give the
complex PX2:



3 Using Chemical Kinetics to Model Neuronal Signalling Pathways 109

1

0.5

0.25

[Cac
2+] (mM)

K2 = 0.03; K3 = 1.0 
K2 = 0.2; K3 = 2.0 
K2 = 0.7; K3 = 50 

op
en

 s
ta

te
 p

ro
ba

bi
lit

y

0
0.001 0.01 0.1 1 10 100 1000

0.75

Fig. 3.10 InsP3 receptor opening probability dependent on cytoplasmic Ca2C after Parthimos
et al. (2007) as described in Eq. 3.7. K2 and K3 indicate the concentrations of half maximal
activation and inhibition, respectively, of the InsP3 receptor. For both activation and inhibition
a Hill factor of 4 was assumed

PC 2X
K1�)������*� PXC X

K2�)������*� PX2

As the first ligand can choose from two binding sites, a factor 2 has to be included
in the expression for [PX]. For the concentrations of the complexes the following
relations follow:

ŒPX� D 2
ŒP�ŒX�

K1

and ŒPX2� D ŒP�ŒX�2

K1K2

or for the fractional saturation NY :

NY D ŒPX�C 2ŒPX2�

2 .ŒP�C ŒPX�C ŒPX2�/
D

ŒX�

K1
C ŒX�2

K1K2

1C 2
ŒX�

K1
C ŒX�2

K1K2

The two binding affinities, K1 and K2 determine the form of cooperativity
exhibited by the binding process. If the binding of the ligand to both sites is
completely independent, that is K1 D K2, the protein exhibits hyperbolic binding.
On the other hand, if binding of the first ligand leads to an increased affinity, ie.
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Fig. 3.11 Fractional occupancy NY of a protein with two ligand binding sites dependent on the
ligand concentration ŒX�. The solid line shows the behaviour for independent binding sites (K1 D
K2), the dotted for positive (K1 < K2) and the dashed for negative (K1 > K2) cooperativity
between binding sites. Hill type binding with a Hill coefficient of 2 is shown as a boundary case
(dot-dashed line)

decreased dissociation constant for the second site, K1 > K2, the protein exhibits
positive cooperativity. In case of negative cooperativity, the binding of the first
ligand decreases the affinity of the second site, K1 < K2, and the sensitivity of the
protein to the ligand concentration decreases faster than with hyperbolic binding.
Figure 3.11 shows different forms of cooperativity for this binding process.

In the case of K1 
 K2, the concentration of the intermediary can be neglected
and it can be assumed that the binding occurs in a single step, with both ligands
binding at the same time. In this case, the above equation reduces to a Hill equation
with an appropriate phenomenological dissociation constant KH .

The Adair-Klotz framework gives a sequence of binding constants, exactly as
many as there are binding sites on protein P for ligand X. It is worth noting that
these constants do not relate to individual binding sites. They describe how many
binding sites are occupied, rather than which ones. In that sense, the reported
dissociation constants are phenomenological. At the same time, they are easily
observable by fitting an Adair-Klotz equation to data on protein saturation as a
function of ligand concentration. They are therefore widely used by experimentalists
to describe measurements of ligand binding in terms of sequential apparent binding
constants.
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Note that the Adair-Klotz equation cannot be used to describe conformational
change, nor is there an easy way to deduce a conformational state from a fractional
occupancy. For some applications, this might not be a problem, because conforma-
tional information might not be needed, or it might be a good enough approximation
to add a simple assignment such as, for instance, equating full ligand saturation with
the active state. It needs to be borne in mind, though, that this approximation does
not always hold and that some signalling proteins with subtle regulation patterns
need to be described using models that account for their conformational state as
well as their ligand saturation.

3.3.4 Allosteric Models

By the middle of the twentieth century, there was an increased interest in models that
would not only describe binding curves phenomenologically,but offer an underlying
biochemical mechanism. Koshland (1958) and Koshland et al. (1966) offered a
tentative biochemical explanation of the mechanism described by Adair (1925) and
Klotz (1946) for proteins made of identical subunits with one ligand binding site
per subunit. The Koshland, Nemethy and Filmer (KNF) model assumes that each
subunit can exist in one of two conformations: active or inactive. Ligand binding
to one subunit would induce an immediate conformational change of that subunit
from the inactive to the active conformation, a mechanism described as induced fit.
Cooperativity, according to the KNF model, would arise from interactions between
the subunits, the strength of which varies depending on the relative conformations
of the subunits involved. This sequential model directly links saturation to the
conformational state of a subunit. Importantly, it posits that not all subunits of a
protein need to be in the same conformational state at the same time.

3.3.4.1 The MWC Model

In contrast, The Monod-Wyman-Changeux (MWC) model of concerted allosteric
transitions (Monod et al. 1965) assumes that all subunits in the enzyme undergo
conformational change together, a concept known as concerted transition. The
probability of transition between two conformational states of the proteins, termed
the tense (T) and the relaxed (R) state, depends on the binding of ligands that have
different affinities for each of these two states. A schema of an MWC-type protein
is shown in Fig. 3.12.

In the absence of a ligand, for instance, the T state prevails, but as more ligand
molecules bind, the R state (which has higher affinity for the ligand) becomes more
and more populated. Remembering the discussion in Sect. 3.1.3.2, we can describe
the situation in terms of free energy: In the absence of ligand, the T state has a lower
free energy than the R state and is therefore the preferred state. As more and more
ligand binds, however, the R state becomes the energetically favoured conformation
(see Fig. 3.13).
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Fig. 3.12 Schematic view of
an MWC protein with four
subunits. The T state is shown
as a square, the R state as a
circle. In this case, the R state
has a higher affinity for the
ligand L; ligand binding thus
stabilises the R state over the
T state

A few new parameters have to be introduced in order to conveniently describe an
MWC protein. The allosteric isomerisation constant L describes the equilibrium
between both states when no ligand molecule is bound: L D ŒT0�

ŒR0�
. If L is very

large, most of the protein exists in the tense state in the absence of ligand. If L
is small (close to one), the R state is nearly as populated as the T state. While
the Adair-Klotz framework traditionally operates with association constants, the
MWC framework has traditionally been described using dissociation constants. The
ratio of dissociation constants for the R and T states is described by the constant

c: c D KR
d

KT
d

. If c D 1, both R and T states have the same ligand affinity and the

ligand does not affect isomerisation. The value of c also indicates how much the
equilibrium between T and R states changes upon ligand binding: the smaller c,
the more the equilibrium shifts towards the R state. According to the MWC model
(Monod et al. 1965), fractional occupancy is described as follows:

NY D
ŒX�

KR
d

�
1C ŒX�

KR
d

�n�1 C Lc
ŒX�

KR
d

�
1C c

ŒX�

KR
d

�n�1

�
1C ŒX�

KR
d

�n C L
�
1C c

ŒX�

KR
d

�n (3.8)

with KR
d , L and c as described in the paragraph above.
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Fig. 3.13 Free energy diagram for an allosteric protein with four binding sites. Energy levels (in
J=mol) were computed as in (Edelstein et al. 1996) using an allosteric model of calmodulin (Stefan
et al. 2008). Each level of energy represents all the forms carrying the same number of ligand ions.
Free energy differences between the T state and the corresponding R state relate to the allosteric
isomerisation constant. Between corresponding T and R states, a hypothetical transition state is
depicted based on estimates of rate constants. T state is shown on the left, R state on the right and
the transition state in the middle

The degree of conformational change is described by the state function NR, which
denotes the fraction of protein present in the R state. As the energy diagram
illustrates, NR increases as more ligand molecules bind. The expression for NR
according to the MWC model (Monod et al. 1965) is:

NR D
�
1C ŒX�

KR
d

�n

�
1C ŒX�

KR
d

�n C L
�
1C c

ŒX�

KR
d

�n (3.9)

Thus, the MWC model can express both ligand binding and conformational
change as a function of ligand concentration, and the relationship between the
two is well defined because both expressions rely on the same set of microscopic
parameters. It is important to note that the curves for NY and NR do not overlap
(Rubin and Changeux 1966), i. e. fractional saturation is not a direct indicator of
conformational state (and hence, of activity). This is illustrated in Fig. 3.14.
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Fig. 3.14 NY and NR for an allosteric protein. Fractional occupancy ( NY) is shown as a solid line;
fractional conformational change ( NR) as a dashed line. Curves were obtained using a model of
calmodulin (Stefan et al. 2008) with a calmodulin concentration of 2 � 10�7 m

Within the MWC model, the function of an allosteric protein can be modulated
by an allosteric effector: An effector that binds preferentially to the R state and
hence stabilises it is called an allosteric activator, while an effector that prefers the
T state is called an allosteric inhibitor (Monod et al. 1965).

Generalisation and extensions of the MWC framework have been presented
to account for various additional scenarios. Other generalisations of the MWC
framework have been presented to account for allosteric proteins with multiple
states (Edelstein et al. 1996), for proteins that bind to different types of ligand (Mello
and Tu 2005), proteins that bind to several ligands and multiple allosteric activators
or inhibitors (Najdi et al. 2006) and proteins with non-identical binding sites for the
same ligand (Stefan et al. 2009).

The conformational spread model by Duke et al. (2001) is a general allosteric
model that encompasses both the KNF model and the MWC model as special cases.

3.3.5 Which Framework to Use

In theory, the same system can be described using either of the frameworks
presented above (and a nice example for data interpreted both using the Adair-
Klotz framework and the MWC framework is given in Yonetani et al. 2002), and
simpler models arise as special cases from the more complicated ones. However,



3 Using Chemical Kinetics to Model Neuronal Signalling Pathways 115

for the purposes of computational modelling, it is important to bear in mind that the
different frameworks describing cooperativity have different scopes, drawbacks and
advantages.

The Hill function is quick and easy to implement, features few unknown
parameters that can readily be derived by fitting to experimental data, and can be
used to describe either ligand binding or activation. On the other hand, it is a purely
phenomenological description that will not offer a better mechanistic understanding
of the protein-ligand system in question and does not allow for subtle effects such
as a change of cooperativity as a function of saturation.

The Adair-Klotz framework is used widely in experimental work on ligand
binding to protein. Therefore, dissociation constants found in the literature can often
be plugged directly into an Adair-Klotz equation without the need for parameter
conversion or estimation. The Adair-Klotz framework is wider in scope than the Hill
equation and has more mechanistic relevance in that the association constants are
related to real binding events. However, the Adair-Klotz framework itself is strictly
limited to ligand binding and disregards conformational change.

The MWC framework accounts for both ligand binding and conformational
change and therefore allows for the modelling of rather subtle effects, especially
when the two do not coincide. It offers the greatest level of mechanistic detail and is
therefore very powerful. However, allosteric parameters such as L and c are rarely
found in the experimental literature and are harder to measure than the apparent
Adair constants, so the demands on data analysis and parameter estimation are
higher.

Note that while all frameworks provide an assigment rule that allows for ligand
saturation at equilibrium to be computed from concentration of free ligand, only the
Adair-Klotz framework and the MWC framework allow for a separate formulation
of forward and reverse reactions, and hence for a representation of kinetic effects.

Also note that the expressions for NY in all three frameworks and for NR in the
MWC model only hold if the concentration of free ligand equals that of total ligand,
i. e. if ligand supply is unlimited. In biological systems, this is not always the case,
which means that the real dose-response curve can differ from the theoretical one. A
discussion of this phenomenon, called ligand depletion, is given in Edelstein et al.
(2010). An explicit simulation, in which ligand supply is not unlimited and ligand
is consumed as the reactions proceed, offers a more realistic approach, although it
might be more tedious to implement.

Whatever model is used will depend on a number of factors, including data
availability, computational cost, scale of the model, and the biological question
under investigation.

3.4 Further Reading

Biophysical chemistry, James P. Allen. This is a complete and concise presentation
of the physical and chemical basis of life (Allen 2008).
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Computational Cell Biology, Christopher P. Fall, Eric S. Marland, John M. Wagner,
John J. Tyson. Also known as “the yellow book”, this is an excellent introduction
to modelling cellular processes. It contains chapters dedicated to ion channels,
transporters, biochemical oscillations, molecular motors and more (Fall et al.
2002).

Enzyme kinetics, Irwin H. Segel and Fundamentals of Enzyme Kinetics, Athel
Cornish-Bowden. Also known as “the black book” and the “the red book”, these
are the two reference books if one wants to know how to model an enzymatic
reaction, regardless of its complexity.

Solving Ordinary Differential Equations I and II, Ernst Hairer, Syvert P. Norsett,
Gerhard Wanner. Extensive coverage of the domain of ordinary differential
equations, from Newton and Leibniz to the most advanced techniques using
implicit solvers.
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Chapter 4
Breakdown of Mass-Action Laws in Biochemical
Computation

Fidel Santamaria, Gabriela Antunes, and Erik De Schutter

Abstract The objective of this chapter is to describe conditions where the classical
laws of mass action and diffusion no longer apply to biological systems, particularly
neurons and other types of cells. This type of phenomena typically takes place at the
nano- to micro-scale levels. An increasing number of studies show that the classical
diffusion process dominated by Brownian motion cannot be directly applied to
cells. Instead, a process called anomalous diffusion seems to be fundamental to
the propagation of biochemical signals. Anomalous diffusion implies an increase in
the correlation of movement among the diffusing molecules, which is the basis of the
deviation from classical diffusion phenomena. Such a process has important conse-
quences not only on the diffusion of molecules inside cells but also on their reaction
rates. We first describe structural causes of anomalous diffusion and stochastic simu-
lation algorithms that can be used to computationally simulate its effects. We end the
chapter by describing another cause of anomalous diffusion, molecular crowding,
and speculations on the significance of these phenomena for neural function.

4.1 Neuronal Structure Causes a Breakdown of the Classical
Diffusion Process

Most intracellular signaling pathways require the diffusion of molecules. This
is particularly important in neurons, the most morphologically polarized cells in
Nature, where proteins are mainly produced in the cell body and have to find
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their way to specific sites of large dendritic and axonal arborizations. The dendritic
trees of neurons are particularly important because they contain most of the area
and volume of the cell. Large dendritic trees contain structures spanning multiple
spatial scales. The principal components of dendrites are branches, which vary
in length from 10 to 1,000 �m. Dendritic branches can have different lengths,
changes in diameter and bifurcations. Another important morphological component
of dendrites are dendritic spines. Dendritic spines are small protrusions of about 1
fL where most excitatory synaptic contacts take place (Fiala et al. 2008). Spines are
composed of a head and a neck, attached to the surface of dendrites. Dendrites can
be covered – spiny – or not – smooth – with varying densities of dendritic spines.

Diffusion over branched dendritic trees that bifurcate and taper is basically
determined by the classical laws of diffusion (Santamaria et al. 2006). The length
of dendritic segments over which molecules diffuse (tens of micrometers) is at
least an order of magnitude larger than their diameter (�1 �m) (Fiala et al. 2008).
Therefore, differences in concentration in the radial direction of the dendrite are
rapidly equilibrated compared to diffusion along the dendritic axis. Figure 4.1a
shows a three-dimensional (3D) model of diffusion in a smooth dendrite. Clearly,
a diffusing molecule in such a structure follows a random walk along the dendrite.
The mean square displacement (MSD) along the length of the dendrite of all the
simulated molecules is given by

MSD.t/ D 1

N

NX
iD1

r2
i (4.1)

where ri is the relative position to their origin at tD 0 and N the number of molecules
diffusing. Plotting the MSD vs t results in the well known linear dependence of
normal diffusion

MSD / Dt (4.2)

where D is the diffusion coefficient.
The structural properties of dendritic spines are well known and rather variable.

Molecules diffusing along dendrites can be expected to enter spines, remain trapped
inside the spine head and then escape to continue their axial diffusion (Fig. 4.1b).
The natural distribution of spine shapes might give rise to a distribution of waiting
times inside spines that, in turn, could slow down axial diffusion along the dendrite.
It might be expected that the slowing down of the diffusing particle together with
the high viscosity of the cytosol would reduce the diffusion rate of a particle but
remain linear

MSD / Dappt (4.3)

where D > DappD constant, with Dapp called the apparent diffusion coefficient. Such
a reduced normal diffusion process has been extensively studied in neurons in the
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Fig. 4.1 Simulated 3D random walks in a smooth dendrite (a) and a spiny dendrite (b). Spines are
modeled by a neck (a thin tube) connecting the head (a large sphere) to the dendritic shaft. Once a
molecule enters a spine head it becomes trapped inside for variable amounts of time, resulting in a
decreased lateral movement of molecules inside a spiny dendrite

context of calcium buffering (Wagner and Keizer 1994; Zador and Koch 1994;
Naraghi and Neher 1997). However, the trapping of molecules by dendritic spines
results in a quite different diffusion process.

Figure 4.1b shows a 3D model of a dendrite covered with multiple spines.
The sizes of the spines are varied to mimic the heterogeneous distribution of
morphological properties of spines. Diffusing molecules can become trapped in the
spine head: once they enter this relatively large volume they can leave only when
they hit the small diameter neck entry. We have previously shown (Santamaria et al.
2006) that the trapping time is related to the ratio of the spine head to spine neck
diameters, which can be quite variable (Fiala et al. 2008). Diffusion along a spiny
dendrite is therefore better described by a power law:

MSD / Dappt˛ (4.4)

This type of diffusion process is termed anomalous diffusion (ben-Avraham and
Havlin 2000) and ’ is the anomalous exponent. It is easy to see that while under
normal diffusion Dapp is constant (DappDMSD/t) during anomalous diffusion its
value depends on time (DappDD t˛�1). This anomalous diffusion is fundamentally
different than other reduced structural forms of slowed diffusion such as tortuosity
in which the Dapp remains constant (Valiullin and Skirda 2001; Lacks 2008). Thus,
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Fig. 4.2 Simulated anomalous diffusion in Purkinje cell dendrites. The figure illustrates the
diffusion in absence (a) and presence (b) of dendritic spines at 1, 20 and 200 ms after the release of
1,000 molecules in a 3 �m center spot. For the smooth dendrite, molecules diffuse freely along the
dendrite, while in the spiny dendrite (density D 6 spines/�m2) the molecules can become trapped
in the spines resulting in a slower lateral spread which is most obvious in the mid panels

the diffusion of molecules along a dendrite covered with spines cannot be described
with a constant diffusion coefficient. The lack of a single diffusion coefficient that
characterizes the diffusional process suggests that some molecules can undergo free
diffusion while others experience different degrees of obstructed diffusion due to
trapping by spines. If there is not a single diffusion coefficient at any given spatial
compartment then the classical assumptions of homogeneous distribution of mass
and a single diffusion coefficient for a given material required in Fick’s law cannot
be applied, resulting in a breakdown of the classical laws of diffusion. The trapping
of molecules in dendritic spines also causes an increase in the correlation of particle
displacement (Dagdug et al. 2007; Fedotov and Mendez 2008).

Anomalous diffusion processes can be described phenomenologically by multi-
ple waiting times models (Hrabetova et al. 2003; Dagdug et al. 2007; Campos et al.
2008; Fedotov and Mendez 2008) as long as the characteristic length of diffusion
is larger than the size of the traps. The emergence of anomalous diffusion in spiny
dendrites depends on the relative scales imposed by the shape of spines and length
of the dendrite. In the neuromuscular junction, at short observation times diffusion
is anomalous, while at long times diffusion can return to normal (Lacks 2008). In
our case, if the time spent in the spine is negligible, or the length of the dendritic
segment is short, then no anomalous diffusion is observed (Sen et al. 1994).

We have shown that Purkinje cells (Fig. 4.2) (Santamaria et al. 2006), and more
recently, pyramidal cells (Santamaria et al. 2011), have anomalous diffusion of intra-
cellular signals. We tested this idea by photolyzing a caged inert compound in differ-
ent parts of the dendrite. We found that the diffusion of molecules in smooth dendrite
is almost normal (’D 1), while in spiny dendrites it is anomalous. Detailed 3D sim-
ulations (Fig. 4.3) predicted that the value of the anomalous exponent will decrease
linearly with the spine density, which was confirmed for the pyramidal neurons.
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a b c

Fig. 4.3 Simulated anomalous diffusion in Purkinje cell dendrites with different spine densities.
(a) The spatial variance (equivalent to MSD, Eq. 4.1) decreased non-linearly with increasing spine
density. (b) Logarithmic transform of spatial variance values calculated in Purkinje cell dendrites
at the indicated spine densities. (c) Relationship between ’ and spine density

We also tested second messengers, in particular Ca2C and IP3. These two second
messengers are very important in the initiation of long term depression, a type of
synaptic plasticity in Purkinje cells believed to underlie associative learning (Ito
2001). We found that Ca2C did not show anomalous diffusion in spiny dendrites.
This lack of structural influence on diffusion was due to the fast buffering and
pumping of Ca2C ions after they were photolyzed. In fact, the fast time constant
of Ca2C decay only allowed Ca2C ions to move about 5 �m away from the site
of release before being excluded from the cytosol; thus the characteristic length of
diffusion was shorter than the size of the traps. The other molecule we tested was
IP3. This molecule showed anomalous diffusion in spineless dendrites also. This
was probably caused by the biochemical reaction of IP3 binding to receptors. In this
case, the delay between IP3 binding and unbinding from the IP3 receptor causes the
temporal trapping that reduces the spread of the signal along the dendrite. However,
IP3 diffusion in spiny dendrites showed much stronger levels of anomalous diffusion
due to the presence of spines.

4.2 Methods: The Gillespie Stochastic Simulation Algorithm

Simulations presented in Figs. 4.1 and 4.2 were made with the STEPS software
(Wils and De Schutter 2009) which implements the Gillespie Stochastic Simulation
Algorithm (SSA) in tetrahedral meshes. We first describe the SSA before giving an
overview of the STEPS software functionality.

The basis of chemical reactions is a random process in which the reactants must
collide with the appropriate direction and energy (Connors 1990; Alexander and
Zare 1998). If the system contains a small molecular population of some of its
reactants the discreteness of the considered system generates dynamics different
from the predictions of the corresponding deterministic model (Bhalla 2004). Thus,
the mass action law breaks down. Such cases are frequent in cellular environments,
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leading to fluctuation in the biochemical reactions with considerable effects (Kuthan
2001; Elowitz et al. 2002). In order to accurately predict the evolution of the system
it then becomes necessary to track each reaction instead of computing the mean
behavior using ordinary differential equations (Cao and Samuels 2009). With a high
number of molecular species and reactions, this problem can be computationally
challenging.

There are several different approaches to stochastic simulation of chemical reac-
tions (Bhalla and Wils 2010). For mesoscopic systems, it is possible to approximate
the dynamics of biochemical reactions by assuming the existence of a volume in
which the chemical population is homogeneously distributed in space (Gillespie
1976, 1977), also known as a well-mixed system. Thus, the position and velocity
of the individual chemical entities can be ignored (Gillespie 2007). Under these
conditions it becomes possible to calculate the probabilistic behavior of chemical
systems over the discrete state space of entities (Gillespie 1992). This is the central
principle enclosed in the chemical master equation (CME) (McQuarrie 1967).

We consider a system with N species Si and a set of reaction rules Rj. Each Rj

describes an irreversible reaction. Reversible reactions can always be described by
two irreversible reactions. The state of this system is described by a state vector x of
size N, with each integer component Xi corresponding to the number of molecules of
species Si present. The number of molecules Xi can be converted to concentrations
if the volume of the system is known. The system is then characterized by an initial
state x0 and its evolution over time is described by which reactions Rj take place
and how these reactions change x. The state change vector vj (size N) represents
the change induced by one reaction Rj. For large systems most integer values of vj

will be zero as only a limited number of molecules participate in any reaction. If the
system is in the state x and one Rj occurs, the system changes to state xC vj.

To simulate the behavior of this system one needs to know which reactions Rj

occur at what time. This is determined by an important property of reactions, called
the propensity function aj, defined so that aj(x)dt is the probability that one Rj

will occur in the next infinitesimal time interval [t; tC dt), for a specific xt. The
propensity function reflects the fundamental characteristics that stochastic chemical
kinetics are dependent on the number of reactants available and on reaction rate
constants. So, for a given Rj, this implies the existence of a reaction rate constant
cj, defined such that cjdt is the probability that an arbitrarily chosen combination
of Rj reactant molecules will react in the next infinitesimal time dt. Therefore, the
propensity function can be defined as aj(x)D cjx1, for the unimolecular reaction
S1! products(t), and as aj(x)D cjx1x2 for second order reactions of the form
S1CS2! products(t) (Gillespie 2007). The propensity functions are the basis for
the CME for X(t) by using the laws of probability:

@P .x; t jx0; t0/

@t

D
MX

j D1

�
aj

�
x � vj

�
P
�
x � vj ; t jx0; t0

�� aj .x/P .x; t jx0; t0/
�

(4.5)
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The probability that the system is in a state x at time t, knowing that it was in
x0 at the initial time t0, depends on the difference between the probability that it
enters x from a closely related state (first term of the summation in Eq. 4.5) and the
probability that it was already in state x but has changed (second term), with the
summation taken over all possible reactions.

Compared to deterministic kinetics approaches, the CME is more physically
rigorous and based on thermodynamics concepts (Gillespie 1992). However, Eq. 4.5
corresponds to a large system of coupled ODEs that is analytically intractable
for most biologically relevant models. Therefore, to simulate cellular processes
stochastically, numerical approaches should be used.

During the 1970s, Daniel Gillespie (1976, 1977) published an exact stochastic
simulation algorithm for chemical kinetics, which has become the most common
algorithm used for stochastic simulation of biochemical systems. The SSA is a
procedure for generating statistically exact time-evolution trajectories of a finite
well-stirred population of individuals distributed over a finite set of states. It is exact
in the sense that the generated sample paths are precisely distributed according to
the solution of the CME, but because it scales with the number of reactions in the
system it can be quite slow for large simulations.

In the SSA, as occurs in the CME, the reactions are defined as events that
change the number of individuals in each state following chemical rules, altering
the molecular populations by integer numbers. The SSA is based on computing
iteratively the time when the next chemical reaction of a given system will occur and
then determining which reaction it will be (Gillespie 1976, 1977). This is based on a
new function that calculates the probability, given X(t)D x, that the next reaction of
the system will occur in the infinitesimal time interval [tC � ; tC � C d�) and will
be of type Rj:

p .�; j jx; t / D aj .x/e�a0.x/� (4.6)

with a0.x/ D PM
j D1 aj .x/ called the zero propensity, the probability that any

reaction will occur.
Gillespie suggested several equivalent procedures for constructing exact numeri-

cal realizations of the SSA. STEPS utilizes the so-called Direct Method. In order to
advance the system from state x at time t, the Direct Method generates two random
numbers r1 and r2 from the uniform distribution in the unit interval. The time until
the next reaction � is then determined by:

� D 1

a0.x/
ln

�
1

r1

	
(4.7)

The reaction j that occurs is selected with the second random number so that j
is the smallest integer satisfying

Pj
iD1 ai .x/ > r2a0.x/. The state x is then updated

to xC vj and t to tC � and the procedure is repeated until some predefined time or
state is reached.
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4.3 The STEPS Simulator

In this section, we briefly describe the software STEPS (STochastic Engine for Path-
way Simulation), available at http://steps.sourceforge.net/ (Wils and De Schutter
2009). STEPS is a platform for stochastic simulation of coupled reaction–diffusion
systems in complex 3D boundary conditions. The Python-based user interface
allows for a flexible description of the model and its initial conditions (Wils
and De Schutter 2009). By invoking a different solver the same model can be
simulated either deterministically, using a fixed time step Runge–Kutta method
or stochastically using SSA (Fig. 4.4). The accuracy of STEPS has been verified
extensively. An online user manual is available to get the novice user started.

Fig. 4.4 An example of a stochastic and a deterministic model of Ca2C dynamics performed
with STEPS. In spines of Purkinje cells, transient changes in Ca2C concentration are involved in
numerous processes, including the induction of synaptic plasticity. The kinetics of Ca2C transients
is fundamental in determining its action, and is regulated by several factors. In this example
(Adapted from Schmidt et al. 2003) mechanisms of Ca2C extrusion, exogenous (Oregon green
BAPTA 1), and endogenous buffers (parvalbumin and calbindin) were responsible for shaping the
transients within the spines. Due to the small volume of the spine, only the stochastic simulation
(grey line) is able to represent the discrete fluctuations in the Ca2C concentration. However,
the high concentration buffers exhibit a similar behavior in both stochastic and deterministic
simulations

http://steps.sourceforge.net/
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An important limitation of the Gillespie algorithm is that it can be only be applied
to chemical homogeneous environments, which is not an appropriated assumption
when considering the cellular milieu. Cells are characteristically chemical inhomo-
geneous systems, presenting several mechanisms of source and sink of some key
entities taking place at specific positions (Mazel et al. 2009). Furthermore, most
of the cellular biochemical reactions happens in aqueous environment or in fluid
lipid membranes, where the chemical entities are allowed to move (Singer and
Nicolson 1972; Saffman and Delbruck 1975), making their diffusion an important
event regulating biochemical process (Kholodenko 2003; Bhalla 2004).

In order to simulate stochastic diffusion, STEPS uses a modification of the
Gillespie algorithm. Space inhomogeneity is incorporated in the SSA by discretizing
a model into tetrahedral sub-volumes, also called voxels, considered to be separate
reaction volumes. STEPS supports importing tetrahedral meshes from several pop-
ular mesh generation packages, which is a very important advantage in comparison
to other biochemical simulators (Ander et al. 2004; Hattne et al. 2005). To satisfy
the requirements of the SSA, each tetrahedron must have a sufficiently small
volume allowing the chemical population inside of it to be considered spatially
homogeneous distributed. Diffusion is simulated as the transition of molecules
between neighboring elements. These transitions are expressed in the form of a
set of reactions, which are added to the chemical system. The rate constant (k) for
the diffusion between two voxels (i, j) for a given entity is calculated through the
expression:

ki!j D DzAj

dxi Vi

(4.8)

where ki,j is the transition from the voxel i to j, Dz is the diffusion coefficient for the
entity z, Aj is the cross-sectional area of the triangle separating the tetrahedrons i and
j, Vi is the volume of the voxel i, and dxi is defined as the barycenter-to-barycenter
distance between tetrahedron i and its neighbor j.

4.4 Anomalous Diffusion Caused by Molecular Crowding

There is increasing evidence that the membranes and cytosolic content of cells
cannot be treated as well-mixed compartments at the temporal and spatial scales
in which important biological function occurs (Winckler et al. 1999; Fukano et al.
2004; Santamaria et al. 2006; Ehlers et al. 2007). The source of this deviation could
be due to the structure of the cell (Santamaria et al. 2006) as explained in the first
section, or from the high concentration of macromolecules found in the cytosol or
anchored in the membrane (Saxton 1994; Ritchie et al. 2005; Guigas et al. 2007a, b;
Guigas and Weiss 2008), a condition referred to as molecular crowding (Schnell
and Turner 2004).
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Without any obstacles to diffusion the displacement of a particle in 2D or
3D is described with the classical law of diffusion. However, macromolecules,
molecules that weigh several kilo Daltons, can occupy up to 40% of the intracellular
volume of a cell (Record et al. 1998). At such concentrations, the influence of
steric interactions among diffusing molecules cannot be assumed to be negligible
(Minton 2006). Theoretical, modeling and experimental results show that molecular
crowding caused by macromolecules significantly reduces the spread of biochemical
signals in the cytosol (Weiss et al. 2004; Banks and Fradin 2005), transforming
the classical diffusion equation again to a power law (Saxton 1994; Deverall et al.
2005). There is an increasing amount of experimental evidence suggesting that
many cytosolic and membrane molecules show anomalous diffusion (Tang and
Edidin 2003; Ritchie et al. 2005; Wawrezinieck et al. 2005), although this has been
recently challenged (Dix and Verkman 2008). It is important to note that molecular
crowding specially arises when the distribution of molecules is random (Minton
2006). Furthermore, molecular crowding seems to be a property that cells tend to
maintain independent of volume (Guigas et al. 2007a).

Molecular crowding may also play an important role in neurotransmitter receptor
trafficking in the postsynaptic density (PSD) (Santamaria et al. 2010). Modeling
suggests that the high concentration and excluded volume caused by anchored
PSD molecules result in molecular crowding and makes diffusion of glutamate
receptors (AMPAR) in the PSD anomalous. Anomalous diffusion of AMPAR results
in retention of these receptors inside the PSD for periods ranging from minutes to
several hours in the absence of strong binding of receptors to PSD molecules. The
distribution of time AMPARs spend in the PSD reproduces multiple experimental
results (Ehlers et al. 2007; Frischknecht et al. 2009; Petrini et al. 2009; Renner
et al. 2009). Trapping of receptors in the PSD by crowding effects was very
sensitive to the concentration of PSD molecules, showing a switch-like behavior for
retention of receptors. Interestingly, non-covalent binding of AMPAR to anchored
PSD molecules allowed the synapse to become well-mixed, resulting in normal
diffusion of AMPAR. Binding also allowed the exchange of receptors in and out
of the PSD. This modeling work suggests that molecular crowding could be an
important biophysical mechanism to maintain homeostatic synaptic concentrations
of AMPARs in the PSD without the need of energetically expensive biochemical
reactions. In this context, binding of AMPAR with PSD molecules could collaborate
with crowding to maintain synaptic homeostasis but could also allow synaptic
plasticity by increasing the exchange of these receptors with the surrounding extra-
synaptic membrane.

In general, because under anomalous diffusion there is no constant diffusion
coefficient, the space in which the molecule is diffusing cannot be considered a well-
mixed environment (Saxton 2007). The break-down of such a fundamental mass
transport law has not only implications on how far and fast a biochemical signal
propagates, but also changes the probability of activating downstream biochemical
reactions (Chebotareva et al. 2004; Guigas et al. 2007a; Lizana et al. 2008;
Nicolau and Burrage 2008). In fact, reaction rates, which under normal diffusion
are constant, depend on the amount of molecular crowding (ben-Avraham and
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Havlin 2000; Chebotareva et al. 2004). If diffusion is anomalous then reaction rates
also follow a power law (ben-Avraham and Havlin 2000) and vary as a function
of molecular crowding (Chebotareva et al. 2004). Most theories of biochemical
signaling in cells assume that the dynamics of the system is reaction-limited;
however, if anomalous diffusion is present then the system is diffusion-limited.

4.5 Significance

Anomalous diffusion due to dendritic spines or by molecular crowding could be a
basic regulatory mechanism used by neurons to control the propagation and reaction
of any biochemical signal in the cytosol or membrane. The shape and content of
dendrites changes with multiple biological processes such as development, learning,
aging, and illnesses (Harris et al. 1992; Maletic-Savatic et al. 1999; Lendvai et al.
2000; Rocher et al. 2008). As a neuron modifies its shape, normal biochemical
signaling might be affected. This may require a re-assessment of the biophysical
mechanisms used by neurons to process biochemical information (Holcman et al.
2004; Cornelisse et al. 2007; Schmidt et al. 2007a, b). Furthermore, the fundamental
theories used to interpret experimental results have to be reformulated to include
such effects. In that context, new theoretical, computational, and experimental
work is needed to understand how synaptic plasticity takes place in the complex
environment of cells and not in a test-tube.
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Chapter 5
Spatial Organization and Diffusion
in Neuronal Signaling

Sherry-Ann Brown, Raquell M. Holmes, and Leslie M. Loew

Abstract The intricate architecture of neuronal cells suggests that morphology
plays a key role in cellular function. Yet descriptions and analyses of neuronal
signaling systems often focus solely on biochemical reaction pathways. Models
developed from these data implicitly assume that reactions occur in well mixed
homogenous environments with instantaneous diffusion. However, if we have any
hope of building truly predictive quantitative models, the intricate geometries
and large length scales of neurons compel us to explicitly account for molecular
diffusion and spatial organization.

The workdescribed in this chapter makes use of the Virtual Cell (VCell) modeling
and simulation software (accessible at http://www.vcell.org) to examine the signif-
icance of spatial parameters on signaling events in neuronal systems. As a specific
example to focus these concepts, we use the PIP2-IP3-Ca release cascade initiated
by binding of glutamate to the metabotropic glutamate receptor in the Purkinje
neuron spine. The data for these simulations were obtained with live cell imaging
and biochemical techniques (Xu et al. 2003a; Wang et al. 2000). By combining
imaging and biochemical data with computational frameworks for spatial modeling,
we are able to develop quantitative understandings of the role of cellular geometries
on reaction–diffusion systems. In our approach, we have employed a variety of
models using geometrical descriptions of differing dimensions to elucidate the
relationship of cellular geometry to calcium signaling in the dendritic spine.
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5.1 Virtual Cell

The model building process in VCell makes it quite straightforward to explore such
geometrical features, approximations and assumptions (Slepchenko and Loew 2010;
Moraru et al. 2008; Schaff et al. 1997). Figure 5.1a is a screenshot of the VCell user
interface showing panes that provide (clockwise from upper left):

the overall model tree (labeled Navigation),
a full view of the selected model component (in this case the reaction diagram),
a detailed specification of properties for the selected model element, in this case
a reaction rate expression and its parameters, and
available VCell and external database resources for finding models or model
elements.

The first step is to define the system “Physiology”, which includes all the
molecular species, their locations in cellular compartments (e.g. cytosol, nucleus,
endoplasmic reticulum : : : ) or membranes, their reactions (including stoichiome-
tries and kinetic rate expressions) and any of their membrane transport mechanisms.
Once the Physiology is fully specified, it can be used in multiple “Applications”,
which specify initial conditions and geometrical features of the system. Applications
also can be used to clamp certain species, turn reactions off or impose protocols or
events on the evolving system; in other words, the Applications can be considered
virtual experiments that probe the behavior of the Physiology.

The completed Application contains sufficient information to automatically
generate a mathematical description of a model which can then be simulated
in Virtual Cell using a number of methods and solvers. Once the surface area
and volume of each compartment are specified, the software can automatically
generate either ordinary differential equation (ODE) or stochastic simulations. The
“Physiology” can also be associated with explicit geometries in an Application,
either analytical or derived from experimental images. Simulations then require
solution of partial differential equations (PDE) with all mobile species assigned
diffusion coefficients. In this way, as we move from compartmental models to
spatial models, we are able to evaluate and examine the relationship of geometry
to biochemical behaviors in implicit and explicit ways. In the works for the next
version of VCell is a new capability to do spatial stochastic modeling via the
Smoldyn algorithm (Andrews et al. 2010); this will allow the Physiology to be
simulated as molecules that are represented as discrete particles both moving and
reacting stochastically within the geometry.

Figure 5.1b is a screenshot showing the selection of the simulation compo-
nent within one Application entitled “3D PIP2 experimentally derived geometry”.
Shown over the main window is the simulation results window for one of four
simulations that were run in this Application. This illustrates several additional
Features of Virtual Cell, such as the ability to perform parameter scans at the
simulation level and the ability to visualize complex 3D simulation results. This
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Fig. 5.1 VCell Screenshots. (a) The main VCell user interface window with four panes labeled
according to their general functionality. (b) VCell user interface with a simulation component
selected. A simulation results window is show on top of the main VCell window in the surface
rendering view. The first of four simulations has been selected and the Properties pane indicates
that several default parameters have been altered for this simulation
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particular simulation is based on a 3D geometry derived from an experimental stack
of electron microscopy slices of a Purkinje cell dendrite. It will be discussed later in
this chapter.

In addition to the modeling and computational framework, VCell maintains all
models in an internet-accessible database. Users can control access to their models
by specifying them as private, shared, public or published (archive). These are
various levels of permission that allow a user to share their model with collaborators
(shared) or with the general public. As such, readers of this chapter may log in to
the Virtual Cell, view, run or copy a public model to their own accounts to modify
and test their own hypothesis, building on the work of others. The lower left of the
screenshot in Fig. 5.1 shows that a public model by user “Brown” has been selected;
this model for PIP2 dynamics in Purkinje cell spines (Brown et al. 2008) will be
presented later in this chapter. In addition, it is possible to search for and copy indi-
vidual reactions from models in the database. A search for reactions using a given
species, e.g. PIP2 or PI, will return a list of Reactions and Membrane Fluxes that
are used in other models within the database. By previewing each reaction, you are
able to see all the species involved in the reaction before deciding to insert it in your
new model. Other resources, beside the VCell Database, include Biomodels.net and
Pathway Commons. The former is a community populated and curated database of
SBML-compliant non-spatial models that can be searched and loaded directly into
VCell. Pathway Commons is a gateway to a large number of pathway databases that
permit the VCell user to search for qualitative information about molecules and their
interactions as a starting point for the construction of quantitative VCell models.

As we proceed, we will maintain a focus on the interplay between morphology
and biochemistry and the benefits of iteratively working with pre-existing models.
From models of the neuroblastoma cell, we build on the findings of Xu et al. (2003a)
who address the question: how do neuroblastoma cells generate high enough levels
of IP3 to effect calcium release, when its precursor, PIP2, is present at insufficient
levels? From models of the Purkinje cell, we draw on the work of Hernjak et al.
(2005) who examines the relationship of spine shape and size to calcium dynamics,
with an emphasis on IP3 receptor sensitivity and supralinear calcium transients.
Supralinear calcium release is a phenomenon whereby the calcium produced when
calcium influx and release occur together is much larger than the sum of the calcium
transients produced by these mechanisms independently. The models we discuss in
detail are those of Brown et al. (2008), which combined the PIP2 biochemistry of
Xu et al. (2003a) with calcium dynamics in the Purkinje cell of Hernjak et al. (2005)
to elucidate the relationship of spine morphology to PIP2/IP3/Ca dynamics and to
determine the mechanism for sufficient PIP2 in the Purkinje cell spine. Thus, the
primary focus is the impact of spine morphology on the dynamics of IP3 and PIP2
involved in mGluR-mediated calcium release, with an emphasis on the diffusive
barrier created by the spine neck.

We attempt to clarify the process of integrating model components (topology,
kinetics and output) from one set of computational experiments to another in hopes
that the reader will be able to make use of this approach to enhance their own
capacity to explore neuronal systems through compartmental as well as spatial
simulation of reaction diffusion systems.
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5.2 Making Use of Pre-Existing Models, Linking
Across Dimensions

Each Purkinje neuron receives input on its distal dendrites from more than 150,000
granule cell axons, called parallel fibers (PFs), each of which activates an individual
synapse on dendritic spines. When a PF stimulates a spine at a distal dendrite
of the Purkinje neuron, it releases a neurotransmitter, glutamate, which binds to
the metabotropic glutamate receptor (mGluR), on the plasma membrane of the
Purkinje spine (Takechi et al. 1998; Finch and Augustine 1998). This leads to the
activation of PLC, an enzyme that hydrolyzes PIP2 to produce IP3, which, in turn,
mediates calcium release from the endoplasmic reticulum. A more global activation
is produce by climbing fiber (CF) inputs which depolarize the dendrite to open
voltage-sensitive calcium channels; this results in calcium influx. These components
of the spine signaling pathway are summarized in Fig. 5.2. Experiments in Purkinje
cells in which caged IP3 is released via photoactivation have consistently revealed
that 20 – 70 �M IP3 is required for a calcium response that can ultimately lead
to long term depression (LTD) of the synapse (Khodakhah and Ogden 1993; Finch
and Augustine 1998). In non-neuronal cells, IP3-meditated calcium release requires
2 orders of magnitude less IP3. Yet IP3-mediated calcium release is critical for
coincidence detection between parallel and climbing fiber synaptic inputs and LTD
of synaptic inputs. Our previous work calculated a density of PIP2 in the plasma
membrane of 4,000 molecules/�m2 (Xu et al. 2003a). Simulations that use this
value as an initial condition of PIP2 were unable to achieve sufficient IP3 generation.
Given that the Purkinje cell physiology requires that high transient concentrations
of IP3 be generated in the spine, how can the system supply sufficient substrate
PIP2 during synaptic PF activity? We have examined three potential mechanisms
(diffusion, synthesis and sequestration) for supplying sufficient PIP2 in the spine
head for IP3 signal.

Stimulated synthesis hypothesizes that the stimulus that activates PIP2 hydrolysis
also effects a burst of PIP2 production that will allow it to keep up with the demand
for IP3. Local sequestration hypothesizes that there are local binding sites, perhaps
as part of the post synaptic density in the spine, which can maintain a higher
concentration of PIP2 in the spine membrane than in the rest of the dendrite. Lateral
diffusion posits that as PIP2 is depleted in the spine, diffusion from neighboring
regions of the dendrite is sufficiently rapid to resupply it. A primary focus of
the study by Brown et al. (2008) was to explore these three mechanisms and the
likelihood that they could produce sufficient IP3 for the requisite calcium release.
To do this, a 3D model incorporating PIP2 lateral membrane diffusion was required.
The reaction mechanism and kinetics for stimulated synthesis were derived from Xu
et al. (2003a), and parameters modified to be appropriate for Purkinje cells rather
than neuroblastoma cells. The Hernjak et al. (2005) physiology was modified to
include the stimulated synthesis from Xu et al. (2003a) and reactions newly added
by Brown et al. (2008) for PIP2 sequestration. Lateral diffusion of PIP2 is, of
course, a constitutive mechanism that is treated directly in any spatial model (but
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Fig. 5.2 Relationships between 3D, 1D and 0D geometrical models. 3D models consider diffusion
in all regions, including on the membrane surface, explicitly. In a 1D geometry (straight line),
diffusion down the dendrite can be modeled explicitly within a long linear geometry and diffusion
between spine and dendrite is modeled implicitly according to Eq. 5.4. Various segments of the
straight line in 1D can be designated by x coordinates to span a single activated spine unit,
highlighted in gray in the center of the straight line. The 0D (compartmental) model uses ordinary
differential equations to mathematically describe a single spine where the geometries are taken into
account by considering the relative volumes and surface to volume ratios of the spine and dendrite
compartments. Again, the diffusion of species between spine and dendrite must be modeled by
Eq. 5.4 and an additional term is also included for the decay of the dendritic species due to the
equilibration between the region just under the activated spine and the steady state concentration
further way in the dendritic shaft (see Hernjak et al. (Slepchenko and Loew 2010) for full details of
the structure of the compartmental model) (Reprinted from Brown et al. (2008). Copyright 2008,
with permission from Elsevier)

can be turned off, in a virtual experiment, to assess its importance). In this series
of models, the common physiological linkage is the IP3 signal. Xu et al. (2003a)
looked at the ability of PIP2 to generate IP3. Hernjak et al. (2005) examined the
relationship of spine shape and size on IP3 stimulated calcium dynamics using
parameters that matched experimental conditions of parallel fiber or climbing fiber
stimulation (Wang et al. 2000). Then, the results of the 3D models in Brown et al.
(2008) on PIP2 and IP3 dynamics were used as inputs to the Hernjak et al. (2005)
compartmental model to determine whether they were sufficient to produce similar
calcium transients. The public models associated with these studies can be found
and accessed by their names provided in Table 5.1.

As part of this flow of inputs and outputs, we had to consider how to link models
from one biological system to another across spatial scales and dimensionality.
These ideas are illustrated in Fig. 5.3 and Table 5.2. Geometries with two or
three dimensions can represent the intricacies of neuronal geometry accurately, but
reaction–diffusion simulations in any region larger than a small segment of dendrite
would be computationally too intense to be practical. The challenge for a small
segment of dendrite is to properly account for boundary conditions; for example,
reactions that produce or destroy molecules in a localized region such as a spine
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Fig. 5.3 Cartoon representation of PIP2 mediated signaling in Purkinje cell spines (Reprinted
from Brown et al. (2008). Copyright 2008, with permission from Elsevier)

could produce time varying species concentrations at the open edges of the dendrite
segment. In the 1D model, activation confined to a spine at the center of a long
enough dendrite could be efficiently simulated so that boundary conditions could
be modeled as fixed initial concentrations. However, diffusion between the spine
and the adjacent dendrite in the ID model could not be explicitly simulated, but
had to approximated as a flux between compartments using the expression shown
in Table 5.2. These 1D results could then be used to fit an empirical time-dependent
expression as an approximation for the change in the concentration of species X at
the boundary of a 2D or 3D geometry, permitting a fully explicit model of dynamics
in the spine.

Brown et al. (2008) simulated the biochemical reactions of the Purkinje cell phys-
iology in both experimentally derived and analytically constructed 3D geometries.
The simulations results were sufficiently similar to allow for further simulations to
be carried out in the analytic geometries with confidence. The analytic 3D geometry
was constructed based on the average values for spine morphological parameters
determined by Harris and Stevens (1988) and also used by Hernjak et al. (2005).
The same average values for the spines were used to construct a 1D geometry and
included as terms for length, area and volume in the compartmental models. Thus,
although the mathematical representations of geometry differ, the values for the
spatial characteristics did not.
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5.3 Diffusive Barriers and Spine Geometry

The Purkinje neuron is often admired for its dendritic arbor. A good majority of its
hundreds of dendrites are decorated with spines. On average, the Purkinje neuron
has approximately 14 spines per micron of dendrite (Harris and Stevens 1988). The
spine is attached to the dendrite branchlet by its neck, which varies in its diameter
and length. It has long been known that the spines have a diffusive barrier that limits
the ability of calcium to diffuse out of the spine head (Holmes and Rall 1995).
The particular geometry of the spine neck shapes the dynamics of diffusion, and
thus reaction–diffusion, in the spiny dendrite (Brown et al. 2008; Santamaria et
al. 2006). As identified by Santamaria, Antunes, and Schutter in chapter 5, spines
have an affect on the diffusion of cytosolic molecules within the dendrite creating
anomalous diffusion which can affect biochemical reactions and neuronal signaling.
They use stochastic simulations to examine cytoplasmic diffusion within dendrites
with spines at various densities, while we examine the role of dendritic spine shape
on reaction–diffusion of PIP2-IP3-Calcium dynamics.

When the spine is activated, the diffusive barrier of the spine neck leads to
the localized accumulation of the cytoplasmic phosphoinositol IP3, and cytosolic
calcium. Though lipids and receptors in the plasma membrane typically diffuse
more slowly than molecules in the cytosol, we have shown that both lateral
membrane and volumetric cytoplasmic diffusion are influenced by spine neck
geometry (Brown et al. 2008). Biochemical signaling can be limited by substrate
availability, which, in turn, is controlled by reactions (synthesis, degradation) and
diffusion. For example, local PIP2 availability for cleavage into IP3 is determined,
in part, by its diffusion in the membrane to the region that has been stimulated.
Thus, examining the influence of geometry on lateral PIP2 diffusion and the effect
of lateral diffusion on signaling is critical to understanding underlying biochemical
processes of Purkinje signaling.

The experimentally derived geometry used by Brown et al. (2008) is a recon-
struction of an actual Purkinje neuron dendrite branchlet, based on a stack of 3D
electron microscope images.1 The use of the analytic geometric shapes allows for
more systematic investigation of the impact of spatial properties on signaling events.
In the Virtual Cell, a regular grid (mesh) of points is created that define the geometric
shape and within which the differential equations are solved. Within each mesh
element, molecules are assumed to be uniformly distributed. Virtual Cell has a
choice of semi-implicit or fully- implicit finite volume solvers to numerically solve
the set of differential equations created to describe the reaction–diffusion system.

1Courtesy of Maryanne Martone, Mark Ellisman and Masako Terada of the National Center for
Microscopy and Imaging Research in San Diego, CA.
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5.3.1 PIP2 Lateral Diffusion in Distinct Spine Neck
Geometries

In this section, we will analyze lateral diffusion of PIP2 in more detail in order to
determine if lateral diffusion of PIP2 displays anomalous diffusion characteristics.
In our model simulations, we initially depleted PIP2 from three spine heads
(Fig. 5.4a, spines 1–3) with differing morphologies. We also examined the lateral
diffusion of PIP2 into a selected patch of dendrite, indicated with an asterisk in
Fig. 5.4a.

To initialize the concentration of PIP2 in each of the four selected regions in the
Fig. 5.3, we set it to 0 molecules/�m2 compared to a basal surface density of 4,000
molecules/�m2 in the rest of the dendrite. We do this in the Virtual Cell by writing
an expression that sets x, y, z coordinates for a 3D region (e.g., shaded 1 in Fig. 5.4)
outside of which the basal concentration of PIP2 is 4,000 molecules/�m2 and inside
of which the density of PIP2 is 0 molecules/�m2. The coordinates are set in relation
to the entire domain of the geometry. Thus the Boolean expression below says that
the value of PIP2 is 4,000 when x is less than 13.33 and greater than 14.75 and, y is
less than 2.22 and greater than and z is less than 2.5 and greater than 3.2:

.4000:0�..x < 13:3/jj.x > 14:75/jj.y < 2:22/jj.y > 2:4/jj.z < 2:5/jj.z > 3:2///:

Virtual Cell then uses the assigned diffusion rate to generate a differential
equation of the form:

dŒPIP2 PM�

dt
D PIP2 Diffusion rate � r2ŒPIP2 PM� (5.1)

where [PIP2 PM] represents the concentration, i.e. surface density, of PIP2, and is
the Laplacian operator.

The simulation begins with the PIP2 distribution defined above, and we track the
restoration of the basal concentration of PIP2 in the center of each initially depleted
region. This allows us to investigate the dynamics of PIP2 lateral diffusion in the
spine membrane in comparison to the dendritic shaft membrane. Figure 5.3b shows
the change in PIP2 surface density with time. In the patch of dendrite (*), PIP2
recovers rapidly to 4,000 molecules/�m2. In spine 2 which has a very short and
broad neck, PIP2 recovers quickly, but not as rapidly as in the patch of dendrite.
This suggests that the presence of the spine neck alters the PIP2 diffusion dynamics.
Spines 1 and 3, whose neck geometries are narrower, show even slower recoveries.
This demonstrates that the overall geometry of the spine neck dynamically restricts
lateral diffusion, such that the rates of recovery are slower in the thinner longer
necks than shorter wider necks.

The inset in Fig. 5.4b further analyzes the PIP2 diffusion pattern. For conven-
tional, simple diffusion along a surface, time is proportional to the inverse of the
molecular concentration, such that in our case:
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Fig. 5.4 PIP2 lateral diffusion in selected spines and a patch of dendrite from our constructed 3D
geometry. (a) Constructed 3D geometry with three types of spines, determined by three different,
specific spine geometries – a spine with a neck of intermediate proportions (Xu et al. 2003a),
a spine with a very short, broad neck (Wang et al. 2000), a spine with a long, narrow neck
(Slepchenko and Loew 2010); an aspiny patch of dendrite (*). (b) PIP2 lateral diffusion in the
four selected regions from a. The chart shows that PIP2 concentration recovers much more rapidly
in the aspiny patch of dendrite (*) than in the spines (Xu et al. 2003a; Wang et al. 2000; Slepchenko
and Loew 2010). Inset. Analysis of PIP2 lateral diffusion. For conventional surface diffusion, time
’ 1/[4000 – PIP2]. The graph shows that PIP2 rapidly diffuses into the patch of dendrite (*). PIP2
diffuses into the spines more slowly. The arrows indicate lateral PIP2 diffusion into spine 1, through
the spine neck. The white portion of each spine indicates the area where PIP2 is instantaneously
depleted (Reprinted from Brown et al. (2008). Copyright 2008, with permission from Elsevier)
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time ˛
1

.4000� ŒPIP2 PM�/
(5.2)

where 4,000 molecules/�m2 is the basal concentration of PIP2 in the model. For
simple diffusion, plotting 1/(4000-[PIP2 PM]) against time should give us a straight
line. For the patch of dendrite (*) in the insert in Fig. 5.4, the slope is indeed a
straight line, and is very steep. This suggests that within the first few seconds after
depletion, PIP2 diffuses normally and rapidly into the patch of dendrite. However,
non-linear curves are obtained for the lateral diffusion of PIP2 into the spine heads
to replenish the initially depleted PIP2. The shortest and broadest of the three spines
(spine 2 in Fig. 5.4) gives a curve that is closest to linearity. This suggests that the
short and broad spine neck provides the least restriction to lateral diffusion. The
spine with a long neck of intermediate width (spine 1 in Fig. 5.4) provides more
restriction, as evidenced by slower recovery and further departure from linearity.
The spine with the longest, narrowest neck (spine 3 in Fig. 5.4) has the most
non-linear curve and is therefore most restrictive to diffusion. The departure from
linearity exhibited by all three spines is suggestive of ‘anomalous’ diffusion due to
the influence of the spine neck geometry (Brown et al. 2008).

The time courses for replenishment of PIP2 by lateral diffusion for the three cases
shown in Fig. 5.4 are too slow to replace the rapidly hydrolyzed PIP2 in the spine at
a rate that would be required for the requisite IP3 signal in any of the spines. This is
because the same geometric feature, the constricted spine neck, which impedes the
lateral diffusion of PIP2, is also required to assure retention of the IP3. Thus even
though the stubby spine in Fig. 5.4 may allow for rapid diffusion of PIP2, that spine
loses its IP3 too quickly to the dendrite for there to be any significant accumulation.
On the other hand, the spines labeled 2 and 3 in the Figure are able to retain IP3
for a longer period but the slowed lateral diffusion of PIP2 effectively isolates the
small pool of PIP2 initially available in the spine head; this pool is insufficient for
the requisite levels of IP3 (Brown et al. 2008).

Clearly geometry can be used by the cell to regulate the rate of diffusion and
thereby compartmentalize molecules within different regions. To quantify further
the relationship between shape/size and diffusion, we turn later in the chapter to 1D
and compartmental models in which we can rapidly perturb the spatial parameters
and measure their effect on the dynamics of PIP2 biochemistry, IP3 generation and
calcium transients.

5.3.2 PIP2 Supplied by Stimulated Synthesis or Sequestration

In the previous section, we showed how a diffusive barrier prevents lateral diffusion
of PIP2 from supplying sufficient PIP2 to generate the high concentration of IP3
required to activate the calcium transient. The other two hypotheses are (1) PIP2
could be rapidly synthesized concurrently with hydrolysis upon stimulation, as
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Fig. 5.5 Reaction diagrams for local stimulated synthesis and sequestration (Reprinted from
Brown et al. (2008). Copyright 2008, with permission from Elsevier)

established for the N1E-115 mouse neuroblastoma cell line (Xu et al. 2003a) or (2)
PIP2 could be bound to some sequestering protein at the post-synaptic membrane,
providing a locally high concentration of bound PIP2. The 3D models we used to
distinguish between the two possible sources of sufficient PIP2 differ only in the
reactions (synthesis or unbinding) that lead to the production of PIP2 (Fig. 5.5).
The remaining topology of the model is kept the same, yet the production of IP3
from hydrolysis of PIP2 is fit to achieve approximately the same amplitude as
that required for peak calcium release (�25 �M). Individual equations associated
with stimulated synthesis and local sequestration can be viewed in the public VCell
models (Brown et al. 2008).

We enter a localized stimulus in our 3D model in the same way that we
established regions of depleted PIP2 in the previous Section: by defining a spatial
region in xyz that evaluates to 1 for a specific spine head. This is done by including
a spatially localized stimulus (stim in Fig. 5.5).

The variable stim PM is defined in initial conditions to encompass about half of a
spine head using a Boolean expression of the Cartesian coordinates; for example the
expression for stimulation of spine 1 in the 3D constructed geometry (Fig. 5.4) is:

Stim PM

D ..x > 13:25/ && .x < 14:6/ && .y < 1:18/ && .z > 2:6/ && .z < 3:9//

(5.3)
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Fig. 5.6 IP3 signal with stimulated PIP2 synthesis or local PIP2 sequestration in 3D model. The
equivalent of a train of four parallel fiber stimuli was applied to the Purkinje neuron spine. The IP3
obtained with stimulated PIP2 synthesis lasted for much longer than the signal obtained with local
PIP2 sequestration. The sources of PIP2 gave different signal durations although they had the same
amplitudes (Reprinted from Brown et al. (2008). Copyright 2008, with permission from Elsevier)

Details of the rate expressions for the stimulated synthesis and local sequestration
pathways (Fig. 5.5) can be found in the original paper (Brown et al. 2008) and the
public VCell model. The resulting IP3 signals for these mechanisms are shown in
Fig. 5.6. The IP3 signal from the hydrolysis of PIP2 concomitant with stimulated
PIP2 synthesis lasts for much longer than the signal generated with local PIP2
sequestration. Although the amplitudes are the same between the models, the decay
time for stimulated synthesis was similar to that used by Hernjak et al. (2005)
in their studies of spine shape regulation of calcium transients. This provides an
obvious biochemical linkage between the hypothesized synthesis mechanism in the
3D models and the required IP3 signal in the compartmental model. Given this, we
will use the same IP3 signal obtained from stimulated synthesis in the 3D model to
further explore the affects of spine shape on IP3 diffusion and achieving supralinear
calcium transients.

5.3.3 IP3 Dynamics with Stimulated PIP2 Synthesis

In this section, we will discuss the influence of the spine neck geometry on the
cytosolic diffusion of IP3 (produced from PIP2 hydrolysis) out of the spine head and
into the dendritic reservoir. Recall, that the geometry of the spine neck influences the
lateral diffusion of PIP2. 3D geometries that support fast diffusion of PIP2 correlate
with loss of IP3 in vivo and in models that do not account for increased supplies
of PIP2. The timecourse of IP3 generated by stimulated synthesis closely resembles
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Fig. 5.7 Spine compartmentalization of IP3, due to restricted diffusion through the spine neck. a.
IP3 in six spines of our experimentally derived 3D geometry. A train of four parallel fiber stimulus
pulses were applied to the Purkinje spine. The graph shows that the IP3 signal obtained with
stimulated synthesis depends on the unique geometry of each spine neck

the IP3 profile used by Hernjak et al. (2005), thus we will focus on results that use
stimulated PIP2 synthesis as a source of sufficient PIP2 in our 3D models (Nishizuka
1988). Diffusion of the IP3 from the spine into the dendrite is retarded due to the
restricted diffusion through the spine neck, as suggested by Santamaria et al. (2006),
Brown et al. (2008). This retardation allows IP3 to build up in the spine and is critical
to neuronal signaling, as large amounts of IP3 are needed for significant calcium
release in the Purkinje neuron (Khodakhah and Ogden 1993).

Figure 5.7 shows the IP3 signal obtained with stimulated PIP2 synthesis in the
experimental 3D Purkinje dendrite geometry (see the full geometry in the screenshot
from the VCell interface of Fig. 5.1b) in six different spines with geometries that
vary in length, width and curvature. The IP3 signal varies greatly from spine to
spine. For example, note that the amplitude of the IP3 curve in spines 5 and 6 is
almost half the amplitude of the IP3 produced in spine 4. This is remarkable given
that the IP3 reaction kinetics are identical in each spine.

In order to rapidly examine the relationship between spine size parameters (spine
head area and spine neck length) and IP3 accumulation, we turned to a compart-
mental model of the same biology (Brown and Loew 2012). In the compartmental
model adapted from Hernjak et al. (2005), diffusion and geometry are included
parametrically (Hernjak et al. 2005). To model diffusion and spatial features in
compartmental models, the geometrical features are reduced to measurements of
length, area and volume; each species is taken to be uniformly distributed within
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each compartment (i.e., rapid diffusion) and geometry-based expression is used to
model the diffusion rate between compartments. Thus, in compartmental models,
diffusion of molecules or species from one cellular region to another can be modeled
implicitly via a rate equation such as

dXS=dt D � kX .jXSj � jXDj/ (5.4)

Where kx is given by the geometry and diffusion coefficient in cytosol as
discussed in connection with Table 5.2.

Average values for the radius of the spine head (0.29 �m) and the radius and
length of the spine neck (rD 0.1; lD 0.66) are based on an experimental study by
Harris and Stevens (1988). Harris et al. noted that in examined Purkinje neuron
dendrites, shorter spine necks associated with larger spine heads, and inversely,
longer spine necks associated with smaller spine heads. Here, we explore the
effect of this association by examining the influence of spine head radius on
compartmentalization and comparing this directly with the influence of spine neck
length. Average values from Harris and Stevens (1988) were used for one simulation
(average values) and subsequent simulations either halved (neck length halved,
spine head radius halved) or doubled (neck length doubled, spine head radius
doubled) to investigate the influence of these changes on IP3 accumulation and
diffusion from the spine. (See Table 5.2 for diffusion expression including spine
head volume and spine neck length, recall the relationship between spine head
volume and spine head radius; Brown and Loew 2012).

Figure 5.8a shows that changes in IP3 concentration were greater in response
to changes in spine head radius than spine neck length. This suggests that the
compartmentalization in the spine head may be more sensitive to changes in spine
head radius than to changes in the length of the spine neck. Interestingly, the range
of diameters of the spine head (0.43 – 0.68 �m) determined experimentally by
Harris and Stevens (1988) is much smaller than the range of lengths of the spine
neck (0.12 – 2.18 �m). Of note, the sensitivity of IP3 concentration to the size
of the spine could have contributions from both the volume of the spine to be
occupied and the area of membrane contributing the PIP2 precursor. Further, the
rate of IP3 decay in the spine depends on its diffusion through the spine neck,
which in turn depends on the size of the spine head. Therefore, we performed
simulations to understand the relative contribution of the volume of the spine to
the amplitude and duration of the IP3 signal. The results are shown in Fig. 5.8b.
The figure shows that halving or doubling the spine neck length has similar effects
on IP3 concentration as halving or doubling the spine head volume, respectively.
Examining the expression for IP3 diffusion through the spine neck (see Table 5.2)
shows that an equal manipulation of either the spine neck length or the spine head
volume would lead to the same effect on this expression. Figure 5.8b suggests
that IP3 concentration, and compartmentalization, is exquisitely sensitive to IP3
diffusion though the spine neck, apparently more so than to total spine PIP2.
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Fig. 5.8 Compartmental model. Spine compartmentalization of IP3, due to restricted diffusion
through the spine neck and to spine head geometry. (a) IP3 concentrations are plotted from a single
stimulated spine in which average values of spine head radius and spine neck lengths are compared
by halved and doubled values. (b) IP3 concentration changes similarly when spine neck length and
spine head volume are halved or doubled. (c) Uncaged IP3 concentration decreases most slowly in
a long and narrow spine, and most quickly in a wide and short spine

Taken together, these findings suggest that increasing spine size increases
compartmentalization of IP3, while decreasing spine neck length has an opposite
effect. Thus, one could speculate that the inverse association between spine neck
length and spine head size, as discovered by Harris and Stevens (1988), could
function to maintain a normalized level of compartmentalization across spines
of various geometries. However, Fig. 5.7 shows that compartmentalization is not
maintained at a constant level across spines in the experimentally derived 3D
geometry. It may therefore be that although the inverse association serves to ensure
compartmentalization and appropriate IP3 production, based on the particular
synaptic activity and biochemical needs for each individual spine, it does not suggest
constant compartmentalization across spines.

This same compartmental model was used in new simulations for this chapter to
examine the behavior of photoactivated caged-IP3. In each case we instantaneously
uncaged 3 �M IP3 within the full spine volume. These simulations, therefore, allow
us to eliminate the effect of PIP2 availability on the spine membrane and focus only
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on the kinetics of IP3 decay as a function of spine geometry. We demonstrated that
IP3 diffusion out of the spine head occurs more slowly in a spine with a long and
narrow spine neck (Fig. 5.8c) and more quickly out of a spine with a wide and short
spine neck than a spine with a neck of intermediate size. This is consistent with and
expands on the spine compartmentalization studies reported by Hernjak et al. (2005)
for calcium, and Santamaria et al. (2006) and Brown et al. (2008) for calcium and
IP3. It also parallels PIP2 lateral diffusion results from Brown et al. (2008).

IP3 is also removed from the spine by another method: degradation, which is
modeled by an expression such as:

�
kIP3deg� .ŒIP3 Cyt� � ŒIP 3 basal�/

�
(5.5)

where kIP3deg is the rate constant for degradation of IP3, [IP3 Cyt] is the cytosolic
concentration of IP3, and [IP3 basal] is the basal concentration of IP3. This rate
expression was used in all simulations and is based on the measured degradation
rate in neuroblastoma cells. That rate has a half time of ca. 8 s. Thus, changes
in degradation are not expected to explain differences in accumulation from one
geometry to another.

To understand the need for such large amounts of IP3 (Khodakhah and Ogden
1993), we need to consider unique properties of the Purkinje IP3R1. The cerebellar
Purkinje neuron possesses significantly more IP3 receptor Type 1 than any other
cell type (De Smedt et al. 1997). However, the IP3R1 in the Purkinje neuron is less
sensitive to IP3 than in any other cell type (Khodakhah and Ogden 1993; Fujiwara
et al. 2001). This interesting mix of high abundance and low sensitivity is important
for proper neuronal signaling in the Purkinje cell (Hernjak et al. 2005), the unitary
output cell for the cerebellum. Reduced sensitivity of IP3R1 to IP3 is one reason
that the Purkinje neuron needs a large amount of IP3 for significant calcium release
from internal stores. This large, local, and high concentration of IP3 is facilitated
by spine neck-dependent compartmentalization, as previously discussed. Without
compartmentalization by the spine neck, IP3 would quickly diffuse out of the spine
head as seen in Fig. 5.8b and spine 5 of Fig. 5.7.

5.3.4 Fine Tuning Supralinear Calcium Transients

In this section, we describe briefly the dynamics of the calcium transient resulting
from IP3 binding its receptor on the surface of the ER, as well as from the opening of
voltage-gated calcium channels in the Purkinje neuron plasma membrane (Ito et al.
1982). Just as with IP3, the geometry of the spine neck creates a diffusive barrier
that allows for compartmentalization of the Ca signal which enters the cytosol as a
calcium flux from the ER and Ca influx from extracellular space. The experimental
system of Wang et al. (2000) used four PF pulses followed by a CF pulse 50 ms
later to stimulate a spine and subsequently measure the change in calcium using
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Magnesium Green. Hernjak et al. (2005) was able to match the calcium transients by
modeling PF stimuli as increases in IP3 at a frequency matching the Wang protocol
(Wang et al. 2000) for PF frequency and followed by a CF pulse, modeled as a time
constrained flux of external calcium into the cytosol.

In cerebellar Purkinje neurons, intracellular calcium transients can also be
produced by influx across the plasma membrane, through voltage-gated calcium
channels. This occurs when the Purkinje neuron receives afferent stimulation from
the single climbing fiber (CF) that innervates the cell body and proximal dendrites
(Ito et al. 1982). The CF stimulus depolarizes the entire neuron membrane, thus
opening the voltage-gated calcium channels. The rapid and transient flow of calcium
into the cell due to CFs can be represented by (Hernjak et al. 2005):

�
Jch� .t > t1/ � .t < t2/ � .Ca Extracellular � Ca Cytosol/

�
(5.6)

where Jch adjusts the amplitude of the rate of calcium influx, Ca Extracellular is the
calcium concentration outside the cell, and Ca Cytosol is the calcium concentration
inside the cell; the influx begins at timeD t1, and ends when timeD t2 (Hernjak
et al. 2005). The combined calcium response due to release from internal stores
and to influx from outside the cell can produce supralinear spine calcium transients
(Wang et al. 2000), i.e. a calcium signal that is greater than the sum of the calcium
responses produced by each stimulus independently.

It has been suggested that the vast amount of calcium coming into the cytosol
during coincident activation may overwhelm the cytosolic buffers resulting in
supralinear calcium (Hernjak et al. 2005). Calcium is quickly taken up by various
buffers in solution, including calbindin, parvalbumin, and any fluorescent indicators
(Hernjak et al. 2005). Calcium buffers modify the spatiotemporal patterns of
calcium transients (Schwaller et al. 2002). This means that even while total calcium
is rising, whether due to calcium influx from outside the cell or calcium release
from the ER, calcium-binding proteins act to buffer and thereby limit the rise in free
calcium concentration. The computational model includes a species as a calcium
indicator with the low affinity of Magnesium Green (kdD 19 uM) (Brown et al.
2008). We have found that binding reactions for indicators must be included in
order to accurately predict the behavior of molecules that are buffered by the same
molecules used to measure their concentrations, such as calcium dyes. Figure 5.9
shows the resulting change in fluorescence as represented by the concentration of
calcium bound to the Mg Green.

The resulting spike in fluorescence has the same amplitude for both sources
of PIP2: stimulated synthesis and local sequestration. However, stimulated PIP2
synthesis provides a longer calcium signal; the calcium transient from local PIP2
sequestration decays more quickly. This is consistent with Fig. 5.6, in which the IP3
signal from stimulated PIP2 synthesis is of lasting duration, whereas the IP3 signal
with local PIP2 sequestration is of short duration. The effect of IP3 signal duration
on the dynamics of the calcium transient is explored further below, after we consider
calcium influx.
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Fig. 5.9 Calcium transients
with stimulated PIP2
synthesis and local PIP2
sequestration. The calcium
release obtained from a signal
of IP3 equivalent to a train of
four parallel fiber stimuli
(based on an experimental
protocol by Wang et al.) is
more robust with stimulated
synthesis than with local
sequestration

One potential mechanism for the supralinear calcium (Wang et al. 2000) is the
IP3 receptor sensitivity to the concentration of cytosolic calcium (Bezprozvanny
et al. 1991). Calcium entering the cell can bind to the IP3 receptor, thus potentiating
IP3-dependent calcium release from the ER (Fiala et al. 1996). Consequently, the
greatest calcium response occurs when the initiation of the PF stimuli immediately
precedes the CF stimulus (Wang et al. 2000; Hernjak et al. 2005; Sarkisov and Wang
2008). This allows IP3 concentration to begin to rise, and allows for a significant
amount of IP3 to bind its receptor before the voltage-gated calcium channels open in
the plasma membrane, inducing calcium influx from outside the cell. The resulting
calcium response from this coincident detection of the PF and CF stimuli is greater
than the sum of the individual calcium transients obtained from isolated PF and CF
stimuli.

Depending on the source of sufficient PIP2 for hydrolysis, the supralinear
calcium response in our simulations can be sensitive to the timing between PF and
CF stimuli (Brown et al. 2008). Figure 5.10 displays simulation results indicating
that the supralinear calcium response from stimulated PIP2 synthesis is not very
sensitive to timing, whereas the supralinear calcium response from local PIP2
sequestration is. Both conditions show supralinear calcium when the PF stimulus
occurs 50 ms before the CF stimulus. Figure 5.10a shows that the supralinear
calcium response obtained when the CF stimulus occurs 150 ms after the initial
PF stimulus is almost identical to the 50 ms pairing. However, when the timing
between the CF and PF stimuli in our sequestration model is increased from 50 to
150 ms (Fig. 5.10b), the supralinear calcium response disappears! This suggests that
local PIP2 sequestration would provide the cerebellar Purkinje neuron with a means
of fine-tuning coincidence detection (Brown et al. 2008). It is reasonable to expect
that this fine-tuning would be crippled without the spine neck geometry-dependent
compartmentalization of cytosolic molecules (IP3 and calcium) and restriction of
diffusion of the surface molecules involved (i.e., PIP2). This effect on timing is
similar to experimental results from Wang et al. (2000) and Sarkisov and Wang
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Fig. 5.10 Effect of timing on supralinear calcium release. (a) The supralinear calcium release
obtained with stimulated PIP2 synthesis is almost identical when the initiation of the four parallel
fiber stimuli (arrow, 100 ms) precedes the single climbing fiber stimulus at (i) 150 ms and (ii)
250 ms. The supralinear calcium release. (b) obtained with local PIP2 sequestration is sensitive
to timing. Whereas the supralinear calcium release is obtained when the climbing fiber stimulus
follows the initial PF stimulus (arrow, 100 ms) by 150 ms, it is no longer obtained when the timing
is increased to 250 ms. The modeling is based on experimental protocols by Wang et al. (2000)

(2008). Both of these experimental studies suggest that there is an optimal timing
window, during which closely timed pairing of parallel fiber and climbing fiber
stimuli will yield a supralinear calcium response. Outside of the timing window, the
calcium response is reduced, as recapitulated by the modeling results in Fig. 5.10.
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5.3.5 Physiological Relevance

The role of dendritic spines in Purkinje neurons is critical for the central task of the
cerebellum in coordination of movement, as well as motor learning and conditioned
reflexes. Ataxia is a medical condition referring to lack of motor coordination
(Goetz 2003), and long-term depression is a biological process underlying motor
learning (Ito 2001). Mouse models and humans with mutations in various molecules
involved in calcium homeostasis exhibit ataxia (Alonso et al. 2005; Kim et al. 1997;
Zhuchenko et al. 1997; Guida et al. 2001; Iwaki et al. 2008; Yue et al. 1997), and
some of the mouse models also exhibit reduced long-term depression (Aiba et al.
1994; Inoue et al. 1998).

LTD is a form of synaptic plasticity: it involves the weakening of synapses
between the Purkinje neuron dendrite and the presynaptic parallel fiber bouton
(Ito et al. 1982; Ito 2001; Ito and Kano 1982). The structural connection largely
remains unchanged, but the response of the Purkinje neuron to stimulation by
the parallel fibers decreases. This is because other glutamate receptors, namely
the ’-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs),
are downregulated in the Purkinje dendrite membrane (Neuroscience. Sinauer
Associates 2999; Chung et al. 2003; Chung et al. 2000). One way to produce LTD
in the Purkinje neuron is by coincident activation by parallel fibers and a climbing
fiber (Ito et al. 1982). Briefly, transiently high calcium in the cytosol binds IP3R1,
increasing the probability of the receptor existing in an open state (Fiala et al.
1996). IP3 is also bound to its receptor, and this coincident binding leads to much
more calcium release than with activation of IP3R1 by IP3 or calcium alone (Wang
et al. 2000; Hernjak et al. 2005; Sarkisov and Wang 2008; Brown et al. 2008).
Cytosolic calcium, along with DAG (produced with IP3 from PIP3 hydrolysis),
activates protein kinase C (PKC) (Nishizuka 1984). PKC phosphorylates various
molecules that are recruited to the plasma membrane and remove AMPA receptors
from the membrane (Neuroscience. Sinauer Associates 2999; Chung et al. 2000,
2003). AMPAR internalization depresses the response of the Purkinje dendrite to

stimulus by parallel fibers.
From the discussions in this chapter, we see that the geometrical features of

the Purkinje cell spine may modulate the calcium signaling that leads to LTD. In
addition, the IP3 receptors in the Purkinje cell have a higher density and a lower
affinity for IP3 than other cell types, leading to the ability to exquisitely localize
spine calcium signals (Hernjak et al. 2005). Further, the unique features of the
calcium handling machinery in the spine allows for coincidence detection between
the localized inputs of parallel fibers and the more global depolarization produced
by climbing fibers. Mice completely lacking the IP3 receptor Type 1 exhibit motor
discoordination (ataxia) (Matsumoto et al. 1996) and reduced long-term depression
(LTD) (Inoue et al. 1998). Integration of the biochemical, electrophysiological and
morphological data into computational models can produce simulations that explore
the relationships between LTD, CaCC, IP3, IP3R1 and cerebellar synapses, as well
as the influence of geometry on the signaling processes (Xu et al. 2003a; Brown et al.
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2008; Hernjak et al. 2005; Zhou et al. 2008; Fink et al. 2000). Such models and
simulations can now be directly applied to test “virtual therapies” for human patients
suffering from IP3R1-associated ataxias (Brown and Loew 2009, 2012).

5.3.6 Next Steps

Now that we have discussed in detail the influence of spine geometry on bio-
chemistry and related physiological processes, an open question that remains
is the influence of the spine neck on electrophysiological properties, such as
membrane potential and current propagation. Literature suggests that on one hand,
the resistance of the spine neck may alter propagation of electrical membrane
properties (Araya et al. 2006a, b; 2007; Segev et al. 1995); other studies indicate
that the resistance of the spine neck is insufficient to modulate neuronal electro-
physiology (Harris and Stevens 1988; Turner and Schwartzkroin 1983; Palmer and
Stuart 2009). In addition to better experimental methods, solving this dichotomy
will require a true integration of biochemical and electrophysiological modeling
algorithms and software. It will be useful for us to create models that combine
biochemistry with electrophysiology to more thoroughly study disorders such as
IP3R1-associated ataxia (Brown et al. 2008; Brown and Loew 2009; Schorge et al.
2010), in which both intracellular calcium release and membrane electrophysiology
are affected (Matsumoto et al. 1996). We have developed a merged biochemical-
electrophysiological model in Virtual Cell in order to take advantage of its current
reaction–diffusion capabilities and to drive further enhancements to its abilities for
modeling electrophysiology ((Brown et al. 2011). Such a combined biochemical-
electrophysiological model could allow for detailed modeling of the physiology
and electrical responses of the Purkinje neuron. For example, large conductance
calcium-activated voltage-gated potassium channels are implicated in various forms
of ataxia in mice (Sausbier et al. 2004; Walter et al. 2006; Cheron et al. 2009),
and are regulated by some of the same molecules (protein kinase A, PKA; protein
kinase C, PKC) (Hall and Armstrong 2000; Widmer et al. 2003) that regulate
IP3R1 (DeSouza et al. 2002; Ferris et al. 1991). Merging neuronal electrophysiology
with neurobiology in this way provides an additional layer of interaction between
computational neuroscience, systems biology and spatial simulations inherent in
reaction–diffusion models of cellular systems.

Using mathematical models and computer simulations to explore details of the
interplay between spine geometry, phosphoinositol and calcium signaling gives us
insight into how these cellular processes work together as an efficient system. The
Virtual Cell provides a robust computational framework for prototyping, revising,
sharing and re-utilizing models and model components. Our work exemplifies and
is a practical application of Computational Systems Neurobiology. Expanding such
interaction between the computational neuroscience and systems biology research
communities (De Schutter 2008; Le Novère 2007) is clearly an exciting opportunity
to advance research in both fields.
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5.3.7 Further Reading

1. Brown et al. (2008) Spatiotemporal analysis of PIP2 and IP3 signaling in the
Purkinje neuron.

2. Hernjak et al. (2005) Analysis of calcium and IP3 signaling in the Purkinje
neuron.

3. Santamaria et al. (2006) Experimental study on Anomalous IP3 and calcium
diffusion.

4. Harris and Stevens (1988) Experimental study of the spine geometry in cerebellar
Purkinje neurons.

5. Xu et al. (2003) Kinetic analysis of receptor-activated phosphoinositide turnover.

5.3.8 VCell Exercises

These exercises are designed to guide the reader through the exploration of diffu-
sion restriction and compartmentalization afforded by three different spines with
unique morphologies in our constructed and experimentally derived 3D geometries.
Instructions on how to view, run and save models can be found in the Virtual Cell
User Guides at http://www.vcell.org/.

1. Reproducing PIP2 lateral diffusion in the experimentally derived 3D geometry.
In Virtual Cell, open the public BioModel under username Brown entitled
‘Spatial Organization Models’.

(a) Create spatially defined PIP2 depletion. Double click to open the application
‘3D PIP2 diffusion’. In the initial conditions view, click on PIP2, then enter
the following initial concentration:

.4000:0 �...x < 1:75/ jj .x > 2:25/ jj .y < 2:2/ jj .y > 2:95/ jj .z > 0:65//

&&..x < 2:8/ jj .x > 3:4/ jj .y < 3:13/ jj .y > 3:5/ jj .z > 0:86//

&& ..x < 1:6/ jj .x > 2:36/ jj .y < 1:6/ jj.y > 2:25/ jj .z > 0:65//

&& ..x > 5:35/jj .x < 4:5/jj .y > 1:25/jj.y < 0:7/jj .z > 0:45/jj .z < 0:1////

This expression creates a cube around three individual spine heads of the
3D geometry, as well as an aspiny patch of dendrite. Each cube defines the
initial concentration of PIP2 at 4,000 molecules/um2. Outside of each cube,
the concentration of PIP2 is 0. In the simulation view, run “Simulation”. At
time 0, the simulation will instantaneously deplete PIP2 in spines 2, 3, and
5 of the geometry as well as in the patch of dendrite. This is consistent with
Fig. 5.3 of the chapter.

(b) View time course of diffusion or recovery in the depleted spines. View the
simulation results. Select PIP2 in the variable list on the left of the window,

http://www.vcell.org/
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then click the ‘C1’ positive zoom button until the depleted spines and patch of
dendrite are visible. In this view, basal levels of PIP2 are in red and depleted
areas are in blue (in the ‘Auto’ values range view). Click the ‘point icon’
located below the arrow button on the right of the simulation window, then
click on each blue spine (the depleted spines) as well as the blue area of
dendrite. Click on ‘Show Time Plot’ at the bottom of the screen. A sub-
window will appear displaying time plots of PIP2 concentration in the selected
spines and patch of dendrite.

(c) Export simulation results to view diffusion of PIP2 over time. In the Results
view, uncheck ‘Auto’ under ‘Data Values Range’. Click ‘Show Membrane
Surfaces’. A sub-window will appear displaying a 3D rendering of the
Purkinje neuron dendrite with basal levels of PIP2 in red and depleted areas in
blue. Click on ‘Make Movie’, then ‘OK’. Select a destination for your movie,
save it with the extension ‘.mov’, then open it using Quicktime. Play the movie
to view PIP2 lateral diffusion in real time.

2. IP3 production in the constructed 3D geometry. In Virtual Cell, open the public
BioModel under username Brown entitled ‘Spatial Organization Models’.

(a) Double click to open the application ‘IP3 production in 3D’ and select the
Initial Conditions view. Click on the variable ‘stim’, then enter the following
initial condition:

..x > 1:75/ && .x < 2:25/ && .y < 2:2/ && .y < 2:95/ && .z < 0:65//

&& ..x > 2:8/ && .x < 3:4/ && .y > 3:13/ && .y < 3:5/ && .z < 0:86//

&& ..x > 1:6/ && .x < 2:36/ && .y > 1:6/ && .y < 2:25/ && .z < 0:65//

This expression localizes the production of IP3 only to spines 2, 3, and 5
as seen in Fig. 5.3 of the chapter.

(b) View time course of IP3 production in the three spines. In the Application,
select the Simulation tab and view the simulation results. Select IP3 in the
variable list on the left of the window. Type 0.2 (s) in the box for ‘Time’.
This will allow us to view IP3 concentrations once stimulated production
has already begun. Click the ‘C1’ positive zoom button until the three active
spines are visible, with varying shades of red based on IP3 concentration.
Click the ‘point icon’ located below the arrow button on the right of the
simulation window, then click in the middle each of the three active spines.
Click on ‘Show Time Plot’ at the bottom of the screen. A sub-window will
appear displaying time plots of IP3 concentration in the three spines.

(c) View time course of PIP2 concentration changes during IP3 production in the
three spines. Viewthe simulation results. Select PIP2 in the variable list on the
left of the window. Change the Max value (box in upper right of screen) to
20,000 (molecules/�m2). This will facilitate rises in PIP2 concentration due
to stimulated synthesis concomitant with PIP2 hydrolysis, as hypothesized in
the chapter. Before viewing membrane surfaces, type 0.2 (s) in the box for
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‘Time’. This will allow us to view PIP2 concentrations once IP3 production
has already begun. Click ‘Show Membrane Surfaces’. A sub-window will
appear displaying a 3D rendering of the Purkinje neuron dendrite with various
levels of PIP2, in each of the three spines, represented by the displayed color
scale.
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Chapter 6
The Performance (and Limits) of Simple Neuron
Models: Generalizations of the Leaky
Integrate-and-Fire Model

Richard Naud and Wulfram Gerstner

Abstract The study of neuronal populations with regards to coding, computation
and learning relies on its primary building bloc: the single neuron. Describing
the activity of single neurons can be done by mathematical models of various
complexity. In this chapter we start with the integrate-and-fire model, and then
consider a set of enhancements so as to approach the behaviour of multiple types of
real neurons.

The study of neuronal populations with regards to coding, computation and learning
relies on its primary building bloc: the single neuron. Describing the activity of
single neurons can be done by mathematical models of various complexity. On one
hand there are complex biophysical models and on the other hand there are the
simpler integrate-and-fire models. In order to relate with higher functionalities such
as computation or coding, it is not necessary to model all the spatio-temporal details
of ionic flow and protein interactions. There is a level of description that is simple,
that bridges the gap to higher functionalities, and that is sufficiently complete to
match real neurons. In this chapter we start with the integrate-and-fire model and
then consider a set of enhancements so as to model the behaviour of multiple types
of neurons.

The formalism considered here takes a stimulating current I.t/ as an input, to
which the neuron responds with a voltage trace V.t/, which contain multiple spikes.
The input current can be injected experimentally in vitro. In a living brain, the
input comes from synapses, gap junctions or voltage-dependent ion channels of the
neuron’s membrane.
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6.1 Basic Threshold Models

Nerve cells communicate by action potentials – also called spikes. Each neuron
gathers input from thousands of synapses to decide when to produce a spike. In the
absence of input, the neurons would stay at a resting membrane potential around
�70 mV. Most neurons will fire a spike when their membrane potential reaches
a value around �55 to �50 mV. Action potential firing can be considered an all-
or-nothing event. These action potentials are very stereotypical. This suggests that
spikes can be replaced by unitary events that are generated by a threshold-crossing
process.

6.1.1 The Perfect Integrate-and-Fire Model

Fundamentally, we can say that a single neuron accumulates electric charge supplied
by an input current I.t/ on its membrane. This translates into an by increase of the
membrane potential V.t/. When the voltage hits the threshold (VT ), a spike is said
to be emitted and the voltage is reset to Vr . Mathematically we write:

dV

dt
D 1

C
I.t/ (6.1)

when V.t/ > VT then V.t/! Vr : (6.2)

Here, C is the total capacitance of the membrane. This equation is the first
Kirchoff law for an impermeable membrane: the current injected can only load the
capacitance. The greater the capacitance the greater the amount of current required
to increase the potential by a given amount.

This system is called the (perfect or non-leaky) integrate-and-fire (IF) model.
Solving the first-order differential equation shows the integration process explicitly;
after a previous spike at t0 the voltage at time t is given by:

V.t/ D Vr C 1

C

Z t

t0

I.s/ds: (6.3)

Here a pulse of current will never be forgotten. In other words one could inject
a small pulse of current every hour and their repercussions on the voltage will
cumulate to eventually make the model neuron fire. This conflicts with the behaviour
of real neurons, which are not perfect integrators but “leaky” ones. In fact, the IF
model is used here for didactic purposes only because it summarizes the central
idea: integrate and fire.



6 The Performance (and Limits) of Simple Neuron Models 165

I(t)

+

-

+

+

+

+

-
-

-

-
-

-

-

-

-

-

gL EL

C

V

Fig. 6.1 Positively and negatively charged ions are distributed inside and outside the cell. Current
(I.t/) entering the cell will modify the difference in electric potential between the exterior and the
interior (V ). The dynamics of the LIF correspond to a RC-circuit composed of a conductance (gL)
in parallel with a capacitance (C ). The electric supply corresponds to the resting potential (EL)

6.1.2 The Leaky Integrate-and-Fire Model

Real neuronal membranes are leaky. Ions can diffuse through the neuronal mem-
brane. The membrane of neurons can be seen as providing a limited electrical
conductance (gL) for charges crossing the cellular membrane (Fig. 6.1). The differ-
ence in electric potential at equilibrium depends on the local concentration of ions
and is often called the equilibrium (or resting) potential (E0). This additional feature
leads to the more realistic Leaky-Integrate-and-Fire (LIF) model (Lapicque 1907):

C
dV

dt
D �gL.V �E0/C I.t/ (6.4)

when V.t/ > VT then V.t/! Vr : (6.5)

Again, this is the Kirchoff law for conservation of charge. The current injected
can either leak out or accumulate on the membrane. The effect of a short current
pulse will cause a transient increase in voltage. This can be seen by looking at the
solution of the linear differential equation given a previous spike at time Ot0:

V.t/ D E0 C �r.t � Ot0/ C
Z t�Ot0

0


.s/I.t � s/ds (6.6)

�r D .Vr � E0/e
�t=�.t/ (6.7)


.t/ D 1

C
e�t=�.t/ (6.8)

where .t/ is the Heaviside function and � D C=gL is the membrane time constant.
In Eq. 6.6, three terms the voltage. The first term is the equilibrium potential.
The second term is the effect of voltage reset which acts as an initial condition
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Fig. 6.2 The defining responses of the LIF model. A short but strong pulse will make a marked
increased in potential which will then decay exponentially. A subthreshold step of current leads to
exponential relaxation to the steady-state voltage, and to an exponential relaxation back to resting
potential after the end of the step. A supra-threshold step of current leads to tonic firing. If a
sinusoidal wave of increasing frequency is injected in the model, only the lowest frequencies will
respond largely. The higher frequencies will be attenuated

for the integration of the differential equation and gives rise to the function �r . Note
that far away from the last spike (Ot0) this term vanishes. The last term – made of the
convolution of the filter 
.t/ with the current – is the influence of input current on the
voltage. We see that the voltage is integrating the current but the current at an earlier
time has a smaller effect than current at later times. The membrane time constant
of real neurons can vary between 10 and 50 ms. The theory of signal processing
tells us that the membrane acts as a low-pass filter of the current (Fig. 6.2). In fact,
input current fluctuating slowly is more efficient at driving the voltage than current
fluctuating very rapidly.

There is another way to implement the reset. Instead resetting to fixed value,
we assume that whenever the voltage equals VT , there is a sudden decrease in
voltage to Vr caused by a short negative pulse of current, which reflects the fact
that the membrane loses charge when the neuron sends out a spike. We write the
LIF equations differently, using the Dirac delta function (ı.t/):

C
dV

dt
D �gL.V �E0/C I.t/ � C.VT � Vr/

X
i

ı.t � Oti / (6.9)

where the sum runs on all spike times Oti 2 fOtg, defined as the times where V.t/ D
VT . The integrated form is now:
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V.t/ D E0C
X

i

�a.t � Oti /C
Z 1

0


.s/I.t � s/ds (6.10)

�a.t/ D �.VT � Vr/e
�t=�.t/: (6.11)

The two different ways to implement the reset yield slightly different formalisms.
Even though including the leak made the mathematical neuron model more realistic,
it is not sufficient to describe experiments with real neurons. We also need a process
to account for adaptation (Benda and Herz 2003; Rauch et al. 2003; Jolivet et al.
2006b), and this is the topic of the next section.

6.2 Refractoriness and Adaptation

Refractoriness prevents a second spike immediately after a first one was emitted.
One can distinguish between an absolute and a relative refractory period. During
the absolute refractory period, no spike can be emitted, no matter the strength of the
stimulus. The duration of the spike is often taken as the absolute refractory period
since it is impossible to emit a spike while one is being generated. During the relative
refractory period it is possible to fire a spike, but a stronger stimulus is required. In
this case the current required depends on the time since the last spike. Manifestly,
the absolute refractory period always precedes the relative refractory period, and the
absolute refractory period can be seen as a very strong relative refractory period.

Spike-frequency adaptation, on the other hand, is the phenomenon whereby a
constant stimulus gives rise to a firing frequency that slows down in time (Fig. 6.3).
Here it is the cumulative effect of previous spikes that prevents further spiking. In
other words: the more a neuron has fired in the recent past, the less it is likely to spike
again. How long can this history dependence be? Multiple studies have pointed out
that spikes emitted one or even ten seconds earlier can still reduce the instantaneous
firing rate (La Camera et al. 2004; Lundstrom et al. 2008).

Refractoriness and adaptation are two similar but distinct effects, and we need
to define the difference in precise terms. Although refractoriness mostly affects
the earliest times after a spike and adaptation the latest times, this distinction is
not adequate: spike-triggered currents can cumulate even at small time scales. It is
more convenient to distinguish the two processes based on the history-dependence
whereby refractoriness prevents further spiking as a function of time since the last
spike only, while adaptation implies a dependency on the time of all the previous
spikes. In other words, adaptation is a refractoriness that cumulates over the spikes.
Equivalently, refractoriness can be distinguished from adaptation by the type of
reset: a fixed reset like in Eq. 6.5 leads to dependency on the previous spike only
(see Eq. 6.7) and hence to no adaptation. A relative reset allows the effect of multiple
spikes to cumulate and can lead to spike-frequency adaptation.
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Fig. 6.3 Comparing two
simple mechanism of
spike-triggered adaptation. A
step current (top) is injected
in a model with
spike-triggered
hyperpolarizing current (left)
or in a model with moving
threshold (right). Both
models can produce the same
firing patterns, but the voltage
trace differs qualitatively

In terms that are compatible with threshold models, both refractoriness and
adaptation can be mediated either by a transient increase of the threshold after
each spike or by the transient increase of a hyperpolarizing current. These will be
discussed next.

6.2.1 Spike-Triggered Current

Some ion channels seem to be essential to the action potential but influence very
weakly the subthreshold dynamics. Some other ion channels play no role in defining
the shape of the spike, are partially activated during a spike, and their level of
activation decays exponentially after the spike. These are ion channels that can
mediate adaptation or refractoriness. Such ion channels have voltage-dependent
sensitivity to the membrane potential: at high voltage they rapidly open, at low
voltage they slowly close. Since a spike is a short period of high voltage this creates
a short jump in the level of activation which will slowly decay after the spike. Such
a situation can be implemented in the LIF by adding an hyperpolarizing current w
which is incremented by b each time there is a spike and otherwise decays towards
zero with a time constant �w (Baldissera et al. 1976; Izhikevich 2004; Benda and
Herz 2003):

C
dV

dt
D �gL.V �E0/ � w C I.t/� C.VT � Vr/

X
i

ı.t � Oti / (6.12)
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�w
dw

dt
D �w C b�w

X
i

ı.t � Oti /: (6.13)

The above system of equations is a simple mathematical model for a neuron with
spike-frequency adaptation. The current w is triggered by the spikes and will move
the membrane potential away from the threshold when b < 0. This equation can be
integrated to yield:

V.t/ D E0 C
X

i

�a.t � Oti /C
Z 1

0


.s/I.t � s/ds (6.14)

�a.t/ D b��w

C.�w � �/

�
e�t=�w � e�t=�

�
.t/ � .VT � Vr/e

�t=�.t/ (6.15)

where 
.t/ is the same as in Eq. 6.9. The spike-triggered current that cumulates over
the spikes is reflected in a stereotypical change in voltage �a that can also cumulate
over the spikes. Such a spike-triggered current can also make refractoriness if we
replace its cumulative reset by a fixed reset :

�w
dw

dt
D �wC .b � w/�w

X
i

ı.t � Oti / (6.16)

so that at each time instead of incrementing by b, we increment to b. In this case
the amount w of refractory current depends only on the time since the last spike.
Integration of this yields:

�r.t/ D b��w

C.�w � �/

�
e�t=�w � e�t=�

�
.t/ (6.17)

The shape of the spike after potential can be mediated by a handful of ion
channels. Likely candidates for mediating a spike triggered current of the type
described above must have a slow to medium activation at supra-threshold potentials
and a very slow inactivation or de-activation at subthreshold potentials. An action
potential will then induce a small increase in the number of open channels which
could cumulate over the spikes. The time constant of the hyperpolarizing current
�w relates to the time constant for the closure of the ion channels at subthreshold
potentials. Typical examples are: slow potassium current IK with de-activation time
constant around 30–40 ms (Korngreen and Sakmann 2000), muscarinic potassium
current, IM , with de-activation time constant around 30–100 ms (Passmore et al.
2003) or the calcium-dependent potassium current IKŒCa� which can have a time
constant in the order of multiple seconds (Schwindt et al. 1989). Finally, active den-
dritic processes can also induce current to flow back into the somatic compartment
after each spike (Doiron et al. 2007). In this case the current is depolarizing rather
than hyperpolarizing, leading to facilitation rather than adaptation.
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6.2.2 Moving Threshold

Spike-triggered currents are not the only way to implement refractoriness and
adaptation in neuron models. Multiple experiments have shown that the effective
threshold of neurons is dynamic (Hill 1936; Fuortes and Mantegazzini 1962; Azouz
and Gray 2000, 2003; Badel et al. 2008b). If instead of adding a spike-triggered
current we let the threshold VT be dynamic: the threshold can increase by ıVT each
time there is a spike and decay exponentially with time constant �T to the minimum
threshold V

.0/
T . This is summarized by the supplementary equations:

�T

dVT

dt
D �.VT � V

.0/
T / (6.18)

when V.t/ � VT .t/ then V.t/! Vr (6.19)

and VT .t/ ! VT .t/C ıVT : (6.20)

Again, the moving threshold can implement adaptation (as with Eqs. 6.18–6.20
above) or refractoriness if we replace the relative reset by a fixed reset: VT .t/ !
V

.0/
T C ıVT .

It is often possible to find parameters for which a model with a moving threshold
will yield the same spikes times than a model with a spike-triggered current. Indeed
moving the membrane potential away from the threshold with a spike-triggered
current is equivalent to moving the threshold away from the membrane potential.
In particular, when only the spike times are predicted, we can put Eqs. 6.18–6.20 in
the form of Eq. 6.14 by keeping a fixed threshold and adding to �a.t/:

ıVT e�t=�T .t/: (6.21)

It is not yet clear which biophysical mechanisms are responsible for moving
thresholds. One likely candidate is the sodium channel inactivation (Azouz and
Gray 2000). An increase in sodium channels inactivation can increase the voltage
threshold for spike initiation. Inactivated sodium channels de-inactivate with a time
constant of 2–6 ms (Huguenard et al. 1988). Furthermore, it is believed that sodium
channels can de-inactivate on time scales as long as multiple seconds (Baker and
Bostock 1998).

6.3 Linearized Subthreshold Currents

There are ion channels influencing principally the shape of the spike, some the
refractoriness, and others the adaptation of neurons. However, there are also
channels whose dynamics depends and influences only the subthreshold potentials.
An example is the hyperpolarization activated cation current Ih which start to
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Fig. 6.4 The filter 
 can be measured in real neurons (Jolivet et al. 2006a). Here the shape of
the filter is shown as measured in the soma of a pyramidal neuron of the layer 5 of the cortex
(gray circles). Data points before 5 ms are not shown because they bear a heavy artefact due to the
electrode used for recording. In black is a fit of Eq. 6.8 with C D 408 pF and � = 11.4 ms

activate around �70 mV. The first-order effect of such currents can be added to
the LIF equations (see Exercices 6.3 or Mauro et al. 1970 for details on the Taylor
expansion):

C
dV

dt
D �gL.V � E0/� wC I.t/ (6.22)

�w
dw

dt
D a.V �Ew/� w (6.23)

if V.t/ > VT then V.t/! Vr : (6.24)

Here a regulates the magnitude of the subthreshold current and �w rules the time
constant of the coupling with the voltage. Ew should correspond to the average
voltage, we will assume that Ew D E0 for the following treatments. When a

is negative, w is said to cause subthreshold facilitation. The response properties
will resemble the LIF as (in Figs. 6.2 and 6.4) but with a longer impulse-response
function. When a is positive, w is said to generate subthreshold adaptation. For
a sufficiently strong positive a we see the emergence of resonance as shown in
Fig. 6.5. This model can be called the resonate and fire (RF; Izhikevich 2001;
Richardson et al. 2003).

This system of equations can be mapped to the equations of a damped oscillator
with a driving force. It is a well-studied system that comes from the dynamics of a
mass hanging on a spring in a viscous medium. We know that this system has three
dynamical regimes:

• 4C�w.gL C a/ < .gL�w C C /2 overdamped,
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Fig. 6.5 The responses of the LIF with a single linearized current. A short but strong pulse will
generate a jump in potential which will then relaxes with an undershoot. A subthreshold step of
current leads to a characteristic overshoot after the onset and an undershoot after the offset of
the current. A supra-threshold step of current leads to firing with spike-frequency adaptation. If a
sinusoidal wave of increasing frequency is injected in the model, the lowest frequencies and the
highest frequencies will be attenuated. In-between frequencies will yield the greatest response

• 4C�w.gL C a/ D .gL�w C C /2 critically damped,
• 4C�w.gL C a/ > .gL�w C C /2 underdamped.

Overdamped and critically damped systems have no resonating frequency. It is only
when the system is underdamped that resonance appears. Such resonance is seen in
multiple types of neurons, typically in some cortical interneurons (Markram et al.
2004), in mesencephalic V neurons (Wu et al. 2005) and in the apical dendrites of
pyramidal neurons (Cook et al. 2007).

What are the main characteristics of a resonating membrane? Contrasting with
the standard LIF, the response to a current pulse in Figs. 6.5 and 6.6 is not a single
exponential. Instead, the voltage makes a short undershoot before relaxing to the
resting potential. Similarly, when the input is a step current, there is a substantial
overshoot at the onset and undershoot after the offset of the current. The neuron
model resonates around a characteristic frequency for which it will respond with
maximal amplitude:

! D
s

gL C a

C�w
� .gL�w C C /2

4C 2�2
w

: (6.25)

Resonating membranes are bandpass filters as we can see from the response to a
sinusoidal wave of increasing frequency (Fig. 6.5). The shape of the filter can be
written as:
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Fig. 6.6 The shape of the
filter 
 in the presence of
resonance. Here the shape of
the filter is shown as
measured in the apical
pyramidal neuron of the layer
5 of the cortex (gray points).
Data points before 5 ms are
not shown because they bear
a heavy artefact from due to
the measurement electrode. In
black is shown a fit of
Eqs. 6.22–6.23 (a D 13.6 nS,
gL D 35.0 nS , C D 168 pF,
�w D 15.5 ms) (Data a
courtesy of Brice Bathellier)


.t/ D exp.�t=�!/



1

C
cos !t C �!�w C 1

gL C a
sin !t

�
.t/ (6.26)

where the decay time constant is:

�! D 2�w�

�w C �
: (6.27)

Figure 6.6 shows the shape of the filter, as measured in a neuron with resonance.

6.4 Nonlinear Integrate-and-Fire Models

Do neurons really have a voltage threshold? Imagine that a neuron was to receive a
stimulus that brings its membrane potential to a value which triggers the spike but
then the stimulus is stopped. The membrane potential would continue to increase
even in the absence of stimulus, and produce the action potential. Can we say that a
spike is produced whenever the membrane potential reaches this threshold voltage?
No. At the earliest times of the action potential, a negative current can veto the spike
even though the membrane potential was above the threshold for spike initiation.
Another example that makes the conceptualization of a threshold dubious is shown
in Fig. 6.7. Here the voltage threshold measured from a current pulse is significantly
different from the voltage threshold measured with a current step.
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Fig. 6.7 Where is the voltage threshold? Current pulses and current steps show different voltage
thresholds that can not be accounted for by a moving threshold

Real neurons have sodium ion channels that gradually open as a function of the
membrane potential and time. If the channel is open, positive sodium ions flow
into the cell, which increases the membrane potential even further. This positive
feedback is responsible for the upswing of the action potential. Although this
strong positive feedback is hard to stop, it can be stopped by a sufficiently strong
hyperpolarizing current, thus allowing the membrane potential to increase above the
activation threshold of the sodium current.

Sodium ion channels responsible for the upswing of the action potential react
very fast. So fast that the time it takes to reach their voltage-dependent level of
activation is negligible. Therefore these channels can be seen as currents with a
magnitude depending nonlinearly on the membrane potential, which suggests that a
simplified description of spike generation should be possible. This section explores
the LIF augmented with a nonlinear term for smooth spike initiation.

6.4.1 The Exponential Integrate-and-Fire Model

Let us assume that the transmembrane current is some function of V , so that the
membrane dynamics is an equation of the type:

C
dV

dt
D F.V /C I.t/; (6.28)

where F.V / is the current flowing through the membrane. For the perfect IF it
is zero (F.V / D 0), for the LIF it is linear with a negative slope (F.V / D
�gL.V � E0/). We can speculate on the shape of the non-linearity. The simplest
non-linearity would arguably be the quadratic : F.V / D �gL.V � E0/.V � VT /
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Fig. 6.8 Experimental
measurement of the
nonlinearity for spike
initiation. Example of the
measured F.V / in black
circles for a layer 5 pyramidal
neuron of the barrel cortex.
The errorbars indicate one
standard error of the mean
and the blue line is a fit of
Eq. 6.29 (Data is a courtesy of
Badel et al. (2008b))

(Quadratic Integrate and Fire, QIF; Latham et al. 2000). However this implies
that the dynamics at hyperpolarized potentials is non-linear, which conflicts with
experimental observations. Other possible models could be made with cubic or
even quartic functions of V (Touboul 2008). An equally simple non-linearity is the
exponential function:

F.V / D �gL.V � E0/C gL�T exp

�
V � VT

�T

	
(6.29)

where �T is called the slope factor that regulates the sharpness of the spike
initiation. The first term on the right hand side of Eq. 6.29 is identical to that of
the LIF. The second one accounts for nonlinearity in spike initiation.

The Exponential Integrate-and-Fire (EIF; Fourcaud-Trocme et al. 2003) model
integrates the current according to Eqs. 6.28 and 6.29 and resets the dynamics to
Vr (i.e. produces a spike) once the simulated potential reaches a value � . The exact
value of � does not matter, as long as � >> VT C �T . As in the LIF, we have to
reset the dynamics once we have detected a spike. The value at which we stop the
numerical integration should not be confused with the threshold for spike initiation.
We reset the dynamics once we are sure the spike has been initiated. This can be
at a membrane potential of 0, 10 mV or infinity. In fact, because of the exponential
nonlinearity V goes from VT C�T to infinity in a negligible amount of time.

Which F.V / is the best? This can be measured experimentally (provided that we
can estimate membrane capacitance beforehand Badel et al. 2008a,b). Figure 6.8
shows the function F.V / as measured in pyramidal neurons of the cortex. Choosing
F.V / as a linear plus exponential allow a good fit to the experimental data. Similar
curves are observed in neocortex interneurons (Badel et al. 2008a).
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6.5 Unifying Perspectives

We have seen that the LIF can be augmented with mechanisms for refractoriness,
adaptation, subthreshold resonances and smooth spike initiation. Models combining
these features can be classified in two categories depending on the presence of
a non-linearity. This is because the linear system of equations can be integrated
analytically, whereas integration is generally not possible for the non-linear systems
of equations. When integration can be carried out, the dynamics can be studied
with signal processing theory. When this is not possible, the dynamical system is
scrutinized with bifurcation theory.

6.5.1 The Adaptive Exponential Integrate-and-Fire Model

One obvious way to combine all the features is to add to the EIF model several
linearized currents with cumulative spike-triggered adaptation:

C
dV

dt
D �gL.V � E0/ C gL�T exp

�
V � VT

�T

	
C I.t/�

NX
iD1

wi (6.30)

�i

dwi

dt
D ai .Vi �E0/ � wi (6.31)

if V.t/ > VT then V.t/! Vr (6.32)

and wi .t/ ! wi .t/C bi (6.33)

where each additional current wi can be tuned by adapting its subthreshold coupling
constant ai and its spike-triggered jump size bi . The simplest version of this
framework assumes N D 1 and it is known as the Adaptive Exponential Integrate-
and-Fire (AdEx; Brette and Gerstner 2005; Gerstner and Brette 2009). This model
compares very well with many types of real neurons, as we will see in Sect. 6.7.

6.5.2 Integrated Models

For some neurons the spike initiation is sharp enough and can be neglected. In fact,
if the slope factor �! 0 in Eq. 6.30, then the AdEx turns into a linear model with
a sharp threshold. As we have seen in Sect. 6.2, the solution to the linear dynamical
system can be cast in the form:

V.t/ D E0 C
Z 1

0


.s/I.t � s/ds C
X

i

�a.t � Oti / (6.34)

where 
.t/ is the input filter and �a.t/ is the shape of the spike with its cumulative
tail. The sum runs on all the spike times fOtg defined as the times where the
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LIF

+ adaptation

+ refractoriness

+ spike 
 initiation

+ linearized
 currents

AdEx

rEIF
SRM0

EIF, QIF
LIF

+ linearized
 currents

RF

SRM,GIF

Fig. 6.9 Generalizations of the LIF include either refractoriness, adaptation, linearized currents,
or smooth spike initiation. Various regroupments have various names. For instance, the refractory-
Exponential-Integrate-and-Fire (rEIF) regroups refractoriness, smooth spike initiation and the
features of a LIF (Badel et al. 2008b)

voltage crosses the threshold (V > VT ). To be consistent with the processes seen
in the previous sections the functions 
.t/ and �a.t/ must be sums of exponentials.
However, for the sake of fitting a model to experimental data, any type of basis
function can be used. For arbitrary shape of the kernels 
.t/ and �a.t/, this
model is known as the cumulative Spike Response Model (SRM, Gerstner et al.
1996; Gerstner 2008) or more recently as the Generalized Integrate-and-Fire (GIF,
Paninski et al. 2004).

The simplified Spike Response Model (SRM0; Gerstner 2008) is another related
model worth pointing out. In the SRM0 the sum in Eq. 6.34 extends to the last spike
only. This makes a purely refractory model without spike-frequency adaptation.

Figure 6.9 summarizes the nomenclature for the combinations of generalizations.
As we will see in the next section, the formalism of the SRM and SRM0 models
bridges the gap to a more general class of spiking models where the influence of
noise is taken into account.

6.6 Noise

Variability is ubiquitous in the nervous system. In many ways this variability is seen
as a feature rather than a defect (Faisal et al. 2008). It is important therefore not to
ignore all the noise, but to listen carefully in order to understand what it is trying to
communicate.

In view of the intrinsic probabilistic nature of the neurons, it is difficult to predict
the exact spike times because a neuron will fire with some jitter around an average
spike time (Fig. 6.10). Rather, the models of neuronal behaviour must predict the
probability to emit a spike in a given time interval. The probability p.t/ of observing
a spike in a given small interval of ıt defines the instantaneous firing rate:

p.t/ D r.t/ıt: (6.35)



178 R. Naud and W. Gerstner

10 ms

Fig. 6.10 Membrane potential recorded from four repetition of the same stimulus. Spikes are
missed others are shifted and this variability is intrinsic to the neuron

Mathematically speaking, r.t/ is a stochastic intensity, a terminology borrowed
from the theory of point-processes (Daley and Vere-Jones 1988). In the context of
neuron models r.t/ is called the firing intensity or instantaneous firing rate. It is also
related to the experimentalist concept of a Peri-Stimulus Time Histogram (PSTH).

Chapter 12 describes the implication of noise at the biophysical level. Here
we describe how noise influences the level of description of the LIF model.
Furthermore, we describe a simple framework through which models such as the
SRM are related to models of the firing intensity r.t/.

6.6.1 Synaptic Noise

Synaptic noise deals with the input I.t/. In this chapter I.t/ refers to the current
arriving in the region which is solely responsible for spike initiation. This signal
can be seen as being noisy: because some synaptic events happened without a
pre-synaptic spike, because the unreliability of axonal propagation prevented a pre-
synaptic spike from getting to the synapse, or because the variability in vesicle
release and receptor channel opening make the amplitude of the postsynaptic event
variable. From yet another point of view, one may be interested in the current input
coming from an identified subpopulation of pre-synaptic neurons. In this view the
rest of the pre-synaptic neurons form a considerable background synaptic noise. In
any case, the synaptic noise is added to a deterministic current:

I.t/! I.t/C �.t; V / (6.36)

where �.t/ is the synaptic noise. The dependance of the noise on V is added because
synapses make changes in conductance which must be multiplied by V to yield the
current. Despite that, the dependance on V can often be neglected and the synaptic
noise is considered as a time-dependent current �.t/.
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There are multiple stochastic models of synaptic noise. Maybe the simplest
situation takes into account a random occurrence of synaptic events, Ot .pre/ each
bringing in an exponentially decaying pulse of current:

�.t/ D c
X

Oti 2fOt .pre/g
exp

�
� t � Oti

�s

	
�.t � Oti / (6.37)

where �s is the time constant and c is the amplitude of the post-synaptic current
decay. If the synaptic events occur randomly with frequency �e , the mean, the
variance and the autocorrelation of the noise are (Stein 1965):

� � h�i D c�s�e (6.38)

�2 � VarŒ�� D c2�s�e

2
(6.39)

hŒ�.t/ � ��Œ�.t C s/� ��i D �2e�s=�s : (6.40)

In the limit of small synaptic jumps (c ! 0) and large frequency of synaptic events
(�e !1), the synaptic noise can be seen as a gaussian noise with exponential auto-
correlation function. The dynamics of such a noise current is often written with the
equation:

�.t C dt/ D �.t/C .� � �.t//

�s

dt C �Gt

s
2dt

�s

(6.41)

where Gt is a random number taken from a standard normal distribution and dt is
the step size. This is called an Ornstein-Uhlenbeck process, a similar equation rules
the position of a particle undergoing Brownian motion in an attracting potential.
Equation 6.41 is the diffusion approximation for synaptic inputs.

6.6.2 Electrical Noise

Electrical noise groups the thermal noise and the channel noise. The thermal noise
(also called Nyquist or Johnson noise) adds fluctuation to the current passing
through the membrane due to the thermal agitation of the ions. In this case the
variance of the voltage fluctuations at rest is (Manwani and Koch 1999): kBTB=gL,
where kB is the Boltzmann constant, T is the temperature and B is the bandwidth
of the system. Thermal noise is not the main source of electrical noise as it is three
orders of magnitude smaller than the channel noise (Faisal et al. 2008).

Channel noise is due to the stochastic opening and closing of the ion channels
(which itself is of thermal origin). This noise creates fluctuations in current that
depend on the membrane potential following the activation profile of ion channels.
Noise due to the Na-channels responsible for spike initiation can explain how



180 R. Naud and W. Gerstner

the probability of firing depends on the amplitude of the stimulation when the
stimulation consists of a short pulse of current (White et al. 2000). Noise due to Na
ion channels is therefore seen as an important source of noise which adds variability
to the threshold for spike initiation.

Next section will explore the idea of a stochastic threshold further. More details
on stochastic models of ion channels can be found in Chap. 12.

6.6.3 Generalized Linear Models

Consider the noiseless dynamics for V.t/ (as given by the SRM0 or SRM) and
replace the fixed voltage threshold with a stochastic voltage threshold:

VT ! � C �.t/ (6.42)

where � is the average – or deterministic – threshold, and �.t/ is a zero-mean white
noise. This type of noise is called ‘escape noise’ (Gerstner and Kistler 2002) and
relates to the escape rate in models of chemical reactions (van Kampen 1992). In
this scenario, the probability of finding the membrane potential above the threshold
depends solely on the instantaneous difference between the voltage and the average
threshold. We can write in general terms that the firing intensity is a nonlinear
function of the modelled voltage trace:

r.t/ D f .V.t/ � �/: (6.43)

The monotonically increasing nonlinear function f is the cumulative distribution
function of �.t/.

Models such as the SRM0 or the SRM have an explicit formulation for V.t/ that
we can substitute in Eq. 6.43. These formulations for V.t/ require the knowledge of
the spiking history. In this case, the firing intensity is dependent on the knowledge
of the previous spike times. We will label this intensity differently, �.t jfOtgt /, since it
does not equal the PSTH observed experimentally anymore. Writing the convolution
operation of Eq. 6.34 with an asterisk and substituting the voltage in Eq. 6.43 by an
explicit formula, we have:

� D f

 

 � I C

X
i

�a.t � Oti /C E0 � �

!
: (6.44)

When all kernel 
 and �a are expressed as a linear combination of basis functions,
the firing intensity would be a linear model if f were linear. With the nonlinear
link-function f , this is instead a Generalized Linear Models (GLM). GLMs have
convenient properties in terms of finding the parameters of the model and estimating
the validity of the estimates (McCullagh and Nelder 1989). One of these properties
is that the likelihood of observing a given set of spike times is a convex function of



6 The Performance (and Limits) of Simple Neuron Models 181

the parameters (when the link function is strictly convex Paninski 2004). This means
that it is always possible to find the best set of parameters to explain the data. It is a
remarkable fact that only the knowledge of the spike times observed in response to
a given stimulus is sufficient to estimate the filter 
 and the shape of the adaptation
function �.

The GLM model above depends on all the previous spikes, and therefore shows
spike-frequency adaptation through the kernel �a.t/. By excluding the possible
influence of cumulative adaptation, it is possible to make a purely refractory
stochastic model by dropping the dependence on all the previoius spikes but the
last one. This framework allows the theorems of renewal theory (Cox 1962) to be
applied, and to study the behaviour of networks of neurons analytically (Gerstner
and Kistler 2002).

In the same vein, it is possible to ignore completely the refractoriness and
consider only the filtering of the input:

� D f .
 � I / : (6.45)

Despite the fact that it appears as too crude an assumption, we can gain considerable
knowledge on the functional relationship between external stimuli and neuronal
response (Gazzaniga 2004). This model referred to as the Linear-Nonlinear Poisson
model (LNP) was extensively used to describe the response of single neuron in
the retina, thalamus or cortex as a function of the visual stimulus. When multiple
neurons pave the way between the stimulus and the spikes generated by the LNP
model, the filter function no longer represents the membrane filter of the cell but
rather the linear filter corresponding to successive stages of processing before the
signal reaches the neurons.

The mere fact that it is possible to make a decent firing-rate prediction with such
a simple model makes a strong claim about the role of the neurons and the neural
code. A claim that could be challenged by experiments pointing towards missing
features. In the next section we further elaborate on the models described in the
previous sections. We want to make sure we find the simplest description possible
for a given set of experiments, but not simpler.

6.7 Advantages of Simple Models

How good are the simple models discussed in this chapter? Before addressing this
question one needs to define what is meant by a good model. Suppose we focus on an
experiment which injects time-varying current in a neuron that otherwise receives no
input. What can be reproduced by the model? the average firing rate? the PSTH? the
timing of each spike? The subthreshold potential? A model that is able to reproduce
the averaged firing-rate may not be sufficient to underly the fast computational
capabilities of neuron networks (Thorpe et al. 1996). On the other hand, modelling
the exact time-course of the membrane potential may not be necessary given that
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a later neuron only receives the spikes, and no information about the membrane
potential of the neuron is transmitted. Perhaps the most appropriate task of a model
is to predict the occurrence of spikes of a neuron receiving in-vivo-like input. Before
evaluating the performance at predicting the spike times, we assess the ability of
simple models to reproduce qualitatively the firing patterns observed in various
neuron types.

6.7.1 Variety of Firing Patterns

Neurons throughout the nervous system display various types of excitability. The
diversity is best illustrated in experiments injecting a predefined stimulus in cells
that otherwise receive no input. For example, if an identical step current is used to
drive multiple cells any differences in the observed firing patterns between the cells
must be attributed to intrinsic mechanisms rather than the stimulation pattern. It is
common to classify neurons according to their initial response to the step current
as well as according to different steady state responses (Markram et al. 2004).
Consequently, the onset of firing is categorized as being either delayed, bursting
or tonic. On the other hand the steady state can be tonic, adapting, bursting or
irregular. Simple threshold models can reproduce all the firing patterns observed
experimentally (Fig. 6.11). The study of excitability types in such simple models
sheds light on the basic principles contributing to the neuronal diversity.

Delayed spiking. Delayed spiking can be due to smooth spike initiation as in the
EIF or to linearized subthreshold currents. Indeed, the EIF can produce delayed
spiking when the stimulating current is slightly greater than gL.VT � E0 � �/.
Another possibility is that a subthreshold current slowly activates at higher voltage
to depolarize the membrane further. For instance Eqs. 6.22–6.23 may lead to delayed
spiking onset when a < 0 and �w > � .

Bursting. Bursting can arise from many different causes and it is possible to define
multiple types of bursting (Izhikevich 2007). Perhaps the simplest bursting model is
the LIF with adaptation (Eqs. 6.12–6.13). The high firing-frequency during a burst
increases the adaptation current to a point where the neuron can no longer spike until
its level of adaptation has decreased substantially. In this case the inter-burst interval
is related to the time constant of adaptation. A hallmark of this type of bursting is
the slowing down of the firing during the burst.

Transient spiking. Upon the onset of the stimulus, the neuron fires one or multiple
spikes and then remains quiescent, even if the stimulus is maintained for a very
long time. Spike-triggered adaptation or a moving threshold cannot account for
this pattern. Transient spiking is due to a resonance with a subthreshold current
(Fig. 6.5).
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Fig. 6.11 Multiple firing patterns are reproduced by merely tuning the parameters of a simple
threshold model. Here the AdEx fires with tonic bursts, initial burst, spike-frequency adaptation,
or delay. For each set of parameters, the model is simulated on a step current with low (close to
current threshold for firing) or high (well above the firing threshold)

Adaptation. We have seen that spike-frequency adaptation is brought by either
hyperpolarizing currents or a moving threshold which cumulates over multiple
spikes.

This brief description emphasizes only the most important firing patterns, we
will discuss the analysis of the bursting and initial bursting firing patterns further in
Sect. 6.7.3. The main observation is that a two-dimensional model such as the AdEx
is capable of describing a large variety of different firing patterns. The question now
is whether these models can describe not only qualitative features of firing but also
quantitative ones. Concretely, can we predict the timing of spikes in experiments
using simple threshold models?
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Fig. 6.12 Overlayed traces of an AdEx model (red) and a fast-spiking interneuron (blue). Most
of the spikes are predicted correclty by the model (green check marks) but some extra spike are
predicted (red crosses). The subthreshold voltage traces match very well (inset) (The data is a
courtesy of Mensi et al. 2012)

6.7.2 Spike-Time Prediction

Models of the threshold type can predict the spike times of real neurons in vitro. It
is important to focus on the prediction performance and not simply on reproducing
those spike times that were used to calibrate the model parameters. Otherwise, a
very complex model could reproduce perfectly the data used for fitting while it
would fail completely to reproduce the response to novel stimulus (a phenomenon
called overfitting). The correct procedure is therefore to separate the data into a
training set and a test set. The first is used for finding the best model parameters and
the second to test the performance.

In vitro it is possible to simulate realistic conditions by injecting a fluctuating
current in the soma of the neuron. For instance the injected I.t/ can be taken to
be as in Eq. 6.37 or 6.41 as it would be expected from a high number of synaptic
events affecting the soma. This current when injected in the soma drives the neuron
to fire spikes. ‘Injecting’ this current in the mathematical neuron models will give
a similar voltage trace. After determining the model parameters that yield the best
performance on the training set, the neuron model can be used to predict the voltage
trace and the spike times on the test set. As we can see from Fig. 6.12, the AdEx is
capable of predicting the subthreshold voltage and spike timings to an impressive
degree of accuracy.

Deterministic models such as the SRM0 with a dynamic threshold (Jolivet et al.
2006a), the AdEx (Jolivet et al. 2008), the rEIF (Badel et al. 2008b), the SRM
(Mensi et al. 2012) or other similar models (Kobayashi et al. 2009) have been
fitted to such in vitro experiments and their predictive performance evaluated. To
evaluate the performance of deterministic models, the number of predicted spikes
that fall within˙4 ms of the observed spikes are counted. When discounting for the
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number of spikes that can be predicted by chance (Kistler et al. 1997), a coincidence
factor is obtained ranging from zero (chance level) to one (perfect prediction). This
coincidence factor ranged from 0.3 to 0.6 for pyramidal neurons of the layer 5, and
from 0.5 to 0.8 for fast-spiking interneurons of the layer 5 of the cortex.

It turns out that these performances are very close to optimal, as we can see if
we consider that a real neuron would not reproduce exactly the same spike times
after multiple repetitions of the same stimulus (as shown in Fig. 6.10). The best
coincidence factor achievable by the models is the intrinsic reliability R, which is
the average of the coincidence factor across all pairs of experimental spike trains
generated with the same stimulus. This value can be seen as an upper bound on the
coincidence factor achievable by the mathematical models. Scaling the model-to-
neuron coincidence factor by the intrinsic reliability and multiplying by 100 gives a
measure of the percentage of the predictable spikes that were predicted. For models
like the AdEx or the SRM, this number ranged from 60% to 82% for pyramidal
neurons, and from 60% to 100% for fast-spiking interneurons. Simpler models do
not share this predictive power: the LIF only accounts for 46–48% of the predictable
portion of spikes.

Models from the GLM family have been used to predict the spike times of
neurons in the retina, thalamus or cortex from the knowledge of the light stimulus.
Almost perfect prediction can be obtained in the retina and in the thalamus (Pillow
et al. 2005). Furthermore, it has been shown that refractoriness or adaptation is
required for good prediction (Berry and Meister 1998; Pillow et al. 2005; Truccolo
et al. 2010). Furthermore, the quality of the prediction can be improved by taking
into account the coupling between adjacent cells (Pillow et al. 2008).

6.7.3 Ease of Mathematical Analysis

The greater simplicity of the neuron models discussed in this chapter compared
to biophysical models of the Hodgkin–Huxley type have another advantage: the
ease of mathematical analysis. This is particularly advantageous for studying
neuron networks and for investigating synaptic plasticity. This is a vast field of
study where many macroscopic properties of neuron networks can be scrutinized:
learning, oscillations, synchrony, travelling waves, coding, and possibly others (see
Hoppensteadt and Izhikevich 1997; Dayan and Abbott 2001; Gerstner and Kistler
2002 for introductions). Paving the way to these exciting fields, mathematical
analysis has yielded important insights that relate the function of single neurons
with that of networks.

The characteristic of the response to various types of stimulations can often be
described in mathematical terms. For a constant current I , the firing frequency of
the LIF is given by (see Exercices 6.5):

� D


� ln

�
gL.Vr �E0/ � I

gL.VT � E0/� I

	��1

: (6.46)
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Fig. 6.13 Initially bursting (a) and regular bursting (b) trajectories in both phase plane and as a
time-series. The initial state of the neuron model before the step current is marked with a cross and
is associated with the V -nullcline shown as a dash line. After the step increase in current the V -
nullcline shifts upwards (full line). The w-nullcline is shown in green and the trajectories are shown
in blue with each subsequent reset marked with a square. The first and last resets are labeled with
their ordinal number. Regular bursting is distinguished from initial bursting by the presence of two
voltage resets between the trajectory of the fifth spike and the V -nullcline

The mean frequency when the current is an Ornstein-Uhlenbeck process (Eq. 6.41)
can be written as an integral formula (Johannesma 1968):

� D
"

�
p

�

Z p
�.gL.VT �E0/��/=.�

p
2�s /

p
�.gL.Vr �E0/��/=.�

p
2�s /

ex2

Œ1C erf.x/� dx

#�1

(6.47)

where erf.x/ is the error function. When the non-linearity for spike initiation is
taken into account, it is not possible to arrive at exact solutions anymore. Yet, for
some parameter values there are approximations that can be worked in. This way,
approximated solutions can be written for the EIF or the AdEx receiving gaussian
white noise (Fourcaud-Trocme et al. 2003; Richardson 2009). When there is a strong
effect of adaptation it is not possible to arrive at closed-form solutions for � and one
must rely on numerical integration of the appropriate Fokker-Planck equations can
be used (Muller et al. 2007; Toyoizumi et al. 2009).

Mathematical analysis is equally successful to relate the observed types of firing
patterns with the parameter values. We will illustrate the application of bifurcation
theory with an example related to Fig. 6.11: distinguishing initial bursting from a
regular bursting using phase plane analysis.

Repetitive bursting is created in the AdEx model by constantly alternating
between slow and fast interspike intervals. When the injection is a step increase
in current (as in Fig. 6.11) this corresponds to a sudden shift of the V -nullcline (i.e.
the set of points where dV

dt
D 0) in the phase plane. Before the step, the state of the

neuron is at the stable fixed point which is sitting at the intersection between the V -
and the w-nullcline. After the step, the stable fixed point has disappeared and this
results in repetitive firing. The distinction between an initially bursting AdEx model
and a regular bursting one is made by considering the location of the resets in the
phase plane. Figure 6.13 shows that both types of bursting have spike resets above
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and below the V -nullcline. Resetting above the V -nullcline brings a much larger
interspike interval than resetting below. To achieve this, a spike reset above the V -
nullcline must be able to make at least one spike reset below the V -nullcline before
being mapped above again. This is seen in Fig. 6.13b where there is sufficient space
below the V -nullcline and above the trajectory of the fifth spike for at least one reset.
This leads the repetitive bursting of two spikes. On the other hand, in Fig. 6.13a the
fourth spike – which was reset above the V -nullcline – is followed by another reset
above the V -nullcline. This leads to the end of the initial burst which is followed
only by long interspike intervals. By observing at the phase planes in Fig. 6.13, one
can conclude that a higher voltage reset helps to bring about repetitive bursting.

Similar conclusions can be drawn for all the firing patterns (Naud et al. 2008).
Furthermore, it is sometimes possible to have analytical expressions relating the
parameter values and the firing patterns (Touboul 2008). Such conclusions are
possible mainly because the complexity of the model was kept low. Indeed, the
structure of firing patterns have been studied in other simple models (Izhikevich
2007; Mihalaş and Niebur 2009).

6.8 Limits

The neuron models presented in this chapter present an idealized picture. The first
idealization is that all these models consider the neuron as a point with no spatial
structure. This point could represent the axon initial segment where the spike is
initiated. However, real neurons receive input distributed not only in the soma
but also in their dendritic arborizations. Dendrites bring multiple types of non-
linear interactions between the inputs. Dendritic ion channels combine with basic
properties of AMPA, GABA and NMDA synapses to make dendritic output to the
soma dependent on the spatio-temporal pattern of excitation. Spatially extensive
models (see Chap. 11) may be required to correctly translate input spikes into
current arriving at the axon initial segment, but to what extent? This remains to
be addressed experimentally.

Another central assumption prevalent throughout this chapter is that the spike
does not change its length or shape with different stimuli. While this is seen as
a good approximation for cortical neurons firing at low frequency (Bean 2007),
some neurons have action potential shapes that vary strongly as a function of
either stimulus, firing frequency or neuromodulation. For instance, the interneurons
taking part in the motor pattern generation of flight in locusts display spikes that
reduce by half their amplitude and width when part of a burst of activity (Wolf and
Pearson 1989). Similarly, half-blown spikes are observed frequently in the lobster
stomatogastric pattern generator (Clemens et al. 1998) or in complex spikes of
cartwheel cells in the dorsal cochlear nucleus (Golding and Oertel 1997).

The simple models described in this chapter can be seen as a high-level
description of the complex biophysical mechanisms mediated by ion channels,
ion pumps, and various chemical reactions involving neurotransmitters. At this
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level of description the molecular cascades for the effect of – for example –
acetylcholine are not modelled. Though the effect of neuromodulators can be
calibrated and cast in stereotypical modification of the simple model (Slee et al.
2005), it is not an intrinsic feature and the calibration has to be performed for
each scenario. Complex biochemical as well as biophysical models are the norm
if pharmacological procedures are studied (see Chaps. 17 and 18).

To conclude, simple neuron models capture essential features that are required
for transducing input into spikes. If we bear in mind the inherent limitations, the
study of simple neuron models will continue bringing new insights about the role of
single neurons. In particular, the roles of adaptation and variability are only starting
to be considered.

6.9 Further Reading

Spiking neuron models. Uses single-neuron models as a building block for
studying fundamental questions such as neuronal coding, signal transmission,
dynamics of neuronal populations and synaptic plasticity (Gerstner and Kistler
2002).

Dynamical systems in neuroscience. Neuron models are made of systems of dif-
ferential equations, this book provides a very didactic approach to the mathematical
theory associated with such dynamical systems (Izhikevich 2007).

Exercices

1. With Ew D E0, cast Eqs. 6.22–6.23 in the form of:

V.t/ D E0 C
Z 1

0


.s/I.t � s/ds C
X

i

�a.t � Oti /: (6.48)

Solution :
�a D 0


.t/ D kCe�
C

t C k�e�
�

t

where

�˙ D 1

2��w

�
�.� C �w/˙p.� C �w/ � 4��w.gL C a/=gL

�

and

k˙ D ˙ �˙�w C 1

C�w.�C � ��/
:
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2. If we connect a dendritic compartment to a LIF point neuron, the dynamics of
the system obey:

C
dV

dt
D �GL.V � VL/CGc.Vd � V /C I

Cd

dVd

dt
D �Gd .V �Ed /CGc.V � Vd /

where gc is the conductance coupling the LIF compartment with membrane po-
tential V to the dendritic compartment with potential Vd . The leak conductance,
the capacitance and the equilibrium potential for the dendritic compartment are
gd , Cd and Ed , respectively. How should you define w, a, gL, E0, Ew and �w to
show that this situation is equivalent to Eqs. 6.22–6.23?

Solution: w D GcVd , gL D GLCGc , E0 D GLVL=.GLCGc/, a D Gd CGc ,
Ew D Ed Gd =.Gc CGd /, �w D Cd =Gd .

3. Reduce the Hodgkin–Huxley equations (see Chap. 11) to the AdEx model. Start
with the single-compartment Hodgkin and Huxley equations:

C
dV

dt
D �gm.V �Em/� gNam3h.V � ENa/� gKn4.V �EK/; (6.49)

�x.V /
dx

dt
D �x C x1.V /; (6.50)

with x being any of the gating variables m, h or n.

Solution :

(i) Assume that �m.V / << C=gL.
(ii) Assume that when the voltage reaches some relatively high value (e.g.
�10 mV) there is a spike being emitted and the voltage is reseted to Vr ,
while the potassium activation make a stereotypical change: n! nC ın.

(iii) Assume that the sodium inactivation variable plays no role sub-threshold and
during the spike initiation: h.t/ D h0.

(iv) There remains only subthreshold dynamics and spike initiation, therefore the
dynamics of h, n and IK can be linearized around E0 (multivariate taylor
expansion). The resulting system is:

C
dV

dt
D I � gL.V � E0/� gNah0m31.V /.V � ENa/� w (6.51)

�w
dw

dt
D aw.V � E0/� w (6.52)

if V > 0mV then V D Vr ; w D wC b: (6.53)
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with w.t/ D 4gK.n.t/ � n1.E0//n
31.E0/.E0 C EK/, a D 4gKn1.E0/

3

.E0 C EK/ @n
1

@V

ˇ̌̌
E0

, �w D �n.E0/, b D 4gKınn31.E0/.E0 �EK/.

4. Computer aided exercice. Build a simple SRM model to reproduce all the firing
patterns in Fig. 6.11. Hint: let kernels �.t/ and 
.t/ each be constituted of two
exponentials.

5. Derive equation 6.46 starting from Eqs. 6.6 to 6.8 with a constant current. Hint:
Call ��1 the time it takes to go from the reset to the threshold. With I constant
the integrals can be computed explicitly.
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Chapter 7
Multi-compartmental Models of Neurons

Upinder S. Bhalla

Abstract The electrical properties of single neurons can be acurately modeled
using multicompartmental modeling. Such models are biologically motivated and
have a close correspondence with the underlying biophysical properties of neurons
and their ion channels. These multicompartment models are also important as
building blocks for detailed network models. Finally, the compartmental modeling
framework is also well suited for embedding molecular signaling pathway models
which are important for studying synaptic plasticity. This chapter introduces the
theory and practice of multicompartmental modeling.

Electrical models of neurons are one of the rather rare cases in Biology where a
concise quantitative theory accounts for a huge range of observations and works well
to predict and understand physiological properties. The mark of a successful theory
is that people take it for granted and use it casually. Single neuronal models are no
longer remarkable: with the theory well in hand, most interesting questions using
models have moved to the networks of neurons in which they are embedded, and the
networks of signalling pathways that are in turn embedded in neurons. Nevertheless,
good single-neuron models are still rather rare and valuable entities, and it is an
important goal in neuroinformatics (and this chapter) to make their generation a
well-tuned process.

7.1 Frog Legs and Monks: A Perspective

Twitching frog legs and dancing monks were some of the earliest indications that
behavior and motion were somehow coupled to electricity. In classical studies in the
late 1700s, Galvani found that under certain circumstances, touching a metal object
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to a stripped frog leg caused it to twitch. This was ascribed to ‘animal electricity.’
The role of electricity and its application to nerves was already inferred from these
early experiments, though Galvani incorrectly believed it to have a specifically
animal origin. The use of static electricity in causing humans to twitch was also
well known; in one celebrated experiment Nollet used an early capacitor to cause a
row of Carthusian monks to leap into the air. There this theory sat for a long time.

By the early 1900s, Bernstein and Cajal had pinned down the electrical and
morphological significance of neurons in behavior. Bernstein recorded the first
action potentials (Seyfarth 2006) and proposed his “membrane theory” that stated
that ion fluxes across a semipermeable membrane accounted for nerve conduction.
Cajal had begun to champion the role of neurons in behavior. He called them “the
mysterious butterflies of the soul,” and went so far as to suggest that their function
held “ : : : the secret of mental life.” The 1940s saw a burst of activity in establishing
how neurons worked, notably the experiments and theories of voltage-gated ion
channels by Hodgkin and Huxley that still remains the benchmark for realistic
physiological models (Hodgkin and Huxley 1952a, b). It is worth noting that these
early theoretical excursions were met with significant hostility, even though they
were superbly backed by experiment.

If the work of Hodgkin and Huxley defined the standards for studying the active
properties of cells, Wilfrid Rall laid the theoretical foundations for studying their
passive and computational roles from the 1960s. Till this time the dendrites had
largely been disregarded: they were believed to be mere cellular extensions to plug
synapses onto. Rall’s work showed that dendrites were not ‘small’ and that their
passive properties substantially defined the computational function of the cell (Rall
1959, 1967, reviewed in Segev 2006). In the conservative neuroscience tradition,
this work too met with a great deal of resistance: first to the idea that dendrites did
anything interesting, and then to his analysis of their functional and computational
roles. Experiments eventually caught up with the theory, and today we take these
concepts for granted.

It is now easy to grab a simulator such as NEURON or GENESIS, and run models
ranging from the original Hodgkin-Huxley squid theory, to immensely detailed 3-D
models of neurons. These models, and their rather obvious success in accounting
for many neuronal properties, have substantially eased the acceptance of neuronal
modeling in neuroscience. Detailed compartmental models are just one category of
models in active use. More abstract versions range from integrate-and-fire models,
which represent some of the passive and synaptic properties of neurons, but typically
do away with the geometry and the active currents, to almost unrecognizable
summation entities that form the basis of ‘neural’ networks. Each provides insights
at different levels. However, to understand physiology, compartmental models are
the way to go. They are based on physiology, they do a good job of replicating
experimental findings, and they bridge the interesting range between molecular
networks and networks of neurons which is the focus of this book.
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7.2 Cable Theory

Cable theory describes passive propagation of charge through an insulated cable
surrounded by a conductor. This turns out to be a pretty good description of a
segment of a neuron: the cytoplasm surrounded by membrane is the cable, and it
is surrounded by the extracellular medium which is a conductor. Electrical signal
propagation through undersea telegraph cables is essentially the same problem, and
was originally analyzed in the 1850s by Lord Kelvin. The equations are similar
to those for heat conduction in a wire, which had been worked out still earlier by
Fourier.

In this section we will see how small segments of neurons can be represented as
equivalent electrical circuits, and use these to derive the cable equation. We will then
follow Wilfrid Rall in exploring the implications of the cable equation for neuronal
function and experiments.

7.2.1 Compartments

A common trick in analyzing a spatially extended object, such as a cable, is to
subdivide it into compartments which are so small that the property of interest is
uniform over the entire extent of the compartment. For neurons, this property of
interest is the potential difference across the membrane (Vm). The compartment is a
small cylinder with cytoplasm inside, membrane around it, and the extracellular
medium around that. This forms a capacitor (Cm), as the membrane is a good
insulator between two conductors. The large but finite resistance of the membrane
(Rm) is in parallel with this capacitor. The ion gradients across the membrane add
a battery (Em) to this little circuit (Fig. 7.1). This forms a compartmental circuit
diagram and is the starting point for our analysis. The convention is to treat the
extracellular medium as a common ground. As we shall see later, exactly this
electrical equivalent is used to perform numerical simulations of neurons.

In order to complete the spatial picture, we need to connect compartments to
each other. Here we consider the axial flow of current between compartments.
As the cytoplasm is not a perfect conductor, we treat it as a resistance, Ra. The
compartmental trick lets us collapse all the resistive effects into the junctions
between cables. In this case we split the contribution into Ra/2, on either side
(Fig. 7.1). Branches are readily represented as electrical branches.

It is certainly possible to use more complex compartmental forms, for example
conical sections rather than cylinders. In the limit of very short compartments,
they all give the same results (Jack et al. 1975). It is also possible to consider
non-uniformities around the circumference of the cable: we discuss this later. For
almost all detailed neuronal models, we are saved by the fact that the length-scale
of variations along the axis of the cable is usually greater than the cable diameter.
Thus we can get away with this very simple description of neurons as thin cylinders
with branching.
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Fig. 7.1 Electrical equivalent circuit of a membrane compartment. Each segment of dendrite or
axon is represented as a compartment, which is internally uniform. The electrical properties of this
compartment can be mapped onto equivalent electrical circuit elements

Fig. 7.2 Series of electrical compartments in a cable, used to derive the cable equation

7.2.2 Derivation and Implications

To derive the cable equation, we consider three adjacent compartments on a uniform
cable (Fig. 7.2). Instead of absolute electrical values, we will use ra, rm and cm,
which are per unit length. We set Em to zero for this derivation. The middle
compartment is our reference, and the one to the left and right are numbered
�1 andC1.

Assume that they are separated by a distance Dx. We set the total current leaving
the compartment to zero. This includes terms for current leaving from the left, the
right, through the membrane resistance, and through charging the capacitor:

Vm � V m�1

ra:Dx
C Vm � V mC1

ra:Dx
C Vm:Dx

rm

C cm:Dx:
dVm

dt
D 0 (7.1)

The first two terms refer to the voltage gradient on either side of the compartment:

dVm =dx j�1 � dVm =dx j0
ra

(7.2)
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Fig. 7.3 Propagation of an electrical pulse down a cable

In the limit, their difference, over the length Dx of the compartment, is just the
second derivative in space. We divide across by Dx to get

� 1

ra

:
@2Vm

@x2
C Vm

rm

C cm

@Vm

@t
D 0 (7.3)

A little rearranging gives:

�rm

ra

:
@2Vm

@x2
C rmcm

@Vm

@t
C Vm D 0 (7.4)

Using

�2 D rm =ra (7.5)

and

� D rm:cm (7.6)

we get the familiar form of the cable equation:

�2 @2Vm

@x2
� �

@Vm

@t
� Vm D 0 (7.7)

The general solutions of the cable equation are moderately complicated functions of
time, space and boundary conditions (Rall 1959; Jack et al. 1975). The key intuitive
results, however, are quite simple: a current pulse at one end of a cable undergoes
three changes as it propagates through to the other end: decay, smoothing, and delay
(Fig. 7.3).

To lend a slightly more quantitative view to these three effects, the cable equation
has two specific solutions that are helpful in their simplicity.

1. If we eliminate space from the cable equation (reducing it to a single compart-
ment), the time-course of charging or discharging is a simple exponential. This
is a good approximation to what most cells do in the absence of active currents.



198 U.S. Bhalla

Fig. 7.4 Simple solutions of
the cable equation. Decay of
potential in time (above) and
in space (below)

As we have seen from the cable equation, the charging time-course, � , is related
to the electrical properties as:

� D rm:cm (7.8)

2. Similarly, if we eliminate time from the cable equation (taking the solution at
infinite time), and assume an infinitely long cable, the voltage profile along the
cable is also a simple exponential (Fig. 7.4). This is a reasonable approximation
to the decay of signals in a cell, again in the absence of active currents. The length
constant of decay � is given by:

� D
p

rm =ra (7.9)

� and � characterize the temporal and spatial properties of neurons, respec-
tively. For reference, � is typically around 10 – 100 ms, and � for dendrites is
in the range of 0.1 – 1 mm. Axons are typically much thinner and myelination
complicates their analysis, but they usually have shorter values of �.

7.2.3 Rall’s Law and Electrotonic Length

Wilfrid Rall showed that many neurons were electrically ‘long’ (Rall 1969). In terms
of the steady-state solution in Fig. 7.4, this means that the geometrical length is one
or more length constants. This ratio is called the electrotonic length, L.

L D geometrical length=� (7.10)
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Fig. 7.5 Rall’s Law. The
branched structure is
electrically equivalent to the
single cylindrical cable below

This quantity is derived for a linear cable. As most neurons have extensive
branching, the quantity L may seem of limited value. In one of his most important
contributions, Rall showed that in fact most branching neurons can also be treated
as simple cylinders for the purposes of calculating passive responses to electrical
events at the soma (Rall 1959). Rall’s Law states that, for any branch point, this
equivalence holds provided the following four conditions are met:

1.

d
3=2
0 D d

3=2
1 C d

3=2
2 (7.11)

where d0, d1, and d2 are the diameters of the parent and two child compartments.
2. The specific axial resistance RA, and specific membrane resistance RM, are

uniform
3. The ends of the cylinders are similar (same boundary conditions)
4. The boundary conditions at matching values of L in the daughter cylinders are

the same. In practice this typically means that the electrotonic lengths L of the
daughter cylinders are identical (Fig. 7.5).

Note that this law is recursive. It applies to sub-branches of daughter branches,
and converts each into an equivalent cylinder, so that an entire, multi-level branching
tree can be treated as a single cylinder.

While these four conditions, especially the first, may seem very restrictive, many
real neurons actually approximate them rather closely. A key point in applying
Rall’s Law is that it works for an input at the soma, but not at the dendrite.
Remember condition 3: that the ends of the cylinders must have the same boundary
conditions. Thus a signal at the soma propagates uniformly to all dendritic branches.
However, an input to a single dendritic branch is not shared with all dendrites, so the
condition fails. Thus a somatic signal (action potential or current injection) usually
propagates well to all dendrites, but an input on a single dendrite is severely attenu-
ated at the soma. Put another way, the electronic length from the soma to the dendrite
is usually much smaller than the electronic length from the dendrite to the soma.
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Another of Rall’s useful results shows that the electrotonic length of a cable can
be obtained from a close look at its charging time-course (Rall 1969). While a point
cable, as discussed above, has a single charging/discharging time-course � , extended
cables have an infinite series:

V.t/ D Vrest C V 0 exp.�t=�0/C V 1 exp. � t=�1/C : : : (7.12)

Rall showed that you can take any two of these time-courses and use them to
compute L:

L D �q
�0
�1
� 1

(7.13)

Most experiments are able to find �0 accurately, �1 less so, and higher-order time
courses poorly if at all. So for all practical purposes, we can best estimate L using �0
and �1. This is a rather remarkable result. It shows that an estimate of the electrical
size of the cell, L, can be obtained from a single recording at the soma of a neuron.

7.2.4 How Much Can You Learn About a Neuron by Recording
from Its Soma?

At this point let us anchor some of these theoretical findings in a simple experiment.
Supposing we have stuck an electrode into the soma of a passive neuron, that is, one
without any ion channels to complicate matters. This criterion for passive behavior
is usually well approximated if the charging curves are in the form of small current
pulses, which will minimally activate active channels (Fig. 7.6). What can we learn
about its passive properties?

1. Vm. The very first experiment one does on a neuron is to measure its resting
potential, Vm. Here the electrode just records the intracellular potential with
respect to ground.

2. Input resistance. Here one passes a small current I through the recording
electrode. By monitoring the steady-state change in Vm and applying Ohm’s
Law, one obtains an estimate for the input resistance Rin of the whole cell.

3. Capacitance. By monitoring the time-course of the voltage in response to a step in
applied current I, one can directly measure the charging time-course �0. Plugging
�0 and the above input resistance into Eq. 7.8, one obtains the lumped cellular
capacitance, Cin.

4. Electrotonic Length, L. By monitoring the same time-course as above, and using
some curve-fitting to obtain �0 and �1, we can also estimate L using Eq. 7.13.
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Fig. 7.6 Obtaining several passive parameters from a single somatic recording

This is quite a remarkable amount of information to obtain from a single
electrode recording. For some purposes this is enough and more to make a neuronal
model. For example, integrate-and-fire neurons can be mostly parameterized by
points 1 – 3.

7.2.5 How Much Can You Learn by Looking in a Microscope?

Pictures of neurons are plentiful, and accurate if one accounts for staining distortions
and depth. Detailed neuronal morphology images date back to the early staining
techniques developed by Golgi, that were put to such effective use by Cajal. They
provide the next line of data for compartmental modeling. As a first pass, we take
a computerized neuronal morphology file (typically consisting of position of each
dendritic segment and its diameter) and convert it into a compartmental model. This
can partially be automated, but there are lots of cases where human judgement needs
to come into the mix. Some of the key decisions in going from morphology data to
a compartmental model are:

1. How much detail do you want in your model? This determines whether you need
just an idealized spherical cell with just a somatic compartment, or a spatially
faithful model with hundreds of compartments.

2. How small do you want your compartments? In part this is determined by the
geometry: If the dendrites are highly non-uniform in diameter, or there are
branches, then these have to be represented by smaller compartments. On the
other hand, if you do not care about branches, you can bring Rall’s law into play
and collapse many dendrites into a single one.
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3. Do you want to model spines? If yes, then each spine will need at least two
compartments: one for the spine head, and one for the neck. Addition of spines
can easily make a neuronal model ten times larger. An alternative is to do
a surface area rescaling by merging the effective conductance, resistance and
charge of the spine into the parent compartment.

4. Will you be modeling active channels? If so, then the appropriate compartmental
length must be small (around 0.05 �, Cooley and Dodge 1966) because the
potential gradients are quite steep. In a passive model the compartmental length
can be much bigger, about 0.2 �.

Having made these decisions, we are now in a good position to combine the cell
morphology with its physiology to make a passive model at any desired level of
detail. For detailed compartmental models, it is often useful to undertake a final
refinement of the model passive parameters by fitting the somatic charging curves
to simulations, with the Ra and Rm as adjustable parameters. Estimates of Cm and
Vm are usually quite accurate, so they can be left alone.

7.2.6 Beyond Cable Theory: Non-compartmental Analysis,
Ephaptic Interactions

Cable theory provides a simple and general approximation to the passive properties
of cells. Its resolution, however, is limited to a 1-dimensional analysis of a neuron
and the other assumptions of compartmental models. So, for example, cable theory
is not able to tell one what happens if there are field gradients around the cross-
section of a dendrite, or to do a general analysis of non-cylindrical geometries. Such
calculations require much finer subdivisions of the membrane, into small patches
that tessellate the surface of the cell. Only a few simulators, such as STEPS, are
currently capable of this (Wils and De Schutter 2009).

Another assumption of cable theory is that the outside of the cell is all at the same
potential. This is obviously not the case, since all field and extracellular recordings
rely on potentials recorded outside the cell. For intracellular potentials, it turns out
that an explicit representation of extracellular resistances is mathematically equiva-
lent to a small correction on the axial resistances (Ra) of the regular compartmental
model. For extracellular potentials, one can compute the local potential of any point
in space by summing up the contributions of each compartment as a little dipole
(Holt and Koch 1999). This works even for potentials generated by many cells.
Here, even though the potential is not assumed uniform, there is an assumption of
homogeneity of the extracellular medium.

Finally, in a few cases there are interactions between sections of dendrite on the
same or different cells, that arise from these extracellular potentials. For example,
tightly packed non-myelinated nerve bundles may experiences ephaptic current flow
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between axons, due to local potential gradients. This is especially likely if a volley of
impulses goes down several axons at once. There are currently no general simulators
to solve such cases.

7.2.7 Summary of Cable Theory

Cable theory describes how electrical signals propagate through cells in the absence
of active channels. This is important because neurons are typically long, thin cells.
There are three main things that happen to signals as they go down a long section of
dendrite or axon: They get smaller, smoother, and are delayed.

7.3 Ions and Ion Flow

We now turn to the cellular battery, which arises from concentration gradients of
ions across the neuronal membrane. This battery is what maintains the cellular
resting potential, which is around �65 to �70 mV. In other words, if you stick an
electrode into a cell, the inside is about 65 mV more negative than the outside. The
energy stored in these ion gradients is used to power the more interesting, active
properties of neurons, that we will discuss in the next section. In terms of the
equivalent circuit for a compartment, each ion channel is represented as a battery
in series with a variable resistor. The potential on this battery is the Nernst potential.

7.3.1 The Nernst Equation

The Nernst equation is:

Erev D RT

zF
ln

�
Œout�

Œin�

	
� 59 mV: log

�
Œout�

Œin�

	
at T D 298K (7.14)

What this means is that if there is an ion-selective channel across a membrane, then
there will be no net current flow across the membrane when the cell is at Erev, the
reversal potential. This situation arises because the free energy gained by an ion
going down the concentration gradient is exactly balanced by the energy required
for the ion to move up against the potential difference Erev. Note that this is an
equilibrium situation: no energy is lost if the channel is left open at Erev, as there is
no net flux of ions.
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The Nernst potentials in (mV) for some common ions in vertebrate tissue is
below (from Hille 1992):

Ion NaC KC Ca2C Cl�

Intracellular conc (mM) 12 155 0.0001 4.2
Extracellular conc (mM) 145 4 15,000 123
ENernst (mV) 60 �90 120 �85

One frequently used outcome of the Nernst equations is to depolarize a neuron
by raising the extracellular potassium ion concentration. The resting potential of a
neuron is mostly determined by the Nernst potential for potassium. By doubling
[Kext] we increase its ENernst by approx. 20 mV. This is usually sufficient to take the
cell above its action potential threshold.

Another important implication of this equation is to estimate how the reversal
potentials of different ions change during neuronal activity. It turns out that the
concentrations of most ions are simply too large to be much affected by the flux
through ion channels over the time-course of a burst of action potentials. The major
exception to this is calcium. The resting concentration of free calcium is about
0.1 �M, and channel openings routinely raise this to 1 �M. Calcium concentrations
in microdomains may be still higher. These changes substantially alter the effective
Nernst potential for calcium.

In a few cases a similar situation has been reported for extracellular potassium,
which has been estimated to significantly rise during intense activity in some
enclosed neural structures such as olfactory glomeruli. This rise of [Kext] leads to
further cellular depolarization, and stimulates still further activity.

7.3.2 The Goldman-Hodgkin-Katz Equations

What happens when an ion channel lets multiple ions through? This is particularly
common for ligand-gated channels, such as the nicotinic acetylcholine receptor or
the NMDA receptor. Both of these have a reversal potential close to zero, because
they allow many cations, including potassium, through. A simplistic view of this
would simply be to compute some sort of weighted average of the Nernst potentials
of the different ions. The actual calculation is more complicated, and gives rise to
two equations called the Goldman-Hodgkin-Katz (GHK) equations.

Is D Psz
2
s

VmF 2

RT
:
ŒS�i � ŒS�o: exp .�zsVmF =RT /

1 � exp .�zsVmF =RT /
(7.15)

This is the GHK current equation. It states that the current carried by the ionic
species S is expressed in terms of the permeability Ps and charge zs for the ion, and
a function of the membrane potential Vm. This equation is useful in simulations for
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calculating the fraction of current through a channel carried by a given ion, based
on its relative permeability and concentrations.

Erev D RT

F
ln

�P
PsŒS�oP
PsŒS�i

	
(7.16)

The GHK voltage equation shown here computes the reversal potential of a
channel where all ions S have a valence ofC1. This reduces to the Nernst equation if
only one ion is present. Univalent negative ions can also be placed in this equation,
by putting the [S]i terms on top, and vice-versa. If the permeant ions differ in valence
then the equation becomes still more complex (Hille 1992).

Why are the GHK equations so much more complex than the Nernst equation?
This is because the Nernst equation is an equilibrium one: it defines the potential
on purely energetic criteria. However, an ion channel passing multiple ions does
not have an equilibrium even at its reversal potential. Instead, at this potential,
the net charge passing through the channel is zero, but the flux of individual ions
may still be substantial. This leads to a nasty singularity in the GHK (current)
equation, because then the fraction of current carried by any ion is infinite. The
usual way around this is to tabulate the potential dependence of current fraction,
and to interpolate current around the singularity.

7.3.3 Summary of Ion Flow

Ionic concentration gradients provide the energy for neuronal electrical activity. The
potentials generated by these ion gradients are described by the Nernst equation for
single-ion channels, and by the more complex Goldman-Hodgkin-Katz equations
for ion channels that carry multiple ions. In a few cases, specially involving calcium,
changes in ion concentrations during activity significantly affect the potentials
driving current through ion channels.

7.4 Voltage-Gated Channels

Passive cells sum current linearly. This is a fine thing for analysis, but their
computational repertoire is limited. Furthermore, they cannot propagate information
very far. Real neurons are adorned with a huge variety of voltage and ligand-gated
ion channels, and these are what determine much of the electrical character of each
cell type. In this section we discuss the modeling of voltage-gated ion channels.
We will focus on the Hodgkin-Huxley description, which is the original and still
the most commonly used description of how such channels act. To understand this,
we need to take a look at the experimental voltage-clamp technique, which was
used by Hodgkin and Huxley and remains an essential electrophysiological tool.
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The Hodgkin-Huxley description is a little complex, so we will visit the Fitz-Hugh
Nagumo equations that are more convenient for mathematical analysis. To wrap up
the section, we will see how many channels are modeled in the same compartment,
and deal with the further elaborations that are introduced by calcium dependence.

7.4.1 The Hodgkin-Huxley Formulation

The original and still by far the most commonly used description of voltage-
gated ion channels is based on the work of Hodgkin and Huxley (1952a, b). Their
formulation describes ion channel conductance in terms of a several ‘gates’, named
m and h for sodium, and n for potassium:

GNa D gmaxm3h (7.17a)

GK D gmaxn4 (7.17b)

The general form of this can have multiple gates, a, b, c, each with their own
powers:

G D gmaxax � by � cz : : : (7.17c)

These gating variables represent processes which all have to be in the open state
for current to flow. Think of the each of these as a ‘gate’ in the channel, which can
be in either of two states: closed or open. If the total fraction of the gate is 1, and the
amount open is m, then the equation is:

.1 �m/ �����
ˇ

˛�����! m (7.18a)

The crucial voltage dependence in these equations come from the ’ and “ terms,
which are functions of voltage. Although the ’ and “ terms are the ones that define
the dynamics of the system, from an experimental viewpoint, it is easier to transform
these into steady-state and time-course parameters as follows:

m1 D ˛m

˛m C ˇm

(7.18b)

�m D 1

˛m C ˇm

(7.18c)

The form of the original Hodgkin-Huxley equations is illustrated for the m-gate
of the Na channel in Fig. 7.7.

Even though these were expressed as analytic functions of voltage in the
calculations of Hodgkin and Huxley, it is important to keep track of the experimental
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Fig. 7.7 Voltage dependence of the m-gate of the Hodgkin-Huxley sodium channel. On the left
we have the ’ and “ terms, and on the right the equivalent data plotted as m

1

and £

roots of these functions. Specifically, these functions are curve-fits to tabulated
experimental data. There is no particular reason for these fits to be simple functions
of voltage. Fortunately, numerical computations do not need the analytic forms, and
are typically done using tabulated lookups. The issues of specifying these channel
parameters are discussed elsewhere in this volume.

7.4.2 FitzHugh-Nagumo Formulation

When analyzing neuronal dynamics, it may be useful to capture some of the channel
dynamics at an intermediate level of description between integrate-and-fire neurons
and the full Hodgkin-Huxley equations. Such a form was developed by FitzHugh
(1961) and implemented using tunnel diodes by (Nagumo et al. 1962) (Fig. 7.8).
The equation is

dV

dt
D V � V 3

3
�W C I (7.19a)

dW

dt
D 0:08 .V C 0:7 � 0:8W / (7.19b)

Where V is membrane potential and W is a recovery variable. This system is
built around a cubic dependence of conductance on membrane potential. This
third-order dependence gives it a region of negative-slope. The intersection of the
curves dV/dtD 0 and dW/dtD 0 defines the resting state of the system, and when
I is increased to 1 this intersection point moves into the negative-slope region,
and the system oscillates. In brief, this equation generates membrane potential
responses similar to those of the Hodgkin-Huxley equations, while remaining ana-
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Fig. 7.8 FitzHugh-Nagumo equations. Above: the dashed line in the time-series represents the
membrane potential, V, and the solid line represents W. Below: Phase diagram for oscillation of the
system

lytically tractable. These equations are typically applied in mathematical treatments
of single-compartment neurons. Despite its mathematical utility, the FitzHugh-
Nagumo form is rarely used in compartmental modeling of the kind we discuss.
The mathematical abstractions separate the firing activity from biological entities
such as different channel classes. Thus, for doing detailed models, and with cheap
computing power, it is more common to use standard channel simulations.

7.4.3 Experiments and the Voltage Clamp

Before going on to explore the properties of the Hodgkin-Huxley model, we need
to make a small experimental excursion. We have already seen how we can monitor
potential changes in the cell and apply current pulses. This is called current clamp:



7 Multi-compartmental Models of Neurons 209

Fig. 7.9 Voltage-clamp of a membrane compartment. Left: Transient large currents are required to
charge and discharge the membrane capacitance. Right: Na and K currents during the voltage step

we clamp the current to a desired value (often zero) and measure the voltage. The
voltage clamp is the converse: we clamp the cellular potential to a desired value,
and measure the current needed to keep it there. The voltage clamp is particularly
valuable in understanding voltage-gated ion channels, because their properties are a
dynamic function of voltage.

First, consider what happens when we have a passive compartment. Consider
a voltage step: we clamp the voltage to resting potential (�65 mV) and then to
�45 mV for 100 ms before stepping the voltage back to�65 mV. In order to raise the
potential from�65 to�45 mV, we need to charge up the capacitor in the membrane.
The voltage clamp circuit tries to do this very quickly, so we have a large but brief
current pulse. The charge needed is QDC.�V, and this flows in a short time �T, so
IDC.�V/�T. In order to bring the potential back down after the 100 ms are up, we
need to discharge the capacitor. This results in another large but brief current pulse,
with the opposite sign (Fig. 7.9).

Now, suppose we put in a potassium channel. From the Hodgkin-Huxley
equations and Fig. 7.9, we see that it will slowly open when the potential is raised,
reach a pleateau, and then slowly close again when the potential goes down again.
The plateau value of the current is determined by the steady-state open fraction of
the channel. This is precisely the parameter n1 from the equations above. The time-
course of this opening is gives �n. This experiment is repeated for different values
of voltage, in order to build up the parameters for the Hodgkin-Huxley model for
the K channel.

The Na channel is more complicated. It has both an m and an h-gate. If we give
the Na channel a voltage step, the current response looks like Fig. 7.9. Allowing for
the fact that the sign of the current is the opposite to that for potassium, the first
part of the curve is very similar. This is because the m-gate for the Na channel has
a roughly similar form to the n-gate for potassium. However, after a small interval,
the h (or inactivation) gate for Na kicks in. This begins to close at higher potentials.
Thus the channel as a whole starts to close soon after opening, and is almost entirely
shut (except for a small residual current) within 5 ms.
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Here we have started from the known Hodgkin-Huxley equations and worked
backwards to see what the experiments might look like. Hodgkin and Huxley,
of course, worked forwards. They had many other experimental difficulties. For
example, how did they ensure a uniform potential over the entire ‘compartment’?
They used a particularly accessible experimental preparation, the squid giant axon
which has a diameter of half a millimetre. They threaded very fine wires into it to
do the voltage clamp. Some wits of the time suggested that instead of Hodgkin
and Huxley, the squid should have gotten the Nobel Prize for providing such a
convenient experimental system. Another question is how they separated out the
contributions from Na and K. Today we could do this using specific blockers such
as tetrodotoxin, which knocks out Na channels. Or we could express one specific
channel in the oocyte system. Hodgkin and Huxley had no such luxury. Instead they
simply did the experiment in zero sodium, thus isolating the K channel currents.
To find the Na channel currents they redid the experiments in regular solution,
subtracting out the K contributions.

7.4.4 Properties of the Hodgkin-Huxley Model

The most striking property of the Hodgkin-Huxley model is that it fires and
propagates action potentials. We start with the original Hodgkin-Huxley calcula-
tions, which eliminated space. When a depolarizing current pulse is applied to the
compartment, the membrane potential rises. The sodium channels open, because the
m-gate has an increasing opening probability with depolarization. This lets in more
sodium ions, and the potential increases still further. This positive feedback loop is
interrupted in two ways: first, the potassium channels begin to open as well, and
then the inactivation (h-gate) process of the sodium channel starts to take effect. So,
just as the sodium channels are shutting of their own accord, the potassium channels
open wide. Many potassium ions leave the cell, and pull the potential down below
resting levels. The net result of this cycle is that an action potential is generated and
the cell is reset back down to resting potential or lower (Fig. 7.10).

There are many interesting features of the action potential and the Hodgkin-
Huxley model, which are best explored with a simulator such as MOOSE or
NEURON. Here is a list of properties to try to understand. Hint: many of them
are outcomes of the inactivation of the Na channel.

– Why is the first action potential of a series usually the largest?
– Why is there a refractory period? That is, why is it harder to trigger a second

action potential a short while after the first?
– Why is there only one action potential in a certain low current injection range?
– Why is there a little glitch on the upswing of the action potentials?
– What happens as the injection current is increased to very large values?
– How can you generate an action potential using a negative (hyperpolarizing)

current?
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Fig. 7.10 Generation of
action potentials by the
Hodgkin-Huxley model in
response to a current step

Hodgkin and Huxley painstakingly computed an action potential in a single
compartment using a hand-cranked calculator to solve their differential equations.
To model propagation in space, it is necessary to solve equations for lots of
compartments connected up using their axial resistances. This was not an attractive
prospect using manual calculations. Fortunately digital computers came to the
rescue, and in 1966 Cooley and Dodge had done the first calculations of action
potential propagation in a cable. Using our understanding of cable theory and the
Hodgkin-Huxley equations, we can see the underlying mechanisms. Suppose an
action potential is propagating along the cable from left to right. In the middle
there is a region of strong depolarization, where sodium channels are open and
potassium channels are not. Current flows in to this region, and through passive
dendritic propagation it spreads to either side, leading to depolarization. At the
leading edge, this triggers the same sequence of channel openings as we discussed
for single-compartment action potentials. At the trailing edge, however, the passive
current runs into the ‘tail’ where a spike has just been. Here the sodium channels
are inactivated, and the potassium channel is still open and pulling the potential
more negative. This confers direction to the action potential: it can only go forward.
Note that ‘forward’ depends on the history of the axon, and it is quite possible
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Fig. 7.11 Action potential propagation. The opening and closing of ion channels is indicated
above, and the travelling wave of depolarization is shown below

to experimentally trigger action potentials that go from the end of the axon back to
the soma. With suitable experimental (or model) manipulations it is also possible to
start an action potential in the middle of the cable, or to have two action potentials
approach each other on the same axon on a collision course. These are entertaining
cases to figure out and simulate (Fig. 7.11).

From a physiological viewpoint, there are two related features of action potential
propagation that are particularly interesting: speed and failure. The importance of
propagation speed is apparent in any natural habitat: the faster-responding animal is
more likely to survive. The simple and expensive way to speed up action potential
propagation is to increase the axon diameter and the density of ion channels. While
the detailed calculations are complex, cable theory tells us the general principle:
with a larger diameter, current spreads further and faster. From empirical and
theoretical studies, the following relationship seems to apply for non-myelinated
fibers (Hursh 1939),

velocity ˛
p

diameter (7.20a)

This is why the squid so helpfully provided a giant axon for Hodgkin and Huxley
to work with. The giant axon is used in the squid escape response, and the only way
to speed it up using invertebrate technology was to make it bigger.

Vertebrates came up with a much better solution, which was to insulate the cable.
This is done through myelination, in which an oligodendrocyte wraps an axon in
layer after layer of insulating membrane. There are two good outcomes of this. First,
the insulation (higher Rm) means that very little current leaks out of the membrane.
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Second, the many layers of insulation reduce effective membrane capacitance (Cm)
by increasing the distance between intracellular and extracellular potentials. Both
of these mean that passive propagation is faster and longer-range. Myelinated fibres
also conduct faster for a larger diameter (Rushton 1951).

velocity ˛ diameter (7.20b)

The active propagation of the action potential is now handled entirely at the nodes
of Ranvier, which are the junctions between myelinated segments. Nodes of Ranvier
act like booster stations along the axon, and they have very high Na and K channel
densities to play this role. They are spaced 25 – 250 �m apart, and action potentials
basically jump from one node to the next. This is called ‘saltatory conduction’. The
downside of this arrangement is that it is possible for propagation to fail if the nodes
are too far apart, or equivalently, if there is too much electrical shunting of current
between nodes. This is especially likely at branch points. In pathological cases it
may also happen if the myelin degenerates. Experiments show that in normal cells
the safety factor is quite large: the actual propagated potential is typically twice as
high as needed to trigger the action potential at the next node of Ranvier.

7.4.5 Modeling Many Channel Types

While Hodgkin and Huxley centred their analysis around the squid ion channels,
their formulation turns out to be general enough to work for many channel types.
The key parameters needed to specify a Hodgkin-Huxley-type channel model are
the channel conductance, number of gates, the power to use for each gate, and the
voltage dependent terms (’ and “, or equivalently � and m1) for each gate. Typical
curve-fits for the ’ and “ terms for each gate involve five parameters each. This
comes to 13 parameters for a typical channel. This is a lot of parameters. Most
neurons express a few to dozens of varieties of ion channels, and one of the key
jobs of in experiments and models is to decide which of these contribute most to the
properties of the cell.

An experienced physiologist can just look at an intracellular recording and
recognize a half-dozen subtypes of ion channel. In general, most of the variety
comes from subtypes of potassium channels. In this figure we see some of the
signatures of different ion channels (Fig. 7.12).

It is somewhat challenging to find parameters for ion channels, and there is no
real substitute for the same painstaking kind of analysis that Hodgkin and Huxley
did. The standard experimental sequence these days is:

– Identify channel, through whole-cell clamp data or blockers
– Obtain gene (RT-PCR or fly genetics)
– Express in frog oocytes
– Electrically characterize, using more or less the Hodgkin-Huxley protocol
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Fig. 7.12 Complex action potentials in a model with multiple ion channel types and calcium
dynamics. Model based on Traub et al. 1991. Left: Membrane potential at soma. Right: Calcium
buildup during burst of action potentials

– Determine calcium dependence
– Determine channel distribution in the cell.

Few labs currently go through this process systematically. There is now a slow
accumulation of channel models in the databases, but many of these can trace their
lineage to just a few original studies. One key point to note is that there is nothing
sacred about the equations that Hodgkin and Huxley used to fit the alpha and beta
terms. Simpler forms may do well, and most simulators are also quite happy to use
the original data tables without any fitting at all.

7.4.6 Calcium Modeling

Calcium is a special case when it comes to modeling. The opening of many ion
channels, especially potassium channels, depends on calcium as well as on voltage.
The simplest approach is to define opening as a function of calcium, but this is not
a good description in many cases. A fairly general approach which seems to work
well in many cases is to treat calcium concentration itself as controlling the opening
of a gate, using a similar form as for the voltage dependence of gating. This can get
complicated, when for example the same gate depends on both voltage and calcium.
In other words, the ’ and “ terms are functions of both Vm and [Ca]. For this to
work, we need to compute intracellular calcium as well as potential.

Unlike other major cellular ions, calcium is subject to very large concentration
fluctuations. Resting levels of free calcium are around 100 nM, whereas stimulated
calcium levels frequently exceed 1 �M . (Sabatini et al. 2002; Berridge 2006). Mod-
eling calcium can become extraordinarily complicated, especially if we consider
intracellular stores and the many signalling pathways involved in calcium dynamics.
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However, there is a relatively simple biophysical approximation that is used in a
very large fraction of compartmental neuronal models. Such models have a single
calcium pool in each compartment, which sums ion fluxes from all the channels
that are permeable to calcium. These models typically assume a standard resting
concentration and a single extrusion (pump) process giving rise to exponential decay
of calcium concentrations.

dŒC a2C�

dt
D k:

X
Ca2C

currents �
�
ŒC a2C� � ŒCa2C

basal�
�

=� (7.21)

Here k incorporates the Faraday constant and dendritic volume, and � is the time-
course of the pump.

Given the large concentration changes in intracellular levels of free calcium, it
is important to model how ion fluxes change as the calcium gradients change. At
the very least, this involves the use of the Nernst potential equation for the reversal
potential for calcium-selective channels. Most voltage-gated calcium channels are
quite calcium selective. However, ligand-gated channels frequently are permeable to
several cations including calcium, and here we have to employ the GHK equations.

Many models demand more accurate estimation of calcium levels. For example,
it is well known that there are steep gradients of calcium concentration in the cell,
also known as microdomains (Berridge 2006). One way to handle this is to use an
‘onion-shell’ model for calcium levels. Each shell has a uniform concentration, and
in addition to the fluxes from channels and pumps, also diffuses to the next inner
and outer shells (Yamada et al. 1989). More complex spatial schemes are often
necessary. In other chapters we discuss just how involved calcium signalling can
become when spatial and biochemical details are added in. Few current neuronal
models go beyond the shell model.

7.4.7 Beyond Hodgkin-Huxley

The Hodgkin-Huxley model has been extraordinarily successful as the basis for
neuronal modeling, and to this day it is the standard representation in almost
all modeling studies. The formulation is general enough to incorporate calcium
dependencies, as we have seen above. The Hodgkin-Huxley description includes
enough biological realism that single-channel stochastic responses can be modeled
with it. This is done by considering the state transitions of individual ‘gates’ in the
channel as if they were reactions, and using one of the standard stochastic methods
(such as the Gillespie method (Gillespie, 1977) discussed elsewhere in this book) to
compute trajectories of channel transitions.

Despite this remarkable endurance, the Hodgkin-Huxley model has a rather
limited view of state transitions in a channel protein. It is now possible to resolve
more detailed transitions using modern single-channel recording methods. From
the viewpoint of modeling, the question is whether these additional details bring
qualitative improvements in model fidelity.
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Fig. 7.13 Synaptic transmission. Left: Sequence of events during synaptic transmission. Right:
alpha-function form for channel conduction following spike arrival

7.4.8 Summary of Hodgkin-Huxley Channels

Most voltage-gated ion channels, including calcium-dependent channels, are rather
well described using the Hodgkin-Huxley formalism. In this, the channel consists
of a number of gating entities (which have a loose correspondence to channel
subunits), each of which switches between closed and open states in a voltage-
dependent and sometimes calcium-dependent manner. The channel conducts when
all gates are open.

7.5 Synaptic Channels

Synapses are enormously complex entities from a cell-biological viewpoint. They
convert voltage signals (action potentials) into chemical signals (neurotransmitter
release) and back again into electrical signals. They store information, and arguably
are the major cellular basis for memory. Several of the chapters in this book analyze
their signalling, their role in memory, and details of neurotransmission.

The biology underlying all this is packed into a �1 �m structure including a
presynaptic bouton, a very narrow gap between cells, and a postsynaptic site that
in many cells sits on a mushroom-shaped bulge called a synaptic spine (Fig. 7.13).
The presynaptic bouton contains elaborate machinery to put neurotransmitters into
pools of tiny (�40 nm) vesicles. When an action potential reaches the presynaptic
bouton, the resulting depolarization causes L-type calcium channels to open. The
resulting calcium influx triggers the fusion of synaptic vesicles with the membrane,
thus releasing neurotransmitter. This diffuses across the �20 nm synaptic cleft.
On the postsynaptic side, the neurotransmitter molecules bind to receptor channels
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and non-channel (metabotropic) receptors. The opening of the receptor channels
leads to postsynaptic electrical effects, which is where the cell biology rejoins the
electrical description of neuronal function. It is remarkable and very convenient
for neuronal and network modeling, that much of this collapses into a very simple
alpha-function description of their dynamics.

7.5.1 The Alpha Function and Its Derivatives

From a purely electrical viewpoint, a synapse is just a conductance which rises and
falls in a stereotypical manner following synaptic input (Fig. 7.13). The shape of a
typical single synaptic current is very well represented by an alpha function of the
form

g.t/ D gmax:
t

tp
: exp

�
1 � t

tp

	
(7.22)

where t is the time since last spike, and tp is the time-to-peak of the synaptic current.
One can make this a little more general, and have different rise and fall times

with a closing time parameter t2 and a normalization factor A:

g.t/ D Agmax

�1 � �2

.exp.�t=�1/ � exp.�t=�2// (7.23)

This is the dual alpha function. Most neuronal models stop here. The synaptic
conductance term fits nicely into the existing representation of an electrical com-
partment, and the whole thing is numerically solved along with the conductance
contributions of the Hodgkin-Huxley channels.

Using the alpha function as a core, there are a number of straightforward but
important extensions that provide more detail to synaptic models.

– Stochastic synaptic release. The process of neurotransmitter release, as described
above, is immensely complex, and in the end it typically comes down the fusion
of an individual vesicle. This is stochastic. To make life interesting, it is also
strongly history dependent. There are at least two processes acting, in opposite
directions, to change the probability of release. One is the accumulation of
calcium, which raises release probability. The other is the depletion of available
vesicles, which reduces it. Each of these features is simple enough to model on
its own, but few models take them all into account.

– Plasticity. The total synaptic weight is the effect one cell has on another through
a synapse. This is the product of at least three terms: the number of receptor
channels (n), the release probability (p), and the quantal size (q) (Stevens 1993;
Lisman et al. 2007). The quantal size is itself a product of individual receptor
channel conductances with the amount of neurotransmitter in each synaptic
vesicle. Even leaving aside many known elaborations, there is plenty of scope
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for model complexity in representing these three terms. Other chapters in this
volume look at different models for plasticity. The most common forms ignore
stochastic release, and modulate only the maximal conductance parameter gmax,
of the synaptic alpha function.

– Voltage dependence. In addition to the presence of ligand, the opening of some
synaptic receptor channels depends on membrane potential. This dual depen-
dence results in the crucial property of associativity, in which activity in both the
presynaptic and postsynaptic cell is required for synaptic plasticity. An important
example is the NMDA subtype of glutamate receptors. The NMDA receptor is
plugged by a Magnesium ion at low membrane potentials. Thus it opens only
when the postsynaptic cell is depolarized and when there is ligand present. Since
the NMDA receptor permits calcium entry into the postsynaptic cell, this acts as a
key associative trigger for many aspects of synaptic plasticity. From a modeling
viewpoint, the addition of the voltage dependence is a straightforward product
term onto the channel conductance. However the NMDA receptor is permeable
to several cations, so the GHK equations need to be added into the mix, resulting
in a moderately complex channel model.

Like the venerable Hodgkin-Huxley model, the alpha function form arises from
a particularly simple view of channel biophysics, in which we have a transition
between open and closed states of a large enough population of individual channel
proteins that a deterministic assumption is good. Like the Hodgkin-Huxley model,
we now have the experimental resolution to construct multi-state models of many
important synaptic channels.

7.5.2 Summary of Synaptic Channels

Synaptic events are rather well described by a simple alpha-function time-course
of conductance on the postsynaptic receptor, following the arrival of an action
potential. Many important physiological details, such as stochastic transmitter
release, plasticity, and voltage dependence, can be added to this alpha function to
give a more complete model of synaptic properties.

7.6 Practicalities of Modeling Neurons

In this chapter we have seen a number of equations: the cable equation, the Hodgkin-
Huxley equations, the Nernst and Goldman-Hodkgin-Katz equations, equations
for calcium dynamics, and finally the synaptic alpha function. How are these put
together to numerically simulate neuronal dynamics?
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7.6.1 Passive Model

The first step in doing a neuronal simulation is to solve the cable equation. This
is a partial differential equation, as it depends both on space and time. It turns
out that the approach used to simulate it is the same as that used to derive the
equation in the first place: we subdivide the cell into small compartments, which
we represent as electrical circuit elements. Recall that the derivation required us to
take the limit as compartmental size approached zero. The fundamental requirement
here is that all properties within a compartment should be uniform. It turns out that
for passive models of a uniform cable one can get away with compartments up to
about 0.2 length constants. However, if the cell is highly non-uniform with changes
in diameter and dendritic spines, then the compartmental sizes should be dictated
by the geometry. As in all modeling, the optimal compartment size is a matter of
judgement, and depends on what information you want to find from your model.

Having chopped up the cell, we now have a branching circuit of little compart-
ments coupled by their axial resistances. Sometimes there are branches. If we write
down the current balance equations, we end up with a system of equations that is
best expressed as a matrix. This system of equations has the unpleasant property of
stiffness. This is because neurons have a wide range of time-scales for the electrical
potential to settle. A small spine connected to a large dendrite will settle very
quickly, but the charging time of the soma is orders of magnitude slower. Such
systems need to be solved using a class of techniques called ‘implicit’ methods
(defined elsewhere in the book). Fortunately, several people, notably Hines (1984)
recognized that the branching structure of neurons allows the calculations to be done
in order (N) time, where N is the number of compartments. Such algorithms are now
the basis for almost all neuronal modeling programs.

7.6.2 Ion Channels

The next step in carrying out neuronal simulations is to solve for the channels,
starting with the Hodgkin-Huxley terms. These are nasty nonlinear equations, but
fortunately their coupling to the cable equation is through conductance terms, which
are linear. This means that the gating variables of the channels are solved almost
independently of the cable equation part, interacting only to take the voltage term
from the cable equation. This gives us the values of the gating variables m, h, n
and so on. Using these state variables we can compute the channel conductance
using the three parts of Eq. 7.17. This term, with the channel reversal potential, now
contributes back into the cable equation calculations for each compartment.

The channel calculations get a little more tedious, but not numerically difficult,
if we have to add in elaborations for Nernst potential, calcium buildup, and other
variations we have discussed above. Nernst potential calculations (Eq. 7.14) only
need to be done if the ion concentration is likely to vary at run-time. This is
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usually only the case for calcium. Here too, we have to numerically integrate the
concentration term, taking into account contributions from each of the ion channels,
pumps and buffers, as in Eq. 7.21.

If some of the channels contributing to the calcium pool conduct multiple ions, it
becomes necessary to evaluate calcium ion flux using the Goldman-Hodgkin-Katz
equations (Eqs. 7.15 and 7.16).

Handling synapses is the next step. As far as the axon goes, this is trivially
handled by taking the spiking threshold of the neuron and converting it into a
digital event. The digital ‘spike’ event is specified by its time, and propagation
delay to each of the target synapses. Once it reaches the target synapse, the
system has to manage all incoming action potentials in a queue so that they are
handled at the target synapse with the correct delay. Once the spike arrives at the
synapse, there are several variations on the computations depending on the level
of detail of the synaptic model. The simplest case is to always trigger an alpha-
function for conductance change, of a fixed amplitude. As with the Hodgkin-Huxley
channels, the coupling to the compartments is only through this conductance, so
the calculations for synapses can be handled almost independently of each other
and of the matrix solution for the cell as a whole. Elaborations to this, as discussed
above, include probabilistic synaptic release, facilitation and depression, and various
forms of synaptic plasticity which may in turn depend on calcium and other cellular
context. Some of these elaborations are discussed in other chapters in this book.

7.6.3 Computational Costs

Modern (circa 2010) computers can solve a reasonably detailed 100-compartmental
model in real time, on a single CPU core. Due to the linearity of the cable
calculations, bigger models go proportionately slower. Various simulators have op-
timizations for parallel operation, or numerical integration using variable timesteps,
which may improve on this somewhat. Although real-time may seem pretty good
for any biological system, speed is important in a several ways. Network models
may involve thousands of neurons. Parameter refinement for models may use huge
numbers of runs (Van Geit et al. 2007). Additionally, real time itself is pretty slow for
some of the most interesting neuronal phenomena which one would like to model,
such as synaptic plasticity. These experiments take may take hours, so it would be
nice to run these a lot faster than real time.

There are some surprises when it comes around to actually implementing
neuronal compartmental calculations. It turns out that the cable equation cal-
culations are actually the fastest to perform. In typical neuronal models, each
compartment has half a dozen or so Hodgkin-Huxley-channels, and updating their
state variables takes much longer than the cable calculations. Another surprise is
that in large network models, managing the synaptic queues may take longest of
all: the bookkeeping costs more than all the real numerical work put together.
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This is because each neuron receives �10,000 synaptic inputs, which are typically
condensed onto a much smaller number of modeled synapses and compartments to
make the network model manageable. Thus each synapse may have many incoming
action potentials to sort in order of time of arrival. Plasticity rules make these
calculations worse still. With such simulations one begins to appreciate that just
like in the brain, the really heavy computation happens in the synapses.

Real simulations will, of course, emphasize one aspect or another of this overall
picture. Typical detailed neuronal models have several hundred compartments and
a dozen or more different channel types scattered over them. Network models
typically use much simpler neuronal models, down to ten or fewer compartments.
Many network models just employ integrate-and-fire models, which are essentially
a single compartment with a reset mechanism to replace the Hodgkin-Huxley
channels. Izhikevich has done an exhaustive survey of different neuronal firing
patterns and the simplest way to model them (Izhikevich 2003). At the other
extreme, there are now several models which look in exhaustive detail at one or
a few synapses on a dendrite. These models include not only detailed electrical
events, but also consider biochemical signalling and even molecular traffic as part
of their purview.

7.6.4 Tools for Neuronal Modeling

There are a number of simulators that can handle all or some of the equation
types discussed in this chapter. The most prominent of these are NEURON
(Carnevale and Hines 2006) and GENESIS (Bower and Beeman 1995), both of
which are now about 20 years old. NEURON is still actively developed primarily
by Michael Hines. GENESIS in its original form is no longer being developed,
but GENESIS 3 (Cornelis et al. 2012) and MOOSE (Ray and Bhalla 2008) are
complete reimplementations that have varying degrees of backwards compatibility
and many advanced forward capabilities. There are other simulators that focus on
single neurons, good interfaces (Gleeson et al. 2007), or large networks (Eppler et al.
2008).

Databases and standards for neuronal modeling have been relatively slow to
develop. The most established neuronal model database is ModelDB (Migliore
et al. 2003; URL: http://senselab.med.yale.edu/senselab/modeldb). This is primarily
a model repository in the original simulator formats, and models from NEURON are
well represented.

Model exchange formats for neuronal models are nascent. The NeuroML project
is the oldest of these, and is undergoing considerable revision at the time of writing
(Crook et al. 2007). NeuroML started life as a common format that could be
translated into either NEURON or GENESIS code, which is a subset of the role
of a modeling standard. NeuroML models can be set up using the NeuroConstruct
software tool (Gleeson et al. 2008). This situation is evolving, and both Neuron

http://senselab.med.yale.edu/senselab/modeldb
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and MOOSE are now able to natively read at least some part of NeuroML.
The International Neuroinformatics Coordinating Facility (INCF, www.incf.org) is
pushing for such standards development.

7.6.5 The Practice of Neuronal Modeling

It has been 60 years since Hodgkin and Huxley made the first biophysically detailed
neuronal model. Many decades have passed since Wilfrid Rall put together most
of the rest of the analytical toolkit. Even the modeling tools themselves have had
over 20 years to mature. Experimentalists have been churning out studies to analyze
neurons and ion channels all this time. Where are the models?

The reason that even databases such as ModelDB have relatively few models is
that it is hard to parameterize models. The outline of the process is straightforward
enough: match geometry and passive properties, identify channels, parameterize
them, and fine-tune. Like other modeling disciplines represented in this book,
numbers are the problem. As a result, most existing neuronal models are an
interesting chimera of faithful neuronal morphology, adequate passive properties,
and ion channels adopted and mutated from assorted past models.

The passive model is relatively easy to fit. As discussed in the cable theory
section, one starts with the neuronal geometry and decides how much detail is
needed in the final model. Sub-threshold current clamp recordings provide sufficient
information to work out most of the passive properties. The key requirement for
the current-clamp data is that the current injection curves should involve small
enough currents that the voltage-gated channels do not contribute. If we assume
that passive properties are uniform over the whole cell, only four numbers need
to be extracted from the recordings: Vm, Rm, Cm, and Ra. As discussed above,
Vm is directly measured, and Rm and Cm can be estimated from the cell charging
curves. The electrotonic length L, also available from these measures, can be used
to estimate Ra if the cellular geometry is known. This estimate of Ra depends on
how much detail you put into your cellular geometry. Assuming a cell model with
complete morphology, it is relatively easy to do curve-fitting (manual or automated)
to estimate Ra and to refine estimates for Rm and Cm.

Obtaining channel data is far more difficult. The process of experimentally char-
acterizing a neuronal channel is outlined in the section on voltage-gated channels.
Few groups have attempted to do the entire experiment-to-model building process
on their own. Many published models use Hodgkin-Huxley channel parameters
obtained in separate experiments (often from different species), and try to fit them
to limited current- or voltage-clamp data by tweaking channel densities and other
parameters. This process has been impeded further by the lack of standards for
defining channel models. It is also clear that ion channels are distributed in a very
non-uniform way over the surface of neurons. Many details of cellular responses
depend on this distribution, which again is difficult to measure.

www.incf.org
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Synaptic channel data are not much better in terms of precision. However, the
number of parameters involved is much smaller and there are fewer channel types.
For example, the time courses for the alpha function are readily obtained from EPSC
recordings. The big unknown in synaptic parameters is the weight of individual
synapses. This is crucial for network properties, but is generally known only as a
population mean and variance. Further synaptic data such as release probability are
rarely modeled, and again, these are usually only known in statistical terms.

The final stage in developing a model is to fine-tune it so that the spiking output
of the cell as a whole looks like experiment. This typically involves parameter
sensitivity analysis and parameter optimization. Due to the highly nonlinear spiking
responses of neurons, it is non-trivial to come up with a measure of ‘goodness
of fit’ for models to experimental data. Nevertheless, this has been done in some
cases (Van Geit et al. 2007). These tuning calculations typically require many
hundreds of individual simulation runs. It is a good idea to try to fit cells using
as many conditions as are experimentally available: often a cell optimised to match
just one readout is very unphysiological on others. Typical experimental readouts
include voltage traces for different current levels, time to first spike, responses in
the presence of specific ion channel blockers, and voltage clamp recordings.

7.6.6 Summary of Practicalities

There are now well-established and efficient methods and simulators to handle the
numerical aspects of neuronal modeling. Experimental data and actual models are
not so easily forthcoming, although the process of going from experiment to model
is well understood. The situation for model exchange is still at a very early stage,
as modeling standards are only just taking shape and the database formats are
consequently limited to single-simulator implementations.

7.7 Conclusion

Multicompartment neuronal models occupy an interesting position between dif-
ferent scales of brain function. They are sophisticated and highly refined models
in their own right, with a long and distinguished history, excellent theoretical
foundation, and good modeling tools. From a computational viewpoint, they do
have interesting properties of their own, but they tend to be regarded as building
blocks for larger neuronal networks.

A strikingly different view from recent years sees neurons themselves as
enormous ecosystems of interacting networks, in this case molecular ones. There
are many interesting cell-biology questions being tackled at the molecular level,
including homeostasis, development, and structural elaboration. The topic that has
attracted by far the most interest is that of synaptic plasticity: how are synaptic
weights set, maintained, and altered?
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The common thing about each of these viewpoints is that it is essential to have the
detailed biophysical insights embodied in multicompartment models. One cannot
understand real neural networks if the neurons in it do not behave properly. Nor
can one accurately model subcellular processes in neurons without knowing about
neurotransmitter input and calcium entry, and how in turn molecular events alter
cellular excitability. Biophysically detailed neuronal models are the starting point to
go up or down scales in exploring brain function.
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Chapter 8
Noise in Neurons and Other Constraints

A. Aldo Faisal

Abstract How do the properties of signalling molecules constrain the structure
and function biological networks such as those of our brain? Here we focus on the
action potential, the fundamental electrical signal of the brain, because malfunction
of the action potential causes many neurological conditions. The action potential
is mediated by the concerted action of voltagegated ion channels and relating
the properties of these signalling molecules to the properties of neurons at the
systems level is essential for biomedical brain research, as minor variations in
properties of a neurons individual component, can have large, pathological effects
on the physiology of the whole nervous system and the behaviour it generates.
This approach is very complex and requires us to discuss computational methods
that can span across many levels of biological organization, from single signalling
proteins to the organization of the entire nervous system, and encompassing time
scales from milliseconds to hours. Within this methodical framework, we will focus
on how the properties of voltagegated ion channels relate to the functional and
structural requirements of axonal signalling and the engineering design principles
of neurons and their axons (nerve fibres). This is important, not only because axons
are the essential wires that allow information transmission between neurons, but
also because they play a crucial in neural computation itself.

Many properties at the molecular level of the nervous system display noise
and variability, which in turn makes it difficult to understand neuronal design and
behaviour at the systems level without incorporating the sources of this probabilistic
behaviour. To this end we have developed computational methods, which will enable
us to conduct stochastic simulations of neurons that account for the probabilistic
behaviour of ion channels. This allows us to explore the relationship between
individual ion channel properties, derived from high-resolution patch clamp data,
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and the properties of axons. The computational techniques we introduce here will
allow us to tackle problems that are (1) beyond the reach of experimental methods,
because we can disambiguate the effects of variability and reliability of individual
molecular components to whole cell behaviour, and (2) allow us to consider the
many finer fibers in the central and peripheral system, which are experimentally
difficulty to access and record from. We start with the well-established data that
Ion channels behave with an element of randomness resulting in “channel noise”.
The impact of channel noise in determining axonal structure and function became
apparent only very recently, because in the past findings were extrapolated from
very large unmyelinated axons (squid giant axon), where channel noise had little
impact due to the law of large numbers. However, the many axons in the central
and peripheral nervous system are over 1,000 times thinner and the small number
of ion channels involved in sustaining the action potential, imply that channel noise
can affect signalling and constraint both the reliability of neural circuit function, but
also sets limits to the anatomy of the brain as a whole.

8.1 A Systems Biology View of Neurons: Variability
and Noise

Our brain processes information using electrical impulses, the action potentials,
which are mediated by “protein transistors”, so called voltage-gated ion channels.
We understand exquisitley the mechanisms and molecular and cellular components
involved in the action potential: such as the ion current basis of the action potential
(Nobel prize for Hodgkin and Huxley in 1963), how action potentials are translated
at the synapse (Nobel prize for Katz in 1963), how ion channels are the fundamental
elements gating these currents, acting effectively like “protein transistors” (Nobel
prize for Sakmann and Neher in 1991) and how the protein structure of ion channels
allows for voltage-dependent conduction (Nobel prize for McKinnon in 2003).
Yet, it remains still unclear how these characteristics determine the brain’s design
principles at the systems level. For example, our brain requires just 16 W of power –
much less than any computer of equivalent computational power would need (and
in fact less then current portable computers). This is, taking an engineering, view
surprising. Brains use low quality components for electrical signals: fat as electrical
insulator, protein transistors and salty water as conducting core.1 How well can the
brain process information being made up from such poor electrical components? In
the following we will explore the fundamental implications of this question.

When Adrian began to record from neurons in the 1920s, he observed that
neural responses were highly variable across identical stimulation trials and only
the average response could be related to the stimulus (Adrian 1927, 1928). Biology
viewed this variable nature of neuronal signalling as “variability”, engineers called

1On the other side brains and organisms build themselves from themselves.
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it “noise”. The two terms are closely related, but as we shall see imply two very
different approaches to think about the brain – one operating at the systems level,
the other operating at the molecular level: On the one side the healthy brain
functions efficiently and reliably, as we routinely experience ourselves.2 Variability
is a reflection of the complexity of the nervous sytem.

On the other side engineers viewed neurons as unreliable elements, subject
to metabolic and other variations, but more importantly, perturbed by random
disturbances of a more fundamental origin (von Neumann 1951, 1956). Taking
this view the brain processes information in the presence of considerable random
variability. Thus, individual neurons in the nervous system are highly variable
because they are quite unreliable (“noisy”), and this poses a severe constraint
on a neurons information processing power. Taking a molecular view of the
nervous sytem, this is actually not suprising: we know that at the biochemical and
biophysical level there are many stochastic processes operating in neurons: protein
production and degradation, opening and closing of ion channels (i.e. confirmation
changes of proteins), fusing of synaptic vesicles and diffusion and binding of
signalling molecules.

In the classic of neurobiology it is implicitly assumed that averaging large
numbers of such small stochastic elements effectively wipes out the randomness
of individual elements at the level of neurons and neural circuits. This assumption,
however requires careful consideration for two reasons:

1. First, neurons perform highly non-linear operations involving high gain amplifi-
cation and positive feedback. Therefore, small biochemical and electrochemical
fluctuations of a random nature can significantly change whole cell responses.

2. Second, many neuronal structures are very small. This implies that they are
sensitive to (and require only) a relatively small number of discrete signalling
molecules to affect the whole. These molecules, such as voltage-gated ion chan-
nels or neurotransmitters, are invariably subject to thermodynamic fluctuations
and hence their behaviour will have a stochastic component which may affect
whole cell behaviour.

This suggests that unpredictable random variability – noise – produced by
thermodynamic mechanisms (e.g. diffusion of signalling molecules) or quantum
mechanisms (e.g. photon absorption in vision) at the molecular level can have deep
and lasting influence on variability present at the system level. In fact, as we shall
we our deterministic experience of our own nervous system implies that the design
principles of the brain must mitigate or even exploit the constraints set by noise and
other constraints such as energetic demands.

It is worth considering what the implication of noise are for information
processing: noise cannot be removed from a signal once it has been added to it.

2but, consider the following reflections of our nervous system’s variability: the little random
motions of a pointed finger, our uncertainty when try to understand a conversation in the presence
of loud background noise, or when we seem not able to see our keys that were in plain view when
we were searching for them.



230 A.A. Faisal

Fig. 8.1 How does network topology affect noise? (a) Convergence of signals onto a single
neuron. (b) Serial propagation of a noisy signal through successive neurons. (c) Recurrent
connections (“loops”) in networks (Figure reproduced from Faisal et al. (2008))

Since signals can easily be lost, and noise easily added, this sets a one-sided limit
on how well information can be represented – as measured by the signal-to-noise
ratio. In many situations noise can be thought of as additive effect on a signal.
It is reasonable to assume that a major feature of neurons is the summation-like
integration of incoming signals, and so we can illustrate noise in three basic neural
network topologies, using toy neurons that simply sum their synaptic inputs.

Figure 8.1a shows convergence of signals onto a single neuron. If the incoming
pre-synpatic signals have independent noise then noise levels in the postsynaptic
neuron will scale in proportion to the square root of the number of input signals (N),
whereas the signal scales in proportion to N. Meaning that the more independent
signals are integrated the more the integrated signal will stand out over the integrated
noise (proportional to the square root of N). However, this signal-boosting effect
underlies diminishing returns (especially if the cost scales proportionally to the
number of inputs). If the noise in the signals is perfectly correlated, then the noise
in the neuron will also scale in proportion to N. Also, consider that the integrating
neuron itself will add it’s own internal noise to the integrated signal. The only
way to raise this signal-to-noise ratio, is by adding further relevant information.
This usually implies information from the same source, but with noise that is
independent (in some way) of the original message, e.g. by using another sensory
neuron with overlapping receptive fields or using a second axon that carries the same
information. However, decreasing the effects of noise by increasing the amount of
redundant information comes at two costs: a fixed cost that results from maintaining
redundant neurones, fibers, sensors and a dynamic cost, that results from signalling
with these systems. Given the hight energetic efficiency of our brain and the low
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reliability of its individual molecular components, in contrast to the low energetic
efficiency of computer chips and the very high reliability of their digital electronic
components electronic circuits, mitigating the consequences of noise must have had
a fundamental impact on the evolution and design of nervous systems: from the first
“biochemical nervous system” in bacterial chemotaxis (where nutrient levels in the
surrounding were used to control the degree of random swimming motion) to the
mammalian cortex.

Figure 8.1b shows the passage of a noisy signal through successive neurons, and
noise levels are incremented at each stage as internal noise is added to the signal.
Note that parallel connections (not shown) do not augment noise through network
interactions. In fact, it was suggested that the highly parallel and distributed yet
compact structure of the CNS might help to limit the amount of noise that builds up
from serial connections (Faisal et al. 2008).

Finally, Fig. 8.1c shows that recurrence (“loops”) in neural circuits, can, if
unchecked results in the build-up of correlated noise. Moreover, the whole nervous
system operates in a continuous closed loop with the environment: from perception
to action and back (see Fig. 8.2). Given this highly recurrent structure at all levels
of biological organisation it is therefore important that noise is kept “private” to
a neuron (De Weese and Zador 2004). Note, that the traditional view is that the
all-or-nothing response of the action potential effectively thresholds out random
fluctuations and provides an effective all-or- none response signal which is therefore
thought to be noise free.

How can we know what constitutes noise when recording signals from the
brain? For instance, neuronal membrane potential shows small variations even at
rest, even if synaptic inputs are pharmacologically blocked. Synpatic or electrode
inputs near action potential threshold, a neuron may or may not fire an action
potentials, because of the all-or-nothing nature of the action potential (Skaugen
and Wallœ 1979). It seems that some neurons can react in a very reliable and
reproducible manner to fluctuating currents that are injected via intracellular
electrodes. As long as the same time-course of the injected current is used the action
potentials occur with precisely the same timing relative to the stimulation (Bryant
and Segundo 1976; Mainen et al. 1995). A similar behaviour has been reported
for neurons of the visual system in flies (de Ruyter van Steveninck et al. 1997)
and monkeys (Bair and Koch 1996). On the other hand, neurons produce irregular
spike trains in the absence of any highly temporally structured stimuli. Irregular
spontaneous activity, i.e., activity that is not related in any obvious way to external
stimulation, and trial-to-trial variations in neuronal responses are often considered
as “noise” (Shadlen and Newsome 1995; Softky and Koch 1993).

The question whether this neuronal trial-to-trial variability is

• Indeed just noise (defined in the following as individually unpredictable, random
events that corrupt signals)

• Results because the brain is to complex to control the conditions across trials
(e.g. the organisms may become increasingly hungry or tired across trials)

• Or rather the reflection of a highly efficient way of coding information
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Fig. 8.2 Noise in the behavioural loop – the nervous system continuously perceives the world and
executes actions (movements) in response to it. Noise is thereby encountered along all stations:
from the conversion of physical stimuli into neuronal responses in sensory processing (a), neuronal
information processing and signal transmission in axons and synapses, and in the motor system (c)
when neuronal signals are converted into muscle forces and movements (Figure reproduced from
Faisal et al. (2008))

cannot easily be answered. In fact, being able to decide whether we are measuring
the neuronal activity that is underlying the logical reasoning and not just meaning-
less noise is a fundamental problem in neuroscience, with striking resemblance to
finding the underlying message in cryptographic code breaking efforts (Rieke et al.
1997).

There are multiple sources contributing to neuronal trial-to-trial variability:
deterministic ones, such as changes of internal states of neurons and networks, as
well as stochastic ones, noise inside and across neurons (White et al. 2000; Faisal
et al. 2008). To what extent each of these sources makes up the total observed
trial-to-trial variability remains unclear. What has become clear is that to solve this
question it is not sufficient to study neuronal behaviour only experimentally (as this
measures only the total variability of the system): It requires taking a system biology
view of neuronal information processing (Faisal et al. 2008). This is because noise
is ultimately due to the thermodynamic and quantum nature of sensory signals,
neuronal and muscular processes operating at the molecular level. Given that the
molecular biology and biophysics of neurones is so well known, it allows us to
use stochastic modelling of these molecular components to control and assess the
impact of each source of (random) variability at the level of neurones, circuits and
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the whole organism. How we can link molecular noise to system level variability,
and what new insights this offers us in understanding the design of the brain, is what
we are going to explore in the remainder of the chapter.

8.2 Stochastic Versus Deterministic Views of Neurons: Small
Means Noisy

Noise as a fundamental constraint to information processing and transmission, and
variability is inherent in our brains and our behaviour. This variability however
cannot captured by computational models that are deterministic in nature, such
as the beautiful Hodgkin–Huxley model of the action potential. To account for
variability we have to make use of stochastic modes.

Classically large neuronal structures, such as the squid giant axon have been key
in understanding and explaining neural mechanisms such as the action potential.
This is because, given their scale, they are experimentally easily accessible and
appear to function deterministically. This is because random variability averages
out quickly as size increases: the standard deviation of variability over the mean
activity of a set of signalling molecules will go as the inverse square root of the
number of involved molecules.

However, neurones and synapses in many pathways are tiny: In comparison
to squid giant axon (0.5 mm diameter) neuronal connections in our cortex can be
over 10,000 times smaller. Cerebellar parallel fibres have 0.2 �m average diameter,
C-fibres involved in sensory and pain transmission range between 0.1 �m and
0.2 �m, while the unmyelinated pyramidal cell axon collaterals which form the
vast majority of local cortico-cortical connections have an average diameter 0.3 �m
(Faisal et al. 2005). Thus, only as few as a hundred ion channels will be involved in
transmitting the action potential per given unit length of axon. This is in contrast to
several millions of the same unit length in squid giant axon.

Similarly, the majority of central nervous system synapses (spiny- or bouton-
type) are below a micrometer in size and biochemical processes and concentrations
occur within volumes smaller than picoliters. For example, in the classic synaptic
preparation of the frog neuromuscular junction several thousand post-synaptic
receptors will be ‘listening’ to incoming neurotransmitters released by hundreds of
vesicles. However, in the much smaller bouton-type synapses found in mammalian
cortex as few as three post-synaptic receptors have to detect the release of a single
vesicle (containing some 1,000–2,000 neurotransmitter molecules), triggered by a
single action potential.

The action potential (AP) is the fundamental signal used for communication
in the brain’s neural networks. Measuring the timing of APs in vivo and in vitro
shows that neuronal activity displays considerable variability both within and
across trials (Shadlen and Newsome 1998; Strong et al. 1998). This variability can
have statistical characteristics that match those of simple random processes such
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as Poisson or Bernoulli processes. However, only because neuronal activity has
some statistics of a random processes it does not necessarily follow that neuronal
activity is generated by a random process itself. In fact, Shannon’s theory of
information (Shannon 1948) suggests that to maximize information transmission
the optimal way to encode (neural) signals will make the stream of signals appear
like a random (Cover and Thomas 1991; Rieke et al. 1997). Thus, to what extent
neuronal variability is part of meaningful processing and meaningless noise remains
a fundamental problem of neuroscience.

We will illustrate this approach now by looking at the initiation and propagation
of the action potential.

8.3 Computational Neuroscience of Stochastic Neurons

A neurons AP is carried by the spread of membrane potential depolarisation along
the membrane and is mediated by voltage-gated ionic conductances (Fig. 8.3a). The
depolarisation of the membrane potential is (re)generated by the non-linear voltage-
gated NaCconductances that open at low levels of membrane depolarisation, which
depolarise the membrane further, thereby recruiting more NaCconductances. Thus,
NaCconductactences act like positive feedback amplifiers. The resting membrane
potential is then restored by the inactivation of the NaCconductance and is assisted
by the (delayed) opening of KCand membrane leak conductances (and the two to
three order of magnitude slower NaC-KC-pumps) that repolarise the membrane,
thus KCchannels and leak conductances provide negative feedback (Koch 1999;
Hille 2001).

The patch-clamp technique showed that these ionic conductances resulted from
populations of discrete and stochastic voltage-gated ion channels (Sakmann and
Neher 1995; Katz 1971) (see Fig. 8.3b). These ion channels are transmembrane
proteins that act as pores which can open and close in response to changes in the
membrane potential (“channel gating”) across the channel, thus acting like protein
transistors. These voltage-gated ion channels operate with an element of randomness
due to thermodynamic effects. This stochastic behaviour produces random electrical
currents, called channel noise (White et al. 2000), which is by one to two orders of
magnitude the most dominant source of intracellular noise in neurons3 (Manwani
and Koch 1999b; Faisal et al. 2005). What are the effects of channel noise on the
action potential?

To answer this question we require first a stochastic model of the action
potential. In most cases such stochastic models cannot be solved analytically,
and require the need for computational approaches, through stochastic or “Monte-

3We ignore here synaptic input as a form of electrical “noise” and note that the common use of
the term “synaptic background noise” denotes the (not necessarily random) variability produced
by massive synaptic input in cortical neurons (Faisal et al. 2008).
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Fig. 8.3 (a) Schematic
model of the action potential
and the mediating NaCand
KCcurrents. Note, that here
the idealized deterministic ion
channel behaviour is drawn,
for small number of ion
channels the more accurate
picture would look like in (b).
(b) Illustration of ion channel
variability in repeated
identical voltage-step trials.
Patch-clamp recording of a
few unitary NaCchannels in
mouse muscle during a
40 mV voltage step. The
ensemble average – averaging
over 352 repeated identical
trials – approaches the
idealized deterministic
description (akin to the
“NaCchannels” curve in (a)
(Figure reproduced from
Faisal (2010) and generated
using the Modigliani
stochastic neuron simulator
(Faisal et al. 2002, 2005))
(freely available from www.
modigliani.co.uk)

Carlo” simulation. At the cellular level our stochastic simulations will use data
on the responses of individual molecules – i.e. the properties of voltage-gated ion
channels – to derive the responses of systems of interacting molecules – i.e. the
response of a neuron.

www.modigliani.co.uk
www.modigliani.co.uk
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8.3.1 Modelling Noisy Neurons

[OPTIONAL SECTION Electrical activity in neurons arises due to the selective
movement of charged ions across the membrane, which we call membrane excitabil-
ity. However, in most cases the amount of ions flowing through ion channels during
episodes of electrical activity are minute compared to the number of ions present
in the respective medium (Hodgkin 1964). In the following we ignore the changes
in ionic concentration due to signalling, thus instead of a microscopic description
of the neuron in terms of ions, a macroscopic description is used: individual ions
and local concentration gradients are ignored, and replaced by a description of the
membrane potential based on electrical circuit elements, including batteries and
ionic currents (which are related to individual ions flows via Faraday’s constant and
the ionic charge). An equivalent electrical circuit description (see Fig. 8.4) is derived
by equating the currents inside and through the membrane compartment according
to Kirchhoff’s current law. This method balances all currents flowing through the
membrane and to other compartments (including branch points). Each transmem-
brane circuit describes an iso-potential patch of membrane and is represented by a
membrane compartment. It is, therefore possible to mimic a neuron’s morphology
using tree-like networks of cylindrical or spherical compartments (Rall 1969a,b; see
also Chap. 7)].

The action potential mechanism and its theory is arguably the most successful
quantitatively modelled system in biology. Reliability and noise in action potential
generation has been studied for almost as long as the ionic basis underlying
membrane excitability (Blair and Erlanger 1933; Pecher 1939). Reliability of action
potential generation in response to a current step input was measured at the Nodes of
Ranvier (Verveen 1962; Derksen and Verveen 1966; Verveen et al. 1967). The prob-
ability of trigeering an AP was fitted by a Gaussian cumulative probability function,
parameterised by the injected current stimulus amplitude. This phenomenological
model captured the feature that the stimulus had to drive the membrane over a
fluctuating threshold to generate an AP. Threshold fluctuations were postulated to
result from an internal noise source of possibly ionic origins and it was concluded
that the threshold’s coefficient of variation (ratio of standard deviation over the
mean) must depend on axon diameter. Later an analytical relationship between
an assumed transmembrane noise source and AP threshold fluctuations (Verveen
1962; Derksen and Verveen 1966; Lecar and Nossal 1971). Transmembranen
noise sources considered both thermal resistance noise produced by the neuronal
membrane’s resistance and noise resulting from discrete, stochastic ion channels
(which at the time were not conclusively experimentally demonstrated). Noise that
could result from ion channels was estimated to have an over 20 times larger effect
on threshold fluctuations than thermal resistance noise (see also Hille 2001).

In stochastic simulation study by Skaugen and Wallœ (1979) well ahead of it’s
time, the impact of discrete, stochastic ion channels on AP initiation in squid-
giant-axon type iso-potential membrane patches. They showed how current inputs
below AP threshold in the deterministic Hodgkin–Huxley model could trigger
APs. This was because channel noise linearised the highly non-linear input-current
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Fig. 8.4 Schematic view of how a compartmental model of an axon with stochastic ion channels.
The left column shows the level of description and the right column the corresponding electrical
and stochastic modelling abstraction. (Top) The axon is modelled as sequence of cylindrical
compartments. (Middle) Each compartments of axon membrane contains two populations of ion
channels. (Bottom) The voltagte-gated ion channel is described by a finite-state Markov random
process. We depict here a Na channel model, which has a single open state, three closed, and four
inactivated states (Figure adapted from Faisal et al. (2005))

versus firing-rate characteristic(when averaged over many trials). In other words,
channel noise could increase and linearize the non-linear signalling range of neurons
(Skaugen and Wallœ 1979). To introduce channel noise they replaced the deter-
ministic linear kinetic equations representing the voltage-gated ion channels with
stochastic Markov processes over populations of discrete ion channels (Fitzhugh
1965). This important modelling technique is worth understanding better, which
we shall do in the following. As we will see this technique is ideal to model ion
channels and is by now a well-established biophysical technique and confirmed by
direct recordings of single ion channel behaviour (Sakmann and Neher 1995).

8.3.2 From Hodgkin–Huxley Conductances to Stochastic
Ion Channels

First we have to establish the notation to model the action potential. Hodgkin and
Huxley (1952) showed that the observed ionic currents within an iso-potential patch
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of membrane (or more correctly, a single cylindrical compartment of axon with
iso-potential membrane), could be explained by voltage-dependent ionic membrane
conductances.

To model the dynamics they postulated that the activation of a conductance was
determined by the binding of “gating particles” to the conductance (or in modern
terms the ion channel). An ion channel would only open if all necessary “gating
particles” have bound to it. This approach enabled Hodgkin and Huxley to model the
ratio of open channels using linear chemical kinetic reaction schemes for NaCand
KCconductances by directly fitting their experimental data. While this gating-
particle approach is probabilistic in nature the resulting model of the conductance is
deterministic. Note, that this deterministic behaviour model is strictly speaking not
always equal to the average behaviour of the system, as we shall see later.

Since Sakmann and Neher’s work we now know with certainty that the voltgate-
gated conductances are made up of populations of discrete ion channels. Assuming
a large number of channels within a given area of membrane the probability pi of a
single channel being open corresponds to the ratio of open channels to all channels
of the specific kind in that part of the membrane. In deterministic models the
open channel ratio and the channel open probability are interchangeable, but when
we account for stochastic effects there can be considerable, persistent deviations
between the two quantities (Faisal and Laughlin 2007).

To simplify the notation we will use pi as notation for both the open channel ratio
and the channel open probability and highlight the differences later when necessary.

The ionic conductance per unit membrane area gi is the product of the total
ionic membrane conductance per unit membrane area Ngi and the time and voltage
dependent ratio of open channels pi .

gi .V; t/ D Ngi pi .V; t/ (8.1)

Ngi is the product of the single channel conductance �i and the number of channels
per unit membrane area (channel density) �i – determining these parameters is
important for stochastic simulations, as both the number of channels present and
their individual conductance determine the level of noise

Ngi D �i �i (8.2)

Rewriting Eq. 8.2 into Eq. 8.1 and interpreting pi as channel open probability yields
a molecular level description of the ionic conductance per unit membrane area.

gi .V; t/ D �i �i pi .V; t/ (8.3)

In Hodgkin–Huxley’s original gating particle model the probability that a
channel will be open is given by the probability that all their gating particles are
simultaneously bound. Implicitly, the gating-particle model assumes independence
of the gating particles and the open channel probability pi is therefore the product
of the probabilities of each particle being bound. With qj being the probability that
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a gating particle of type j is bound and l.j / being the multiplicity of particles of
type j that have to bind to support channel opening we can write

pi .V; t/ D
Y

j

qj .V; t/l.j / (8.4)

In the case of the standard squid axon NaCchannel (Hodgkin and Huxley 1952)
we have qj 2 fm; hg and l.m/ D 3 and l.h/ D 1, thus p.V; t/ D m3h. The qj

themselves are governed by linear chemical reactions:

Pqj .V; t/ D ˛j .V /.1 � qj /� ˇj .V /qj (8.5)

The reaction’s kinetic rate functions ˛j .V /,ˇj .V / describe the rate of change of
the probability qj , Eq. 8.5. These rate functions are characteristic to the ion channel
protein (and gene) studied (Hille 2001), such that they can be identified from whole
cell behaviour (e.g. Faisal and Niven 2006; Faisal 2007, but see Prinz et al. 2004b).
These rate functions are either sigmoidal or exponential functions empircially fitted
to voltage-clamp data (e.g. Hodgkin and Huxley 1952) or Boltzmann functions
derived from the ion channel’s voltage sensor behaviour in a constant, uniform
electrical field (Patlak 1991; Hille 2001).

We can define a voltage-dependent ion channel time constant �j characterising
the time in which sudden changes in membrane potential will affect ion channel
gating.

�j .V / D 1

˛j .V /C ˇj .V /
(8.6)

Directly related to the time constant is the voltage dependent steady-state value,
qj

1

, to which the qj will converge for a constant membrane potential V .

qj
1

.V / D ˛j .V /

˛j .V /C ˇj .V /
D ˛j .V /

�j .V /
(8.7)

The qj are probabilities and have to satisfy qj 2 Œ0; 1�. ntegrating.

Modelling each stochastic ion channel. Instead of describing the behaviour of
lumped deterministic ionic conductance, we want to model (probabilistic) behaviour
of individual ion channels.

One way to describe the gating behaviour of individual channels is the use
of Markov processes (Markov 1906, 1971). A Markov process is a probabilistic
system, that assumes that has set of discrete states. In each state there are a number
of possible transitions that can cause a transition from the current state to another
state. These transitions are probabilistic, i.e. have a specific probability of occurring.
Like Hodgkin–Huxley’s model these Markov models use linear chemical kinetic
schemes to determine transition probabilities between discrete channel states, in fact
these are the same transition rate functions as calculated by Hodgkin–Huxley model.
The probability to transit from one state to another within a given time horizon is
the transition rate.
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Conveniently these Markov models can be recovered from gating-particle type
models of conductances (Conti and Wanke 1975; Hille 2001). The deterministic
gating-particle model is reformulated as a specific subclass of Markov model as
described in the following: Every possible combination of bound and unbound
gating particles corresponds to a discrete ion channel state. The deterministic
kinetic functions that describe the binding and unbinding rate of gating particles
are correspondingly used to describe the probability of transition per unit time
between individual ion channel states. Each transition corresponds to the binding
or unbinding of one gating particle. The Markov states and the associated transition
probability rate functions together form a Markovian kinetic gating scheme.

A central assumption of the gating-particle models is that individual gating
particles of the same type are indistinguishable and independent from each other.
Multiple states, therefore, may have the same set of numbers of bound particles for
each particle type. Without loss of generality these multiple, yet indistinguishable
states are lumped together into one Markov state.

To account for lumped states the transition rates are multiplied by a factor k,
which is determined as follows. A transition corresponding to the unbinding of a
gating particle of type j has a factor k that equals the number of particles of type j

bound to the state where the transition originated. A transition corresponding to the
binding of a gating particle of type j has a k that equals the multiplicity l.j / minus
the j particles bound at the target state. This procedure allows one to transform any
deterministic gating-particle model of conductances into a stochastic model of ion
channel gating.

The Markovian kinetic scheme derived for the gating-particle model for
Hudgkin–Huxley’s squid axon m3 h-type gating-particle model of NaCchannels is
shown in Fig. 8.4 (bottom right): For example the transition rate from transition rate
from the third closed state to the open state is ˛m.V /, the inverse transition has rate
3ˇm.V / and the transition probability away from the open state is 3ˇm.V /Cˇh.V /

(towards the two adjacent closed and inactivated states).
Having established how to model the stochastic nature of the action potential we

now return to the question how we can link noise (resulting from ion channels) to
variability in neuronal behaviour.

8.4 Neuronal Signalling Variability from Ion Channel Noise

The discrete and stochastic nature of individual Na ion channels (Sigworth and
Neher 1980) was confirmed by the patch-clamp technique (Sakmann and Neher
1995). Experiments revealed that NaCchannel fluctuations could be large enough in
size to account for the observed threshold fluctuations in Nodes of Ranvier (several
�m diameter, NaCchannel densities >1;000 �m�2) (Sigworth 1980).

Moreover neuron simulations, in which stochastic models of NaCchannels were
the only source of variability, showed that the NaCchannel noise alone produced
AP threshold fluctuations which compared well with respect to experimental
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data (Clay and DeFelice 1983; Rubinstein 1995). Variability in the experimental
context could be quantified as the coefficient of variation, defined as the standard
deviation over the mean of a variable value. These studies suggested that the AP
threshold’s coefficient of variation was dependent on the square root of the number
of NaCchannel, N , present in the membrane. For large N this would imply that
channel noise should have only little impact on spike-based information processing,
as fluctuations in the number of open channels �N would have been small in most
cells, because they are proportional to

�N /
p

N

N
D
r

1

N
:

For Hodgkin–Huxley’s squid giant axon this was certainly true as it measured sev-
eral millimeters in diameter and possessed millions of ion channels per unit length.
Similarly the myelinated nerves’ Nodes of Ranvier considered in these studies,
although about hundred-folds smaller in diameter then squid giant axon, featured
100-fold higher channel densities. Nodes of Ranvier were, thus, comparable to squid
axon in terms of the expected variability. The general validity of this assumption
required re-consideration for most neurons, as we shall see in the following.

Spike time variability measurements at the soma can be explained by channel
noise. Random action potentials constitute form a major disruption of neuron-
to-neuron communication. While the presence or absence of APs does carry
information, it is known that also the precise timing of each AP carries information
(e.g. Rieke et al. 1997). The trial-to-trial variability of AP timing in vivo and in vitro
in many systems can be on the order of milliseconds (1–10 ms) and the timing of
individual APs in the millisecond scale was shown to be behaviorally relevant in
perception and movement of invertebrates (see Faisal et al. 2008 for review).

How large can the influence of channel noise be on neuronal firing variability?
Schneidman et al. (1998) showed that in iso-potential membrane patches (of
comparable area as pyramidal cell soma) with large numbers of ion channels
channel noise can play a significant role for a neuron’s spike time reliability, i.e.
the timing precision at which an action potential is initiated (see also Fig. 8.5, top
two plots). This is because during AP generation the instant when the membrane
potential crosses AP threshold is determined by the small probability and thus small
number of ion channels open around AP threshold N � D popenN and not, as was
often implicitly assumed, the much larger number N of ion channels present in total.
The magnitude of the fluctuations of N � could be considerable even for large N and
were better described by a binomial random variable:

�N � /
p

Npopen.1 � popen/

Npopen
D
s

1 � popen

Npopen
:

This implied that many neurons in the cerebral cortex, e.g. pyramidal cells, could be
influenced by channel noise. The study was able to generate comparable spike time
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Fig. 8.5 The stacked raster plot visualizes traveling APs produced by identical repeated trials and
is organized as follows. The top-most row shows the white noise current input. Below that, each
row contains a spike raster plot recorded at equally spaced axonal positions (from the proximal
stimulus site at the top to the distal end of the axon at the bottom). In each spike raster plot, the
precise timing of a spike marked by a dot on an invisible time line. These time lines are stacked
over each other for the N D 60 repeated trials. The linear shift visible in the overall spike pattern
across rows reflects the APs traveling along the axon. The top-most raster plot reflects the spike
initiation variability, all subsequent plots reflect variability produced during propagation which
quickly exceed that of initiation. Data based on 10 s trial length, squid axon of 0.2 �m diameter
(average diameter of cerebellar parallel fibers) with a frozen noise current stimulus (zero mean,
0.01 nA SD, band limited at 1 kHz) injected at the proximal end. See text for details (Figure adapted
from Faisal and Laughlin (2007))

variability as found in cortical neurons in vitro. Furthermore, spike initiation had
high temporal precision when the size of ionic current fluctuations near AP threshold
were small compared to the injected stimulus current. Thus, weaker stimuli will
produce more unreliable spiking in agreement with experimental data (Schneidman
et al. 1998). These results were extrapolated to AP propagation in axons, where
the current flowing ahead of the AP (re)generates the AP driving it forward. It
was assumed that this axial current constituted a strong driving input and, hence,
it was inferred that APs should propagate very reliably in axons, however as we
shall discuss shortly conduction velocity will fluctuate significantly in thin axons
due to channel noise (Faisal and Laughlin 2007).

Stochastic simulations showed that super-threshold inputs could fail to generate
an AP and, more importantly, make random APs appear in the absence of any
input (Strassberg and DeFelice 1993; Chow and White 1996; Faisal et al. 2005).
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This deletion and addition of action potentials cannot be explained at all by
deterministic models and signicantly contributes to neuronal variability. Moreover,
Chow and White (1996) were able to derive analytically the rate at which these
random action potentials were triggered in an iso-potential membrane patch due to
the critical role of Na channel noise (and not K channel noise). Their analytical
derivation of the random action potential rate was supported by detailed stochastic
simulations that modelled both Na and K channels. Note, noise triggered action
potentials were originally named ‘spontaneous action potentials’ (Chow and White
1996; Faisal et al. 2005). This term may be confounded with ‘spontaneously
activity’ which describes neurons that are actively spiking in the absence of synaptic
input. Such ‘spontaneous activity’ is often the result of purposeful instability of
a neuron’s resting state (e.g. when action potential threshold is below resting
potential), and can thus appear also in deterministically modelled neurons. To
disambiguate the term ‘random action potentials’ is used to refer to noise-initiated
action potentials.

8.4.1 Variability of the Propagating Action Potential

While a neuron will contain many ion channels, typically these ion channels do not
interact instantaneously (neurons are not iso-potential) and thus their fluctuations
do not average out, as much smaller (and thus noisier) subsets of ion channels are
responsible for driving activity locally in the neuron. However, little was known
on how the stochasticity of ion channels influences spikes as they travel along the
axon to the synapse and how much information arrives there. Experimentally axonal
spike time jitter has previously been only measured in vitro at myelinated cat and
frog axons of several �m diameter and was in the order of 0.01 ms (Lass and Abeles
1975a,b).

Biologically accurate stochastic simulations of axons showed (Faisal and
Laughlin 2007) that the variability of action potential propagation (measured as
spike time jitter) in unmyelinated axons between 0.1–0.5 �m diameter was in
the order of 0.1–1 ms SD over distances of millimeters (cf. Fig. 8.5). Thus, axonal
variability can grow several orders of magnitude larger then previously expected and
having considerable impact on neural coding. Why can AP propagation become so
variable? The spatial spread of membrane potential follows different input-response
relationships than in point-like iso-potential membrane patches (Faisal et al. 2005):
In fact, the current driving the AP ahead is one to two orders of magnitude smaller
than the minimum stimulus current (“Rheobase”) required to trigger an AP in a
resting axon (Faisal and Laughlin 2007). Consequently the driving axial current is
a weak input that is susceptible to channel noise. Channel noise acts in two ways
that are implicit to the AP mechanism (see Fig. 8.6 for illustration): First, only a
small number of NaCchannels are involved in driving the AP, when the membrane
is between resting potential and AP threshold, and these small Na currents are thus
subject to large fluctuations. Second, the resting membrane ahead of the AP is far
from being at rest, but fluctuates considerably.
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Fig. 8.6 (a) Diagrammatic representation of a traveling AP on the axon based on Faisal and
Laughlin (2007). Stacked over each other, the leftward traveling membrane potential wave form
of the AP (V ) along the axon, axial currents flowing along the axon (Iaxial), Na and K currents
(INa; IK) and the representation of the axon itself. Axial, NaCand KCcurrents are denoted by
black, red and blue arrows scaled to represent the relative size of the current in the various phases.
Hollow and light shaded arrows denote the size of the current fluctuations relative to the average
currents. The AP wave form is subdivided into six phases, resting membrane, early rising phase,
late rising phase, early repolarizing phase, late repolarizing phase and an optional hyperpolarized
phase (Figure adapted from Faisal and Laughlin (2007)). (b) Synaptic variability from axonal
variabiltiy. (Top) Wave forms of 713 consecutive APs arriving at the terminal end of a 1:6 mm long
unmyelinated axon of 0.2 �m diameter. (Middle and Bottom) CaCC current and total CaCC influx
resulting from the integration of the above AP wave forms into a model of a Calyx-of-Held type
synapse (Figure adapted from Faisal and Laughlin (2004))
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Inspection of Fig. 8.5 shows that APs generated by the same stimulus are not
precisely aligned across trials, and the misalignment (“jitter”) in this AP set grows
considerably the further AP propagate. In general four distinct stochastic effects of
channel noise on APs propagating in axons can be identified. To describe these
effects the portion of the input stimulus which triggers an AP will be called a
stimulus event. APs which were triggered across trials by the same stimulus event
form an AP set.

The timing of APs in a set is jittered but remains unimodally distributed (Fig. 8.5,
arrows A, B, C), or grow to be markedly multimodally distributed (Fig. 8.5, D,
fourth row) – splitting into distinct groups of APs across trials. For a stimulus
event we quantify the jitter at a given position on the axon as the standard deviation
(SD) of spike timing in its corresponding AP set. For a 0.2 �m axon (shown in
Fig. 8.5) AP generation at the proximal end of the axon had on average a SD of
0.38 ms, similar to spike generation in simulated membrane patches (Schneidman
et al. 1998). However, spike time jitter increases over relatively short distance, such
that at 2 mm the average jitter over all AP sets increased to �0.6 ms SD. This jitter
implies that post-synaptic coincidence detection windows cannot be more precise
than 2–3 m s at this short distance. Furthermore, at the site of spike generation the
timings within each AP set are unimodally distributed (Fig. 8.5, top raster plot).
However, during propagation the spike time distribution can become multimodal,
with the different peaks several milliseconds apart. In other words the AP set splits
into distinct groups (Fig. 8.5, D, fourth row). Thus, axonal channel noise sets limits
to the precision at which neurons in the densely wired cortex can communicate with
each other over a given distance. These effects become relevant in unmyelinated
axons below 0.5 �m, as commonly found in the tightly packed circuits of the central
nervous system.

Five unexpected features of noisy axons will provide more intuition how noise
effects can have counterintuitive impacts on neuronal signalling and contribute to
observable neuronal variability.

1. Fewer action potential failures. Although channel noise provides a means
for APs to fail, stochastic simulations show (Faisal and Laughlin 2007) that
conduction failures are rare – 1% in axons of the smallest known diameter and
thus the noisiest axons – while empirically observed failure rates can be as high
as 50%. Several neuronal mechanisms that purposely produce conduction failure
are known, acting through membrane hyperpolarization, shunting effects, spike-
frequency dependent block of APs at axonal branch points (Debanne 2004). In
contrast channel noise has the opposite effect of promoting AP generation, be-
cause of the strong positive feedback of NaCchannels. This suggests that channel
noise cannot account for the AP failures observed in many systems and that other
factors must be responsible. This suggests, that when propagation failures occur
in the healthy nervous system, this is due to purposely designed mechanisms
for pre-synaptic information processing, which allow the incorporation of local
information not available at the site of spike initiation (Faisal and Laughlin 2007).
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2. Saltatory conduction in unmyelinated axons. Some APs in thin axons travel
faster than a continuously moving wave front, because the AP wave front sud-
denly jumps ahead. This mode of conduction results because of a collaborative
channel effect, where random opening of nearby NaCchannels pre-depolarize
the membrane by a few millivolts. The axial current from an incoming AP, then
triggers AP threshold and the AP jumps several hundred micrometers ahead to
the pre-depolarized region. Thus, the spike time at a given position of the axon
appears to be shifted in the order of a millisecond. This stochastic micro-saltatory
conduction effect resembles saltatory conduction between the morphologically
specialized Nodes of Ranvier in myelinated nerve fibers. Here, however, it is
produced by the stochastic behavior of individual channels embedded in an
axon of uniform morphology and it occurs randomly. This adds considerable
variability across trials and will enhance the effects of jitter and can initiate the
following effect.

3. Body temperature reduces the impact of noise. Temperature is not only a key
factor in determining the speed of biochemical reactions such as ion channel
gating but also controls the amount of ion channel variability (Faisal et al. 2002,
2005). From a modelling perspective channel kinetics and simulations should be
always accompanied by appropriate temperature-dependent scaling factors and
base temperatures (or have to be assumed temperature invariant). Commonly,
temperature-dependence is accounted for by scaling the transition rates ˛.V / and

ˇ.V / by the factor Q
��6:3ıC

10ıC

10 , where Q10 is an empirically determined, channel-
specific parameter and � is the temperature in Celsius.

While commonly overlooked, temperature, and via it’s effects on the kinetics
of ion channels also the resulting channel noise, can vary greatly across the
nervous system: cold-blooded insects can warm-up their body to over 40ıC prior
to taking flight, while human extremities and the sensory and motor neurons
therein can be exposed to temperature differences of up to 10ıC or more between
their dendrites, cell bodies and axon terminals – as they span from the (cold)
extremities to the (warmer) spinal chord.

Once, one accounts for temperature-dependent stochasticity in computational
models it can produce some counterintuitive effects – whereby increasing tem-
perature can lower noise levels. Channel noise effects decrease with increasing
temperature: As ion channel kinetics speed up with temperature, the duration of
spontaneous depolarizing currents decreases and the membrane is less likely to
reach AP threshold (this effect prevails over the increased rate of spontaneous
channel openings). In other words increasing temperature shifts channel noise to
higher frequencies where it is attenuated by the low pass characteristics of the
axon (Steinmetz et al. 2000; Faisal et al. 2005). This may suggest that increasing
temperature allowed polikliotherm animals, such as mammals, to develop more
reliable, smaller, more densely connected and thus faster neural circuits.

4. Synaptic transmission variability from axonal channel noise. AP timing
precision is bound to decrease the further the AP travels, thus long-range
communication is in this respect noisier than short range communication, given
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the same axon diameter. Axonal channel noise may have also an effect on
information transmission in short range synaptic connections in unmyelinated
axons of up to 1 �m diameter, because the shape of the AP wave form is
perturbed by channel noise (Faisal and Laughlin 2004). The wave form of the
presynaptic AP is of fundamental importance in determining the strength of
synaptic transmission. It determines the calcium signal that controls synaptic
transmitter vesicle release, by both controlling the opening of voltage-gated
CaCCchannels and the driving force for CaCC influx (Augustine 2001). Stochastic
simulations showed that the traveling AP wave form fluctuated considerably (see
Fig. 8.6b) (Faisal and Laughlin 2004) and the wave form of an AP mid-way down
the axon and at the terminal end were little correlated, thus in thin axons below
1 �m somatically triggered AP are unlikely to carry much information in the AP
wave form to the synapse, as has been measured in the soma of cortical neurons
(de Polavieja et al. 2005).

Stochastic modelling from the soma to the synapse is essential, as synaptic
reliability and variability has been in general attributed to mechanisms inside the
cortical synapse, but knowledge is typically based on paired soma recordings
or large synapses, while most of our brain’s synapses are very small. Thus, it is
difficult to dissociate synaptic and axonal stochastic effects in these preparations.
Furthermore, most studies so far ignored, synaptic channel noise at presynaptic
CaCCchannels, which may produce spontaneous postsynaptic potentials and
further increase trial-to-trial transmission variability.

5. Stochastic simulations for real neurons: The dynamic clamp technique.
While the discussion so far dealt with findings based on simulations, the
difference between deterministic and stochastic channel behavior was recently
investigated in living neurons using the dynamic clamp method. Dynamic clamp
is an electrophysiological technique that uses a real-time interface between
neurons and a computer that simulates dynamic processes of neurons (Sharp
et al. 1993; Robinson and Kawai 1993; Prinz et al. 2004a). It reads the membrane
potential of the neuron and calculates the transmembrane current produced by
virtual, simulated voltage-gated or synaptic conductances. The simulated current
is injected into the neuron, which therefore receives the same current as if it
biologically contained the virtual conductances. Dorval and White used this
technique to study the role of channel noise in cortical neurons in vitro, allowing
them to investigate what happens if ion channels were to act deterministically in
a real neuron (Dorval and White 2005). A NaCchannel population was blocked
pharmacologically and using dynamic clamp replaced by an equivalent virtual
population of NaCchannels. The virtual channels were simulated either deter-
ministically or stochastically.4 These neurons showed near threshold oscillations
of the membrane potential, characteristic for their morphological class in vitro,
and were able to phase lock their activity with other neurons, if and only if
the virtual NaCchannels were simulated stochastically. Neurons lost these two

4using the Gillespie algorithm described.
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properties with deterministically stimulated NaCchannels. These experimental
results provide the first direct demonstration that physiological levels of channel
noise can produce qualitative changes in the integrative properties of neurons.
This suggests, that channel noise could even have a more profound effect on the
evolution and development of neurons.

8.5 Fundamental Biophysical Constraints
on the Size of Axons

The impact of channel noise on membrane potential grows larger the smaller
the membrane surface area. How small can neurons or axons be mode before
channel noise effects disrupt action potential signaling? Hille (1970) suggested
that in very fine axons the opening of a small number of NaCchannels could
generate an AP. This idea was subsequently used to highlight that channel noise
could generate random action potentials (RAPs) posing limits to myelinated axons
(Franciolini 1987). Based on a probabilistic argument predicting a RAP rate of
1 Hz in myelinated axons, it was suggested that RAPs would discourage the use of
Nodes of Ranvier below 1 �m diameter. Unfortunately the calculation was flawed
because ion channel state transition probabilities were confused with ion channel
state transition rates. Furthermore, it was previously shown that in the mammalian
nervous system myelinated Nodes of Ranvier exist with diameters as fine as 0.2 �m
(Waxman and Bennett 1972). The first stochastic simulations of unmyelinated axons
(Horikawa 1991), using simplified channel kinetics (discussed elsewhere in this
chapter), showed that in fine axons more APs arrived at the distal end than were
generated at the proximal end. Based on this single finding a lower limit to axon
diameter of 0.2 �m was postulated. The relationship between diameter, biophysical
parameters and RAP rate, however was not studied and the findings were not related
to anatomical data. Anatomists had previously shown that axons as fine as 0.1 �m
are commonly found in the central nervous system.

Detailed stochastic simulations (Faisal et al. 2005) showed that spontaneous
opening of NaCchannels can, in theory, trigger random action potentials below a
critical axon diameter of 0.15–0.2 �m. Figure 8.7 shows this is because at these
diameters the input resistance of a NaCchannel is comparable to the input resistance
of the axon. The single, persistent opening of a single NaCchannel can therefore
depolarize the axon membrane to threshold. Below this diameter, the rate at which
randomly generated action potentials appear increases exponentially as diameter
decreases. This will disrupt signaling in axons below a limiting diameter of about
0.1 �m, as random action potentials cannot be distinguished from signal carrying
action potentials. This limit is robust with respect to parameter variation around two
contrasting axon models, mammalian cortical axon collaterals and the invertebrate
squid axon, show that the limit is mainly set by the order of magnitude of the
properties of ubiquitous cellular components, conserved across neurons of different
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Fig. 8.7 The emergence and propagation of random action potentials (RAPs) in axons (in absence
of any input). Space-time plots of membrane potential (a) and transmembrane Na and K currents (b
and c respectively) in a simulation of a 1-mm- long pyramidal cell axon collateral (d D 0.1 �m) at
23ıC. In b and c the regions which show no transmembrane current was flowing are not color
coded, making ionic currents from randomly opening ion channels at resting potential clearly
visible (dark blue dots). The prolonged open time of single Na channels at t D 15 ms and t D 77 ms
depolarizes the membrane to AP threshold, recruiting several nearby channels and resulting in
spontaneous Aps, at t D 17 ms and t D 79 ms, that subsequently propagate along the axon. The
horizonal time axis divisions has divisions 10 ms (Figure adapted from Faisal et al. (2005))

species. The occurrence of random action potentials and the exponential increase in
RAP rate as diameter decreases is an inescapable consequence of the action potential
mechanism. The stochasticity of the system becomes critical when its inherent
randomness makes it operation unfeasible. The rate of RAPs triggered by channels
noise counterintuitively decreases as temperature increases much unlike one would
expect from electrical Johnston noise. Stochastic simulations (Faisal et al. 2005)
showed that RAP rate is inversely temperature dependent in the cortical pyramidal
cell and the squid axon which operated at 6:3ı and 36ı.

Other biophysical limits to axon size. How small can a functioning axon be
constructed, given the finite size of it’s individual components? Faisal et al. (2005)
showed using. We use a volume exclusion argument to show that it is possible
to construct axons much finer than 0.1 �m (Fig. 8.8). Neural membrane (5 nm
thickness) can be bent to form axons of 30 nm diameter because it also forms
spherical synaptic vesicles of that diameter. A few essential molecular components
are required to fit inside the axon; this includes an actin felt work (7 nm thick)
to support membrane shape, the supporting cytoskeleton (a microtubule of 23 nm
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Fig. 8.8 Sterically minimal axon: this to scale drawing illustrating how components essential to
a spiking axon can be packed into the cross-section of a fiber of 50 � 70 nm. The unfilled circle
illustrates the finest known AP-conducting axons of diameter 100 nm (Figure adapted from Faisal
et al. (2005))

diameter), the intracellular domains of ion channels and pumps (intruding 5–7 nm),
and kinesin motor proteins (10 nm length) that transport vesicles (30 nm diameter)
and essential materials (<30 nm diameter). Adding up the cross-sectional areas
shows that it is possible to pack these components into axons as fine as 0.06 �m
(60 nm). Indeed, the finest known neurites, those of amacrine cells in Drosophila
lamina, are about 0.05 �m in diameter, contain microtubules, and connect to
extensive dendritic arbors but do not transmit APs. The fact that the smallest
known AP-conducting axons are about twice as large as the steric limit to axon
diameter (0.1 �m cf. 0.06 �m) (Fig. 8.8), whereas electrically passive axons reach
the physical limit, supports our argument that channel noise limits the diameter of
AP- conducting axons to about 0.1 �m.

Electrically passive neurites of 0.05 �m diameter are known (which do not
contain NaCchannels or sustain AP conduction). A steric (volume-exclusion)
argument shows that an axon of 0.05 �m diameter can be constructed, as the cross-
sectional area of an axon can fit all required components to sustain AP conduction
(i.e. NaCchannels and Na–K pumps protruding into the axon, the thickness of
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Fig. 8.9 Diameters of fine AP-conducting axons in a wide range of species and tissues, with the
finest AP-conducting axons reaching a common lower limit diameter of 0.1 �m (dotted line).
Arrowheads mark data points by developing fibers of 0.08 �m diameter (Figure adapted from
Faisal et al. (2005))

the actin feltwork supporting cell shape, microtubules, motor proteins and vesicles
supplying synapses). Furthermore, other molecular limits to axon diameter are well
below the limiting diameter of 0.1 �m, thus AP conducting axons finer then 0.1 �m
could, in theory, exist. Yet anatomical data across many species, invertebrate and
vertebrate, extremely small insects and large mammals, shows an identical lower
limit of diameter for action potential conducting axons of 0.1 �m. This suggests
that channel noise limits axon diameter and thus the wiring density of the central
nervous system and thus ultimately the size of the cortex.

Curiously the anatomical literature (see Fig. 8.9) demonstrated a common lower
value for the diameter of axons for over 30 years, yet this was not noticed, till a
systems biology view on the study on stochastic limits to cell size prompted to
search for the smallest known axon diameters (Faisal et al. 2005).

What about other noise sources? The cable properties of thin axons isolate
dendritic and somatic noise sources, such as synaptic background activity (Ho and
Destexhe 2000). The presence of electrical resistances in the membrane introduces
Johnson noise is magnitudes smaller than channel noise (Manwani and Koch 1999a;
Lecar and Nossal 1971). Ephaptic coupling (Arvanitaki 1942; Katz and Schmitt
1940; Anastassiou et al. 2010), input through axo-axonic synapses (Tamas and
Szabadics 2004) and axo-axonic gap-junctions (Schmitz et al. 2001) are ignored
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because little experimental or modelling data exists regarding their impact. During
my research I realised that a previously not considered source of neuronal noise
could affect axonal signalling. Signalling produces large changes of extracellular
ion concentration in thin axons (Frankenhaeuser and Hodgkin 1956). In confined
extracellular spaces with high tortuosity (Nicholson and Phillips 1981; McBain et al.
1990) this could lead to random changes in electromotive driving forces and affect
AP signalling due to uncorrelated activity of other nearby axons (recall that rodent
cortex features 3 of axon per cubic millimetre (Braitenberg and Schütz 1998). These
noise sources should be investigated once the effects of channel noise as a general
source of axonal variability has been fully understood.

In general developing a stochastic insight of biological and especially nervous
systems is important, as this can further our understanding in at least three different
ways. First of all novel properties may emerge, such as stochastic resonance.
Second, stochastic effects produce noise – random variability – which is a limiting
factor in the design of any information processing system and may be critical for
the evolution and development of brains. The nervous system may not have evolved
from simple neurons to complex circuits without having been influenced in its
design by the constraints imposed by noise. Thirdly, it remains an open question
to what extent the observed trial-to-trial variability in both the nervous systems and
behaviour is caused by noise and to what part it may be due to “unfathomable”
complex dynamics (reflecting chaotic dynamics and myriads of ever changing
internal states). Noise will inescapably increase (neuronal) variability and we can
thus compare the amount of variability produced by noise to the total experimentally
observed variability. Stochastic models allow us to trace stochastic effects, from
their sources at the molecular level to the level of neuronal function at the cellular
and circuit level.

Implications of axon channel noise for the interpretation of experiments.
The findings from stochastic simulations of the action potential prompt careful
experimental consideration in thin axons, because typical experimental protocols
are not geared to distinguish post-synaptic variability due to synaptic transmission
from variability caused by axonal noise (“axonal variability”). Optical methods and
extracellular recordings have limited stimulus control and signal resolution, thus
intra-cellular paired-cell recordings, as used to study small synapses innervated by
thin axons, would be more suitable. However, the impact of axonal channel noise in
circuits may have gone so far unnoticed, because paired cell measurements which
could reveal axonal variability are difficult to obtain. This is because typical cell-
to-cell distances are limited by the microscopes field of view and the probability to
find two mono-synaptically connected neurons with standard techniques. This limits
the potential cell pairs to about about 500 �m distance, where conduction jitter
standard deviation is small, in the order of about 0.1 ms. However, cortico-cortical
axon collaterals and cerebellar parallel fibers, which are below 0.5 �m diameter,
can extend up to a centimeter away from the soma, suggesting that jitter will limit
the minimum width of reliable coincidence detection windows to 5–10 ms at their
terminals.



8 Noise in Neurons and Other Constraints 253

The question to which extent channel noise generates variability in the brain and
ultimately behaviour is will probably require to combine both experimental studies,
where total variability can be assessed, and stochastic modelling, in which each
source of variability can be controlled for. Noise levels set both hard limits on the
central nervous system, such as the degree of miniaturization of the brain’s circuits
(Faisal et al. 2005) and soft constraints such as the achievable spike time reliability
(Schneidman et al. 1998; Faisal and Laughlin 2007).

8.6 Towards Establishing Engineering Design
Principles for Neurons

Stochastic simulations in neuroscience have contributed to develop our bottom-
up understanding of how noise present at the molecular level, channel noise in
neuronal membranes (as discussed here) and biochemical noise at synapses (Franks
et al. 2003), affects information processing at macroscopic levels – whole neurons,
neuronal circuits and behaviour (Faisal et al. 2008). The appropriate choice of
algorithms for simulation is essential both in terms of resource efficiency and the
accuracy of the results, as in many neurons of our brains modelling single ion
channel behaviour counts. Here, we used stochastic methods to study the role
of internal noise setting constraints on the function and structure of a typical
cell signalling system, the action potential (Hartwell et al. 1999). Similar effects,
constraints and limits due to stochasticity becoming critical will apply to other
wave-based cell signalling systems, as they have to rely on inherently-noisy protein
switches to generate and propagate signals.

Taking a telecommunications system viewpoint, there are several biophysical
constraints on the performance in neurons using action potentials for transmitting
information:

1. The finite response range of neurones – signals range over 100 mV in amplitude
and less then 1 kHz in action potential frequency (Attwell and Gibb 2005).

2. The finite response speed of neural signalling mechanisms, as determined by the
time delay and bandwidth of signals.

3. Any internal noise in the system’s information transmission components will
degrade and corrupt signals.

Note, that the first two factors determine how many different signals a neuron can
communicate in a given time frame. The third factor, noise, will corrupt messages,
resulting in signals that were formerly distinct now becoming confounded – this is
often referred to as the representational capacity of communication system.

Studies in the earliest sensory processing stages have shown that neurons
maximise the information (the number of bits) that can be retrieved from a single
sensory sampling station, irrespective of its meaning (Rieke et al. 1997; Laughlin
1981). What happens at later stages, where neurons process this raw data to extract
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relevant parameters and features? Broadly speaking two changes take place as
information passes to higher areas of the brain neural networks:

• Increasing convergence and divergence suggests that information is being rep-
resented by patterns of activity, distributed across populations or ensembles of
neurons.

• The amount of information processing increases as the responses of neurons
becomes more specific. A neuron ceases to respond to all aspects of incoming
data and is driven by a particular set of parameters. The resulting response is
equivalent to the extraction of important features and commonly involves non-
linear operations that pick out particular combinations of input.

The information processed by higher order neurons is thus metabolically very valu-
able as many lower order neurones contributed to its computation and transmission.
Thus, the more valuable each spike becomes, both because it carries more meaning
for the actions of an organism and also because the organism invested it’s resources
in it the, the more the nervous system should make sure it is not corrupted by
noise. Thus, taking this view, let’s us appreciate in a new light why at the output
of the brain’s information processing pipeline – the muscles are driven by large,
myelinated axons which should show virtually no spike time variability or random
action potentials.
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Chapter 9
Methodological Issues in Modelling at Multiple
Levels of Description

Kevin Gurney and Mark Humphries

Abstract Computational neuroscience and Systems Biology strive to understand
the nature of processing in the brain and its constituent parts. However, the
comparative immaturity of the disciplines, and the complexity of their target
systems, conspire to make the process of model building and model interpretation
in these areas problematic. In this chapter we describe a general framework for
thinking about the process of modelling, and illustrate it with examples including
our own work on the basal ganglia and its dopaminergic modulation. We also
advocate a multi-level approach in which low level features may be allowed to reveal
their functionality in a wider system context.

9.1 Introduction

Computational neuroscience and Systems Biology are comparatively young, inter-
disciplinary areas in the life sciences, dealing with, arguably, the most complex
systems we know of. All these factors conspire to make the status, and process,
of building models in these areas problematic. Oftentimes modellers make tacit
assumptions about their general approach, but we would argue that such assump-
tions should be explicit, and that establishing sound methodological principles is
an important foundation stone for making progress. In this chapter we describe
a general framework for thinking about modelling, and possible approaches to
modelling within the framework. Much of the conceptual framework has already
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been outlined in Gurney (2009a,b). Here, we present additional ideas, articulate
existing ones in more detail, and focus more in our examples on the divide between
computational neuroscience and systems biology.

9.2 Hierarchies and Computational Analysis

9.2.1 Levels of Structural Description in the Brain

It is usually acknowledged that the brain may be described at many structural
levels of analysis (Fig. 9.1). At level 1 are intracellular signaling processes initiated
by neuromodulators (like dopamine). Modelling at this level is the domain of
computational systems biology (Kitano 2002) which forms the subject matter of
Chaps. 1–5 and 15. Levels 2 and 3 deal with individual neurons. At level 2, patches
of neural membrane or single neurons are modelled using, typically, the Hodgkin
Huxley formalism dealt with in Chap. 7. In this scheme, the dynamics of the
membrane is described in terms of the multiplicity of ionic currents it supports.
At the next level, we deal only with whole neurons and are more interested in
neural firing patterns. Models are often couched in a simplified or reduced form –
using only two variables – without recourse to a detailed, multi-variable description
of membrane biophysics (Izhikevich 2007, Chap. 6). Also included here are the
extremely simplified leaky-integrate-and fire (LIF) neuron models which use only
a single variable representing the membrane potential. At level 4 we consider
microcircuits within a single brain nucleus – the example par excellence here, is the
cortical microcircuit that extends over six neuronal layers. At level 5, microcircuits
are agglomerated into brain nuclei and, beyond that, into entire functional modules
(such as cortical sub-systems, hippocampus, basal ganglia etc). Models at these
levels typically use rate coded neurons (leaky integrators) but may also use LIF
spiking neurons. In practice, models may draw on features from adjacent levels and
there is nothing special about the division into seven levels described here.

Fig. 9.1 Multiple structural
levels of description in the
brain
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The hierarchy in Fig. 9.1 is based on empirical observation at different physical
scales. While it provides a useful backdrop for considering what kind of model we
are building, it tells us nothing about how to proceed; further guidance relies on
more abstract, methodological principles.

9.2.2 A Computational Hierarchy

How should one go about developing a model of a particular brain system? Our
answer is based on the proposal by Marr (1982) that brain functions address the
solution of computational problems. Further, Marr suggested that these problems
decompose (at least in the first instance) into three levels of analysis. At the top
level is a description of ‘What’ is being computed and ‘Why’ – the computational
task. This top level is sometimes referred to simply as the ‘computation’. In this
case the term ‘computation’ is used to mean ‘function’ rather than the act or
process of computing. At the next level we describe ‘How’ the computation is
carried out in terms of an algorithm and any associated representations. Finally we
specify ‘Where’ the computation is carried out – which brain system implements the
computation. This scheme, therefore, enjoins us to specify the neural computation
as precisely as we can, before proceeding to detail an algorithm and implementation.

Marr’s original example (Marr 1982) provides a very clear illustration, albeit
outside the remit of brain modelling. Consider the computation of the bill in a
supermarket with a cash register. In answer to the top level question of ‘what’
is being computed, it is the arithmetical operation of addition. As to ‘why’ this
is being done, it is simply that the laws of addition reflect or model the way we
should accumulate prices together when shopping; it is incorrect, for example, to
multiply them together. Algorithmically, we use the normal procedure (add digits
representing the same order of magnitude and ‘carry’ any overflow if needed).
Further, in cash registers, this will be done in the decimal representation rather
than binary (normally encountered in machine arithmetic) because rounding errors
are incurred when converting between the everyday (decimal) representation of
currency and binary. As for the implementation, this occurs using logic gates made
out of silicon, silicon-oxide and metal.

Notice that choices at different levels are, in principle, independent of each other.
For example, we could have chosen to use a binary representation, and alternative
implementations might make use of mechanical machines or pencil and paper. The
importance of discovering good representations for solving the problem is crucial.
In the example, the use of a positional number system, with a number-base and
sequentially increasing exponents (like decimal or binary numbers), is the key to the
algorithm used here; algorithms for manipulating the number system of the ancient
Romans are far more complex.

As a somewhat more realistic application to brain function, consider the problem
of directing our visual gaze using ballistic eye-movements or saccades. While we
will leave unanalysed several aspects of this problem, our treatment will highlight
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the need for expansion of the simple tri-level scheme described above. The specific
computational problem we focus on is: how do we direct gaze to relevant, or
‘salient’, locations in a visually cluttered environment? We leave unanswered the
related problem of finding how to compute what is ‘salient’ but assume that this
is determined by a combination of bottom-up visual feature information (edges,
corners and the like) and top-down task information or goal directed attention
(Connor et al. 2004).

One algorithm for doing this is shown below.

Algorithm 1 An algorithm for directing visual gaze to salient points in space
divide visual space into a set of small regions, fRi g centred on xi

for each Ri do
assign salience si D S.xi /

end for
find location of maximal salience xmax D argmax.S.xi //

direct gaze to xmax

The representation used in the algorithm is the set of the spatially localised
saliences S.xi //. The implementation of the algorithm is presumably carried out
in visuomotor circuits in cortical and subcortical structures throughout in the brain.
However, there is, as it stands, a gap in the argument; we have not articulated how it
may be possible to implement the mathematical operation of argmax in a neuronal
network. This function makes no explicit reference to intra-neuronal integration or
network operations as such, and so we propose that it is helpful to invoke another
level of analysis which deals with the abstract neural mechanisms that are required
to realise the algorithm. For example, the calculation of the maximally salient
location xmax could be performed by a ‘competitive network’ of some kind. One
such example takes the form of a single layer of neurons with lateral (within layer)
recurrence arranged in an on-centre, off-surround pattern. We then suppose that each
signal S.xi / is topographically assigned as the input to an artificial neuron in such
a network. The lateral connectivity will gradually suppress the output of neurons
with small values of S.xi / and enhance the output of those with larger inputs. In
this way, with appropriately tuned weights, it is possible for the network to perform
a ‘winner-take-all’ operation so that, at equilibrium, there is a single node with non-
zero activity signaling the location of the maximal input.

While the relation between argmax and competitive networks may seem straight-
forward, the relation between the algorithm and neural mechanism is not always
so transparent. Consider the proposition by Bar-Gad et al. (2003) that the striatum
(part of the basal ganglia – see Sect. 9.3) performs information compression on
its cortical input, and that the algorithm used is principal components analysis
(PCA). It is indeed possible to perform PCA with a neural network in a variety of
ways (Oja 1992) but these methods are not immediately intuitive. Hence, Bar-Gad
et al’s proposal that the striatum performs PCA was based on the similarity of the
striatum’s circuitry with one of the possible neural network implementation of PCA,
rather than a direct claim that striatal circuitry can support PCA.
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Fig. 9.2 Four-level scheme for analysing biological cognitive computation, and methods for
using it. (a) Top down: mechanism mapping. (b), Bottom-up: mechanism mining. (c), Bottom-up:
computation mining

This example highlights the utility of a separate, neuronal mechanistic level
of analysis for conceiving of networks that can realise algorithms. However, the
potential difficulty in identifying a biological network that can implement an
abstract counterpart is also indicative that moving directly from algorithm to
biological implementation is an explanatory gap too large to be bridged in one jump.
The problem of identifying implementation is taken up again in Sect. 9.2.3.

To summarise, we suggest that Marr’s tri-level scheme is augmented with an
additional, mechanistic level of analysis yielding a 4-tier scheme of: computation,
algorithm, neural mechanism, and implementation (Fig. 9.2).1

9.2.3 Modelling Routes Within the 4-tier Computational
Framework

The existence of a hierarchical system of analysis does not, itself, indicate any
specific process of model development. In practice, then, how does one take
advantage of the analysis developed above? We illustrate this by returning to the
toy example with visual salience. The application of the 4-tier analysis to this case
is shown in Fig. 9.2a (Gurney et al. 2004b). We started with a proposed computation

1In Marr’s original formulation of the computational framework, which appeared in an MIT
technical report (Marr and Poggio 1976), a fourth level was described. However, this was dropped
in the more popular account in Marr (1982). Independently, Gurney (1997) proposed a four level
account which was subsequently developed further (Gurney et al. 2004b).
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(how to direct gaze) proceeded to an algorithm (extracting argmax.S.xi //), and
proposed an abstract neural mechanism (competitive networks).

However, it remains to show how this neural mechanism may be mapped
onto biological neuronal circuits. This is a potentially thorny problem because a
naive implementation of the winner-take-all network is not possible. The abstract
network requires each neuron to simultaneously supply an excitatory ‘on-centre’
and inhibitory ‘surround’. However, neuroscientific evidence strongly suggests that
neuronal influence is either excitatory or inhibitory – but not both (a dictum referred
to as Dale’s Law). Further, a network with inhibitory ‘surround’ of sufficiently long
range to influence all salience values xi is not realistic given the limited extent of
cortico-cortical inhibition.

It is far more likely that several brain circuits work together to accomplish
the algorithm, and that they may use alternative variants of the winner-take-all
networks (e.g using feedforward rather than recurrent connectivity) to achieve an
approximation to the desired function. Figure 9.2a shows the suggested mapping
involves frontal eye fields (FEF), superior colliculus and basal ganglia, all of which
have been implicated in gaze control (Schall 2002; Hikosaka et al. 2006; Girard and
Berthoz 2005).

In a more bio-inspired (rather than biologically constrained) approach, we may,
indeed, be happy to subsume this function in to a single network which stands
in for the gaze control circuit; but for the time being we assume we are striving
for biological plausibility (at this level of description). Under these circumstances,
the process of mechanism mapping – from abstract neural mechanisms onto brain
circuits and systems – is the most challenging step in the top-down approach; will
the abstract neural mechanism correspond in any simple way with a real biological
substrate?

An alternative approach that avoids this problem is illustrated in Fig. 9.2b. Here,
we are still working to understand a well-specified computational problem, but
bypass, in the first instance, the algorithmic level altogether. Instead, we mine
for mechanisms immediately available in the brain circuits supposed to serve the
solution of the problem.

This bottom up approach is also not without its drawbacks because we are
now bereft of an algorithm, and so there remains the problem of future algorithm
extraction. However, depending on our position, we may be more or less indifferent
to discovering algorithms. On the one hand, theoretical neuroscience demands that
we establish a formal analytic (algorithm-like) framework for our model; on the
other hand, pure simulation modelling does not. This is especially so for models
working at lower levels of structural description, where the distinction between
algorithm and abstract mechanism may, in any case, be subtle.

The situation with bottom-up simulation modelling is often not even constrained
by the scheme shown in Fig. 9.2b. In this case, there may be no computational
function posited a priori which can be used to guide the mining exercise. While
we would argue that a functional hypothesis should be invoked wherever possible,
many highly detailed, and well constrained neural models are constructed without
any prior hypothesis about neural function. It is natural, given our emphasis on
overall function, to ask what purpose these models serve.
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To answer this, suppose we do indeed have a highly realistic model of an
individual neuron (or neural microcircuit) but are unsure of its overall computation.
To the extent that such a model has been extensively validated against its biological
counterpart by ensuring similar behaviour, the model is a genuine surrogate for
the biological system. As such, it may be subject to a slew of experimental
manipulations in an attempt to unravel the mechanisms and, subsequently, the
computations, that the circuit or neuron perform. These manipulations may be
difficult and time consuming (taking many months) in vivo or in vitro, or (which
is quite likely) they may be impossible, given the current state of experimental
technology.

In contrast, in silico, the manipulations of the model and the harvesting of results
may be quite rapid (hours or days) given readily available parallel and clustered
computing. This leads to the notion that the model is more like an ‘experimental
preparation’, having similar status to the in vitro preparations used by biologists.
Such in silico preparations will allow us to perform high throughput neuroscience
with the goal of discovering the computations the biological substrate performs.2

This situation – which is quite radical within the functional/computational paradigm
adopted here –is shown in Fig. 9.2c, and we dub it computation mining.

At the time of writing, the quintessential example of this approach is the Blue
Brain project (Markram 2006) which is building biologically realistic models of
cortical circuits.

9.2.4 Computational and Structural Hierarchies Combined

We are now enjoined to use two frameworks of analysis – the structural one
described in Sect. 9.2.1, and the computational one of Sect. 9.2.2 – but how are
they to mesh with each other? One possibility is to suppose that computations are
defined at a high (or systems) level3 dealing with brain modules, say, and that
implementation occurs at the neural and molecular levels. Algorithms (and any
other intermediate levels of analysis) then sit somewhere in between. This scheme
interprets the two frameworks as running in parallel with each other, with each one
somehow mirroring the other. However, we argue that the two frameworks deal
primarily with different ontological categories and are therefore best thought of as
‘orthogonal’ to each other. Of the four levels of the computational decomposition,
only the implementation refers to physical reality; the other three refer to concepts

2It is often argued that a ‘divine gift’ of a complete model of the brain would be useless. In the
light of the above discussion, however, it would appear this is not true. It may be arduous to unravel
the function of all aspects of the model-brain, but this task would certainly be easier than using
biological experiments alone.
3We use the term ‘system level’ to denote a large scale (‘low magnification’) view of the brain, that
incorporates at least one anatomically defined, functional set of nuclei. This is in contrast with the
use of the term in ‘systems biology’ where it usually denotes the cellular level.
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Fig. 9.3 Peak current due to
NMDA receptors’ activation
as a function of membrane
potential Vm in a typical
sub-threshold regime.
Function is plotted using a
simple phenomenological fit
of Ipeak.Vm/ given in Eq. 9.1

of computation, algorithm, and abstract mechanism. In contrast, the structural
hierarchy is rooted entirely in the physical and delineates objects typical of certain
spatial scales. Clearly the common point of contact is implementation in the
computational hierarchy, but there is no sense in which one hierarchy can fully
account for, or ‘mirror’, the other.

We, and others (Churchland and Sejnowski 1992), therefore believe it makes
more sense to allow the computational decomposition to become manifest at every
structural level of description, a scheme which harmonises more naturally with an
orthogonal relationship between the two frameworks. Thus, each level of structural
description is a potential seat of computational function, and so it is just as valid to
think of computation at the intracellular level – the remit of computational systems
biology – as it does at the level of a brain nucleus.

To see how this works in more detail, we note that computations defined
with respect to objects at a certain level in the structural hierarchy may invoke
mechanisms implemented at a lower level of structural analysis. However, given
the proposed ‘structural-computational democracy’, a mechanism may, in turn, be
conceived of recursively as a computation at that lower level.

These ideas are illustrated using models of Mel et al. (1998) of neuronal
receptive fields in the visual system. Here computation at the single neuron level
is supported by dendritic and synaptic mechanisms. Mel showed that models of
pyramidal neurons in visual cortex can have preferential response to oriented
features in a translationally invariant way; the computation here is therefore visual
feature detection. Mechanistically, this occurs through multiplicative-like operations
between groups of synaptic inputs. This mechanism is, in turn, implemented, using
the voltage dependent properties of NMDA receptors (NMDARs) shown in Fig. 9.3.

Notice that the response of NMDARs increases as the membrane become depo-
larised. Mel proposed that those inputs which need to interact in a multiplicative
way are located near each other on the dendrites in ‘synaptic clusters’. Then,
depolarisation supplied by partially active glutamatergic synapses, supports the
activity of their immediate (co-clustered) neighbours. In this way a synergy occurs
between synapses in a cluster which facilitates an approximate ‘AND’ operation, or
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equivalently, multiplication, as required to perform the feature detection. Modelling
this then requires morphologically extended, multi-compartment models of the form
described in Chap. 7.

In the scheme as described so far, we have a neuronal level computation
(feature detection) with an implementation at the membrane and synaptic levels
of description which relies on synaptic current Ipeak.Vm/ of the form in Fig. 9.3. It
is known that NMDAR current depends on the concentration of Mg2C ions external
to the membrane according to (Jahr and Stevens 1990)

Ipeak D �Vmg0

1C �ŒMg2C�e��Vm
(9.1)

where �; �; go are constants (this was the function used to plot Fig. 9.3). At this
level, Ipeak.Vm/ is purely phenomenological and is simply fitted to corresponding
Ipeak; Vm data.

However, the mechanism that is constituted by the NMDAR current may be
thought of as a computation more closely associated with a lower level of descrip-
tion. Specifically, the form INMDA.Vm/ in (9.1) – conceived of as a computation –
arises through the interaction of Mg2C ions with specific NMDAR sub-units (Qian
et al. 2005). Such mechanistic accounts must rely on molecular level descriptions of
the synapse, but we assume that their basic computational form maybe abstracted at
a higher level, leading to (9.1).

One consequence of the recursion of mechanism and computation described here
is that it is possible to track the way in which the low level (molecular) mechanisms
described in systems biology may ‘drill-upwards’ through the structural hierarchy,
and make themselves manifest at the top level via computations at the scale of entire
brain systems. Thus, we suppose that, in general, low level mechanisms do not get
‘smeared out’ or lost as we model at higher levels. Nevertheless, we also anticipate
that we do not have to incorporate every nuance of lower level mechanisms at higher
levels; computational abstraction should serve well in many instances. This theme
is explored further in the case study with dopaminergic modulation of cortico-
striatal transmission (Sect. 9.3.4). It should now be apparent that we have access
to a continuous line of explanation from the intracellular, all the way to behaviour,
and that computational and systems neuroscience both have a vital role to play in
such an exegesis. Ways in which this might play out in practice are taken up again
Sect. 9.4.

9.3 A Case Study: Action Selection and the Basal Ganglia

We now illustrate the ideas outlined above in the light of our own work in
modelling the basal ganglia at several levels of structural description. Several other
methodological points will also emerge along the way, and the basal ganglia are
dealt with. . . .
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Fig. 9.4 Basic action selection mechanism for the basal ganglia. Two action channels (labelled ‘1’
and ‘2’ around the circuit) are shown in competition. Thick/thin lines indicate strong/weak signal
strengths respectively)

9.3.1 The Basal Ganglia and Action Selection

The basal ganglia are the largest group of subcortical structures in the mammalian
forebrain and have a critical influence over movement and cognition. The basal
ganglia have been implicated in a wide range of processes, including perception
and cognition (including working memory), and many aspects of motor function.
However, one recurring theme (Mink and Thach 1993; Doya 1999) is that they are
associated with some kind of selection processing. Our work has developed this idea
of selection as a unifying computational theoretical framework for understanding
basal ganglia function (Redgrave et al. 1999). Specifically, we proposed that the
main computational function of the basal ganglia is to solve the problem of action
selection – the resolution of conflicts between functional units within the brain that
are in competition for behavioural (or cognitive) expression.

Fleshing out these ideas further, we suppose that functional command units
send ‘action requests’ to the basal ganglia in the form of efferent copies of their
encoding of action, and the basal ganglia acts as a central ‘selector’ or ‘switch’
mediating the competition for these action requests to be expressed (Fig. 9.4).
Within the basal ganglia, these requests are sent through discrete information
streams or channels which interact within selective or competitive processing
mechanisms. Those requests with the largest overall activity or salience ‘win’ these
competitions, resulting in depression of activity in the corresponding basal ganglia
output channels. This, in turn, results in action selection as follows. Basal ganglia
output is inhibitory and is normally active. The output channels form return loops,
via thalamus, with the original functional units that made the action requests. On
the winning channels therefore, there is disinhibition of the target thalamo-cortical
circuits, allowing them to be active, thereby enabling their behavioural expression.
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Fig. 9.5 Mining for selection mechanisms in the basal ganglia. (a), mechanisms at systems,
circuit and neuronal level. (b), systems level mechanism constituted by feedforward, off-centre,
on-surround network (two-channel instantiation)

9.3.2 Mechanism Mining in the Basal Ganglia
at the Systems Level

Having proposed a computational function for the basal ganglia, we then proceeded
to perform a bottom-up modelling study at the systems level of structural
description. This, therefore, raises the question of what mechanisms can be mined
from the anatomy that might support selection. Figure 9.5a shows some of these
mechanisms in the context of a simplified, and partial view of basal ganglia anatomy
in cartoon form (for a recent review of basal ganglia anatomy and physiology,
see Redgrave 2007).

The main input nucleus in the basal ganglia is the striatum. This contains a
complex microcircuit with several varieties of interneurons which may support
competitive processing. In addition, the main population of projection neurons
show a bimodal (up/down state) behaviour in which substantial, coherent cortical
input is required to make these neurons fire. Such a mechanism may serve to
prevent selection of weak action requests. The output nuclei in primates are the
internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata
(SNr). These contain lateral inhibitory connections that may support competitive
processing, and thereby, further selection processing. Finally, there is a system wide
circuit formed from focused (‘intra-channel’) inhibition from striatum to the output
nuclei, and diffuse (‘cross-channel’) excitation from another input station – the
subthalamic nucleus (STN).
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Fig. 9.6 Systems level model of the basal ganglia showing the new functional architecture with
selection and control pathways

At the systems level, we focused initially on this latter mechanism, which
constitutes a feedforward, off-centre on-surround network. It is illustrated in more
detail for two channels in Fig. 9.5b. The polarity of the centre-surround scheme
ensures a ‘winner-lose-all’ network, which is just what is required in the circuit of
Fig. 9.4 in order to use release of inhibition as a means of gating actions.

While the circuit shown in Fig. 9.5b can, in principle, perform selection, it is
not robust against widely varying signal levels (excitation can predominate without
careful tuning of weights). However, our description of basal ganglia anatomy has,
so far, been somewhat simplified. We now ask: what happens at the systems level,
when the full basal ganglia circuit is used?

The basal ganglia also contain a nucleus – in primates, the external segment of the
globus pallidus (GPe), in rats simply the globus pallidus (GP) – which receives input
from striatum and STN, and which projects only internally to other basal ganglia
nuclei. The striatum is also divided into two populations of projection neurons:
one which projects primarily to the output nuclei (as shown in Fig. 9.5), and one
projecting preferentially to the GPe. Further, the two populations are distinguished
by their expression of dopaminergic receptor types, D1 or D2. We incorporated this
additional circuitry into a model of the basal ganglia which used rate-coded neurons
representing neural populations (Gurney et al. 2001a). The architecture is shown in
Fig. 9.6.

This model was able to show robust selection and switching between actions
consistent with the basal ganglia-action selection hypothesis (Gurney et al. 2001b).
The model yielded a new functional architecture in which one role of the GPe is
to supply control signals to the selection circuit to ensure its correct operation.
Indeed, analysis and simulation confirmed that the closed loop formed by STN
and GPe acted like an ‘automatic gain control’ on STN excitation to ensure the
correct operation of the selection circuit over a wide signal range. Notice that
this interpretation of the architecture is a natural imperative of the computational
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approach with selection in mind. System-wide selection is supported, in principle,
by a subset of basal ganglia anatomy (D1-specific striatal neurons, GP/SNr and
STN), and this forces us to seek an interpretation of the remaining circuitry that
complements it.

The inclusion of this extra circuitry illustrates another general methodological
point: that if we incorporate further biological constraints into a model and the
resulting performance – in terms of the proposed system computation – is increased,
then this is evidence in favour of the computational hypothesis. On the other hand,
if performance declines, then this is evidence against the hypothesis. In subsequent
models, (Gurney et al. 2004a; Humphries et al. 2003) incorporation of additional
anatomical constraints (including the inhibitory collaterals in GPi and SNr noted
above) did, indeed, show enhanced selection performance.

This mechanistic account has followed the mechanism mining scheme in
Fig. 9.2b, and has so far ignored any mention of an algorithm. Recently, however, an
algorithm has been proposed for the basal ganglia functional architecture described
here (Bogacz and Gurney 2007). The algorithm assumes input to the basal ganglia
is supplied by cortical integration of perceptual ‘evidence’ in a decision making
paradigm. The basal ganglia may then be shown to be performing the multi-
hypothesis sequential probability ratio test (Dragalin et al. 1999) which is an
optimal method in that it guarantees minimal decision time for a given error rate.

9.3.3 Validation of Higher Level Models by Those
at Lower Levels

In working at the systems level, many mechanistic abstractions are made. The most
obvious example is that the basic neuronal signalling mechanism, namely discrete
action potentials or ‘spikes’, is replaced by a population or ensemble firing rate. In
addition, a plethora of neuronal features relating to spatio-temporal afferent signal
integration are ignored. As a result, several possible relationships exist between a
system level model and its lower level counterparts. First, the extra mechanisms
of the biological neuron may work synergistically to produce an overall semilinear
function of the kind found in the rate-coded ‘neurons’ (Koch 1999). This emergent
linearity, means our systems level model is ‘right for the right reasons’. Second, it
is possible that, while the individual neural populations are highly nonlinear, their
behaviour when embedded in the entire system is comparable to that of the systems
level model. This global equivalence means we are ‘right for the wrong reasons’ –
our computational hypothesis is still supported but its mechanistic explanation
needs revising. Finally, it is possible that the neural nonlinearities lead to entirely
different system behaviours, and our systems level model is simply ‘wrong’ – our
computational hypothesis is refuted. Only by building the model at the lower level
of description can we be sure which possibility applies.
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Working at the level of neural spiking behaviour also enables a model to make
contact with a much larger raft of physiological data – a situation that has two
consequences. First, the additional data supplies further constraints to test any
computational hypothesis for the system as a whole. Thus, confirmatory evidence
of the hypothesis is obtained if the model can simultaneously implement the target
function (here, action selection) and display the patterning of spikes observed in
vivo. Conversely, if this is not possible, the hypothesis is brought into question. A
second consequence of enriching the relevant constraining data is a corresponding
burgeoning of possible opportunities for mechanism and computational mining.

To address these issues, we therefore constructed a model of the basal ganglia
using spiking neurons (Humphries et al. 2006) which incorporates much of the
known physiology of individual neuronal species including: synaptic currents with
time constants for AMPA, NMDA and GABAergic synapses, spontaneous currents,
dopamine in STN and GP as well as striatum, and inter-neuronal delays. In
addition, while the neurons were based on simple LIF dynamics, they incorporated
phenomenological (abstract) descriptions of shunting (multiplicative) inhibition
at proximal dendrites and the soma (Koch 1999), and rebound bursting in STN
neurons.

The model was pitted against a comprehensive data set related to low frequency
oscillations (LFOs) under urethane anesthesia in the rat (Magill et al. 2001). In
addition we made use of observations by Brown et al. (2002) on � -oscillations
(40–60 Hz). We found that the same model with the same parameters could
simultaneously display selection, fit the LFO data, and that for � -oscillations. This
supported the hypothesis that the systems level model was ‘right for the right
reasons’ but, of course, models of the basal ganglia with further mechanistic elabo-
ration (in particular more realistic striatal microcircuits) may yet prove otherwise.

In addition to supporting the selection hypothesis, our model also highlighted
new computational and mechanistic possibilities. First, we had explicitly hypothe-
sised that certain features of GP-STN firing in the LFOs observed by Magill et al.
(2001) were due to dopaminergic regulation of the strength of coupling between
these nuclei; it did indeed transpire that this hypothesis was supported. Second,
the source of � -oscillations was attributed to the natural resonance between STN
and GP. This dynamic is an inevitable consequence of the coupling between a
source of excitation (STN) and one of inhibition (GP), with synaptic delay. This
phenomenon was robust, and so two possibilities emerge; either the oscillation is
an unwanted side-effect of the STN-GP circuit which uses firing rates as its main
signal coding, or the oscillations serve a functional purpose. In order to ‘mine’ a
possible computation here, we turn to theories of temporal synchrony in visual
cortex (Engel and Singer 2001) in which � -oscillations are believed to support a
solution to the feature binding problem. In this account, neurons encoding features
belonging to the same object are supposed to fire in synchrony at the resolution of
� -oscillation frequencies. This notions have been expanded recently by Fries (2009)
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Fig. 9.7 Overall correlation between model simulation and animal data from (Magill et al. 2001)
across variations of the model obtained by deleting certain features including: the model of
urethane anesthesia, collaterals in GP and SNr, and dopamine in STN and/or GP. Fifty simulations
were run for each condition, and a simulation was deemed a significant fit if it correlated with
the data at the p D 0:05 level. The error bars are the standard deviations of the percentage of
significant fits. A single asterisk denotes a significant difference between the expected value for
the model variant and that of the full model with the one-tailed criterion p < 0:05; a double
asterisk denotes a significant difference at p < 0:01

who describes a general role for � -oscillations in visual cortical processing for
segmentation, selection and gain modulation. These functions may also be relevant
for action selection where ‘action features’ at the input to basal ganglia may be
synchronised or segmented at the level of STN for further basal ganglia processing
as integrated actions.

The model in (Humphries et al. 2006) incorporated several other mechanisms that
were included to address specific features of the physiological data. However, while
this mechanistic complexity is a source of explanatory power, it can also raise issues
of its own. So, while each mechanism may have been introduced with a specific
function in mind, their simultaneous operation may cause synergistic side effects
that we had not anticipated. In addition, we should be wary of gratuitously including
arbitrary mechanisms simply for the sake of ‘extra realism’. We therefore tested for
mechanistic redundancy by excluding each mechanism in turn, and examining the
correlations with the data of Magill et al. (2001) over many simulations with small
variations in the model parameters. All mechanisms contributed to the fit with the
data (Fig. 9.7) supporting the conclusion that there was little or no redundancy in
model mechanism.
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9.3.4 Dopaminergic Modulation of Cortico-Striatal
Transmission

One feature of the basal ganglia which is of particular interest in exploring the
interface between computational neuroscience and systems biology, and which
is an excellent candidate for multi-level modelling, is the action of dopamine
in modulating the efficacy of cortico-striatal synapses. Dopamine receptors are
G protein-coupled receptors (Chap. 2) which initiate a range of intra-cellular
signal transduction pathways (Fernandez et al. 2006; Lindskog et al. 2006; Berke
and Hyman 2000). At the neuronal level, these pathways manifest themselves
in a complex array of intrinsic membrane currents and synaptic effects (Nicola
et al. 2000) which, in turn, have profound behavioural consequences (Salamone
et al. 2009). All these effects are thought to be the result of tonic (steady-state)
levels of dopamine. In contrast, phasic (transient) dopamine ‘bursts’ also play a key
role in mediating cortico-striatal plasticity (Reynolds and Wickens 2002) but we
will not consider this dimension of dopaminergic action here.

At the cellular level in striatum, the phenomenology of dopamine modulation
may be crudely approximated by stating that it facilitates cortico-striatal trans-
mission when mediated by D1-type receptors (Akkal et al. 1996), and attenuates
this process when activating D2 receptors (Gerfen et al. 1990; Harsing and
Zigmond 1997). In our systems level model of basal ganglia (Gurney et al. 2001b),
this was captured in the following way. Each cortio-striatal connection was assigned
a nominal weighted value w. The tonic level of dopamine was represented by a
parameter �, and D1 and D2 effects were captured by forming new cortico-striatal
weights

wD1 D w.1C �/

wD2 D w.1 � �/ (9.2)

for D1 and D2 striatal projection neurons respectively. At equilibrium, the output
y of the rate-coded striatal projection neuron with input x, is then given by the
piecewise linear form

y D
8<
:

0 if x < "=wd

m.wd x � "/ if x � "=wd and m.wd x � "/ � 1

1 if x � "=wd and m.wd x � "/ > 1

(9.3)

where d is D1 or D2, m is the gradient of the increasing part of the function,
and " fixes a threshold in order that y > 0 (mimicking the up-state transition in
these neurons). With this feature, the model was able to show dopamine-dependent
selection regimes (Gurney et al. 2001b). Increased simulated dopamine (larger �)
led to easier selection (less salience required), and increased probability of multiple
channel selection. In contrast, reduced dopamine made it harder to select and
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Fig. 9.8 Input–output relations for model striatal projection neurons under dopaminergic modu-
lation. In all cases, the solid line is for no dopamine and the dashed line shows a level of simulated
dopamine of 0.8. (a), rate-coded D1-type striatal neurons with functional form y.x/ from (9.3),
but without saturation at 1. (d), similar to (a), but for D2-type neurons. (b, c), results for D1-type
spiking neurons using the model in Humphries et al. (2009a). (b), shows the effect of dopamine on
intrinsic membrane currents only (using current injection as input), c augments this with synaptic
effects and shows output driven under synaptic barrage. (e, f) are the counterparts to (b), c for
D2-type neurons)

prevented dual channel selection. In the limiting case, with � D 0, the model
was unable to select at all, irrespective of the salience of the action request. This
is consistent with the model showing akinesia in Parkinson’s disease (a pathology
in which there is severe loss of dopaminergic innervation to the basal ganglia).

Aside from pathological extremes, it is plausible that the basal ganglia should
be able to control the ease with which actions are selected. For example, it may
be more or less useful for an animal to rapidly evaluate multiple options when
exploring a new environment. We therefore elevate the above result to the status
of a computational hypothesis – that the role of tonic dopamine in the basal ganglia
is one of enabling adaptive selection.

In order to compare the dopaminergic modulation in (9.3) with that for the
spiking model described subsequently, it is useful to ignore any saturation of output
y at 1. Figure 9.8a shows this form of y for D1-type striatal projection neurons,
with � D 0 and 0:8 (solid and dashed line respectively). Figure 9.8d shows the
corresponding result for D2-type projection neurons.

Given the underlying complexities of dopamine modulation in striatal projection
neurons, we might anticipate that the simple functional relationships used thus-far
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would be rather inadequate; but exactly how poor is the approximation they
represent? As part of our programme of building models of striatal microcircuits
(Humphries et al. 2009b), we developed a spiking neuron model of the striatal
projection neuron in the reduced form of Izhikevich (2007). However, within this
general framework, we introduced a novel method for incorporating dopaminergic
modulation that attempted to capture many of the mechanisms known to occur
therein (Humphries et al. 2009a). Specifically, we included effects due to mod-
ulation of intrinsic membrane currents, and direct influence on EPSPs produced
via NMDA and AMPA synaptic receptors. For D1-type neurons this gave three
dopamine dependent mechanisms, and two such mechanisms for D2-type neurons.

Since there is insufficient experimental data to directly constrain all aspects of
such a model, we validated our model by ‘piggy-backing’ it against a pre-existing,
conductance-based model due to Moyer et al. (2007). This model has almost 200
compartments and includes nearly all the known currents in striatal projection
neurons. It may therefore be thought of, in some sense, as a ‘gold standard’ which
may be used to constrain other, simplified models, like our own. It was therefore
somewhat surprising that our reduced spiking neuron model with few variables was
able to capture the behaviour of the detailed model remarkably well (Humphries
et al. 2009a). We argue that this approach of using low level models to help constrain
those at higher levels, is a powerful one which could be deployed quite generally.

In the current context, the effects of dopamine on intrinsic membrane cur-
rents alone produced quite different results from the complete model that also
incorporated synaptic influences (Fig. 9.8). For D1-type neurons, taking account
of membrane properties alone, increasing levels of dopamine increases/decreases
the response to large/small injection current inputs respectively (Fig. 9.8b). This
process amounts to an increase in the signal-to-noise-ratio (snr) of the neural transfer
function, an observation that has led to the well-known snr hypothesis for dopamine
function (Servan-Schreiber et al. 1990). Other models of striatal projection neurons
(Gruber et al. 2003) also predict similar relationships. However, these models do not
take account of the action of dopamine at synapses. Incorporation of such effects in
our model leads to the situation shown in Fig. 9.8c. Here, the trend, when measured
against a barrage of synaptic input, is better described as one of increased gain at all
input levels.

The story for D2-type neurons is also mixed. Dopamine acting only on intrin-
sic membrane currents is facilitatory (Fig. 9.8e) but this trend is reversed when
synaptic effects are included (Fig 9.8f). Moreover, the D2-neuron relationship is
best described as being a ‘shift’ in a constant gain transfer function.

The preservation of dopaminergic function in going from conductance-based
models to reduced spiking form, is repeated in going up to rate coded neurons
at the systems level. Comparing Fig. 9.8a, c, it is apparent that the D1-type
behaviour in the rate coded model is almost perfectly rendered. It is remarkable
that a single parameter, rate-coded model like that in the first part of (9.2) yields
results comparable with a model which explicitly dissects three dopaminergic
influences. In a previous attempt to make the rate-coded MSN models more realistic
(Humphries 2007) we explicitly incorporated two effects of dopamine on intrinsic
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membrane currents for D1-type neurons, and captured the behaviour in Fig. 9.8b.
However, this model did not explicitly incorporate synaptic effects, and therefore
did not show the behaviour of Fig. 9.8c.

Comparison of Fig. 9.8d, f shows the D2-type behaviour for the rate coded model
preserves the required function shift, but differs by introducing a spurious decrease
in gain of the transfer function. Nevertheless, the overall pattern of behaviour
is quite similar in both models. Therefore, since dopamine in the systems level
model supports the adaptive selection hypothesis, we conclude that dopaminergic
modulation in our spiking model also supports this hypothesis (more readily than
one of control over signal-to-noise-ratio).

This section has shown how it is possible to capture the computational func-
tion of dopamine on non-plastic cortico-striatal transmission at several levels of
description: from highly detailed compartmental models, through reduced spiking
models, to rate-coded neurons. It is apparent that the function dopamine serves in
this respect is well preserved at each level and may be modelled using progressively
more abstract mechanisms. However, it remains to make the link between the
complex web of intracellular signalling that mediates dopaminergic modulation of
the neuron, and the phenomenological descriptions of dopamine that occur even
at the level of compartmental modelling. This is clearly a key challenge for the
interface between computational neuroscience and computational systems biology.

9.4 Multilevel Modelling

The previous section has emphasised the way in which molecular and membrane-
based mechanisms can manifest themselves at higher levels, and may constitute
crucial features of models at these levels of description. In the case of dopamine
modulation, it transpired that its effects could be captured reasonably well in a
phenomenological account using (9.2). However this may not always be the case
and alternative approaches are required.

One possibility is to build a more detailed model at a level low enough
to capture all mechanisms of interest at their native level of description, and
which is sufficiently anatomically extensive to cover all large-scale (system-wide)
interactions that would be included in a higher level model. This was the approach
we took with our large-scale spiking model of the basal ganglia (Humphries et al.
2006). While not as vigorously bottom-up in design as full conductance-based,
compartmental models, the resulting model is sufficiently complex to make it a
virtual ‘experimental preparation’ (see Sect. 9.2.3) and it continues to be ‘mined’
for new insights (Humphries and Gurney 2012).

While such preparation-like models are valuable, mining them can be challeng-
ing because all mechanisms are universally present on a massive scale. It is as if
we are confronted with a high magnification view of a very large piece of brain
tissue without the ability to ‘zoom out’ to lower magnification to see the bigger
picture. This metaphor is the inspiration for another approach we wish to advocate
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here. Thus, suppose, for example, we wish to explore the computations performed
by a particular class of neurons using realistic, conductance-based (compartmental)
models. In principle, it should be possible to study these functions using only a
single model neuron (or at most a small microcircuit of only a few such neurons),
so long as the signal environment of the target neuron model is similar to that which
would occur in a homogeneous model of many thousands of such neurons. The
signal environment has two aspects: the raw encoding scheme (point event spikes
or firing rates) and the patterning and significance of the signals. In the case of
single neuron models, an approximation to their veridical signal environment may
be generated by a network of simplified spiking neurons, as long as they can supply
spike trains with the right patterning (mean firing rate, bursting or tonic etc). We
refer to the single, conductance-based target neuron as the model core. This is then
embedded into a model surround comprising the simplified neuron network.

This core-surround embedding scheme may be replicated recursively (‘Russian-
doll’ like) so that, the large-scale spiking neural network (previously considered a
model surround) becomes, simultaneously, a model core by being embedded into a
rate-coded, systems level model surround. The transition from spikes to rates (and
vice versa) will, of course, require the construction of novel, hybrid model neurons
but this exercise is a plausible one. Thus, a spikes-in to rate-out neuron might be
comprised of a leaky-integrate-and-fire neuron in which the neural membrane (or
some nonlinear function of it) is interpreted directly as a firing rate (rather than being
used to induce spikes according to a threshold crossing). In contrast a rate-to-spikes
neuron could be constructed by equipping a leaky integrator with a time-sampling
event generator, with event probability based on the instantaneous firing rate.

The model core may also be defined, not by spatial localisation, but neural
species (e.g. use a mix of compartmental and reduced neuron models in a micro-
circuit) or, at higher levels, by a functional unit (e.g embed a single nucleus in a
wider brain system).

We have successfully used this approach in our robotic level work, where
biologically plausible basal ganglia models were embedded in surrounds that were
largely engineered to produce realistic signal environment (Prescott et al. 2006;
Gurney et al. 2004b). The basal ganglia models in (Gurney et al. 2001a) have
also been embedded in abstract, connectionist neural network surrounds, in order
to model high level cognitive phenomena (Stafford and Gurney 2007).

9.5 Summary

This chapter has outlined some principled approaches to building models in
computational neuroscience. A recurring theme is that, ideally, we should always
strive to specify a proposed top level function or computation for the target system
(neuron, nucleus, brain system etc). If this is, indeed, possible, then we may or
may not have access to abstract algorithmic/theoretical description of the function.
This then determines a preference for a top down ‘mapping’ onto the biology or



9 Methodological Issues in Modelling at Multiple Levels of Description 279

a bottom up ‘mining’ of potential mechanisms that support the computation. If
no top level function is proposed, we should be using the model to seek one. We
have emphasised that, low level features of the biology may have profound effect
at higher levels, and that their influence may, in some cases, be captured in high
level phenomenological descriptions. This will not in general be true, however, in
which case we might resort to anatomically extensive model ‘preparations’, or seek
a hybrid-level ‘embedding’ of the biological core in a higher level surround.

In any case, whichever approach is adopted, we argue that the raison d’etre
for a particular low level mechanism may not be apparent until it is expressed,
or embedded, in a wider functional domain. Our example here was the way that
membrane dynamics and synaptic effects conspired to give a mathematical form
for dopaminergic modulation of neural function which appeared to support a
computation dealing with action selection – adaptive selection – which is expressed
only at the level of the basal ganglia in toto.

This last observation supplies a compelling reason for a close relationship
between computational systems biology and computational neuroscience. Thus,
the consequences for neural behaviour of the intracellular signalling dealt with in
systems biology will only be fully revealed in higher level models of brain function.
Conversely, phenomenological models of membrane and synaptic function may be
validated against reference (‘gold standard’) models of their molecular substrate.
Finally, whatever opinion the reader has of the specific techniques espoused here,
we would emphasise the importance of thinking about methodological issues in
order to build appropriately motivated models, and extract the maximum benefit
from them.
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Chapter 10
Virtues, Pitfalls, and Methodology
of Neuronal Network Modeling
and Simulations on Supercomputers

Anders Lansner and Markus Diesmann

Abstract The number of neurons and synapses in biological brains is very large,
on the order of millions and billions respectively even in small animals like insects
and mice. By comparison most neuronal network models developed and simulated
up to now have been tiny, comprising many orders of magnitude less neurons than
their real counterpart, with an even more dramatic difference when it comes to the
number of synapses. In this chapter we discuss why and when it may be important
to work with large-scale, if not full-scale, neuronal network and brain models and
to run simulations on supercomputers. We describe the state-of-the-art in large-
scale neural simulation technology and methodology as well as ways to analyze
and visualize output from such simulations. Finally we discuss the challenges and
future trends in this field.

10.1 Introduction

Biological neuronal networks vary in size from that of small and primitive animals
like the roundworm C Elegans with some hundred neurons in its nervous system
to man with some twenty billion neurons in the brain (Fig. 10.1). At least in the
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Fig. 10.1 Scaling of biological brains in terms of number of neurons, number of synapses, and
connection density

mammalian series, from mouse to man, the number of synapses typically scale
proportional to the number of neurons in the system, since the number of synapses
made on average by each neuron, on the order of a few thousand, is practically the
same from mouse to man. Already the mouse brain is quite sparsely connected –
the actual number of existing synaptic connections relative to the pairs of neurons
in the system is only about 0.4%. As we progress upwards in the mammalian
series, connectivity density decreases further. This is in sharp contrast to most neural
network models which have a dense connectivity and where the number of synapses
is typically scaled like the square of the number of neurons.

Real vertebrate neuronal networks also have a complex and intricate structure,
including several different types of neurons and a modular and layered layout,
sometimes adequately represented by a microcircuit as the smallest repetitive unit.
Even a microcircuit, e.g. the hypothetical cortical macrocolumn with a diameter of
some 500 �m, contains tens of thousands of neurons and tens of millions of synaptic
connections. A microcircuit is, by definition, a component in a much larger network
and more than 50% of its synapses may originate from neurons located outside the
local microcircuit. It can still sometimes be studied in isolation, especially when it
can be related to a correspondingly reduced experimental in vitro preparation, e.g. a
cortical slice. But much more often it is in reality embedded in a mosaic of similar
modules and receives afferent input from several sources, and we need to model
such a network of connected microcircuits.

Partly due to our limited computing resources, computational studies have so
far often focused on the cellular and small network level, for instance, on signal
transmission in single neurons and plasticity in single synapses or on information
processing in local microcircuits, such as e.g. the emergence and dynamics of local
receptive fields in the primary visual cortex.

Modeling at the network level poses specific challenges, but it is clear that taking
into account global and dynamic network interactions is inevitable in order to better
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understand the functioning of a neuronal system operating in vivo. Closed loops
within the brain and between brain and environment in sensory-motor control are
abundant, but they only exist on the level of the entire nervous system and can thus
only be simulated in brain-scale models.

It is thus overly optimistic to think that it would be possible to understand brain
function from modeling a local network of some hundred cells, like a cortical
minicolumn, or by dramatically sub-sampling the global network, e.g. by letting
a few model neurons represent an entire cortical column or even area. One specific
problem of using sub-sampled network models comprising model neurons tuned
after their real counterparts, is how to provide sufficient synaptic input current to
activate these model neurons. In a small network we have a very limited number
of presynaptic neurons and synaptic terminals. Thus, either we need to exaggerate
background noise level, connection probabilities or synaptic conductances, most of
the time all of these. This tends to give a noise dominated network with few and
strong signals circulating around, as opposed to the real cortical network where
many weak signals interact. Such deviations from reality can distort significantly
the dynamics of the networks. Thus, in many cases a large-scale model is a more
accurate one than a smaller model.

The starting point for network modeling is the component cells and their
pair-wise synaptic interactions, including transmission and conduction delays and
synaptic plasticity. The level of complexity of model neurons and synapses now
becomes an issue. Given limited computational resources, there is an obvious
trade-off between complexity of the cell and synapse models and the size of the
network. It is a painful fact that a standard PC of today gets unbearably slow as the
model network size grows beyond some thousand cells. Furthermore, the amount of
simulated time needed to study a certain phenomenon grows linearly with the time
span of the phenomenon. This can vary widely, e.g. from a memory recall process
lasting fractions of a second, to induction and expression of long-term memory
which typically occurs over tens of minutes and even longer.

There is some light in the tunnel, however, since one reason for avoiding large-
scale or full-scale simulations is gradually disappearing. The computational capacity
of computers is still growing fast. Reduction of dimensions and growing clock speed
of integrated circuits have contributed to this over many years. This development
may be approaching its limits, but instead the number of processors operating in
parallel is now increasing dramatically. Parallel computing has already reached the
consumer market in the form of specialized graphics processing units (GPU) with
a following drop in prices. Standard PC processors are now multi-core, and it is
quite likely that we will have desktop boxes with thousands of parallel processors in
the next five or so years. Fortunately, neuronal networks represent computationally
quite homogenous computational structures where computation and memory are
predominantly local, which make parallel simulation on cluster computers with
distributed memory relatively straightforward. Thus, in the near future, computer
power will no longer prevent us from putting together and study large and even
full-scale models of global brain networks (Fig. 10.2).
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Fig. 10.2 Increase of computational power and memory of supercomputers over time. Data in
blue and cyan respectively. Log-linear trends indicated as dashed red and green lines. The blue
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to represent each synapse in the human brain with 100 byte

10.2 Terminology for Large-Scale Network Models

As the neuronal network models used diversify and increase in size and complexity,
the need to characterize and categorize them with regard to different aspects
becomes more important. The basic independent dimensions along which such
models are often described include number of components, spatial extent, and level
of biophysical and/or biochemical detail of network components. If the nature of
the model components is specified, the number of dimension is well defined. With
regard to the level of detail there is, however, a considerable range to consider. At
the more fine-grained end, networks may be built from complex compartmental
Hodgkin-Huxley type model neurons and conductance based synapses with ligand
as well as voltage-gated properties, and with different forms of plasticity included.
Even intracellular processes in the form of gene regulatory and biochemical
signaling networks may be incorporated into a detailed neuron model. The model
may comprise several different cell types, each with their typical blend of ion
channels. At the more coarse-grained end, network models may be built from
non-spiking units intended to represent, for instance, a local population of some
hundred neurons, perhaps lumping together several neuron types in one unit. In even
more coarse-grained models an entire cortical macrocolumn or cortical area may be
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represented by a single unit. At intermediate levels of detail we find different forms
of single compartment “reduced” model neurons interacting via simple current of
conductance based synapses. Though most network models today are homogenous
with regard to granularity it is in principle possible and could be useful to design net-
work models with a mixture of granularities, for instance, to embed a microcircuit
modeled with a high degree of detail in a surrounding network of simplified or more
coarse-grained units. This would then constitute a form of “multi-scale” model.

The spatial extent of a network model is also an important feature. It may reach
from a local population or module, like a cortical column, to a network model
representing several connected cortical areas or a whole brain. Since there are quite
good estimates of the number of neurons and synapses in different brain structures,
this measure is related to the number of components. In many cases, however, some
form of sub-sampling is used, meaning that a brain structure is represented by fewer
components than actually are there in reality, thus making these measures again
somewhat independent.

As commonly used nowadays in the literature, however, the term “large-scale”
does not refer to the absolute size of the system under investigation as for example
specified in meters. The term rather expresses the relation between the smallest
resolved unit in the system and its absolute size. A system with a high resolution
(system size/unit size) is large if its absolute size is large because then it contains
a large number of elements. Therefore, a model describing the activity of a whole
brain would not be called a large-scale if it only consists of 100 units, i.e. is very
coarse-grained. Technically one could define a model as large-scale if it taxes the
main memory of a commodity workstation computer. With main memory being
presently on the order of 1 GB this results in a system size of one billion units. A
consequence of this definition is that the size of what is called a large-scale system
changes over time and has been much smaller in the past than it is today.

Let us consider some typical parameters to see what the above notion means in
terms of cortical neuronal networks. The probability that two neurons in the local
cortical network have a synapse is about 0.1. Here, local refers to a diameter of about
1 mm and characterizes a volume in which a neuron can geometrically establish a
local synapse with another neuron. For the sake of argument, we assume here that
all synapses are local, which is not quite true. In a network of 10,000 neurons we
then have a mean of 1,000 outgoing synapses per neuron and a total of ten million
synapses. Such a model easily fits on workstations and laptop computers and would
today not be called large-scale. However, the number of outgoing synapses of a
neuron is not a free parameter. Anatomists have established this value to be in
the order of 10,000 synapses. Fulfilling both constraints, connection probability
and absolute number of synapses per neuron, simultaneously requires a minimal
network size of up to 100,000 neurons. In this system the total number of synapses
is already one billion, two orders of magnitudes larger than in the previous system.
Here we have reached the region of large-scale models according to the above
definition. As researchers in the past have not been able to investigate such systems,
the number of synapses per neuron was usually scaled with the number of neurons
N in the system like cN in order to conserve connection density.
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Fig. 10.3 Memory consumption as a function of network size in double-logarithmic representa-
tion. Below the threshold size of 100,000 neurons (dashed vertical line) the connection probability
is constant at 0.1. Above the threshold the number of synapses per neuron is constant at 10,000.
At threshold the slope drops from 2 to 1. The linear-linear representation in the inset shows the
transition from the quadratic to the linear dependence of memory consumption on network size

Unfortunately in this scaling scheme, the total number of synapses increases
quadratically with the number of neurons (see Fig. 10.3). Therefore even if the
representation of a neuron takes up 1,000 times the computer memory of a synapse,
at a network size of 10,000, the synapses in total take up the same amount of
memory as the neurons. At a network size of 100,000 they already occupy 10
times more memory. This seems like a rather hopeless scenario. However, one
has to realize that at a network size of 100,000 neurons each neuron is supplied
with the biologically realistic number of synapses. Any larger network is less
densely connected and from 100,000 neurons on memory consumption grows only
linearly with network size. Already a few years ago researchers have broken through
this barrier using distributed computing techniques and published the required
algorithms and data structures (Morrison et al. 2005). Today such large-scale
simulations are routinely done in several laboratories using computer clusters.

A network of 100,000 neurons is not only the smallest network in which a
biologically realistic local connection probability of 0.1 can be combined with
a realistic number of 10,000 synapses per neuron, it also cover the volume in
which a cortical neuron establishes a large fraction of its synapses. Although, in
reality a significant fraction of synapses originate outside this local module, in this
anatomical sense we can regard a cubic millimeter of tissue as the elementary unit
of cortex. We come back to the consequences of the relative memory consumption
of neurons and synapses in Sect. 10.4.2.
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10.3 Complexity of Large-Scale Brain Models

A reason sometimes given for staying away from large-scale brain models is that
there would be no point to build a highly detailed model of a brain since it would
be as complex as the system it represents and equally hard to understand. This is,
however, an unimpressive statement, which severely underestimates the value of
having easy access to every detail of a working complex system. Actually, one of
the most severe obstacles to progress in brain science is the great difficulty to access
the brain – especially under in vivo conditions. If we actually had a high fidelity
model of the brain in the computer, the situation would be very different, since
access to its internal mechanisms and operations would be much less of a problem.
Consequently, having such a model would dramatically speed up progress in our
understanding. Unfortunately, or perhaps fortunately, this is a complete utopia, and
we have to bear with real brains and more inexact models for the foreseeable future.

A real and unavoidable but disturbing fact is that, the number of “free parame-
ters” increases as you go from the single cell model to a network with a number of
cell types and different types of interactions between them. Even rather simplistic
conductance based multi-compartmental model neurons comprise tens of equations
and hundreds of parameters. The number of synapses in a big network model
may be counted in billions and they too require some state update equations and
parameters each. Thus, any large-scale network model would contain on the order
of billions of parameters. Even with advanced automated parameter search it would
be hopeless to find a reasonably adequate combination of these massive amounts
of parameters. This appears to put insurmountable demands on the availability of
experimental data to constrain such a model. Fortunately, the situation is not quite
that bad! Neuronal networks are typically described as comprising a quite limited
number of cell types, with basically the same properties but some variation within
the population. The parameter used for one neuron of a certain type is likely to do for
the others as well, possibly with some compact description of a distribution around a
mean. Though this view largely disregards, for example, possible interdependencies
between parameter distributions it makes it possible to work with very large systems.
This principle is also applied to the synaptic interactions as well, though now
we need to consider pairs of cell types. Notably, synaptic conductances are not
determined arbitrarily but are in many cases the result of the action of some kind
of (so far possibly poorly known) learning rule coupling them to historical network
activity. If we can represent this kind of synaptic plasticity rule and provide the
system with a biologically plausible input, the synaptic matrix may be generated by
means of training. An often used alternative is to set up a random connectivity and,
not unexpectedly, the two ways may result in networks with dramatically different
dynamical properties.

However, the good news is that if we adopt the above described strategy, the
number of truly free parameters is more or less independent of the actual number of
neurons and synapses used to instantiate the model. The same averages, distributions
and learning rules hold for the huge network model as for the smaller one.
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Knowledge about the distribution of cell and synaptic properties, of course, becomes
important and is often lacking in available data. On the other hand, the minute details
of e.g. dendritic arborisation of one individual cell is less important than in single
cell modeling, since this is a typical thing that varies within the population. But what
really increases with increasing numbers is the match between model and reality.

Large-scale network models shift the balance so that synaptic complexity takes
over as the limiting factor. Somewhat unintuitive, for really large networks it comes
with moderate extra cost to have complex cell models. Contrary to the case for single
cells and small networks, the solution methods used for, for example, dendritic
integration does not add significantly to the cost of computation, since synaptic
computation dominates (see Sect. 10.4.2).

10.4 Technology for Large-Scale Simulations

10.4.1 Introduction and Background

Occasional publications on the technology for biological neuronal network simu-
lations appear in the literature at least since the end of the 1980s (e.g MacGregor
1987). However, simulation technology is only seriously discussed as a problem in
mainstream neuroscience journals since the middle of this decade. Prior to this time
it was common practice to develop program code for one time use for the problem
at hand or for in-house usage. There was no general awareness of the benefits of
comparing and discussing algorithms, data structures and development strategies in
a formal scientific setting and no forums and funding to do so. Scientists greatly
underestimated the scope of the problem. For an early account of the technical,
infrastructural, and sociological problems see Diesmann and Gewaltig (2002); an
in-depth analysis is outside the scope of the present chapter. The situation began
to change when large-scale neuroscience research projects involving hundreds of
researchers required collaboration on the simulation of neuronal systems between
many laboratories and individuals. It quickly became apparent that there is a
serious lack of knowledge in three key areas: performance, reproducibility, and
sustainability. One of the first reports of the arising discussion in the community is
a review on tools and strategies for the simulation of spiking neurons administered
by member of the European FACETS consortium (see acknowledgements). In this
report (Brette et al. 2007) a group of 22 researchers assembled to develop a minimal
set of network models which any simulation tool in the field should be able to
represent and integrate. In fact it took more than a year before an agreement on
the interpretation of the model definitions was reached and eight tools arrived at the
correct results. In parallel the International Neuroinformatics Coordinating Facility
(INCF) was founded in 2005 with the aim to support and coordinate work on
computer science problems in neuroscience. A first result in the area of simulation
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science was the report by Djurfeldt and Lansner (2007) on the results of the 1st
INCF Workshop on Large-Scale Modeling of the Nervous System. Since then the
number of publications concerned with simulation technology in renowned journal
like Neural Computation is increasing and the journal Frontiers in Neuroinformatics
is a new forum for this discussion. In the past few years we have finally left the dark
decades of computational neuroscience.

10.4.2 Neuron and Synapse Models for Large-Scale Network
Simulations

In large-scale models of neuronal networks the degree of detail of the single
neuron model has traditionally been low. When researchers started to investigate
networks of spiking neurons they first focused on the dynamics of these systems.
Therefore the models had static representations of the connectivity, or plasticity was
introduced by offline changes to the synaptic weights. Aiming at networks with a
realistically sparse connectivity, the typical number of neurons was between 1,000
and 100,000.

With an average spike rate of 1 Hz and 10,000 incoming synapses, a neuron
receives about one input spike in a time interval of 0.1ms. This is the time-scale at
which the neuronal dynamics needs to be updated to reflect the changes at its input
independent of the details of the numerical solver in use. A time step of 0.1ms is
also sufficient to resolve short fast components of neuronal dynamics like the rise
time of post-synaptic potentials. Therefore a computation step size of hD 0.1ms is
commonly used in simulations. If the state of a synapse is described by a single
variable representing the, generally voltage dependent, current or conductance, the
computational load of a neuron is dominated by the synapses. Another 10,000 state
variables used for representing the time course of the potential along the dendrite,
soma, and axon would only double the computational load. However, if we neglect
all the spatial structure of a neuron and assume the system of equations governing a
synapse as linear, we can collapse the state variables of all synapses with identical
dynamics into the state variables of a single lumped synapse (Rotter and Diesmann
(1999) provides a historical account of the idea). A neuron model without spatial
extent is called a point neuron model. It still may have a set of state variables for
each synapses or only a single set for the lumped synaptic state. In the most reduced
version where a synaptic event is represented as a delta-kick of charge, no state
variable is required at all for the synapses. In this view, where the point-neuron
model is derived from the biophysics of a spatially extended model it is natural
that the synaptic dynamics is governed by differential equations and that the state
variables fully capture the complete history of all synaptic events. For researchers
with a background in connectionism and artificial neural networks (ANN) turning
to spiking neuron models in the 1990s this was less obvious. Here, the time course
of a synaptic event was often represented by a finite table of discrete samples not
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constrained by a generating system of equations. Manuscripts using such techniques
are still occasionally submitted to computational neuroscience journals.

The basic form of a point neuron model is the leaky integrate-and-fire model
(Lapique 1907; reviewed by Brunel and van Rossum (2007)). Only a single state
variable, the membrane potential, is required and important features of neuronal
dynamics are already captured: decay of the potential to a resting level, generation
of action potentials, refractoriness, and synaptic potentials of finite amplitude.
Over the years a large variety of point-neuron models has been developed adding
state variables for different purposes. Synaptic events are modeled by exponential,
alpha, or beta functions; either representing the current or the conductance time
course. The phenomenon of adaptation has been addressed by non-linear (Izhikevich
2004) or linear (Kobayashi et al. 2009) equations. Finally, the excitability of the
neuron model has been modified by exponential (Fourcaud-Trocmé et al. 2003)
and quadratic (Ermentrout and Kopell 1984) terms of the membrane potential
near threshold. There are also single compartment versions of the Hodgkin-Huxley
equations. The components can be combined like the ingredients on the menu of a
pizzeria. Overwhelmed by the multitude of flavors some research consortia have
agreed on a reference model. The FACETS project of the European Union, for
example, has decided on the adaptive exponential integrate-and-fire model (Brette
and Gerstner 2005). The modern simulation codes are, however, modular. When
doubts occur whether the observations in a network simulation depend on the details
of the single neuron model, the model can simply be replaced by another one and
the simulation be repeated.

The reduction of biophysical detail to a point-neuron model with lumped
synapses has reduced the computational costs by a factor of 10,000 and enabled
us to study large-scale neuronal networks in manageable computation time. Con-
temporary network models require the synaptic weights to be heterogeneous or
even plastic. Therefore, the usage of lumped synaptic dynamics does not lead to
a reduction of memory consumption by a factor of 10,000; we still need a unit of
memory for each synapse. Once we acquired the capability to simulate networks
without downscaling the number of synapses at around 2005 (Morrison et al. 2005),
the constraint to point-neuron models no longer existed. The same network with N
instead of one electrical compartment per neuron runs roughly N times slower, but
practically requires the same amount of memory. However, this argument neglects
any cache effects. In present day simulation codes the perturbation of cache memory
caused by the delivery of spikes to target neurons is so severe that the processing
of the incoming spike may dominate the computation time for each neuron. In this
case, the addition of a few compartments may not substantially alter computation
time after all. After a decade of work on the simulation algorithms abstracted from
a memory model, the proper layout and sequence of access of memory now comes
into focus of research. The introduction of non-lumping synapses has a similar effect
on the computational load as the use of multiple compartments. Consider a neuron
with one differential equation for the membrane potential and K NMDA-synapses
where the differential equation describing the conductance of a synapse depends on
the value of the membrane potential. Now a system of KC 1 differential equations
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needs to be solved simultaneously. The difference is in the computational load the
researcher needs to invest to achieve a better approximation of nature. While the
segmentation of a neuron model into a few compartments may already capture
significant aspects of the effect of dendritic processing on the spiking behavior of the
cell, hundreds or thousands of synapses need to be equipped with NMDA dynamics
before their effect becomes appreciable.

Mono-layered networks of point neuron models already explain fundamental
features of cortical dynamics (Amit and Brunel 1997; Brunel 2000; van Vreeswijk
and Sompolinsky 1996). These findings fostered the trust in the approximation and
lead to its wide spread use. Recently, some characteristic features of the multi-
layered structure of local cortical network were also explained using point-neuron
models (Potjans et al. 2010). Nevertheless, any neuroscientist suspecting dendritic
interaction as the cause of a particular phenomenon should be aware that today
there is no principal limit in simulating such systems: using three instead of one
compartment per neuron in the worst case triples the computation time, and a
machine capable of storing the single compartment network can also store the other.

Early simulation codes did not distinguish between the representation of the
dynamical equations and the solver used to integrate the equations. Often the
computation step size was identified with a homogeneous small synaptic delay
and implicitly coded in the parameters. The last 5 years have seen a rapid
improvement of this situation, mainly triggered by the European FACETS project
(Brette et al. 2007). State-of-the-art simulation codes now cleanly separate between
the dynamics and the solver. At the end of the nineties it became apparent that many
dynamical systems or sub-systems of relevance for neuroscience are “essentially
linear”; they are linear up to non-linear state changes caused by point events.
Between these point events the system state can be propagated exactly (Morrison
et al. 2007b; Plesser and Diesmann 2009; Rotter and Diesmann 1999). The
equations used to describe the experimental phenomena of spike-timing dependent
plasticity (STDP) and short-term plasticity belong to this class (Morrison et al.
2008).

The first algorithms for the simulation of spiking neuronal networks on a
temporal grid with a fixed spacing h required the spike times to be constrained
to this grid. This was known to cause artifactual synchronization for a long time
(Hansel et al. 1995). The discovery of STDP increased the awareness for this
problem (Brette et al. 2007). Event-driven simulation schemes were proposed to
overcome the problem because in these algorithms spikes are naturally represented
in continuous time. Unfortunately, this lead to the perception that time-driven
simulation schemes are approximate whereas event-driven schemes are precise.
Morrison et al. (2007b) argued that a globally time-driven simulation scheme can
be combined with the representation of spikes in continuous time and defined the
efficiency of a simulation scheme as the computation time required to achieve
a desired accuracy goal. Hanuschkin et al. (2010) further improved the new
algorithm based on a detailed analysis of the computational costs of the various
components of the solver. In addition the authors noticed that the algorithm extends
to neuron models with arbitrarily non-linear subthreshold dynamics, in particular it
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enables the computation of the precise spike sequence of the adaptive exponential
integrate-and-fire neuron model (Brette and Gerstner 2005). These advances are
relevant because until today an efficient globally event-driven simulation scheme
suitable for distributed computing has not been found although the class of neuron
models accessible by event-driven simulation has been greatly expanded (Brette
2007; D’Haene and Schrauwen 2010; van Elburg and van Ooyen 2009). The
solvers for point-neuron models are completed by algorithms for the integration
of STDP (Morrison et al. 2007a), short term plasticity (Morrison et al. 2008) and
neuromodulated plasticity (Potjans et al. 2010). The efficient implementation of
gap-junctions, however, remains an open issue.

10.4.3 Communication in Large-Scale Network Models

At the end of the 1990s the motivation to employ distributed computing was to
aggregate sufficient main memory for large-scale simulations. Nevertheless, once
the technology was available scientists quickly recognized the benefits of a reduced
wall-clock time. This enabled the study of large-scale plastic systems requiring
observations extending over minutes and hours of biological time. However, the
advent of distributed computing also qualitatively changed the work in the labo-
ratory. Researchers are now investigating large-scale systems quasi-interactively,
employing high-performance clusters as super-workstations, in the same way they
used to study single equations on regular workstations before. Ideally increasing
the number of processors by a factor of ten should reduce the required wall-clock
time by an order of magnitude. In fact at intermediate levels of parallelization
researchers even observed supra-linear speed-up. At first sight this seems to violate
the fundamental limit of speed-up dictated by Amdahl’s law. However, distributing
a simulation over a larger number of processors also means that a larger amount
of fast cache memory is available to the simulation. The resulting reduction in
mean latency of memory access compensates for the run time of the components
of the code not reducible by parallelization. One such serial component is the
communication between processors. The best simulations codes available today
require the exchange of data between the processors in steps of the minimal delay
in the network (Hanuschkin et al. 2010; Morrison and Diesmann 2008). The costs
of this component are increasing with the parallelization because for the neuronal
network sizes studied today the neurons local to a processor have target neurons
on an increasing number of processors. The serial components of the numerical
integration of the neuronal dynamics can be sufficiently reduced such that the
costs of communication are the dominating non-reducible contribution. Therefore, a
simulation code well suited for supercomputing is communication bound. Here the
numerical machinery has been parallelized to a degree that a further speed-up is only
possible by an improved communication scheme or better communication hardware.
Ironically this is not the limit prominently discussed in the literature because the
regime of the software where the speed-up grows linearly with the number of



10 Virtues, Pitfalls, and Methodology of Neuronal Network Modeling... 295

processor looks more impressive. In addition the number of operations per second
of a processor declines when communication starts to dominate. Nevertheless, we
need to be aware that the linear speed-up can always trivially be rescued in this
situation if the neuron model or the synapse model is replaced by a more complex
one. We have seen above that models may differ in computational costs by a factor
of 10,000. Alternatively, we can study larger networks to keep the processors from
starving or study the scaled speed-up scenario, also called weak scaling, where the
number of neurons is increased proportional to the number of processors thereby
keeping the number of neurons per processor constant. We have seen in the last
section that for simulations with simple neuron models, the memory consumption
is dominated by the synapses. Consider a system with 1GB of main memory per
processor. With 10,000 synapses per neuron and just 1,000 neurons per processor,
this would allow 100 bytes per synapse. Thus, the representation of synapses should
better be compact, otherwise the simulation may be communication bound just
because we cannot supply the processors with a sufficient number of neurons. Note
that this example specification would also mean that 100 processors are required to
simulate a local cortical network of 100,000 neurons.

So is there a non-trivial sense in which a distributed simulation can be compu-
tation bound? One limit is reached when there is only a single neuron remaining
on each processer and the neuron model is so complex that the time required
by the local solver is still larger than communication time. There are projects
operating in this regime and researchers have developed techniques to overcome
this limit by distributing the equations of a neuron over several processors (Hines
et al. 2008). Another limit is not so much computational but architectural. In the
above considerations we have assumed that all the information on the synapses is
stored on the machine where the postsynaptic neuron resides. This is useful for the
computer systems used in the past decade where the number of processors did not
exceed 10,000 and we can therefore expect a neuron to have a synapse on each
processor. In this case the spikes generated on one processor are of interest for all
the other processors. The 2005 paper by Morrison et al. (2005) uses the CPEX
algorithm for this purpose, but it was later found by Hines (Migliore et al. 2006)
that MPIAllgather() usually implements a much better algorithm. It is crucial for
the parallelization that neurons interact by action potentials and therefore all target
neurons only need to be informed with the same information: the point in time at
which the action potential occurred. The sometimes called AER (Address Event
Representation) based communication was probably invented several times at the
beginning of 1990s in the areas of neuromorphic computing (see (Boahen 2000) and
references therein) and computational neuroscience (e.g. (Bailey and Hammerstrom
1988; Hammarlund and Ekeberg 1998)).

If an all-to-all communication scheme is used a processor needs to find out which
of the presynaptic spikes have local targets. Even if this test required only a single
bit per neuron, this would limit the network size on our example system with 1GB
per processor to eight billion neurons. Therefore, hashing methods are required to
implement an effective data structure. In the context of CPEX Morrison et al. (2005)
already proposed to store with the presynaptic neuron the information on which
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processors the neuron has targets. This enables schemes like CPEX to carry out only
the required point-to-point communications, which will become increasingly impor-
tant as the networks simulated on massively parallel architectures become as large
and sparsely connected as the real mammalian brain and as the inter-processor com-
munication becomes exceedingly sparse. The collective communication schemes
used today synchronize larges parts of a supercomputer which becomes increasingly
costly. For high-resolution brain-scale simulations we need to efficiently map
the hierarchical and spatially organized architecture of the brain circuits to the
architecture of the supercomputer. Domains of the brain coupled with longer delays
require less frequent synchronization and uncoupled domains do not require direct
synchronization at all. Future codes will need to rely on support by the operating
system and the communication hardware for non-blocking communication routines
to reduce synchronization to the required minimum for maintaining causality.

10.4.4 Other Technologies for Large-Scale Neuronal Network
Simulations

The standard neural simulators use the MPI (Message-Passing Interface) and run on
either distributed or shared memory architectures as well as on multi-core and many-
core systems. Indeed, a multi-core PC is a very useful development environment
for such parallel code. Though supercomputers provide extreme performance
and a high flexibility and are enabling tools for simulation of the largest scale
neuronal networks, they are also very expensive, power hungry, and demanding of
space. They are obviously not suitable for embedded implementation and real-time
applications, which is one of the technological end-points of brain-inspired neural
network research and development. Many other technologies have been used for
parallel implementation in this field, and we have surely not seen the end of the
development of alternative solutions. The massively parallel, stochastic and robust
computation performed by biological brains using low-precision and unreliable
components provides challenging computational structures for implementation
using future molecular scale computing devices (Misra and Saha 2010). Here we
review briefly some currently available and developing technologies for large-scale
simulation of neural networks, including neuromorphic hardware.

10.4.4.1 The SpiNNaker Project

A light-weight distributed computational structure based on conventional digital
technology, i.e. the ARM processor, is being developed within the SpiNNaker
project at Manchester university (Jin et al. 2010a, b). The core of this design is
the ARM9 processor, commonly used in today’s mobile phones. The project goal
is to produce a low-power scalable system aimed at simulating neural networks
comprising billions of neurons. Each SpiNNaker chip has 18 identical processing
cores running at 200 MHz and 96K fast cache memory with and it uses off-
chip memory for storage of connections. The general purpose ARM processor
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has been augmented with a multicast, packet-switched and self-timed innovative
communication fabric with on-chip routers (Brown et al. 2010). Rather than every
packet listing all destination addresses, routers make routing decisions based on
the packet’s source address (the identifier of the neuron that fired the spike). The
network itself will deliver the packets to all chips containing neurons that have
synaptic connections with the source neuron.

Being based on a well-established architecture, the design maintains programma-
bility and generality, and different neuronal models and learning rules can be run.
A notable feature of this construction is the asynchronous execution model. There
is no requirement for explicit global synchronization in the computation. This leads
to nondeterministic behavior, a property shared with the biological system being
modeled. Thus far, the largest reported network simulation is of moderate size, i.e.
4,000 Izhikevich model neurons connected by about 100,000 synapses, using 16 bits
fix-point arithmetic and with 1 ms time resolution (Jin et al. 2010a, b).

10.4.4.2 Graphic Processors (GPUs)

In recent years, it has become very popular to use the graphical processing units
(GPU) of a personal computer for scientific computing. GPUs offer a high degree
of parallelism but are restricted in terms of the amount of memory. Some reports
indicate that a spiking neural network simulator on a GPU provides quite some
flexibility, high-performance, and low-cost for large-scale simulation. For example,
it is possible to run a network of 225K Izhikevich neurons with 225M synapses and
synaptic plasticity (STDP) (Nageswarana et al. 2009). The simulator presented was
only 1.5 times slower than real-time for a network of 100K neurons having 10M
synaptic connections with an average firing rate of 9 Hz. The GPU implementation
(on one NVIDIA GTX-280 with 1 GB of memory) was up to 24 times faster than
a CPU version for simulation of 100K neurons with 50M synaptic connections, at
an average rate of 7 Hz. Another study (Fidjeland and Shanahan 2010) reported
that a network of 55K neurons and 55M plastic synapses could be simulated in
real biological time. The performance of GPU solutions is often limited by the
memory bandwidth supported by the GPU hardware rather than the number of scalar
processors. For simulation of larger networks a cluster of GPUs can be employed,
building upon the strategies outlined in this paper.

10.4.4.3 FPGA Implementations

An FPGA (Field-Programmable Gate Array) is a user programmable gate array chip
that can be programmed using a hardware description language (VHDL, Verilog)
to implement any logic function that an integrated circuit could perform. The
component counts on contemporary FPGA chips today reach into the millions
allowing for very complex designs. FPGAs are suitable for low-power neural
simulation since they can take advantage of the massive parallelism inherent in the
spiking neural network (Guerrero-Rivera et al. 2006; Maguire et al. 2007).
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For large networks, the synaptic weight storage is the limiting factor, and external
memory may have to be considered (Cheung et al. 2009). The largest simulations
currently reported are typically of moderate size (like 1,000 fully connected
neurons) and lack synaptic plasticity, but they run an order of magnitude faster than
a standard dual core 3GHz CPU and also faster than some GPU implementations.
The GPU performance is significantly affected by the density of spikes in the active
network, which the FPGA implementation is not (Thomas and Luk 2009).

10.4.4.4 Neuromorphic Technology

Over the years, many efforts have been spent on developing dedicated hardware for
simulation and emulation of neural networks. This is likely a necessary development
for enabling the use of neural networks in embedded technical applications which
require compact, power-efficient, and low-cost designs.

A recent and exciting development of this technology is analog or mixed signal
VLSI implementation. This technology originates in the seminal work of Carver
Mead at Caltech (Douglas et al. 1995) now represented e.g. by work at ETH in
Zürich (Indiveri et al. 2009). Work aiming for large-scale network simulation is
also in progress (Schemmel et al. 2010). In this case, the aim is to achieve a wafer
scale integrated design in analog VLSI, featuring dynamic and plastic synapses
(Schemmel et al. 2007). The network on a wafer will comprise on the order of 180K
adaptive exponential integrate-and-fire model neurons and 40M plastic synapses
with typically four bit precision weights. The speedup factor relative to biological
real time is very high, in the range 103–105. This allows for simulation and training
on massive amounts of input data over extended periods of time. The long-range
and wafer-to-wafer connections are handled by a special purpose FPGA circuit via
1 to 10 Gbit Ethernet links.

The search for the best technology and algorithms to simulate and implement
brain-inspired computational architectures is today intense. It remains an open
question to what extent future designs will build on traditional digital or analog
CMOS technology or on some currently more exotic type of computing substrate,
e.g. based memristors (Jo et al. 2010) or CMOL (Likharev et al. 2003), or on some
combination of these.

10.4.5 Visualization and Analysis of Output from Large-Scale
Simulations

The number of state variables in a large-scale network simulation is typically very
high, with several for each neuron and even each synapse. With a typical time step on
the order of 100 microseconds the amount of generated new values in every update
may be on the order of billions. This implies that logging even a fraction of the state
variables on disk becomes extremely memory and time consuming. In some cases,
like for the spike raster, the output is still quite compact and there are many advanced
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and well-known methods available to analyze this kind of data (for a review see e.g.
Grün 2009). For other types of variables some strategy for sub-sampling over space
and time will be required. The need for storing variables should be balanced against
the opportunities of rerunning the same simulation for inspection of additional state
variables. To cope with this situation we may also perform the required collection,
data analysis, and data compression on-line by computing composite measures and
variables within the simulation itself.

Advanced visualization of output from network simulations have been produced,
for instance, within the Blue Brain Project using high end generic visualization
software (Markram 2006). Yet, despite the apparent usefulness of 3D visualiza-
tion of different network state variables of large-scale neural networks there are
surprisingly few tools available to support this for large-scale network simulations.
Static three-dimensional brain visualization is quite developed in the field of brain
databases and an interesting opportunity would be in situ visualization of dynamic
output from large-scale brain simulations.

Another quite useful strategy to visualize activity in network models with a
significant spatial extent is to synthesize the kind of measures from the simulation
that are comparable to mesoscopic and macroscopic experimental measurements
such as, for instance, local field potentials (LFP), electro-encephalogram (EEG), and
voltage sensitive dye (VSD) signals. This provides a number of new experimental
constraints on the model, in addition to the ones on the cellular, synaptic and
architectural level already used to set it up. In this way, the model helps to connect
such macroscopic measurements with cellular and synaptic dynamics which helps
to interpret and better understand such measurements.

The current toolbox for actually generating experimental measurements from a
neural simulation, i.e for synthetic brain imaging, is today quite limited, but efforts
are being made to expand it and increase the quality of the synthetic measurements
generated. It is indeed a challenging problem in itself, since the biophysical
mechanisms behind these measures are in many cases still unclear. Modelers are
currently also addressing the question of integrating data from different imaging and
measurement modalities, e.g. in the combined analysis of fMRI and EEG (Bojak
et al. 2010; Sotero and Trujillo-Barreto 2008). Below follows a brief description
of some different kinds of brain signals that may be synthesized from large-scale
simulations.

Electrophysiological measures. The electrical activity generated by neural tissue
can be measured in terms of multi-unit activity (MUA) local-field potentials (LFP),
electro-encephalogram (EEG), and magneto-encephalogram (MEG). The source of
such signals is the intracellular potential of neurons, generated by active membrane
currents and synaptic input. The corresponding state variables are available in
a more or less accurate form from most kinds of spiking neuron models. The
extracellular field potential captures at least three different types of activity: single-
unit activity representing action potentials of neurons close to the electrode tip,
multi-unit activity generated by the spiking of small neural populations in a sphere
of 100–300 mm radius, and perisynaptic activity of a neural population within
3 mm of the electrode tip, available in the low-frequency components of the
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extracellular field potential. Methods have been proposed to estimate the LFP
from transmembrane currents of simulated multi-compartmental model neurons
(Lindén et al. 2010) as well as from the local network spiking activity alone (Rasch
et al. 2009). MEG and EEG signals derive from the net effect of ionic currents
flowing in the dendrites of large number of neurons during synaptic transmission.
Computational models for estimating EEG and MEG signals have been developed
(Babajani-Feremi and Soltanian-Zadeh 2010; Dehghani et al. 2010)

VSD imaging. Voltage-sensitive-dye imaging offers a method to measure optically
transmembrane potentials of neural tissue with a high spatial (20–50 �m) and
millisecond temporal resolution. These measurements can be useful in studying
function at the level of an individual cell, for determining how groups of neurons
generate a behavior, and for studying the dynamic behavior of populations of
neurons. The physics for generating the VSD signal is fairly straight-forward and it
can be synthesized with relatively high accuracy (Chemla and Chavane 2010).

Ca-imaging. Changes in intracellular calcium (Ca) concentration following synap-
tic and supra-threshold activity are mediated by a wide range of processes and can
be imaged using Ca-sensitive fluorescent dyes. Such signals can be synthesized
from neuron models featuring Ca-channels and Ca-pools filled up, for instance,
via voltage gated or NMDA receptor gated Ca-permeable channels. Ca-dyes may
respond with high temporal resolution, but because they can act as Ca-buffers, the
calcium signal in the presence of dye may substantially outlast the change in the
cytosolic calcium concentration that would occur in the absence of the dye. In wide-
field imaging the temporal resolution may be limited by the acquisition rate of the
scanning. Ca-imaging can be used to visualize sub-cellular, single cell, and network
activity (Göbel and Helmchen 2007; Homma et al. 2009; Stettler and Axel 2009).

BOLD and PET. Functional magnetic resonance imaging (fMRI) techniques
are non-invasive and based on the assumption that changes in spike activity are
accompanied by modulation in the blood oxygenation level-dependent (BOLD)
signal. The exact relationship between neural activity and BOLD is, however, still
quite unclear. This relative uncertainty about the relation between neural activity and
BOLD prevents to device more precise synthetic BOLD signals from a simulation
(Buxton et al. 2004; Sotero and Trujillo-Barreto 2008). Another non-invasive
method to measure brain activity is positron-emission tomography (PET) and an
attempt to synthesize this signal has been made as well (Arbib and Grethe 2001).

10.5 Two Examples of Large-Scale Simulations

In the early days of neural modeling, memory and computational capacity of
computers allowed only simulation of tiny networks, i.e. with some tens of model
neurons connected by some hundreds of synapses. It was a long time, before
supercomputers became used for this application – one of the earliest published
examples is the work by Roger Traub in the late 1990s (Traub et al. 1999). Later
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prominent examples of the use of parallel computing for brain simulation include
the extreme size Beowulf cluster simulations by Eugene Izhikevich (2006), the
biophysically detailed simulations of a cortical column performed within the Blue
Brain Project headed by Henry Markram (King et al. 2009), and the cat cortex sized
simulations by the Modha group at IBM (Ananthanarayanan et al. 2009).

As these examples demonstrate, research activities related to supercomputer sim-
ulations of the brain are developing rapidly and will likely bring forward new tools
and knowledge about the brain in the next few years. In the remainder of this section,
we describe somewhat more in depth such research performed in our own labs.

10.5.1 A Large-Scale Model of Cortical Layers 2/3

Associative memory is one of the fundamental operations of neocortex and this
function has been modeled repeatedly in the neural network community (Lansner
2009). Most of the models studied were, however, based on abstract non-spiking
units and one of the first cortical associative memory simulations of a network model
composed of biophysically detailed network components was published in the early
1990s (Lansner and Fransén 1992).

In 2006, building on this early work, a very-large scale simulation of a spiking
modular associative memory model of layer 2/3 neocortex, comprising 22 million
neurons and 11 billion synapses was performed (Djurfeldt et al. 2008). The model
integrates functional constraints suggested by a top-down view of the neocortex as
an associative attractor memory network and neurobiological constraints provided
by neuronal and cortical anatomy and physiology at multiple scales.

This cortex model is modular with smaller modules – functional columns,
minicolumns – as the smallest local microcircuits bundled into larger complexes –
hypercolumns or macrocolumns (Lundqvist et al. 2006). Minicolumns comprise
on the order of 30 pyramidal cells in layer 2/3 recurrently connected with a
density of 10–25% of excitatory synapses. Macrocolumns comprise some hundred
minicolumns and a total of hundred basket cells provide lateral inhibition and
competition between the local minicolumns, thus turning the hypercolumn into a
soft winner-take-all structure.

Memory patterns stored in the model typically engaged one minicolumn unit
in each hypercolumn and these units were connected via long-range excitatory
synapses, thus forming a set of distributed cell assemblies. There was no long-term
synaptic plasticity in the network model. Instead the memory matrix was formed
by training an abstract non-spiking isomorphic network model and importing the
resulting (long-range) connection matrix into the spiking network. A long-range
connection between two distant minicolumns was formed stochastically if the two
minicolumns belonged to the same pattern. Thus, each pyramidal cell received
sparse long-range excitation from other cells in the memory pattern it was part
of. Futher, units in different memory patterns were connected in an inhibitory
fashion via dendritic targeting inhibitory interneurons, so called regular spiking non-
pyramidal (RSNP) cells – corresponding to e.g. double bouquet and/or bipolar cells.
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Neurons were modeled according to the Hodgkin-Huxley formalism and had
between three and six compartments. The different types of neurons and synapses
in the model were tuned to mimic their real counterparts. Pyramidal cells and
dendritic targeting inhibitory interneurons featured calcium currents and calcium
gated potassium channels to make them adapting. Glutamatergic transmission was
mediated via AMPA gated as well as voltage dependent NMDA synapses and
synapses between pyramidal cells were subject to fast synaptic depression.

This model was simulated using an MPI based simulator – SPLIT – developed
in the mid-1990s with the aim of exploring how to efficiently use the resources
of parallel computer architectures for large-scale biophysically detailed neuronal-
network simulations (Hammarlund and Ekeberg 1998). The setup of this large size
network model on the cluster made use of a novel abstraction, the connection-set
algebra, which implements an efficient domain decomposition of the connectivity
metadata (Djurfeldt 2012). It was implemented in a parallel fashion on the cluster
to make the setup of the network efficient, but it still took up to an hour to perform
the setup before starting the simulation itself.

The model was run on an IBM Blue Gene/L cluster at IBM Rochester, Minnesota,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and
at The Royal Institute of Technology (KTH), Stockholm. Speedup was linear for
models up to four million neurons and two billion synapses on up to 4K processors.
The largest simulation using 8,192 processors of the BG/L system was run at
the IBM Thomas J. Watson Research Center in Yorktown Heights. Its 22 million
neurons and 11 billon synapses corresponds to a cortical surface area of about
16 cm2, comparable in size to the cortex of a small mammal. The simulation,
running in coprocessor mode, occupied 336 MB of memory at each node, giving
a total of 2.8 TB. The setup time for this model was 6,927 s and it took 5,942 s to
simulate one second of activity. While real pyramidal cells have 10,000 synapses,
the average number of synapses per neuron was only 500 in this model because
of the orthogonality of the memory patterns and the lack of connections to other
cortical areas. The speedup dropped for the 8K processor simulation but still reached
almost 80%.

In addition to pattern completion, the model had all the functionality usually
ascribed to attractor networks, such as noise reduction and pattern rivalry. Recall
times were comparable to psychophysical measurements, i.e. a couple of hundred
simulated milliseconds. A stable ground state co-existed with the active memory
states (Fig. 10.4). The ground state was characterized by population oscillations at a
frequency of approximately 15 Hz, where the oscillations of individual minicolumns
are phase-locked to other minicolumns in the hypercolumn. In this state, pyramidal
cells fired at about 0.1 Hz, so the 15-Hz rhythm emerges as a collective network-
level phenomenon.

In the active state, only the pyramidal cells of a single minicolumn were active
in each hypercolumn. Pyramidal cells fired at 10–15 Hz, basket cells at 50 Hz,
and RSNP cells at 25–35 Hz. One particularly interesting phenomenon, which
consistently emerges in these simulations, is a rhythmic modulation of pyramidal
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Fig. 10.4 (a): Spike raster of a subsample of 5,880 pyramidal cells is shown. In the beginning of
the simulation the non-specific ground state was active. When a part of a pattern was stimulated
it completed and was then persistently active, even after the stimulation terminated. (b): After
stimulation, the foreground pyramidal cells elevated their firing rates and the background pyramidal
cells lowered them as seen in the activity histograms (upper foreground, lower background). (c):
Synthetic LFP spectrograms. The network started out in the ground state and entered an active state
after 2 s due to stimulation. The signal was produced from 30 pyramidal cells entering foreground
(left) and background (right) respectively

cell activity with a frequency of 25–40 Hz (Fig. 10.4c). It occurs only during active
states and is reminiscent of the gamma-band activity observed during e.g. a working
memory task.

Despite the regularities seen on a network level, the firing of individual pyramidal
cells was Poisson distributed in the active state and showed exponentially distributed
ISIs of pyramidal cells in the foreground. This result is consistent with physiology.
One particularly attractive feature of the model is that it is robust to the perturbation
of parameters, which is to be expected from a biological system. One answer we
sought was whether such a large patch of cortex could maintain a stable attractor
state despite the significant propagation delays caused by axonal conduction time.
The simulation showed that this is indeed the case. This model is still under
investigation with daily runs on the BG/L system at KTH and elsewhere. The
networks are then typically smaller than described above, up to 100,000 neurons
and some ten million synapses (Lundqvist et al. 2010a, b).
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10.5.2 A Minimal Model of the Multi-layered Local Cortical
Network

In the middle of the 1990s van Vreeswijk and Sompolinsky (1996) simultaneously
with Amit and Brunel (1997) developed the balanced random network model to
explain the asynchronous and irregular firing patterns of cortical neurons and the
accompanying large fluctuations of the membrane potential. The model consists of
only two types of neurons, an excitatory and an inhibitory population. The network
is balanced in the sense that the outgoing synapses of excitatory and inhibitory
neurons differ in sign and the lower number of incoming inhibitory synapses is
compensated by a larger weight. The prominent effects can already be observed
when each neuron establishes the same number of synapses with random source
neurons and the dynamics of excitatory and inhibitory neurons is exactly identical.
Up to the present day the model serves as a reference for theoretical investigations
of the recurrent dynamics of cortical activity. A stream of publications explores
the correlation structure of spike trains, the spectral properties of the activity, and
the interaction of activity and plasticity on the basis of this model. Nevertheless, a
fundamental limitation of this model is that it can not make any statements about
the consequences of the multi-layered organization of the cortex. A considerable
amount of literature is now available on the connectivity of the different cell types in
the local network obtained by different experimental methods and in different prepa-
rations. However, theoreticians struggled to extract a consistent picture from these
data and models based on individual data sets capture only part of the layers and lead
to activity patterns hard to reconcile with the neuronal activity observed in vivo.

In this situation (Potjans and Diesmann 2011) decided to construct a minimal
model of the multi-layered cortical network as an extension of the balanced random
network model only taking into account the layered architecture. Accordingly the
model has an excitatory and an inhibitory population of neurons in each layer.
The single neuron dynamics of all neurons is identical, all excitatory postsynaptic
potentials have the same amplitude, and the inhibitory postsynaptic potentials differ
only by sign and a single scaling factor. The model comprises the layers 2/3, 4,
5, and 6. Thus, there are eight populations of neurons in four layers where the
anatomical thickness of each layer and the neuron densities are taken from the
literature. The model size in terms of cortical surface area determines the absolute
size of the neuronal populations. The two most comprehensive connectivity data
sets available are Binzegger et al. (2004) based on anatomical considerations and
Thomson et al. (2002) based on electrophysiology. At first sight, the data sets
do not seem to be in good agreement. The electrophysiological data set reports a
probability of 0 for many connections, but for connections where synaptic contacts
are found at all the probability is substantially higher than in the anatomical data
set. This discrepancy is explained by the different experimental techniques. The
data of Thomson et al. are collected by randomly inserting electrodes into two cells
within a distance of not more than 100 �m in acute cortical slice preparations. A
current pulse applied to one cell is adjusted to elicit an action potential. If the second
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neuron responds with a postsynaptic potential a connection is found. Statistics is
collected by repeating the experiment many times. In contrast Binzegger et al.
reconstruct the complete arborization of neurons previously labeled in vivo. For
each target cell type the authors first determine the fraction of dendritic surface
area the cell type contributes to a particular layer. Next they count the number
of synaptic butons of a particular source cell type in the same layer. Assuming a
random distribution of butons over the available dendritic surface Binzegger et al.
compute the probability that neurons of the two cell types establish a synapse in this
layer. The sum over all layers is the connection probability. As the authors attempt
to reconstruct the full local dendrite, the range of measurement captures essentially
all possible connection sites and spans a radius of up to several millimeters. Both
measures assign a probability to the connection between two cell types irrespective
of the lateral distance of the cell bodies. Therefore the probability needs to be
interpreted as the average connection probability of the cells within the sample
radius. Independent earlier studies demonstrate that the connection probability falls
off with the distance of the cell bodies with a Gaussian profile.

Based on this additional literature Potjans and Diesmann argue that the
discrepancies in connection probability between the data sets of Binzegger et al.
and Thomson et al. are due to the different sample radii. The authors find that the
two parameters of a hypothetical common Gaussian profile are uniquely determined
by the average connection probabilities in the two data sets and the two sample
radii. The resulting connection probability at the origin and the space constant are
indeed in good agreement with the estimates of the earlier studies. Now the two
data sets can be scaled to the same model size by deciding on a particular radius.
Nevertheless the idea of the model is to construct a random network specified
by the 64 average probabilities, one for each combination of cell types. With
increasing models size the number of local synapses incorporated by the model and
the recurrent circuit becomes more complete. Simultaneously though the average
connection probability drops and the lateral structure of the network can eventually
no longer be ignored. Potjans and Diesmann therefore settle at a model size where
90% of the local synapses are explained. This corresponds to a piece of tissue below
a square millimeter of cortical surface and an average connection probability of 0.1.

Although the data sets of Binzegger et al. and Thomson et al. are overall in
good agreement, some connections still exhibit large differences. Predominantly
these are inter layer connections from excitatory to inhibitory cells where Thomson
et al. report a higher connection probability than Binzegger et al. Potjans and
Diesmann attribute this pattern to a systematic bias of the anatomical method to
assign synapses to excitatory target cells. The reason is that excitatory neurons have
larger dendrites and are therefore favored by a random distribution of synapses over
the dendritic surface available in a layer. Nature, however, may not work in this way,
in the cortical wiring process some cell types may specifically address inhibitory
targets. In order to quantify such a preference Potjans and Diesmann introduce the
measure of target specificity as the difference between the probability of neuron to
target an excitatory cell and the probability to target an inhibitory cell in the same
layer normalized by the sum of the probabilities. The measure is C1 if a neuron
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Fig. 10.5 Minimal multi-layered model of the local cortical network. (a) Model definition. Layers
2/3, 4, 5 and 6 are each represented by an excitatory (blue filled circle) and an inhibitory (red filled
circle) population of model neurons. The number of neurons in a population is chosen according
to Binzegger et al. (2004) based on the countings of Beaulieu and Colonnier (1983); Gabbott and
Somogyi (1986). Input to the populations is represented by thalamo-cortical input targeting layers
4 and 6 and background input to all populations. Excitatory (blue) and inhibitory (red) connections
with connection probabilities >0.04 are shown. The model size corresponds to the cortical network
below 1 mm2 surface. (b) Raster plot of spiking activity recorded for 400 ms of biological time
of layers 2/3, 4, 5 and 6 (from top to bottom; blue: excitatory, red: inhibitory). Relative number of
displayed spike trains corresponds to the relative number of neurons in the network (total of 1862
shown)

exclusively targets excitatory neuron, �1 if it exclusively target inhibitory neurons,
and 0 if there is no preference in establishing a connection. The target specificities
Binzegger et al. are all positive whereas they are more balance for Thomson et al.
These insights are used to compile an integrated map from the two data sets reducing
measurement error and bias where possible. For some connections also further
data based on 2-photon imaging are taken into account. The resulting network
structure is illustrated in Fig. 10.5a. There is strong recurrent connectivity within
layers and the inter layer connectivity is mainly made up of excitatory projections.
Potjans and Diesmann notice that some projections have a pronounced negative
target specificity, especially the ones forming what the authors call the feedback
projections. These run opposite to the classical feedforward pathway from layer 4
up to layer 2/3 down to layer 5 and then 6.

Simulations of this system where external synapses are replaced by a direct
current result in an asynchronous irregular state of spiking activity accompanied
by large fluctuations of the membrane potential without further fine tuning. Thus,
characteristic properties of the mono-layered balanced random network model are
conserved. The spike rates are different in the different layers and inhibitory neurons
have a higher spike rate than the excitatory neurons (Fig. 10.5b). The distribution
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of spike rates across layers is in good agreement with experimental in vivo data.
In particular the model reproduces the very low firing rates of layer 2/3 which
are hard to achieve in a mono-layered model. Previously, the higher spike rate of
inhibitory neurons has been attributed to single neuron properties like shorter time
constants or a lower spike threshold. The study by Potjans and Diesmann shows
that the experimentally determined structure of the network is sufficient to explain
the elevated spike rates of inhibitory neurons. When the negative target specificity
of the feedback projections is artificially removed the spike rates explode and a
globally synchronized state emerges. If the increased excitation in the network is
now compensated by increasing the scaling factor of the inhibitory postsynaptic
potentials, the spike rates can be stabilized again at reasonable levels, the pattern of
spikes rates across layers, however, is no longer compatible with the experimental
data. Hence, the specific target type selection is required to achieve a stationary state
compatible with in vivo recordings of spiking activity.

In a second simulation study Potjans and Diesmann stimulates the network by a
train of spikes mimicking thalamic input arriving in layers 4 and 6. In response to the
stimulus a pulse of activity propagates through the layers first activating layer 4, then
simultaneously layers 2/3 and 5, and finally layer 6. The activation of the inhibitory
neurons in a each layer follows the activation of the excitatory neurons and both end
before the stimulation has even ended. Removing the specific target type selection
destroys this crisp activation pattern. The activity shows a clear oscillatory structure
and well outlasts the duration of the stimulus. Potjans and Diesmann analyze the
interplay of excitation and inhibition in the multi-layered system and summarize
the interaction as a handshaking. When a layer receives an excitatory message from
a previous layer the receiving layer responds by exciting the inhibitory neurons of
the sending layer as a handshake thereby terminating the activity of the sender.

This minimal multi-layered network model derived in a purely bottom-up fashion
is already in use as building block in several other projects. The model may be
a useful replacement of the mono-layered balanced random network model if a
relation to mesoscopic measures like the local field potential needs to be made or
the targets of functionally different inputs, for example top-down versus thalamic,
need to be distinguished.

10.6 Challenges and Future of Large-Scale Simulations

Today large-scale models are either coarse-grained representations of brain-scale
structures or attempting full-scale representations of local networks. The next
generation of models, however, must combine both features: the models would be
full-scale with respect to fundamental entities like the synapses and large enough to
close functional circuits at the brain-scale. The capability to carry out simulations
of such models marks the beginning of a new era of brain research. Now the
behavior of a model can be studied in closed-loop interaction with the environment
and at the same time the resulting activity and plasticity can be observed and
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compared to experimental data. This breakthrough is enabled by the roadmaps
of supercomputer development for the next decade and the rapid experimental
progress in uncovering the anatomy of the brain. At present data obtained with
different techniques and at different spatial and temporal resolutions like fMRi,
electrophysiology, 2-photon imaging, and electron microscopy cannot quantitatively
be compared because no models spanning the scales and connecting structure with
dynamics are available. Here supercomputers will work as data integration facilities.
Inconsistencies between data sets can be discovered and resolved and as more
data are coming in the models are refined. What are the challenges for simulation
technology and more generally computational neuroscience to bring such models
into existence?

The major challenges may be rather organizational and cultural than technical.
In the past there has been no systematic build-up of knowledge on simulation
technology for computational neuroscience in the literature. The reason for this
is that generally senior researchers and journals did not consider the development
of simulation technology as a relevant part of the science. Consequently, little of
the knowledge created over the last 15 years was published, research groups had
no chance to learn from each other and reinvented the wheel multiple times. As
technologies were not subject to the proven scientific method of objective evaluation
and comparison, progress was slow. Only in the last 2–3 years we have seen
substantial progress. International committees have identified software as a bottle-
neck of neuroscience and slowly a culture of rigorous evaluation and publication
is emerging. The foundation of the INCF and dedicated journals like Frontiers
in Neuroinformatics are visible results, but also established journals like Neural
Computation are publishing an increasing amount of high quality technological
papers. Authors are still struggling to find good methods of communicating their
insights; publications vary greatly in style and quality. It will be our task for the
coming years to nurture this aspect of computational neuroscience and to teach not
only the technologies but also the state-of-the-art of communicating them to the next
generation.

The more advanced simulation systems we have available include formal test
suites enabling the verification of their integrity. These enable the developer to
make sure that the inclusion of a new feature does not break existing features.
Furthermore, it also allows the researcher to verify that the software works as
promised in the particular laboratory of choice. Having said this we need to realize
that the present test suites mainly test fundamental properties of the simulation
engines, like for example the ability to transmit a spike form neuron A to neuron
B with a predefined delay. The tests rarely reach up from the technical level of
communication and numerics to tests of invariants of neurobiological entities with
little internal structure like the neurons in a simulator for point-neuron models.
This is often due to the fact that for network models we just do not know what
useful invariants are. Nevertheless, even for simple systems like an isolated neuron
where the incoming synapses are governed by STDP and supplied by Poisson
spike trains it is cumbersome to formulate the equilibrium distribution of synaptic
weights as an invariant of a test script. In this situation we may have a good
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analytical approximation of the distribution at hand but the test script requires a
considerable amount of code for model specification, simulation, data recording,
and statistical analysis. The required effort rapidly increases for more complex
models. The challenge is to develop more expressive simulation languages which
enable the researcher to formulate simulation experiments and tests using concepts
of the neurobiological problem domain with few lines of code. Progress in this
area will also increase the reproducibility of simulation results in the sense that the
description of a simulation experiment is not only understandable by the computer
and the authors but also by their colleagues.

Correct simulation results still need to be communicated to the scientific
community in order to advance research. It has been recognized (De Schutter 2008;
Nordlie et al. 2009) that reproducibility is a problem in computational neuroscience.
The chances to be able to reproduce the results of a published work without personal
contact to the original authors are slim. This has been known in the community
for several years – every practitioner privately tells a story of a personal failure to
reproduce the work of others, but only recently researchers dared to speak up in
public. The reason for this situation is not laziness or malpractice of the authors.
We are just lacking the formal tools to describe complex models in a way that is
understandable and at the same time captures all the details and is free of hidden
assumptions. First important steps in addressing this issue are the development of
NeuroML (Gleeson et al. 2010) and the introduction of the Nordlie tables (Nordlie
et al. 2009). At present a task force of the INCF program on multi-scale modeling
composed of the experts in the field is working towards a first version of a model
description language suitable for complex large-scale networks.

In this chapter we have predominantly taken the bottom-up perspective of
constructing the brain from its constituents. Implicitly we have assumed that the
level of synapses and neurons or equipotential compartments of the latter is a useful
lowest level. Obviously, for a given scientific question this is not guaranteed to be
a reasonable choice – the dynamics of molecules and the transport inside the cell
may be of importance as well. Strictly speaking, equipotential compartments are
not even neurobiological entities but result from a specific choice of numerical
accuracy. Furthermore, it is unlikely that following a pure bottom-up approach,
brain function will suddenly emerge. We may never have enough data to sufficiently
constrain the system. In practice scientists are also following top-down approaches
where guided by observations of system behavior a network model is constructed
exhibiting the desired function (Noble 2006). The danger here is that the model
structure may be arbitrary because there are potentially many different structures
implementing the same function. Therefore research programs need to combine
aspects of both approaches. Multi-scale simulation software is required to identify at
which level of description a certain phenomenon can be explained. Also individual
simulations of brain-scale networks may need to be multi-scale. For the study of
the molecular dynamics inside a nerve cell it may not be affordable to simulate the
embedding network providing the required activity environment on the same level
of description. When models of different components of the brain are combined
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to create a closed functional circuit, the models may not all be available on the
same level of description: some may originate from bottom-up reconstruction others
maybe the result of top-down arguments.

In present publications we seldom see that researcher use network models
developed by other research groups to create more complex structure explaining
higher-level features. This reuse of components seems to be mainly restricted to
the level of neuron and synapse models. One reason may just be the complexity
barrier of interfacing the various models very similar to the problems designers
face in building large software systems (Winograd 1975). In order to overcome this
situation we need to learn to build on the work of others and to learn to think in terms
of modules which can be reused by other research groups. This requires changes in
the mindset of researchers but software tool like MUSIC (Djurfeldt et al. 2010) and
PyNN (Davison et al. 2009) are first software tools supporting the idea. The next
generation of models is more likely to be created by international research consortia
than individual groups.

An obstacle for progress in large-scale simulation is related to the traditional
funding schemes of research. For the reasons discussed above there are still little
resources directly available for the development of simulation technology. With the
increased awareness of the software bottleneck in neuroscience this will hopefully
change over the next few years. There is however a structural problem remaining.
The software development today is to a large extent carried out by PhD students
and postdocs. While the creation of new algorithms is now a valid target and
leads to publishable results other aspects of the software life-cycle are not. The
step of turning a new algorithm into a reliable and documented software product
which can be used by others and maintained for a long term is standard practice of
software engineering and not of scientific interest. Sustainment, not only theoretical
sustainability, becomes the more important the more scientific progress depends on
simulation. The critical and routine tasks cannot and should not be done by our
precious students and postdocs but left to professional hands (Cannon and Gewaltig
2011). In the experimental branch of neuroscience it already has a long tradition
that, for example, amplifiers and electrodes for electrophysiology are manufactured
by dedicated companies and research funds can be used to purchase these products.
This is an organizational challenge of simulation science we have to overcome.
Whether commercial companies, dedicated facilities at research institutes equipped
with long-term funding, or other mechanisms are a suitable needs to be discussed
and tried.

The challenges ahead for large-scale brain modeling and simulation are truly
exciting. We have shown that the ability to integrate experimental data from many
sources and the capability to close the functional loop between the brain and the
environment will qualitatively change the impact of simulation science on brain
research. However, we also observe a second trend. So far computational neurosci-
entists have been busy with transferring established methods of supercomputing and
software engineering into neuroscience. Eventually, we may be able to give back.
The development of technology and reliable simulation environments coping with
the multi-scale nature of the brain may stimulate the field of simulation science as a
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whole. Understanding how the hierarchical and recurrent communication pathways
of the brain can be mapped to supercomputers and thereby learning more about
brain function may inspire the design of brain-like and “intelligent” machines,
implemented in efficient, compact and low-power neuromorphic hardware for use
in many different and novel applications.
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Chapter 11
Co-operative Populations of Neurons: Mean
Field Models of Mesoscopic Brain Activity

David T.J. Liley, Brett L. Foster, and Ingo Bojak

Abstract While the basic units of computation in the brain are the neuronal
cells, their sheer number, complexity of structural organisation and widespread
connectivity make it difficult, if not impossible, to perform realistic simulations of
activity at millimetre range or beyond. Furthermore, it is becoming increasingly
clear that a range of non-neuronal and stochastic factors influence neuronal ex-
citability, and must be taken into account when developing models and theories
of brain function. One answer to the these persistent difficulties is to model cortical
tissue not as a network of spike-based enumerable neurons, but to take inspiration
from statistical physics and model directly the bulk properties of the populations
constituting the cortical tissue. Such an approach proves compatible with many
experimental recording techniques and has led to a successful class of so-called
“mean field theories” that, when constrained by meaningful physiological and
anatomical parameterisations, reveal a rich repertoire of biologically plausible and
predictive dynamics. The aim of this chapter is to outline the historical genesis of
this important modelling framework, and to detail its many successes in accounting
for the experimentally observed neuronal population activity in cortex.
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Not only is it not proven, but it is highly unlikely on general biological considerations, that
a special sensory function is related to a cell type of a particular structure. The essential for
the elaboration of any cortical function, even the most primitive sensory perception, is not
the individual cell type but cell groupings.

Korbinian Brodmann (1909)

. . . the effective unit of operation in such a distributed system is not the single neuron and
its axon, but groups of cells with similar functional properties and anatomical connections.

Vernon B. Mountcastle (1997)

11.1 Introduction

Ever since the formulation of the neuron doctrine by Santiago Ramón y Cajal,
Rudolf von Kolliker and others (López-Muñoz et al. 2006), neuroscience has
strived to understand how consciousness and cognition arises out of the myriad and
complex interactions between neurons of the central nervous system. Beginning
with the work of McCulloch and Pitts (1943), in which single neurons were
conceived as simple fixed threshold binary state devices organized into networks
of great structural complexity, and culminating in the massively detailed single
neuron models of the Blue Brain Project headed by Henry Markram (2006), brain
function has been assumed to emerge out of the activity of networks of neurons.
This has been an enormously successful paradigm and has led to models of great
computational complexity and sophistication. However, it is becoming increasingly
clear that a range of non-neuronal and stochastic factors and elements influence
neuronal excitability and that these must be taken into account when developing
models and theories of brain function, if we are to meaningfully simulate emergent
neuronal activity. For example, it is now known that the supporting non-neuronal
elements of cortical tissue, the glial cells (Perea et al. 2009; Perea and Araque 2010),
interact synaptically with cortical neurons to influence the patterns of neuronal
firing. Further, while the firing of individual neurons is regulated by deterministic
factors their synaptic interactions may well not be – the reliability of synapses can
be as low as 1%, i.e., only 1 in 100 pre-synaptic action potentials actually elicits a
postsynaptic response (Branco and Staras 2009).

The problem is how to deal with this significant added complexity in the presence
of often limited and non-specific empirical data. One possible solution has been
to not consider cortical tissue as an network of enumerable neurons interacting
by the transmission of spikes, and instead consider cortex in terms of a bulk
or ensemble dynamics, such as the mean firing rate (and/or its moments) of a
spatially circumscribed population of neurons (Freeman 1975; Nunez 1995; Deco
et al. 2008; Coombes 2010). Such a rate-based reconfiguration has a number of
advantages: (1) modelling populations of neurons corresponds more closely with
the generally accepted contention that behaviour emerges out of the macroscopic
manifestations of neuronal activity, (2) modelling the behaviour of populations of
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neurons implicitly deals with the unreliability of synaptic interconnections and
incorporates the effects of non-neuronal elements, and (3) the spatial scale of
modelled populations of neurons corresponds closely with the milli- to centimetre
scales of spatial resolution of the non-invasive neuroimaging modalities typically
utilised to interrogate brain function, like functional magnetic resonance imaging
(fMRI), MEG (magnetoencephalogram) and EEG (electroencephalogram).

Describing cortical neuronal activity in terms of population averages gives rise
to a class of models broadly known as mean field theories (Deco et al. 2008).
Originally arising out of mathematical models of ferromagnetism in statistical
physics, such models approximate the specific input a neuron receives from other
neurons by the average activity in a neuronal surround defined by patterns of
axonal and dendritic branching. In this way interactions between individual neurons
are replaced by effective averages – the mean fields, i.e., cortical neurons can be
viewed as “sampling” the activity of nearby populations of neurons based on the
mean geometry of the axonal and dendritic arborisations. Thus the dynamics of
populations of neurons are driven by mean fields, which are in turn determined
by the activity of populations of neurons. The current mathematical approach
for formulating equations of motion for the activity of neuronal populations or
“masses” stems principally from the work of Wilson and Cowan (1972, 1973),
Nunez (1974a), Freeman (1975) and Amari (1975, 1977). The resulting so-called
mass action or neural field theories have formed a basis for the biomathematical
exploration of macro- and mesoscopic neuronal dynamics. Mesoscopic neuronal
activity is typically defined to be intermediate in scale between the activity of
single neurons and the activity of large areas of cortex, i.e., at roughly millimetre
scale.

The aim of this chapter is to outline in some detail the formulation of physio-
logically relevant mean field theories and how they can be utilised to account for
a range of mesoscopic brain activity that includes the spatiotemporal dynamics of
the resting EEG/electrocorticogram (ECoG), its perturbation during diseases such
as epilepsy, and its modulation by a range of drugs that most importantly include
anaesthetic and sedative agents. The chapter is organized into three main sections.
The first describes the anatomical and physiological basis for modelling mesoscopic
neuronal activity in mammalian cortex and the bulk and discrete approaches that
have typically been employed to model it. It then focuses on the advantage of
bulk approaches in the context of limited empirical knowledge and outlines the
implicit microscopic constraints necessary in formulating the corresponding mean
field theories. The second section outlines the existing mean field approaches by
way of their historical development, firstly by describing the foundational models,
and then their subsequent elaboration and development to include greater levels of
physiological veracity. Finally, the third section details the patterns and types of
mesoscopic brain activity that can provisionally be accounted for by the various
mean field models.
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11.2 Mesoscopic Neural Activity

Because the structure and function of the mammalian brain resists any simplistic
representation or definition it has been difficult to conceive of generative theoretical
frameworks to account for human behaviour on the basis of neural activity. The
activity of human brains encompasses many aspects and spatial and temporal scales:
from the millisecond flurry of the opening and closing of transmembrane ionic chan-
nels to socio-political machinations that can extend over many decades. Typically
one wants to explain the behaviour observed at a higher, more meaningful level in
terms of activity occurring at a lower, more mechanistically accessible level. In the
case of neuroscience the long-term aim is to relate human intentional behaviour to
the activity of neurons. However the gulf between the local actions of individual
neurons (microscopic) and the intentional patterns of activity evinced by non-
invasive neuroimaging modalities such as positron emission tomography (PET),
single-photon emission computed tomography (SPECT) and fMRI (macroscopic)
is too wide to bridge with current theories. An intermediate level of description is
hence required. This mesoscopic level of the neuronal ensemble, mass or population
is best justified on the basis of the anatomical structure of cortical tissue, which we
proceed to outline, but can also be motivated using statistical mechanics (Deco et al.
2008).

11.2.1 Anatomical and Physiological Organization
of the Cerebral Cortex at Different Scales

The thin outer rind of the mammalian brain, the neocortex, is generally thought
to be the principle structure responsible for the generation and elaboration of
purposeful activity. For a structure that is between 1 and 5 mm thick and has a
surface area of only �0:19 m2 (Van Essen 2005), it has a truly staggering degree
of structural complexity with about �2 � 1010 neurons (Pakkenberg and Gundersen
1997) divided into six horizontal layers with at least a dozen major neuronal
subtypes (Markram et al. 2004), each interacting via on average 6,900 synaptic
connections with other neurons (Tang et al. 2001), synapses that utilise an array
of chemical messengers and can be individually modified. Add in the non-neuronal
glia known to influence cortical neuronal activity (Ben Achour and Pascual 2010;
Araque and Navarrete 2010), astrocytes and microglia, which are equivalent in
number and density to the neurons (Miguel-Hidalgo 2005; Azevedo et al. 2009),
then the task of simulating cortical neuronal activity appears daunting, if not
intractable. Fortunately, mammalian cerebral cortex is sufficiently well organized
over a number of relatively distinct spatial scales to enable the construction of
tractable models and theories of brain activity beyond that of the enumerable neural
network. Furthermore, despite great variations in the size of the cortex among
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the various mammalian groups (Herculano-Houzel 2009), it nevertheless remains
remarkably consistent in terms of its cellular elements, and its vertical and horizontal
organization.

11.2.1.1 The Cellular Composition of Cortex

Cortex is comprised of neuronal and non-neuronal components with the neurons
being broadly classified as belonging to two types: pyramidal and non-pyramidal
cells. Pyramidal cells are the most numerous neuronal class making up somewhere
between 60% and 85% (Braitenberg and Schüz 1998; Nieuwenhuys et al. 2008)
of all cortical neurons. A typical pyramidal neuron is composed of a cell body
from which a single axon descends and branches before exiting cortex, as well as
a dendritic tree composed of two main branching structures (1) an apical dendritic
tree composed of a trunk ascending in the direction of the pial surface and (2) a
basal dendritic tree composed of multiple trunks giving rise to a cloud of local
dendritic branches about the cell body. Both dendritic structures are typically
extensively covered with small excrescences called spines where synapses form
(Spruston 2008). Particularly in sensory cortices the apical dendrites of 50 or so
pyramidal neurons distributed throughout the thickness of cortex can be clustered
together into distinct and regularly spaced cylindrical groupings. These cylindrical
groupings, referred to as dendrons by Eccles (1992), constitute a core component
of the hypothesised “minicolumn”: a barrel shaped region representing the basic
modular unit of neocortex (Rockland and Ichinohe 2004).

While pyramidal neurons generally show a fair degree of morphological vari-
ability the only atypical variant is the spiny stellate cell, an interneuron (see
below) which lacks the characteristic ascending apical dendritic tree and descending
axon. Pyramidal neurons constitute a functionally homogeneous group as they all
exclusively release the excitatory monoamine glutamate from their axonal terminals.
It is also worth noting that pyramidal neurons can be functionally subdivided
based on their steady state firing pattern in response to step depolarising currents
(Contreras 2004). As will be discussed later in Sects. 11.2.1.2 and 11.2.1.3, the
branching pattern of pyramidal cell axons and the minicolumn form two possible
characteristic scales for the spatial organization of cortex.

Despite their smaller numbers non-pyramidal cells are a morphologically much
more differentiated class of cortical neuron that have a number of features in
common (Nieuwenhuys et al. 2008): their dendrites are often spine free, their axons
do not leave cortex (hence often called local circuit or interneurons), most release
the inhibitory neurotransmitter ��amino butyric acid (GABA) and a certain fraction
(25–30%) also express one or more neuropeptides such as vasoactive intestinal
polypeptide (VIP) or cholecystokinin, and various subpopulations show differential
immuno-reactivity to one or more intracellular calcium binding proteins which can
be used as subpopulation specific markers. It has been estimated that a dozen or
so non-pyramidal cell sub-types can be identified morphologically (Markram et al.
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2004), the most numerous of which are basket cells, whose axons form basket-
like plexuses around pyramidal cells bodies, Martinotti cells, which project their
axons to the superficial layers of cortex to interact with apical dendrites of pyramidal
neurons, and bitufted cells, which have dendrites arising from upper and lower poles
of the cell body.

Other notable non-pyramidal cells include the Chandelier, bipolar and double
bouquet cells. Chandelier cells produce a profusely ramifying axonal tree with
“candles”, short vertical axonal segments containing rows of synaptic boutons,
that are the pre-terminal components of axo-axonic synapses at initial segments of
pyramidal neurons. Bipolar neurons, which are similar in morphology to bitufted
neurons, represent the single known example in which a non-pyramidal neuron can
be excitatory by releasing only VIP. They can also be inhibitory by releasing only
GABA, while also expressing VIP (Markram et al. 2004). Double bouquet cells have
a similar dendritic morphology to bitufted cells but produce radially (vertically) ori-
ented dense axonal plexuses consisting of bundles of thin parallel axonal branches.
Because the axonal system of a single double bouquet cell is closely associated
with the apical dendrites of pyramidal neurons in a minicolumn and has a relatively
well defined lateral extent of arborisation, their spacing (30–50 �m) provides a
characteristic tangential (horizontal) scale for cortical organization. Like pyramidal
neurons the non-pyramidal neurons can also be electrophysiologically classified.

The non-neuronal components of cortical tissue can be divided into the neuroglia
and the cells of the perforating blood vessels. The neuroglia are comprised of
astrocytes, microglia, oligodendrocytes and ependymal cells. Classically it used to
be thought that the activity of these neuroglia did not contribute in any meaningful
way to brain function: astrocytes, star shaped cells with multiple processes, provided
biochemical, metabolic and structural support to the neurons and their interactions;
microglia are the brain’s macrophages; oligodendrocytes produced the myelin
sheaths around axons to increase conduction velocities; and epithelial ependymal
cells lining the ventricles produced the cerebral spinal fluid. However, beginning
in the early 1990s research has revealed that astrocytes, like neurons, are excitable
(with respect to intracellular Ca2C levels) and respond to, and are influenced by,
neuronal activity at the level of the synapse. To conceptualise this evidence the term
“tripartite synapse” has been proposed (Perea et al. 2009), defined as consisting
of one or more glial processes chemically interacting with the pre- and post-
synaptic components of a synapse. Such ‘synapses’ seem to occur at the synapses
of all neurons in cortex and have been shown to regulate interneuronal synaptic
transmission and plasticity. Given these interactions and the fact that astrocyte–
astrocyte interactions can be demonstrated (Dienel and Cruz 2003), it follows that
functionally cortical tissue is more than just a network of neurons.

11.2.1.2 Vertical/Radial Organization of Neocortex

Beginning with Theodor Meynert and Vladamir Betz and culminating in the 1909
work of Korbinian Brodmann (Brodmann and Garey 2006), cerebral cortex was
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found to be divided into vertically stacked cellular laminae, the number, size and
organization of which show substantial horizontal (regional) variation.1 From an
ontogenetic (developmental) perspective two broad structural forms of cerebral
cortex can be identified based on the genesis of their laminar organization –
homogenetic cortex and heterogenetic cortex. Homogenetic cortex, which is more
commonly referred to as neocortex or isocortex, makes up the bulk of cerebral cortex
and either consists of six reasonably well defined cellular laminae (homotypical
cortex) or began as a six-layered cortex but during development addition or
elimination of layers occurred (heterotypical cortex). In contrast, heterogenetic
cortex is divided into primitive (or paleo-) cortex, in which there is no clear laminar
cellular organization, and rudimentary (or archi-) cortex, in which there are only the
crude beginnings of lamination. The olfactory bulb and amygdala are examples of
paleocortex, whereas the hippocampus is an example of archicortex, in which there
are only three identifiable cellular layerings.

The six neocortical layers labelled I–VI, see Fig. 11.1, are characterised by
variations in cellular densities, types and morphologies as well as the patterns
of termination and generation of cortical and subcortical afferents and efferents.
Non-pyramidal cells occur in all layers and pyramidal cells in layers II–VI. Layer
IV of sensory cortices is notable for the large numbers of tightly packed spiny
stellate neurons, which are only found there, and the termination of sensory
thalamocortical afferents on these neurons and the dendrites of other neurons
passing through this layer (Thomson and Bannister 2003). In contrast it has been
observed that associational and callosal cortico-cortical efferents arising from layer
II and III pyramidal neurons preferentially terminate in layers IV, whereas layer
V/VI pyramidal neuron long-range axons preferentially terminate in layers I and VI
(Rockland and Pandya 1979).

While such cortical lamination suggests discrete horizontally arranged neuronal
populations, such a distinction becomes less convincing when other radially orga-
nized cortical elements are included. Among the most (histologically) prominent
of these are clusters or bundles of apical dendrites of layer V pyramidal neurons
(Fleischhauer et al. 1972), bundles of descending myelinated axons of pyramidal
cells generally referred to as the “radiations of Meynert” and column-like arrays of
pyramidal cell bodies thought to be direct developmental descendants of organized
clusters of cells in the embryonic precursor of the cerebrum. In addition, double
bouquet interneurons (see Sect. 11.2.1.1), which are abundant in primate neocortex,
give rise to tightly packed bundles of vertically oriented axonal collaterals called
“horses tails” that span multiple laminae. Multiple radially organized cellular ele-
ments therefore bind pyramidal and non-pyramidal components across the various
cortical laminae. Horizontal (or areal) periodicities in the radial organization of
these neocortical cellular elements may provide a structural basis for defining the
modular organization of neocortex.

1Here and in the following we mean by “vertically/radially” through the several millimetres
thickness of cortex and by “horizontally/tangentially” parallel to its pial surface.
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Fig. 11.1 Highly simplified sketch of the hypothetical modular organization of neocortical tissue.
(a) The minicolumn was originally defined as a narrow chains of 100–200 neurons extending
across layers II–IV and organized into repeating patterns (Mountcastle 1979). A variety of
radially oriented units have a similar scale to the putative minicolumn. These include pyramidal
(PYR) cell dendritic (dendron) and axonal (radiations of Meynert) bundles, as well as lateral
arborisations of double bouquet neurons (DBQ). A macrocolumn binds together laterally about
thousand minicolumns by recurrent axonal collaterals of an intracortical pyramidal axon. (b)
The cortico-cortical column is defined by the lateral extent of intracortical terminations of
afferent cortico-cortical fibres (associational and callosal). (c) Other hypothetical scales of modular
organization include the lateral extent of thalamocortical afferents, shown here to principally
synapse with spiny stellate cells (SSC), and the layer I plexiform arborisations of the axons of
inhibitory Martinotti neurons

11.2.1.3 Horizontal/Tangential Organization of Neocortex

The idea that cortex is horizontally parcellated into anatomically well defined
radially oriented columnar units has become virtual dogma. Commencing with the
work of Lorente de Nó, who first proposed that a small radially oriented cylinder
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of cells extending through the full extent of cortex with a single thalamocortical
axon as its axis defined an “elementary unit” of neocortical organization, the
intervening years have seen a panoply of attempts to define a “basic modular unit”
of cortical organization. Amongst the most well known are the micro-, mini-, macro-
and cortico-cortical columns. Micro- and minicolumns typically refer to radially
organized chords of � 10–200 cells that span layers II–VI, arranged as horizontal
mosaics with periodicities of the order of 15–80 �m (Jones 2000; Buxhoeveden
and Casanova 2002; Rockland and Ichinohe 2004; Nieuwenhuys et al. 2008). In
addition, there are a range of other elements repeating at this scale that could be
said to define micro-/macrocolumnar organization. These include the periodically
repeating bundles of radially oriented dendrites (pyramidal cell) and axons (double
bouquet) mentioned above.

Columns were first hypothesised by Mountcastle (1957) on the basis of electro-
physiological evidence in which radially co-localized neurons in cat somatosensory
cortex shared receptive field properties in response to tactile stimulation. The lateral
extent of this shared receptive field was estimated to be of the order of 0.5 mm. These
columns, later designated macrocolumns (Mountcastle 1979), were subsequently
considered by Mountcastle to be anatomically comprised of aggregations of several
hundred minicolumns bound together by short range horizontal excitatory and
inhibitory connections (Mountcastle 1997). In contrast to macrocolumns whose
lateral extent is defined by the scale of short range horizontal connectivity, cortico-
cortical columns (also referred to as neocortical columns) are typically defined
in terms of the cylindrical aborisation volumes of either a single afferent cortico-
cortical fibre or closely packed bundles of such fibres (Jones et al. 1975; Goldman
and Nauta 1977; Szentágothai 1983). Estimates of the radial extent of such columns
varies from 200 to 800 �m.

While some areas of cortex have a greater claim to displaying some form of
columnar organization than others, visual and somatosensory in particular, cortical
columns of any form or variety have not been substantiated by unequivocal anatom-
ical evidence and therefore remain hypothetical. Neocortical columns (Markram
2008), intensely studied in barrel cortex (Petersen 2007; Lübke and Feldmeyer
2007), are perhaps closest to being established. What however is abundantly clear is
that neocortex consists of populations of vertically well connected cellular elements
interacting horizontally over a range of spatial scales. In general it is the lateral
axonal ramifications of neocortical pyramidal neurons that define the spatial scales
of horizontal connectivity within neocortex. The axons of all typical (i.e., not spiny
stellate) pyramidal cells produce a number of horizontal branches (collaterals) in
cortex before entering subcortical white matter where they form the long-range
cortico-cortical fibres systems (see Fig. 11.1). Intracortical horizontal branches can
either ramify in close proximity to the parent cell body or travel laterally for many
millimetres depending on species, cortical area and layer (Nieuwenhuys et al. 2008).
In general, it appears that the longer the branch the more likely it is to be myelinated.

Pyramidal axonal collaterals provide local input to GABAergic interneurons,
which in turn form reciprocal synapses with pyramidal neurons (White 1989). In
contrast, cortico-cortical axons can travel for many centimetres in subcortical white
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matter before re-emerging in cortex to form synaptic connections with all neuronal
cell types, and in particular with the apical dendrites of typical pyramidal neurons.
The cortico-cortical system of connectivity can be divided into commissural and
associational fibre systems, depending on whether they respectively pass through
the corpus callosum or remain ipsilateral. Somewhat arbitrarily, associational fibres
can be divided into short- and long-range. The short-range system is believed to
be fairly isotropic and homogenous in its distribution, while the long-range one
is readily identified from gross dissection and non-invasive tractographic methods
based on diffusion MRI (Johansen-Berg and Rushworth 2009). In humans the
majority of commissural axons are myelinated (Aboitiz et al. 1992a,b) and based
on measurements of fibre diameter are expected to have broadly distributed range
of conduction velocities (Bojak and Liley 2010). Anatomical evidence suggests that
the density of excitatory synapses arising from cortico-cortical afferents is similar
to those made by recurrent axonal collaterals (Liley and Wright 1994; Braitenberg
and Schüz 1998).

The lateral axonal ramifications of certain interneurons provide additional
characteristic scales for the horizontal organization of cerebral cortex. We have
encountered one such interneuron type previously – that of the layer II/III double
bouquet cell whose descending bundles of axons have been shown to disperse
horizontally in deeper layers. Peters and Sethares (1997) have estimated that the
spacing of these so-called “horse tails”, and by inference the extent of their terminal
axonal arborisations, is 23 �m in rhesus monkey primary visual cortex. Another
interneuron cell type that has been described as giving rise to extensive lateral axonal
arborisations is the Martinotti cell. Martinotti cells, which occur in layers II–VI give
rise to one or more ascending axons that project to laminae I, where they give rise to
long horizontal branches that can run for several millimetres making synapses with
the apical dendrites of pyramidal neurons. Szentágothai (1978) defined the “surface
parallel intracortical system” to be comprised of these axons.

In addition, there have been attempts to topographically parcellate cerebral cortex
according to shared anatomical, histological or histochemical features. The most
consequential of these are those concerned with horizontal (areal) variations in
the cellular architecture of the various neocortical laminae (cytoarchitectonics),
in the organization of radially oriented bundles of myelinated fibres called radii
or radiations of Meynert (myeloarchitectonics) and in the temporal order in
which subgriseal white matter becomes myelinated during development. Of these
architectonic parcellations the 1909 Brodmann map is still widely used (Zilles and
Amunts 2010). By observing differences in the relative thickness and cell density
of various layers and the size, shape and arrangement of neuronal cell bodies,
Brodmann delineated 44 (paired) areas in the human neocortex (Nieuwenhuys et al.
2008; Brodmann and Garey 2006). However, because he and others only used a
single stain (Nissl) and a limited number of brains, determined areal boundaries
subjectively and ignored sulcal cortex, Nieuwenhuys et al. (2008) conclude that
existing architectonic parcellations may substantially underestimate the number of
juxtaposed structural areas. For example, modern approaches provide probabilistic
maps of eight subdivisions of Brodmann areas 5 and 7 in the human superior parietal
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Table 11.1 Major structural units of organization in mammalian neocortex
and their approximate characteristics, see text

Unit Neurons per unit No. of unitsb Scale
M

ic
ro Neuron (soma) 1 2 � 1010 15 �m

Microcolumna 20 109 15 �m
Minicolumn 100 2 � 108 35 �m

M
es

o

Dendritic tree – – 0.15 mm
Cortico-cortical column 104 2 � 106 0.35 mm
Intracortical axonal tree – – 0.5 mm
Macrocolumn 2 � 105 105 1.5 mm
Martinotti axonal tree – – 2 mm

M
ac

ro

Architectonic area 2 � 108 100 5 cmb

Cortico-cortical axon – – 10 cmb

Brain region 2 � 109 10 15 cmb

Neocortex 2 � 1010 1 50 cmb

The table has been adapted from Nunez (1995), Jones (2000), Buxhoeveden
and Casanova (2002) and Nieuwenhuys et al. (2008).
For neuronal groupings the diameter of a disk with equivalent cortical surface
area is given as scale.
aThe term “microcolumn” is sometimes used to refer to our “minicolumn”.
bFigures are given for the human neocortex.

cortex (Scheperjans et al. 2008). The future of brain mapping efforts however likely
belongs to comprehensive multimodal approaches, which for example integrate
MRI data (Toga et al. 2006).

Table 11.1 summarises the various horizontal scales that have been identified or
proposed on the basis of anatomical evidence. Based on this, and for the purposes
of what follows, we choose to define the microscopic scale as commensurate
with the level of the single neuron, micro- and minicolumn, whereas we establish
the macroscopic scale as corresponding to the scale of the variously identified
cyto/myelo-architectonic areas or larger. The mesoscopic level will thus represent
an intermediate spatial scale including cortico-cortical and macrocolumns.

11.2.2 Enumerable Network vs. Bulk Modelling Approaches

The principle cellular substrate underlying brain function is without doubt the
cortical neuron. On this basis, the most logical way forward to understanding
the emergence of brain function is to simulate the activity of networks of neu-
rons by modelling the properties and features of the individual neurons and
the micro-circuitry of their connectivity. Yet such a research program faces a
number of theoretical and practical problems: There are good reasons to believe
that non-neuronal components of the brain, like the cortical astrocytes, play an
important role in regulating interneuronal interactions, and thus neuronal activity.
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Furthermore, cooperative neuronal activity dominates non-invasive measurements
(e.g., EEG/MEG, fMRI BOLD) but often transcends the activity of the individual
neuron. Practically, we have the problem of knowing how much detail to include –
if the behaviour of individual neurons is believed crucial to understanding say
the EEG, then the behaviour of individual ionic channels may be crucial to
understanding the behaviour of individual neurons, and so forth. We soon find that
trying to understand the behaviour of cortical tissue in terms of enumerating the
functionally important components and their interactions leads to a combinatorial
explosion in complexity. This is quite the opposite to what we want to achieve using
modelling. Fortunately there is a way out of this epistemological bog.

Just as Waage and Guldberg in 1864 (Waage et al. 1986) sought to understand
the kinetics of chemical reactions in bulk terms by defining the principle of mass
action so a range of researchers, most notably Freeman (1975), have attempted to
understand the dynamics of cortical neural activity in terms of the bulk interactions
of functionally circumscribed masses or populations of neurons. The motivation for
such masses in cortex depends upon two well established physiological principles:
(1) firstly the vast majority of neurons in cortex chemically communicate using
only a single neurotransmitter, and (2) the radial and horizontal organization of
cortex (Sects. 11.2.1.2 and 11.2.1.3) defines domains of co-operative neural activity
by virtue of synaptic interactions. Thus we can view cortex, at mesoscopic spatial
scales, as networks of interacting populations or masses of excitatory (typical and
atypical pyramidal) and inhibitory (non-pyramidal) neurons. In this way the cortical
microcircuit is replaced by, and subsumed into, a cortical mesocircuit, see Fig. 11.2.

11.2.3 Population Densities, Mean Fields,
and Continuum Approaches

One way forward to quantifying the dynamics of cortical mesocircuits is the en-
semble density approach in which the time evolution of the probabilistic behaviour
of large, potentially infinite, populations of neurons is quantified under the action
of particular kinds of physiologically defined “forces” (Deco et al. 2008). Such an
approach can include known stochastic fluctuations, such as variations in quantal
transmitter release, as well as dynamically evolving the probability distributions
associated with neuronal ensemble dynamics with all their moments and couplings.
While providing a potentially rigorous approach to quantifying the dynamics of
neuronal populations, in the context of empirical measurement problems arise:
Firstly, probabilistic evolution, particularly in the presence of non-linearity, depends
sensitively on initial states which in biological systems are in general unknowable.
Secondly, actual measurements of the behaviour of populations of neurons will in
general reflect only certain moments of the corresponding probability distributions,
most prominently first moments (i.e., means). For example, a single EEG electrode
records synaptically induced currents averaged over many thousands of neurons.
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Fig. 11.2 Schematic representation of the circuit topologies of typical mean field models,
segregated by their model for the postsynaptic response. All approaches consider two functionally
differentiated neuronal populations: excitatory (E) and inhibitory (I) ones. Open circles represent
excitatory connections, filled circles inhibitory ones, and half-filled circles both

For this and other reasons (Deco et al. 2008), approaches in which the dynamics
of some appropriately defined first moment are tracked are often preferable. Such
quantities typically include the “mean soma membrane potential” (Liley et al.
2002, 2003) and the “mean firing rate” (Wilson and Cowan 1972, 1973) of
appropriately defined neuronal ensembles. These can be defined as either time- or
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space-averaged, depending on the what spatiotemporal scales are intended to be
modelled. For example, the passive membrane time constant of single neurons can
furnish a characteristic time scale for the construction of a time-averaged neuronal
ensemble; whereas the scale of intracortical connectivity or columniation can define
a characteristic scale for space-averaged neuronal ensembles. Usually the averaging
is performed over either time or space, but not both, leaving the respective other
dimension at (theoretically) infinite resolution.

In the case that averaged neuronal ensembles are considered as localized,
separable populations, the resulting formulations are often referred to as “neural
mass (action) models”. These neural masses can be connected in a one-to-one
fashion in order to represent their causal influence on each other through synaptic
connectivity. However, neurons in cortex communicate with a very dense collection
of short and long range fibres; hence it is often advantageous to envisage the activity
of neuronal ensembles as conditioning entire regions of cortical space to a degree
varying with connectivity. The mean activity of a particular neuronal ensemble then
defines a distributed causal influence, a field, that is propagated and dispersed in a
manner representing the dense synaptic connectivity. All other neuronal ensembles
that are connected to it region are then subject to “forcings” from this field. The
resulting models, which are continuous in space and time, are therefore referred to
as “neural/mean field models”.

11.2.4 Microscopic Constraints on Mean Field Models

The strength of the mean field approach is also its weakness. Mean fields make
the complexity of the cortex tractable, but do so at the expense of subsuming the
effects of fluctuations and correlations in single neuronal activity that are known
to affect emergent mesoscopic and macroscopic neuronal population dynamics
(Wolfe et al. 2010). For instance, in a synergetic perspective (Haken 1983), the
effects of upwards (microscopic ! mesoscopic ! macroscopic) and downwards
(macroscopic! mesoscopic! microscopic ) causation, and the feedback between
the two (circular causality), are believed to be crucial in accurately understanding
the dynamics of multiscale neural architectures. This cannot be included into mean
field models without making a range of additional assumptions that have, at present,
only weak physiological support. Nevertheless, mean field models do provide a
convenient starting point through the study of first and possibly second order
moments (Faugeras et al. 2009; Buice et al. 2010).

11.3 History of Mean Field Innovations

The earliest models of neural mass action applied to the cortex that attempted to
describe the spatial and temporal behaviour of these aggregate masses dealt mainly,
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if not exclusively, with excitatory interactions. Later models incorporated inhibitory
interactions, paying more attention to the anatomical topology of connections
between the neural masses, and took into account the conversion of efferent
axonal activity into afferent dendritic activity (and the converse process), dendritic
integration, axonal dispersion and synaptic delays. In what follows we will look at
these developments in their historic context.

11.3.1 Foundations: Beurle, Griffith, Wilson and Cowan,
Amari, Freeman

Perhaps the first approach to developing a mean field continuum theory of neural
activity is that of Beurle (1956). In this theory, continuously distributed populations
of excitatory neurons having a fixed firing threshold were considered in which
the strength of interaction between individual neurons falls off exponentially with
distance. By focusing on the fraction of excitatory neurons becoming active per
unit time Beurle was able to show that this spatially continuous neural mass could
produce propagating macroscopic waves of activity. While introducing a formalism
that would later prove to be of great utility, the omission of inhibitory interactions
meant its behaviour would be of no subsequent physiological significance. The later
theory of Griffith (1963, 1965) suffered from the same problem, though he
briefly discusses incorporating the influence of inhibition. However, his work is
most notable for providing the first comprehensive derivation of a model for the
spatiotemporal spreading of activation by using an equivalent partial differential
equation (PDE). It was only through the later introduction by Jirsa and Haken
(1996) of essentially the same idea that this approach became commonplace. We
will discuss this in more detail below. The lack of an inhibitory component was
subsequently rectified by the efforts of Wilson and Cowan (1972, 1973), Amari
(1975, 1977) and Freeman (1975), who explicitly modelled inhibitory interactions.

Wilson and Cowan (1972, 1973) modelled cortical (and thalamic) neural tissue
as comprised of two interacting, but functionally distinct, excitatory and inhibitory
neuronal populations. The state of their bulk neuronal population model neural
tissue was defined in terms of the time-averaged fraction of excitatory, E.t/, and
inhibitory, I.t/, neurons firing per unit time, following the work of Beurle (1956).
For point neural masses they were able to derive the following equations of motion

�E

dE

dt
D �E C .1 � rEE/SEŒcEEE.t/ � cIEI.t/C P.t/� (11.1)

�I

dI

dt
D �I C .1 � rI I /SI ŒcEI E.t/ � cII I.t/CQ.t/� (11.2)

where �E;I are nominally the membrane time constants of the respective neural
populations and determine their characteristic response times to incoming activity.
The corresponding absolute refractory periods are denoted by rE;I . The connectivity
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coefficients cEE;IE;EI;II � 0 quantify the interactions, whereas the functions SE;I

describe the relationship between neuronal population input and output in the
absence of refractory effects. Because firing rates are bounded below by a zero and
above by some physiological maximum, the SE;I are typically chosen as sigmoidal
functions of their arguments e.g. SE � 1=.1 C expŒ�a.E � �E/�. P.t/ and Q.t/

define the external input to the excitatory and inhibitory sub-populations.
While no analytical solutions exist for these equations they can, like most

two-dimensional nonlinear systems, be analysed qualitatively in the phase plane.
A considerable body of work has been devoted to such analyses of Eqs. 11.1 and
11.2, determining the number, type and properties of the equilibria of the system,
bifurcations, and the behaviour of multiply coupled Wilson-Cowan type systems.
For an in depth review of these results and related modelling approaches see
Ermentrout (1998). The work of Wilson and Cowan (1972, 1973) introduced a
number of conceptual innovations that virtually all subsequent mean field formu-
lations have retained: the sigmoidal firing rate function and the cortical mesocircuit
defined by all possible feedforward and feedback connections between spatially
circumscribed populations of excitatory and inhibitory neurons. In the Wilson
and Cowan model, equations of motion for time-averaged neuronal firing rates
were derived. This and related models are therefore referred to as activity based
models. However there also exists an alternative way of formulating mean field, or
continuum, models, referred to as voltage based models. These are arguably more
pertinent to modelling, and thereby understanding, the genesis of EEG dynamics.
In this modelling approach the resulting equations of motion instead describe the
spatiotemporal evolution of the average membrane potential of neurons.

One of the biomathematically most influential voltage based continuum models
of cortical dynamics is that of Amari (1975, 1977). In its most general form, this
model considers m distinct spatially distributed neuronal populations, in which the
average membrane potential impulse response to incoming (axonal) input from
other neuronal populations is expŒ�t=��. The resulting field equations can then
be written as

�i

@ui

@t
D si .x; t/ � ui .x; t/C

mX
j D1

Z
dt 0

Z
dx0 wij

�
x; x0I t � t 0�fj

�
uj

�
x0; t 0��

(11.3)

where ui .x; t/ is the average membrane potential of neurons of type i at time t

and position x, si represents extracortical input and fi is a nonlinear function that
describes the average firing rate (pulse emission rate) as a function of ui . The
functions wij .x; x0I t � t 0/ define the strength of connectivity between neuronal
populations, i.e., they determine the input to neurons of type i at x from the pulse
emission rate of neurons of type j at x0, incorporating the effects of conduction and
synaptic delays t � t 0. As will be discussed below, the delay dependence is often
factored out or simply ignored. The resulting function wij .x; x0/ is then referred
to as the synaptic footprint. A further common simplification is to consider the
synaptic footprint as function of only the distance r D jx � x0j. The function w.r/
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is then often defined to be excitatory w.r/ > 0 (inhibitory w.r/ < 0) for some
defined neighbourhood r < r0 and inhibitory w.r/ < 0 (excitatory w.r/ > 0) for
more distant neurons r > r0; this pattern of connectivity is typically referred to as
(inverted) Mexican hat connectivity. For a detailed review of Amari-type models
and their dynamics the reader is encouraged to consult Coombes (2005).

In contrast to the previous mathematical and constructive approaches, Freeman
(1975) developed a schematic but empirically constrained mass action framework
in order to explain the electrocortical dynamics of the mammalian olfactory bulb
and pre-pyriform cortex. He developed a hierarchy of neural interaction – the well-
known K-set hierarchy – in which functionally differentiated populations of neurons
interact over progressively larger physical scales. The purpose of this hierarchy
was to facilitate a more systems-oriented description. The simplest form of neural
set that Freeman considered was the non-interactive or KO set. Members of this
set have a common source of input and a common sign of output (excitatory or
inhibitory), but do not interact synaptically or by any other means with co-members.
At this level the characteristic form of the neuronal population response to incoming
activity is specified. Unlike the first-order response of Wilson and Cowan, Eqs. 11.1
and 11.2, or Amari, Eq. 11.3, Freeman argued on the basis of detailed experiment
that these population responses (or in his terminology “pulse-to-wave” conversion)
could be described by third-order linear, time invariant, differential equations.

The K-set hierarchy was next extended to a non-zero level of functional
interaction between members of the set. This defines the KI sets, broadly divided
into mutually excitatory KIe and inhibitory KIi types. When there exists dense
functional interaction between two KI sets, a KII set is formed. All possible
interactions are in principle allowed to occur between the KI members of a KII set,
which can be viewed as some local part of neocortex. The K-set hierarchy extends
similarly to KIII and KIV sets, which nominally correspond to cortical areas and
regions. The KII set of Freeman is equivalent physiologically and anatomically to
the topology of cortex considered by Wilson and Cowan. Mathematically, the KII
set is defined by four nonlinearly coupled sets of third order differential equations.
The nonlinear couplings define how the induced population response to incoming
synaptic activity is transduced into a neural population firing rate output. Freeman
(1979) referred to the corresponding nonlinear function as the “wave-to-pulse”
conversion function and has argued that such a function is an asymmetric sigmoid
of the form f .v/ / expŒ�a exp.�bv/�.

11.3.2 Synaptic Dynamics: Lopes da Silva, Jansen
and Rit, Wendling

While early models were successful in elaborating a cortical mesocircuit suitable for
mean-field and mass action modelling, with the exception of Freeman (1975) they
unrealistically assumed that the effects of synaptic activity are felt instantaneously at
the neuronal soma. However, experiment suggests that the response of the neuronal
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membrane potential (and by inference the average membrane potential of a neuronal
population) to incoming pre-synaptic spikes is at the very least second order:
membrane potential rises to a peak and then decays away with characteristic time
courses (Kandel et al. 2000). These “impulse” responses are referred respectively
to as excitatory (EPSP) or inhibitory postsynaptic potentials (IPSP), depending on
whether the spike arose from an excitatory or inhibitory neuron. Freeman (1975)
calls this transduction of pre-synaptic activity into post-synaptic (soma) membrane
variation “pulse-to-wave”. Such PSP delays are thought, on both empirical and
theoretical grounds, to be important in defining the characteristic time scales of
a range of electrocortical oscillatory phenomena that include alpha (8–13 Hz) and
gamma (>30 Hz), and their modulation by, e.g., anaesthetic agents.

Probably the first to explicitly include PSPs in a mean field model were Lopes da
Silva et al. (1974), cf. van Rotterdam et al. (1982), who constructed a bulk model
of the EEG in which lumped or spatially distributed populations of excitatory and
inhibitory neurons synaptically interacted via EPSPs and IPSPs having the form
PSP.t/ D VPSP t expŒ�t=�PSP�, and where the mean neuronal population firing
rate was a nonlinear (sigmoidal) function of the average membrane potential. The
inclusion of such lumped postsynaptic dynamics was found sufficient to produce
oscillatory activity in the alpha (8–13 Hz) electroencephalographic band. Jansen
and Rit (1995), in a comprehensive extension of this model, investigated systematic
variations of the model PSP parameters in order to account for observed changes in
the visual evoked potential. Others have sought to better define the shape of the PSP
in terms of a bi-exponential PSP.t/ / expŒ�t=�1� � expŒ�t=�2� with �1 > �2, see
for example Robinson et al. (2001) and Bojak and Liley (2005), or included IPSPs
with different time scales in order to incorporate the effects of fast (GABAA) and
slow (GABAB) inhibitory neurotransmitter kinetics (Wendling et al. 2005).

11.3.3 Activity Propagation: Nunez, Wright and Liley,
Jirsa and Haken, Bojak and Liley

Consider a signal Sj .x0; t 0/, for example a brief “pulse” of excitatory (j D e)
activity Se.x0; t 0/ D ı.2/.x0�x0/ı.t 0� t0/ which is generated at t 0 D t0 and x0 D x0.
How does this signal, and others generated in the brain, relate to the input received
by a neural population k at position x and time t? A general expression is

�jk .x; t/ D
Z

dt 0
Z

dx0 Gjk

�
x; x0; t; t 0� Sj

�
x0; t 0� ; (11.4)

i.e., an integration of signals from all times t 0 and places x0 with a function Gjk

weighting how much these signals contribute to the input. For a discretized model
the integrals would be replaced by sums. The impact of this pulse on an inhibitory
population k D i is �ei .x; t/ D Gei .x; x0; t; t0/, i.e., the response to the pulse
is given by the corresponding G value. Such G functions are called “Green’s
functions”.
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Since the brain is a finite physical object, Gjk .x; x0; t; t 0/ � 0 for t 0 � t

and x0 62 C , i.e., future brain activity does not influence earlier one and only
connected sources contribute. One also often assumes continuous time invariance:
Gjk .x; x0; t; t 0/ D Gjk .x; x0; t � t 0/. This means activity propagation depends on
conduction delays only. A typical model of this kind contains three factors

Gjk

�
x0; x; t � t 0� D Z 1

0

dv fjk

�
v j x; x0� wjk

�
x; x0� ı

�
t � t 0 � jx � x0j

v

	
:

(11.5)
The first factor gives the distribution of conduction velocities v of connecting
fibres with

R1
0 dv fjk .v j x; x0/ D 1. The second factor is the synaptic footprint,

which models the strength and distribution of the these connections. The last factor
calculates the delay by dividing (Euclidean) distance by the conduction velocity.2

Only the synaptic footprint wjk .x; x0/ would be modified by synaptic plasticity
or neuromodulation, whereas the other two factors express the arrangement and
properties of the fibre tracts. If their speed of change is slow compared to
propagation, then one can use a delay form and simply change the parameters of
the synaptic footprint with time as needed.

Further simplifications come at the price of less biological fidelity. Continuous
translation invariance Gjk .x; x0; t � t 0/ D Gjk .x � x0; t � t 0/ implies homogeneity
of the cortex, i.e., signal transmission then depends only on the vector distance
between points, not on their location. Clearly this assumption does not hold true
for specific connectivity between particular brain areas, yet it can be a reasonable
approximation for the dense local “background” connectivity one finds all over the
brain. One can further impose continuous rotation invariance: Gjk .x � x0; t � t 0/ D
Gjk .jx � x0j ; t � t 0/. This establishes isotropy, i.e., independence of fibre direction.
Even for background connectivity this does not hold true everywhere in the brain,
e.g., primary visual cortex can be modelled by homogeneous but anisotropic
connectivity (Robinson 2006; Coombes et al. 2007; Bojak and Liley 2010). Models
that are both homogeneous and isotropic are limited to describing qualitative
features of brain activity, e.g., the existence of “brain waves” (Robinson et al. 1997;
Wu et al. 2008) or drug effects on power spectra (Bojak and Liley 2005).

The “global” theory of Nunez (1974a,b, 1981, 1995), reviewed by Nunez and
Srinivasan (2006), ignores the local neural dynamics and focuses on Eq. 11.4:

Se .x; t/ D p .x; t/C
X

j De;i

qj �je .x; t/ ; Si .x; t/ D
X

j De;i

qj �j i .x; t/ ; (11.6)

Gje

�ˇ̌
x � x0 ˇ̌ ; t � t 0� D NX

nD1

Z 1

0

dv fn.v/wn

�ˇ̌
x � x0ˇ̌� ı

�
t � t 0 � jx � x0j

v

	
;

(11.7)

2For realistic cortical geometries Euclidean distance is not a good approximation to axonal fibre
length. However, one can adjust the fjk .v j x; x0/ to compensate for geometry.
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Gj i

�ˇ̌
x � x0 ˇ̌ ; t � t 0� D wi

�ˇ̌
x � x0 ˇ̌� ı

�
t � t 0� ; wl .r/ � 1

2
�l �le

��l r (11.8)

We see that excitatory and inhibitory (j; kD e; i ) neuronal populations are being
considered. Their output Sk is directly determined by the inputs �jk , where excita-
tory contributions are weighted positively qe > 0 and inhibitory ones negatively
qi < 0. In addition, the excitatory population receives excitatory extracortical
innovations p as independent input. Propagation is in delay form, as well as
homogeneous and isotropic. Inhibitory connectivity is taken as instantaneous due to
a very short characteristic length 1=�i ' 30 �m. Excitatory connectivity consists
of N distinct long range fibre systems.

For a (convoluted) strip of cortex of length L' 0.5–1 m, functionally closed
by excitatory fibre connections with a single conduction velocity ve' 6–9 m/s,
one can estimate that the lowest “standing wave” mode oscillates at frequencies
of f1 = ve=L' 6–18 Hz consistent with awake EEG (Nunez 1995). An interesting
consequence is that larger cortices (larger L) are predicted to oscillate at lower
frequencies. It was hence suggested that people with larger heads have lower alpha
rhythms (Nunez 1974b; Nunez et al. 1978). An experimental study by Valdés-
Hernández et al. (2010) has shown recently that the size of the cortical surface does
not correlate with the observed frequency of the alpha rhythm. However, Nunez’
prediction can be rescued simply by assuming that axonal conduction velocity grows
in tune with cortical size ve � L. This prediction could be tested experimentally,
and raises interesting questions about brain development.

In the following we will consider activity propagation with equivalent PDEs.
A Fourier transform of Eq. 11.4 for a homogeneous delay form Gjk .x � x0; t � t 0/
has convolution structure,3 hence

�jk .k; !/ D
Z

dt

Z
dx e�i.!tCk�x/�jk .x; t/ D Gjk.k; !/Sj .k; !/

� Z.k; !/

P.k; !/
Sj .k; !/; (11.9)

For non-zero P.k; !/ we can then write
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�
�ir;�i

@

@t

	
Sj .x; t/ ; (11.10)

where we have integrated over ! and k to perform the inverse Fourier transform.
Equation 11.10 provides a “mathematically equivalent” PDE formulation wherein
the structure of the differential operators P and Z reflects the chosen G . Why is this

3For Gjk to be homogeneous, the connected region must be a closed (hyper)surface, e.g., a sphere.
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rewriting helpful? The connected region C may well encompass the entire brain, and
conduction delays can extend to several tens of milliseconds. This makes Eq. 11.4
difficult to evaluate, whereas the PDE evaluation is non-local only in proportion
to the order of its differential operators. Using equivalent PDEs can hence greatly
simplify analysis and speed up numerical computations.

As mentioned above, Griffith (1963, 1965) was the first to derive the commonly
used kind of equivalent PDE, which we will briefly discuss below. However, the
PDE approach became popular only through its reintroduction by Jirsa and Haken
(1996), and was then investigated further by Robinson et al. (1997) and Liley et al.
(2002, 2003). Consider the following

OG .r; �/ D w0

2� O�2
e�r= O� � ı

�
� � r

Ov
� FH) OG .k; !/ D
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�
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Ov i! C 1

�2 C O�2k2
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Qv �
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r
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O�2
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2� Q�2
e�Qv�=Q� 
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Qv
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q
�2 � r2

Qv2
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Qv i! C 1

�2 C Q�2k2

�
(11.11)

where r � jx � x0j, � � t � t 0, k � pk � k and subscripts are left out for notational
simplicity.

Firstly, the homogeneous and isotropic delay ansatz OG .r; �/ propagates activity
with a single velocity Ov, and has an exponential decay with characteristic length O�
as the synaptic footprint. Secondly, the Fourier transform OG .k; !/ of this ansatz
includes a fractional power 3=2 that would translate into an infinite series of
differential operators, negating any practical advantage of the PDE formulation.
Hence thirdly, an expansion QG .k; !/ for small wavenumbers (i.e., long wavelengths
� D 2�=k) is performed, leading to the following equivalent PDE:

"� Q�
Qv

@

@t
C 1

	2

� Q�2r2

#
� .x; t/ D w0S .x; t/ : (11.12)

This “long-wavelength propagator” is an inhomogeneous telegraph equation well
suited for analysis and numerics.

However, consider a gamma rhythm ! D 2� � 38:2 Hz ' 240:0=s with Ov D
600 cm=s and O� D 3:33 cm. The “long wavelength expansion” only holds for k 	
0:5=cm or � 
 13 cm. Even taking cortical folding into account, coherent gamma
activity at such scales seems unlikely. It is hence better to consider QG .k; !/ not as
an expansion, but as a new ansatz in its own right, merely “inspired” by the original
OG .r; �/. Then fourthly, we can compute its QG .r; �/, which is easier to interpret in

the form of Eq. 11.5:
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Qw.r/ D w0

2� Q�2
K0

� r

Q�
�

; Qf .v j r/ D Qv
v

exp .�r= Q� � Qv=v/

K0 .r= Q�/

 .Qv � v/pQv2 � v2
; (11.13)

with the Heaviside step function . The distance-dependent velocity distribution
Qf .v j r/ has a complicated distance dependence. However, we can see that the in-

finitely sharp Of .v j r/ D ı .Qv � v/ has been softened into a divergence� 1=
pQv � v

towards lower velocities v < Qv, whereas no v > Qv are allowed. Thus most activity
will arrive after a delay � D r=Qv, but some will arrive more slowly. The synaptic
footprint has become a modified Bessel function. Since K0.x/ � e�x=x for large x,
this implies a more rapid decay of connectivity with distance.

Most spatially extended simulations use some variant of Eq. 11.12 for activity
propagation, because the original ansatz OG .r; �/ in Eq. 11.11 is intuitive and the
equivalent PDE Eq. 11.12 is easy to use. Yet we have argued here that their connec-
tion is questionable due to the necessary long wavelength expansion. Furthermore,
Bojak and Liley (2010) calculated the resulting marginal velocity distribution

Qf .v/ D
Z 1

0

dr 2�r
Qw.r/ Qf .v j r/

w0

D v

Qv
 .Qv � v/pQv2 � v2

; (11.14)

and showed that it is severely incompatible with experimental data on axonal
diameter distributions in both rat and human. They proposed new PDEs compatible
with the data, in particular the so-called “dispersive propagator” of power n > 0:
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with the Gamma function � . Comparing Gn.r; �/ of Eq. 11.15 with OG .r; �/ in
Eq. 11.11, we see that the first factor remains unchanged. The second factor of
Gn.r; �/ turns into a normal distribution of delays n�. N� ; �2

� / for n D 1:5, with
mean N� D r=vn but delay-dependent standard deviation �� D

p
��1:5=v1:5. For

longer delays, hence larger distances, the distribution of delays becomes broader.
At other n, in particular integer ones providing convenient PDEs, this remains the
case qualitatively.

We can furthermore see that for n D 1 and �n D Q� , the synaptic footprints
Qw of Eq. 11.13 and wn of Eq. 11.16 agree. Furthermore, in that case the equivalent
PDEs Eqs. 11.12 and 11.17 agree but for the acceleration term, if vn D Qv as well.
However, from fits to myelinated fibre data from human corpus callosum, Bojak
and Liley (2010) rather suggest n D 3 with v3 D 14:91 m/s, and as best comparable
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Fig. 11.3 Pulse spreading with the dispersive and long-wavelength propagators. (a) The activation
delivery of the dispersive n D 3 propagator Eq. 11.17 is shown by integrating its Green’s function,
cf. Eq. 11.18. (b) Likewise for the long-wavelength propagator Eq. 11.12. Synaptic footprints
of both propagators approximate an exponential decay with characteristic length 18 mm. The
median conduction velocity of both propagators is 7.601 mm/ms. The colour scale is normed to
the respective maximum values as indicated by the central colourbar

values for the long-wavelength propagator Qv D 8:782 m/s and Q� D 4:930�3. The
former leads to the same median velocity 7.601 m/s for both propagators. The latter
means that the synaptic footprint of both approximates the same exponential decay,
e.g., �3 D 0:871 cm and Q� D 4:29 cm both approximate an exponential decay with
a characteristic length of 1.8 cm. Such an effective length scale can be motivated
functionally by noting that the coherence of subdural electrode recordings falls
to 0.25 at about 2–3 cm (Bullock et al. 1995). Note also the significant difference
between the long-wavelength Q� and the exponential scale, which had been ignored
in the literature prior to Bojak and Liley (2010).

In Fig. 11.3 on the left we show the function

G3 .i; j / D
Z ��

0

dt

Z �r

0

dx
1

w0

G3 .i ��r C x; j ��� C t/ (11.18)

with G3 of Eq. 11.15 and i; j D 0; 1; 2; : : : specify the discretized values. Note thatP1
iD0

P1
j D0 G3.i; j / D 1, i.e., this shows the spatiotemporal delivery of activity

from a single pulse in a properly normed fashion. For comparison we show on
the right of Fig. 11.3 the function QG.i; j / defined in a like manner using the QG
of Eq. 11.11. This method integrates out the discontinuity of QG at r D v� and hence
facilitates a meaningful comparison of the two propagators. We have used the values
mentioned above for comparable median velocity 7.601 mm/ms and characteristic
length 18 mm, as well as �r D 157:1 �m and �� D 23:41 �s. The sum of the
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shown values of G3.i; j / is 99.04% but of QG.i; j / only 62.51%, i.e., the dispersive
propagator has delivered most of the input in the shown spatiotemporal range, the
long-wavelength propagator extends further out. We also see the clear difference in
overall structure: the long-wavelength propagator is highly concentrated around a
line of constant conduction velocity, whereas the dispersive propagator is concen-
trated in a “blob” around the maximum at r D 11:6 mm and � D 2:22 ms. These
different characteristics for example are hypothesised to allow spontaneous pattern
formation with the expenditure of less energy (Bojak and Liley 2010).

Finally we briefly consider the earlier work of Wright and Liley (1995, 1996).
In contrast to the equivalent PDE approach so far discussed, these authors explicitly
discretized the cortical sheet and consequently the activity propagation of Eq. 11.4.
A 20 by 20 matrix of neural mass units was used to represent a square cortical
sheet, where every unit corresponds to a square with side length 2.79 cm, yielding a
total area equivalent to roughly one human hemisphere. Axonal conduction delays
were then simply calculated from the Euclidian distance between the centers of
the units by dividing with a uniform conduction velocity. Furthermore, the strength
of connectivity was determined by a normal distribution with this distance. These
assumptions specify two matrices (the strength of connectivity between any two
units, as well as their assumed conduction delay), but could easily be replaced
with other matrices implying inhomogeneity and anisotropy of the connectivity and
complicated conduction velocity profiles with positional dependence.

While this approach is very flexible, it suffers from two fundamental drawbacks:
First, the number of possible connections grows with the square of the number
of units. Hence increasing the spatial resolution typically comes at a significant
computational costs. Second, one needs to keep track of past output from every
unit as far back as the maximum conduction delay. If the conduction delays
are sizable, then a lot of past values must be kept in memory. It is hence not
surprising that in 1995 the chosen grid size was fairly small. While equivalent
PDEs numerics employs spatial grids as well, their computation is much less
costly. To evaluate Eq. 11.12, minimally one needs to keep track of only two past
values of � at every grid point for the time derivatives and consider the four
nearest neighbours of every grid point for the Laplacian. Nevertheless, this localized
PDE computation instantiates large scale, dense connectivity. However, with ever
increasing computational power the greater flexibility of the discretized approach
is becoming more important, hence as discussed below this approach is making a
comeback in cortical mesh computations.

11.3.4 Realistic Geometry and Connectivity: Robinson
et al., Kötter et al., Sotero et al., Bojak et al.

Prior to Robinson et al. (2001), all mean field formulations of cortical activity had
posited that any emergent dynamics arises through reverberant interactions between
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at least two spatially distributed, functionally differentiated, cortical or thalamic,
neuronal populations. However, there exists significant reciprocal connectivity
between cortex and the subcortical structure that determines and controls its input,
the thalamus. Robinson et al. (2001) have argued that the inclusion of such cortico-
thalamic feedback in a bulk or mean-field theory is crucial in order to plausibly
model the essential dynamical features of normal (e.g., alpha rhythm) and abnormal
(e.g., spike wave epilepsy) EEG activity (Rodrigues et al. 2006; Breakspear et al.
2006). van Albada and Robinson (2009) have extended the subcortical extent of this
model by including interactions between the nuclei of the basal ganglia and cortex
and thalamus. We will discuss the influence of subcortical structures on cortical
activity further below.

The description of cortical connectivity itself is also far from optimal. While
“background connectivity” in cortex (Liley and Wright 1994; Hellwig 2000; Kaiser
et al. 2009) is roughly compatible with assumptions of homogeneity and isotropy,
a functionally significant part of the connectivity in the brain is more specific
(Biswal et al. 2010): it connects only particular brain regions to each other and then
often over long distances (Hagmann et al. 2008). While it is possible to simulate
anisotropy with PDE approaches (Robinson 2006; Coombes et al. 2007; Bojak and
Liley 2010), this requires simple periodicity to limit computational expense, since
the number of necessary PDEs grows with the complexity of the angular profile.
Furthermore, the requirement of homogeneity cannot be relaxed, hence this method
is only applicable where the anisotropic pattern of connectivity (roughly) repeats
across a patch of cortex, like for example in primary visual cortex. The long-range
specific connectivity in the brain however does not repeat in this manner.

In order to localize specific cortical connectivity appropriately, one needs
anatomically accurate representations of cortex. A first crucial step is hence the
extraction of cortical geometry. The imaging technique of choice is structural MRI,
which can distinguish different brain tissues on a voxel basis. However, cortical
grey matter is basically a layered sheet (2–5 mm thick with 0:2 m2 total area),
and often a representation as two-dimensional surface is more suitable. Several
software packages are available for extracting triangular mesh surfaces from voxels
identified with structural MRI, for example, the Civet pipeline (Kim et al. 2005), see
Fig. 11.4a. Often these meshes need some post-processing, e.g., in order to reduce
the number of vertices to limit computational cost, see Fig. 11.4b. It should be
noted that proper modelling of EEG/MEG requires oriented local current dipoles as
sources. Their orientation is ultimately dependent on dendritic arborization growing
roughly perpendicular to the pial surface. Hence a pure voxel-based approach is
insufficient for EEG/MEG signal prediction, and must anyhow be augmented with
some estimate of surface normals.

Once one has obtained a cortical surface, the question becomes how to employ it
for anatomical mapping. Two methods have been explored: The first is to deform
the cortical surface into simpler geometries for computation, e.g., representing
each brain hemisphere by a sphere (Jirsa et al. 2002). The two hemispheres are
deformed separately to avoid strong distortions from inflating the compact callosal
pathway. However, consider a source point on the simulation sphere, and two target
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Fig. 11.4 Extraction of a cortical triangular mesh. (a) Cross-section of a Civet (Kim et al.
2005) extraction of grey matter interfaces with white matter (blue) and cerebrospinal fluid
(red), respectively, in the left hemisphere. Layers can be introduced along vectors connecting
corresponding vertices; here a halfway one (green) is shown. (b) Custom decimation algorithm
(Bojak et al. 2011) working on the right hemisphere (red) of a Civet cortical mesh. The number of
vertices is reduced fivefold while the minimum edge length is increased sevenfold, yet the surface
loss is only about 10%

points equidistant along the spherical surface. Given equal conduction velocities,
a signal from the source points will reach the target points at the same time. The
deformation to the real cortical surface is non-conformal, thus in general the target
points will be at different distances from the source point. However, the signal
will still arrive at the same time in both, hence the deformation has implicitly
made the conduction velocities differ. Such uncontrolled changes to the connectivity
are unacceptable beyond qualitative studies. One could ameliorate the situation by
introducing compensatory tuning of the conduction velocity. But then one would
need to consider conduction between points individually, in effect turning the first
method into the second.

The second method works directly on the discretized cortical surface. Then
connectivity is instantiated by transferring activity signals from any vertex to each
connected vertex, where conduction delays determine the time when the signal is
actually released to the receiving vertices. Exactly the same method can be used
for connecting grey matter voxels, if one does not extract a cortical surface first
(Sotero et al. 2007). This second method is basically the anatomically realistic
version of the method introduced by Wright and Liley (1995, 1996), which we
have discussed previously. However, as mentioned this method scales badly if
connectivity is not sparse. For example, Bojak et al. (2010, 2011) were forced to
include about 30 million connections for 17,000 vertices just in order to approximate
the dense local connectivity implicit in typical PDE approaches (Bojak and Liley
2010). Furthermore, unlike for networks of spiking neurons, for neural populations
typically firing rate information and hence functions continuous in time need to be
transferred. This means an event-based approach is impossible, and hence that the
necessary parallelization on compute clusters is more difficult.

A series of works involving the late Rolf Kötter (Honey et al. 2007; Ghosh
et al. 2008; Deco et al. 2009) established the idea of using tracer connectivity data
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from macaque monkey collected in the CoCoMac database (Stephan et al. 2001),
by using a “regional map” of brain areas (Kötter and Wanke 2005) across species.
See also the extensive review of Deco et al. (2011) focusing on these papers. This
may appear odd, since diffusion MRI tractography is readily available (Mori et al.
2005) and there are some interspecies differences that clearly cannot be accounted
for in such a mapping, for example concerning areas involved in speech production.
However, diffusion MRI is incapable of determining in which direction information
flows along reconstructed fibre tracts. This is a major drawback, since it generally
makes a significant difference whether a connection is A! B , A B or A$ B .
Furthermore, diffusion MRI tends to be biased to short distance connections. Tracer
data does not have these drawbacks, which explains its continued popularity in spite
of the uncertainties of cross-species mapping (Bojak et al. 2010, 2011).

While modelling is still rapidly improving concerning anatomical fidelity, the
basic building blocks are now in place: The geometry of cortical and potentially
subcortical structures – as well as skull and scalp for volume conduction for the
EEG signal expression – are typically extracted from structural MRI. Gray matter
activity is then predicted by assigning neural masses at the chosen resolution level
to voxels or mesh vertices. The long-range connectivity of these masses is estimated
from diffusion MRI tractography or tracer data. Finally, activity propagation is then
performed directly in terms of this discretization, rather than by an equivalent PDE
formalism. Nevertheless, the simplicity of the equivalent PDE approach means that
we should expect it to remain superior for gaining qualitative understanding or
modelling gross changes to the overall brain state, e.g., due to potent drugs.

11.3.5 Bayesian Inversion: Friston et al., David et al., Moran
et al., Daunizeau et al.

A particular problem encountered in all modelling efforts, including the mean field
approach, is to fit the parameters of the model to available experimental data. This
is difficult enough in the case of a single model, if it contains a large number of
parameters – as is invariably the case for attempts at “biological realism”. The
anatomical and physiological constraints on the parameters are then typically weak.
Furthermore, as argued in more detail by Liley et al. (2011), projecting parameter
space from an “ideal” model to the actual one under investigation generally results
in a complicated distribution of the resulting dynamics in parameter space. This
may foil straightforward attempts at fitting parameters, potentially requiring novel
methods like the “metabifurcation analysis” of Frascoli et al. (2011) to make any
further progress.

Hence it may seem hopeless then to fit entire networks of neural masses to
experimental data. However, progress has been made in this direction thanks to
the invention of Dynamic Causal Modelling (DCM) by Friston et al. (2003). This
original work was intentionally abstract in its assumptions about local dynamics,
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positing a bilinear form that connected local neural dynamics and external stimuli.
Furthermore, it was targeted at fMRI BOLD rather than EEG or MEG. Yet a crucial
novelty was the ability to estimate both parameters of the local bilinear model and
of the effective connectivity between several “regions of interest” (ROIs) based on
data. To this end advanced Bayesian parameter and model estimation was used,
cf. Friston (2002) and Friston et al. (2002, 2007). Briefly, these methods consist
in making reasonable assumptions expressed via probability distributions for model
parameters, the so-called “prior densities”, followed by an estimate of how likely the
available evidence (e.g., experimental data) is given these assumption, the so-called
“likelihood”. The probability distributions are then updated according to Bayes’ rule
to take the evidence into account, resulting in the so-called “posterior densities”.

Soon after DCM was invented, David and Friston (2003) studied a modification
of the mean field model of Jansen and Rit (1995) with two separated ROIs, and
later extended it to model event-related responses in EEG and MEG (David et al.
2005). It was then only natural to combine these efforts with DCM (David et al.
2006; Kiebel et al. 2006). The fused model included state equations based on the
mean field model and observer equations based on an electromagnetic forward
model, in effect providing a neurobiologically constrained source reconstruction
scheme for the EEG/MEG inverse solution problem. Using this approach, David
et al. (2006) were for example able to demonstrate learning-related changes in
connectivity for an auditory oddball paradigm. Next Moran et al. (2007) constructed
a frequency-domain version of the Jansen and Rit (1995) model, in order to
investigate steady-state spectral responses. Again Bayesian parameter estimation
(Moran et al. 2008) and integration with DCM (Moran et al. 2009) followed. They
used this DCM to analyze multi-channel local field potentials from mice. A final
crucial step was then taken by Daunizeau et al. (2009): instead of considering
sources as point processes, i.e., as equivalent current dipoles, they were distributed
over the cortical surface by using a standing wave approximation of the long-
wavelength equivalent PDE we have discussed above. Thus one can now say that
the entire range of mean field descriptions has been given a DCM-style counterpart
suitable for Bayesian inversion.

However, some limitations must be mentioned. Firstly, DCM-style approaches
will remain limited to a handful of ROIs for the foreseeable future. The combi-
natorial explosion of possible connectivity and the per se difficult computation of
Bayesian estimates mean that DCMs rapidly become unwieldy when more ROIs
are introduced. Secondly, the dependence on prior densities for a specified model
structure means that the posterior estimates should not be considered as the ground
truth. Thirdly, it seems likely that the present Bayesian inversions gloss over the
complexity of the underlying mean field model parameter space to some extent. For
the Jansen and Rit (1995) model used throughout the DCM work discussed above,
Spiegler et al. (2010) have demonstrated the expected complicated dependence of
dynamics on parameter values in the physiological range (Liley et al. 2011). It
hence remains to be seen how comprehensively Bayesian inversion can probe the
full dynamical repertoire of mean field models. Nevertheless, the mentioned works
represent a pioneering effort in matching mean field models to experimental data.
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11.4 Understanding Mesoscopic Brain Activity

Much of what we know about human brain function is derived from non-invasive
recording methods that are able to sensitively measure changes in electromagnetic
and hemodynamic cortical activity that attend behaviour and cognition. The EEG
and MEG measure the spontaneous and evoked electromagnetic activity of large
populations of cortical neurons whereas fMRI, based on blood oxygen-level
dependent (BOLD) contrast, and near infrared spectroscopy (NIRS) quantify local
variations in cerebral blood flow in response to such population activity. Thus the
mean field modelling approach, having roughly the same spatiotemporal scales as
these recording techniques, is ideally placed to provide physiological explanations
of a range of empirical phenomena, some examples of which we discuss below. We
believe however that this is just the beginning, agreeing with Freeman (1975) that
the field of neurodynamics, of which mean field models are an integral part, “still
can be regarded as a giant sleeping in infancy”.

11.4.1 EEG Alpha Rhythm: Stochastic, Non-linear, or Both?

The alpha rhythm is arguably the most ubiquitous rhythm seen in scalp recorded
EEG. First discovered by Berger (1929, 1930), see also Gloor (1969), and later
confirmed by Adrian and Matthews (1934), it has played a central role in phe-
nomenological descriptions of brain electrical activity in cognition and behaviour
ever since. While the definition of classical alpha is restricted to 8–13 Hz oscillatory
activity recorded over the occiput, which is reactive to eyes opening and closing,
activity in the same frequency range can be recorded from multiple cortical areas.
However, despite decades of detailed empirical research involving the relationship
of this rhythm to cognition, we remain essentially ignorant regarding the mecha-
nisms underlying its genesis and its relevance to brain information processing and
function (Steriade 2005).

To date two broad approaches have emerged for explaining the origin of the
alpha rhythm and similar activity. The first approach conceives of alpha as arising
from cortical neurons being paced or driven at alpha frequencies: either through the
intrinsic oscillatory properties of other cortical neurons (Llinás 1988; Silva et al.
1991), or through the oscillatory activity of a feed-forward subcortical structure
such as the thalamus (Hughes and Crunelli 2005, 2007). In contrast, the second
approach assumes that alpha emerges through the reverberant activity generated
by reciprocal interactions of synaptically connected neuronal populations in cortex,
and/or through such reciprocal interactions between cortex and thalamus (Nunez
et al. 2001). Two principle lines of evidence have arisen in support of the latter
view. Firstly, multichannel MEG (Williamson and Kaufman 1989; Ciulla et al.
1999) and high density EEG (Nunez et al. 2001) have revealed that scalp recorded
alpha activity arises from a large number or continuum of equivalent current sources
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(ECD) in cortex. Secondly, a raft of physiologically plausible computational (Liley
et al. 1999a) and theoretical models (Nunez 1981; van Rotterdam et al. 1982;
Robinson et al. 1997, 2001; Liley et al. 2002, 2003), reveal that electroencephalo-
graphically realistic oscillatory activity can arise from the synaptic interactions
between distributed populations of excitatory and inhibitory neurons.

The work of Robinson et al. (2001) suggests that characteristic loop delays in
cortico-thalamic and thalamocortical connectivity are responsible for the generation
of alpha, and beta (13–30 Hz) electroencephalographic activity. In contrast the work
of Liley et al. (2002, 2003) suggests that alpha emerges principally through the
reciprocal interactions of populations of inhibitory neurons. In the this case the
alpha rhythm can either arise as noise induced perturbations of a cortical system
at steady state having an intrinsic alpha resonance or as deterministic (limit cycle
or chaotic) oscillation of a far from equilibrium system. Noise driving is more in
line with empirical evidence that finds, except for short bursts of subdural and
scalp-recorded EEG, that the alpha rhythm is indistinguishable from linearly filtered
white noise (Stam et al. 1999; Stam 2005). Other more recent work (Liley et al.
2010) suggests that resting alpha represents a combination of noise-driven and
deterministic dynamics and that transitions between the two are not only possible,
but are a regular occurrence in resting EEG.

11.4.2 Drug Effects: Anaesthesia, Sedatives, Stimulants

Efforts to maintain biological plausibility in mean field models have enabled the
exploration of physiological dynamics during a range of specific brain states.
Researchers have therefore focused on how key dynamical attributes are changed
during parametric perturbations which attempt to simulate genuine physiological
events. As is often customary in neurophysiology, the core of these efforts have
focused on changes in excitability through selective modification of inhibitory and
excitatory processes. Shifts in brain excitability can occur both through endogenous
mechanisms, such as sleep, or pathological conditions, such as seizures (both
discussed below) – however, drug induced changes in excitability are another typical
starting point. Particular attention has been placed on the modelling of depressant
agents like anaesthetics and conversely stimulants such as pro-convulsants (Foster
et al. 2008; Liley et al. 2011).

Anaesthesia induced changes are a preferable domain for mean field simulation
for several reasons. Firstly, the cellular and molecular targets of anaesthetics
are selective and known in some detail. This allows not only meaningful model
parameterization, but furthermore enables the use of empirical data to explore the
effects of model perturbation within meaningful physiological ranges. Secondly, the
effects of anaesthetics at the cellular level produce clear changes in macroscopic
scale activity, such as the EEG, in a dose-dependent manner, allowing fairly
straightforward experimental validation of the simulations. Finally, the mechanisms
by which the cellular or microscopic targets of anaesthetic drugs relates to the
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observed macroscopic effects recorded by the EEG are far less clear, promoting
the use of mesoscopic methods to help link these physical scales and elucidate the
intriguing processes occurring during the transition to unconsciousness.

Generally, anaesthetics, as well as sedatives (e.g. benzodiazepines), produce their
depressant effects by targeting inhibitory neurotransmission through enhancement
of GABAA receptor function. By potentiating GABAA receptor based IPSPs,
anaesthetics can progressively suppress neural firing. Less obviously, one also
finds a slowing of the EEG that appears in the time domain as a shift from
low amplitude desynchronised EEG to large amplitude slow oscillations, and
in the frequency domain as a shift from peaked alpha power spectra to ones
dominated by the delta band (0–4 Hz). This overall cortical slowing of activity has
been successfully modelled by a number of investigators, however explanations
for the spectral changes which occur during the transition between wakeful rest
and deep anaesthesia are somewhat more controversial. During the induction of
anaesthesia, the EEG in humans (Kuizenga et al. 1998) and other species (Dutta
et al. 1997) show a rise in power prior to the onset of slow wave activity, which
approximately coincides with the loss of consciousness (LOC). Typically referred
to as the biphasic response, studies have shown that a variety of anaesthetic agents
produce transient increases in EEG activity in the frequency ranges more associated
with alertness and arousal during both induction and emergence (Kuizenga et al.
1998, 2001; Feshchenko et al. 2004). Interestingly, because such effects may
be more pronounced during emergence than induction, a number of modelling
approaches have taken this as an explanatory predicate in simulations of the
biphasic response and its hypothesised hysteresis (system dependence on prior
history).

Steyn-Ross et al. (1999, 2004) modelled the biphasic response as a first-order
phase transition using the mean field cortical model of Liley et al. (1999b). By
selectively modifying the inhibitory neurotransmitter decay rate constant, they
found three stages of analytic equilibrium for changes in the level of anaesthesia
defined by �, a scaling-factor representing the fractional change in IPSP duration
from the non-anaesthetized state. These stages were termed (1) “coma” (high
anaesthesia � > 1:53); (2) “awake” (low/no anaesthesia � D 1), and (3) “seizure”
(retracted inhibition � < 0:3). During the transitions between these states estimated
EEG spectra were shown to display a clear biphasic response. It was therefore
posited that the biphasic response was coincident with the transition between stable
states, from (2) to (1) or (3), via a saddle node bifurcation, reflecting a phase
transition in the mean soma membrane potential. While this phase transition theory
was an innovative and appealing integration of the biphasic response and the loss
of consciousness during anaesthesia, the model depended upon neural firing rate
parameters outside physiological ranges with “awake” power spectra devoid of any
resting alpha activity.

Subsequent work by Bojak and Liley (2005) showed that biphasic phenomena
can still be simulated without the occurrence of a phase transition and within
plausible firing rate ranges. They used mean field model parameter sets restricted by
physiological limits with proper resting state behaviour, and realistically modelled
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the effects of the anaesthetic agent isoflurane by allowing independent modifications
of IPSP amplitude, rise and decay times based on empirical data. The simulated
biphasic response was then not coincident with rapid shifts in firing rates, but
rather consistent with empirical observations of progressive dose dependent spike
suppression. Bojak and Liley (2005) were also pioneering in the mean field context
by using a large number of base parameter sets to gain an understanding of the
robustness of the predictions under conditions of typical biological variability. This
approach has become popular in the field of individual neuron models (Marder
and Taylor 2011). Molaee-Ardekani et al. (2007) later showed that the application
of a slow adaptive function for the modelling of firing rates was capable of both
simulating biphasic spectral activity and relating the slowing of firing rates to the
well know occurrence of up/down state firing modes during anaesthesia and slow
wave sleep. More recently Hutt and Longtin (2010) have sought to connect both
descriptions of biphasic activity. For a simplified model they were able to derive
conditions under which the anaesthetic agent propofol causes the biphasic effect
either by a phase transition or without.

The possibility of linking the biphasic response of cortical populations with the
LOC is a fascinating area for future computational research. Yet it remains unclear
if the biphasic changes in EEG spectral power are even causally linked to LOC or
whether these two events arise independently in response to pharmacological action.
For example, empirical and theoretical work has shown that benzodiazepines such
as diazepam and alprazolam, which also selectively target GABAA receptors, can
produce arousal responses in EEG spectral power producing acceleration of peak
alpha frequency into the low beta range (Liley et al. 2003b). This “beta buzz” is not
greatly different from that produced by alcohol, a GABAA agonist also. Therefore
the occurrence of this form of biphasic response is interpreted as being reflective
of low dose anaesthesia and not as a marker of a specific dynamical transition, for
this effect may extended over a period far greater than the interval associated with
the loss of consciousness. Such effects can be informed by the observed sensitivity
of inhibitory synapses and the time delays associated with their reverberant activity
(Liley et al. 2003b): enhancement of inhibitory–inhibitory coupling through GABA
agonists will strengthen, and therefore shorten, the interactions of this population
shifting alpha power to higher frequencies (Liley et al. 2002, 2003).

There has been little application of mean field modelling to understanding
the macroscopic action of stimulants, because the involved pharmacological and
physiological mechanisms are less straightforward to include in the established
formulations. Interestingly, the study by Rowe et al. (2005) concerning the action of
stimulants in attention deficit hyperactivity disorder points to yet another inhibitory
effect, namely decreased firing activity in the locus coeruleus. The authors speculate
that more generally stimulants could act to suppress the activity of the thalamic
reticular nucleus, thereby increasing thalamocortical and synaptic activity. If true,
then once more one would find that inhibitory control is a key locus for the control
of brain dynamics.
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11.4.3 Cognitive States: Sleep, Rest, Memory, Attention

Following progress in the mean field modelling of anaesthesia, a number of
researchers have gone on to theoretically account for human sleep cycles and a
range of other cognitive phenomena. Some investigators have extended existing
mean field models to incorporate further differentiated neural populations (typically
subcortical nuclei), whereas others have focused on purely parametric perturbation
of a putative (noise driven) cortex alone. Regarding the modelling of sleep cycles,
Steyn-Ross et al. (2005a) have explored the latter approach by modelling the
role somnogenic (sleep promoting) factors have in modulating cortical arousal.
Conversely Phillips and Robinson (2007) have explored the former approach by
applying mean field theory to simulate the modulatory effects of ascending brain
stem projection systems. We will discuss each of these approaches in turn.

Steyn-Ross et al. (2005a) model sleep states with particular attention to the
transition between slow wave sleep (SWS) and rapid eye movement (REM) phases.
In this approach the authors employ a macrocolumn whose characteristic time
scales have been greatly increased from their standard parameter values in order
to better incorporate the time courses associated with the ultradian human sleep
cycle (�90 min). Subsequently, the transition between SWS and REM states are
parameterized as arising from the differential modulation of the basal KC leak
currents by the somnogenic adenosine ("KC leak) and activating acetylcholine
(ACh; #KC leak). In combination, these effects were best captured through
modification of the coupling strength at excitatory synapses with a factor �ACh

scaling the excitatory synaptic gain. Similar to their work in anaesthesia, this
parameterization produced a first-order phase transition, typified by a rapid shift
from coherent slow firing (SWS) to a classical desynchronized high firing state.
Approaching the point of transition between these two states was characterized
by increasing coherent frequency power in progressively slower frequencies. This
system also supports the occurrence of K-complexes (transient spike-like waves),
which typically occur during sub-arousal stimulation (e.g., auditory) during REM
sleep. Wilson et al. (2006), explored the response of cortex to such transient kicks in
input. It was found that depending on system state (SWS or REM), transient shifts
in membrane potential cause different spatiotemporal oscillations.

Finally, these authors have also explored the capacity of putative Hebbian
learning in such systems in relation to memory consolidation during sleep. Steyn-
Ross et al. (2005b) postulate a mechanism for memory erasure or unlearning
during the suppressive dynamics occurring during the approach to the SWS-REM
transition. Then SWS oscillations become more coherent and expanded in phase-
space, producing a state preferentially enhancing inhibitory synaptic weights, after
which the REM sleep will reset synaptic weights back to a state capable of learning.
Wilson et al. (2007) extended their model to allow estimation of synaptic weight
distribution and other statistical attributes, which help to link Hebbian network
descriptions with mesoscopic columnar field models.
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In contrast to the previous approach, Phillips and Robinson (2007) have included
the cortically ascending projections of the various brain stem nuclei which are
involved in mediating arousal and therefore the sleep-wake cycle. This ascend-
ing arousal system has cortical projections which terminate diffusely across the
cerebrum. Phillips and Robinson (2007) model this group of nuclei by defining
a monoamine group (MA) and a ACh group, both of which receive driving (e.g.,
circadian) inputs from the ventrolateral preoptic area (VLPO; hypothalamus). Since
the interaction of the defined MA and ACh groups reflect nuclei whose reciprocal
action is thought to control SWS-REM switching, Phillips and Robinson (2007)
focus only on interactions between the VLPO and MA groups, while setting the
ACh group constant. Thus they focus on the transition between waking and sleeping
states and not the ultradian sleep cycle (i.e., sleep stages). The mutual inhibition
between the MA group (wake promoting) and the VLPO (sleep promoting) are
parametrically explored as putative sleep-wake cycling. By modulating the driving
input, they observed clear changes in the mean soma membrane potential of the
MA group, such that wake-sleep transitions occur as a saddle node bifurcation
at several driving values which produces a hysteresis in the return from sleep to
waking states. This hysteresis produces a zone wherein the transition between awake
and sleep states is more easily achieved and more sensitive to noise. This unstable
transition is suggested by the authors to dynamically underpin the phenomenon of
narcolepsy.

Attempts to model learning process through the modification of synaptic prop-
erties represents one example of how mean field theories may begin to make
contact with cognition and cognitive systems. However, it remains difficult to
meaningfully capture the dynamics of cognitive activity with these simple biological
models. Currently the focus is on explaining activity patterns and to use data-
driven approaches to help identify physiological parameters that sensitively control
neuronal population dynamics. For example, Steyn-Ross et al. (2009) have explored
the utility of mean field models to capture differing dynamical properties associated
with activity patterns during resting and cognitive states. In brief, this work
suggests that the ongoing activity of the brain may be the result of spatiotemporal
instabilities, with idling activity slowly oscillating (1 Hz) around a rest state that can
be perturbed into an active cognitive state defined by faster (40 Hz) activity. Such
slow oscillations may relate to those observed during resting state neuroimaging
(Steyn-Ross et al. 2009, 2011) – the so called “default mode” (Raichle et al.
2001). Concrete studies of cognitive action have also been performed, in particular
of (visual) attention (Deco and Rolls 2005; Mavritsaki et al. 2011). Interestingly
in these cases, hybrid descriptions in terms of both spiking neurons and mean
field models were employed, which interacted consistently with each other by
construction (Brunel and Wang 2001). It is likely that such hybrid approaches will
become more common in the future.
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11.4.4 Special Dynamics: Metastability, Gamma
Synchrony, Epilepsy

Although early attempts to dynamically describe brain function sought to prescribe
explicit attractor dynamics to neural activity, more recent thinking focuses on tran-
sitory non-equilibrium behaviour (Rabinovich et al. 2008a). Neuronal population
dynamics are conceived as evolving transiently, rarely reaching stability. On this
basis a number of authors have opted to describe this type of dynamical regime
as metastability (Kelso 1995; Friston 1997; Bressler and Kelso 2001; Freeman and
Holmes 2005; Rabinovich et al. 2008b). Common to many of these descriptions is
an ongoing occurrence of transitory neural events, or state transitions, which define
the flexibility of cognitive and sensori-motor function. Some dynamical examples
include the chaotic itinerancy of Tsuda (2001), in which neural dynamics transit
in a chaotic motion through unique Milnor attractors, or the liquid-state machine
of Rabinovich et al. (2008a), where a more global stable heteroclinic channel
is comprised of successive local saddle states. More specific neurodynamical
approaches include the work of Kelso (1995), Friston (2000) and Freeman and
Holmes (2005).

The idea that the brain activity switches between qualitatively different states
is reflected in the dynamical behaviour of many mean field model formulations.
For this reason it has been conjectured that mean field models may offer a suitable
explanatory framework in which to understand the genesis and evolution of epileptic
activity (Wendling et al. 2000; Robinson et al. 2002; Lopes da Silva et al. 2003;
Suffczyński et al. 2005; Kramer et al. 2005; Liley and Bojak 2005; Breakspear et al.
2006; Marten et al. 2009; Molaee-Ardekani et al. 2010) as well as the formation
of coherent mesoscopic gamma band activity (Wright 1997; Rennie et al. 2000;
Robinson 2006; Bojak and Liley 2007). What relates these two topics is that such
dynamics are typically conceived as limit cycle (or chaotic) behaviour to which the
brain transits from a regular state under certain conditions, e.g., the change of some
physiological parameter. The difference between epilepsy and gamma synchrony is
then mainly related to the dominant frequency of these “special” dynamics. That the
dominant frequency typically can be adjusted with some model parameter suggests
that these phenomena may indeed be physiologically related.

However, a general caveat applies to such studies: it is often comparatively
easy to obtain activity that resembles epilepsy or coherent gamma oscillations from
complicated (mean field) models. That per se should hence not count as a success
of the model. Rather, it is precisely the mechanistic explanation of the transit from
regular to special dynamics which then becomes a hallmark of biological fidelity.
For example, Liley and Bojak (2005) showed that seizure-inducing properties of
some general anaesthetic agents could be reproduced with the Liley mean field
model, rather than just that the model supported seizure-like limit cycles. At the very
least the switching mechanism should be post hoc interpreted, like the emergence
of large scale gamma synchrony in terms of changes in presynaptic thalamocortical
input (Bojak and Liley 2007).
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11.4.5 Beyond Electrical Activity: fMRI BOLD
and Multimodal Integration

The EEG’s continued popularity in research and clinical practice (Niedermeyer and
Lopes da Silva 2005) is largely due to its excellent time resolution, which allows for
example the tracking of evoked potentials (Regan 1989; Rennie et al. 2002). EEG
taken with a large number of electrodes and MEG can provide data of brain activity
with comparatively high spatial resolution in the centimetre range. However, due
to its millimetre resolution fMRI BOLD has taken over as the de facto standard for
researching cognition (Norris 2006; Matthews et al. 2006), in spite of weak temporal
resolution and uncertainties concerning its genesis (Logothetis 2008). The rapidly
growing field of multimodal imaging (Stufflebeam and Rosen 2007; Shibasaki 2008;
Mulert et al. 2008; Blinowska et al. 2009; Freeman et al. 2009) also promises to
combine the excellent temporal resolution of EEG with the good spatial resolution
of fMRI BOLD. This combination is particularly attractive because it is possible to
record EEG and fMRI BOLD simultaneously (Laufs et al. 2008), which avoids all
the issues of brain state dependence that arise in combining data sets recorded at
different times (or even from different people). Furthermore, the relation of fMRI
resting state networks to EEG cortical microstates (Britz et al. 2010; Musso et al.
2010) suggests close dynamical links between data recorded with these modalities.

Therefore it is of obvious interest to extend the mean field formalism first
to the description of fMRI BOLD, and then to the predicition of simultaneous
EEG/fMRI. The first issue to confront is the addition of appropriate hemodynamics.
Almost all mean field modellers have adopted the so-called “Balloon-Windkessel”
hemodynamic model in the form introduced by Friston et al. (2000, 2003) based on
prior work by Buxton and Frank (1997), Buxton et al. (1998) and Mandeville et al.
(1999). The main reason is that this model merely adds four ordinary differential
equations (ODEs) to the equations, with specified (prior) parameter values. The
Balloon-Windkessel model will predict the BOLD contrast based on neural activity
innovations, making it most suited for task paradigms. It is somewhat less suited for
resting state activity (Bojak et al. 2010, 2011), a point that will require scrutiny in
future. Note that these equations are local, hence in a large scale model comprising
many neural masses or in a continuous formulation discretized for numerical
computation, the ODE systems must be evaluated at every unit. Furthermore, the
question arises what neural activity to use as input for the Balloon-Windkessel
hemodynamics, or in other terms, how the neurovascular coupling is modelled. In
the works we will describe below, a bewildering variety of models have been used,
though conceptually they reduce to either total synaptic activity, glutamate release or
energy consumption. We believe that this confusion reflects our limited knowledge
about the genesis of the BOLD signal and refrain here from commenting further
on this issue. Suffice to say that all current modelling efforts must be considered
speculative concerning the fMRI signal generation.

We have already mentioned the works using CoCoMac connectivity (Honey
et al. 2007; Ghosh et al. 2008; Deco et al. 2009), recently reviewed by Deco et al.
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Fig. 11.5 Simultaneous EEG/fMRI BOLD prediction. The top row shows snapshots of EEG scalp
potentials, as well as EEG time traces from three electrodes (purple). The bottom row shows
corresponding fMRI BOLD predictions (Bojak et al. 2010, 2011). Columns from left to right
show results for specific connectivity at 60%, 85%, and 90% strength relative to that of local
(“background”) connectivity. Scales vary between panels and are indicated by colourbars. A clear
jump in fMRI BOLD contrast occurs for increasing the strength from 85% to 90%

(2011). They all provide multimodal EEG and fMRI predictions, whereas the related
paper by Honey et al. (2009) used diffusion MR tractography and predicted only
fMRI signals. The focus of these works is on resting state oscillations and the
so-called “default mode network” (Raichle et al. 2001). General experimentally
observed features were reproduced; however, Honey et al. (2009) raises questions
about the dependence of such dynamics on the cortical parcellation. Babajani
et al. (2005), Babajani and Soltaninan-Zadeh (2006) and Babajani-Feremi et al.
(2008) convincingly fit both MEG and fMRI BOLD data arising from an auditory
task with a single underlying model. Recently Babajani-Feremi and Soltaninan-
Zadeh (2010) also extended the electrocortical part of this model to multiple areas.
Riera et al. (2005, 2006, 2007) have successfully fit simultaneous EEG/fMRI
data in visual and auditory tasks, though their focus was more on the technical
development of inversion and neurovascular coupling models. Sotero et al. (2007),
Sotero and Trujillo-Barreto (2008) and Valdes-Sosa et al. (2009) pioneered highly
resolved descriptions of the brain geometry and obtained intriguing results on “alpha
blocking” and BOLD-alpha rhythm (anti-)correlation, respectively. Deneux and
Faugeras (2010) studied in-depth the extent to which simultaneous EEG/fMRI can
extract information beyond the use of single modalities. To this end they developed
Kalman filters and smoothers for the inverse problem. Finally, Bojak et al. (2010,
2011) show that minor changes in the implemented effective connectivity can lead
to drastic changes in the simulated dynamics, see Fig. 11.5.
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11.5 Conclusions

Mesoscopic and coherent neural activity is important for three distinct but intimately
related reasons. Firstly, the brain appears to have multiple anatomical structures that
bind together larger groups of neurons in a “columnar” fashion and so parcellate
cortex into units. A corresponding degree of functional coherence can be assumed
to follow, and to some extent has been shown to exist. Secondly, non-invasive
neuroimaging is at least for the time being limited to a spatial resolution of larger
than 1 mm for fMRI, and worse for the other modalities, e.g., in the centimetre range
for EEG. Furthermore, coherent microscopic activity dominates such macroscopic
signals for statistical reasons. Thirdly, theoretical descriptions at the level of
individual neurons (or smaller) scale badly in computational costs for a variety of
reasons. Yet even if large scale simulations of this kind increasingly become possible
in a computational sense, they remain questionable for the foreseeable future: one
cannot expect to ever gather enough data to fully specify any sizable part of the
brain, in particular not a single actual structure, rather than some statistics about a
large number of similar structures.

Bulk models of neural activity try to describe mesoscopic activity directly,
eschewing a description in terms of enumerable microscopic units. Yet they
typically retain selected “microscopic features” that are salient for the description
of the phenomena of interest. Thus for example if it is known that some drugs
affects the PSPs of individual neurons, then it is advantageous if the bulk approach
employed contains a PSP description that can be matched to this “microscopic”
knowledge. The simplest bulk models consider only the mean (i.e., first moment)
properties of neuronal ensembles. Here the connection to the microscopic world
is generally direct, replacing a microscopic quantity by its mesoscopic mean. We
have described in great detail how these models developed historically, and what
sort of brain activity they are able to describe successfully. We will not repeat our
observations here. Suffice to say that mathematical and computational progress has
been good and seems to be accelerating still, and a great number of applications
have been found already.

To this clear success story we have told in the preceding pages we now wish
to add a more critical perspective and some caveats. Firstly, the microscopic-
mesoscopic connection remains fairly ill-defined. It is unclear to what extent a
population description can and should be made “consistent” with existing single
neurons models: the brain consists of much more than just neurons and bulk
approaches should subsume these non-neural contributions in their “effective
equations”. The necessity to maintain salient microscopic features however means
that the bulk descriptions often closely resemble single neuron models after all, to
allow direct mapping of known effects. Yet it is unclear to what extent this similarity
of form remains justified for an effective description that includes other elements.
Indeed, as comparing Newton’s equations with the ideal gas law suggests, it is
far from certain that the best mesoscopic description of even a purely neuronal
and homogeneous population would resemble the individual neuron model at all.
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A certain amount of “hand-waving” seems to be required at the moment to motivate
all bulk models. We suggest that much future work is required to clarify the
situation.

Secondly, applications of bulk models have yet to deliver an insight of such
obvious neuroscientific or medical impact that their future importance is established
beyond reasonable doubt. In other words, this field still requires an universally
accepted breakthrough. An important limiting factor in this regard is the lack of
information intrinsically associated with the predicted activity. While the single
neuron modeller can dream of cracking the “spike code” of information processing
in the brain, it is currently not obvious what bulk activity means. We need to learn
better how to associate computation with bulk activity, how to assign meaning to
the energtic flows that are presently being modelled. There seem to be two ways
forward here: On one hand one can try to elucidate further the effect of coherent
group activity on single neurons, and thus establish a meaning for the mesoscopic
activity in terms of whatever meaning single neuron activity may have. On the
other hand one can try to connect to the more abstract models of psychology
and psychophysics. Their natural “neural basis” may very well be found in bulk
approaches. It seems to us that both paths to greater impact must now be pursued
vigorously.

Thirdly, at the cutting edge of technical development, bulk approaches are
meeting challenges that are rather reminiscent of the problems single neuron
modellers face. If one attempts to describe the entire brain at mesoscopic resolution
in the millimetre range, one ends up with about the same number of mesoscopic
units (many tens of thousands) as large scale single neuron simulations. Thus the
same issues of computational cost, combinatorial explosion of connectivity and
experimental indeterminacy arise. We cannot, and likely will not ever, simulate this
brain here and now even at a mesoscopic level, just as attempts to simulate this
macrocolumn here and now are doomed to failure. What we need to work out is
hence the appropriate level of detail: where can and should we introduce individual
features, where should we stick to stereotypical and qualitative descriptions.
Furthermore, the issue of fitting to experimental data the many parameters of a large
number of functional units in a complicated network remains unresolved, and limits
progress at both the mesoscopic and microscopic level. We will likely need the help
from experts in the statistical field to break this gridlock.

However, such technical challenge also provide chances for future growth,
and the need for bulk approaches becomes increasingly clear. We would like to
particularly encourage our experimental colleagues to consider the mesoscopic level
of investigation as a field with enormous growth potential. Mesoscopic theory is now
getting to a level where it can speak to experimental recordings from multi-electrode
arrays recording LFPs in stimulated slice preparations all the way to complex task
paradigms tracked with fMRI BOLD. Modern experimental technologies can go
in many ways beyond the patch-clamping of a single neuron, and most of those
involve the consideration of the collective activity of neurons. The marriage of
experiment and theory has not always been easy in the neurosciences, but there is a
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clear convergence of interest here concerning the activity of many neurons working
together. As neuroscientists we should respond to this opportunity by working
together as well.
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Berger H (1930) Über das Elektrenkephalogramm des Menschen. Zweite Mitteilung. J Psychol
Neurol 40:160–179

Beurle RL (1956) Properties of a mass of cells capable of regenerating pulses. Philos Trans R Soc
B 240:55–94

Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, Beckmann CF, Adelstein JS,
Buckner RL, Colcombe S, Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ,
Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ, Mackay C, Madden DJ, Madsen
KH, Margulies DS, Mayberg HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar
JJ, Peltier SJ, Petersen SE, Riedl V, Rombouts SARB, Rypma B, Schlaggar BL, Schmidt S,
Seidler RD, Siegle GJ, Sorg C, Teng GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC,
Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang YF, Zhang HY, Castellanos FX,
Milham MP (2010) Toward discovery science of human brain function. Proc Natl Acad Sci
USA 107:4734–4739

Blinowska K, Müller-Putz G, Kaiser V, Astolfi L, Vanderperren K, Van Huffel S, Lemieux L
(2009) Multimodal imaging of human brain activity: rational, biophysical aspects and modes
of integration. Comput Intell Neurosci 2009:813607

Bojak I, Liley DTJ (2005) Modeling the effects of anesthesia on the electroencephalogram. Phys
Rev E 71:041902



11 Mean Field Population Models 357

Bojak I, Liley DTJ (2007) Self-organized 40 hz synchronization in a physiological theory of EEG.
Neurocomputing 70:2085–2090

Bojak I, Liley DTJ (2010) Axonal velocity distributions in neural field equations. PLoS Comput
Biol 6:e1000653

Bojak I, Oostendorp TF, Reid AT, Kötter R (2010) Connecting mean field models of neural activity
to EEG and fMRI data. Brain Topogr 23:139–149

Bojak I, Oostendorp TF, Reid AT, Kötter R (2011) Towards a model-based integration of co-
registered EEG/fMRI data with realistic neural population meshes. Philos Trans R Soc A
369:3785–3801
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Chapter 12
Cellular Spacing: Analysis and Modelling
of Retinal Mosaics

Stephen J. Eglen

Abstract A key step in nervous system development is the spatial positioning
of neurons within a structure. In this chapter I review the mechanisms by which
the cellular spacing of neuronal networks emerges. In particular, I focus on the
spatial distribution of neurons within the retina. The retina is ideal for studying
such developmental mechanisms because of its multilayered structure and specific
neurochemical markers can reliably label all neurons of a given type. This chapter
describes the quantitative methods used for assessing spatial regularity of neuronal
distributions and computational methods for simulating these distributions.

12.1 Introduction

The retina is a relatively small neural structure located at the back of the eye. It is a
multilayered structure (Fig. 12.1): photoreceptors toward the back of the eye convert
light into neural activity which then propagates through several layers where it is
modulated by lateral connections (via horizontal and amacrine cells) until reaching
the ganglion cell layer. Retinal ganglion cells (RGCs) encode the visual scene into
spike trains which then leave along the optic nerve and into the brain for further
processing. For a general overview of retinal processing, see Wässle (2004).

The layered organisation of the retina makes for relatively easy identification of
cell type, as each cell type tends to occur in only one layer of the retina. Taking
a cross section through one of the layers, such as the ganglion cell layer, reveals
a further aspect of structural organisation within the retina. Cells of a given type
are positioned semi-regularly through a layer, forming what is commonly termed
a retinal mosaic, due to the way that the cell bodies and their dendrites tile the
surface (Fig. 12.2). (For the rest of this article, when I refer to retinal mosaics, it
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Fig. 12.1 Cross-section of a vertebrate retina. The retina is organised into three cell-dense layers
(ONL outer nuclear layer, INL inner nuclear layer, GCL ganglion cell layer). Connections between
layers are predominantly made in the OPL (outer plexiform layer) and IPL (inner plexiform
layer). Each of these layers can be regarded as a two-dimensional sheet. There are five major
classes of retinal neuron: photoreceptors (P), horizontal cells (H), bipolar cells (B), amacrine cells
(A) and retinal ganglion cells (RGC). Photoreceptors transduce light into neural activity, which
then propagates to the RGCs via the bipolar cells. Both the horizontal and amacrine cells have
widespread lateral interactions that modulate neural activity. Finally, axons of the RGCs form
the optic nerve, carrying the neural signal from the eye to the brain for further processing. Cells
of a particular class are usually restricted to a given layer within the retina, allowing for easier
identification of individual cell classes. The spatial location of all neurons within a layer can then
be revealed using various staining techniques (see Figs. 12.2 and 12.3)

will mostly refer to the positioning of the cell body, assuming that the surrounding
dendritic arbor is also tiled. For further details on modelling dendritic growth,
see Chap. 13.) Most cell types form independent mosaics (see later for a rigorous
definition of independence), such that the presence of a retinal mosaic is often
used to determine whether a given population forms an independent type (Cook
1998). Together with reliable biochemical markers for reliably staining individual
cell types, this has meant the catalogue of cell types (five classes, divided into about
60 types, depending on species) within the retina is nearing completion (Masland
2004).

What function might such retinal mosaics perform? For photoreceptors, having a
regular spacing of neurons is presumably necessary to sample the entire visual field,
avoiding any ‘blind spots’. However, the spatial distribution of photoreceptors is
slightly different to that of other cell types as they tend to be tightly packed against
each other (Fig. 12.3). Short wavelength cones (‘blue cones’) tend to be regularly
spaced, as they are relatively sparse compared to the medium/long wavelength
cones, which are randomly arranged (Roorda et al. 2001). However, in other layers
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Fig. 12.2 Regular arrangement of on-centre alpha retinal ganglion cells from cat retina. The area
shown is approximately 1:7 � 1:2 mm. The dendrites around each cell body tile the retinal surface,
and the cell bodies seem roughly equally-spaced from each other. In this article, ‘field’ means the
area of tissue within which the neurons are observed. Other neurons (e.g. off-centre alpha retinal
ganglion cells) within the same layer are not shown (Reproduced by permission from Macmillan
Publishers Ltd.: Nature 292:344–345, copyright 1981)

Fig. 12.3 Close packing of
cone photoreceptors in a
human retina (subject named
MD). The three different
classes of photoreceptor are
coloured blue (short wave-
length), green (medium
wavelength) and red (long
wavelength). Approximate
width of view: 20 arc min
(Reproduced from Hofer
et al. 2005 with permission of
the Society for Neuroscience)

of the retina, after sampling of the visual world, the advantages of a regular mosaic
are not so obvious. One hypothesis is that regular arrangements of individual
cell types in different layers may aid in the developmental wiring of connections
between cell types (Galli-Resta 2002). (Chap. 14 discusses the wiring of connections
between neurons.) However, this wiring hypothesis has yet to be explored.
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In this chapter I will describe the quantitative methods for the analysis and
modelling of retinal mosaics, with an aim to understanding the developmental
mechanisms that can generate such regular distributions of neurons. Although this
work focuses on retinal neurons, it is hoped that similar principles apply to other
parts of the CNS. Whether regular distributions of neurons exist or not in other parts
of the CNS is still unclear, due to the larger number of cell types in other regions, and
the lack of reliable markers for staining individual cell types early in development
(Cook and Chalupa 2000).

12.2 Quantifying Regularity

Several methods have been developed for the quantification of the spatial distribu-
tion of retinal neurons. In this section, I briefly outline the main methods employed.
The methods will be demonstrated on an example data set, shown in Fig. 12.4.

12.2.1 Regularity Index

The most popular method for quantifying mosaic measures is the regularity index
(Wässle and Riemann 1978). For each neuron in the field, the distance to the
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Fig. 12.4 Example mosaic
(synthetic data set). Neurons
are drawn as circles with
10 �m diameter representing
typical soma size; scale bar:
100 �m. Each neuron is
surrounded by its Voronoi
polygon, showing the region
of space closest to that point.
The histogram underneath
shows the distribution of
nearest-neighbour distances,
along with the regularity
index (RI) of 5.1. This RI is
typical of regular mosaics,
such as cholinergic amacrine
neurons
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nearest-neighbouring neuron is measured and plotted in a histogram. The regularity
index (RI) is simply the mean of this distribution divided by its standard deviation.
For the example in Fig. 12.4, the RI of 5.1 indicates a highly regular mosaic.

Calculating a measure such as this immediately raises the question of how to
interpret this number. Cook (1996) first investigated the properties of the RI (termed
the conformity ratio in his article). The baseline to compare against is when the
neurons are placed at random throughout the field—this is termed complete spatial
randomness (CSR). The RI for neurons arranged randomly is 1.9, and the more
regular the arrangement, the higher the RI. For retinal mosaics observed to date,
the RI is typically 3–8. However, the exact threshold for determining whether
the mosaic is non-randomly arranged depends on the number of neurons and the
geometry of the field (Cook 1996). Furthermore, the physical size of the soma may
introduce lower limits onto the size of the nearest-neighbour distances. However, all
of these can be handled appropriately by using Monte-Carlo techniques, see later.

12.2.2 Autocorrelation Methods

A key limitation of the RI measure is that it is based only on the distribution of
distances to nearest-neighbours. Autocorrelation-based methods are more powerful
as they include the relative distance of all points, not just the nearest-neighbour.
Such autocorrelation methods were made popular in the retinal mosaic literature by
Rodieck (1991), although these methods were introduced much earlier in the spatial
statistics literature (Ripley 1976). An autocorrelation plot is created by taking one
cell as the reference neuron, and plotting the relative position of all other neurons
in a plot. This is repeated using each neuron as a reference neuron to build up the
autocorrelation plot shown in Fig. 12.5a. Annuli are drawn 10 �m apart, and clearly
show a ‘exclusion zone’ effect: no two neurons are closer than about 40 �m apart,
but beyond this distance, there is no further structure to the plot. This indicates
that neurons perhaps are operating under the rule that they simply should avoid
becoming ‘too close’ to each other, but there are no further constraints imposed.

Within each annulus of the autocorrelation plot, there is rarely little spatial
variation. Each annulus can thus concisely be described by one number, the density
of points in that annulus. The density of each annulus then forms the density
recovery profile (DRP; Fig. 12.5b) which is the usual way of summarising the
autocorrelation. Again this clearly shows the exclusion zone principle acting up to
around 40 �m, and beyond that the density of each annulus fluctuates around the
mean density (horizontal line). Further quantification of the DRP is possible; for
example, the size of the exclusion zone can be quantified by the effective radius
shown in the figure as a vertical line; see (Rodieck 1991) for further details. The
DRP and its associated statistics are useful complements to the nearest-neighbour
methods.

One limitation of the DRP approach is that the results may be dependent on the
size of each annulus: smaller annuli should lead to more sensitive estimation of DRP
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Fig. 12.5
Autocorrelation-based
analysis of the mosaic shown
in Fig. 12.4. (a)
Autocorrelation plot. Each
dot represents the position of
a cell relative to another
neuron in the field. Annuli are
spaced 10 �m apart. The lack
of cells in the first four annuli
indicate the presence of an
exclusion zone. (b) Density
recovery profile (DRP). Each
bar in the histogram shows
the density of points in the
corresponding annulus of the
autocorrelation plot. The
horizontal line indicates the
mean density of points
(166 cells/mm2) and the
vertical line (at 38 �m) shows
the effective radius (see text).
(c) The L function is the
scaled integral of the DRP.
Solid line indicates the L

function for the mosaic;
dotted line indicates the curve
that would be expected if the
points were arranged
randomly

parameters such as the effective radius. However with smaller annuli, the neuronal
counts within each annulus can be quite small and thus the density estimates may
vary significantly. Cumulative histograms of counts are more robust, by avoiding
bin sizes, and have been proposed in spatial statistics (Ripley 1976; Diggle 2002).
In particular, Ripley’s K function is effectively the integral of the DRP. The K

function is defined as:

K.t/ D jAj
n.n � 1/

nX
iD1

X
j ¤i

w.i; j /�1I.jjxi � xj jj � t/ (12.1)
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In this function, xi is a 2-d vector representing the position of neuron i ; hence I.�/
counts how many pairs of neuron are less than or equal to some distance t apart. jAj
is the field area, and n is the number of neurons. The term w.i; j / is a weighting
factor to correct for border effects, as described in the next section (Diggle 2002).
Under the null hypothesis of CSR, the theoretical K function is K.t/ D �t2. Finally,
L.t/ D .K.t/=�/0:5 is used for plotting purposes.

Figure 12.5c shows the L function corresponding to the DRP in panel B. The null
hypothesis of CSR is given by L.t/ D t , shown in the dotted line, and deviations of
L.t/ below that line indicate regularity, as is the case here. (L.t/ > t would indicate
that the neurons are clustered, rather than spaced-apart.)

Many other statistics are also available, including Voronoi-based measures, as
well as other cumulative distance functions from the spatial statistics literature
(notably the F and G functions); for further details, see (Diggle 2002). It is an open
question as to which of these functions are most useful for discriminating patterns,
hence it is good practice to compare the effectiveness of several functions.

12.2.3 Boundary Effects

Figure 12.6 demonstrates the problems associated with boundary effects when
quantifying retinal mosaics. For example, when finding the nearest neighbours, for
cells in the centre of the region (e.g. cell 1) it is clear which cell is the nearest
neighbour (cell 2). However, for a cell close to the boundary, such as cell a, although
cell b is the closest within the field, there might have been another cell just to
the right of the field that was closer to cell a (e.g. at point c or anywhere within the
circle outside the field). Hence the estimate of the nearest neighbour for cells at
the border is unreliable. To determine which cells are located at the border, we
can add a ‘safety zone’, marked by the dotted line, and consider only the nearest-
neighbour distances for neurons within the safety zone (filled symbols). However,
what size of safety zone should be imposed? The larger the safety zone around the
edge of the field, the smaller the impact of boundary cells. With larger safety zones
however, fewer neurons are left within the safety region, and hence fewer samples
to estimate the RI.

Imposing a safety zone is therefore simple, but requires another parameter (the
width of the safety zone) and often discards a lot of data. Another technique for
identifying border cells is to use the Voronoi tessellation, and label neurons as being
at the border if their Voronoi polygon intersects with the field boundary. However, a
subtler approach to handling boundary effects is to use weighting factors such that a
contribution of e.g. each nearest-neighbour distance is measured, but the distances
are weighted according to how close a neuron is to the border. One such edge-
correction technique is to measure the fraction of the circumference of a circle (e.g.
shown for point a in Fig. 12.6) that lies within the field (Ripley 1976; Diggle 2002).
This edge-correction term accounts for the w.i; j / term in Eq. 12.1.
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Fig. 12.6 Demonstration of
boundary effects. The solid
rectangle indicates the
boundary region under study,
with a central safety zone
shown as dotted lines.
Individual points (1, 2, a, b
and c) are referred to in the
text

Another concern with boundary procedures that is often overlooked is the size
of the field itself. Often, retinal mosaics are described simply by the x,y locations
of each neuron—the coordinates of the (usually rectangular) field which determine
which neurons are recorded are often not kept. As seen above, the position of the
boundary is important, and affects the reliability of the measures taken from the
mosaic. In the absence of a reported boundary region, one can be estimated by using
the extreme x and y coordinates of all the neurons. This is the smallest possible field,
and although it is the maximum likelihood estimate (Ripley and Rasson 1977), it is
obviously an underestimate.

Ideally therefore, the field is decided in advance, placed onto the retinal tissue,
and the positions of all neurons within that field should be recorded. What size
should the field be? For practical purposes, most software assumes rectangular
region (although some, such as SPLANCS (Rowlingson and Diggle 1993) can
handle arbitrary closed polygons). It should also be large enough to contain enough
cells (e.g. at least 50), but small enough so that long-range spatial variations
in density can be ignored. Again, some methodologies exist for handling non-
homogeneities in spatial density across the field (Baddeley and Turner 2005).
However, often the long-range density variations observed across the retinal surface
mean that investigators do not use very large fields, typically smaller than 1� 1 mm.

12.3 Phenomenological Approaches to Modelling

What are the mechanisms underlying the development of these retinal mosaics?
Progenitors of retinal neurons divide at the location of the photoreceptor layer, and
once the neurons become postmitotic (i.e. stop dividing), they migrate through the
retina to the appropriate layer for a given cell type. Certain cell types then migrate
laterally within a layer to reach their final position (Reese and Galli-Resta 2002).
As well as these migratory processes, many other developmental mechanisms are
thought to be involved, including lateral inhibition of cell fate and cell death (Reese
and Galli-Resta 2002). For a general review of the developmental mechanisms, see
Cook and Chalupa (2000).

In addition to experimental approaches to understanding mosaic formation,
theoretical modelling can help us evaluate the potential of different developmental
mechanisms for generating such regular patterns. In this chapter I compare two
styles of modelling:
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Phenomenological the focus is on generating model output that looks similar to
observed data, using mechanisms that may or may not be biologically plausible.

Mechanistic the primary concern is on modelling the cellular processes thought
to be involved, rather than focusing on model output.

These two approaches are common in areas of biological modelling (e.g. see
Nathan and Muller-Landau 2000). In this section, I describe the phenomenological
approaches; mechanistic approaches are discussed in the following section.

12.3.1 Exclusion Zone Models

The exclusion zone model is fairly straightforward and simply embodies the local
rule that no two neurons should come closer to each other than some minimal
distance. This local exclusion zone should then be able to recreate the hole seen
in autocorrelation plots. This style of model was first applied to retinal mosaics
by Shapiro et al. (1985), who examined the spatial distribution of blue cone
photoreceptors in macaque retinas. However, the exclusion zone model has been
popularised by the more recent work of Galli-Resta and colleagues (Galli-Resta
et al. 1997), where the model is termed the dmin model, where dmin is the main
parameter of the model, representing the diameter of the exclusion zone. The value
of dmin is normally not fixed, but drawn from a normal distribution with a given
mean and standard deviation. The other parameters of the model (the field size and
the number of cells) are taken from the observed mosaic being modelled.

The dmin model is an example of a serial model, where neurons are positioned
one-by-one into the field (Fig. 12.7). The starting point therefore is an empty field,
the same size as the mosaic being modelled. A trial point is selected at random
within the field, and a value for dmin is sampled from the normal distribution. If the
nearest-neighbouring neuron in the field is closer than dmin, the trial cell is rejected,
otherwise the trial cell is added into the field. This process continues until either the
desired number of neurons have been added into the field or until it is no longer
possible to fit any more neurons.

Once a field has been simulated using the dmin model, it can be compared
against the observed mosaic (Fig. 12.8). Visual comparisons are often inadequate,
and so we use the quantitative methods (outlined in Sect. 12.2) to compare observed
with simulated mosaics. We take advantage of the fact that we can generate many
instances of simulated mosaics to estimate the goodness of fit. For example, if we
use the RI as the metric to quantify regularity, we calculate the RI of the observed
mosaic and the RI of each of 99 simulated mosaics from the dmin model (fixing
the parameter values, and just varying the random number generator for positioning
neurons). Informally, for a good fit, the RI of the observed mosaic should fall within
the range of RIs generated by the dmin model.

This assessment of goodness of fit can then be quantified by calculating an
empirical p value. If the RI of the observed mosaic is x1 and the RI of n � 1
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Fig. 12.7 Generation of a simulated mosaic using the dmin exclusion zone. In each panel, the
rectangle shows the field with the trial cell surrounded by a circular exclusion zone. If no other
cell is positioned within the exclusion zone, the trial cell is accepted into the field (panel d shows
a trial cell being rejected). Panel a shows the starting condition: since there are no previous cells,
the first trial cell is always accepted. Panel f shows the final mosaic after the desired number of
cells have been added

simulated mosaics are x2 : : : xn, then for each mosaic i we calculate a ui value
which determines the difference between the RI for mosaic i and the average RI of
all other mosaics:

ui D abs

0
@xi � 1

n� 1

X
j ¤i

xj

1
A

The expectation then is that if the model is a good fit to the data, u1 should be of
similar magnitude to all other u scores. A p value can then be calculated by sorting
the values of u, largest first, and then counting the position of u1 and dividing by n.
For example, if u1 was the ninth largest value of u out of 100, the p value would
be 0.09. In this context, small p values indicates a poor fit of the model to the
data, and the better the fit, the larger the p value. (Hence this test is one-tailed,
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data model 1: dmin N(16,2)

model 2: dmin N(21,6) model 3: dmin N(20,10)

regularity index
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Fig. 12.8 Fitting the dmin model to an example mosaic. (a) Example observed mosaic (cholinergic
amacrine cells in rat). The field of view is 400�400 �m2. (b)–(d) Example simulations using three
different values for dmin parameters; in each case the dmin value is drawn from a normal distribution
with given mean and s.d. (e)–(f) Assessing the fit of each model to the data. In (e), each row shows
the regularity index from 99 simulations of each model; the larger vertical line in each case is the
regularity of the observed data in (a) (4.16). Informally, the model fits the data if the observed RI
falls within the range of the RIs generated by the model. Panel f shows the u score for each mosaic
(real or simulated), with the score for the real mosaic drawn with a larger line. Whereas model 1
and 3 can be rejected, model 2 fits the data
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Fig. 12.9 Exhaustive parameter search of the dmin model to fit the observed mosaic shown in
Fig. 12.8a. For each value of the mean and s.d. of the dmin model, 99 simulations were generated,
and the p value for comparing real and simulated mosaics obtained. The area of the square in each
case is proportional to the p value

and the model does not fit the data if p � 0:05 at the 5% significance level.) This
procedure is rather general and can be adopted for other regularity measures, even
for measures which are functions of distance, such as the L function; see (Diggle
1986) for details.

This model assessment procedure is demonstrated in Fig. 12.8. Three different
parameter values for the dmin normal distribution are compared to see how well they
can replicate an example mosaic (shown in panel A). Out of the three models, model
2 shows the best fit of simulated regularity indexes to the observed regularity index.
This is confirmed by computing the u scores and p values. Clearly, quantitative
methods are required for comparing observed data and model output, as there are no
strong visual differences among the three alternative models shown in Fig. 12.8b–d.

Finally, Fig. 12.9 shows the p values obtained by this procedure for a range of
different model parameters. As the dmin model is relatively fast, such exhaustive
parameter searches are feasible, and can easily pinpoint parts of parameter space
where the model fits the data. For more complex models, an exhaustive approach
is not feasible, and instead a heuristic search procedure should be used. Some
other phenomenological models from the spatial statistics literature have specialised
fitting procedures—for example see the R package SPATSTAT for details (Baddeley
and Turner 2005).

12.3.2 Evaluation of dmin Model

The dmin model has been used to fit a wide range of mosaics of different cell types
and different species (Galli-Resta et al. 1997, 1999; Cellerino et al. 2000; Raven
et al. 2003). This strongly suggests that a homotypic exclusion zone is sufficient
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to generate a retinal mosaic. (In this context, homotypic means that interactions
are restricted to cells of the same type; heterotypic interactions involve cells of
different types.) This means it is unlikely that long-range interactions are required
between cells of the same type, nor are interactions needed between cells of different
types, confirming results from cross-correlation analysis (Rockhill et al. 2000;
Mack 2007). However, the dmin model does not say anything about the biological
mechanisms underlying the generation of such local exclusion zones. I return to this
topic in Sect. 12.4.

12.3.3 Other Phenomenological Models

The dmin model is one instantiation of a whole class of phenomenological models
whereby spatial points exhibit mutual exclusion (Diggle 2002). A generalisation of
this style of model is the pairwise interaction point process whereby a non-negative
function h.t/ influences the probability of any two cells being a distance t apart. The
shape of h.t/ can then determine both excitatory and inhibitory interactions between
pairs of points, as demonstrated by Diggle (2002). These models also allow for
a ‘birth-and-death’ style of cell positioning: cells are initially positioned randomly
within the field, and then individual cells are killed and move to new positions. Such
birth-and-death algorithms need several iterations to converge, but are preferable to
the serial methods which may introduce order artifacts (cells added later into the
field are more difficult to position than earlier-born cells). For further details see
(Diggle 2002; Eglen et al. 2005).

Finally, in contrast to the models whereby local order emerges from random
initial conditions, another class of model has been proposed for modelling retinal
mosaics whereby an initially regular hexagonal mosaic is distorted to match the
observed pattern. This ‘distorted lattice’ approach has been used to model the
distribution of horizontal cells (Ammermüller et al. 1993) and retinal ganglion cells
(Zhan and Troy 2000). Although these models can recreate the spatial properties
of observed retinal mosaics, they are of limited utility in informing us about the
developmental mechanisms underlying mosaic generation as they require hexagonal
mosaics to be first created and then distorted.

12.4 Mechanistic Models

In this section I briefly discuss mechanistic models that have been proposed
for generation of retinal mosaics. The key focus of these models is to help
further understand the developmental mechanisms underlying pattern formation,
as opposed to observing a good statistical fit between model and data. For further
details of these models, the reader is referred to the original references and (Eglen
2006).
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12.4.1 Lateral Migration

Once retinal neurons become postmitotic, they migrate radially through the layers of
the retina until they arrive at the layer that is appropriate for their cell type. Whilst
they migrate through the layers, it is thought that cells of the same type do not
respect any minimal spacing rule (Galli-Resta et al. 1997). They therefore arrive
randomly spaced over a period of several days. However, once they arrive in the
destination layer, they appear to move laterally within the layer. The amount of
lateral movement observed varies by cell type (Reese et al. 1999), and those that
move more tend to have more regular mosaics.

What causes the lateral movement of neurons within their destination layer?
Early evidence suggested a correlation between the time of movement and the first
emergence of neurites in horizontal cells (Reese et al. 1999). This suggested that
dendritic interactions might underlie the lateral migration, a hypothesis that was
investigated using modelling techniques (Eglen et al. 2000), described in the next
paragraph. Subsequently, further evidence for the role of dendritic interactions in
mosaic formation came from work by Galli-Resta showing that temporary disrup-
tion of microtubules in dendrites caused mosaics to collapse; once microtubule
function restored, mosaic organization returned (Galli-Resta et al. 2002). Most
recently, mosaics are disrupted in mice lacking the cell adhesion molecule DSCAM,
possibly as a consequence of altered dendritic fasciculation among homotypic
neurons (Fuerst et al. 2008).

In the lateral migration model (Eglen et al. 2000), neurons initially have small
circular dendritic arbors. Each cell receives input from its neighbours in proportion
to the amount of dendritic overlap, and arbor size varies to maintain a fixed amount
of input from neighbouring cells (van Ooyen and van Pelt 1994). In addition, cells
repel each other in proportion to their dendritic overlap. In this manner, as dendritic
arbors develop, cells gradually begin to repel each other; once arbor sizes have
stabilised, the cells then gradually settle into a regular hexagonal-like mosaic layout.
The amounts that each cell moves is small, in line with the lateral distances observed
experimentally (Reese et al. 1999). One limitation of the model is that it usually
generates mosaics with regularity indexes that are much higher than those observed
experimentally. This is because the model dendrites are perfectly circular and the
amount of overlap between arbors is calculated exactly. Reducing the precision with
which the amount of overlap is detected produces more realistic mosaics (Eglen
et al. 2000). Subsequent modelling work has also examined in detail the mechanical
forces that might compose the dendritic interactions, thus moving towards more
realistic description of the developing dendrites (Ruggiero et al. 2004).

12.4.2 Lateral Inhibition of Cell Fate

The eventual identity of any given neuron in the retina is not predetermined early in
development but is influenced by many intrinsic and environmental factors during
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development. Many cell fate mechanisms influence the identity of a given cell. One
of the most common is lateral inhibition: neighbouring neurons compete to inhibit
each other from acquiring a particular fate. There are many molecular pathways
by which this lateral inhibition is mediated, but most notable is that of Delta-
Notch signalling (Frankfort and Mardon 2002). Cell fate mechanisms can therefore
naturally impose minimal distance constraints as they prevent neighbours from
being the same type of neuron.

The effect of cell fate interactions upon the relative numbers of primary and
secondary fate neurons was studied by Honda et al. (1990). This early modelling
study showed that lateral inhibitory mechanisms are sufficient to generate the
correct relative numbers of primary and secondary fate neurons in developing
grasshopper neuroblasts. We have subsequently shown that lateral inhibition can
generate regular primary fate mosaics from an initial irregular distribution of undif-
ferentiated neurons (Eglen and Willshaw 2002). However, if the initial population
of undifferentiated neurons is already regular, the subsequent mosaic of primary fate
neurons is not more regular than the initial population. Stochastic cell fate processes
have also been shown theoretically to be sufficient to account for the generation of
regular mosaics in zebrafish photoreceptors (Tohya et al. 1999). Further work by
this group showed that these zebrafish mosaics could equivalently be generated by
cell rearrangement processes (Mochizuki 2002; Tohya et al. 2003).

12.4.3 Cell Death

Many more neurons are produced in development than survive to adulthood. For
example, estimates suggest that 50–90% of RGCS that are born will die before
adulthood (Finlay and Pallas 1989). This programmed cell death may have many
roles in development, including the refinement of retinal projections to their targets
(O’Leary et al. 1986). Cell death might be an active process in forming retinal
mosaics, by removing those inappropriately-positioned neurons that are too close
to their neighbours (Jeyarasasingam et al. 1998; Cook and Chalupa 2000). The
mechanisms by which neurons detect that they are too close too each other are
however unknown. Furthermore, computer modelling of this process suggests
that the cell death would need to be highly selective or the level of cell death
would need to be very high to transform an irregular mosaic into a regular
mosaic (Eglen and Willshaw 2002). These modelling studies would therefore
suggest that cell death alone does not account for the emergence of RGC mosaics
(Jeyarasasingam et al. 1998). Cell death could however account for the generation
of other mosaics, e.g. dopaminergic amacrine neurons (Raven et al. 2003), as the
level of naturally-occurring cell death is very high and the final mosaics are only
mildly regular.
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12.4.4 Interactions Between Developmental Mechanisms

Although cell death alone could not account for the emergence of RGC mosaics,
it is likely that many mechanisms can co-operate to generate regular mosaics.
Indeed, combining lateral inhibition of cell fate with cell death is sufficient to
generate highly regular RGC-like mosaics (Eglen and Willshaw 2002). The effects
of interactions between several developmental mechanisms has been studied within
the context of cellular patterns in the chick inner ear, the basilar papilla (Goodyear
and Richardson 1997), where primary fate cells are regularly distributed across
the surface (Podgorski et al. 2007). Three different mechanisms were studied:
lateral inhibition of cell fate, cell death, and differential adhesion. Individually, no
single mechanism could account for the generation of the primary fate mosaics.
However, iteratively coupling these mechanisms robustly generated regular patterns
over a wide range of initial conditions. These results suggest that modelling the
interactions between developmental mechanisms is clearly important before one can
fully understand the relative role of individual processes, such as cell death.

12.5 Exclusion Zone Modelling: Application
to Two Types of Neuron

This previous section has outlined several mechanisms that could underlie the
generation of retinal mosaics, and in particular how an exclusion zone might be
generated. If we assume that exclusion zones can somehow be generated, then it is
natural to return to the dmin model and see how else it can be used to investigate
mosaic formation. In particular, in this section we consider whether the dmin model
can account for the generation of cellular patterns involving two related cell types.

Out of the 60C cell types in the retina, there are several types of cell that come in
complementary pairs (Cook and Chalupa 2000). For example, the most prominent
example of complementary pairing is the classification of alpha and beta RGCs into
two types: on-centre or off-centre, depending on their response to light (Wässle et al.
1981a,b). Likewise, in both cat and macaque, horizontal cells are divided into two
types, each regularly arranged (Wässle et al. 1978, 2000). In this section I show how
exclusion zone modelling can test whether heterotypic developmental interactions
are required to generate these mosaics.

Figure 12.10a shows the regular arrangement of two types of horizontal cell in
macaque (Wässle et al. 2000). There are roughly twice as many type 1 neurons as
type 2 neurons. The regularity index for all neurons (irrespective of type) is just
under 4.0 (Fig. 12.11), which is relatively high and thus lead to the suggestion that
the two types of neuron might interact to create this high regularity (Wässle et al.
2000). To test this hypothesis, we extended the exclusion zone model to include
two types of neurons (Eglen and Wong 2008). Each neuron respected the exclusion
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H1
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Fig. 12.10 Regular arrangement of two types of horizontal cells. (a) Observed distribution from
macaque retina. Type 1 neurons are drawn as open circles, type 2 cells are filled. (b) Example
output from the extended dmin model, assuming no interactions between cell types except for
preventing somal overlap
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Fig. 12.11 Quantitative
comparison of the extended
dmin model with the macaque
horizontal cells. The
horizontal grey line shows the
observed regularity index for
either type 1 neurons, type 2
neurons, or all neurons,
irrespective of type. Black
dots indicate the regularity
index from 99 simulations.
The observed regularity index
falls within the range of the
99 simulations, indicating a
good fit between model and
data

zone only of cells of the same type; the only interaction between cells of different
type was that they could not come closer than about 12 �m, the average soma
diameter, to prevent somal overlap. This model generated retinal mosaics that were
both visually (Fig. 12.10b) and quantitatively similar, as assessed by distribution
of regularity indexes (Fig. 12.11) and L functions (Eglen and Wong 2008). Thus,
the exclusion zone model predicts that horizontal cell mosaics can emerge without
heterotypic interactions. A similar conclusion was reached for the generation of two
types of beta RGCs in cat, using a more flexible exclusion zone technique (Eglen
et al. 2005).
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12.6 Future Directions

The retina is an ideal system for investigating questions of cellular patterning for
several reasons. First, there is a comprehensive catalogue of individual retinal cell
types (Masland 2004), and although the number of cells seems large (60C), it
is presumably much smaller than in other parts of the nervous system. Second,
most cells of an individual type are located at a single depth within the retina,
reducing the problem of cellular arrangements from three- to two-dimensions.
Third, there are several selective neurochemical markers available to reliably stain
individual cell types. (However, most of these markers only work reliably in
adulthood, rather than early in development.) To see whether the principles of
cellular organisation generalise from the retina to other parts of the central nervous
system, several experimental challenges must be overcome. For example, we need
reliable techniques for identifying and labelling individual cell types. Moving
from two- to three-dimensional space will require accurate reconstruction within a
volume (Oberlaender et al. 2009). By contrast, most of the theoretical techniques
should generalise from the retina to other parts of the CNS (e.g. Prodanov and
Feirabend 2007; Prodanov et al. 2007) and into three dimensions (Baddeley et al.
1993). Most of the computational tools are also freely available in either Matlab or
R (Rowlingson and Diggle 1993; Baddeley and Turner 2005; Eglen et al. 2008).
Finally, aside from investigating developmental mechanisms, the analysis of spatial
patterning of neurons in adulthood is also important in several clinical contexts
(Diggle et al. 1991; Cotter et al. 2002; Lei et al. 2009). There has been relatively
little modelling of spatial patterning in these clinical contexts, but as the technical
limitations described above are overcome, I hope that computational modelling will
be a useful tool in understanding the generation and perturbation of these patterns.

12.7 Further Reading

• Statistical analysis of spatial point patterns (Diggle 2002). This is a short but
comprehensive description of most of the key techniques described in this
chapter.

• Principles of computational modelling in neuroscience (Sterratt et al. 2011).
Comprehensive textbook on modelling neural systems, including a chapter on
neural development.

• Retinal development (Sernagor et al. 2006). Edited collection of articles describ-
ing the different stages of vertebrate retinal development.
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Andreas Lønborg for comments on a draft version of this chapter.



12 Retinal Mosaics 383

References
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Chapter 13
Measuring and Modeling Morphology:
How Dendrites Take Shape

Todd A. Gillette and Giorgio A. Ascoli

Abstract Neuronal processes grow under a variety of constraints, both immediate
and evolutionary. Their pattern of growth provides insight into their function.
This chapter begins by reviewing morphological metrics used in analyses and
computational models. Molecular mechanisms underlying growth and plasticity
are then discussed, followed by several types of modeling approaches. Computer
simulation of morphology can be used to describe and reproduce the statistics of
neuronal types or to evaluate growth and functional hypotheses. For instance, mod-
els in which branching is probabilistically determined by diameter produce realistic
virtual dendrites of most neuronal types, though more complicated statistical models
are required for other types. Virtual dendrites grown under environmental and/or
functional constraints are also discussed, offering a broad perspective on dendritic
morphology.

13.1 Introduction

It is generally understood that for anything that is the result of an evolutionary
process, form follows function. A streamlined body in both nature and the world
of man-made machines usually indicates an object’s function is to move quickly.
Even such a seemingly mundane object such as a foot can say a great deal about
the foot’s owner. Water fowl feet are webbed for paddling, birds of prey have sharp
talons for grabbing and killing their prey, many primates have feet with thumbs for
traversing trees, and humans have particularly large feet to keep a more upright body
well balanced. So, in order to understand function and the developmental process of
dendrites, it is highly worthwhile to study their morphological attributes.
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Fig. 13.1 Diversity in neuronal morphology. (a) Cerebellar Purkinje cell viewed with its largest
area showing (left) and edge-on (right), exhibiting dense arborization and a planar shape (Rapp
et al. 1994). (b) Hippocampal CA1 pyramidal cell with polarized basal (blue) and apical (red)
dendrites (Ishizuka et al. 1995). Growth is primarily within a conical region, particularly for the
basal dendrites. (c) Cortical stellate cell with radial dendritic arborization in all directions (Vetter
et al. 2001). Reconstructions retrieved via NeuroMorpho.Org (Ascoli et al. 2007)

A look through the online neuronal reconstruction database NeuroMorpho.Org
(Ascoli et al. 2007) will provide one with a clear view of the great variety of
dendritic and axonal morphologies. We see differences in size and shape from the
planar and densely bifurcating dendrites of the cerebellar Purkinje cell (Fig. 13.1a)
to the polarized and conical shape of the pyramidal cell’s basal and apical dendrites
(Fig. 13.1b). The cortical stellate cell, among many others, exhibits radial growth
in all directions (Fig. 13.1c). In the many visually distinctive neuronal classes one
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can easily see the diversity in neuron size, density, proportion, and complexity.
Properties such as taper rates and asymmetry are harder to discern or compare by
eye, but are equally important (see Sect. 13.3).

The effort to understand the complexities of dendrites may be largely attributed
to the variety of functions they must perform. Different dendritic classes and even
individual dendrites are characterized by specific morphological and functional
properties. Aside from the particulars of how a dendrite must integrate its synaptic
inputs, it must minimize metabolic costs while reaching existing and potential
synaptic targets, make appropriate connections to form the network of which it
is a part, and be capable of plasticity required for various forms of learning. The
morphology of a dendrite has evolved to accomplish these goals, but it may be that in
the interest of accomplishing one goal, the morphology is detrimental towards other
goals. In such cases, other properties may make up for the counterproductive effects.

For instance, while bifurcations are known to reduce the probability of the
continuation of a spike (Spruston et al. 1995; Sieck and Prakash 1995; Williams
and Stuart 2000), it is not as clear whether this is useful or detrimental to signal
processing. Both channel properties (e.g. density and conductance) and the ratio
of parent to daughter segment diameter can impact failure probability (Migliore
1996). If a discovery is made that a greater density of sodium channels or local
enlargements of daughter branch diameter are common at bifurcations, then one
could argue that neurons have developed mechanisms to reduce the probability
of bifurcation spike failure as the increased channel density and daughter branch
taper decrease the likelihood of failure. An even more interesting discovery would
be of a mechanism providing control over local channel properties or dendritic
diameter and therefore propagation failure probability. In Sect. 13.3.1 the rela-
tionship between spike propagation and morphology will be further explored. By
understanding how particular morphological features affect electrophysiology and
how connectivity patterns affect morphology, we can better understand the function
of various neuron types as well as how the overall morphology of a neuron and its
non-morphological features contribute to function.

A wide variety of techniques are used to explore the relationships between
morphology, development, and function. Electrophysiological experiments and
models, as well as molecular and other biophysical research, provide functional
data. Imaging and reconstruction techniques provide a means to produce rich
morphological data. Models fall into and across multiple categories, each with
particular strengths for both testing and generating hypotheses of development
and function. Morphometrics enable measurement of morphological features which
in turn provides the capability to compare cell classes quantitatively and find
correlations between morphology and function. Comparisons between cell classes
can be extended to morphologies produced by models, providing a mechanism for
their validation. This chapter will cover the tools and techniques used to study
dendritic morphology, as well as many of the known and proposed underlying
mechanisms responsible for growth and the associated functions achieved by
dendrites.
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13.2 Morphological Data and Computational Capabilities

Before delving into the deeper complexities of morphological models and ex-
periments, it will be useful to understand how the source data is derived and
organized. Computing power and algorithmic advances have provided phenomenal
opportunities over the last decade for three dimensional digital reconstruction, com-
plex analysis, and simulation of both dendritic morphology and electrophysiology.
Applying information technology to the field is also having a great impact, with
databases of morphology, physiology, and simulation models such as NeuroMor-
pho.Org (Ascoli et al. 2007), NeuronDB (Mirsky et al. 1998), and ModelDB (Hines
et al. 2004) respectively.

Three dimensional neuronal reconstructions are digitized representations of the
morphological structure of neurons. These representations are made up of tapering
cylinders (technically cylindrical frustums) that are connected in a tree structure
to represent a neuron’s soma, dendrites, and/or axon. Some reconstructions may
also include dendritic spine data, histological or anatomical boundaries, or other
supplementary information. Currently, these reconstructions are created primarily
by a human operator working either on a computer equipped microscope or on
image stacks produced through a microscope for “offline” tracing (Fig. 13.2). Semi-
automated programs are available to assist human users, simplifying the process.
These include the freely available Neuromantic (Neuromantic: the Freeware Neu-
ronal Reconstruction Tool), the popular commercial Neurolucida (Glaser and Glaser
1990); (MBF Bioscience: Neurolucida – Neuron Reconstruction), and Bitplane’s
FilamentTracer (Bitplane: Neuron reconstruction – Automatic neuron tracing, spine
detection and analysis in 3D/4D). Fully automated programs exist as well, but are
not yet widely employed as they have not been proven reliable on a representative
variety of cell types, staining techniques, and microscopy. A competition, the Digital
Reconstruction of Axonal and Dendritic Morphology (DIADEM) Challenge, was
launched in April 2009 in order to promote development and test the capabilities of
such programs (Diadem Competition). Automated reconstruction may yield within
a few years an explosion of morphological and connectomic data. Each type of data
is useful in its own right, but given the relevance of connectivity to morphology,
both types of data will complement each other in both areas of research.

Open access databases, in combination with analytical tools, provide the oppor-
tunity for both broad canvases of morphologies and physiological data as well as
more targeted analyses using data already acquired for other research. A variety
of neuroscience related databases can be found at the Neuroscience Information
Framework (Gardner et al. 2008; http://neurogateway.org/). By sharing and making
the appropriate data easy to find, the impact of the original research can be
multiplied, both scientifically and in terms of citations (Ascoli 2006). Prior to such
databases, sharing data was possible but required more time and effort. Now data is
available from multiple labs, and as the databases become better known and used,
it will become more likely for a researcher to volunteer their data. In the case of
NeuroMorpho.Org, this will create the prospect of more up-to-date and complete

http://neurogateway.org/
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Fig. 13.2 A series of steps using various programs to trace a pyramidal cell and represent it as
a digital reconstruction. (a) Multiple images are acquired into a stack via the Volume Integration
and Alignment System (VIAS). (b) The image stack is presented in ImageJ for reconstruction.
(c) A zoomed in view of the neuron allows for plotting points and determining diameters. (d) Once
completed, the reconstructed neuron is viewed in Cvapp (Reprinted from Brown et al. 2005 with
permission from Springer)

databases with morphologies across the spectrum of species, brain region, cell class,
and even experimental conditions such as knock out, age, and behavioral experience.
Analytical tools that can be coupled to such databases can multiply their impact.
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L-Measure is one such example; a freely available cross-platform tool with the
ability to calculate and statistically analyze a broad array of morphometrics for any
selected set of morphologies (Scorcioni et al. 2008; http://krasnow.gmu.edu/cn3/).

In addition to molecular and biological experimentation, computer simulation
has been another vital tool for morphology research. Aside from electrophysio-
logical models that make use of real dendritic morphologies, growth models in
concert with morphological analysis techniques have allowed scientists to test
developmental and functional hypotheses. There are many methods of modeling
dendritic morphology, each offering different benefits and each capable of address-
ing different questions. Some models use a particular mechanism of growth, such
as bifurcation at terminal tips or growth due to external environmental factors.
Other models use statistics to characterize the relationships between initial and
emergent properties during the growth process. For example, one such model
determines bifurcation and termination probability based on a segment’s diameter.
In such models “growth” does not necessarily imply developmental growth, but
rather the process the model undergoes to generate a dendrite. These models are
useful in describing how local morphological properties of a branch predict the
downstream dendritic structure. Where relationships are found, new hypotheses can
be generated with regard to both growth mechanisms as well as function. Yet other
models disregard growth and focus instead of emergent functional properties by
using techniques such as graph theory or evolutionary algorithms. Section 13.5 will
focus on some of the techniques used in these various types of models and on the
discoveries to which they have led.

13.3 Quantitative Measures and Functional Implications

Quantitative morphological measures, also called morphometrics, are the corner-
stone of any morphological analysis. Such measures are numerous and many
partially overlap each other in their meaning. They can be used to explore the
differences between neuron classes, seek correlations with measures of function,
and test hypotheses concerning development. They are also useful for growth
models, specifically in comparing real neurons to growth models meant to simulate
them, or as a basis for statistically based growth models. Measures of whole neurons
or the separate domains of axons, dendrites, and sometimes apical dendrites, can be
broken down into various categories. Here we discuss them in terms of geometric,
size-related, and topological features. Local geometric features, such as taper rate
(Fig. 13.3a), tortuosity (Fig. 13.3b), and angle of bifurcation (Fig. 13.3c), are
particularly useful for understanding influences on growth. Size measures include
total length, surface area, and internal volume, as well as height, width, and depth
(determined by a minimal bounding box [Fig. 13.3d] or by principal component
analysis). There are also local size measures such as segment length and diameter.
Topology deals with bifurcations, their numbers and the distribution of their

http://krasnow.gmu.edu/cn3/
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Fig. 13.3 Morphological features. (a) Taper rates from low to high (top to bottom). (b) Increasing
tortuosity (top to bottom). Tortuosity is the ratio between the path length of a segment and the
Euclidean distance between its two ends. (c) Top: Increasing angles of bifurcation. Bottom: Such
angles can be measured locally as the angle of departure (dashed lines) or remotely as the angle
between nodes (dotted lines). (d) The bounding box of a pyramidal neuron’s dendrites (Cell from
Ishizuka et al. 1995, via NeuroMorpho.Org)

resulting segments (i.e. connectivity). Topological features, as well as features that
are combinations of topology and size, also fall into the category of morphological
complexity. Descriptions of these measures along with some common uses and
interpretations follow.

13.3.1 Size and Geometry

A number of size and geometric features affect electrophysiological properties at
local and global scales. Electrophysiological properties fall into the two categories
of passive and active. Passive properties refer to basic resistance and capacitance
effects on signal propagation, generally described by Cable Theory (Rall 1969).
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Active properties refers to gated channels that change conductance depending on
voltage resulting in nonlinear effects, usually spikes (i.e. action potentials), and are
generally described by Hodgkin-Huxley equations (Hodgkin and Huxley 1952). In
experimentation, current can be injected at a constant level in a condition called
current clamp (CC), allowing for the measurement of voltage. Alternatively, with
a voltage clamp (VC) current is injected at a variable level in order to hold the
voltage at a constant level. In all cases, a current input (I) (via synaptic channels
or an experimental patch pipette) will produce a change in voltage (V) across the
membrane as described by the equation VD IR, where R is the input resistance.
Capacitance describes the ability of the membrane to carry a charge such that
a higher capacitance will result in more time for the membrane potential (i.e.
voltage) to reach equilibrium in response to a change. Resistance and capacitance
are both dependant on multiple morphological features, resulting in complex
electrophysiological behavior within and between neurons.

Surface area is important to propagation and neuron function in that it is a
primary determinant of a neuron’s input resistance, the electrical resistance between
the intracellular and extracellular space. A greater surface area allows for a greater
number of channels through which ions/current can leak across, which lowers input
resistance. In addition to decreased input resistance, increased surface area also
results in increased capacitance. All else being equal, a cell with greater surface area
will take longer to fire due to decreased input resistance and increased capacitance,
but the capacitance will also store charge during a spike enabling a shorter delay
before the next spike and therefore a higher maximal firing rate (Fig. 13.4a). This
relationship manifested in simulation as a lower burst rate (i.e. greater time between
bursts) but higher within burst spike rate for larger compared to smaller CA3
pyramidal cell dendrites (Krichmar et al. 2002). Greater surface area also allows
for a larger number of synapses and therefore more possible connections to other
presynaptic neurons, which has implications for structural plasticity and information
storage (Chklovskii et al. 2004; Stepanyants and Chklovskii 2005). Surface area is
a product of a neuron’s path length and diameter, each of which has additional
functional implications.

Dendritic length plays several roles in neuronal function. Greater length tends
to correspond to greater invaded space. This makes the dendrite available to
more incoming connections. The tortuosity of a dendritic branch, or the ratio
of the path distance between two consecutive branch points (or a branch point
and a termination) and the Euclidean distance, provides information about the
dendrite’s growth mechanisms and its method of reaching synaptic targets. This
and bifurcation angles will be discussed further in Sect. 13.5.

Electrotonically, greater lengths result in greater attenuation of a voltage signal
given only passive propagation. This means that, all else being equal, synapses
farther from the soma will have a smaller impact on somatic potential than those
closer to the soma. In reality, there are a number of mechanisms by which
a synapse can have a relatively increased effect, including optimized diameter
properties, active dendritic propagation, and distance dependent synaptic strength.
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Fig. 13.4 Morphological effects on signal propagation and firing rates. (a) A cell with less surface
area (top) has a lower firing rate than seen within bursts of the larger cell (bottom). The faster within
burst firing rate and gaps between bursts can both be explained by capacitive effects in concert with
channel dynamics (Adapted from Krichmar et al. 2002 with permission from Elsevier). (b) Voltage
signals at location of synaptic input (arrowheads at left) and at a point closer to the soma (arrows at
right) in two dendrites with differing diameters. The smaller diameter dendrite (top) has a greater
input resistance and thus a larger peak voltage and faster rise time at the input relative to that seen
in the larger diameter dendrite (bottom). The smaller dendrite also displays greater attenuation
along the length due to the higher axial resistance. Flattening and delay of signal rise time due to
capacitance can be seen between the signals in both dendrites

The attenuation based on increased length is due to input impedance which is the
combined effects of the resistance and capacitance along the length of the dendrite.
Capacitance is also responsible for signal flattening and delay, or the longer time
to peak of a signal (Fig. 13.4b). Rather than representing lengths in microns,
particularly path lengths from synapse to soma, lengths are often represented in
terms of the space constant œ, or the distance a signal travels before it is attenuated
to 1/e of the initial voltage (Rall 1969).

Along with membrane and cytoplasmic resistivity, diameter is the other major
morphological factor in determining œ. While a larger diameter necessarily produces
greater surface area and therefore locally decreases input resistance, it decreases
axial resistance (i.e. resistance along the dendrite) by a greater amount. Axial
resistance (per unit length of dendrite) is inversely proportional to the cross-
sectional area of the dendrite, which is in turn proportional to the square of
the diameter. Membrane resistance is inversely proportional to the circumference
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(and therefore to the diameter) of the dendrite. Capacitance is proportional to the
circumference of the dendrite and is responsible for the dendrite’s input impedance
and low-pass filter properties, though length effects are generally larger. In dendritic
branches with greater diameter, the lower input resistance decreases the voltage
achieved by a synaptic input, but the larger axial resistance better preserves the
signal (Fig. 13.4b).

The mismatch of impedance between the branches at a bifurcation is responsible
for greater attenuation and increased probability of spike propagation failure (Vetter
et al. 2001). In order to avoid impedance mismatch at a bifurcation, the parent and
daughter branch diameters must conform to the 3/2 power law, whereby the sum
of each daughter branch diameter raised to the 3/2 power is equal to the parent
branch diameter raised to the 3/2 power (Goldstein and Rall 1974). The further
away the relationship is from the rule, the greater the impedance mismatch and
attenuation. This rule has been particularly useful for those who run computational
simulations of electrophysiology. Where the rule holds (and assuming measurement
of axo-somatic properties), bifurcations need not be individually represented and
fewer compartments can be used.

The direct impact of dendritic diameter and length on electrotonic properties is
seen in synaptic efficacy. One method for accurately measuring and visualizing these
effects on synaptic efficacy given passive propagation is the morphoelectrotonic
transform (MET) (Zador et al. 1995). The MET visualizes signal attenuation and
delay with an “attenogram” and a “delayogram”. Each neuron’s visualizations are
generated given an input site and an input waveform (e.g. a current pulse or a
sinusoidal input). The calculations involved in the MET are similar to those for
calculating electrotonic length. However, the MET produces an effective length con-
stant (œeff) that does not assume infinite cylinders as does the classical electrotonic
length calculation. With the MET, one can view the electrotonic compactness not
just from the soma, but from any individual potential synapse.

When considering active properties, length and diameter can have the exact
opposite effect on synaptic efficacy as in the passive case (Komendantov and Ascoli
2009). Simulations showed that higher input resistance at synapses farther from
the soma lead to a greater probability of generating dendritic spikes therefore
producing greater synaptic efficacy. Synapses closer to the soma with lower input
resistance are relatively less likely to contribute to somatic spikes, i.e. they have
lower synaptic efficacy. These two analyses on basic morphological properties
and synaptic efficacy demonstrate the complex relationship between morphology,
physiology, and function, yet there are still many more factors to consider.

13.3.2 Topology and Complexity

In addition to the various and important relationships between size and function,
the distribution of those size attributes (i.e. where topologically and spatially length
or volume are distributed) also has a vital impact on neuron function. The term
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Fig. 13.5 Unlabeled binary
tree shapes. (a) All tree
shapes of degree 2 through 5.
(b) Two trees that appear
different but are the same.
They would be different if the
nodes were labeled. The
numbers refer to branch
order. The root node and
initial branch are of order 0

“complexity” is often used to encompass measures of the distribution of a tree’s size
topologically or in space. Complexity measures do have functional implications,
but many are more commonly used for classifying neuronal populations and
validating models. A particularly common measure for complexity is the number
of dendritic bifurcations, which can affect how signals are integrated in terms of
impedance mismatch (previously discussed) as well as how a neuron is integrated
into its network in terms of space filling and synaptic connections (Wen and
Chklovskii 2008).

There are several terms used when discussing topology that are important to
know. Many of the terms come from or have synonyms with graph theory, which is a
system of describing the ways in which nodes can be connected and how one might
find optimal paths given a set of nodes and edges (i.e. connections). A tree is a type
of graph in which connections between nodes are unidirectional (i.e. directed edges)
from parent to child and in which there are no cycles. In binary trees, nodes are either
bifurcations, terminations, or the tree root. Degree refers to the number of terminal
nodes in a tree, which is a useful indicator of tree size as it is directly proportional to
the number of branches and the number of bifurcations (branchesD degree * 2 – 1;
bifurcationsD degree – 1). A branch is the segment or edge between nodes and a
branch’s order (i.e. depth) refers to the number of branches between itself and the
root node (Fig. 13.5b). A branch’s order is equivalent to the order of the bifurcating
node that gives rise to it. Child and daughter branch are used interchangeably. These
definitions will make it easier to understand topology and complexity.

Ignoring size and geometric features, and given a number of bifurcations, there
are a specific number of unique binary trees called unlabeled (also referred to
as unordered) binary tree shapes (Harding 1971) as seen in Fig. 13.5. While
multifurcations do exist it is common to treat trees as binary. Any multifurcation can
be broken into multiple bifurcations, though there are multiple ways to do so which
can differentially impact the resulting topology. Methods are available to determine
the most likely binary configuration for a multifurcation, assuming probabilities of
the binary subtrees are known (Verwer and Van Pelt 1990).

Vertex analysis was an early metric developed to analyze topology in neurons
(Berry and Flinn 1984). For binary trees the analysis focuses on the ratio of the
number of “primary nodal vertices” (i.e. nodes with two terminating children) to
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Fig. 13.6 Asymmetry. (a) The partition asymmetry equation accompanied by trees (degree 6) with
partition asymmetry (Ap) values of the first bifurcation node. The terms l and r refer to the degree
of the left and right subtrees. (b) The equation for partition asymmetry by length accompanied by
a tree that has a topological partition asymmetry of 1 but a length partition asymmetry of close to
0 due to the similar total length of left and right daughter subtrees

the number of “secondary nodal vertices” (i.e. nodes with one bifurcating child and
one terminating child). This method, along with asymmetry which is discussed next,
was commonly used to determine the probability that a given tree or class of trees
was the result of a particular growth process (discussed further in Sect. 13.5.1).

Asymmetry is another property that is highly dependent on the mechanisms
of growth. One particular measure of asymmetry, the tree asymmetry index, is
measured at the tree level and is based on the partition asymmetry, where ‘partition’
refers to the balance of size between daughter subtrees measured at a given
bifurcation (Van Pelt et al. 1992). The values of partition asymmetry are between
0 and 1 (inclusive) based on the relative distribution (i.e. balance) of terminal nodes
between a bifurcation’s subtrees. A partition asymmetry value of 0 represents a
symmetric distribution and a value of 1 represents a single termination in one subtree
with the remaining terminations in the other subtree (Fig. 13.6a). This version
of asymmetry can also be referred to as topological asymmetry because it deals
strictly with the distributions of terminal degree. Asymmetry can alternatively be
calculated using distributions of length or other size attributes rather than degree.
These other versions can be defined slightly differently because even in the case of a
topologically asymmetric bifurcation the lengths of the branches are unconstrained.
In the case of a node of degree 3 it would be possible for the side with the terminal
node to have an equal or larger branch length than the combined length of the subtree
of degree 2 (Fig. 13.6b). The tree asymmetry index is defined as the average partition
asymmetry across all bifurcations in a tree.

Alternative versions of asymmetry can be produced by weighting the partition
asymmetry values based on criteria depending on the purpose of the measure.
Whether one is interested in electrophysiological effects or differentiation of cell
classes, if a particular property is suspected to be more greatly impacted by subtrees
with greater size, one might choose to weight nodes by degree. Several alternative
methods are raised in (Van Pelt et al. 1992). The first is a scheme in which nodes
of degree less than four are not considered. Such partitions are trivial with only
one shape each. Another scheme weights nodes by the number of bifurcations in
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their subtrees (i.e. weightD degree – 2). The third alternative weights nodes by
the number of possible distributions of bifurcations among the node’s two subtrees
(i.e. weightD degree – 3). Van Pelt and colleagues found that all schemes except
for the second alternative displayed fairly large variances in tree shape samples and
thus best served to differentiate different sets of trees from each other.

The impacts of asymmetry and topology were investigated in an experiment
specifically focused on topology and its electrotonic effect. Van Ooyen et al. (2002)
found that virtual dendrites with greater mean path length (of dendritic tips) had
higher firing rates in response to somatic current injection. The experiment used
all possible tree shapes with eight terminal nodes (i.e. of degree 8). Since branch
lengths were all set equal to each other, the greater mean path lengths corresponded
to trees with greater asymmetry. The tree asymmetry index did correlate with firing
frequency, but not as well as mean path length did. However, branches closer to
the soma have a greater influence on input resistance, so a weighted asymmetry
would be a more representative metric and would be expected to better correlate
with firing rate. The relationship between topology and firing rate ultimately is
based on input resistance which rises (or input conductance which decreases) with
the increased mean path length of the more asymmetric trees. Another way to look
at it is that a more symmetric tree has its branches connected in parallel, driving
down input resistance, while a more asymmetric tree has its branches connected in
series, driving up input resistance. A lower input resistance leads to more current
leaking into the dendrites. However, increasing mean path length by increasing
branch length has no impact on how the branches interact electrically. Surface area
increases with the path length, which in turn decreases input resistance and therefore
somatic firing rate.

Another variation on asymmetry, termed “excess asymmetry”, was used to
determine whether the size of a dendritic branch or subtree is affected by the
size of the rest of the dendrite. Excess asymmetry measures the extent to which
a dendritic tree’s branches grow independently from each other (Samsonovich
and Ascoli 2006). One type of dependent growth would result in morphological
homeostasis, in which a larger subtree would necessarily be offset by a smaller
sibling. The excess partition asymmetry is defined as the difference between the
partition asymmetry of a bifurcation and the average partition asymmetry of that
bifurcation with its grandchild subtrees shuffled. The rationale is that, assuming
morphological homeostasis, a larger subtree will be offset by a smaller sibling
subtree and so shuffling the children of those subtrees will result in greater symmetry
between the subtrees. Just as with the standard partition asymmetry, excess partition
asymmetry can be calculated with regards to various size metrics. It was found
that all sets of hippocampal CA1 and CA3 pyramidal cells tested had significantly
positive excess asymmetry in terms of degree, length, and surface area. This result
complemented a result in the same study that showed morphological homeostasis
between entire basal dendritic trees on the same cell, as well as between the basal
dendritic arbor (i.e. all basal dendrites) and the apical dendritic arbor.

A topological property that is often visually evident is caulescence, or the
prominence of a main path in a tree structure (Brown et al. 2008). Like asymmetry,
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Fig. 13.7 Caulescence. (a) Determination of the primary path in a tree by degree (dotted) and
by total length (dashed). (b) Pyramidal cell dendrites (from Shepherd and Svoboda 2005, via
NeuroMorpho.Org) with the main paths by length (yellow) on apical (red) and basal (blue)
dendrites. (c) Blowfly tangential cell (from Borst and Haag 1996, via NeuroMorpho.Org) with
visually approximated regions of high caulescence highlighted in red

caulescence can be calculated using only topology or with any size attribute.
Determining the caulescence of a tree is a two step process, the first being the
determination of the primary branches (i.e. main path), the second being the deter-
mination of the value. In the first step, the primary path starts from a node (usually
the soma or more generally a tree’s root) and traverses away from the root choosing
the larger daughter branch at each bifurcation (Fig. 13.7a). The caulescence is the
weighted average of the partition asymmetry along the primary path. As with the
partition asymmetry calculation, any size metric can be used to determine which
child is larger. It is customary to use the same size metric for both determining the
path and calculating the partition asymmetry.

Axons are generally more caulescent than dendrites, but caulescence is also
prominent in some classes of pyramidal cell apical dendrites (Fig. 13.7b). Other
cell classes may contain dendrites with multiple main paths or with main paths that
appear in certain regions but do not start at the soma. Main paths are often found in
dendrites in which synaptic targets are clustered at a distance from the soma, such as
in the case of apical dendrites and the cluster of synapses in the apical tuft. A blowfly
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Fig. 13.8 Sholl analysis design and plot. Concentric circles (gray) denote the distances from the
center at which crossings of the sample dendritic tree (black) are counted. The graph on the right
shows a sample Sholl plot based on the example tree. While Sholl analyses usually contain more
bins to plot crossings, they do often have an upward then downward trend as shown

tangential cell dendrite appears fairly symmetric when considered as a whole, but
between major bifurcations are segments that appear caulescent (Fig. 13.7c).

Other complexity metrics that integrate topological and size attributes include
fractal dimensions and Sholl analysis. Fractal dimension (Df) can be measured in
several ways, each method producing an approximation of a form’s true Df by
performing some measurement at multiple scales (Jelinek and Fernandez 1998).
Fractals are common in nature, and while dendrites do not tend to strongly display
fractal properties, fractal dimension can serve to differentiate different types of
dendrites, including hippocampal neurons (Cannon et al. 1999) and retinal ganglion
cells (Caserta et al. 1995). The latter experiment additionally showed correlations
between fractal analysis and Sholl analysis. Sholl analysis (Fig. 13.8) is a popular
measure that charts the number of branches at set distances from the soma (Sholl
1953). Originally these measures were done only in two dimensions as images
of neurons were two-dimensional. With the advent to three-dimensional neuronal
reconstructions, many metrics, including Sholl analysis, can now be carried out
in three dimensions. Sholl analysis is often used to compare cell types or the
effects of some experimental effect on a cell. It provides additional detail when size
differences are found between two sets of dendrites. For instance, an experiment
focusing on the effects of stress on neurons in the prefrontal cortex exhibited
decreases in total length and number of pyramidal cell apical dendritic branches.
Sholl analysis showed that within the 240 �m that the dendrites reached, the reduced
complexity occurred between 90 and 120 �m of the soma, the region with the
highest baseline complexity (most branch crossings) (Radley et al. 2004).

Another metric that has come into more recent use is the tree-edit-distance.
Conceptually it is similar in function to the edit distance of strings; however trees
contain a topology that strings lack. The distance is the number of insertions and
deletions of nodes or branches required to turn one tree into a second tree. Nodes
can additionally be labeled with values, perhaps features such as branch length or
diameter. If such labels are used in an analysis, matched nodes must be modified (i.e.
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those not inserted or deleted), increasing the edit distance. The tree-edit-distance has
been used to test whether neuromuscular projections are genetically determined (Lu
et al. 2009). Right and left side projections were matched by size within animals, and
then distances were calculated. The distances were compared to distances calculated
between neurons of different animals. If the neurons are genetically determined, one
would expect the within animal differences to be smaller than the between animal
differences, but this was not found. Using various node labeling schemes, the metric
has also been used to classify several hippocampal neuronal types by clustering pair-
wise distances (Heumann and Wittum 2009). This metric is particularly interesting
in that it only produces a difference between two morphologies as opposed to
providing a value for a single tree. Its benefit is the explicit comparison of topology
merged with any particular combination of geometric or size attributes at the
branch level.

13.3.3 Real Morphologies and Their Properties

All of the discussed metrics can be used to compare dendritic trees in their entirety
in order to classify them and understand the diversity within and between classes.
A study by Cannon et al. (1999) provides a good example of a wide variety of size,
complexity, and electrophysiological characteristics applied to the differentiation of
several hippocampal cell classes. Multiple size characteristics sufficiently separated
the interneurons, dentate gyrus granule cells, CA1, and CA3 pyramidal cells.
Complexity metrics typically had more subtle differences with substantial overlaps
in the distributions between classes.

One particular factor that should be kept in mind when using digital recon-
structions for modeling or comparing neuronal types is the specific reconstruction
methods used to develop the data. While standards and common practices are
emerging, some aspects of the process, such as how the diameter of a dendritic
segment should be determined, vary from lab to lab and even from person to person.
These differences in procedure are in some cases due to resolution limits as well
as the different scientific questions being probed. For instance, diameter could be
traced at the inside of an irregular edge for the purposes of determining internal
dendritic space for organelles to inhabit. Alternatively, tracing might follow the
outside edge when considering potential synaptic connectivity based on distances
from the dendrite. Assuming surface area to be a key metric in a study, diameter
could be traced in the middle to account for the surface area of untraced dendritic
spines. As such, one cannot simply assume that all pieces of relevant information
needed for a different question will be available. A study examined systematic
differences between labs by comparing hippocampal CA3 and CA1 pyramidal
cells with a battery of metrics (Scorcioni et al. 2004). The two cell types were
differentiated by several metrics, including remote bifurcation angle and maximum
branch order, which did not vary consistently between labs. Total volume and
diameter were the only two metrics that differentiated both cell types and labs. Local
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bifurcation angle and contraction (a metric related to tortuosity) most differentiated
labs, suggesting that they may be the most variable properties between labs. These
results are useful for avoiding misinterpretation of certain metrics while designing
or interpreting studies.

Morphometric analysis can also serve to describe and potentially differentiate
interneurons, the roles of which are generally less clear than those of principal
cells. The results of such an analysis on both dendrites and axons of a set of
hippocampal CA3 interneurons used morphological analysis to segregate them into
two novel interneuronal classes (Ascoli et al. 2009). Initially distinguished by the
number of dendritic bifurcations, further analysis found differences in a variety
of local branch properties including branch length, taper, bifurcation angle, and
asymmetry. The morphological findings combined with physiological data further
suggested feed-forward and lateral inhibitory roles. Specifically, the interneurons
target lateral pyramidal cells in CA3. Signals from upstream regions including the
dentate gyrus and entorhinal cortex therefore produce feed-forward inhibition on
the pyramidal cells. Recurrent collateral inputs from local pyramidal cells onto
the interneurons produce lateral inhibition on other nearby pyramidal cells targets,
potentially enabling pattern separation.

Complete dendritic reconstructions exhibiting the full complexity of morpho-
logical influences are also used frequently in electrophysiological simulation.
Simulation studies focusing on channel properties are quite common. With many
different channel types exhibiting nonlinear responses to physiological state, there
is a wide range of research on the topic that is beyond the scope of this chapter.
However, some studies using reconstructions have focused specifically on the effect
of morphology by keeping channel properties constant. By controlling for ionic
channel type and distributions within dendrites, Mainen and Sejnowski (1996) found
that various real morphologies in simulation were able to generate a spectrum of
firing patterns which included weak adaptation, strong adaptation, and bursting
behavior (Fig. 13.9). These effects were further simulated in two compartment
models by varying the coupling strength (i.e. the inverse of the resistance between
the compartments) and area ratio between the dendritic and axo-somatic compart-
ments. Some coupling was necessary to achieve bursting, but small changes to either
variable had large impacts on cell behavior. Decreasing the area ratio or increasing
the coupling strength reduced bursting. Changing channel properties can also alter
firing properties, but these results showed how morphological properties alone can
have a dramatic impact.

These studies exemplify the importance of morphology in terms of neuronal
function as well as morphometrics for producing hypotheses and providing evidence
for such function. Size, geometry, and complexity each are relevant pieces of
information. In addition to their roles in correlation with functional attributes
and comparison between neuronal classes, they can be used as parameters in
morphological models (discussed in Sect. 13.5). The above section is far from an
exhaustive list of metrics, but it contains the most fundamental and most widely
used metrics along with some relatively new and intriguing entries in the field.
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Fig. 13.9 Simulated firing
patterns produced by somatic
current injection of several
types of reconstructed
dendrites (a shows only
connectivity and branch
lengths). Channel types and
distributions are constant,
only morphology is different
between simulations. (a) Rat
somatosensory cortex layer 3
aspiny stellate. (b–d) Cat
visual cortex. (b) Layer 4
spiny stellate. (c) Layer 3
pyramidal. (d) Layer 5
pyramidal. Scale bars:
250 �m (anatomy), 100 ms,
25 mV (Adapted by
permission from Macmillan
Publishers Ltd: Mainen and
Sejnowski 1996)

13.4 Molecular Underpinnings of Dendritic Development

With dendrites, as with all biological systems, genetic makeup and expression
controls protein and molecular interactions. In conjunction with the external
environment, these interactions generate a structure whose functional qualities and
fitness shape the genetic makeup of successive generations through evolutionary
pressures. Here we will discuss the genes and molecular interactions that underlie
dendritic development and therefore dendritic morphology. There are of course
far too many interactions to cover in this chapter, so we will focus on a few
examples of each type of interaction. More complete reviews can be found of
transcriptional factors, molecular mechanisms, and signaling mechanisms (Miller
and Kaplan 2003; Gao 2007; Parrish et al. 2007). As many molecules and their
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Fig. 13.10 Developmental molecules and mechanisms of dendritic growth and branching. Tubulin
and Microtubule associated proteins (MAPs) diffuse and are transported from the soma to
the growth cones. They interact to assemble microtubules and stabilize the dendrites as they
elongate. The filopodia sample the extracellular environment, elongating the dendrite and causing
bifurcations (i.e. branching) in some cases. Calcium influx influences microtubule stability and
filopodia behavior (Reprinted from Kiddie et al. 2005 with permission from Elsevier)

interactions are modeled computationally in order to better understand dendritic
growth, understanding a sample of the underlying interactions will in turn make it
easier to understand the models and their results.

13.4.1 Cytoskeleton

Microtubules form the backbone of both dendrites and axons (Georges et al. 2008;
Conde and Caceres 2009). In addition to providing structure, microtubules also act
as tracks for the transport of resources, organelles, and signaling molecules by motor
proteins in the dynein and kinesin families (Hirokawa 1998). Initially, dendrites and
axons both have microtubules with only plus ends distal. During early development,
dendrites differentiate, carrying microtubules that face in both directions (Lewis
et al. 2009). The microtubules grow at their tail ends in the dendrites, with new
tubulin proteins (the building blocks of microtubules) assembling distally into
dendritic growth cones to stabilize them (Fig. 13.10). The polarity of microtubules
is due to the structure of their alpha and beta tubulin subunits. As molecular motors
selectively traverse microtubules in a particular direction, the mixed non-uniform
polarity of dendritic microtubules allows for transport of a different set of proteins
than seen in axons (Hirokawa and Takemura 2005).

Both microtubules and actin filaments provide stability to dendrites, but actin
filaments also play important roles in dendrite growth and in the structure of
dendritic spines. Like axons, dendrites have growth cones and filopodia composed
of actin filaments that respond to the extracellular environment. Depending on
the stability and spacing of the microtubules, strong growth signals in different
directions can drive the filopodia to strain the microtubule bundles and split them
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into two groups, creating a bifurcation. New branches can also form from existing
ones in destabilized regions in a process called interstitial branching.

The stability of microtubules is determined in part by a family of proteins called
microtubule associated proteins (MAPs). Some MAPs also associate with actin
filaments, creating cross-links that further stabilize the entire cytoskeleton (Pedrotti
et al. 1994). MAP2 is specifically associated with the somatodendritic region in neu-
rons. The protein increases assembly of microtubules as well as their stabilization
via bundling, and it results in increased spacing between microtubules in dendrites
relative to axons (Chen et al. 1992). Phosphorylation of MAP2 is associated with
reduced microtubule assembly (Yamamoto et al. 1988) and with greater arborization
of dendrites due to decreased microtubule stability (Dı́ez-Guerra and Avila 1993).
MAP2 has many phosphorylation sites that have varying impact on microtubule
interaction (Brugg and Matus 1991), and there are many kinases and phosphatases
capable of modulating its phosphorylation state. So controls over MAP2 expression
as well as phosphorylation state provide mechanisms for control over dendritic
growth and arborization. Calcium-dependent kinases and phosphatases specifically
provide mechanisms for activity-dependent modulation of arborization, growth, and
retraction (Quinlan and Halpain 1996). While there are many other molecules and
signaling pathways that influence actin and microtubule stability (Nikolić 2008), the
MAP family and their interactions provide a sufficient example of how dendrites can
be effected to grow, bifurcate, and retract.

13.4.2 Regulatory Influences and Signaling Molecules

There are a great many intracellular features and signaling pathways that act both
directly and indirectly on MAPs and the dendritic cytoskeleton. For example,
in hippocampal neurons the Golgi apparatus (a specialized organelle in charge
of post-translational modification and packaging of proteins) has been shown to
orient towards the apical dendrite in vivo (Horton et al. 2005). In a culture in
which no neurite differentiated into an apical dendrite, the Golgi apparatus was
oriented toward the largest dendrite. Moreover, Golgi elements were often found
in proximal segments of larger dendrites. Horton and colleagues determined that
the Golgi apparatus was responsible for the polarization by disrupting the Golgi
apparatus organization without functional disruption. This resulted in a decrease in
dendritic polarity without significant changes in total dendritic outgrowth. Another
influence is the availability, or unavailability, of bifurcation inducing resources, as a
function of dendritic volume and distance of travel via diffusion or active transport.
That influence is a candidate for explaining how in some dendrites distal dendritic
branches and particularly terminating branches tend to be longer than their more
proximal counterparts (Graham and van Ooyen 2004).

Dendritic growth is also guided and modulated by a number of different extra-
cellular molecules and their interactions with receptors. Brain derived neurotrophic
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factor (BDNF), neurotrophin-3 (NT3), neurotrophin-4 (NT4), and nerve growth
factor (NGF) are four major proteins of the neurotrophin family that impact
dendritic growth by binding to specific members of the tropomyosin-related kinase
(Trk) family of receptors and the p75 receptor. These growth factors have different
influences depending on cell type, brain region, cortical layer, and even activity
patterns (McAllister et al. 1995), and can sometimes have effects that counteract
each other (McAllister et al. 1997). These behaviors are made possible by the
highly diverse signaling pathways triggered by the various Trk receptors, which
include downstream effects on actin and microtubule dynamics (including MAP2)
as well as transcriptional modulation of genes involved in dendritic growth. The
term neurotrophin is sometimes used to refer to any protein that regulates neuronal
growth. For instance, semaphorin3A, traditionally considered an axonal guidance
molecule, also acts as an attractant for cortical apical dendrites (Polleux et al.
2000). More neurotrophins and neurotrophic pathways are described in greater
detail elsewhere (Donohue and Ascoli 2005b).

Other transcriptional factors and molecules are important in stemming dendritic
growth. The gene sequoia is at least in part responsible for tiling insect dendritic
arborization neurons of the same class, preventing overlap of sensory receptive fields
(Grueber et al. 2002). Dendritic arborization neurons are also guided in part by the
gene Dscam. Via alternative splicing in different neurons (Hattori et al. 2008), the
gene produces thousands of different cell surface proteins which enables dendritic
self-avoidance (Hughes et al. 2007). These and other related genes are vital for
ensuring proper network connectivity.

Activity, or lack thereof, can also trigger growth and retraction of both spines
and branches through numerous pathways, greatly impacting neuronal networks
(Wong and Ghosh 2002). In Xenopus laevis tadpoles, in vivo time-lapse imaging
showed that optic tectal cells exhibited increased dendritic arborization (i.e. greater
elongation and number of branches) when exposed to a lit environment relative
to a dark environment (Fig. 13.11) (Sin et al. 2002). The effect was dependent
upon a decrease in activation of the signaling protein RhoA and the activation
of Rac and Cdc42. These Rho GTPases are involved in a number of activity-
and neurotrophin-mediated pathways that influence dendritic and axonal growth
(Luo 2000; Miller and Kaplan 2003). Activity during development of hippocampal
pyramidal cells also increases dendritic growth, specifically close to the stimulated
area (Maletic-Savatic et al. 1999). In some systems, competition between inputs
can drive extension and/or retraction of dendrites and axons. For example, activity
during development drives multiple olfactory bulb mitral cell dendrites to retract
leaving just one to interact with the olfactory glomeruli (Malun and Brunjes 1996).
While activity-dependent growth is often mediated by neurotransmitter activity,
electric and magnetic fields can also influence the magnitude and direction of growth
(Rajnicek et al. 1992; Macias et al. 2000).
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Fig. 13.11 Example of stimulus induced growth. (a) Images of an optic tectal neuron taken
with two-photon imaging, one per hour over 8 h. The first image (0 h) is taken before light
deprivation. Environment was dark during the first 4 h, and a light stimulus was present for
the latter 4 h. Scale bars, 50 �m. (b) Average cumulative branch growth in terms of length. (c)
Average growth rates during dark versus light periods. (d) Average cumulative change in terms
of degree. (e) Average change in degree during dark versus light periods (Adapted by permission
from Macmillan Publishers Ltd: Sin et al. 2002)

13.4.3 Biologically Based Models

Clearly there are an enormous number of factors involved in dendritic growth and
development. While it is the particular set of interactions that determine cell types,
many factors can often be abstracted or simplified for the purposes of modeling.
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Aside from the difficulty in making sense of a complicated model where not all
factors are fully understood, modeling all interacting factors would be impractical
given current computational power. Simplified models can provide insight into the
dominant phenomena underlying morphology and help generate hypotheses for
the function of proteins, pathways, and more complex mechanisms. Additionally,
simplification allows for the isolation of the phenomenon of interest and can in
principle ensure that an effect is a direct result of a particular manipulation.

Various biologically based models capture events such as neurite initiation, path
finding, and elongation and bifurcation (Kiddie et al. 2005; Graham and van Ooyen
2006). One such example is a model of dendritic growth based on MAP2 concentra-
tion and phosphorylation and calcium concentrations (Hely et al. 2001). The model
used a constant rate of unbound MAP2 production in the soma, diffusion of MAP2
and calcium, and assumed tubulin availability. The MAP2 could become bound (i.e.
associated with microtubules) based on rate equations, and could be phosphorylated
and therefore dissociated from microtubules (Fig. 13.12a). The phosphorylation
and dephosphorylation rates were partially determined by calcium concentration.
In addition to diffusing, the calcium had an influx component determined by each
compartment’s surface-to-volume ratio, resulting in greater influx in compartments
of smaller diameter. At each time step, a terminal compartment would elongate
at a rate proportional to the concentrations of bound and phosphorylated MAP2.
Additionally, the terminal compartment had a probability of bifurcation based on the
bound and unbound MAP2 proportions. In order to generate different morphologies,
parameters affecting the reaction rates and sigmoid slopes of the phosphorylation
and dephosphorylation functions were varied.

Hely and colleagues produced three different types of morphologies with differ-
ent parameters. The first type showed increased branching probability and decreased
segment length towards the distal ends (Fig. 13.12b). This was a result of a greater
dephosphorylation to phosphorylation ratio due to the parameters strongly favoring
dephosphorylation at low calcium concentrations. Calcium concentrations rose
farther from the soma resulting in increased phosphorylation and branching. The
second model had equivalent phosphorylation and dephosphorylation parameters,
resulting in a more or less constant ratio of bound to phosphorylated MAP2 from
soma to the distal ends (Fig. 13.12c). This model also showed shorter terminal
segments, which in both cases could be explained by a decrease in available MAP2
farther away from the soma and diffused throughout a greater total dendritic volume.
The last parameter set was intended to produce dendrites similar to pyramidal
cell basal dendrites, with few bifurcations and much longer terminal branches
than internal branches (Fig. 13.12d). In this case the parameters were nearly the
opposite of the first case, with phosphorylation being more dominant at low calcium
concentrations. This led to more branching near the soma and less in the more distal
region. The smaller volume as a result of fewer total branches allowed sufficient
MAP2 for long distal branches. The resulting dendrites compared well to real
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Fig. 13.12 (a) Molecular
interactions modeled by
(Hely et al. 2001). (b–d)
Dendrites generated with the
MAP2 phosphorylation
model with different
parameters at various times
during development. (b) Low
initial branching probability,
increasing over time/length.
(c) Nearly constant branching
probability and elongation
rate. (d) High initial
branching probability,
decreasing with time/length
(Adapted from Hely et al.
2001, with permission from
Elsevier)

basal dendrites in terms of distributions of degree, asymmetry, and several length
properties.

As mentioned, most of the individual molecules and explicit mechanisms are
not modeled when generating “virtual” (i.e. computationally derived) dendrites or
understanding why dendrites take the shapes they do. In the example above, a small
set of properties were modeled and showed how changes in calcium concentration
in the context of possibly genetically encoded (de)phosphorylation set points could
influence morphology. More generally, the emergent patterns of growth the many
molecules and their interactions produce can be used in models to test the influence
and relationships of various constraints, functions, and statistical distributions on
morphologies of the many neuronal classes.
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13.5 Models of Growth and Morphology

The relationships between various morphological and functional properties along
with underlying mechanisms of growth and development are just a few pieces
of the story of dendritic morphology. A wide variety of models are vital to
elucidating how the growth mechanisms interact and how morphological and
functional properties are balanced to form different morphologies. Some models
mathematically describe and simulate mechanisms of growth based on biophysical
theories, either with molecular models as discussed in the previous section or by
more abstract relationships between microtubules, dendritic diameter, elongation,
and branching (Hillman 1979; Tamori 1993). Other models focus on the results
of imposed constraints on growth, such as spatial boundaries (Luczak 2006) or
minimization of wiring and synaptic path length (Chklovskii 2000; Cuntz et al.
2007). Still others are statistical in nature, using empirical data to describe the
relationships within and between fundamental and emergent features of various
types of dendrites (Burke et al. 1992; Ascoli and Krichmar 2000; Samsonovich and
Ascoli 2003; Donohue and Ascoli 2008). Not surprisingly, the boundaries between
the different types of models are not always clear and many can be considered to
fall into multiple categories. After all, it is ultimately the hypothesis to be tested that
determines the design requirements for a model.

13.5.1 Determining the Rules of Growth

In an effort to better determine how dendrites grow in terms of where and when
bifurcations occur, various models have been developed in which segments are
stochastically added to a tree based on certain topological rules. It was proposed
that such models could help determine how real dendrites and axons branch by
comparing emergent properties of real trees with the emergent properties of trees
grown from the models (Berry and Bradley 1976). Since these models work by
iteratively adding segments, the total size of the resulting tree could be controlled
such that virtual trees of the same size of real dendrites could be generated. Verwer
and van Pelt explored the statistical properties of trees generated by terminal growth
(i.e. branches added only to terminating branches) or by segmental growth (i.e.
branches added to terminating or bifurcating branches), seen in Fig. 13.13. It was
found that trees of much greater asymmetry and with more fully asymmetric nodes
(i.e. nodes with one terminal child branch) were produced by segmental growth than
by terminal growth (Verwer and van Pelt 1983).

Subsequently, the Q-model was developed which provided a single parameter
(Q) for controlling the relative probabilities of segmental and terminal growth.
In order to integrate the observation that branching probabilities appear to often
change with branch order, the S-model was developed. This model included order-
dependent branching probabilities defined by the equation 2�S” , where ” is branch
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Fig. 13.13 Terminal (left) and segmental (right) growth. Green lines represent the two new
branches generated by the growth event (i.e. bifurcation). Dotted lines show all of the branches
from which the new branch could emerge. Segmental growth gives a greater opportunity for the
new segment to grow on the larger left side of the tree (bold) relative to the smaller side, with a
7:3 ratio, while the terminal growth ratio is 2:1. This results in greater asymmetry on average for
segmental growth

order. Thus, S values less than zero produce increasing branching probability with
increasing branch order, while for values greater than zero branching probability
decreases with increasing branch order (Van Pelt and Verwer 1986). The range of
parameters allows for possible influences such as the greater space available for
growth further from the soma, the greater availability of resources closer to the
soma, and microtubule associated interactions such as MAP2 phosphorylation and
others described in Sect. 13.4.3. The two parameter model combining the previous
two models is referred to as the Q-S model.

The various models were used in conjunction with the tree asymmetry index to
test growth hypotheses for several types of dendrites, including basal and apical
dendritic trees and multipolar non-pyramidal dendrites (van Pelt et al. 1986). When
exploring terminal versus segmental growth alone, random terminal growth was
insufficient to explain the asymmetry measures of half of the sets of dendrites,
while purely segmental growth could explain none of the sets. Q model optimization
resulted in a combination of segmental and terminal growth that fit 4 of the 12
sets of dendrites. However, all sets could be fit by optimized S and Q-S models,
highlighting the importance of branch order dependence on branching probabilities.
For instance, the distribution of basal dendrites from cortical pyramidal cells was
best matched by Q and S values representing primarily terminal growth and a
decreasing probability of bifurcation at higher branch order.

Another important factor in dendritic development, plasticity, and pathology
is pruning (i.e. the loss/retraction of terminal branches). Applied to the previous
models, various forms of pruning had different results (van Pelt 1997). While
uniform random pruning on trees grown under random terminal growth had no
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impact on tree asymmetry index distribution, either uniform random pruning on
trees grown with order-dependent branching or non-uniform (i.e. order-dependent)
random pruning paired with the terminal growth model resulted in changes to
asymmetry index distributions. A set of rat Purkinje cells taken at various ages
during periods of growth and retraction was analyzed. The cells showed no change
in tree asymmetry index at the different time periods and sizes. The Q-S model
parameters that best matched the cells suggested primarily terminal growth with no
order dependence. Combined with the results of the pruning model, this suggests
that the retraction process was a random uniform pruning process.

Other models have been developed to encompass a wide range of properties
in addition to topology and branching probabilities. Hillman put forth an early
version of the concept of generating dendrites entirely from a set of fundamental
parameters specific to a given class of dendrite. In this case those parameters were
determined based on observations of microtubules, diameter, and other morpholog-
ical properties (Hillman 1979). The theory proposed that a dendrite with an initial
diameter would elongate to some length with a particular taper rate, and branch
if the diameter was above a particular threshold. The daughter branch diameters
would then be determined by Rall’s 3/2 power law and a daughter branch ratio
parameter. From a biophysics perspective, the relationships between bifurcation
angle, diameter, and branch length can be calculated based on the principle of least
effective volume, providing fairly accurate predictions of measured relationships for
cortical pyramidal cell basal dendrites (Tamori 1993). Both formulations provided
a framework for further development and application (discussed in Sect. 13.5.3).

13.5.2 Constraints and Functions

Like all biological systems, dendrites must balance a number of competing priorities
under environmental constraints in order to contribute successfully to the neuron
and its network. Their success depends on the interaction of their various features.
Some priorities are known in principle, such as minimizing metabolic cost and
integrating signals from synapses to the soma, but how those priorities are met
and balanced is still an open question. A more diverse set of models have been
used to answer questions relating to the influence of developmental constraints and
emergent function. These questions can be answered by generating virtual dendrites
in various ways, constraining either the growth or the final product based on some
hypothesis, and comparing the result to real dendrites.

Environmental boundaries act as one of the major constraints on neurons.
One particular growth model focused on the effect of generic growth factors
within a defined space (Luczak 2006). Luczak hypothesized that the shape of
the environment along with the density and origin of neurotrophic factors could
determine the morphology of various types of neuron. At initialization, the model
contained an initial seed segment (soma) and a set amount of particles (neurotrophic
factors) either uniformly distributed or clustered in some location (i.e. layer).
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Fig. 13.14 (a) Model schematic showing diffusion of particles, growth of the “aggregate”, and
pruning. The numbers represent the order in which the particles were or will be converted into
branches. (b) Real and generated dendrites of granule cells, and pyramidal cell basal and apical
dendrites (Adapted from Luczak 2006, with permission from Elsevier)

At each iteration the particles diffused randomly, eventually contacting the soma or
dendrite and becoming a new segment (Fig. 13.14a). Physiologically this simulates
a neurotrophic factor coming in contact with a dendrite, being absorbed, and trigger-
ing new growth at the point of contact. The model included a parameter controlling
the span of iterations during which new terminal segments had a 40% chance of
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being pruned. This turned out to be a necessary component for producing realistic
dendrites. Initial conditions were created to generate a wide variety of dendrites
including granule cells, pyramidal cell apical and basal dendrites, interneurons and
Purkinje cells (Fig. 13.14b). The bounding box dimensions generally determined
global dendritic shape, while particle concentrations determined branching density.

Multiple trees were grown in one space to observe the results of competition for
particles and growth. Given sufficiently small spacing between seeds, the trees that
happen to grow more quickly can then block other trees, resulting in larger trees
getting larger and smaller trees staying small. Putting limits on growth prevented
the problem. One downside to this model was the large size of the particles relative
to the space. While computationally necessary, the large size of the particles can
have an impact on where they are able to diffuse and prevents realistic generation
of cells grown in close proximity. Nevertheless, this model does show that a set
of fairly simple and primarily environmental constraints can produce a variety of
morphologically distinct dendrites.

In an approach focused on intrinsic constraints, Cuntz et al. (2007) explored
the extent to which dendritic morphology can be reproduced solely by minimizing
wiring and optimizing synaptic efficacy given passive properties by minimizing
path distance. In order to generate a dendrite, their model took a series of nodes,
derived from a blowfly lobula plate tangential cell (Fig. 13.15a), and connected
them based on graph theory concepts. An initial version of the model minimized
only wiring with the minimum spanning tree algorithm, starting with the root node
and connecting one node to the dendritic tree one at a time, adding the least wiring
possible. The nodes were randomly sampled from the entire dendritic spanning field
of a real tangential cell. The results were fairly unlike real dendrites, having some
particularly long paths (Fig. 13.15b). In order to minimize path distance in addition
to wiring, the minimum spanning tree algorithm was made to consider the path
distance of any potential new connection. A balancing factor was used to balance
minimization of wiring and path distance. The factor was optimized to produce
qualitatively realistic tangential cells (Fig. 13.15c).

In addition to manipulating topology to optimize synaptic efficacy, Cuntz and
colleagues altered dendritic diameter. The input resistance of a synapse increases
with distance from the soma. Therefore a voltage signal at a synapse will attenuate
more at the soma with increased distance given passive dendritic properties.
Dendritic diameter profiles were therefore found which optimized the current
transfer from any given location to the soma, minimizing attenuation. In order to
focus on that particular attribute, the wiring and path length minimization model
was run on a set of nodes composed of all bifurcations and terminations of the real
dendrite. Figure 13.15d–g show that the dendrite generated by the model minimizing
wiring and path length and with the optimized diameters was most successful at
optimizing synaptic efficacy and compared well to the real dendrite.

A similar conclusion was reached by Wen and Chklovskii (2008) for Purkinje
cells by calculating mesh sizes (i.e. the ratio between a sample area and the
total dendritic length within that area) for various types of branching schemes,
minimizing wiring and path lengths, and avoiding overlap of potential synapses.
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Fig. 13.15 (a) Original tangential cell dendrite. (b) Virtual dendrite generated by minimizing
wiring and connecting randomly sampled points within the spanning field of the dendrite in (a). (c)
Virtual dendrite generated by minimizing wiring and path distance using the same points used in
(b). (d–f) Trees colored by current transfer to the root. (d) Virtual dendrite generated by minimizing
wiring and path distance and connecting the bifurcation and termination points of the dendrite in
(a). Diameter has been set to optimize synaptic efficacy. (e) The same tree as in (d), but all branches
have equal diameter. (f) Virtual dendrite generated by minimizing wiring, using the same points as
in (d) and (e). (g) Distributions of normalized current transfer from the real tangential cell and from
trees in (d) through (f) show that minimizing wiring and path distance and optimizing diameter best
reproduces the current transfer profile of the real cell (Merged selection of two figures from Cuntz
et al. 2007, with permission from BioMed Central)

Since the role of dendrites is to make synaptic connections, a dendrite’s branches
should be spaced sufficiently such that one branch does not invade the space in
which another branch might form a synapse. The equations developed showed
that Purkinje cells’ mesh size fit within the theoretical calculations. Purkinje cells
were used because they are approximately two-dimensional in shape and exhibited
non-overlapping dendrites. These works suggest that efficiency through minimized
wiring is a major pressure in determining dendritic morphology.

Another method that has been developed for relating morphology and function
produces dendrites through an evolutionary process starting with a particular
functional constraint (Stiefel and Sejnowski 2007). With this method generated
dendrites can be analyzed to determine the ranges and types of properties necessary
to achieve the electrophysiological function, and then compared to real dendrites.
The process developed involves parameter sets for creating dendrites, electrophys-
iological simulation, fitness scoring of the simulation, and selection, mutation, and
recombination to produce successive generations with increasing fitness.
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The two functions proposed and tested in a proof of concept were linear
summation of synaptic inputs and spike-order detection (i.e. A before B, but not B
before A). The linear summation selection resulted in neurons with long, thin, and
highly polarized dendrites that were very separate electrotonically. Thus, the input
current of one synapse would have a minimal impact on the driving force of the
other. As predicted, the dendrites looked very much like those of the crocodile and
bird nucleus laminaris neurons as well as mammalian medial superior olive neurons,
each of which receives auditory input from both ears separately onto polarized
dendrites. The polarized and separated morphology of the dendrites enables reaction
to simultaneous activation of two different sets of synapses but not to activation of
just one set. The spike-order detection selection resulted in two sets of dendrites with
different diameters. Thus one set of dendrites acted as strong low-pass filters while
the other dendrites were much weaker low-pass filters. This relationship resulted
in a greater somatic voltage when the strong low-pass filter dendritic input came
first. The authors pointed out that this relationship exists in pyramidal cells between
the apical and basal dendrites. Whether spike-order detection is actually used by
pyramidal cells is an open question, though the presence of active properties makes
answering that question more complicated. With parameters for active properties,
synaptic distribution, and simulations of spiking properties, this type of evolutionary
model could be useful for generating experimental hypotheses for a wide range of
functions.

Electrophysiological effects and efficiency demands appear to be largely respon-
sible for shaping dendritic structure given a spanning field for synaptic locations. Be
that the case, the question still remains why synapses are located where they are. A
possible component to the answer comes again from considering wiring efficiency,
both in terms of total wiring in the brain (Chklovskii et al. 2002) and in the trade-off
between axonal and dendritic size (Chklovskii 2000). Consider two sets of neurons
with one set being an input (i.e. sending) layer and the other set being an output
(i.e. receiving) layer. Now consider that there are twice as many input neurons as
output neurons, two input (i.e. presynaptic) and four output (i.e. postsynaptic) as an
example, and that each input neuron sends out two axons. This is referred to as the
“divergence” (D). Assuming each layer is more or less homogeneous, each output
neuron will receive one connection. This is referred to as the “convergence” (C).
In this case, in which D > C, wiring is minimized by the axons being larger and
growing to meet the dendrites of the input neurons (Fig. 13.16). The mathematics
used to prove this is based on the spatial density of pre and postsynaptic neurons
in a one-dimensional scheme. In two dimensions and with larger numbers of
neurons, neurite (i.e. axon or dendrite) “meshes” are used. Chklovskii showed that
the optimal ratio of dendritic to axonal length is given by the square-root of the
ratio of convergence to divergence. Factoring in differences in axonal and dendritic
diameters, the optimal ratio is then adjusted by multiplying the previous ratio by the
square root of the axonal to dendritic cross-sectional area ratio. Thus a larger axonal
cross-sectional area would result in greater dendritic length and less axonal length.
Anatomical data from a variety of experiments on retinal, cerebellar, olfactory bulb,
and neocortical neurons support the theory (Chklovskii 2000).
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Fig. 13.16 With a convergence of 1 and a divergence of 2, the layout in (a) with a longer axon is
more efficient than the layout in (b) with larger dendrites. (c) Example of complete and optimized
connectivity with convergence of 3 and divergence of 6

It was further shown that within gray matter optimization theory requires that
axonal and dendritic wiring take up 60% (bounded from 50% to 75% depending
on certain assumptions) of the volume (Chklovskii et al. 2002). The calculations
used independently minimized axonal conduction delay and dendritic attenuation,
maximized the number of potential synapses, or minimized wiring length while
holding other variables constant. For instance, conduction delays can be reduced by
larger axonal diameter, but with sufficiently large diameters the total volume of the
gray matter must increase and thus axons must travel farther. Data from neocortex,
piriform cortex, and hippocampus show wiring percentages not significantly dif-
ferent from 60%. Thus the evidence suggests that in terms of gross size attributes,
axonal and dendritic morphology are results of evolutionary processes optimizing
signal propagation (in terms of speed and fidelity), potential synaptic connectivity,
and total wiring.

13.5.3 Statistical Models

While statistical models do not provide information on how or why dendrites grow
into their various shapes, they are very useful for providing compact descriptions
of various morphological classes. These models generally attempt to capture the
statistical relationships between known morphological attributes of cell classes,
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including the variance in those attributes. This is often achieved by using a
subset of “fundamental” properties obtained from neuronal reconstructions, such
as diameter or branch order, to probabilistically determine other properties, such
as length or likelihood of bifurcation or termination. While many models have
“growth rules”, they do not necessarily simulate developmental growth but rather
describe the relationship between parameters in (usually) adult cells in a branch-by-
branch manner. One major goal of such models is to expand the store of available
morphologies for more physiologically realistic network models. Given the intense
amount labor that is currently required to reconstruct individual cells, an accurate
statistical model can generate a larger set of realistic morphologies. Thus the need
to store large amounts of data is reduced as the morphologies can be generated “on
the fly” (Ascoli 2002).

Burke et al. (1992) developed such a model in which branches iteratively
bifurcated, terminated, or elongated with probabilities based on observed diameter
relationships. Elongation length per iteration and taper rate were set as global
parameters while bifurcation and termination probabilities were determined by the
current diameter of a segment. Daughter branch diameters satisfied the 3/2 power
ratio by an observed margin and were determined by a process that produced the
same distribution as seen in the real dendrites. The statistical data determining
the probabilities came from reconstructed cat spinal cord ’-motoneuron dendrites.
By adjusting the global taper rate, the dendritic trees generated from the model
had realistic branch order distributions but unrealistic path distance distributions.
The addition of path distance (from the soma to the growing segment) as a
parameter (in conjunction with diameter) in determining bifurcation and termination
probabilities was sufficient to produce realistic path distance distributions, though
some discrepancies such as total surface area remained.

In order to enable the further study of various statistical and anatomical models,
the program L-Neuron was developed (Ascoli and Krichmar 2000). L-Neuron
flexibly implements the concepts of Hillman, Tamori (discussed previously in
Sect. 13.5.1), and Burke, allowing an experimenter the option of using statistical
distributions or biophysically derived calculations to generate morphologies from
fundamental properties. The program additionally includes parameters that allow
for path lengths larger than the straight distance between nodes (i.e. tortuosity) and
global tropisms simulating external guidance or somatorepulsive effects. Moreover,
the program can be fed statistical data of a given neuronal class or digital morphol-
ogy files in order to generate that data. The models in L-Neuron were evaluated
using motoneurons and Purkinje cells (Ascoli et al. 2001). Models based on
primarily local constraints, such as diameter, successfully produced virtual dendrites
with several emergent parameters, including degree, total length, and asymmetry,
which matched both cell types. The global tropic influences improved results in
terms of spatial distribution of the dendrites. In general however, variability in
virtual dendrites was greater than real dendrites, and certain emergent parameters
were better reproduced by certain models. The results suggested that further
constraints were necessary and that some combination of the models might produce
improvements.
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Variations of the Hillman model were explored using L-Neuron for hippocampal
CA1 pyramidal cells. It was initially found that constraining branching by diameter
alone resulted in excessively large neurons or neurons that failed to stop growing,
which was due to selection of taper rates (Donohue et al. 2002). Rather than
sampling a taper rate for the entire tree from the entire distribution of trees, a
further variation on the model was developed in which taper rates for each branch
were sampled based on the branch’s diameter (Donohue and Ascoli 2005a). The
updated model successfully reproduced the size (i.e. degree) of basal dendrites.
Apical dendrites were also less likely to grow out of control, but their sizes were
still more varied relative to the distribution seen in real CA1 apical dendrites. In
terms of branching patterns, the model actually captured apical dendrite asymmetry
fairly closely, and better than it captured basal dendrite asymmetry.

Further work in this direction tested the abilities of branch order and path
distance as determinants of local branch properties (i.e. taper rate, bifurcation
probability, length, parent-daughter ratio, and daughter ratio) to generate realistic
apical, basal, and non-pyramidal dendrites (Donohue and Ascoli 2008). Each
determinant produced the best results for some combination of dendrite type
and emergent parameter (e.g. degree, asymmetry, surface area, and surface area
asymmetry). Given the results, two models were created that merged the influence
of branch order, path distance, and diameter in the hopes that a combination of
influences would reflect real statistical relationships and produce a more accurate
model. The percent mix model merged the sampled values of the local properties
with various weights, while “243 Mix” model assigned each local property with one
of the determinants. Many weights were run for the percent mix model while for the
“243 Mix” all determinant/local property assignments were run to determine the
best combination of influence. After normalizing for the large numbers of weights
and combinations sampled, the “243 Mix” model performed better than the percent
mix or the individual determinants in terms of bifurcation asymmetry and surface
area. The particular associations between local basic properties, their determinants,
and the emergent properties may provide some idea of how growth mechanisms are
determined in the different types of dendrites. For instance, diameter may be a better
determinant of bifurcation asymmetry due to the fact that segmental branching tends
to result in smaller side branches in terms of diameter and degree. Path distance may
serve a role in determining the limits of both elongation and branching via resource
availability and transport.

Several of the functional and constraints based models guide growth by pri-
marily extrinsic factors; however there are several potential intrinsic factors that
may also determine a dendrite’s tropism (i.e. direction of growth). Hippocampal
principal cell dendrites have a tendency to grow away from their somas and appear
mostly contained within a conical region. Cytoskeletal rigidity may be expected
to constrain changes in direction, however when a dendritic branch does turn it
seems to usually return to its original direction (Fig. 13.17a). This provided the
motivation to determine whether the dendrites are primarily directed by extrinsic
factors promoting growth in a particular direction, by intrinsic factors promoting
growth away from their soma, or by neither type of influence (Samsonovich
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Fig. 13.17 (a) Pyramidal cell featuring roughly conical boundaries. Arrow points out a clear
instance of a turn towards a somatofugal direction. (b) Model schematic. Current node is i. The
three vectors determining the direction of the next elongation are ni in the direction of the previous
step, a in the direction of the constant extrinsic influence, and bni

r in the direction away from the
soma (ri). The angle ’iC1 randomly changes the next step, which determined by the three vectors
is n’iC1, to the actual next step niC1 (Adapted from selected figures in Samsonovich and Ascoli
2003 with permission from John Wiley and Sons)

and Ascoli 2003). In order to make the determination a statistical model using
Bayesian analysis was developed which represented the growth of non-branching
dendritic segments by three vectors of influence with additional random deflection
from the combined vector’s direction (Fig. 13.17b). The three vectors included
a continuation of the direction of the previous segment representing cytoskeletal
rigidity, a unidirectional influence representing some extrinsic factor(s), and a radial
vector representing a somatorepulsive influence. Using reconstruction data, the
magnitudes of the unidirectional and somatorepulsive influences were optimized
to minimize the amount of random deflection. The Bayesian analysis showed that
the radial tropism was significantly stronger than the fixed direction influence, and
that its strength decreased with greater distance from the soma. Moreover, the radial
growth was greater in the basal relative to apical dendrites. Similar results were
seen in ’-motoneuron dendrites but not ”-motoneuron dendrites when analyzing
daughter branch orientations relative to parent branch orientation and bifurcation
position (Marks and Burke 2007). These results suggest a possible functional benefit
of growth away from the soma for certain cell types.
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Each type of modeling has clear utility as well as limitations. Mechanistic models
that include molecular concentrations and interactions are usually computationally
expensive. Though good at showing how changing certain basic parameters can
influence emergent properties, most details are left out. For instance, in order to
be practical they restrict growth to one or two dimensions (Kiddie et al. 2005).
Luczak’s model using neutrophin-like particles constrained by boundaries showed
that those factors could largely explain how many types of dendrites might grow,
but due to both computational constraints and a lack of additional interacting factors
the results were only approximations of real morphologies. Function-driven models
rarely grow dendrites in a realistic manner as their goal is to relate completed
morphologies with functional capabilities. Statistical models can serve to bridge the
gap between mechanistic and function-driven models. They can account for various
molecular interactions and activity effects as variance in the model, though this also
means that any error in the experimental data or limitation of the reconstructions
will also be captured in the model. Moreover they produce quantitative values of the
relationships between morphological attributes which ultimately represent the range
of morphologies that support the particular function of the dendrite being modeled.

13.6 Dendritic Morphology into the Future

There is still room for exploration of the relationship between morphology and
electrophysiology, but many aspects have been investigated in great depth. Several
of the models discussed focus on the relationship between network connectivity
and morphology, of which much more is yet to be discovered. As time passes,
molecular neuroscientists will continue to discover pathways and relationships
between various growth factors, signaling molecules, and dendritic growth and
plasticity. Some may be applicable to all dendrites, but a number will be specific
to certain cell classes based on genetic expression. More importantly, many of those
will be specifically involved in setting up connections between various anatomical
regions and functional networks.

Researchers at the Allen Brain Institute (2009), producers of the Allen Brain
Atlas (a map of gene expression patterns in the mouse brain – http://www.brain-
map.org/), found gene expression differences in sub-regions of the hippocampus
(Thompson et al. 2008). Cell adhesion genes made up a large proportion of
the genes that produced the distinct boundaries, suggesting that the genes are at
least in part responsible for hippocampal circuitry. Previous tracing studies have
provided evidence for some of these regional divisions, but these new results provide
an opportunity to further explore the relationships between genetic expression,
molecular growth mechanisms, morphology, and network connectivity in very
specific subregions.

It is clear that the region of synaptic targets of a neuron play a role in determining
the neuron’s dendritic morphology. At least one cell class’s morphology can be
fairly accurately reproduced with knowledge of only the spanning field while

http://www.brain-map.org/
http://www.brain-map.org/
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minimizing both wiring and synaptic distance to the soma (Cuntz et al. 2008).
In fact the general cell class of lobula plate tangential cells is composed of four
subclasses that the referenced method suggested were solely differentiated by their
spanning fields. Whether this model extends to all classes of dendrite is unclear.
Might the balance between minimizing wiring and synaptic difference be shifted in
one direction or another in other dendrites? Even if that question is answered, the
question of what determines the shape and location of the dendrites’ spanning fields
remains. As discussed earlier (Sect. 13.5.2), Chklovskii and colleagues’ models and
equations focused on minimizing wiring in the brain suggest vital components to
the answer.

Dendritic morphology is shaped by many forces, both in terms of development as
well as function. Varieties of intrinsic genetic, molecular, and electrophysiological
factors interact with extrinsic spatial constraints, neurotrophic factors, and network
activity to generate the neurons we observe. All of those interactions are influenced
by evolutionary pressures to achieve the electrophysiological functionality and net-
work connectivity that enables a neuron to take part in the local and global networks
that make up the brain. With advances in imaging such as the individualized cell
labeling of Brainbow (Livet et al. 2007) and potential automated reconstruction
algorithms, we can expect an explosion of morphological and connectomic data. It
will then take the confluence of database management, morphometric analysis, and
the broad array of modeling methods to bring us closer to a complete understanding
of the many relationships dendritic morphology has with brain function.
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Chapter 14
Axonal Growth and Targeting

Duncan Mortimer, Hugh D. Simpson, and Geoffrey J. Goodhill

Abstract The growth and guidance of axons is an undertaking of both great
complexity and great precision, involving processes at a range of length and time
scales. Correct axonal guidance involves directing the tips of individual axons and
their branches, interactions between branches of a single axon, and interactions
between axons of different neurons. In this chapter, we describe examples of models
operating at and between each of these scales.

14.1 Introduction

The modeling of information processing by neural networks has had a long
and fruitful history (see, for example, Chap. 10). In contrast, relatively little is
understood about the computational principles involved in initially wiring such
networks. In the developing human brain, hundreds of billions of neurons form
hundreds of trillions of connections by extending their axons over sometimes vast
distances (on the cellular scale). How do these axons “know” where to grow? This
is the axon guidance problem. In this chapter, we describe various mathematical
modeling approaches that have been taken, and how they have informed our
understanding of this crucial process.
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Understanding axon guidance requires studying processes that occur on a variety
of time and length scales. The tips of axons, growth cones, are semi-autonomous
structures, capable of responding to multiple cues in their environment, and have
hence been the target of focused research. However, on a larger scale, guidance
involves the entire axon; for example it may involve the selective pruning or
promotion of axonal branches to achieve a specific aim. On a larger scale again,
wiring up the nervous system is a collective problem, as axons interact with each
other and with other cells. At this level, growth cones, axons and their substrates
cooperate to shape guidance. There may also be a role for electrical activity in
guiding this stage of nervous system wiring, as well as its more established role
in refining and patterning established neuronal architecture.

A wide variety of modeling approaches have been used to tackle axon guidance,
ranging from models taking a detailed simulation perspective, attempting to reflect
the biophysical basis of axon guidance in as much detail as possible, through
to highly abstract models focussing on how particular strategies for specifying
guidance routes might allow for the formation of a complex nervous system. (For
other reviews, see van Ooyen 2003; Maskery and Shinbrot 2005; Graham and van
Ooyen 2006; Simpson et al. 2009.)

In this chapter, we examine models that operate at each of the scales previously
identified: ranging from the behavior of individual growth cones, through the
dynamics of entire axons and their branches, to the dynamics of populations of
axons. We first review models of the growth cone—both how it moves, and how it
is guided by external cues. We then consider the axon as a functional guidance unit,
looking at models that study how resources (e.g. cytoskeletal proteins) are allocated
between different branches of the same axon, or between the cell body and growth
cones. Finally, we look at the issues encountered when considering the guidance of
populations of axons, such as how interactions between axons can act to improve
the robustness and specificity of projections.

14.2 Guidance for the Tip: Models of the Axonal
Growth Cone

The embryonic environment is awash with chemical signals that direct the intrica-
cies of nervous system development. In order to guide axons, these chemical signals
are detected by special structures at the tips of growing axons, known as growth
cones (Gordon-Weeks 2000) (Fig. 14.1). First identified and described by Ramon ý
Cajal in the late nineteenth century, these complex, motile “battering rams” read the
information provided by the environment, and transduce it into decisions about the
direction in which the axon should grow. They are micromachines with sensory and
motor capabilities, tasked with wiring the nervous system. Thus, to understand axon
guidance, it is of key importance to understand the growth cone, and how it senses
and responds to the chemical signals that provide the map for axonal pathfinding.
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Fig. 14.1 Growth cones are complex structures on the tips of developing neurites: (a) Anatom-
ically, the growth cone can be roughly partitioned into three sections: the central zone (C),
transitional zone (T) and peripheral zone (P). Magnified region marked on inset in red. The
arrowheads indicate filopodia (black) and a lamellipodium (white) (b) Growth cones display
widely varying morphology, even when grown on the same substrate, from the same tissue source
(in this case, rat dorsal root ganglion neurons, grown on laminin and stained for actin (red) and
tubulin (blue)). (c) In three dimensions, growth cones tend to take on a more “streamlined”,
filopodially dominated morphology (All images courtesy of Z. Pujic, Goodhill lab)

Although growth cones can show great variability in their morphology, three
distinct regions can be defined, as illustrated in Fig. 14.1a: a central region contain-
ing organelles and rich in microtubules, a thinner peripheral domain predominantly
consisting of a network of actin filaments, and a narrow transitional domain between
the previous two regions.

As with many other motile biological structures, actin dynamics are crucial for
growth cone motility and morphology. Actin filaments tend to be oriented with their
“barbed” ends—the ends at which unpolymerized actin monomers (G-actin) are
most easily incorporated into the filament—towards the outside of the growth cone.
Actin polymerization thus tends to push against and expand the outer membrane.
On two dimensional substrates (where all modeling work so far has occurred),
these dynamics lead to the formation of two distinct classes of structure at the growth
cone leading edge: filopodia and lamellipodia (Gordon-Weeks 2000) (Fig. 14.1b,c).

14.2.1 Models of Growth Cone Motility

14.2.1.1 Descriptive Models

A large part of modeling work has been devoted to simply describing how growth
cones behave, and to extracting rules about their behavior which can be incorporated
into more explanatory models. A number of attempts to capture the dynamics
of growth cones were made throughout the 1990s by Buettner and colleagues
(e.g. Buettner et al. 1994; Buettner 1996; Odde et al. 1996). Growth cones were
filmed while growing on different substrates, and the results analyzed to extract
statistical regularities. Buettner et al. (1994), described the growth cone using a
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Fig. 14.2 Example methods for describing growth cones: (a) Buettner (1996) modeled filopodia
searching for target tissue. In this case, modeling the growth cone as a circular central region,
with radially extending filopodia was found to be sufficient. (b) Betz et al. (2006, 2009) studied
the dynamics of protrusion and retraction of elements of the growth cone boundary, and how
these related to actin polymerization and retraction within the growth cone itself. They used radial
profiles of actin staining intensity, and radial displacement of the growth cone boundary to quantify
these phenomena. c.m. D center of mass (Panel b from Betz et al. 2006)

hybrid system: a contour detailing the shape of the lamellipodia, and a series of
“sticks” extending radially from the centroid of the growth cone representing the
filopodia (Fig. 14.2a). These models were fit by hand to movies, and the statistics
of the resulting parameters examined. For example, it was observed that filopodia
tended to extend and retract with a constant rate, switching between the extension
and retraction phases according to a gamma-distribution. The statistical models of
growth cone behavior obtained in this manner informed estimates of how easily
a growth cone could cross a gap between two permissive substrates, and also the
likelihood of it contacting a locally expressed guidance cue.

Advances in experimental technique allowed the motion of the growth cone
as a whole to be compared to the underlying dynamics of the cytoskeleton. For
example, Odde et al. (1996) analyzed the joint statistics of growth cone motion and
microtubule dynamics, finding that the two were coupled with a slight delay, giving
credence to the idea that growth cone advance involves the active coordination of
actin and microtubule dynamics.

Betz et al. (2006, 2009) measured the extension of the membrane from the central
region as a function of time (Fig. 14.2b), and then fit the motion of a small section
of membrane with a one-dimensional random walk in a potential field (Fig. 14.3).
They found that the membrane dynamics both of growth cones, and of cell-lines
made to express growth-cone-like characteristics, could be well described if the
field consisted of two shallow wells (Fig. 14.3b). Intriguingly, however, real growth
cones showed a form of “stochastic resonance”, in which the noise properties of the
effective random walk were tuned to the potential field, such that small modulations
in the steepness of the underlying potential surface had a strong effect on the
resulting dynamics.
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Fig. 14.3 Growth cone membrane dynamics tend to hop stochastically between extension and
retraction: In Betz et al. (2006, 2009), the extension or retraction rates of small patches around
the growth cone periphery were measured by calculating the change in distance from the center of
the growth cone to the periphery in subsequent video frames. (a) In the top panel, the distribution
of rates of rearward actin flow is shown in red, the distribution of edge velocity in blue, and the
inferred distribution of the rate of actin polymerization in green. The distribution of, and temporal
correlation in, the edge velocities can be captured as a random walk in a bimodal potential field,
shown in the lower panel. The “hump” between the two dips in the lower panel controls the rate at
which protrusion switches to retraction, and vice-versa. (b) In a turning growth cone, the potential
field is biased towards protrusion on one side, and retraction on the other (Images from Betz et al.
2009)

14.2.1.2 Regulation of the Cytoskeleton, and Growth Cone Morphology

Though not specific to growth cones, a series of models have studied how the
interaction between the plasma membrane and actin cytoskeleton (mediated or tuned
by membrane-associated regulatory proteins) lead to the formation, and control
the dynamics, of filopodia and lamellipodia. Gov and Gopinathan (2006) studied
the linkage between actin and membrane dynamics caused by the preferential
localization of membrane-associated actin regulatory proteins with regions of
specific membrane curvature. The authors developed a partial-differential equa-
tion model describing the coupling between the curvature-dependent diffusion of
membrane-bound molecules, and feedback onto membrane curvature through the
modulation of actin dynamics by those molecules. Two distinct behaviors were
observed, depending on whether the regulatory proteins favoured regions of positive
(i.e. outward-bulging) or negative (i.e. inward) curvature. For positive-curvature-
preferring regulatory proteins, small positive curvature fluctuations in the cell
membrane tended to be amplified by the attraction of regulatory proteins to those
regions (Fig. 14.4a), and the subsequent local promotion of actin polymerization.
Depending on the relationships between the rate of diffusion of the regulatory
proteins, the rate at which they promote actin polymerization, and the membrane
tension, this amplification effect could lead to dynamic instabilities, in which the
bump would continue to grow, suggesting a possible mechanism for the formation
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Fig. 14.4 Formation and growth limits to filopodia: (a) Gov and Gopinathan (2006) suggest that
a positive feedback loop involving the accumulation of membrane-bound molecules (here shown
in red) that prefer positive curvature and promote actin polymerization in local pockets of positive
curvature might lead to the formation of filopodia. (b) In contrast, traveling waves may occur when
these membrane-bound proteins (now in blue) prefer regions of negative curvature. (c) When there
are too few actin filaments, tension causes a filopodium to buckle and collapse. In constrast, when
there are too many, g-actin cannot be delivered to the filopodium tip fast enough to overcome
depolymerization (Figures a and b adapted from Gov and Gopinathan 2006)

of filopodia. In contrast, when the regulatory proteins prefer regions of negative
curvature, traveling waves of actin polymerization resulted, reminiscent of dynamics
observed in lamellipodial structures (Fig. 14.4b).

Given that a filopodium has begun to form, it is of interest to know how
far and how fast it can grow (thus potentially limiting the sensory range of a
growth cone), and how it might interact with other nearby filopodia. Atilgan
et al. (2006) used energy-minimisation arguments to demonstrate that at least
two bundled actin filaments are required to overcome membrane elasticity and
initiate filopodium growth, and that membrane deformation induces an effective
attractive force between nearby filopodia. Mogilner and Rubinstein (2005) showed
that filopodial length is limited on the one hand by the number of filaments in the
cross-section of the actin fibre bundle (i.e. its strength), and on the other by the rate
at which unpolymerized actin can be delivered to the filopodium tip by diffusion.
If the bundle contains too few filaments, it buckles under strain from the membrane
(Fig 14.4c, left). However, if it contains too many, then the rate at which new actin
must be delivered to the tip is higher than can be achieved by diffusion, limiting the
ultimate length of the filopodium (Fig. 14.4c, right).

14.2.1.3 The Generation of Traction Force/Growth Cone Advance

Concurrently with actin polymerization at the growth cone periphery, the actin
cytoskeleton is withdrawn towards the central region of the growth cone, probably
through the combination of myosin action and pressure from the membrane, where
it depolymerizes (Medeiros et al. 2006). Free G-actin moves to the leading edge
of the growth cone either through diffusion or active transport, where it is again
incorporated into the F-actin cytoskeleton. This cycle of actin polymerization and
cell membrane extension at the leading edge, retrograde actin flow, and actin
depolymerization in the central region acts as an engine that can be harnessed to
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Actin filaments depolymerize
in the peripheral zone
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Fig. 14.5 The actin treadmill and molecular clutch: In the top panel, actin fibers within the growth
cone are uncoupled from the substrate. They undergo continual retrograde flow, depolymerization
in the peripheral zone (left of the figure), and polymerization at the leading edge. Coupling the
F-actin to the substrate (lower panel) reduces the rate of retrograde flow, allowing polymerization
at the leading edge to push the membrane forward

provide motility (Suter and Forscher 2000). However, in order to provide forward
movement, and not to simply cycle on the spot, the actin cytoskeleton must
be coupled to a permissive substrate. The idea that growth cones can regulate
their motion by modulating this coupling has been called a “clutch mechanism”,
and provides a useful conceptual framework for analysing growth cone motility
(Fig. 14.5). For an excellent review of models of actin-treadmill-driven motility (not
specifically focussed on growth cones), see Mogilner (2009).

Microtubules also play a crucial role in growth cone motility (Gordon-
Weeks 2004). They form a thick bundle in the neurite shaft that extends from
the cell body to the growth cone. This bundle provides stability for the growing
neurite, and acts as a scaffold along which materials from the cell body may be
transported to the growth cone. Microtubules penetrate into the central region
of the growth cone, sometimes remaining bundled, at other times splaying out
to explore the boundary between the central and peripheral domains. Within the
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growth cone, the microtubules demonstrate “dynamic instability” (Mitchison and
Kirschner 1984), rapidly growing and shrinking, probing the peripheral region. A
key event in growth cone motility is the capture and subsequent stabilization of
microtubules by bundles of F-actin, which typically correlates with a reduction in
F-actin flow in the capturing filopodium. The rest of the growth cone tends to shrink
around the stabilized microtubule/F-actin core; ultimately, the invaded filopodium
then forms another growth cone.

Hely and Willshaw (1998) developed a pair of models, one addressing the
role of interactions between microtubules in governing their dynamics, and the
other examining microtubule invasion of the peripheral zone. Isolated, individual
microtubules tend to switch stochastically between phases of rapid growth or rapid
shrinkage. Hely and Willshaw (1998) argued that the rate at which these switches
occur in bundled microtubules in the growth cone is modulated by two effects: a
backward pressure from the actin cytoskeleton which tends to promote shrinkage,
and crosslinking between neighboring microtubules which tends to enhance stability
and thus promote growth. The authors accounted for these effects phenomenologi-
cally by assuming that microtubules near the rear of the bundle were both “shielded”
from actin pressure by, and stabilized by cross-linking with, the longer microtubules.
Simulations showed that when these effects were sufficiently strong, a microtubule
bundle could grow even under conditions when individual microtubule filaments
should display net shrinkage, thus demonstrating the important role of interactions
between microtubules in governing their behavior.

Permissive contact between a growth cone and a target cell leads to a reduction
in the rate of retrograde actin flow along the axis connecting the growth cone to the
cell (Lin and Forscher 1995). Based on this observation, Hely and Willshaw (1998)
analyzed the degree to which such a reduction was sufficient to enhance microtubule
invasion into the region of the peripheral zone closest to the target cell. In this
model, the authors assumed that microtubules within the growth cone extended in
random directions, undergoing dynamic instability with the probability of switching
depending on the local rate of actin flow and the proximity to other microtubules.
However, they found that even under unrealistically favourable conditions, very
few microtubules invaded the target region of the peripheral zone, suggesting that
microtubules are actively directed within the growth cone, rather than relying solely
on random search.

14.2.2 Models of Guidance

The growth cone has a sensory task in addition to, and closely associated with,
its motor task of extending the axon: detecting and responding to chemical and
mechanical cues in its environment in order to guide axon growth. Our understand-
ing of axon guidance has undergone an explosion in the last few decades, thanks
to the discovery and cloning of many of the proteins involved; in particular, the
“guidance cue” molecules (Tessier-Lavigne and Goodman 1996). Growth cones
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detect these cues through specialized chemical receptors expressed on their surface.
Interactions between these receptors and the guidance cues lead to changes in
conformation of the receptors, and subsequent downstream signalling (Lauffen-
burger and Linderman 1993). If the cue is expressed in a graded manner, then this
downstream signalling is in turn asymmetric across the growth cone’s spatial extent,
with the potential to regulate asymmetric remodeling of the cytoskeleton.

Often, guidance cues are highly expressed on the surface of individual cells.
In this case, the contact of a single filopodium with such a cell can completely
reorient the growth cone (O’Connor et al. 1990). The problem the growth cone
faces in this situation is thus that of searching out such targets. A few models have
addressed how this search might be undertaken efficiently. Buettner (1996) studied
how the parameters governing filopodial initiation, growth and eventual collapse
influenced the probability of contacting a single such cell. Taking a more abstract
approach, Maskery et al. (2004) investigated the interplay between deterministic
and random growth cone behavior in searching for, and responding to, a guidance
cue expressing cell. They found that there was an optimal balance between the two
types of behavior, in which the growth cone could both efficiently search (requiring
a degree of random wandering), and effectively respond (requiring a deterministic
component) to such localized cues.

Guidance cues can also be present in long-range gradients, potentially produced
by the diffusion of secreted molecules from a localized source or graded expression
in the substrate (Dickson 2002). One challenge we face in understanding how
growth cones respond to such gradients is that the growth cone’s sensory system
is inherently noisy: receptor-ligand interactions are stochastic events (Bialek and
Setayeshgar 2005; Mortimer et al. 2009; 2010a), receptor signalling involves the
addition of further noise (Ueda and Shibata 2007; Mortimer et al. 2010a), and
the gradient itself will be subject to thermal fluctuations further degrading the
signal (Bialek and Setayeshgar 2005). Furthermore, if the gradient is to provide
guidance over an appreciable range, it cannot be too steep as the growth cone can
only effectively respond to the graded signal within a reasonably narrow range of
concentrations (Mortimer et al. 2009).

How can growth cones detect and respond to shallow gradients reliably given
their noisy sensory apparatus? In addition to models applied directly to growth
cones, models of other gradient sensing cells are also likely to be of use in
understanding this phenomenon. In the interests of focus and brevity, we will
constrain ourselves to models dealing specifically with growth cones, but provide
further references to related modeling work in other systems (see e.g. Bialek and
Setayeshgar 2005; Ueda and Shibata 2007; Herzmark et al. 2007; Endres and
Wingreen 2008). Two methods by which this problem has been attacked are: directly
modeling the molecules or mechanisms thought to be involved in the growth cone
response; and, seeking to understand the limits to gradient sensing imposed by noise
in the growth cone’s sensory systems. We give examples of each of these model
classes in the following sections.
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14.2.2.1 Mechanistic Models

Many molecular mechanisms are involved in growth cone guidance. A variety of
guidance cues and their cognate receptors have been identified and these in turn act
through a range of internal signalling pathways. These pathways include calcium
signalling (both from intracellular and extracellular sources), active redistribution
of receptors, cyclic AMP and cyclic GMP pathways, the phosphatidylinositol
pathway, MAP Kinases, the rho-GTPase pathways, the directed transport of vesicles
for subsequent exocytosis (and potential autocrine signalling) and even asymmet-
rically localized protein synthesis within the growth cone (reviewed in Zheng
and Poo 2007; Mortimer et al. 2008; Lowery and van Vactor 2009). Although
no models currently exist incorporating all of these mechanisms, models have
been developed which attempt to capture some subset of them. More recently,
advances in experimental techniques allowing for visualization and quantification
of protein levels in different regions of the growth cone have provided inspiration
for progressively more complete models (see Chap. 3 for a discussion of modelling
signalling pathways in general).

An early model in this vein was developed by Aeschlimann and Tettoni (2001).
Their aim was to obtain a biophysically plausible model of growth cone movement
and neurite extension that could at least roughly mimic experimentally observed
behavior. In their model, filopodia took on a central role, as both the sensory organs
and primary motor units of the growth cone. Each filopodium was assumed to
produce a small pulling force in the direction in which it extended. Depending on
the size of the net force generated in this manner, the distal axon segment was
assumed to stretch or, if the force was above some threshold, lengthen through
inelastic extension. The growth cone was able to respond to external guidance
cues via calcium signals produced at the bases of filopodia: through an unspecified
mechanism, contact of a filopodium with an external cue would lead to the opening
of calcium channels at base of the filopodium, thus producing an influx of calcium.
Calcium dynamics were modeled through standard diffusion equations. Modeling
calcium concentration provided a link between the sensory and motor systems, as
the probability of initiating a filopodium at a given angular location was determined
by the calcium concentration at that location. With this model, the authors were able
to qualitatively reproduce the kinds of trajectories traced out by growth cones in the
presence of a gradient formed by diffusion from a point source.

In Goodhill et al. (2004), filopodia again played a central role in both the sensory
and motor behavior of the modeled growth cone. As with Aeschlimann and Tettoni
(2001), filopodia were assumed to be the driving force of growth cone motility,
though the relationship between filopodial force and growth cone movement was
modeled implicitly. At each timestep, the growth direction was determined by
taking a weighted average of the direction of net filopodial force and the current
direction of growth. Again, in this model, the direction of filopodial initiation
was assumed to be biased by external cues. A key issue that this model tackled
was that direct proportionality between external concentration and the probability
of filopodial initiation is not sufficient to produce a turning response to shallow
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external gradients. Rather, some degree of internal amplification of the external
gradient must be performed, sharpening the distribution of filopodial initiation. The
performance of the growth cone in responding to the gradient was found to depend
on the strength of this amplification. The model also predicted that the dependence
of gradient sensing performance on concentration would be different for attractive,
as opposed to repulsive, gradients—a prediction that has not yet been tested.

Xu et al. (2005) presented a related model, in which at each timestep, the growth
cone’s movement was calculated by averaging its current heading with an estimate
of the gradient direction determined by input from surface receptors. In contrast
to Goodhill et al. (2004), these authors focussed on the role of temporal and
spatial averaging of receptor generated signals, rather than on force transduction
through filopodia. They directly simulated a random-walk based model, in which
growth cone response to a gradient is mediated through the production of a second
messenger by bound receptors. Temporal and spatial averaging occurred through
the dynamics of decay and diffusion of the second messenger. The authors fitted
their model to a corpus of experimental data (Rosoff et al. 2004), finding that a
good fit could be obtained when the diffusion rate and decay time of the second
messenger were such that signals diffused over roughly a third of the growth cone,
over a lifetime of about 3 min.

The observation that, preceding growth cone turning, bound GABA receptors
are actively trafficked to the up-gradient side of a growth cone exposed to a
gradient of GABA (Bouzigues et al. 2007) has inspired two recent models.
Causin and Facchetti’s (2009) assumed that a similar mechanism might play a
role in growth cone response to netrin, through the DCC receptor. Netrin-DCC
binding was assumed to drive the activation of L-type calcium channels (LCCs);
these activated LCCs then indirectly recruited bound DCC receptors through an
unspecified mechanism, modelled as a convective force proportional to the vector
gradient of calcium channel activation. The authors incorporated these mechanisms
into a partial differential equation model, with the aim of showing that they were
sufficient to produce an asymmetric distribution of receptors in the presence of an
external gradient. A crucial parameter of their model turned out to be the strength
of the coupling between the gradient of activated LCCs and the transport of DCC
receptors: a stable asymmetric distribution of DCC was only achieved when the
coupling strength exceeded a threshold dependent on the diffusion rate of the
receptors, and the degree of amplification in the signalling cascade leading from
netrin-DCC binding to channel activation. Bouzigues et al. (2010) developed an
explicit stochastic partial differential equation model linking the transport of bound
GABA receptors to microtubule growth. The tip of each microtubule was assumed
to exert a pull, modelled as a localised reduction in a potential energy function,
on GABA receptors diffusing on the surface of the growth cone. The microtubules
themselves were assumed to be biased in their growth by the distribution of activated
GABA receptors: as with Causin and Facchetti’s (2009) model, this leads to a
positive feedback loop by which localised receptor activation leads to receptor
recruitment. The receptor diffusion coefficient again emerged as an important
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parameter in this model: large values tended to reduce the time taken for an
asymmetry to form, but tended also to reduce the strength of the asymmetry for
a given gradient strength.

14.2.2.2 Abstract Models

Goodhill and Urbach (1999) and Mortimer et al. (2009) sought to understand the
limitations imposed by noise to a growth cone’s gradient sensing abilities. Following
the seminal work of Berg and Purcell (1977), these studies argued that the perception
of a guidance cue gradient by a growth cone is essentially a problem of signal
estimation: on the basis of noisy measurements from its receptors, the growth cone
must estimate the direction of the external gradient (for a more general discussion of
the role of noise in nervous system function see Chap. 8). The reliability with which
such estimates can be made is ultimately limited by the steepness of the gradient,
the time the growth cone has to make its decision and the amount of noise associated
with measuring concentration via the binding of receptors.

Goodhill and Urbach (1999) directly applied the results of Berg and Purcell
(1977) to analyze two methods by which a growth cone might detect and respond
to a gradient: “temporal” and “spatial” gradient sensing. Under a temporal gradient
sensing strategy, the growth cone is assumed to measure the concentration at a given
point in space, then move to a nearby point and again measure the concentration.
Comparing these two measurements then gives the growth cone some idea of
whether it is tending to move up, or down, the gradient. In contrast, under a spatial
strategy, concentration measurements at two different spatially-separated points on
the growth cone itself are compared. In each of these cases, the ability of the
growth cone to detect the gradient is limited by the difference in concentration
�C between the two measurement points (determined by the distance between
the points, and the steepness of the gradient), and the noise associated with
concentration measurement � . This latter value is determined by quantities such as
the diffusivity of the guidance cue and the number of receptors involved in making
the measurement. In the case of a temporal sensing mechanism, all receptors on the
growth cone can be used to measure the concentration at both of the measurement
points. However, for the spatial sensing strategy, at most only half of the receptors
can be used at each of the measurement locations.

Mortimer et al. (2009, 2010b, 2011) extended these ideas, and directly compared
the results with experimental data on growth cone chemotaxis. In this study, it was
assumed that growth cones implement some form of spatial strategy, and techniques
from statistical decision theory were used to determine the optimal form for this
strategy. Mortimer et al. (2009) constructed a statistical model of the probability
of observing a particular pattern of receptor binding under any given gradient
conditions. They then applied Bayes’ theorem to invert this model in order to obtain
the gradient conditions with the highest probability of causing an observed pattern
of receptor binding. Mathematical analysis of this strategy revealed that a growth
cone’s performance in a gradient sensing task should be proportional to the gradient
steepness, and depend in a defined way on the background concentration. The
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Fig. 14.6 A Bayesian model of axon guidance is consistent with guided growth of rat dorsal
root ganglion neurites: (a) Example images of rat dorsal root ganglion explants, illustrating the
“guidance ratio” (GR), which quantifies the degree of asymmetric growth. In these examples,
explants were exposed to an upwards-pointing gradient of nerve growth factor. (b) The magnitude
of the guidance response depends on the steepness of the gradient (expressed as the percentage
change in concentration across 10 �m) and average background concentration. Guided growth
tends to increase with increasing steepness, and to be biphasic in concentration. The model in
Mortimer et al. (2009) predicts a linear relationship between the guidance ratio, and a “signal-
to-noise ratio” which depends on the background concentration and gradient steepness. This
relationship is demonstrated in (c), based on the data in (b). Error bars are SEMs

response of rat dorsal root ganglion neurons to gradients of nerve growth factor
(NGF) displayed performance consistent with this prediction over a large range
of gradient conditions (Fig. 14.6). Surprisingly, however, the authors were unable
to detect any tendency for neurites to correct their direction of growth by turning
in the direction of the gradient (Mortimer et al. 2010b). Rather, the results were
consistent with a model in which neurites modulate their growth rate in response
to the gradient, speeding up when heading toward higher concentrations of NGF,
and slowing down when heading toward lower concentrations. A possible benefit
of this kind of strategy when responding to shallow gradients is that concentration
comparisons might be made over (for example) the length of the axon, rather than
being confined to either side of the growth cone, thus increasing any observed
differences in concentration.

14.3 Models of the Entire Axon

Axons often display not one, but multiple growing branches each with its own
growth cone. This raises the possibility that axon guidance should rightly be
considered a behavior of the entire axon, rather than of the growth cone. For
example, it might be that axon branches that are detected to be growing in a good
direction are favoured in their growth at the expense of other, less optimal branches.
This idea along with early observations that implicated a form of competition
between branches of the same neurite (reviewed by Smalheiser and Crain 1984)
has influenced several modeling studies, which investigated the potential effects of
such competition, along with the mechanism by which it might be mediated.
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Li et al. (1992, 1995) demonstrated that competition between branches can lead
to a sharpened response to a weak environmental signal. They modeled the growth
of branching neurites from a single neuron in the presence of either a smooth,
linear gradient of an external factor, or placed on a corridor of a high concentration
of factor, surrounded by an environment of low concentrations. In both of these
models, the growth rate of a neurite was determined in part by the concentration of
factor local to the growth cone, and in part by inhibition from the other neurites.
The degree to which two neurites inhibited one another was assumed to depend
on the number of branch points separating them, so that neurites which are more
distant had less influence than neurites that are closer. As a result, neurites at lower
concentrations of growth factor tended to face more inhibition (as well as slower
intrinsic growth) than neurites at high concentrations. Thus, the relative effect of
any asymmetry in the environment on neurite growth rate was amplified.

How might competition between neurite branches be mediated? Neurite elonga-
tion tends to occur at the growth cone. However, the raw materials to support this
growth are largely manufactured in the cell body, and must be transported to the
growth cone to be incorporated into the growing axon as it extends. This suggests
one way in which such competition might occur: through competition of individual
axon branches for resources to support their continued growth.

Tubulin is a strong candidate for such a resource. Microtubules (polymerized
tubulin) form the backbone of neurites. Tubulin polymerizes and is incorporated
into the cytoskeleton predominantly at the growth cone, but it is manufactured in the
cell body. Several models have thus focused on the dynamics of tubulin transport
and assembly, and the role of competition between different neurites for tubulin.
Van Veen and Van Pelt (1994) developed an ODE model of tubulin transport and
polymerization in neurite growth, examining the results for an unbranched neurite,
a neurite with one branch, and for neurons with complex arbors. They assumed that
tubulin was synthesized in the soma at a constant rate, was transported to the neurite
tips through diffusion (active transport was judged to be insignificant), and that the
rate of neurite growth was directly proportional to the rate of tubulin polymerization
at the growth cone. For a single neurite, they found that tubulin concentration
in the growth cone reached a constant value, while the neurite length and the
tubulin concentration in the soma increased linearly with time. In contrast when
multiple neurites were involved, they found that competition occurred depending on
the local rates of tubulin polymerization in the growth cones. Despite the simplicity
of this model, it was able to reproduce a number of experimental results: that
growing neurites tend to extend at a constant rate, that individual neurites in an
arbor occasionally retracted in favour of other growing neurites, and that dormant
growth cones would occasionally activate and begin growing some time after their
formation.

Van Veen and Van Pelt (1994) made the simplification of directly modeling
tubulin concentrations only at branch points, the soma and in the growth cones,
treating diffusion along neurite segments at steady-state. Clearing the way for
further studies, Graham and van Ooyen (2001) extended the compartmental models
commonly used to study the propagation of electrical activity in mature neurons to
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the case of axonal development, in which neuronal morphology can change over
time. They highlighted the challenges associated with developing such models: in
particular, that large artificial transients can arise depending on choices made in how
the system is “recompartmentalized” as it grows (see also Kiddie et al. 2005).

McLean et al. (2004) and Graham et al. (2006) examined the dynamics of tubulin
transport and polymerization in more detail for the growth of a single neurite. They
employed a partial differential-equation approach, allowing them to model how
tubulin concentration varies along the length of the axon. This model included
both active and diffusive tubulin transport, along with tubulin degradation, and
simulations demonstrated non-trivial interactions between the three mechanisms.
When the rate of tubulin degradation was set to zero, the results of Van Veen and
Van Pelt (1994) were reproduced: namely, the neurite grew at a constant rate due to
a constant tubulin concentration in the growth cone, with tubulin concentration in
the soma increasing linearly with time. These results were independent of whether
active transport, diffusion or a combination of both transport mechanisms were
included (though the shape of the tubulin concentration gradient along the length
of the neurite was affected by the choice of transport mechanism). However, when
tubulin degradation was included, the neurite no longer grew indefinitely: rather, it
eventually reached an equilibrium length which depended on the rates of transport,
degradation and tubulin production. Graham et al. (2006) studied the sensitivity of
this final equilibrium length to other parameters of the model, with the particular aim
of understanding how easily neurite length could be regulated by a cell. They found
that for short neurites, the length was essentially insensitive to variations in the rate
of active transport, while long neurites showed insensitivity to the diffusion rate.

Despite the theoretical advantages of competition between neurites from the
same neuron, there is experimental evidence suggesting that such competition
does not, in fact, occur (Lamoureux et al. 1998). This suggests that the cell must
actively regulate the production of key cytoskeletal molecules (such as tubulin)
in order to support uniform growth independent of the number of neurite tips.
First steps towards understanding self-regulation of tubulin production were taken
by Graham et al. (2006), though only in the context of a single growing neurite;
future extensions of this model to include multiple branches may shed light on how
competition between branches is avoided.

14.4 Guidance at the Systems Level

Modeling the guidance of neuronal projections involving sometimes large numbers
of axons adds another layer of complexity to considerations for individual growth
cones and/or axons. Within projections, axons may provide scaffolds for each other,
compete with each other, and interact in other more complex ways. A key step in
understanding the behavior and targeting of neural projections is to focus on the
interactions between growing axons and/or growth cones. Insights gained from this
can then be combined with knowledge of individual axon and growth cone guidance.
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Modeling the targeting of large numbers of axons has been undertaken within
a number of biological contexts; such as within specific parts of the spinal cord
and brain, or more abstractly, such as the development of sheets of neurons or
neural networks. One of the most useful paradigms for studying this problem is
the development of retinotopic maps; the primary examples being retinotectal/
retinocollicular maps (from retina to midbrain) or retinogeniculocortical maps
(maps from retina to thalamus to visual cortex). Of these two, the influences on
neuronal guidance have been better established for retinotectal maps, an area which
has also received a large amount of theoretical attention. As such, focusing on the
retinotectal map gives us a broad spectrum of modeling to discuss with a minimum
of background.

14.4.1 Background: The Retinotectal Map

Neural connections between the retina in the eye and the visual centers of the brain
are referred to as visual maps. They are described as topographic, or retinotopic,
if the spatial relationships between cells in the retina are preserved in their pattern
of termination elsewhere in the brain. The retinotectal (also retinocollicular) map is
the neural representation of visual space formed by projections arising in the retina
(from the retinal ganglion cells or RGCs) and terminating in the midbrain (more
specifically, the target is the optic tectum in fish, frogs and other lower vertebrates;
and the superior colliculus/SC in mammals) (Fig. 14.7).

A number of different mechanisms have been postulated to play roles in
retinotectal map development. The most important of these are as follows:

• Chemoaffinity: The idea, proposed by Sperry (1963), that gradients of molecular
markers can be used to specify axial positions, and thus one or more in each of
two areas is sufficient to specify a topographic map between these areas.

• Competition and other axon–axon interactions: Competition between axons is
usually for a limiting resource, such as target space, neurotrophins, or synaptic
input. Axons can also exert a range of other influences on each other in addition
to competition.

• Branching: Multiple interacting agents are generated by branching processes, and
the interactions of branches with each other and with molecular cues can effect
different forms of guidance. Types of branching include:

– Growth cone splitting: bifurcation of the leading edge of a growing axon.
– Backbranching: Branching, usually associated with retraction of the primary

axon, that occurs just proximal to the growth cone.
– Interstitial branching: branching that may occur anywhere along the entire

length of the axon, usually at right angles (or nearly so) to the main axon
shaft.
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Fig. 14.7 The retinotectal map: a paradigm example of topographic map development. During
development, the retinal ganglion cells (RGCs)—the output layer of the retina—send out axonal
projections to the midbrain tectum. If two cells are close to each other in the retina, their
terminations are similarly close in the tectum. In this way, an image of visual space is transmitted
faithfully to the brain. (a) Nasal retina maps to caudal tectum, and temporal retina maps to rostral
tectum. Similarly, dorsal retina maps to lateral tectum, and ventral retina maps to medial tectum.
(b) The patterns of terminations are in part achieved by the use of chemoaffinity gradients; i.e.
gradients of molecules that can specify unique positions along the gradient axis by unique levels of
that molecule. In this example we show one axis of the retinotectal map: that of nasotemporal retina
to caudorostral tectum. A row of cells is depicted in the retina, with positions identified with EphA
receptor level. Similarly a row of tectal postsynaptic cells is shown marked by ephrinA ligands.
EphA-bearing cells are typically repelled by ephrinA ligands, so that here high EphA maps to low
ephrinA and vice versa. (Note this is a simplified example, in that gradients of EphA receptor are
also present in the tectum, and similarly gradients of ephrinA ligand are present in the retina.) The
dorsoventral to mediolateral axis is controlled in an analogous way by EphB-ephrinB interactions,
although this interaction is attractive rather than repulsive (not pictured)

• Marker induction/regulation: It has been hypothesized that ingrowing axons can
upregulate various molecular cues in the target which can in turn influence the
guidance of the ingrowing axons (Willshaw and von der Malsburg 1979).

• Neural activity/synaptic modulation: Neural activity can change the strength of
synaptic connections between neurons, and hence can have a range of effects on
reforming neuronal projections; but plays more of a refining rather than defining
role in retinotectal mapping by increasing the precision of maps generated by the
above mechanisms. We do not consider models of neural activity in this section.

A large amount of data has been gathered over more then 50 years on retinotectal
map development, which can be summarized as follows:

• Systems manipulations: In the 1940s–1980s, before roles for specific molecules
were identified, gross anatomical manipulations of the retina and/or tectum were
performed, including ablations and surgical grafting (Udin and Fawcett 1988).
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• Eph/ephrins: Ephrin ligands and their receptors, the Eph receptors, were im-
plicated in retinotectal maps by a number of studies performed in the 1990s
(McLaughlin and O’Leary 2005). Distributed in appropriate gradients in retina
and tectum/SC in many model systems, they are the best-known candidates for
Sperry’s chemoaffinity gradients (Fig. 14.7) although other molecules are known
to also play roles.

• Molecular-genetic manipulations: disruptions of Eph/ephrin gradients have been
performed and display stereotypical and largely understood patterns of map
abnormalities, further implicating them in mapping.

Many of the above mechanisms and molecules are not unique to the retinotectal
system, and have also been implicated in the development of other brain regions
(e.g. Wilkinson 2001; Poliakov et al. 2004). Hence many concepts from retinotectal
map development may be generalizable not only to other topographic maps in the
brain, but also to brain wiring in general. Elucidating how these relatively simple
patterns form can thus substantially contribute to our understanding of strategies
that the CNS uses to wire itself up.

14.4.2 Approaches to Modeling the Guidance
of Multiple Axons

The retinotectal system has been a target for computational models since the 1970s,
and generations of models of map development have generally followed generations
of experiments. Instead of analyzing one of the many models in great detail, or all
models only briefly, we will focus on specific illuminating examples of problems
that arise in modeling the retinotectal system, and the methods used to approach
these problems.

Terminology used to describe topographic map models and development varies
from model to model, and also over time. We refer to ‘projections’ of neurons and
their axons as arising from an origin and projecting to a target. Origin and target
can be either discrete or continuous, but usually the origin is a discrete array and the
target is a discrete lattice or continuous sheet. We refer to individual members of an
array as growth cones, axons, or branches, or generally as ‘agents’.

14.4.2.1 Competition in the Development of Targeted Neural Populations

Competition is a central concept in developmental neuroscience, as it is in biology
in general (see van Ooyen 2001 for a review). Competition describes an interaction
whereby multiple agents seek to exclusively control a limiting resource. In axonal
growth and targeting the most common applications of this idea are competition for
physical space, for neurotrophins/growth factors, or for synaptic input/activity.
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Fig. 14.8 Competition through synaptic normalization. Two 6�6 arrays representing schematized
postsynaptic sites on the target are shown. Eighteen RGCs, half the number of available lattice
points, are depicted projecting to each array. Axons are shown as projecting from bottom of picture
and their terminations are represented by black discs on the target. (a) A one-to-one mapping is
enforced, so that axons compete for space, and as a result, spread out over more of the target.
(b) The number of contacts that can be made with each lattice point is now not fixed, and there is
no competition, and in this case, less coverage of the target

A straightforward way to include competition in models is to use a discrete
mapping model where contacts between the projecting array and the targeted array
are one-to-one (Fig. 14.8). This models a competition for space or synaptic contacts,
as only one axon can occupy each lattice point at a given time. The term synaptic
normalization is often applied to models that limit pre- and post-synaptic cells to
one synaptic contact each, although it can also be used to refer to cases where each
can make a small fixed number of contacts, greater than one. Examples of this type
of model are Hope et al. (1976) and Koulakov and Tsigankov (2004). Although this
is simple to implement in models, it may also oversimplify (it neglects the potential
of multiple inputs/outputs to single agents), and that the discrete nature of the target
array may lead to unrealistic axon/growth cone motion, as axons hop from lattice
point to lattice point (though this latter issue can be mitigated by increasing the
density of lattice points).

A more realistic approach is to allow a small fixed number of contacts (greater
than one) to be made with each lattice point by axons. An early exploration
of this idea was carried out by Prestige and Willshaw (1975). These authors
considered a mapping between discrete arrays and showed that when the number
of contacts between arrays was unlimited, a more rigid type of chemoaffinity
assumption needed to be made, whereas if the number of contacts was fixed,
simpler chemoaffinity assumptions could be made. This model demonstrated how
different forms of chemoaffinity could lead to topography depending on competitive
constraints, and has been influential in our understanding of how these mechanisms
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interact in map formation. A number of models have subsequently used similar
normalization constraints (for contacts or synapses), e.g. Willshaw and von der
Malsburg (1979), Weber et al. (1997), van Ooyen and Willshaw (2000), and
Willshaw (2006).

In a continuous domain, competition for space can be enacted by considering
growth cones to behave like similarly charged particles, such that two nearby
growth cones experience increasing mutual repulsion as they get closer together.
This approach was taken in the XBAM (eXtended Branch Arrow Model) model of
Overton and Arbib (1982), and in an updated version of this model by Simpson and
Goodhill (2011). In these models, the repulsive interaction was limited to a small
area around the growth cone within which it could reasonably explore (and hence
interact with other growth cones).

Alternatively competition can be considered to be a type of smoothing mech-
anism for a population of interacting neurons. Honda (2003) added this type of
constraint to his model, whereby initially a map was set up using chemoaffinity
rules, and then a smoothing process was undertaken in which axons were moved
from areas of higher density to areas of lower density. This kind of algorithm
promotes uniformity or smoothness of the map.

14.4.2.2 Axon–Axon Interactions as a Sorting Process

An appealing strategy is to consider the ordering of topographic maps as a sorting
process. An example of this is the work of Hope et al. (1976), who considered the
movements of discrete axons on a lattice. It was assumed that a pair of interacting
axons could compare a scalar attribute common to all axons (e.g.: some molecular
label). Given the axons’ relative positions and relative molecular label, the axons
could opt to exchange places according to a particular rule. Although this is a
relatively strong assumption from a biological point of view, it is an effective
algorithm in that it can reproduce several phenomena important in the field of
retinotectal mapping. This was demonstrated in simulations of normal and surgically
altered development.

Overton and Arbib (1982) developed this approach further by moving to a
continuous domain. In this model the positions of axons are continuously-valued,
and hence more specific assumptions about the algorithm need to be made. Instead
of switching places, axons experience a vector push towards or away from each other
(again depending in some way on relative position and molecular label). This model
produced more realistic axon growth and targeting, while maintaining the sorting
process as a key feature. More recently, Simpson and Goodhill (2011) updated this
model to 2D, and modified the sorting process to reflect a more realistic type of
axon–axon interaction based on repulsive guidance receptor signaling.

Koulakov and Tsigankov (2004) used a lattice sorting approach similar to that
of Hope et al. (1976). In this model, pairs of axons were considered iteratively, and
an exchange probability calculated which depended proportionally on differences
in molecular labels between the axons. This model was updated by the same
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Fig. 14.9 The retinal induction mechanism. A one-dimensional mapping is depicted from retina
to tectum. The dorsoventral to mediolateral axis is pictured, which is governed by EphB-ephrinB
interactions. A row of cells in the retina bearing EphB receptors projects to a row of cells in the
tectum bearing ephrinB ligands. One or more synapses are made by each RGC (shown in red).
(a) Updating the synaptic strengths. Synapses are strengthened or weakened according to how
similar the amount of EphB in the presynaptic cell is to the amount of ephrinB is in the postsynaptic
cell. If the amounts are more similar, the connection is strengthened, whereas if the amounts are
quite dissimilar, the connections are weakened. (b) Induction/regulation. Levels of EphB are up- or
down-regulated in postsynaptic cells in proportion to the amount of EphB in presynaptic contacts
and the strength of their respective synapses. Single postsynaptic cells may receive contributions
from more than one presynaptic cell. Levels of ephrinB in the postsynaptic cells are constantly
adjusted to be closer to the level of induced EphB in that cell (Figure from Willshaw (2006))

authors by adding an additional constraint involving correlated activity. This was
combined with differences in molecular labels to calculate an energy for the entire
map (Tsigankov and Koulakov 2006). Depending on whether this energy would be
increased or decreased by the swap, a probability of the swap occurring was again
calculated.

14.4.2.3 Axonal Regulatory Effects

Willshaw and von der Malsburg (1979) proposed that ingrowing axons can up- or
down-regulate certain molecular markers (e.g. axon guidance molecules) in cells of
the target array (Fig. 14.9). These molecules in turn influence axonal behavior, and
hence axons exert indirect influence on each other through this regulatory process.
Allowing axons to influence their guidance environment in this manner gave this
model a rich dynamics and some unique characteristics; most notably, a ‘neighbor
matching’ property that may be compared with models of correlated neural activity
(Willshaw and Price 2003). A consequence of this property is that maps generated
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by this type of scheme tend to be piece-wise continuous, but globally discontinuous.
Initial conditions that specify polarity with some weak initial gradients are required
for global continuity and correct overall map polarity. These ideas were explored
from a theoretical point of view by Häussler and von der Malsburg (1983) and have
also formed the basis for the more recent model of Willshaw (2006).

Similar indirect regulatory effects of axons were also considered by Gierer
(1983) in order to explain observations that maps could expand or compress under
certain circumstances and still remain topographic. Gierer (1983) proposed that
ingrowing axons seek to minimize the generation of a substance p, which was
generated in growth cones in response to retinal and tectal gradients of guidance
cues. The default behavior for these axons was a gradient descent mechanism,
towards a minimum of p; i.e. @p

@x
D 0. This part of the model allowed for guidance,

without axon–axon interactions. Regulation between axons was included in the
following manner: each axon contributed extra substance p in a neighborhood
around its current position, which other axons tended to avoid (in keeping with
the assumption that axons seek to minimize this p). As functions of the tectal
x-axis position and retinal u-axis position, and time t , Gierer modeled this extra
contribution as r.x; t/, and the contribution from gradients as g.x; u/ (which could
be chosen largely arbitrarily), so that the total p was:

p D g.x; u/C r.x; t/ (14.1)

@r

@t
D "�.x; t/ (14.2)

Here �.x; t/ is the local density of fiber terminals, and " is a constant, so that
increased densities of axons causes increased contributions to the local level of p,
and hence a greater tendency to move away from this local area. This mechanism
tended to smooth the mapping out and give it a target filling property.

14.4.2.4 Branching

So far our discussion has been limited to problems involving only one growth cone
per axon, however mature biological neural networks are complex interconnected
structures made up of highly branched nerve fibers. Branches can interact with
each other intra-axonally and inter-axonally, so that branching can be considered a
generator of multiple interacting agents. Systems of branching neurons can display
their own unique behaviors, including pathfinding and dynamic branch regulation.
The former idea has been explored by representing the addition of new branches as
new contacts or synapses (Willshaw and von der Malsburg 1979; Willshaw 2006).
By making the generation of new contacts more probable in areas where there are
existing (successful) synapses, a kind of pathfinding or guidance is achieved. This
mechanism alone might simply lead to clustering of contacts, but combined with
other mechanisms (retinal induction in this case), branching of this type can help
order the map.
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More detailed mechanisms for patterns of branching in retinotectal axon
pathfinding were considered by Gierer (1987). Growth cone splitting, back-
branching, and random interstitial branching were employed, and their effect
on pathfinding was examined. The main differences noted between these three
cases were variations in trajectories and axonal arbor morphology. The pathfinding
potential of interstitial branching was also investigated in the model of Yates et al.
(2004), based on previous work showing that interstitial branching was biased by
gradients of chemoaffinity-type markers/molecules (Fig. 14.10). It was shown by
these authors that differential branching according to chemoaffinity-type gradients
can generate topography similarly to axonal guidance models. Each axonal arbor
has its own internal dynamics, in which branching depends in part on the rest
of the arbor, and as such represents intra-axonal interactions between branches.
Inter-axon interactions were also included by assuming that as branching occurs
and arbors grow, the markers that they carry contribute to the gradients of markers
already on the tectum. This added marker has additional more complex effects
on arbor refinement and targeting. A similar biased branching approach was
taken by Godfrey et al. (2009), but this time a different form of gradient-based
chemoaffinity was employed, which was also influenced by growth factors. An
additional ‘resource’ component was added to the model to constrain growth of
axonal arbors (also influenced by growth factors), introducing a more explicit form
of intra-axonal interaction to the model (See Sect. 14.3).

14.4.2.5 Molecular Mechanism Models

Some models of how growth cones use their receptors to navigate in ligand gradients
also give rise to ways in which axons can interact based on similar processes.
For example, the servomechanism model of Honda (1998, 2003) (based on the
observations of Nakamoto et al. 1996) proposed that ingrowing axons seek a specific
level of ‘signal’. This signal, S , was produced in an axon i as a function of its
receptor level, Ri , and local ligand level L.x/ (where x is a position vector). Using
first order mass action kinetics this becomes Si .x/ D Ri L.x/. A ‘servomechanism’
was proposed along with this idea such that an axon seeks to minimize the difference
�S D S0;i � Si.x/, where So;i is a reference signal. In the first stage of the model
this was simply used to move individual growth cones, but later during a smoothing
stage of the model �S was used to compare growth cones in locally dense areas,
and move ones which had higher values of �S . In this way growth cones interacted
indirectly through this relative affinity (cf. Prestige and Willshaw 1975, which goes
into more detail on types of affinity; also discussed in Goodhill and Xu 2005).

Models utilizing gradient-based chemoaffinity rules have tended to focus on
interactions between guidance receptors on ingrowing RGCs and ligands in the
target. However, both these sets of receptors and ligands are also present on RGC
growth cones, and efforts have been made to quantify how growth cones may
interact with each other based on these molecules. Such a model was suggested by
Reber et al. (2004) following on from the work of Brown et al. (2000). Here it was
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Fig. 14.10 Mechanisms of interstitial branching in retinotopic map development. (a) The retino-
tectal projection in chick optic tectum from embryonic day 10 to day 13. Vertical axis of the picture
corresponds to anterior (A, or rostral) to posterior (P, or caudal) tectal axis. Arrowhead indicates
appropriate termination zone of these RGC axons which have been labeled with a single DiI
injection into temporal retina. RGC axons initially overshoot their target, then send out interstitial
branches roughly at right angles to the primary axon centred on their target. Topographic specificity
increases with time until a topographically correct termination zone is present at E13. Figure from
Yates et al. (2001); scale bar 250 �m. (b) This process is modeled conceptually in the following
manner. RGC axons initially overshoot their desired termination zone in a non-guided manner.
Then interstitial branching is controlled by opposing inhibitory gradients of EphA and ephrinA in
the optic tectum/superior colliculus (OT/SC), which interact with the same molecules present in
the retina to determine an optimal region for branching. Then opposing gradients of EphB/ephrinB
molecules control medial/lateral guidance of branches towards the termination zone. Note that
in contrast to some previous examples, this model relies on there being dual gradients (of Eph
receptors and ephrin ligands) present in both retina and tectum/superior colliculus (Figure from
McLaughlin and O’Leary (2005))
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noted that specific relationships appeared to exist between RGCs based solely on
comparisons of EphA receptor level between axons. When, under the conditions
of certain genetic manipulations, the receptor ratios between nearby axons fell
below a certain threshold, receptor-based topographic organizing behavior was
significantly altered. It remains unclear what the exact mechanisms are behind these
receptor ratio comparisons but two recent studies present suggestions (Tsigankov
and Koulakov 2010; Simpson and Goodhill 2011).

14.4.2.6 Integrating Multiple Constraints

A problem common to most models of retinotectal mapping that involve axon–axon
interactions is how to combine information from interactions with other axons with
information from environmental cues (e.g. physical cues, guidance cues, neural
activity, etc.). The integration of this information may occur within the growth
cone, the axon, or the whole cell including the cell body. However, the individual
signal transduction pathways are often not well described, nor how each individual
pathway is integrated with the others. (There are exceptions to this however,
with some pathways/systems representing good candidates for modeling signal
integration, such as the Rho GTPases; for example see Giniger 2002; Sakumura
et al. 2005.) As a result, most of the approaches have been more abstract or
phenomenological in nature, attempting to model the effects of signal integration
rather than specific biophysical events in how it occurs.

A straightforward way to integrate multiple signals is the approach taken by
Overton and Arbib (1982) and Simpson and Goodhill (2011). In these models,
independent influences on growth cone motion are modeled as vector contributions,
which are combined in a linear sum. This is obviously a simplification of growth
cone signal transduction machinery, nonetheless both studies demonstrated the
ability of this model to display complex behavior, including the reproduction of
specific experimental observations.

Fraser and Perkel (1990) took another approach, motivated by the idea that
adhesion between projecting axons and their targets may be central in regulating
targeting of projections. These authors defined an ‘adhesive free energy’ which
was an additive combination of contributions from other axons, from target-
based adhesive markers, competition for physical space, and effects of correlated
neural activity. The model considered the movement of terminal arbors subject to
the above energetic constraints. At each step, arbors randomly moved to new nearby
positions. The new positions were either accepted or rejected with probability
dependent on the adhesive energy of the new configuration. A similar approach
was employed by Tsigankov and Koulakov (2006). Independent contributions to an
energy function from chemoaffinity and neural activity were combined linearly for
each axon, and then these were summed to calculate a total map energy. Similar to
the switching/sorting algorithm of Hope et al. (1976), pairs of axons were chosen at
random, and their positions exchanged with a probability that was a function of the
map energy.
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Some models use the more familiar concept of synaptic modulation as a common
pathway for fusing various mechanisms of axonal guidance. These models use
the creation and modulation of synapses to achieve targeting and mostly do not
specifically consider the movement or targeting of growth cones. A prominent
example of this type of model is the series of models based on Cowan’s model.
The first major model in this series (Whitelaw and Cowan 1981) used an ODE to
update synaptic strengths in proportion to the product of two axons’ chemospecific
affinity and their coincident activity. The most recent version of the model (Weber
et al. 1997) takes a more typical synaptic modulation scheme; where the additive
influences of gradient-based chemoaffinity cues, chemical affinity for other axons,
and neural activity combine to alter synaptic strengths. In contrast, models such
as Willshaw (2006) also use a form of synaptic modulation, but instead assume
that it is dependent on the similarity of molecular label on the presynaptic and
postsynaptic cells.

14.5 Summary

Throughout this chapter, we have discussed many of the aspects involved in the
correct wiring of the axons of the nervous system. In particular, we have illustrated
that axon guidance is a field of study with facets that give rise to problems on a
variety of spatial and temporal scales.

• At a sub-cellular scale, the growth cone integrates sensory information, and
directs axon growth. Models at this level have provided insight into the biochem-
ical events involved in axon extension, and the processes by which cues in the
embryonic environment are interpreted.

• At the cellular scale, the processes of axon extension and branching determine
the neuron morphology. Models at this level have suggested a functional role
for interaction between multiple branches of the same axon, and have begun to
explore the machinery regulating the manufacture of the raw materials required
for axon extension.

• Finally, at the systems scale, interactions between axons play an important role.
Through the example of retinotectal map formation, we have discussed models
incorporating such interactions. These models have demonstrated that axon–axon
interactions help to make the topographic structure of the retinotectal projection
robust to a range of experimental manipulations. Future work in other systems
may yield similar insights.

An ultimate understanding of axon guidance would incorporate elements at each
scale, and would enable us to link defects in (for example) growth cone cytoskeletal
remodeling to gross defects in wiring between brain regions. Developing such an
understanding is a grand challenge for the future.
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Chapter 15
Encoding Neuronal Models in SBML

Sarah M. Keating and Nicolas Le Novère

Abstract Encoding computational models in a standard format permit to share
and re-use them in a variety of contexts. The Systems Biology Markup Language
(SBML) is the de facto standard open format for exchanging models between
software tools in systems biology. Neuronal models can often be encoded using
this format, thus providing the modeler with access to a large variety of software
packages that support SBML. We give a brief overview of the main constructs
of SBML Level 3 Version 1 Core (the latest version of SBML). We provide
practical examples of encoding particular neuronal models using SBML, illustrate
the results of using the SBML encoding to simulate the models, and demonstrate the
correspondance of results produced by the original modelers and the exchangeable
encoding of the model in SBML.

15.1 Systems Biology and the Need to Exchange Models

Systems Biology of neurobiological systems needs to take into account the
interactions between a very large number of physical entities, and the analysis
of many parameters. As seen in the previous chapters, the quantitative relationships
between entities, their interactions, are often described using mathematical models.
It is therefore crucial to be able to encode those models in a standard way to foster
their exchange and re-use. Additionally using a standard format permits further
processing, for instance merging of models, and relating them to other types of
information. Early modelers and software developers in systems biology quickly
realized that if their efforts were to be of benefit to the wider community it must
be possible to share and re-use the models. The best way to facilitate this, and to
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enable concurrent use of multiple software packages with different capabilities,
was to agree a common format for describing the models. There are many ways to
describe models in a standardized manner. One can use natural languages, graphical
languages, sets of equations, logical relationships between elements etc. In this
chapter, as in the chapter (Chap. 16), we focus on the representation of the variables
representing physical entities, their relationships and the necessary parameters,
encoded in a text file.

15.1.1 A Bit of History

The need for a language to exchange models became manifest at the end of the
last century, with efforts starting in the field of metabolic networks (see history in
Kell and Mendes 2008) and physiology modeling (Hedley et al. 2001). A similar
need was expressed during the first Workshop on Software Platforms for Systems
Biology, held at the California Institute of Technology in early 2000. The Systems
Biology Markup Language (SBML) (Hucka et al. 2003) is a machine-readable
model definition language based on XML, the eXtensible Markup Language (Bray
et al. 2000). An SBML document contains all the information pertaining to the
structure of a model, including the list of symbols, both variables and constants,
the list of mathematical relationships linking them, and all the numbers needed
to instantiate simulations. SBML was originally viewed as being aimed towards
models of molecular pathways (Strömbäck and Lambrix 2005). However, its
versatility means that SBML can be, and today is being, used in a variety of
modeling contexts. For instance, BioModels Database (Le Novère et al. 2006)
contains SBML representations of models including cell signaling (Goldbeter
1991), metabolism (Curto et al. 1998), gene regulation (Elowitz and Leibler 2000)
and neuronal models, some of which are described in detail later in this chapter. In
general, SBML enables the encoding of any mathematical model based on pools
of entities and processes that modify them. This versatility is currently expanding,
towards rule-based modeling, reaction-diffusion etc. Since its creation in 2000,
SBML has continued to evolve as an international community effort, and has grown
in terms of the levels of acceptance; to the point where, at the time of this writing,
it is used by over 200 software packages worldwide and required as a format for
model encoding by many journals.

15.1.2 Levels and Versions of SBML

SBML is being developed in stages, with specifications released at the end of each
development stage. This approach, which effectively freezes SBML development at
incremental points, allows users to work with stable standards and gain experience
with the standard before further development. Future development can then benefit
from the practical experiences of users and developers.
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Major editions of SBML are termed levels and represent substantial changes to
the composition and structure of the language. The latest level being developed is
Level 3 (Hucka et al. 2009); representing a major evolution of the language through
Level 2 (Hucka et al. 2008) from the introduction of Level 1 in the year 2001 (Hucka
et al. 2001, 2003). SBML Level 3 is being developed as a modular language, with
a central core comprising a self-sufficient model definition language, and extension
packages layered on top of this core to provide additional, optional sets of features.
Only the core will be described in this chapter.

The separate levels of SBML are intended to coexist. All of the constructs of
Level 1, i.e. the elements and attributes of the SBML representation, can be mapped
to Level 2; likewise, the majority of the constructs from Level 2 can be mapped
to Level 3 Core.1 In addition, a subset of Level 3 constructs can be mapped to
Level 2, and a subset of Level 2 constructs can be mapped to Level 1. However, the
levels remain distinct; a valid SBML Level 1 document is not a valid SBML Level 2
document, and so on.

Minor revisions of SBML are termed versions, and constitute changes within a
Level to correct, adjust and refine language features. All examples used here will
be from the latest stable version of SBML; that is, SBML Level 3 Version 1 Core.
It should be noted that SBML Level 3 is a recent development and as yet not many
software tools support it.

15.2 Structure of SBML

SBML is a structured language, with a strict syntax and very precise semantics.
In this section we will present the most common constructs of SBML. However,
a serious understanding of the language can only be achieved through the SBML
specification document (Hucka et al. 2009).

An SBML document is essentially an XML document containing an sbml
element which declares the namespace, level and version of SBML. The sbml
element MUST contain a model element which itself consists of lists of one or
more components. The SBML snippet shown illustrates an sbml element containing
a model element.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core"

level="3" version="1">
...
<model ...> ... </model>

</sbml>

1The SpeciesType and CompartmentType contructs which appear in Level 2 Versions 2–4 were
removed in Level 3 Core as it was considered they were better suited to an extension package.
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Table 15.1 Components of an SBML model element

Component Description

compartment A container of finite size for well-stirred substances
species A pool of undistinguishable entities
parameter A quantity of whatever type is appropriate
reaction A statement describing some transformation, transport or binding

process that can change one or more species
rule A mathematical expression that is added to the model equations
event A set of mathematical formulas evaluated at specified moments in

the time evolution of the system
initialAssignment A mathematical formula to assign the initial value of a component
functionDefinition A named mathematical function that can be used in place of

repeated expressions
constraint A mathematical formula for stating the assumptions under which

the model is designed to operate
unitDefinition A name for a unit used in the expression of quantities in a model

Table 15.1 lists all the components defined by SBML; with a brief description of
the semantics of each.

Some components in SBML represent items that have a numerical value, that
may be constant or may vary throughout a simulation. The constructs that represent
possible variables are compartment, species and parameter. In all these cases, the id
attribute of the component is used throughout the model to represent the numerical
value of that component at the point in time specified by any simulation/analysis
that is being undertaken. It is also possible to introduce variable stoichiometry into
reactions but this is beyond the scope of the current text.

Other components represent mathematical constructs that define some level of
interaction between the components that can be varied. These constructs include the
reaction, rules and event components.

The remaining constructs: initialAssignment, functionDefinition, constraint and
unitDefinition; provide methods of adding further information or mathematical
detail to a model. It is however possible to construct a complete model without
using these components, which will not be explored further here.

15.2.1 Compartment

The compartment component in SBML represents a container of finite size
for well-stirred substances where the species defined in the model are located.
Biologically speaking this may represent for instance a body fluid, a cell or a
subcellular compartment, but SBML does not require the compartment to represent
an actual structure, either inside or outside a biological system.
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The compartment has attributes that specify its spatialDimensions, its size and
the corresponding units, plus a constant attribute that determines whether the size
can change or not during a simulation. The following SBML snippet represents a
constant, 3D compartment with volume 2.3 l.

<model>
...
<listOfCompartments>

<compartment id="cell" spatialDimensions="3"
size="2.3" units="litre" constant="true"/>

</listOfCompartments>
...

</model>

The id attribute can be used elsewhere in the model to represent the numerical
value of the size of the compartment.

15.2.2 Species

The species component in SBML does not represent a single molecule but rather
a pool, that is an ensemble of indistinguishable entities, represented by its con-
centration or amount in a compartment. The environment is well-stirred and thus
no concentration gradients need to be considered.2 Regardless of whether species
within models are specified using amount or concentration, the value of the attribute
id of a species refers to concentration when it is used in a mathematical context,
UNLESS the species has been declared as being in units of amount by either using
the hasOnlySubstanceUnits attribute or locating the species in a compartment with
spatialDimensions of zero.

It is also common for a species to exist on the boundary of the system being
modeled; in which situation the quantity is unchanged by reactions it may be
involved in. The boundaryCondition attribute implies that whilst the species may
be a product or reactant within reactions, its quantity is not determined by those
reactions.

The SBML snippet illustrates a variable species located in the compartment with
id ‘cell’. It is not on the boundary, it is to be used as a concentration and possesses
an initial amount of 4.6 mol.

<model>
...
<listOfSpecies>

<species id="s"
compartment="cell"
initialAmount="4.6"
substanceUnits="mole"

2Discussions are under way to propose one or more Level 3 package that will address this issue.
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hasOnlySubstanceUnits="false"
boundaryCondition="false"
constant="false"/>

</listOfSpecies>
...

</model>

The species specified above has an initial amount of 4.6 mol. However, the
hasOnlySubstanceUnits attribute has a value of false, indicating that whenever the id
of the species appears in the model it refers to concentration. Thus for any analysis,
it may be necessary to convert between amount and concentration using

concentrationD amount
size

where size refers to the size of the compartment in which the species is located.

It is possible to create models in SBML without the need to consider units and
thus units have largely been ignored within this text. However, in the situation
where a model uses species that have been located within a compartment
whose size is not unity the issue of concentration and amount must be
considered.

15.2.3 Parameter

The parameter component in SBML can represent anything with a numerical value
that the modeler wishes to include. This may be the rate constant of a rate equation,
the potential of a membrane or the current used to induce spiking in a neuronal
model. Therefore, it is a component of particular importance for neurobiological
models. The parameter has attributes that specify the value, units and whether the
value is fixed.

The SBML snippet illustrates a variable parameter with value 3,000 and a
constant parameter with value 8,000.

<model>
...
<listOfParameters>

<parameter id="p1"
value="3000"
constant="false"/>

<parameter id="p2"
value="8000"
constant="true"/>

</listOfParameters>
...

</model>



15 Encoding Neuronal Models in SBML 465

15.2.4 Reaction

A reaction in SBML represents any kind of process that can change the quantity of
one of more species. It may be a mass action reaction, or involve transport, catalysis,
or any process that changes the species involved (note that transport changes species
because they are located in compartments). It is necessary to define the participating
reactants and/or products. This is done using a speciesReference component that
identifies the species from the model’s listOfSpecies and assigns a stoichiometry
value to that species role within the reaction. Species that merely influence a
reaction, such as a catalyst, are listed as objects of type modifierSpeciesReference.
This construct is similar to speciesReference without the stoichiometry attribute.
Attributes for a reaction object allow the modeler to specify whether the reaction
is reversible or fast. The mathematics describing the velocity of the reaction can
be encoded in the kineticLaw component. SBML uses a subset of the MathML
2.0 standard (Ausbrooks et al. 2003) to encode mathematical formula directly
within SBML components. LocalParameter objects can be included within a
kineticLaw. These localParameters have constant values and are local to the
enclosing kineticLaw; they cannot be used elsewhere in the model. Note that an
SBML kineticLaw represents the extent of the reaction per unit of time, and not
the rate of the reaction. In other words, the result is not a concentration per time,
but a quantity per time. This is why the rate is multiplied by the volume in the
kineticLaw.

The SBML snippet shows the description of the reaction

S0
k! S1

with a rate of
k � S0 � S2

where S0 and S1 are two species residing in a compartment V , and S2 is a catalyst.

<model>
...
<listOfReactions>

<reaction reversible="false"
fast="false">

<listOfReactants>
<speciesReference species="S0"

stoichiometry="1"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="S1"
stoichiometry="1"/>

</listOfProducts>
<listOfModifiers>

<modifierSpeciesReference species="S2"/>
</listOfModifiers>
<kineticLaw>
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<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> k </ci>
<ci> S0 </ci>
<ci> S2 </ci>
<ci> V </ci>

</apply>
</math>
<listOfLocalParameters>

<localParameter id="k" value="0.1"/>

</listOfLocalParameters>
</kineticLaw>

</reaction>
</listOfReactions>
...

</model>

15.2.5 Rule

In SBML, rules provide additional ways of defining values of variables in a model,
their relationships, and the dynamical behaviors of those variables. For example,
a model may wish to calculate the total concentration of a chemical that appears
as a part of several compounds within the model or vary a parameter representing
voltage. There are three subclasses of rules: algebraicRules, assignmentRules and
rateRules. In the current discussion, we will only consider the latter two types,
which have the following form:

Assignment W x D f .V /

Rate W dx

dt
D f .W /

where

x variable
f some arbitrary function

V vector of variables not including x
W vector of variables that may include x

Rules included in an SBML model are considered to hold true at all times.
Therefore they must be included in the set of equations that define the model for
simulation or other purposes.

The SBML snippet here shows two rules that describe the following equations.

y D 2x C 1
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dg

dt
D g � 1

<model>
...
<listOfRules>

<assignmentRule variable="y">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<plus/>
<apply>

<times/>
<cn> 2 /cn>
<ci> x </ci>

</apply>
<cn> 1 </cn>

</apply>
</math>

</assignmentRule>
<rateRule variable="g">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<minus/>
<ci> g </ci>
<cn> 1 </cn>

</apply>
</math>

</rateRule>
</listOfRules>
...

</model>

15.2.6 Event

An event in SBML describes the time and form of an explicit discontinuous state
change in the model. For example this could be a situation where the voltage is reset
when it reaches a given threshold.

The description of an event involves a trigger; a mathematical statement that
determines when the event is fired; and a listOfEventAssignments that determine
the action to be executed.

SBML does provide a delay for describing delayed events, when there is a period
of time between when an event is ‘fired’ and when the event is ‘executed’. There
is also a priority component for assigning a priority to the event. Neither delay or
priority are discussed here.
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The SBML snippet3 describes an event that resets the value of parameter Vthres
to �60 when the value of a second parameter V exceeds a value of 30.

<model>
...
<listOfParameters>

<parameter id="Vthres"
value="30"
constant="false"/>

</listOfParameters>
...
<listOfEvents>

<event useValuesFromTriggerTime="true">
<trigger initialValue="true" persistent="true">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<gt/>
<ci> V </ci>
<cn> 30 </cn>

</apply>
</math>

</trigger>
<listOfEventAssignments>

<eventAssignment variable="Vthres">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<cn> -60 </cn>
</math>

</eventAssignment>
</listOfEventAssignments>

</event>
</listOfEvents>
...

</model>

15.2.7 Metadata

In addition to the model semantics, that is the variables and their mathematical re-
lationships, SBML provides two mechanisms to add a layer of biological semantics
on top of each component of the model.

Firstly, an attribute sboTerm allows any element to be linked to a single term
of the Systems Biology Ontology (http://www.ebi.ac.uk/sbo, Le Novère et al.
2007). SBO is a controlled vocabulary (an “ontology”) tailored specifically for
the kinds of problems being faced in Systems Biology, especially in the context
of computational modeling. SBO is made up of different vocabularies covering

3In order to show valid SBML a number of attributes are shown within the snippet. These are not
referred to in the text as they represent a level of complexity beyond the scope of this text.

http://www.ebi.ac.uk/sbo
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quantitative parameters, modeling frameworks, type of mathematical expressions,
biological interactions, types of entities etc. The sboTerm enables unambiguous
identification of the type of concept being dealt with by the model.

Secondly, one can add biological information by linking an SBML component to
external resources, either terms from controlled vocabularies or entries in biological
databases. In order to precisely relate SBML components and annotations, the
links are encoded using existing semantic web technologies such as the Resource
Description Framework (Manola and Miller 2004).

The following SBML snippet described a species that corresponds to a “protein
complex” (SBO:0000297). It is made up of two parts, the protein calmodulin
(described by the UniProt entry P62158) and the divalent calcium cation (ChEBI
term CHEBI:29108).

<species id="Ca_calmodulin" metaid="cacam" sboTerm="SBO:0000297"

compartment="C" hasOnlySubstanceUnits="false"

boundaryCondition="false" constant="false">

<annotation>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">

<rdf:Description rdf:about="#cacam">

<bqbiol:hasPart>

<rdf:Bag>

<rdf:li rdf:resource="urn:miriam:uniprot:P62158"/>

<rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A29108"/>

</rdf:Bag>

</bqbiol:hasPart>

</rdf:Description>

</rdf:RDF>

</annotation>

</species>

15.3 Creating Neuronal Models in SBML

The SBML structures discussed above provide a syntax sufficiently rich to encode
many basic neuronal models. In particular, models involving metabolic networks,
signaling pathways or gene regulatory networks are covered. In addition, “single
compartment” electrical models can also be encoded in SBML. In this section,
we give a couple of concrete examples. For encoding multi-compartment electrical
models (“Rall models”), other representations such as NeuroML (Gleeson et al.
2010; see also Chap. 16) are more suitable.

15.3.1 Integration of Dopamine and Glutamate Signals

The integration of different neurochemical signals (Cohen 1992) is one of the
fundamental basis of neuronal function and plasticity (Bhalla and Iyengar 1999).
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Fig. 15.1 Graphical representation of the model in the Process Description language of the
Systems Biology Graphical Notation (Le Novère et al. 2009)

Figure 15.1 depicts a simple integration of glutamate and dopamine signals by
the phosphatase inhibitor DARPP-32. The model is derived from a more com-
prehensive one described by Fernandez et al. (2006). It is possible to create a
quantitative model of the reactions involved in the phosphorylation and dephos-
phorylation of DARPP-32, and study the dynamic behavior using calcium and
cAMP as inputs to represent the response to glutamate and dopamine respectively.
The complete model can be found in BioModels Database with the accession
BIOMD0000000152.

15.3.1.1 Mathematical Model of the Biochemistry

Here we construct a reduced version of the model concentrating on the threonine
34 phosphorylation site of DARPP-32, the phosphorylation due to protein kinase
A (PKA) and the dephosphorylation by calcineurin (PP2B). The resulting reactions
are listed below in Table 15.2. The parameter values are modified slightly from the
original model in order to retain the main behavior despite a drastic simplification.
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Table 15.2 Reactions in the model

Type Reactions

Phosphorylations

D C PKA • D PKA

D PKA ! D34 C PKA

D34 C PP2B • D34 PP2B

D34 PP2B ! D C PP 2B

PP2B activation

PP2Binactive C 2Ca • PP2B

PKA activation

R2C2 C cAMP • cAMP R2C2

cAMP R2C2 C cAMP • cAMP2 R2C2

cAMP2 R2C2 C cAMP • cAMP3 R2C2

cAMP3 R2C2 C cAMP • cAMP4 R2C2

cAMP4 R2 C PKA • cAMP4 R2C

cAMP4 R2C C PKA • cAMP4 R2C2

cAMP degradation

cAMP C PDE • cAMP PDE

cAMP PDE ! PDE C ;

Calcium input/destroy

; ! Ca

Ca ! ;

15.3.1.2 Encoding the Model in SBML

The model consists of species that represent the chemicals being altered, parame-
ters that define the rate constants, and reactions that determine how the species are
being altered. All reactions are modeled using Mass-Action Law, and the enzymatic
processes are decomposed in elementary steps. Consider the first equation listed:

D C PKA• D PKAs (15.1)
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with forward rate equation:

vf D k1f �D � PKA (15.2)

and backward rate equation:

vb D k1b �D PKA (15.3)

The SBML model to encode this reaction must contain a compartment, in
which the species are located and definitions for each of the species. Although
biochemically speaking the reaction is reversible, since the rate equations for the
forward and reverse reactions differ it is sometimes more convenient to define this
as two irreversible SBML reactions. In the following, we use reversible reactions
for reasons of compactness.

<listOfCompartments>
<compartment id="Spine" size="1e-15" spatialDimension="3"

constant="true"/>
</listOfCompartments>

<listOfSpecies>
<species id="D" compartment="Spine"

initialConcentration="4.98e-06" boundaryCondition="false"
hasOnlySubstanceUnits="false" constant="false"/>

<species id="PKA" compartment="Spine"
initialConcentration="0" boundaryCondition="false"
hasOnlySubstanceUnits="false" constant="false"/>

<species id="D_PKA" compartment="Spine"
initialConcentration="0" boundaryCondition="false"
hasOnlySubstanceUnits="false" constant="false"/>

...
</listOfSpecies>

<listOfReactions>
<reaction name="D_PKA_binding" reversible="true" fast="false">

<listOfReactants>
<speciesReference species="D" stoichiometry="1"

constant="true"/>
<speciesReference species="PKA" stoichiometry="1"

constant="true"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="D_PKA" stoichiometry="1"
constant="true"/>

</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<minus/>
<apply>

<times/>
<ci> Spine </ci>
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<ci> kon </ci>
<ci> D </ci>
<ci> PKA </ci>

</apply>
<apply>

<times/>
<ci> Spine </ci>
<ci> koff </ci>
<ci> D_PKA </ci>

</apply>
</apply>

</math>
<listOfLocalParameters>
<localParameter id="kon" value="5600000"/>
<localParameter id="koff" value="10.8"/>

</listOfLocalParameters>
</kineticLaw>

</reaction>
...

</listOfReactions>

This model includes two reactions intended to regulate the level of calcium, that is,
the input and output of calcium from the system, represented as:

; ! Ca

Ca! ;

Obviously calcium does not just magically appear and disappear; however the
input and output are not relevant to the system being modeled. If one wants to
explicitly represent the fact that there are source and sink, one can make use of
the boundaryCondition attribute on a species ‘Empty’, and define the reactions as
follows. Labeling a species as being a boundaryCondition implies that it remains
unaffected by any reactions it takes part in.

<listOfSpecies>
<species id="Empty" compartment="Spine" boundaryCondition="true"

hasOnlySubstanceUnits="false" constant="true"/>
...

</listOfSpecies>

<listOfReactions>
<reaction name="Ca_in" reversible="false" fast="false">

<listOfReactants>
<speciesReference species="Empty" stoichiometry="1"

constant="true"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="Ca" stoichiometry="1"
constant="true"/>

</listOfProducts>
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<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> Spine </ci>
<ci> kin </ci>

</apply>
</math>

</kineticLaw>
</reaction>

<reaction name="Ca_out" reversible="false" fast="false">
<listOfReactants>

<speciesReference species="Ca" stoichiometry="1"
constant="true"/>

</listOfReactants>
<listOfProducts>

<speciesReference species="Empty" stoichiometry="1"
constant="true"/>

</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<times/>
<ci> Spine </ci>
<ci> kout </ci>
<ci> Ca </ci>

</apply>
</math>
<listOfLocalParameters>
<localParameter id="kout" value="1.7"/>

</listOfLocalParameters>
</kineticLaw>

</reaction>
...

</listOfReactions>

Since the value of the species “Empty” is neither used nor displayed, it could
equally be ignored altogether. Indeed a reaction in SBML is only required to have at
least one reactant or one product. The following example represents the regulation
of calcium with one reversible reaction.

<listOfReactions>
<reaction name="Ca_reg" reversible="true" fast="false">

<listOfProducts>
<speciesReference species="Ca" stoichiometry="1"

constant="true"/>
</listOfProducts>
<kineticLaw>
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<minus/>
<apply>
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<times/>
<ci> Spine </ci>
<ci> kin </ci>

</apply>
<apply>

<times/>
<ci> Spine </ci>
<ci> kout </ci>
<ci> Ca </ci>

</apply>
</apply>

</math>
</kineticLaw>

</reaction>
...

</listOfReactions>

Note that in the reactions above, the parameter ‘kin’ is a global parameter, the value
of which will affect the amount of calcium being added to the system. Since the
purpose of this model is to study the effect of different amounts of calcium, the
parameter ‘kin’ can be varied to simulate different situations. The model uses events
to add a pulse of cAMP and calcium in the course of the simulation. For the cAMP,
this is done by setting a high concentration at a given time, while for the calcium,
we increase the input (conductance of calcium channels) at a particular point and
return it to a lower value after a delay. The events to produce a spike of calcium are
shown below. Note there is an assumption that ‘kin’ is initially low.

<listOfEvents>
<event id="event_2" name="ca_on1" useValuesFromTriggerTime="true">

<trigger initialValue="true" persistent="false">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<geq/>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/time">
time </csymbol>

<apply>
<plus/>
<ci> cAMP_delay </ci>
<ci> cAMP_Ca_delay </ci>

</apply>
</apply>

</math>
</trigger>
<listOfEventAssignments>

<eventAssignment variable="kin">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> kon_high </ci>
</math>

</eventAssignment>
</listOfEventAssignments>

</event>
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<event id="event_4" name="ca_off" useValuesFromTriggerTime="true">
<trigger initialValue="true" persistent="false">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<geq/>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/time">
time </csymbol>

<apply>
<plus/>
<ci> cAMP_delay </ci>
<ci> cAMP_Ca_delay </ci>
<ci> spike_duration </ci>

</apply>
</apply>

</math>
</trigger>
<listOfEventAssignments>

<eventAssignment variable="kin">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci> kon_low </ci>

</math>
</eventAssignment>

</listOfEventAssignments>
</event>
...

</listOfEvents>

Since the chemical of interest in this model is DARPP-32 phosphorylated on Thr34,
and that some of these molecules may be bound to other species, such as PP2B,
the SBML adds an assignmentRule which calculates the total number of D34
molecules present.

<assignmentRule variable="parameter_1">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<plus/>
<apply>

<times/>
<ci> D34 </ci>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/
avogadro">

Na </csymbol>
<ci> Spine </ci>

</apply>
<apply>

<times/>
<ci> D34_PP2B </ci>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/symbols/
avogadro">

Na </csymbol>
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Fig. 15.2 Simulation of a model of glutamate and dopamine signal integration. The plot represent
the temporal evolution of DARPP-32 phosphorylated on Thr34. After 100 s, cAMP molecules are
added, and after a further delay, two square increases of conductance cause calcium spikes

<ci> Spine </ci>
</apply>

</apply>
</math>

</assignmentRule>

15.3.1.3 Simulation of a Time Course

We can use any simulator supporting SBML’s reactions, assignmentRules and
events to simulate the model and obtain the time course of the different model’s
variables. The result obtained with COPASI (Hoops et al. 2006) is shown in
Fig. 15.2. The description of the simulation experiment, that is what to do with the
model and how, is not encoded in SBML. Another language is under development
to cover this part of the model life-cycle, the Simulation Experiment Description
Markup Language (SED-ML) (Köhn and Le Novère 2008).

15.3.2 Hodgkin-Huxley Axon Model

In the 1930s, Alan Hodgkin and Andrew Huxley started a series of experiments and
modeling to elucidate the flow of electric current through an axonal membrane. This
led to the formulation of the Hodgkin-Huxley model in 1952 (Hodgkin and Huxley
1952), a model that had major influence on our understanding of neuronal function



478 S.M. Keating and N. Le Novère

Fig. 15.3 In the Hodgkin-Huxley model, the membrane can be represented as an electrical circuit.
Ionic current through the membrane can be divided into three components: potassium current (iK ),
sodium current (iNa), and a small leakage current (iL) caused by other ions. The total current is
calculated assuming that these components plus the capacity current are in parallel

and for which they received the Nobel Prize in 1963. The development of this model
can also be seen as the birth of Systems Biology, since the authors described the
emergence of a system’s dynamic behavior using computational simulations of its
components. The complete model can be found in BioModels Database with the
accession BIOMD0000000020.

15.3.2.1 Mathematical Model of the Axon

Using the equivalent electrical circuit to represent a patch of membrane (Fig. 15.3)
Hodgkin and Huxley derived four main equations that describe how the system, that
is the probabilities of channel openings and the membrane voltage, varies with time.

dV

dt
D I � .iNa C iK C iL/

Cm

dm

dt
D ˛m.1 �m/� ˇm �m

dh

dt
D ˛h.1 � h/� ˇh � h

dn

dt
D ˛n.1 � n/ � ˇn � n (15.4)
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where

V membrane depolarization voltage
I constant applied current

iNa sodium current
iK potassium current
iL leakage current

Cm constant membrane capacitance
m sodium channel activation coefficient
h sodium channel inactivation coefficient
n potassium channel activation coefficient

and the ˛ and ˇ parameters are rate coefficients for the opening and closure of the
gates, dependent on the instantaneous value of the membrane potential.

˛m D 0:1.V C 25/

exp . V C25
10

/� 1

˛n D 0:01.V C 10/

exp . V C10
10

/� 1

˛h D 0:07 exp

�
V

20

	

ˇm D 4 exp

�
V

18

	

ˇn D 0:125 exp

�
V

80

	

ˇh D 1

exp V C30
10
C 1

(15.5)

The individual current values also depend on the difference between the equilibrium
potential of each ion and the membrane potential, and the conductance of each
channel (e.g. gNa for the sodium channel).

iNa D gNa �m3 � h � .V � VNa/

iK D gK � n4 � .V � VK/

iL D gL � .V � VL/ (15.6)

15.3.2.2 Encoding the Model in SBML

Since none of the variables under consideration in the model represent species, the
SBML encoding of the model defines all these, and a number of other constants
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as parameters. Similarly the model does not contain any reactions, and all the
equations are encoded using rules. For instance, the temporal evolution of the
system is described with rateRules:

<rateRule variable="V">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<apply>

<minus/>
<ci> I </ci>
<apply>

<plus/>
<ci> i_Na </ci>
<ci> i_K </ci>
<ci> i_L </ci>

</apply>
</apply>
<ci> Cm </ci>

</apply>
</math>

</rateRule>

<rateRule variable="m">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<minus/>
<apply>

<times/>
<ci> alpha_m </ci>
<apply>

<minus/>
<cn> 1 </cn>
<ci> m </ci>

</apply>
</apply>
<apply>

<times/>
<ci> beta_m </ci>
<ci> m </ci>

</apply>
</apply>

</math>
...
</rateRule>

The rate coefficients and the current, depending on the instantaneous voltage are
encoded in SBML using assignmentRules. For instance:

<assignmentRule variable="alpha_n">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<divide/>
<apply>



15 Encoding Neuronal Models in SBML 481

<times/>
<cn> 0.01 </cn>
<apply>

<plus/><ci> V </ci><cn> 10 </cn>
</apply>

</apply>
<apply>

<minus/>
<apply>

<exp/>
<apply>

<times/>
<cn> 0.1 </cn>
<apply>
<divide/>
<apply>
<plus/><ci> V </ci><cn> 10 </cn>
</apply>
<cn> 10 </cn>

</apply>
</apply>

</apply>
<cn> 1 </cn>

</apply>
</apply>

</math>
</assignmentRule>
...
<assignmentRule variable="i_Na">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<times/>
<ci> g_Na </ci>
<apply>

<power/><ci> m </ci><cn> 3 </cn>
</apply>
<ci> h </ci>
<apply>

<minus/><ci> V </ci><ci> V_Na </ci>
</apply>

</apply>
</math>

</assignmentRule>

15.3.2.3 Simulation of an Action Potential

Any simulator supporting SBML’s assignment and rate rules can be used to simulate
the behavior of the model. The results obtained with SBMLodeSolver (Machné et al.
2006) (see Fig. 15.4 reproducing Fig. 12 from the original paper).
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Fig. 15.4 Simulation output of Hodgkin-Huxley model using SBML ODESolver

15.3.3 Cortical Spiking Neurons

While Sects. 15.3.1 and 15.3.2 describe mechanistic models based on experimental
measurements of components’ properties, whether biochemical or electrophysiolog-
ical, one can also describe the behavior of neurons by developing phenomenological
models. This is particularly useful when one does not possess enough molecular
or morphological details about the neuron of interest to reconstruct large-scale
neuronal networks. Examples of such models are the spiking neurons, discussed
in more details in chapter (Chap. 6). Because one can encode any mathematical
description in SBML rules, those models can be easily encoded.

In his paper of 2003 (Izhikevich 2004a), Eugene Izhikevich proposed a simple
model of spiking neuron able to reproduce the behavior of many spiking and
bursting cortical neurons. In a further paper, he explored the response of this model
to various inputs (Izhikevich 2004b). Here we will construct an SBML version of
the model with a choice of parameters that makes it a class 1 excitability neuron,
that is a neuron firing at low frequency for lower inputs. The complete model can be
found in BioModels Database with the accession BIOMD0000000141.

15.3.3.1 Model of a Spiking Neuron

Izhikevitch’s model is a 2-dimensional FitzHughNagumo class model (FitzHugh
1961) described with the following equations:

dv

dt
D 0:04v2 C 5vC 140� uC I
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du

dt
D a.b � u/ (15.7)

the system being reset when v � 30 as:

v D c

u D uC d (15.8)

where

v membrane potential
u membrane recovery variable
I input current
a time scale of u
b sensitivity of u to fluctuations of v
c after-spike reset value of v
d after-spike reset value of u

15.3.3.2 Encoding a Model with Conditional Assignment

As with the previous example, none of the variables under consideration in the
model represent species or compartments. The SBML encoding of the model
defines all these, and a number of other constants as parameters. Similarly the
model does not contain any reactions, and all the equations are encoded using rules.
Note in some cases the parameters will be constant. Others must have the constant
attribute set to ‘false’ as they will be controlled by other elements of the model, in
this case through rules and events.

<listOfParameters>
<parameter id="a" value="0.02" constant="true"/>
<parameter id="b" value="-0.1" constant="true"/>
<parameter id="c" value="-55" constant="true"/>
<parameter id="d" value="6" constant="true"/>
<parameter id="Vthresh" value="30" constant="true"/>
<parameter id="I" value="0" constant="false"/>
<parameter id="flag" value="0" constant="false"/>
<parameter id="v" value="-60" constant="false"/>
<parameter id="u" value="6" constant="false"/>

</listOfParameters>

Equations 15.7 can be encoded using rateRules as follows.

<rateRule variable="v">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<plus/>
<apply>

<minus/>
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<apply>
<plus/>
<apply>

<times/>
<cn> 0.04 </cn>
<apply>
<power/> <ci> v </ci> <cn> 2 </cn>

</apply>
</apply>
<apply>

<times/> <cn> 4.1 </cn> <ci> v </ci>
</apply>
<cn type="integer"> 108 </cn>

</apply>
<ci> u </ci>

</apply>
<ci> i </ci>

</apply>
</math>

</rateRule>

<rateRule variable="u">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<times/>
<ci> a </ci>
<apply>

<minus/>
<apply>

<times/>
<ci> b </ci>
<ci> v </ci>

</apply>
<ci> u </ci>

</apply>
</apply>

</math>
</rateRule>

Equation 15.8 can be represented by using an event.

<event useValuesFromTriggerTime="true">
<trigger initialValue="true" persistent="false">

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>

<gt/>
<ci> v </ci>
<ci> Vthresh </ci>

</apply>
</math>

</trigger>
<listOfEventAssignments>

<eventAssignment variable="v">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> c </ci>
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</math>
</eventAssignment>
<eventAssignment variable="u">
<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>
<plus/>
<ci> u </ci>
<ci> d </ci>

</apply>
</math>

</eventAssignment>
</listOfEventAssignments>

</event>

The Class 1 Excitable neurons can encode the strength of the input into their
firing rate. In order to illustrate this, we want to encode an input current that is zero
until a certain point and then increases steadily with time. Mathematically, this can
be described as a discontinuous function:

I.t/ D
�

0 t < 30

0:075.t � 30/ t � 30
(15.9)

To encode Eq. 15.9, we can use of an assignmentRule containing a piecewise
construct:

<assignmentRule variable="I">
<math xmlns="http://www.w3.org/1998/Math/MathML">
<piecewise>

<piece>
<cn type="integer"> 0 </cn>
<apply>

<lt />
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/
symbols/time" />

<cn type="integer"> 30 </cn>
</apply>

</piece>
<otherwise>

<apply>
<times/>
<cn> 0.075 </cn>
<apply>
<minus/>
<csymbol encoding="text"

definitionURL="http://www.sbml.org/sbml/
symbols/time" />

<cn type="integer"> 30 </cn>
</apply>

</apply>
</otherwise>

</piecewise>
</math>

</assignmentRule>



486 S.M. Keating and N. Le Novère

Fig. 15.5 Simulation of 300 ms of the class I excitable neuron of Izhikevich’s model using
MathSBML. The monotonic input is shown as well as the resulting increasing frequency of
discharge

15.3.3.3 Simulation of a Firing Pattern

We can use any simulator supporting SBML’s piecewise assignmentRules to
simulate the model and obtain the time course of the different model’s variables.
The result obtained with MathSBML (Shapiro et al. 2004) as shown in Fig. 15.5
reproduces figure 1G from the original paper.

15.3.4 Conclusion and Perspectives

For the modeling of biological systems, SBML represented a breakthrough, by
enabling for the first time interoperability between modeling and simulation tools.
Since the number, size and complexity of computational models in biology has
increased in line with the rise of Systems Biology, it is illusory to imagine that
people could re-implement models they required, as was the case during the last
century. SBML provided a means for researchers to consistently encode, exchange
and re-use models. Its creation has revolutionized the modeling process.

A frequent misconception about SBML is that only models of biochemical
reactions using chemical kinetic approaches can be encoded. The versatility of
the language enables the encoding of a wide diversity of models, either based
on processes affecting pools of entities (where the entities are not necessarily
biomolecules), or variables described by differential or algebraic equations. The
existence of discrete conditional events allows the introduction of perturbations,
discontinuous behaviors and event-driven model elements.
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Some types of models cannot currently be encoded in SBML, such as com-
partmental approximations of the cable theory and state-transition representations
of ion channels. Other languages, like NeuroML, are more suitable for such a
purpose. As this chapter is written, the NeuroML and SBML communities are
working conjointly to make those languages interoperable, so that hybrid models
containing biochemical and electrophysiological components may be exchanged.
Such a cooperation may show the way for other collaborations, for instance with the
nascent NineML language developed under the guidance of the International Neu-
roinformatics Coordination Facility (INCF) for encoding large neuronal networks.
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Chapter 16
NeuroML

Padraig Gleeson, Volker Steuber, R. Angus Silver, and Sharon Crook

Abstract NeuroML is a language based on XML for describing detailed neuronal
models, which can contain multiple active conductances and complex morpholo-
gies. Networks of such cells positioned and synaptically connected in 3D can also be
described. In this chapter we present an overview of the history of NeuroML, a brief
description of the current version of the language, plans for future developments
and the relationship to other standardisation initiatives in the wider computational
neuroscience field. We also present a list of NeuroML resources which are currently
available, such as language specifications, services on the NeuroML website, exam-
ples of models in this format, simulation platform support, and other applications
for generating and visualising highly detailed neuronal networks. These resources
illustrate how NeuroML can be a key part of the toolchain for researchers addressing
complex questions of neuronal system function.
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16.1 Introduction

The complexity of the nervous system means that a variety of experimental and
theoretical approaches are required to investigate the way that information is
processed across the many biological scales involved. The use of computational
models of neuronal systems has been steadily growing in recent years and they
are increasingly seen as essential tools towards a greater understanding of brain
function. Such models have been developed using a variety of programming
approaches, from “home grown” simulators in single or closely collaborating labs
(for example Rhodes and Llinas 2001; Traub et al. 2005), to the use of general
purpose simulation environments for analysing dynamical systems (Ermentrout
2002), and dedicated neuronal simulation packages (Carnevale and Hines 2006;
Bower and Beeman 1997).

While a publication describing a modelling investigation should ideally provide
enough detail to reproduce the results, the complexity of the systems involved often
means in practice that the original scripts have to be consulted for the full details of
the model. A number of detailed cell and network models have been made available
to the community (for example at ModelDB Hines et al. 2004). However, the wide
variety of scripting languages used to express them and the different programming
styles used can form a barrier to researchers who want to reuse all or part of the
models. A model created for the NEURON simulation environment (Carnevale and
Hines 2006) will not execute in the GENESIS simulator (Bower and Beeman 1997),
and the specification of a cell model created in any simulator may be spread across
scripts which also include simulation control, data analysis and visualisation of
results. Ease of access to the essential neurophysiological elements of a model is
needed to allow individual components to be validated and reused, and will be
crucial for gaining a deeper understanding of the properties of the system being
modelled.

A number of recent reviews of the neuroinformatics field (Brette et al. 2007;
Cannon et al. 2007; De Schutter 2008) have highlighted these issues, including a
detailed analysis of the state of tools for large scale neuronal modelling (Djurfeldt
and Lansner 2007) by the International Neuroscience Coordinating Facility (INCF).
In this chapter we describe NeuroML,1 a language for describing biophysically
detailed cell and network models, which has been developed to address a number
of these issues. A recent publication (Gleeson et al. 2010) has provided a detailed
introduction to the latest version of the language. In this chapter we present an
overview of the history of NeuroML, a brief description of the current version
of the language and plans for future developments and the relationship to other
standardisation initiatives in the wider computational neuroscience field. We present
a list of NeuroML resources which are currently available, such as the language
specifications, services on the NeuroML website, examples of models in this format,

1http://www.neuroml.org

http://www.neuroml.org
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simulation platform support, and other applications for generating and visualising
highly detailed neuronal network models. These resources illustrate how NeuroML
can be a key part of the toolchain for researchers addressing complex questions of
neuronal system function.

16.2 The Development of the NeuroML Model Description
Language

The current version of NeuroML (Gleeson et al. 2010) has reached a stage of
maturity where a number of freely available software tools support all or part
of the language and a range of detailed cell and network models from different
brain regions are available in this format. Here we outline a brief history of the
NeuroML project, discuss the current version of the language, relate developments
to other modelling language and standardization initiatives, and present ongoing
development work towards the next version of the language.

16.2.1 Early History

A series of meetings attended by parties interested in developing a common
language for specifying computational neuroscience models in XML (Extensible
Markup Language, Bray et al. 1998) led to a publication describing the initial
aims of the NeuroML initiative (Goddard et al. 2001). A number of these goals
were in line with earlier work in this area (Gardner et al. 2001). This early effort
provided a set of templates for describing neuronal models at the channel, cellular
and network levels, which subsequently led to software implementations by some of
the original NeuroML contributors, including NeoSim (Howell et al. 2003) and the
NeuroML Development Kit (NDK). While several other software projects adopted
these templates and used the NDK (for example KInNeSS,2 Virtual RatBrain,3)
use of this version of the NeuroML language was lower than expected in the
growing computational neuroscience software development community. Some of
the potential reasons for this were lack of communication between the various
simulator communities, the relatively low number of detailed models which were
publicly available at the time, and other, more pressing priorities among simulator
developers, for example improving simulator performance and adding new features
including graphical interfaces.

2http://symphony.bu.edu
3http://www.virtualratbrain.org

http://symphony.bu.edu
http://www.virtualratbrain.org
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16.2.2 NeuroML Version 1.x

A new approach for the NeuroML initiative was adopted following meetings in
2004 and 2005 at the GENESIS and NEURON user group workshops. At this time
a new language for describing neuronal morphologies in XML (MorphML) was
under development (Qi and Crook 2004; Crook et al. 2007). Independently, neuro-
Construct (Gleeson et al. 2007), an application for generating neuronal simulations
for the NEURON and GENESIS simulators, was being developed. neuroConstruct
had its own internal simulator independent representation for morphologies, channel
and networks. It was agreed that these efforts should be merged under the banner
of NeuroML, and the current structure of the NeuroML language was created.
This new structure was split into three Levels comprising MorphML, ChannelML
and NetworkML (see Sect. 16.2.2.2), providing greater modularity of the language
and giving application developers the freedom to choose to support only part of the
language as needed.

This modular approach focused on the elements of biophysically detailed
neuronal models which can be analysed in isolation and are targets for reuse
between models. The description of a typical biophysically detailed model includes:
the structure of a neuron’s dendritic/axonal arborisation in 3D (its morphology);
the distribution of ion channels across this morphology; the kinetics of these ion
channels; the properties of the synaptic mechanisms associated with the neuron;
and the positions and connectivity patterns of multiple cells in 3D networks.

The priority for this new version of NeuroML (Gleeson et al. 2010) was to
create a format for expressing these core model elements in a language which
could be mapped to the most widely used neuronal simulators at that time,
NEURON (Carnevale and Hines 2006) and GENESIS (Bower and Beeman 1997),
although a number of other simulators and visualisation tools have since added
NeuroML support (see Sect. 16.3). This resulted in a language focused on conduc-
tance based (multi-) compartmental models of neurons, although it includes support
for some basic types of abstract neuronal models. The specification of simulation
parameters (run time, integration method, etc.) was not included, as the language
was designed to specify the models themselves as opposed to the details of how the
simulations were run.

As mentioned in Sect. 16.2.4, SBML and CellML have a lower level represen-
tation of model behaviour, where all the dynamical behaviour of the system is
described in XML. At the time of development of NeuroML version 1.x it was
felt that there was much to be gained by having a concise interchange format
specific for neuroscience applications which shared high level concepts such as cell
morphologies, active conductances and 3D network structure. The next version of
NeuroML will allow greater access to the underlying behaviour of NeuroML model
components, allow greater interoperability with, and mappings to and from, models
specified in these languages (see Sect. 16.2.5).
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Fig. 16.1 An example of a section of a NeuroML file. The validity of the file can automatically
be checked against the NeuroML specification contained in XML Schema Description (XSD)
files. Extensible Stylesheet Language (XSL) files can be used to transform the contents of the
file into formats which can be read more easily by humans or by other applications (for example
a simulator’s native file format). Alternatively an application can parse the XML using one of the
standard XML parsing techniques and transform the contents into its own data representation. Note
that a complex NeuroML model such as this could also be split between individual files for each
cell, channel, synapse and one for the network structure

16.2.2.1 Technical Approach to Language Specification

A NeuroML document consists of the XML elements describing the physiological
components of the neuronal model. Figure 16.1 shows an example of a NeuroML
file containing various elements such as cells, channels and populations. The
structure of a valid NeuroML document is defined using XML Schema Definition
(XSD) files. Using these, standard XML handling libraries can be used to check
the validity of an XML file against the various modules of the language. The XML
Schema files used for the language are discussed further in Sect. 16.2.2.2.

Once an XML file is known to be in valid NeuroML format, the contents of
the file can be transformed into other formats in a number of different ways. An
application can read the XML natively using one of the commonly used parsing



494 P. Gleeson et al.

Fig. 16.2 The three levels as used in NeuroML version 1.0, and the subcomponents, MorphML,
ChannelML and NetworkML. Examples of models which can be created within and across the
various parts of the language are given in the white rounded boxes (Image reproduced from Gleeson
et al. (2010) with permission)

frameworks such as SAX (Simple API for XML) or DOM (Document Object
Model). An alternative approach is to transform the XML description into another
text format which can be natively read by an application. This is possible with
Extensible Stylesheet Language (XSL) files. Examples of these files are available
for mapping NeuroML files onto HTML format (for making a more human readable
web page description of the model), and a number of simulators’ own script formats,
including NEURON, GENESIS and PSICS (Cannon et al. 2010). This approach
has the advantage that applications need not be reimplemented to natively support
NeuroML, but can still have access to models in the format.

16.2.2.2 Levels in NeuroML Version 1.x

Three Levels are defined in NeuroML v1.x to facilitate modular use of the language,
see Fig. 16.2. These are related to the different biological scales present in the
systems being modelled. As models of single neurons are at the core of most of
the systems to be described, specifications for the structure of individual cells form
the core of Level 1. Level 2 builds on this by including definitions of the electrical
properties of these cells, allowing for specifications of spiking cell models. Level 3
is used for networks of these cell models in 3D.

Level 1: Morphological Descriptions of Cells and Metadata

NeuroML Level 1 is used to define neuronal morphologies (MorphML) and to
describe metadata, where the metadata provide additional information about model
components at any subsequent Level.
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MorphML: Neuronal morphologies are described (inside the cell element, see
Fig. 16.1) using a series of connected segment elements, with each element
containing the information needed to describe the 3D location and shape of that
segment, as well as information about how segments should be connected. Optional
cable elements can be used to group these and to assist in defining regions of interest
on the cell such as apical/basal dendrites. The details of the mappings between the
elements that comprise MorphML and the data structures of other applications that
handle neuronal morphologies such as Neurolucida, NEURON and GENESIS have
been described previously (Crook et al. 2007). Another advantage of MorphML
over other formats is that it also allows for the description of additional histological
details from cell reconstructions such as points of interest or perceived boundaries
in the tissue (Crook et al. 2007).

Metadata: NeuroML files at any Level can be annotated with structured metadata.
This can be used to provide information on the authors of the original models,
who translated the model to NeuroML, relevant publications, source of the data
used to construct the model from databases such as ModelDB (Hines et al. 2004)
and NeuroMorpho.org (Ascoli et al. 2007). A status element can also be defined
to provide useful information on the stability and limitations of various model
components, for example, by indicating if additional experimental data are required
to constrain free parameters of model components.

Figure 4 of Gleeson et al. (2010) shows the various elements allowed for
describing cells in NeuroML at Level 1 and above. Supporting Text 1 of that paper
provides a detailed description of each element shown.

Level 2: Channel and Synapse Descriptions; Biophysical Cell Properties

NeuroML Level 2 describes the electrical properties of the excitable membrane that
underlie neural signalling and is composed of two main parts: ChannelML and a
description of the biophysical properties of cells defined in Level 1.

ChannelML: Two main types of conductances can be described by ChannelML:
conductances distributed over the plasma membrane (contained in the channel type
element), such as voltage-gated conductances or conductances gated by intracellular
ions (for example [Ca2C] dependent KC conductances); and conductances at
synaptic contacts (synapse type element). Distributed ion channels can be described
using both the traditional Hodgkin-Huxley formalism and by more biophysically
detailed state-based kinetic (Markov) models. A wide range of voltage-gated
conductances are supported by ChannelML, including those underlying fast and
persistent NaC currents, delayed rectifier, A- and M-type KC currents, H-currents
and high voltage activated (HVA, such as L-type and P-type) and low voltage
activated (LVA, T-type) Ca2C currents. [Ca2C] dependent BK and SK type KC
channels can also be expressed. There is some limited support for simplified neuron
models, for example leaky integrate and fire cells, but the primary focus of v1.x is
on conductance based neuron models.

NeuroMorpho.org
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ChannelML also supports both phenomenological models of neurotransmitter
gated chemical synapses and gap junction conductances at electrical synapses. Sup-
ported models of conductances at chemical synapses include simple linear ohmic
types used to model most ˛-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and � -aminobutyric acid-A (GABAA) receptor mediated synapses and
nonlinear voltage dependent components such as those used to model Mg2C block
of N-methyl-D-aspartate (NMDA) receptor mediated synaptic components.

Moreover, a short-term plasticity mechanism (Tsodyks et al. 2000; Tsodyks
and Markram 1997) and a spike timing dependent plasticity (STDP) mechanism
(Song et al. 2000) are supported allowing some commonly used models of activity
dependent synaptic plasticity to be incorporated in networks.

Biophysical properties of membranes: Level 2 also allows extension of the
morphological description of Level 1 to describe the passive electrical properties of
the cells (specific capacitance, axial resistance, passive membrane conductances),
and how active conductances are distributed across the membrane. These properties
are contained in the biophysics element. While NeuroML Level 2 is required for
defining a full spiking neuron model, the components of the model can be split
across individual morphology and channel files facilitating the exchange and reuse
of individual model components.

Figure 5 of Gleeson et al. (2010) shows the various elements allowed for
specifying channels and synapses in ChannelML. Supporting Text 1 of that paper
provides a detailed description of these elements, and the appendix to that document
provides explanation of the equations behind channel and synapse models in
ChannelML, and an example of a Level 2 cell model with active conductances.

Level 3: Networks

Level 3 of NeuroML allows for the specification of the 3D anatomical structure
and synaptic connectivity of a network of neurons, together with the properties
of the external input used to drive the network. NetworkML, the main component
of Level 3, contains the elements needed to describe networks and external input.
Level 3 also allows extension of Level 2 cells to specify the sub-regions of the
cell membrane where specific synaptic connections may be located (connectivity
element).

NetworkML: Three core elements are used for describing networks in Net-
workML: population represents a group of cells of a specific type; projection
defines the set of synaptic connections between populations and specifies the
types of synapses present; and input describes an external electrical input into
the network, for example a current pulse delivered by model electrodes or random
synaptic stimulation.

There are two possible ways to describe networks in NetworkML: an explicit
list of cell positions and synaptic connections (the instance based representation),
and templates for describing how instances of the network should be generated,
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for example by placing 100 cells randomly in a particular 3D region (template
based representation). Currently, NetworkML supports a limited range of network
templates; however, these templates are being updated and expanded for the next
version of NeuroML (see Sect. 16.2.5).

Figure 6 of Gleeson et al. (2010) shows the elements in NetworkML. Supporting
Text 1 of that paper provides a detailed description of these elements, and the
appendix to that document provides an example of a simple network constructed
in NetworkML.

Schemas for Levels

The NeuroML specification is split into a number of XML Schema documents.
For Level 1, the morphological elements are defined in MorphML vXXX.xsd,
where the XXX is replaced by the current version number, for example Meta-
data v1.8.1.xsd. Metadata are defined in Metadata vXXX.xsd. The Schema for
MorphML imports the Schema for Metadata, so elements of Metadata will be in
the namespace associated with that Schema, for example meta:notes. A file valid
against Metadata vXXX.xsd will have root element morphml. Another schema
file has been defined, NeuroML Level1 vXXX.xsd, which imports both of these
Schemas, and files valid against this will have root element neuroml.

Level 2 adds a Schema for ChannelML (ChannelML vXXX.xsd), which also
imports Metadata and defines the structure of files having root channelml. Bio-
physics vXXX.xsd cannot be used for standalone files, but contains details of the
elements for passive electrical properties and channel distributions of cells and is
imported into NeuroML Level2 vXXX.xsd (along with the Schemas for Metadata,
MorphML and ChannelML) to define Level 2 cells (or a file containing cells and
channel definitions) with root element neuroml.

Level 3 deals with network descriptions and contains a Schema for standalone
network descriptions (NetworkML vXXX.xsd, with root element networkml), and
one for Level 3 files (NeuroML Level3 vXXX.xsd, root element neuroml), one of
which could contain all the elements for the cells, channels, synapses, positions and
synaptic connections in a complex 3D network (see Fig. 16.1).

Figure 16.3 shows a screenshot of the online validator application (see
Sect. 16.3.2) showing the results of the validation of a ChannelML file against
these Schemas.

16.2.3 Organisational Structure of the NeuroML Initiative

The NeuroML language has been developed as a project on the SourceForge
website4 since 2005. The mailing lists available there are the main source of

4http://sourceforge.net/projects/neuroml

http://sourceforge.net/projects/neuroml
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Fig. 16.3 The validation of a ChannelML file using the online validator application. As can be
seen, the file is not valid against any of the Level 1 Schemas, is valid against the ChannelML
and Level 2 Schemas, as well as the main Level 3 Schema (which includes ChannelML) but not
NetworkML. Various options are provided for transforming the ChannelML into other formats (via
XSL mapping files)

information on activities in the project. NeuroML is an open, community based
project, and participation is welcome, also from the wider computational biology
and experimental neuroscience communities.

The organizational structure of the NeuroML initiative was given a more formal
structure at the first NeuroML Development Workshop in March 2009 in London.
The NeuroML Team was formed, which consisted of Robert Cannon, Sharon Crook,
Padraig Gleeson and Angus Silver. At the NeuroML Development Workshop in
March 2011 in London, this core team was expanded into a 10 member Scientific
Committee to drive forward the development of NeuroML. Initial membership of
this consisted of the four NeuroML Team members along with Upi Bhalla, Avrama
Blackwell, Hugo Cornelis, Andrew Davison, Lyle Graham and Michael Hines.

16.2.4 Relationship to Other Standardization Initiatives

The following are a number of initiatives also involved in standardization and
interoperability in computational neuroscience and the wider systems biology field.

PyNN

PyNN (Davison et al. 2008) is a Python package for simulator independent neural
network development. This language allows simulators which have a Python based
scripting interface (for example NEURON Carnevale and Hines 2006; NEST
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Diesmann and Gewaltig 2002; Brian Goodman and Brette 2008) to use the same set
of scripting commands to create large scale neural networks. The PyNN approach to
simulator independent model specification differs from that of NeuroML, as it is a
language for the procedural description of model creation whereas a model specified
in NeuroML is a declarative specification of the model structure. PyNN has also to
date concentrated on descriptions of large scale networks of simplified neurons,
whereas NeuroML has mainly been used for smaller networks of more biologically
detailed cells. Thus, the two approaches are complementary. See Sect. 16.3.8 for
more on interoperability between PyNN and NeuroML.

BrainML

BrainML5 is an initiative to develop standards in XML for exchanging neuroscience
data. This initiative initially concentrated on standards for the annotation of
experimental data as opposed to computational models, and so there has not to
date been a significant overlap with the scope of NeuroML. Much of the work on
BrainML and the related Neurodatabase.org project (Gardner 2004) have fed into
other National Institute of Health (NIH) funded initiatives, such as the Neuroscience
Information Framework (see section below on NeuroLex).

INCF Multi-scale Modelling Program

The International Neuroscience Coordinating Facility (INCF) was formed in 2004
through the Global Science Forum of the OECD with the aim of promoting
international collaboration in the area of neuroinformatics. Its activities include
a number of themed Programs which concentrate on areas of interest to the
community, arrange meetings and develop standards and guidelines to facilitate col-
laborative research. One of the Programs which has been set up is on Multi-scale
Modelling of Neuronal Systems. Current work in this area involves development of
NineML,6 a layered language for describing large scale models of spiking neurons.
NeuroML Team members are present on the Oversight Committee and Task Force
of this Program and future developments in NeuroML will be closely aligned with
progress in this initiative.

NeuroLex

The Neuroscience Information Framework7 (NIF) is an initiative of the NIH
Blueprint for Neuroscience Research and aims to be a single point of access to
multiple data resources related to neuroscience. NeuroLex is neuroscience specific
lexicon used by the NIF which provides a set of terms for uniquely identifying

5http://www.brainml.org
6http://www.nineml.org
7http://www.neuinfo.org

http://www.brainml.org
http://www.nineml.org
http://www.neuinfo.org
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concepts in neuroscience (such as cell types, brain regions, organisms), to facilitate
annotating and searching for information across multiple resources. This type of
information can currently be added to NeuroML files as custom metadata (for
example in the properties or annotation elements), and there are plans for greater
native support for NeuroLex in version 2.0 of NeuroML.

Model Description Languages in Systems Biology

Standardized model descriptions in the field of Systems Biology are at a more
mature stage compared to those in computational neuroscience. The Systems
Biology Markup Language (SBML, Hucka et al. 2003) and CellML (Lloyd et al.
2004) are two popular languages for describing systems of interacting entities in
Systems Biology, although both systems can be used for describing more generic
dynamical models. NeuroML differs from these languages in that it is a domain
specific model description language, and neuroscience concepts such as cells, ion
channels and synaptic connections are built into the language. While there is overlap
in the types of models that NeuroML and SBML/CellML can describe (for example
a single compartment cell with Hodgkin Huxley like conductances), NeuroML
focusses on providing a concise format for the neuronal model elements which can
be readily understood by software applications using these as core concepts.

As described in Sect. 16.2.5, NeuroML version 2 will have greater interaction
with these languages, with SBML being an initial focus of the work. This will allow,
for example, complex (intra- or extracellular) signalling pathways to be expressed in
one of these formats (with the added bonus of tool support and model repositories)
with the rest of the cell and network model specified in NeuroML.

16.2.5 Work Towards NeuroML Version 2.0

The current version of NeuroML can be used to specify a wide range of neuronal
models ranging from single cells to complex networks in 3D containing multiple
cell types. Models have been developed in this format of cells and microcircuits
from multiple brain regions (see Sect. 16.3.3). There are however a number of ways
in which the language can be further developed to increase the scope of models
which can be specified. This has led to plans for a version 2.0 of the language which
will extend the scope of NeuroML through greater flexibility in the types of models
which can be created and through links to model components in external markup
languages.

Changes over version 1.x include:

• A mechanism for defining reusable component types, which will serve as the
basis for model components (LEMS, the Low Entropy Model Specification
language, see http://www.neuroml.org/lems for more details)

• Import and export functions for models in SBML and CellML, including detailed
cellular signalling pathways

http://www.neuroml.org/lems
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• Greater support for templates of network structure, in line with work in the INCF
Multi-scale Modelling Program

• A library for reading/writing NeuroML files in multiple languages (libNeuroML)
• Links to structured annotation formats (for example Systems Biology Ontology,8

Gene Ontology,9 NeuroLex, etc.)

More details on the future directions of the NeuroML initiative are in Sect. 16.4.

16.3 NeuroML Resources

The following is a list of resources which can be used by researchers who wish
to get more details about the NeuroML specifications, find example models and
tools supporting this format, convert their own models to NeuroML or who want to
adapt their applications to import/export the format. An updated list of software
applications with NeuroML support is available at http://www.neuroml.org/tool
support.

16.3.1 NeuroML Language Specifications

The latest version of the NeuroML language specifications can be obtained online.10

As outlined in Sect. 16.2.2.1, the language is defined in a set of XML Stylesheet
Document (XSD) files. These files can be downloaded individually, or can be
viewed in a web browser converted to a more readable format.11 A detailed
explanation of the elements allowed in NeuroML files at each Level is contained
in Supporting Text 1 of Gleeson et al. (2010).

The very latest version of the specification files, as well as previous versions, can
be obtained from the NeuroML version control repository on SourceForge (which
uses Subversion12). The XSD files for version 1.x of the language as described in
Sect. 16.2.2 can be found in the directory trunk/web/NeuroMLFiles/Schemata.

This resource can be useful for:

• Finding detailed definitions of NeuroML elements
• Ensuring your application generates valid NeuroML code

8http://www.ebi.ac.uk/sbo
9http://www.geneontology.org
10http://www.neuroml.org/specifications
11forexampleseehttp://neuroml.org/NeuroMLValidator/Latest.jsp?spec=MorphML
12http://neuroml.svn.sourceforge.net/viewvc/neuroml

http://www.neuroml.org/tool_support
http://www.neuroml.org/tool_support
http://www.ebi.ac.uk/sbo
http://www.geneontology.org
http://www.neuroml.org/specifications
for example see http://neuroml.org/NeuroMLValidator/Latest.jsp?spec=MorphML
http://neuroml.svn.sourceforge.net/viewvc/neuroml
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Fig. 16.4 A pyramidal cell
morphology originally in
MorphML was validated
using the NeuroML validator
and then mapped to X3D
format. It is visualised here
using a web browser plugin
(Flux Player)

16.3.2 NeuroML Validator

A useful tool for validating XML files against the NeuroML specifications is avail-
able at http://www.neuroml.org/NeuroMLValidator/Validation.jsp. The contents of
a NeuroML file can be pasted into the text box provided and the application will
validate the file against each of the NeuroML Schemas. An example of the results
of the validation of a ChannelML file is given in Fig. 16.3.

Once a file has been successfully validated in this way, a number of options
are given for converting the file to other formats using XSL mappings. For
MorphML files, mappings to a HTML description of the cell or NEURON and
GENESIS morphology files are provided. ChannelML files can be mapped to
HTML, NEURON (either NMODL or ChannelBuilder format as appropriate),
GENESIS or PSICS. NetworkML files can be mapped to a description in HTML
of the structure of the network.

Cell morphologies or instance based network descriptions can also be converted
to X3D13 format to visualize the structure of the cell or network in an X3D com-
patible browser plug-in. While this functionality is more limited than applications
which read the NeuroML files natively and have inbuilt visualisation capability, it is
useful for providing a quick 3D representation of the model (see Fig. 16.4).

13http://www.web3d.org/x3d

http://www.neuroml.org/NeuroMLValidator/Validation.jsp
http://www.web3d.org/x3d
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Fig. 16.5 A number of models which are available in NeuroML. (a) Network model of the granule
cell layer of cerebellum. (b) CA1 pyramidal cell model. (c) Layer 2/3 cortical network model
(Images in b and c modified from Gleeson et al. (2010) with permission)

This resource can be useful for:

• Quick validation of NeuroML files without the need to install any extra
software

• Visualisation of the contents of NeuroML files

16.3.3 NeuroML Example Models

A number of published cell and network models have been converted to NeuroML
format over the past number of years and many of these are available from http://
www.neuroml.org/models. Figure 16.5 illustrates some of these examples. These
are available as a zip file containing all the NeuroML files, or as a neuroConstruct
(Sect. 16.3.6) project which can be used to view the model and generate code
for multiple simulators. Greater interaction with ModelDB (Hines et al. 2004) is
in development to make it easier to search for models of specific cell types and
brain regions. A number of NeuroML models are also available at http://www.
neuroConstruct.org/samples to illustrate the functionality of that application.

http://www.neuroml.org/models
http://www.neuroml.org/models
http://www.neuroConstruct.org/samples
http://www.neuroConstruct.org/samples
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This resource can be useful as:

• A repository of published models in valid NeuroML to serve as example
implementations

• A test suite for new NeuroML compliant tools
• A set of models to benchmark simulator performance

16.3.4 NEURON Simulator

The NEURON simulation environment (Carnevale and Hines 2006) is one of the
most popular tools for creating detailed conductance based neuron and network
models. It has the benefit of an active developer and user community and extensive
documentation is available. The current version of NEURON natively supports
import and export of cell morphologies in NeuroML Levels 1 and 2. All releases
of the application from version 6.0 onwards include these features, and updated
files for this support can be retrieved from the NeuroML SourceForge repository.
Details of the locations of the relevant files can be found at http://www.neuroml.
org/neuron tools.

The NeuroML export function in NEURON can be accessed when ModelView
is open (Main NEURON Menu! Tools!ModelView). This functionality works
best when just one morphologically detailed cell has been created from a cell
template, as is the case with many single cell models on ModelDB. When exporting
as a Level 2 file, the densities of channels and passive properties of the cell are
included. To this end, the groups of sections with common electrical properties as
generated by ModelView (ModelViewParamSubsets) are used as section groups,
and a biophysics element is added to the exported NeuroML file.

The option for importing NeuroML morphologies is available via Main NEU-
RON Menu! Build! Cell Builder! Management! Import! Import Button
! NeuroML. Figure 16.6 illustrates a cell in MorphML which has been imported
into NEURON.

ChannelML files can be converted to NMODL files using the latest XSL file for
this mapping, for example ChannelML vXXX NEURONmod.xsl. This converts
the XML into a mod file which can be compiled for use in NEURON. This
conversion can be done with any XML tool for handling XSL file transformations,
and a short script in Python to facilitate this is available.14 This conversion is
also possible via the NeuroML Validator web application (Sect. 16.3.2, Fig. 16.3).
The flexibility of the NMODL language has meant that all channel and synaptic
mechanisms covered by NeuroML to date are supported by NEURON. Level 1 cell

14http://www.neuroml.org/neuron tools

http://www.neuroml.org/neuron_tools
http://www.neuroml.org/neuron_tools
http://www.neuroml.org/neuron_tools
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Fig. 16.6 A pyramidal cell
originally described in
MorphML cell which has
been loaded into the
NEURON simulator and
visualized with a shape plot

morphologies (MorphML files) can also be converted to NEURON hoc files via that
site with an XSL mapping (for example MorphML vXXX NEURON.xsl), but use
of an interactive tool like neuroConstruct (Sect. 16.3.6), which can import Level 1–3
cells, allows visualization and editing of the cells and can export to NEURON and
other formats, is recommended.

The latest version of the NEURON simulation environment can be obtained from
http://www.neuron.yale.edu/neuron.

This resource can be useful as:

• One of the main target simulation platforms for executing NeuroML based
cell and network models

• Many published models for NEURON (and other simulators) are available
from ModelDB at: http://senselab.med.yale.edu/ModelDB, a large number
of which could potentially be converted to NeuroML

• A version of NEURON which can run across multiple processors is
available allowing simulations of networks with numbers of neurons
approaching biological scales

http://www.neuron.yale.edu/neuron
http://senselab.med.yale.edu/ModelDB
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16.3.5 GENESIS and Related Simulation Environments

GENESIS (Bower and Beeman 1997) is another popular platform for developing
and simulating detailed cell and network models. It too has an active user com-
munity, documentation and a number of publications using models in this format.
The most widely used version of the platform to date has been GENESIS 2. The
Neurospaces (Cornelis and De Schutter 2003) and MOOSE (Multiscale Object
Oriented Simulation Environment, Ray and Bhalla 2008) communities are actively
developing new tools which will be compatible with scripts for this simulator.

GENESIS 2 does not natively support NeuroML. ChannelML files can be
converted to GENESIS script files using the latest XSL file for this mapping, for
example ChannelML vXXX GENESIStab.xsl. This conversion can be done with
any XML tool for handling XSL file transformations, but a short script in Python
to facilitate this is available.15 This conversion is also possible via the NeuroML
Validator web application (Sect. 16.3.2, Fig. 16.3).

The majority of (non kinetic scheme based) ion channels and non plastic synapse
models supported by NeuroML can be mapped to GENESIS 2. There are a
number of objects in GENESIS 2 for implementing plastic synapses (for example
facsynchan, hebbsynchan), but these are based on different models of plasticity than
the STP and STDP synaptic mechanisms used in NeuroML. There are ongoing
contacts with the developers of Neurospaces, MOOSE, and other interested parties
such as the PyNN developers, to reach community wide agreement regarding a core
set of synaptic plasticity models for future support.

Level 1 cell morphologies (MorphML files) can also be converted to GENESIS
script files via the validator website with an XSL mapping (for example Mor-
phML vXXX GENESIS.xsl), but use of an interactive tool like neuroConstruct
(Sect. 16.3.6) is recommended.

The most recent version of the GENESIS 2 simulation environment can be
obtained from http://www.genesis-sim.org/GENESIS.

The Neurospaces project is developing major components of the GENESIS 3
platform. This will be a modular reimplementation of the core of GENESIS into
a number of components for model loading and editing (including parsers for
GENESIS 2 scripts and import functions for NeuroML cell models), a number
of compartmental solvers, a scheduler for managing simulations, and command
line and graphical interfaces. More details of the current developments towards
GENESIS 3 can be found at http://www.genesis-sim.org and http://neurospaces.
sourceforge.net.

The MOOSE platform also has extensive support for loading GENESIS 2 scripts.
Some native support for loading NeuroML has been developed, and the CCC
library for this can potentially be reused by other applications. The latest details
on MOOSE development are available at http://moose.sourceforge.net.

15http://www.neuroml.org/neuron tools

http://www.genesis-sim.org/GENESIS
http://www.genesis-sim.org
http://neurospaces.sourceforge.net
http://neurospaces.sourceforge.net
http://moose.sourceforge.net
http://www.neuroml.org/neuron_tools
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This resource can be useful as:

• One of the main target simulation platforms for running NeuroML based
cell and network models

• MOOSE and Neurospaces/GENESIS 3 are contributing to the ongoing
development of NeuroML which will help ensure compatibility of these
tools with future features of the language

16.3.6 neuroConstruct

neuroConstruct (Gleeson et al. 2007) is a graphical application to facilitate the
development of networks of biophysically detailed neurons in 3D. Once cell and
network models are created through the GUI, scripts to execute simulations of them
can be generated for a number of applications including NEURON, GENESIS,
MOOSE, PSICS and PyNN. neuroConstruct has been developed in parallel with
the NeuroML specifications and there is native support for all parts of NeuroML.

The internal representation of cells in neuroConstruct is closely based on
MorphML. For historical reasons, cells in neuroConstruct consist of segments
grouped in sections, whereas in MorphML the equivalent entities are segments
grouped in cables. Most cells can be exported in NeuroML Level 3 and re-imported
with no loss of information (including group information and non uniform channel
distributions). Figure 16.7 shows the neuroConstruct interface with a cell visualised
in 3D which can be exported/imported in NeuroML Level 1–3 formats.

neuroConstruct uses ChannelML files for channel and synapse models. When
generating the scripts for a particular simulator, neuroConstruct applies the corre-
sponding XSL mapping to make a native representation of the model component and
the generated file is compiled if necessary (as in the case of NEURON mod files).
Cell mechanisms can also be included in neuroConstruct in the native simulator
scripts (File Based Cell Mechanisms) and this can be useful in the process of
converting a channel from one simulator’s native format to ChannelML, as cells
with two versions of a channel can be run side by side and compared directly.16

There are a number of inbuilt features in neuroConstruct for generating plots from
the contents of ChannelML files, for example of the voltage dependences of the
steady-state activation and inactication variables and time constants or the synaptic
conductance waveforms (Tab Cell Mechanism! (select a ChannelML based Cell
Mechanism)! Edit selected Cell Mechanism! Generate associated plots).

NetworkML is used by neuroConstruct for storing and reloading the generated
network structure. When a network is generated (at tab Generate) it can be stored

16seehttp://www.neuroConstruct.org/docs/importneuronformoredetails

see http://www.neuroConstruct.org/docs/importneuron for more details
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Fig. 16.7 A pyramidal cell
visualised in neuroConstruct
from a MorphML cell
description

for future use in neuroConstruct or other application by pressing Save NetworkML.
Options are present for storing in: XML text files (files can be viewed with text
browser; produces large files; slower to generate and reload); zipped XML files
(produces smaller files; slightly slower to save and reload); or HDF5 format (faster
to save and reload; up to 90% smaller files; special software is needed to view and
edit these types of files outside of neuroConstruct, for example HDFView17).

There are also a number of options in neuroConstruct for exporting and importing
NeuroML files combining elements from a number of different Levels. At tab
Export! NeuroML, in addition to options for exporting only the cells in Levels 1,
2 or 3, the cells, channels, synapses and generated network structure can be exported
in NeuroML, either as a set of separate files, or as a single NeuroML Level 3
file. When exported as one Level 3 file, there is an option to include annotations
with neuroConstruct specific information (for example information on regions, cell
group colors, plots, simulation configurations, etc.), which can be read when the
Level 3 file is imported into a new, empty neuroConstruct project, facilitating
model exchange between neuroConstruct users. The exported file is still in valid
Level 3 format, and other NeuroML compliant applications can read the file,
ignore the neuroConstruct specific annotations and just import the cells, channels,
populations, etc.

A Level 3 file (generated by any NeuroML compliant application) containing a
mixture of cells, channels and network information can be imported into neuroCon-

17http://www.hdfgroup.org/products/hdf5 tools

http://www.hdfgroup.org/products/hdf5_tools
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struct and a new project created, ready for export to supported simulators. This can
be done through the GUI, or at command line:

Windows: nC.bat -neuroml MyNeuroML.xml
Linux/Mac: ./nC.sh -neuroml MyNeuroML.xml

The latest version of neuroConstruct and related documentation can be obtained
from http://www.neuroConstruct.org.

This resource can be useful for:

• A user friendly graphical application for creating, importing and exporting
NeuroML Levels 1–3

• Visualizing various elements of NeuroML based models, including 3D
cell structure, network layouts and plotting channel rates and synapse
waveforms

• Comparing NeuroML cell and network model behaviour across simulators

16.3.7 PSICS Simulator

The recently developed neuronal simulator PSICS (Parallel Stochastic Ion Channel
Simulator) allows simulation of detailed neuronal models which include stochastic
ion channel transitions, and so can be used to examine the effect of low numbers of
ion channels on neuronal firing behaviour (Cannon et al. 2010). This simulator has
had an initial focus on single cell modelling, and while support for networks of cells
is in development, NeuroML models incorporating synapses and networks cannot
currently be run on this platform.

Level 1 morphologies can be imported natively by PSICS. PSICS does not
have an internal representation of cables, so MorphML cable elements (used for
grouping segments) are only used to assign labels to points (taken from the segment
elements), which can then be used for channel allocation. Figure 16.8 shows a cell
morphology in PSICS.

PSICS natively reads a large subset of channel specifications in ChannelML
1.8.1 but does not support ligand gated channels (for example [Ca2C] dependent
KC channels), synapses or integrate-and-fire mechanisms. Supported ChannelML
models can be converted to PSICS format using the latest XSL file for this mapping,
for example ChannelML vXXX PSICS.xsl. This converts the XML into a PSICS
compatible XML file and reports if the ChannelML file uses an unsupported
construct. The conversion can be done with any XML tool for handling XSL file

http://www.neuroConstruct.org
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Fig. 16.8 A pyramidal cell
visualised in PSICS from a
MorphML cell description.
The figure is automatically
generated by PSICS after
running a simulation
with the cell

transformations, but a short script in Python to facilitate this is available.18 This
conversion is also possible via the NeuroML Validator web application (Sect. 16.3.2,
Fig. 16.3).

PSICS, associated documentation and the ICING visualization application are
available from http://www.psics.org.

This resource can be useful because:

• PSICS handles cellular morphologies and channel distributions differently
than NEURON and GENESIS, and so a NeuroML cell model can be tested
on this platform to see how firing behaviour is influenced by a simulator’s
representation of the physiology

• Both deterministic and stochastic simulations based on individual channel
opening and closing for cell models expressed in NeuroML format are
possible with this simulator

16.3.8 PyNN

A number of neuronal network simulators have recently introduced scripting
interfaces based on the Python scripting language. The PyNN initiative, which

18http://www.neuroml.org/neuron tools

http://www.psics.org
http://www.neuroml.org/neuron_tools


16 NeuroML 511

started as part of the EU FACETS project (and is continuing in the EU BrainScaleS
project), seeks to create a specification for a set of common Python commands for
setting up neuronal network simulations. Simulators which currently support the
language include NEURON, NEST, Brian, MOOSE and PCSIM19 and there is also
work to support the running of such networks on VLSI neuromorphic hardware
created by the FACETS project. PyNN is a specification incorporating procedural
descriptions of network structure and is complementary to the declarative model
specifications being developed in the NeuroML initiative.

PyNN scripts are intended to be used on multiple simulators with little or no
modification. The one change that is usually needed is the line at the start of a
PyNN script: from pyNN.neuron import * should be replaced with from pyNN.nest
import * to use the simulator NEST instead of NEURON, etc. There is an initial
implementation of a NeuroML module in PyNN which can be used to export the
structure of the network created in the PyNN script, together with cell and synapse
properties, to a NeuroML compliant file, as opposed to executing the network on
the specified simulator.

A subset of models specified in NeuroML can be converted to valid PyNN
scripts. Currently this is enabled by export of NeuroML based models from
neuroConstruct. Due to the scope of models which can currently be expressed in
PyNN (the target simulators for PyNN were initially large scale integrate and fire
based network simulators) only neuroConstruct projects containing the following
can currently be mapped onto PyNN: single compartment cells containing only a
passive conductance together with an integrate and fire based conductance; networks
connected by alpha or single exponential waveform conductances (which could
include STP or STDP based plasticity mechanisms); random spiking inputs.

Members of the PyNN and NeuroML development communities are involved in
the INCF Program on Multi-scale modelling (Sect. 16.2.4), and updates of network
representations (population layouts, connectivity schemes, etc.), as well as support
for more generic representations of abstract cells in both PyNN and future versions
of NeuroML will be coordinated through this forum.

The latest version of PyNN is available from http://neuralensemble.org/PyNN.

This resource can be useful because:

• NeuroML to date has focussed on detailed conductance based cell models,
and these preliminary interactions with PyNN are a step towards using
NeuroML with large scale network simulation tools like NEST

• PyNN development is closely linked with a number of other (mainly
Python based) tools for simulation, data analysis and simulation manage-
ment (see http://www.neuralensemble.org)

19http://www.lsm.tugraz.at/pcsim

http://neuralensemble.org/PyNN
http://www.neuralensemble.org
http://www.lsm.tugraz.at/pcsim
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Fig. 16.9 A screenshot of the whole brain catalog interface showing a pyramidal cell. The cell can
be selected and downloaded in NeuroML format

16.3.9 Whole Brain Catalog

This project is closely related to the Neuroscience Information Framework
(Sect. 16.2.4) and has developed an application with a 3D graphical interface for
accessing a range of neuroscience resources, including mouse brain atlases, imaging
data and neuronal reconstructions. Data from these resources can be visualised at
multiple scales, and links are provided to the original data sources. Objects on
display are tagged with terms from the NeuroLex lexicon which facilitates linking
data across resources.

Models in NeuroML format can be uploaded to the system for visualisation
though the interface (currently a username and password are required), see Fig. 16.9.
Both MorphML and NetworkML data can be imported. Cells already present in the
system can be selected and downloaded in NeuroML.

The latest version of the Whole Brain Catalog interface can be downloaded from
http://www.wholebraincatalog.org.

This resource can be useful because:

• NeuroML cell and network models can be viewed within the framework of
a 3D mouse brain

• This graphical application is closely linked with a number of other
neuroinformatics initiatives and offers intriguing possibilities for obtaining
NeuroML files rich in structured metadata

http://www.wholebraincatalog.org
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Fig. 16.10 A screenshot of a network generated in CX3D (left). The axons of both the upper and
lower cell groups are attracted to the chemical substance whose concentration is shown in red. The
network was exported in NeuroML format and loaded into neuroConstruct (right)

• Ongoing work integrating this application with neuroConstruct aims to
allow execution of submitted NeuroML models on high performance
computing resources and visualisation of the results through this interface

16.3.10 CX3D

This application can be used for simulating the growth of neurons in 3D, both
stochastically and in response to the presence of neurochemical attractors. The
application can export the grown cells and networks in a NeuroML Level 3 file
(see Fig. 16.10).

The latest version of CX3D is available from http://www.ini.uzh.ch/projects/
cx3d.

This resource can be useful as:

• A source of stochastically generated NeuroML cells and networks for use
in other visualisation/modelling environments

• Export of the network structure at fixed intervals during its growth,
followed by simulations of the cells or networks generated at different
stages, can be used to investigate how cell and network behaviour alters
during development

http://www.ini.uzh.ch/projects/cx3d
http://www.ini.uzh.ch/projects/cx3d
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Fig. 16.11 A MorphML description of a pyramidal cell loaded and visualised in the NLMorphol-
ogyViewer

16.3.11 NeuronLand

NeuronLand develops free software tools for the experimental and computational
neuroscience communities. Currently two tools for handling 3D neuronal morphol-
ogy files are available: NLMorphologyConverter, which allows conversion between
many commonly used morphology file formats, including MorphML, Neurolucida
and SWC; and NLMorphologyViewer, which is a graphical interface for viewing the
structures of cells in these formats (see Fig. 16.11), and can also import and export
in multiple formats.

These applications are available from http://neuronland.org.

This resource can be useful for:

• Converting a wide range of neuronal morphology formats to and from
MorphML

http://neuronland.org
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16.4 The Future of NeuroML

The NeuroML initiative has evolved over a number of years into its current modular
form which is supported by an increasing number of applications from many
areas of computational neuroscience. A growing community is committed to the
development of the language, adding greater tool support and making their own and
other published models available in this format.

In parallel with further development of the language, the range of cell and
network models available in the format will be extended. Many well known cortical,
cerebellar and hippocampal models are available already in NeuroML and systems
will be put in place to allow researchers to collaboratively build on and improve
these models, providing a valuable resource for both experimentalists and theoreti-
cians to use in their work.

The next version of the NeuroML language will significantly extend the range
of models which can be expressed. Greater support for abstract cell models such as
integrate and fire (I&F) models, Izhikevich neurons and adaptive exponential I&F
models, etc., will be included. The new system for defining the behaviour of extensi-
ble component types will also allow more complex ion channel and synapse models
to be created. Links to models expressed in SBML and CellML will allow detailed
subcellular signalling pathways to be included in cell models, enabling true multi-
scale modelling. There will be greater support for HDF5 versions of morphologies
and network structure to cope with the data demands of connectomics initiatives.
The support for network templates will also be significantly improved allowing
more compact representations of complex network structure to be exchanged be-
tween applications for generating, visualising and simulating large scale networks.

All of these advances support our vision of an ecosystem of computational
neuroscience tools each with specialised functionality interacting through a com-
mon model exchange language, allowing researchers the freedom to ask new and
interesting questions about the functioning of the nervous system.
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Chapter 17
XPPAUT

Bard Ermentrout

Abstract This chapter describes the XPPAUT software package. XPPAUT is a
general purpose tool for numerically solving and analyzing dynamical systems.
It combines a graphical interface, many numerical routines, two- and three-
dimensional graphics, and an interface to AUTO.

17.1 Introduction

XPPAUT is a general numerical tool for simulating, animating, and analyzing
dynamical systems. These can range from discrete finite state models to stochasic
Markov models, to discretization of partial differential and integrodifferential equa-
tions. XPPAUT was not specifically developed for systems biology simulations but
because of its ability to provide a complete numerical analysis of the dependence of
solutions on parameters (“bifurcation diagrams”) it is widely used by the community
of computational and theoretical biologists. While it can be used for modest sized
networks, it is not specifically designed for this purpose and due to its history, there
are limits on the size of problems which can be solved (about 2,000 differential
equations is the current limit). Rather than a pure simulator, XPPAUT is a tool for
understanding the equations and the results of simulating the equations. XPPAUT
uses a highly optimized parser to produce a pseudocode which is interpreted and
runs very fast – at about half the speed of directly compiled code. Since no compiler
is required, XPPAUT is a stand alone program and runs on all platforms which
have an X11 interface available (UNIX, MAC OSX, Windows, etc.). Versions are
also available for the iPad and iPhone. The program is open source and available in
source and various binary versions. XPPAUT includes a version of AUTO Doedel
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(1981) which is a continuation and bifurcation package. XPPAUT can be compiled
on 64-bit platforms, however, the AUTO component does not run properly on 64-bit
machines unless compiled in 32 bit mode.

XPPAUT can be run interactively (the preferred method) but can also be run in
batch mode with no GUI with the results dumped to one or more files. Graphic
output as postscript, GIF, PBM, and animated GIF is possible. (There are codecs
available for AVI format but these are not generally included in the compiled
versions.) Recent changes in XPPAUT have greatly extended the batch capabilities
and it is now possible to easily set it up to run on multiple threads through a friendly
Java interface. Numerous packages for controlling XPPAUT have been written,
some stand-alone such as JigCell (http://jigcell.cs.vt.edu/) and others using Matlab
or Python. (All of these frontends can be found on the website http://www.math.pitt.
edu/�bard/xpp/xpp.html.)

There are no limits as far as the form of the equations is concerned since the
actual equations that you desire to solve are written down like you would write
them in a paper. For example the voltage equation for a conductance-based model
would be written as:

dv/dt = (-gl*(v-el) - gna*mˆ3*h*(v-ena)-gk*nˆ4*(v-ek))/cm

There is a method for writing indexed networks as well, so that one does not have
to write every equation. Special operators exist for speeding up network functions
like discrete convolutions and implementation of the stochastic Gillespie algorithm.
Furthermore, the user can link the right-hand sides of differential equations to
external C libraries to solve complex equations (for example, equation-free firing
rate models Laing et al. 2010). Because it is a general purpose solver, the user can
mix different types of equations for example stochastic discrete time events with
continuous ODEs. Event driven simulations are also possible and can be performed
in such as way that output occurs only when an event happens. There are many ways
to display the results of simulations including color-coded plots showing space-time
behavior and a built-in animation language.

17.2 Types of Problems that Can Be Solved

XPPAUT solves a variety of types of problems. The most common class of equations
is initial value problems of the form:

X 0 D F.X; t/; X.t0/ D X0

where F W Rm � R ! Rm and X0 2 Rm: (Here, and throughout this chapter, X 0
means the time derivative of X .) XPPAUT solves first order differential equations
so that systems like x00 D �x have to be converted into a system of first order
equations, e.g., x0 D y; y0 D �x: XPPAUT does not handle complex variables,

http://jigcell.cs.vt.edu/
http://www.math.pitt.edu/~bard/xpp/xpp.html.
http://www.math.pitt.edu/~bard/xpp/xpp.html.
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so that a system of equations on C m must be converted to real equations, e.g., z0 D
z � jzj2z is written as x0 D x � x.x2 C y2/; y0 D y � y.x2 C y2/: XPPAUT will
also solve discrete dynamical systems of the form

XnC1 D F.Xn; n/; X.n0/ D X0:

Equilibria, stability, and periodic solutions can be found as parameters vary for
sufficiently smooth right-hand sides using the continuation package AUTO which is
incorporated into XPPAUT .

XPPAUT solves a variety of functional differential equations, such as delay
equations and some classes of Volterra integro-differential equations. An example
of the former is the delayed negative feed-back equation

dx

dt
D �x.t/C f .I � bx.t � �//: (17.1)

While not so common in systems biology, Volterra integral equations do arise on
occasion. For example, consider the nonlinear equation:

x.t/ D a

Z t

0

e�.t�s��/2

x.s/.1 � x.s// ds: (17.2)

This cannot be converted into an ODE so the full integral equation must be solved.
Equations need not have smooth or even continuous right-hand sides. The

adaptive quadratic integrate and fire model is an example of such an equation:

V 0 D V 2 C I � w; w0 D a.bV � w/ (17.3)

along with the condition that if V.t�/ D Vth then V.tC/ D Vreset; w.tC/ D
w.t�/C d: Another example is a simple cell growth model due to John Tyson Fall
et al. (2002) (Chap. 10):

u0 D k4.v � u/.aC u2/ � k6u

v0 D k1m � k6u

m0 D bm (17.4)

along with the reset condition. Whenever u falls below 0:2, the mass, m is halved.
XPPAUT also solves boundary-value problems (BVPs) in which conditions are

given at both ends of an integration interval. For example, Eq. 17.3 has a periodic
solution for I large enough. This solution can be found by integration, but it is hard
to automatically compute the period as parameters vary (e.g. through continuation)
since it is discontinuous. However, the “periodic” solution can be treated as a BVP.
Indeed, it must satisfy, V.0/ D Vreset; V .P / D Vth and w.0/ D w.P / C d: There
are three equations, but only two ODEs. The period, P is a free parameter, so by
adding the equation P 0 D 0, we now have three equations and three unknowns.
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Stochastic simulations are also possible in XPPAUT as it includes a method
for continuos time Markov processes such as seen in channel simulations. For
example, many molecular motors are based on exploiting thermal noise along
with an asymmetric periodic potential that randomly flashes on and off. The net
effect of these two random processes is the performance of work. Let V.x/ be
a potential function. Assume that it is periodic on the line with period 1 and
that it is asymmetric. Let z be a two state Markov process that determines the
magnitude of the potential – when z D 0 the potential has zero magnitude and
when z D 1 it is maximal. Finally assume a certain amount of Brownian motion.
Then when the potential is on, the probability distribution builds up proportionally
to P.x/ D exp.�V.x/=�/: When the potential is turned off, there is diffusional drift
but it favors one direction more than the other because of the asymmetric potential.
The result is that there is a net flux in one direction. Many molecules work in this
fashion by changing configuration (due to the hydrolysis of ATP) to produce in
effect a molecular ratchet driven by the noise. There are many realistic models of
this but they all work on the same principle illustrated by the above example. The
equations for this are:

dx D �zV 0.x/dtC �d�; (17.5)

where z is a two state Markov process that has switching rates ˛;ˇ for 0!1 and
1!0 respectively.

Partial differential equations and integro-differential equations can also be solved
with XPPAUT by discretizing space into a set of ODEs. For example, consider the
Brusslator reaction-diffusion equation:

Ut D A � .B C 1/U C U 2V CDU Uxx

Vt D BU � U 2V CDV Vxx (17.6)

with, say, periodic boundary conditions, U.L; t/ D U.0; t/; V .L; t/ D V.0; t/:

Here, Ut means the partial derivative with respect to t , etc. An integral equation
arising in neuroscience is the Ermentrout-McCleod Ermentrout and McLeod (1993)
equation

Ut D �U C F.

Z 1

�1
K.x � y/U.y; t/ dy/: (17.7)

XPPAUT has special operators for dealing with spatial convolutions.
XPPAUT can solve other types of problems we will not illustrate here but

which can be useful for computational biologists. For example, in many cellular
systems, there are small numbers of molecules, so that approximating them as
continuous chemical concentrations is not really valid. Thus, one typically runs
Monte Carlo simulations and the most accurate way to implement continuous time
discrete state Markov models is the Gillespie algoithm. XPPAUT can automate this
process quite easily; the user need only provide the reaction rates. Some types
of differential equations involve nonlinear dependendence on the derivatives or
additional algebraic conditions. XPPAUT has solvers for these so-called differential-
algebraic equations.
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17.3 Running XPP

Running XPPAUT requires that the user first create an ODE file, that is, a plain text
file that describes the model to be solved. ODE files can also contain parameters
for the numerical methods, graphics, and output. Once these are created, either
by the user or automatically, then XPPAUT can be run with the ODE file as an
input. XPPAUT is usually run interactively so that the user can change parameters,
integration time, initial data, etc. However, since much of the information needed to
run the ODE can be included in the file, XPPAUT can also be run without a GUI
using the “-silent” option. The result is a file or series of files with the output of
the simulation as a series of columns of numbers. In the next few subsections, we
illustrate how to solve the example problems described in Sect. 17.2.

17.3.1 Ordinary Differential Equations

We start with the familiar Hodgkin-Huxley equation, which is a four-dimensional
dynamicl system:

CV 0 D I � gL.V � EL/� gKn4.V �EK/� gNam3h.V � ENa/

m0 D M.m; v/

h0 D H.h; v/

n0 D N.m; v/

where, M; N; H are the gating functions for the channels. The complete ODE file
for XPPAUT is

# hh.ode
init v=-65 m=.05 h=0.6 n=.317
par i=0
par ena=50 ek=-77 el=-54.4 gna=120 gk=36 gl=0.3

c=1 phi=1
am(v)=phi*.1*(v+40)/(1-exp(-(v+40)/10))
bm(v)=phi*4*exp(-(v+65)/18)
ah(v)=phi*.07*exp(-(v+65)/20)
bh(v)=phi*1/(1+exp(-(v+35)/10))
an(v)=phi*.01*(v+55)/(1-exp(-(v+55)/10))
bn(v)=phi*.125*exp(-(v+65)/80)
v’=(I - gna*h*(v-ena)*mˆ3-gk*(v-ek)*nˆ4-gl*(v-el))/c
m’=am(v)*(1-m)-bm(v)*m
h’=ah(v)*(1-h)-bh(v)*h
n’=an(v)*(1-n)-bn(v)*n
done
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Fig. 17.1 Numerical solution to the Hodgkin-Huxley equations. (a) Time series plot of the voltage
when I D 15; (b) Projection into the .V; n/�plane; (c) bifurcation diagram with current, I varying
(SE stable equilibria, UE unstable equilibria, SP stable periodic, UP unstable perriodic); (d)
frequency vs. current

Running XPPAUT on this file, we can look at a variety of aspects of the ODE.
Figure 17.1 shows an example run. Panel A shows the voltage as a function of time
when I D 15: Panel b shows a projection of the same solution in the .V; n/�plane.
XPPAUT provides a very simple interface to AUTO; panels c and d of Fig. 17.1
show an example run as the injected current I varies. XPPAUT first plots the
equilibria and shows where they are stable. It also shows bifurcations; here HB
denotes a Hopf bifurcation. A branch of unstable periodic orbits (UP) arises from
this bifurcation point, but stabilizes (SP) to a large amplitude periodic solution. Both
the maximum and minimum can be shown. The frequency of the periodic solutions
can also be plotted.

If an ODE has a discontinuity or jump condition, it is necessary to use event
checking. XPPAUT incorporates such “global” events using a simple crossing
criterion. Here is the ODE file for the Tyson model:

# tyson.ode
init u=.0075,v=.48,m=1
par k1=.015,k4=200,k6=2,a=.0001,b=.005
u’= k4*(v-u)*(a+uˆ2) - k6*u
v’= k1*m - k6*u m’= b*m
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Fig. 17.2 Simulation of the discontinuous Tyson model. Upper panel shows the mass; lower,
.u; v/ (u is dashed and v solid)

global -1 {u-.2} {m=.5*m}
@ total=1000,meth=8,dt=.25
@ xhi=1000,ylo=0,yhi=2,yp=m
done

This file contains global which tells XPPAUT to look for an event and then if it
occurs to do something; in this case, the mass is halved. In addition, there are lines
starting with @ which tell XPPAUT various numerical and graphing parameters.
These could all be done within the program, but this way, it is ready to run without
any user interaction. Figure 17.2 shows a sample simulation that appears to approach
a periodic solution after a sufficient amount of time is reached. Note that m.t/ jumps
discontinuously at certain times due to u decreasing through u D 0:2:

We conclude this section with a simulation of the Brownian ratchet, Eq. 17.5.
The ODE file for this is

# ratchet
wiener w
par a=.8,sig=.05,alpha=.1,beta=.1
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f(x)=if(x<a)then(-1)else(a/(1-a))
x’=z*f(mod(x,1))+sig*w
markov z 2
{0} {alpha}
{beta} {0}
@ meth=euler,dt=.1,total=2000,njmp=10
@ xhi=2000,yhi=8,ylo=-8
done

The construction wiener w tells XPPAUT that this is a white noise process so
that it has to be numerically scaled correctly. markov defines a multi-state Markov
process and the following lines are the transition matrix. Diagonal entries are
ignored since the transition probabilities will sum to 1 for each row. Figure 17.3
shows both the potential function (top) and sample paths as well as the mean in
the bottom panel. The simulation shows that there is net movement in the direction
towards the smaller slope.

17.3.1.1 Boundary Value problems

XPPAUT solves boundary value problems (BVPs) by either using shooting (within
XPPAUT) or using AUTO. The latter has the advantage of being able to adaptively
compute the solution to the BVP as parameters change; however, AUTO requires a
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good starting solution. The XPPAUT BVP solver is more forgiving and thus can be
used as a first step. Consider Eq. 17.3. The ODE file for the corresponding BVP is

v’=p*(vˆ2+I-w)
w’=p*a*(b*v-w)
p’=0
b v’-vth
b v-vreset
b w -(w’+d)
par I=1,a=.05,b=1,d=1,vth=20,vreset=-1
@ total=1,dt=.01
init v=-1,w=1.89,p=15
done

The first three equations are the ODEs. Note that time is rescaled by the period, P .
The next three lines (all starting with “b”) define the boundary conditions. Here v’
denotes the value of v at the end of the time interval. In XPPAUT, you run the
boundary value solver on this and, if you have made a good guess, the solution
will converge. Once you have found a solution, you can use AUTO to continue it
as some parameter varies. For example, you might want to find the frequency of
periodic solutions as a function of the applied current.

17.3.2 Functional Equations

Equation 17.1 can be solved by creating the following ODE file:

x’=-x+f(i-b*delay(x,tau))
f(x)=1/(1+exp(-x))
par i=5,b=10,tau=3
@ delay=10,total=50
aux xtau=delay(x,tau)
done

Here, I have added an additional plottable quantity, xtau which is the delayed
version of x.t/: Figure 17.4 shos the time series as well as the projection of x.t/

and x.t��/: Volterra integral equations are solvable. The simplest kind, convolution
equations, as is Eq. 17.2, can be solved by creating the file:

x(t)=c*exp(-b*t)+a*int{exp(-(t-tau)ˆ2)#x*(1-x)}
par a=2.05,tau=5,c=.1,b=8
@ maxstor=100000,total=150,dt=.005,trans=50
@ xlo=50,xhi=150,ylo=0
done

XPPAUT recognizes this is a Volterra integral equation due to the symbols int
and # embedded in the code. These tell XPPAUT there is a convolution in time.
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Fig. 17.4 Simulation of functional equations. Upper panel shows a solution to Eq. 17.1 as a time
series. Middle panel is a plot of x.t/; x.t � �/ showing convergence to a periodic solution. The
bottom panel shows a complex periodic solution to (17.2)

The additional terms c*exp(-b*t) are included to push x.t/ away from the
equilibrium point, x D 0 since there are no initial data for Volterra equations. The
bottom of Fig. 17.4 shows a simulation of this equation – there is a complex but
apparently periodic solution.
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17.3.3 Spatial Problems

It is pretty simple to discretize Eqs. 17.6 or 17.7 in order to create a large system
of ODEs. For example, the convolution in Eq. 17.7 can be evaluated using an
approximate Riemann sum over a lage enough domain and the derivatives in
Eq. 17.6 can be approximated by finite differences. The problem then is how to
create the set of ODEs in an efficient manner; no one want to write down 100 or
more equations. XPPAUT runs a pre-parser that will automate creation of repeated
sets of ODEs. In addition, XPPAUT has some nice graphical methods for plotting
the results. The ODE file for the Brusselator has the form

# brusselator PDE
u0=u200
u201=u1
v0=v200
v201=v1
par a=1,b=2.5,du=4,dv=80
u[1..200](0)=ran(1)
v[1..200](0)=1
f(u,v)=a-(b+1)*u+uˆ2*v
g(u,v)=b*u-uˆ2*v
u[1..200]’=f(u[j],v[j])+du*(u[j-1]+u[j+1]-2*u[j])

v[1..200]’=g(u[j],v[j])+dv*(v[j-1]+v[j+1]-2*v[j])
@ total=200,maxstor=10000
@ meth=cvode,bandup=2,bandlo=2
done

The first four lines set the boundary conditions since this is a PDE. Here they are
periodic. The line u[1..200](0)=ran(1) sets the initial data of the u�variable
to be random. The rest of the file is similar to what we have already described except
that the ODEs represent an abbreviated way to write 400 differential equations in
just two lines of text. These will be expanded out to the 400 corresponding ODEs.
Figure 17.5 left shows the evolution in time of solutions to the discretized PDE.
Synchronous oscillatory solutions lose stability and become a spatially periodic
pattern.

The neural network, (17.7) could be discretized and the convolutions approxi-
mated by sums. XPPAUT again makes this very easy to do using look-up tables and
the conv operator:

f(u)=1/(1+exp(-u))
table w % 101 -50 50 exp(-abs(t)/5)/10
special k=conv(even,301,50,w,u0)
par a=20,b=5
@ total=50
u[0..10](0)=1
u[0..300]’=-u[j]+f(a*k([j])-b)
done
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Fig. 17.5 Space-time plots of solutions to Eqs. 17.6 and 17.7 respectively. Time increases
downward and space runs horizontally. Grey scale corresponds to the value of u in both graphs

In this simulation, the first 11 units are set to 1 and the rest to 0. Theory proves that
these conditions result in a traveling wave in which the “1’s” take over the “0’s”.
Figure 17.5 right shows the simulation.

17.4 Inside the Box

XPPAUT provides a variety of numerical methods for solving differential equations,
stochastic systems, delay equations, Volterra integral equations, and boundary-value
problems (BVP). The numerical integrators are very robust and vary from the
simple Euler method to the standard method for solving stiff differential equations,
CVODE. The latter allows the user to specify whether the system is banded and thus
can improve calculation speed by up to two orders of magnitude. Rather than pure
simulation, XPPAUT should be regarded a tool for understanding what is going
on in the system of equations. Tools for analyzing dynamical properties such as
equilibria, basins of attraction, Lyapunov exponents, Poincare maps, embeddings,
and weakly coupled oscillators are all available via menus. Some statistical analysis
of simulations is possible; power spectra, mean and variance, correlation analysis
and histograms are also included in the package. There is a very robust parameter
fitting algorithm (Marquardt-Levenburg) which allows the user to find parameters
and initial conditions which best approximate specified data.

As we saw in Sect. 17.3.1, XPPAUT contains a version of the continuation and
bifurcation package, AUTO. This package allows the user to track equilibria, limit
cycles, and solutions to boundary-value problems as parameters vary. With AUTO
users can track the entire qualitative behavior of a differential equation.

For planar differential equations, XPPAUT includes algorithms for computing
the nullclines and allows users to draw direction fields and flows. There are many
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others such as the ability to create animations whose elements are dependent on
the dynamics. The interested user should download the package and read the 100+
pages of documentation.

17.5 Further Reading

The most complete source for information on XPPAUT is in Ermentrout (2002)
which gives hundreds of examples and illustrations of the capabilities. Many books
such as Fall et al. (2002) use XPPAUT extensively and contain tutorials on how to
use the program. There are many web tutorials for the program as well; the most
complete is found on the main XPPAUT web site.
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Chapter 18
NEST by Example: An Introduction
to the Neural Simulation Tool NEST

Marc-Oliver Gewaltig, Abigail Morrison, and Hans Ekkehard Plesser

Abstract The neural simulation tool NEST can simulate small to very large
networks of point-neurons or neurons with a few compartments. In this chapter,
we show by example how models are programmed and simulated in NEST.

18.1 Introduction

NEST is a simulator for networks of point neurons, that is, neuron models that
collapse the morphology (geometry) of dendrites, axons, and somata into either a
single compartment or a small number of compartments (Gewaltig and Diesmann,
2007). This simplification is useful for questions about the dynamics of large
neuronal networks with complex connectivity. In this text, we give a practical
introduction to neural simulations with NEST. We describe how network models
are defined and simulated, how simulations can be run in parallel, using multiple
cores or computer clusters, and how parts of a model can be randomized.

The development of NEST started in 1994 under the name SYNOD to investigate
the dynamics of a large cortex model, using integrate-and-fire neurons (Diesmann
et al., 1995). At that time the only available simulators were NEURON (Hines
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and Carnevale, 1997) and GENESIS (Bower and Beeman, 1995), both focussing
on morphologically detailed neuron models, often using data from microscopic
reconstructions.

Since then, the simulator has been under constant development. In 2001, the
Neural Simulation Technology Initiative was founded to disseminate our knowledge
of neural simulation technology. The continuing research of the member institutions
into algorithms for the simulation of large spiking networks has resulted in a number
of influential publications. The algorithms and techniques developed are not only
implemented in the NEST simulator, but have also found their way into other
prominent simulation projects, most notably the NEURON simulator (for the Blue
Brain Project: Migliore et al., 2006) and IBM’s C2 simulator (Ananthanarayanan
et al., 2009).

Today, in 2010, there are several simulators for large spiking networks to choose
from (Brette et al. 2007), but NEST remains the best established simulator with the
largest developer community.

A NEST simulation consists of three main components:

Nodes Nodes are all neurons, devices, and also sub-networks. Nodes have a
dynamic state that changes over time and that can be influenced by incoming
events.

Events Events are pieces of information of a particular type. The most common
event is the spike event. Other event types are voltage events and current events.

Connections Connections are communication channels between nodes. Only if
one node is connected to another node, can they exchange events. Connections
are weighted, directed, and specific to one event type. Directed means that events
can flow only in one direction. The node that sends the event is called source
and the node that receives the event is called target. The weight determines how
strongly an event will influence the target node. A second parameter, the delay,
determines how long an event needs to travel from source to target.

In the next sections, we will illustrate how to use NEST, using examples with
increasing complexity. Each of the examples is self-contained. We suggest that you
try each example, by typing it into Python, line by line. Additionally, you can find
all examples in your NEST distribution.

18.2 First Steps

We begin by starting Python. For interactive sessions, we recommend the IPython
shell (Pérez and Granger, 2007). It is convenient, because you can edit the command
line and access previously typed commands using the up and down keys. However,
all examples in this chapter work equally well without IPython. For data analysis and
visualization, we also recommend the Python packages Matplotlib (Hunter, 2007)
and NumPy (Oliphant, 2006).
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Fig. 18.1 Membrane potential of a neuron in response to an alternating current as well as
random excitatory and inhibitory spike events. The membrane potential roughly follows the
injected sine current. The small deviations from the sine curve are caused by the excitatory
and inhibitory spikes that arrive at random times. Whenever the membrane potential reaches
the firing threshold at –55 mV, the neuron spikes and the membrane potential is reset to
–70 mV. In this example this happens twice: once at around 110 ms and again at about 600 ms

Our first simulation investigates the response of one integrate-and-fire neuron to
an alternating current and Poisson spike trains from an excitatory and an inhibitory
source. We record the membrane potential of the neuron to observe how the stimuli
influence the neuron (see Fig. 18.1).

In this model, we inject a sine current with a frequency of 2 Hz and an amplitude
of 100 pA into a neuron. At the same time, the neuron receives random spiking input
from two sources known as Poisson generators. One Poisson generator represents
a large population of excitatory neurons and the other a population of inhibitory
neurons. The rate for each Poisson generator is set as the product of the assumed
number of neurons in a population and their average firing rate.

The small network is simulated for 1,000 ms, after which the time course of the
membrane potential during this period is plotted (see Fig. 18.1). For this, we use
the pylab plotting routines of Python’s Matplotlib package. The Python code for this
small model is shown below.

1 import n e s t

2 import n e s t . v o l t a g e t r a c e
3 import py l ab

4 neuron = n e s t . Create ( ’ i a f n e u r o n ’ )

5 s i n e = n e s t . Create ( ’ a c g e n e r a t o r ’ , 1 ,

6 f ’ a m p l i t u d e ’ : 1 0 0 . 0 ,

7 ’ f r e q u e n c y ’ : 2 . 0 g )

8 n o i s e = n e s t . Create ( ’ p o i s s o n g e n e r a t o r ’ , 2 ,

9 [ f ’ r a t e ’ : 70000 . 0g ,

10 f ’ r a t e ’ : 2 0 0 0 0 . 0 g ] )
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11 v o l t m e t e r = n e s t . Create ( ’ v o l t m e t e r ’ , 1 ,

12 f ’ w i t h g i d ’ : True g )

13 n e s t . Connect ( s i ne , neuron )

14 n e s t . Connect ( v o l t m e t e r , neuron )

15 n e s t . ConvergentConnect ( no i se , neuron , [ 1 . 0 , �1.0] , 1 . 0 )

16 n e s t . Simulate ( 1 0 0 0 . 0 )

17 n e s t . v o l t a g e t r a c e . f r o m d e v i c e ( v o l t m e t e r )

We will now go through the simulation script and explain the individual steps. The
first two lines import the modules nest and its sub-module voltage trace . The nest

module must be imported in every interactive session and in every Python script in
which you wish to use NEST. NEST is a C++ library that provides a simulation
kernel, many neuron and synapse models, and the simulation language interpreter
SLI. The library which links the NEST simulation language interpreter to the Python
interpreter is called PyNEST (Eppler et al., 2009).

Importing nest as shown above puts all NEST commands in the namespace nest .
Consequently, all commands must be prefixed with the name of this namespace.

In line 4, we use the command Create to produce one node of the type iaf neuron .
As you see in lines 5, 8, and 11, Create is used for all node types. The first argument,
’ iaf neuron ’, is a string, denoting the type of node that you want to create. The second
parameter of Create is an integer representing the number of nodes you want to
create. Thus, whether you want one neuron or 100,000, you only need one call to
Create. nest .Models() provides a list of all available node and connection models.

The third parameter is either a dictionary or a list of dictionaries, specifying
the parameter settings for the created nodes. If only one dictionary is given, the
same parameters are used for all created nodes. If an array of dictionaries is given,
they are used in order and their number must match the number of created nodes.
This variant of Create is used in lines 5, 8, and 11 to set the parameters for the
Poisson noise generator, the sine generator (for the alternating current), and the
voltmeter. All parameters of a model that are not set explicitly are initialized with
default values. You can display them with nest . GetDefaults (model name). Note that
only the first parameter of Create is mandatory.

Create returns a list of integers, the global identifiers (or GID for short) of each
node created. The GIDs are assigned in the order in which nodes are created. The
first node is assigned GID 1, the second node GID 2, and so on.

In lines 13–15, the nodes are connected. First we connect the sine generator and
the voltmeter to the neuron. The command Connect takes two or more arguments.
The first argument is a list of source nodes. The second argument is a list of target
nodes. Connect iterates these two lists and connects the corresponding pairs.

A node appears in the source position of Connect if it sends events to the target
node. In our example, the sine generator is in the source position because it injects an
alternating current into the neuron. The voltmeter is in the source position, because
it polls the membrane potential of the neuron. Other devices may be in the target
position, e.g., the spike detector which receives spike events from a neuron. If in
doubt about the order, consult the documentation of the respective nodes, using
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NEST’s help system. For example, to read the documentation of the voltmeter you
can type nest . help( ’ voltmeter ’ ).

Next, we use the command ConvergentConnect to connect the two Poisson
generators to the neuron. ConvergentConnect is used whenever a node is to be
connected to many sources at the same time. The third and fourth arguments are
the weights and delays, respectively. For both it is possible to supply either an array
with values for each connection, or a single value to be used for all connections. For
the weights, we supply an array, because we create one excitatory connection with
weight 1.0 and one inhibitory connection with weight -1.0. For the delay, we supply
only one value, consequently all the connections have the same delay.

After line 15, the network is ready. The following line calls the NEST function
Simulate which runs the network for 1,000 ms. The function returns after the
simulation is finished. Then, function voltage trace is called to plot the membrane
potential of the neuron. If you are running the script for the first time, you may
have to tell Python to display the figure by typing pylab .show(). You should then see
something similar to Fig. 18.1.

If you want to inspect how your network looks so far, you can print it using the
command PrintNetwork():

>>>n e s t . PrintNetwork ( )

+ �[0] r o o t dim = [5 ]

j
+ �[1] i a f n e u r o n

+ �[2] a c g e n e r a t o r

+ � [ 3 ] . . . [ 4 ] p o i s s o n g e n e r a t o r

+ �[5] v o l t m e t e r

If you run the example a second time, NEST will leave the existing nodes intact
and will create a second instance for each node. To start a new NEST session without
leaving Python, you can call nest .ResetKernel(). This function will erase the existing
network so that you can start from scratch.

18.3 Example 1: A Sparsely Connected Recurrent Network

Next we discuss a model of activity dynamics in a local cortical network proposed
by Brunel (2000). We only describe those parts of the model which are necessary to
understand its NEST implementation. Please refer to the original paper for further
details.

The local cortical network consists of two neuron populations: a population of
NE excitatory neurons and a population of NI inhibitory neurons. To mimic the
cortical ratio of 80% excitation and 20% inhibition, we assume that NE D 8; 000

and NI D 2; 000. Thus, our local network has a total of 10,000 neurons.
For both the excitatory and the inhibitory population, we use the same integrate-

and-fire neuron model with current-based synapses. Incoming excitatory and in-
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b

a

Fig. 18.2 Sketch of the network model proposed by Brunel (2000). (a) The network consists of
three populations: NE excitatory neurons (circle labeled E), NI inhibitory neurons (circle labeled
I), and a population of identical, independent Poisson processes (PGs) representing activity from
outside the network. Arrows represent connections between the network nodes. Triangular arrow-
heads represent excitatory and round arrow-heads represent inhibitory connections. The numbers
at the start and end of each arrow indicate the multiplicity of the connection. See also Table 18.1.
(b) Spiking activity of 50 neurons during the first 300 ms of simulated time as a raster plot. Time
is shown on the x-axis, neuron id on the y-axis. Each dot corresponds to a spike of the respective
neuron at the given time. The histogram below the raster plot shows the population rate of the
network

hibitory spikes displace the membrane potential Vm by JE and JI , respectively. If
Vm reaches the threshold value Vth, the membrane potential is reset to Vreset, a spike
is sent with delay D D 1:5 ms to all post-synaptic neurons, and the neuron remains
refractory for �rp D 2:0 ms.

The neurons are mutually connected with a probability of 10%. Specifically, each
neuron receives input from CE D 0:1 � NE excitatory and CI D 0:1 � NI inhibitory
neurons (see Fig. 18.2a). The inhibitory synaptic weights JI are chosen with respect
to the excitatory synaptic weights JE such that

JI D �g � JE (18.1)

with g D 5:0 in this example.
In addition to the sparse recurrent inputs from within the local network, each

neuron receives excitatory input from a population of CE randomly firing neurons,
mimicking the input from the rest of cortex. The randomly firing population is
modeled as CE independent and identically distributed Poisson processes with rate
�ext. Here, we set �ext to twice the rate �th that is needed to drive a neuron to threshold
asymptotically. The details of the model are summarized in Tables 18.1 and 18.2.

Figure 18.2b shows a raster-plot of 50 excitatory neurons during the first 300 ms
of simulated time. Time is shown along the x-axis, neuron id along the y-axis. At
t D 0, all neurons are in the same state Vm D 0 and hence there is no spiking
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Table 18.1 Summary of the network model, proposed by Brunel (2000)

A Model summary

Populations Three: excitatory, inhibitory, external input
Topology —
Connectivity Random convergent connections with probability P D 0:1 and

fixed in-degree of CE D PNE and CI D PNI .
Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute

refractory time (voltage clamp)
Channel models —
Synapse model ı-current inputs (discontinuous voltage jumps)
Plasticity —
Input Independent fixed-rate Poisson spike trains to all neurons
Measurements Spike activity

B Populations
Name Elements Size

E Iaf neuron NE D 4NI

I Iaf neuron NI

Eext Poisson generator CE.NE C NI/

C Connectivity
Name Source Target Pattern

EE E E Random convergent CE ! 1, weight J , delay D

IE E I Random convergent CE ! 1, weight J , delay D

EI I E Random convergent CI ! 1, weight �gJ , delay D

II I I Random convergent CI ! 1, weight �gJ , delay D

Ext Eext E [ I Non-overlapping CE ! 1, weight J , delay D

D Neuron and synapse model
Name Iaf neuron
Type Leaky integrate-and-fire, ı-current input

Subthreshold
dynamics

�m
PVm.t/ D �Vm.t/ C RmI.t/ if not refractory .t > t� C �rp/

Vm.t/ D Vreset while refractory .t� < t 	 t� C �rp/

I.t/ D �m

Rm

P
Qt wı.t � .Qt C D//

Spiking
If Vm.t�/ < V� ^ Vm.tC/ 
 V�

1. set t� D t
2. emit spike with time-stamp t�

E Input
Type Description

Poisson generators Fixed rate �ext, CE generators per neuron, each generator projects
to one neuron

F Measurements
Spike activity as raster plots, rates and “global frequencies”, no details given
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Table 18.2 Summary of the network parameters for the model, proposed by Brunel (2000)

G Network parameters
Parameter Value

Number of excitatory neurons NE 8,000
Number of inhibitory neurons NI 2,000
Excitatory synapses per neuron CE 800
Inhibitory synapses per neuron CE 200

H Neuron parameters
Parameter Value

Membrane time constant �m 20 ms
Refractory period �rp 2 ms
Firing threshold Vth 20 mV
Membrane capatitance Cm 1 pF
Resting potential EL 0 mV
Reset potential Vreset 10 mV
Excitatory PSP amplitude JE 0.1 mV
Inhibitory PSP amplitude JI -0.5 mV
Synaptic delay D 1.5 ms
Background rate � 2.0

activity. The external stimulus rapidly drives the membrane potentials towards the
threshold. Due to the random nature of the external stimulus, not all the neurons
reach the threshold at the same time. After a few milliseconds, the neurons start to
spike irregularly at roughly 40 spikes=s. In the original paper, this network state is
called the asynchronous irregular state (Brunel, 2000).

18.3.1 NEST Implementation

We now show how this model is implemented in NEST. Along the way, we explain
the required steps and NEST commands in more detail so that you can apply them
to your own models.

The first three lines import NEST, a NEST module for raster-plots, and the
plotting package pylab. We then assign the various model parameters to variables.

1 import n e s t

2 import n e s t . r a s t e r p l o t
3 import py l ab

4 g = 5 . 0

5 e t a = 2 . 0

6 d e l a y = 1 . 5

7 tau m = 20 . 0

8 V th = 20 . 0

9 N E = 8000
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10 N I = 2000

11 N neurons = N E+N I

12 C E = N E / 10

13 C I = N I / 10

14 J E = 0 . 1

15 J I = �g* J E

16 nu ex = e t a * V th / ( J E *C E* tau m )

17 p r a t e = 1000.0* nu ex *C E

In line 16, we compute the firing rate nu ex (�ext) of a neuron in the external
population. We define nu ex as the product of a constant eta times the threshold rate
�th, i.e. the steady state firing rate which is needed to bring a neuron to threshold.
The value of the scaling constant eta is defined in line 5.

In line 17, we compute the population rate of the whole external population. With
CE neurons, the population rate is simply the product nu ex*C E. The factor 1000.0
in the product changes the units from spikes per ms to spikes per second.

18 n e s t . SetKerne l S ta tus ( f ’ p r i n t t i m e ’ : True g )

19 n e s t . S e t D e f a u l t s ( ’ i a f p s c d e l t a ’ ,

20 f ’C m ’ : 1 . 0 ,

21 ’ t au m ’ : tau m ,

22 ’ t r e f ’ : 2 . 0 ,

23 ’ E L ’ : 0 . 0 ,

24 ’ V th ’ : V th ,

25 ’ V r e s e t ’ : 1 0 . 0 g )

Next, we prepare the simulation kernel of NEST (line 18). The command
SetKernelStatus modifies parameters of the simulation kernel. The argument is a
Python dictionary with key:value pairs. Here, we set the NEST kernel to print the
progress of the simulation time during simulation.

In lines 19–25, we change the parameters of the neuron model we want to use
from the built-in values to the defaults for our investigation. SetDefaults expects two
parameters. The first is a string, naming the model for which the default parameters
should be changed. Our neuron model for this simulation is the simplest integrate-
and-fire model in NEST’s repertoire: ’ iaf psc delta ’. The second parameter is a
dictionary with parameters and their new values, entries separated by commas. All
parameter values are taken from Brunel’s paper (Brunel, 2000) and we insert them
directly for brevity. Only the membrane time constant tau m and the threshold poten-
tial V th are read from variables, because these values are needed in several places.

26 nodes = n e s t . Create ( ’ i a f p s c d e l t a ’ , N neurons )

27 nodes E = nodes [ : N E ]

28 n o d e s I = nodes [ N E : ]

29 n e s t . CopyModel ( ’ s t a t i c s y n a p s e h o m w d ’ ,

30 ’ e x c i t a t o r y ’ ,

31 f ’ w e i gh t ’ : J E ,

32 ’ d e l a y ’ : d e l a y g )
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33 n e s t . RandomConvergentConnect ( nodes E , nodes , C E ,

34 model= ’ e x c i t a t o r y ’ )

35 n e s t . CopyModel ( ’ s t a t i c s y n a p s e h o m w d ’ ,

36 ’ i n h i b i t o r y ’ ,

37 f ’ w e i gh t ’ : J I ,

38 ’ d e l a y ’ : d e l a y g )

39 n e s t . RandomConvergentConnect ( nodes I , nodes , C I ,

40 model= ’ i n h i b i t o r y ’ )

In line 26 we create the neurons. Create returns a list of the global IDs which are
consecutive numbers from 1 to N neurons. We split this range into excitatory and
inhibitory neurons. In line 27 we select the first N E elements from the list nodes and
assign them to the variable nodes E. This list now holds the GIDs of the excitatory
neurons.

Similarly, in line 28 we assign the range from position N E to the end of the
list to the variable nodes I. This list now holds the GIDs of all inhibitory neurons.
The selection is carried out using standard Python list commands. You may want to
consult the Python documentation for more details.

The next two commands generate the connections to the excitatory neurons.
In line 29, we create a new connection type ’ excitatory ’ by copying the built-in
connection type ’static synapse hom wd’ while changing its default values for weight
and delay. The command CopyModel expects either two or three arguments: the name
of an existing model, the name of the new model, and optionally a dictionary with
the new default values of the new model.

The connection type ’static synapse hom wd’ uses the same values of weight and
delay for all synapses. This saves memory for networks in which these values are
identical for all connections. In Sect. 18.5 we use a different connection model to
implement randomized weights and delays.

Having created and parameterized an appropriate synapse model, we draw
the incoming excitatory connections for each neuron (line 33). The function
RandomConvergentConnect expects four arguments: a list of source nodes, a list
of target nodes, the number of connections to be drawn, and finally the type of
connection to be used. RandomConvergentConnect iterates over the list of target nodes
(nodes). For each target node it draws the required number of sources (C E) from
the list of source nodes (nodes E) and connects these to the current target with the
selected connection type (excitatory).

In lines 35–40 we repeat the same steps for the inhibitory connections: we create
a new connection type and draw the incoming inhibitory connections for all neurons.

Next, we create and connect the external population and some devices to measure
the spiking activity in the network.

41 n o i s e = n e s t . Create ( ’ p o i s s o n g e n e r a t o r ’ , 1 , f ’ r a t e ’ : p r a t e g )

42 n e s t . DivergentConnect ( no i se , nodes , model= ’ e x c i t a t o r y ’ )

43 s p i k e s = n e s t . Create ( ’ s p i k e d e t e c t o r ’ , 2 ,

44 [ f ’ l a b e l ’ : ’ b rune l �py�ex ’ g ,

45 f ’ l a b e l ’ : ’ b rune l �py�i n ’ g ] )
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46 s p i k e s E = s p i k e s [ : 1 ]

47 s p i k e s I = s p i k e s [ 1 : ]

48 N rec = 50

49 n e s t . ConvergentConnect ( nodes E [ : N rec ] , s p i k e s E )

50 n e s t . ConvergentConnect ( n o d e s I [ : N rec ] , s p i k e s I )

In line 41, we create a device known as a poisson generator , which produces a spike
train governed by a Poisson process at a given rate. We use the third parameter of
Create to initialize the rate of the Poisson process to the population rate p rate which
we previously computed in line 17.

If a Poisson generator is connected to n targets, it generates n independent and
identically distributed spike trains. Thus, we only need one generator to model an
entire population of randomly firing neurons.

In the next line (42), we use DivergentConnect to connect the Poisson generator
to all nodes of the local network. Since these connections are excitatory, we use the
’ excitatory ’ connection type.

We have now implemented the Brunel model and we could start to simulate it.
However, we won’t see any results unless we record something from the network.
To observe how the neurons in the recurrent network respond to the random spikes
from the external population, we create two spike detectors in line 43; one for the
excitatory neurons and one for the inhibitory neurons. By default, each detector
writes its spikes into a file whose name is automatically generated from the device
type and its global id. We use the third argument of Create to give each spike detector
a ’ label ’, which will be part of the name of the output file written by the detector.
Since two devices are created, we supply a list of dictionaries.

In line 46, we store the GID of the first spike detector in a one-element list and
assign it to the variable spikes E. In the next line, we do the same for the second
spike detector that is dedicated to the inhibitory population.

Our network consists of 10,000 neurons, all of which have the same activity
statistics due to the random connectivity. Thus, it suffices to record from a
representative sample of neurons, rather than from the entire network. Here, we
choose to record from 50 neurons and assign this number to the variable N rec. We
then connect the first 50 excitatory neurons to their spike detector. Again, we use
standard Python list operations to select N rec neurons from the list of all excitatory
nodes. Alternatively, we could select 50 neurons at random, but since the neuron
order has no meaning in this model, the two approaches yield qualitatively the same
results. Finally, we repeat this step for the inhibitory neurons.

Now everything is set up and we can run the simulation.

51 s i m t i m e =300

52 n e s t . Simulate ( s i m t i m e )

53 e v e n t s = n e s t . GetStatus ( s p i k e s , ’ n e v e n t s ’ )

54 r a t e e x = e v e n t s [ 0 ] / s i m t i m e * 1 0 0 0 . 0 / N rec

55 p r i n t ” E x c i t a t o r y r a t e : %.2 f 1 / s ” % r a t e e x

56 r a t e i n = e v e n t s [ 1 ] / s i m t i m e * 1 0 0 0 . 0 / N rec

57 p r i n t ” I n h i b i t o r y r a t e : %.2 f 1 / s ” % r a t e i n

58 n e s t . r a s t e r p l o t . f r o m d e v i c e ( sp i kes E , h i s t =True )
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In line 51, we select a simulation time of 300 ms and assign it to a variable. Next,
we call the NEST command Simulate to run the simulation for 300 ms. During
simulation, the Poisson generators send spikes into the network and cause the
neurons to fire. The spike detectors receive spikes from the neurons and write them
to a file, or to memory.

When the function returns, the simulation time has progressed by 300 ms. You
can call Simulate as often as you like and with different arguments. NEST will
resume the simulation at the point where it was last stopped. Thus, you can partition
your simulation time into small epochs to regularly inspect the progress of your
model.

After the simulation is finished, we compute the firing rate of the excitatory
neurons (line 54) and the inhibitory neurons (line 56). Finally, we call the NEST
function raster plot to produce the raster plot shown in Fig. 18.2b. raster plot
has two modes. raster plot . from device expects the global ID of a spike detector.
raster plot . from file expects the name of a data file. This is useful to plot data
without repeating a simulation.

18.4 Parallel Simulation

Large network models often require too much time or computer memory to be
conveniently simulated on a single computer. For example, if we increase the
number of neurons in the previous model to 100,000, there will be a total of 109

connections, which won’t fit into the memory of most computers. Similarly, if we
use plastic synapses (see Sect. 18.7) and run the model for minutes or hours of
simulated time, the execution times become uncomfortably long.

To address this issue, NEST has two modes of parallelization: multi-threading
and distribution. Multi-threaded and distributed simulation can be used in isolation
or in combination (Plesser et al., 2007), and both modes allow you to connect and
run networks more quickly than in the serial case.

Multi-threading means that NEST uses all available processors or cores of
the computer. Today, most desktop computers and even laptops have at least
two processing cores. Thus, you can use NEST’s multi-threaded mode to make
your simulations execute more quickly whilst still maintaining the convenience of
interactive sessions. Since a given computer has a fixed memory size, multi-threaded
simulation can only reduce execution times. It cannot solve the problem that large
models exhaust the computer’s memory.

Distribution means that NEST uses many computers in a network or computer
cluster. Since each computer contributes memory, distributed simulation allows you
to simulate models that are too large for a single computer. However, in distributed
mode it is not currently possible to use NEST interactively.

In most cases, writing a simulation script to be run in parallel is as easy as writing
one to be executed on a single processor. Only minimal changes are required, as
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described below, and you can ignore the fact that the simulation is actually executed
by more than one core or computer. However, in some cases your knowledge about
the distributed nature of the simulation can help you improve efficiency even further.
For example, in the distributed mode, all computers execute the same simulation
script. We can improve performance if the script running on a specific computer
only tries to execute commands relating to nodes that are represented on the same
computer. An example of this technique is shown below in Sect. 18.6.

To switch NEST into multi-threaded mode, you only have to add one line to your
simulation script:

n e s t . SetKerne l S ta tus ( f ’ l o c a l n u m t h r e a d s ’ : n g )

Here, n is the number of threads you want to use. It is important that you set the
number of threads before you create any nodes. If you try to change the number of
threads after nodes were created, NEST will issue an error.

A good choice for the number of threads is the number of cores or processors on
your computer. If your processor supports hyperthreading, you can select an even
higher number of threads.

The distributed mode of NEST is particularly useful for large simulations for
which not only the processing speed, but also the memory of a single computer
are insufficient. The distributed mode of NEST uses the Message Passing Interface
(MPI, MPI Forum 2009), a library that must be installed on your computer network
when you install NEST. For details, please refer to NEST’s website at www.nest-
initiative.org.

The distributed mode of NEST is also easy to use. All you need to do is start
NEST with the MPI command mpirun:

mpirun �np m python s c r i p t . py

where m is the number of MPI processes that should be started. One sensible choice
for m is the total number of cores available on the cluster. Another reasonable
choice is the number of physically distinct machines, utilizing their cores through
multithreading as described above. This can be useful on clusters of multi-core
computers.

In NEST, processes and threads are both mapped to virtual processes (Plesser
et al., 2007). If a simulation is started with m MPI processes and n threads on each
process, then there are m�n virtual processes. You can obtain the number of virtual
processes in a simulation with

n e s t . G e t K e r n e l S t a t u s ( ’ t o t a l n u m v i r t u a l p r o c s ’ )

The virtual process concept is reflected in the labeling of output files. For
example, the data files for the excitatory spikes produced by the network discussed
here follow the form brunel�py�ex�x�y.gdf, where x is the id of the data recording
node and y is the id of the virtual process.

www.nest-initiative.org
www.nest-initiative.org
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18.5 Randomness in NEST

NEST has built-in random number sources that can be used for tasks such as
randomizing spike trains or network connectivity. In this section, we discuss some of
the issues related to the use of random numbers in parallel simulations. In Sect. 18.6,
we illustrate how to randomize parameters in a network.

Let us first consider the case that a simulation script does not explicitly generate
random numbers. In this case, NEST produces identical simulation results for a
given number of virtual processes, irrespective of how the virtual processes are
partitioned into threads and MPI processes. The only difference between the output
of two simulations with different configurations of threads and processes resulting
in the same number of virtual processes is the result of query commands such as
GetStatus. These commands gather data over threads on the local machine, but not
over remote machines.

In the case that random numbers are explictly generated in the simulation script,
more care must be taken to produce results that are independent of the parallel
configuration. Consider, for example, a simulation where two threads have to draw
a random number from a single random number generator. Since only one thread
can access the random number generator at a time, the outcome of the simulation
will depend on the access order.

Ideally, all random numbers in a simulation should come from a single source.
In a serial simulation this is trivial to implement, but in parallel simulations this
would require shipping a large number of random numbers from a central random
number generator (RNG) to all processes. This is impractical. Therefore, NEST
uses one independent random number generator on each virtual process. Not all
random number generators can be used in parallel simulations, because many cannot
reliably produce uncorrelated parallel streams. Fortunately, recent years have seen
great progress in RNG research and there is a range of random number generators
that can be used with great fidelity in parallel applications.

Based on this knowledge, each virtual process (VP) in NEST has its own RNG.
Numbers from these RNGs are used to

• Choose random convergent connections
• Create random spike trains (e.g. poisson generator ) or random currents (e.g.

noise generator ).

In order to randomize model parameters in a PyNEST script, it is convenient to
use the random number generators provided by NumPy. To ensure consistent results
for a given number of virtual processes, each virtual process should use a separate
Python RNG. Thus, in a simulation running on Nvp virtual processes, there should
be 2Nvp C 1 RNGs in total:

• The global NEST RNG;
• One RNG per VP in NEST;
• One RNG per VP in Python.
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We need to provide separate seed values for each of these generators. Modern
random number generators work equally well for all seed values. We thus suggest
the following approach to choosing seeds: For each simulation run, choose a master
seed msd and seed the RNGs with seeds msd , msd C 1, . . . msd C 2Nvp. Any
two master seeds must differ by at least 2Nvp C 1 to avoid correlations between
simulations.

By default, NEST uses Knuth’s lagged Fibonacci RNG, which has the nice
property that each seed value provides a different sequence of some 270 random
numbers (Knuth, 1998, Ch. 3.6). Python uses the Mersenne Twister MT19937
generator (Matsumoto and Nishimura, 1998), which provides no explicit guarantees,
but given the enormous state space of this generator it appears astronomically
unlikely that neighboring integer seeds would yield overlapping number sequences.
For a recent overview of RNGs, see L’Ecuyer and Simard (2007). For general
introductions to random number generation, see Gentle (2003), Knuth (1998, Ch. 3),
or Plesser (2010).

18.6 Example 2: Randomizing Neurons and Synapses

Let us now consider how to randomize some neuron and synapse parameters in the
sparsely connected network model introduced in Sect. 18.3. We shall

• Explicitly seed the random number generators;
• Randomize the initial membrane potential of all neurons;
• Randomize the weights of the recurrent excitatory connections.

We discuss here only those parts of the model script that differ from the script
discussed in Sect. 18.3.1; the complete script brunel2000�rand.py is part of the NEST
examples.

We begin by importing the NumPy package to get access to its random generator
functions:

import numpy

After line 1 of the original script (cf. p. 545), we insert code to seed the random
number generators:

r1 msd = 1000 # m as t e r seed

r2 msdrange1 = range ( msd , msd+ n vp )

r3 n vp = n e s t . G e t K e r n e l S t a t u s ( ’ t o t a l n u m v i r t u a l p r o c s ’ )

r4 py rngs = [ numpy . random . RandomState ( s ) for s i n msdrange1 ]

r5 msdrange2 = range ( msd+ n vp +1 , msd+1+2* n vp )

r6 n e s t . SetKerne l S ta tus ( f ’ g r n g s e e d ’ : msd+n vp ,

r7 ’ r n g s e e d s ’ : msdrange2 g )

We first define the master seed msd and then obtain the number of virtual processes
n vp. On line r4 we then create a list of n vp NumPy random number generators with
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seeds msd, msd+1, . . . msd+n vp�1. The next two lines set new seeds for the built-
in NEST RNGs: the global RNG is seeded with msd+n vp, the per-virtual-process
RNGs with msd+n vp+1, . . . , msd+2*n vp. Note that the seeds for the per-virtual-
process RNGs must always be passed as a list, even in a serial simulation.

After creating the neurons as before, we insert the following code after line 28 to
randomize the membrane potential of all neurons:

r8 n o d e i n f o = n e s t . GetStatus ( nodes , [ ’ g l o b a l i d ’ , ’ vp ’ , ’ l o c a l ’ ] )

r9 l o c a l n o d e s = [ ( gid , vp ) for gid , vp , i s l o c a l n
r10 i n n o d e i n f o i f i s l o c a l ]

r11 for gid , vp i n l o c a l n o d e s :

r12 n e s t . S e t S t a t u s ( [ g i d ] , f ’V m ’ : py rngs [ vp ] . un i fo rm (�V th , V th ) g )

In this code, we meet the concept of local nodes for the first time (Plesser et al.,
2007). In serial and multi-threaded simulations, all nodes are local. In an MPI-based
simulation with m MPI processes, each MPI process represents and is responsible
for updating (approximately) 1=m-th of all nodes – these are the local nodes for
each process. In line r8 we obtain an information triplet for each node: the global
id, the id of the virtual process updating the neuron and a boolean value indicating
whether the node is local. We then use a list comprehension to create a list of gid

and vp tuples for all local nodes. The for-loop then iterates over this list and draws
for each node a membrane potential value uniformly distributed in Œ�Vth; Vth/, i.e.,
Œ�20mV; 20mV/. We draw the initial membrane potential for each node from the
NumPy RNG assigned to the virtual process vp responsible for updating that node.

As the next step, we create excitatory recurrent connections with the same
connection rule as in the original script, but with randomized weights. To this end,
we replace the code on lines 29–33 of the original script with

r13 n e s t . CopyModel ( ’ s t a t i c s y n a p s e ’ , ’ e x c i t a t o r y ’ )

r14 for t g t g i d , t g t v p i n l o c a l n o d e s :

r15 w e i g h t s = pyrngs [ t g t v p ] . un i fo rm ( 0 . 5 * J E , 1 . 5* J E , C E )

r16 n e s t . RandomConvergentConnect ( nodes E , [ t g t g i d ] , C E ,

r17 w e i gh t = l i s t ( w e i g h t s ) ,

r18 d e l a y = delay ,

r19 model= ’ e x c i t a t o r y ’ )

The first difference to the original is that we base the excitatory synapse model on
the built-in static synapse model instead of static synapse hom wd, as the latter requires
equal weights (and delays) for all synapses. The second difference to the original
script is the way we connect the nodes.

For each local target, we draw an array of C E random weights (line r15)
uniformly distributed on Œ0:5 � JE; 1:5 � JE/. Using these weights and delays, we
then call RandomConvergentConnect to create connections from C E randomly chosen
nodes in nodes E. We need this loop over the set of local targets, because in parallel
simulations, connection information is managed by the virtual process updating the
target node (Morrison et al., 2005; Plesser et al., 2007). Thus, weights, delays and
possibly other connection parameters can only be set by the MPI process to which
the target node belongs. Drawing the weights from the RNG for the virtual process
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a b c

Fig. 18.3 (a) Distribution of membrane potentials Vm of 50 excitatory neurons after random
initialization. (b) Distribution of weights of randomized weights of approximately 50,000 recurrent
connections originating from 50 excitatory neurons. (c) Spiking activity of 50 excitatory neurons
during the first 300 ms of network simulation; compare with the corresponding diagram for the
same network without randomization of initial membrane potentials and weights in Fig. 18.2

updating the target node ensures that we will set the same weights independent of
how many MPI processes underly a given number of virtual processes. Note that the
corresponding randomization of weights for random divergent connections is more
complicated; please see the online documentation on NEST’s website for details.

Two remarks about the parameters on line r18: first, NEST functions mostly only
accept Python lists as arguments, not NumPy arrays. We thus need to convert the
array returned by uniform() into a list before passing. Second, when passing weight

to RandomConvergentConnect, we also have to pass delay explicitly.
Before starting our simulation, we want to visualize the randomized initial

membrane potentials and weights. To this end, we insert the following code just
before we start the simulation:

r20 py l ab . f i g u r e ( )

r21 V E = n e s t . GetStatus ( nodes E [ : N rec ] , ’V m ’ )

r22 py l ab . h i s t ( V E , b i n s =10)

r23 py l ab . f i g u r e ( )

r24 ex conns = n e s t . FindConnect ions ( nodes E [ : N rec ] ,

r25 s y n a p s e t y p e = ’ e x c i t a t o r y ’ )

r26 w = n e s t . GetStatus ( ex conns , ’ w e i gh t ’ )

r27 py l ab . h i s t (w, b i n s =100)

Line r21 retrieves the membrane potentials of all 50 recorded neurons. The data
is then displayed as a histogram with 10 bins, see Fig. 18.3. Line r24 finds all
connections that

• Have one of the 50 recorded excitatory neurons as source;
• Have any local node as target;
• And are of type excitatory .

In line r26, we then use GetStatus() to obtain the weights of these connections.
Running the script in a single MPI process, we record approximately 50,000
weights, which we display in a histogram with 100 bins as shown in Fig. 18.3.
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Note that the code on lines r21–r26 will return complete results only when run
in a single MPI process. Otherwise, only data from local neurons or connections
with local targets will be obtained. It is currently not possible to collect recorded
data across MPI processes in NEST. In distributed simulations, you should thus
let recording devices write data to files and collect the data after the simulation is
complete.

The result of the simulation is displayed as before. Comparing the raster plot
from the simulation with randomized initial membrane potentials in Fig. 18.3 with
the same plot for the original network in Fig. 18.2 reveals that the membrane
potential randomization has prevented the synchronous onset of activity in the
network.

As a final point, we make a slight improvement to the rate computation on
lines 54–57 of the original script. Spike detectors count only spikes from neurons
on the local MPI process. Thus, the original computation is correct only for a
single MPI process. To obtain meaningful results when simulating on several MPI
processes, we count how many of the N rec recorded nodes are local and use that
number to compute the rates:

r28 N r e c l o c a l E = sum ( n e s t . GetStatus ( nodes E [ : N rec ] , ’ l o c a l ’ ) )

r29 r a t e e x = e v e n t s [ 0 ] / s i m t i m e * 1 0 0 0 . 0 / N r e c l o c a l E

Each MPI process then reports the rate of activity of its locally recorded nodes.

18.7 Example 3: Plastic Networks

NEST provides synapse models with a variety of short-term and long-term dy-
namics. To illustrate this, we extend the sparsely connected network introduced
in Sect. 18.3 with randomized synaptic weights as described in Sect. 18.5 to
incorporate spike-timing dependent plasticity (Bi and Poo, 1998) at its recurrent
excitatory-excitatory synapses.

p1 n o d e E i n f o = n e s t . GetStatus ( nodes E , [ ’ l o c a l ’ , ’ g l o b a l i d ’ , ’ vp ’ ] )

p2 n o d e I i n f o = n e s t . GetStatus ( nodes I , [ ’ l o c a l ’ , ’ g l o b a l i d ’ , ’ vp ’ ] )

p3 l o c a l E n o d e s = [ ( gid , vp ) for i s l o c a l , gid , vp

p4 i n n o d e E i n f o i f i s l o c a l ]

p5 l o c a l I n o d e s = [ ( gid , vp ) for i s l o c a l , gid , vp

p6 i n n o d e I i n f o i f i s l o c a l ]

p7 for gid , vp i n l o c a l E n o d e s + l o c a l I n o d e s :

p8 n e s t . S e t S t a t u s ( [ g i d ] ,

p9 f ’V m ’ : py rngs [ vp ] . un i fo rm (�V th , 0 . 9 5 * V th ) g )

As in the previous section, we first acquire information about the locality of each
node. Here, we gather this information separately for the excitatory and inhibitory
populations, as we will be making different types of connection to them. The initial
membrane potentials are randomized as before.
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We then generate a plastic synapse model for the excitatory-excitatory connec-
tions and a static synapse model for the excitatory-inhibitory connections:

p10 n e s t . CopyModel ( ’ s t dp synapse hom ’ ,

p11 ’ e x c i t a t o r y �p l a s t i c ’ ,

p12 f ’ a l p h a ’ : STDP alpha ,

p13 ’Wmax ’ : STDP Wmax g )

p14 n e s t . CopyModel ( ’ s t a t i c s y n a p s e ’ , ’ e x c i t a t o r y �s t a t i c ’ )

Here, we set the parameters alpha and Wmax of the synapse model but use the default
settings for all its other parameters. Finally, we use these synapse models to create
plastic and static excitatory connections with randomized initial weights:

p15 for t g t g i d , t g t v p i n l o c a l E n o d e s :

p16 w e i g h t s = l i s t ( py rngs [ t g t v p ] . un i fo rm ( 0 . 5 * J E , 1 . 5* J E , C E ) )

p17 n e s t . RandomConvergentConnect ( nodes E , [ t g t g i d ] , C E ,

p18 we i gh t = w e i gh t s , d e l a y = d e l a y

p19 model= ’ e x c i t a t o r y �p l a s t i c ’ )

p20 for t g t g i d , t g t v p i n l o c a l I n o d e s :

p21 w e i g h t s = l i s t ( py rngs [ t g t v p ] . un i fo rm ( 0 . 5 * J E , 1 . 5* J E , C E ) )

p22 n e s t . RandomConvergentConnect ( nodes E , [ t g t g i d ] , C E ,

p23 we i gh t = w e i gh t s , d e l a y = delay ,

p24 model= ’ e x c i t a t o r y �s t a t i c ’ )

After a period of simulation, we can access the plastic synaptic weights for analysis:

p1 w = n e s t . GetStatus ( n e s t . FindConnect ions ( nodes E [ : N rec ] ,

p2 s y n a p s e t y p e = ’ e x c i t a t o r y �p l a s t i c ’ ) ,

p3 ’ w e i gh t ’ )

Plotting a histogram of the synaptic weights reveals that the initial uniform
distribution has begun to soften (see Fig. 18.4). Simulation for a longer period results
in an approximately Gaussian distribution of weights.

18.8 Example 4: Classes and Automatization Techniques

So far, we have encouraged you to try our examples line-by line. This is possible in
interactive sessions, but if you want to run a simulation several times, possibly with
different parameters, it is more practical to write a script that can be loaded from
Python.

Python offers a number of mechanisms to structure and organize not only your
simulations, but also your simulation data. The first step is to re-write a model as a
class. In Python, and other object-oriented languages, a class is a data structure
which groups data and functions into a single entity. In our case, data are the
different parameters of a model and functions are what you can do with a model.
Classes allow you to solve various common problems in simulations:
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Fig. 18.4 Distribution of synaptic weights in the plastic network simulation after 300 ms

Parameter sets Classes are data structures and so are ideally suited to hold the
parameter set for a model. Class inheritance allows you to modify one, few, or all
parameters while maintaining the relation to the original model.

Model variations Often, we want to change minor aspects of a model. For
example, in one version we have homogeneous connections and in another we want
randomized weights. Again, we can use class inheritance to express both cases while
maintaining the conceptual relation between the models.

Data management Often, we run simulations with different parameters, or other
variations and forget to record which data file belonged to which simulation.
Python’s class mechanisms provide a simple solution.

We organize the model from Sect. 18.3 into a class, by realizing that each simulation
has five steps which can be factored into separate functions:

1. Define all independent parameters of the model. Independent parameters are
those that have concrete values which do not depend on any other parameter.
For example, in the Brunel model, the parameter g is an independent parameter.

2. Compute all dependent parameters of the model. These are all parameters or
variables that have to be computed from other quantities (e.g. the total number of
neurons).

3. Create all nodes (neurons, devices, etc.)
4. Connect the nodes.
5. Simulate the model.
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We translate these steps into a simple class layout that will fit most models:

c1 c l a s s Model ( o b j e c t ) :

c2 ”””Model d e s c r i p t i o n . ”””

c3 # D e f i ne a l l i n d e p e n d e n t v a r i a b l e s .

c4

c5 def i n i t ( s e l f ) :

c6 ””” I n i t i a l i z e t h e s i m u l a t i o n , s e t u p da t a d i r e c t o r y ”””

c7 def c a l i b r a t e ( s e l f ) :

c8 ”””Compute a l l dependen t v a r i a b l e s ”””

c9 def b u i l d ( s e l f ) :

c10 ””” C rea t e a l l nodes ”””

c11 def c o n n e c t ( s e l f ) :

c12 ””” Connect a l l nodes ”””

c13 def run ( s e l f , s i m t i m e ) :

c14 ””” Bui ld , c o n n e c t and s i m u l a t e t h e model”””

In the following, we illustrate how to fit the model from Sect. 18.3 into this scaffold.
The complete and commented listing can be found in your NEST distribution.

c1 c l a s s Brunel2000 ( o b j e c t ) :

c2 ”””

c3 I m p l e m e n t a t i o n o f t h e s p a r s e l y connec t ed random network ,

c4 d e s c r i b e d by B rune l (2000) J . Comp . N eurosc i .

c5 Parame t e r s are chosen f o r t h e asynchronous i r r e g u l a r

c6 s t a t e ( AI ) .

c7 ”””

c8 g = 5 . 0

c9 e t a = 2 . 0

c10 d e l a y = 1 . 5

c11 tau m = 20 . 0

c12 V th = 20 . 0

c13 N E = 8000

c14 N I = 2000

c15 J E = 0 . 1

c16 N rec = 50

c17 t h r e a d s =2 # Number o f t h r e a d s f o r p a r a l l e l s i m u l a t i o n

c18 b u i l t = F a l s e # True , i f b u i l d ( ) was c a l l e d

c19 connec t ed = F a l s e # True , i f c o n n e c t ( ) was c a l l e d

c20 # more d e f i n i t i o n s f o l l o w . . .

A Python class is defined by the keyword class followed by the class name,
Brunel2000 in this example. The parameter object indicates that our class is a subclass
of a general Python Object. After the colon, we can supply a documentation string,
encased in triple quotes, which will be printed if we type help(Brunel2000). After the
documentation string, we define all independent parameters of the model as well as
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some global variables for our simulation. We also introduce two Boolean variables
built and connected to ensure that the functions build () and connect () are executed
exactly once.

Next, we define the class functions. Each function has at least the parameter self ,
which is a reference to the current class object. It is used to access the functions and
variables of the object.

The first function we look at is also the first one that is called for every class
object. It has the somewhat cryptic name init () :

c21 def i n i t ( s e l f ) :

c22 ”””

c23 I n i t i a l i z e an o b j e c t o f t h i s c l a s s .

c24 ”””

c25 s e l f . name= s e l f . c l a s s . nam e

c26 s e l f . d a t a p a t h = s e l f . name+ ’ / ’

c27 n e s t . ResetKernel ( )

c28 i f not os . p a t h . e x i s t s ( s e l f . d a t a p a t h ) :

c29 os . m aked i r s ( s e l f . d a t a p a t h )

c30 p r i n t ” W r i t i n g d a t a t o : ”+ s e l f . d a t a p a t h

c31 n e s t . SetKerne l S ta tus ( f ’ d a t a p a t h ’ : s e l f . d a t a p a t h g )

init () is automatically called by Python whenever a new object of a class is
created and before any other class function is called. We use it to initialize the NEST
simulation kernel and to set up a directory where the simulation data will be stored.

The general idea is this: each simulation with a specific parameter set gets its own
Python class. We can then use the class name to define the name of a data directory
where all simulation data are stored.

In Python it is possible to read out the name of a class from an object. This is
done in line c25. Don’t worry about the many underscores, they tell us that these
names are provided by Python. In the next line, we assign the class name plus a
trailing slash to the new object variable data path . Note how all class variables are
prefixed with self .

Next we reset the NEST simulation kernel to remove any leftovers from previous
simulations.

The following two lines use functions from the Python library os which provides
functions related to the operating system. In line c28 we check whether a directory
with the same name as the class already exists. If not, we create a new directory
with this name. Finally, we set the data path property of the simulation kernel. All
recording devices use this location to store their data. This does not mean that this
directory is automatically used for any other Python output functions. However,
since we have stored the data path in an object variable, we can use it whenever we
want to write data to file.

The other class functions are quite straightforward. Brunel2000.build () accumu-
lates all commands that relate to creating nodes. The only addition is a piece of
code that checks whether the nodes were already created:
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c32 def b u i l d ( s e l f ) :

c33 ”””

c34 C rea t e a l l nodes , used i n t h e model .

c35 ”””

c36 i f s e l f . b u i l t : return
c37

c38 # rem a i n i ng code t o c r e a t e nodes

c39 s e l f . b u i l t = True

The last line in this function sets the variable self . built to True so that other functions
know that all nodes were created.

In function Brunel2000.connect () we first ensure that all nodes are created before
we attempt to draw any connection:

c40 def c o n n e c t ( s e l f ) :

c41 ”””

c42 Connect a l l nodes i n t h e model .

c43 ”””

c44 i f s e l f . connec t ed : return
c45 i f not s e l f . b u i l t :

c46 s e l f . b u i l d ( )

c47 # rema i n i ng c o n n e c t i o n code

c48 s e l f . connec t ed =True

Again, the last line sets a variable, telling other functions that the connections were
drawn successfully.

Brunel2000. built and Brunel2000.connected are state variables that help you to make
dependencies between functions explicit and to enforce an order in which certain
functions are called. The main function Brunel2000.run () relies on both state variables
to build and connect the network:

c49 def run ( s e l f , s i m t i m e = 300) :

c50 ”””

c51 S i m u l a t e t h e model f o r s i m t i m e m i l l i s e c o n d s and p r i n t t h e

c52 f i r i n g r a t e s o f t h e ne t w ork dur i ng t h i s p e r i o d .

c53 ”””

c54 i f not s e l f . connec t ed :

c55 s e l f . c o n n e c t ( )

c56 n e s t . Simulate ( s i m t i m e )

c57 # more code , e . g . t o compute and p r i n t r a t e s

In order to use the class, we have to load the file with the class definition and then
create an object of the class:

n e t = Brunel2000 ( )

n e t . run ( 5 0 0 )
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Finally, we demonstrate how to use Python’s class inheritance to express different
parameter configurations and versions of a model. In the following listing, we derive
a new class that simulates a network where excitation and inhibition are exactly
balanced, i.e. g D 4:

c58 c l a s s B r u n e l b a l a n c e d ( Brunel2000 ) :

c59 ”””

c60 Exac t ba l ance o f e x c i t a t i o n and i n h i b i t i o n

c61 ”””

c62 g=4

Class Brunel balanced is defined with class Brunel2000 as parameter. This means the
new class inherits all parameters and functions from class Brunel2000. Then, we
redefine the value of the parameter g. When we create an object of this class, it
will create its new data directory.

We can use the same mechanism to implement alternative version of the model.
For example, instead of re-implementing the model with randomized connection
weights, we can use inheritance to change just the way nodes are connected:

c63 c l a s s Brune l r andom i zed ( Brunel2000 ) :

c64 ”””

c65 L i k e Brunel2000 , bu t w i t h randomized c o n n e c t i o n w e i g h t s .

c66 ”””

c67 def c o n n e c t ( s e l f ) :

c68 ”””

c69 Connect nodes w i t h randomized w e i g h t s .

c70 ”””

c71 # Code f o r randomized c o n n e c t i o n s f o l l o w s

Thus, using inheritance, we can easily keep track of different parameter sets and
model versions and their associated simulation data. Moreover, since we keep all
alternative versions, we also have a simple versioning system that only depends on
Python features, rather than on third party tools or libraries. The full implementation
of the model using classes can be found in the examples directory of your NEST
distribution.

18.9 How to Continue from Here

In this chapter we have presented a step-by-step introduction to NEST, using
concrete examples. The simulation scripts and more examples are part of the
examples included in the NEST distribution. Information about individual PyNEST
functions can be obtained with Python’s help () function. For example:
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>>>h e l p ( n e s t . Connect )

Connect ( pre , pos t , params =None , d e l a y =None , model = ’ s t a t i c synapse ’ )

Make one�to�one c o n n e c t i o n s o f t y p e model be tween t h e nodes

i n p re and t h e nodes i n p o s t . p re and p o s t have t o be l i s t s

o f t h e same l e n g t h . I f params i s g i ven ( a s d i c t i o n a r y o r

l i s t o f d i c t i o n a r i e s ) , t h e y a r e used as p a r a m e t e r s f o r t h e

c o n n e c t i o n s . I f params i s g i ven as a s i n g l e f l o a t o r a s

l i s t o f f l o a t s , i t i s used as w e i gh t ( s ) , i n which c a s e d e l a y

a l s o has t o be g i ven as f l o a t o r a s l i s t o f f l o a t s .

To learn more about NEST’s node and synapse types, you can access NEST’s
help system, using the PyNEST command. NEST’s online help still uses a lot of
SLI syntax, NEST’s native simulation language. However the general information
is also valid for PyNEST.

Help and advice can also be found on NEST’s user mailing list where developers
and users exchange their experience, problems and ideas. And finally, we encourage
you to visit the web site of the NEST Initiative at www.nest-initiative.org.

Acknowledgements AM partially funded by BMBF grant 01GQ0420 to BCCN Freiburg, Helm-
holtz Alliance on Systems Biology (Germany), Neurex, and the Junior Professor Program of
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Version Information

The examples in this chapter were tested with the following versions.
NEST: 1.9.8914, Python: 2.6.6, Matplotlib: 1.0.0, NumPy: 1.4.1.
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