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Mauro Dorato

MatheMatiCal Biology anD the existenCe

of BiologiCal laws1

8.1 introDuCtion

An influential position in the philosophy of biology claims that there are no biological 
laws, since any apparently biological generalization is either too accidental, fact-like 
or contingent to be named a law, or is simply reducible to physical laws that regulate 
electrical and chemical interactions taking place between merely physical systems.2

 In the following I will stress a neglected aspect of the debate that emerges 
directly from the growing importance of mathematical models of biological phe-
nomena. My main aim is to defend, as well as reinforce, the view that there are 
indeed laws also in biology, and that their difference in stability, contingency or 
resilience with respect to physical laws is one of degrees, and not of kind.3

 In order to reach this goal, in the next sections I will advance the following 
two arguments in favor of the existence of biological laws, both of which are meant 
to stress the similarity between physical and biological laws.
 1. In physics we find an important distinction between laws of succession 
(holding between timelike-related or temporally successive events/facts) and laws 
of coexistence (holding between spacelike-related, coexisting events).4 Examples 
of laws of coexistence are the Boyle-Charles law, relating pressure P and volume 
of gases V to their temperature T (PV = kT), Ohm’s law, relating resistance R to 
voltage V and intensity of current A (V/A = R), or the relation between the length 
and the period of a pendulum – T = 2p (L/g)1/2. While all of these laws relate events 

1 Thanks to the editor Dennis Dieks for some helpful comments and suggestions.
2 See for one John Beatty, “The evolutionary contingency thesis”, in: Gereon Wolters 

and John Lennox (Eds.), Concepts, Theories and Rationality in the Biological Sci-
ences. Pittsburgh University Press 1995, pp. 45–81.

3 For a previous defense of this thesis, see Sandra Mitchell, Unsimple Truths: Science, Com-
plexity, and Policy. Chicago: University of Chicago Press 2009. I hope to add new arguments 
so as to strengthen her view. For the idea of degrees of lawhood, see Marc Lange, “Laws, 
counterfactuals and degrees of lawhood”, in: Philosophy of Science, 1999, pp. 243–267.

4 See Carl Hempel and Paul Oppenheim, “Studies in the logic of explanation”, in: Phi-
losophy of Science 15, 2, 1948, pp. 135–175, who contrast causal laws (of succession) 
with laws of coexistence. The difference between causal laws and laws of coexistence 
had been originally proposed by John S. Mill.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_8,  
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or properties that are in some sense simultaneously existing, laws of succession 
instead describe the unfolding of physics systems in time.
 Against the possibility of biological laws, it is typically argued that biological 
laws of evolution are either non-existent or just too complex to be formulated.5 
For the sake of the argument, let us suppose that this thesis is true.6 It then follows 
that if we could prove that (i) in biology, unlike physics, there are also no laws of 
coexistence, or that (ii) such laws, if existent, are really all physical, we would 
have concluded against the existence of biological laws tout court. In Sect. 8.2, I 
will counter (i) and (ii) by discussing some examples of genuine biological laws of 
coexistence that I will refer to as structural biological laws.
 2. Those who claim that there are no biological laws typically argue that 
lawlike-looking regularities in biology are either merely mathematical (and there-
fore a priori) or purely physical. In the former case, they are devoid of empiri-
cal content, in the latter they are empirical but not biological. The former claim 
has been put forward in particular by Brandom and Sober, and recently defended 
also by Okasha, by discussing examples like Price’s equation, formulas in popula-
tion genetics like Fisher’s, or the simple Hardy-Weinberg’s law in genetics.7 Even 
though Sober does not think that this is an argument against the existence of laws 
in biology,8 it clearly could be used in this way. What I will do in Sect. 8.3 is to 
counter this claim by citing some mathematical models that seem to be applicable 
to various biological entities, from cells to flocks of birds, and that are certainly 
neither tautologies nor interpretable just with entities or data models referring to 
the ontology of current physics.
 Before discussing these two arguments in some more detail, however, it is 
important to clarify two methodological points raised by the issue I have been 
presenting so far. 

5 By biological laws of succession I don’t mean laws of law, but simply laws regulating 
the evolution of biological phenomena in time.

6 I don‘t think it is true, by the way, but I want to concede to the enemy of biological laws 
all the ground she needs.

7 Samir Okasha, Evolution and the Levels of Selection. Oxford: Oxford University Press 
2006. By referring to Price’s equation, Okasha writes: “though the equation is little 
more than a mathematical tautology …” Ibid, p. 3. Sober explains the Hardy-Wein-
berg’s law with the properties of coin tossing. And then he adds “if we use the term 
mathematical tautology sufficiently loosely, then many of the generalizations in biol-
ogy are tautologies” in: Elliott Sober, Philosophy of Biology. Oxford: Oxford Univer-
sity Press 1993, p. 72.

8 In Elliott Sober, “Two outbreaks of lawlessness in recent philosophy of biology”, in: 
Philosophy of Science 64, 1997, p. S459, we read: “Fisher’s theorem of natural selec-
tion says that the rate of increase in fitness in a population at a time equals the additive 
genetic variance in fitness at that time. When appropriately spelled out, it turns out to 
be a mathematical truth”. And yet, he argues, a law need not be empirical but could 
also hold a priori.
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8 Mathematical biology and the existence of biological laws 

 (i) The first point is: when should we regard a regularity/law as biological 
or physical? In order to answer this first question, let me simply stipulate that a 
regularity/law can be regarded as biological (or physical) if it is formulated in the 
language of current biology (or physics). As long as a law contains notions or 
concepts that are regarded as belonging to current biology, we should consider it 
as biological, even if the notion in question were reducible to physics.9 I will there-
fore completely ignore appeals to wholly vague and undefined future and complete 
physics or biology. After all, “in the long run”, as Keynes would say, “we will all 
be dead”, and what matters to us is to try to solve our problems relatively to our 
current state of knowledge.
 (ii) The second point is the criterion of demarcation to be used to draw a 
distinction between genuine laws and merely accidental generalizations. Here I 
will appeal to counterfactuals, intentionally ignoring the difficulties raised by this 
criterion.10 After all, such difficulties apply to physics as well as to biology, and it 
is not clear at all why the defenders of the existence of biological laws should solve 
them. Simply put, the main idea to be presupposed in the following is that while 
empirical generalizations do not hold counterfactuals, laws do. To repeat an oft-
quoted example by Reichenbach, a generalization like “all gold cubes are smaller 
than one cubic kilometer”, if true, is true accidentally, since the counterfactual “if 
x were a gold cube, it would be smaller than one cubic kilometer” does not hold, 
since no law prevents gold cubes from being larger that one cubic kilometer. On 
the contrary, given the laws of radioactive decay, “if x were a uranium cube, it 
would be smaller than one cubic kilometer” is true.

8.2 laws of CoexistenCe in Biology

The reader will recall that in the previous section I posed the following two ques-
tions: (1) do we have laws of coexistence in biology? If so, (2) are they reducible 
to physical laws? I will now try to answer them in turn.
 1. An important but often neglected source of biological laws might concern 
exactly laws of the “form”, or of the structuring of biological space, in the tradi-
tion that spans from Goethe to Cuvier, and from D’Arcy Thompson to Thom and 
Gould and Lewontin. In this tradition, the permanence of forms or structures from 
one generation to another “is interpreted in relation to the pure game of three-
dimensional space within which the constructive parameters of the organism are 

9 Here I assume that reducibility does not entail elimination; and the case of thermody-
namics is a clear exemplification of this claim: the reducibility of thermal physics to 
statistical mechanics does not entail that the properties that are typical of the former 
together with its laws disappear or are eliminated.

10 One of these is the smell of circularity raised by the criterion: one analyzes the notion 
of lawhood with counterfactuals but in order to know whether a counterfactual is true, 
one must already know which laws hold.
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established.”11 In this sense the distinction, originating from physics,12 between 
laws of coexistence and laws of succession would correspond in biology to the dis-
tinction between diachronic “laws of evolution” and “structural laws”, the former 
related to time, and the latter constraining the structure of the spatial relationships 
between coexisting biological phenomena and entities.
 The recent use of powerful computers has proved quite important to make us 
discover structural biological laws:

Cardiovascular systems, respiratory systems, plant vascular systems, and insect tracheal 
tubes all exhibit the same continuously branching structure that increases or decreases in 
scale as a quarter power of body size.13 (my emphasis)

This wide-scope biological regularity seems sufficient to allow us to respond posi-
tively to question (1): there are indeed biological laws of coexistence and they play 
a very important and generalized role. The following, natural question is whether 
they are reducible to physical laws which is our question (2).
 2. The law of the quarter power mentioned in the quotation above is related 
to Kleiber’s law, which connects the metabolic rate R, (i.e. the quantity of energy 
consumed in 1 s), to the dimensions of the animal, according to a precise ratio of 
proportionality, expressed by the cube of the fourth root of the organism’s body 
mass M

R = (M)3/4

For example, an animal c weighing one hundred times another animal m – M
c 
= 

100
 
M

m
 – would have a metabolic rate that is only more or less thirty times greater.14 

This law is quite universal, as it holds from mitochondria, unicellular organisms 
to the largest animals (see Fig. 8.1), so that it definitely holds counterfactuals: if a 
were an animal, it would be related to its metabolism by the above relation.
It could be argued that in virtue of the criterion above, 1 counts as a physical law, 
because it only contains physical parameters (“the quantity of energy consumed 
in a second”, “mass”). On the other hand, “metabolism” is typically applied in 
biological contexts, and “organism’s mass” is after all a physical property of a 

11 Barbara Continenza, and Elena Gagliasso, Giochi aperti in biologia. Milano: Franco 
Angeli, p. 67.

12 The principle of locality might induce one to think that physical laws of succession are 
more important than physical laws of coexistence, so that the latter somehow reduce 
to, or supervene on, the former. However, quantum non-separability and entanglement, 
even in the absence of action at a distance as in Bohm‘s interpretation, has rehabilitated 
the importance of laws of coexistence at a fundamental level.

13 J. Brown, G. West, B. Enquist, Nature CClxxxiv, 1999, pp. 1607–1609. The work cited 
is taken from the website http://www.santafe.edu/sfi/publications/Bulletins/bulletin-
summer97/feature.html. A later study published in Nature excluded plants from this 
generalization.

14 Brown and Enquist, work cited. Note that M
c
 = (100)3/4 equals approximately 31 M

m
.

(8.1)
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8 Mathematical biology and the existence of biological laws 

biological entity. Laws of this kind are sort of mixed between physics and biology, 
and it should be no surprise that in many cases it is indeed difficult to conclude 
that a given nomic statement belongs to physics or biology. Consider “bridge” 
disciplines like biophysics or biochemistry or molecular biology: any law in these 
fields cannot but “overlap” between the two disciplines. The existence of such an 
overlap, however, is good news for the defenders of biological laws, unless their 
enemies give them ground and retreat to the more limited claim that it is in purely 
biological domains that laws don’t exist. Since this claim will be discussed in what 
follows, I can move on with my argument.

Fig. 8.115

Interestingly, various hypotheses to explain this universal principle have been put 
forth since 1932. Lately, Kleiber’s law has been derived, or explained, by a more 
profound law of coexistence, namely that the same ramified model – which refur-
nishes a vegetable or animal organism’s vital fluids (lymph or blood) – fills the 
living organism’s space like a fractal.16 In a word, this type of ramified structure, 
which is essential to transport material to and from the cells, would be capable 
of explaining the existence of the otherwise mysterious proportionality between 
dimensions and the metabolic rate.

15 Taken from http://universe-review.ca/R10-35-metabolic.htm
16 Other geometrical considerations, involving the fixed percentage of the volume of the 

body that is occupied by the vessels, explain the presence of the cube in the formula 
above. The fractal law contributes only to the quarter power component. For more ex-
planatory details, see http://universe-review.ca/R10-35-metabolic.htm.
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 The omnipresence of forms branching out like a “tree,” and repeating them-
selves in different scales like fractals, can be explained by the fact that these struc-
tures optimize the transport of energy in all living species; as West, one of the 
authors of this theory expresses, “when it comes to energy transport systems, eve-
rything is a tree.”17

 While the key concepts entering Kleiber’s law are somewhat mixed, the quota-
tion above mentions “cardiovascular systems, respiratory systems, plant vascular 
systems, and insect tracheal tubes, all exhibiting the same continuously branching 
structure”. We have seen that since all these notions are biological, the criterion 
for identifying a law as biological allows us to conclude that the fact that “all these 
structures have a tree-like shape” is a biological law. It could be noticed that it 
is implausible that a physical or “mixed”, biophysical law like Kleiber’s can be 
explained by a purely biological, structural law, exemplified by biological entities 
carrying life-sustaining fluids or, more in general, by entities that optimize energy 
transport. This could create evidence in favor of the view that also the fractal law 
is really a physical law. However, there is no violation of the causal closure of 
the physical world in this case, since it is the shape of the fractal that carries the 
explanatory role, and shape in a sense is an abstract, geometrical notion, and in 
another sense, when we consider it exemplified, is a spatial, topological property 
of biological entities. As such, the fractal law is a biological law.
 The question of the relationship between such structural biological laws and 
evolutionary principles (or laws of succession, in my vocabulary) naturally poses 
itself at this point. I cannot enter this complex debate here, if not to note that there 
is a sense in which biological evolution is constrained by laws of coexistence of 
the kind we discussed above. On the other hand, however, against recent attempts 
at downplaying the role of natural selection,18 it should be admitted that selection 
would obviously choose the organisms whose “forms” render more efficient the 
transport of those bodily fluids that are necessary for sustaining the life of the 
whole organism. In a word, if we could identify biological laws of succession with 
the family of models generated by the Principle of Natural Selection,19 biological 
laws of coexistence and biological laws of succession could and should coexist 
peacefully, at least if we want to succeed in explaining the fact of evolution.

17 Ibid.
18 Jerry Fodor, Massimo Piattelli Palmarini, What Darwin Got Wrong. New York: Farrar, 

Straus and Giroux 2010.
19 For the view that the Principle of Natural Selection is really an abstract scheme to form 

more concrete models (like F=ma), see Mauro Dorato, The Software of the Universe. 
Aldershot: Ashgate 2005. For the view that the Principle of Natural Selection is to be 
understood within the semantic view of theories, see Marcel Weber, “Life in a physi-
cal world”, in: F. Stadler, D. Dieks, W. Gonzales, S. Hartmann, T. Uebel and M. Weber 
(Eds.), The Present Situation in the Philosophy of Science. Dordrecht: Springer 2010, 
pp. 155–168.
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8 Mathematical biology and the existence of biological laws 

 In this respect, the tradition of the study of laws of the forms, if helped by the 
development of new mathematical models of the relevant phenomena, could help 
us to look at the sterile debate between selectionists and defenders of laws of the 
form in a whole new way. This claim will be illustrated in the next section, which 
will also provide evidence for the fact, too neglected by philosophers, that the de-
velopment of a future “mathematics of living beings” will contribute much to both 
biology and mathematics.

8.3 soMe exaMples of MatheMatiCal MoDels in Biology

The currently burgeoning field of mathematical biology can be regarded as provid-
ing crucial reasons to believe in the existence of biological laws. The argument for 
this claim is based on the following four premises, which presuppose a distinc-
tion between scientific laws (a defining feature of the model we use to represent 
the world) and what they purport to describe, namely lawmakers that I refer to as 
natural laws.
 1. Scientific laws in physics are mainly dressed in mathematical language, 
a fact that is not an accidental feature, but rather an indispensable component of 
physics;
 2. Mathematically formulated scientific laws in physics are part of the defi-
nition of the mathematical models of those natural phenomena (natural laws) that 
we intend to represent via the model itself;
 3. The amazing effectiveness of mathematical models in predicting and ex-
plaining physical phenomena20 can only be accounted for if there are natural laws 
in the physical world, laws that the models mentioned in 2. refer to or partially 
represent;
 4. The three premises above apply also to biology, and guarantee the exist-
ence of biological laws rather than accidental generalizations if they do so in phys-
ics.
 I take it that premise 1. is uncontroversial: since the modern times, it would be 
hard to do any physics without the abstract models of natural phenomena provided 
by mathematics. Premise 2. can also be granted: take for instance ma = – kx, which 
is Hooke’s law; clearly, this statement also defines the main features of the cor-
responding abstract model, in the sense that anything that satisfies that law can be 
represented by the model of the harmonic oscillator.21 Premise 3. is based on the 
claim that the existence of mathematical models that enable us to predict and ex-
plain physical phenomena suffices for the existence of physical laws. This premise 

20 The claim that mathematics can be used also to explain physical phenomena is defend-
ed in Mauro Dorato and Laura Felline, “Structural explanation and scientific structur-
alism”, in: A. Bokulich and P. Bokulich (Eds.), Scientific Structuralism. Boston Studies 
in Philosophy of Science: Springer 2011, pp. 161–176.

21 Ronald Giere, Explaining Science. Chicago: University of Chicago Press 1988.
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is of course as controversial as is any realist claim based on inferences to the best 
explanation. Here I don’t need to defend this premise explicitly, and actually I can 
take it for granted.22 Note that 3. is sometimes accepted as being sufficient for the 
existence of physical regularities, and that here I could be content only with the 
conditional claim that if the inference works for physical laws then, in virtue of 
the analogy between physical and biological models of phenomena on which 4. 
is based, it also works for biological laws. A case study taken from a recent study 
of the collective behavior of starlings will, I hope, suffice to argue in favor of the 
analogy stated in 4.

8.4 floCks of starlings anD their sCale invariant anD 
topologiCally-DepenDent interaCtions

Under the attack of a predator or even independently of it, flocks of starlings (stur-
nus vulgaris) can assume highly symmetrical and rapidly changing geometrical 
forms. These birds can synchronize their flight in such a way that one is led to 
think of the flock as a single, super-individual organism, whose parts always re-
main together in a strikingly coordinated fashion.
 In the years 2006–2008, the Italian group of statistical physicists and biologists 
led by Giorgio Parisi has taken thousands of pictures of these birds (which some 
years ago had invaded parts of Rome with imaginable consequences …) in order to 
provide a precise empirical basis to study their collective behavior in three dimen-
sions.23 The guiding idea of the research program was that this empirical study, if 
suitably modeled, could be generalized to school of fishes, herd of mammals, flight 
of insects, etc. The scope and universality across the animal kingdom of these dy-
namical laws, if they could be found, would have been quite impressive.
 The collective, cooperative behavior of the starlings is particularly important 
from an evolutionary point of view. Stragglers have a significantly larger probabil-
ity of being attacked, while if the group remains together, each individual bird ends 
up being much safer.
 The main question raised by this amazing collective behavior is, of course, 
how individual birds can remain in the group even when the latter, under attack 
by a predator changes significantly its form and density.24 The biological qualitative 

22 For a defence of the inference to the best explanation in realist contexts, see Stathis 
Psillos, How Science Tracks Truth. London: Routledge.

23 M. Ballerini, N. Cabibbo, R. Candelier, et al., “An empirical study of large, naturally 
occurring starling flocks: a benchmark in collective animal behaviour”, in: Animal 
Behaviour 76, 1, 2008, pp. 201–215.

24 M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. 
Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic ‘Interaction 
ruling animal collective behavior depends on topological rather than metric distance: 
Evidence from a field study’, in: Proc. National Academy of Science, USA, 105, 2008, 
pp. 1232–1237.
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8 Mathematical biology and the existence of biological laws 

laws that had been advanced so far presumed that the interaction among indi-
viduals decreased with the metric distance between any two birds, as in Newton’s 
law of gravitation. However, this hypothesis would not explain the fact that even 
after density changes that are typical of starlings flight, the group continues to 
exist as such.
 On the basis of models based on spin glasses and computerized vision, Parisi’s 
group has advanced the new hypothesis that the birds’ interaction depends not on 
metric distance (how many meters they are apart from each other) but on their 
topological distance, which is measured by the number of birds separating each 
bird from the others with which it interacts. This implies, for instance, that two 
interacting birds separated by ten meters and two birds that are one meter apart 
“attract” each other with the same “strength”, independently of distance, since 
the number of intermediate birds in the two cases is the same.25 This topological 
dependency – which I regard as a biological law, possibly interspecific and not just 
holding for sturnus vulgaris – allows cohesion to the flock even when the density 
changes. This hypothesis was tested with some simulations:

Thanks to novel stereometric and computer vision techniques, we measured 3D individual 
birds positions in compact flocks of up to 2600 starlings … whenever the inter-individual 
distance became larger than the metric range, interaction would vanish, cohesion would be 
lost, and stragglers would ‘evaporate’ from the aggregation. A topological interaction, on 
the opposite, is very robust, since its strength is the same at different densities.26

So the first species-specific law that we can express in this context, a law that can 
be expressed in a qualitative and quantitative way, is that the interaction between 
starlings does not depend on metric distance but on topological distance. Accord-
ing to our above specified criterion, this regularity is certainly purely biological. 
Does it hold counterfactuals, so that, in virtue of the criterion mentioned above, 
it counts as a law? Relatedly, can we generalize this law to other highly social 
species?
 In order to answer these questions, it is appropriate to mention the fact that the 
mapping of the flight of the individual birds has shown an interesting anisotropy, 
which could be linked to the nervous system of the birds; this anisotropy means 
that it is more probable to find the neighboring birds on the side rather than in 
the direction of flight, and this holds up to six-seven individuals, since there is no 
interaction with the tenth nearest individual. Charlotte Hemelrijk, a theoretical bi-
ologist at Groningen, had found the same sort of anisotropy in school of fishes.27

 The resilience of the flock against losing individual birds is a metaphor for the 
resilience of the following regularity: starlings keep track of topological distance 

25 Ibid.
26 Ibid.
27 Toni Feder, “Statistical physics is for the bird”, in: Physics Today 60, 28, p. 29.
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by keeping track of 6/7 individuals against possible disturbing factors due to the 
presence of predators. I would add that the regularity in question is capable of 
holding counterfactual conditionals: “if a were a starling within a flock, it would 
adjust to changes of densities by keeping track of its 6/7 neighbors”. Amazingly 
enough, the direct interaction with such a limited number of individuals is suf-
ficient to spread correlation among a group that can be formed by thousands of 
birds!
 In order to formulate another species-specific law that can generalize to other 
species, let me define the correlation length as the spatial length or spread of the 
behavioral correlation existing in a group, and the interaction range as the number 
of animals with which each animal is directly interacting: the former concept can 
be global, the latter is always local. An effective way to illustrate the difference be-
tween these two notions is using the example made by the authors of the research 
on the scale-free correlation of starlings flocks,28 namely the “telephone game” 
played by n people. Suppose that each person in a group of n whispers a mes-
sage to her neighbor and so on, and that there is no corruption of the message (no 
noise):

The direct interaction range in this case is equal to one, while the correlation length, i.e. 
the number of individuals the phrase can travel before being corrupted, can be significantly 
larger than one, depending on how clearly the information is transmitted at each step.29

In the hypothesis of no noise, the whole group of n person is correlated (so that the 
correlation length in this example is n); of course, in more realistic examples, the 
information is always transmitted with some noise. We could note in passing that 
the possibility of sending the same (email) message to n people at once (interac-
tion range = n) makes the correlation length grow exponentially in a very rapid 
time.
 Cavagna et al. note furthermore that there are various ways to achieve order or 
correlation among social animals like starlings. One would be via a coordination 
of all birds’ behavior with that of a single leader or of a few leaders; such a top-
down method, however, would not be very efficient for the survival of birds. For 
example, if the leader did not notice the presence of a predator or of any other dan-
ger, the rigid rule of following the leader would not be of very much help, even if 
all birds, unlikely, had cognitive access to the remote position of the leader (flock 
can be made by numerous individuals). Furthermore, in this way any fluctuation in 

28 Andrea Cavagna, Alessio Cimarelli, Irene Giardina, Giorgio Parisi, Raffaele Santagati, 
Fabio Stefanini, and Massimiliano Viale, “Scale free correlation in starlings flocks”, 
in: Proc. National Academy of Science, 107, 26, Jun 29, 2010, pp. 11865–11870, avail-
able also on line at www.pnas.org/cgi/doi/10.1073/pnas.1005766107, p. 1. 

29 Ibid., p. 2.
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8 Mathematical biology and the existence of biological laws 

the behavior of one bird would not be correlated to the behavior of another, unless 
the bird in question were the leader.30

 A much more efficient way to get really cooperative and adaptive behavior 
is to avoid a centralized global order, but create a global correlation between all 
animals, a correlation that can be originally caused just by any one individual, the 
one, say, who notes the presence of a predator. If the change in direction of flight 
of this individual can rapidly influence all the flock via a few direct interactions 
between the single animals that is transferred to whole group, then the survival 
chances of each single animal will be enhanced, because no bird will be isolated. 
No part of the group can be separated from the rest, and the flock behaves like a 
critical system, capable of responding in a maximal way to a perturbation occur-
ring to a single individual. With the words of our authors:

For example, in bacteria the correlation length was found to be much smaller than the size 
of the swarm. In this case parts of the group that are separated by a distance larger than the 
correlation length are by definition independent from each other and therefore react inde-
pendently to environmental perturbations. Hence, the finite scale of the correlation neces-
sarily limits the collective response of the group. However, in some cases the correlation 
length may be as large as the entire group, no matter the group’s size. When this happens 
we are in presence of scale-free correlations.31

The degree of global ordering in a flock is measured by the so-called polariza-
tion F,

where v
i
 is the velocity of bird i and N is the total number of birds within the flock 

(ibid.). Note that the fact that the polarization F is very close to 1 (birds fly parallel 
to each other) may be also considered to be an empirical, quantitative law, since 
also this statement holds counterfactuals.32 Polarization is in fact a measure of the 
correlation of the animal’s behavior, in the sense that when the correlation is, as in 
the case of starlings, close to 1, it is interpretable as the fact that the velocities of 
the birds are parallel, while when it is 0 “it means uncorrelated behavior, that is, 
non-parallel velocities.”

30 Ibid.
31 Ibid., p.1.
32 “Polarization is … a standard measure of global order in the study of collective animal 

behavior”, since when the value is close to 1 it corresponds to parallel velocities, while 
when it is 0 is mean uncorrelated velocities”, “Scale free,” quoted, ibid.
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8.5 ConClusion

The idea that in biology there are no laws (or event quantitative laws) seems to be 
simply due to a lack of imagination on our part, and to the fact that mathemati-
cal biology has not penetrated enough the community of philosophers of biology. 
So I conclude by quoting from an excellent, recent introduction to mathematical 
biology, which here I want to advertise, thereby signalling two interesting areas of 
research in mathematical biology, namely, population biology and ecology on the 
one hand, and phylogenetics and graph theory on the other.33

8.5.1 Population biology and ecology

The problems in population genetics and echology are similar to those illustrated 
in the case of the collective behavior of starlings, since they relate interaction be-
tween single members and collective, global properties. Imagine that a tree in an 
equally spaced orchard has a disease that, in analogy to the case of starlings, can 
be transmitted only to the nearest neighbors with a probability p. The problem is to 
calculate the probability that the correlation becomes scale-free, so that every tree 
in the forest becomes infected. Let E(p) be the expected probability in question:

Intuitively, if p is small, E(p) should be small, and if p is large, E(p) should be close to 
100%. In fact, one can prove that E(p) changes very rapidly from being small to being 
large as p passes through a small transition region around a particular critical probability p

c
. 

One would expect p to decrease as the distance, d, between trees increases; farmers should 
choose d in such a way that p is less than the critical probability, in order to make E(p) small. 
We see here a typical issue in ecological problems: how does behavior on the large scale 
(tree epidemic or not) depend on behavior at the small scale (the distance between trees).34

In this example scale-free correlations (epidemics among trees) depend on the 
existence of critical probabilities; it should be obvious how in this case, as in the 
previous one, the possibility of gathering empirical data allow us to make precise 
predictions about, say, the existence of scale-free correlations among individuals 
in a group (flocks, schools, trees in a forest, etc.).

8.5.2 Phylogenetics and graph theory

A connected graph with no cycles is called a tree. The tree has a vertex ρ, or root, 
and its vertices that have only one attached edge are called leaves. The problem 
consists in determining the trees that are consistent with our empirical and  

33 Michael Reed, “Mathematical Biology”, in: T. Gowers, J. Barrow-Green and I. Leader 
(Eds.), The Princeton Companion to Mathematics. Princeton University Press, pp. 
837–848.

34 Ibid., p. 845.
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theoretical information about evolution.35 Such phylogenetics rooted trees are used 
to select a particular empirical characteristic, say the number of teeth, and then de-
fine a function f from the leaves X, the set of current species, to the set of nonnega-
tive integers. For a given leaf x (a species in X), one then let f(x) be the number of 
teeth of members of x.

It is characters such as these that are measured by biologists. In order to say something 
about evolutionary history, one would like to extend the definition of f from X to the larger 
set V of all the vertices in a phylogenetic tree. To do this, one specifies some rules for how 
characters can change as species evolve. A character is called convex if … between any two 
species x and y with character value c there should be a path back in evolutionary history 
from x and forward again to y such that all the species in between have the same value 
c….A collection of characters is called compatible if there exists a phylogenetic tree on 
which they are all convex. Determining when this is the case and finding an algorithm for 
constructing such a tree (or a minimal such tree) is called the perfect phylogeny problem.36

The reader will excuse these long quotations. They have the purpose to allow me to 
conclude that it is by paying more attention to questions like these that a more thor-
ough understanding of the relation physics and biology (and their nomic features) 
can be gained, a relation that is going to be deeper and deeper the more mathemat-
ics is becoming the common language of both. It seems fair to say that biology 
is becoming more and more, despite what is usually believed, a Galilean science, 
based as physics is “on sensible experiences and necessary demonstrations”.37
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35 Ibid.
36 Ibid., p. 846.
37 See Stillman Drake, Essays on Galileo and the History and Philosophy of Science,  

vol. III, selected and introduced by N. Swerdlow and T. Levere, University of Toronto 
Press, p. 84.
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