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Preface

It is my pleasure and privilege to present the third volume of the series Philosophy 
of Science in a European Perspective produced by the European Science Founda-
tion (ESF) Research Networking Programme that runs under the same name. Like 
the first two volumes, The Present Situation in the Philosophy of Science (2010) 
and Explanation, Prediction, and Confirmation (2011), also published by Springer, 
it collects selected papers given at a series of workshops organized by the five 
teams of the programme from one year, in this case 2010. For the present volume, 
these workshops included the following events, all funded by the ESF with some 
further support from the host institutions:

Team A, Formal Methods: Pluralism in the Foundations of Statistics (Univer-
sity of Kent, organized by Stephan Hartmann and David Corfield, September 
9-10, 2010)

Team B, Philosophy of the Natural and Life Sciences and Team D, Philos-
ophy of the Physical Sciences, joint workshop: Points of Contact Between 
the Philosophy of Physics and the Philosophy of Biology (London School of 
Economics, organized by Miklos Redei, Dennis Dieks, Hanne Andersen and 
Marcel Weber, 13-15 December, 2010)

Team C, Philosophy of the Cultural and Social Sciences: The Debate on 
Mathematical Modeling in the Social Sciences (University of A Coruña, Fer-
rol Campus, organized by Wenceslao J. Gonzalez, 23-24 September, 2010)

Team E, History of the Philosophy of Science: Historical Debates about Log-
ic, Probability and Statistics (University of Paderborn, organized by Michael 
Stöltzner, Thomas E. Uebel, Volker Peckhaus, Katharina Gefele, and Anna-
Sophie Heinemann, 9-10 July, 2010)

As in the previous years of the ESF programme, these workshops brought together 
scholars from all across Europe, including a substantial proportion of junior 
researchers as well as graduate students. The workshops generated considerable 
interest from local students and faculty at the respective workshop venues. While 
the programme’s core topic for the year 2010 was probability and statistics, most 
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of the five teams embraced the opportunity of building bridges to more or less 
closely connected issues in general philosophy of science, philosophy of phys-
ics and philosophy of the special sciences. However, papers that use or analyze 
the concept of probability for various philosophical purposes are clearly a major 
theme in this volume, as it was in the previous volume. This reflects the impressive 
productivity of probabilistic approaches in the philosophy of science, which form 
an important part of what has become known as formal epistemology (although, 
of course, there are non-probabilistic approaches in formal epistemology as well). 
It is probably fair to say that Europe has been particularly strong in this area of 
philosophy in recent years.

 The papers from Team A focus on the foundations of statistics. While the 
importance of statistical methods in many areas of science is undisputed, debate 
on the proper foundations and the scope of these methods continues among both 
practitioners and philosophers. Is statistics something like a logic of inductive 
inference, as it was envisioned by some members of the Vienna Circle, or is it 
more properly viewed as a decision theory for choosing among alternative courses 
of action? Can null hypotheses be supported by statistical data? Does subjective 
Bayesianism provide a general framework for statistical testing, or should statisti-
cians strive for objective probabilities such as Neyman-Pearson frequentist error 
probabilities? Should we be pluralists about the foundations of statistics? These 
are some of the questions discussed in the first section of this volume.

 Teams B and D decided to join forces to discuss points of common interest 
in the philosophy of physics and philosophy of biology. When organizing the cor-
responding workshop, it quickly became clear that there are much more points 
of contact that one might have thought, given that these two areas of philosophy  
of science have developed largely independently of each other in recent years. Of 
course, the philosophy of biology has had to struggle hard to free itself from a 
philosophy of science that was strongly physics-centered, but it is now time to put 
these quarrels behind us and to take a fresh look at some problems that concern 
both areas of science. Probability and statistical methods are, of course, one such 
topic, but we decided to also take the opportunity of addressing other themes that 
are vital both in physics and biology, including the perennial topics of laws and 
natural kinds. As it became clear at the workshop, the concept of structure (as in 
mathematical structure) has become increasingly important in the philosophy of 
both areas and is at the center of exciting new developments.

 Team C focused on mathematical modeling in the social sciences, construed 
to include economics, political science, cognitive science, and the law. With the 
exception of economics, these disciplines have to – my knowledge – hardly been 
investigated by philosophers of science with such a focus, which makes these  
papers particularly welcome. They reveal impressively how diverse and yet closely 
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connected the sciences are today, at least with respect to the role of mathematical 
models (including the use of “techno-mathematical” models in social sciences). 
One of the most difficult problems for mathematically formalized theories and 
models has to do with the question of how the magnitudes that feature in them are 
connected to the real world. Many of the considerations in the contributions may 
be seen as seeking answers to this question. Furthermore, this section contains  
papers on such topics as the use of experiments in political science or of probabi-
listic thinking in the courtroom.

 The contributions from Team E take a new look at the formative years of 
modern philosophy of science, which, of course, are situated in the late 19th and 
early 20th Century. As these papers make clear, much of the current debates not 
only with respect to the foundations of statistics and probability, but also on induc-
tion, indeterminism vs. determinism, laws of nature, and the role of mathematics 
and formal methods in science as well as in epistemology have their historical 
roots in these years. Of course, members of the Vienna Circle such as Otto Neurath 
or Rudolf Carnap played a major role in shaping these debates, but also physicists 
such as Erwin Schrödinger, mathematicians such as John von Neumann, Richard 
von Mises and Ernst Schröder, physiologists such as Johannes von Kries or social 
scientists such as Adolphe Quetelet. It is fascinating to see how much of the cur-
rent debates were already anticipated by these thinkers – which, of course, is not 
to deny that there has also been progress, which the papers of this volume jointly 
document.

 I hope that readers will be as impressed as I am about the diversity as well as 
the quality and depth of current research in philosophy of science in Europe.

On behalf of all the editors, I wish to close by thanking Maria Carla Galavotti, Cris-
tina Paoletti and Beatrice Collina for their patience and sometimes insistence in 
running this ESF networking programme, which is more complex than one might 
think and always tends toward a state of higher system entropy. Furthermore, I 
wish to thank Robert Kaller for producing the manuscript and the European Sci-
ence Foundation and the Universities involved in the various workshops for their 
financial support.

Marcel WeberKonstanz, June 2011
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CHAPTER 1

SEAMUS BRADLEY

DUTCH BOOK ARGUMENTS AND IMPRECISE

PROBABILITIES

1.1 FOR AND AGAINST IMPRECISE PROBABILITIES

I have an urn that contains 100 marbles. 30 of those marbles are red. The remain-
der are yellow. What sort of bets would you be willing to make on the outcome
of the next marble drawn from the urn? What odds would you accept on the event
“the next marble will be yellow”? A reasonable punter should be willing to accept
any betting quotient up to 0.7. I define “betting quotient” as the ratio of the stake
to the total winnings. That is the punter should accept a bet that, for an outlay of
70 cents, guarantees a return of 1 euro if the next marble is yellow. And the punter
should obviously accept bets that cost less for the same return, but what we are
really interested in is the most the punter would pay for a bet on an event.

I am making some standard simplifying assumptions here: agents are risk
neutral and have utility linear with money; the world of propositions contemplated
is finite. The first assumption means that expected monetary gain is a good proxy
for expected utility gain and that maximising monetary gain is the agents’ sole
purpose. The second assumption is made for mathematical convenience.

Now consider a similar case. This case is due originally to Daniel Ellsberg
(Ellsberg 1961), this is a slightly modified version of it due to Halpern (2003). My
urn still contains 100 marbles, 30 of them red. But now the remainder are either
yellow or blue, in some unknown proportion. Is it rational to accept bets on Yellow
at 0.7? Presumably not, but what is the highest betting quotient the punter should
find acceptable? Well, you might say, there are 70 marbles that could be yellow
or blue; his evidence is symmetric so he should split the difference:1 a reasonable
punter’s limiting betting quotient should be 0.35. Likewise for Blue. His limiting
betting quotient for Red should be 0.3.

What this suggests is that this punter considers Yellow more likely than Red,
since he’s willing to pay more for a bet on it. So, as a corollary, he should prefer a
bet on Yellow to a bet on Red. And thus, if offered the chance to bet on Red or to
bet on Yellow, for the same stakes, he should prefer the bet on Yellow.

1 I am studiously avoiding mentioning the “principle of indifference” since I use “indif-
ference” to mean something else in the main text.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4 1,
© Springer Science+Business Media B.V. 2012
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4 Seamus Bradley

Empirical studies show that many people prefer the bet on Red to the bet on
Yellow, but are indeed indifferent between Yellow and Blue (Camerer and Weber
1992). This behaviour seems to contradict the good classical Bayesian story I
have been telling above. And it seems that preferring to bet on Red has some
intuitive appeal: you know more about the red marbles; you are more certain of
their number.

In the first example, there was uncertainty2 about which marble would be
drawn. In the second example, as well as that uncertainty, there was ambiguity
about what the chance set-up was. This is uncertainty of a different kind. It is ac-
commodating this second kind of uncertainty that motivates studies of “imprecise
probabilities”. Instead of the standard Bayesian approach of representing uncer-
tainty by a probability measure, the advocate of imprecise probabilities represents
uncertainty by a set of probability measures. This sort of approach has been ex-
plored by, among others,3 Isaac Levi (Levi 1974, 1986), Peter Walley (Walley
1991, 2000), and Joseph Halpern (Halpern 2003, 2006).

The precise probabilist has his belief represented by a probability function,
for example pr(R) = 0.3,pr(Y ) = pr(B) = 0.35 for the “split the difference”
probabilist. The imprecise punter has a set of probability measures P representing
her belief. P(Y ) is the set of values those probability measures give the event
Yellow. For example, if the imprecise probabilist considers possible every possible
combination of yellow and blue marbles, her credal state might be characterised
as follows: P(R) = {0.3},P(Y ) = P(B) =

{
0

100 ,
1

100 , . . .
70
100

}
.

Some advocates of imprecise probabilities – Levi, for example – insist that the
P(X) should be a convex set. That is, they would demand that P(Y ) = [0, 0.7]
the whole interval between the least and the most the probability might be. I don’t
subscribe to this view. Consider representing my uncertainty in whether a strongly
biased coin will land heads: if I don’t know which way the bias goes then any
convex credal state will include a 0.5 chance. But this is exactly the sort of chance
I know I can rule out, since I know the coin is biased.4

One might reason that each pr in P is equally likely, so using a uniform
“second-order probability” I can derive a single probability. This is a more for-
mal version of the “split the difference” intuition. I think it makes an unwarranted
assumption about the chance set up when it assumes that each pr is equally likely.

One criticism that has been levelled at this approach is that the imprecise prob-
abilist is vulnerable to a Dutch book, and is therefore irrational. A Dutch book is
a set of bets that always lose you money. A punter is vulnerable to the Dutch book
if there is a set of bets that she considers acceptable – which she would take – that

2 Economists are wont to distinguish “risk” and “uncertainty”; the former being where
the probabilities are known, the latter where they are unknown. I prefer to use “uncer-
tainty” as a catch-all term for ways one might fail to be certain, reserving “ambiguity”
for cases of unknown, or incompletely known probabilities.

3 It would be futile to try and list all those who have contributed to this area, so I list only
those whose work informs the current paper.

4 See also §4 of Kyburg and Pittarelli (1992).
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is a Dutch book. Accepting a set of bets that always lose you money is clearly an
irrational thing to do, so avoiding Dutch books is an indicator of rationality.

The plan is to outline exactly how this Dutch book challenge is supposed to go,
and show that it is flawed: that one of the premises it rests on is too strong. First
I outline the Dutch book argument, making clear its premises and assumptions.
Then I argue that one of the conditions on rational preference is too strong in the
presence of ambiguity and that therefore the imprecise probabilist is not vulnerable
to a Dutch book. This leads on to a discussion of decision-making with imprecise
probabilities, and I defend the imprecise view against related criticisms.

1.2 THE DUTCH BOOK ARGUMENT

In this section, I set out a fairly detailed characterisation of the Dutch book theo-
rem. Note that I am concerned only with a synchronic Dutch book in this paper.
All bets are offered and accepted before any marbles are drawn from the urn. Once
there is learning, things become much more tricky. Indeed, learning in the impre-
cise framework brings with it its own problems.5

Before we can discuss the argument, we need some formal structure. We
need a characterisation of formal theories of degree-of-belief, of betting and of
preference among bets.

1.2.1 Formalising Degrees of Belief

We have an algebra of events: E. I take E to be a set of propositions6 closed un-
der negation, disjunction and conjunction (formalised ¬,∨,∧ respectively). One
might also take the algebra of events to be a collection of sets of possible worlds
closed under complementation, union and intersection.7 These are the events the
punter is contemplating bets on. Red, Blue and Yellow are the events contemplated
in the examples at the beginning. There are two important events: the necessary
event and the impossible event. These are formalised as � and ⊥ respectively.

We are interested in functions that represent degree of belief. As a first ap-
proximation of this idea of modelling degree of belief, consider functions that map
events to real numbers. The larger the number, the stronger the belief. Let B be
the set of all functions b : E → R. The question becomes which subsets of B are
of particular interest? It is typically claimed that the probability functions are the
only rational ones.

One class of functions that will be of particular interest are the truth valuations.
The function ω : E → {0, 1} is a truth valuation if, for all X,Y :

• ω(X ∨ Y ) = max {ω(X), ω(Y )}

5 See: Seidenfeld and Wasserman (1993) and Wheeler (forthcoming).
6 Strictly speaking, we need the Lindenbaum algebra of the propositions: we take equiv-

alence classes of logically equivalent propositions . . . .
7 The two views are more or less equivalent, see the appendix.
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• ω(X ∧ Y ) = min {ω(X), ω(Y )}
• ω(¬X) = 1− ω(X)

Call the set of functions that satisfy these constraints V. I will sometimes call ω a
“world”, since specifying truth values of all propositions singles out a world. One
particular world is actualised, and this determines which bets pay out. So if a red
marble is drawn from the urn, the world that has ω(R) = 1, ω(B) = ω(Y ) = 0
is actualised. And so, for example, ω(R ∨ B) = max{1, 0} = 1, as one would
expect.

Another class of functions of particular importance are the probability func-
tions. These also map events to real numbers and satisfy the following restrictions
for all X,Y :

• pr(�) > pr(⊥)

• pr(X) is in the closed interval bounded by pr(�) and pr(⊥)

• pr(X ∨ Y ) + pr(X ∧ Y ) = pr(X) + pr(Y )

What is nice about this non-standard characterisation due to Joyce (2009) is that
it makes clear that setting the probability of the necessary event to 1 is a matter
of convention, not mathematical necessity. The important aspects of probability
theory as a model of belief are that the functions are bounded and additive: setting
pr(�) to 1 gives us the standard probability axioms. Let PR be the collection of
all functions satisfying these constraints. It should be clear that V ⊂ PR ⊂ B.

But which probability measure to take as one’s degree of belief in the Ellsberg
case seems underdetermined. The “split the difference” reasoning used by the
precise probabilist seems to go beyond his evidence of the situation. I claim that
modelling belief by sets of probability functions is often better than using a single
function. Instead of resorting to “split the difference” reasoning to home in on one
probability function to represent my uncertainty, I think it better to represent that
ambiguity by the set of probability functions consistent with the evidence.

But why ought the functions in that set be probability functions, rather than
any old functions in B? Because probability functions are still a kind of regula-
tive ideal: the more evidence I accumulate the sharper my imprecise probabilities
should become. That is, the more evidence I have, the narrower the range of values
my set of probabilities should assign to an event. In the ideal limit, I should like to
have a probability function; in the absence of ambiguity I should have a probability
function.8

8 For another argument in favour of probabilities as epistemically privileged, see Joyce
(1998).



1 Dutch Book Arguments and Imprecise Probabilities 7

1.2.2 Bets and Betting

Now we know how we are characterising degree of belief, let’s turn to how to
represent betting. This framework is from Halpern (2003) but see also Döring
(2000). A bet is, for our purposes, an ordered pair of an event in E and a “betting
quotient”. Bets will be ordered pairs of the form (X,α) where X ∈ E and α ∈
R. What is relevant about a bet is the betting quotient and the event in question.
The higher the α the punter would accept the more likely she thinks the event in
question is. The greater the proportion of the winnings a punter is willing to risk
on a bet, the more likely she thinks the event is.

A bet (X,α) pays out 1 euro if X turns out true by the light of truth valuation
ω and pays out nothing otherwise. Or more succinctly, (X,α) pays out ω(X). The
bet costs α and you don’t get your stake returned when you win. So the net gain
of the bet (X,α) is ω(X)− α. The bet (¬X, 1 − α) is called the complementary
bet to (X,α). Think of the complementary bet (¬X, 1 − α) as “selling” the bet
(X,α). Whenever the punter takes a bet (X,α), the bookie is effectively taking
on the complementary bet (¬X, 1 − α). Table 1.1 illustrates the “mirror image”
quality that the payoffs of complementary bets have.

Table 1.1: Payoffs for a bet and its complement

ω(X) = 1 ω(X) = 0

(X,α) 1− α −α
(¬X, 1− α) −(1− α) α

A set of bets B = {(Xi, αi)} costs
∑

αi and pays out
∑

ω(Xi) in world ω.
That is, you get 1 for every event that you bet on that ω makes true. So the value
of a set of bets B at world ω is τω(B) =

∑
(ω(Xi)− αi). The value of the bet at

a world is how much it pays out minus what the bet cost.
For set of bets B let its complement9 be BC = {(¬Xi, 1 − αi)}. It is easy to

show that τω(BC) = −τω(B). The “mirror image” quality of Table 1.1 also holds
for sets of bets.

A Dutch book in this context is a set of bets, B such that, for every ω ∈ V,
we have τω(B) < 0. That is, the pay out for the bet is negative however the world
turns out.

1.2.3 Constraints on Rational Betting Preference

We are interested in preference among bets, so define a relation “A 	 B” which
is interpreted as meaning “A is at least as good as B”, where A and B are bets.
We will later put constraints on what preferences are reasonable. As I said above,

9 This is a lazy way of talking, BC is not the complement of B in the sense of set-
theoretic complement in the set of bets, but rather the set of bets complementary to
those in B.
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what is of particular interest is the punter’s maximum willingness to bet. For an
event X , define αX by sup{α : (X,α) 	 (¬X, 1− α)}. These maximum betting
quotients are interpreted as characterising the punter’s belief state and it will often
be useful to talk about the belief function corresponding to these αXs. Define
q(X) := αX . You are vulnerable to a Dutch book unless your q ∈ PR. That is,
unless your (limiting) betting quotients have the structure of a probability function,
there is a set of bets – acceptable by the lights of your q – that guarantees you a
loss of money.

Halpern sets out four constraints on what sort of preferences it is rational to
have among bets. These are sufficient to force any agent satisfying them to have
betting quotients that have the structure of a probability measure. That is, failing
to satisfy the axioms of probability makes your betting preferences incompatible
with the constraints. In the strict Bayesian picture, q and degree of belief pr are
used more or less interchangeably. It will be important in what follows that one’s
willingness to bet and one’s degrees of belief are distinct, if related concepts.

Strictly speaking, the preference is among sets of bets, so when discussing
single bets I should say “{(X,α)} 	 {(Y, β)}”, but the preference relation induces
an obvious relation among singletons, so I omit the braces. I don’t make much of
a distinction in what follows between a bet and a set of bets.

The first of Halpern’s requirements says that if one bet B1 always pays out
more money than another B2, then you should prefer B1.

If, for all ω ∈ V we have τω(B1) ≥ τω(B2) then: B1 	 B2 (DOMINANCE)

Note that this condition does not force the punter to prefer bets with higher ex-
pected value: only to prefer bets with a higher guaranteed value. Preferring bets
guaranteed to give you more money seems eminently reasonable.

The second of Halpern’s conditions is simply that the preference relation be
transitive.

If B1 	 B2 and B2 	 B3 then B1 	 B3 (TRANSITIVITY)

Again, this condition seems reasonable.
The third of Halpern’s conditions – the one I will take issue with later – is

COMPLEMENTARITY.

For all X ∈ E and α ∈ R either,

(X,α) 	 (¬X, 1− α) or (¬X, 1− α) 	 (X,α)
(COMPLEMENTARITY)

Note that this is weaker than what is often assumed of rational preference: COM-
PLEMENTARITY does not require that the punter’s preference relation be complete
or total.10 It need only be complete with respect to complementary bets, but this
is still too much for me. I will discuss why I find this too strong a condition in the
next section. Note that this condition is specified in terms of single bets, but in the
presence of PACKAGE below, it extends somewhat to sets.

10 A relation R is total or complete when xRy or yRx for all x, y.
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The final condition, sometimes known as the “package principle”11 is, as
Halpern12 puts it, that “preferences are determined pointwise”.

If (Xi, αi) 	 (Yi, βi) for each 1 ≤ i ≤ n then:

{(Xi, αi)} 	 {(Yi, βi)}
(PACKAGE)

Note this is quite a restricted principle. For example, it does not in general allow
that if A 	 B and C 	 D then A ∪ C 	 B ∪D.

The Dutch book theorem says that if a punter’s preference among bets satis-
fies DOMINANCE, TRANSITIVITY, COMPLEMENTARITY and PACKAGE, then that
punter’s betting quotients q will have the structure of a probability function. Or to
put it another way, if the punter’s betting quotients violate the axioms of probabil-
ity, then this leads to a preference incompatible with the above conditions.

1.3 AMBIGUITY AND COMPLEMENTARITY

We have seen what is necessary in order to prove the Dutch book theorem (the
proof itself is in the appendix). In this section I argue that one particular premise
of the theorem – COMPLEMENTARITY – is too strong. It is not warranted in the
case of ambiguity.

I use preferring a bet to its complement as a proxy for acceptance of a bet.
“This seems unintuitive,” one might say, “I prefer lukewarm coffee to cold coffee,
but I wouldn’t accept either of them by choice.” But remember, we are dealing
with preference for one bet over its complement. So the analogous example would
be something like “preferring lukewarm coffee to no lukewarm coffee”, and here
it seems that that preference is tantamount to accepting lukewarm coffee.

So why is COMPLEMENTARITY unreasonable? First let’s see why it does seem
reasonable in the first example from the introduction. Recall that there we had 100
marbles in an urn, 30 red and the remainder yellow. The punter’s maximum betting
quotient on red, q(R) = 0.3. That is, 0.3 is the largest value for which a bet on
red is preferred to a bet against red. You have confidence that Red will come up
about 30% of the time, and since if it’s not Red, it’s Yellow, q(Y ) = 0.7.

Compare this to the Ellsberg case, where instead of the remainder being yel-
low, the remainder are yellow and blue in some unknown proportion. The prob-
abilist splits the difference13 and sets his betting quotients as follows: q(R) =
0.3,q(Y ) = q(B) = 0.35. The imprecise probabilist claims we can act differ-
ently. q(R) = 0.3 still seems acceptable, our evidence about Red hasn’t changed.
But it seems that “ambiguity aversion” about evidence for Yellow and Blue sug-
gests that the punter’s maximal betting quotients for each should be lower. Perhaps

11 See e.g. Schick (1986).
12 (Halpern 2003, p. 22).
13 Of course, a subjectivist could set any particular probabilistically coherent value to

the events, but what is objectionable to the imprecise probabilist is the suggestion that
q(B) = 0.7− q(Y ).
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even q(Y ) = q(B) = 0, since if you entertain the possibility that the chance of
Yellow might be 0, then you should refuse to buy bets on Yellow. I focus on this
extreme case. But first, two caveats. q is not a representation of belief. It is a
representation of willingness to bet. Part of the conceptual baggage of precise
probabilism that the imprecise probabilist needs to get away from is too close a
connection between willingness to bet and belief. Obviously they are related, but
not as tightly as they are in the precise framework. The belief is represented by
the set of probabilities P. Also, I am not endorsing as rational the extreme view
(q(Y ) = q(B) = 0), merely using it for illustrative purposes.

Say q(Y ) = q(B) = 0. Then COMPLEMENTARITY demands that q(¬Y ) =
1. Or, in other words, if αY = 0 COMPLEMENTARITY demands that (¬Y, 1−0.1)
is preferred to its complement. Similarly for B. This bet should also be acceptable:
(¬R, 1 − 0.4). Together, these bets form a Dutch book (see Table 1.2). Call this
set D.

Table 1.2: Dutch booking an imprecise probabilist

R B Y

(¬R, 1− 0.4) −0.6 1− 0.6 1− 0.6
(¬B, 1 − 0.1) 1− 0.9 −0.9 1− 0.9
(¬Y, 1− 0.1) 1− 0.9 1− 0.9 −0.9

Total −0.4 −0.4 −0.4

But to demand that the imprecise probabilist conform to COMPLEMENTARITY

(and therefore, accept these bets) is to misunderstand the nature of the uncertainty
being encoded in q(Y ) = 0. If there is ambiguity – uncertainty about the chance
set-up itself – low confidence in an event does not translate into high confidence in
its negation. There is an important distinction between the balance of evidence and
the weight of evidence:14 how conclusively the evidence tells in favour of a propo-
sition (balance) versus how much evidence there is for the conclusion (weight).
COMPLEMENTARITY assumes that the unwillingness to bet on an event is due to
the balance of evidence telling against it and if this is the case then it is a rea-
sonable condition. If on the other hand the refusal to accept the bet is due to the
lack of weight of evidence, then the condition is not reasonable. Because of the
ambiguous nature of the chance set-up (the lack of weight of evidence), the punter
is simply not willing to bet either way most of the time. So the imprecise prob-
abilist will not want to conform to COMPLEMENTARITY and therefore, will not
be subject to a Dutch book in this way. In the appendix, I show that in the ab-
sence of COMPLEMENTARITY it is reasonable to have betting quotients satisfying
restrictions weaker than those demanded of probabilities.

14 Joyce (2005).
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One might still argue that if the punter were forced to choose one side or the
other of any given bet (X,α) – that is, if the punter were forced to obey COM-
PLEMENTARITY – then she would obey the probability axioms or be subject to a
Dutch book. This is true, but I don’t see how this procedure elicits a fair reflection
of the punter’s credal state. If I forced the punter to take bets where the αs were all
1s or 0s, the resulting betting quotients would be a valuation function or the punter
would be open to a Dutch book: that does not mean that the punter’s degrees of be-
lief are truth valuations. The punter’s actions only reflect the punter’s belief when
her actions are not too restricted. So the conditions on betting preference have to
be independently reasonable for them to form the basis of a Dutch book argument.
COMPLEMENTARITY is not independently reasonable unless the chance set-up is
unambiguous.

1.4 DECISION WITH IMPRECISION

To further explore this issue, we need to say something about what decision theory
looks like from the imprecise probabilities perspective. The precise probabilist acts
in accordance with the rule “maximise expected value with respect to pr”; where
pr is the precise punter’s probability. Let’s say the expectation of the set of bets
B is E(B). Restricted to the case of choosing whether to buy a set of bets B or its
complement BC, this amounts to accepting B if E(B) =

∑
i (pr(Xi)− αi) > 0

and taking BC otherwise. It’s easy to show that E(BC) = −E(B) so one and
only one bet has positive value in any pair of complementary bets, unless both
bets have 0 expected value. So the precise probabilist always prefers one bet to
the other, unless he is indifferent between them. This just follows from his being
opinionated.

What about the imprecise probabilist? How is she to decide? I don’t intend to
suggest a fully worked out decision theory for imprecise probabilities, but simply
offer enough of a sketch to explain how the imprecise probabilist avoids Dutch
books. So let’s turn the discussion in the last section on its head and start from a
punter’s belief state and derive what decisions that punter would make.

Recall the imprecise punter’s credal state P is a set of probability measures,
P(Y ) is the set of values assigned to Y by members of P. This P(Y ) is already a
“summary statistic” in a sense: it doesn’t make clear that for any pr ∈ P whenever
pr(Y ) is high, pr(B) is low and vice versa. So it is P that represents the punter’s
belief state, and P(Y ) and so on are only shorthands, summaries that miss out
some information. This is an important point, and one that is not often made.

We can define expectation of set of bets B = {(Xi, αi)} for the imprecise
probabilist as follows:

E(B) =
{∑

pr(Xi)− αi : pr ∈ P
}

This is the set of expected values of the bet with respect to the set of probabilities
in P. So the idea of maximising expected value isn’t well defined for the imprecise
probabilist.
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Another standard summary statistic for imprecise probabilities are the lower
and upper envelopes:

• P(X) = inf{pr(X) : pr ∈ P}
• P(X) = sup{pr(X) : pr ∈ P}
Likewise we can define E and E to be the infimum and supremum of E respec-

tively.
These summary statistics have their own interesting formal properties.15 For

example, P is superadditive. That is, for incompatible X,Y we have P(X ∨ Y ) ≥
P(X) + P(Y ).

Again, these are summarising some aspect of the punter’s credal state, but they
are misrepresentative in other ways: considering the upper and lower envelopes to
represent the agent’s credal state is a mistake.16

So, how should a punter bet? If E(B) > 0 then B looks like a good bet: every
probability measure in P thinks that this bet has positive expected value. Likewise,
if E(B) < 0 then BC looks promising. So any decision rule for imprecise proba-
bilities should take into account these two intuitions. But this still leaves a lot of
room for manoeuvre: what should the punter do when E(B) < 0 < E(B)?

The more general question of what decision rule the imprecise probabilist
should use is left open. She could maximise E, she could use Levi’s rule (Levi
1986), she could use the Hurwicz criterion (Hurwicz 1951) . . . . I leave this bigger
problem unanswered for now. I don’t need to offer a fully worked out decision
rule to show how the imprecise probabilist can avoid the Dutch book.

As a first approximation, let’s imagine an extreme case of the ambiguity averse
imprecise probabilist. She refuses to take either side of any bet (X,α) if E(X,α) <
0 < E(X,α). That is, she has no preference between (X,α) and its complement if
α is in the interval

[
P(X),P(X)

]
. And she will obey the two concerns discussed

above: take bets on X if α is low enough, bet against X – bet on (¬X, 1 − α) –
if α is big enough. This punter is disobeying COMPLEMENTARITY, but can act in
accordance with the other three conditions. She is disobeying COMPLEMENTAR-
ITY because there are values of α for which she has no preference between the
complementary bets: she would accept neither.

A punter who obeys the three other conditions but not COMPLEMENTARITY

has her limiting betting quotients have the structure of a lower envelope like P.
I prove this in the appendix. This is not to say that P represents that punter’s
beliefs, but rather that this particular elicitation procedure (betting) can only give
us so much information about the punter’s credal state.

However, one might object that this maximally ambiguity-averse punter is still
irrational in not accepting a collection of bets that guarantees her a positive value
whatever happens: she will not accept what Alan Hájek calls a “Czech book”
(Hájek 2008). This is related to the idea in economics and finance of “arbitrage”.

15 Halpern (2003) and Paris (1994).
16 Joyce offers nice examples of this in: Joyce (2011).
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Consider the set of bets: C = {(Y, 0.1), (B, 0.1), (R, 0.3)} in the Ellsberg exam-
ple. Whatever colour marble is picked out of the urn, C makes you a profit of
0.5, so it would be crazy not to take it! However, our imprecise probabilist punter
will not want to accept either of the first two bets, since P(Y ) < 0.1 < P(Y ) and
similarly for Blue. So does this mean she will refuse a set of bets guaranteed to
make her money? Isn’t this just as irrational as accepting a collection of bets that
always lose you money?

Let’s say this punter still conforms to DOMINANCE which guarantees that she
will prefer bets that always pay more. This condition means that the imprecise
punter will still accept the Czech book, even if every stake is between P and P.
This is because τω(C) = 0.5 > 0 for any ω, so this set of bets is preferred to its
complement by DOMINANCE. So if we take DOMINANCE as a necessary condition
on imprecise decision rules, the imprecise punter can accept Czech books. Perhaps
the other two conditions that I accept – TRANSITIVITY and PACKAGE – should
also be taken into account when thinking about imprecise decision rules.

This brings home the point that the lower and upper envelopes are not all there
is to an imprecise probabilist’s belief state: every pr ∈ P assigns positive expected
value to C (indeed, positive guaranteed value) so whatever the chance set up, this
is a good bet. But if the punter were acting just in accordance with her upper and
lower probabilities, this fact might get lost in the summarising. So again we see
that just focusing on the spread of values misses out important information about
the punter’s credal state.

The imprecise decision problem has been discussed extensively and many so-
lutions have been proposed. Brian Weatherson reviews some solutions, and argues
that many of them fail (Weatherson m.s.). Indeed, he argues that no decision rule
which relies solely on E and E can ever be plausible. The whole project of im-
precise probabilities has been criticised on the grounds that it cannot offer any
adequate decision rules. Elga (2010) argues that no decision rule for imprecise
probabilites is satisfactory. There is obviously a lot more to be said on the subject
of decision making in the imprecise framework.

Avoiding Dutch books is taken to be necessary for being rational. So being
vulnerable to Dutch books is sufficient for being irrational. I have shown that the
imprecise probabilist isn’t as vulnerable to Dutch books as is sometimes suggested.
So, I claim, this particular avenue for criticising imprecise models isn’t available.
I have also suggested that more work needs to be done in exploring how best to
make imprecise decisions. I think the increased expressive power of imprecise
frameworks, and the fact that we do have to deal with several kinds of uncertainty
means that imprecise probabilities are a worthwhile area for research.

APPENDIX: PROOF

Recall that αX is defined as the most that a punter will buy a bet on X for. The
Dutch book theorem claims that the function q(X) = αX is a probability function.
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What I prove here is that q(X) = αX is a lower probability17 without using
COMPLEMENTARITY. That is, I show that q acts like one of the summary statistics
of the “sets of probabilities” approach I favour. Define βX = inf{β : (¬X, 1 −
β) 	 (X, β)}. I also show that q(X) = βX is an upper probability.

If X |= Y then (Y, α) 	 (X,α) and (¬X, 1−α) 	 (¬Y, 1−α). This follows
from DOMINANCE and the fact that if X |= Y then ¬Y |= ¬X . Remember,
(X,αX) 	 (¬X, 1−αX) by definition, so by the above result and TRANSITIVITY,
if γ ≤ αX then (X, γ) 	 (¬X, 1 − γ). This is in fact an “if and only if” result,
since αX is defined as the largest value for which this preference holds. A similar
result holds for βX . The above results allow us to show that if X |= Y then
αX ≤ αY and βX ≤ βY .

αX and β¬X are related to each other. (¬¬X, 1 − β¬X) 	 (¬X, β¬X) by
definition. Since ¬¬X = X it follows that 1 − β¬X ≤ αX . We also have
1− (1− αX) = αX , so by definition (¬¬X, 1 − (1− αX)) 	 (¬X, 1 − αX) so
1− αX ≥ β¬X . Thus 1− β¬X ≥ αX . These two inequalities together imply that
αX = 1− β¬X .

The set of bets {(X,αX), (¬X, 1 − βX)} is preferred to its complement by
PACKAGE. This set always pays out 1, and costs αX + 1− βX . So the net gain of
this bet is always βX − αX . If αX > βX , the net gain would be negative, so the
net gain of the complementary bets would be positive. So the preference for this
set over its complement would contradict DOMINANCE. So for any X we know
that αX ≤ βX .

For logically incompatible propositions, X,Y consider the bet B = (X ∨
Y, αX + αY ). Now compare this with C = {(X,αX), (Y, αY )}. These bets
always have the same payout. So by DOMINANCE, we know that B 	 C. We
also know that CC 	 BC for the same reason. Now, C 	 CC by PACKAGE.
B 	 C 	 CC 	 BC so, by TRANSITIVITY we know that B 	 BC. By definition,
αX∨Y is the maximum value for which B 	 BC. So αX∨Y ≥ αX+αY . A similar
chain of reasoning leads to the conclusion that βX∨Y ≤ βX + βY .

This demonstrates that q(X) = αX is superadditive and q(X) = βX is sub-
additive, as is characteristic of lower and upper probabilities. This proof makes no
use of the COMPLEMENTARITY condition. However, to make the connection with
Sect. 7.1 of Cozman’s characterisation of lower probabilities, we also need the as-
sumption that α⊥ = 0 and α� = 1. This isn’t needed once COMPLEMENTARITY

is in place. Using this condition it is easy to show that αX = βX for all X and
thus that q(X) = q(X) = q(X) and that this function is additive, non-negative
and normalised: a probability measure.

One can, in fact, construct a mass function out of the αXs and show that q is a
Dempster-Shafer belief function (this again without using COMPLEMENTARITY).

The last part is easier to do in terms of sets of worlds, rather than in terms of
propositions, so I sketch the translation between the two paradigms here. Define
[X ] as the set of valuations that make X true: [X ] = {ω ∈ V : ω(X) = 1}.
[X ] ⊆ [Y ] if and only if X |= Y , so we have an structure preserving bijection

17 In the terminology of Cozman (n.d.).
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between propositions and sets of “worlds”. I drop the square brackets in what
follows.

Define a mass function as follows:

m(X) = αX −
∑

Y �X

m(Y )

That is, m(X) picks up all the mass not assigned to subsets of X . This should,
strictly speaking be an inductive definition on the size of X , but I take it that it is
obvious what is meant here. If we now consider the following equation:

q(X) =
∑

Y⊆X

m(Y )

This is equivalent to the above characterisation of q(X) = αX . That q has this
mass function associated with it means that it is a Dempster-Shafer belief function.
This is a particular kind of lower probability: it is an infinite-monotone lower
probability.
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CHAPTER 2

TIMOTHY CHILDERS

OBJECTIFYING SUBJECTIVE PROBABILITIES: DUTCH

BOOK ARGUMENTS FOR PRINCIPLES OF DIRECT

INFERENCE

2.1 INTRODUCTION

A Principle of Direct Inference licenses an inference from the frequency of the oc-
currence of attributes in a population to the probability of particular occurrence of
an attribute in a sample. From a Bayesian point of view, such a Principle requires
that if we have knowledge of the relative frequency of an attribute in a popula-
tion, our degree of belief in the occurrence of that attribute in the population be
equal to this frequency (or that this knowledge should somehow constrain our de-
grees of belief about the occurrence in a sample).1 This might seem so painfully
self-evident as to not need any justification. However, Bayesian justifications for
constraining degrees of belief are usually based on Dutch Book arguments, and in-
deed several such arguments for Principles of Direct inference have been offered.
I will discuss three, and find them wanting. Subjective probabilities therefore re-
main subjective even when conditioned on knowledge of objective probabilities.

2.2 THE FINITE CASE

It would seem that if there is a straightforward justification for a Principle of Direct
Inference it can be found in the finite case. Focussing on the finite case allows us to
ignore to some degree difficulties with different interpretations of the Dutch Book
arguments. For example, we need no longer worry about limitations of a finite
agent, and so need not concern ourselves with, say, countable additivity.

I will use as my target an argument from Kyburg (1981), although I doubt he
would have seriously endorsed it2:

1 Given an exact formulation of such Principles turns out to very tricky, witness the large
literature on Lewis’s version of the Principle of Direct Inference. Luckily we will not
need an exact formulation.

2 Kyburg puts this argument forward in a discussion of the Principal Principle, Lewis’s
oddly named version of a Principle of Direct Inference. Kyburg was not a Bayesian,
and was sceptical of Lewis’s Principle.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4 2,
© Springer Science+Business Media B.V. 2012
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As above, but you know that the coin was tossed 100 times, and landed heads 86 times. To
what degree should you believe the proposition that it landed heads on the first toss?

Answer: 86 per cent.
86 : 14 are the only odds that will protect you from a Dutch book if you are going

to treat the tosses all the same and are going to cover an arbitrary set of bets concerning
various tosses made this morning. (Kyburg 1981, 774)

Kyburg does not actually provide the Dutch Book argument, leaving it for us
to fill in. I shall now try to do so. First, I assume that we are given the proportion
of heads.3 Hence, we should add is that “all that you know is that the coin was
tossed 100 times, and landed heads 86 times”. We are given a population in which
we know the mean, in this case, 0.86. We set odds in advance for each of the tosses
made this morning, and a Bookie will choose (at random) among these bets. The
claim is that the Bookie can subject us to a sure loss if we set a betting quotient
different than 86:14.

As usual, a bet on a the occurrence of an event X (or the truth of a proposition,
if you wish) is a contract between a bettor and a Bookie, with the bettor receiv-
ing some good a from the Bookie, should the event occur and giving some good
b should it not. Bets are said to capture degrees of belief: the stronger the bettor
believes, the longer the odds he or she should be willing to offer. This gives the
obvious payoff table:

X Payoff
T +a
F −b

Using S to denote the total amount of money at stake, a+ b, and denoting the
betting quotient b

b+a as p, we can rewrite the table as usual:

X Payoff
T S(1− p)
F −Sp

To change the direction of the bet, i.e., to bet against X , change the signs of a
and b. A fair betting quotient does not guarantee that one side of the bet will win.
One way of illustrating this is to say that even if the Bookie and bettor have the
same information and capabilities, if the bettor offers an unfair betting quotient, the
Bookie can subject him or her to a sure loss by changing the direction of the bet.
The Ramsey-de Finetti theorem is often taken as establishing that this unfortunate
outcome comes about if fair betting quotients are not probabilities. A converse
argument establishes that sticking to fair betting quotients is a sufficient condition
for avoiding sure losses at the hands of a direction-changing Bookie. Vulnerability
to a Dutch Book is said to be indifference between a sure loss and a sure gain. This

3 But not the order of the outcomes, for then the proper betting quotient on a particular
outcome would be either a one or a zero.
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indifference is sometimes termed “incoherence”. The point is that it is bad to have
incoherent degrees of belief.4

Now to a Dutch Book argument for a Principle of Direct Inference. Let us
take the very simplest case to start with, namely, that the Bookie can require us to
bet on each of the 100 outcomes. Assume without loss of generality a stake of 1,
denominated in your favourite currency. For each bet, you offer the same betting
quotient p. 86 times you will win, 14 times you will lose, i.e., your gain will be
86(1−p)+14(−p). Setting this equal to zero, the only solution for p is, of course,
86/100, and hence 86/100 is the only fair betting quotient.

More generally, for a finite population of size N consisting of binomial trials,
m of which are successes, and given a constant betting quotient of p, the payoff
will be m(1 − p) + [(N −m)(−p)], which some quick algebra will show is only
0 when p = m/N . Hence p is fair only if is m/N since it is the only betting
quotient that gives no advantage to either side of the bet. The converse Dutch
Book argument, that expected gain is 0 only when p = m/N , follows easily.

This argument concerns only the trivial case of betting on each of the outcomes
of a finite amount of trials. The result is hardly surprising: if we are betting on a
known truth, then the probability of that truth must be 1. And in the case of betting
on all outcomes we know the truth about the relative frequency of the attribute. But
this is hardly a Principle of Direct Inference, since it doesn’t tell us about sampling.
Sampling without replacement from a finite population is the first non-trivial case
of such a Principle.

A simple urn model can serve as the basis of (what I take to be Kyburg’s)
Dutch Book argument. The drawing of a ball (and noting its colour) serves as a
trial, taking, say, the drawing of a white ball as a success (in Kyburg’s example as
heads and tails). Draws are random, i.e., any sequence is as likely to be drawn as
another. The total population is N with total m white balls, sample size n. Yn is
the random variable that Yn =

∑
n Xn, where Xi the indicator variable of the ith

trial.
We can derive the distribution for Yn = k as follows: there are

(
m
k

)
ways to

draw the white balls, and
(
N−m
n−k

)
ways to choose the remaining n− k black balls.

The total number of possible sequences of draws of k white balls from a sample
of n is then just these two multiplied together. Normalize by

(
N
n

)
to get

p(Yn = k) =
(mk)(

N−m
n−k )

(Nn)
.

This is, of course, a familiar hypergeometric distribution. It is elementary
that p(Xi) = m

N and that E(Yn) = nm
N . The expectation of the sample being

the population mean, expected loss/gain is only zero when the betting quotient is

4 There are many variants of this argument, some involving gun toting Book-makers ac-
costing you personally and requiring a bet in some utility currency or your life. These
variants attempt to get around problems with the implementation of actually, or coun-
terfactually, betting, such as unwillingness to bet or the non-linear utility of money.
The issue I am pursuing is internal to the Dutch Book enterprise, so I will ignore the
rather obvious, and strong, objections to Dutch Book arguments.
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equal to the mean. Utterly trivially, if you’re drawing all balls from the urn, the
only fair betting quotient is the population relative frequency (although we will
return to this triviality).

But this is not, again, a very interesting conclusion: successfully betting on
an entire population of outcomes, given a known mean, requires offering a bet-
ting quotient equal to that mean. The case of interest is that of sampling. This
might seem again trivial: the mean of the sample is the mean of the population
(which is why the mean is called an unbiased estimator). It is easy to show that

any deviation from the mean by p leads to an expected loss. Where x̄ = 1
n

n∑

i=1

Xi

and µ = E(Xi), the sample and population means, E(x̄) = E

(
1
n

n∑

i=1

Xi

)
=

1
nE

(
n∑

i=1

Xi

)
= 1

nE

(
n∑

i=1

µ

)
= µ. So in a sample of n, expected gain is

(
nm

N (1− p)
)− [

nN−m
N p

]
= n

(
m
N − p

)
.

This, however, is only the converse Dutch Book argument. It shows that set-
ting probabilities to relative frequencies (in this case) is sufficient to prevent sure
loss/gain. But can we go the other way? Jeffrey (1983), following de Finetti,
points out that if the probabilities are equal, we can derive them from knowl-
edge of the expectation. For a sample size equal to population size, n = N ,

m successes, E
(∑N

i Xi

)
= m. Since the Xi are binomial random variables,

E
(∑N

i Xi

)
=

∑N
i piXi =

∑N
i 0 × pi + 1 × pi =

∑N
i pi. Since the pi are

equal, this is Npi. So we get that E
(∑N

i Xi

)
= m = Npi and so pi =

m
N .

So it seems that we can go the other way. According to Jeffrey this result
“. . . explains to the Bayesian why knowledge of frequencies can have such power-
ful effects on our belief states” (Jeffrey 1983, 145). In particular, he also claims
that this trivially shows that degrees of belief must be constrained by knowledge
of relative frequencies. By contrast, however, de Finetti is quite cautious, claiming
only practical usefulness in settling our degrees of belief:

If, in the case where the frequency is known in advance, our judgement is not so simple, the
relation is still very useful to us for evaluating the n probabilities, for by knowing what their
arithmetic mean has to be, we have a gross indication of their general order of magnitude,
and we need only arrange to augment certain terms and diminish others until the relation
between the various probabilities corresponds to our subjective judgement of the inequality
of their respective chances. (De Finetti 1964, 114)

De Finetti is right, of course: we might be able to go in the other direction, but
we need not. A simple example suffices to show that a Bookie cannot guarantee
a sure loss for any bets taken on samples of the population at rates other than the
population mean. Consider an urn with 10 balls, 5 of which are white, the rest
black. A sample is drawn of five balls. Obviously, the expected number white
balls drawn is 2.5. But suppose I offer p(Xi) = 1, for p(S5 = 5) = 1. This in
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no way guarantees a sure loss: I might just draw five white balls. But with no sure
loss, there is no indifference between a sure loss and gain, no Dutch Book, and so
no basis for casting aspersions on anyone’s rationality.

To belabour the point, consider the case in which we are drawing two balls
from an urn that contains two black ➊➋ and two white ➂ ➃ balls. Below is a
payoff table for a bet on black for a variety of odds:

Draws 1:1 2:1 3:1 0:10
➊➋ 2 4 6 0
➊➂ 0 1 2 −10
➊➃ 0 1 2 −10
➋➂ 0 1 2 −10
➋➃ 0 1 2 −10
➂➃ −2 −4 −6 −20

Even at odds of 3:1, sure loss or gain is by no means guaranteed.
If your sample were the full population, and your probabilities were equal,

your degrees of belief would, by Dutch-Bookability, be fully constrained. It is also
clear that as the sample gets larger room for manoeuvre for fiddling with degrees
of belief away from the mean gets smaller. Nonetheless, there is no Dutch Book
if you do not take the sample to be an exact little copy of the population. Granted,
believing that you can predict deviations from the mean is odd, but the whole point
of subjective Bayesianism is that your degrees of belief are wholly yours: it is not
the Bayesian’s business to lecture you on them.5

The chart above does suggest a possible way out: utility is maximized only at
odds of 1 : 1. All other odds yield lower expected utility, so why not stick with
1 : 1 odds? The appeal to expected utility does not seem very hopeful. The use of
expected utility as a decision rule is in need of justification itself. This justification
hardly seems forthcoming, given the poor standing of the independence axioms
(as is seen rather clearly with the so-called Allais paradox).

If there is to be no Dutch Book justification for a Principle of Direct Infer-
ence, then perhaps we could just append one to Bayesianism. This, however, is
unappealing. If the Principle is not justified by Dutch Books, then, from the point
of view of subjective Bayesianism, it is not justified as a constraint on degrees of
belief. That’s simply the point of subjective Bayesianism.

However, doing without a Principle of Direct Probabilities for finite relative
frequencies is also unappealing, since they are rather useful. For example, opin-
ion surveys give finite relative frequencies (say, of the approval ratings of politi-
cians), field biologists deal with finite relative frequencies (of, say, species of fish
in a lake). Thus we have reason to continue a search for a justification of such a
Principle.

5 I have not challenged the assumption of the equiprobability of draws: but I could, and
for exactly the same reasons. Then the Dutch Book argument wouldn’t even work in
the case where the sample is the entire population.
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2.3 THE INFINITE CASE

There might be hope for a utility theoretic justification in a milder sense. In the
single case, we can ignore a possible loss of utility, but maybe in the long(er)
run, it will become a risk impossible to ignore. In other words, we might look
to repeated sampling with replacement in place of sampling without replacement.
This is leads us to consider the infinite case (the hypergeometric distribution of
course approaches the binomial as sample size and population go to infinity). This
leads nicely to two Dutch Book arguments for a Principle of Direct Inference, one
from Howson and Urbach (1993), and one from Mellor (1971).

I begin with Mellor’s argument (from Mellor 1971, 160–164). Consider a
series of N trials, each with the same fixed betting quotient p, to capture the notion
of a series of identical trials. In this set up, the Bookie chooses the stake, to be
equally divided among the trials, so that the payoff on each trial is, of course, the
same, i.e., 1

N . The bookie then picks the direction of the bets after learning the
outcomes of the trials.6

Given this set up, it is seemingly trivial that a betting quotient can only be
fair if it is the same as the relative frequency in the sample. Since the payoff is
−N

∣
∣SN

N − p
∣
∣, by the Strong Law of Large Numbers, p

(
limn→∞ SN

N = µ
)
= 1.

So, in a large enough series of trials, betting quotients that differ from the mean
lead to a sure loss.

The argument is not as simple as it seems, however. I will concentrate on
two problems with Mellor’s argument. First, it employs the Strong Law, which
holds with probability one. But there are some very odd sequences of trials. For
example, Ville famously constructed sequences that unilaterally approach a limit,
and so for any finite initial segment, the relative frequency will differ from the
limiting relative frequency. In betting terms, this means that one side of the bet
would always make a gain for any finite sequence. Such sequences have, of course,
measure zero. But that doesn’t mean that they don’t exist.

Still, it might be countered, if you bet infinitely often, you will lose. But this
leads to another problem: the argument becomes bad science fiction. Perhaps I
will start to lose at some point, but this could be after the Sun swells into a red
dwarf. Or, if I am condemned to an eternal betting hell, why should I care how I
bet? Apparently I have live forever, and have unlimited amounts of money. The
rest of the story needs to be filled in somehow. But no matter how it is filled in, it
can hardly be said to be a pragmatic argument.7

6 Recall that we use a unit stake. Mellor’s requirement that the stakes be divided equally
among the trials is non-standard, but it does guarantee the desired result. It does so
however at the cost of violating the subjective Bayesian ethos, since the Bookie can
choose the direction of the bets after learning the outcomes of the trials, and so the
Bookie has more information than the Bettor.

7 We could try to argue that the convergence will be speedy. The Law of Iterated Loga-
rithm gives a precise meaning to ‘speedy’ (i.e., not very). No matter – such an argument
will not work in lieu of a solution to the problem of induction.
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A more hopeful attempt at a Dutch Book argument for a Principle of Direct
Probabilities is made by Howson and Urbach (1993, 345). Their argument stresses
the notion of consistency. They concentrate on the conditional probability of an
outcome given sampling from a von Mises collective with convergent relative fre-
quency p. If you offer a betting quotient different from p you contradict the condi-
tion that you are sampling from a von Mises collective:

Suppose that you are asked to state your degree of belief in a toss of this coin landing
heads, conditional upon the information only that were the tosses to continue indefinitely,
the outcomes would constitute a von Mises collective, with probability of heads equal to p.
And suppose you were to answer by naming some number p′ not equal to p. Then. . . you
believe that there would be no advantage to either side of a bet on heads at that toss at odds
p′ : 1 − p′. But that toss was specified only as a member of the collective characterised
by its limit-value p. Hence you have implicitly committed yourself to the assertion that
the fair odds on heads occurring at any such bet, conditional just on the same information
that they are members of a collective with probability parameter p are p′ : 1 − p′. . . [B]y
assumption the limit of [the collective] is p, and p differs from p′, you can infer that the
odds you have stated would lead to a loss (or gain) after some finite time, and one which
would continue thereafter. Thus you have in effect contradicted your own assumption that
the odds p′ : 1− p′ are fair. (Howson and Urbach, 1993, 345)

A Mellor-style argument (but one using the Weak Law only) gives a conver-
gence of opinion result, claimed to give empirical content to relative frequency
theories.

This argument has several nice features. It need not be dependent on von
Mises’s account of objective probabilities. It only requires a theory that postulates
convergence of frequencies, and is of therefore broad applicability. Even better,
it can also support a Principle of Direct Inference for finite populations. If you
accept the hypergeometric distribution as your model, then to give a different rel-
ative frequency is simply to accept a contradiction: to accept that the mean of a
population is p, and then to deny that it is simply a contradiction. If you hold that

p(Yn = k) =
(mk )(

N−m
n−k )

(Nn)
, and that the draws are independent, and yet deny that

p(Xi) =
m
N , you embrace a contradiction – a straightforward logical contradiction.

Howson and Urbach’s Dutch Book for their Principle of Direct Inference has
not, of course, escaped criticism. I will discuss two. The first is that their proof
relies on symmetry principles, in the guise of the assumption of the equiproba-
bility of trials. Since symmetry principles are not part of subjective Bayesianism,
Howson and Urbach’s argument would fail to give a justification of a Principle of
Direct Inference. This criticism is made by Strevens (1999). It seems to me, how-
ever, to misunderstand the role of symmetry in the argument. Use of symmetry
is not ruled out in subjective Bayesianism, it is simply not taken as an additional,
obligatory, principle. And it is just in the case of modeling objective probability
that you would appeal to the symmetries found in the notion of random trials. It
is therefore not an illicit use of the symmetry, but one appropriate to a particular
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model. In this case, the symmetry comes from the randomness of the von Mises
collective, which guarantees that the constant probabilities necessary for the Dutch
Book. But randomness is not essential: i.i.d. trials or various urn models could
serve the same purpose. So symmetry does not play a central role any more than
it does in any result concerning convergence in stochastic processes.

A more troublesome objection is that since any initial segment is compatible
with any particular relative frequency there is no inconsistency from ignoring a
Principle of Direct Inference. As Albert puts it “. . . the fact that the sequence has
limiting relative frequency 1

2 implies nothing about its beginning” Albert (2005).
According to Albert, this means that there can be no pragmatic inconsistency (in
the short run, which as I have just argued is all we get). This objection, however,
misses the point of the Howson and Urbach proof. First, they provide a conver-
gence of opinion result to show how it is possible to be sensitive to frequencies.
But this should not be taken as implying that they are offering a solution to the
problem of induction. It is simply the case that any initial segment is compatible
with an infinite sequence of any relative frequency. Howson and Urbach do not
claim to offer any solution to this particular problem of induction. However, they
do claim, rightly, that if we are by our own lights sampling from a random se-
quence that converges to p, then that is the only fair betting quotient, by definition.

However, there is another reason to be dissatisfied with the Howson and Ur-
bach argument. The argument is based on Howson’s ‘logical’ interpretation of
subjective Bayesianism (explored in Howson 2008). This interpretation takes very
seriously the notion of Dutch Book arguments being about logical consistency. So
for example, the inconsistency of being indifferent between a sure loss and a sure
gain, given an assertion that a betting quotient is fair, is a purely logical inconsis-
tency. Many (but not me) will not find it satisfactory because it is synchronic.

The argument runs as follows: at the time of betting, we offer odds conditional
on a model of objective probabilities, say, a collective. This collective specifies the
relative frequency of the infinite sequence of outcomes. This frequency is a param-
eter of the collective, and to give a different parameter leads to contradiction. This
means that a book can be made before any outcomes are actually observed, simply
on the basis of the contradictory values of the probability. But this means the Dutch
Booking takes place at a ‘higher’ level, at the level of the consistency of probabil-
ities with a model, and not with diachronic accumulation of evidence. (It should
be recalled that Howson and Urbach reject diachronic Dutch Book arguments.)
The Dutch Book argument, and hence the Principle, is a matter of consistency of
beliefs at a particular point, and not at all of the consequences of those beliefs.

This does avoid the odd character of worrying about the consequences of ex-
tremely lengthy series of bets. But it does so at the cost of jettisoning all pragmatic
considerations. Nor does it rule out any particular model of frequencies. As stated,
the Dutch Book is about members of a collective: but if you reject this notion, and
adopt a different model (say, you decide you can use clairvoyance to determine the
outcomes beforehand) you can only be Dutch Booked à la Howson and Urbach if
you violate the constraints of this model (and so Howson and Urbach agree with de
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Finetti’s take on the problem discussed above). The argument also has nothing to
say about those who later change their minds. In particular, it does not imply that
we cannot change our minds as to the value of the frequency without being Dutch
Bookable. This is an account of subjective probability that is, indeed, subjective.
There is, of course, a large debate on the undesirability of subjectivism or not. But
my purpose has not been to pursue these: it has been to establish that subjective
Bayesianism deserves its name.

2.4 CONCLUSION

There is a Dutch Book argument for obeying the laws of the probability calcu-
lus conditional on accepting a certain model of relative frequency in a sychronic
setting. This sort of Dutch Book really only establishes that we should keep our
logical commitments. But there seems to be no standard Dutch Book justification
of a Principle of Direct Probability, at least in the sense of guaranteeing certain loss
in a betting situation. In fact, if we simply refuse to accept any model in the finite
or infinite case we cannot be Dutch Booked. Whether this counts for or against
Bayesianism is another matter.8
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Chapter 3

Ilkka NIINIluoto

the FouNdatIoNs oF statIstICs: INFereNCe vs. deCIsIoN

In his classical exposition of Bayesian statistics, The Foundations of Statistics (1954), 
L. J. Savage defended the “behavioralistic outlook” against the “verbalistic outlook”: 
statistics deals with problems of deciding what to do rather than what to say. Savage 
referred to F. P. Ramsey’s and Abraham Wald’s work on decision theory and to Jerzy 
Neyman’s proposal to replace “inductive inference” with “inductive behavior”. All 
of these approaches were in opposition to R. A. Fisher’s formulation of statistical 
estimation and testing in traditional terms as truth-seeking methods of scientific infer-
ence. In spite of the prominence of the decision-theoretic approach, some influential 
Bayesians (like Dennis Lindley) have preferred to emphasize estimation and test-
ing as procedures of inference. A reconciliation of inference and decision was force-
fully proposed by Isaac Levi in his Gambling With Truth (1967). Levi argued against  
“behavioralism” that the tentative acceptance and rejection of scientific hypotheses cannot  
be reduced to actions that are related to practical objectives. According to Levi’s “critical 
cognitivism”, science has its own theoretical objectives, defined by the maximization 
of expected “epistemic utilities”, such as truth, information, and explanatory power. 
As a development of cognitive decision theory, and in the spirit of critical scientific 
realism, Ilkka Niiniluoto’s Truthlikess (1987) suggests that scientific inference is  
defined by the attempt to maximize expected verisimilitude. This proposal allows us 
to interpret Bayesian point and interval estimation in terms of decisions relative to 
loss functions which measure the distances of rival hypotheses from the truth.

3.1 Why I am a BayesIaN

Let me start with a personal introduction by telling why I am a Bayesian. In 1973 I 
defended my Ph.D. thesis on inductive logic by applying Jaakko Hintikka’s system 
to theoretical inferences in science. Inductive logic is a special case of Bayesianism 
where epistemic probabilities are defined by symmetry assumptions concerning states 
of affairs expressible in a formal language (for a survey, see Niiniluoto, forthcoming).
 My commitment to Bayesianism has a longer history, however. In 1968 I wrote 
my Master thesis in mathematics “On the Power of Bayes Tests”. My supervisor at 
the University of Helsinki Professor Gustav Elfving (1908–1984) was one of the first 
mathematical statisticians in Scandinavia who supported the Bayesian approach 
(see Nordström 1999). His influence can still be seen today in Helsinki in the lively 
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in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_3,  
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interest in Bayesian reasoning and its applications at the Department of Mathematics 
and Statistics and the Department of Computer Science.
 The key text for a young Bayesian was Leonard J. Savage’s The Foundations 
of Statistics (1954) which gives an elegant axiomatic treatment of the subjective 
expected utility model (SEU). In my attempt to reconstruct Savage’s proof of 
the representation of qualitative personal probabilities, I found a minor mistake 
in his Theorem 3 (ibid., p. 37). During the 4th International Congress for Logic,  
Methodology, and Philosophy of Science in Bucharest in the summer of 1971, 
Hintikka introduced me to Savage. I was sitting in a park with this admired hero 
of the Bayesians trying to explain my observations. Savage, who had problems 
with his sight, was extremely friendly and encouraging. My paper on qualitative  
probability was published in Annals of Mathematical Statistics (see Niiniluoto 1972) 
after Savage’s untimely death.
 In moving from mathematics to philosophy of science, I was attracted by the 
philosophical position of scientific realism. In my doctoral dissertation, the realist 
interpretation of theoretical terms was defended by means of Hintikka’s system 
which assigns positive probabilities to genuine laws and theories. A natural in-
gredient of the realist view was a dualist account which accepts both epistemic 
and physical probabilities (propensities). Levi’s and Hintikka’s cognitive approach, 
which includes truth and semantic information as epistemic utilities, suggested a 
remedy to the instrumentalist tone of decision theory. When I started to work on 
the Popperian notion of truthlikeness in the mid-seventies, I adapted the Bayesian  
framework to the method of estimating verisimilitude by calculating expected  
degrees of truthlikeness. This idea can then be applied as a special case to statistical 
problems of point and interval estimation by interpreting the loss function as mea-
suring distances from the truth. This provides a fresh perspective to the traditional 
debate on inferential and decision-theoretic approaches in statistics.

3.2 BehavIoralIsm

Savage’s opum magnum made a sharp contrast between “the behavioralistic out-
look” and “the verbalistic outlook”: according to the former, statistics deals with 
problems of what to do rather than what to say (Savage 1954, pp. 159–161). Ver-
balism treats statistics as a mode of inference, analogous to deduction, where  
assertions are consequences of inductive inferences. One might think that this dif-
ference is only terminological, since assertions are also acts, and decisions are 
assertions to the effect that the act is the best available. Savage dismissed this 
proposal and concluded that verbalism has led to “much confusion in the founda-
tions of statistics”.
 Savage referred to Neyman’s 1938 article as “the first emphasis of the behav-
ioralistic outlook in statistics”. Neyman argued that statistics is concerned with 
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“inductive behavior” rather than “inductive inference” (see Neyman 1957). On 
the basis of the frequentist account of probability, the Neyman-Pearson theory  
interprets confidence intervals and significance tests in terms of long run  
frequencies of errors in repeated applications of estimation or test procedures  
(see Neyman 1977).
 As advocates of the behavioralistic outlook Savage referred also to Wald’s 
(1950) “objectivist” decision theory, based on the minimax approach, and the 
early work of F. P. Ramsey and Bruno de Finetti in the 1920s and 1930s. In 
terms of John von Neumann’s game theory, decision theory was taken to deal 
with “games against nature”, where the relevant losses are the practical con-
sequences of real-life choices of actions. Besides Savage, this framework of 
Bayesian decision theory, with special emphasis on business decisions, was  
developed by Robert Schlaifer, Howard Raiffa, and Patrick Suppes, and  
exposed in textbooks by Blackwell and Girshick (1954), Chernoff and Moses 
(1959), and Raiffa and Schlaifer (1961).
 Game theory and decision theory were important areas of operations research 
(OR) which was applied to military problems during World War II. Churchman, 
Ackoff and Arnoff (1957) formulated OR as a general method of a decision-maker 
or executive for finding optimal solutions to problems relative to the objectives  
(needs), resources, and available actions. R. L. Ackoff, in his book Scientific  
Method: Optimizing Applied Research Decisions (1962), advertised OR as the 
method of science.
 So Savage was not alone in his defense of the behavioralistic outlook. One 
can also observe that the emphasis of behavior or action was in harmony with  
the tradition of American pragmatism. Even though John Dewey’s instrumentalism  
left room for verbalism with his notion of “warranted assertability”, he had  
argued in his Logic: The Theory of Inquiry (1938) that logic should be viewed as a 
theory of problem-solving. Dewey’s influence can be seen in the success of the OR 
approaches in the 1950s, and its echoes can be found in the 1960s and 1970s in 
Thomas Kuhn’s and Larry Laudan’s claims that science is a problem-solving rather 
than a truth-seeking activity (see Niiniluoto 1984).
 In lively debates on statistics, Savage admitted that there is a distinction  
between inference and decision which is meaningful to a Bayesian: inference is “the 
art of arriving at posterior probabilities” from priors by Bayes’s theorem, while  
decision is concerned directly with action (see Savage et al. 1962, p. 102). Similarly, 
D. V. Lindley’s influential book on Bayesian statistics defined statistical inference 
as the method of altering degrees of belief by data, and the posterior distribution 
can then be used in making decisions (Lindley 1965, 1977). However, Lindley also 
formulated Bayesian tests and interval estimation as special kinds of inferences 
based on posterior probability.
 With influences from Ramsey and Savage, Rudolf Carnap concluded in the 
late 1950s that there are no inductive inference rules: the task of inductive logic is 
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to assign probabilities to hypotheses, and these probabilities can then be used in 
rational decision making by calculating expected utilities (see Carnap 1962).

3.3 FIsher’s deFeNse oF statIstICal INFereNCe

Savage politely acknowledged that R. A. Fisher’s Statistical Methods for Research 
Workers (1925) has had far more influence on the development of statistics than 
any other publication. Yet for him Fisher was the prime example of the “verbalist”  
approach: statistics is a tool for research workers in empirical science, such as 
biology and genetics, and its methods are related to inductive inference and the 
method of hypothesis (see Fisher 1950, p. 8). In Design of Experiments (1935), 
Fisher developed statistical methods in connection with experimentation in agri-
culture. In Statistical Methods and Scientific Inference (1956), he defended the 
idea that scientific knowledge is generated by “free individual thought” (p. 7).
 Fisher was well known for his criticism of the Bayesian tradition. He claimed 
that the advocates of inverse probability seem forced to regard mathematical prob-
ability “as measuring merely psychological tendencies” which are “useless for 
scientific purposes” (Fisher 1966, pp. 6–7). He cited Boole and Venn against “con-
servative Bayesians” (Fisher 1956, p. 34). He admitted that sometimes probabili-
ties a priori can be deduced from data, but when they are not available the “fiducial 
argument” can be used (ibid., p. 17).
 Fisher also sharply attacked Neyman’s conception of inductive behavior. He 
argued that in statistical tests “the null hypothesis is never proved or established, 
but is possibly disproved”, so that errors of the second kind (i.e., acceptance of 
false null hypothesis) have no meaning with respect to simple tests of significance 
(Fisher 1966, pp. 16–17). A test should not be regarded as “one of a series of simi-
lar tests applied to a succession of similar bodies of data”, but the scientific worker 
“gives his mind to each particular case in the light of his evidence and his ideas” 
(Fisher 1956, p. 42). The “state of opinion derived from a test of significance” is 
provisional and revisable, while decisions are final (ibid., p. 99). Thus, statistics 
is not limited to repeated “acceptance procedures” or rules of action, typical of 
quality control in commerce and technology, but it gives “improved theoretical 
knowledge” in experimental research (ibid., pp. 76–77).
 Fisher further argued against the introduction of loss functions in statistics: “in 
the field of pure research no assessment of the cost of wrong conclusions … can 
conceivably be more than a pretense”, and “in any case such an assessment would 
be inadmissible and irrelevant in judging the state of scientific evidence” (Fisher 
1966, pp. 25–26). It is important that “the scientific worker introduces no cost 
functions for faulty decisions”: the purposes to which new knowledge is put are 
not known in advance, as they may involve “a great variety of purposes by a great 
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variety of men”, so that the proper conclusions of inference should be “equally 
convincing to all freely reasoning minds” (Fisher 1956, pp. 102–103).
 Lindley partly agreed with Fisher, when he stated that the scientist in the  
laboratory does not consider the subsequent decisions to be made on the basis of 
his discoveries (Lindley 1965, p. 67). But Savage made no such compromise: the 
 dualism of economic contexts and pure science, or practical affairs and science, 
is incorrect (Savage et al. 1962, pp. 15, 101–102). After Savage, the decision-
theoretic approach has been quite prominent in Bayesian statistics.
 Compromises between inferential views and the Neyman-Pearson theory have 
been considered by philosophers who try to relate objective error probabilities to 
the concepts of support or evidence. Ian Hacking (1965), who advocates statistical 
chance as propensity, construes support in terms of the likelihood function and 
likelihood comparisons. Such evidential support of a hypothesis is independent of 
utility. According to Hacking, deciding that something is the case is different from 
deciding to do something, so that statistics should have room for “belief-guesses” 
or estimation aiming at the truth regardless of the consequences.
 In the context of debates about the likelihood principle, Allan Birnbaum 
proposed a distinction between “behavioral” and “evidential” interpretations of 
statistical decisions (see Birnbaum 1977). The former – advocated by Neyman 
and Pearson, Wald, and Savage, and criticized by Fisher, Cox, and Tukey – takes 
decision in the literal sense of deciding to act in a certain way (e.g. a lamp manu-
facturer decides to place a batch of lamps on the market). The latter considers 
decisions that one of the alternative hypotheses is true or supported by strong 
evidence. Birnbaum’s recommendation to use the NP formalism with evidential 
interpretation is followed by Deborah Mayo and Aris Spanos (2006) in their “error 
statistics” approach: error probabilities guarantee that only statistical hypotheses 
that have passed severe tests are inferred from the data.

3.4 CogNItIve deCIsIoN theory aNd truthlIkeNess

Richard Rudner (1953) argued that the scientist qua scientist makes value judge-
ments when he accepts or rejects hypotheses. Generalizing from examples of  
industrial quality control, Rudner claimed that the scientist’s decision to regard the  
evidence as strong enough to warrant the acceptance of a hypothesis “must be 
made in the light of the seriousness of the mistake”. Richard Jeffrey (1956) replied 
to Rudner and West Churchman that the job of the scientists is to assign prob-
abilities but not to accept and reject hypotheses. Levi (1960) tried to refute both 
Rudner’s and Jeffrey’s positions by showing that scientists do accept hypotheses 
but the seriousness of mistakes need not be taken to be relative to ethical or practical 
objectives.
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 Levi gave a systematic exposition of his “critical cognitivism” in Gambling 
With Truth (1967). Against “behavioralism” and some forms of pragmatism Levi 
argued in detail that the acceptance and rejection of scientific hypotheses can-
not be construed as actions relative to practical utilities. This would reduce the 
role of a scientist (and a statistician) to a practical decision-maker or a guidance 
councillor of a decision-maker. Science has its own theoretical objectives, defined 
by “epistemic utilities” like truth, information, explanatory power, and simplicity. 
On this basis, Levi disagreed with Carnap and Jeffrey on the possibility of induc-
tive acceptance rules. Such rules give conditions for the tentative acceptance of 
hypotheses into the revisable body of scientific knowledge at a given time. Levi’s 
cognitive decision theory thus applies the Bayesian SEU framework relative to the 
maximization of expected epistemic utilities.
 Levi’s basic insight was that the scientist has “to gamble with truth” in order 
to obtain relief from agnosticism. If truth were the only epistemic utility, then the 
expected utility of accepting a hypothesis H on the basis of evidence E would be 
the posterior probability P(H/E) of H given E, which would recommend the con-
servative strategy of accepting only tautologies and logical consequences of the 
evidence. Levi’s own acceptance rule was based upon a weighted average of the 
truth value of H and its information content, where the weight b of the informa-
tion factor is an “index of boldness” of the scientist in risking error. Variations of 
this definition were proposed in Finland by Jaakko Hintikka, Risto Hilpinen, and 
Juhani Pietarinen (see Niiniluoto 1987).
 In his campaign against inductive probability, Karl Popper (1963) attempted 
to define a comparative notion of truthlikeness (verisimilitude) for scientific theo-
ries. In my first paper on truthlikeness, presented in the LMPS Congress in 1975, 
I defined degrees of truthlikeness Tr(H,C*) for theories H in a monadic predicate 
logic L. Here C* is the complete truth expressible in L, and Tr(H,C*) has its maxi-
mum value one if and only if H = C*. Definition of Tr is based a distance function 
d which tells how close the constituents (complete theories) C

i
 of L are to each 

other. When the target C* is unknown, I proposed that the degree Tr(H,C*) can be 
estimated by calculating the expected truthlikeness of H on evidence E, relative to 
the posterior probabilities P(C

i
 /E) of constituents C

i
 in L:

(1)  ver(H/E) = å P(C
i
 /E) Tr(H,C

i
) .

In the spirit of cognitive decision theory, measure ver(H/E) recommends those 
hypotheses which have the smallest expected distance from the truth. General-
ized to full first-order logic, it allows us to conceptualize scientific inference in 
terms of decisions which maximize expected verisimilitude (see Niiniluoto 1987; 
Festa 1993). By combining elements from the Bayesian and Popperian traditions, 
it serves as a foundation of critical scientific realism (Niiniluoto 1999).

i
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 A similar proposal has recently been made by Leitgeb and Pettigrew (2010), 
who require that epistemic agents ought “to approximate the truth” by minimizing 
expected global and local inaccuracy.
 It turned out that my favorite min-sum measure of truthlikeness, found in 
1984, reduces to Levi’s 1967 definition of epistemic utility, if the underlying 
distance measure d between complete theories is trivial, i.e., all false complete 
answers are equally distant from the truth. However, Levi was not ready to  
accept that utilities depend on distances from the truth, and he has given interest-
ing defenses of the idea that “a miss is as good as a mile” (see Levi 2007;  
cf. Savage 1954, p. 231).
 As special cases, the notion of truthlikeness should be applicable to singular 
and general quantitative statements. Then distance from the true value of a real-
valued parameter could be chosen as the loss function of a decision problem. In 
Niiniluoto (1982a), I pointed out that the rule of maximizing expected verisimili-
tude (1) contains as a special case the theory of point estimation of Bayesian 
statistics. Similarly, if the distance of an interval from the truth is defined, then 
Bayesian interval estimation can also be treated in decision-theoretic terms 
(Niiniluoto 1982b). This idea was independently discovered by Roberto Festa. 
Papers working out this program were published as Niiniluoto (1986) and Festa 
(1986) (see also Niiniluoto 1987, pp. 426–441).

3.5 BayesIaN estImatIoN

Let f(x/q) be the sample distribution of sample x in sample space X given  
parameter q in parameter space Q. Let g(q) be the prior probability distribution of 
q. Then Bayes’s theorem tells that the posterior distribution g(q/x) of q given data 
x is proportional to g(q)f(x/q). Let L(q,a) be the loss of action a when q is the true 
state of nature. Then the Bayes solution of the decision problem minimizes for 
each x in X the aposteriori loss

(2)  ò L (q,a) g(q/x) dq .

It can be proved that all good solutions of a decision problem are Bayes with re-
spect to some prior probability distribution (see Ferguson 1967).
 Bayes tests with two simple alternative hypotheses H

0
 and H

1
 are likelihood 

ratio tests where the critical region depends on the prior probabilities of H
0
 and H

1
 

and the losses of erroneous decisions (see Chernoff and Moses 1959).
 For point estimation, the loss L(q,q′) of estimate q′ when q is the true value of 
parameter can be defined in many ways. For the zero-one function

Q
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(3) L(q, q′) = 0 if | q – q ′ | < e
= 1 if | q – q′ | ≥ e

(with small e) the aposteriori loss is minimized by the mode (maximum) of the 
posterior distribution g(q/x). For the linear loss function

(4)  L(q, q′) = | q – q′ |

the Bayes solution is the median of g(q/x); for the weighted linear loss

(5) L(q, q′) = c
1
 | q – q′ | if q < q′

= c
2
 | q – q′ | if q ≥ q′

any fractile of g(q/x); and for the quadratic loss

(6)  L(q, q′) = (q – q′)2

the mean of g(q/x) (see Blackwell and Girshick 1954). Box and Tiao (1973), who 
think that losses represent “a realistic economic penalty”, find the choice of loss 
functions “arbitrary”. But the situation is different, if we require that the loss func-
tion should have a natural interpretation as distance from the truth. This condition 
holds at least for (4) and (6).
 According to Savage, there is “no important behavioralistic interpretation of 
interval estimation” (Savage 1954, p. 261). Lindley (1965) defines 100b% Bayesian 
confidence intervals as intervals which include the true value of parameter q with 
posterior probability b. Box and Tiao (1973) define highest posterior density 
intervals (HPD) by a similar criterion.
 To treat interval estimation in decision-theoretic terms, let L(q,I) be the loss 
of a real-valued interval I = [c,d] when q is true. Formally this allows us to unify 
theories of point and interval estimation, since intervals are disjunctions of point 
estimates and point estimates are included as degenerate interval estimates (e.g., 
[c,c]). Let S(I) = d – c be the length of I, and m(I) = (c + d)/2 the mid-point of I. 
Wald’s (1950) proposal

(7) L
1
(q, I) = 0, if q  I

= 1 otherwise

is not satisfactory, since it gives the same value for all true intervals and the same 
value for all mistaken intervals. Ferguson (1967) mentions only as an exercise  
(p. 184) the function

(8) L
2
(q, I) = b S(I) – 1, if q  I

= b S(I) otherwise
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(for b > 0), which is essentially the same as Levi’s (1967) epistemic utility. All 
false point estimates have the same loss by (8). The Bayes rule (2) with L

2
 leads to 

HPD intervals with points q such that g(q/x) ≥ b. The average distance of I from 
q would recommend as the best estimate the degenerate interval consisting of the 
median of g(q/x). The same result is obtained for the measure

(9)  L
7 
(q, I) = b S(I) + min (q, I)

if b ≥ ½, but for b < ½ L
7
 favors interval estimates. A weighted variant of L

7
 has 

been discussed by Aitchison and Dunsmore (1968). The loss function, which was 
found to be best for cognitive purposes in Niiniluoto (1986), is a variant of the 
min-sum-measure of truthlikeness:

(10)  L
10 

(q, I) = b sum(q, I) + min(q, I)2

where

  sum (q, I) = ò | t – q | dt .

The weight b in (10) serves as an index of boldness in Levi’s sense. If b ≥ 1, then 
point estimates dominate intervals: the mean of g(q/x) is the best estimate. If 0 < 
b < 1, then the confidence level a of the recommended 100a % interval estimate 
increases when the penalty of mistakes b decreases.
 More recently, there has been a lot of interest among the Bayesians for the 
decision-theoretic treatment of interval estimation. A good survey with references 
is given by Rice, Lumley, and Szpiro (2008) – but without citations to Levi and 
other philosophers. In the same way as Levi searched a balance between truth and 
information, their account of estimation is “trading bias for precision”. The three 
main proposals considered are L

2
, L

7
 with b < ½, and

(11)   g S(I)/2 + 2(q – m(I))2 /S(I).

Here (11) resembles L
10

, but the normalization by S(I) gives an infinite loss for all 
point estimates.

3.6 dIsCussIoN

The question, whether statistics is dealing with inference or decision, has inter-
nally divided the two main schools in the foundations of statistics: frequentists 
(Fisher vs. NP) and Bayesians (Lindley vs. Savage). We have seen that cognitive 
decision theory reconciles these two perspectives: statistical tests and estimation 

Q
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can be viewed as inferences which are conceptualized as decisions relative to 
epistemic utilities. Statistics can serve as a tool of a research worker, just as Fisher 
demanded, but this is not in conflict with the decision-theoretic formulation of 
statistical problems.
 One of Savage’s memorable slogans was the claim that “the role of subjective 
probability in statistics is, in a sense, to make statistics less subjective” (Savage 
et al. 1962, p. 9). Objective Bayesians have sought canonical ways of fixing prior 
probability distributions. What I have done in this paper is the complementary goal 
of formulating constraints for the choice of loss functions in situations where the 
scientist’s cognitive goal is to find truth and avoid falsity.
 Yet, the difference between cognitive and practical loss functions remains 
valid. Even though decision theory is a powerful tool for value-laden choices, all 
decision problems cannot be reduced to practical or economic situations, as the 
behavioralistic approach seemed to presuppose. But likewise, problems of prag-
matic preference cannot always be reduced to theoretical problems, like Popper 
suggested, since the most truthlike hypothesis need not be the best solution to a 
problem of action (Niiniluoto 1982a, 1987). Indeed, the practical loss of an incor-
rect choice need not always be a linear function of the distance from the truth.
 The weighted linear loss function (5) is interesting, since it at the same reflects 
distances from the truth and other considerations. The expected loss of (5) has its 
minimum when the cumulative distribution function G(q/x) of the posterior dis-
tribution g(q/x) equals c

2
/(c

1
+c

2
). The symmetric choice c

1 
= c

2
, which leads to the 

median of g(q/x) as the most truthlike estimate, is adequate in theoretical contexts. 
But non-symmetric choice of the weights c

1 
and c

2
 may be justified in pragmatic 

problems where underestimation of some quantity is more dangerous than over-
estimation (cf. Niiniluoto 1982a). Steel (2010) has discussed examples of cases 
where it is better to overprotect than underprotect against risks of toxic chemicals 
to human health. Steel calls the Rudner-Churchman attack on value-neutral sci-
ence “the argument from inductive risk”, and defends against some recent crit-
ics the distinction between epistemic and nonepistemic values. His thesis is that 
nonepistemic values can influence scientific inferences without compromising or 
obstructing the epistemic goal of the attainment of truth. In my view, this may be 
valid in applied research which aims at giving conditional recommendations of ac-
tion with explicitly stated value assumptions as antecedents (see Niiniluoto 1993): 
we know that the weighted loss function gives results that differ from the theoreti-
cally best value, but it is legitimate to act on estimates which make the relevant 
health risks lower.
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Chapter 4

roberto Festa

on the Verisimilitude oF tendenCy hypotheses

Tendency hypotheses – T-hypotheses, for short –, such as “the individuals of the kind Y 
tend to be X”, are used within several empirical sciences and play an important role in 
some of them, for instance in social sciences. However, so far T-hypotheses have received 
little or no attention by philosophers of science and statisticians.1 An exception is the 
work made in the seventies of the past century by the statisticians and social scientists 
David K. Hildebrand, James D. Laing, and Howard Rosenthal who worked out – under 
the label of prediction logic –, an interesting approach to the analysis of T-hypotheses.2

In this paper our main goal is the introduction of appropriate measures for 
the verisimilitude of T-hypotheses.3 Our verisimilitude measures will be defined 
in terms of the feature contrast (FC-) measures of similarity proposed by the cog-
nitive scientist Amos Tverski (1977). We shall proceed as follows. In Sect. 4.1, 
Tverski’s FC-measures of similarity for binary features are illustrated and suitably 
extended to quantitative features. Afterwards, such measures are applied in the 
definition of appropriate measures for the verisimilitude of universal and statistical 
hypotheses (Sect. 4.2) and T-hypotheses (Sect. 4.3).

4.1 Feature Contrast (FC-) measures oF Similarity For binary 
and quantitatiVe Features

The FC-measures of similarity proposed by Tverski are intended to provide a 
quantitative model of the similarity assessments made by human beings w.r.t. 
a large variety of items, including physical and conceptual objects. In order to  

1 As a consequence of this neglect, no standard name for T-hypotheses can be found in 
the literature.

2 Prediction logic has been developed in a series of papers culminated in a volume on 
Prediction Analysis of Cross Classification (1976). On the conceptual relations bet-
ween prediction logic and the research on verisimilitude made by philosophers of sci-
ence, see Festa (2007a, b).

3 The concept of verisimilitude (denoted also by several equivalents terms, such as “truthlike-
ness”, “approximation to the truth”, and “closeness to the truth”) was introduced by Pop-
per (1963) who claimed that the main cognitive goal of science is the acceptance of highly  
verisimilar theories. Afterwards, the problems related to the definition of adequate notions 
of verisimilitude and their application within scientific methodology have been extensively  
explored by Niiniluoto (1987), Kuipers (1987, 2000), Oddie (1986) and many other authors.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_4,  
© Springer Science+Business Media B.V. 2012
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assess the similarity between two items “we extract and compile from our database 
a limited list of relevant features on the basis of which we perform the required 
task” (Tverski 1977, p. 330).

Suppose that the items of interest a, b, … are described by a set F ≡ {F
1
, …, 

F
n
} of binary features, where any F

i
 of F may be present, or absent, in a given item. 

The set of binary features of an item a is denoted by “A”. Given two items a and 
b, the set A ∩ B of the common features of a and b, the set A\B of the distinctive 
features of a w.r.t. b, and the set B\A of the distinctive features of b w.r.t. a, will be 
referred to as the commonality between a and b, the excess of a w.r.t. b, and the 
excess of b w.r.t. a, respectively.

A salience function f for F is a function expressing the relative importance 
(for our similarity assessments) of each feature of F, where f satisfies the follow-
ing condition:

(1) For any member F
i
 and any subset G of F,

 (i) f (F
i
) > 0, and (ii) f (G) = å  f (F

i
).

The similarity s (a, b) between a and b may be defined as a function of the sali-
ences of the commonality between a and b, of the excess of a w.r.t. b, and of the 
excess of b w.r.t. a – i.e., as a function of f (A ∩ B), f (A\B), and f (B\A):

(2) s (a, b) ≡ f (A ∩ B) − a f (A\B) − b f (B\A) where a, b ≥ 0.4

From (2) it is quite easy to see that s(a, b) is a feature contrast (FC-) measure 
of similarity, since it may be construed as a measure of the contrast between the 
common and distinctive features of a and b.

In some cases the items of interest a, b, … are described on the basis of quan-
titative features which may assume, in principle, any real value. However, we will 
restrict our attention to nonnegative-valued quantitative features. Given a set F ≡ 
{F

1
, …, F

n
} of quantitative features and an item a, the value of F

i
 for a will be 

denoted by “A
i
”. A salience function f for F will satisfy the following condition:

(3) For any value Z
i 
of any feature F

i
 of F and any sequence Z

1
, …, Z

n
 of val-

ues of F
1
, …, F

n
, (i) f (Z

i
) = j

i
Z

i
 where j

i
 > 0; (ii) f (Z

1
, …, Z

n
) = å

i
 f (Z

i
).

The parameters j
1
, …, j

n
 express the relative importance (for our similarity as-

sessments) of the corresponding features F
1
, …, F

n
. Suppose, for instance, that the 

individuals a, b, … are described by the set F ≡ {F
1
, F

2
, F

3
}, where F

1
 ≡ age, F

2
 ≡ 

height, and F
3 
≡ weight. In this case, my salience function for F might be characterized 

4 The values of a and b express the relative weight of the left-to-right direction (from a to 
b) and the right-to-left direction (from b to a) in the assessment of the similarity between a 
and b. It should be noted that s(a, b) is symmetrical only in the special case where a = b. 

F
i
G
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by the parameters j
1
 = 9, j

2 
= 3, and j

3
 = 1, which reveal that, for my assess-

ments of the similarity between individuals, age is three times more important than 
height and height is three times more important than weight.

In the case of binary features, the commonality between two items a and b has 
been identified with the set A ∩ B of their common features. Strictly alike intui-
tions suggest that, in the case where the items of interest are described by a set of 
quantitative features, the commonality between a and b should be identified with 
the sequence

(4) min(A
1
, B

1
), …, min(A

n
, B

n
),

where min(A
i
, B

i
) represents the degree at which F

i
 is shared by a and b.

In the case of binary features, the excess of a w.r.t. b has been identified with 
the set A\B of the distinctive features of a w.r.t. b. Strictly alike intuitions suggest 
that, in the case of quantitative features, the excess of a w.r.t. b should be identified 
with the sequence

(5) max(A
1
 − B

1 
, 0), …, max(A

n
 − B

n
 , 0),

where max(A
i
 − B

i
, 0) represents the degree at which A

i
 exceeds B

i
.5

Of course, the same intuitions underlying (5) suggest that the excess of b w.r.t. 
a should be identified with the sequence

(6) max(B
1
 − A

1
 , 0), …, max(B

n
 − A

n
 , 0).

The similarity s (a, b) between two items a and b, described by a set of binary 
features, has been defined as a particular function of the saliences of the commo-
nality between a and b, of the excess of a w.r.t. b, and of the excess of b w.r.t. a 
(see (2)). In the case where a and b are described by a set of quantitative features, 
their similarity s (a, b) can be defined, mutatis mutandis, in the same way. Indeed, 
by replacing the three saliences occurring in (2) with the corresponding saliences 
for quantitative features (as defined in agreement with (3)–(6)) one obtains the fol-
lowing FC-measures of similarity for quantitative features:

(7) s (a, b) = å j
i
 (min(A

i
 , B

i
) − a max(A

i
 − B

i
 , 0) − b max(B

i
 − A

i
 , 0))

where a, b ≥ 0.6

5 In fact, if A
i
 exceeds B

i
 , then max(A

i
 − B

i
 , 0) has a positive value given by A

i
 − B

i
 while, 

if A
i
 does not exceed B

i
 , then max(A

i
 − B

i
 , 0) is zero.

6 The FC-measures of similarity for quantitative features are essentially identical to the 
fuzzy feature contrast measures, suggested by Santini and Jain (1999). However, while 
Santini et al. work out their measures within the rather complicated conceptual frame-
work of fuzzy set theory, our measures are introduced as an intuitively simple extensi-
on of Tverski’s FC-measures for binary features.

i=n

i=1
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Suppose that one is interested in the assessment of the similarity between a 
and b w.r.t. a quantitative feature F

i
 – more precisely, w.r.t. the singleton {F

i
}. It 

follows from (7) that such similarity, which will be referred to as s
i
(a, b), is given 

by:

(8) s
i
 (a, b) = j

i
 (min(A

i
, B

i
) − a max(A

i
 − B

i
, 0) − b max(B

i
 − A

i
, 0)).7

Note that s
i
 (a, b) is positive, zero or negative, depending on the values of A

i
, B

i
, a, 

and b. In particular, it follows from (8) that:

(9) (i) If A
i
 = B

i
 > 0, then s

i
 (a, b) > 0, for any value of a and b.

(ii) If A
i
 > B

i
 , then s

i
 (a, b) >/=/< 0 if and only if A

i
 /B

i
 </=/> (1 + a)/a.

The intuitive content of (9) (ii) can be understood focussing on the clause “if 
A

i
 > B

i
, then s

i
 (a, b) > 0 if and only if A

i
 /B

i
 < (1 + a)/a”. According to this clause, 

if A
i
 exceeds B

i
, then s

i
(a, b) is positive if and only if the excess of A

i
 over B

i
 is not 

too big, in the sense that the measure A
i
/B

i
 of such excess is lower than (1 + a)/a.

One can easily check that the “global” similarity s (a, b) w.r.t. a set F ≡ {F
1
, 

…, F
n
} of quantitative features can be decomposed in n “local” similarities s

i
  

(a, b):

(10)  s (a, b) = å S
i
(a, b)

i=n

i=1

where s
i
(a, b) is the similarity between a and b w.r.t. a feature F

i
 of F.

So far we have been dealing with the case where all the F
i
-values of the items 

a and b are determined. However, for our purposes, we should consider also the 
case where some F

i
-values are undetermined for at least one of the items a and b. 

Saying that a (b) is F
i
-undetermined amounts to saying that the F

i
-value of a (b) is 

absent, undetectable, or unknown. One may ask which value should be attributed 
to s

i
(a, b) in the case where at least one of the items a and b is F

i
-undetermined. We 

suggest that a general answer to this question is given by the following principle:

(11) If at least one of the items a and b is F
i
-undetermined then s

i
 (a, b) = 0.

7 As pointed out by an anonymous referee, according to definition (8), if A
i
 and B

i
 are 

equal, then the similarity between a and b is proportional to A
i
 and, in particular, this 

similarity is zero if A
i
 = B

i
 = 0. moreover, the definition is also sensitive to the choice 

of the scale measurement of quantity A
i
. This unpleasant aspect of definition (8) can be 

removed by applying the well known fuzzification procedures worked out within fuzzy 
set theory. Indeed such procedures allow to transform a quantitative variable (for exa-
mple: height) into a fuzzy linguistic term (for example: tall) defined by a membership 
function whose value is included in the interval [0, 1]. For more details, see Cevolani 
et al. (2012).
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The intuitive motivation for (11) can be expressed as follows. Suppose that 
one is assessing the similarity between a and b w.r.t. F

i
. Then we may say that a is 

F
i
-similar to b in the case where s

i
 (a, b) > 0 and that a is F

i
-dissimilar from b in the 

case where s
i
 (a, b) < 0. On the other hand, in the case where s

i
 (a, b) = 0, we will 

say that a is neither F
i
-similar to b nor F

i
-dissimilar from b. If at least one of the 

items a and b is F
i
-undetermined, then it seems quite plausible to say a is neither 

F
i
-similar to b nor F

i
-dissimilar from b, i.e., that s

i
 (a, b) = 0.

If the principle (11) is adopted, then (10) can be considered as a general defini-
tion of the similarity s (a, b), i.e., as a definition which is applicable also in the case 
where some F

i
-values are undetermined either for a or for b.

4.2 FC-measures oF Verisimilitude For uniVersal 
and StatistiCal Hypotheses

Suppose that the members of a given universe U are classified w.r.t. two charac-
ters, or families of predicates, X ≡ {X

1
, …, X

c
} and Y ≡ {Y

1
, …, Y

r
}, where the 

predicates of each family are mutually exclusive and jointly exhaustive. Then we 
will say that U is cross classified w.r.t. X and Y. The rc members of Q ≡ Y × X ≡  
{Y

1
X

1
, Y

1
X

2
, …, Y

r
X

c
} are often called Q-predicates. A q-predicate Y

i
X

j
 will be 

denoted with “Q
ij
”, so that Q = {Q

11
, …, Q

rc
}. The subscripts “c” in “X

c
” and “r” 

in “Y
r
” stay for “column” and “row”, w.r.t. the r × c table which is commonly used 

to represent the cross classification of U w.r.t. X and Y. For the sake of illustration, 
let us consider the case where U is cross classified w.r.t. the families X ≡ {X

1
, X

2
, 

X
3
, X

4
} and Y ≡ {Y

1
, Y

2
, Y

3
}. This case can be represented by the table in Fig. 4.1, 

where any cell corresponds to one of the q-predicates of {Q
11

, …, Q
34

}.

X1 X2 X3 X4

Y 1 Q11 Q12 Q13 Q14

Y 2 Q21 Q22 Q23 Q24

Y 3 Q31 Q
32

Q
33

Q
34

Q � {Q
11

, …,Q
34

}.

Fig. 4.1 Q ≡ {Q
11

, …, Q
34

}.

Suppose that the universe U under investigation is described by a predicate 
language L whose vocabulary includes the families X ≡ {X

1
, …, X

c
}, Y ≡ {Y

1
, 
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…, Y
r
}, and Q = {Q

11
, …, Q

rc
}. In many kinds of inquiry, the structure of U is 

described in terms of certain features of the q-predicates of L. For instance, with 
reference to the example above (see Fig. 4.1), one might ask whether the universal 
hypothesis h ≡ “All Y

1
-individuals are X

2
” is true. This amounts to asking whether 

the q-predicates Q
11

, Q
13

, and Q
14

 are empty, i.e., not instantiated, in U. more 
generally, one might ask which q-predicates are empty in U. An answer to ques-
tions of this sort can be given by stating appropriate universal (u-) hypotheses. A 
u-hypothesis is a conjunction of k, with 0 ≤ k ≤ rc, basic universal (BU-) hypoth-
eses, where a bu-hypothesis b

ij
 says that Q

ij
 is empty.8 Coming back to the above 

example, the u-hypothesis h ≡ “All Y
1
-individuals are X

2
” can be restated as fol-

lows: h ≡ b
11

 & b
13

 & b
14

.
An appropriate measure s(h, h′) of the similarity between two u-hypotheses 

h and h′ can be defined by applying the similarity measures for binary features in-
troduced in Sect. 4.1. Indeed, a u-hypothesis h of L can be characterized in terms 
of a set F ≡ {F

11
, …, F

rc
} of binary features, where F

ij
 is a feature of h in the case 

where h implies b
ij
. Now s(h, h′) is defined, in agreement with definition (2), as the 

FC-similarity between h and h′ w.r.t. F:

(12) s (h, h′) ≡ f (H ∩ H′) − a f (H \ H’) − b f (H′ \ H),

where H and H′ are the sets of features of h and h′.
The conjunction h

*
 of all and only the true bu-hypotheses of L is the strongest 

true u-hypothesis of L. Hence we might say that h
*
 is “the truth” about U (in L). 

The opinions of the scientists investigating U may be expressed by the strongest 
u-hypothesis h of L that they accept. We might say that the main cognitive goal 
pursued by scientists, i.e., the identification of the actual world, is fully achieved in 
the case where h = h

*
. more generally, the degree at which such goal is reached is 

measured by the verisimilitude Vs(h) of h, which may be defined as the similarity 
s(h, h

*
) between h and h

*
.

In many empirical inquiries researchers ask what are the (relative) frequencies 
of certain q-predicates among the members of U. An answer to questions of this 
sort can be given within a suitable statistical language LS, by stating appropriate 
statistical (S-) hypotheses. A S-hypothesis is a conjunction of k, with 0 ≤ k ≤ rc, 
basic statistical (BS-) hypotheses, where a bS-hypothesis b

ij
 specifies the value of 

the frequency P
ij 
of Q

ij
 in U.9 We will say that the S-hypothesis h is complete in the 

case where k = rc, i.e., in the case where h specifies a possible value P ≡ (P
11

, …, P
rc
) 

of the frequency vector P ≡ (P
11

, …, P
rc

).
Given a S-hypothesis h, let P

ij
 be the value of P

ij 
specified by (the conjunct 

b
ij
 of) h. Then an appropriate measure s (h, h′) of the similarity between two S- 

hypotheses h and h′ can be defined by applying the similarity measures for quantitative 

8 Note that a bu-hypothesis is a special kind of u-hypothesis, with k = 1.
9 Note that a bS-hypothesis is a special kind of S-hypothesis, with k = 1.
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features introduced in Sect. 4.1. Indeed, a S-hypothesis h of LS can be character-
ized in terms of a set F ≡ {F

11
, …, F

rc
} of quantitative features such that: (1) if h 

implies b
ij
, then the F

ij
-value of h is P

ij
, and (2) if h does not imply any b

ij
, then h is 

F
ij
-undetermined. Now s(h, h′) may be defined, in agreement with definitions and 

principles (7)–(11), as the FC-similarity between h and h′ w.r.t. F.10

It is easily seen that there is a unique true complete S-hypothesis, which will 
be referred to as h

*
. We may say that h

*
 is “the truth” about U (in LS). Along the 

same lines followed in the case of u-hypotheses, the verisimilitude Vs(h) of a S-
hypothesis h is defined as the similarity s(h, h

*
) between h and h

*
.11

4.3 FC-measures oF Verisimilitude For t-Hypotheses

As pointed out in the introduction, T-hypotheses play an important role in social 
sciences. For instance, Hildebrand et al. (1977, p. 28) quote the following three 
examples of T-hypotheses drawn from sociological literature:

Loss in competition tends to arouse anger [Homans 1961, p. 123].

The introduction of universal suffrage led almost anywhere (the united States excepted) to 
the development of Socialist parties [Duverger, 1954, p. 66].

[A] “high” level of education […] comes close to being a [necessary condition for democ-
racy] [Lipset, 1960, p. 57].

According to Hildebrand et al. the italicized qualifications “tends to”, “al-
most”, and “comes close to”, occurring in the above quotations, reveal the fact that 
social scientists believe that the “universal counterparts” of the above T-hypotheses 
are false. more generally, we suppose that social scientists typically believe that 
any universal (non trivial) sociological hypothesis is false, although the “tendency 
counterpart” of a false universal hypothesis may be (approximately) true. There-
fore, we think that the clarification of the intuitive idea that T-hypotheses may be 
more or less close to the truth is a very important task. Our proposal for dealing 
with this task is shortly illustrated below.

Let us come back to the example illustrated above, where the universe U 
under investigation is cross classified w.r.t. the families X ≡ {X

1
, X

2
, X

3
, X

4
} and 

Y ≡ {Y
1
, Y

2
, Y

3
}. In this case researchers may consider several T-hypotheses about 

U such as:

(13) t ≡ Y
1
-individuals tend to be X

2
.

10 Earlier accounts of the verisimilitude of statistical distributions (structure descriptions) 
include Niiniluoto (1987, pp. 302–303 and 321–322).

11 For a comparison between our measures of the verisimilitude of statistical hypotheses 
and the standard statistical measures of fit, such as the chi-square, see Cevolani et al. 
(2012).
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Recalling that the q-predicates Y
1 
& X

1
, Y

1 
& X

3
, and Y

1 
& X

4
 may be denoted 

with “Q
11

”, Q
13

”, and “Q
14

”, respectively, we suggest that t may be construed as 
follows:

(14) t ≡ Q
11

, Q
13

, and Q
14

 are rarely instantiated.

more generally, we suggest that a T-hypothesis is a conjunction of k, with 0 
≤ k ≤ rc, basic tendency (BT-) hypotheses, where a bT-hypothesis concerning Q

ij
 

says that Q
ij
 is rarely instantiated in U. below we will show that T-hypotheses can 

be precisely stated within the statistical language LS illustrated in Sect. 4.2 and 
that, on the basis of such reformulation, appropriate verisimilitude measures for 
T-hypotheses can be defined.

First of all, let us define the (degree of) rarity of a q-predicate Q
ij
, where such 

rarity is denoted with “R
ij
”. The basic intuition underlying our definition is that the 

rarity of Q
ij
 (≡Y

i
X

j
) should depend on the relation between the frequency P

ij
 of Q

ij
 

and the frequencies P(Y
i
) and P(X

j
) of Y

i
 and X

j
.12 more specifically, we say that Q

ij
 

is not rare in the case where Y
i
 and X

j
 are either probabilistically independent (i.e., 

P
ij
 = P(Y

i
)P(X

j
)) or positively relevant to each other (i.e., P

ij
 > P(Y

i
)P(X

j
)), while 

Q
ij
 is rare in the case where Y

i
 and X

j
 are negatively relevant to each other (i.e., P

ij
 

< P(Y
i
)P(X

j
)). moreover, we assume that, in the case where Q

ij
 is not rare, R

ij
 is put 

equal to zero while, in the case where Q
ij
 is rare, R

ij
 is put equal to the difference 

P(Y
i
)P(X

j
) − P

ij
, which represents the mutual negative relevance between Y

i
 and 

X
j
.13

The above illustrated intuitions lead to the following definition of R
ij
:

(15)  (i) If P
ij
 ≥ P (Y

i
 ) P (X

j
 ), then R

ij
 ≡ 0;

  (ii) If P
ij
 < P (Y

i
 ) P(X

j
 ), then R

ij
 ≡ P (Y

i
 ) P (X

j
 ) − P

ij
.

It follows from (15) that, given the frequencies P(Y
i
) and P(X

j
), the maximal 

value of R
ij
 is P(Y

i
)P(X

j
), which is obtained in the case where P

ij
 = 0. Given a fre-

quency vector P ≡ (P
11

, …, P
rc
), the corresponding rarity vector R ≡ (R

11
, …, R

rc
) 

can be determined by applying definition (15).
Now we can show how bT- and T-hypotheses can be stated within LS. Recall-

ing that a bT-hypothesis concerning Q
ij
 tells that Q

ij
 is rarely instantiated in U, we 

will assume that it can be expressed by the following S-hypothesis b
ij 
of LS:

12 Recall that, for any possible value P ≡ (P
11

, …, P
rc
) of the frequency vector P the fol-

lowing equalities hold: P(Y
i
) = å P

ij

i=r

i=1

        and P(X
j
) =å P

ij    

j=c

j=1
 .

13 A strictly alike measure of mutual positive relevance has been suggested by Carnap 
(1950/1962, Ch. VI).
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(16) b
ij 
≡ (P

ij
 = 0).14

In words, b
ij
 says that the frequency of Q

ij
 in the investigated universe U is zero, 

i.e., that Q
ij
 is maximally rare in U. Now a T-hypothesis t can be expressed within 

LS as a conjunction of k, with 0 ≤ k ≤ rc, bT-hypotheses of the kind shown in 
(16).

The similarity s(t, h) between a tendency hypothesis t and a complete S-hy-
pothesis h can be defined w.r.t. a set F ≡ {F

11
, …, F

rc
} of quantitative features 

representing the rarities of the q-predicates Q
11

, …, Q
rc
 in the investigated uni-

verse. more precisely, given the frequency and rarity vectors specified by h – to be 
referred to as P ≡ (P

11
, …, P

rc
) and R ≡ (R

11
, …, R

rc
) –, the F

ij
-values of h and t, i.e., 

H
ij
 and T

ij
, are defined as follows:

(17) H
ij
 ≡ R

ij
.

(18) (i) If b
ij
 is a conjunct of t, then T

ij
 ≡ P (Y

i
 ) P (X

j
 ).

  (ii) If b
ij
 is not a conjunct of t, then T

ij
 is undetermined.

One can see that the F
ij
-values defined above are given by the rarities that h and t 

attribute to the q-predicates Q
11

, …, Q
rc
. In particular, the intuitive content of (18)

(i) can be expressed as follows. Since b
ij
 says that the frequency P

ij
 of Q

ij
 in the 

investigated universe U is zero (see (16)), it implies, due to (15)(ii), that R
ij
 = P(Y

i
)

P(X
j
) – where P(Y

i
)P(X

j
) is the maximal value of R

ij
 for the frequencies P(Y

i
) and 

P(X
j
).
Now s(t, h) can be defined, in agreement with definitions and principles (7)–

(11), as the FC-similarity s(t, h) between t and h w.r.t. the set F ≡ {F
11

, …, F
rc
} of 

quantitative features described above:

(19) s (t, h) =                ,

where s
ij
(t, h) is the similarity between t and h w.r.t. the feature F

ij
 of F. The value 

of s
ij
(t, h) can be determined, in agreement with (8) and (11), as follows:

(20)  (i) If b
ij
 is a conjunct of t, then s

ij
 (t, h) = j

ij
 (min(T

ij
 , H

ij
) − a

   max(T
ij
 − H

ij
 , 0) − b max(H

ij
 − T

ij
 , 0)).

  (ii) If b
ij
 is not a conjunct of t, then s

ij
 (t, h) = 0.

It is very important to recall that, due to (18) (i), T
ij
 = P (Y

i
 ) P (X

j
 ), where P (Y

i
 )

P (X
j
 ) is the maximal value of R

ij
 for the frequencies P (Y

i
 ) and P (X

j
 ) (see (15) (ii)). 

Hence, due to (17), T
ij
 ≥ R

ij
 ≡ H

ij
. This implies that max(H

ij
 − T

ij
, 0) = 0. Therefore 

(20) (i) can be restated as follows:

14 For a discussion of (16) and of some alternative assumptions, see Cevolani et al. 
(2012).

å s
ij
 (t, h)

ij=rc

ij=11
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(21)  If b
ij
 is a conjunct of t, then s

ij
 (t, h) = j

ij
 (min(T

ij
 , H

ij
 ) − a max(T

ij
 − 

H
ij
 , 0).

One can see from (20) and (21) that s (t, h) depends only on the parameter a of 
the FC-similarity measure s applied in definition (19).

Now we can determine the value s
ij
(t, h) in the case where b

ij
 is a conjunct of 

t. Indeed, it follows from (21), together with (17) and (18), that:

(22)  If b
ij
 is a conjunct of t, then s

ij
 (t, h) is a function of P

ij
 , P (Y

i
 ), P (X

j
 ), 

and a. more precisely:

(i) If P
ij
 ≥ P (Y

i
 ) P (X

j
 ), then s

ij
 (t, h) = −j

ij
 a P (Y

i
 ) P (X

j
 );

(ii) If P
ij
 < P (Y

i
 ) P(X

j
 ), then s

ij
 (t, h) = j

ij
 (P (Y

i
 ) P(X

j
 ) − (1 + a) P

ij
 ).

It follows from (22) that, if b
ij
 is a conjunct of t and P

ij
 ≥ P (Y

i
 ) P (X

j
 ), then s

ij
 (t, h) 

< 0, for any value of a. moreover, one can prove that:

(23)  If b
ij
 is a conjunct of t and P

ij
 < P (Y

i
 ) P (X

j
 ), then s

ij
 (t, h) >/=/< 0 if and 

only if P
ij
 /(P (Y

i
 ) P (X

j
 )) </=/> 1/(1 + a).

The intuitive content of (23) can be understood by considering the claim that, 
if P

ij
 < P (Y

i
 ) P(X

j
 ), then s

ij
 (t, h) > 0 if and only if P

ij
 /(P (Y

i
 ) P(X

j
 )) < 1/(1 + a). Ac-

cording to this claim s
ij
 (t, h) is positive if and only P

ij
 is sufficiently smaller than 

P (Y
i
 ) P(X

j
 ), i.e., if and only if Q

ij
 is rare enough.

When P
ij
 /(P (Y

i
 ) P(X

j
 )) is lower than the threshold 1/(1 + a) – and, thereby, 

s
ij
 (t, h) is positive –, we will say that Q

ij
 is a-rare. Since a ≥ 0, the threshold 1/

(1 + a) is included in the interval (0,1). For instance, if a = 1, then 1/(1 + a) = 0.5; 
hence, Q

ij
 will be a-rare if and only if P

ij
 /(P (Y

i
 ) P (X

j
 )) < 0.5. On the other hand, if 

a = 9, then 1/(1 + a) = 0.1; hence, Q
ij
 will be a-rare if and only if P

ij
 /(P (Y

i 
 ) P (X

j
 )) 

< 0.1. Such examples suggest that a similarity measure s (t, h) characterized by a 
high value of a imposes, as it were, severe requirements for the admission to the 
club of the a-rare q-predicates.

Suppose that a particular FC-measure of similarity sa , characterized by a specific 
value of the parameter a, is used. Then one may ask which T-hypothesis t is maximal-
ly similar to h, i.e., which T-hypothesis t has the maximal value of sa (t, h). An answer 
to this question immediately follows from definition (19) and theorem (23):

(24)  Let the T-hypothesis ta include all and only the conjuncts b
ij
 such that 

Q
ij
 is a-rare. Then sa (t, h) is maximal.

Theorem (24) reveals the intuitive meaning of the choice of a particular meas-
ure sa . For instance, the choice of a high value a, and thereby of a low value of  
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1/(1 + a), reveals that our cognitive goal consists in the identification of the set of 
the very rare q-predicates, i.e., in the identification, as it were, of the very strong 
tendencies working in the universe described by a given complete S-hypothesis.

Finally, the verisimilitude Vs(t) of a T-hypothesis t is defined – along the same 
lines followed in the case of u- and S-hypotheses – as the similarity s(t, h

*
) be-

tween t and h
*
, where h

*
 is “the truth” about U (in LS).

4.4 ConClusions

Several issues touched in this paper deserve further research. Firstly, the concep-
tual foundations of our measures of verisimilitude for u-, S- and T-hypotheses, 
provided in Sect. 4.1, need more systematic investigation. Secondly, our paper 
has been almost entirely devoted to the logical problem of verisimilitude, i.e., to 
the definition of the degree of verisimilitude of u-, S- and T-hypotheses in the 
case where it is assumed that ‘the truth’ is known (Sects. 4.2 and 4.3). In particu-
lar, we have dealt with the logical problem of the verisimilitude of T-hypotheses  
(Sect. 4.3). Our measures for the verisimilitude of T-hypotheses might provide a 
sound basis for the analysis of the methodological problem of verisimilitude, i.e., 
for the formulation of appropriate procedures for the estimation – on the basis 
of the available evidence – of the degree of verisimilitude of T-hypotheses in the 
actual world, i.e., in the case where “the truth” is (typically) unknown. Thirdly, the 
conceptual relations between the present approach and other approaches to the 
verisimilitude of T-hypotheses, starting from Hildebrand et al. (1977) and Festa 
(2007a, b), should be explored. Finally, the methodological role of T-hypotheses 
should be carefully investigated, by considering examples drawn not only from 
social sciences, but also from other empirical sciences, such as epidemiology and 
other biomedical sciences.

Proofs of theorems

Proof of (22)
It follows from equalities T

ij
 = P (Y

i
 ) P(X

j
 ) and H

ij
 ≡ R

ij
 (see (17) and (18) (i)) 

that max(T
ij
 − H

ij
 , 0) = max(P (Y

i
 ) P (X

j
 ) − R

ij
 , 0). Therefore, equality s

ij
 (t, h) = 

j
ij
 (min(T

ij
 , H

ij
 ) − a max(T

ij
 − H

ij
 , 0) in (21) implies that s

ij
 (t, h) = j

ij
 (min(P(Y

i
 )

P (X
j
 ), R

ij
 ) − a max(P (Y

i
 ) P (X

j
 ) − R

ij
 , 0)). This equality allows to prove the clauses 

(i) and (ii). Clause (i). Suppose that P
ij
 ≥ P (Y

i
 ) P (X

j
 ). In this case, due to (15) (i) 

and (17), H
ij
 ≡ R

ij
 ≡ 0. This implies that min(P (Y

i 
 ) P (X

j
 ), R

ij
 ) = 0 and max(P (Y

i
 )

P (X
j
 ) − R

ij
 , 0) = P (Y

i
 ) P (X

j
 ). Hence, s

ij
 (t, h) =−j

ij
 a P (Y

i
 ) P(X

j
 ). Clause (ii). 

Suppose that P
ij
 < P (Y

i
 ) P (X

j
 ). In this case, due to (15) (ii) and (17), H

ij
 ≡ R

ij
 

≡ P (Y
i
 )P (X

j
 ) − P

ij
. This implies that min(P (Y

i
 ) P (X

j
 ), R

ij
 ) = P (Y

i
 ) P (X

j
 ) − P

ij
 and 
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max(P (Y
i
 ) P (X

j
 ) − R

ij
, 0) = P

ij
. Hence, s

ij
 (t, h) = j

ij
 (P (Y

i
 ) P (X

j
 ) − P

ij
 − a P

ij
 ) = 

j
ij
 (P (Y

i
 ) P (X

j
 ) − (1 + a) P

ij
 ).

Proof of (23)
First of all, let us prove the claim that s

ij
 (t, h) > 0 if and only if P

ij
 /(P (Y

i
 ) P (X

j
 )) 

< 1/(1 + a). Recalling that j
i
 > 0 (see (3)), it follows from (22) (ii) that inequality 

s
ij
 (t, h) > 0 amounts to inequality P (Y

i
 ) P (X

j
 ) − (1 + a) P

ij
 ) > 0 and, thereby, to P

ij
 /

(P (Y
i
 ) P (X

j
 )) < 1/(1 + a). In a strictly alike way, one can prove that s

ij
 (t, h) =/< 0 if 

and only if P
ij
 /(P (Y

i
 ) P (X

j
 )) =/> 1/(1 + a).

reFerenCes

Rudolf Carnap (1950/1962), The Logical Foundations of Probability. Chicago: 
The university of Chicago Press.

Gustavo Cevolani, Vincenzo Crupi, and Roberto Festa (2012), “Features of verisi-
militude”, in preparation.

maurice Duverger (1954), Political Parties. New York: John Wiley and Sons.

Roberto Festa (2007a), “Verisimilitude, Cross Classification, and Prediction Log-
ic. Approaching the Statistical Truth by Falsified qualitative Theories”, in: Mind 
and Society, 6, pp. 37–62.

Roberto Festa (2007b), “Verisimilitude, qualitative Theories, and Statistical In-
ferences”, in: Sami Pihlström, Panu Raatikainen and matti Sintonen (Eds.), Ap-
proaching the Truth. Essays in Honour of Ilkka Niiniluoto. London: College Pub-
lications, pp. 143–178.

David K. Hildebrand, James D. Laing, and Howard Rosenthal (1977), Prediction 
Analysis of Cross Classification. New York: John Wiley and Sons.

George Homans (1961), Social Behavior: Its Elementary Forms. New York: Har-
court brace Jovanovich.

Theo A. F. Kuipers (Ed.) (1987), What is Closer-to-the-Truth?. Amsterdam: Ro-
dopi.

Theo A. F. Kuipers (2000). From Instrumentalism to Constructive Realism. Dor-
drecht: Kluwer. 

Seymour m. Lipset (1960), Political Man: The Social Bases of Politics. Garden 
City: Doubleday.

Ilkka Niiniluoto (1987), Truthlikeness. Dordrecht: Reidel.



554 On the Verisimilitude of Tendency Hypotheses 

Graham Oddie (1986), Likeness to Truth. Dordrecht: Reidel.

Karl R. Popper (1963), Conjectures and Refutations. London: Routledge and Ke-
gan Paul.

Simone Santini and Ramesh Jain (1999), “Similarity measures”, in: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 21, pp. 871–883.

Amos Tversky (1977), “Features of Similarity”, Psychological Review, 84, pp. 
327–352. Reprinted in Amos Tversky, Preference, Belief, and Similarity, Cam-
bridge, mass.: The mIT Press, 2004, pp. 7–45.

Department of Philosophy
university of Trieste
Androna Campo marzio 10
34123, Trieste
Italy
festa@units.it



57

Chapter 5

Gerhard SChurz

tweety, or why probabiliSm and even bayeSianiSm need 
objeCtive and evidential probabilitieS

abStraCt

According to probabilism, uncertain conditionals are to be reconstructed as  
assertions of high conditional probability. In everyday life one often encounters 
situations of ‘exception’. In these situations two uncertain conditionals have  
contradicting consequents and both of their antecedents are instantiated or true, 
respectively. The often cited example of this sort is ‘Tweety’, who happens to be 
both a bird and a penguin. We believe that if Tweety is a bird then it probably 
can fly, and if it is a penguin then it probably cannot fly. If one reconstructs these 
examples by only one probability function, as is required by strong Bayesianism, 
they come out as pro ba bilistically incoherent (with or without the existence of a 
specificity relation bet ween the two antecedents). This result is counterintuitive.  
I argue that if one intends a coherent reconstruction, one has to distinguish  
between two probability functions, evidential probabilities which are subjective, 
and objective probabilities which are backed up by statistical probabilities. Drawing on 
Hawthorne (2005) I give further reasons why probabilism and even Bayesianism 
needs this distinction. In the end of the paper I present results of an experimental 
study on examples of ‘exception’ which confirm that humans operate with these 
two distinct pro ba bility concepts.

5.1 tweety and nixon: Conditional reaSoninG with exCeptionS 
Within the Framework oF probabiliSm

Non-monotonic reasoning is focused on conditional reasoning about situations 
which involve exceptions. Situations of exceptions are given when two condition-
als have instantiated (but distinct) antecedents and opposite consequences:

Situations of exceptions:
A Þ B   As are normally Bs
C Þ ¬B   Cs are normally not-Bs
A Ù C   This is A and C

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_5,  
© Springer Science+Business Media B.V. 2012
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The given case (“this”) must be an exception to at least one of the two conditionals 
(in the sense that its antecedent is verified but the consequence falsified by ‘this’ 
case). Of course the two conditionals must be understood as being uncertain, for 
otherwise the situation would not even be logically consistent. In what follows, A, 
B, … are schematic letters of a propositional or first order language (moreover, F, 
G, … stand for predicate variables, a, b,¼ for individual constants, x, y, … indi-
vidual variables); Þ symbolizes the non-strict (uncertain) conditional, while → 
symbolizes the material conditional which is strict in the sense that (a) P(A → B) = 
1 implies P(B | A) = 1 and (b) Fx → Gx is interpreted as "x (Fx → Gx).
 The most important subcase of exceptions are exceptions involving a relation 
of specificity. Here one antecedent is (strictly) more specific than the other. The 
rule of specificity asserts that in such a case the conditional with the more specific 
antecedent ‘fires’ its consequent and the conditional with the less specific anteced-
ent is blocked. The canonical example in the NMR (non-monotonic reasoning) 
community is the example of Tweety (according to Brewka 1991a, p. 2, Tweety is 
the most famous animal in AI circles):

Exceptions with specificity:

Generic formulation: Singular formulation:

A Þ B Bird(x) Þ Canfly(x) Bird(Tweety) Þ Canfly(Tweety)

C Þ ¬B Penguin(x) Þ ¬ Canfly(x) Penguin(Tweety) Þ ¬ Canfly(Tweety)
C → A Penguin(x) → Bird(x) Penguin(Tweety) → Bird(Tweety)

A Ù C Bird(Tweety) Ù Penguin(Tweety)

Unambiguous conclusion according to the rule of specificity:
¬B ¬ Canfly(Tweety)

Almost all systems of NMR agree in the rule of specificity (Brewka 1991a;  
Gabbay et al. 1994). Moreover, this rule has also been demonstrated to fit with 
humans intuitive reasoning (Schurz 2005, 2007).
 In the given case the specificity conditional C → A is strict. I call this case 
“strict specificity”, in distinction to weak specificity in which the conditional 
C Þ A is uncertain. The two possible formulations, generic versus singular, will 
become important later on. In most NMR-papers the chosen framework is a propo-
sitional language, and therefore, the singular formulation of ‘Tweety’ is chosen, 
although it is usually assumed that the singular conditionals are ‘somehow’ backed 
up by the generic conditio nals as expressed by our generic formulation1 (cf. Pearl 
1988, p. 483; Brewka 1991a, p. 3; 1991b, pp. 194f; Goldszmidt and Pearl 1996, p. 
73; Halpern 2003, p. 294; Pfeifer and Kleiter 2008).

1 Pearl (1988, p. 274) emphasizes that this back-up cannot be a universal quantification, 
but nevertheless he treats the two formulations as roughly equal.
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 Now let us turn to the probabilistic interpretation. The so-called doctrine of 
probabilism –

 
which also includes what I call ‘weak Bayesianism’ – makes two 

assumptions:

Probabilism (including ‘weak’ or ‘dualistic’ Bayesianism):
 (a) Epistemic states should be represented by rational degrees of belief (over a 
given space of propositions or statements) which obey the usual (Kolmogorovian) 
probability axioms (cf. e.g. Joyce 1998; Hájek 2008), and
 (b) uncertain conditionals should be understood as assertions of high condi-
tional probabilities2 (cf. Adams 1997, 1998; Skyrms 1980; MacGee 1989; Bennett 
2003; for psychological confirmations of this thesis cf. Evans et al. 2003 and of 
Oberauer and Wilhelm 2003).

Under the assumption of probabilism the Tweety example is transformed into the 
following reconstruction (see e.g. Pearl ibid.; Pfeifer and Kleiter ibid.; Halpern 
ibid.):

Exceptions with specificity, probabilistic reconstruction:

Generic formulation: Singular formulation:

P(B|A) ≥ 1–e With high probability, birds 
can fly.

With high probability, Tweety 
can fly.

P(¬ B|C) ≥ 1 – e With high probability, 
penguins cannot fly.

With high probability, Tweety 
cannot fly, given it is a 
penguin.

P(A|C) = 1 (≥ 1 – e) (Almost) all penguins are 
birds.

With (almost) certainty, 
Tweety is a bird, given it is a 
penguin.

P(A Ù C) = 1 (≥ 1 – e) With (almost) certainty, Tweety is a bird and a penguin.

Unambiguous conclusion: With high probability, Tweety cannot fly.

 According to probabilism, not only the conditional beliefs but also the factual 
beliefs (A Ù C) get probabilified. In particular, that we are certain of a factual be-
lief means that we attach a probability of 1 to it. We admit, however, also the case 
where the factual knowledge is uncertain and has merely a high probability but 
less than 1.
 Note that the inference rule of specificity is probabilistically valid because of 
the following

2 Note that this thesis is weaker than the so-called ‘Adams-Stalnaker’ thesis that identi-
fies P(AÞB) with P(B|A), which has shown to lead to paradoxical consequences by 
Lewis (1976). 
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Specificity theorem: P(B|A Ù C) ≥ 1 – (P(¬ B|C) / P(A|C)).
Proof: P(¬B|C) = P(¬ B|C Ù A) · P(A|C) + P(¬ B|C Ù ¬A) · P(¬ A|C) is a well-
known probability theo rem. It entails P(¬ B|C) ≥ P(¬ B|C Ù A) · P(A|C). Hence 
P(¬ B|C Ù A) ≤ P(¬ B|C) / P(A|C) (provided P(A|C) > 0). Substituting 1 – P(B|A Ù C) 
for P(¬ B|C Ù A) and simple transformation yields the claim. Q.E.D.

The specificity theorem implies for strict specificity (i.e., when P(A|C) = 1) that 
P(B|A Ù C) ≥ P(B|C) ≥ 1 – e, and for weak specificity that P(B|A Ù C) ≥ 1 – (e/1–e) 
= (1–2e)/(1–e). Thus, the probability of CanFly given Bird and Penguin is for strict 
specificity equal to, and for weak specificity almost as high as the probability of 
CanFly given Penguin. This result licenses the specificity rule if one adds the prin-
ciple of total evidence, which goes back to Carnap (1950, p. 211) and Reichenbach 
(1949, §72; he called it ‘narrowest reference class’). In a simplified formulation it 
says the following:

Principle of total evidence (simple formulation): The actual degree of belief 
in a singular statement Ba is P(Ba|E(a)) iff E(a) entails all evidence about a (or 
equivalently:3 all evidence that is probabilistically relevant to Ba).

Thus, the probability that Tweety can fly given the premises should be identified 
with P(Canfly(Tw) | Bird(Tw) Ù Penguin(Tw)).
 Before we turn to our major problem we illustrate the second subcase of rea-
soning about exceptions, which is given when two instantiated conditionals with 
opposite consequences are not ordered by a relation of specificity. The most fa-
mous case in the area of NMR is the Nixon-example (Brewka 1991a, p. 14). We 
immediately present its probabilistic reconstruction – the only difference to the 
Tweety example is that the specificity conditional is missing:

Exceptions with conflict, probabilistic reconstruction:

Generic formulation: Singular formulation:

P(B|A) ≥ 1 – e With high probability, 
quakers are pacifists.

With high probability, Nixon is 
a pacifist, given he is a quaker.

P(¬ B|C) ≥ 1 – e With high probability, 
republicans are not 
pacifists.

With high probability, Nixon is 
not a pacifist, given he is a re-
publican.

P(A Ù C) = 1 (≥ 1 – e) With (almost) certainty, Nixon is a quaker and a republi-
can.

Conflict: Neither B nor ¬B is entailed with high probability.

3 The two formulations are equivalent because if E(a) is the total evidence about a and E*(a) 
the evidence which is probabilistically relevant to Ba, then (by definition of ‘probabilistic 
relevance’) P(Ba|E(a)) = P(Ba|E*(a)). Hence, the actual degree of belief in Ba satisfies the 
condition in terms of E(a) iff it satisfies the condition in terms of E*(a).
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 In the result we have a situation of genuine conflict: each possible conclusion 
is defeated by the opposite one (also probabilistically); and so, no one of the two 
possible conclusions is preferred. While some authors argue for remaining skepti-
cal in this case, i.e. one should not draw a conclusion (e.g. Pollock 1994), others 
have argued for “multiple extension” in the sense that one is allowed to draw one 
of both possible conclusions (Reiter 1980). But this is not our concern here – our 
real concern is the question of probabilistic coherence, to which we turn in the next 
section.

5.2 tweety and nixon Are inCoherent in the

bayeSian reConStruCtion

The presented situations of reasoning with exceptions are completely standard in 
the areas of NMR and probabilistic conditional reasoning. I don’t know of any 
place where someone would have argued that situations of exceptions are proba-
bilistically inconsistent, i.e. incoherent. And yet they are – at least, if one makes 
the following additional assumption of ‘strong’ Bayesianism, which strengthens 
probabilism (or ‘weak’ Bayesianism) as follows:

‘Strong’ or ‘monistic’ Bayesianism (personalism, subjective Bayesianism): Ra-
tional probabilistic reasoning is based on only one probability function, namely on 
one’s actual degrees of belief (hypothetical degrees of belief have to be expressed 
by conditionalization of the actual belief function).

 All situations involving conditionals with exceptions, be it with or without 
specificity, are probabilistically incoherent, if factual and conditional probabilities 
are of the same kind, i.e. belong to the same probability space, and the probabili-
ties are high enough. This can be seen as follows:

Incoherence proof: By probability theory it holds that
 P(B) ≥ P(A ÙB) = P(B|A) · P(A) ≥ P(B|A) · P(A Ù C),  and
 P(¬ B) ≥ P(¬ B Ù C) = P(¬ B|C) · P(C) ≥ P(¬ B|C) · P(A Ù C).
Thus, the set of probability inequalities {P(B|A) ≥ r, P(¬ B|C) ≥ r, P(A Ù C) ≥ r} 
becomes incoherent for
 P(B) + P(¬ B) ≥ r2 + r2 > 1.
This is the case iff r2 > 1/2, i.e., iff r > 1/√2 ≈ 0.71. Q.E.D.

The information P(A|C) ≥ r is not needed to derive this conflict; it is already im-
plicitly contained in P(A Ù C) = P(C) · P(A|C) ≥ r.
 The result is surprising. Situations involving exceptions are quite common 
in everyday life, and they do not at all seem inconsistent or incoherent. Although 
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they come out as such given the assumption of strong Bayesianism. If this is right, 
then strong Bayesianism is wrong. To obtain a coherent reconstruction of reason-
ing with exceptions we need to distinguish between two probability functions. One 
probability function reflects the subject’s actual degrees of belief and depends on 
the particular evidence which this subject has – I call this the subjective-evidential 
probability function and formalize it from now on as B

C
 for ‘degree of belief’ 

relative to a set of evidence-including background beliefs C about which the sub-
ject is certain. The other probability function intends to reflect objective-statistical 
regularities or propensities in the real world – I call it objective-statistical (or if 
you think “statistical” is too narrow, then call it: objective-generic) probability and 
denote it as P. The difference between the two probability functions is already re-
flected in the generic formulation of our examples, in which the conditional prob-
abilities are expressed as generic probabilities (in terms of an individual variable 
instead of an individual constant). However, we have mentioned above that also in 
the singular formulation most NMR-authors take it for granted that the singular 
conditional probabilities are determined by generic probabilities, rather than by 
the actual probabilities of particular evidences (more on this in Sect. 5.3).
 The strong Bayesian has a defense. She or he will deny that the singular and 
the general formulations are treated on par. In the singular case, she argues, in 
which we deal with only one probability function, the evidence changes our con-
ditional probabilities. I’ve often heard Bayesians argue as follows: our subjective 
probability that Tweety can fly, given she is a bird, sinks to low values, if we get 
to know that Tweety is not an ordinary bird but an exceptional bird, namely a 
penguin. This is right insofar the following holds for one’s actual degree of belief 
function B

C
:

 B
C
(CanFly(Tw)|Bird(Tw)) = B

C
(CanFly(Tw)|Bird(Tw) Ù Penguin(Tw)),

 provided the background beliefs in C contain “Penguin(Tw)”; moreover
 B

C
(CanFly(Tw)|Bird(Tw) Ù Penguin(Tw)) = B

C
(CanFly(Tw)|Penguin(Tw))

 because of strict specificity.

Nevertheless, it seems unintuitive that the conditional probability that a certain 
individual can fly, given it is a bird, should be affected by additional evidence 
about this individual – at least if this conditional probability intends to reflect the 
strength of nomo lo gical connection between the two properties “Bird” and “Can-
Fly” that are instantiated by Tweety. The situation becomes even more problematic 
in the Nixon-type examples without specificity. For here, the strong Bayesian is 
forced to change the values of the two opposing conditional probabilities in a way 
such that they agree, merely on coherency requirements, but without any real rea-
son for doing so. She may either change the low probability conditional into a high 
probability conditional, or vice versa, the high probability conditional into a low 
one – or she may even change both of them. But by doing so, the Bayesian hides 
important information, namely that there are two opposing conditionals relevant to 
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the consequent. That the strong Bayesian reconstruction hides conflicting probabi-
listic information is in my eyes a strong argument against monistic Bayesianism.

5.3 objeCtive likelihoodS and bayeSian updatinG: Further 
reaSonS why bayeSianiSm needS objeCtive and 

SubjeCtive-evidential probabilitieS

There are further reasons why both probabilism and Bayesianism need subjective-
evidential and objective probability functions. Some years ago Hawthorne (2005) 
has demonstrated with admirable clarity that the Bayesian approach to the confir-
mation of hypotheses presupposes these two probability functions, if confirmation 
should be based on objective or intersubjectively agreed values for likelihoods. We 
will see that Hawthorne’s arguments are closely related to earlier arguments by de 
Finetti and Carnap.
 In scientific contexts the likelihoods represent what hypotheses say about the 
evidence. Their objectivity is essential to the objectivity of a science – to a com-
mon understanding of what the theory says or implies about the world. Moreover 
the objectivity of likelihoods is necessary for every account of probabilistic con-
firmation that should satisfy the following two properties:

 (a) convergence to intersubjectivity (objectivity) with increasing evidence, 
and
 (b) resistance against the problem of old evidence.

According to Bayesianism, the probability of hypotheses given evidences is cal-
culated as follows, where we assume a given partition of hypotheses H = {H

1
, …, 

H
m
}:

(1) B
C
 (H

i
 | En) = B

C 
(En | H

i
) · B

C 
(H

i
) / B

C 
(En)

where En is a disjunction of conjunctions (or sequences) of n experimental results 
E

1
 Ù … Ù E

n
 (i.e. each E

i
 is an element of an associated partition Ei of outcomes of 

the ith experiment).

The prior probabilities of the hypotheses B
C
 (H

i
 ) are the well-known subjective 

factors in Bayesian statistics, the so-called ‘priors’ – they reflect personal preju-
dices, so to speak. Almost all Bayesians – even personalists (cf. Hawthorne 2005, 
p. 286, who quotes Edwards et al. 1963) – stress that with increasing evidence, 
i.e. with increasing n, the probability value B

C
 (H

i
 | En) (for arbitrary i) becomes 

more and more independent from the subjectively chosen priors.4 The reason for 

4 Several versions of such convergence theorems exist in the literature (cf. Earman 1992, 
p. 58; Howson and Urbach 1993, ch. 14). An especially nice version is given by Haw-
thorne (2005, pp. 283f).
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this is that the likelihoods, i.e. the probability values B
C
 (En | H

i
), are assumed to be 

intersubjective or objective – typically they are given by objective statistical prob-
abilities. Also this assumption is shared by almost all Bayesians. But as Hawthorne 
points out, objective likelihoods are impossible if they are understood as an actual 
degree of belief which depends on one's actual evidence (and other actual beliefs). 
For example, if I have already observed that on a particular occasion a fair coin 
landed heads, then my actual probability that this coin landed on heads is not 1/2 
– which would be the objective likelihood value – but 1. More specifically, the fol-
lowing holds for actual quasi-likelihood probabilities:

(2) B
C
 (coin lands heads at time t | P(coin lands heads at some time) = 0.5 ) =

(i) = 1 if C includes the observation “coin lands heads at time t”.
(ii) = 0.5 if C doesn’t include any observation about this coin at time t.
(iii) = 8/9 if C includes the evidence “either the coin landed heads at time t or 

it landed tail in three tossings before t”.

The actual probability in (i) is similar to the actual probability that this bird can fly, 
given it is a bird, when we know that this bird is a penguin. The resulting values of 
evidence-dependent likelihoods may become quite strange, if the evidence is more 
involved. This is shown in the result of line (iii) of (2) that is due to Hawthorne 
(2005, p. 291).5

 Intersubjective confirmation values for hypotheses would hardly be possible if 
likelihoods were dependent on one’s subjective evidence, which varies from scien-
tist to scientist. Related to this problem is the well-known problem of old evidence 
(cf. Earman 1992, ch. 5), that concerns the probability value B

C
(En), about we have 

been silent so far. If B
C
 measures the actual degree of belief, and if we are in an 

epistemic state C in which we already know the evidence, i.e. if B(En) becomes 
one, then we obtain the following trivialization result:

(3) B
C
 (H

i
 | En ) = B

C
 (H

i
 ) if B

C
 (En ) = 1

 [because then: B
C
 (En ) = B

C 
(En | H

i
 ),

  and recall B
C
 (H

i
 | En ) = B

C
 (H

i
 ) · B

C
 (En | H

i
 ) / B

C
 (En ) ].

So in an epistemic situation C in which we already know the evidence, the amount 
of confirmation received by the hypothesis given the evidence as explicated  
by actual degrees of belief would become zero for the standard incremental  

5 With H
t
 for “tossing heads at t” and “TTT

b
” for “tossing three times tailes before t”, 

the proof is this: B(H
t
 | H

t 
ÚTTT

b
 ) = B(H

t
 Ù (H

t
ÚTTT

b
 )) / B(H

t 
ÚTTT

b
 ) = B(H

t
 ) / [B(H

t
 ) 

+ B(TTT
b
) –B(H

t 
 Ù TTT

b
)] = (1/2) / [(1/2) + (1/8) –(1/16)] = 8/9.
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confirmation mea sure, which explains confirmation in terms of the difference  
between B

C
(H

i
|En) and B

C
(H

i
).6, 7

 As Hawthorne argues, both problems can only be avoided if the probability of 
a hypotheses conditional on an evidence is explicated in a way that is independent 
from the possession of particular evidences. This probability should not be ex-
pressed in terms of subjective-evidential probabilities (i.e. actual degrees of belief), 
but in terms of what Hawthorne calls support functions or support probabilities,8 
for which I use here the expression S. Somewhat differently from Hawthorne, I 
reformulate the definition of support probabilities as follows:

(4) (i) S(H
i
 | En ) = P(En | H

i
 ) · B(H

i
 ) / S(En ), with

 (ii) S(En ) = å
1≤j≤k

 P(En | H
j
 ) · B(H

j
 ) [or = ò

r
 P(En | H

r
 ) · dB(H

r
 ) ].9

 Thereby, B(–) is a subjective prior probability function.

While Hawthorne writes univocally S for B as well as for P, my formulation (4) 
points out that support probabilities are a function of an objective probability func-
tion P and a subjective prior probability B over the hypotheses. The prior B(H

i
) is 

understand as a rational degree of belief in H
i
 prior to all evidences that are pos-

sible outcomes of the associated sequence of n experiments (as explained in (1)).
 The probability P(En | H

i
 ) in (4) (i) is an objective probability, but not an ordi-

nary objective-statistical probability because it is applied to singular events. But I 
assume that P(En|H

i
) is backed up by an ordinary objective-statistical probability 

function by way of the statistical version of the principal principle, which goes 
back to de Finetti and is explicated by me as follows:

(5) Statistical principal principle:
 (i) Unconditional version: P(En (a

1
, …, a

n
) | H

i
) = P

Hi
 (En (x

1
, …, x

n
 )),

 where H
i
 is a hypothesis for an unconditional statistical probability function.

E.g. H
i
 : P

Hi
 (Gx) = r and En (a

1
, …, a

n
) asserts the frequency of G’s in a sample 

of size n.

6 Or it would be 1 when measured as the ratio between the two; or it would be 0 if meas-
ured in terms of the difference between B

C
(H

i
 | En ) and B

C
(H

i
 | ¬ En ).

7 A referee argued that to solve the old evidence problem one merely has to require that 
B(E) must be evaluated in the epistemic state C in which the evidence E is not yet 
known. As Earman (1992, p. 122) I think this is insufficient, because if E confirms H 
(in C), and we observe E (thereby passing to epistemic state C

E
), then we want still say 

that E confirms H (in C
E
 ) – but we can't, because of the problem of old evidence.

8 Hawthorne uses the name “support functions”, but I prefer the name “support prob-
abilities”, because support functions are sometimes associated with non-probabilistic 
belief functions.

9 The integral formulation is needed if H is an uncountable partition of hypotheses spec-
ifying statistical probability functions by real numbers; i.e. H = {H

r
: r Î Reals}, and 

each H
r
 asserts that P(F

1
x

1
 Ù … Ù F

n
x

n
 ) = r for suitably chosen predicates F

i
.



66 Gerhard Schurz

 (ii) Conditional version:
 P(En (a

1
, …, a

n
) | H

i
 Ù Cn (a

1
, …, a

n
 )) = P

Hi
 (En (x

1
, …, x

n
 ) | Cn(x

1
, …, x

n
 ))

 where H
i
 is a hypothesis for a conditional statistical probability function.

E.g. H
i
 : P

Hi
 (Gx | Fx) = r; En (a

1
, …, a

n
) asserts the frequency of G’s in a sample 

of size n and Cn(a
1
, …, a

n
) asserts that all members of this sample are Fs.

Note that, depending on the nature of evidence partition, the hypotheses space can 
be chosen as fine as is needed to determine objective likelihoods P(En | H

i
 ). For 

example, the likelihood P(Fa Ù Ga | P(Fx) = r) is not objectively determined, but the 
likelihood P(Fa Ù Ga | P(Fx Ù Gx ) = q) is objectively determined by the principal 
principle.
 Let me emphasize that the standard Bayesian identification of the prior prob-
ability of E with the sum-term in line (4) (ii) is only possible if one does not use 
actual belief functions but support probabilities. For actual belief functions (4) (ii) 
is simply false, because according to (4) (ii) S(En) is solely determined by objective 
likelihoods and prior beliefs about hypotheses, but not by actual evidence. So if my 
prior for the statistical probability of a coin landing heads is uniformly distributed 
over all possible values, then my probability that it has landed heads as calculated 
by (4) (ii) will be 1/2, even if I have observed on which side the coin has landed – 
and this would be incoherent if the probability in (4) (ii) would express my actual 
degree of belief. (4) (ii) would only be correct for actual degrees of belief if we 
would replace the objective likelihood by the actual degrees of belief B

C
 (En (a

1
, 

…, a
n
) | H

i
) – but then, as we have shown before, these quasi-likelihoods would no 

longer be objective and evidence-independent.
 Support probabilities seem to be a 'third' kind of probability, but they are not 
a new primitive probability function, but are defined as a mixture of subjective 
prior probabilities and objective-statistical probabilities. A support probability is 
only entirely objective if the true hypothesis H

i
, i.e., the true objective-statistical 

pro bability is known; otherwise it depends on one’s subjective prior over the pos-
sible objective-statistical probabilities. But the important point is that a support 
probability does no longer depend on one’s actual evidence – it is intersubjective. 
Conditional support probabilities S(A|B) intend to reflect the probability which 
B conveys to A independent of any specific background knowledge or evidence. 
In other words, neither the prior belief function B nor the support probability S 
depends on the system C of one's actual subjective beliefs or evidences, whence 
they are no longer relativized to a background belief system C.
 Hawthorne emphasizes that support probabilities should not be conceived of 
as counterfactual subjective belief functions in the sense of Howson and Urbach 
(1993, pp. 404ff), i.e. not as one’s counterfactual degree of belief in a contracted 
belief context in which one would not know the evidence. This seems right, because 
the contracted belief system may still contain many further pieces of evidence 
(which is illustrated by the example (2) (iii) above). However, this consideration 
still leaves open the possibility to consider support probabilities as hypothetical 
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belief functions prior to all evidence and other informations. In this sense, Pearl 
(1988, p. 475) has suggested the all-I-know-interpretation, in which S(H

i
 |En ) ex-

presses my hypothetical degree of belief in H
i
 given that all that I know is En (and 

the prior B(H) represents my hypothetical degree of belief in which I do not know 
anything at all).
 Pearl’s interpretation brings us back to Carnap’s credibility function “Cred” 
(1971, pp. 21–23). This is a support probability interpreted as an ‘absolute prior’ 
probability, i.e. a degree of belief which one would have if she had no prior knowl-
edge at all. This is, of course, an idealized notion, and support functions need not 
be interpreted in this way, but their important property is that they don’t depend 
on any particular experience about particular individuals.10 This has a fundamen-
tal consequence: support pro ba bilities satisfy the axiom of exchangeability (as 
de Finetti called it) or the equivalent axiom of symmetry (as Carnap called it). 
An exchangeable (or symmetric) belief function is by definition one which is in-
variant w.r.t. arbitrary permutations of individual constants of the language, i.e., 
it holds that B(A(a

1
, …, a

n
 )) = B(A(ap(1)

, …, ap(n)
 )) for every bijective function 

p:N→N over the countable set of indices N of individual constants {a
i
:iÎN} (cf. 

Earman 1992, p. 89; Carnap 1971, pp. 117ff.). Exchangeable belief functions are 
thus independent from any particular experience; they assume that prior to all 
experience all individuals have the same probabilistic tendencies (whence they 
entail weak induction principles; cf. Kutschera 1972, pp. 74ff.; Earman 1992, p. 
108). De Finetti’s famous representation theorem says that a belief func tion B is 
exchangeable exactly if it is representable as an expectation (an average weighted 
by priors) of objective-statistical (Bernoullioan) probability functions. Line (4) (ii) 
is exactly such a definition of the degree of belief in a singular statement by mix-
tures of objective probabilities. In other words, exchangeable belief functions are 
nothing but support probabilities – and this is the link by which the framework of 
support probabilities and the older Carnapian theory of “logical” probabilities as 
symmetric apriori belief functions matches.
 So far we have dealt only with general hypotheses H. For singular hypotheses 
F, e.g. predictions, the support probability is determined by their likelihoods rela-
tive to a sufficiently fine partition of hypotheses:

(6) For a singular sentence F all of whose individual constants appear in E
n
: 

S(F|En ) = å
1≤i≤m

 P(F|En Ù H
i
 ) · S(H

i
 | En ), where {H

1
, …, H

m
} is the coarsest 

10 Support probabilities are compatible with the assumption that the priors of hypotheses 
are dependent on previously made evidences E′ that are independent from the results of 
the experiments under consideration (cf. Hawthorne 2005, p. 305), i.e. B(H) = B

E’
(H). 

This assumption does not undermine the exchangeability of support probabilities be-
cause their indirect dependence on E′ is screened off by their dependence on the ‘pri-
ors’ B

E’
(H) that are independent from the individuals mentioned in E′ (via iteration 

of (4)). However, the assumption would imply that the value of S(H|E) does not only 
reflect probability-enhancing effects of E on H but also of E′ on H. One can avoid this 
distorting effect if B is understood to be ‘absolutely prior’ in Carnap’s sense.
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partition of possible hypotheses such that P(F | En Ù H
i 
) is objectively deter-

mined.11

If the true hypothesis H is known, (6) reduces to the conditional form of the statis-
tical principal principle (5) (ii): S(F|En ) = P(F|En Ù H).
 To complete the picture, let us ask how support probabilities are related to 
actual degrees of belief. This is done by the principles of conditionalization. It is 
here where the already mentioned principle of total evidence comes into play as 
follows (my reconstruction essentially agrees with Hawthorne 2005, pp. 309–312, 
but simplifies it):

(7) Strict conditionalization: B
C
 (A) = S(A|E

C
 ), where E

C
 is the total evidence in  

the background system C (which is probabilistically relevant to A; see fn. 3).

(8) Jeffrey-conditionalization: B
C
 (A) = å

1≤i≤k 
S(A | E

i
 ) · B

C
(E

i
), where {E

1
, …, 

E
k
} is a partition of (reasonably available) uncertain evidence-possibilities in 

background C such that each cell E
i
 entails the total certain evidence E

C
.

Principle (7) is found in exactly the same way in Carnap (1971, p. 18) as the rela-
tion of the actual crendence function to the logical credibility function. (8) is the 
Jeffrey extension of (7) to actual evidences about which one is not certain.
 To sum up – Bayesian statistics and confirmation theory need both subjec-
tive probabilities and objective (likelihood) probabilities. In our detailed recon-
struction even four probabilities have been involved, though only two of them, 
objective-sta tistical probabilities and unconditional subjective probabilities (priors 
of hypotheses and actual degrees of belief in evidences) are primitive. The other 
two, support probabilities and actual degrees of belief in hypotheses, are derived.

11 For the uncountable partition of hypotheses {P(Gx | Fx) = r: rÎReals}, an example 
would be: S(Ga

n+1
 | Fa

n+1
 Ù Fa

n
 Ù Ga

n
 Ù … Ù Fa

1
 Ù Ga

1
) = ò

r
 r · d S(P(Gx | Fx) = r | Fa

n
 Ù Ga

n
 

Ù … Ù Fa
1
 Ù Ga

1
).
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by Bayes formula

subjective probabilities B statistical probabilities P

priors of general hypotheses

via statist. principal principle

objective likelihoods

support probabilities S of hypotheses (symmetric)

actual subjective probabilities B
C 

of hypotheses
(not symmetric)

of evidences
(not symmetric)

by conditionalization on the total evidence in C

Fig. 5.1 The probabilistic framework of refined probabilism: two primitive and 
two derived probability functions

One may call this framework refined probabilism and it is illustrated in the dia-
gram in Fig. 5.1. The relation of the results in this section with the Tweety and 
Nixon examples of the previous sections are as follows: the conditional probabili-
ties in reasoning with exceptions represent in their generic formulation statisti-
cal probabilities and in their singular formulation support probabilities, while the 
unconditional probabilities represent actual degrees of beliefs. In the final section, 
we get back to our Tweety example.

5.4 do humanS reaSon with one or two probability 
FunCtionS? tweety and nixon exampleS put to empiriCal teSt

So far our reasoning was logical and normative. Now we ask the descriptive question 
whether in the intuitive reasoning of humans with uncertain information, one or two 
probability functions are involved. Will humans regard the probability assertions in the 
Tweety or Nixon examples as incoherent or not? And how will their judgment depend 
on the general versus singular formulation? Our plan is to test this by a series of ex-
periments. So far, we have performed just a first explorative experiment. We presented 
27 test persons12 with probability assertions involving exceptions and asked the them 

12 Test persons were paid 5 Euros for the test, which consisted of the six mentioned examples 
plus two minor variations of “Coh” and “Inc” that were inserted to avoid priming effects. 
95% of the test persons were students; mean age was 26 years; 45% female. 50% reported 
they had one course in probability theory, 30% they had one course in logic, but we found 
no significant differences between the respective subgroups. Instructions were read loudly 
to the test persons; then they were asked, for each example: “Are the assertions of this  
example jointly contradictory, i.e., do they contradict each other?”.
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whether they think that these probability assertions are jointly contradictory or not. We 
confronted them with the following examples:

ESpecGen Exceptions with specificity (such as Tweety), generic formulation:
 Tigers are most likely dangerous
 Very young tigers are most likely not dangerous
 This animal is most likely a very young tiger.

ESpecSing Exceptions with specificity (such as Tweety), singular formulation:
 With high probability this animal is dangerous, given it is a lion.
 With high probability this animal is not dangerous, given it is a very young 
lion.
 With high probability this animal is a very young lion.

EConGen Exceptions with conflict (such as Nixon), generic formulation:
  Animals which are able to fly are most likely oviparous (egg-laying).
  Mammals are most likely not oviparous.
  This animal is most likely a mammal which is able to fly.

EConSing Exceptions with conflict (such as Nixon), singular formulation:
 With high probability, this animal is oviparous, given it is able to fly.
 With high probability, this animal is not oviparous, given it is a mammal.
 With high probability, this animal is a mammal which is able to fly.

To check whether the test persons had a minimal understanding of probability 
assertions, and also as a means of avoiding repetitions of similar task structures 
(priming effects), we inserted examples of the following sort:

Inc  Clear cases of probabilistic incoherence such as:
 It’s highly probable that Peter is a student.
 It’s highly probable that Paul is a student.
 It’s highly probable that neither Peter nor Paul is a student.

Coh Clear cases of probabilistic coherence such as:
 It’s highly probable that Peter will travel to Berlin.
 It’s highly probable that Paul will travel to Berlin.
 It’s highly improbable that scientists have found water on Mars.

The results were as follows – “% incons.” expresses the percentage of test persons 
who judged the example of the respective type as inconsistent.

Type of example % incons.
Coh 0.05
Inc 0.95
ESpecGen 0.15
EspecSing 0.25
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EConGen 0.45
EConSing 0.45

Although this was just a first experiment, the data tell us some interesting trends.

 First: The clear cases of coherent and incoherence examples were judged cor-
rectly by the great majority of test persons. So, they indeed had a basic understand-
ing of probability.
 Second: Both the generic and the singular formulation of exceptions with spe-
cificity was regarded as consistent by the great majority. This indicates clearly that 
the test persons do indeed possess two distinct concepts of probability. The generic 
formulation, in which two distinct probability functions are linguistically encoded, 
was regarded by 85% of the test persons as coherent. However the fact that also in 
the singular formulation, in which no two distinct probabilities are linguistically 
indicated, 75% of the people regarded the situation as coherent seems to have only 
two plausible explanations: Either people’s uncertain reasoning isn’t probabilisti-
cally coherent at all – but this interpretation is already excluded by the results for 
the basic examples Coh and Inc. So the only remaining interpretation seems to be 
that our human mind works generally and automatically with these two distinct 
probability functions and people interpret conditional informations unconsciously 
in terms of generic statistical probabilities, and factual-categorial informations in 
terms of subjective-evidential degrees of belief. 
 Third: In the generic as well as in the singular formulation of examples with 
conflict the percentage of test persons which consider the example as incoherent 
is significantly higher but still less than 50%, namely around 45%. The fact that 
this result is completely independent from the generic vs. singular formulation, as 
well as the moderate percentage numbers, has in our view the following explana-
tion: the 45% judgements of inconsistency do not reflect an incoherent probability 
function (people rather use also here two distinct probabilities as explained) – they 
rather reflect the qualitative conflict between the two opposite qualitative conclu-
sions which are possible.
 Our suggested explanations are prima facie and merely a first step. We plan a 
series of further experiments to increase the robustness and differentiatedness of 
these results. We also plan experiments about the evaluation of likelihood prob-
abilities by test persons, in order to find out whether they are treated as evidence-
independent or as evidence-dependent.

5.5 ConCluSion

We have shown that the probabilistic reconstruction of reasoning with exceptions 
requires a distinction between two different probability functions, subjective-ev-
idential probabilities and objective evidence-independent probabilities which are 
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backed up by objective-statistical probabilities. If this is right, then the assumption 
of monistic Bayesianism, namely that the reconstruction of uncertain reasoning 
needs only one probability function, is wrong. Moreover, we have seen that also 
within the framework of standard Bayesian statistics and confirmation theory there 
exist strong reasons why these two probability functions have to be distinguished 
– the objectivity of likelihoods and the avoidance of the problem of old evidence. 
Drawing on Hawthorne (2005) we have sketched how with help of the statisti-
cal principal principle and Bayes rule, evidence-independent support probabilities 
can be defined from subjective priors of hypotheses and objective-statistical prob-
abilities. These support probabilities have the characteristics needed to satisfy the 
conditions for convergence to objectivity with accumulating evidence. In the last 
section we turned from the normative to the factual domain: we presented a first 
experiment (of a series of planned experiments) which indicates that humans intui-
tive uncertain reasoning does indeed, if only unconsciously, involve two distinct 
probability functions. This finding is an important amendment to recent accounts 
of Bayesian reasoning in psychology such as Oaksford and Chater (2007).
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CHAPTER 6

DAVID ATKINSON AND JEANNE PEIJNENBURG

PLURALISM IN PROBABILISTIC JUSTIFICATION

6.1 INTRODUCTION

From Aristotle onwards, epistemic justification has been conceived as a form of
inference. If a proposition En is epistemically justified by a proposition En+1,
then according to the traditional view En is somehow inferred from En+1.

It took twenty-three centuries to modify this outlook. Today, many epistemol-
ogists construe epistemic justification in terms of probabilistic support rather than
of inferential relations. In the modern view, En is epistemically justified by En+1

if two requirements are fulfilled. First, En+1 should probabilistically support En.
By this we mean that the conditional probability of En, given En+1, exceeds the
conditional probability of En, given not-En+1:

P (En|En+1) > P (En|¬En+1) . (6.1)

Second, the unconditional probability of P (En) should not fall below some agreed
threshold of acceptance.

This ‘probabilistic turn’ in epistemology opened the door to pluralism in epis-
temic justification. Imagine a sequence of propositions E0, E1, E2 . . ., such that
E0 is epistemically justified by E1, which is epistemically justified by E2, and
so on. In 1956, when the probabilistic turn had not yet been fully made, Wilfrid
Sellars still saw no more options than to construct this sequence as either a finite
chain or a finite loop:

One seems forced to choose between the picture of an elephant which rests on a tortoise
(What supports the tortoise?) and the picture of a great Hegelian serpent of knowledge with
its tail in its mouth (Where does it begin?). Neither will do.1

Present-day epistemologists, however, are not confined to these two possibilities.
Thanks to the interpretation of epistemic justification as probabilistic support, they
have at their disposal many different ways of reconstructing justificationary pro-
cesses. A target proposition, E0, can be probabilistically justified by a chain or
by a loop, and both the chain and the loop can be finite or infinite.2 Moreover,

1 Wilfrid Sellars, “Empiricism and the Philosophy of Mind”, in: Herbert Feigl, Michael
Scriven (Eds.), The Foundations of Science and the Concepts of Psychology and Psy-
choanalysis. Minneapolis: University of Minnesota Press 1966, pp. 253–329; p. 300.

2 The concept of an infinite loop might seem incoherent, but it is not. As we have shown
elsewhere, an infinite loop differs in nontrivial ways from an infinite chain. See David

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4 6,
© Springer Science+Business Media B.V. 2012
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in each of these four cases the conditional probabilities might be uniform, taking
on the same values, or they might be nonuniform, differing throughout the chain
or loop. This yields already eight different varieties of epistemic justification. In
earlier papers we have discussed the four most intriguing ones – involving chains
and loops of infinite size. We showed there that infinite chains and infinite loops
can converge, yielding a unique and well-defined probability value for the target
proposition E0.

In the present paper we contribute to a pluralistic outlook by introducing even
more possibilities for probabilistic justification. In contrast to the eight varieties
above, all of which are one-dimensional, we will investigate probabilistic justi-
fication in more than one dimension. We shall concentrate again on structures
of infinite size, and we show that many-dimensional networks can converge, too.
Thus it makes sense to say that a target proposition, E0, can be epistemically jus-
tified not only by an infinite one-dimensional chain or an infinite one-dimensional
loop, but also by an infinite network of many dimensions.

We start, in Sect. 6.2, by recalling some facts about infinite, one-dimensional
chains, where for convenience sake we restrict ourselves to chains that are uni-
form. In Sect. 6.3 we explain what happens when we go from a one-dimensional
uniform chain to a two-dimensional uniform network. In Sect. 6.4, we contrast
the properties of one-dimensional chains with those of two-dimensional networks.
As we will see, there exists an intriguing difference between the two, which poses
difficulties at an intuitive level. In Sect. 6.5 we indicate the relevance of this paper
for disciplines outside epistemology and philosophy in general, by explaining an
application of our analysis to genetics.

6.2 INFINITE, UNIFORM CHAINS

Earlier we have shown that probabilistic epistemic chains of infinite length always
converge. In the present section we summarize our findings, restricting ourselves
for simplicity to uniform chains. However, the demonstration we give of conver-
gence is different from earlier proofs, since we will now use fixed-point methods.3

The unconditional probabilities P (En) and P (En+1) are related by the rule
of total probability,

P (En) = P (En|En+1)P (En+1) + P (En|¬En+1)P (¬En+1). (6.2)

As we have already indicated, we assume in this paper that the conditional prob-
abilities are uniform, i.e. they are the same throughout the chain. However, it is
important to keep in mind that the assumption of uniformity is not essential: the

Atkinson, Jeanne Peijnenburg, “Justification by Infinite Loops”, in: Notre Dame Jour-
nal of Formal Logic, 51, 4, 2010, pp. 407–416.

3 Of the earlier proofs, the most general one can be found in Appendix A of David
Atkinson, Jeanne Peijnenburg, “The Solvability of Probabilistic Regresses: A Reply to
Frederik Herzberg”, in: Studia Logica, 94, 3, 2010, pp. 347–353.
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whole argument goes through without assuming uniformity, albeit in a somewhat
more complicated form.

Under the assumption of uniformity, Eq. 6.2 may be rewritten in the form

P (En) = β + (α− β)P (En+1), (6.3)

where

α = P (En|En+1) and β = P (En|¬En+1).

Clearly α > β is equivalent to the condition of probabilistic support as expressed
in (6.1).

Does the iteration (6.3) converge, giving a well-defined value for P (E0),
P (E1), P (E2) and so on? If it does, then P (En) and P (En+1) will have to
be equal in the limit. Let us call this limiting value, if it exists, P ∗

1 . It is a fixed
point of the iteration Eq. 6.3, i.e. it satisfies

P ∗
1 = β + (α− β)P ∗

1 ,

and this linear equation has the unique solution

P ∗
1 =

β

1− α+ β
, (6.4)

where we exclude α = 1 (the case in which En+1 entails En).
To show that the iteration (6.3) does indeed converge, we write P (En−1) =

β +(α− β)P (En), which is (6.3) with n− 1 in place of n. Subtracting this from
Eq. 6.3, we obtain

P (En)− P (En−1) = (α− β) [P (En+1)− P (En)] .

Hence, by iteration,

P (En)− P (En−1) = (α− β)2 [P (En+2)− P (En+1)] = . . .

= (α− β)s [P (En+s)− P (En+s−1)] . (6.5)

We may take s to infinity on the right-hand side of (6.5), and since (α − β)s

tends to zero in this limit, it is clear that P (En) − P (En−1) = 0, i.e. P (En) =
P (En−1) for all finite n. This shows that the iteration (6.3) converges. Indeed all
the unconditional probabilities are equal to one another, and they are all equal to
the fixed point, P ∗

1 .
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6.3 INFINITE, UNIFORM NETWORKS

In this section we shall consider a two-dimensional probabilistic network, where a
‘child’ proposition is probabilistically justified by two ‘parent’ propositions, each
of which is in turn probabilistically justified by two ‘(grand)parent’ propositions,
etc. So the network has a tree-like structure:

oooo

oo

o

Figure 6.1: Justification in two dimensions

In the sequel, we shall often use ‘child’ and ‘parent’ for ‘child proposition’
and ‘parent proposition’. We will talk about ‘the probability that the child (parent)
is true’, or alternatively about ‘the probability of the child (parent)’.

Much as in our treatment of the one-dimensional chain, we take it that a child
proposition is justified by its parent propositions if two requirements are fulfilled.
First, the parents must probabilistically support the child. By this we mean: the
probability that the child is true, given that both its parents are true, is larger than
the probability that the child is true, given that both parent propositions are false.4

In symbols:

P (En|En+1&E′
n+1) > P (En|¬En+1&¬E′

n+1), (6.6)

where En stands for the child, En+1 for the one parent, and E′
n+1 for the other.

We will refer to the conditional probability in which both parents are true by α and
that in which both parents are false by β, so (6.6) becomes:

α > β.

The second requirement for justification is that the unconditional probability
of the child proposition may not lie below a certain threshold of acceptance. The
threshold could be 0.5, or 0.9, or even higher, dependent on the context of the case.

For simplicity, we make three further assumptions. To begin with, we assume
that the parents are independent of one another, so the probability that both parents

4 Below we will consider the case in which one parent proposition is true while the
other one is false. We will see that this situation has no bearing on the condition of
probabilistic support.
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are true equals the probability that one of them is true times the probability that
the other one is also true:

P (En+1&E′
n+1) = P (En+1)P (E′

n+1) . (6.7)

Moreover, we explicitly assume gender symmetry, i.e. both parent propositions
have the same probability of being true, so P (En+1) = P (E′

n+1). Finally, we
suppose that the conditional probabilities are the same throughout the whole two-
dimensional structure. In other words, just like the linear chain in the previous
section, our quadratic two-parent network in the present section is uniform. How-
ever, as was the case for the one-dimensional chain, the uniformity assumption is
not essential. Nor do we need the assumptions of independence or of gender sym-
metry. Our argument can be made without these three assumptions, although we
shall not show that here.

The unconditional probability that the child is true, P (En), can be written in
terms of the triple joint probabilities associated with two parent propositions as
follows:

P (En) = P (En&En+1&E′
n+1) + P (En&En+1&¬E′

n+1) +

P (En&¬En+1&E′
n+1) + P (En&¬En+1&¬E′

n+1). (6.8)

The first term on the right-hand side is the joint probability that the child proposi-
tion and both parent propositions are all true. This term can be written as

P (En&En+1&E′
n+1) = αP (En+1&E′

n+1), (6.9)

where α, as we said, is now the conditional probability that En is true, given that
both parents are true. Since the parents are independent of one another, see (6.7),
and since we supposed that each parent has the same probability of being true,
Eq. 6.9 can be written as:

P (En&En+1&E′
n+1) = αP 2(En+1). (6.10)

The last term on the right-hand side of (6.8) is the joint probability that the child
proposition is true, and both parent propositions are false. It can be written as

P (En&¬En+1&¬E′
n+1) = βP (¬En+1&¬E′

n+1)

= βP (¬En+1)P (¬E′
n+1)

= β [1− P (En+1)]
2, (6.11)

where β is the conditional probability that En is true, given that both parents are
false.

The second and third terms on the right-hand side of (6.8) are the joint proba-
bilities that the child proposition is true, when one parent is true, and one is false.
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The terms can be written as

P (En&En+1&¬E′
n+1) = γP (En+1&¬E′

n+1)

= γP (En+1)P (¬E′
n+1)

= γP (En+1)[1− P (En+1)], (6.12)

P (En&¬En+1&E′
n+1) = δP (¬En+1&E′

n+1)

= δP (¬En+1)P (E′
n+1)

= δP (En+1)[1 − P (En+1)], (6.13)

where γ is the conditional probability that the child is true, given that only the first
parent is true, and δ is the conditional probability that it is true, given that only the
second parent is true.

On inserting the expressions (6.9), (6.11)–(6.13) into (6.8), we find, after re-
arrangement,

P (En) = β + 2(ε− β)P (En+1) + (α+ β − 2ε)P 2(En+1), (6.14)

where ε is the average of the conditional probabilities that only one parent is true:

ε = 1
2
(γ + δ).

In the special case that

α+ β = 2ε, (6.15)

this relation takes on the linear form

P (En) = β + (α− β)P (En+1),

just like the one-dimensional chain (6.3). We know from Eq. 6.5 that this sequence
converges if α > β (we exclude the case α = 1).

When the special equality (6.15) does not hold, Eq. 6.14 has two fixed points,
namely the two solutions of the quadratic equation

P ∗
2 = β + 2(ε− β)P ∗

2 + (α+ β − 2ε)P ∗2
2 .

We show in the appendix that only one of these fixed points is attracting, namely

P ∗
2 =

β + 1
2
− ε−√

β(1− α) + (ε− 1
2
)2

α+ β − 2ε
. (6.16)

As in the one-dimensional case, all the unconditional probabilities are the same,
being equal to the fixed point, P ∗

2 .
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6.4 CONTRASTING CHAINS AND NETWORKS

It is interesting to compare the properties of the linear one-parent chain of Sect. 6.2
with those of the quadratic two-parent net of Sect. 6.3. In the present section we
will discuss first a similarity between the two structures, and then an intriguing
difference.

The similarity concerns sufficient conditions for convergence in the two cases.
As we have seen, the requirement of probabilistic support for the chain is
P (En|En+1) > P (En|¬En+1), i.e. the child En is supported by its parent
En+1. For the net, on the other hand, the condition is P (En|En+1&E′

n+1) >
P (En|¬En+1&¬E′

n+1), i.e. the child En is supported by both of its parentsEn+1

and E′
n+1. In both cases, the condition turns out to be sufficient for convergence: it

ensures convergence of not only the one-dimensional infinite iteration, but also of
the two-dimensional infinite net. Note that, for the net, the conditional probability
that the child is true, given that only one parent is true, has no relevance to conver-
gence. The iteration has an attracting fixed point if α > β; in the two-dimensional
case, it does not matter how large or small ε is.

There is, however, a crucial difference between the chain and the net. This
difference pertains to the situation in which β is zero. For the chain, as we have
seen, β = P (En|¬En+1); and the infinite, uniform chain leads to the fixed point
(6.4):

P ∗
1 =

β

1− α+ β
,

which clearly vanishes if β = 0 (assuming α < 1). Thus if the child of a parent
proposition that is false is never true then, after an infinite number of generations,
the child proposition will certainly be false. This should not come as a surprise.
After all, here the probabilistic justification of the target proposition E0 by an
infinite chain E1, E2 . . ., and so on, is such that only the conditional probability
α = P (En|En+1) is positive, the conditional probability β = P (En|¬En+1)
being zero. Consequently, Eq. 6.2 becomes P (En) = P (En|En+1)P (En+1), and
so each link of the infinite chain contributes to the monotonic diminution of the
value of P (E0), resulting finally in zero.5

5 This result on the one-dimensional infinite chain may shed light on the position of C.I.
Lewis and Bertrand Russell, who both claimed that an infinite chain of probabilistic
relations must lead to probability zero for the target proposition. This claim is incor-
rect as a general statement, as Hans Reichenbach pointed out, precisely because Lewis
and Russell had forgotten the term in the rule of total probability, which corresponds
to the probability that the child proposition is true when its parent is false (see Eq. 6.2
in the main text). However, as we can see now, Lewis and Russell were right in a very
restricted situation. If in one dimension the probability of a child, given the falsity of
its parent proposition, is always zero, then the probability of the target proposition will
progressively decrease from link to link, tending to zero in the limit of an infinite chain.
See C. I. Lewis, “The Given Element in Empirical Knowledge”, in: The Philosophical
Review, 61, 2, 1952, pp. 168–172; Hans Reichenbach, “Are Phenomenal Reports Ab-
solutely Certain?”, in: The Philosophical Review, 61, 2, 1952, pp. 147–159; Bertrand



82 David Atkinson and Jeanne Peijnenburg

The situation in two dimensions is entirely different. Now β = P (En|¬En+1&
¬E′

n+1); and the infinite, uniform net leads to the fixed point (6.16):

P ∗
2 =

β + 1
2
− ε−√

β(1− α) + (ε− 1
2
)2

α+ β − 2ε
.

In the case that β is zero, this formula reduces to

P ∗
2 =

1
2
− ε− | 1

2
− ε|

α− 2ε
. (6.17)

Notice that this is zero only in the case that ε ≤ 1
2
. When ε > 1

2
, the expression

(6.17) becomes

P ∗
2 =

2ε− 1

2ε− α
. (6.18)

The interesting thing is that, if a child is false when both parents are false,
then the unconditional probabilities P (En) in the infinite net may, or may not be
zero. It all depends on how probable it is that a child is true when only one of
its parents is true. If this conditional probability is more than one half (that is,
if the child is more likely to be true than false given that only one of the parents
is true), then the unconditional probabilities P (En) do not vanish. This is quite
different from the one-dimensional situation, where β = 0 does imply that P (En)
vanishes. However, in order for the child to be justified, not only must ε be greater
than one-half when β = 0, but also α must be large enough to ensure that the
unconditional probability that the child proposition is true does not lie below the
threshold of acceptance. Precisely why ε = 1

2
marks the boundary between a zero

and a nonzero unconditional probability is intuitively still unclear to us.

6.5 RELEVANCE AND APPLICATIONS

Do the above exercises have any applications? Are the formalisms that we have
developed of any philosophical relevance or utility in the outside world?

As far as the relevance to philosophy is concerned, we can be brief. In the
introduction we already alluded to the venerable tradition concerning justifica-
tion in epistemology; in particular justification related to an infinite regress is a
subject that has been much discussed.6 Most philosophers in the tradition took

Russell, Human Knowledge: Its Scope and Limits. London: George Allen and Un-
win 1948; Jeanne Peijnenburg, David Atkinson, “Grounds and Limits: Reichenbach
and Foundationalist Epistemology”, in: Synthese, 181, 2011, pp. 113–124; Jeanne
Peijnenburg, “Ineffectual Foundations”, in: Mind, 119, 2010, pp. 1125–1133.

6 Cf. Bonjour: “Considerations with respect to the regress argument [are] perhaps the
most crucial in the entire theory of knowledge”, Laurence Bonjour, The Structure of
Empirical Knowledge. Cambridge (Mass.): Harvard University Press, 1985; p. 18.
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the view that argumentation to infinite regress shows that a certain position is ab-
surd. Philosophers ranging from Zeno, Plato and Aristotle to Aquinas, Descartes,
Leibniz, Hume and Kant have all used a regressus ad infinitum as a regressus ad
absurdum: in their view, any argument that leads to an infinite regress is thereby
vitiated. In our paper we show that this view is mistaken if an infinite regress is
probabilistic in nature. We have explained this first for a one-dimensional chain of
propositions, and then for a two-dimensional network.

As to the applications in the outside world, they are numerous, especially in
view of the fact that our simplifying assumptions (namely uniformity, and, in two
dimensions, gender symmetry and independence) can be relaxed without affecting
the essential findings. Here we will restrict ourselves to one application, taken
from the genetics of a population in which background conditions remain stable
over time.

Consider the inheritance of a gender-specific genetic disorder in a human pop-
ulation, such as the tendency to prostate cancer in the male, or to breast cancer in
the female. The probability that a child will develop the condition at some time
in its life is different if the parent of the same gender has the complaint, or if that
parent does not. If the relevant external conditions remain the same over time,
the two conditional probabilities, α and β, will be uniform, that is, the same from
generation to generation. The one-dimensional formalism of Sect. 6.2 is then ap-
plicable, and we conclude that the probability of disease, which we can equate
to the relative frequency of its incidence in a large population, after any transient
effects have died out, is given by the fixed point (6.4):

P ∗
1 =

β

1− α+ β
.

The values of α and β could be inferred from the statistics of two generations only,
and one can then deduce the above relative frequency of incidence, which will be
stable throughout the generations.

Our analysis of the two-dimensional case can be applied, for example, to the
inheritance in a human population of albinism. The three conditional probabilities
that a child will be normally coloured, namely α (if both parents are normally
coloured), β (if neither parent is normally coloured, i.e. both are albinos), and ε
(if one parent is normal and one is albino), can be estimated from the statistics of
a large population. The relative frequency of normally coloured individuals in a
large population is then given by the fixed point (6.16):

P ∗
2 =

β + 1
2
− ε−√

β(1− α) + (ε− 1
2
)2

α+ β − 2ε
.

However, there is more to be said in this case.
To begin with, when two albinos mate, their children are nearly always albi-

nos, i.e. they are almost never normally coloured, so β = 0 to a good approxima-
tion. Thus the situation obtains that we mentioned in Sect. 6.4.
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Furthermore, our analysis of the two-dimensional case can be seen as a gener-
alization of the famous Hardy-Weinberg rule in genetics.7 The genetic fingerprint
of every individual is given by his or her DNA, i.e. the double helix consisting of
two strings of molecules called nucleotides. Sequences of nucleotides are grouped
together to form genes. Many of these genes are such that they come in two possi-
ble forms or alleles, one of which stems from the father and one from the mother.
Let us denote the one allele by the letter A, the other by a. So an individual’s
genetic make-up, as far as these particular genes are concerned, will be one of the
following: AA, Aa, aA, aa. Now albinism arises from an allele, a, that is reces-
sive: this indicates that only an individual with allele a in both strands of his or
her DNA will be an albino. The allele A is called dominant because individuals
carrying Aa, or aA are healthy, just like individuals carrying AA.

In a large population, suppose that the fraction of the recessive allele is q, and
the fraction of the dominant allele is p = 1 − q. Then the albino fraction of the
population, carrying aa, is q2, while the healthy fraction that carries AA is p2,
and the healthy fraction that carries Aa or aA is 2pq. Moreover, these fractions
remain the same from generation to generation. This is the essence of the Hardy-
Weinberg rule: it is based on the assumption of a theoretically infinite population
and random mating.

In the Hardy-Weinberg model, it is possible to calculate the conditional prob-
abilities in terms of q, the fraction of the recessive allele. We find

α = 1−
(

q

1 + q

)2

ε =
1

1 + q
β = 0, (6.19)

where we suppress the details of the rather tedious calculation. The first thing to
notice is that, if 0 < q < 1, then ε is necessarily greater than one-half, and since
β = 0 the formula (6.18) is applicable:

P ∗
2 =

2ε− 1

2ε− α
.

With the values (6.19) we find P ∗
2 = 1 − q2, which is clearly correct, since the

albino fraction of the population, carrying two recessive alleles, aa, is q2, and P ∗
2

is the complement of that.
When we take account of the fact that mutations from the recessive to the

dominant allele are actually possible (very rarely), so that β is not quite zero, the
general fixed-point formula (6.16) must be used instead of (6.18). This constitutes
a modification of the Hardy-Weinberg model that can be readily handled by our
methods.

7 G. H. Hardy, “Mendelian Proportions in a Mixed Population”, in: Science, 28, 1908,
pp. 49–50. Wilhelm Weinberg, “Über den Nachweis der Vererbung beim Menschen”,
in: Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 64, 1908,
pp. 368–382.
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APPENDIX

When the special equality (6.15) does not hold, the quadratic iteration (6.14) can
be put into canonical form by means of the substitution

qn = (α+ β − 2ε)P (En)− β + ε . (6.20)

With this transformation, (6.14) becomes8

qn = c+ q2n+1 , (6.21)

where
c = ε(1− ε)− β(1− α).

The conditional probabilities, α, β and ε are all real numbers in the unit interval, so
it follows that c ≤ ε(1−ε) = 1

4
−(ε− 1

2
)2 ≤ 1

4
. Further, since β < α (the condition

of probabilistic support), c ≥ −β(1− α) > −α(1−α) = − 1
4
+ ( 1

2
− α)2 ≥ − 1

4
.

That is,

− 1
4
< c ≤ 1

4
. (6.22)

Consider the fixed point,

q∗ = 1
2
−
√

1
4
− c,

of the iteration (6.21). Via the inverse of the transformation Eq. 6.20, one can show
that q∗ corresponds to the fixed point P ∗

2 of Eq. 6.16.
To demonstrate that q∗ is attracting, we change the variable from qn to sn =

qn − q∗, so that (6.21) becomes

sn = sn+1

[
1−√

1− 4c+ sn+1

]
. (6.23)

If
∣
∣1−√

1− 4c
∣
∣ < 1 (6.24)

and sn+1 is very small, we conclude that c∗ is attracting. Indeed, since

sn − sn+1 = (sn+1 − sn+2)
[
1−√

1− 4c+ sn+1 + sn+2

]

the mapping (6.23) is a contraction if |sn| ≤ ρ and
∣
∣1−√

1− 4c+ 2ρ
∣
∣ < 1.

Hence if |sN | ≤ ρ for very large N , and ρ satisfies the above contraction con-
straint, the iteration backwards to s0 will be attracted to zero, that is to say q0 will
be attracted to q∗. The domain of attraction of the fixed point, q∗, is − 3

4
< c < 1

4
.

Attraction is trivially guaranteed also when c = 1
4
. So absolute convergence is

8 Elsewhere we propose to trace the connection between the two-dimensional net and
the Mandelbrot fractal. (Benoı̂t Mandelbrot, The Fractal Geometry of Nature. New
York: W.H. Freeman and Co 1982 – second printing with update).
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assured if |c| ≤ 1
4
; and we see from the inequalities (6.22) that this is consistent

with the requirements 0 ≤ β < α < 1 and 0 ≤ ε ≤ 1.
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CHAPTER 7

JAN-WILLEM ROMEIJN, RENS VAN DE SCHOOT,
AND HERBERT HOIJTINK

ONE SIZE DOES NOT FIT ALL:
PROPOSAL FOR A PRIOR-ADAPTED BIC

ABSTRACT

This paper presents a refinement of the Bayesian Information Criterion (BIC).
While the original BIC selects models on the basis of complexity and fit, the
so-called prior-adapted BIC allows us to choose among statistical models that
differ on three scores: fit, complexity, and model size. The prior-adapted BIC
can therefore accommodate comparisons among statistical models that differ only
in the admissible parameter space, e.g., for choosing among models with different
constraints on the parameters. The paper ends with an application of this idea to a
well-known puzzle from the psychology of reasoning, the conjunction fallacy.

7.1 OVERVIEW

Statistical model selection concerns the choice among a set of statistical models.
A model consists of a set of statistical hypotheses, where each hypothesis imposes
a probability distribution over sample space. There are several ways of choosing
among the models, leading to several so-called information criteria (ICs) that may
regulate the choice. All of these are comparative: their absolute numerical values
do not have meaning.

By way of introduction, we mention some of the dominant model selection
tools. We may choose the model that, under relative entropy distance, brings us
closest to the hypothesized true distribution. This distance is approximated by
Akaike’s information criterion or AIC (Akaike 1973; Stone 1977). The AIC can
be interpreted naturally in terms of cross-validation and predictive success. The
deviance information criterion, or DIC for short (Spiegelhalter et al. 2002), is
based on a similar information-theoretic criterion. Like the AIC, it can be justified
in terms of the predictive accuracy of the model, under a particular loss func-
tion to express accuracy. Alternatively, we may choose the model that allows us
to capture the information contained in the data most efficiently, as proposed by
model selection based on the so-called Minimum Description Length or MDL
(Grunwald 2007; Balasubramanian 2005). Or finally, we may base our choice on
the probability of the data averaged for the models at issue, called the marginal

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4 7,
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likelihoods. The Bayesian information criterion, or BIC (Schwarz 1978; Raftery
1995), approximates these likelihoods or, in other formulations, the resulting pos-
terior probabilities over the models.

The selection criteria boil down to a trade-off between model complexity and
model fit: we choose the model that optimizes the match between the data and the
best fitting hypothesis within the model, but models that are more complex start
with a handicap. One of the attractive features of the information criteria sketched
above is that they are derived from first principles, and that the trade-off between
fit and complexity shows up as a consequence of those starting points rather than
being put in by hand. Moreover, it turns out that the trade-off is very similar for
a number of different sets of first principles. It shows up in the approximations of
entirely different notions, to wit, distance to the truth (AIC), predictive accuracy
(DIC), minimum description length (MDL), and marginal likelihood (BIC). All
these information criteria use the maximum likelihood of the model as a measure
of fit, and for all these ICs the measure for complexity and the resulting penalty
are related to the number of free parameters appearing in the statistical model.

The central problem of this paper is that this complexity measure is not effec-
tive if we want to compare models that do not differ in dimensionality, but merely
in terms of the size of the admissible parameter space. There are numerous prac-
tical cases in which scientists are facing a choice between models differing in this
way (Gelfand et al. 1992), e.g., when comparing models that impose order con-
straints on the parameters (Hoijtink et al. 2008; van de Schoot et al. 2010). Model
selection criteria are in need of refinement if they are supposed to apply to such
cases of model selection as well.

For the information criteria AIC and DIC, and for model selection based
on the notion of minimum description length (MDL), adapted versions are avail-
able, or being developed, in which comparisons between models that differ in size
can be accommodated (Anraku 1999; Balasubramanian 2005; van de Schoot et al.
2010). The idea is that models that admit a smaller range of parameter values are
simpler, much like models that include a smaller absolute number of parameters.
By reworking the derivations of the traditional model selection criteria, Anraku et
al. and van de Schoot et al. arrive at respectively an AIC and a DIC that, next to
model fit, express the complexity of the model in terms of dimensionality and in
terms of the size of the admissible parameter space. The work of Rissanen (1996)
and Balasubramanian (2005) goes even further. They identify terms that concern
the inherent complexity of the model in virtue of model size as well as parametric
complexity.

The object of the present paper is to accomplish something similar for the
BIC: to reconsider its derivation in order to arrive at a prior-adapted BIC that
expresses complexity in terms of both dimensionality and size, so that comparisons
of the above type become possible. As may be expected from the strong similarity
between MDL and BIC, we will arrive at an expression for complexity that is
similar to the one that model selection based on MDL arrives at: it includes the
relative size of the range of parameter values. However, differences emerge over
the exact interpretation of the notion of size and the way in which it surfaces in the
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derivation. The results will give rise to a change in our understanding of statistical
simplicity. Another novelty of this paper is in the application of model selection
ideas to a well-known puzzle originally discussed by Kahneman et al. (1982):
Linda the bank teller. The developments of the present paper suggest a particular
take on this puzzle.

The setup of this paper is as follows. In Sect. 7.2 we review the BIC and
clarify some interpretative issues surrounding it. In Sect. 7.3 we say exactly what
models are at stake in the paper, and pinpoint the problem that is resolved in it.
In Sect. 7.4 we propose the prior-adapted BIC as a solution. Then in Sect. 7.5 we
interpret the additional term in the BIC as a particular kind of penalty, and we
briefly contrast this penalty with the one featuring in MDL. In Sect. 7.6 we apply
the result to the puzzle of Linda the bank teller. Section 7.7 concludes the paper.

7.2 INTRODUCTION TO THE BIC

We introduce the BIC and resolve an interpretative issue. This prepares for the
application of the BIC to models with truncated priors.

7.2.1 BIC as Approximate Marginal Likelihood

Let 〈W,F, P 〉 be a probability space. We have W as a set of basic elements, often
taken as possible worlds, and F an algebra over these worlds, often understood
as a language. Sets of worlds are propositions in the language. Over the algebra
we can define a probability function P , which takes the elements of the algebra,
namely the propositions, as arguments. Let D be the algebra for the data samples
Dn in which n indexes the number of observations in the sample. Let H the
algebra based on a partition of statistical hypotheses Hθ, and M the algebra based
on a partition of models Mi. The part of the algebra concerned with statistical
theory is denoted T ⊂ M×H: it consists of a number of models, each including a
distinct subset of statistical hypotheses. In the full algebra, each pair of model and
hypothesis is associated with the full algebra of samples, so F = T ×D.

We can define the hypotheses and models by means of so-called characteristic
functions, cθ and ci, that assign a worldw the value 1 if it belongs to the hypothesis
Hθ and the model Mi respectively:

Hθ = {w : cθ(w) = 1},
Mi = {w : cθ(w) ci(w) = 1 and θ ∈ Si}

A model Mi is connected to a collection of statistical hypotheses Hθ , labeled by
parameters θ whose values are restricted to some set of values Si. In the following
it will be convenient to refer to the range of hypotheses associated with a model
Mi:

Ri = {w : cθ(w) = 1 and θ ∈ Si}
= {Hθ : θ ∈ Si}. (7.1)
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In this setup, a model covers a range of hypotheses as usual, but the hypotheses
and ranges of hypotheses need not be strictly included in the models. They may
intersect with any number of models.

The probability functionP ranges over samples, hypotheses and models alike.
But statistical hypotheses are a special type of set: they dictate the full probabil-
ity assignment over the algebra of data samples associated with them. For every
model with which the hypothesis intersects, we have a so-called likelihood of the
hypothesis Hθ for the data Dn,

P (Dn|Hθ ∩Mi) = f(θ,Dn),

where f is some function of the sample Dn and the statistical parameters θ. De-
pending on the nature of the data Dn and the hypotheses Hθ , the function P will
have to be a probability density function that can handle conditions with measure
0. To simplify the expositions below, we will assume that the observations are
independent and identically distributed. Note that the model index i does not show
up in the function f : the likelihoods of a hypothesis are independent of the model
of which the hypothesis is part.

By the law of total probability we can now compute the marginal likelihood
of the model, i.e., probability of the data Dn conditional on the model Mi:

P (Dn|Mi) =

∫

Ri

P (Dn|Hθ ∩Mi)P (Hθ|Mi) dHθ. (7.2)

The marginal likelihood is the average of the likelihoods of the hypotheses in the
model, weighted with the prior probability density over the hypotheses within the
model. The marginal likelihood of a model is the central mathematical notion in
this paper.

The idea behind the Bayesian information criterion (BIC) is that models are
selected on the basis of their posterior probability, as determined by their marginal
likelihood. The BIC is eventually an approximation of twice the negative logarithm
of the marginal likelihood of the model:

− 2 logP (Dn|Mi) ≈ −2 logP (Dn|Hθ̂ ∩Mi) + di log(n) = BIC(Mi). (7.3)

We choose the model for which the BIC is lowest. The expression θ̂, or more
specifically θ̂(Dn,Mi), signifies the maximum likelihood estimator, a function
that maps the data Dn onto the hypothesis Hθ ∈ Ri for which P (Dn|Hθ) is
maximal. So the term

P (Dn|Hθ̂(Dn,Mi)
∩Mi)

in the BIC is the likelihood for data Dn of the maximum likelihood estimate Hθ̂

within the model Mi, where this estimate is itself based on those data Dn. Loosely
speaking, the expression di log(n) corrects for the fact that as an approximation of
the marginal likelihood, the likelihood of the best estimate is too optimistic. The
parameter di is the dimensionality of the model, i.e., the number of independent
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parameters in the model, and n is the number of independent observations in the
data Dn. In the terms P (Dn|Hθ̂ ∩Mi) and di log(n), the BIC reflects both the
fit and the complexity of the model.

7.2.2 The Likelihoodist Information Criterion?

Bayesian methods concern probability assignments to statistical hypotheses and
not just to data samples. In the foregoing, hypotheses are assigned a probability
while themselves being associated with a probability assignment over the data.
One reason to call the above information criterion Bayesian is that it depends on
such probability assignments over statistical hypotheses, P (Hθ|Mi). Another rea-
son is that the marginal likelihoods enable us to compute the posterior probabilities
over the models:

P (M1|Dn)

P (M0|Dn)
=

P (Dn|M1)

P (Dn|M0)

P (M1)

P (M0)
.

On the assumption of a uniform probability over candidate models, P (M1) =
P (M0), the likelihood ratio and the ratio of posteriors are equal. The logarithm of
the ratio of posteriors is then approximated by the difference between the BICs
of the models. Both interpretations of the BIC are viable.

This application of the BIC requires a specific setup of the probability space.
Posterior model probabilities do not make much sense if the models under com-
parison are literally nested. Imagine that we had defined the following sets of
hypotheses as our models:

R0 = {Hθ : θ ∈ [0, 1]},
R1 = {Hθ : θ = 1}.

Then we have R1 ⊂ R0, in which case P (R0|Dn) > P (R1|Dn) by definition,
whatever the data. While we can still meaningfully compare the marginal like-
lihoods, a Bayesian comparison of posterior model probabilities for such sets of
hypotheses is uninformative.

One possible response here is to replace R0 by the set

R2 = R0 \R1 = {Hθ : θ ∈ [0, 1)}.

The sets R1 and R2 are indeed disjunct, and because we have P (R1|R0) = 0 for
any smooth probability density over R0, the models R0 and R2 yield the same
marginal likelihoods. However, in the setup of the probability space given above,
we need not resort to redefining the models. To our mind, a more attractive re-
sponse is to carefully define the models that are involved in the comparison, and to
not confuse such models with sets of hypotheses. The sets Hθ may overlap with
both model M0 and model M1.

While this makes posterior model probability a perfectly cogent notion, the
BIC of a model remains primarily an approximation of marginal likelihood and
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not of the posterior of a model. For this reason, it is perhaps better to refer to
the BIC as a likelihoodist information criterion, thus avoiding the interpretative
problems with posterior model probability altogether. But here is not the place
for proposing such terminological revisions. It suffices to note that the BIC is
concerned with likelihoods as an expression of empirical support, and that a prob-
abilistic comparison of seemingly overlapping models is not problematic, provided
that we define our probability space cautiously.

7.3 COMPARING MODELS WITH TRUNCATED PRIORS

This paper concerns a particular application of the BIC, namely the comparison
of models that do not differ in dimensionality but only in the admissible range of
hypotheses. In such cases there is a problematic discrepancy between the BICs
and the marginal likelihoods of the models.

7.3.1 Truncated Priors

The comparisons of this paper involve models whose ranges of hypotheses are
nested, and whose priors only differ by a normalisation factor. Such comparisons
are well-known from the practice of science, as for example in Klugkist et al.
(2005).

By nested ranges of hypotheses, we mean that the range of hypotheses in
model M0 encompasses the range associated with model M1, or equivalently, that
the range of model M1 is constrained relative to that of model M0. Formally, we
have R1 � R0. The following encompassing and constrained ranges are a good
example:

R0 = {Hθ : θ ∈ [0, 1]}, (7.4)

R1 = {Hθ : θ ∈ [0, 1
2
]} (7.5)

Calling the associated models M0 encompassing and M1 constrained suggests
that they are themselves nested, but in the present setup this is not so. Following
Eq. 7.1, the models are disjunct sets. For θ ≤ 1

2
the hypotheses Hθ intersect with

both models, while for θ > 1
2 we have Hθ ⊂ M0. Hence we can meaningfully

talk about posterior model probabilities as well as marginal likelihoods.
We tell apart encompassing and constrained models by the range of hypothe-

ses Ri: the models are both part of a probability space with a single probability
function P . Effectively, these models differ in the regions over which the prior is
nonzero. The following abbreviation of the conditional probability function will
be useful in the derivations below:

Pi( · ) = P ( · |Mi).

The probability densityPi(Hθ)dHθ is nonzero overHθ ∈ Ri and zero everywhere
else in R0 \ Ri. For the likelihoods we simply have Pi(Dn|Hθ) = P (Dn|Hθ)
throughout Hθ ∈ R0.
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We impose one further restriction to the class of model comparisons at stake
in this paper: the prior P1 is a truncated version of the prior P0. Take any pair
of encompassing and constrained models M0 and M1, and define a proper prior
density P0(Hθ)dHθ over the encompassing model M0. This prior can be used to
compute an associated prior over a constrained model M1, the so-called truncated
prior, as follows:

P1(Hθ)dHθ =
1

P0(R1)
P0(Hθ)dHθ,

where

P0(R1) =

∫

R1

P0(Hθ) dHθ.

Within the domain that the two models have in common, the prior over the con-
strained model has the same functional form as the prior over the encompassing
model. But it is normalized relative to the parameter space of the constrained
model. Because of this normalisation, we have that P (M0) = P (M1). The con-
straint is the only difference between them.

To illustrate the second restriction with the models of Eqs. 7.4 and 7.5, recall
that S0 = [0, 1] and S1 = [0, 1

2
]. A uniform prior density for the encompassing

model is P0(Hθ) = 1. The corresponding truncated prior density for the con-
strained model is P1(Hθ) = 2 within θ = [0, 1

2
] and zero elsewhere.

7.3.2 Peaked Likelihoods and Concentrated Posteriors

We add two more restrictions on the model comparisons that are at stake in this
paper, one concerning the posterior probability over the model M0 and one con-
cerning the likelihood function. Their import is that with increasing sample size,
the posterior probability within model M0 will collect around a unique maximum
likelihood hypothesis Hθ̂.

First, we require that as the sample size n grows, the posterior probability in
the encompassing model gets concentrated around the maximum likelihood point
θ̂. Consider an environment

B(θ̂, r) =
{
Hθ ∈ R0 : |θ − θ̂| < r

}

for some fixed r > 0. The model M0 must be such that

lim
n→∞P0

(
B(θ̂, r)|Dn

)
= 1. (7.6)

Note that r can be chosen arbitrarily small. The model M0 is such that in the long
run almost all probability will be collected inside this arbitrarily small environ-
ment around the maximum likelihood estimate. Importantly, if Hθ̂ ∈ R1, then
the equivalence of the likelihood function and, up to normalisation, of the prior
over the models M0 and M1 makes sure that the same limit statement holds for
P1(B(θ̂, r)|Dn).
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Second, for increasingly large sample size n we require that the likelihood
function over the model M0 is increasingly sharply peaked around θ̂(Dn,M0).
Formally, we assume for all θ 	= θ̂ that

lim
n→∞

P0(Dn|Hθ)

P0(Dn|Hθ̂)
= 0. (7.7)

This requirement may look superfluous, given that we have already assumed
Eq. 7.6. But with a sufficiently non-smooth likelihood function it is possible to sat-
isfy the requirement on the posterior for B(θ̂, r) while maintaining an ever smaller
patch of the parameter space outside B(θ̂, r) at almost equally high likelihood.
The requirement of Eq. 7.7 determines that such patches do not exist. In turn, this
requirement does not entail that for growing sample size n the posterior probability
gets concentrated around the maximum likelihood point: without the assumption
of Eq. 7.6 the maximum likelihood might itself be an isolated peak. Relative to it,
the peak around which all the posterior probability is collected may have negligible
height.

We want to stress that the two requirements above are nothing out of the ordi-
nary. Most models for independent and identically distributed trials for which the
likelihood function

P0(D1|Hθ) = f(θ,D1)

is sufficiently smooth will satisfy them. We rely on the blanket requirements be-
cause detailing the exact conditions on the asymptotic behaviour of the likelihood
function presents us with an unnecessary detour.

7.3.3 BIC for Truncated Priors

In what follows we will be concerned with a problem in the application of the
BIC to model comparisons of the above kind. In short, the problem is that the
difference between the encompassing and constrained models always shows up in
their marginal likelihoods, while their BIC is in some cases equal. Therefore, if
the BIC is to accommodate the comparison of such models, it needs to be refined.

To explain the problem, we observe that the marginal likelihood of models
that differ in terms of a truncated prior are intimately related. We start by rewriting
the marginal likelihood of M1:

P1(Dn) =

∫

R1

P1(Hθ)P1(Dn|Hθ) dHθ

=
1

P0(R1)

∫

R1

P0(Hθ)P0(Dn|Hθ) dHθ.

So for both marginal likelihoods we can restrict attention to the probability func-
tion P0. By Bayes’ theorem the term appearing under the integration sign is

P0(Dn|Hθ)P0(Hθ) dHθ = P0(Dn)P0(Hθ|Dn) dHθ.
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The term P0(Dn) can be placed outside the scope of the integral, so the functional
form of the terms within the scope is that of the posterior distribution over R0.
Note further that ∫

R1

P0(Hθ|Dn) dHθ = P0(R1|Dn),

so that we can derive
P (Dn|M0)

P (Dn|M1)
=

P0(R1)

P0(R1|Dn)
. (7.8)

We now consider this ratio of marginal likelihoods for large sample sizes, to see
if its behaviour is matched by the behaviour of the BICs for the two models.
We distinguish two regions in which the maximum likelihood estimate θ̂(Dn,M0)
may be located, namely inside and outside the domain R1.

We concentrate on the good news first. Say that the maximum likelihood
estimate lies outside R1, or more formally, θ̂(Dn,M0) ∈ S0 \ S1. Following
Eq. 7.6, we can always choose r such that B(θ̂, r) ⊂ R0 \ R1. From Eq. 7.6 and
the fact that

P0(R1|Dn) < 1− P
(
B(θ̂, r)|Dn

)

for all n, we conclude that for increasing sample size n the ratio of marginal like-
lihoods of Eq. 7.8 is unbounded. Fortunately, the BIC replicates the behaviour of
the marginal likelihoods in this case. From the requirement of Eq. 7.7 we have that
the likelihood of the maximum likelihood hypothesis within M1 is negligible in
comparison to the likelihood of the maximum likelihood hypothesis within M0:

lim
n→∞

P1

(
Dn|Hθ̂(Dn,M1)

)

P0

(
Dn|Hθ̂(Dn,M0)

) = 0

Moreover, the maximum likelihood term is dominant in both BICs: it grows with
O(n) while the complexity term di log(n) is the same for both models. So we can
derive that BIC(M1) − BIC(M0) tends to infinity for growing sample size n,
thus matching the behaviour of the marginal likelihood.

But now consider the case in which the maximum likelihood estimate lies
inside the domain R1, that is, θ̂(Dn,M0) ∈ S1. We can always choose r such that
B(θ̂, r) ⊂ R1. From Eq. 7.6 and the fact that

P
(
B(θ̂, r)|Dn

)
< P0(R1|Dn)

we conclude that for increasing sample size n the ratio of marginal likelihoods of
Eq. 7.8 tends to the valueP0(R1). We thus expect to see a difference of 2 logP0(R1)
between the values of the BIC for the two models as well. But the BICs of the
two models are exactly the same! The maximum likelihood terms are equal, be-
cause R1 includes the maximum likelihood estimate Hθ̂. And the penalty terms
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are equal, because the encompassing and constrained models have an equal num-
ber of free parameters.

This is the problematic discrepancy between marginal likelihood and theBIC,
alluded to at the beginning of this section. If the maximum likelihood θ̂(Dn,M0)
lies inside the region R1, the ratio of marginal likelihoods of encompassing and
constrained models tends to the value P0(R1). But this difference is not found
back in the BICs of the models.

7.4 PRIOR-ADAPTED BIC

In the foregoing we derived how the marginal likelihoods for models with trun-
cated priors behave, so we know what a more refined version of the BIC must
look like. There may seem little point in an independent derivation of such a re-
fined BIC, as a specialised approximation to something we already know about.
Nevertheless, we will in the following closely scrutinize the original derivation of
the BIC, based on Jeffreys (1961), Schwarz (1978), Kass and Wasserman (1992)
and primarily Raftery (1995), and tweak this derivation in order to capture the ef-
fect of a truncated prior on the marginal likelihood. The gain of this is not so much
that we thereby arrive at a new model selection tool. Something like that would
require a much more extensive motivation. Rather it is that we can draw a paral-
lel between the original BIC and the newly defined PBIC, and thus motivate a
particular refinement of our notion of statistical simplicity.

7.4.1 Original Derivation

As spelled out in the foregoing, the BIC of a model Mi is an approximation of
the marginal likelihood of the model Mi for data Dn. In the original derivation, as
reproduced in Raftery (1995), it is shown that

logP (Dn|Mi) = logP (Dn|Hθ̂ ∩Mi)− di
2
log(n) + logP (Hθ̂|Mi)

+
di
2
log(2π)− 1

2
log |I|+O(n− 1

2 ). (7.9)

As before, di is the dimension of the model, n is the sample size, and θ̂ is short-
hand for the maximum likelihood point θ̂(Dn,Mi). The quantity |I| denotes the
determinant of the expected Fisher information matrix for a single observation D1,
evaluated at the maximum likelihood estimate θ̂(Dn,Mi). The expression O(nk),
finally, represents terms for which limn→∞ O(nk)n−k = 1.

The first term on the right hand side of Eq. 7.9 is of orderO(n), and the second
term is of order O(log n). The next three terms in Eq. 7.9 are of order O(1), and
the last represents everything of order O( 1√

n
) or less. Removing the terms with

order O(1) or less and multiplying by −2 gives the BIC of Eq. 7.3. The terms
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of order O(1) or less in Eq. 7.9 can be considered as an error of the estimation of
logP (Dn|Mi). Arguably, the errors can be ignored because the first two terms
will dominate the equation as n tends to infinity.

As shown in Kass and Wasserman (1992) and Raftery (1995), in some cases
the terms of order O(1) can be eliminated by the choice of a suitable prior. If we
choose a distribution with mean θ̂ and variance matrix I−1, we have that

logP (Hθ̂|Mi) =
1

2
log |I| − di

2
log(2π),

so that the terms of order O(1) cancel each other out. Moreover, we have an
independent motivation for this choice of prior. Roughly speaking, the variance
matrix I−1 expresses that the prior contains the same amount of information as a
single observation, while the mean θ̂ expresses that this information is in line with
the average of the data set Dn. In other words, the prior expresses that we have
little but adequate prior knowledge.

7.4.2 Including the Prior in the BIC

The key idea of the prior-adapted BIC is that this last step in the original deriva-
tion must be omitted. The effect of the truncated prior can be found back among
the terms of order O(1). Specifically, it can be identified in the prior probability
density over the model. Recall that

P (Hθ|M1)dHθ =
1

P (R1|M0)
P (Hθ|M0)dHθ (7.10)

for any value of θ ∈ R1 and therefore also for θ̂. We include terms of order O(1)
in the BIC, thus creating a prior-adapted BIC or PBIC for short:

PBIC(Mi) = −2 logP (Dn|Hθ̂ ∩Mi) + d log(n)

−2 logP (Hθ̂|Mi) + d log(2π)− log |I|, (7.11)

where P (Hθ̂|Mi) is the value of the density function at the point Hθ̂ within Mi.
If we apply the PBIC to the comparison of models with truncated priors, we
recover the difference between the marginal likelihoods derived in the foregoing.
To see this, note that

logP (Hθ̂|M1) = logP (Hθ̂|M0)− logP (R1|M0)

by Eq. 7.10. As before, if θ̂ ∈ R0 \R1 then the first term completely dominates the
comparison of the BICs of the models. But if we have that θ̂ ∈ R1, the first two
terms in the PBIC are equal for the encompassing and the constrained model. In
that case the third term creates a difference of

PBIC(M1)− PBIC(M0) = 2 logP (R1|M0) < 0,
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in accordance with the ratio of the marginal likelihoods of Eq. 7.8. By including
terms of lower order in the approximation of the marginal likelihood, we thus
recover the behaviour of the marginal likelihood.

The remaining task is to show that in applications of the PBIC to model com-
parisons, the other terms of order O(1) in Eq. 7.9 are the same for the two models.
The term d log(2π) is clearly the same, as it only depends on the dimension which
is equal for the encompassing and constrained model. We concentrate on the term
log |I|. It is the expectation value of how sharply the likelihood function is peaked
around the maximum likelihood of one observation, or loosely speaking, it ex-
presses how much information is contained in a single observation. Formally,

|I| = det

(
−E

[
d2P (D1|Hθ ∩Mi)

dH2
θ

|θ=θ̂

])
,

where the expectation is taken over D1 distributed according to P (D1|Hθ̂ ∩Mi).
Clearly, there will be no difference between the two models here, because they
have the same likelihood function. Hence, in a comparison of the BIC of an
encompassing and constrained model, only the term pertaining to the prior will
differ. Retaining the terms of order O(1) in the BIC thus resolves the discrepancy
between the marginal likelihood and the BIC. We can use the original derivation
of the BIC and get off one stop early to arrive at the PBIC.

A potential worry with this quick arrival at the PBIC may be that the ac-
curacy of the approximation of Eq. 7.9 is different for the encompassing and the
constrained models, and that this introduces further errors of order O(1) into the
approximation. But that worry is unnecessary. Nothing in the accuracy of the
approximation, in terms of the order of errors, hinges on the exact region of ad-
missible parameter values.

7.4.3 More Details on the Error Terms

To substantiate the above claim, we now follow the original derivation of the BIC
in more detail, and discuss possible differences between the encompassing and
constrained model. This discussion is not self-contained but relies heavily on the
derivation in Raftery (1995).

The derivation of the BIC employs the so-called Laplacian method for inte-
grals on a Taylor expansion of the function

g(θ) = log[P (Hθ|Mi)P (Dn|Hθ ∩Mi)],

as it appears in the marginal likelihood. Its functional form is identical to that of
the posterior distribution. This leads to

P (D|Mi) = exp
[
g(θ̃)

]
(2π)

di
2 |A|− 1

2 +O(n−1) (7.12)
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with θ̃ the value where the function g(θ) is maximal, or in other words the mode
of the posterior distribution, and

A =
d2g

dH2
θ

|θ=θ̃ .

Note that the value of θ̃ may be different for the encompassing and the con-
strained model. However, the derivation itself is uncontroversially applicable to
both models.

In the derivation it is then assumed that the mode of the posterior θ̃ is close
to the maximum likelihood estimator θ̂ for large n, so that g(θ̃) can be approxi-
mated by g(θ̂). For the encompassing and the constrained model, this assumption
is warranted by Eq. 7.6, which states that almost all posterior probability will even-
tually end up arbitrarily close to the maximum likelihood point. After taking the
logarithm, we obtain

logP (D|Mi) = logP (Dn|Hθ̂ ∩Mi) + logP (Hθ̂|Mi)

+
di
2
log(2π)− 1

2
log |A|+O(n− 1

2 ),

thus recovering three terms in Eq. 7.9 from Eq. 7.12. The approximation introduces

errors of orderO(n− 1
2 ) for both the encompassing and constrained model, so there

is no source for disagreement in this part of the derivation.
The eventual terms of Eq. 7.9, namely − di

2 log(n)− 1
2 log |I|, result from the

approximation

|A| = nd|I|+O(n− 1
2 )

in Eq. 7.12. Here again, the evaluation at θ̃ in the derivative A is replaced by
the evaluation θ̂ in the derivative I , but we just argued that this is unproblematic.
Apart from that, the approximation is based on two further assumptions. One is
that the observations in Dn are independent and identically distributed, so that
we can restrict attention to one observation. The other is that for large n, the
second derivative of g(θ) is dominated by the likelihood factor, so that we can
omit P (Hθ|Mi) from the derivative.

Both assumptions apply equally to the encompassing and the constrained model.
The first was assumed all along. As for the second, recall that the priors of the
encompassing and constrained models only differ by a constant factor, and that
the likelihood functions of the models are equal. Therefore, if the assumption is
indeed satisfied in the encompassing model, then it is also satisfied in the con-
strained model, and vice versa. Again, the approximation does not introduce any
differences between the two models.
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7.5 THE ROLE OF THE PRIOR

We conclude that the prior-adapted BIC adequately approximates comparisons
of the marginal likelihood of encompassing and constrained models: it yields a
difference of 2 logP (M1|M0) in favour of the constrained model. As indicated
before, we do not think this is enough motivation for using PBIC across the
board: for other model comparisons the terms of orderO(1) will differ in ways that
have not been connected to natural aspects of model selection. In this section we
merely argue that the term that shows up in comparisons between encompassing
and constrained models has a very natural interpretation. It can lead us to redefine
the notion of statistical simplicity accordingly.

Recall that the term di log(n) is often interpreted as a penalty for complexity,
or conversely, as a term that affords simpler models a head start. The idea is that
models with fewer parameters exclude particular statistical possibilities, therefore
run more risk of failing to accommodate the data, and hence deserve pole position.
We argue that the very same consideration applies to the constrained model M1

when compared to the encompassing model M0: the former deserves a head start
because it excludes a number of statistical possibilities and hence runs more risk of
being proved wrong. The statistical possibilities eliminated in a constrained model
are of a different quantitative order than the possibilities eliminated by omitting a
statistical parameter altogether, but constraints eliminate possibilities nonetheless.

Moreover, we believe that the head start of 2 logP (R1|M0) is commensurate
to the risk that model M1 runs. Imagine that according to the prior over model
M0, the model M1 occupies only a very small segment of the parameter space,
meaning that P (R1|M0) is very small. This means that, by the light of model M0,
the constraints of model M1 rule out many statistical possibilities and hence that
it runs a high risk of being proved wrong. In other words, the head start of model
M1 is proportional to the risk it runs by the light of model M0.

This interpretation is in line with the model selection tool based on MDL,
as derived and presented in Rissanen (1996), Myung et al. (2000) and Balasubra-
manian (2005). In the MDL quantity expressing the relative merits of models, we
find very similar terms:

SC(Mi) = −2 logP (Dn|Hθ̂ ∩Mi) + d logn

+2 log

[∫

Ri

|J(Hθ)| 12 dHθ

]
+ log

[ |I|
|J(Hθ̂)|

]
.

Specifically, the term J(Hθ) is a reparameterisation invariant prior over the space
of hypotheses R0. So the third term above effectively measures the volume of the
range of hypotheses Ri, relative to the full range R0. This term matches the term
2 logP (Ri|M0) in the expression of the PBIC. Similarly, the term involving the
Fisher information matrix matches the term log |I| in the original BIC.

Such parallels are a far cry from showing some kind of equivalence between
the prior-adapted BIC and the model selection tool deriving from MDL, or from
bringing PBIC up to the level of the MDL tool. For a more rigorous treatment
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of the relation between the approaches of MDL and BIC, we refer the reader
to Grunwald (2007). For present purposes, we restrict attention to some salient
differences between the two approaches.

One marked difference is in the interpretation of the Fisher information ma-
trix. In the discussion of the PBIC above this term is largely ignored, because
it is the same for the models whose comparisons were the intended application of
the PBIC, namely encompassing and constrained models. There are, however,
numerous cases in which this term is relevant, and in fact very interesting. Very
loosely speaking, the term expresses the sensitivity of the maximum likelihood
estimate to small variations in the data. As argued in the MDL literature, higher
sensitivity is penalised because it is associated with less reliable estimations, and
accordingly with a more complex parameterisation over the space of hypotheses.
Unfortunately, we must leave the exact role and interpretation of the Fisher infor-
mation matrix in the PBIC to future research.

In the context of the present paper, another difference between MDL and
PBIC merits more attention. Both model selection tools feature a term that ex-
presses the size of the range of hypotheses within the model. But the nature of
those terms is very different. In the MDL approach, the size term appears as the
integral of an independently motivated reference prior over the model M0. In the
PBIC approximation, by contrast, the size term derives from the way in which
the priors over the encompassing and constrained models M0 and M1 are related.
In turn, this relation between the priors is fixed for the reason that a comparison
between the encompassing and constrained models should only hinge on the con-
straints. They make up the difference between the two models. Therefore, the
comparison should not be affected by other differences between the priors than
their normalisation.

This ties in with another difference between the two approaches, concerning
the objectivity of the notion of size. In the MDL approach, the size term associ-
ated with a particular model is determined entirely by the independently motivated
reference prior over M0. The effective size of any range of hypotheses is deter-
mined by the density of statistically distinguishable hypotheses within that part.
More precisely, the measure over R0 is determined by the requirement that all
equidistant hypotheses must be equally distinguishable throughout R0, where the
degree of distinguishability is equated with relative entropy. Against this, the size
term in the PBIC, written P (R1|M0), is essentially subjective because the prior
over M0 can be chosen at will. This has some repercussions for the interpretation
of the size term in the PBIC. It expresses not size per se, objectively, but rather
the subjectively perceived size of the constrained model M1, as determined by the
subjectively chosen prior over the model M0.

7.6 APPLICATION TO THE CONJUNCTION FALLACY

There is a nice parallel between the present discussion and a discussion in the
psychology of reasoning on the so-called conjunction fallacy. In a nutshell, the



102 Jan-Willem Romeijn, Rens van de Schoot, and Herbert Hoijtink

problem is that in some cases people intuitively judge one statement more prob-
able than some other statement that is logically entailed by it. A well-known ex-
ample is the case of “Linda the Bank Teller”: against the background of particular
information about Linda, namely that she is 31 years old, single, outspoken, very
bright, concerned with social issues, and so on, psychological subjects rank “Linda
is a feminist bank teller” more probable than “Linda is a bank teller” (Kahneman
et al. 1982). Needless to say, this response is incorrect because the proposition that
Linda is a bank teller is logically entailed by her being a feminist bank teller.

The parallel between this puzzle and the model comparisons of the foregoing
will be apparent. Much like “Linda is a feminist bank teller” cannot be more prob-
able than “Linda is a bank teller” full stop, it seems that the constrained model
M1 cannot be more probable than the encompassing model M0 (cf. Romeijn and
van de Schoot (2008) for an earlier discussion of this parallel). Now one possi-
ble response is to resort to the probability space devised in the present paper and
maintain that there is, in virtue of the parallel, no real puzzle in the case of Linda.
Following this paper, we can provide a somewhat contrived semantics for the two
propositions about Linda, such that they do not overlap.

We think that such a response misses the point. Puzzles like the one about
Linda invite us to reconsider what the key components of our reasoning are, and
how these components can be framed. They are not the objects, but rather the
catalysts of investigation. So instead, we employ the parallel between the conjunc-
tion fallacy and the model comparisons of this paper to briefly explore a particular
development in confirmation theory. We have no intention here to review the ex-
tensive literature on the conjunction fallacy or to suggest new solutions. We focus
on one particular analysis of the fallacy, given by Crupi et al. (2008). They pro-
vide an attractive explanation of the experimental effects by suggesting that people
do not respond by ranking the two propositions at stake on their respective prob-
ability, but rather on their confirmatory qualities. The proposition ranked first is
the one that receives the strongest confirmation from the background knowledge
provided.

The perspective of model selection by the PBIC aligns with, and thereby re-
inforces the analysis of Tentori. The core of this analysis is that the propositions,
e.g., those about Linda, are not compared on their probability, but on their likeli-
hoods for the data about Linda. People rank Linda being a feminist bank teller,
F ∩B, higher than her being a bank teller, B, in the light of data D because they
compare P (D|F ∩ B) and P (D|B) and judge the former higher than the latter.
And this may be the case despite the fact that F ∩ B entails B. In our view,
the parallel between the conjunction fallacy and the foregoing can be employed
to give a further explanation of the relative sizes of the likelihoods. It seems not
too far-fetched to portray the proposition B as a model, comprising of many dif-
ferent hypotheses concerning how Linda might be, each associated with its own
probability for the data about Linda. In the same vein, the statement F ∩ B is a
constrained model within B. The key point is that within this constrained model
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B there are more hypotheses that assign the data about Linda a high probability,
so that the marginal likelihood of B for the data about Linda is higher.

It may well be that, once in possession of a hammer, every problem looks
like a nail. The benefits of this particular representation of the conjunction fallacy
are perhaps minimal. Nevertheless, we think that the general idea of represent-
ing propositions as models is illuminating, and deserves further investigation. An
illustration of its value is provided by Henderson et al. (2010), who represent sci-
entific theories as models in order to illuminate issues in confirmation theory and
reductionism by means of hierarchical Bayesian modelling. We think that this idea
invites the use of model selection tools within probabilistic confirmation theory. It
will be interesting to see if these tools can shed new light on old problems in con-
firmation theory, such as the seeming conflict between likeliness and loveliness
(cf. Lipton 2004) and the interplay between accommodation and prediction (cf.
Sober and Hitchcock 2004).

7.7 CONCLUSION

There are three cases when comparing encompassing to constrained models: the
models differ in maximum likelihood, they differ in dimensionality, or they merely
differ in the range of admissible hypotheses. In the first two of these cases the
prior-adapted BIC, or PBIC for short, boils down to the original BIC: relative
to the contribution from the likelihood and dimension terms, the additional terms
vanish. For the last case, however, none of the terms in the PBIC differ except
for the prior term. This term creates a difference between the models related to
size, which allows us to choose between the models.

We have argued that the behaviour of the PBIC is in line with the behaviour
of the original BIC, and fitting for the comparison of encompassing and con-
strained models. In such a comparison, it replicates the behaviour of the marginal
likelihood, which it is supposed to approximate, by returning a difference of
2 logP (R1|M0). Moreover, this term can be interpreted along the same lines as
the term that involves the number of free parameters, di log(n). Both terms ef-
fect a head start for models that exclude statistical possibilities, and therefore run
the risk of failing to accommodate the data. Finally, it was seen that the PBIC
is naturally aligned with model selection tools based on MDL. However, this is
not enough to motivate replacing the BIC by the PBIC across the board. There
are many applications for which the behavior of the additional terms has not been
interpreted or even investigated.

Instead, we submit that the benefit of deriving the PBIC is conceptual. As ar-
gued, we can think of the prior term as pertaining to subjectively perceived model
size. It is the natural development of the dimensionality of a model, which pertains
to a size at a different order of magnitude. We have shown that, in trading sim-
plicity against fit, we cannot act as if one notion of size fits all. Next to reduced
dimensionality, a reduced model size gives a small but non-negligible contribution
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to the simplicity term in the model comparison. We believe that this adds to a
clarification of the elusive concept of simplicity in model selection.

Acknowledgements: We thank audiences at the University of Kent and Düssel-
dorf for valuable discussions. Jan-Willem Romeijn’s research is supported by The
Netherlands Organization for Scientific Research (NWO-VENI-275-20-013), and
by the Spanish Ministry of Science and Innovation (Research project FFI2008-
1169). Rens van de Schoot’s and Herbert Hoijtink’s research is financed by The
Netherlands Organization for Scientific Research (NWO-VICI-453-05-002).

REFERENCES

Akaike, H. (1973). Information Theory and an Extension of the MaximumLikeli-
hood Principle. In 2nd International Symposium on Information Theory, B. N.
Petrov and F. Csaki (Eds.), Akademiai Kiado, Budapest, pp. 267–281.

Anraku, K. (1999). An Information Criterion for Parameters under a Simple Order
Restriction. Journal of the Royal Statistical Society B, 86, pp. 141–152.

Balasubramanian, V. (2005). MDL, Bayesian inference, and the geometry of the
space of probability distributions. In Advances in Minimum Description Length:
Theory and Applications, P. J. Grunwald et al. (Eds.), pp. 81–99. MIT Press,
Boston.

Crupi, V., Fitelson, B. and Tentori, K. (2008). Probability, confirmation and the
conjunction fallacy. Thinking and Reasoning 14, pp. 182–199.

Gelfand, A. E., Smith, A. F. M., and Lee, T. (1992). Bayesian analysis of con-
strained parameter and truncated data problems using Gibbs sampling. Journal
of the American Statistical Association, 87, pp. 523–532.

Grunwald, P. (2007). The Minimum Description Length Principle. MIT press,
Cambridge (MA).

Henderson, L., Goodman, N. D., Tenenbaum, J. B. and Woodward, J. F. (2010).
The structure and dynamics of scientific theories: a hierarchical Bayesian per-
spective. Philosophy of Science 77(2), pp. 172–200.

Hoijtink, H., Klugkist, I., and Boelen, P. A. (2008). Bayesian Evaluation of Infor-
mative Hypotheses, Springer, New York.

Jeffreys, H. (1961). Theory of Probability. Oxford University Press, Oxford.

Kahneman, D., Slovic, P. and Tversky, A. (Eds.) (1982). Judgment under Uncer-
tainty: Heuristics and Biases. Cambridge University Press, New York.



7 One Size Does Not Fit All: proposal for a prior-adapted BIC 105

Kass, R. E. and Raftery A. E. (1995). Bayes Factors. Journal of the American
Statistical Association, 90, pp. 773–795.

Kass, R. E., and Wasserman, L. (1992). A Reference Bayesian Test for Nested Hy-
potheses with Large Samples. Technical Report No. 567, Department of Statis-
tics, Carnegie Mellon University.

Klugkist, I., Laudy, O. and Hoijtink, H. (2005). Inequality Constrained Analysis
of Variance: A Bayesian Approach. Psychological Methods 10(4), pp. 477–493.

Lipton, P. (2004). Inference to the Best Explanation. Routledge, London.

Myung, J. et al. (2000). Counting probability distributions: Differential geometry
and model selection. Proceedings of the National Academy of Sciences 97(21),
pp. 11170–11175.

Raftery, A. E. (1995). Bayesian model selection in social research. Sociological
Methodology, 25, pp. 111–163.

Rissanen, J. (1996). IEEE Transactions of Information Theory, 42, pp. 40–47.

Romeijn, J. W. and van de Schoot, R. (2008). A Philosophical Analysis of
Bayesian model selection. In Hoijtink, H., Klugkist, I., and Boelen, P. A. (2008).
Bayesian Evaluation of Informative Hypotheses, Springer, New York.

Schoot, R. van de, Hoijtink, H., Mulder, J., van Aken, M. A. G. Orobio de Castro,
B., Meeus, W. and Romeijn, J. W. (2010a). Evaluating Expectations about Neg-
ative Emotional States of Aggressive Boys using Bayesian Model Selection.
Developmental Psychology, in press.

Schoot, R. van de, Hoijtink, H., Brugman, D. and Romeijn, J. W. (2010b). A Prior
Predictive Loss Function for the Evaluation of Inequality Constrained Hypothe-
ses, manuscript under review.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6,
pp. 461–464.

Silvapulle, M. J. and Sen, P. K. (2005). Constrained Statistical Inference: Inequal-
ity, Order, and Shape Restrictions, John Wiley, Hoboken (NJ).

Sober, E. and Hitchcock, C. (2004). Prediction Versus Accommodation and the
Risk of Overfitting. British Journal for the Philosophy of Science 55, pp. 1–34.

Spiegelhalter, D. J., Best, N. G. Carlin, B. P. and van der Linde, A. (2002).
Bayesian measures of model complexity and fit. Journal of Royal Statistical
Society B, 64, pp. 583–639.

Stone, M. (1977). An Asymptotic Equivalence of Choice of Model by Cross-
Validation and Akaike’s Criterion. Journal of the Royal Statistical Society B,
39(1), pp. 44–47.



106 Jan-Willem Romeijn, Rens van de Schoot, and Herbert Hoijtink

Faculty of Philosophy
University of Groningen
Oude Boteringestraat 52
9712 GL Groningen
The Netherlands
j.w.romeijn@rug.nl



Team B
Philosophy of the Natural and Life Sciences

Team D
Philosophy of the Physical Sciences



Chapter 8

Mauro Dorato

MatheMatiCal Biology anD the existenCe

of BiologiCal laws1

8.1 introDuCtion

An influential position in the philosophy of biology claims that there are no biological 
laws, since any apparently biological generalization is either too accidental, fact-like 
or contingent to be named a law, or is simply reducible to physical laws that regulate 
electrical and chemical interactions taking place between merely physical systems.2

 In the following I will stress a neglected aspect of the debate that emerges 
directly from the growing importance of mathematical models of biological phe-
nomena. My main aim is to defend, as well as reinforce, the view that there are 
indeed laws also in biology, and that their difference in stability, contingency or 
resilience with respect to physical laws is one of degrees, and not of kind.3

 In order to reach this goal, in the next sections I will advance the following 
two arguments in favor of the existence of biological laws, both of which are meant 
to stress the similarity between physical and biological laws.
 1. In physics we find an important distinction between laws of succession 
(holding between timelike-related or temporally successive events/facts) and laws 
of coexistence (holding between spacelike-related, coexisting events).4 Examples 
of laws of coexistence are the Boyle-Charles law, relating pressure P and volume 
of gases V to their temperature T (PV = kT), Ohm’s law, relating resistance R to 
voltage V and intensity of current A (V/A = R), or the relation between the length 
and the period of a pendulum – T = 2p (L/g)1/2. While all of these laws relate events 

1 Thanks to the editor Dennis Dieks for some helpful comments and suggestions.
2 See for one John Beatty, “The evolutionary contingency thesis”, in: Gereon Wolters 

and John Lennox (Eds.), Concepts, Theories and Rationality in the Biological Sci-
ences. Pittsburgh University Press 1995, pp. 45–81.

3 For a previous defense of this thesis, see Sandra Mitchell, Unsimple Truths: Science, Com-
plexity, and Policy. Chicago: University of Chicago Press 2009. I hope to add new arguments 
so as to strengthen her view. For the idea of degrees of lawhood, see Marc Lange, “Laws, 
counterfactuals and degrees of lawhood”, in: Philosophy of Science, 1999, pp. 243–267.

4 See Carl Hempel and Paul Oppenheim, “Studies in the logic of explanation”, in: Phi-
losophy of Science 15, 2, 1948, pp. 135–175, who contrast causal laws (of succession) 
with laws of coexistence. The difference between causal laws and laws of coexistence 
had been originally proposed by John S. Mill.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_8,  
© Springer Science+Business Media B.V. 2012
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or properties that are in some sense simultaneously existing, laws of succession 
instead describe the unfolding of physics systems in time.
 Against the possibility of biological laws, it is typically argued that biological 
laws of evolution are either non-existent or just too complex to be formulated.5 
For the sake of the argument, let us suppose that this thesis is true.6 It then follows 
that if we could prove that (i) in biology, unlike physics, there are also no laws of 
coexistence, or that (ii) such laws, if existent, are really all physical, we would 
have concluded against the existence of biological laws tout court. In Sect. 8.2, I 
will counter (i) and (ii) by discussing some examples of genuine biological laws of 
coexistence that I will refer to as structural biological laws.
 2. Those who claim that there are no biological laws typically argue that 
lawlike-looking regularities in biology are either merely mathematical (and there-
fore a priori) or purely physical. In the former case, they are devoid of empiri-
cal content, in the latter they are empirical but not biological. The former claim 
has been put forward in particular by Brandom and Sober, and recently defended 
also by Okasha, by discussing examples like Price’s equation, formulas in popula-
tion genetics like Fisher’s, or the simple Hardy-Weinberg’s law in genetics.7 Even 
though Sober does not think that this is an argument against the existence of laws 
in biology,8 it clearly could be used in this way. What I will do in Sect. 8.3 is to 
counter this claim by citing some mathematical models that seem to be applicable 
to various biological entities, from cells to flocks of birds, and that are certainly 
neither tautologies nor interpretable just with entities or data models referring to 
the ontology of current physics.
 Before discussing these two arguments in some more detail, however, it is 
important to clarify two methodological points raised by the issue I have been 
presenting so far. 

5 By biological laws of succession I don’t mean laws of law, but simply laws regulating 
the evolution of biological phenomena in time.

6 I don‘t think it is true, by the way, but I want to concede to the enemy of biological laws 
all the ground she needs.

7 Samir Okasha, Evolution and the Levels of Selection. Oxford: Oxford University Press 
2006. By referring to Price’s equation, Okasha writes: “though the equation is little 
more than a mathematical tautology …” Ibid, p. 3. Sober explains the Hardy-Wein-
berg’s law with the properties of coin tossing. And then he adds “if we use the term 
mathematical tautology sufficiently loosely, then many of the generalizations in biol-
ogy are tautologies” in: Elliott Sober, Philosophy of Biology. Oxford: Oxford Univer-
sity Press 1993, p. 72.

8 In Elliott Sober, “Two outbreaks of lawlessness in recent philosophy of biology”, in: 
Philosophy of Science 64, 1997, p. S459, we read: “Fisher’s theorem of natural selec-
tion says that the rate of increase in fitness in a population at a time equals the additive 
genetic variance in fitness at that time. When appropriately spelled out, it turns out to 
be a mathematical truth”. And yet, he argues, a law need not be empirical but could 
also hold a priori.
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 (i) The first point is: when should we regard a regularity/law as biological 
or physical? In order to answer this first question, let me simply stipulate that a 
regularity/law can be regarded as biological (or physical) if it is formulated in the 
language of current biology (or physics). As long as a law contains notions or 
concepts that are regarded as belonging to current biology, we should consider it 
as biological, even if the notion in question were reducible to physics.9 I will there-
fore completely ignore appeals to wholly vague and undefined future and complete 
physics or biology. After all, “in the long run”, as Keynes would say, “we will all 
be dead”, and what matters to us is to try to solve our problems relatively to our 
current state of knowledge.
 (ii) The second point is the criterion of demarcation to be used to draw a 
distinction between genuine laws and merely accidental generalizations. Here I 
will appeal to counterfactuals, intentionally ignoring the difficulties raised by this 
criterion.10 After all, such difficulties apply to physics as well as to biology, and it 
is not clear at all why the defenders of the existence of biological laws should solve 
them. Simply put, the main idea to be presupposed in the following is that while 
empirical generalizations do not hold counterfactuals, laws do. To repeat an oft-
quoted example by Reichenbach, a generalization like “all gold cubes are smaller 
than one cubic kilometer”, if true, is true accidentally, since the counterfactual “if 
x were a gold cube, it would be smaller than one cubic kilometer” does not hold, 
since no law prevents gold cubes from being larger that one cubic kilometer. On 
the contrary, given the laws of radioactive decay, “if x were a uranium cube, it 
would be smaller than one cubic kilometer” is true.

8.2 laws of CoexistenCe in Biology

The reader will recall that in the previous section I posed the following two ques-
tions: (1) do we have laws of coexistence in biology? If so, (2) are they reducible 
to physical laws? I will now try to answer them in turn.
 1. An important but often neglected source of biological laws might concern 
exactly laws of the “form”, or of the structuring of biological space, in the tradi-
tion that spans from Goethe to Cuvier, and from D’Arcy Thompson to Thom and 
Gould and Lewontin. In this tradition, the permanence of forms or structures from 
one generation to another “is interpreted in relation to the pure game of three-
dimensional space within which the constructive parameters of the organism are 

9 Here I assume that reducibility does not entail elimination; and the case of thermody-
namics is a clear exemplification of this claim: the reducibility of thermal physics to 
statistical mechanics does not entail that the properties that are typical of the former 
together with its laws disappear or are eliminated.

10 One of these is the smell of circularity raised by the criterion: one analyzes the notion 
of lawhood with counterfactuals but in order to know whether a counterfactual is true, 
one must already know which laws hold.
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established.”11 In this sense the distinction, originating from physics,12 between 
laws of coexistence and laws of succession would correspond in biology to the dis-
tinction between diachronic “laws of evolution” and “structural laws”, the former 
related to time, and the latter constraining the structure of the spatial relationships 
between coexisting biological phenomena and entities.
 The recent use of powerful computers has proved quite important to make us 
discover structural biological laws:

Cardiovascular systems, respiratory systems, plant vascular systems, and insect tracheal 
tubes all exhibit the same continuously branching structure that increases or decreases in 
scale as a quarter power of body size.13 (my emphasis)

This wide-scope biological regularity seems sufficient to allow us to respond posi-
tively to question (1): there are indeed biological laws of coexistence and they play 
a very important and generalized role. The following, natural question is whether 
they are reducible to physical laws which is our question (2).
 2. The law of the quarter power mentioned in the quotation above is related 
to Kleiber’s law, which connects the metabolic rate R, (i.e. the quantity of energy 
consumed in 1 s), to the dimensions of the animal, according to a precise ratio of 
proportionality, expressed by the cube of the fourth root of the organism’s body 
mass M

R = (M)3/4

For example, an animal c weighing one hundred times another animal m – M
c 
= 

100
 
M

m
 – would have a metabolic rate that is only more or less thirty times greater.14 

This law is quite universal, as it holds from mitochondria, unicellular organisms 
to the largest animals (see Fig. 8.1), so that it definitely holds counterfactuals: if a 
were an animal, it would be related to its metabolism by the above relation.
It could be argued that in virtue of the criterion above, 1 counts as a physical law, 
because it only contains physical parameters (“the quantity of energy consumed 
in a second”, “mass”). On the other hand, “metabolism” is typically applied in 
biological contexts, and “organism’s mass” is after all a physical property of a 

11 Barbara Continenza, and Elena Gagliasso, Giochi aperti in biologia. Milano: Franco 
Angeli, p. 67.

12 The principle of locality might induce one to think that physical laws of succession are 
more important than physical laws of coexistence, so that the latter somehow reduce 
to, or supervene on, the former. However, quantum non-separability and entanglement, 
even in the absence of action at a distance as in Bohm‘s interpretation, has rehabilitated 
the importance of laws of coexistence at a fundamental level.

13 J. Brown, G. West, B. Enquist, Nature CClxxxiv, 1999, pp. 1607–1609. The work cited 
is taken from the website http://www.santafe.edu/sfi/publications/Bulletins/bulletin-
summer97/feature.html. A later study published in Nature excluded plants from this 
generalization.

14 Brown and Enquist, work cited. Note that M
c
 = (100)3/4 equals approximately 31 M

m
.

(8.1)
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biological entity. Laws of this kind are sort of mixed between physics and biology, 
and it should be no surprise that in many cases it is indeed difficult to conclude 
that a given nomic statement belongs to physics or biology. Consider “bridge” 
disciplines like biophysics or biochemistry or molecular biology: any law in these 
fields cannot but “overlap” between the two disciplines. The existence of such an 
overlap, however, is good news for the defenders of biological laws, unless their 
enemies give them ground and retreat to the more limited claim that it is in purely 
biological domains that laws don’t exist. Since this claim will be discussed in what 
follows, I can move on with my argument.

Fig. 8.115

Interestingly, various hypotheses to explain this universal principle have been put 
forth since 1932. Lately, Kleiber’s law has been derived, or explained, by a more 
profound law of coexistence, namely that the same ramified model – which refur-
nishes a vegetable or animal organism’s vital fluids (lymph or blood) – fills the 
living organism’s space like a fractal.16 In a word, this type of ramified structure, 
which is essential to transport material to and from the cells, would be capable 
of explaining the existence of the otherwise mysterious proportionality between 
dimensions and the metabolic rate.

15 Taken from http://universe-review.ca/R10-35-metabolic.htm
16 Other geometrical considerations, involving the fixed percentage of the volume of the 

body that is occupied by the vessels, explain the presence of the cube in the formula 
above. The fractal law contributes only to the quarter power component. For more ex-
planatory details, see http://universe-review.ca/R10-35-metabolic.htm.
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 The omnipresence of forms branching out like a “tree,” and repeating them-
selves in different scales like fractals, can be explained by the fact that these struc-
tures optimize the transport of energy in all living species; as West, one of the 
authors of this theory expresses, “when it comes to energy transport systems, eve-
rything is a tree.”17

 While the key concepts entering Kleiber’s law are somewhat mixed, the quota-
tion above mentions “cardiovascular systems, respiratory systems, plant vascular 
systems, and insect tracheal tubes, all exhibiting the same continuously branching 
structure”. We have seen that since all these notions are biological, the criterion 
for identifying a law as biological allows us to conclude that the fact that “all these 
structures have a tree-like shape” is a biological law. It could be noticed that it 
is implausible that a physical or “mixed”, biophysical law like Kleiber’s can be 
explained by a purely biological, structural law, exemplified by biological entities 
carrying life-sustaining fluids or, more in general, by entities that optimize energy 
transport. This could create evidence in favor of the view that also the fractal law 
is really a physical law. However, there is no violation of the causal closure of 
the physical world in this case, since it is the shape of the fractal that carries the 
explanatory role, and shape in a sense is an abstract, geometrical notion, and in 
another sense, when we consider it exemplified, is a spatial, topological property 
of biological entities. As such, the fractal law is a biological law.
 The question of the relationship between such structural biological laws and 
evolutionary principles (or laws of succession, in my vocabulary) naturally poses 
itself at this point. I cannot enter this complex debate here, if not to note that there 
is a sense in which biological evolution is constrained by laws of coexistence of 
the kind we discussed above. On the other hand, however, against recent attempts 
at downplaying the role of natural selection,18 it should be admitted that selection 
would obviously choose the organisms whose “forms” render more efficient the 
transport of those bodily fluids that are necessary for sustaining the life of the 
whole organism. In a word, if we could identify biological laws of succession with 
the family of models generated by the Principle of Natural Selection,19 biological 
laws of coexistence and biological laws of succession could and should coexist 
peacefully, at least if we want to succeed in explaining the fact of evolution.

17 Ibid.
18 Jerry Fodor, Massimo Piattelli Palmarini, What Darwin Got Wrong. New York: Farrar, 

Straus and Giroux 2010.
19 For the view that the Principle of Natural Selection is really an abstract scheme to form 

more concrete models (like F=ma), see Mauro Dorato, The Software of the Universe. 
Aldershot: Ashgate 2005. For the view that the Principle of Natural Selection is to be 
understood within the semantic view of theories, see Marcel Weber, “Life in a physi-
cal world”, in: F. Stadler, D. Dieks, W. Gonzales, S. Hartmann, T. Uebel and M. Weber 
(Eds.), The Present Situation in the Philosophy of Science. Dordrecht: Springer 2010, 
pp. 155–168.
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 In this respect, the tradition of the study of laws of the forms, if helped by the 
development of new mathematical models of the relevant phenomena, could help 
us to look at the sterile debate between selectionists and defenders of laws of the 
form in a whole new way. This claim will be illustrated in the next section, which 
will also provide evidence for the fact, too neglected by philosophers, that the de-
velopment of a future “mathematics of living beings” will contribute much to both 
biology and mathematics.

8.3 soMe exaMples of MatheMatiCal MoDels in Biology

The currently burgeoning field of mathematical biology can be regarded as provid-
ing crucial reasons to believe in the existence of biological laws. The argument for 
this claim is based on the following four premises, which presuppose a distinc-
tion between scientific laws (a defining feature of the model we use to represent 
the world) and what they purport to describe, namely lawmakers that I refer to as 
natural laws.
 1. Scientific laws in physics are mainly dressed in mathematical language, 
a fact that is not an accidental feature, but rather an indispensable component of 
physics;
 2. Mathematically formulated scientific laws in physics are part of the defi-
nition of the mathematical models of those natural phenomena (natural laws) that 
we intend to represent via the model itself;
 3. The amazing effectiveness of mathematical models in predicting and ex-
plaining physical phenomena20 can only be accounted for if there are natural laws 
in the physical world, laws that the models mentioned in 2. refer to or partially 
represent;
 4. The three premises above apply also to biology, and guarantee the exist-
ence of biological laws rather than accidental generalizations if they do so in phys-
ics.
 I take it that premise 1. is uncontroversial: since the modern times, it would be 
hard to do any physics without the abstract models of natural phenomena provided 
by mathematics. Premise 2. can also be granted: take for instance ma = – kx, which 
is Hooke’s law; clearly, this statement also defines the main features of the cor-
responding abstract model, in the sense that anything that satisfies that law can be 
represented by the model of the harmonic oscillator.21 Premise 3. is based on the 
claim that the existence of mathematical models that enable us to predict and ex-
plain physical phenomena suffices for the existence of physical laws. This premise 

20 The claim that mathematics can be used also to explain physical phenomena is defend-
ed in Mauro Dorato and Laura Felline, “Structural explanation and scientific structur-
alism”, in: A. Bokulich and P. Bokulich (Eds.), Scientific Structuralism. Boston Studies 
in Philosophy of Science: Springer 2011, pp. 161–176.

21 Ronald Giere, Explaining Science. Chicago: University of Chicago Press 1988.
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is of course as controversial as is any realist claim based on inferences to the best 
explanation. Here I don’t need to defend this premise explicitly, and actually I can 
take it for granted.22 Note that 3. is sometimes accepted as being sufficient for the 
existence of physical regularities, and that here I could be content only with the 
conditional claim that if the inference works for physical laws then, in virtue of 
the analogy between physical and biological models of phenomena on which 4. 
is based, it also works for biological laws. A case study taken from a recent study 
of the collective behavior of starlings will, I hope, suffice to argue in favor of the 
analogy stated in 4.

8.4 floCks of starlings anD their sCale invariant anD 
topologiCally-DepenDent interaCtions

Under the attack of a predator or even independently of it, flocks of starlings (stur-
nus vulgaris) can assume highly symmetrical and rapidly changing geometrical 
forms. These birds can synchronize their flight in such a way that one is led to 
think of the flock as a single, super-individual organism, whose parts always re-
main together in a strikingly coordinated fashion.
 In the years 2006–2008, the Italian group of statistical physicists and biologists 
led by Giorgio Parisi has taken thousands of pictures of these birds (which some 
years ago had invaded parts of Rome with imaginable consequences …) in order to 
provide a precise empirical basis to study their collective behavior in three dimen-
sions.23 The guiding idea of the research program was that this empirical study, if 
suitably modeled, could be generalized to school of fishes, herd of mammals, flight 
of insects, etc. The scope and universality across the animal kingdom of these dy-
namical laws, if they could be found, would have been quite impressive.
 The collective, cooperative behavior of the starlings is particularly important 
from an evolutionary point of view. Stragglers have a significantly larger probabil-
ity of being attacked, while if the group remains together, each individual bird ends 
up being much safer.
 The main question raised by this amazing collective behavior is, of course, 
how individual birds can remain in the group even when the latter, under attack 
by a predator changes significantly its form and density.24 The biological qualitative 

22 For a defence of the inference to the best explanation in realist contexts, see Stathis 
Psillos, How Science Tracks Truth. London: Routledge.

23 M. Ballerini, N. Cabibbo, R. Candelier, et al., “An empirical study of large, naturally 
occurring starling flocks: a benchmark in collective animal behaviour”, in: Animal 
Behaviour 76, 1, 2008, pp. 201–215.

24 M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. 
Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, and V. Zdravkovic ‘Interaction 
ruling animal collective behavior depends on topological rather than metric distance: 
Evidence from a field study’, in: Proc. National Academy of Science, USA, 105, 2008, 
pp. 1232–1237.
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laws that had been advanced so far presumed that the interaction among indi-
viduals decreased with the metric distance between any two birds, as in Newton’s 
law of gravitation. However, this hypothesis would not explain the fact that even 
after density changes that are typical of starlings flight, the group continues to 
exist as such.
 On the basis of models based on spin glasses and computerized vision, Parisi’s 
group has advanced the new hypothesis that the birds’ interaction depends not on 
metric distance (how many meters they are apart from each other) but on their 
topological distance, which is measured by the number of birds separating each 
bird from the others with which it interacts. This implies, for instance, that two 
interacting birds separated by ten meters and two birds that are one meter apart 
“attract” each other with the same “strength”, independently of distance, since 
the number of intermediate birds in the two cases is the same.25 This topological 
dependency – which I regard as a biological law, possibly interspecific and not just 
holding for sturnus vulgaris – allows cohesion to the flock even when the density 
changes. This hypothesis was tested with some simulations:

Thanks to novel stereometric and computer vision techniques, we measured 3D individual 
birds positions in compact flocks of up to 2600 starlings … whenever the inter-individual 
distance became larger than the metric range, interaction would vanish, cohesion would be 
lost, and stragglers would ‘evaporate’ from the aggregation. A topological interaction, on 
the opposite, is very robust, since its strength is the same at different densities.26

So the first species-specific law that we can express in this context, a law that can 
be expressed in a qualitative and quantitative way, is that the interaction between 
starlings does not depend on metric distance but on topological distance. Accord-
ing to our above specified criterion, this regularity is certainly purely biological. 
Does it hold counterfactuals, so that, in virtue of the criterion mentioned above, 
it counts as a law? Relatedly, can we generalize this law to other highly social 
species?
 In order to answer these questions, it is appropriate to mention the fact that the 
mapping of the flight of the individual birds has shown an interesting anisotropy, 
which could be linked to the nervous system of the birds; this anisotropy means 
that it is more probable to find the neighboring birds on the side rather than in 
the direction of flight, and this holds up to six-seven individuals, since there is no 
interaction with the tenth nearest individual. Charlotte Hemelrijk, a theoretical bi-
ologist at Groningen, had found the same sort of anisotropy in school of fishes.27

 The resilience of the flock against losing individual birds is a metaphor for the 
resilience of the following regularity: starlings keep track of topological distance 

25 Ibid.
26 Ibid.
27 Toni Feder, “Statistical physics is for the bird”, in: Physics Today 60, 28, p. 29.
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by keeping track of 6/7 individuals against possible disturbing factors due to the 
presence of predators. I would add that the regularity in question is capable of 
holding counterfactual conditionals: “if a were a starling within a flock, it would 
adjust to changes of densities by keeping track of its 6/7 neighbors”. Amazingly 
enough, the direct interaction with such a limited number of individuals is suf-
ficient to spread correlation among a group that can be formed by thousands of 
birds!
 In order to formulate another species-specific law that can generalize to other 
species, let me define the correlation length as the spatial length or spread of the 
behavioral correlation existing in a group, and the interaction range as the number 
of animals with which each animal is directly interacting: the former concept can 
be global, the latter is always local. An effective way to illustrate the difference be-
tween these two notions is using the example made by the authors of the research 
on the scale-free correlation of starlings flocks,28 namely the “telephone game” 
played by n people. Suppose that each person in a group of n whispers a mes-
sage to her neighbor and so on, and that there is no corruption of the message (no 
noise):

The direct interaction range in this case is equal to one, while the correlation length, i.e. 
the number of individuals the phrase can travel before being corrupted, can be significantly 
larger than one, depending on how clearly the information is transmitted at each step.29

In the hypothesis of no noise, the whole group of n person is correlated (so that the 
correlation length in this example is n); of course, in more realistic examples, the 
information is always transmitted with some noise. We could note in passing that 
the possibility of sending the same (email) message to n people at once (interac-
tion range = n) makes the correlation length grow exponentially in a very rapid 
time.
 Cavagna et al. note furthermore that there are various ways to achieve order or 
correlation among social animals like starlings. One would be via a coordination 
of all birds’ behavior with that of a single leader or of a few leaders; such a top-
down method, however, would not be very efficient for the survival of birds. For 
example, if the leader did not notice the presence of a predator or of any other dan-
ger, the rigid rule of following the leader would not be of very much help, even if 
all birds, unlikely, had cognitive access to the remote position of the leader (flock 
can be made by numerous individuals). Furthermore, in this way any fluctuation in 

28 Andrea Cavagna, Alessio Cimarelli, Irene Giardina, Giorgio Parisi, Raffaele Santagati, 
Fabio Stefanini, and Massimiliano Viale, “Scale free correlation in starlings flocks”, 
in: Proc. National Academy of Science, 107, 26, Jun 29, 2010, pp. 11865–11870, avail-
able also on line at www.pnas.org/cgi/doi/10.1073/pnas.1005766107, p. 1. 

29 Ibid., p. 2.
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the behavior of one bird would not be correlated to the behavior of another, unless 
the bird in question were the leader.30

 A much more efficient way to get really cooperative and adaptive behavior 
is to avoid a centralized global order, but create a global correlation between all 
animals, a correlation that can be originally caused just by any one individual, the 
one, say, who notes the presence of a predator. If the change in direction of flight 
of this individual can rapidly influence all the flock via a few direct interactions 
between the single animals that is transferred to whole group, then the survival 
chances of each single animal will be enhanced, because no bird will be isolated. 
No part of the group can be separated from the rest, and the flock behaves like a 
critical system, capable of responding in a maximal way to a perturbation occur-
ring to a single individual. With the words of our authors:

For example, in bacteria the correlation length was found to be much smaller than the size 
of the swarm. In this case parts of the group that are separated by a distance larger than the 
correlation length are by definition independent from each other and therefore react inde-
pendently to environmental perturbations. Hence, the finite scale of the correlation neces-
sarily limits the collective response of the group. However, in some cases the correlation 
length may be as large as the entire group, no matter the group’s size. When this happens 
we are in presence of scale-free correlations.31

The degree of global ordering in a flock is measured by the so-called polariza-
tion F,

where v
i
 is the velocity of bird i and N is the total number of birds within the flock 

(ibid.). Note that the fact that the polarization F is very close to 1 (birds fly parallel 
to each other) may be also considered to be an empirical, quantitative law, since 
also this statement holds counterfactuals.32 Polarization is in fact a measure of the 
correlation of the animal’s behavior, in the sense that when the correlation is, as in 
the case of starlings, close to 1, it is interpretable as the fact that the velocities of 
the birds are parallel, while when it is 0 “it means uncorrelated behavior, that is, 
non-parallel velocities.”

30 Ibid.
31 Ibid., p.1.
32 “Polarization is … a standard measure of global order in the study of collective animal 

behavior”, since when the value is close to 1 it corresponds to parallel velocities, while 
when it is 0 is mean uncorrelated velocities”, “Scale free,” quoted, ibid.
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8.5 ConClusion

The idea that in biology there are no laws (or event quantitative laws) seems to be 
simply due to a lack of imagination on our part, and to the fact that mathemati-
cal biology has not penetrated enough the community of philosophers of biology. 
So I conclude by quoting from an excellent, recent introduction to mathematical 
biology, which here I want to advertise, thereby signalling two interesting areas of 
research in mathematical biology, namely, population biology and ecology on the 
one hand, and phylogenetics and graph theory on the other.33

8.5.1 Population biology and ecology

The problems in population genetics and echology are similar to those illustrated 
in the case of the collective behavior of starlings, since they relate interaction be-
tween single members and collective, global properties. Imagine that a tree in an 
equally spaced orchard has a disease that, in analogy to the case of starlings, can 
be transmitted only to the nearest neighbors with a probability p. The problem is to 
calculate the probability that the correlation becomes scale-free, so that every tree 
in the forest becomes infected. Let E(p) be the expected probability in question:

Intuitively, if p is small, E(p) should be small, and if p is large, E(p) should be close to 
100%. In fact, one can prove that E(p) changes very rapidly from being small to being 
large as p passes through a small transition region around a particular critical probability p

c
. 

One would expect p to decrease as the distance, d, between trees increases; farmers should 
choose d in such a way that p is less than the critical probability, in order to make E(p) small. 
We see here a typical issue in ecological problems: how does behavior on the large scale 
(tree epidemic or not) depend on behavior at the small scale (the distance between trees).34

In this example scale-free correlations (epidemics among trees) depend on the 
existence of critical probabilities; it should be obvious how in this case, as in the 
previous one, the possibility of gathering empirical data allow us to make precise 
predictions about, say, the existence of scale-free correlations among individuals 
in a group (flocks, schools, trees in a forest, etc.).

8.5.2 Phylogenetics and graph theory

A connected graph with no cycles is called a tree. The tree has a vertex ρ, or root, 
and its vertices that have only one attached edge are called leaves. The problem 
consists in determining the trees that are consistent with our empirical and  

33 Michael Reed, “Mathematical Biology”, in: T. Gowers, J. Barrow-Green and I. Leader 
(Eds.), The Princeton Companion to Mathematics. Princeton University Press, pp. 
837–848.

34 Ibid., p. 845.
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theoretical information about evolution.35 Such phylogenetics rooted trees are used 
to select a particular empirical characteristic, say the number of teeth, and then de-
fine a function f from the leaves X, the set of current species, to the set of nonnega-
tive integers. For a given leaf x (a species in X), one then let f(x) be the number of 
teeth of members of x.

It is characters such as these that are measured by biologists. In order to say something 
about evolutionary history, one would like to extend the definition of f from X to the larger 
set V of all the vertices in a phylogenetic tree. To do this, one specifies some rules for how 
characters can change as species evolve. A character is called convex if … between any two 
species x and y with character value c there should be a path back in evolutionary history 
from x and forward again to y such that all the species in between have the same value 
c….A collection of characters is called compatible if there exists a phylogenetic tree on 
which they are all convex. Determining when this is the case and finding an algorithm for 
constructing such a tree (or a minimal such tree) is called the perfect phylogeny problem.36

The reader will excuse these long quotations. They have the purpose to allow me to 
conclude that it is by paying more attention to questions like these that a more thor-
ough understanding of the relation physics and biology (and their nomic features) 
can be gained, a relation that is going to be deeper and deeper the more mathemat-
ics is becoming the common language of both. It seems fair to say that biology 
is becoming more and more, despite what is usually believed, a Galilean science, 
based as physics is “on sensible experiences and necessary demonstrations”.37

Department of Philosophy
University of Rome 3
Via Ostiense 234
00144, Rome
Italy
dorato@uniroma3.it

35 Ibid.
36 Ibid., p. 846.
37 See Stillman Drake, Essays on Galileo and the History and Philosophy of Science,  

vol. III, selected and introduced by N. Swerdlow and T. Levere, University of Toronto 
Press, p. 84.
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Chapter 9

FederiCa russo

on empiriCal Generalisations

abstraCt

Manipulationism holds that information about the results of interventions is of utmost 
importance for scientific practices such as causal assessment or explanation. Specifi-
cally, manipulation provides information about the stability, or invariance, of the (caus-
al) relationship between (variables) X and Y: were we to wiggle the cause X, the effect 
Y would accordingly wiggle and, additionally, the relation between the two will not be 
disrupted. This sort of relationship between variables are called ‘invariant empirical 
generalisations’. The paper focuses on questions about causal assessment and analyses 
the status of manipulation. It is argued that manipulationism is trapped in a dilemma. If 
manipulationism is read as providing a conceptual analysis of causation, then it fails to 
provide a story about the methods for causal assessment. If, instead, manipulationism 
is read as providing a method for causal assessment, then it is at an impasse concerning 
causal assessment in areas where manipulations are not performed. Empirical gener-
alisations are then reassessed, in such a way that manipulation is not taken as methodo-
logically fundamental. The paper concludes that manipulation is the appropriate tool 
for some scientific (experimental) contexts, but not for all.

9.1 introduCtion

Manipulationist theorists, in slightly different ways, hold the view that information 
about the results of interventions is of utmost importance for scientific practices 
such as causal assessment or explanation.1

1 The main theoriser and partisan of the manipulationist (or interventionist) account is 
no doubt J. Woodward (see J. Woodward, “What is a mechanism? A counterfactual 
account”, in: Philosophy of Science 69, 2002, pp. S366–S377; J. Woodward, Making 
things happen: a theory of causal explanation. Oxford: Oxford University Press 2003; 
J. Woodward, “Causation in biology: stability, specificity and the choice of levels of 
explanation”, in: Biology and Philosophy 25, 2010, pp. 287–318. The approach has 
been also endorsed and used for various purposes by many other scholars, for instance 
M. Baumgartner, “Interventionist causal exclusion and non-reductive physicalism”, 
in: International Studies in the Philosophy of Science 23, 2, 2009, pp. 161–178; S. 
Glennan, “Mechanisms, causes, and the layered model of the world”, in: Philosophy 

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_9,  
© Springer Science+Business Media B.V. 2012
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Specifically, manipulation is meant to provide information concerning the invari-
ance of the (causal) relationship between (variables) X and Y. This means that, in 
non-technical terms, were we to wiggle the putative cause X, the putative effect Y 
would accordingly wiggle and, additionally, the relation between the two will not 
be disrupted. This does not entail that wiggling X will necessarily make Y wiggle, 
but that, if it does, we will be interested in whether the relationship between X and 
Y is invariant in the sense sketched above. Such relationships are called invari-
ant empirical generalisations and have the characteristic of being exploitable for 
explanation or for causal assessment. In this paper, I focus on questions related to 
causal assessment rather than explanation: I will focus on what makes empirical 
generalisations causal rather than with what makes them explanatory.
 Section 9.2 presents the manipulationist account of empirical generalisations 
and makes it clear that manipulation is central for the account. The rest of the paper 
investigates the status of manipulation for questions of causal assessment. Section 9.3 
argues that the manipulationist account is trapped in a dilemma. If the project is 
read as contributing to the conceptual analysis of causality, then it is at an impasse 
concerning the methods for causal assessment, i.e. no story about how to establish 
whether X causes Y is offered. If the project is read as contributing to the meth-
odology of causality, then a second dilemma opens up. Strictly interpreted, ma-
nipulationism fails to offer methods for causal assessment in scientific areas where 
manipulations are not performed. Charitably interpreted, instead, manipulationism 
becomes so vague as to be an unilluminating – and even misleading – rationale un-
derpinning causal reasoning in both experimental and nonexperimental contexts. In 
the light of the previous discussion, Sect. 9.4 reassesses empirical generalisations. 
The core of agreement with manipulationist theorists is that empirical generali-
sations are indeed change-relating relations and that for empirical generalisations 
to be causal they indeed have to be invariant, albeit in a sense that does not take 
manipulations as methodologically fundamental. The importance of the change-
relating character of empirical generalisation has to do with the rationale underpin-
ning causal reasoning: it is not manipulation but variation that does this job.

9.2 manipulationist empiriCal Generalisations

To understand the manipulationist project, we need to spell out the notions of (i) 
empirical generalisation, (ii) invariance, (iii) intervention, and the relations they 
stand with respect to each other.

and Phenomenological Research 81, 2, 2010, pp. 362–381; D. Hausman, “Causation, 
agency, and independence”, in: Philosophy of Science 64, 4, 1997, pp. S15–S25. Sup-
plement; D. Hausman and J. Woodward, “Manipulation and the causal Markov condi-
tion”, in: Philosophy of Science 71, 5, 2004, pp. 846–856; C. K. Waters, “Causes that 
make a difference”, in: The Journal of Philosophy CIV, 2007, pp. 55–579; J. Woodward 
and C. Hitchcock, “Explanatory generalizations, part I: A counterfactual account”, in: 
Noûs 37, 1, 2003, pp. 1–24.
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 An empirical generalisation is a relation between variables that has the char-
acteristic of being change-relating or variation-relating: changes in the putative 
causal-variable X are associated with changes in the putative effect-variable Y. Of 
course, the problem of distinguishing causal from spurious or accidental gener-
alisations immediately arises. We could hit upon a change-relating relation that is 
accidental: an increased number of storks might be statistically associated with an 
increased number of births, but there is no causal link between these two variables. 
Or, a change-relating relation might be spurious: yellow fingers might be statisti-
cally associated with lung cancer but this is because they are effects of a common 
cause (cigarette smoking).
 Change-relating relations have to show some invariability in order to be causal 
(or to be explanatory – this falls outside the scope of the paper). This requires ma-
nipulating the variables figuring in the relationship itself, and we will call the gen-
eralisation invariant, roughly speaking, if changing values of the cause-variable 
changes values of the effect-variable, and yet, the relationship between the cause 
and effect-variables is not disrupted. Invariant generalisations are then used to ask 
counterfactual questions about what would happen to the effect, had the cause 
been different.
 However, in order to evaluate the effects of manipulations, not all counterfac-
tuals will do. Relevant counterfactuals are those that describe outcomes of inter-
ventions. Consider an empirical generalisation between X and Y. An intervention 
I on X has to have three characteristics: (i) the change in the value of X is totally 
due to the intervention; (ii) the intervention will affect the value of Y, if at all, just 
through the change in the value of X; (iii) the intervention is not correlated with 
other possible causes of Y (other than X). Interventions establish whether changes 
in the cause will bring about changes in the effect, and yet the relation between the 
cause and the effect remains unaltered. If this is the case, then invariant empirical 
generalisations are in fact causal.
 A number of examples from physics (e.g. the ideal gas law or Ohm’s law) 
are discussed, inter alia, in Woodward.2 Illustrations from biology are newer and 
less known. Consider Dawkins’s fictious gene R.3 When variant r is present, indi-
viduals have dyslexia and are unable to learn to read; when variant r′ is present, 
individuals can learn and read normally. The relation between the gene R and the 
ability to learn and read is not stable, however. In fact, differences in background 
conditions (e.g. schooling or culture) disrupt the relation between R and learning 
and reading. In other words, outcomes in learning and reading are not dependent 
on manipulations on the gene R. This has to be contrasted, instead, with invariant 
relationships involving other genes, for instance for eye colours or for external 
sexual characteristics.

2 See J. Woodward, Making things happen: a theory of causal explanation, loc. cit.
3 See J. Woodward “Causation in biology: stability, specificity and the choice of levels of 

explanation”, loc. cit.
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9.3 the dilemma

The manipulationist account, I now argue, is caught in a dilemma. The dilemma 
arises because the manipulationist account can be given two readings: conceptual 
and methodological. First, according to the conceptual reading, the account aims 
to provide truth conditions for causal claims; the sought solution is that X causes 
Y if, and only if, manipulations on X would accordingly yield changes to Y. Sec-
ond, according to the methodological reading, were manipulations on X to yield 
changes on Y, then we would be entitled to infer that X causes Y.4

 Those two readings of manipulationisms lead to a dilemma. In the first case – 
that is if the project is conceptually read – manipulationism turns out to be unillu-
minating as to the methods to use for causal assessment. In the second case – that 
is if the project is methodologically read – then a second dilemma opens up: (a) 
strictly interpreted, methodological manipulationism is not in a position to offer a 
solution in domains where it is not possible to intervene (typically, the social sci-
ences, but also astronomy); (b) charitably interpreted, the requirement of manipu-
lation becomes so vague as to be not only unilluminating, but also misleading, as 
to the rationale underpinning causal reasoning.
 Ultimately, the dilemma mirrors a more profound problem in the philosophy 
of causality: the relation between epistemology/methodology and metaphysics. 
Two remarks are in order. First, specific questions (epistemological/methodologi-
cal and metaphysical) ought not to be conflated, and instead call for appropriate 
and distinct answers: we should not give a metaphysical answer to a methodologi-
cal question, and vice-versa. Second, it is vital to investigate how metaphysical 
issues have a bearing on epistemological and methodological ones, and vice-versa. 
This can be done only insofar as different types of questions and of answers are 
kept distinct. With these caveats in mind, let us now analyse the horns of the di-
lemma.

9.3.1 Horn 1: Conceptual Manipulationism

According to the conceptual reading of manipulationism, X causes Y if, and only 
if, manipulations on X accordingly yield changes to Y. This, notice, amounts to 
giving truth conditions for causal claims, and consequently the project contributes 
to the analysis of the concept of causation. Manipulation is here the concept in 
terms of which causation is cashed out. Under this reading, manipulationism says 
what has to be true if X causes Y.

4 Another strong proponent of the quandary above is M. Strevens (see M. Strevens “Es-
say review of Woodward”, in: Making Things Happen. Philosophy and Phenomeno-
logical Research 74, 2007, pp. 233–249 and M. Strevens “Comments on Woodward”, 
in: Making Things Happen. Philosophy and Phenomenological Research 77, 2008, pp. 
171–192.), who distinguishes between conceptual manipulationism and explanatory 
manipulationism. Given that I focus on questions of causal assessment rather than 
explanation, I prefer using the more general term ‘methodological manipulationism’.
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If this reading is correct, then manipulationism is unilluminating for the methods 
to establish whether in fact X causes Y. Nevertheless, it is desirable to have a 
conceptual analysis of causation that goes hand in hand with methodology. Once 
we know what a causal relation between X and Y amounts to, it helps a great deal 
to know how to find out what causes what. Conversely, if conceptual analysis and 
methodology are entirely disconnected, then our understanding and practice of 
causal inference are too fragmented to be successful. Many objections to  standard 
accounts of causation (probabilistic, counterfactual, regularity, interventionist) 
stem from the fact that (i) epistemological, methodological and metaphysical 
questions are conflated and that (ii) most often the bearing of the epistemology/
methodology side on the metaphysics side (and vice-versa) have not been thor-
oughly investigated.5

 Thus, once we endorse the idea of having coherent (rather than disconnect-
ed) methodological and conceptual accounts of causation, then the only possible 
methodological candidate, under the conceptual reading of manipulationism, is a 
methodology based on manipulations. In this case, we have to investigate Horn 2 
below, which discusses precisely methodological manipulationism.
 It is worth noting that manipulationist theorists (and particularly Woodward) 
claim that the project is methodological rather than conceptual. Thus, Horn 2  below 
is prima facie more relevant. Nevertheless, the discussion of Horn 2 will reveal that 
the objections to the methodological reading do press the manipulationist theorist 
back into Horn 1, whence its relevance for our purposes. Yet, if escaping Horn 1 
leads to Horn 2, and in turn, the branches of Horn 2 loop back into Horn 1, then it 
seems that the manipulationist is stuck between a rock and a hard place. But there 
is a way out: my reassessment of empirical generalisations offered in Sect. 9.4.

9.3.2 Horn 2: Methodological Manipulationism

According to the methodological reading, the perspective is reversed: were 
 manipulations on X to yield changes on Y, then we would be entitled to infer that X 
causes Y. Manipulation is here a method to establish whether X causes Y. There is 
another dilemma opening up now. The requirement of manipulation can be either 
(a) strictly interpreted, or (b) charitably interpreted.

9.3.2.1 Horn (a): The Strict Interpretation
Strictly interpreted, manipulationism prescribes the following. In order to know 
whether X causes Y, perform an intervention on X, hold fixed anything else, and 
see what happens to Y.
 The typical situation where this happens is the controlled experiment. Simply 
put, in a controlled experiment we compare results obtained from two groups: 
the experimental and the control group. Those are similar in all relevant respects, 

5 See also N. Cartwright, Hunting causes and using them: approaches in philosophy and 
economics. Cambridge: Cambridge University Press 2007.
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except for the putative cause, which undergoes manipulation in the experimental 
but not in the control group. The experimenter can then assess the influence of the 
putative cause X on the putative effect Y (i) by holding fixed any other possible 
influence of factors other than X, and (ii) by varying only the putative cause. Thus, 
in a controlled experiment, manipulation is indeed the key tool to establish causal 
relations.
 Let me make clear what the status of manipulation is. Manipulation is a tool 
to get to know what causes what. It is also worth noting that the controlled experi-
ment is here oversimplified and all the difficulties of experimental design are over-
looked. Identifying the right or best groups (of people or any other type of units) 
to include in the experiment, choosing the right or best intervention to perform, 
and assessing the effects of such intervention are all far from being trivial and 
obvious tasks. Randomisation, the controlled experiment par excellence, is simple 
in principle, but not in practice. In practice, experimental design is a complex and 
delicate thing, having its own research tradition tracing back at least to the seminal 
work of Fisher.6

 The problem, however, is that most situations in social science (and some ex-
ist in natural science too, e.g. astronomy) are not like controlled experiments. In 
observational contexts in social science we need methods to find out what causes 
what without resorting to manipulation. The problem isn’t new. Early method-
ologists in social science recognised this difficulty already in the Sixties. For in-
stance, Blalock,7 trained in mathematics and physics, promptly admitted that well-
designed experiments could allow the scientist to make causal inferences based 
on the outcomes of manipulations “with some degree of confidence” and “with a 
relatively small number of simplifying assumptions”.8 Blalock then noticed that 
this isn’t the case when scientists have to deal just with observational data. The 
question is not whether in principle the same rules of inference can be applied, but 
how practical difficulties can be overcome in order to make reliable causal infer-
ences on the basis of data coming from nonexperimental studies.
 This is not to say that the social sciences do not perform interventions at all. 
Policy interventions, for instance, are indeed interventions, but the status of ma-
nipulation is here different than the one in controlled experiments discussed ear-
lier. Policy interventions are based on a causal story, i.e. on valid empirical gener-
alisations. The results of policy interventions may then lead us to further confirm 
or to question the validity of empirical generalisations. Thus, manipulation is not 
a tool to find what causes what. Instead, we manipulate because we know what 
causes what (to the best of our knowledge). In other words, manipulation is a 

6 See R. A. Fisher, The design of experiments. Edinburgh: Oliver & Boyd 1935, 1st edi-
tion.

7 See H. M. Blalock, Causal inferences in nonexperimental research. The University of 
North Carolina Press 1961.

8 Ibid., p. 4.
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 consequence of a causal story established (usually) in absence of interventions 
stricto sensu. Witness Birkland:

If the participants in policy making can at least approximate goal consensus, then the next 
thing they must do is to understand the causal theory that underlies the policy to be imple-
mented. A causal theory is a theory about what causes the problem and what intervention 
(i.e. what policy response to the problem) would alleviate that problem. Without a good 
causal theory it is unlikely that a policy design will be able to deliver the desired outcome.9

The manipulationist will then rebut that, to find out what causes what, we don’t 
have to actually intervene – ideal manipulations will do. In fact, the manipulation-
ist thesis says that were we to intervene on the cause, the effect would accordingly 
change. Here are my replies to the objection.
 First, some ideal interventions may not make any (physical) sense. For instance, 
imagining an intervention that would double the orbit of the moon (assuming New-
tonian gravitational theory and mechanics) to see what would happen to the tides 
goes far beyond an ideal – in the sense of physically possible – intervention.10 An 
intervention that is not physically possible – albeit ideal – must be conceptual. If 
we imagine moving the moon in a way that such and such changes on the tides will 
result, this spurs from our (already established) causal knowledge, but this is not 
evidence to establish a causal relation between the moon and the tides.
 Consequently, it is reasonable to suspect that the manipulationist project (also) 
has a conceptual flavour. This suspicion is reinforced by claims such as “my aim is 
to give an account of the content or meaning of various locutions such as X causes 
Y”.11 However, in this way, the manipulationist is in a loop that sticks her back into 
Horn 1 discussed earlier.
 Second, some other ideal interventions cannot be tested and, therefore, caus-
ally evaluated. For instance, Morgan and Winship supported the argument that 
attributes such as gender can be ideally manipulated thus:

[…] the counterfactual model could be used to motivate an attempt to estimate the aver-
age gain an employed black male working full time, full year would expect to capture if all 
prospective employers believed him to be white.12

However there is no way of testing such ‘thought-experiments’ against real data. 
This, again, raises the suspicion that manipulationism is (also) a thesis about the 
meaning of causation. This, again, brings the manipulationist back to Horn 1.

9 T. Birkland, An introduction to the policy process: theories, concepts, and models of 
public policy making. M.E. Sharpe 2010, third edition, p. 241.

10 See J. Woodward, Making things happen: a theory of causal explanation, loc. cit., p. 
131.

11 Ibid., p. 38.
12 S. L. Morgan and C. Winship, Counterfactuals and causal inference. New York: Cam-

bridge University Press 2007, p. 280.
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 Third, and most importantly, if the manipulationist stresses the counterfactual 
aspect of the thesis (‘were we to intervene…’), then she is definitively providing a 
conceptual analysis of causation. The manipulationist is in fact stating what must 
be true about the relationship between X and Y, if  X causes Y. ‘What must be true’ 
corresponds to providing the meaning – and thereby a conceptual analysis – of 
‘cause’ in locutions such as ‘X causes Y’. Choosing whether manipulation, or oth-
er notions, supplies the meaning of ‘cause’ may depend on our a priori intuitions 
about causation as well as on an analysis of the scientific practice – that’s beyond 
the point at stake. The manipulationist theorist is indeed free to hold such a con-
ceptual account, appealing to the best arguments she can produce. But the fact is, 
even if the conceptual story (‘what must be true’) is accepted, no methodological 
story (‘how to know whether it is in fact true’) is offered. Thus, the manipulationist 
is irreversibly brought back to Horn 1.

9.3.2.2 Horn (b): The Charitable Interpretation
Charitably interpreted, manipulationism does not prescribe that the agent inter-
venes to find out what causes what. If the agent cannot manipulate, Nature will 
do it for us. Thus, once Nature has manipulated for us, causal assessment is about 
evaluating changes, or variations, in the putative effect Y due to changes, or varia-
tions, in the putative cause X. This is roughly what happens, for instance, in ‘natu-
ral experiments’ in economics or epidemiology. In these observational contexts the 
assignment of treatment is done ‘by Nature’ rather than ‘by the experimenter’. Two 
remarks are in order.
 First, even if Nature can in principle manipulate (or randomise) for us, we 
need tools to find out whether Nature did in fact manipulate and, if so, whether the 
manipulation was effective. This means, eventually, that we have to establish what 
causes what in nonexperimental situations. This is exactly the kind of impasse 
that resulted from the strict reading of Horn (a) discussed earlier. Invariance under 
intervention (strictly interpreted) then turns out to be too strong a requirement 
for causal assessment of empirical generalisations in nonexperimental contexts. 
No wonder, then, that the need for a weaker version of invariance, i.e. not based 
on manipulation, come from the quarters of manipulationists themselves: this is 
Woodward’s notions of weak invariance and of possible-cause generalisations to 
be discussed later in Sect. 9.4.
 Second, the charitable reading of methodological manipulationism suggests 
that what is of utmost importance is to evaluate whether changes in the putative 
effect Y occur as a consequence of changes in the putative cause X. If this is cor-
rect, then manipulation cannot be interpreted as providing the rationale underpin-
ning causal reasoning. Such interpretation is misleading and disingenuous. Let me 
elaborate this idea further.
 If we let manipulation underpin causal reasoning, the risk is to create another 
‘gold standard’, analogous to randomised clinical trials (RCTs) in evidence-based 
medicine. But RCTs aren’t, by all means, the gold standard either. Criticisms of 
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the alleged superiority of RCTs abound. Here is one. Thompson13 is concerned 
that statistical methods alone cannot be a reliable tool for causal inference. More 
specifically, in his argument, the differences between trials in biomedical contexts 
and trials in agricultural settings – the origin of the Fisherian theory – are the key 
to understand why randomisation is by and large successful in the latter but not in 
the former.
 The alleged superiority of manipulationist methods over observational ones 
is based on the idea that non-experimental models try to (actually, struggle to) 
reproduce the same methodology. Whence the widespread belief that experimental 
methods are intrinsically better than nonexperimental ones. This idea is question-
able. Each scientific method – be it experimental or observational – has its own 
virtues (and weaknesses). Consequently, the goodness of a method has to be evalu-
ated in the context in which it is used. If we cannot manipulate, it makes no sense 
to say that a controlled experiment would have been better than a cohort study. 
What does make sense is, for instance, questioning whether the chosen sampling 
method for the cohort study at stake was good or not in the given context. Meth-
ods are to be evaluated for the job they are supposed to do, not with respect to an 
 alleged gold standard.
 The motivation to have a rationale underpinning causal reasoning is to unify 
different methods under a principle that embraces them all. However, manipula-
tion cannot do that – the impasse that ensued from the strict reading (Horn (a)) 
made the point. But there is indeed one rationale that unifies manipulationist and 
observational methods as methods for causal inference: this is the rationale of 
 variation that I shall present next in Sect. 9.4.

9.4 empiriCal Generalisations reassessed

This section reassesses empirical generalisations. The arguments hereby presented 
are built upon the same formalism typically employed by manipulationist model-
lers: causal modelling (or structural modelling). First, I present causal modelling 
as the answer to the same methodological challenge identified by methodological 
manipulationism: how to find out what causes what. Second, I present the vari-
ational epistemology underpinning experimental and observational methods and I 
show how it works within causal modelling. Third, I develop a notion of invariance 
that does not necessarily require manipulation.
 Let me make clear what the core of agreement with manipulationist theorists 
is. I do indeed share with them the idea that empirical generalisations are change-
relating relations between variables of interest. I also share the idea that for em-
pirical generalisations to be causal, they have to be invariant, albeit in a sense that 

13 See R. P. Thompson, “Causality, theories, and medicine”, in: P. Illari, F. Russo, and J. 
Williamson (Eds.), Causality in the sciences. Oxford University Press 2011, pp. 25–44.
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I will specify later and that does not necessarily involve the notion of manipula-
tion. Let me anticipate the importance of characterising empirical generalisations 
as change-relating: this aspect reflects the variational epistemology that underpins 
causal modelling. The full argument is given below.

9.4.1 Causal Modelling

Causal modelling (also, or alternatively, called structural modelling) constitutes 
the common ground for discussion with manipulationist theorists.14 Causal model-
ling is a methodology the purpose of which is to establish what causes what in a 
given context. Causal modellers do so by specifying the data generating process 
(or mechanism) that accounts for the observations in the data set. There is no need 
to go into technical details, especially related to the statistical properties and tests 
of those models. The interested reader is directed to Mouchart and Russo; Mou-
chart et al.; Russo; Russo et al.; Wunsch; Wunsch et al., besides the well-known 
works of e.g. Pearl and Woodward.15

14 In the literature, causal and structural modelling are used interchangeably. I am not 
opposed to this practice, albeit a distinction between the two exists. ‘Causal modelling’ 
was introduced by methodologists such as Blalock in the Sixties, and covered differ-
ent quantitative methods in social science. ‘Structural (equation) modelling’ is instead 
a term more familiar to econometricians, who intended to represent, with structural 
equations, the ‘structure’ of phenomena as prescribed by economic theory. The two 
terms can be legitimately used as synonyms insofar as causal models model mecha-
nisms, that is causal structures (see F. Russo, “Correlational data, causal hypotheses, 
and validity”, in: Journal for General Philosophy of Science, in press 2011a; “Explain-
ing causal modelling. Or, what a causal model ought to explain”, in: M. D’Agostino, 
G. Giorello, F. Laudisa, T. Pievani, and C. Sinigaglia (Eds.), New Essays in Logic and 
Philosophy of Science. SILF Series, London: College Publications 2011b, Volume I, 
pp. 347–361.).

15 M. Mouchart and F. Russo, “Causal explanation: recursive decompositions and mech-
anisms”, in: P. Illari, F. Russo, and J. Williamson (Eds.), Causality in the sciences. 
Oxford University Press 2011, pp. 317–337; M. Mouchart, F. Russo and G. Wunsch, 
“Structural modelling, exogeneity and causality”, in: H. Engelhardt and A. P. H-P 
Kohler (Eds.), Causal analysis in population studies: concepts, methods, applica-
tions. Dordrecht: Springer 2009, chapter 4, pp. 59–82; F. Russo, Causality and causal 
modelling in the social sciences. Measuring variations. Methodos Series, New York: 
Springer 2009; F. Russo, “Correlational data, causal hypotheses, and validity”, loc. cit.; 
F. Russo, G. Wunsch, and M. Mouchart, “Inferring causality through counterfactuals 
in observational studies. Some epistemological issues”, in: Bullettin de Methodolo-
gie Sociologique – Bullettin of Sociological Methodology, in press 2011; G. Wunsch, 
Causal theory and causal modelling. Leuven: Leuven University Press 1988; G. Wun-
sch, “Confounding and control”, in: Demographic Research 16, 2007, pp. 15–35; G. 
Wunsch, F. Russo, and M. Mouchart, “Do we necessarily need longitudinal data to 
infer causal relations?”, in: Bulletin de Méthodologie Sociologique 106, 1, 2010, pp. 
1–14; J. Pearl, Causality: models, reasoning, and inference. Cambridge: Cambridge 
University Press 2000; J. Woodward, Making things happen: a theory of causal expla-
nation, loc. cit. 
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Causal modelling can be schematically presented as step-wise methodology. The first 
step is to define the research question, the population of reference, and the causal 
context, broadly conceived. This includes taking into account well-established theo-
ries, comparative analyses, and preliminary analyses of data. Here is an example 
from social science in practice. Gaumé and Wunsch16 investigate the determinants of 
self-rated health (i.e. of the individual’s subjective perception of his/her own overall 
health). The first thing they do is to specify their research question and to define, 
consequently, the population of reference and the context: they analyse data related 
to Baltic countries in the Nineties, i.e. in a post-communist socio-political context.
 On the basis of the outputs of step one, the second step is to give structure to 
the joint probability distribution of all the variables. This means ‘breaking down’ 
the joint probability distribution into smaller marginal and conditional compo-
nents. This decomposition reflects the (recursive) structure among the varia-
bles.17 This is also called, following Blalock, the ‘conceptual model’. Gaumé and 
Wunsch,18 simplifying things quite a lot, come up with a conceptual model where 
‘Self-rated health’, the response variable (effect), directly depends on ‘Education’, 
‘Alcohol consumption’, ‘Locus of control’, ‘Psychological distress’, and ‘Physical 
health’. In their conceptual model, there are also indirect paths, for instance from 
‘Social support’ to ‘Self-rated health’ via ‘Psychological distress’ – see Fig. 9.1.

E1

Education

Locus of control

Social support

Psychologicaldistress

Alcohol consumption

Self-rated healthPhysical health

E4

E3

E2

Fig. 9.1 Determinants of self-rated health in Baltic countries, 1994–1999

16 See C. Gaumé and G. Wunsch, “Self-rated health in the Baltic countries, 1994–1999”, 
in: European Journal of Population 26, 4, 2010, pp. 435–457.

17 It is customarily assumed that causal models are recursive, that is feedback loops are 
not permitted. I do not enter here the debate on the plausibility of such assumption, nor 
the debate on the methods to deal with non-recursive models.

18 Ibid.
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 The third step is to translate a conceptual model into an operational  model. 
This means choosing the variables that can be directly measured or proxies for 
them, choosing the statistical model and the methods of testing. Gaumé and Wun-
sch19 fitted the model for four age groups (18–29, 30–44, 45–59, 60+), for both 
genders, for local individuals and for foreigners (mainly Russians). The  authors 
evaluated the model through Bayesian structural equation modelling using a Mon-
te Carlo Markov Chain procedure.
 Once the operational model is in place, the fourth step consists in testing the 
model for invariance: what invariance is the matter of controversy with manipu-
lationist theorists. I address this issue later.20 In Gaumé and Wunsch,21 the deter-
minants taken into account (alcohol consumption, physical health, psychological 
health, psychological distress, education, locus of control, and social support) had 
a remarkable invariant impact on self-rated health across the different Baltic coun-
tries, across the time-frames analysed, across gender, ethnicity, or age group.

9.4.2 Variational Epistemology

In the previous section, I considered Horn (b) of the dilemma: if we grant a chari-
table reading to the manipulationist approach, it turns out that the rationale under-
pinning causal reasoning is misleading and disingenuous. In a nutshell, I am about 
to argue that the rationale underpinning causal reasoning – both in experimental 
and observational methods – lies in the notion of variation, not manipulation.22

 To understand what a rationale is and does, we need a brief recap on the phi-
losophy of causality. In the philosophy of causality, two broad areas of investi-
gation may be distinguished: metaphysics and epistemology/methodology. The 
metaphysics of causality seeks to answer questions about what causality (or a 
cause) is. It is worth noting that conceptual analysis, in attempting to provide truth 
conditions for causal claims, or the ultimate content of various locutions such as 
‘A causes B’, also contributes to answering questions akin to purely metaphysical 
ones. The epistemology and methodology of causality, instead, seek (i) to answer 
questions about how we know about causal relations and (ii) to develop or imple-
ment methods for discovery or confirmation of causal relations. It is worth noting 
that the border between epistemology and methodology is much more blurred than 
the border between metaphysics and epistemology-methodology.

19 Ibid.
20 Invariance is not the only test performed in causal models. Causal models also need to 

pass tests about goodness of fit or about exogeneity. I am just keeping the discussion 
focused on the controversy with manipulationist theories.

21 Ibid.
22 For a thorough discussion, see F. Russo, “The rationale of variation in methodologi-

cal and evidential pluralism”, in: Philosophica 77, Special Issue on Causal Pluralism, 
2006, pp. 97–124; F. Russo, Causality and causal modelling in the social sciences. 
Measuring variations, loc. cit.
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 The quest for a rationale of causality falls within the epistemology and 
 methodology of causality and seeks to answer the following question. When we 
reason about cause-effect relations, what notion guides this reasoning? Is it regu-
larity? Invariance? Production? Manipulation?
 It is worth emphasising that rationale and truth conditions are not the same 
thing. A rationale is a principle, notion or concept underlying some decision, 
reasoning, modelling, or the like. Truth conditions, instead, are conditions under 
which a causal claim is true. According to manipulationist accounts, for instance, 
‘X causes Y is true’ if, and only if, were we to manipulate X would yield changes 
to Y.
 Let me now explain how the rationale of variation works. I give here just a 
taste of an argument from the causal modelling methodology presented above – 
the full argument, as well as other arguments, supporting the rationale of variation 
can be found in Russo.23

 Causal modelling is regimented by a single rationale guiding model  building 
and testing: the rationale of variation. For the sake of simplicity, consider the re-
duced form of a structural equation: Y = b X + e, where Y is the putative effect, 
X the putative cause, b a parameter quantifying the effect of X on Y and e repre-
sents the errors. The first question is whether the data set reveals meaningful co-
variations between X and Y. If there are such meaningful co-variations, a second 
question arises: are those variations chancy or causal? In order to assess whether 
co-variations between X and Y are chancy or causal, we perform a number of tests, 
including (and perhaps most importantly) tests for invariance.
 It is important to notice that the causal equation above can be given a vari-
ational and a manipulationist reading. However, whilst the former is more basic, 
the latter is derived. Let me explain further. At bottom, a structural equation is read 
as follows: variations in the putative cause X are accompanied by variations in the 
putative effect Y. How much Y varies in response to the variation in X is quantified 
by the parameter b. But this does not imply by all means that X has been manipu-
lated. It could well be, as is typically the case in observational studies in social 
science, that statements about co-variations are based on calculated statistical cor-
relations between the variables. The manipulationist reading is then derived from 
this basic variational reading as follows. In an experimental setting, manipulations 
on X make X varying, such that Y varies accordingly. In a controlled experiment, 
therefore, co-variations in X and Y are due to manipulations, unlike in observa-
tional studies.24

23 Ibid.
24 To be sure, there is also a counterfactual reading, which is, just like the manipulation-

ist reading, derived from the basic variational one. Under the counterfactual reading, 
the equation says that were we to change X, Y would accordingly change. Notice that 
testing invariance under the counterfactual reading is far from being a trivial task. 
Some (e.g. S. Psillos, “A glimpse of the secret connexion: harmonising mechanisms 
with counterfactuals”, in: Perspectives on Science 12, 3, 2004, pp. 288–319) have even 
come to the conclusion that the manipulationist account is, in this respect, parasitic on 
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 This is all to say that variation not only guides causal reasoning in observa-
tional settings, but does so also in experimental ones. Notably, the variations we 
are interested in are exactly those due to the manipulations on the putative cause. 
In this sense, variation is a precondition to other notions, notably to manipulation. 
This does not imply that there is no role left to manipulation, though. Manipulation 
is still a tool to find out what causes what, when it can be actually performed, but 
not always.

9.4.3 Invariance

The last issue to address is what kind of invariance is needed in order to establish 
whether change-relating generalisations are causal or not. Invariance, I argue, does 
not require interventions stricto sensu. This means that manipulation is not a nec-
essary tool to establish what causes what. Instead, what is required in absence of 
manipulation is that the relation between the putative cause and effect(s) remains 
sufficiently stable across different partitions of the data set or across similar popu-
lations analysed in the same study.
 In Gaumé and Wunsch,25 no manipulation is performed. Causal assessment is 
instead made through testing the stability of the putative causal relationship across 
different ‘portions’ of the data set. The different ‘portions’ have to be carefully 
chosen. In fact, if we test invariance across sub-populations randomly sampled, 
we should indeed expect to find, approximately, the same values but with a larger 
confidence interval; consequently, this test wouldn’t be terribly useful.26 Instead, 
we should appropriately choose sub-populations, for instance considering differ-
ent age strata, or different socio-demo-economic characteristics, or different geo-
graphical regions, or different time frames.
 Invariance tests whether the relation between the cause-variable and the effect-
variable(s) has some ‘stability of occurrence’: whether an empirical generalisation 
between X and Y is, in a given data set, ‘regular enough’. Notice, however, that 
the kind of regularity hereby required is at variance with the ‘traditional’ Humean 
regularity. In fact, invariance is not a condition of regular succession of effect-
events following cause-events, but a condition of constancy of the characteristics 
of the relation itself, notably of the causal parameters.27

 So the manipulationists’ requirement that empirical generalisations be invari-
ant under intervention is, in nonexperimental contexts, pretty strong. The reason, 
as we have seen, is that in those cases we cannot intervene, and yet some form 
of invariance is required nonetheless. Some manipulationist theorists, apparently, 

the existence of laws of Nature, which would justify why it is the case that Ohm’s law 
turns out to invariant under (counterfactual) intervention.

25 C. Gaumé and G. Wunsch, loc. cit.
26 Thanks to Guillaume Wunsch for drawing my attention to this point.
27 For a discussion, see F. Russo, Causality and causal modelling in the social sciences. 

Measuring variations, loc. cit, ch. 4.
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agree. According to Woodward,28 there are ‘possible-cause’ generalisations that 
state, at bottom, that the presence of a type cause C raises the probability of an ef-
fect of type E. One example used by Woodward is ‘Latent syphilis causes paresis’. 
These ‘possible-cause’ generalisations are exactly the kind of generalisations es-
tablished by means of causal models, routinely used in the special sciences. Here, 
the invariance requirement is weakened29: ‘weak invariance’ is not to test whether 
the generalisation would remain stable were we to intervene, but whether the gen-
eralisation is stable across subpopulations.
 To illustrate, Woodward30 discusses a pioneer paper on the relations between 
smoking and lung cancer. Woodward notices that this paper was written in 1959, 
when detailed knowledge about the biochemical mechanism through which smok-
ing produces cancer was still lacking. Thus, this study largely relies on epide-
miological evidence – that is observational data – and only to a lesser extent on 
experimental studies of laboratory animals. Woodward then points out that the 
authors do not aim to formulate ‘exceptionless generalisations’ (i.e. laws); instead 
they establish a causal link between smoking and lung cancer because the relation 
turns out to be invariant. What kind of invariance? Exactly the kind of invariance 
discussed above: stability of the relationship across subpopulations. Let us read 
the passage:

For example, the authors note that some association appears between smoking and lung 
cancer in every well-designed study on sufficiently large and representative populations 
with which they are familiar. There is evidence of a higher frequency of lung cancer among 
smokers than among nonsmokers, when potentially confounding variables are controlled 
for, among both men and women, among people of different genetic backgrounds, across 
different diets, different environments, and different socioeconomic conditions […]. The 
precise level and quantitative details of the association do vary, for example, the incidence 
of lung cancer among smokers is higher in lower socioeconomic groups, but the fact that 
there is some association or other is stable or robust across a wide variety of different 
groups and background circumstances.31

The difference between the account of invariance hereby offered from the one of 
the manipulationists is that invariance is not counterfactually defined, nor does it 
necessarily involve manipulation. In making this move I am not claiming origi-
nality, as this kind of invariance is currently employed by practising scientists, 
and was indeed envisaged by Woodward. My point in these discussions is that 
non-counterfactual invariance, that is invariance not based on manipulation is 
 methodologically more fundamental.

28 See J. Woodward, Making things happen: a theory of causal explanation, loc. cit., ch. 
5.8. 

29 Ibid., ch. 6.15 and ch. 7.8.
30 Ibid.
31 Ibid., p. 312.
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9.5 ConClusion

Manipulationist approaches hold the view that information about the outcomes of 
interventions is needed for a variety of scientific purposes, e.g. causal assessment 
or explanation. This paper narrowed down the scope to the role of manipulation for 
causal assessment. The solution of manipulationist theorists is that an empirical 
generalisation between X and Y is causal insofar as it is invariant under interven-
tion.
 I argued, however, that manipulationim is trapped in a dilemma. Manipula-
tionism can in fact be read in two ways. First, if the project is given a concep-
tual reading, then it appears to be unilluminating from a methodological point of 
view (Horn 1). Second, if the project is given a methodological reading, then a 
 second dilemma opens up (Horn 2). If methodological manipulationism is strictly 
interpreted (Horn (a)), then it fails to provide the methodology for observational 
studies. Or, if it is charitably interpreted (Horn (b)), then the requirement of ma-
nipulation becomes so vague and weak as to be not only unilluminating, but also 
misleading in providing a rationale for causal reasoning in either experimental or 
observational studies.
 In the light of the previous discussion, I reassessed empirical generalisations. 
Empirical generalisations, I argued, are indeed change-relating (or, variation-
 relating) relations – this is the core of agreement with manipulationist theorists. 
This aspect of empirical generalisation is important because it mirrors the ration-
ale underpinning both experimental and observational studies: it is variation – not 
manipulation – that guides causal reasoning. I also agree that for empirical gen-
eralisations to be causal, they have to be invariant. Yet, invariance need not take 
manipulation as methodologically fundamental.
 The broad conclusion is that manipulation is not the building block of causal 
assessment. Manipulation is certainly a good tool, when it can be performed, but 
not always. In other words, there is still room for sound causal assessment in the 
absence of manipulation. Granted, it is no surprise that, ceteris paribus, manipula-
tions give us higher confidence in causal assessment. But the ceteris paribus clause 
is important. Well-designed observational studies may deliver more reliable results 
than poorly designed controlled experiments.
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Chapter 10

SebaStian MateieSCu

the LiMitS of InterventIonIsm – CauSaLity in the

SoCiaL SCienCeS

abStraCt

The paper confronts the interventionist theory of causation with one of its main 
 competitors, namely the Causal Model. A dilemma raised against the former is 
analysed and some possible answers to this quandary are contemplated. Although 
the limits of interventionism are acknowledged, it is suggested these are not of a 
principle character. The strengths and the limits of Causal Model are also uncov-
ered and its professed metaphysical neutrality is called into question. It is argued 
that this theory can not do its job without the need of the inference to the best 
explanation. The conclusion suggests the disagreement between the two theories 
lies in their different framing of the social ontology, respective of the ontology of 
the natural sciences.

10.1 introduCtion

The interventionist theory of causation1 is based on the principle that causal re-
lationships are relationships which are relevant for manipulation and control. 
Roughly stated, given a cause C of an effect E, if I can manipulate C in an appro-
priate way then this should be a tool for modifying E itself. Thus, according to this 
interpretation, causal statements are analyzable by the means of intervening upon 
the putative causes and furthermore preserving invariant the relationship between 
the causal relata. This view has become increasingly popular in the last decades 
among philosophers and scientists, being used by econometricians, statisticians 

1 James Woodward, Making things happen: a theory of causal explanation. Oxford: Ox-
ford University Press 2003; James Woodward, “Causation and Manipulability”, in: Ed-
ward N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2008 Edition), 
online at http://plato.stanford.edu/archives/win2008/entries/causation-mani/; James 
Woodward, “Agency and Interventionist Theories”, in: Helen Beebee, Christopher Hit-
chcock and Peter Menzies (Eds.), The Oxford Handbook of Causation. Oxford: Oxford 
University Press 2009, pp. 234–262.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_10,  
© Springer Science+Business Media B.V. 2012
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and more recently, by computer scientists.2 Obviously, it must be that the vast 
application of this idea in so many causal contexts is also facilitated by the very 
structure of these states of affairs – they are open to interventions. It is tempt-
ing however to speculate about the application of this theory in domains where 
 intervention is not an easy task, in social sciences, for instance. If interventionism 
will prove to be satisfactory enough in accounting for social causes, then it can be 
fairly considered the best candidate we have for a general theory of causation. If 
interventionism fails in this attempt, then it is worth seeing what the philosophical 
reasons for its limits are and what light they can shed upon the concept of causality 
instantiated in the social and natural sciences.
 The aim of this paper is to make such an analysis of the virtues and limits of 
interventionism when applied to social sciences. I start by laying down a dilemma 
for the interventionist theory of causation due to Federica Russo’s On Empirical 
Generalisations.3 I then provide a detailed investigation of the structure and assump-
tions of this dilemma, which is to my knowledge, one of the strongest arguments 
against professing the validity of interventionism in the field of social sciences. I also 
provide three possible answers to the quandary raised by Russo (Sect. 10.3). I further 
draw on the features of the Causal Model, which is Russo’s preferred theory of causa-
tion. Here I highlight the positive points of this interpretation and I submit the concept 
of invariance championed by this view to a separate analysis (Sect. 10.4). It will turn 
out from this detached examination that introducing new conceptual dimensions for 
the causal variables is the true counterpart of intervention in the Causal Model (Sect. 
10.5). I however conclude this section with raising a serious objection to the professed 
metaphysical neutrality of the Causal Model. The final chapter allows me a short 
review of the investigation and suggests the root of disagreement between the two 
evocated theories may consist in their different views about ontology.

10.2 a diLeMMa for interventioniSM

Russo4 proposes two possible readings of interventionism5: the conceptual read-
ing, according to which interventionism provides an analysis for the notion of cau-
sation, and a methodological reading, which should supply us with a methodology 
for causal assessment. Under the reasonable assumption that a theory of causation 
should also tell us how to find out about what causes what, Russo6 argues that 
interventionism fails to determine an adequate methodology for evaluating causa-
tion. Her strategy is to show first of all that the conceptual reading bears no meth-
odological support (Horn 1 of the dilemma). Then, Russo argues the methodological 

2 Judea Pearl, Causality: models, reasoning, and inference. Cambridge: Cambridge 
University Press 2000.

3 Federica Russo, “On empirical generalisations”, in this volume.
4 Ibid.
5 Russo (Ibid.) uses ‘manipulationism’ for ‘interventionism’, but I prefer the latter one here.
6 Ibid.
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reading performs no better when it comes to analyze causal relationships occur-
ring in the social world (Horn 2 of the dilemma). As long as interventionism does 
not come up with an alternative version, it is deemed to be captive of a dilemma 
made of its theoretic claims (the two horns).
 The conceptual interpretation of interventionism states that “C causes E if, 
and only if, manipulations on C accordingly yield changes to E”.7 Russo asserts 
this way of approaching interventionism affords grasping the meaning of causal-
ity. But this reading fails to provide us with a method for finding what actually 
causes what. Thus, the conceptual reading “amounts to giving identity conditions 
for causal claims, and consequently the project contributes to the analysis of the 
concept of causation … [Hence, this reading only] says what has to be true if C 
causes E”.8 Therefore, the conceptual reading remains silent when it comes to 
guide us in finding causes in the world. The methodological reading should be 
further investigated. We expect this later account will furnish a method for evalu-
ating causal relationships. And indeed, under this construal we can assess causal 
claims by performing interventions in a specific manner: “were manipulations on 
C to yield changes in E, then we will be entitled to infer that C causes E”.9 Russo 
then goes for (a) a strict clarification of the methodological reading, respectively 
(b) a charitable interpretation. According to the strict rendering, interventionism 
urges to intervene on the putative cause C while keeping fixed anything else and 
then observe what happens to the putative effect E. The paradigm for this is the 
controlled experiment. Here the experimenter can check the change in the vari-
able E by wiggling the putative cause C and isolating this causal relationship from 
any other causal path. Russo acknowledges the power of this method but she cast 
doubts on the validity of this view in analyzing social phenomena. It is a com-
monly accepted view that the social world resists to controlled experimentation 
and hence this turns the method professed by the methodological reading into 
something ineffective. Since we commonly cannot do experiments and intervene 
in the social realm in the way we do in a controlled experiment, intervention-
ism faces a fatal limit here.10 Russo further argues that the charitable reading of 
interventionism performs no better than the strict interpretation. The charitable 
version prescribes that it is Nature itself rather that the agent who manipulates the 
putative cause. Thus Nature ‘intervenes’ for us when we are not capable of doing 
this. And henceforth causal assessment reduces to registering appropriate varia-
tions in the putative effect when Nature changes the value of the putative causes. 
Nevertheless, Russo contends this is a valid manoeuvre for we still need a method 
to find out whether Nature indeed has manipulated for us or not. And it seems 
quite reasonable to contemplate that such a method should offer means of com-
parison  between experimental and non-experimental cases again. But this, notice, 

7 Ibid., p. 3. I prefer here ‘C causes E’ instead of Russo’s ‘X causes Y’.
8 Ibid.
9 Ibid., p. 4.
10 See Sect. 10.5 below for a method of ‘intervening’ in social sciences.
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is exactly the kind of impasse that resulted from the strict reading of Horn [2](a) 
discussed earlier.11 In conclusion, interventionism is lodged in a quandary. It either 
has to provide us with a reason for rejecting this dilemma or it must acknowledge 
its own limits in assessing causal claims. Since the second variant as advocated by 
Russo is explored in Sect. 10.4 below, let me now consider some possible replays 
to the proposed dilemma.

10.3 SoMe reMarkS on the diLeMMa

First, one should notice here that Russo does not claim that a third and different 
reading of interventionism is in principle forbidden. However, she correctly points 
out I think, that the interventionist proposal is to support a methodological inter-
pretation for its own claims, at least in Woodward’s12 account. Consequently, inter-
ventionism should collapse directly on to Horn 2 of the dilemma, from which there 
is no way of escaping other than going back into Horn 1 and hence the dilemma.
 Second, I take the challenge posed by the conceptual reading as based on a 
specific view of the semantics of the language. Specifically, it seems to me this 
reading hinges on the view that reference determines the meaning of a sentence. 
According to this position, the meaning of a sentence depends on the specific 
meanings of the words that compose it and the meaning of these words is in its 
turn set by the reference of these words. Consequently, if two different words, say 
‘Clark Kent’ and ‘Superman’ have the same person as their referent, we expect 
they should have the same meaning. This is why I think Russo13 considers that 
providing identity conditions for a statement is the same as determining its mean-
ing.14 However, for a Fregean, it is rather the sense or content15 that determines 
the reference.16 And it seems we have some good reasons to provide Woodward’s 
account with such a Fregean reading. It may well be the case that for Woodward’s 
theory, the context in which a clause is uttered contributes to the sense of such a 
statement. And why not allow for the experimental setup to be representative of the 
context in this theory? Continuing along these lines of thought it will eventually 
come up that although providing identity conditions refers primarily to setting out 

11 Russo, “On empirical generalisations”, loc. cit. See also the following section for this 
point.

12 Woodward, Making things happen: a theory of causal explanation, loc. cit.
13 Russo, “On empirical generalisations”, loc. cit.
14 To preserve our example: stating that ‘Clark Kent’ is ‘Clark Kent’ and further that 

‘Clark Kent’ is ‘Superman’ is the same with determining the meaning of ‘Clark Kent’ 
by the means of providing identity conditions for this name.

15 Also called ‘proposition’ in the theories of semantics. For details, see Devitt and Sterel-
ny (Michael Devitt and Kim Sterelny, Language and reality. An introduction to the 
philosophy of language. Oxford: Blackwell Publishers 1999).

16 See ibid.
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the meaning of a clause, this also bears a methodological import.17 The reason for 
this is that identity conditions for a statement or expression must eventually ask 
for information about the context of utterance and implicitly about the details of 
the experimental setup.18

 The supporter of interventionism is left here with the task of elaborating on 
the possible advantages of a different semantic view. No doubt, this is not an easy 
task. However, a different semantics still has to be completed with a method for 
finding what actually causes what. The interventionist also has to contemplate a 
way of refuting Russo’s general assumption that methodological questions should 
be kept apart from metaphysical – and I add, semantic – issues.19 The interven-
tionist is then asked to show that the metaphysical/semantic, methodological and 
eventually, epistemological issues dealing with causality are inextricably linked 
together. The supporter of this view will eventually maintain that interventionism 
does justice to this situation by preserving the three ingredients as entangled. Thus, 
in contrast to Russo,20 interventionism could profess the idea that conceptual read-
ing is a necessary approach for elucidating the methods of identifying social or 
natural causes.21

 Third, recall that Horn 2 of the dilemma swings between the distinction of 
experimental and non-experimental causal contexts. Russo however considers the 
domain of social science as the paradigm for non-experimental causal contexts. In 
social science we can at most refer to uncontrolled experiments, where generally 
not all the variables can be held under control and where causal influences  others 
than those coming from the putative cause are also possible. Moreover, direct in-
tervention in such an experimental context is rarely possible and it commonly 

17 This is to show against Russo, that the conceptual reading of interventionism may 
comprise a methodological content.

18 Also notice that in many of Woodward’s examples a detailed knowledge (similar I 
think with what the Causal Model refers to by ’background knowledge’) of the causal 
context is supposed before elaborating on the causal relationship. See for this Wood-
ward, “Making things happen: a theory of causal explanation”, loc. cit., especially 
chapters 1 and 2. 

19 See Cartwright (Nancy Cartwright, Hunting causes and using them: approaches in 
philosophy and economics. Cambridge: Cambridge University Press 2007) for vari-
ous reasons of why these three issues refer to different questions and hence why they 
should be kept separated when they are used in argumentation. 

20 Russo, “On empirical generalisations”, loc. cit.
21 My third remark here can be read along the same lines.
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amounts to disrupt the underlying causal mechanism.22 Woodward23 however has 
made the important point that an intervention needs not be physically possible in 
order to assess a causal claim. The interventionist only needs to judge the situa-
tion as if an intervention had occurred. Nonetheless, Russo24 rebuts this view by 
 stating that a possible intervention is a conceptual tool. She forges the idea that 
ideal experiments are not physically possible and can not be tested against the data. 
So they must be relevant only at the conceptual level and this has to face Horn 1 of 
the dilemma. My opinion however is that, contrary to what Russo says, there are 
vast fields of social science which profess controlled experimentation, be it physi-
cally possible or just ideal. In Economics, for instance, researchers largely draw on 
ideal cases or simulations of real market situations and their methods prove to be 
highly relevant.25 This shows that the applicability of interventionism to social sci-
ence is not limited in principle. Moreover, although an intervention is not always 
possible in the field of social science, it may be the case that one can provide with 
proxies for such limits. It seldom happens that policy interventions yield adequate 
substitutes for interventions that are not actually possible. For instance, advertis-
ing for moderate fats consumption can be such a surrogate since there is no legal 
way of intervening in this context. Nevertheless, researchers keep doing studies on 
the impact of fats consumption upon one’s state of health. This can lead to a better 
understanding of the social phenomenon and eventually provides the theoretical 
basis of proxies for intervention as it is in the case of advertising.26

 Following the point mentioned above, I however expect Russo to push further 
the relevance of the distinction between experimental and non-experimental con-
texts. As a matter of fact, she accuses Woodward27 of professing this same differ-
ence and hence she finds strong reasons for twisting interventionism on its own 
head.28 Moreover, Russo points out that sneaking an eye into the actual practice of 

22 See also Russo (Federica Russo, Causality and causal modelling in the social sciences. 
Measuring variations. Methodos Series. New York: Springer 2009) and Cartwright 
(Cartwright, ibid.) for this point. The same limits for intervening are equally valid 
in astronomy, either because of the distance between objects or because of practical 
reasons: one cannot manipulate the orbit of the moon (given Newtonian gravitation 
and mechanics) in order to see what happens to the tides (Woodward, Making things 
happen: a theory of causal explanation, loc. cit., p. 131).

23 Woodward, Making things happen: a theory of causal explanation, loc. cit.
24 Russo, “On empirical generalisations”, loc. cit.
25 See for this point, Wenceslao J. Gonzalez, “The role of experiments in the social sci-

ences: the case of economics”, in: Dov M. Gabbay, Paul Thagard and John Woods (gen. 
Eds.), Handbook of the Philosophy of Science – General Philosophy of Science. Focal 
Issues, Amsterdam: Elsevier, 2007, pp. 275–303.

26 For a similar point on this see Judea Pearl, “Review: Nancy Cartwright on hunting 
causes”, in: Economics and Philosophy 26, 2010, pp. 69–94).

27 Woodward, Making things happen: a theory of causal explanation, loc. cit.
28 This is because Woodward (Ibid., ch. 6 and 7) also accepts a weak form of intervention-

ism, where intervening in order to analyse a causal claim becomes a secondary demand.
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social scientists reveals that their main approach is to formulate causal hypotheses 
and then test them against the data. This amounts to focus on observational data 
which can do the job of verifying rather than finding tools on how to intervene in 
a given context. I don’t feel fully persuaded by this type of reasoning. The issue at 
stake here is a matter of principle: whether the difference between experimental 
and non-experimental contexts puts any limits on interventionism. To invoke a 
de facto situation, for instance that social scientists in practice often use methods 
other than intervention may be illuminating but it begs the point.
 Nevertheless, I do share the common intuition with the adversaries of inter-
ventionism that at least for many practical purposes other versions of causal as-
sessment than interventionism may perform better. It seems indeed too strong a 
requirement to stress with interventionism that all non-experimental situations 
can be in principle translatable into (ideal) controlled experiments. As for Russo’s 
advancement of a different theory of causality, one finds her intuition more than 
captivating. It thus becomes desirable to explore this new appraisal of causality. 

10.4 the CauSaL ModeL

After pondering on the limits of interventionism, Russo passes to her preferred ac-
count of causation. She thus endorses the view that causality is best cached out in 
the framework of the Causal (or alternatively dubbed, Structural) Model.29 Like in-
terventionism, the Causal Model aims to formulate a method of evaluating causal 
claims. This paradigm aims to model given causal contexts in order to find out the 
mechanism that is responsible for the observed causal relationships. It is based on 
the fundamental idea that causation refers to variations among variables of inter-
est. According to Russo,30 the methodology of the Structural Model comprises 
four steps: (i) the first step is the formulation of a causal hypothesis, the delimit-
ing the causal context and the selection of the population sample: “This includes 
taking into account well established theories, comparative analyses and prelimi-
nary analyses of data”31; (ii) the second step includes the building of a conceptual 
model by representing the situation by the means of relevant variables; also, a 
probability distribution is furnished among these variables in order to reflect their 
(recursive) structure; (iii) the third step is to supply the conceptual model with an 
operational interpretation: “This means choosing the variables that can be directly 
measured or proxies for them, choosing the statistical model and the methods for 

29 See Russo (Federica Russo, Causality and causal modelling in the social sciences. 
Measuring variations. Methodos Series. New York: Springer 2009) for both a detailed 
presentation and historical description of the Causal Model.

30 Russo, “On empirical generalisations”, loc. cit.
31 Ibid., p. 7.
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testing”32; (iv) the fourth step requires testing the stable character of the model or 
its invariance.33 We saw that the invariance condition is one of the key features of 
interventionism as well. As advocated by interventionism, invariance certifies that 
the effect variable actually depends on the causal variable and not on other vari-
ables. Recall that in the interventionist framework this asked for an intervention in 
order to cancel out all causal paths on which the effect variable might depend. We 
expect the Causal Model to employ a different strategy for achieving this invari-
ance condition. And indeed, Russo points out that interventionism and the Causal 
Model share the same intuition regarding the fundamental role of invariance but 
they differ in the way they settle this invariance stipulation.34

 As I have already remarked, the Causal Model centers on the idea that causal 
claims are equivalent with claims about variations among variables of interest. 
Russo35 highlights this point by stating that it is built in the very structure of the 
Causal Model to search for variations among the relevant variables. She exem-
plifies this by emphasizing that Causal Model usually reflects the dependencies 
among variables within the structure of (for convenience, linear) mathematical 
equations. A simple equation like Y = b X + e 36 mirrors this situation as the pa-
rameter b quantifies the change in Y as due to a variation in X. The Causal Model 
therefore urges looking for meaningful co-variations that are observable in the 
data input and then to represent them in the variables of the model. When one hits 
upon these co-variations, one only has to check whether they are chancy or causal. 
The test of invariance as alleged by the supporters of the Causal Model provides us 
with the adequate tools for establishing the causal import of the detected meaning-
ful variations. I postpone the analysis of the test of invariance for the next section, 
and for this section let me just add a few remarks on the virtues of the Causal 
Model. It is instructive to explore these qualities by comparing them with the 
claims made by interventionism.
 The most important contribution of the Causal Model is the emphasis put 
on variations. Russo feels entitled to consider that the Causal Model takes on a 
variational epistemology, as this theory considers variation as the unit of measure 
when producing causal assessments. Manipulation plays only a secondary role, 
namely that of being a constraint imposed on the relevant variations. Russo rightly 
indicates I think that both in Woodward’s theory, as within many interventionist 

32 Ibid., p. 8.
33 Russo exemplifies these stages with an example of Gaumé and Wunsch (Catherine 

Gaumé and Guillaume Wunsch, “Self-rated health in the Baltic countries, 1994/1999”, 
in: European Journal of Population 26, 2010, pp. 435–457). See also Russo (Causality 
and causal modelling in the social sciences. Measuring variations, loc. cit.) for other 
similar examples from the practice of social science.

34 As will shortly become manifest, the two methods of establishing this invariance re-
quirement reflect the true differences between interventionism and the Causal Model.

35 Russo, “On empirical generalisations”, loc. cit.
36 Y represents here the effect variable, X is the causal variable and e measures the error.
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approaches, manipulation only comes in to fulfill restrictive goals. It delimits the 
scope of variations to those which are relevant for the causal context. Accordingly, 
when one searches for causes in the world he or she primarily looks for varia-
tions.
This amounts to saying that the guiding notion in analysis of causality is varia-
tion rather than intervention, which is I think another fundamental contribution 
of the Causal Model. In Russo’s own phrasing, “… the rationale underpinning 
causal reasoning – both in experimental and observational methods – lies in the 
notion of variation, not manipulation”.37 Notice that equipping causality with a 
rationale is not the same as providing it with identity conditions: “A rationale is 
a principle, notion or concept underlying some decision, reasoning, modeling, or 
the like. Identity conditions, instead, are conditions under which a causal claim 
is true.”38 Stating such a rationale is one of the key epistemological features of a 
theory of.39

 This allows me to emphasize a third positive aspect of the Causal Model. This 
theory fulfills the task of telling us what causation is and what methods we should 
use for evaluating causal claims, without immersing itself into deep metaphysical 
speculations. It is tempting to agree with the adherents to the Causal Model when 
they claim their view is metaphysically neutral. Although they do not deny the 
existence of causal mechanisms, they do not venture into speculations about the 
nature of these mechanisms, at least not from the beginning of the research. The 
Causal Model rather places the causal mechanism into a ‘black box’ and reasons 
about it by using only observational data.40

 A fourth remark here regards the wide scope of the Causal Model. It seems 
this theory advocates a much more liberal philosophy than the interventionist ac-
count. Indeed, the Causal Model feels comfortable with allowing the implementa-
tion of different methods when it searches for what causes what. As long as one 
accepts the rationale of variation as the guiding principle of the methodology of 
causality, one is free to use intervention in cases of controlled experiments or just 
observational data in situations with uncontrollable causes. Once the variations are 
determined, it remains a personal option to decide what tool is most adequate for 
establishing the causal import of these variations. The interventionist would prob-
ably like to press this point further, as we have not said anything on how to estab-
lish the causal relevance of variations. We should come up with an explanation of 
how the stability or invariance of these chance-relating relations is established. Let 
us deal with this problem in the next chapter, in which I will also lay down some 
of my concerns about the theses of the Causal Model.

37 Russo, “On empirical generalisations”, loc. cit., p. 8.
38 Ibid., p. 8.
39 Ibid.
40 See Russo, Causality and causal modelling in the social sciences. Measuring varia-

tions, loc. cit.
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10.5 ‘intervening’ in the CauSaL ModeL

The strength of the Causal Model lies in its claim that in order to establish the 
invariance of a causal relationship one needs no intervention at all. What is then 
invariance and how to think about its actual settling? Recall the aforementioned 
study initiated by Gaumé and Wunsch41 upon self-rated health in the population of 
the Baltic countries. The results of the study show that

… the determinants taken into account (alcohol consumption, physical health, psychologi-
cal health, psychological distress, education, locus of control, and social support) had a 
remarkable stable impact on self-rated health across the different Baltic countries, across 
the time-frames analysed, across gender, ethnicity, or age group [my emph., S. M.].42

So it is this ‘remarkable stable impact’ that accounts for the dependence of the ef-
fect upon its genuine causes. Why? Because it is hard to conceive of such a robust 
relationship as simply coming out of nowhere! It may happen to hit upon a chancy 
correlation but when it is one that shares in such a stable character, it is reasonable 
to think of it as a manifestation of an underlying causal mechanism. In this case, 
we all share the intuition that this invariant relationship must be there, somewhere 
in the ‘world’, especially when it is found to hold across different populations, in 
different social contexts. It must be strange indeed for a relationship to achieve a 
stable character and to lack the causal import. But let me remark in passing that 
expressions like ‘it is reasonable’ or ‘it must be’ suggest we encounter an inferen-
tial process here, which may be adduced as a fifth step of the methodology of the 
Causal Model. I will come back in a moment to the relevance of this issue for the 
present discussion.
 It is now worth exploring the second part of the question that opened this sec-
tion: how to establish the invariance of the causal relationship? What are the means 
by which one can achieve this? Contemplate Russo’s answer:

Causal assessment is instead made through testing the stability of the putative causal re-
lationship across different ‘portions’ of the data set. The different ‘portions’ have to be 
carefully chosen. In fact, if we test invariance across sub-populations randomly sampled, 
we should indeed expect to find, approximately, the same values but with a larger confi-
dence interval; consequently, this test wouldn’t be terribly useful. Instead, we should appro-
priately choose sub-populations, for instance considering different age strata, or different 
socio-demo-economic characteristics, or different geographical regions, or different time 
frames.43

Therefore, breaking down the data input into more components and further regis-
tering the behavior of the causal hypothesis corresponds to evaluating its invariant 

41 Gaumé and Wunsch, loc. cit.
42 Russo, “On empirical generalisations”, loc. cit., p. 8.
43 Ibid., pp. 9–10.
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character. If the hypothesis proves to be stable enough in the newly formed 
context, it is taken to signify a genuine causal relationship.
 We are now in the position to look at the true counterpart of intervening in 
the Causal Model. If, as we have seen before, the interventionist prescribes to 
intervene in order to set the invariance of a causal connection, the Causal Model 
instead urges to introduce new relevant dimensions for the data set. If accordingly, 
no significant change is observed in the relationship that holds between the causal 
variables, than it must be that we have come across a true causal link. Russo44 
enforces this by highlighting that Gaumé and Wunsch45 introduce new dimensions 
for the data set in their study: They talk about “different age strata, or different so-
cio-demo-economic characteristics, or different geographical regions, or different 
time frames” and then check for the stability of the causal hypothesis in the new 
framework.46 The idea is to compare the degree of stability of the causal hypothesis 
before and after the introduction of these new facets of the data input. Therefore, 
evaluating causal relationships across differences introduced here by gender, age 
strata, nationality and time frames allows the authors to assess the overall stability 
of the causal links, hence their invariance. Thus, in contrast with interventionism, 
the Causal Model does not directly manipulate the variables. Instead it induces sig-
nificant variations in the causal context by fructifying the multi-facet component of 
the data set. Then it proceeds to compare the behavior of the causal hypotheses in 
the new and old framework. To restate, if no important changes occur, the invari-
ance of the causal hypothesis is preserved and the causal import of the hypothesis 
is inferred.
 Two short notes are needed here. I have previously used some qualifications for 
the causal variables. They were alleged to be ‘relevant’, ‘important’, etc. Obviously, 
one must call for an explanation here – the reason is that according to Russo, the ad-
herent to the Causal Model largely employs these adjectives in his job of modeling 
the causal context to which Russo refers with the term ‘background knowledge’. 
‘Background knowledge’ consists of information about the causal context, that is 
information about how to select the causes, how to formulate the causal hypoth-
esis, how similar hypotheses were treated in other studies or other theories, how 
comparable the populations are etc.47 For instance, Gaumé and Wunsch48 list at the 
beginning of their paper49 what other studies in different contexts brought about the 

44 Ibid.
45 Gaumé and Wunsch, loc. cit.
46 Russo (Causality and causal modelling in the social sciences. Measuring variations, 

loc. cit.) shows the same strategy is implemented by many other studies in social sci-
ence, not all of them being limited to testing the ’subjective perception’ of social actors 
as it is the case with the study of Gaumé and Wunsch (loc. cit.).

47 See Russo (Causality and causal modelling in the social sciences. Measuring varia-
tions, loc. cit) for a detailed account of the ‘background knowledge’.

48 Gaumé and Wunsch, loc. cit.
49 Ibid., pp. 436–438.
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hypothesis they laid down. They also state that the  population in the three Baltic 
countries is similar enough to allow comparisons.50 Thus, ‘background knowledge’ 
is a necessary prerequisite for research under the Causal Model. Without the funda-
mental contribution of the ‘background knowledge’, the researcher is left with no 
clue of how to formulate the causal hypothesis.
 This leads to my second remark here and eventually to my general concern 
with the Causal Model. The ‘background knowledge’ provides the researcher with 
sufficient information about how to formulate a plausible causal hypothesis. But 
according to Russo,51 the Causal Model aims at testing this hypothesis against 
the data. If the test is passed,52 then the causal hypothesis is supported. It only 
remains to demonstrate that the causal hypothesis represents a genuine causal re-
lationship and not just a correlation among variables of interest. This also means 
one has to implement a test of invariance. Therefore, with Russo53 we have a case 
of Hypothetico-Deductive Methodology (H-D): a causal hypothesis is initially 
formulated, some observational consequences are predicted on the base of this 
hypothesis and they are finally confronted with the data. Russo54 draws on the 
crucial distinction between H-D and inductive methods: the causal hypothesis is 
tested by the data and not inferred from it. In contrast, inductivism prescribes 
performing an ampliative process whereby a causal statement is derived from the 
data. Russo moreover suggests that the label deductivism in H-D is misleading 
because “strictly speaking, there is no deduction going on. In causal modelling, 
hypothetico-deductivism does not involve deductions strictu sensu, but involves 
a weaker inferential step of ‘drawing consequences’ from the hypothesis”.55 All 
in all, the Causal Model should be taken as engaging a methodology for testing 
hypotheses rather than as a programme for producing knowledge by drawing infer-
ences from the data. However, as I have already tried to suggest at the beginning of 
this section, the fourth step of the testing methodology seems to imply an impor-
tant inferential process. Let us remember that the essence of this step is to check 
the invariance of the causal relationship by introducing new facets of the variables 
and observing the changes in the causal link. By noticing the stability of the causal 
hypothesis in the new framework, the researcher feels entitled to infer its invari-
ance, hence its genuine causal character. This, I think, amounts to saying that H-D 

50 See Russo (Causality and causal modelling in the social sciences. Measuring varia-
tions, loc. cit.) for a complete list of assumptions used in the Causal Model, other than 
the ‘background knowledge’: some of the most important are the direction of time, 
confounding, etc. 

51 Russo, “On empirical generalisations”, loc. cit.
52 It is assumed contra Popper that ‘testing’ rather than ‘refuting’ makes sense here.
53 Russo, Causality and causal modelling in the social sciences. Measuring variations, 

loc. cit.
54 Ibid.
55 Ibid., p. 71.
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is not as neutral from an inferential import as it would like to suggest.56 If this is a 
sound remark, then a different but more interesting question opens up.
 What exactly is the nature of this inference and toward what conclusion is 
it leading us? I think it is an inference from the data as the data set is broken up 
into its multi-facet component. Let us call to mind that in the study of Gaumé 
and Wunsch,57 new features (age data, time frames etc.) of the data input – the 
populations of the Baltic countries – are taken into account in order to form new 
variations. Based on the observed stability of these new variations one infers their 
causal import. That is, one infers that the best explanation for the observed stabil-
ity is the very fact of hitting on a genuine causal hypothesis. Although a hidden 
and unknown cause cannot in principle be ruled out here, it seems we have good 
reasons to trust our inference. Let me rephrase this as follows: we don’t only share 
the feeling that ‘it is reasonable’ but we moreover think ‘it must be’ that the only 
explanation for the invariance of the causal hypothesis is its postulated causal con-
tent. Therefore, if my reading of the Causal Model is sound, this theory prescribes 
the inference to the best explanation (IBE) as the key tool for establishing the 
causal features of the hypothesis.58

 The problems with this type of inference are well known and I refer the read-
er to Lipton59 for an overview. Also, the use of IBE by the Causal Model contrasts 
with its acclaimed lack of commitment to the use of (inductive) inferential proce-
dures. Moreover, when IBE is an integrating part of the steps of the methodology 
of testing, as it is the case here, it seems to flagrantly contradict with the central 
assumption of the Causal Model. As emphasized in section four above, the Causal 
Model assumes keeping apart the epistemological/methodological level from the 
metaphysical plane. However, the immersion of IBE – which is a procedure de-
void of any empirical content – into the heart of the methodology of the Causal 
Model is nothing else than a metaphysical influence. This, I expect, will be used 
by the advocates of interventionism as a strong counterargument which parallels 
Russo’s charge of mixing methodological questions with explanatory or meta-
physical idiosyncrasies. The details of such a possible reply fall beyond the scope 
of this work.

56 One should not confuse this charge with a similar one of which Russo (Causality and 
causal modelling in the social sciences. Measuring variations, loc. cit.) is fairly aware: 
the use of the ‘background knowledge’ as a boundle of auxiliary hypotheses besides 
the causal hypothesis itself already suggests the need of an inferential process.  

57 Gaumé and Wunsch, loc. cit.
58 More exactly, IBE grants the stability of variations and it is this stability which sup-

ports the causal import of the hypothesis. However, as long as a hidden or unknown 
cause can still be in place here, I think it is only the use of IBE which upholds this 
stability relationship.

59 Peter Lipton, “Inference to the best explanation”, in: W. H. Newton-Smith (Ed.), A 
Companion to the Philosophy of Science. Blackwell 2001, pp. 184–194.
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10.6 ConCLuSionS

The goal of this paper was to contribute to the debate between interventionism 
and the Causal Model with some critical remarks. According to the Causal Model, 
interventionism proves itself to be ineffective for assessing causal claims in non-
experimental frameworks, as it is the case with many causal contexts in social 
sciences. In my analysis of the dilemma raised against interventionism I tried to 
come up with a few possible answers to the problems laid down by Russo.60 It 
firstly turned out that the interventionist can decide to choose for a different view 
of semantics than the one Russo61 tacitly advanced. This will eventually open new 
possibilities for overcoming the lack of methodological import of the conceptual 
reading of interventionism.
 Also, the distinction between experimental and non-experimental was chal-
lenged together with the acclaimed lack of use of thought experiments. It was 
argued, against Russo62 that various fields of social science allow intervention in 
non-experimental contexts as well.
 I however acknowledged that Russo’s points do indeed press the reader to 
contemplate the Causal Model as a vigorous concurrent for the interventionist 
theory. Although I admitted the strong potential of the Causal Model, I called into 
question its metaphysical neutrality. I also concluded that the Causal Model can 
not do its job without the use of the inference to the best explanation.
 Let me add that the method of settling the invariance in the Causal Model 
suggest a further important conclusion. The breaking down of the data set into its 
multi-facet component in order to obtain useful variations illustrates the concep-
tual complexity of this data. Of course, it may be the case that the decomposition 
will not be always possible,63 but as Russo64 argues, multiple studies in the social 
sciences perform it. I think this calls for a desideratum of conceptual complexity 
in the social science which, at least at a first sight, seems not to be necessary in the 
natural science. The methods within the latter domain rather aim at simplifying 
the situation for analysis and let us understand that the relevant information bears 
only one definite dimension. This method tends to give a unidirectional reading of 
the variables of interest because the information of interest lacks the complexity 
we encountered in the case of social phenomena. In natural science, the variables 
of interest are not susceptible of being broken-down into a multi-facet component 
once the causal context is sharply defined. Thus, there is only one conceptual rele-
vant aspect echoed in the variables of interest and moreover, this key feature can be 
kept fixed when the variables are under control. This is also the reason why hidden 

60 Russo, “On empirical generalisations”, loc. cit.
61 Ibid.
62 Ibid.
63 See Russo (Causality and causal modelling in the social sciences. Measuring varia-

tions, loc. cit.) for a contemplation of this point.
64 Ibid., ch. 1.
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causal correlations can hardly make sense here. But this eventually justifies the 
need of an interpretation for the theory when unexpected correlations still come 
up, as it is for instance, with the (EPR) quantum correlations. The differences of 
the two approaches suggest a difference in the way they frame the data input, that 
is, in the way they regard the ontology. However, a comparative assessment of the 
ontology professed by social science and natural science is far beyond the scope 
of this essay.
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Chapter 11

MiChael esfeld

Causal realisM1

abstraCt

According to causal realism, causation is a fundamental feature of the world, 
 consisting in the fact that the properties that there are in the world, including no-
tably the fundamental physical ones, are dispositions or powers to produce certain 
effects. The paper presents arguments for this view from the metaphysics of prop-
erties and the philosophy of physics, pointing out how this view leads to a coherent 
ontology for both physics as well as biology and the special sciences in general.

11.1 introduCtion

Causal realism is the view that causation is a real and fundamental feature of the 
world. That is to say, causation cannot be reduced to other features of the world, 
such as, for instance, certain patterns of regularities in the distribution of the fun-
damental physical properties. Causation consists in one event bringing about or 
producing another event, causation being a relation of production or bringing 
something into being.2 I shall take events to be the relata of causal relations, with-
out arguing for this claim in this paper, since this issue is not important for present 
purposes. More precisely, an event e

1
, in virtue of instantiating a property F, brings 

about another event e
2
, instantiating a property G. One can therefore characterize 

causal realism as the view that properties are powers. In short, Fs are the power 
to produce Gs. Saying that properties are powers means that it is essential for a 
property to exercise a certain causal role; that is what constitutes its identity. One 
can therefore characterize causal realism as the view that properties are causal in 
themselves. To abbreviate this view, I shall speak in terms of causal properties.

1 I’m grateful to Matthias Egg and Vincent Lam for comments on the draft of this paper.
2 See Ned Hall, “Two concepts of causation”, in: J. Collins, N. Hall and L. A. Paul 

(Eds.), Causation and counterfactuals. Cambridge (Massachusetts): MIT Press 2004, 
pp. 225–276, for an analysis of the contrast between the production conception of 
causation and the regularity conception; the counterfactual analysis of causation is a 
sophisticated version of the regularity conception.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_11,  
© Springer Science+Business Media B.V. 2012
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 To make the claim of this paper audacious, I shall defend the view that all 
properties that there are in the world are causal properties. The limiting clause 
“that there are in the world” is intended to leave open whether or not abstract math-
ematical objects exist: abstract mathematical objects, if they exist, do not cause 
anything, so that their properties are not powers. However, to the extent that prop-
erties are instantiated in the real, concrete world (by contrast to a –  hypothetical 
– realm of abstract mathematical objects), it is essential for them to exercise a 
certain causal role. This is a sparse view of properties: it is not the case that for any 
predicate, there is a corresponding property in the world.
 Properties, being causal in themselves and thus powers, are dispositions – 
more precisely, dispositions that manifest themselves in bringing about certain 
effects. Dispositions, thus conceived, are not Aristotelian potentialities, but real, 
actual properties. Furthermore, there is no question of dispositions in this sense 
requiring non-dispositional properties as their bases. If all properties are causal in 
themselves, being powers, then all properties are dispositions. The view defended 
in this paper hence coincides with the position known as dispositional monism or 
dispositional essentialism.3 However, in claiming that all properties are disposi-
tions, it is not intended to deny that properties are qualities. The view is rather 
this one: in being certain qualities, properties are causal, namely powers to pro-
duce certain specific effects.4 Thus, for instance, in being a certain qualitative, 
fundamental physical property, charge is the power to create an electromagnetic 
field, manifesting itself in the attraction of opposite-charged and the repulsion of 
like-charged objects; and mass is a qualitative, fundamental physical property that 
is distinct from charge in being the power to create gravitational attraction (this 
example is meant to be a rough and ready illustration of this view of properties; 
an adequate scientific discussion would require much more details, and, notably, 
certain commitments in the interpretation of the relevant scientific theories).
 The view of causal properties is both a metaphysical and an empirical position: 
it is a stance in the metaphysics of properties, and it is a claim about what is the 
best interpretation of the ontological commitments of our scientific theories. It is 
opposed to the view of categorical properties, that is, the view according to which 
properties are pure qualities, exercising a causal role only contingently, depending 
on the whole distribution of the fundamental physical properties in a given world 
and/or the laws of nature holding in a given world. That latter view also is both a 
metaphysical and an empirical position. As a metaphysical position, it is usually 
traced back to Hume’s stance on causation and is today known as Humean meta-
physics.5 As an empirical position, it can be traced back to Russell’s famous claim 

3 See notably Alexander Bird, Nature’s metaphysics. Laws and properties, Oxford: Ox-
ford University Press 2007.

4 See Michael Esfeld and Christian Sachse, Conservative reductionism. New York: Rout-
ledge 2011, chapter 2.1, for a detailed exposition of this claim, drawing on John Heil, 
“Obituary. C. B. Martin”, in: Australasian Journal of Philosophy 87, 2009, pp. 177–179.

5 See notably David Lewis, Philosophical papers. Volume 2. Oxford: Oxford University 
Press 1986, introduction, and David Lewis, “Ramseyan humility”, in: D. Braddon-
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that causation is a notion that has no place in the interpretation of contemporary 
physics.6 For the sake of simplicity, I shall confront the view of causal properties 
only with the Humean view of categorical properties, thereby leaving out in par-
ticular views that invoke a commitment to universals and certain relations among 
universals in order to account for causation and laws7; the issue of a commitment to 
universals is not important for the arguments considered in this paper.
 Accordingly, I shall mention the metaphysical argument for causal in contrast 
to Humean categorical properties in the next section, then move on to arguments 
from physics (Sects. 11.3 and 11.4) and finally consider the perspective for an ac-
count of the relationship between physics and the special sciences such as biology 
that this view offers (Sect. 11.5). Covering all these issues in a short paper means 
that I can only sketch out the main features of the central arguments here, provid-
ing the reader with some sort of an overview of the case for causal realism.8

11.2 the MetaphysiCal arguMent for Causal properties

The main metaphysical argument against the view of categorical properties is 
that this view is committed to quidditism. Accordingly, the main argument for the 
causal view of properties is that this view avoids any association with quidditism. 
If properties play a causal and nomological role only contingently, then their es-
sence is independent of the causal relations in which they enter and the laws in 
which they figure. Their essence then is a pure quality, known as quiddity.9 It is a 
primitive suchness, consisting in the simple fact of being such and such a quality, 
without that quality being tied to anything, notably not tied to certain causal or 
nomological relations. Consequently, it is not possible to have a cognitive access to 
the qualitative nature of the properties; that consequence is known as humility.10

 The commitment to quiddities is objectionable, since it obliges one to rec-
ognize worlds as being qualitatively different, although they are indiscernible. 
Quidditism about properties is analogous to haecceitism about individuals. A hae-
cceitistic difference between possible worlds is a difference that consists only in 
the fact that there are different individuals in two worlds, without there being any 
qualitative difference between the worlds in question. In other words, a haeccei-
tistic difference is a difference between individuals which has the consequence 

Mitchell and R. Nola (Eds.), Conceptual analysis and philosophical naturalism. Cam-
bridge (Massachusetts): MIT Press 2009, pp. 203–222.

6 Bertrand Russell, “On the notion of cause”, in: Proceedings of the Aristotelian Society, 
13, 1912, pp. 1–26.

7 See notably David M. Armstrong, What is a law of nature? Cambridge: Cambridge 
University Press 1983.

8 For a detailed study, see Esfeld and Sachse, loc. cit.
9 See Robert Black, “Against quidditism”, in: Australasian Journal of Philosophy 78, 

2000, pp. 87–104.
10 See in particular Lewis, “Ramseyan humility”, loc. cit.
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that worlds have to be recognized as different, although they are indiscernible. If 
one maintains that the essence of properties is a primitive suchness (a quiddity), a 
similar consequence ensues: one is in this case committed to recognizing worlds as 
different that are identical with respect to all causal and nomological relations, but 
that differ in the purely qualitative essence of the properties that exist in them.
 Thus, for instance, the property that exercises the charge role in the actual 
world can exercise the mass role in another possible world, since the qualitative 
nature of that property is on this conception not tied to any role that tokens of the 
type in question exercise in a given world. We can therefore conceive a swap of the 
roles that properties play in two possible worlds, such as the property F playing the 
charge role and the property G playing the mass role in world w

1
, and F playing the 

mass role and G playing the charge role in w
2
. The worlds w

1
 and w

2
 are indiscern-

ible. Nonetheless, the friend of categorical properties is committed to recognizing 
w

1
 and w

2
 as two qualitatively different worlds. To put it in a nutshell, there is a 

qualitative difference between these two worlds that does not make any difference. 
Thus inflating the commitment to worlds is uncomfortable for any metaphysical 
position, and notably for a position that sees itself as being close to empiricism, as 
does Humean metaphysics.
 The causal theory of properties avoids any association with quidditism by 
tying the essence of a property to its causal and thereby to its nomological role: 
instead of the essence of a property being a primitive suchness, the essence of a 
property is the power to enter into certain causal relations. Consequently, what the 
properties are manifests itself in the causal relations in which they figure (more 
precisely, the causal relations in which events stand in virtue of the properties that 
they instantiate). It is thus not possible to separate the properties from the causal 
relations.11 The laws of nature supervene on the properties in revealing what prop-
erties can do in being certain powers.12 Consequently, worlds that are indiscern-
ible as regards the causal and nomological relations are one and the same world. 
Although being committed to objective modality by tying the essence of a prop-
erty to a certain causal – and thereby a certain nomological – role, the causal view 
of properties thus is ontologically parsimonious.

11 See notably Sydney Shoemaker, “Causality and properties”, in: P. van Inwagen (Ed.), 
Time and cause. Dordrecht: Reidel 1980, pp. 109–135; John Hawthorne, “Causal 
structuralism”, in: Philosophical Perspectives 15, 2001, pp. 361–378; Alexander Bird, 
Nature’s metaphysics. Laws and properties, loc. cit.; Anjan Chakravartty, A metaphys-
ics for scientific realism: knowing the unobservable. Cambridge: Cambridge Univer-
sity Press 2007, chapters 3–5.

12 See e.g. Mauro Dorato, The software of the universe. An introduction to the history and 
philosophy of laws of nature. Aldershot: Ashgate 2005, chapter 4.
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11.3 struCtures and Causal properties in fundaMental physiCs

There is a so-called argument from science for the causal view of properties, 
 drawing on the claim that the descriptions scientists give of the properties they 
 acknowledge, including notably the properties they take to be fundamental, 
are causal descriptions, revealing what these properties can do in interactions. 
However, that argument is not cogent for two reasons. In the first place, without 
adding further premises, there is no valid inference from dispositional descriptions 
to an ontology of dispositional properties (that is, properties whose essence is a 
certain power or disposition). Such further premises are available; but they finally 
rely on the fact that the alternative view of properties, the categorical one, has to 
subscribe to metaphysical commitments such as the one to quiddities that do not 
serve any purpose for science, having notably no explanatory role, whereas the 
causal view of properties avoids any such free-floating commitments by identify-
ing the essence of properties with their causal role.13 In brief, due to the additional 
premises needed, the so-called argument from science does not make the case for 
the causal view of properties stronger than it is already as based on the mentioned 
metaphysical argument only.
 Furthermore – and more importantly as far as the relationship between science 
and the causal view of properties is concerned –, the claim according to which the 
descriptions scientists give of the properties they acknowledge are causal descrip-
tions is in dispute. One can maintain that at least as far as fundamental physics 
is concerned, the basic descriptions are structural rather than dispositional ones, 
drawing on certain symmetries rather than certain causal powers. More precisely 
and more generally speaking, one can associate these two types of descriptions 
with two different forms of or approaches to scientific realism. Entity realism, 
laying stress on experiments rather than theories, seeks for causal explanations of 
experimental results and commits itself to theoretical entities – such as e.g. elec-
trons, or elementary particles in general – only insofar as these have the power, 
disposition or capacity to produce phenomena such as the ones observed in the 
experiments in question. Structural realism, by contrast, starts from the structure 
of scientific theories and maintains in its epistemic form (epistemic structural real-
ism14) that there is a continuity of the structure of physical theories in the history 
of science; in its ontic form, going back to Ladyman,15 structural realism maintains 
that structure is all there is in nature.
 To strengthen the case for the causal view of properties, we should therefore, 
for the sake of the argument, base ourselves not on experiments and entity realism, 

13 See Neil Edward Williams, “Dispositions and the argument from science”, in: Austral-
asian Journal of Philosophy 89, 2011, pp. 71–90.

14 John Worrall, “Structural realism: the best of two worlds?”, in: Dialectica 43, 1989,  
pp. 99–124.

15 James Ladyman, “What is structural realism?”, in: Studies in History and Philosophy 
of Modern Science 29, 1998, pp. 409–424.
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but on theories and ontic structural realism (OSR). The first point that we can make 
in this context is to emphasize that nearly all the proponents of OSR conceive the 
structures to which they are committed in a non-Humean manner, namely as mo-
dal structures.16 There is a clear reason for this commitment: it does not seem to 
make sense to conceive structures that are pure qualities. The identity of a structure 
obviously is constituted by its playing a certain nomological role. This is particu-
larly evident when considering structures that are defined by certain symmetries.17 
Thus, it obviously does not make sense to conceive one and the same structure 
playing in one world, say, the role of the quantum structures of entanglement and 
in another world the role of the metrical-gravitational structures – as it does make 
sense in Humean metaphysics to conceive one and the same qualitative, intrinsic 
property to play the charge role in one world and the mass role in another world. 
The decisive question in this context therefore is this one: Is the nomological role 
that a structure plays also a causal role? Or is it a plausible move when it comes to 
structures to go for a separation between the nomological and the causal role – so 
that a structure necessarily plays a certain nomological role, the nomological role 
constituting its identity, but only contingently a causal role?
 OSR is a realism with respect to the structure of a scientific theory. But this 
stance does not commit the ontic structural realist to Platonism about mathemati-
cal entities such as the mathematical structure of a fundamental physical theory. 
What the realist claims is that the mathematical structure of a fundamental physi-
cal theory refers to or represents something that there is in the world independ-
ently of our theories. In brief, the mathematical structure is a means of repre-
sentation, and the point of OSR is the claim that what there is in the world, what 
the mathematical structure represents or refers to, is itself a structure, namely a 
physical structure.
 To mention but one example, when one endorses a realist stance in the inter-
pretation of quantum mechanics, one does not advocate Platonism with respect 
to mathematical entities such as the wavefunction (state vector) in a mathematical 
space; one maintains that these mathematical entities represent something that 

16 See Steven French and James Ladyman, “Remodelling structural realism: quantum 
physics and the metaphysics of structure”, in: Synthese 136, 2003, pp. 31–56; James 
Ladyman and Don Ross with David Spurrett and John Collier, Every thing must go. 
Metaphysics naturalised. Oxford: Oxford University Press 2007, chapters 2–4; Steven 
French, “The interdependence of structure, objects and dependence”, in: Synthese 175, 
2010, pp. 177–197, section 3; but see Georg Sparber, Unorthodox Humeanism. Frank-
furt (Main): Ontos 2009 and Holger Lyre, “Humean perspectives on structural real-
ism”, in: F. Stadler (Ed.), The present situation in the philosophy of science. Dordrecht: 
Springer 2010, pp. 381–397 and Holger Lyre, “Structural invariants, structural kinds, 
structural laws”, this volume 2011, for Humean versions of OSR.

17 See notably the “group structural realism” advocated by Bryan W. Roberts, “Group 
structural realism”, in: British Journal for the Philosophy of Science 62, 2011,  
pp. 47–69.
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there is in the world by contrast to being mere tools in calculating probabilities for 
measurement outcomes.18 The realist in the interpretation of quantum mechanics 
therefore has the task to spell out what it is in the world that the quantum formalism 
refers to. Accordingly, the ontic structural realist has the charge to explain what a 
physical structure is in distinction to a mathematical structure that is employed as 
a means to represent what there is in the physical world, thereby replying to the 
widespread objection that OSR blurs the distinction between the mathematical and 
the physical.19 Simply refusing to answer that question20 is not acceptable.
 In the context of a traditional metaphysics of universals and intrinsic proper-
ties, one can maintain that there are property types as universals, and that there are 
objects in the world that instantiate these property types. However, even if one is 
not an eliminativist about objects as is French,21 but defends a moderate version 
of OSR that admits objects as that what stands in the relations in which the struc-
tures consist,22 such a move is not available to the ontic structural realist in order 
to answer the question what distinguishes physical from mathematical structures: 
it presupposes the existence of objects as something that is primitively there to 
instantiate the mathematical structures, being ontologically distinct from the struc-
tures. But insofar as OSR is in the position to admit objects, it can recognize only 
what French23 calls thin objects. More precisely, it can acknowledge objects only 
as that what stands in the relations that constitute the structures, the relations being 
the ways in which the objects are so that the objects do not have any existence or 
identity independently of the relations.24

 Furthermore, the spatio-temporal criterion of existence, which traditional em-
piricism adopts, is not applicable in this context either. Four-dimensional space-
time is itself a physical structure according to OSR.25 Consequently, one cannot 
presuppose four-dimensional space-time as a background on the basis of which 

18 See e.g. Tim Maudlin, “Can the world be only wavefunction?”, in: S. Saunders, J. 
Barrett, A. Kent and D. Wallace (Eds.), Many worlds? Everett, quantum theory, and 
reality. Oxford: Oxford University Press 2010, pp. 121–143 for a clear statement in 
that sense in contrast to claims to the contrary, such as David Z. Albert, “Elementary 
quantum metaphysics”, in: J. T. Cushing, A. Fine and S. Goldstein (Eds.), Bohmian 
mechanics and quantum theory: an appraisal. Dordrecht: Kluwer 1996, pp. 277–284.

19 See e.g. Tian Yu Cao, “Can we dissolve physical entities into mathematical structure?”, 
in: Synthese 136, 2003, pp. 57–71 for that objection.

20 As do Ladyman and Ross, loc. cit., p. 158.
21 French, loc. cit.
22 Michael Esfeld, “Quantum entanglement and a metaphysics of relations”, in: Studies in 

History and Philosophy of Modern Physics 35, 2004, pp. 601–617; Michael Esfeld and 
Vincent Lam, “Moderate structural realism about space-time”, in: Synthese 160, 2008, 
pp. 27–46.

23 French, loc. cit.
24 Michael Esfeld and Vincent Lam, “Ontic structural realism as a metaphysics of ob-

jects”, in: A. Bokulich and P. Bokulich (Eds.), Scientific structuralism. Dordrecht: 
Springer 2011, pp. 143–159. 

25 See e.g. Esfeld and Lam, “Moderate structural realism about space-time”, loc. cit.
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one could establish a distinction between physical and mathematical structures 
(the former, by contrast to the latter, existing in four-dimensional space-time). 
One could seek to counter that objection by simply stipulating that real physical 
structures have to be four-dimensional. But such a move would rule out a realist 
understanding of approaches like string theory in quantum gravity on purely a 
priori grounds, whereas such approaches have to be assessed according to their 
physical merits (or the lack of them). (Consider the historical case of the Kaluza-
Klein theory: it is no cogent objection to realism about this theory that it consid-
ers the physical reality to be five-dimensional; but it is a knock-down objection 
against that theory that it gets the mass of the electron totally wrong).
 Nonetheless, in order to answer the question how to distinguish physical from 
mathematical entities, the ontic structural realist can draw on another position that 
is widespread in traditional metaphysics, namely the causal criterion of existence, 
going back to the Eleatic stranger in Plato’s Sophist (247e) and also known as 
Alexander’s dictum: real physical structures distinguish themselves from their rep-
resentations in terms of mathematical structures by being causally efficacious.26 
Concrete physical structures are first-order properties, too, namely first-order rela-
tions. They can be conceived as causal properties in the same manner as intrin-
sic properties: in being certain qualitative physical structures, they are the power 
to bring about certain effects. Structures can be causally efficacious in the same 
sense as intrinsic properties of events: as events can bring about effects in virtue of 
having certain intrinsic properties, they can bring about effects in virtue of stand-
ing in certain relations with each other so that it is the network of relations – that 
is, the structure as a whole – that is causally efficacious.27 Furthermore, one thus 
accounts for the dynamics of physical systems: OSR is a proposal for an ontology 
of physical systems, but as such it is silent on their dynamical evolution.
 Psillos28 objects to the view of causal structures, in brief, that (a) it simply re-
locates the quidditism problem through its commitment to a holistic individuation 
of properties and that (b) it cannot show how structures are both abstract enough 
to be shareable by distinct physical systems and concrete enough to be part of 
the causal identity of physical systems. However, these are objections against the 
causal theory of properties in general. The adherent to causal OSR can draw on 
the resources in the literature on the metaphysics of properties to counter these 
objections – in particular follow the late Charlie Martin and John Heil in conceiv-
ing properties (including structures) as being qualitative and causal in one29 and as 

26 Michael Esfeld, “The modal nature of structures in ontic structural realism”, in: Inter-
national Studies in the Philosophy of Science 23, 2009, pp. 179–194.

27 See Esfeld and Sachse, loc. cit., chapter 2, for details of such a metaphysics of causal 
structures.

28 Stathis Psillos, “Adding modality to ontic structural realism: an exploration and cri-
tique”, in: E. Landry and D. Rickles (Eds.), Structure, objects, and causality. Dor-
drecht: Springer 2011.

29 Heil, “Obituary. C. B. Martin”, loc. cit.
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being tropes or modes,30 thus acknowledging a perfect similarity among property 
(including structure) tokens as primitive.31

 As this ongoing debate shows, the conception of causal structures is not the 
only game in town to answer the question what distinguishes real physical struc-
tures from their representation in terms of mathematical structures, to spell out 
the modal nature of structures in OSR and to account for the dynamics of physical 
systems on the basis of OSR. The reflection on these issues in the framework of 
OSR has just begun. But an answer to these questions is needed so that one can 
then engage in the business of assessing the options.

11.4 Causal realisM at Work in the interpretation 
of fundaMental physiCs

The arguments in the two preceding sections are rather abstract and general. In 
order to make a case for causal realism, one has to show in concrete terms how this 
interpretation applies to the current fundamental physical theories and what ben-
efits one gets from doing so. A commitment to dispositions in the interpretation 
of quantum mechanics is usually linked with versions of quantum mechanics that 
recognize state reductions, leading from entanglement to something that comes 
at least close to classical physical properties with definite numerical values.32 The 
theory of Ghirardi, Rimini and Weber33 (GRW) is the most elaborate physical pro-
posal in that respect. In the GRW framework, one can maintain that the structures 
of quantum entanglement are the disposition or the power to bring about classi-
cal properties through state reductions in the form of spontaneous localizations. 
Doing so answers a number of crucial questions in the interpretation of quantum 
mechanics: (a) it tells us what the properties of quantum systems are if there are 
no properties with definite numerical values, namely dispositions to bring about 
such properties, and these dispositions are real and actual properties (by contrast 
to mere potentialities); (b) it provides for a solution to the so-called measurement 
problem, without smuggling the notions of measurement interactions, measure-
ment devices, or observers into the interpretation of a fundamental physical theo-
ry; (c) it yields the probabilities that we need to account for the quantum probabili-
ties, namely objective, single case probabilities, by conceiving the dispositions for 
state reductions in the form of spontaneous localizations as propensities; (d) it 
provides for an account of the direction of time: processes of state reductions are 

30 John Heil, From an ontological point of view. Oxford: Oxford University Press 2003, 
chapter 13.

31 See Esfeld and Sachse, loc. cit., chapter 2, for details.
32 See Mauricio Suárez, “Quantum propensities”, in: Studies in History and Philosophy 

of Modern Physics 38, 2007, pp. 418–438.
33 Gian Carlo Ghirardi, Alberto Rimini and Tullio Weber, “Unified dynamics for micro-

scopic and macroscopic systems”, in: Physical Review D, 34, 1986, pp. 470–491.
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 irreversible, thus singling out a direction of time; if these processes go back to  
entangled states as dispositions for state reductions, their irreversibility is explained 
by the relationship of dispositions and their manifestations being irreversible.34

 Nonetheless, causal realism in the interpretation of quantum mechanics is not 
tied to realism with respect to state reductions. Regarding the quantum structures 
of entanglement as dispositions or powers also has certain benefits in the frame-
work of the version of quantum mechanics that goes back to Everett,35 recognizing 
no state reductions and taking the dynamics given by the Schrödinger equation 
to be the complete dynamics of quantum systems (and, by way of consequence, 
all physical systems). The claim then is that the structures of quantum entangle-
ment are the disposition or the power to bring about a splitting of the universe into 
infinitely many branches through decoherence, the branches existing in parallel 
without interfering with each other; each of them appears like a domain of classi-
cal properties to an internal observer.
 Notably the above mentioned points (a) and (d) apply also in this framework: 
decoherence and the splitting of the world into infinitely many branches is a fun-
damental, irreversible process, whereas the Schrödinger dynamics is time-reversal 
invariant. Conceiving entangled states as dispositions that manifest themselves 
spontaneously through decoherence and the splitting of the universe into infinitely 
many branches grounds that principled irreversibility. Furthermore, one has to 
provide an answer to the question of what entangled states are prior to the  splitting 
of the universe into infinitely many branches. Simply drawing on the quantum for-
malism and proposing a realist attitude towards the wavefunction or state vector in 
configuration space does not answer that question, as pointed out in the preceding 
section. Conceiving entangled states as dispositions in the mentioned sense, by 
contrast, answers that question in setting out a clear ontology of what entangled 
states are objectively in the world, grounding the subsequent appearance of classi-
cal properties.
 Again, conceiving entangled states as dispositions or powers may not be the 
only game in town. But work in the philosophy of physics has to be done in order 
to answer the mentioned ontological questions, instead of hiding oneself behind 
a mathematical formalism and passing what is de facto a realism with respect to 
mathematical entities for a realism with respect to the physical world.
 Turning briefly to the other fundamental physical theory, general relativity, it 
seems at first glance that this theory suits well causal realism, since it abandons 
the view of space-time as a passive background structure, regarding instead the 

34 See Mauro Dorato and Michael Esfeld, “GRW as an ontology of dispositions”, in: 
Studies in History and Philosophy of Modern Physics 41, 2010, pp. 41–49 for spelling 
out these points in detail, and see Mauro Dorato, “Dispositions, relational properties, 
and the quantum world”, in: M. Kistler and B. Gnassounou (Eds.), Dispositions and 
causal powers. Aldershot: Ashgate 2007, pp. 249–270 for dispositions in the interpre-
tation of quantum mechanics in general.

35 Hugh Everett, “ ‘Relative state’ formulation of quantum mechanics”, in: Reviews of 
Modern Physics 29, 1957, pp. 454–462.
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 metrical field as a dynamical entity that accounts for the gravitational effects. It 
seems therefore that one can conceive the metrical properties of space-time points 
as dispositions or causal powers to bring about the gravitational effects.36 But the 
case is not so clear: the gravitational effects are due to the movement of bodies 
along geodesics. One can therefore also argue that what seems to be gravitational 
effects are not effects that need a causal explanation, but is simply due to the ge-
ometry of curved space-time, not requiring a causal explanation in the same way 
as the inertial motion of a particle in Newtonian mechanics does not call for a 
causal explanation.37 The case for causal realism in the philosophy of general rela-
tivity hangs on the ontology of the metrical field that one adopts, in other words, 
the stance that one takes in the traditional debate between substantivalism and 
relationalism cast in the framework of general relativity. Ultimately, the issue has 
to be settled in an ontology of quantum gravity.
 In sum, causal realism can do a good ontological work in the framework of 
standard quantum mechanics with or without state reductions. The case of general 
relativity theory, however, depends on further parameters, such as the ontological 
stance that one adopts towards space-time (substantivalism or relationalism).

11.5 Causal realisM froM fundaMental physiCs to the speCial 
sCienCes

Assume that there are structures of quantum entanglement at the ontological 
ground floor which develop into classical properties that are correlated with each 
other in certain ways, or into the appearance of classical properties through the 
splitting of the universe into many branches. Assume furthermore that some of 
these classical properties build up local physical structures that distinguish them-
selves from their environment in bringing about certain effects as a whole – such 
as, for instance, a DNA sequence that produces a certain protein, or a brain that 
produces a certain behaviour of an organism. In conceiving the entangled states 
and, accordingly, such local physical structures as causal powers, causal realism 
provides for a unified ontology for fundamental physics as well as biology and the 
special sciences in general.38

36 See Alexander Bird, “Structural properties revisited”, in: T. Handfield (Ed.), Disposi-
tions and causes. Oxford: Oxford University Press 2009, pp. 215–241 and Andreas 
Bartels, “Modern essentialism and the problem of individuation of spacetime points”, 
in: Erkenntnis 45, 1996, pp. 25–43, pp. 37–38, and Andreas Bartels, “Dispositions, 
laws, and spacetime”, forthcoming in: Philosophy of Science 78, 2011 (Proceedings of 
the PSA conference 2010) – Bartels, however, voices also serious reservations about 
dispositional essentialism in this context.

37 See Vassilios Livanios, “Bird and the dispositional essentialist account of spatiotempo-
ral relations”, in: Journal for General Philosophy of Science 39, 2008, pp. 383–394, in 
particular pp. 389–390.

38 See Esfeld and Sachse, loc. cit., for details.
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 On a Humean metaphysics of categorical properties, properties that are pure 
qualities and configurations of such properties can have a certain function in a 
given world and thus make true descriptions in dispositional, or functional terms; 
but there can be no functional properties, that is properties for which it is essential 
to exercise a certain causal role. However, on a widespread account of functions, 
namely the causal-dispositional one, the properties to which biology and the spe-
cial sciences are committed are functional properties, consisting in exercising a 
certain causal role.39 Notably the entire discussion of functionalism as the main-
stream position in the philosophy of psychology and the social sciences is couched 
in terms of functional properties.
 The advantage of causal realism is to be in the position to take the talk of func-
tional properties literally: there really are functional properties in which biology and 
the special sciences in general trade out there in the world, for all the properties that 
there are in the world, down to the fundamental physical ones, are causal properties, 
being the disposition or the power to produce certain effects in being certain quali-
ties. The commitment to causal properties in physics allows us to be realist about 
causal properties in the special sciences, and that commitment is a necessary condi-
tion for the latter realism: if there were no causal properties in physics, there would 
be no causal properties in the special sciences either (unless one were to maintain a 
dualism of free-floating properties of the special sciences). Taking for granted that 
the properties with which the special sciences deal supervene on the fundamental 
physical properties, if there is to be causation in the production sense in the domain 
of the special sciences, properties bringing about certain effects in virtue of their 
causal nature, there is causation in that sense in the fundamental physical domain, 
the supervenience base, as well. In other words, under the assumption of superveni-
ence, if there is objective modality in the domain of the special sciences, there is 
objective modality also in the domain of fundamental physics.
 Again, causal realism may not be the only game in town for a coherent  ontology 
reaching from physics to biology and the special sciences in general. But, again, 
the task is to spell out such an ontology, and causal realism is one way to achieve 
that task. As any metaphysical position, causal realism has to be assessed on the 
basis of overall considerations, taking into account the metaphysics of properties, 
the philosophy of physics, and the philosophy of the special sciences.

Department of Philosophy
University of Lausanne
Quartier UNIL-Dorigny, Bâtiment Anthropole 4074
1015, Lausanne
Switzerland
Michael-Andreas.Esfeld@unil.ch

39 Robert Cummins, “Functional analysis”. in: Journal of Philosophy 72, 1975, pp. 741–764.
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Chapter 12

holger lyre

StruCtural InvarIantS, StruCtural KIndS, 
StruCtural lawS

The paper has three parts. In the first part ExtOSR, an extended version of Ontic 
Structural Realism, will be introduced. ExtOSR considers structural properties as 
ontological primitives, where structural properties are understood as comprising 
both relational and structurally derived intrinsic properties or structure invariants. It 
is argued that ExtOSR is best suited to accommodate gauge symmetry invariants and 
zero value properties. In the second part, ExtOSR will be given a Humean shape by 
considering structures as categorical and global. It will be laid out how such struc-
tures serve to reconstruct non-essential structural kinds and laws. In the third part 
Humean structural realism will be defended against the threat of quidditism.

12.1 StruCtural realISm and IntrInSICalIty: oSr extended

Many structural realists agree on two claims: they prefer ontic over epistemic ver-
sions of SR and they don’t want to dismiss the idea of relata altogether. There-
fore non-eliminative versions of ontic structural realism have become fashionable. 
They start from the idea that there are relations and relata, but that there is nothing 
more to the relata than the ‘structural properties’ in which they stand. But what 
are ‘structural properties’? Are they all and only relations? Or must we allow for 
certain intrinsic properties as well? I do believe that, in order to cope with sym-
metry structures, one has to accept certain intrinsic features. The main reason is 
that symmetry structures come inevitably equipped with certain invariants under 
the symmetry. And symmetries and symmetry considerations play an eminent role 
in modern physics, notably as external spacetime structures and internal gauge 
symmetry structures. So SR proponents should take symmetry structure to be the 
most relevant structure of the world.
 A symmetry of a domain D may be considered a set of one-to-one mappings 
of D onto itself, the symmetry transformations, such that the structure of D is pre-
served. The symmetry transformations form a group and exemplify equivalence 
relations (which lead to a partitioning of D into equivalence classes). From this 
we always get invariants under a given symmetry providing properties shared by 
all members of D. And insofar as such properties belong to any member of D 

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_12,  
© Springer Science+Business Media B.V. 2012
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irrespectively of the existence of other objects, they are ‘intrinsic’. On the other 
hand, they do not suffice to individuate the members, since all members share the 
same invariant properties in a given domain. They are, in a still to be spelled out 
sense, ‘parasitic’ on the global structure. In my 2010 I call them “structurally de-
rived intrinsic properties”. They violate the strong Leibniz principle: as structure 
invariants they only serve to individuate domains, not entities.
 Now consider non-eliminative OSR as a position characterized by the claim 
that there are relations and relata, but that there is nothing more to the relata than the 
structural properties in which they stand. We may then distinguish two versions:

Simple OSR (SimpOSR): structural properties are only relational properties,•	
Extended OSR (ExtOSR): structural properties are relational and structurally •	
derived intrinsic properties (invariants of structure).

ExtOSR is the version favoured here (formerly labelled as “intermediate SR” in 
my 2010). In the taxonomy of Ainsworth,1 ExtOSR is either a non-eliminativist 
OSR1 or close to OSR3, which takes relations and properties as ontological primi-
tives, but objects as derived. And yet none of the categories really fits. The reason 
why Ainsworth’s taxonomy seems to be transverse to ours is that it isn’t fully ex-
haustive, which is why he discusses subcategories of all three versions that basi-
cally differ in the way objects are (re-) constructed. I will argue in favour of a 
modification of a bundle view of objects below.
 In my 2010 paper2 the Gedankenexperiment of a lone electron is introduced to 
show the differences between SimpOSR and ExtOSR. Under both eliminative and 
Simp OSR the lone electron cannot have a charge, since no other objects are left in 
virtue of which the electron’s charge might be considered as relational. Under Ex-
tOSR it is perfectly possible to allow, even in the trivial case of only one member in 
D, for the object to possess symmetry-invariant properties. I should emphasize that 
this Gedankenexperiment is exclusively meant to highlight the difference between 
SimpOSR and ExtOSR – it has a didactic value only. By no means do I claim, nor 
should ExtOSR proponents claim, that such a possible world is a nomologically 
possible world. Of course it isn’t. It conflicts with QED and other fundamentally 
physical as well as operational assumptions. But it nevertheless highlights a meta-
physical difference. An object may have its invariant properties according to the 
world’s structure, the structure comes equipped with such properties. Moreover, 
such invariant properties should not be considered as relational to the structure, 
since this raises the problem of the possible Platonic existence of unexemplified 
structures. I take it that almost all OSR proponents of any stripe consider them-
selves to be in re-structuralists, not ante rem-Platonists. The world structure must 
therefore be an instantiated structure – instantiated by at least one member of D.

1 Peter M. Ainsworth, “What is ontic structural realism?”, in: Studies in History and 
Philosophy of Modern Physics 41, 2010, pp. 50–57.

2 Holger Lyre, “Humean Perspectives on Structural Realism”, in: Friedrich Stadler (Ed.), The 
Present Situation in the Philosophy of Science. Dordrecht: Springer 2010, pp. 381–397.
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 As far as I can see it, the most convincing reason from physics why we must 
take structure invariants seriously stems from gauge symmetries. I will give an-
other argument, the argument of zero-value properties, below. It is obvious that the 
content of modern fundamental theories in physics is mainly given by symmetry 
structures. And in this respect, gauge theories figure as the most important case. 
But gauge symmetries are special in the sense that they are non-empirical sym-
metries. This means that gauge symmetry transformations possess no real instan-
tiations, the physical content of gauge theories is carried all and only by the gauge 
symmetry invariants.3 Such invariants are mathematically fully characterised (but 
not solely given) by the Casimir operators of the gauge groups (the Casimirs clas-
sify the multipletts and commute with the generators of the gauge Lie groups 
which correspond to the charges). We get mass and spin as Casimir operators of 
the Poincaré group and the various charges of the U(1)xSU(2) and SU(3) interac-
tion groups. Hence, mass, spin, and charge (in the most general sense) are the most 
fundamental ‘structurally derived intrinsic properties’. By focusing exclusively on 
relational properties, SimpOSR doesn’t have the resources to take gauge theories 
into account, while ExtOSR apparently does.
 But there’s more. Elementary particle physics provides us with a taxonomy 
of the fundamental building blocks of the world. By characterizing particles via 
mass, spin, and charge, physicists regularly ascribe zero-value properties to parti-
cles. They will for instance say that the photon has zero mass or that the neutrino 
has an electric charge with value zero. As Balashov4 points out, such zero values 
aren’t merely absences of quantities or holes in being, they are considered to be as 
real as non-zero value properties. Balashov makes the following case:

Suppose particle a is a bound state … of two particles … having non-zero quantities P+ 
and P-summing up to 0. … it is more reasonable to say that a has zero value of P … than to 
insist that it has no P at all. P-hood cannot simply disappear when combined with another 
P-hood in a productive way.

He calls this the argument from composition. But elementary particles aren’t com-
posites. We may, however, extend the argument by using parity and unification 
considerations to non-composite cases. P-hood may figure as part of the explana-
tion of the generic behaviour of a particle in certain circumstances both in the case 
of P ≠ 0 and P = 0. Conservation laws are the most important case of such explana-
tions. We do for instance predict the behaviour of the yet undetected Higgs boson 
in part by the fact that it is assumed to have spin zero.
 Consider also the well-known classification of elementary particles by means 
of the irreducible unitary representations of the Poincaré group.5 The assumption 

3 Holger Lyre, “Holism and structuralism in U(1) gauge theory”, in: Studies in History 
and Philosophy of Modern Physics 35, 4, 2004, pp. 643–670.

4 Yuri Balashov, “Zero-value physical quantities”, in: Synthese 119, 1999, pp. 253–286.
5 Cf. also my “Holism and structuralism in U(1) gauge theory”, loc. cit.
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behind it is that physical systems must possess relativistically invariant state spaces 
with the most elementary, irreducible representations possessing no invariant sub-
spaces. And as we’ve already seen, the representations of the Poincaré group are 
mathematically fully characterized by its Casimir operators. This whole considera-
tion affects all particles including the ones with zero mass, zero spin or both, since 
all particles are considered to be representations of the Poincaré group.
 ExtOSR, I claim, naturally embraces the appearance of zero-value properties 
in fundamental physics by assuming that the world consists of a structure mainly 
given by the structure of the fundamental physical gauge groups (including the 
Poincaré group as a gauge group itself). Particles are instantiations of the world 
structure possessing all structurally invariant properties irrespective of whether 
the property value is zero or not. In what follows below I will show how this class 
of properties can also be accommodated from a non-dispositionalist point of view 
(pace Balashov6 who argues otherwise).
 Yet another commentary is necessary here. Recently, Roberts7 has coined the 
term ‘group structural realism’ for the idea of identifying structure with the struc-
ture of symmetry groups. While on the one hand he acknowledges the fact that 
group structural realism has the advantage to provide us with a precise mathemati-
cal notion of structure, he on the other hand side diagnoses an, as he sees it, serious 
problem: the problem of an infinite regress of structures. Consider for instance the 
hierarchy that one can produce by ascending from a group G to Aut G, the group 
of all automorphisms of G, next to Aut Aut G and so on. But, as Roberts himself 
also acknowledges, the structural realist account “perhaps most closest to the right 
attitude” is to accept just the groups that are most naturally suggested by physics 
as the fundamental bottom of towers of structures. This is exactly the recipe I like 
to suggest here. While it is true that you can’t easily read off your metaphysics 
from physics, one should nevertheless let physics be the main and solid guide in 
choosing the right metaphysics. And this in particular holds if we have an under-
determination in metaphysics which can be cured by physics! For this is just what 
Roberts does: construct an overblown and therefore underdetermined metaphysi-
cal hierarchy that can easily be cut back by physics as our primary guide.
 Mention must finally be made that the present account is not bound to group 
structures. Surely, symmetry groups play a dominant role, but other structures 
come into play as well. The structural core of quantum theory is for instance given 
by the non-commutative algebra structure of the observables. It is, again, a physi-
cal, not a metaphysical question, what the fundamental structures in nature are.

6 Balashov, “Zero-value physical quantities”, loc. cit.
7 Bryan W. Roberts, “Group structural realism”, in: British Journal for the Philosophy of 

Science 2010, DOI: 10.1093/bjps/axq009

172



12 Structural Invariants, Structural Kinds, Structural Laws 

12.2 humean StruCtural realISm: 
StruCtural KIndS and StruCtural lawS

After laying out ExtOSR as my favoured variant of structural realism, I shall now 
turn, for the rest of the paper, to the question of whether and in which sense I think 
structural realism can be combined with a Humean stance. I shall start with the 
issue of structural laws and then go over, in the third section, to defend non-modal 
categorical structures.
 In its usual form, Humeanism rests on two basic features: first, the idea of an 
ultimate supervenience base – this is the reductionist spirit behind Humeanism. 
And, second, a quite rigorous scepticism about modalities – call this is the nomi-
nalist spirit. I shall focus on how this affects the Humeanist’s view about proper-
ties and laws. Let’s start with properties. From their nominalist inclinations it 
seems clear that Humeans will be non-dispositionalists and non-essentialists, 
that is they will favour categorical over dispositional (or modal) properties. It 
is of course not part of the Humean agenda that one must favour intrinsic over 
relational properties as in David Lewis’ infamous doctrine of Humean super-
venience. Moreover, Lewis’ Humean supervenience is in glaring conflict with 
both quantum mechanics and gauge theories. In both types of theories non-local 
effects – EPR correlations on the one hand and holonomy effects on the other – 
suggest a stark violation of Humean supervenience: intrinsic properties of wholes 
do not supervene on intrinsic properties of their parts. By way of contrast, intrin-
sic properties of wholes may very well supervene on non- supervenient relations 
between the parts.
 The natural supervenience base for structuralists consists, of course, of 
 structures. Structures, in turn, seem to be “composed” out of relata and structural 
properties, being relations and structurally derived intrinsic properties. Leaving 
notorious questions of ontological priority for a moment aside, we can just say that 
the Humean structuralist shall consider non-modal, categorical structures as the 
proper supervenience base. And there are two aspects of such structures that are of 
interest here. There is on the one hand the aspect of categoricalism – this will be 
discussed below. On the other hand there’s the aspect of such structures as being 
global entities. This is why the idea of structures as ‘composites’ must be taken 
with a grain of salt. If we think of the fundamental symmetry structures in phys-
ics, then we better conceptualize them as reflecting global regularity features of 
the world in toto. They neither are abstract mathematical ante rem-structures nor 
are they composed out of universals (as discussed by Psillos, forthcoming). They 
rather are concrete global and world-like in re-structures.
 We may capture this characterisation by noticing that the usual metaphysical 
abstract/particular distinction must be complemented with a global/local distinc-
tion. We then arrive at the following matrix:
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concrete abstract
local particular universal
global in re-structures ante rem-structures,

universal structures,
mathematical structures

Particulars or concreta are local and concrete entities, whereas universals are ab-
stract. They are ‘local’ in the sense that they are instantiated by local exemplars. By 
way of contrast, structures aren’t local, they are global or world entities. They may 
either be considered as abstract with mathematical structures as a prime example, 
but they may also be construed as concrete entities in the sense that they are di-
rectly given as elements of the spatiotemporal world in toto. This, I suggest, is the 
conception of structures that should be preferred by OSR proponents.
 There are of course structuralists that, albeit coming close to the group theo-
retic considerations here, adopt an ante rem view of abstract structures.8 Psillos,9 
following Bigelow and Pargeter,10 discusses the pros and cons of the idea to con-
strue structures as abstract entities or ‘structural universals’. He diagnoses various 
difficulties of this view which can basically be traced back to the idea that such 
structural universals may have other universals as parts (as displayed in various 
cases of molecule configurations). I take this to indicate that we better refrain 
from characterizing structures as abstract. As far as I can see, however, none of 
Psillos’ arguments speak against the possibility of structures as concrete elements 
of the world in toto. In considering structures as global or holistic entities the 
question of ontological priority of either relata or structural properties turns out 
as misguided. If talk of ontological priority makes sense at all, then structures as 
a whole should be prioritized. Ainsworth’s11 taxonomy should be supplemented 
by (at least) a fourth option (OSR4) which takes whole structures as basic and 
structural properties – relations and intrinsic invariants – as features of such struc-
tures. From them relata can be derived or reconstructed in the following sense: they 
are the placeholders between the relations and they are domain-wise individuated 
by the structural invariants which serve as structurally derived intrinsic properties  
of the relata.

8 E.g. Aharon Kantorovich, “Ontic Structuralism and the Symmetries of Particle Phys-
ics”, in: Journal for General Philosophy of Science 40, 1, 2009, pp. 73–84; Tian-Yu 
Cao, From Current Algebra Quantum Chromodynamics: A Case for Structural Real-
ism. Cambridge: Cambridge University Press 2010.

9 Stathis Psillos, “Adding Modality to Ontic Structuralism: An Exploration and Cri-
tique”, in: Elaine Landry and Dean Rickles (Eds.), Structure, Object, and Causality. 
Dordrecht: Springer (forthcoming).

10 John Bigelow and Robert Pargeter, Science and Necessity. Cambridge: Cambridge 
University Press 1990.

11 Ainsworth, loc. cit.
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 This is also the reason why structuralism doesn’t entirely collapse to variants 
of a bundle ontology. For instance, because of its nominalist spirit (and as will 
become clear in the next section), the ExtOSR version defended in this paper is 
close to an ontology of trope bundles. But bundles are usually construed as local. 
The picture I’d like to advocate is rather that the world consists of a global struc-
ture which can only approximately be reconstructed by a collection of more or less 
localizable objects. Another way of spelling out the worries about the ‘local’ is to 
say that structuralism seems to directly conflate with pointillisme – the doctrine 
that a physical theory’s fundamental quantities are defined at spacetime points and 
represent intrinsic properties of point-sized objects located there (cf. Butterfield12 
as a forceful attack on pointillisme).
 As we’ve seen, the structural invariants emphasized here provide us with 
properties that are shared by all members in a structure domain and thus serve to 
individuate such domains. In fact, they provide us with a concept of kinds – natu-
ral kinds. Generally speaking, natural kinds are human-independent groupings or 
orderings of particulars in nature. And it is one of the major tasks of science to 
reveal the kinds in nature, for if such kinds exist then we may expect our scientific 
explanations to become forceful precisely when they generalize over such kinds. 
But while it is straightforward to think of kinds as shared properties, the real prob-
lem is to understand what the reason for this ‘sharing’ is. Yet Humeanists usually 
don’t provide an answer to this problem, since nine times out of ten they stick with 
a regularity view of laws. The orthodox account of natural kinds is therefore bound 
to essentialism, the view that there are essences in nature. Under such a view the 
shared properties that make up a kind are essential properties. Essential properties 
are modal properties in the sense that the particulars that possess them necessarily 
belong to the kind.
 A rigorous Humean framework is incompatible with an essentialist concep-
tion of natural kinds. A remarkable feature of structural invariants, I claim, is 
however that they provide us with a non-modal Humean understanding of kinds 
without giving up the possibility of a further explanation for the universal sharing 
of certain features. For we may understand the perplexing empirical fact that, say, 
all electrons posses exactly the same property values for mass, spin and charge. 
These properties are in this sense universal properties. From the point of view of 
ExtOSR we may just trace this universality back to the globally built-in regularity 
of the world as possessing particular symmetry structures. That is to say we must 
not acquiesce the individual property-likeness of particular electrons as a brute 
fact of nature, as the traditional regularity view has it, but reduce it to the global 
world structure (e.g. particular gauge groups). Note that no necessity is involved 
in this conception since the global world structure itself is non-modal in the sense 
that it is a brute fact of nature that just this particular global structure exists. We 

12 Jeremy Butterfield, “Against Pointillisme: A Call to Arms”, in: Dennis Dieks, Wenc-
eslao J. Gonzalez, Stephan Hartmann, Thomas Uebel and Marcel Weber (Eds.), Expla-
nation, Prediction, and Confirmation. Dordrecht: Springer 2011.

175



 Holger Lyre

have thus shifted the regularity one step further, from the level of local to global 
concrete entities. This conception of natural kinds might be dubbed a ‘structural 
kinds’ view. It is the conception of kinds offered by ExtOSR within a Humean 
framework.
 To invoke structural kinds also means to invoke structural laws. For laws gen-
eralize over kinds. Structural laws, in turn, generalize over structural kinds. This 
is tantamount to say that structural laws just reflect the structures in nature. In the 
case of the fundamental physical structures the structural laws are essentially the 
mathematical equations that display the relevant symmetries. The symmetries are 
global built-in regularities of the world in the sense that other symmetries could 
exist as built-in instead. Obviously, this is in tune with a strict non-necessitarian 
conception of laws – and goes beyond structural realists’ talk about ‘modally in-
formed’ laws.13 Moreover, and as I’ve pointed out in my 201014 the Humean struc-
tural laws view has the resources to overcome well-known problems of the ortho-
dox regularity view such as non law-like regularities (by considering only global 
structures) and empty laws (by considering instantiated in re-structures only).

12.3 humean StruCtural realISm: CategorICal StruCtureS

Humean SR sees structures as non-modal, categorical structures. They bring about 
nothing and constitute the Humean structuralist’s supervenience base. They are 
“just there”. Other structures could have been instantiated – or could be instanti-
ated at any new moment in time (although more must be said, but cannot be said 
in this paper due to lack of space, about the temporal structure of the 4D world; 
see also the short remarks in the conclusion). As non-modal, categorical and de-
terminate structures they should be taken as brute facts, ontologically irreducible, 
and primitive.
 But there’s a strong movement within structural realism to prefer modal or 
causal structures.15 The perhaps most outspoken proponent of this movement is 
Michael Esfeld.16 As he sees things, “the fundamental physical structures possess 

13 Angelo Cei and Steven French, Getting Away from Governance: A Structuralist Ap-
proach to Laws and Symmetries. Preprint PhilSci-Archive 5462 (2010). – Though I’m 
of course very much in favour of the general tendency of this paper.

14 Lyre, “Humean Perspectives on Structural Realism”, loc. cit., sec. 22.
15 E.g. Anjan Chakravartty, A Metaphysics for Scientific Realism: Knowing the Unob-

servable. New York: Cambridge University Press 2007.
16 Michael Esfeld, “The modal nature of structures in ontic structural realism”, in: Inter-

national Studies in the Philosophy of Science 23, 2009, pp. 179–194; Michael Esfeld, 
Causal realism. This volume; Michael Esfeld and Vincent Lam, “Ontic structural real-
ism as a metaphysics of objects”, in: Alisa Bokulich and Peter Bokulich (Eds.): Scien-
tific structuralism. Dordrecht: Springer 2011, pp. 143–159.
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a causal essence, being powers”.17 Esfeld claims to overcome a couple of well-
known difficulties connected to structural realism. The two most relevant problems 
are:

 1. The mathematical/physical distinction of structures,
 2. The problem of quiddities and humility.

Let’s start with the mathematical/physical distinction (1). Esfeld believes that by 
assuming categorical structures Humean SR collapses to mathematical structur-
alism. He argues that while mathematical structures do not cause anything, real 
physical structures clearly distinguish themselves from mere mathematical struc-
tures in that they are causally efficacious.
 I have two worries here. First, Esfeld raises the problem in such a way that it 
doesn’t come out as a special problem of (particular versions of) structural real-
ism, but of Humeanism or categoricalism in general. Any non-modal account of 
entities is affected by his kind of reasoning: causal efficacy cannot be accounted 
for by a Humean mosaic of non-dispositional properties but only by dispositional 
ones. But should we really consider this to be a knock-out argument against Hu-
meanism? Dispositionalism will then become true by fiat. But you can’t decide 
metaphysical debates like that. Humeans and non-Humeans agree that there are 
cause-effect regularities in our world. They disagree about the way how to con-
ceptualize them metaphysically. It is of course true that we know about the various 
structures in physics by means of their causal efficacy. But this says nothing about 
the metaphysical conception of causation. Causal efficacy can very well be cap-
tured in regularist terms. Nothing in Esfeld’s arguments enforces a metaphysically 
thick modal nature of structures.
 But perhaps the real worry of Esfeld about structures with ‘no causal contact’ 
to the world lies elsewhere. In his 2009 he still sticks with SimpOSR and, hence, 
rejects any intrinsic properties.18 Under this conception the question of how regu-
larities of a pure microscopic web of relations hinge together with macroscopic 
causes and effects might indeed cause a certain uneasiness. However, the problem 
at this point is not the metaphysics of causation, but the notorious multirealiz-
ability of purely relationally individuated structures. By way of contrast, ExtOSR 
introduces structurally derived intrinsic properties to individuate structure do-
mains. This provides us with an account to circumvent the problem of ‘unintended 
domains’.19 By introducing structure invariants the nature of the relations and re-
lata in the structure is no longer completely indetermined. The idea is that in our 
experimental practice we are (more or less directly) acquainted with the intrinsic 
structure invariants. Hence, no multirealizability arises.

17 Esfeld, “The modal nature of structures in ontic structural realism”, loc. cit.
18 Withdrawn by Esfeld and Lam, “Ontic structural realism as a metaphysics of objects”, 

loc. cit., sec. 8.4.
19 Cf. Lyre, “Humean Perspectives on Structural Realism”, loc. cit., sec. 12ff.
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 So let’s go over to the second class of problems centred around quidditism and 
humility (2). As Esfeld20 puts it:

If the fundamental properties are categorical and intrinsic, then there are worlds that are dif-
ferent because they differ in the distribution of the intrinsic properties that are instantiated 
in them, although there is no difference in causal and nomological relations and thus no dis-
cernible difference between them. This position therefore implies quidditism and humility.

My first answer is that this is (again!) no special problem of SR, but of categorical-
ism in general. This seems to be granted by Esfeld: “what accounts for quidditism 
and humility is the categorical character of the fundamental properties, not their 
supposed intrinsic character”.21 In fact, he considers the threat of quidditism to be 
the master argument against categoricalism: only causal properties prevent from 
quiddities, because if all properties are causal and, hence, individuated by their 
causal profile only, then there’s no room for extra quiddistic factors over and above 
the causal profile.
 I certainly share Esfeld’s worries about mysterious extra-metaphysical factors, 
which is what quiddities really are. But, I’m afraid, the antidote of causal proper-
ties isn’t as strong as Esfeld wants it to be. This has rightly been pointed out by 
Psillos22 by means of the following consideration. Suppose a world W1 in which 
two properties A and B work in tandem to produce a certain effect E but, taken 
individually, don’t have any effect at all. Dispositionalism cannot distinguish W1 
from a world W2 in which E is brought about by one single property. The meta-
physical difference between W1 and W2 goes beyond causal roles. So this would 
be my second answer to (2): quidditism is the view that nomological roles do not 
supervene on properties, but nomological roles do not supervene on causal proper-
ties either!
 So it seems that neither the dispositionalist nor the categoricalist can entirely 
get rid of any mysteriously hidden metaphysical factors. But clearly it would be 
neat if in particular the structural realist could obviate the threat of quidditism – at 
least to a certain extent. Well, I believe he can. This paves the way to a third answer 
to Esfeld’s worries about quidditism. Here’s a passage from Lewis who famously 
pronounced humility against quiddities:

I accept quidditism. I reject haecceitism. Why the difference? It is not, I take it, a difference 
in prima facie plausibility. … In both cases alike, however, we can feel an uncomfortable 
sense that we are positing distinctions without differences. […] To reject haecceitism is to 
accept identity of qualitatively indiscernible worlds; to reject quidditism is to accept iden-
tity of structurally indiscernible worlds – that is, worlds that differ just by a permutation or 
replacement of properties.[...] It would be possible to combine my realism about possible 
worlds with anti-quidditism. I could simply insist that ... no property is ever instantiated 

20 Esfeld, “The modal nature of structures in ontic structural realism”, loc. cit., p. 182.
21 Ibid., p. 187.
22 Psillos, loc. cit.
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in two different worlds. … It could be for the sake of upholding identity of structurally 
 indiscernible worlds, but I see no good reason for wanting to uphold that principle“.23

While Lewis doesn’t see a good reason for upholding the identity of structurally 
indiscernible worlds, structural realists certainly should. For structural realism 
is precisely the doctrine that is based on such a principle. We may even use the 
identity of structurally indiscernible worlds, or, shorter, the identity of isomorphs, 
to define SR and its major variants. While ESR is captured by the claim that the 
world is known up to structural isomorphs, OSR is the view that the world ex-
ists up to such isomorphs only. Surely, Lewis wouldn’t be convinced by such a 
manoeuvre of simply ‘quining quiddities’ by means of the identity of isomorphs, 
since I’ve given no metaphysical reason to dismiss quiddities. Nevertheless, the 
identity of isomorphs is empirically supported to the extent to which structural 
realism is empirically supported by modern physics. So let me repeat the recipe 
already suggest at the end of Sect. 12.1: one should let physics be the main and 
solid guide in choosing the right metaphysics, particularly in cases of seemingly 
metaphysical excesses.
 A fourth and final attempt to counter worry (2) is the following. Quidditism 
claims primitive suchness. It’s the idea that a permuation of properties (or types) 
makes a difference. It follows that quidditism may also be understood as upholding 
the principle of trans-world property identity, since quiddities are instantiated at 
different possible worlds. This is quite in analogy to the traditional idea of univer-
sals as being instantiated in different spacetime regions. But why should one up-
hold such a principle? A Humeanist clearly wouldn’t. Tropes as well as categorical 
structures violate trans-world property identity, since both tropes and categorical 
structures as (examples of) entities suited to constitute a proper Humean base are 
individuals. So neither tropes nor categorical structures are ever instantiated at two 
different worlds. While Esfeld’s master argument wants to tell us that Humeanism 
implies quidditism, the contrary seems to be true: Humeanism virtually contra-
dicts quidditism.
 So neither is there any special problem with the distinction between the math-
ematical and the physical for Humean SR, nor does dispositionalism fare so much 
better in rejecting quidditism. But then the question must be raised what makes 
dispositionalism attractive at all. And here, as far as I can see, we should be quite 
reluctant. For the real problem with traditional dispositionalism is that it sticks 
with pointillism, the view that the fundamental quantities in physics are defined 
at local regions of spacetime. Structuralism, as we’ve seen, should however be 
construed as fundamentally holistic and conforming to globally defined entities, 
which is just what structures are. By way of contrast, the picture of local powers is 
a hopelessly outdated and naïve metaphysical picture of physics (to say the least). 

23 David Lewis, “Ramseyan Humility”, in: David Braddon-Mitchell and Robert Nola 
(Eds.), Conceptual Analysis and Philosophical Naturalism. Cambridge, MA: MIT 
Press 2009, pp. 209–210.
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From this perspective, to combine dispositionalism with structuralism then means 
to try to combine two deeply opposing pictures, which in turn means that to pre-
vent from quiddities by introducing mystic causal powers amounts to curing one 
metaphysical exaggeration with another one.

12.4 ConCluSIon

In this paper I’ve argued for an extended version of OSR, ExtOSR, that takes 
structural properties as ontological primitives, where structural properties are un-
derstood as comprising both relational and structurally derived intrinsic properties 
(structure invariants). ExtOSR is best suited to accommodate gauge invariants and 
zero value properties. I’ve then connected this with a Humean approach, in which 
one considers categorical and global structures to constitute the Humean super-
venience base. As global entities the structures display a built-in global regularity 
and serve to understand the universality of the fundamental properties without in-
voking essences and, thus, providing us with a concept of non-essential structural 
kinds and laws.
 The Humean position of structural realism just sketched avoids mysterious 
modal powers and ungrounded dispositions – but raises new questions, too. Of 
particular interest is most certainly how dynamics and temporal change fit into 
the overall picture of non-modal and global structures. A straightforward answer 
is that the group of temporal automorphisms of the state space is of course itself a 
structure. Another straightforward but at the same time extreme option would be 
to adopt something along the lines of either a perdurantist view or a block universe 
conception and take the entire four-dimensional world structure for granted. To 
whatever extent the structural realist wants to address these questions, it’s defi-
nitely a topic that deserves further scrutinization.

Acknowledgement: Thanks to Kerry McKenzie for helpful remarks on an earlier 
draft of the paper.
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Chapter 13

paul hoyningen-huene

Santa’S gift of StruCtural realiSm

As I am not a specialist in the subject matter of Holger Lyre’s paper,1 I had to learn 
from him that there are two different approaches to structural realism in the lit-
erature, the “Worrall-type” and the “French-Ladyman-type” approach, as he calls 
them.2 The Worrall-type approach is a reaction to the difficulties that emerged 
in the defence of entity realism against various objections, especially against the 
well-known pessimistic meta-induction.3 In contrast, the French-Ladyman-type 
approach tries “to present arguments from the sciences directly, more precisely 
from the way modern science, notably physics, informs us about the ontology 
of the world”.4 Thus, it seems to be the much more straightforward approach to 
structural realism, avoiding the detour of getting involved in a rather convoluted 
discussion. In the following, I shall present two critical remarks on this approach.

13.1

In contrast to the Worrall-type approach, the French-Ladyman-type approach de-
couples itself both from the history of science and from the history of philosophy 
in the following sense. It decouples itself from the history of science in consider-
ing contemporary theories of modern physics like quantum mechanics, quantum 
field theory, general relativity theory, quantum gravity, or gauge theories in their 
present state, like in a flash exposure, and not in their historical development. This, 
in itself, is clearly not illegitimate. However, this decoupling is connected with the 
decoupling from the history of philosophy in the sense that there, the pertinent 

1 In fact, this is the kind of understatement possibly only appropriate in a talk at a UK 
university. I am absolutely ignorant of the technical details of structural realism when 
applied to real physical theories.

2 See Holger Lyre, “Humean Perspectives on Structural Realism”, in: F. Stadler (Ed.), 
The Present Situation in the Philosophy of Science. Dordrecht: Springer 2010, pp. 381–
397, p. 382; see also Holger Lyre, “Symmetrien, Strukturen, Realismus”, in: M. Esfeld 
(Ed.), Philosophie der Physik. Berlin: Suhrkamp, in press. 

3 As the starting point of the recent discussion, see John Worrall, “Structural Realism: The Best 
of Both Worlds?”, in: D. Papineau (Ed.), The Philosophy of Science. Oxford: Oxford Univer-
sity Press 1996 [1989], pp. 139–165 (originally in Dialectica 43, 1989, pp. 99–124 ).

4 Lyre, “Humean Perspectives on Structural Realism”, loc. cit., p. 382.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_13,  
© Springer Science+Business Media B.V. 2012
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philosophical question has always been whether or not some form of realist inter-
pretation of physical theories is legitimate in principle. This question gains a large 
part of its urgency from the history of science. By cutting themselves off from the 
history of science and the history of philosophy, this question disappears, and the 
structural realists can simply follow their “realist intuitions”5 when interpreting 
modern physical theories.
 With respect to following intuitions in philosophy, in many cases I am tempted 
to suggest that if someone has strong intuitions, he or she should urgently see a 
doctor.6 As this is certainly not a very popular suggestion these days, I hasten to 
add that the sort of doctors I am thinking of include Dr Wittgenstein and Dr Ryle. 
As students and younger scholars of philosophy may be ignorant of them – de-
pending on the geographical location of their education – , it may be worthwhile to 
be reminiscent of a strong philosophical motive common to both of them.7 Certain 
hypotheses may appear extremely plausible simply because they are suggested 
by our language use; thus, they appear to us as very plausible, or even inevitable, 
“ intuitions”. This plausibility should, so the doctors go on, not be taken at face 
value and should not be followed uncritically. In our case, it is less language use 
that suggests realist intuitions but more our deeply entrenched and extremely suc-
cessful everyday realism. Still, I believe that in philosophy the content of such 
intuitions should be subjected to careful logico-philosophical analysis. Roughly, 
the upshot is this: intuitions are there to be analysed, not to be trusted.8

 Thus my first objection against the French-Ladyman-style structural realism 
is that in this approach, the critical philosophical question about the legitimacy of 
a realist interpretation of (modern) physics is not at all seriously considered but 
simply dismissed. Presupposing the principal adequacy of a (structural) realist in-
terpretation of modern physics, the only remaining question is what the ontologi-
cal structure is that fits a given theory best. I know that this is a highly demanding 
question, and the technically very sophisticated attempts to answer it certainly 
deserve great respect. Nevertheless, I dislike the tendency to not even consider the 
deeper, critical philosophical question about realism in general.

5 Lyre, oral communication, October 2010.
6 This is a variation on a quote attributed to the former German chancellor Helmut 

Schmidt: If you have visions, you should see a doctor. Given the current (February 
2011) state of German political academic citation culture, I feel compelled to make 
explicit the source on which the above sentence is modeled.

7 See Gilbert Ryle, The Concept of Mind. London: Penguin 2000 [1949], and Ludwig 
Wittgenstein, Philosophical Investigations. Translated by G. E. M. Anscombe. Oxford: 
Blackwell 1958 [1953].

8 Holger assures me that the suspension of the foundational debate about realism in the 
French-Ladyman-type approach is only temporary as “you cannot do everything at the 
same time” (e-mail message, March 8th, 2011). Fine.
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13.2

Surveying the discussion of structural realism by Holger Lyre, by Michael  Esfeld9 
and others, I have been struck by the wealth of possible structures that were seen 
as candidates for a true ontology of physics. As the conference took place in De-
cember, I was reminded of wish lists one could submit to Santa Claus (and, if I 
remember correctly, in one of the earlier talks a picture of Santa Claus was pre-
sented, although in a different context). The abundance of possible structures gives 
rise to doubts whether it is really possible to identify the true (or most adequate) 
structure that would fulfil the program of structural realism. In other words, do we 
have enough constraints in order to single out the particular structure that can qual-
ify as the structure of reality underlying a given theory? Indeed, in another  paper 
Holger Lyre himself has discussed the question “Is Structural Underdetermina-
tion possible?”.10 This is a serious question indeed as, at least in the Worrall-type 
approach, structural realism is the strategy to circumvent the problem of theory 
underdetermination as it presents itself to entity realism. However, there seems 
to be a great variety of different types of structures that may be fitted to a par-
ticular theory. First of all, as the recent discussion has shown we have the choice 
between epistemic, ontic and semantic structural realism, and the second form of 
structural realism can be eliminative or non-eliminative,11 resulting in four basic 
positions. As I am not an expert in the field, I cannot really tell which of the fol-
lowing  alternatives can be combined with which of the basic positions mentioned 
(or even whether these alternatives produce more basic positions). At any rate, 
there are alternatives between positions with or without necessity, with or without 
causal powers, with or without Ramseyan humility, with or without (structurally 
derived) intrinsic properties, with or without dispositions, with or without rela-
tional properties, with or without categorical structures, with or without quiddi-
ties, and so on.12 On top of these different metaphysical possibilities, there is the 
question whether the mathematical structures themselves are sufficiently unam-
biguously determined for some given theory.13 Are we sure that a bunch of creative 
 mathematicians would not come up with many more possibilities if one could sell 
this as an attractive task to them? Will in the end, after careful analysis, only one 

9 This volume.
10 Holger Lyre, “Is Structural Unterdetermination Possible?”, in: Synthese, 180: 235–247 

(2011).
11 Lyre, “Humean Perspectives on Structural Realism”, loc. cit., pp. 382–383.
12 See Esfeld, this volume, Lyre, this volume, Lyre, “Humean Perspectives on Structural 

Realism”, loc. cit,. and the rest of the literature.
13 I am grateful to Holger for making me aware that there is a relevant difference be-

tween the metaphysical and the mathematical aspect of the sought-after structure of the 
world (e-mail message, March 8th, 2011). Fixing the latter should be easier than fixing 
the former, and a permanent lack of consensus regarding the mathematical structures 
would place the whole program in jeopardy, as Holger concedes.
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single structure fit a given theory, be it in the mathematical or the metaphysical 
sense? I doubt it. Will there be additional criteria like, for instance, simplicity, 
economy, elegance, or coherence that will lead us to those structures that truly 
represent Nature’s own structures? I strongly doubt it – why should Nature be such 
that she complies with our ideas of simplicity or elegance? Perhaps she does – but 
do we know or could we know?

Acknowledgement: I wish to thank Holger Lyre for important critical remarks on 
an earlier version of this paper, Nils Hoppe for the final polishing of the English, 
and Marcel Weber for suggesting the sexy title of this paper replacing its boring 
predecessor.
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Chapter 14

Steven FrenCh

the reSilienCe oF lawS and the ephemerality oF objeCtS: 
Can a Form oF StruCturaliSm be extended to biology?1

14.1 introduCtion

Broadly defined, structuralism urges us to shift our claims of ontological priority, 
from objects to structures.2 Historically it is a view that arose out of reflection on 
the nature of modern (that is, twentieth century) physics and in its most recent 
incarnations it is motivated by a) the attempt to capture what remains the same 
through radical theory change3 and b) the implications of quantum theory for our 
conception of physical objects.4 As broadly defined, it encompasses diverse un-
derstandings of the nature of structure and the relationship between structure and 
putative objects.5 The question I wish to consider is whether this ontological shift 
can be extended into the biological domain.

1 I’d like to thank Marcel Weber for inviting me to give the presentation on which this 
paper is based and the audience of the ESF-PSE workshop “Points of Contact between 
the Philosophy of Physics and the Philosophy of Biology” in London, December 2010, 
for the excellent questions and general discussion. I’d also like to acknowledge the 
many helpful contributions from Angelo Cei, Kerry McKenzie and especially Alirio 
Rosales on various aspects of this attempt to extend structuralism.

2 S. French and J. Ladyman, “In Defence of Ontic Structural Realism”, in: A. Bokulich 
and P. Bokulich (Eds.), Scientific Structuralism. Boston Studies in the Philosophy of 
Science: Springer 2011, pp. 25–42; J. Ladyman, “Structural Realism”, in: Stanford En-
cyclopaedia of Philosophy 2009: http://plato.stanford.edu/entries/structural-realism/.

3 J. Worrall, “Structural Realism: The Best of Both Worlds?”, in: Dialectica 43, 1989, 
pp. 99–124. Reprinted in: D. Papineau (Ed.), The Philosophy of Science, pp. 139–165. 
Oxford: Oxford University Press.

4 J. Ladyman, “What is Structural Realism?”, in: Studies in History and Philosophy of 
Science 29, 1998, pp. 409–424.

5 M. Esfeld and V. Lam, “Moderate Structural Realism about Space–time”, in: Synthese 
160, 2008, pp. 27–46; S. French and J. Ladyman, “Remodelling Structural Realism: 
Quantum Physics and the Metaphysics of Structure”, in: Synthese 136, 2003, pp. 31–
56; J. Ladyman, “Structural Realism”, loc. cit.; J. Ladyman and D. Ross, Everything 
Must Go: Metaphysics Naturalized. Oxford: Oxford University Press 2007.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_14,  
© Springer Science+Business Media B.V. 2012
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 My considerations build on a previous paper6 where I suggested that even in  
the absence of the sorts of robust laws that one finds in physics, biological models 
present a rich array of structures that the structural realist could invoke. I also touched 
on issues to do with the nature of biological objects that could perhaps motivate the 
above shift and my principal purpose in this essay is to take that discussion further by 
drawing on recent work on the heterogeneity of biological individuals.
 Let me begin, however, by briefly reviewing the issue of laws and the structur-
alist conception of them.

14.2 lawS and the laCk thereoF

As realists, how should we read off our ontological commitments from theories? 
Here’s one way: we focus on the relevant theoretical terms, such as ‘electron’, that 
feature in the successful explanations in which the theory figures, and understand such 
terms as referring to entities in the world. We conceive of these as objects that pos-
sess properties that are then inter-related via the laws of the theory. This presupposes  
commitment to what might be called an ‘object-oriented’ stance. Here’s another way 
that some have argued is more natural: we begin with the laws and (crucially, in physics 
at least) the symmetries of the theory, and regard these as representing the way the 
world is. The relevant properties are then identified in terms of the role they play in 
these laws. And … we stop there and do not make the further move of taking these 
properties to be possessed by objects. This is the structuralist way of looking at things 
and we take the laws (and symmetries) as representing the structure of the world.
 Now there is considerably more to be said, particularly about the nature and 
role of laws on this structuralist conception.7 Note first of all, that the governance 
role of laws must be revised. How this understanding of laws as governing entered 
our conception of science is an interesting historical question but, depending on 
how one views properties, it fits nicely with an object-oriented metaphysics of 
science. On our ‘second way’ above, however, there are no objects, qua metaphysi-
cally robust entities, and so there is nothing for the laws to govern. Rather, the 
relevant relation is one of dependence, in the sense that properties depend on laws, 
since their identity is given by their nomic role. Secondly, how we conceive of the 
necessity of laws must also be understood differently. On the object-oriented view, 
we imagine possible worlds containing the same objects as this, the actual world, 
and then consider what relations between these objects continue to hold in such 
worlds. Those that do, count as, or feature in, the relevant laws which can then 
be regarded as (physically) necessary in the sense of holding in all (physically) 
possible worlds. This then allows us to distinguish between laws and accidental 
generalisations. On the structuralist view, we do not have the same fundamental 

6 S. French, “Shifting to Structures in Physics and Biology: A Prophylactic for Promis-
cuous Realism”, in: Studies in History and Philosophy of Biological and Biomedical 
Sciences, 42, 2011, pp. 164–173.

7 See A. Cei and S. French, “Getting Away from Governance: Laws, Symmetries and 
Objects”, forthcoming.

188



14 The Resilience of Laws 

metaphysical base consisting of some set of objects that we can hold constant 
between worlds. That feature of laws by which we can distinguish them from ac-
cidental generalisations has to be understood differently. Thus we might think of 
this feature in terms of the modal ‘resilience’ of laws, in the sense of remaining in 
force despite changes of circumstances. On the view adopted here,8 this resilience 
is an inherent feature of laws, as elements of the structure of the world. And it is 
this resilience that gives laws their explanatory power – explaining why in every 
case, like charges repel for example. The explanation of this regularity – the rea-
son why it obtains, and why it is, in a sense, unavoidable9 – lies with the laws and, 
more profoundly perhaps, their inherently modal nature by which they have this 
resilience.
 Now I have talked of ‘resilience’ here rather than necessity because the latter 
is associated with the above idea of ‘holding in all possible worlds’. And this in 
turn is typically cashed out in terms of keeping a fundamental base of objects fixed 
in each such possible world and then showing that, given that, the laws of this, the 
actual world, will hold in all such worlds. From this perspective, the necessity of 
laws is a ‘yes/no’ matter as they either hold in all possible worlds or they do not. 
But this is not a perspective amenable to the structuralist, given its reliance on an 
object-oriented stance to begin with. Of course, there is still a tight metaphysi-
cal connection between laws and objects within the structuralist framework, but 
now it runs in the opposite direction: from laws and symmetries (as aspects of the 
structure of the world) in the fundamental base, via the relevant dependencies, to 
putative objects (such as elementary particles in physics). If the modality of the 
former is regarded as inherent, then ‘necessity’, as strictly conceived, is inapplica-
ble; hence the use of the term ‘resilience’. This then opens up some metaphysical 
space in which to consider laws in biology, or, rather, the supposed lack of them.

This feature is often highlighted as representing a major distinction between 
physics and biology and, in this context, as representing an equally major im-
pediment to the extension of structuralism from the former to the latter. But this 
claimed lack of laws, and hence the distinction, rests on a characterisation of laws 
as necessary.
 Consider, for example, Beatty’s well-known ‘Evolutionary Contingency 
Thesis’:

All generalisations about the living world: (a) are just mathematical, physical, or chemi-
cal generalisations (or deductive consequences of mathematical, physical, or chemical 

8 A. Cei and S. French, loc. cit.; but this is not the only option for the structuralist of 
course; see M. Esfeld, “The Modal Nature of Structures in Ontic Structural Realism”, 
in: International Studies in the Philosophy of Science 23, 2009, pp. 179–194; H. Lyre, 
“Humean Perspectives on Structural Realism”, in: F. Stadler (Ed.), The Present Situa-
tion in the Philosophy of Science. Springer 2010.

9 Cf. M. Lange, “Laws and Meta-Laws of Nature”, in: Studies in History and Philosophy 
of Modern Physics 38, 2007, pp. 457–481, pp.  472–473.
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 generalisations plus initial conditions) or (b) are distinctively biological, in which case they 
describe contingent outcomes of evolution.10

If (a) is true, then biological laws ‘reduce’ (in whatever sense) to physical ones 
and there are no biological laws, per se (this obviously presupposes some form of 
reductionism and needs further argument to the effect that if a reduces to b, then 
a can be eliminated). If (b) is true, then the relevant generalisations are ‘merely’ 
contingent and thus cannot be necessary. (b) is certainly supported by the cur-
rent conceptions of mutation and natural selection which imply that all biological 
regularities must be evolutionarily contingent. On that basis, they cannot express 
any natural necessity and hence cannot be laws, at least not on the standard under-
standing of the latter.11 Thus, it follows that if either (a) or (b) is true, there are no 
biological laws.
 Now one option would be to accept this thesis but insist that even though con-
tingent, the relevant biological generalisations are still not ‘mere’ accidents in the 
way that, say, the claim that I have 67 pence in my pocket is. Thus one might argue 
that biological generalisations are fundamentally evolutionary, in the sense that 
under the effects of natural selection they themselves will evolve. In this sense, 
they cannot be said to hold in all possible worlds and thus cannot be deemed 
‘necessary’. If lawhood is tied to necessity, then such generalisations cannot be 
regarded as laws. However, given their role in biological theory, they cannot be 
dismissed as mere accidents like the claim about the contents of my pocket. They 
have more modal resilience than that. Perhaps then they could be taken to be laws 
in an inherently modal sense, where this is weaker than in the case of physical 
laws but still stronger and more resilient than mere accidents. Moreover, they are 
evolutionarily contingent in Beatty’s sense. Putting these features together in the 
structuralist framework yields a form of ‘contingent structuralism’ in the sense 
that, unlike the case of physical structures where the structural realist typically 
maintains that scientific progress will lead us to the ultimate and fundamental 
structure of the world, biological structures would be temporally specific, chang-
ing in their fundamental nature under the impact of evolution.

Setting this option to one side, the standard view that there are no biological 
laws has been challenged by Mitchell.12 She argues that this standard view assumes 
that natural necessity must be modeled on, or is taken to be isomorphic to, logical 
necessity.13 But the crucial roles of laws – that they enable us to explain, predict, 
intervene and so on – can be captured without such an assumption. Indeed, what 

10 J. Beatty, “The Evolutionary Contingency Thesis”, in: G. Wolters and J. G. Lennox 
(Eds.), Concepts, Theories, and Rationality in the Biological Sciences. Pittsburgh: Uni-
versity of Pittsburgh Press 1995, pp. 45–81, pp. 46–47.

11 Ibid., p. 52.
12 S. Mitchell, Biological Complexity and Integrative Pluralism. Cambridge University 

Press 2003.
13 Ibid., p. 132.
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characterizes laws as they feature in practice on her view is a degree of ‘stability’, 
in terms of which we can construct a kind of continuum14: at one end are those reg-
ularities the conditions of which are stable across space and time; at the other, are 
the accidental generalisations and somewhere in between are where most scientific 
laws are to be found. And even though biological generalisations might be located 
further towards the ‘accidental’ end of the continuum than the physical ones, this 
does not justify their dismissal as ‘nonlaws’. Likewise Dorato, in his presentation 
at this workshop, argued that ‘Biological laws differ from physical only in degree 
of stability and universality’. Such claims clearly mesh nicely with, and can be 
pressed into the service of, the kind of structuralist view I have sketched above, 
with ‘resilience’ equated with ‘stability’ and biological regularities regarded as 
features of the (evolutionarily contingent) biological structure of the world. It is 
this latter aspect that accounts for their (relative) resilience/stability and the way 
that aspect of their nature can explain why certain biological facts obtain.

Of course, one might complain that nevertheless there are fewer such laws in 
the biological domain than in physics, say, but this hardly seems strong grounds 
for blocking the extension of structuralism. Indeed, one can follow the advocates 
of the model-theoretic approach in responding to Beatty’s arguments and look to 
the kinds of models and ‘structures’ in general that biology presents.15 Not only 
have there been some useful discussions of biological models in recent years but 
their representation in terms of certain kinds of ‘state spaces’, for example, can be 
compared to similar representations in the case of physics. Thus on the biological 
side, we have the representation of, for example, Lotka-Volterra interspecific com-
petition models in terms of state spaces or “phase portraits”,16 while in physics we 
find the representation of systems in terms of symplectic spaces, for example, as 
in the Hamiltonian formulation of classical mechanics.17

 Nevertheless, we do not typically find the other feature of physical structures 
in biology, namely symmetries. Still, one can identify what might be called simi-
larly ‘high-level’ features of biological structures. One such is Price’s Equation, 
sometimes presented as representing ‘The Algebra of Evolution’. Put simply, this 
states that

Δz = Cov (w,z) + Ew(Δz)

where, Δz = change in average value of character from one generation to next; 
Cov (w,z) = covariance between fitness w and character (action of selection) and 

14 Ibid., p. 138.
15 Again, see S. French, “Shifting to Structures in Physics and Biology: A Prophylactic 

for Promiscuous Realism”, loc. cit.
16 J. Odenbaugh, “Models”, in: S. Sarkar and A. Plutynski (Eds.), Blackwell Companion 

to the Philosophy of Biology. Blackwell Press 2008.
17 J. North, “The “Structure” of Physics: A Case Study”, in: Journal of Philosophy 106, 

2009, pp. 57–88.
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Ew(Δz) = fitness weighted average of transmission bias (difference between off-
spring and parents). Thus Price’s equation separates the change in average value 
of character into two components, one due to the action of selection, and the other 
due to the difference between offspring and parents. There is a sense in which this 
offers a kind of ‘meta-model’ that represents the structure of selection in general.18 
Although obviously not a symmetry such as those we find in physics, this can 
 nevertheless be regarded as a high-level feature of biological structure. As Rosales 
has emphasised, it is independent of objects, rests on no contingent biological as-
sumptions and represents the modal, relational structure of the evolutionary proc-
ess.19 Just as the laws and symmetries of physics ‘encode’ the relevant possibilities, 
so Price’s equation encodes how the average values of certain characters changes 
between generations in a given biological population.
 There is of course more to say here and exploring the various features of both 
‘low-level’ biological models and ‘high-level’ laws such as Price’s equations will 
help reveal the extent to which structuralism can be extended into biology. Let me 
now turn to what I see as one of the principal motivations for dropping the object-
oriented stance in philosophy of biology and adopting a form of structuralist ontol-
ogy, namely the heterogeneity of biological objects.

14.3 the Fluidity and heterogeneity oF biologiCal objeCtS

As Dupré and O’Malley note, two of the implicit assumptions of biological ontol-
ogy are that ‘life’ is organized in terms of the ‘pivotal unit’ of the individual organ-
ism and that such organisms constitute biological entities in a hierarchical man-
ner.20 Both of these assumptions can be challenged but they underpin the decom-
position of biological organisms into individuals that are commonly taken to have 
the following fundamental characteristics: possessing three-dimensional spatial 
boundaries; bearing properties, acting as a causal agent.21 Furthermore, biological 
individuals are generally taken to be countable and genetically homogenous (an 
assumption that forms part of what Dupré calls ‘genomic essentialism’).

However, there are well-known confounding cases that raise problems for this 
characterization.22 Thus consider the case of the so-called “humungous fungus”, 

18 For a useful overview, see A. Gardner, “The Price Equation”, in: Current Biology 18, 
5, 2008, pp. 198–202; also S. Okasha, Evolution and the Levels of Selection. Oxford: 
Oxford University Press 2006, §1.2.

19 See A. Rosales, “The Metaphysics of Natural Selection: A Structural Approach”, forth-
coming, presented at the Annual Conference of the BSPS 2007.

20 J. Dupré and M. O’Malley, “Metagenomics and Biological Ontology”, in: Studies in His-
tory and Philosophy of the Biological and Biomedical Science 28, 2007, pp. 834–846.

21 See R.A. Wilson, “The Biological Notion of Individual”, in: Stanford Encyclopaedia of 
Philosophy 2007: http://plato.stanford.edu/entries/biology-individual/.

22 Some of these examples are taken from the papers and discussion at the symposium on 
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or Armillaria ostoyae which, in one case, covers an area of 9.65 square km. Previ-
ously thought to grow in distinct clusters, denoting individual fungi, researchers 
established through the genetic identity of these clusters that they were in fact 
manifestations of one contiguous organism that, as one commentator noted, “…
challenges what we think of as an individual organism.”23 Or consider the case of 
the Pando trees in Utah, covering a area of 0.4 square km, all determined – again 
by virtue of having identical genetic markers – to be a clonal colony of a single 
‘Quaking Aspen’. In both cases, obvious problems to do with counting arise (how 
many ‘trees’ are there?) and at the very least force a liberal notion of biological 
individual to be adopted.
 More acute problems for this notion arise with examples of symbiotes, such 
as that of a coral reef, which consists not just of the polyp plus calcite deposits  
but also zooanthellae algae that are required for photosynthesis. Another example 
is that of the Hawaiian bobtail squid, whose bioluminescence (evolved, presum-
ably, as a defence mechanism against predators who hunt by observing shadows 
and decreases in overhead lighting levels) is due to bacteria that the squid ingests 
at night and which are then vented at the break of day, when the squid is hidden 
and inactive. The presence of the bacteria confers an evolutionary advantage on 
the squid and thus render the squid the individual that it is, from the evolutionary 
perspective, but they are, of course, not genetically the same as the squid, nor do 
they remain spatially contiguous with it.
 Now there are two broad responses one can make to these kinds of examples: 
monistic and pluralistic, where the former attempts to construct a unitary account 
of biological individuals that can cover these cases and the latter abandons any 
such attempt and insists that there is no one such framework of biological individu-
ality.

Thus, one option is to retain a form of monism while abandoning the genetic 
homogeneity assumption of biological individuality by shifting to a ‘policing’ 
based account. Thus, Pradeu offers an immunological approach to individuation 
which, he claims, moves away from the self/non-self distinction and is based on 
strong molecular discontinuity in antigenic patterns. A biological organism is then 
understood as a set of interconnected heterogeneous constituents, interacting with 
immune receptors.24 This is an interesting line to take but concerns have been 
raised over its extension to plants, for example. Here cases can be given in which 
genetic heterogeneity is not appropriately policed.25 One might also consider the 

‘Heterogeneous Individuals’, at the PSA 2010, Montreal
23 USDA Forest Service, “Humongous Fungus a New Kind of Individual”, in: Science 

Daily 27, March 2003.
24 T. Pradeu, “What is an Organism? An Immunological Answer”, forthcoming.
25 E. Clarke, “Individuals and the Homogeneity Assumption”, forthcoming, paper pre-

sented at the PSA 2010.
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example of insect super-colonies where there is no conflict between colonies,26 
which revives the above issue of spatially extended individuals again.

Alternatively, one might try to maintain monism by adopting Wilson’s ‘tripar-
tite account’, according to which an organism is (a) a living agent, (b) that belongs 
to a reproductive lineage, some of whose members have the potential to possess 
an intergenerational life cycle, and (c) which has minimal functional autonomy.27  
Underlying this view is the assumption that organisms and the lineages they form 
have stable spatial and temporal boundaries but recent commentators have suggested 
if we pay attention to the microbial world as well as the macroscopic examples we 
are used to discussing, then rather than a ‘tree’ of life composed of such lineages, 
we have a ‘web or network of life’ in which the idea of stable and well-defined 
lineages begins to break down. Again, the example of symbiosis and indeed its 
pervasiveness suggests that lineages/individuals are fluid and ephemeral.28

Perhaps then one might be tempted by a pluralistic approach, as suggested 
by Dupré and O’Malley, who urge a shift from individual organismal lineages 
to the “overall evolutionary process in which diverse and diversifying metagen-
omics underlie the differentiation of interactions within evolving and diverging 
ecosystems.”29 Here they take the notion of the autonomous individual and argue 
that if it is applied consistently across the biological domain it actually breaks 
down, and rather than thinking of biological individuals in this way we should 
regard them as the product of multiple collaborations:

To the extent that … individual autonomy requires just an individual life or life history, 
then it surely applies much more broadly than is generally intended by biological theorists. 
Countless non-cellular entities have individual life-histories, which they achieve through 
contributing to the lives and life-histories of the larger entities in which they collaborate, 
and this collaboration constitutes their claim to life. But – and this is our central point – no 
more and no less could be said of the claims to individual life histories of paradigmatic 
organisms such as animals or plants; unless, that is, we think of these as the collaborative 
focus of communities of entities from many different reproductive lineages.30

Such passages mesh nicely with Dupré’s ‘Promiscuous Realism’, which holds that 
“there are countless legitimate, objectively grounded ways of classifying objects in 
the world.”31 and which underpins a metaphysics of ‘radical ontological  pluralism’. 

26 See ‘Ant mega-colony takes over world’; BBC, July 2009.
27 R. A. Wilson, loc. cit.
28 See for example, F. Bouchard, “Symbiosis, Lateral Function Transfer and the (Many) 

Saplings of Life”, in: Biol Philos 25, 2010, pp. 623–641.
29 J. Dupré and M. O’Malley, “Metagenomics and Biological Ontology”, loc. cit.
30 J. Dupré and M. O’Malley, “Varieties of Living Things: Life at the Intersection of Line-

age and Metabolism”, in: Philosophy and Theory in Biology 1, 2009, pp. 1–25, p. 15.
31 J. Dupré, The Disorder of Things: Metaphysical Foundations of the Disunity of Sci-

ence, Cambridge MA: Harvard University Press 1993, p. 18.
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In the metagenomic context it can be extended from kinds and classifications to 
objects and individuals, thus forming what we might call ‘Promiscuous Individu-
alism’: there are countless, objectively grounded ways of individuating or, more 
generally, delineating biological objects and individuals. Here the obvious worry 
has to do with the extent to which we can legitimately call this a form of realism: if 
an object-oriented stance is assumed – as it typically is – so that biological theories 
are taken to represent or refer to biological objects, then pluralism will lead at best 
to a form of contextual reference or at worst to a kind of indeterminacy that may 
be incompatible with realism as typically understood.
 Alternatively, we may eschew both monistic and pluralistic options, while 
retaining the above insights that power the latter and adopt the structuralist 
line. According to this, there are no biological objects (as metaphysically sub-
stantive entities), all there is, are biological structures, inter-related in various 
ways and causally informed. Putative objects – genes, individual organisms 
etc. – should be seen as dependent upon the appropriate structures (‘nodes’) 
and from the realist perspective, eliminable, or, at best, regarded as second-
ary in ontological priority. This then accommodates the ‘fluidity’ and ‘ephem-
erality’ of biological organisms, as evidence in the example of symbiotes. 
Furthermore, from this perspective, biological individuals are nothing more 
than abstractions from the more fundamental biological structure,32 or can be 
viewed as no more than “… temporarily stable nexuses in the flow of upward 
and downward causal interaction”.33 This still  allows for there to be appropri-
ate ‘units of selection’, but such units are not to be conceptualised in object 
oriented terms. In particular, we can accommodate the view that,

… a gene is part of the genome that is a target for external (that is, cellular) manipulation of 
genome behaviour and, at the same time, carries resources through which the genome can 
influence processes in the cell more broadly.34

There are, of course, numerous issues to be tackled within this framework. Does 
the view of a biological object as a ‘temporarily stable nexus’ imply the elimina-
tion of objects (as elements in our metaphysics of biology – I am not suggesting 
the elimination of genes or organisms as phenomenologically grasped35) or can we 
hold a ‘thin’ notion of object, in the sense of one whose individuality is grounded 

32 Cf. J. Dupré and M. O’Malley, “Metagenomics and Biological Ontology”, loc. cit.
33 Ibid., p. 842.
34 Ibid.
35 Can we envisage biological entities – squids, mushrooms, elephants even – that are not 

nexuses in biological structures? Given the evolutionary contingency noted earlier, it 
is hard to see how that possibility could arise in biological terms. Of course, one could 
imagine a possible world in which a squid just comes into being, between the stars, say, 
but just as in the case of the ‘sparse’ worlds containing ‘lonely’ objects (e.g. a single 
electron) so beloved by metaphysicians, one might be inclined to regard with some 
scepticism the claim that such worlds constitute genuine possibilities.
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in structural terms?36 Is the temporary stability of such objects sufficient for fit-
ness to be associated with it? And can we articulate appropriate units of selection 
in such terms? Dupré and O’Malley suggest an ontology of processes, but can this 
be reduced to a form of structuralism if such processes are understood as temporal 
and evolving structures? And finally, if biological objects are viewed as ‘… tempo-
rarily stable nexuses in the flow of upward and downward causal interaction’, what 
sense can we make of causation in the structuralist context?

These are all interesting issues (at least to me!) but here I shall briefly consider 
only the last.

14.4 CauSation in Biology

One of the foremost concerns about structuralism as it has been expressed in the 
context of physics is that the reliance on mathematical structures to represent 
physical structure has blurred the distinction between the two. The obvious appeal 
to causal power as a way of re-establishing the ontological distinction37 has run 
into the objections that the ‘seat’ of such power rests with the objects that structur-
alism eschews38 and that difficulties arise when trying to articulate causal relation-
ships within a structuralist framework.39 Although there are moves available to the 
structuralist to respond to these concerns40 – so, for example, one might insist that 
the ‘seat’ of causal power is the structure itself 41 – in the context of physics one can 
always fall back on the Russellian line that here there is little scope for any robust 
notion of causation in the first place.42

When it comes to biology, however, such a fall-back move is not so straightfor-
ward. In a useful review, Okasha argues that distinctive issues arise here that have 
no parallel in the physical sciences.43 Thus he argues that Darwinian explanations 
are causal, but at the population-level, rather than singular. Insofar as natural selec-
tion is ‘blind to the future’ and genetic mutation is undirected, these  explanations 

36 See the discussion in S. French and J. Ladyman, “In Defence of Ontic Structural Real-
ism”, loc. cit.

37 S. French and J. Ladyman, “Remodelling Structural Realism: Quantum Physics and 
the Metaphysics of Structure”, loc. cit.

38 A. Chakravartty, “The Structuralist Conception of Objects”, in: Philosophy of Science 
70, 2003, pp. 867–878.

39 S. Psillos, “The Structure, the Whole Structure and Nothing But the Structure?” in: 
Philosophy of Science 73, 2006, pp. 560–570.

40 S. French, “Structure as a Weapon of the Realist”, in: Proceedings of the Aristotelian 
Society, 2006, pp. 1–19; S. French and J. Ladyman, “In Defence of Ontic Structural 
Realism”, loc. cit.

41 S. French, “Structure as a Weapon of the Realist”, loc. cit.
42 J. Ladyman and D. Ross, Everything Must Go: Metaphysics Naturalized, loc. cit.
43 S. Okasha, “Causation in Biology”, in: H. Beebee, C. Hitchcock and P. Menzies (Eds.), 

The Oxford Handbook of Causation. Oxford University Press 2009, pp. 707–725.
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certainly can be taken to have pushed teleology out of biology.44 When it comes 
to genetics, matters are more nuanced. Here the distinction between singular and 
population-level causality is crucial as heritability analyses pertain only to the 
latter. In particular, such analyses “… tell us nothing about individuals.”45 Fur-
thermore, the idea of the gene as sole causal locus has been undermined by the 
implicit relativity to background conditions.46 Further challenges to the notion of 
the gene as the seat of causal power have also been posed by proponents of De-
velopmental Systems Theory who advocate a form of ‘causal democracy’ (which 
brings to mind the ‘nuclear democracy’ of 1960s elementary particle physics). 
Here Okasha adopts a more cautious line, suggesting that genes might still play 
the more dominant causal role, although this is something that will be determined 
by further research.47 And of course, even if that is granted, the structuralist can 
apply well-known pressure to the concept of the ‘gene’ and argue that even if this 
does play the dominant role in biological causation, it should not be understood in 
object-oriented terms.48

Again there is more to say here but the point I wish to emphasise is that talk of 
causal powers and associated causal loci per se does not represent a major obstacle 
to the structuralist. Even if one were entirely comfortable with such talk, one could 
follow Dupré and O’Malley and insist that these causal powers are derived from 
the interactions of individual components and are controlled and coordinated by 
the causal capacities of the ‘metaorganism’. This sort of account seems entirely 
amenable to a structuralist metaphysics. Alternatively, one could acknowledge that 
causation is a kind of ‘cluster’ concept, under whose umbrella we find features 
such as the transmission of conserved quantities, temporal asymmetry, manipula-
bility, being associated with certain kinds of counterfactuals and so on. Even at the 
level of the ‘everyday’ this cluster may start to pull apart under the force of coun-
terexamples. And certainly in scientific domains only certain of these features, at 
best, apply: understanding causation in terms of the transmission of mass-energy, 
for example, may seem plausible in the context of Newtonian mechanics but it 
breaks down in General Relativity, where conservation of mass-energy does not 
apply. Likewise, establishing temporal asymmetry is famously problematic in the 
context of physics and here we can perhaps, at best, only say that a very ‘thin’ no-
tion of causation holds, understood in terms of the relevant dependencies. Thus 
we may talk, loosely, of one charge ‘causing’ the acceleration of another charge, 
but what does all the work in understanding this relationship is the relevant law 
and from the structuralist perspective, it is that that is metaphysically basic and in 
terms of which the property of charge must be understood. It is the law – in this 

44 Ibid., pp. 719–720.
45 Ibid., p. 722.
46 Ibid., p. 721.
47 Ibid., p. 724.
48 See S. French, “Shifting to Structures in Physics and Biology: A Prophylactic for Pro-

miscuous Realism”, loc. cit.
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case and in the classical context, Coulomb’s Law – that encodes the relevant de-
pendencies that appear to hold between the instantiations of the property and that, 
at the phenomenological level, we loosely refer to as causal.

But once we move out of that domain, the possibility arises of ‘thickening’ 
our concept of causation in various ways. We might, for example, insist that for 
there to be causation there must be, in addition to those conditions corresponding 
to what are designated the ‘cause’ and the ‘effect’, a process connecting these 
conditions, where this actual process shares those features with the process that 
would have unfolded under ideal, ‘stripped down’ circumstances in which nothing 
else was happening and hence there could be no interference.49 Such processes can 
be termed ‘mechanisms’50 and here one might draw upon mechanism based ac-
counts of causation and explanation.51 In particular, if such accounts were to drop 
or downplay any commitment to an object-oriented stance, possible connections 
can be established with various forms of structuralism. Thus McKay-Illari and 
Williamson52 have noted that most characterisations of mechanisms can be broken 
down into two features: one that says something about what the component parts 
of the mechanism are, and another that says something about the activities of these 
parts. They advocate an interesting dual ontology with activities as well as entities 
– of which the parts of mechanisms are composed – in the fundamental base. Here 
consideration of putative asymmetries between activities and entities53 mirrors to a 
considerable degree consideration of, again putative, asymmetries between objects 
and relations within the structuralist context. Indeed, a useful comparison could 
be drawn between McKay-Illari and Williamson’s insistence that activities are not 
reducible to entities and that one needs both in one’s ontology and certain forms 
of ‘moderate’ structural realism that set objects and relations ontologically on a 
par.54 Or one could press further and argue that the kinds of examples that are typi-
cally given to establish the ontological fundamentality of entities are either ‘toy’ 
examples that do not match actual science or simply break down under further ex-
amination. Certainly, as I have sketched here, biological ‘entities’ seem to be much 
more fluid and ephemeral than might be initially supposed and there are grounds 
for shifting the ontological focus to the relevant activities and processes. Precisely 

49 N. Hall, “Causation and the Sciences”, in: S. French and J. Saatsi (Eds.), The Con-
tinuum Companion to the Philosophy of Science. Continuum Press 2011, pp. 96–199, 
p. 115.

50 Ibid.
51 See, for example, P. Machamer, L. Darden and C. Craver, “Thinking About Mecha-

nisms”, in: Philosophy of Science 67, 2000, pp. 1–25; for a useful critique, see S. Psil-
los, “The Idea of Mechanism”, in: P. McKay-Illari, F. Russo and J. Williamson (Eds.),  
Causality in the Sciences. University of Oxford Press 2011.

52 P. McKay-Illari and J. Williamson, “In Defence of Activities”, forthcoming.
53 Ibid.
54 M. Esfeld and V. Lam, loc. cit.
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how these might be understood from the structuralist perspective requires further 
work, but there are clearly potentially fruitful avenues to explore.

14.5 ConCluSion

It is a contingent fact of the recent history of the philosophy of science that struc-
turalism in general, and the more well-known forms of structural realism in par-
ticular, have been developed using examples from physics. This has shaped these 
accounts in various ways but it would be a mistake to think that because of that, 
forms of structuralism could not be articulated within the biological context. The 
apparent obstacle of the lack of laws crumbles away under the appreciation that 
even in physics the standard connection between lawhood and necessity is not well-
grounded. Adopting an understanding of laws in terms of their modal resilience 
allows one to accept certain biological regularities as law-like and there are models 
a-plenty to form the basis for a structuralist framework. Furthermore, the central 
claim of this paper is that there are good reasons for shifting one’s ontological 
focus away from biological objects and towards something that is more fluid and 
contextual and, ultimately, structurally grounded. Causality can then be ‘de-seated’ 
and possible connections open up with activity-based accounts of biological proc-
esses. Certainly I would argue that the realist need not be promiscuous in this 
context, but can, and should, be a ‘staid’ structuralist instead. More importantly, 
given the theme of the workshop and this volume, this offers a useful framework 
for understanding the biology-physics inter-relationship in general.
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Chapter 15

MiChela MassiMi

Natural KiNds, CoNCeptual ChaNge, aNd the duCK-Bill 
platypus: laporte oN iNCoMMeNsuraBility

15.1 iNtroduCtioN

In Chap. 5 of Natural Kinds and Conceptual Change1 Joseph LaPorte defends 
the view that the meaning-change of natural-kind terms does not open the door to 
Kuhnian incommensurability and is compatible with scientific progress. LaPorte’s 
strategy consists in disentangling meaning-change from theory-change, by con-
trast with proponents of the “‘incommensurability thesis’, who insist that concep-
tual change is marked by linguistic change”.2

 On LaPorte’s view – as knowledge advances – kind terms, whose use was 
vague, get precisified as opposed to undergoing a conceptual shift that can make 
them vulnerable to incommensurability. He makes his case by arguing, on the one 
hand, that the descriptive theory of reference (traditionally considered the culprit 
of conceptual instability associated with meaning-change), does not necessarily 
lead to incommensurability; and, on the other hand, by accusing the Putnam-Kripke 
causal theory of reference (traditionally considered a weapon in the realist’s arsenal 
against conceptual instability) of being useless in blocking incommensurability.
 LaPorte endorses a descriptive theory of reference, according to which the refer-
ence of any kind term is fixed by a cluster of descriptions, including both essential 
properties (say, H

2
O for the term ‘water’, or ‘the clade that stems from ancestral group 

G’ for the term ‘Mammalia’), and superficial properties (say, ‘colourless’ for ‘water’, 
and ‘live-bearing’ for ‘Mammalia’). Natural-kind terms get precisified whenever ce-
teris paribus – as knowledge progresses – one or more of either the essential or the 
superficial properties are dropped, added, or modified. Interestingly enough, LaPorte 
couples the descriptive theory of reference with a defence of the rigidity de jure of 
kind terms. Descriptions, albeit not having the same Kripkean status of names, are 
nonetheless rigid designators de jure, i.e. they rigidly designate by stipulation.
 In Sect. 15.2, I review LaPorte’s position. I argue that precisification – the way 
LaPorte defines it – does not cut any ice against Kuhn’s incommensurability for 
two main reasons. First, to make a strong case for why precisification of kind terms 

1 Joseph LaPorte, Natural Kinds and Conceptual Change. Cambridge: Cambridge 
University Press 2004.

2 LaPorte, ibid., p. 112.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_15,  
© Springer Science+Business Media B.V. 2012
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differs from conceptual shift, LaPorte would need to make a principled distinction 
between descriptions capturing essential properties and descriptions capturing super-
ficial properties. In the absence of such principled distinction, LaPorte’s argument 
for precisification averting conceptual instability does not go through (Sect. 15.3). 
Second, far from addressing incommensurability, precisification violates a key 
Kuhnian requirement for translatability between scientific lexicons (Sect. 15.4). I 
conclude the paper with a brief report on the history of the duck-billed platypus as 
a biological counterexample to precisification (Sect. 15.5).

15.2 laporte oN MeaNiNg-ChaNge, iNCoMMeNsuraBility, 
aNd the rigidity of KiNd terMs

Kuhn’s incommensurability has traditionally been regarded as challenging scientif-
ic progress. If main theoretical terms undergo a substantial change of meaning be-
fore and after a scientific revolution (say, “planet” before and after the Copernican 
revolution, or “species” before and after Darwin), to the point that there is no 
reference continuity across the revolutionary divide, how can the transition from 
the old to the new paradigm be considered scientific progress? It is this claim that 
LaPorte addresses in Chap. 5 of Natural Kinds and Conceptual Change, where he 
first addresses the issue of whether (1) the descriptive theory of reference is effec-
tively responsible for the conceptual instability at work behind incommensurabil-
ity, and (2) whether the Putnam-Kripke causal theory of reference is a solution to 
it. He gives negative answers to both questions. In the second half of the chapter, 
he advances the claim that linguistic change of the type he defends is in fact com-
patible with scientific progress and does not open the door to incommensurability. 
Let us briefly review each of these points.
 LaPorte’s attention concentrates on “conceptual” or “linguistic” incommensu-
rability, famously championed by the late Kuhn3 and intended as a form of untrans-
latability between scientific lexicons. This version of incommensurability affects 
kind terms undergoing meaning-change during a scientific revolution, and as such 
undermines referential continuity across theory-change. Traditionally, the culprit 
has been identified in the descriptive theory of reference, whereby the reference of 
a kind term is fixed by the descriptions associated with the term, so that when they 
change, so does also the reference of the term. It is this scenario that the causal 
theory of reference is meant to block.

3 Thomas S. Kuhn, “The Road Since Structure”, in: A. Fine, M. Forbes, and L. Wessels 
(Eds.), PSA 1990: Proceedings of the 1990 Biennial Meeting of the Philosophy of Sci-
ence Association, vol. 2 (East Lansing, MI: Philosophy of Science Association 1991), 
3–13. Reprinted in Kuhn, The Road since Structure. Philosophical Essays, 1970–1993, 
with an Autobiographical Interview. Chicago: University of Chicago Press 2000, pp. 
90–105.
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 But LaPorte warns us that “there are different versions of the description the-
ory. Some lead to more radical changes in meaning and reference than others”.4 
While Feyerabend’s view implies some radical changes of meaning and reference, 
other versions of the theory (such as Kuhn’s) lead to milder meaning-change that 
do not necessarily open the door to conceptual instability and reference disconti-
nuity. LaPorte subscribes to the latter on the ground that it is compatible with his 
analysis of vague kind terms offered in Chaps. 3 and 4.
 In these previous chapters, LaPorte defends the view that our use of kind 
terms is often vague and terms get precisified as knowledge grows. Precisification 
is different from the conceptual/linguistic shift at work in the incommensurability 
thesis. The conceptual/linguistic change responsible for incommensurability pre-
supposes a clear (non-vague) use of kind terms before and after a revolution: since 
kind terms were (non-vaguely) used to refer to different things before and after a 
revolution, there is no reference continuity. On the other hand, precisification pre-
supposes that our use of kind terms is vague: any kind term has an extension, an 
anti-extension and a boundary, whereby, as knowledge progresses, we learn how to 
refine the boundary without substantially modifying the extension of the old kind 
term. LaPorte gives the example of monotremes.5 Before the discovery of platy-
pus and echidna, speakers used to call ‘mammal’ whatever satisfied a cluster of 
descriptions including ‘live-bearing’, ‘lactating’, ‘hairy’ and so on. The anti-exten-
sion of ‘mammal’ consisted of whatever did not satisfy any of these descriptions. 
And the boundary included cases like the platypus and echidna, which although 
satisfying “enough of the descriptions” (or at least, “enough of the most important 
descriptions”) nonetheless failed to satisfy others (such as “live- bearing”). In those 
cases, according to LaPorte, speakers took a decision to consider monotremes as 
mammals by simply dropping some of the previous descriptions, and retaining the 
rest of them. Precisification of vague terms always implies a decision, or better a 

4 LaPorte, loc. cit., p. 115.
5 “… proponents of the cluster-of-descriptions theory of reference…are not committed 

to any such drastic shifts of reference. Kuhn suggests such a theory in various places. 
Consider his example ‘mammal’. On the cluster theory, speakers from centuries past 
would have referred by ‘mammal’ to whatever satisfies enough of the descriptions spe-
akers associated with mammal, or enough of the most important descriptions. These 
would have included the descriptions ‘live-bearing’, ‘lactating’, ‘hairy’, and so on. 
Whatever possessed all of the descriptions clearly belonged to the extension, and wha-
tever possessed none of the descriptions clearly failed to belong to the extension. But 
as Kuhn indicates, a group of organisms could meet some of the descriptions and not 
others: this allows for the discovery of borderline cases, too, which reveal vagueness 
in the term ‘mammal’ (…) the description ‘live-bearing’ was associated with the term 
‘mammal’ before the discovery of the monotremes, but not after. But this is a gentler 
change of meaning than the one that Feyerabend recognises. Because the monotremes 
satisfy some but not all of the descriptions formerly associated with ‘mammal’, they 
were neither clearly in nor clearly out of the extension before speakers made a decision 
to call them ‘mammals’. There is, therefore, some needed conceptual continuity, as 
well as change” (Ibid., pp. 116–7).
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stipulation, on behalf of speakers to drop, add, or modify one or more of the de-
scriptions associated with kind terms. Interestingly enough, in LaPorte’s account, 
this element of stipulation is meant to guarantee the rigidity of kind terms.
 In Chap. 2, LaPorte defends Kripke’s account of names as rigid designators, 
and goes beyond Kripke in offering a generous interpretation of rigidity, whereby 
kind terms rigidly designate kinds (including artificial kinds): they designate the 
same kind in all possible worlds. But kind terms do not rigidly designate their ex-
tensions, which can vary from world to world.6 Under the Putnam-Kripke account, 
rigidity accomplishes another important job, namely that of getting a term hooked 
up to its referent, and putting meanings “out of the head”. But LaPorte takes dis-
tance from Putnam and claims that this is instead the role of causal baptism, and 
Putnam conflated the roles of rigidity and causal baptism.7 This is an important 
aspect of LaPorte’s take on the Kripke-Putnam theory of reference: by decoupling 
rigidity from the causal theory of reference, he can go on to defend the view that 
kind terms are rigid designators while at the same time defending the descriptive 
theory of reference. But how can LaPorte defend the rigidity of descriptions such 
as ‘H

2
O’ or ‘the clade that stems from ancestral group G’ or ‘element with atomic 

number 79’? LaPorte claims that such descriptions are rigid de jure, not de facto. 
Namely, they are rigid by stipulation.8

 A consequence of decoupling rigidity from the causal theory of reference (and 
endorsing descriptivism instead), is that – as meaning changes – the sentences 
where kind terms feature may be true at a given time and false at other times. The 
rigidity de jure of kind terms can guarantee that the term is still referring to the 
same abstract kind, although both its extension and the truth-maker of the sentence 
where the term features may change.
 This is an important point because LaPorte can claim to defend some form 
of scientific progress, despite meaning-change. As knowledge advances, although 
later speakers accept as true different sentences from those accepted by earlier 
speakers, they can still communicate with each other because the use of the term 
was vague and the truth-makers of the sentences, where the term appeared, inde-
terminate.
 Imagine a speaker before Darwin that denies that “New species arise by evolu-
tion” without distinguishing between Darwin-species and Hopkins-species, where 
Hopkins-species denote special creation species. According to LaPorte, although 
there is no accumulation of true sentences across the revolutionary divide, there 
is nonetheless accumulation of knowledge: “This speaker has progressed in un-
derstanding both what she formerly called ‘species’ and also what she now calls 

6 Ibid., p. 38.
7 Ibid., p. 43.
8 Ibid., p. 47.
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‘species’”.9 Precisification of kind terms with open texture10 amounts then to a 
form of progress by accumulation of knowledge, not of sentences.
 Putnam’s causal theory of reference, on the other hand, is useless in blocking 
incommensurability because the causal baptism is performed by “speakers whose 
conceptual development is not yet sophisticated enough to allow the speakers to 
coin a term in such a way as to preclude the possibility of open texture, or vague 
application not yet recognised”.11 To sum up, LaPorte argues that Kuhn is right 
and Putnam wrong: meanings do change over time. The question is to what extent 
meaning-change amounts to precisification and whether precisification can avert 
conceptual instability. To defend this claim, LaPorte must show that

(i) His view of meaning-change clearly separates precisification from con-
ceptual change;

(ii) And, it does not open the door to conceptual instability of the type at work 
behind Kuhnian incommensurability.

 In this paper, I argue that LaPorte is not successful in showing either (i) or 
(ii). In particular, I argue that for LaPorte to make a strong case for why meaning-
change does not open the door to conceptual instability of the type at work behind 
incommensurability (even in the Kuhnian, rather than Feyerabendian version) he 
would need stronger realist assumptions. He would need the very same Putnam’s 
causal theory of reference that he disavows in favour of descriptivism. In Sect. 15.3,  
I address point (i) by claiming that without stronger realist assumptions, the dif-
ference between precisification and conceptual change becomes only a matter of 
degree. In Sect. 15.4, I argue against (ii): precisification is not sufficient to block 
conceptual instability of the Kuhnian type because, if anything, it violates a key 
Kuhnian requirement for translatability of kind terms. Section 15.5 concludes the 
essay by revisiting the story of the platypus. Far from being a case of precisifica-
tion, I show how the complex process that led to the identification of the duck-bill 
platypus as an egg-laying mammal amounted to a genuine case of conceptual shift 
of the Kuhnian type.

15.3 Why laporte’s VieW does Not Cut aNy iCe agaiNst 
KuhN’s iNCoMMeNsuraBility. part i: 

preCisifiCatioN Versus CoNCeptual ChaNge

As we saw above, LaPorte’s defence of scientific progress is based on the idea that 
meaning-change of natural-kind terms implies the precisification (as opposed to 
conceptual shift) of terms whose use was vague, or better, terms with open  texture. 

9 Ibid., p. 132.
10 LaPorte defines open texture as follows: “Hidden vagueness in a word’s application 

that is later exposed like this with more information is known as open texture” (Ibid., 
p. 97).

11 Ibid., p. 118.
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Along lines similar to Bird,12 I show that it is difficult to distinguish the precisifica-
tion of a kind term from conceptual shift involving a change to its extension. In 
other words, meaning-change does not tell us that a kind term has been precisified 
any more than it has undergone a conceptual shift.
 Consider again LaPorte’s example of ‘mammal’. He quotes Kuhn to make the 
point that the discovery of monotremes forced the precifisication of the kind term 
‘mammal’, whereby some of the descriptions previously associated with the term 
(such as ‘live-bearing’) were dropped and replaced with others (i.e. ‘egg-laying’). 
The use of the term ‘mammal’ was therefore vague before monotremes were en-
countered and scientists decided to include them as a borderline case in the exten-
sion of the term by refining some of the descriptions associated with it. But – on 
LaPorte’s view – scientists might have decided otherwise, namely they might have 
decided to leave monotremes out of the extension of the term ‘mammal’ and they 
would not have been wrong in doing that, any more than we are right in having 
included them. After all, there was an element of stipulation in the precisification 
of the kind term ‘mammal’, as opposed to scientists discovering the true essence 
of mammals. This is what makes the kind term ‘mammal’ rigid de jure. As a result, 
the inclusion of monotremes in the extension of ‘mammal’ does not amount to 
conceptual shift of the Kuhnian type because it involved only peripheral changes 
to the boundary of the term, and not to its extension or anti-extension.
 To make a strong case for why the inclusion of monotremes in the extension of 
‘mammal’ is a case of precisification as opposed to conceptual shift, LaPorte needs 
a clear-cut definition of what the extension, anti-extension and boundary of this 
kind term, respectively, are. One could try to argue that perhaps the description 
‘live-bearing’ was more peripheral to the term ‘mammal’, than other descriptions 
associated with the term, so that its removal amounted to a case of precisification, 
while the removal of other more essential descriptions amounted to a case of con-
ceptual shift. For example, one could try to argue that the description ‘clade that 
stems from ancestral group G’ is more central to the term ‘mammal’ than superfi-
cial descriptions such as ‘live-bearing’, ‘lactating’ or ‘hairy’.
 But no such line of argument is open to LaPorte. To answer along these lines, 
one would need to distinguish between descriptions that capture the essential – 
genealogical or microstructural (depending on whether we are dealing with bio-
logical or chemical kinds) – properties of a kind, and descriptions that capture 
superficial observable properties, which is what the Putnam-Kripke theory does. 
Recall Putnam’s13 Twin Earth’s story about water being XYZ in Twin Earth despite 

12 Alexander Bird, “Discovering the essences of natural kinds”, in: Helen Beebee and Ni-
gel Sabbarton-Leary (Eds.), The Semantics and Metaphysics of Natural Kinds. Rout-
ledge 2009, pp. 125–136.

13 Hilary Putnam, “The meaning of ‘meaning’ ”, in: Keith Gunderson (Ed.), “Language, 
mind and knowledge”, Minnesota Studies in the Philosophy of Science 7. Minneapolis: 
University of Minnesota Press 1975. Reprinted in Hilary Putnam, Mind, language and 
reality. Philosophical papers, Vol. 2. Cambridge: Cambridge University Press 1975, 
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having exactly all the same superficial characteristics of our water. By identifying 
the ‘meaning’ of meaning of natural-kind terms with the reference and its essen-
tial properties empirically discovered, and by relegating superficial properties to 
the stereotype of the term, Putnam’s causal theory of reference would provide just 
what is needed to distinguish clearly among the extension, anti-extension, and 
boundary of any kind term.
 But LaPorte cannot avail himself of the above line of argument, since he con-
cedes that descriptions capturing the essential (microstructural or genealogical) 
properties and those capturing superficial ones are on a par: we cannot privilege 
the former on the ground that they pick out the essence of a kind. LaPorte defends 
this point profusely in Chaps. 3 and 4. For biological kind terms, he appeals to the 
existence of competing biological schools (evolutionary taxonomy and cladistics), 
and stresses that neither species nor higher taxa have essences captured by either 
classificatory method. For chemical kind terms, he revisits Putnam’s example of 
the kind term ‘jade’ and argues that it provides a historical counterexample to 
Putnam.14 Thus, LaPorte cannot appeal to a possible distinction between super-
ficial and essential properties to draw a clear-cut distinction between extension, 
anti-extension, and boundary.
 Here is a more promising line of argument that LaPorte might consider. If the 
extension of a term is given by a cluster of descriptions (including superficial and 
essential ones), then the anti-extension of the term includes whatever does not 
satisfy any of those descriptions; and the boundary is presumably the peripheral 
area of the extension at the intersection between extension and anti-extension, and 
partially overlapping with both. In the boundary, we would find items that share 
some of the descriptions associated with the extension but not others.
 Presumably, precisification occurs when the boundary area overlaps as much 
as possible with the extension of the old kind term. Should the boundary area over-
laps mostly with the anti-extension, i.e. should the items falling into the boundary 
area satisfy most of the descriptions associated with the anti-extension rather than 
with the extension, then including those items into the extension of the old kind 
term would not amount to a case of precisification, but instead to a case of concep-
tual shift. Presumably, on this view, conceptual shift would occur when the bound-
ary area overlaps as much as possible with the anti-extension of the old kind term. 
Given the cluster of descriptions theory of reference, and given that superficial and 
essential descriptions are on a par, adding or dropping one or more of the descrip-
tions becomes then a matter of degree: precisification and conceptual shift are the 
two ends of a continuum. So, against (i), precisification and conceptual shift are 
not clearly separated.

pp. 215–71.
14 See LaPorte, loc. cit., p. 100. For a criticism of LaPorte’s history of jade, see Ian Ha-

cking, “The contingencies of ambiguity”, in: Analysis 67, 2007, pp. 269–77.
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 Although there is no principled distinction between precisification and 
 conceptual shift, one can still claim that adding monotremes to the extension of 
the term ‘mammal’ would amount to precisification, because the new kind term 
‘mammal’ overlaps as much as possible with the extension of the old term and it 
simply includes few new referents that the old term did not include. But this mild 
definition of precisification does not cut any ice against Kuhn’s incommensurabil-
ity because, if anything, precisification violates a key Kuhnian requirement, the no 
overlap principle, to which I now turn.

15.4 Why laporte’s VieW does Not Cut aNy iCe agaiNst KuhN’s 
iNCoMMeNsuraBility. part iI: preCisifiCatioN aNd traNslataBility

The late Kuhn famously redefined incommensurability as untranslatability  between 
scientific lexicons and introduced the no overlap principle as a key requirement for 
kind terms of any scientific lexicon to be translatable into another lexicon. The 
principle says that

no two kind terms, no two terms with the kind label, may overlap in their referents unless 
they are related as species to genus. There are no dogs that are also cats, no gold rings that 
are also silver rings, and so on: that’s what makes dogs, cats, silver, and gold each a kind.15

The principle precludes kind terms from being imported from one lexicon to an-
other unless they are related as species to genus, i.e. unless the extension of an 
earlier kind term becomes a subset of the extension of a later kind term in the 
new lexicon. In any other case, where kind terms of the old and new lexicon are 
not a proper subset of one other, but they partially overlap, incommensurability as 
untranslatability arises. For example, the Copernican statement ‘planets orbit the 
sun’ cannot be translated into the Ptolemaic lexicon. The term ‘planet’ is a kind 
term in both lexicons, but the two overlap without either containing all the celestial 
bodies of the other, because a fundamental change has occurred in this taxonomic 
category during the transition from Ptolemaic to Copernican astronomy.16

 Thus, although Kuhn would agree with LaPorte that for example 
 Hopkins-speakers and Darwinian-speakers can communicate with each other and 
understand each other when using the term ‘species’, he would also insist that 
the process that allow them to understand each other is a form of bilingualism, 
not translation.17 Each speaker on the two sides of the revolutionary divide would 

15 Kuhn, “The Road since Structure. Philosophical Essays, 1970–1993, with an Autobio-
graphical Interview”, loc. cit., p. 92

16 Ibid., p. 94.
17 “To bridge the gap between communities would require adding to one lexicon a kind 

term that overlaps, shares a referent, with one that is already in place. It is that situation 
which the no-overlap principle precludes. Incommensurability thus becomes a sort 
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have to bear in mind what the term ‘species’ means in her own lexicon and in 
the other lexicon, in order to understand each other. The term cannot be import-
ed from the Hopkins-lexicon to the Darwin-one at the cost of violating the no-
overlap principle: Hopkins-‘species’ are not a proper subset of Darwin-‘species’, 
because given Darwinism, special creation species are not an option. Instead, the 
two terms partially overlap without the former including all the referents of the 
latter. For example, Hopkins-species would not include all post-Hopkins (post-
1850s) discovered species and the not-yet-come-into-existence species resulting 
from speciation and evolutionary adaptation, which are instead included in the 
extension of Darwin-‘species’. Translation would require a one-to-one mapping 
from the taxonomic categories and relationships of one lexicon to those of an-
other lexicon at the cost of overlapping kind terms. It is this situation that the 
no-overlap principle precludes.
 But it is precisely this overlapping of kind terms that precisification seems to 
require and imply. If precisification is defined as above, namely adding or dropping 
one or more of either superficial or essential descriptions so that items which were 
previously in the boundary get included in the extension of the old kind term and 
others which were included get dropped, then by definition precisification implies 
that the old kind term partially overlaps with the new kind term, without including 
all the referents of the other. By definition, precisification violates Kuhn’s no over-
lap principle as a key requirement for translatability. Again, this does not mean 
that communication is impossible or that speakers on the two sides of the divide 
cannot understand each other. It is not communication or understanding that is 
jeopardised, but the very possibility of translation, which is precisely Kuhn’s main 
point about incommensurability. Thus, claiming – as LaPorte does – that kind 
terms are vague and get precisified, far from addressing Kuhn’s incommensurabil-
ity, seems in fact to violate one of the key requirements for translation between 
lexicons.
 Should we still regard the inclusion of monotremes in the extension of ‘mam-
mal’ as a case of precisification, notwithstanding Kuhn’s no overlap principle? 
After all, LaPorte’s view about vagueness of kind terms seems to affect primarily 
boundary cases. I want to suggest that even in situations that look prima facie as 
boundary cases like the platypus, LaPorte’s view does not apply. Indeed, if any-
thing, the story of the platypus provides a biological counterexample to LaPorte 
on precisification and an illustration of how untranslatability arises when the no 
overlap principle is violated.

of untranslatability, localised to one or another area in which two lexical taxonomies 
differ. (…) Violations of those sorts do not bar intercommunity understanding. (…) 
But the process which permits understanding produces bilinguals, not translators, and 
bilingualism has a cost. The bilingual must always remember within which community 
discourse is occurring. The use of one taxonomy to make statements to someone who 
uses the other places communication at risk.” (Ibid., pp. 92–3).
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15.5 the story of the duCK-Bill platypus.
or, agaiNst preCisifiCatioN

“Little Dot clapped her hands. ‘Oh, dear Kangaroo’ she said ‘do 
take me to see the Platypus!’ There was nothing like that in my 
Noah’s Ark’. ‘I should say not!’ remarked the Kangaroo. ‘The ani-
mals in the Ark said they were each to be of its kind, and every sort 
of bird and beast refused to admit the Platypus, because it was of 
so many kinds; and at last Noah turned it out to swim for itself, be-
cause there was such a row. That’s why the Platypus is so secluded’” 
From Ethel Pedley, Dot and the Kangaroo.18

As we saw in Sect. 15.2, LaPorte quotes Kuhn for the example of the egg-laying 
platypus as a borderline case, whose inclusion in the extension of the kind term 
‘mammal’ would be a case in point for precisification of kind terms, as opposed to 
conceptual shift of the type at work behind incommensurability. In this section, I 
show how the real story of the platypus belies LaPorte’s, and even Kuhn’s own in-
tuitions about monotremes. Far from being a case of precisification, the inclusion 
of monotremes in the category of Mammalia amounted to a genuine conceptual 
shift of the Kuhnian type, whose main actors saw the platypus in different incom-
mensurable ways.
 The platypus would be a case in point for precisification––according to 
LaPorte––because it satisfied most of the important descriptions for ‘mammal’ 
(namely, ‘hairy’ and ‘lactating’), but not another key one, i.e. ‘live-bearing’, until 
speakers decided that an oviparous mammal was an acceptable option. But how 
can we make sense of LaPorte’s suggestion that the platypus was neither clearly 
in nor clearly out of the extension of ‘mammal’, until such a decision was taken? 
How should we understand the notion of vagueness?
 LaPorte gives us some helpful indications about vagueness in Chap. 4 on 
chemical kind terms, where he says that vagueness is exposed when a substance 
has either the right observable properties but the wrong microstructure, or the 
wrong observable properties and the right microstructure. In both cases, we are in 
the presence of a vague case. In what follows, I am going to work with LaPorte’s 
helpful suggestion about vague cases in chemistry, and see what the biological 
counterpart would look like in the case of the platypus. Instead of (chemical) 
microstructure, we have genealogical descent for monotremes, i.e. their belong-
ing to the ‘clade that stems from ancestral group G’, if we take that description as 
featuring in a theoretical identity statement for the term ‘Mammalia’. Following 
LaPorte, I take as examples of observable properties for mammals the following: 
‘hairy’, ‘lactating’ and ‘live-bearing’.

18 Quoted from Ann Moyal, Platypus. Baltimore: Johns Hopkins University Press 2004, 
p. 200.
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 Thus, for the platypus to be a vague case of mammal, it would have to be the 
case that either it has the right observable properties and the wrong genealogical 
descent, or it has the wrong observable properties and the right genealogical de-
scent. Interestingly enough, if we look at the story of the platypus, the confusion 
surrounding the first encounter with the Ornithorhynchus paradoxus (as Johann 
Blumenbach originally called it) originated precisely from such a split between the 
suspected genealogical descent and the observable properties of the duck-billed 
platypus. If we take the extension of the term ‘mammal’ to be fixed by a cluster of 
descriptions, both in the case of ‘lactating’ and ‘live-bearing’, there was a discrep-
ancy between the available evidence and the underlying genealogical hypothesis. 
In both cases, the observable properties and the suspected genealogical descent 
came apart.
 In the case of ‘lactating’, some naturalists wrongly identified the genealogi-
cal descent, despite the right observable properties of platypus’ mammary glands. 
In the case of ‘live-bearing’, other naturalists rightly identified the platypus’ ge-
nealogical descent from mammals, despite the wrong observable properties about 
platypus’ eggs and reproductive system (which suggested that it was ovoviviparous 
like some lizards). Geoffrey St-Hilaire falls into the first group of naturalists, who 
could not accept the mammalian nature of the platypus despite evidence about 
mammary glands. Richard Owen and George Bennett belong to the second group 
of naturalists, who – despite the correct identification of the platypus as a mammal 
– could not entertain the idea of its oviparity.
 Indeed, the real story of the platypus is an extraordinary example of the puz-
zling taxonomic classification of an animal, which defied well-established zoolog-
ical standards and summed up aspects of different genera.19 After the first encoun-
ter with specimens coming from New South Wales, Australia, in 1799, a debate 
began about the nature of the curious creature. Following Linnaeus’ taxonomy, 
mammals were characterized by the presence of mammary glands and the suckling 
relation between mother and young. Moreover, all mammals were expected to give 
birth to live young, by contrast with oviparous (or egg-laying) animals such as 
birds and reptiles. Naturalists were baffled by the platypus. At the beginning of the 
nineteenth century, George Shaw placed it in the lowest Linnean order of Bruta; 
Blumenbach considered it as part of the family of anteaters and armadillos as a 
transitional form between mammals and birds.20

 The leading British anatomist Everard Home thought it could not be a mam-
mal because of the apparent absence of mammary glands, and advanced the hy-
pothesis that it was ovoviviparous (hatching the young from an egg inside the 
mother’s body) like lizards. It was not until 1833 that the British surgeon Richard 
Owen demonstrated that the platypus should be classed into the milk-producing 

19 In what follows, I am drawing on Ann Moyal’s, loc. cit., excellent monograph on the 
history of the platypus. 

20 Ibid., p. 40.
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order of Mammalia, on the basis of some new evidence of mammary glands found 
by the Lieutenant Lauderdale Maule stationed in New South Wales. Maule found 
a female and two young, whom he tried to keep alive feeding them with worms. 
When the female platypus died, Maule found that milk oozed through the fur on 
the stomach. However, the new evidence about the platypus’ mammary glands 
was not universally accepted. The French savant Geoffrey St-Hilaire persistently 
refused to consider the glands as mammary glands because of the absence of nip-
ples. He thought they were instead lubricating glands like those found in salaman-
ders, and commented: “if those glands produce milk, let’s see the butter!”21

 On the other hand, there were naturalists that rightly identified the platypus 
as a mammal (thanks to the new evidence of mammary glands) but categorically 
refused the idea of an egg-laying mammal, in favor of the ovoviviparous option 
originally put forward by Home. The mystery surrounding the mode of reproduc-
tion of the platypus was caused by the elusive nature of the animal and scant 
evidence of eggs debris, which for more than seventy years made it impossible to 
identify the platypus’ oviparous nature. Increasing evidence that the platypus laid 
eggs came in 1833 when the naturalist George Bennett, following local knowledge 
of Aborigines about the nesting burrows of the platypuses, captured and sent back 
to Richard Owen in England a specimen showing an egg in the uterus of a female 
Ornithorhynchus. Yet this discovery left open the question as to whether the platy-
pus was oviparous or ovoviviparous. Owen and Bennett opted for the ovovivipa-
rous option. And still in 1864, Owen refused to accept the idea of an egg-laying 
platypus when he heard the account of an Australian physician, whose recently 
captured platypus had laid two eggs. Owen dismissed the alleged ‘eggshell’ as 
excrement coated in urine salts. As Moyal put it:

Sixty years into the platypus mystery, Owen was caught in a paradigm. It was a paradigm 
largely of his own making. With no other researchers challenging his opinion, the ovovi-
viparous generation of the Ornithorhynchus was judged to be an ‘accepted truth’. (…) His 
research approach held a fatal flow: it failed to entertain and hence search out any evidence 
of laid eggs in the nesting burrows.22

 It was not until August 1884 that evidence of a platypus laying an egg (and with 
a second egg in the mouth of the uterus) was finally found by William Caldwell, 
belonging to a new generation of researchers, who were not afraid of challenging 
Owen’s orthodoxy. Caldwell’s pioneering discovery of the platypus’ eggs finally 
established beyond any doubt the peculiar nature of the platypus as an ‘egg-laying’ 
mammal, almost hundred years after the first encounter with the curious creature 
in 1799. It also opened the door to further important research. In the words of Ann 

21 Ibid., p. 58.
22 Ibid., p. 128, 147.
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Moyal, “the evidence from the Australian monotremes and marsupials would play 
a dynamic part in formulating a new theoretical framework for biology.”23

 Where does the platypus’ story leave us? What should we make of LaPorte’s 
claim that the inclusion of the platypus in the extension of the term ‘mammal’ is 
a case of precisification? In the light of the real history, we can conclude that the 
kind term ‘mammal’ was not vague. Naturalists worked with well-defined, non-
vague criteria of what counted as a ‘mammal’, coming from Linnaeus, and the 
uncertainty as to whether the platypus was in fact a mammal was simply due to ei-
ther a lack of sufficient evidence (given the platypus’ elusive nature) or to evidence 
not recognized as such (because people worked under different conceptual frame-
works). In the case of mammary glands, St-Hilaire was simply unable to identify 
them as such because of the absence of nipples. In the case of the missing egg, 
Owen and Bennett did not have the luck of Caldwell in finding a female platypus 
laying eggs on the spot, despite years of intensive research on nesting burrows.
 Both in St-Hilaire’s case and in the case of Owen and Bennett, the platypus 
was differently classified (as non-mammal and mammal, respectively) because 
scientists interpreted the available evidence about mammary glands in the light of 
different conceptual frameworks. Same goes for the available evidence of eggs de-
bris. Owen could not accept reports of platypuses laying eggs because, in Moyal’s 
words, he became trapped in the ‘paradigm’ of the ovoviviparous platypus that he 
had himself created. He just could not see the platypus as an oviparous mammal.
 If anything, the story of the platypus shows how conceptually-driven natural-
ists’ observations can be, and confirms the Hanson-Kuhn view that scientists see 
things differently before and after a revolution. It took almost hundred years for 
the duck-bill platypus to be recognized as a mammal in its own right. The process 
that led to the discovery (because it was a discovery made by Caldwell in 1884) of 
the platypus as an ‘egg-laying’ mammal was a genuine revolution, whose main ac-
tors endorsed different conceptual frameworks and fiercely battled for their views 
in the pages of respectable zoological journals. The platypus is an example of a 
genuine cross-cutting kind that defies Kuhn’s no overlap principle and the hierar-
chy thesis behind it, namely the thesis that kind terms cannot be imported from 
one lexicon into another unless they are related as species to genus. The old kind 
term ‘mammal’ is not translatable into the new kind term (which now includes 
monotremes) because it is not a proper subset of it. ‘Egg-laying’ is not a defining 
feature of the new kind term ‘mammal’, somehow encompassing the old kind 
term, with its defining feature ‘live-bearing’, as a subset. Monotremes as egg-
laying mammals are the exception that confirms the rule of live-bearing mammals, 
and show how mammals intersect reptiles (and birds) in the tree of life. As with 
any cross-cutting kind defying Kuhn’s no overlap principle, translatability is at 
risk. Thus, far from being a case of precisification, the inclusion of monotremes 

23 Ibid., p. 47.
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in the extension of the term ‘mammal’ amounted to a genuine conceptual shift 
between incommensurable paradigms.

15.6 CoNClusioN

In this paper I raised two problems for LaPorte. First, he does not make a strong 
case for a principled distinction between conceptual shift and precisification of 
kind terms. Second, his claim that meaning-change does not imply conceptual 
shift of the Kuhnian type relies on a definition of precisification that violates a 
key requirement for translatability between lexicons, namely the no overlap prin-
ciple. To remedy both problems, and defend scientific progress, LaPorte would 
need more substantial realist assumptions. In particular, he would need to prove 
that there is accumulation of true sentences across scientific revolutions. After all, 
Kuhn himself admitted the possibility of communication across the revolutionary 
divide: he only insisted that communication requires the two communities to be 
bilingual not translators, with incommensurability intended as untranslatability 
between scientific lexicons. So, for LaPorte to cut any ice against Kuhn, he would 
need to prove that there is reference-continuity and accumulation of true sentences 
across the revolutionary divide. Precisification of kind terms per se does not de-
liver either, pace the rigidity of kind terms.
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Chapter 16

thomas a.C. reydon

essentialism about Kinds: an undead issue in the 
philosophies of physiCs and biology?

abstraCt

The consensus among philosophers of biology is that traditional forms of essen-
tialism have no place in accounts of biological kinds and classification. Recently, 
however, several authors have attempted to resurrect essentialism about biological 
kinds, invoking various views of the nature of kind essences starting a new debate 
on what kind essentialism should be if it is to apply to biological kinds. In this paper 
I examine three contemporary forms of biological kind essentialism and conclude 
that the scope of philosophical work that these are able to do is quite limited.

16.1 introduCtion

At least since the 1970s there has been a strong consensus among philosophers of 
biology that traditional forms of essentialism about kinds of biological entities, 
which assume for each kind a set of properties that are separately necessary and 
jointly sufficient for kind membership, have no role to play in accounts of biologi-
cal kinds and classification. The main reason is that such forms of kind essential-
ism conflict with evolutionary theory, which is, after all, biology’s core theoretical 
framework. Essentialism about biological kinds thus has long been a dead issue. 
In recent years, however, a number of authors attempted to resurrect essentialism 
about biological kinds, defending various views of the nature of kind essences, 
all different from traditional kind essentialism, and starting a new debate on what 
kind essentialism should be if it is to apply to biological kinds.
 Philosophers of physics, in contrast, have not been much disturbed by the 
discussions on essentialism going on elsewhere. There seems to be no pronounced 
conflict between traditional kind essentialism and the central theories of physics 
and a comparatively straightforward, traditional essentialist view of kinds seems 
to fit well for kinds in the physical sciences. In addition, there does not seem to be 
a particular need to take recourse to essentialism in order to be able to make sense 
of kinds and classification in the physical sciences. Because of this, essentialism 
about kinds is not a big issue in the philosophy of physics: there, kind  essentialism 

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
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is nearly dead too. In contrast to philosophy of biology, however, this is not be-
cause kind essentialism is deeply problematic, but because it is unproblematic and, 
apparently, not particularly illuminating.
 This situation gives rise to questions about the feasibility of essentialist ac-
counts of scientific kinds, as well as the reasons for pursuing kind essentialism 
in general. For one, is the notion of ‘essence’ strictly necessary to reconstruct 
particular scientific practices involving kinds? If so, what work would essentialism 
do? I want to address these questions by examining three contemporary forms of 
biological kind essentialism, as essentialism is most controversial for biological 
kinds. I shall conclude that the scope of philosophical work that these are able to 
do is quite limited. This is not to say that kind essentialism could not be a viable 
position in the philosophies of physics or biology, though. It is just to say that the 
philosophies of physics and biology might be better off without it, as the costs of 
assuming kind essentialism probably outweigh the benefits.1

 In Sect 16.2, I briefly explore what philosophical work kind essentialism could 
do, thus setting up a collection of motives for trying to resurrect kind essentialism. 
In Sect. 16.3, I turn to some recent attempts to resurrect kind essentialism for 
application to biological kinds and examine whether these can do the work that 
kind essentialism might be expected to do. The conclusion will be a negative one. 
As I won’t say much about kinds in the physical sciences in these sections, Section 
16.4 concludes by briefly addressing the question what prospects there are for an 
overarching kind essentialism, covering kinds in physics, biology and elsewhere. 
Again, my conclusion won’t be positive.

16.2 What WorK Could Kind essentialism do?

At least six tasks can be listed that kind essentialism is thought to be able to per-
form in contemporary philosophy. Taken together, these cover a considerable 
amount of philosophical work and would thus constitute a considerable motivation 
for attempting to resurrect kind essentialism.
 1. Two roles for kind essentialism are deeply rooted in the philosophical tradi-
tion, tracing back at least to Locke’s Essay Concerning Human Understanding. 
There, Locke defined real essences as “the very being of any thing, whereby it 
is, what it is”,2 his concern being with what kind of thing a given thing was. Ac-
cordingly, in the philosophical tradition kind essences are usually supposed to de-
termine the identities of things as things of particular kinds, by specifying those 
properties a thing cannot lose without ceasing to belong to its kind.
 2. The second traditional role for kind essentialism can also be illustrated by 
a quote from Locke. Immediately after he formulated what a real essence was, 

1 See Ereshefsky for a similar conclusion (Marc Ereshefsky, “What’s wrong with the new 
biological essentialism?”, in: Philosophy of Science 77, 2010b, pp. 674–685, p. 675).

2 John Locke, An Essay Concerning Human Understanding (Edited with an Introduction 
by Peter H. Nidditch). Oxford: Clarendon Press [1700] 1975, (Book III, Chap. III, §15).
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Locke continued: “the real internal, but generally in Substances, unknown Consti-
tution of Things, whereon their discoverable Qualities depend, may be called their 
Essence”.3 The idea is that members of a kind tend to exhibit the same (or at least 
highly similar) properties and behaviors, because they share an essence that makes 
them members of the same kind in the first place. Kind essences cause the observ-
able properties and behaviors that are typical for the members of a kind and thus 
can be referred to in explanations of these typical properties and behaviors.
 Following from the tradition, then, kind essentialism today is often conceived 
of as encompassing two independent claims4:

•	 All and only the members of a kind K have the kind essence associated 
with K. Having this kind essence is what makes things into K-things.

•	 The kind essence associated with K is responsible for the observable 
properties typically exhibited by the members of K.

While these claims reflect the two major traditional tasks of kind essentialism – 
fixing the kind identities of things and explaining the kind-specific observable 
properties of things –, kind essentialism seems to have an even broader potential 
for doing philosophical work.
 3. Kind essentialism is sometimes invoked in explanations of everyday clas-
sificatory practices. Empirical studies in cognitive psychology have shown that 
both children5 and adult people6 tend to assume that things have intrinsic essences 
that make them into the particular kinds of things they are, a tendency that might 
be widespread because of the evolutionary advantage it confers on humans by 
providing a basis for inferences over kinds of things they encountered in their en-
vironment.7 Essentialist thinking thus seems to come naturally to human beings, a 
claim that is usually known as “psychological essentialism”.
 Kind essentialism could serve to support psychological essentialism: people 
tending to be essentialists about kinds are confirmed, because kinds actually do 
have essences. However, psychological essentialism has been established in re-
lation to “folk” classifications that generally do not tend to match the scientific 
classifications that apply to the same domain of reality. Thus, kind essentialism 
as a basis for psychological essentialism doesn’t seem particularly relevant in the 

3 Ibid.
4 Samir Okasha, “Darwinian metaphysics: Species and the question of essentialism”, 

in: Synthese 131, 2002, pp. 191–213, p. 203; Marc Ereshefsky, “Species”, in: Ed-
ward N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy, 2010a, online at http://
plato.stanford.edu/archives/spr2010/entries/species/, Section 2.1; Ereshefsky, “What’s 
wrong with the new biological essentialism?”, loc.cit.

5 Susan A. Gelman, The Essential Child: Origins of Essentialism in Everyday Thought. 
Oxford: Oxford University Press 2003.

6 Susan A. Gelman and Lawrence A. Hirschfeld, “How biological is essentialism?”, in: 
Douglas L. Medin and Scott Atran (Eds.): Folkbiology. Cambridge (MA): MIT Press 
1999, pp. 403–446.

7 H. Clark Barrett, “On the functional origins of essentialism”, in: Mind & Society 3, 
2001, pp. 1–30.
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context of philosophy of science. Moreover, if kind essentialism obtains for “folk” 
kinds that do not match the relevant scientific kinds, kind essentialism about these 
scientific kinds seems to be unwarranted. Still, if psychological essentialism is 
a default position for children as well as adults, it should be expected that many 
scientists tend to conceive of the kinds they use in an essentialist manner, such that 
kind essentialism may do real work in accounting for those scientific classificatory 
practices in which scientists actually invoke essentialist principles.
 4. In the essentialist tradition in the philosophy of language, tracing back to 
the work of among others Kripke and Putnam, kind essences are invoked to do 
semantic work. According to Kripke and Putnam, kind terms in everyday and sci-
entific language refer to their kinds in the same way as the names of particular 
things refer to the things they refer to. Kind names, on their view, are linked to 
kinds in baptism events, in which a name is attached to a particular token entity 
or substance and is agreed to be used henceforth for all entities or substances that 
have the same (usually unknown) essence as the entity or substance involved in 
the baptism event. This view of how kind names refer also encompasses a view of 
the aims of science on which the discovery of kind essences is a task for scientific 
investigation.
 5. Some authors take recourse to kind essences to ground the laws of nature.8 
Here, the idea is that the laws of nature describe how things by their natures are 
disposed to behave and thus follow from the natures of things. As all things of a 
particular kind share the same kind essence, they are disposed to similar behavior 
under similar circumstances, leading to certain laws to hold for all and only the 
members of that kind. Laws of nature thus are ontologically dependent on kind 
essences and kinds, not laws, are ontologically fundamental.
 6. However, many areas of science don’t seem to deal with laws of nature. This 
leads to another possible role for kind essentialism in philosophy of science. As 
Waters remarked, “once philosophers decided that biology lacked genuine laws, 
they seem to have lost interest in analyzing the empirical generalizations of the 
science. Meanwhile, biologists continue to generalize.”9 Thus, even if there are no 
“proper” laws in areas of science such as biology, there still is philosophical work 
to do in analyzing the generalizations that feature in biological reasoning. Re-
cently, Devitt advanced this as the main reason for resurrecting kind essentialism:

We group organisms together under what seem, at least, to be the names of species or other 
taxa and make generalizations about the morphology, physiology, and behavior of the mem-
bers of these groups: about what they look like, about what they eat, about where they live, 

8 E.g. Brian D. Ellis, Scientific Essentialism. Cambridge: Cambridge University Press 
2001.

9 C. Kenneth Waters, “Causal regularities in the biological world of contingent distribu-
tions”, in: Biology and Philosophy 13, 1998, pp. 5–36, p. 6.
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about what they prey on and are prey to, about their signals, about their mating habits, and 
so on. … Generalizations of this kind demand an explanation.10

Here, kind essentialism might be invoked to account for the possibility of making 
stable generalizations suitable for use in scientific reasoning, most importantly 
in explanatory and predictive contexts. Whether or not there are biological laws 
of nature, it is uncontroversial that biology uses generalizations that are stable to 
various degrees in explanations and predictions of biological phenomena. In ex-
plaining why these generalizations hold lies a potential task for essentialism about 
biological kinds.
 There seem, then, to be good reasons to try to resurrect kind essentialism. 
Kind essentialism has the potential to do metaphysical work (no. 1: determining 
the kind identities of things; no. 2: explaining the kind-specific observable char-
acteristics of things; no. 5: providing a basis for the laws of nature), epistemologi-
cal work (no. 3: explaining everyday classificatory practices; no. 6: supporting 
scientific generalizations, explanations and predictions) and semantic work (no. 
4: providing a theory of reference for kind terms). But in how far are the kind 
essentialisms advocated in contemporary philosophy of biology able to fulfill this 
promise?

16.3 Kinds of Kind essentialism

Let me now examine three types of essentialism advanced in the recent literature 
as fitting with how contemporary biology understands and explains living phe-
nomena.11 Each of these positions accepts that traditional kind essentialism fails 
for contemporary biology. Yet, each holds that some form of essentialism about 
biological kinds can and should be upheld, as it can do important philosophical 
work.
 One reformulation of kind essentialism conceives of kind essences as relation-
al instead of intrinsic. A few years ago, Okasha presented a relationally essentialist 
position with a focus on biological species of organisms; I shall illustrate what can 
be called “relational essentialism”12 by examining Okasha’s account.
 According to Okasha, the principal arguments against essentialism about bio-
logical species only hold for essentialisms that conceive of species essences in 
terms of intrinsic properties of organisms.13 Thinking of essences as relational 

10 Michael Devitt, “Resurrecting biological essentialism”, in: Philosophy of Science 75, 
2008, pp. 344–382, 351–352.

11 I’ll ignore a fourth form, Walsh’s “developmental essentialism”, as this position isn’t 
intended as an account of biological kinds. (Denis M. Walsh, “Evolutionary essential-
ism”, in: British Journal for the Philosophy of Science 57, 2006, pp. 425–448).

12 Ereshefsky, “What’s wrong with the new biological essentialism”, loc. cit., p. 679.
13 Okasha, loc. cit., p. 199.
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could defuse them. Moreover, a closer look at the grounds on which biologists 
allocate organisms to species under the various available species concepts shows 
that there is a good case for relational essentialism about species: under inter-
breeding, phylogenetic and ecological species concepts, organisms are allocated 
to species on the basis of their mating relations to other organisms, their relations 
of ancestry and descent to other organisms, and their relations to the environments 
in which they live, respectively.14

 Okasha’s relational essentialism seems able to avoid the difficulties faced by 
traditional kind essentialism. In addition, it seems extensible to other kinds of 
biological kinds, in particular functionally defined kinds on an appropriately re-
lational notion of biological function (on which an entity’s function is conceived 
of in terms of its relations to other entities) or to the environment (for ecological 
kinds, for example). However, it still faces considerable problems. For one, while 
it is true that according to most species concepts an organism’s relations to other 
organisms or to the environment fixes its species identity, it is unclear how such 
relations by themselves can fix kind membership.15 A relation such as “is an off-
spring of ”, for instance, would place organisms of a present-day species in the 
same species with their distant ancestors, tracing all the way back to the origin of 
life on earth. One element of kind essentialism, however, is that an organism’s kind 
essence completely fixes its kind identity.
 Moreover, relational kind essentialism is unable to do some of the other work 
that kind essentialism promises to perform. As Okasha pointed out, the relational 
properties that under various species concepts fix the kind identities of organisms 
do not serve to explain their properties.16 The traits of a given organism, after all, 
aren’t caused by this organism’s mating relations to other organisms, or by its an-
cestry (in any direct sense), or by its belonging to a particular branch on the Tree 
of Life. Thus, relational essentialism is only able to perform one of the two main 
tasks of kind essentialism.17 Because of this, relational essences aren’t able to sup-
port scientifically useful generalizations – let alone laws – either.18 Furthermore, 
relational essences won’t be able to explain everyday classificatory practices, as 
the essences that people tend to assume with respect to everyday kinds usually 
aren’t relational essences.
 What I shall call “historical essentialism” is a second kind of attempt to render 
kind essentialism compatible with evolutionary thinking. Paul Griffiths was one 

14 Ibid., p. 201.
15 Devitt, loc. cit., p. 365. But see Ereshefsky, “What’s wrong with the new biological 

essentialism”, loc. cit., pp. 680–682.
16 Okasha, loc. cit., pp. 203–204.
17 Thus Ereshefsky concluded: “relational essentialism is not essentialism because it fails 

to satisfy a core aim of essentialism” (Ereshefsky, “What’s wrong with the new biologi-
cal essentialism?”, loc. cit., p. 683; emphasis added; cf. Ereshefsky, “Species”, loc. cit., 
Sec. 2.6).

18 Okasha, loc. cit., pp. 208–209.
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of the authors who prominently advocated historical essentialism and here I shall 
take his account to explicate the general approach.19

 Griffiths’ principal reason to try to resurrect kind essentialism about species 
was the perceived need to account for the role that reference to species plays in the 
formulation of scientifically useful generalizations (no. 6 in Sect. 16.3).20 Species 
and other phylogenetically defined kinds, such as kinds of homologues, Griffiths 
argued, are such groups and, therefore, an account is needed that explicates what 
makes species and the like suitable to perform their generalization-grounding role 
in biological reasoning. According to Griffiths, the required account can be for-
mulated in terms of kind essences on a suitably revised and loosened concep-
tion of what kind essences can be: “Any state of affairs that licences induction 
and explanation within a theoretical category is functioning as the essence of that 
category”.21

 In the case of biological species, as well as higher taxa and several other bio-
logical kinds, such essences can be found in the central Darwinian notion of com-
mon descent:

Cladistic taxa and parts and processes defined by evolutionary homology have historical 
essences. Nothing that does not share the historical origin of the kind can be a member of 
the kind. … Furthermore, cladistic taxa and parts and processes defined by evolutionary 
homology have no other essential properties.22

On this account, organisms, parts of organisms and biological processes are mem-
bers of their kinds because of their ancestry: organisms are members of the same 

19 Some authors see Griffiths’ essentialism as a form of relational essentialism (e.g., 
Ereshefsky, “Species”, loc. cit., Sec. 2.6; Ereshefsky, “What’s wrong with the new bio-
logical essentialism?”, loc. cit., p. 679), while others count Griffiths’ and Okasha’s po-
sitions as versions of the same position (“origin essentialism”; Olivier Rieppel, “New 
essentialism in biology”, in: Philosophy of Science 77, 2010, pp. 662–672, p. 663). 
I’m not sure whether this is appropriate, though, as there is an important difference 
between Okasha’s essentialism and Griffiths’ essentialism: while according to Griffiths 
historical essences support generalizations about species and other taxa, according to 
Okasha relations cannot do this (Okasha, loc. cit., pp. 208–209).

20 Paul E. Griffiths, “Squaring the circle: Natural kinds with historical essences”, in: Rob-
ert A. Wilson (Ed.): Species: New Interdisciplinary Essays. Cambridge (MA): MIT 
Press 1999, pp. 209–228, 215–219.

21 Ibid., p. 218. Griffiths here referred to Boyd’s theory of Homeostatic Property Cluster 
kinds, which I’ll discuss later, and embedded his account in Boyd’s. However, I think 
Griffiths’ account stands at some distance from Boyd’s, as the former is framed in 
terms of historical origins and ancestry as essences, while the latter is framed in terms 
of causal mechanisms. It can thus be doubted whether Griffiths’ account indeed con-
stitutes a particular instantiation of Boyd’s more general account, as Griffiths suggests 
(Ibid., pp. 218–219). While I won’t pursue this issue here, it constitutes my reason for 
treating Griffiths’ account independently from Boyd’s. 

22 Ibid., p. 219.
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kind as their parents, and homologous organismal traits and processes are mem-
bers of the same kinds as the traits with which they share a lineage of descent.23

 Common descent also explains why organisms, parts and processes of the 
same kind resemble each other in such ways that stable, scientifically useful gen-
eralizations over them can be made. As Griffiths pointed out:

The principle of heredity acts as a sort of inertial force, maintaining organisms in their 
existing form until some adaptive force acts to change that form. This phylogenetic inertia 
is what licences induction and explanation of a wide range of properties … using kinds 
defined purely by common ancestry. If we observe a property in an organism, we are more 
likely to see it again in related organisms than in unrelated organisms. … A hierarchical tax-
onomy based on strict phylogenetic principles will collect more of the correlations between 
characters … than any other taxonomy we know how to construct.24

Thus, shared ancestry can be thought of as constituting the kind essences of bio-
logical species, higher taxa and many other biological kinds, because it performs 
the two principal tasks that kind essences should perform (see Sect. 16.2): to fix 
kind membership and to explain the observable properties typically exhibited by a 
kind’s member entities.
 Many biological kinds are defined by means of homology, so Griffiths’ ac-
count should be broadly applicable to biological kinds. However, it is doubtful 
whether the majority of biological kinds are defined by homology. Many higher 
taxa are,25 but lower taxa such as varieties, species and genera, are not. Thus, his-
torical essentialism will not apply to the basic units of biological classification but 
only to more overarching units. Moreover, with respect to taxa defined by means 
of homologies, historical essentialism will apply only to the particular trait or traits 
that actually define the taxon under consideration. For the subphylum Vertebrata, 
for example, the fact that having a spinal column is an essential property of organ-
isms of the taxon only supports the generalization that all Vertebrata have a spinal 
column. The historical essence of Vertebrata provides no foundation on which the 
possibility of making generalizations that hold for the members of the taxon can 
be extended beyond the particular essential traits of the kind. In addition, many 
biological kinds aren’t defined by homology alone: consider, for example, the 

23 For example, the radius bones in the arms of humans, in the fins of dolphins and in 
the wings of fruit bats are of the same overarching kind, because as discernible parts 
of organisms they all stand in the same line of descent from radius bones in limbs of a 
common ancestor (Thomas A.C. Reydon, “Gene names as proper names of individu-
als: An assessment”, in: British Journal for the Philosophy of Science 60, 2009a, pp. 
409–432, 420ff.).

24 Griffiths, loc. cit., pp. 220–222; original italics.
25 For instance, Vertebrata is the taxon defined by a few traits shared by all and only ver-

tebrates, including having a spinal column.
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 various kinds of genes, in the definitions of which functions play a role too next 
to descent.26

 Furthermore, there are reasons to doubt whether phylogenetic inertia will be 
able to support species and other taxa as kinds over which stable generalizations 
are possible. In a general sense, phylogenetic inertia is the phenomenon that par-
ticular traits are conserved over long evolutionary time frames. Thus, a trait can be 
conserved over the entire lifetime of a species or higher taxon, from its origin in a 
speciation event up to its extinction, thus making it possible to generalize over the 
fact that all organisms of that species or higher taxon will posses this particular 
trait. However phylogenetic inertia is not a clearly defined notion in biology and 
is often taken as a phenomenon in need of an explanation rather than an explana-
tory factor by itself.27 Griffiths grounded the occurrence of phylogenetic inertia 
in developmental causes, as developmental processes in organisms are inherited 
between ancestors and descendants and are sufficiently stable to cause the recur-
rent presence of similar traits in organisms related by descent.28

 But there is no reason to assume that this stability will generally extend pre-
cisely over the lifetime of the species or higher taxon under consideration.29 For 
some traits, the causal basis of phylogenetic inertia is such that the trait is only 
weakly conserved over a comparatively brief part of a species’ lifetime. For other 
traits, the causal basis is such that the trait is strongly conserved far beyond the 
borders of species and higher taxa. The basic idea is easy to see: organisms of a 
species S that is a descendant of an ancestor species A share their descent with 
the organisms of species A and will thus possess some of the same developmental 
resources; therefore, it should not be surprising that some or many of the traits 
typical of A-organisms are conserved over the boundary between the two spe-
cies and are also exhibited by many S-organisms. In sum: phylogenetic inertia 
may support generalizations pertaining to conserved traits, but the extent and the 
boundaries of these generalizations will not generally coincide with the extent and 
the boundaries of the kinds of organisms that biologists refer to when formulating 
their generalizations.
 With respect to the other items of work for kind essentialism listed above, 
similar problems arise. While homologies may serve to fix the taxon identities of 

26 Reydon, “Gene names as proper names of individuals: An assessment”, loc. cit.
27 Thomas A.C. Reydon, “Generalizations and kinds in natural science: The case of spe-

cies”, in: Studies in History and Philosophy of Biological and Biomedical Sciences 37, 
2006, pp. 230–255, 243–250.

28 Griffiths, loc. cit., pp. 220–223. Griffiths’s account here seems quite close to Walsh’s 
account (see footnote 11). However, Walsh (Walsh, loc. cit., p. 427) explicitly dis-
tanced his account from Griffiths’ account. Indeed, Walsh’s emphasis on the intrinsic 
nature of organisms and Griffiths’ emphasis on common descent seem to yield essen-
tialisms of which the differences outweigh the similarities. I won’t pursue this issue 
here, though.

29 Reydon, “Generalizations and kinds in natural science: The case of species”, loc. cit.
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organisms under a cladistic view of biological classification, a view of homolo-
gies as kind essences will not yield explanations of the kind-typical properties 
of organisms (as the possession of a particular homologous trait does not explain 
the presence of most other traits of the organism), it will not yield a metaphysical 
grounding for any laws of nature and it will not do the semantic work that kind 
essences are often thought to do. Thus, there is reason to be skeptical about the 
applicability of historical essentialism to biological kinds in general and about the 
work that it can actually do in those cases in which it applies.
 A third approach to kind essentialism in biology, which I here call “cluster 
essentialism”, is based on Boyd’s Homeostatic Property Cluster (HPC) theory.30 
As with historical essentialism, Boyd’s account was intended to explain how the 
various kinds featuring in the special sciences were able to serve as the bases for 
scientifically useful generalizations. A prominent example in Boyd’s work con-
cerns biological taxa.
 On HPC-theory, our ability to formulate explanatorily and predictively useful 
generalizations over biological species and other taxa becomes unsurprising once 
we note that the members of a taxon all exhibit largely similar properties due to 
the operation of largely the same causes, such as a common system of heredity 
and reproductive isolation between populations, shared developmental constraints, 
stabilizing selection in the same environment, etc.31 Although typically there are 
no properties that all and only the member organisms of a taxon exhibit, there still 
are considerable similarities between the members of a taxon, the occurrence of 
which can be explained by taking recourse to among others the aforementioned 
factors. Accordingly, Boyd argued, biological taxa can be defined by the cluster 
of properties that are found to regularly, albeit not exceptionlessly, occur together 
in organisms of the same taxon in combination with the set of causal factors that 
underlie this clustering of properties.32

 Because for a given species or other taxon there is no set of properties unique 
to and characteristic of all its members of that kind, the cluster of co-occurring 
properties cannot exhaustively define the taxon (if it could, a form of traditional 
kind essentialism would obtain). Accordingly, HPC-theory adds the set of causal 
factors that underlie this clustering to the definition and assumes the combina-
tion of these two elements to uniquely define the taxon as a kind. It conceives of 
this definition in an open-ended manner: no property is necessarily unique to one 
property cluster, no causal factor is necessarily unique to one set of homeostatic 
mechanisms, the property cluster of a kind may come to include new properties, 

30 E.g., Richard N. Boyd, “Homeostasis, species, and higher taxa”, in: Robert A. Wilson 
(Ed.): Species: New Interdisciplinary Essays. Cambridge (MA): MIT Press 1999, pp. 
141–185; Richard N. Boyd, “Homeostasis, higher taxa, and monophyly”, in: Philoso-
phy of Science 77, 2010, pp. 686–701.

31 Boyd, “Homeostasis, species, and higher taxa”, loc. cit., p. 165. 
32 Boyd calls these causal factors “homeostatic mechanisms”, where he uses the term 

‘mechanism’ in a very loose sense.
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present properties may cease to be members, causal factors may begin or cease to 
operate, and there are no “core sets” of properties or underlying causal factors that 
all and only members of the corresponding kind exhibit or are affected by.
 While there seems no particularly compelling reason to conceive of these two-
part definitions of HPC-kinds as constituting the kind essences of taxa, Boyd him-
self suggested that his account should be seen as a form of kind essentialism:

What is essential is that the kinds of successful scientific (and everyday) practice … must be 
understood as defined by a posteriori real essences that reflect the necessity of our deferring, 
in our classificatory practices, to facts about the causal structure of the world. … I’ll argue 
that species (and, probably some higher taxa) do have defining, real essences, but that those 
essences are quite different from the ones anticipated in the tradition.33

While some authors take the causal factors (homeostatic mechanisms) underlying 
a kind as together making up the essence of that kind,34 I believe that if one wishes 
to interpret HPC-theory in an essentialist manner, it is the set of clustering proper-
ties together with the set of underlying causal factors that should be seen as the 
essence of an HPC-kind on Boyd’s account, because it is this combination that on 
Boyd’s account constitutes the definition of a kind.
 According to Boyd, the HPC-account of kinds applies widely to kinds in 
 biology as well as in the other special sciences. Boyd himself suggested that spe-
cies and other biological taxa are HPC-kinds and mentioned a diversity of other 
HPC-kinds, such as feudal economy, capitalist economy, monarchy, parliamentary 
democracy, the various religions, behaviorism,35 and money.36 Elsewhere, I have 
suggested that this broad scope of applicability constitutes both the strength and 
principal weakness of HPC-theory. My argument there was as follows.37

 The scope of applicability, ranging from biological kinds to kinds of economic 
and political systems, is realized by conceiving of the defining essences of HPC-
kinds in a non-traditional, open-ended manner. While this yields an account of 
kinds that is sufficiently flexible to accommodate all the various kinds that feature 
in the various special sciences, as well as more traditional natural kinds, precisely 
this flexibility causes a problem for HPC theory. Traditional essentialist accounts 
of kinds tell us which factors in nature determine the extensions of kind terms. 
If for a particular kind a kind essence in the traditional sense is identified, we 
 immediately have a criterion for assessing whether or not a given entity is a mem-
ber of that kind: does it exhibit all the properties deemed necessary and sufficient 

33 Boyd, “Homeostasis, species, and higher taxa”, loc. cit., p. 146.
34 E.g., Griffiths, loc. cit., p. 218.
35 Boyd, “Homeostasis, species, and higher taxa”, loc. cit., pp. 154–156.
36 Griffiths, loc. cit., p. 218.
37 Thomas A.C. Reydon, “How to fix kind membership: A problem for HPC-theory and a 

solution”, in: Philosophy of Science 57, 2009b, pp. 425–448. For additional criticisms 
of HPC-theory, see Ereshefsky, “What’s wrong with the new biological essentialism?”, 
loc. cit.
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for membership in the kind? If one essential property is missing, the entity in 
question cannot be counted as a member of the kind. HPC-theory, however, fails 
to provide any such criteria. Even if we have identified all the elements in the 
property cluster and in the set of underlying causal factors for a given kind, we still 
have no criteria for determining the kind term’s extension. The reason is the open-
endedness of the defining essence of the kind: if one essential property is missing 
or one essential causal factor fails to operate, this does not say anything about 
whether or not the entity in question can be counted as a member of the kind. This 
can be seen particularly clearly for biological species, as species are subject to 
open-ended evolutionary change. Furthermore, in the case of a speciation event in 
which a new species branches off from its ancestor species, the member organisms 
of the two species will typically continue to be characterized by the same family of 
properties for quite some time and due to the operation of largely the same causal 
factors (cf. above). Thus, the combination of a property cluster and a set of under-
lying causal factors as a species’ essence cannot serve to determine the boundaries 
of the species that it is supposed to define.
 With respect to the philosophical work that kind essentialism might perform, 
this means that kind essences according to HPC-theory cannot serve to determine 
the kind identities of particular things as things of particular kinds (no. 1 in Sect. 
16.2). Nor can they be invoked as explanations of the observable properties and 
behaviors that are typical for the members of a kind, as the causes of properties 
identified by HPC-theory aren’t kind-specific but often extend beyond the kinds’ 
boundaries or are limited to only a subgroup of a kind’s members. By consequence, 
such kind essences will not be able to ground laws of nature or support scientific 
generalizations, explanations and predictions that pertain to particular kinds. Thus, 
notwithstanding its broad scope of applicability, the philosophical use of this form 
of kind essentialism appears to be quite limited.

16.4 ConClusion

Kind essentialism, it seems, is far from a dead issue in contemporary philosophy 
of biology. However, I do not think that this should be taken as implying that kind 
essentialism is a particularly promising position with respect to scientific kinds, 
i.e., an account of kinds that can do much important work to help us understand 
how science works.
 For one, most kind essentialisms have only a very limited range of applica-
tion, sometimes not even applying to most kinds in biological science (relational, 
historical and developmental essentialism), while one form of kind essentialism 
applies so widely that, if my arguments are correct, it becomes toothless (clus-
ter essentialism). In addition, the various essentialisms discussed were aimed at 
different targets, none appearing able to perform all or even most of the tasks 
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 traditionally attributed to kind essentialism. As such, even if they are tenable, 
they will do only a limited amount of work in their specific domains. None of the 
essentialisms discussed above seem able to deliver on the great promise of kind 
essentialism.
 Hence, there is reason to question the feasibility of essentialism about kinds 
in general. If some form of essentialism about biological kinds should turn out to 
be acceptable, this will not be of the sort that might apply to kinds in physics, be-
cause the essentialist positions are too much adapted to the requirements posed by 
biological science. Of the four positions discussed above, only cluster essentialism 
could be general enough to apply to physical kinds – but I have argued that there 
are general reasons for which cluster essentialism fails as an account of kinds. In 
addition, while traditional kind essentialism seems to work well for physical kinds, 
the essentialisms proposed for biological kinds break with the tradition on an im-
portant point, namely the traditional view that the essential properties associated 
with a kind should be exhibited by all and only the members of that kind. Thus, at 
most we will end up with a disunified account of scientific classification that could 
be called “local kind essentialism”: one form of kind essentialism for physical 
kinds, another for biological kinds, and perhaps even several kind essentialisms 
for different domains of biology.
 So, how much of an undead issue is kind essentialism? On a local level, that 
is when applied to kinds in one particular research context, some forms of kind es-
sentialism may be alive and well. Globally, however, as a general account of kinds 
in biological science and beyond, kind essentialism does not show much promise 
with respect to being able to do important philosophical work. As a general thesis 
about kinds, then, kind essentialism is best left dead and buried.
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Chapter 17

Christian saChse

BiologiCal laws and Kinds within a Conservative 
reduCtionist FrameworK

aBstraCt

This paper argues for the existence of biological kinds and laws. After a general 
discussion of biological laws (Sect. 17.1), I shall outline a conservative reduction-
ist approach towards biological property types (Sect. 17.2). Within this theoreti-
cal framework, it seems plausible to argue for biological laws (to a degree) and 
 genuine biological natural kinds (Sect. 17.3).

17.1 BiologiCal laws

John Beatty argues that biological generalizations are to some extent contingent 
and do not involve laws.1 He construes the idea of laws as empirical generaliza-
tions without any exceptions (like “"x: if Fx, then Gx”) and that contain a natural 
necessity; that are counterfactually robust.2 Given this definition, he argues fur-
thermore that biological generalizations that fit approximatively into the empirical 
and no exceptions framework are about genetically based traits that are subject 
to evolutionary forces. For instance, Mendel’s first law or Hardy-Weinberg’s law 
obtain only because of prior initial conditions that emerged contingently in the 
course of evolution, and could, thus, have been otherwise: “evolution can lead to 
different outcomes from the same starting point, even when the same selection 
pressures are operating.”3 Therefore, Beatty concludes that while empirical bio-
logical generalizations may correctly describe a causal relation over some period 
(from t

1
 to t

2
), they do not form laws in the sense that they are only true because 

1 John Beatty, “What’s wrong with the received view of evolutionary theory?”, in: Pro-
ceedings of the Biennial Meeting of the Philosophy of Science Association Volume 
2: Symposia and invited Papers, 1980, pp. 397–426; John Beatty, “The evolutionary 
contingency thesis”, in: G. Wolters and J. Lennox (Eds.): Concepts, theories, and ra-
tionality in the biological sciences: The second Pittsburgh-Konstanz Colloquium in the 
Philosophy of Science. Pittsburgh: University of Pittsburgh Press, 1995, pp. 45–81.

2 Cf. Beatty, “The evolutionary contingency thesis”, loc. cit., p. 53, footnote 9.
3 Beatty, “The evolutionary contingency thesis”, loc. cit., p. 57.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_17,  
© Springer Science+Business Media B.V. 2012
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of some prior initial conditions I (that obtained at t
0
). I shall come back to this 

 argument later on.4

 However, the principle of natural selection is a particular biological generali-
zation. Here the argument from different circumstances, or from the contingency 
of evolutionary development, may not apply. Instead, all the circumstances we 
need for there to be natural selection consist in this: (a) that there are inherit-
able properties, which imply fitness differences; and (b) that both the inheritance 
mechanisms and the fitness differences may be physically realized in different 
ways. Whether this degree of generality is sufficient to avoid the contingency argu-
ment depend on a deeper discussion of contingency.5 Let us suppose that it is. Still, 
according to Beatty, the principle of natural selection seems to have been defined 
so that it lacks empirical generalizability, and consequently does not count as a 
law, if fitness has been defined in a tautological way. This is the case if the fitness 
of an entity at t

1
 is only determined by the evolutionary effects (e.g. number of 

descendants) it brings about at t
2
. To put it differently, fitness differences can only 

be trivially linked to evolutionary changes by the principle of natural selection if 
we can define some former state of fitness upon which evolutionary changes work 
as the cause of present evolutionary changes.
 However, one may argue that this tautology only exists at an epistemic level 
and can be theoretically avoided, following Rosenberg,6 in distinguishing between 
the operational and the conceptual understanding of fitness.7 Conceptually, we can 
understand the fitness contribution of a trait as its contribution to the organism’s 
disposition to survive and its disposition to reproduce and both dispositions super-
vene locally on the physical properties of the organism and its environment.8 The 
success (manifestation) of these dispositions to survive and reproduce depends on 
given environmental conditions, allowing us to attribute to a characteristic fitness 
function to any kind of organic trait (Fig. 17.1):

4 For a critique, see: Elliot Sober, “Two outbreaks of lawlessness in recent philosophy 
of biology”, in: Philosophy of Science, 64, 1997, pp. S458–S467; Kenneth Waters, 
“Causal regularities in the biological world of contingent distributions”, in: Biology 
and Philosophy, 13, 1998, pp. 5–36.

5 I sketch out one reply later on; for a more comprehensive discussion, see: Mauro Do-
rato, “Mathematical Biology and the Existence of Biological Laws”, this issue.

6 Alexander Rosenberg, “Supervenience of biological concepts”, in: Philosophy of sci-
ence 45, 1978, pp. 368–386.

7 See Elliot Sober, Philosophy of biology. Second Edition. Boulder: Westview Press, 
2000, ch. 3; Christopher Stephens, “Natural selection”, in: M. Matthen and C. Stephens 
(Eds.), Handbook of the philosophy of science. Philosophy of biology. Amsterdam: El-
sevier, 2007, pp. 111–127.

8 See furthermore: Marcel Weber, “Fitness made physical: The supervenience of bio-
logical concepts revisited”, in: Philosophy of Science 63, 1996, pp. 411–431.
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Fig. 17.1 Fitness function

Of course, the attribution of such fitness functions is rather difficult in practice. 
This, however, is an epistemic problem. It remains that fitness is ontologically 
determined by the dispositions to survive and reproduce, these dispositions are 
manifested under certain environmental conditions, and the principle of natural 
selection correctly registers the impact of fitness differences for evolutionary 
change. Thus, if we understand the principle of natural selection in this way, we 
can dispose of the non-empirical objection to it – for here it is surely an empirical 
effect on populations of organisms. 
 Following this reasoning, one could see no objection, following Rosenberg, 
to specifying the status of the principle of natural selection as a fundamental, 
non-derived law of physics9: the principle of natural selection is a fundamental 
law since it (a) can explain physical facts and (b) it cannot be derived from other 
physical laws because of the multiple realization of biological functions and thus 
of fitness (differences). In other words, the laws of physics need specific initial 
and boundary conditions to explain the distribution of the molecules (e.g. genes) 
at some later time, while the principle of natural selection can do so for infinitely 
many different initial conditions. This then suggests adding the principle of natural 
selection to the other fundamental physical laws.
 Of course, as Rosenberg argues, if the principle of natural selection really is 
fundamental, then we can avoid any conflict with the principle of the complete-
ness of physics by simply conjoining it to the physical laws.10 However, at least in 
theory, there remains a categorial difference between the principle of natural selec-
tion and the (other) fundamental laws of physics that may seem, to a physicalist, 
like it calls for another act of reduction. If we decide not to adopt some kind of 
ontological property dualism (following Rosenberg’s counsel), then we must say 
that the principle of natural selection and the (other) fundamental physical laws re-
fer to the same properties, only in different manners. However, if this is our claim, 
we may question Rosenberg’s argument from irreducibility to  fundamentality. 
Furthermore, I argue later on that multiple realization does not actually present an 
obstacle to reducibility.

9 Alexander Rosenberg, Darwinian reductionism. Or, how to stop worrying and love 
molecular biology. Chicago: University of Chicago Press, 2006, ch. 6.

10 See also: Marcel Weber, “Review of Alexander Rosenberg, Darwinian reductionism. 
Or, how to stop worrying and love molecular biology”, in: Biology and Philosophy 23, 
2008, pp. 143–152. 
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 In contrast to Beatty and Rosenberg, Sober wants to leave open the question 
of whether laws are empirical or a priori.11 Understanding a priori propositions as 
laws if they are about causal processes, Sober argues that the way biologists build 
their models gives support to the proposition that biological laws are a priori. 
For instance, Fisher’s theorem of natural selection, which proposes a mathemati-
cal proof, is a law, according to Sober, because it supports counterfactuals and 
describes causal and explanatory relations. More generally, if we accept Sober’s 
construction of laws, and we accept that evolutionary processes are governed by 
biological laws, then we can conclude that evolution is lawful. Of course, Beatty’s 
contingency argument is aimed at just these elements of Sober’s argument. After 
all, any (empirical or a priori) biological law that has the general form “"x: if Fx, 
then Gx” may be contingent on prior initial conditions I. However, this fact does 
not exclude reformulating the generalization in the form: “If I obtains at one time, 
then the generalization “"x: if Fx, then Gx” will hold hereafter”, from actually 
being contingent on anything.12 Such reformulated non-contingent generalizations 
are laws since (a) they are about causal relations (between token of F and tokens 
of G) and (b) causation demands the existence of laws.
 However these claims about laws are straightened out, one may still ask 
whether these laws aren’t physical ones, at least in the last resort. After all, follow-
ing the completeness claim, physics has the most detailed means to spell out the 
causal relations that lead to situations where, to take Beatty’s examples, inherit-
ance conforms to Mendel’s first law. Furthermore, any naturalistic approach would 
suggest that the emergence of life, for whatever reason it happens, must ultimately 
reduce to physical law, from which is then derived the application of the principle 
of natural selection. On this reading it seems that Sober’s reply to Beatty’s contin-
gency argument depends on the physical laws that have to be incorporated into his 
proposed reformulations. Therefore, biological laws are non-contingent only to 
the extent that they are in fact physical laws (or at least derivative from such laws). 
This suggests that reductionism gives us the only convincing reply to Beatty’s 
contingency argument. Without reducing biological laws to the ones governing 
chemical and physical interaction between physical elements, we have no coherent 
account that allow us to conjoin the two ends of the theory of biological law: on 
the one end, the claim that biology is able to formulate a priori laws that support 
counterfactuals, which can be applied to causal relations concerning living things 
that give us scientific explanations; and on the other end, the claim that the truth 
of these laws supervenes on the truth of physical laws that are empirical ones. 
Moreover, we also confront, here, a problem quite similar to the tautology problem 
of fitness, intrinsic to the claim that a priori laws are mainly operational abstrac-
tions of physical laws that are genuine natural ones.

11 See: Sober, “Two outbreaks of lawlessness in recent philosophy of biology”, loc. cit.
12 See: Sober, Ibid.
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 One could resolve these dilemmas by having recourse to a biological version 
of ceteris paribus laws, which – the claim would go – are genuine laws because 
biological laws differ from physical laws only in degree of their ceteris paribus 
type but not in kind.13 To make a clear link to our previous discussion, this ar-
gument holds that laws do not have to be universal (contrary to the position of 
Beatty and Rosenberg) without necessarily adopting Sober’s particular position 
on a priori laws. Still, following Beatty, there is a difference between biology 
and physics – and I spell out this difference within a reductionist framework in 
the next section, where I also keep in mind, following Rosenberg, to avoid any 
conflict with the completeness of physics and ontological reductionism. In addi-
tion, I take Sober’s reply to Beatty’s contingency argument for granted. Within 
this framework, I thus analyse here in more detail (a) the historical dimension of 
biology and (b) ceteris paribus clauses in biology. Then, given the decomposition 
of all laws, physical and biological, into ceteris paribus laws, we must show that 
the difference in degree in relation to physical laws is such that (c) these laws are 
distinctively biological ones.
 (a) Biology is a diachronic discipline about biological events – for instance, 
speciation – that are unrepeatable in practice because of the differences between 
any biological organism. This means that there are no types of historical events, 
which disallows forming corresponding laws that take types as their object. How-
ever, physical theories like cosmology are also diachronic in the above given sense, 
in that they concern unrepeatable events. So, in comparing cosmology and biol-
ogy, if we take it for granted that both refer to causal relations governed, in the last 
resort, by physical laws, then the difference in their objects appears to be more of 
a difference in degree of complexity than a difference in kind. To put it differently, 
it seems that the unrepeatable character of historic events per se does not exclude 
the existence of laws.14 However, the question is not so much one of the historical 
dimension of biology but whether these are underlain by genuine biological laws, 
just as general relativity or quantum gravity underlies cosmology. In the next sec-
tion, I will outline how this may work in biology.
 (b) Biological laws are not universal since the existence of biological proper-
ties is spatiotemporally restricted. For instance, the principle of natural selection 
applies only to particular objects, living beings, and not to purely physical configu-
rations. Biology always needs so-called ceteris paribus clauses in order to provide 
the applicability of its laws. Understanding ceteris paribus as “whenever the right 

13 See: Dorato, “Ceteris paribus laws in physics and biology, or why there are biological 
laws”, loc. cit.; Marc Lange, “Laws, counterfactuals, stability, and degrees of lawhood”, 
in: Philosophy of Science 66, 1999, pp. 243–267; see also Marc Lange, Laws & law-
makers. Oxford: Oxford University Press, 2009.

14 See: Dorato, “Ceteris paribus laws in physics and biology, or why there are biological 
laws”, loc. cit.
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condition obtains”15 (in distinction to “all other things being equal”16), one may 
then ask whether this feature really distinguishes biological laws from physical 
ones. The view that it doesn’t mainly contains two parts. First of all, a ceteris pari-
bus clause contains the right conditions and biology cannot specify them in its own 
terms. However, this seems to be an epistemic difficulty rather than a conclusive 
objection to a possible existence of biological laws. Second, of course, biological 
laws depend on initial conditions. However, this does not distinguish biological 
and physical laws, since initial conditions are required in physics as well.17 The 
fact that adjustable parameters in the initial conditions may be much more numer-
ous in biological laws than in physical is once again only a difference in degree.
 (c) Following this line of argument, we still have to answer the question: what 
makes a law a distinctively biological one? After all, a complete ceteris paribus 
clause necessarily contains physical specifications. Still, a law may be called bio-
logical if it contains biological concepts that are irreducible to physics (or rather 
“irreplaceable” as I shall argue later on). And this seems to be the case, most phi-
losophers agree, because of the multiple realization18 of biological properties.
 To conclude this section, it seems that if biological laws exist, they exist in 
the form of ceteris paribus laws. As I have argued, the view that biological laws 
differ only in degree to physical laws goes hand in hand with the irreducibility of 
biology due to multiple realization. In the following section, I will argue that this 
link is both unnecessary and moreover problematic. Multiple realization should 
not be seen as an irreducible impediment to reduction, nor should it be understood 
as an anti-reductionist argument. To the contrary, a conservative reductionist ap-
proach that embraces multiple realization as an anti-eliminativist argument gives 
us a stronger argument in favour of the existence of biological laws distinguished 
in degree from physical ones.

15 Nancy Cartwright, How the laws of physics lie. Oxford: Oxford University Press, 1983, 
p. 45 (taken from: Dorato, “Ceteris paribus laws in physics and biology, or why there 
are biological laws”, loc. cit.).

16 See also: Stephen Schiffer, “Ceteris paribus laws”, in: Mind 100, 1991, pp. 1–17; Jerry 
Fodor, “You can fool some of the people all the time, everything else being equal: 
Hedged laws and psychological explanations”, in: Mind 100, 1991, pp. 19–34.

17 See: Dorato, “Mathematical Biology and the Existence of Biological Laws”, loc. cit.; 
Mehmet Elgin, “There may be strict empirical laws in biology, after all”, in: Biology 
and Philosophy 21, 2006, pp. 119–134.

18 See also: Lawrence Shapiro, “Multiple realizations”, in: The Journal of Philosophy 97, 
2000, pp. 635–654.
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17.2 Conservative reduCtionism

It is generally taken for granted that biological property tokens are identical with 
something physical.19 Otherwise, at least one of the following widely accepted 
working hypotheses would be false: (1) biological properties supervene on com-
plex configurations of physical properties20; and (2) physics is causally, nomo-
logically and explanatorily complete with respect to biology21; and (3) biological 
properties are causally efficacious. Since, according to token-identity, biology and 
physics refer to the same entities, the problem of the autonomy of biology starts 
with explaining how their concepts, laws and explanations are related.
 Let me start here with the argument that takes multiple realization to require 
an anti-reductionist stance, an argument that goes back to Fodor22 and Putnam.23 
The principal point of the argument is that biological concepts cannot be bi-con-
ditionally related to physical descriptions. They are not coextensive.24 Therefore, 
biological functional explanations must constitute an autonomous and unifying 
explanatory level25 (Fig. 17.2):

19 See among others: Michael Esfeld and Christian Sachse, Conservative reductionism. 
New York: Routledge, 2011, ch. 2.6; Jaegwon Kim, Physicalism, or something near 
enough. Princeton: Princeton University Press, 2005, ch. 2.

20 Rosenberg, “Supervenience of biological concepts”, loc. cit.; Weber, “Fitness made 
physical: The supervenience of biological concepts revisited”, loc. cit.

21 See: David Papineau, Thinking about consciousness. Oxford: Oxford University Press 
2002, appendix.

22 Jerry A. Fodor, “Special sciences (or: The disunity of science as a working hypoth-
esis)”, in: Synthese 28, 1974, pp. 97–115.

23 Hilary Putnam, “The nature of mental states”, in: H. Putnam, Mind, language and re-
ality. Philosophical papers. Volume 2, Cambridge: Cambridge University Press 1975, 
pp. 429–440.

24 Note that natural selection is generally taken to be the reason why there is multiple 
realization of biological property types: the causal powers of a given physical con-
figuration, realizing a biological property that is pertinent for selection, depends on 
the environmental conditions. See: David Papineau, Philosophical naturalism. Oxford: 
Blackwell 1993, p. 47; Alexander Rosenberg, “How is biological explanation possi-
ble?”, in: British Journal for the Philosophy of Science 52, 2001, pp. 735–760.

25 See also: Philip Kitcher, “1953 and all that. A tale of two sciences”, in: Philosophical 
Review 93, 1984, pp. 335–373.
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Biological concepts (like “B”) refer, because of functional similarities, in a homogenous 
way to biological property tokens that come under different physical descriptions (like 
“P

1
” and “P

2
”):

 Fig. 17.2 Multiple realization

However, if no nomological coextension between physical and biological descrip-
tions can be established, biological concepts would seem to not actually be about 
the same entities in the fine-grained sense, but are instead about different proper-
ties.26 This then leads to a property dualism that contemporary anti-reductionists 
have tried to avoid, with its concomitant of making biological properties epiphe-
nomenal. After all, it follows from token identity and the completeness of physics 
that for the biological property tokens b

1a
, b

1b
, … b

1z
, the fact of coming under 

a  biological description B cannot signify some causal efficacy beyond what is 
spelled out by P

1
 and, similarly, B applies as well to b

2a
, b

2b
, … b

2z
 that are com-

pletely described by P
2
. So, B cannot be something causal in addition to what 

physics tells us; B is either an abstraction or epiphenomenal. Epiphenomenalism 
implies eliminativism as regards the scientific quality of B (and of biology in gen-
eral) since no causal explanation could be based on it. If we reject epiphenomenal-
ism, then it has to be theoretically possible to construct biological concepts that 
are bi- conditionally related to physical descriptions. This then means to take a re-
ductionist perspective that avoids epiphenomenalism and eliminativism as regards 
biological abstractions, which satisfy the following desiderata:

 

26 See: Michael Esfeld, “Causal properties and conservative reduction”, in: Philosophia 
naturalis 47–48, 2010–2011, pp. 9–31; Michael Esfeld and Christian Sachse, “Theory 
reduction by means of functional sub-types”, in: International Studies in the Philoso-
phy of Science 21, 2007, pp. 1–17; Esfeld and Sachse, “Conservative reductionism”, 
loc. cit., ch. 5; Christian Sachse, Reductionism in the philosophy of science. Frankfurt: 
Ontos-Verlag 2007, ch. III.

b1a, b1b, …, b1z

B B*

b2a, b2b, …, b2z b*1a, b*1b, …, b*1z b*2a, b*2b, …, b*2z

P1 P2 P*1 P*2
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2. Biological concepts, laws and explanations are about causally efficacious
property tokens (“Cau”).

1. Avoiding the conflict with the completeness of physics and ontological
reductionism.

3. Biological concepts, laws and explanations are theoretically not replaceable
(“¬Rep”).

Fig. 17.3 Minimal desiderata

In order to combine “Cau” and “¬Rep” (Fig. 17.3), one has to consider 
 multiple realization in more detail. According to it (as illustrated in Fig. 17.2), 
not everything that comes under B would also come under a single physical 
description P

1
. Here, P

1
 is a placeholder for a detailed homogeneous physical 

description that only applies to a subset of entities that come under B. How-
ever, if local physical structures coming under one concept B are described 
in terms of different physical concepts (like P

1
 and P

2
), then there is a differ-

ence in composition among their structures. Each of these physical concepts 
is about a minimal sufficient condition (realizer) to bring about the effects that 
define B, ceteris paribus. In order to get from structures coming under P

1
 to 

structures coming under P
2
, one has to substitute at least one of the necessary 

parts of the biological trait to bring about the effects in question with a part of 
another type. Any such replacement implies a systematic difference in the way 
in which these structures cause the effects that define B, which means that we 
cannot replace a local physical structure of type P

1
 by a local physical structure 

of type P
2
 (thus obtaining a different physical realizer of B) without making a 

causal difference.27

 If the effects that define B can be brought about by two or more different con-
figurations of physical properties (types of realizer), our claim is that we will still 
find a difference in the production of side effects that are systematically linked 
with the main effects in question over the entire trajectory of the trait’s historical 
existence. Think of physically different genes28 that all code for the same protein 
and thus come under one biological concept B. Such a case affords the possibility 
that different causal interactions with the physical environment within the cell will 
occur when these genes are transcribed and the proteins are synthesized. For any 
such difference in the causal sequence from the DNA transcription to the protein 
synthesis, there exists the possibility that the difference may become pertinent in 
particular environments29 (see the illustration in Fig. 17.4, where the physically 

27 See also: Kim, “Making sense of emergence”, loc. cit. and Kim, “Physicalism, or 
something near enough”, loc. cit., p. 26.

28 Genes and functionally defined gene types should be generally understood as differ-
ence makers; see: C. Kenneth Waters, “Genes made molecular”, in: Philosophy of Sci-
ence 61, 1994, pp. 163–185; Kenneth Waters, “Causes that make a difference”, in: 
Journal of Philosophy 104, 2007, pp. 551–579.

29 See also: Alexander Rosenberg, Instrumental biology or the disunity of science. 
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different genes differ in environment 1 and 6, but are alike in environment 2–5). 
Consequently, that difference can in principle also be considered in functional 
terms – terms proper to the biological domain to which B belongs.30 The upshot of 
this argument is that more precise functional definitions may, in theory, account for 
different reaction norms (fitness functions), and thus, physical differences. Against 
this background, for the concept B (that is multiply realized by P

1
 and P

2
), it is 

possible to conceive two functional sub-types B
1
 and B

2
 taking different reaction 

norms into account:

Fig. 17.4 Fitness functions of sub-types

 For instance, consider a gene of E. coli whose expression is pertinent to the 
fitness function of the organism, and that is thus functionally defined in terms of 
biology. For instance, a genetic basis for cell-wall biosynthesis. Simplified, the 
gene tokens coming under B are defined by their characteristic expression of mem-
brane proteins that are crucial for the cell growth of the bacterium before cell 
division, etc. Independently of our chosen level of genetic simplification, the gene 
tokens coming under B are identical with certain physical configurations (DNA 
sequences) that are described differently in terms of physics (by P

1
 and P

2
) since 

there are differences in the physical composition of the DNA sequences in ques-
tion. Nonetheless, due to the redundancy of the genetic code, all these physically 
different DNA sequences code for proteins of the same type (or any other effect 
that is considered in the functional definition B). The crucial point here is that there 
are different physical paths to bring about the effect in B according to the physical 
differences between P

1
 and P

2
. These different ways to produce the effects (the 

proteins for instance) are systematically linked with possible side effects or reac-
tion norms, as for instance differences in the speed or the accuracy of the protein 
production, of which we have more and more empirical evidences.31 To sum up, 

Chicago: University of Chicago Press, 1994, p. 32.
30 With regard to more fine-grained functional concepts of the special sciences, see also: 

William Bechtel and Jennifer Mundale, “Multiple realizability revisited: linking cogni-
tive and neural states”, in: Philosophy of Science 66, 1999, pp. 175–207.

31 See among many others: Michael Bulmer, “The selection-mutation-drift theory of syn-
onymous codon usage”, in: Genetics 129, 1991, pp. 897–907; Daniel L. Hartl, Etsuko 
Moriyama and Stanley Sawyer, “Selection intensity for codon bias”, in: Genetics 138, 
1994, pp. 227–234; Ulrich Gerland and Terence Hwa, “Evolutionary selection between 
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depending on variations in the environmental conditions, the optimality of certain 
DNA sequences over others can become selectively pertinent. This, then, should 
be taken into account in more precise functional definitions and explanations (see 
Fig. 17.5 below).32

 By means of these sub-types we attain concepts of biology that are nomo-
logically coextensive with physical concepts and thus make it possible to reduce 
biology to physical theories in a functional manner (if we assume multiple realiza-
tion) in three steps (see also Fig. 17.5): (1) within an encompassing fundamental 
physical theory P, we construct the concepts P

1
, P

2
, etc. to capture the differences 

in composition among the local physical structures that are all described by the 
same concept B; (2) B is more precisely articulated by constructing functional sub-
types B

1
, B

2
, etc. of B, each of which captures the systematic side effects linked 

to the different ways of producing the effects that define B. To put it differently, 
the sub-types are constructed from B in such a way that they are nomologically 
coextensive with the concepts P

1
, P

2
, etc., using the functional model of reduction; 

(3) B is reduced to P via B
1
, B

2
, etc. and P

1
, P

2
, etc. Reducing B (and thus biology) 

here means that starting from P, we can construct P
1
, P

2
, etc. and then deduce B

1
, 

B
2
, etc. from P

1
, P

2
, etc. given the nomological coextension. One derives B by ab-

stracting from the conceptualization of the functional side effects contained in B
1
, 

B
2
, etc. given a environmental context in which the functional side effects are not 

manifested or are not pertinent to selection33:

b1a, b1b, …,b1z b2a, b2b, …,b2z b*1a, b*1b, …,b*1z b*2a, b*2b, …,b*2z

B B*

B1 B*1B2 B*2

P1 P*1P2 P*2

Fig. 17.5 Conservative reduction

alternative modes of gene regulation”, in: Proceedings of the National Academy of Sci-
ences of the United States of America 106, 2009, pp. 8841–8846; for more references 
and a more detailed consideration; see Esfeld and Sachse, “Conservative reduction-
ism”, loc. cit., ch. 3.2 and 4.3.

32 See: Christian Sachse, “Conservative reduction of biology”, in: Philosophia naturalis 
48–49, 2010-11, pp. 33–65, for more details why sub-types are no longer multiply re-
alizable and why sub-types and the original types have the same substantial meaning.

33 For more details, see: Esfeld and Sachse, “Conservative reductionism”, loc. cit., ch. 5; 
Sachse, “Conservative reduction of biology”, loc. cit.
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 On the basis of the fundamental physical laws, one can construct laws in terms 
of P

1
, P

2
, etc. that refer to the properties on which biology focuses. From those 

laws, one can deduce biological laws in terms of B
1
, B

2
, etc., given the nomological 

coextension of these concepts. These sub-types and any laws and explanations that 
are based on them are not, then, about epiphenomena (thus vindicating “Cau”). 
Nonetheless, they were replaceable by physics because of nomological coexten-
sion (no vindication of “¬Rep”). However, one reaches the laws and explanations 
in terms of B by bracketing the conceptualization of the functional side effects that 
are represented in B

1
, B

2
, etc. Since the specification of the function of B is con-

tained in each of its sub-types, the original and abstract concept B cannot be elimi-
nated. The abstract laws of biology couched in terms of B are non-physical and 
not replaceable by physics in the sense that there is no single physical law having 
the same extension as any of these laws, vindicating “¬Rep” for B. When talking 
about complex objects such as e.g. genes, cells, or whole organisms, the physical 
concepts focus on the composition of these objects. Due to selection there are sali-
ent causal similarities among the affects produced as a whole by such complex ob-
jects, even though they differ in composition. So, the abstract concepts of biology 
possess a scientific quality in the sense of satisfying “Cau” and “¬Rep”, figuring 
in law-like generalizations that capture something that is objectively there in the 
world. Furthermore, these concepts and law-like generalizations do not conflict 
with the completeness of physics and ontological reductionism, since the reductive 
method used to express them is based on the fundamental physical concepts and 
laws.

17.3 perspeCtives

Conservative reductionism constitutes a plausible framework for biological laws 
and kinds. As regards the question of special biological laws, it is consistent with 
the claim that these exist as things different in degree from physical laws within 
the reductionist framework. We can specify the different degrees of lawhood in 
terms of different degrees of abstraction and generality. That is to say, biological 
generalizations may be, within their domain of application, law-like. The argu-
ment for this is stronger within a conservative reductionism because, as we have 
shown, it avoids conflicts with an ontological reductionism and the thesis of the 
completeness of physics that are usually held to be antithetical to the biological 
law claim. Moreover, by showing that the concepts constituting abstract biological 
generalizations are theoretically connectable via sub-types with physical descrip-
tions and laws, we may formulate sub-type-laws that get their law-like character 
from physics deductively, on account of nomological coextension. From this move, 
the original biological generalizations can also be understood as inheriting their 
law-likeness, since they only abstract from certain functional details. Against this 
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background, we can connect the principle of natural selection to physics by means 
of its application to specific units of selection, and thus confer on it its law-like 
character. Still, because of its extreme generality, the principle of natural selection 
is not replaceable by physics. Keep in mind that the kind and degree of abstraction 
is entirely a matter of the given and changing environmental conditions, and not 
on some theoretical protocol.
 Against this background, one may consider the debate on biological taxa being 
natural kinds. Conservative reductionism supports a realist attitude with respect to 
biological kinds in the following general way: since the sub-types are nomologi-
cally coextensive with physical descriptions, it is possible to apply any argument in 
favour of (composed) physical kinds being natural ones to the biological sub-types 
as well. Thus, the more abstract biological concepts inherit their naturalness and 
counterfactual robustness from their sub-types, or, to put it differently, the reduc-
tionist framework makes explicit the hierarchical structure of a system of natural 
biological kinds that is theoretically achievable. Additionally, depending on en-
vironmental conditions, the abstract biological concepts such as biological taxa 
may not only be descriptive but also figure in biological laws and explanations. 
In this way, neither inheritance nor the biological sphere’s systematic hierarchical 
structure contains, in the ideal case, any conventionalist aspect. This seems at least 
plausible for any kind of biological property type at a certain time.
 However, things become more complicated as regards biological species that 
are evolving while in time, when physical natural kinds are not. Physical natural 
kinds are perfectly similar and can thus be rigidly designated, while biological 
kinds are at most imperfect similar. This difference suggests that we should deny 
any essence to the notion of the biological species. However, one may argue that 
imperfect similarities are sufficient for essence.34 To show this, let us first consider 
the argument for the following claim: there is no principal difference whether we 
consider multiple realization of a type at one specific time or for a period of time. 
For instance, imagine an abstract concept B

t1
 such that it applies to any member 

of a species at t
1
 and it can be conservatively reduced via its sub-types to physics. 

Look at that species at a later stage in evolution (at t
2
) and imagine once again that 

an abstract concept B
t2
 applies to any member of a species and this concept can 

be conservatively reduced via its sub-types to physics as well. If we now compare 
both abstract concepts B

t1
 and B

t2
, it is likely that they differ somehow and it is even 

more likely that their sub-types differ somehow since evolution has taken place. 
However, there is no principal objection to the view that both abstract concepts B

t1
 

and B
t2
 may constitute themselves two sub-types for some more abstract concept 

that bring out salient characteristic similarities that figure in explanations. Call 
this a theoretical species concept that applies to B

t1
 and B

t2
. Of course, common 

34 See also: Kevin Lynch, “A multiple realization thesis for natural kinds”, in: European 
Journal of Philosophy, DOI: 10.1111/j.1468-0378.2010.00420.x, 2010, pp. 1–18.
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taxonomy may either satisfy these demands or not. But whenever it does, species 
concepts are natural ones and may theoretically figure in laws and explanations.
 This then amounts to attributing essence to species. Say that the individuals of 
some species B differ physically and thus come under different physical descrip-
tions P

1
, P

2
, etc. Applying the reductionist strategy, one may construct sub-types 

(B
1
, B

2
, etc.) of B that are nomologically coextensive with P

1
, P

2
, etc. Any attribu-

tion of essence to the constructed sub-types is justified since they are nomological 
coextensive with physical types (to which we generally attribute essences). Then, 
the species concept B can be understood as being nothing more than an abstraction 
from the essence differences of its sub-types. B spells out what all the individu-
als have essentially in common (similar to the functional similarity of biological 
types). The same reasoning is, as shown before, applicable to larger time scales. 
We may thus share some essence with humans of previous generations. However, 
since evolution continues, any particular essence may disappear one day. This then 
raises the question about the essence changing, or a speciation event.
 Within the reductionist framework, speciation may be understood as arising 
when at least two sub-types (B

1
 and B

2
,) no longer share “enough” to come un-

der the previously common species concept B. No longer sharing enough here 
means that functional (essence) differences that are spelled out in the sub-types 
become more important than their functional (essence) similarities. This poses no 
theoretical threat of conventionalism, since whether or not such situations emerge 
depends on the environmental conditions. Within the framework of conservative 
reductionism, our argument suggests that differences in essence (in combination 
with the given environmental conditions) constitute the starting point for whether 
the speciation event occurs or not. In other terms, phylogenesis during evolution 
does not depend on us but on the world and the underlying physical structures and 
changes that can be, in theory, considered in terms of sub-types and more abstract 
concepts. On that theoretical basis, rather descriptive classifications that mostly 
focus on a historical dimension like common ancestry are not impediments to the 
ahistorical construction of biological kinds with genuine essences that figure in 
genuine explanations.

Department of Philosophy
University of Lausanne
Quartier UNIL-Dorigny, Bâtiment Anthropole 4074
1015, Lausanne
Switzerland
christian.sachse@unil.ch

244



Chapter 18

Marie i. Kaiser

Why it is tiMe to Move Beyond nagelian reduCtion

18.1 introduCtion

In this paper I argue that it is finally time to move beyond the Nagelian framework 
and to break new ground in thinking about epistemic reduction in biology. I will do 
so, not by simply repeating all the old objections that have been raised against Er-
nest Nagel’s classical model of theory reduction.1 Rather, I grant that a proponent 
of Nagel’s approach can handle several of these problems but that, nevertheless, 
Nagel’s general way of thinking about epistemic reduction in terms of theories and 
their logical relations is entirely inadequate with respect to what is going on in 
actual biological research practice.
 I start with an overview of the long “success story” of the Nagelian account, 
which I think has not really found an ending yet (Sect. 18.2). Then I reveal the 
inadequacy of the Nagelian framework with respect to biology (Sect. 18.3) by arguing 
that Nagel focuses on the wrong relata of the relation of epistemic reduction 
(Sect. 18.3.2) and on the wrong kind of issues, namely on formal and not on 
substantive issues (Sect. 18.3.3). My argumentation is based on certain methodo-
logical assumptions about how to develop an adequate account of epistemic 
reduction (Sect. 18.3.1), which I specify by unfolding three criteria of adequacy 
that an account of epistemic reduction in biology must satisfy.

18.2 the doMinanCe of the nagelian Model – a Brief history

The question about the reduction of the biological realm to, for instance, the physical 
realm is an old one. Reduction was an implicit topic of the mechanistic philosophy 
in the sixteenth and seventeenth century and it was controversially disputed in the 
debate about vitalism in the nineteenth and early twentieth century. In more recent 
years, when philosophy of biology emerged as a separate discipline in the 1960s/1970s 
the question whether biological theories can be reduced to molecular and in the end to 
physical theories was among the first issues disputed. Reductionism in biology became 
a central topic due to the impressive growth and development of molecular biology. 

1 Cf. Ernest Nagel, The Structure of Science. Problems in the Logic of Scientific Expla-
nation. London: Routledge 1961.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_18,  
© Springer Science+Business Media B.V. 2012
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Of particular interest was the question of whether classical genetics can be reduced to 
molecular biology. This special case was seen as a test case for the reduction of biology 
to physics in general.2

 A few years before the debate about reduction in biology emerged, Nagel had 
published his The Structure of Science, in which he developed his formal model 
of theory reduction. In the spirit of logical empiricism, Nagel characterizes reduc-
tion as a deductive relation that holds between scientific theories, which he takes 
to be sets of law statements. In line with the deductive-nomological (D-N) model 
of explanation,3 Nagel conceived reduction as a special case of explanation. For 
reduction to occur two conditions must be satisfied: the reduced theory has to be 
derived from the reducing theory (“condition of derivability”4). This presupposes 
that the reduced and the reducing theory either contain the same terms (in case of 
homogenous reduction) or that the former can be connected to the latter (in cases 
of heterogeneous reduction) via so called ‘bridge laws’ or, more neutrally, ‘cor-
respondence statements’ (“condition of connectability”5). It should be acknowl-
edged that Nagel contributed much more to the debate about reduction than this. 
For instance, he also proposed several non-formal conditions for distinguishing 
trivial from non-trivial cases of reduction,6 discussed the issues of emergence7 and 
“mechanistic explanation” in biology,8 and identified different reasons why the 
whole can be more than the sum of its parts.9 Nonetheless, the subsequent debate 
about Nagel’s account focused on the formal conditions he identifies in his chapter 
on theory reduction. Although Nagel developed his formal model solely on basis 
of an example from physics (i.e. the reduction of thermodynamics to statistical 
mechanics), the early philosophers of biology considered it to be an adequate un-
derstanding of what epistemic reduction10 in the sciences in general is and, thus, 
tried to apply it to biology.

2 Cf. Philip Kitcher, “1953 and All That: A Tale of Two Sciences”, in: Philosophical 
Review 93, 1984, pp. 335–373 and Alexander Rosenberg, The Structure of Biological 
Science. Cambridge: Cambridge University Press 1985.

3 Cf. Carl Hempel, Paul Oppenheim, “Studies in the Logic of Explanation“, in: Philoso-
phy of Science 15, 2, 1948, pp. 135–175.

4 Nagel, The Structure of Science, p. 354.
5 Ibid., p. 354.
6 Cf. ibid., pp. 358–366.
7 Cf. ibid., pp. 366–380.
8 Cf. ibid., pp. 398–446.
9 Cf. ibid., pp. 380–397.
10 With ‘epistemic reduction’ I refer to the reduction of one body of knowledge (or parts 

of it like theories, explanations, methods, etc.) of a certain scientific discipline, e.g. 
biology, to another body of knowledge (or parts of it) of a different scientific discipline, 
e.g. physics. Epistemic reduction should be clearly distinguished from ontological re-
duction, which is the reduction of ontological entities of one kind (like objects, proper-
ties, facts, etc.), e.g. biological token objects, to ontological entities of another kind, 
e.g. physical token objects. In short, ontological reduction is a relation between things 
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It quickly became clear that Nagel’s account not only had to face many general 
problems,11 but that biology provides special obstacles for Nagelian reduction as 
well. In short: the objections were that neither the bridge laws that are needed 
to connect the terms of biological and physical theories nor the laws that consti-
tute the units to be reduced, i.e. theories, are available in biology.12 First, because 
evolution by natural selection is blind to structural differences with similar func-
tions, most existing biological types of entities are multiply realized on the physi-
cal level.13 For instance, the wings of different species of birds (let alone those of 
mammals and insects) vary strongly with respect to their structure and material 
composition although almost all of them share the same function, i.e., they enable 
their bearers to fly. The multiple realization of biological types makes it very dif-
ficult to establish those connections between the terms of biological theories (e.g. 
classical genetics) and physical or molecular theories (e.g. molecular biology) that 
are needed for reduction in the Nagelian sense. Second, another obstacle for 
a neat application of Nagel’s model to biology is his assumption that theories 
are sets of law statements. The generalizations that can be found in biology (e.g. 
Mendel’s laws of segregation and independent assortment) seem to be far away 
from describing laws of nature in the classical, strict sense. They typically have 

in the world and epistemic reduction is a relation between parts of our knowledge about 
these things in the world. Nagelian theory reduction is a special case of epistemic re-
duction (other cases are explanatory and methodological reduction) because according 
to Nagel the relation of reduction holds between representational entities, i.e. theories. 
This is compatible with the claim that Nagel’s regards bridge laws as stating identities 
or relations among extensions, i.e. as ontological links (although this is by no means 
clear, cf. for example Peter Fazekas, “Reconsidering the Role of Bridge Laws in Inter-
Theoretical Reductions”, in: Erkenntnis 71, 2009, pp. 303–322). Even if bridge laws 
are interpreted as stating ontological links, they are still linguistic entities (that repre-
sent relations that exist in the world) and not the relations in the world themselves.

11 For instance, Frederick Suppe, Ken Waters and others criticized the reliance of Nagel’s 
account on a syntactic view of theories (cf. Frederick Suppe, The Structure of Scientific 
Theories. 2nd ed. Urbana: University of Illinois Press 1977 and Kenneth Waters, “Why 
the Antireductionist Consensus Won’t Survive the Case of Classical Mendelian Genet-
ics”, in: PSA 1990, 1, 1990, pp. 125–139). Paul Feyerabend attacked Nagel’s model 
by claiming the incommensurability of the meaning of the theoretical terms of the re-
duced and reducing theory (cf. Paul Feyerabend, “Explanation, Reduction and Empiri-
cism”, in: Herbert Feigl and Grover Maxwell (Eds.), Scientific Explanation, Space, and 
Time, Minneapolis: University of Minnesota Press 1962, pp. 28–97). Finally, Schaffner 
pointed out that in most cases of theory reduction the reduced theories first need to be 
corrected before they can be derived from the reducing theory (cf. Kenneth Schaffner, 
“Approaches to Reduction”, in: Philosophy of Science 34, 1967, pp. 137–147 and “The 
Watson-Crick Model and Reductionism”, in: British Journal for the Philosophy of Sci-
ence 20, 1969, pp. 325–348).

12 Cf. for example Kitcher, loc. cit.
13 For a detailed elaboration of this point see, for instance, Alexander Rosenberg, “How 

Is Biological Explanation Possible?”, in: British Journal for Philosophy of Science 52, 
2001, pp. 735–760.
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exceptions, are restricted in scope, and it can be argued that they are historically 
contingent.14 This led many philosophers of biology to the conclusion: no laws in 
biology, hence, no cases of reduction in biology. The result was the formulation of 
the “antireductionist consensus”.15 About 20 years after the reductionism debate 
in the philosophy of biology had emerged it seemed as if everybody had become 
an antireductionist.16 Even philosophers with strong reductionistic intuitions like 
Alexander Rosenberg gave up the hope that biology can be reduced to physics.17

It is important to note that during these 20 years and up to the 1990s the major-
ity of philosophers took the obstacles with applying Nagel’s model to biology to 
reveal the non-existence of reduction in this field and to support the incorrectness 
of reductionism in biology. Most of them did not choose the alternative option to 
question that Nagel’s account is, in principle, the adequate way of thinking about 
reduction.18 It was common practice to disagree about the details of the Nagelian 
model of theory reduction and to call for revisions. Many philosophers, most no-
tably Kenneth Schaffner, tried to overcome the problems of Nagel’s account by 
developing it further.19 However, at that time hardly anybody questioned Nagel’s 

14 Cf. John Beatty, “The Evolutionary Contingency Thesis”, in: Gereon Wolters, James 
Lennox (Eds.), Concepts, Theories, and Rationality in the Biological Sciences. Pitts-
burgh: University of Pittsburgh Press 1995, pp. 45–81.

15 Waters, “Why the Antireductionist Consensus Won’t Survive the Case of Classical 
Mendelian Genetics”, loc. cit., p. 125. It is important to note that, contrary to the situa-
tion in the philosophy of mind, the reductionism debate in the philosophy of biology is 
a dispute about the frequency or possibility of epistemic reduction and not of ontologi-
cal reduction. Ontological reductionism, at least in its weak version of a token-token 
physicalism, is the (often implicit) consensus in the philosophy of biology. However, 
this does not mean that it is impossible or fruitless to analyze ontological reduction or 
to dispute about ontological reductionism in biology. The epistemic questions are just 
taken to be more controversial than the ontological ones.

16 Notable exceptions are Ruse (Michael Ruse, “Reduction in Genetics”, PSA 1974, 
1976, pp. 633–651.) and Schaffner (cf. Kenneth Schaffner, The Watson-Crick Model 
and Reductionism and “Reductionism in Biology: Prospects and Problems”, in: PSA 
1974, 1976, pp. 613–632).

17 According to Rosenberg’s view in the 1990s the impossibility of reductionism in biol-
ogy inevitably leads to an instrumentalist interpretation of biological theorizing (“If 
reductionism is wrong, instrumentalism is right.” Alexander Rosenberg, Instrumental 
Biology or the Disunity of Science. Chicago: University of Chicago Press 1994, p. 
38) and to the abandonment of the unity of science above the level of physics. In the 
2000s Rosenberg gave up this position again and became one of the few defenders of 
(epistemic) reductionism in biology.

18 Among the few exceptions were Wimsatt (cf. William Wimsatt, “Reductive Explana-
tion: A Functional Account”, in: PSA 1974, 1976, pp. 671–710) and Hull (David Hull, 
Philosophy of Biological Science. New Jersey: Prentice-Hall Inc. 1974).

19 Schaffner calls his revised version of Nagel’s account ‘general reduction-replacement 
model’. For a summary about how Schaffner supposes to cope with the problems of 
the Nagelian model see Kenneth Schaffner, Discovery and Explanation in Biology and 
Medicine. Chicago/London: University of Chicago Press 1993, chapter 9.
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general way of thinking about reduction.  In other words, most philosophers ac-
cepted the following two theses:

1. The adequate units of the relation of reduction are theories (whether they 
are conceived as sets of law statements or not, whether the theories need 
to be corrected before being reduced or not, and whether one adopts a 
syntactic view of theories or not).20

2. The relation of reduction is a relation of logical derivation (whether this 
means exact derivability or something weaker and whether the bridge 
laws that are necessary for the derivation are conceived as identity state-
ments or not).21

The widespread acceptance of this general way of thinking about reduction 
in terms of theories and logical relations prevailed in the debate for a surprisingly 
long time. This is especially true for discussions that are not centered on but rather 
pick up the issue of reduction.22 The most instructive example is Rosenberg, who 
nowadays explicitly argues for the need to abandon the Nagelian understanding 
of reduction23 but, in the 1980s and 1990s, claimed that it “sounds suspicious to 

20 Although some philosophers questioned the syntactic view of theories and called for 
a less formal alternative, up to the late 1990s almost nobody questioned the general 
thesis that theories are the adequate units of reduction. For instance, in his influential 
paper from 1990 Waters objected to Nagel’s model of theory reduction but merely de-
manded the “reformulation of theoretical reduction” (Waters, Why the Antireductionist 
Consensus Won’t Survive the Case of Classical Mendelian Genetics, p. 136). Nowadays 
Waters explicitly criticizes the concepts of “theoretical reduction” and “layer-cake an-
tireduction” and the exclusive focus on theoretical developments in biology they imply 
(cf. Kenneth Waters, “Beyond Theoretical Reduction and Layer-Cake Antireduction: 
How DNA Retooled Genetics and Transformed Biological Practice”, in: Michael Ruse 
(Ed.), The Oxford Handbook of the Philosophy of Biology. Oxford: Oxford University 
Press 2008, pp. 238–262).

21 At this point I want to emphasize that there, in fact, were a few philosophers of biology 
(most notably, David Hull, “Informal Aspects of Theory Reduction”, in: PSA 1974, 
1976, pp. 653–670 and Wimsatt, “Reductive Explanation: A Functional Account”, loc. 
cit.) who early objected to this second thesis, i.e. Nagel’s and Schaffner’s presupposi-
tion that a model of theory reduction should focus on formal issues and reconstruct 
reduction as a relation of logical derivation. 

22 One reason for the long survival of the Nagel-Schaffner model of theory reduction is 
that there was simply no popular alternative available, which could have replaced the 
thinking about reduction in terms of theories and logical relations. I think Wimsatt’s 
functional analysis of reduction (cf. Wimsatt, “Reductive Explanation: A Functional 
Account”, loc. cit.), which focuses on reductive explanations and mechanisms, had 
the potential to replace it but his account was, perhaps, not catchy and comprehensible 
enough.

23 Cf. Alexander Rosenberg, Darwinian Reductionism. Or, How to Stop Worrying and 
Love Molecular Biology. Cambridge: University of Chicago Press 2006, p. 40.
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change the standards of reduction”24 and conceived the alternative option of aban-
doning reductionism altogether as the “more reasonable”25 option.

During the last 15 years more and more philosophers rejected the Nagel-
Schaffner account and developed alternative ways of thinking about epistemic 
reduction in biology.26 However, many opponents of the Nagelian approach do 
not put effort in elaborating an alternative view of epistemic reduction but rather 
argue for the abandonment of the focus on reduction altogether.27 Despite these 
new developments, there clearly are philosophers, who adhere to the concept of 
reduction because they think it is an important conceptual tool for capturing many 
aspects of biological practice (or who think it is a philosophically interesting or 
fruitful concept one should not dismiss to easily). And many of these philosophers 
are far away from having given up thinking about reduction in terms of theories 
and logical derivation.28

24 Rosenberg, “The Structure of Biological Science”, loc. cit., p. 110.
25 Rosenberg, “Instrumental Biology or the Disunity of Science”, loc. cit., p. 22.
26 See e.g. Sahotra Sarkar, “Models of Reduction and Categories of Reductionism”, in: 

Synthese 91, 1992, pp. 167–194; Genetics and Reductionism. Cambridge: Cambridge 
University Press 1998; Molecular Models of Life. Philosophical Papers on Molecu-
lar Biology. Cambridge: MIT Press 2005; William Wimsatt, Reductive Explanation: 
A Functional Account; Re-Engineering Philosophy for Limited Beings: Piecewise Ap-
proximations to Reality. Cambridge: Harvard University Press 2007; Rosenberg, Dar-
winian Reductionism; William Bechtel, Discovering Cell Mechanisms. The Creation 
of Modern Cell Biology. Cambridge: Cambridge University Press 2006; and Mental 
Mechanisms. Philosophical Perspectives on Cognitive Neuroscience. New York/ 
London: Taylor and Francis Group 2008.

27 See e.g. Carl Craver, “Beyond Reduction: Mechanisms, Multifield Integration and 
the Unity of Neuroscience”, in: Studies in the History and Philosophy of Biological 
and Biomedical Sciences 36, 2005: pp. 373–395; Carl Craver, Explaining the Brain. 
Mechanisms and the Mosaic Unity of Neuroscience. Oxford: Clarendon Press 2007; 
Sandra Mitchell, Biological Complexity and Integrative Pluralism. New York: Cam-
bridge University Press 2003; Sandra Mitchell, Unsimple Truths. Science, Complexity, 
and Policy. Chicago/London: University of Chicago Press 2009; Sandra Mitchell and 
Michael Dietrich, “Integration without Unification: An Argument for Pluralism in the 
Biological Sciences”, in: American Naturalist 168, 2006, pp. 73–79; Lindley Darden, 
“Relations Among Fields: Mendelian, Cytological and Molecular Mechanisms”, in: 
Studies in History and Philosophy of Biological and Biomedical Sciences 36, 2005, 
pp. 357–371; Lindley Darden and Nancy Maull, “Interfield Theories”, in: Philosophy 
of Science 44, 1977, pp. 43–64.

28 See e.g. Kenneth Schaffner, Discovery and Explanation in Biology and Medicine; “Re-
duction: The Cheshire Cat Problem and a Return to Roots”, in: Synthese 151, 2006, 
pp. 377–402; John Bickle, Psychoneural Reduction: The New Wave. Cambridge: MIT 
Press 1998; John Bickle, Philosophy and Neuroscience: A Ruthlessly Reductive Ac-
count, Dordrecht: Kluwer Academic Publishers 2003; John Bickle, “Reducing Mind 
to Molecular Pathways: Explicating the Reductionism Implicit in Current Cellular 
and Molecular Neuroscience”, in: Synthese 151, 2006, pp. 411–434; Ulrich Krohs, 
Eine Theorie biologischer Theorien. Status und Gehalt von Funktionsaussagen und 
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My main thesis in this paper is that it is finally time to leave Nagel’s general 
way of thinking about reduction behind. However, I think this should not lead us 
to abandon the idea of reduction altogether. Rather, we should accompany authors 
like Sahotra Sarkar and William Wimsatt in their search for an adequate under-
standing of what epistemic reduction in biology really is. Thinking about reduction 
in terms of theories and the logical relation between statements has dominated the 
debate for too long. Instead of imposing an ill-fitting model on biology, we should 
develop a new account of epistemic reduction that “makes contact with real biol-
ogy” (to use Rosenberg’s words) and captures the diversity of reductive reason-
ing strategies present in current biological research practice.29 Such an improved 
understanding will also disclose the importance as well as the limits of epistemic 
reduction in biology.

18.3 the inadequaCy of the nagelian aCCount

In this section I do not want to echo the old criticism that has been put forward 
against Nagel’s formal model of theory reduction in the early reductionism debate 
to reveal its general problems and its inapplicability to biology. This is the reason 
why my critique is focused on Nagel’s general way of thinking about epistemic 
reduction (see Sect.18.2) and abstract away from those details of Nagel’s model 
that have turned out to be highly problematic. First, I grant that one could give up 
the concept of a strict law and adopt a more moderate account of what a scientific 
law is. For instance, one could allow laws to be ceteris paribus laws30 or adopt 
the concept of a “pragmatic law”.31 This would allow one to claim that there exist 
genuine biological laws and, thus, that the relata for Nagelian reduction, namely 

informationstheoretischen Modellen. Berlin: Springer 2004; Colin Klein, “Reduction 
Without Reductionism: A Defence of Nagel on Connectability”, in: The Philosophical 
Quarterly 59, 2009, pp. 39–53; Foad Dizadji-Bahmani, Roman Frigg, Stephan Hart-
mann, “Who Is Afraid of Nagelian Reduction?”, in: Erkenntnis 73, 2010, pp. 393–412; 
etc.

29 To be clear: This search for a new account of epistemic reduction cannot be the step 
of a desperate reductionist who seeks an understanding of reduction that allows him, 
finally, to defend reductionism in biology. One can speculate that this is exactly the way 
Rosenberg gets to his understanding of explanatory reduction, namely, that it allows 
him to defend Darwinian Reductionism (which is a specific version of explanatory 
reductionism). I think it is important to resist this temptation. An account of epistemic 
reduction should not reflect the wishes or ideals of philosophers. Rather, its search 
should be motivated by the aim to understand and reconstruct the various reductive 
reasoning practices characteristic for contemporary biological research.

30 Cf. for instance Marc Lange, Natural Laws in Scientific Practice. Oxford: Oxford Uni-
versity Press 2000.

31 Sandra Mitchell, “Pragmatic Laws”, in: Philosophy of Science 64, 1997, pp. 468–479 
and “Biological Complexity and Integrative Pluralism”, loc. cit.
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theories as sets of law statements, are available. Second, I admit that one could 
simply abandon Nagel’s claim that theories must consist of law statements and 
allow each kind of general statements formulated in a formal language, i.e., first 
order logic. Third, one could go even further and abandon the “syntactic view” 
or “received view”32 of theories and with it the requirement that theories must be 
formulated as statements in first-order logic. Alternatively, one could argue for a 
“semantic view”33 of theories, according to which theories are families of models 
formalized in set theory. However, on closer inspection (see Sect.18.3.2), this step 
turns out to be highly problematic as it leads the Nagelian model too far away 
from its core ideas. Forth, I allow the changes of the Nagelian model Schaffner 
made in his “general reduction-replacement model”.34 In line with Schaffner one 
could claim that reduction (in the revised Nagelian sense) also captures cases in 
which not the original theories themselves, but rather corrected versions of them 
are derived from each other. Finally, I grant that one can abandon the strong claim 
that bridge laws must be factual statements that express identity relations (though 
it is not at all clear whether Nagel holds this strong view35). Even if they are taken 
to be factual claims (and not e.g. mere stipulations, i.e. conventions) it is left open 
which ontological relation they express (for instance, mere correlations, necessary 
nomic connections, constitutional relations, identity relations, etc.36 ).
 If a defender of the Nagelian account relinquishes all these problematic 
 assumptions, what is left over is Nagel’s general way of thinking about epistemic 
reduction, which can be characterized by the two theses introduced in the last sec-
tion: first, the adequate units of the relation of reduction are theories and, second, 
the relation of reduction is a relation of logical derivation. My claim is that even 
this very moderate, thin version of the Nagelian account of reduction is deeply 
flawed. In the next sections I will reveal several reasons why it is inadequate to 
think about epistemic reduction in biology in terms of theories and the logical rela-
tions between them. The general line of my argument will be that a formal model 
of theory reduction does neither capture the most important cases of epistemic 
reduction in biology nor does it account for the diversity of reductive reasoning 
strategies present in current biological research practice. This leaves us with an 
account of epistemic reduction that reflects the ideals of some philosophers but 

32 Frederick Suppe, “Understanding Scientific Theories: An Assessment of Develop-
ments, 1969–1998”, in: Philosophy of Science 67, 2000, pp. 102–115, p. 102. See also 
Paul Thompson, The Structure of Biological Theories. Albany: State University of New 
York Press 1989.

33 Frederick Suppe, “The Structure of Scientific Theories”, loc. cit. and The Semantic 
Conception of Theories and Scientific Realism. University of Illinois Press: Chicago 
1989.

34 Cf. Schaffner, “Approaches to Reduction”, loc. cit.; “The Watson-Crick Model and 
Reductionism”, loc. cit.; “Reductionism in Biology: Prospects and Problems”, loc. cit.; 
and “Discovery and Explanation in Biology and Medicine”, loc. cit.

35 Cf. Nagel, “The Structure of Science”, loc. cit., pp. 354–358.
36 See also Dizadji-Bahmani et al., “Who Is Afraid of Nagelian Reduction?”, loc. cit.
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that is unconnected with real biological practice because it has no or at least a very 
restricted range of application. However, before I can move on it is necessary to 
make a few methodological clarifications.

18.3.1 How to Develop an Account of Epistemic Reduction

Why care about biological research practice in the first place? Why not stick to 
Nagel’s formal model of theory reduction and view it as an ideal that does not need 
to be realized in biological practice? Schaffner, for instance, chooses this route and 
admits that theory reduction is “peripheral” to biological practice and should be 
regarded as a mere “regulative ideal”.37 I think that these two options – on the one 
hand, developing an account of epistemic reduction that captures actual biologi-
cal practice and, on the other hand, analyzing epistemic reduction without caring 
about what epistemic reduction in practice is – are best seen as completely differ-
ent projects. Those philosophers who want to understand what biologists actually 
do and how biological research practice really works will not be satisfied with a 
philosophical account that merely reflects the wishes or ideals of philosophers but 
does not capture what is really going on in biology itself. They will judge accounts 
of the second kind as descriptively inadequate and, probably, not continue think-
ing about them at all. Philosophers who pursue a project of the second type do not 
share the goal of capturing and understanding actual biological research practice 
but rather endorse other values of a philosophical account (for example, the fact 
that it captures certain philosophical or common sense intuitions, its suitability for 
a broader philosophical, for instance metaphysical, theory, its explanatory force, 
etc.). In the radical version of this kind of project descriptive adequacy is simply 
abandoned as a criterion of adequacy. The focus lies exclusively on analyzing re-
duction in principle. What characterizes reduction in practice is ignored.
 However, looking at how philosophy of science is presently carried out reveals 
two points: first, although these two kinds of projects can be distinguished from 
each other they are, in fact, two end points of a continuum and, second, projects 
of the second type (at least in its radical version) are rare. Consider the first point. 
Since projects of the first type are philosophical projects they are more than mere 
descriptions of scientific practice. Rather they are actively pursued reconstructions 
that involve normative decisions of various kinds (in a broad sense, e.g. the choice 
of paradigmatic cases) and that can also result in normative claims about how 
science ideally should be carried out. On the other hand, only few philosophers, 
who pursue a project of the second type make claims about how science ideally 
should work without even having a quick glance at how science actually works. 
Thus, most projects are, in fact, located somewhere in the middle ground between 

37 Schaffner, “Discovery and Explanation in Biology and Medicine”, loc. cit., pp. 508–513. 
In recent years even Schaffner has disavowed from his peripherality thesis and adopted a 
less spectacular view about reduction (cf. Schaffner, Reduction: The Cheshire Cat Problem 
and a Return to Roots).
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the two extremes of the continuum. This leads us to the second point. Especially 
in philosophy of biology, most projects belong to (a moderate version of) the first 
type. Philosophers want to understand, for example, how the success and failure of 
explanation in different biological disciplines is in fact evaluated, why molecular 
research in various areas is as important as it is, which different roles models play 
in actual biological research practice, and how biologists de facto estimate the 
scope of biological generalizations. However, there are philosophers of science 
who are not primarily interested in capturing and understanding actual scientific 
practice. Their goal is to develop a view about science or about a specific element 
of science (like explanation, causation, confirmation, law, etc.) that is adequate 
because it captures certain philosophical intuitions, that is in line with a certain 
general philosophical picture or that has special explanatory force. But even the 
projects of this second kind are rarely pursued without relying (at least partially) 
on a view about how science really works and why it is actually successful. This 
is not surprising since it seems weird to make claims about how science ideally 
should work or certain elements of scientific practice like explanation and reduc-
tion should be understood without taking into account how science actually works 
and what scientific explanations and reductions in fact are. However, here I do not 
want to argue for this claim at length. Rather, I want to be explicit about where I 
stand and on basis of which criteria of adequacy I attack Nagel’s general way of 
thinking about epistemic reduction.
 My paper is concerned with the question whether Nagel’s formal model of 
theory reduction is convincing if it is understood as a project of the first kind. Thus, 
the question is whether thinking about epistemic reduction in terms of theories and 
the logical relations between them “saves the phenomena (about the biological sci-
ences)” (to borrow Bas van Fraassen’s way of talking) and helps to understand what 
is going on in actual biological research practice. According to my view, there exist 
two criteria of adequacy on whose basis the quality of any philosophical  account 
of epistemic reduction (pursued as a project of the first type) is judged:

A model of epistemic reduction should
1. capture and help to understand the cases of epistemic reduction that actually 

occur in current biological research practice, rather than focusing on epis-
temic reduction that can only be achieved in principle. In addition, it should

2. account for the diversity and complexity of the cases of epistemic reduc-
tion that are present in contemporary biology.

In the following sections I will argue why Nagel’s general way of thinking about 
epistemic reduction in terms of theories and logical relations fails to satisfy these 
two criteria and, thus, should be assessed as inadequate to biology.

18.3.2 Theories as Relata of Reduction

One kind of objection that has been frequently put forward against Nagel’s  approach 
concerns the non-existence or misrepresentation of the relata of reduction. Nagel 
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argues that the relation of reduction holds between theories, which he conceives 
as systems of statements, containing law statements and being formalized in first 
order logic.38 In the subsequent discussion about the structure of scientific theories 
this view is referred to as the syntactic conception of theories. Nagel’s account 
of what the relata of reduction are encounters several objections: first, it can be 
argued that the relata, i.e., theories containing law statements, do not exist since 
there are no strict laws in biology. Second, one can claim that Nagel misrepresents 
the relata of reduction because scientific theories in general and biological theories 
in particular do not satisfy the demands of the syntactic view. Rather, theories (in 
biology) are to be understood as families or sets of models meeting specific set-
theoretic conditions.39

 As stated at the beginning of Sect. 18.3, I am willing to allow several steps 
a proponent of Nagel’s model could take in order to meet these objections and 
defend a modified version of the Nagelian account – at least if these modifications 
are carried out in a convincing manner. To counter the first objection, one could 
either argue for a more moderate conception of a ‘law’, according to which there 
exist genuine laws also in biology40, or one could abandon Nagel’s requirement 
that theories must contain law statements. However, it should be noted that 
the second option is highly problematic since Nagel conceives reduction to be a 
special case of explanation and explanation, according to the D-N model Nagel 
adopts, presupposes the availability of lawlike generalizations. Thus, it seems as if 
only the first option is accomplishable.
 With respect to the second objection, a defender of Nagel’s model of reduction 
could give up the syntactic view of scientific theories and adopt the alternative, 
semantic conception. The possibility of making this move is one reason why Foad 
Dizadji-Bahmani, Roman Frigg, and Stephan Hartmann want to convince us not 
to be afraid of Nagelian reduction anymore. The syntactic view is “unnecessary” 
to get Nagel’s account “off the ground”. We can replace first order logic “with any 
formal system that is strong enough to do what we need it to do”.41 They seem to 

38 Cf. Ronald Giere, Explaining Science: A Cognitive Approach. Chicago: University of 
Chicago Press 1988. For details about Nagel’s view of theories compare Chapter 5 
“Experimental Laws and Theories” and 6 “The Cognitive Status of Theories” of his 
“The Structure of Science”, loc. cit.

39 Many philosophers of biology have embraced this semantic view of theories, espe-
cially with respect to evolutionary biology. See John Beatty, “What’s Wrong With the 
Received View of Evolutionary Theory?”, in: PSA 1980, 2, 1981, pp. 397–426; Elisa-
beth Lloyd, The Structure and Confirmation of Evolutionary Theory. New York: Green-
wood Press 1988; Thompson, The Structure of Biological Theories; and Peter Sloep, 
Wim Van der Steen, “The Nature of Evolutionary Theory: The Semantic Challenge”, 
in: Biology and Philosophy 2, 1987, pp. 1–15; as well as the different responses to this 
paper in Biology and Philosophy Vol. 2, No. 1.

40 Cf. for instance Mitchell, “Pragmatic Laws and Biological Complexity and Integrative 
Pluralism”, loc. cit.

41 Dizadji-Bahmani et al., “Who Is Afraid of Nagelian Reduction?”, loc. cit., p. 403.
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have strong company on their side. John Bickle clings to the view that reduction 
is a relation between theories but argues for a semantic conception of theories.42 
Based on Clifford Hooker’s approach to reduction43 Bickle formulates his “new-
wave account of intertheoretic reduction”44 according to which the reduction of 
one theory T

R
 to another T

B
 requires the construction of an “image I

B
 of the set-

theoretic structure of models of the reduced theory T
R
 within the set comprising 

reducing theory T
B
”.45 The details of Bickle’s “semantic” account of intertheoretic 

reduction are complex. However, what matters for the purpose of my paper is that 
Bickle explicitly contrasts his approach with the Nagelian idea of “characterizing 
intertheoretic reduction in terms of syntactic derivations”.46 But if theories are 
understood as sets of models satisfying certain set-theoretic conditions and no 
longer as sets of sentences in an axiomatized system of first order logic it is no 
longer clear what Nagel’s condition of derivability amounts to. It even more seems 
as if the proponents of the semantic view must abandon the claim that it is logi-
cal derivation that connects the reduced to the reducing theory and are in need of 
a different specification of the reductive relation between theories (for instance, 
according to Bickle, in terms of ‘analogy’ or ‘isomorphism’ between the image I

B
 

and the reduced theory T
R
).47 The alternative would be to adopt a very broad (and 

thus vague) notion of ‘derivation’ that also captures the relation between sets of 
models. But such a vague concept of derivation runs the risk that too much can be 
derived from something else and, hence, does not appear to be convincing.
 The preceeding discussion reveals that the combination of an account of in-
tertheoretic reduction with a semantic conception of theories takes us too far away 
from the core ideas of the Nagelian understanding of epistemic reduction (in par-
ticular, from the second thesis of Nagel’s general way of thinking about reduction, 
i.e. that the relation of reduction is logical derivation).48 This does not imply that 
the combination is untenable, but only that the resulting account is not “Nagelian” 
anymore. Hence, switching to the semantic view of theories in order to meet the 

42 Cf. Bickle, “Psychoneural Reduction: The New Wave and Philosophy and Neurosci-
ence: A Ruthlessly Reductive Account”, loc. cit.

43 Cf. Clifford Hooker, “Towards a General Theory of Reduction. Part I: Historical and 
Scientific Setting. Part II: Identity in Reduction. Part III: Cross-Categorial Reduction”, 
in: Dialogue 20, 1981, pp. 38–59, 201–236, 496–529.

44 Bickle, “Psychoneural Reduction: The New Wave”, loc. cit., p. 23.
45 Bickle, “Philosophy and Neuroscience: A Ruthlessly Reductive Account”, loc. cit.,  

p. 27.
46 Ibid.
47 Cf. Bickle, “Psychoneural Reduction: The New Wave”, loc. cit.
48 This claim is further confirmed by the fact that even explicit opponents of the Nage-

lian model of epistemic reduction adopt a semantic view of theories (see Carl Craver, 
“Structures of Scientific Theories“, in: Peter Machamer, Michael Silberstein (Eds.), 
The Blackwell Guide to the Philosophy of Science. Malden/Oxford: Blackwell Publish-
ers 2002, pp. 55–79; “Beyond Reduction: Mechanisms, Multifield Integration and the 
Unity of Neuroscience”, loc. cit.; and “Explaining the Brain”, loc. cit.).
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second objection (i.e. the misrepresentation of the relata of reduction) is not an 
option for a proponent of Nagel’s model of theory reduction.
 Finally and most importantly, two further objections against Nagel’s assump-
tion that theories are the relata of reduction can be raised with respect to biology: 
first, biological research practice shows that, in general, theories are not the only 
and perhaps not the most important element of science. Second, biological prac-
tice reveals that for reduction, in particular, theories are only peripherally impor-
tant since the most crucial and frequently occurring cases of epistemic reduction, 
i.e., reductive explanations, rarely involve fully explicated theories.
 How could an opponent of the Nagelian account react to the first objection? 
As I have just argued, he must stick to the syntactic view of theories and, thus, 
is exposed to all the criticism that has been put forward against this conception. 
The overall tenor is: because the syntactic view focuses on theories as a whole 
and on their inferential structure it fails to capture what biological theories in fact 
are (“theories in the wild”49). For instance, it does not account for the diversity of 
representations of theories biologists actually use and which are neither restricted 
to first order logical predicates nor to linguistic representations at all (see e.g. 
Laura Perini’s work on the importance of diagrams in biology50). Second, the 
syntactic conception focuses on full-established, static theories (context of justi-
fication) and lacks an account of the dynamics of biological theories (context of 
discovery), that is, how they are developed over time and which roles they play 
during that time.51 Third, the syntactic view overestimates the role of theories by 
ignoring the important roles other epistemic units (such as models, descriptions 
of mechanisms, fragments of theories, etc.) play in the context of explanation, 
prediction, discovery, and manipulation in biology. The motivations for the de-
velopment of the alternative, semantic conception of theories were to overcome 
these problems and to allow for the importance of models in scientific practice. 
I do not want to discuss the various versions of the semantic conception and the 
objections that can be put forward against them here. What is important for the 
topic of this paper is that even if a defender of the Nagelian model of reduction 
could adopt a semantic conception and could adjusts the notion of theories in a 
way that it is closer to what is going on in real biological research practice he still 
would not meet the first objection. Granted, theories (as sets of models) do occur 
in biological practice. However, theories are not the only and perhaps not the most 
important epistemic units in biology. To begin with, often not fully explicated 
theories as a whole, but rather fragments of theories, individual models and not 

49 Craver, “Structures of Scientific Theories”, loc. cit., p. 65.
50 Cf. Laura Perini, “Explanation in Two Dimensions: Diagrams and Biological Explana-

tion”, in: Biology and Philosophy 20, 2005, pp. 257–269 and “Diagrams in Biology”, 
in: Knowledge Engineering Review, forthcoming.

51 Cf. Lindley Darden, Theory Change in Science: Strategies from Mendelian Genetics. 
New York: Oxford University Press 1991 and Lloyd, “The Structure and Confirmation 
of Evolutionary Theory”, loc. cit.
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entire sets of models, and descriptions of particular mechanisms (if mechanistic 
models are understood as being parts of theories)52 play important roles in expla-
nation, prediction, discovery, and manipulation. Second, in biological practice 
there seem to exist many epistemic units that are relatively independent from 
theories and that, nevertheless, are crucial for the successful functioning of the 
biological sciences, for example, explanatory and investigative strategies,53 semi-
empirical rules,54 mechanistic models,55 to list only a few. Finally and as a further 
substantiation of the previous thesis, some authors have argued that scientific 
models in general are better conceived as being independent from theories, rather 
than being constitutive of them.56

 The peripherality of theories to biological practice is even more apparent in 
the context of reduction. With respect to diachronic (or intralevel) reduction, Ken 
Waters has argued that a focus on theoretical developments fails to capture what 
is important for the successful transformation of biological disciplines, e.g., clas-
sical genetics.57 He suggests that philosophers should direct their attention to the 
changes in the investigative practices of genetics instead. I argue that we should 
abandon the Nagelian focus on theories as the only or most important units of 
epistemic reduction also with respect to synchronic (or interlevel) reduction. Rath-
er, we should concentrate our analysis on the most crucial and frequently occur-
ring kind of epistemic reduction in biological research practice, namely reductive 
explanations. Part-whole explanations and mechanistic explanations, which are 
the paradigmatic cases of reductive explanations, have been strongly connected 
with reduction for a long time – not only by philosophers but also by biologists 
themselves.58 However, individual explanations and the conditions that determine 
their reductive character have almost been neglected as a fruitful and independent 
subject of analysis so far. Granted, since Nagel took intertheoretic reduction to 
be a relation of explanation the debate about reduction has also been concerned 
with the issue of explanation. But discussions about explanation, which remain 
within the Nagelian framework, concentrate on the explanatory scope of theories 

52 Cf. Craver, “Structures of Scientific Theories”, loc. cit.
53 Cf. Waters, “Beyond Theoretical Reduction and Layer-Cake Antireduction: How DNA 

Retooled Genetics and Transformed Biological Practice”, loc. cit.
54 Cf. Sarkar, “Models of Reduction and Categories of Reductionism”, loc. cit.
55 Cf. Wimsatt, “Reductive Explanation: A Functional Account”, loc. cit., and Peter Ma-

chamer, Lindley Darden, Carl Craver, “Thinking about Mechanisms”, in: Philosophy 
of Science 67, 2000, pp. 1–25.

56 See for instance Mary Morgan, Margaret Morrison, Models as Mediators. Perspectives 
on Natural and Social Science. Cambridge: Cambridge University Press 1999.

57 Cf. Waters, “Beyond Theoretical Reduction and Layer-Cake Antireduction: How DNA 
Retooled Genetics and Transformed Biological Practice”, loc. cit.

58 To the philosophers belong, for instance, Wimsatt, “Reductive Explanation: A Func-
tional Account”, loc. cit.; Sarkar, “Models of Reduction and Categories of Reduction-
ism”, loc. cit.; and “Genetics and Reductionism”, loc. cit., and to the biologists Ernst 
Mayr, “The Limits of Reductionism”, in: Nature 331, 1988, p. 475.
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(e.g. on the question whether physical theories can be employed to explain certain 
biological theories or biological phenomena) or on reduction as a relation between 
explanations, i.e. between a higher-level explanation and a lower-level explana-
tion of the same phenomenon.59 Thus, they do not promote an understanding of 
what makes individual explanations reductive. Such an analysis would include 
the identification of the relata of reduction (roughly, explanandum and explanans) 
and the specification of the relation of reduction by analyzing the constraints on 
reductive explanations, that is, the various conditions on basis of which biolo-
gists evaluate the success and failure of the reductivity of explanations.60 In Sect. 
18.3.1 I claimed that an adequate account of epistemic reduction must capture and 
enlighten the cases of epistemic reduction that occur in actual biological research 
practice. According to this criterion of adequacy the fact that thinking about epis-
temic reduction in terms of theories and their logical relations does not yield an 
understanding of the reductive character of explanations is an important argument 
for the inadequacy of Nagel’s general view of thinking about reduction. Thus, it 
seems fruitful to move beyond Nagelian reduction and shift the attention from 
theory reduction to reductive explanations.61

59 Cf. Rosenberg, “Darwinian Reductionism”, loc. cit. Although Rosenberg explicitly 
abandons Nagel’s model of theory reduction (Ibid., p. 40) his view of explanatory 
reductionism, nevertheless, remains closely connected to the Nagelian framework in 
a broad sense. For instance, he adheres to the view that laws are indispensable for ex-
planation and his defense of explanatory reductionism is still centered on the question 
whether all biological phenomena can be explained with the resources of physical (or 
molecular) theory. See in particular Rosenberg “How Is Biological Explanation Pos-
sible?” and “Darwinian Reductionism”, loc. cit., ch. 4.

60 For an example of how such an analysis could look like see Marie I. Kaiser, “An Ac-
count of Explanatory Reduction in the Life Sciences“, in: History and Philosophy of 
the Life Sciences, forthcoming, Sarkar, “Genetics and Reductionism”, loc. cit., and 
Andreas Hüttemann, Alan Love, “Aspects of Reductive Explanation in Biological Sci-
ence: Intrinsicality, Fundamentality, and Temporality”, in: British Journal for Philoso-
phy of Science, forthcoming.

61 Although I am convinced that explanations are an especial fruitful subject of analysis 
I do not want to claim that giving an account of epistemic reduction by focusing on in-
dividual reductive explanations is the only possible way to analyze epistemic reduction 
in biology. Nor I want to argue that, on its own, it is sufficient to capture the diversity 
of reductive reasoning strategies present in current biology. Alternatively one could, for 
example, concentrate on methods (or investigative strategies) and try to specify what 
makes them reductive. This leaves room for the kind of pluralism Sarkar endorses: 
“There is no a priori reason to assume that all cases of reduction are so similar that they 
can all be captured by any single model of reduction.” (Sarkar, “Models of Reduction 
and Categories of Reductionism”, loc. cit., p. 188). In this pluralistic picture also the 
Nagelian account of theory reduction could have its place – though it would be a very 
small place, as my discussion shows.
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18.3.3 The Focus on Formal Issues

It is important to note that the criticism of Nagel’s model of theory reduction (as 
well as the criticism of the syntactic view of theories and of the D-N model of 
explanation) is a part of a more general rejection of the logical empiricist’s kind of 
philosophy, which focuses on formal issues (like the logical relations between sen-
tences formalized in first order logic) and thereby ignores “substantive issues”.62 
The attack against this kind of philosophy and the effort to replace it has a long 
history. However, as I pointed out in Sect. 18.2, in the context of reduction Nagel’s 
formal model has shown a long persistency.
 In this section I want to call attention to two issues: first, I argue that the 
logical empiricist’s formal philosophy can only be rejected as a whole packet. 
Second, in addition to the criteria I have already identified (see Sect. 18.3.1) there 
is a third criterion of adequacy for an account of epistemic reduction, according 
to which a formal model of reduction like Nagel’s comes away badly. Let us start 
with the first point. In his work on reductive explanations in genetics, Sarkar em-
phasizes that his analysis of what makes explanations reductive entails no com-
mitment to a specific explication of what an explanation is (despite a few “basic 
assumptions”63). Rather, he tries to “keep the issues of reduction and explanation 
distinct” and identifies “additional criteria”64 an explanation must satisfy in order 
to be a reductive explanation. I embrace Sarkar’s goal not to conflate the question 
of what makes a representation (or a model) explanatory and, thus, distinguishes 
it from purely descriptive representations with the question of what makes an 
explanation reductive and distinguishes it from non-reductive explanation. I will 
come back to this issue when I present my third criterion of adequacy. What I 
think is important to note is that drawing this distinction between the issues of 
explanation and reduction and focusing exclusively on the latter does not guar-
antee that the provided account of epistemic reduction is neutral with respect to 
what the adequate model of explanation is. In fact, contrary to his own assertion, 
Sarkar’s analysis cannot preserve the asserted neutrality. The reason is that Sarkar 
rejects Nagel’s model of theory reduction because of its focus on “formal issues, 
[i.e.] the ‘logical’ form of reduction”65 and wants to replace it with an analy-
sis of “substantive issues” (i.e. what reductive explanations “assume about the 
world”), which he conceives to be “more interesting and important”.66 However, 
exactly this criticism seems to abolish the possibility of adopting a D-N (and I-S) 
model of explanation. At least, it seems to be very weird to reject Nagel’s model 
because of its focus on formal issues, yet to adhere to the formal D-N model of 

62 Sarkar, “Genetics and Reductionism”, loc. cit., p. 19.
63 Ibid., p. 41.
64 Ibid., p. 9.
65 Ibid., p. 17.
66 Ibid., p. 18f.

260



18 Why It Is Time to Move beyond Nagelian Reduction 

 explanation that encounters very similar objections.67 What has also become ap-
parent in the discussion about the structure of scientific theories in Sect.18.3.2: if 
you reject Nagel’s account of theory reduction because of its formal character and 
you want your whole philosophical position to be consistent you better get rid of 
the whole packet, including the D-N model of explanation and the syntactic view 
of theories.
 Let us turn to the second issue. The discussion of Sarkar’s approach revealed 
a third criterion of adequacy an account of epistemic reduction in biology must 
satisfy, namely to demarcate cases of epistemic reduction from cases where there 
is no reduction at all. With respect to reductive explanations (which a model of 
epistemic reduction must account for, see Sect. 18.3.2) this amounts to provid-
ing one or several demarcation criteria on basis of which reductive explanations 
clearly can be distinguished from explanations that are non-reductive. In sum:

A model of epistemic reduction should
3. demarcate reductive explanations from non-reductive explanations.

 Nagel’s formal model of theory reduction fails to meet this criterion since it 
equates explanation (of one theory by another) with reduction. As soon as a theory 
can be explained by and (according to the D-N model of explanation) thus be 
logically derived from another theory we have a case of theory reduction. What is 
important from Nagel’s perspective is whether the two formal criteria, derivability 
and connectability, are satisfied or not.68 But this does not endow us with resources 
to distinguish explanations of phenomena (types as well as tokens) that are reduc-
tive from those that are non-reductive. In order to draw this line of demarcation we 
need to refer to the relations that exist between the things in the world described in 
the explanandum and explanans in an explanation. For instance, we need to make 
claims of the kind that in many reductive explanations the entities referred to in the 
explanans are located on a lower, more fundamental level than (level fundamental-
ity) or are internal to (internal fundamentality) the system whose behavior is to be 
explained.69 Only thinking about epistemic reduction in a non-formal way directs 
our attention to these crucial substantive issues.
 Finally, let me mention a related point. In so far as an analysis of the reductive 
character of biological explanations reveals that the reductivity of an explanation is 
not an “all-or-nothing phenomenon”,70 it succeeds much better than the  Nagelian 

67 This is why most of the early opponents of Nagel’s model of theory reduction endorse 
a causal-mechanistic account of explanation (see e.g. Hull, “Philosophy of Biological 
Science”, loc. cit., and Wimsatt, “Reductive Explanation: A Functional Account, loc. 
cit.).

68 As I mentioned before, Nagel also proposed some non-formal conditions for theory re-
duction (cf. Nagel, “The Structure of Science”, loc. cit., pp.  358–366). However, these 
criteria help to distinguish trivial from non-trivial cases of theory reduction but they do 
not provide the demanded demarcation of reductive from non-reductive explanations.

69 Cf. Kaiser, “An Account of Explanatory Reduction in the Life Sciences“, loc. cit.
70 Cf. Hüttemann, Love, “Aspects of Reductive Explanation in Biological Science: Intrin-

sicality, Fundamentality, and Temporality”, loc. cit.
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approach in capturing the diversity and complexity of epistemic reduction (second 
criterion of adequacy, see Sect.18.3.1). According to Nagel, a theory can either 
be deductively derived from and thus be reduced to another theory or it cannot. 
In a specific case there are just two options: either reduction succeeds or it fails. 
Focusing on reductive explanation discloses that the situation in actual biological 
research practice is not as simple as suggested by Nagel’s account. In fact, differ-
ent respects in which an explanation can fail or succeed to be reductive need to be 
kept apart.71 This important fact is obscured by Nagel’s focus on theories and the 
logical relations between them.

18.4 ConClusion

Even if one grants that the proponents of the Nagelian model of theory reduction 
can handle several problems that have been raised in the past, Nagel’s general way 
of thinking about epistemic reduction in terms of theories and focused on formal 
issues still remains inadequate with respect to what epistemic reduction in biology 
really is. In order to show this, I identified three criteria of adequacy and argued 
why Nagel’s account fails to meet any of these criteria. First, it does not capture and 
enlighten those cases of epistemic reduction that are most important and frequently 
occurring in biological practice since it identifies relata, i.e., (fully-established) 
theories, that are not as important in biology as suggested, since it focuses on cases 
of epistemic reduction that are peripheral to biology, since it fails to account for the 
most crucial kind of epistemic reduction, i.e. reductive explanations, and since it 
focuses on formal issues and thereby ignores important substantive issues. Second, 
because of its restricted focus on formal issues and on theories, the Nagelian ap-
proach fails to account for the diversity of the cases of epistemic reduction that are 
present in contemporary biology as well as for the complexity of the conditions that 
determine the reductivity of biological explanations. Third, Nagel’s account does 
not provide the recourses to demarcate reductive explanations from non-reductive 
explanations. All this strongly suggests that it is finally time to move beyond the 
Nagelian framework and break new ground in thinking about epistemic reduction.

Philosophisches Seminar
University of Köln
Richard-Strauß-Straße 2
50931, Köln
Germany
kaiser.m@uni-koeln.de

71 See also ibid.
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Chapter 19

Charlotte Werndl

probability, indeterminism and biologiCal proCesses

19.1 introduCtion

Probability and indeterminism have always been core philosophical themes. Biol-
ogy provides an interesting case study to explore these themes. First, biology is 
teeming with probabilities, and so a crucial question in the foundations of biol-
ogy is how to understand these probabilities. Second, philosophers want to know 
whether the processes investigated by one of the major sciences – biology – are 
indeterministic.
 This paper aims to contribute to understanding probability and indetermin-
ism in biology. More specifically, Sect. 19.2 will provide the background for the 
paper. It will be argued that an omniscient being would not need the probabilities 
of evolutionary theory to make predictions about biological processes. However, 
despite this, one can still be a realist about evolutionary theory, and then the prob-
abilities in evolutionary theory refer to real features of the world. This prompts 
the question of how to interpret biological probabilities which correspond to real 
features of the world but are in principle dispensable for predictive purposes. Sect. 
19.3 will suggest three possible interpretations of such probabilities. The first in-
terpretation is a propensity interpretation of kinds of systems. It will be argued 
that, contra Sober,1 backward probabilities in biology do not present a problem for 
the propensity interpretation. The second interpretation is the frequency interpre-
tation, and it will be argued that Millstein’s2 objection against this interpretation 
in evolutionary theory is beside the point. Finally, I will suggest Humean chances 
are a new interpretation of probability in evolutionary theory. Sect. 19.4 discusses 
Sansom’s3 argument that biological processes are indeterministic because prob-
abilities in evolutionary theory refer to real features of the world. It will be argued 
that Sansom’s argument is not conclusive, and that the question whether biological 
processes are deterministic or indeterministic is still with us.

1 Elliott Sober, “Evolutionary Theory and the Reality of Macro Probabilities”, in: Phi-
losophy of Science, Presidential Address 2004.

2 Roberta L. Millstein, “Interpretations of Probability in Evolutionary Theory”, in: Phi-
losophy of Science 70, 4, 2003, pp. 1317–1328.

3 Robert Sansom, “Why Evolution is Really Indeterministic”, in: Synthese 136, 2, 2003, 
pp. 263–280.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_19,  
© Springer Science+Business Media B.V. 2012
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19.2 realism, indeterminism and omnisCient beings

This section provides the background for the paper. First, the notions of realism, 
instrumentalism, determinism and indeterminism will be introduced. Then it will 
be explained that an omniscient being would not need the probabilities of evolu-
tionary theory to make predictions about biological processes. It is argued that, 
despite this, one can still be a realist about evolutionary theory.
 (Scientific) realism about a theory T is the idea that T corresponds to the world, 
i.e., T gives at least an approximately true description of the real-world processes 
falling under its scope. Instrumentalism relative to a theory T as understood in this 
paper is the negation of realism. Hence an instrumentalist about a theory T denies 
that T corresponds to the world. For what follows a definition of determinism for 
theories as well as for real-world processes is needed. A theory T is deterministic if 
and only if a state description of a system is always followed by the same history of 
transitions of state descriptions. A theory T is indeterministic if and only if it is not 
deterministic. A process is deterministic (concerning a specific set of kinds) if and 
only if a given state of a kind is always followed by the same history of transitions 
of states of kinds.4 A process is indeterministic (concerning a specific set of kinds) 
if and only if it is not deterministic.5

 Probabilities are of utmost importance in evolutionary theory, and the proba-
bilistic character of evolutionary theory is widely accepted.6 An example is the 
concept of fitness of an organism in an environment (see Sect. 19.3 for other ex-
amples of probabilities in evolutionary theory). Since one wants to allow that in 
unusual circumstances less fit organisms have more offspring than fitter ones, fit-
ness of an organism7 is captured by means of the probability to have a certain level 
of reproductive success.8

 An omniscient being would not need the probabilities of evolutionary theory 
to make predictions about biological processes. The next two paragraphs will ex-
plain why this is so. In essence, this is a consequence of the fact that evolutionary 
theory ignores certain details and factors. For example, evolutionary theory does 
not include detailed models of flashes of lightning (because which organisms will 

4 Jeremy Butterfield, “Determinism and Indeterminism”, in: Routledge Encyclopaedia 
of Philosophy Online 2005; John Earman, A Primer on Determinism. Dordrecht: 
D. Reidel Publishing 1986. 

5 What I call “determinism” of theories and processes is also sometimes called “future 
determinism”. This is to highlight that it is not required that any state is also always 
preceded by the same history of transitions of states (see Earman, loc. cit., pp. 13–14). 

6 Sansom, loc. cit., pp. 268–269.
7 Robert N. Brandon, Adaptation and Environment. Princeton: Princeton University 

Press 1990, p. 15.
8 How to define or measure fitness exactly turns out to be tricky. For an organism in 

a specific environment it is not enough to consider the expected value of offspring 
number, sometimes also the variance and other measures need to be taken into consid-
eration (cf. Brandon, ibid., p. 20). 
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struck by lightning is random – i.e., not related to their actual traits). Another 
example is that the exact location at each point of time of a chimpanzee in a for-
est does not appear as a variable in evolutionary theory (because this location 
is not correlated to reproductive success). Now consider models which correctly 
describe biological processes in all their details at the level of macrophysics. These 
macro-physical models will be very different from models in evolutionary theory 
because the former include details and factors which are ignored by the latter. For 
example, such macro-physical models include a description of flashes of lighten-
ing and they include variables for the exact location of chimpanzees.
 Are these macro-physical models of biological processes deterministic or in-
deterministic? This is a matter of debate. Rosenberg9 argues that they are deter-
ministic. Abrams10 and Graves et al.11 claim that these models are “nearly deter-
ministic”. What is meant by this is that they are indeterministic because quantum 
mechanical probabilities can percolate up and quantum mechanics is indetermin-
istic.12 However, because macro-physical objects consist of many particles, the 
probabilities at the macro-level are very close to zero or one. Others such as Mill-
stein13 and Weber14 argue that we do not know enough about the role of quantum 

9 Alexander Rosenberg, Instrumental Biology or the Disunity of Science. Chicago: The 
University of Chicago Press 1994. 

10 Marshall Abrams, “Fitness and Propensity’s Annulment?”, in: Biology and Philosophy 
22, 1, 2007, pp. 115–130. 

11 Leslie Graves, Barbara L. Horan and Alexander Rosenberg, “Is Indeterminism the 
Source of the Probabilistic Character of Evolutionary Theory?”, in: Philosophy of Sci-
ence 66, 1999, 1, pp. 140–157. See also Alexander Rosenberg, “Discussion Note: In-
determinism, Probability, and Randomness in Evolutionary Theory”, in: Philosophy of 
Science 68, 4, 2001, pp. 536–544.

12 These positions and generally philosophers of biology take it to be uncontroversial that 
quantum theory is indeterministic (see Abrams “Fitness and Propensity’s Annulment?”, 
loc. cit., pp. 119–121; Graves et al., ibid., pp. 144–145; Rosenberg, “Discussion Note: 
Indeterminism, Probability, and Randomness in Evolutionary Theory”, loc. cit., pp. 
537–538; Sansom, loc. cit., p. 267). However, this is questionable. As generally agreed 
in philosophy of physics, there are coherent deterministic interpretations of quantum 
theory and “the alleged indeterminism of quantum theory is very controversial: it en-
ters, if at all, only in quantum theory’s account of measurement processes, an account 
which remains the most controversial part of the theory” (Butterfield, loc. cit.). Simi-
larly, it is often simply assumed that macrophysics is deterministic (e.g. Graves et al., 
ibid., p. 145; Rosenberg “Discussion Note: Indeterminism, Probability, and Random-
ness in Evolutionary Theory”, loc. cit., p. 537). Yet, research in philosophy of physics 
has shown that it is unclear whether macrophysics is deterministic (see Earman, loc. 
cit., Chapter III). These assumptions are questionable, but they will not matter for what 
follows.

13 Roberta L. Millstein, “Is the Evolutionary Process Deterministic or Indeterministic? 
An Argument for Agnosticism”, Presented at the Biennial Meeting of the Philosophy 
of Science Association Vancouver, Canada, 2000.

14 Marcel Weber, “Indeterminism in Neurobiology”, in: Philosophy of Science (Proceed-
ings) 71, 2005, pp. 663–674.
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events at the macroscopic level and hence should remain agnostic: these models 
could be deterministic or indeterministic with probabilities very close to zero or 
one. The upshot is that even if there are nontrivial probabilities for macro-physical 
models of biological processes, they are different from those probabilities figuring 
in evolutionary theory. Consequently, evolutionary theory appeals to probabilities 
which at least partly arise from ignoring certain details and factors. Hence an 
omniscient being would not have to rely on the probabilities of evolutionary theory 
to make predictions about biological processes. If the world at the macro-physical 
level is deterministic, an omniscient being could appeal to a deterministic theory 
to predict biological processes. If the world at the macro-physical level is inde-
terministic, the omniscient being could appeal to a very different indeterministic 
theory (with probabilities close to zero and one) to predict biological processes.
 Does this have any implications about whether one should be a realist or in-
strumentalist about evolutionary theory? Rosenberg thinks so. Because an omnis-
cient being would not need evolutionary theory, he argues that “[t]his makes our 
actual theory of natural selection more of a useful instrument than a set of proposi-
tions about the world independent of our beliefs about it”.15 So Rosenberg argues 
that because an omniscient being would not need evolutionary theory, this implies 
instrumentalism about evolutionary theory.
 Weber16 disagrees with Rosenberg. He points out that:

A theory may be dispensable in the sense that an omniscient being would be able to under-
stand the phenomena in question at a deeper level, but it is still possible that this theory cor-
rectly represents some aspects of reality. To put it differently, a theory may be indispensable 
merely for pragmatic reasons i.e., for reasons which have to do with our cognitive abilities, 
but still be open to a realist interpretation. The fact that a theory falls short of giving us a 
complete account of some complex causal processes does not imply that this theory has no 
representational content whatsoever. A scientific realist is not committed to the thesis that 
even our best scientific theories provide complete descriptions of reality.17

In my opinion, Rosenberg is in principle right that the dispensability of evolution-
ary theory for an omniscient being can lead to the rejection of realism about evo-
lutionary theory. However, this is only the case when one endorses an extremely 
strong version of realism, viz. a realism which demands that theories should match 
reality to such a high degree that an omniscient being could not use another theory 
to predict the processes in question. Weber correctly points out that such a strong 
version of realism is hard to swallow.18 Hence one can be a realist about evolu-

15 Rosenberg, “Instrumental Biology or the Disunity of Science”, loc. cit., p. 83.
16 Marcel Weber, “Determinism, Realism, and Probability in Evolutionary Theory”, in: 

Philosophy of Science (Proceedings) 68, 2001, pp. 213–224.
17 Weber, “Determinism, Realism, and Probability in Evolutionary Theory”, loc. cit., 

p. 217, original emphasis.
18 For an example of a kind of scientific realism that does not demand that our best 

scientific theories provide complete descriptions of reality, see Kenneth C. Waters, 
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tionary theory even if an omniscient being would not have to rely on evolutionary 
theory to predict biological processes. To give an example, assume that Newto-
nian mechanics truly describes the world. Then, according to Rosenberg’s argu-
ment, it would follow that one cannot be a realist about statistical mechanics. Yet, 
most physicists and philosophers contend that it is possible to be a realist about 
statistical mechanics: statistical mechanics correctly represents certain features of 
systems even if these systems can be described in more detail at the microscopic 
level by Newtonian mechanics.19

 To conclude, one can still be a realist about evolutionary theory even it this 
theory is dispensable for an omniscient being for predictive purposes. Many biolo-
gists and philosophers of biology are realists in such a sense, and then the interest-
ing question arises of how to interpret the probabilities figuring in evolutionary 
theory. Because of realism, these probabilities are ontic in the sense that they refer 
to real feature of the world.20 Yet, an omniscient being would not need these prob-
abilities to make predictions (because an omniscient being could use a more fine-
grained theory which is either deterministic or invokes probabilities different from 
evolutionary theory). So the task is to find interpretations of ontic probabilities 
which could in principle be eliminated for predictive purposes.

19.3 interpretations of ontiC probabilities in evolutionary 
theory

This section will discuss three possible interpretations of ontic probabilities in 
evolutionary theory consistent with the claim that the probabilities are in principle 
dispensable for predictive purposes, namely a propensity interpretation of kinds 
of systems (Sect. 19.3.1), the frequency interpretation (Sect. 19.3.2) and Humean 
chances (Sect. 19.3.3). It is worth pointing out that also in several other contexts 
scientists and philosophers talk about ontic probabilities which are in principle 
dispensable for predictive purposes. Examples are setups where the world is sup-
posed to be deterministic at a more fundamental level, such as the probabilities in 
statistical mechanics or the probabilities arising from coin tosses, roulette wheels 
and similar processes.21

“Tempered Realism About the Force of Selection”, in: Philosophy of Science 58, 4, 
1991, pp. 553–573.

19 Roman Frigg, “A Field Guide to Recent Work on the Foundations of Statistical Me-
chanics”, in: Dean Rickles (Ed.), The Ashgate Companion to Contemporary Philoso-
phy of Physics. London: Ashgate 2008, pp. 99–196.

20 Hugh Mellor, Probability: A Philosophical Introduction. Cambridge: Cambridge Uni-
versity Press 2005. Mellor calls these probabilities “chances”. I prefer the term “ontic” 
because some philosophers think that the term “chance” should only be used to refer to 
probabilities in an indeterministic world. 

21 Frigg, “A Field Guide to Recent Work on the Foundations of Statistical Mechanics”, 
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 Millstein22 already proposes two versions of the propensity account as possible 
interpretations of probability consistent with both determinism and indeterminism 
(hence these interpretations are consistent with the claim that probabilities are in 
principle dispensable for predictive purposes). The discussion of this paper differs 
in four respects. First, two interpretations are suggested which were not suggested 
by Millstein. In particular, I propose Humean chances as a possible interpretation 
of biological probabilities, and to the best of my knowledge, Humean chances have 
not previously been suggested as an interpretation of probabilities in evolutionary 
theory. Second, Sober’s23 objection to the propensity interpretation based on back-
ward probabilities in biology is examined and dismissed; this objection has not 
been discussed by Millstein. Third, as outlined below, I disagree with Millstein’s 
argument against frequency interpretations in evolutionary theory. Fourth, Mill-
stein24 proposes an interpretation based on Giere’s single-case propensity inter-
pretation. Single-case propensities provide an interpretation of probabilities that 
are not in principle dispensable for predictive purposes.25 Hence this interpretation 
cannot be applied to probabilities as they arise in evolutionary theory. Yet Giere26 
suggests, and Millstein follows him in this, that from a pragmatic perspective his 
interpretation of probability can also be applied to probabilities that are in prin-
ciple dispensable but behave like if there were not dispensable. However, if one 
makes this pragmatic move, one does not understand what probabilities are, and 
one cannot say that probabilities really exist. Consequently, I do not think that 
interpreting Giere’s account pragmatically leads to a satisfying interpretation of 
probabilities which are in principle dispensable for predictive purposes.

19.3.1 Propensity Interpretation

The three interpretations of ontic probabilities will now be presented. The first 
interpretation is a version of the propensity interpretation, namely what Millstein 
calls a “propensity interpretation that views propensities as adhering to kinds or 
classes”.27 According to this interpretation, what one means by saying that a kind 
of system has a certain probability to change or to remain in a specific state is that 

loc. cit.; Mellor, Ibid., p. 55.
22 Roberta L. Millstein, “Interpretations of Probability in Evolutionary Theory”, in: Phi-

losophy of Science 70, 4, 2003, pp. 1317–1328.
23 Sober, “Evolutionary Theory and the Reality of Macro Probabilities”, loc. cit.
24 Millstein, “Interpretations of Probability in Evolutionary Theory”, loc. cit., pp. 1322–

1324.
25 Ronald N. Giere, “Objective Single-Case Probabilities and the Foundations of Sta-

tistics”, in: Patrick Suppes, Leon Henkin, Grigore Moisil and Athanase Joja (Eds.), 
Logic, Methodology, and the Philosophy of Science. North Holland: Amerikan Else-
vier, 1973, pp. 467–483.

26 Giere, ibid., p. 481.
27 Millstein, “Interpretations of Probability in Evolutionary Theory”, loc. cit., p. 1324, 

original emphasis.
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it has a disposition to produce specific long-run frequencies. Here the question 
emerges to what kind of kind of systems propensities should be attributed. Mill-
stein argues that for probabilities in evolutionary theory a kind is specified by the 
causal factors that influence population level processes, ignoring details particular 
to one population such as the relative locations of organisms within the environ-
ment. For our purposes it is important that since this interpretation attributes a 
propensity to a kind of system, the probabilities are in principle dispensable for 
predictive purposes. Besides, according to this interpretation, the probabilities are 
ontic because they correspond to features of kinds of systems.
 Like all the major interpretations of probability, propensity interpretations are 
controversial.28 The main concerns are to explain what exactly a propensity is, and 
whether one can accept that a propensity, which is a very peculiar sort of entity, 
type of causation or property, is a part of the world. These problems are serious. 
Yet, in my opinion, they do not imply that the propensity interpretation is doomed 
to failure but rather call for further clarification or research. For Sober the main 
problem of the propensity interpretation in evolutionary theory is Humphrey’s 
paradox, viz. that the propensity interpretation cannot make sense of backward 
probabilities as they appear, for example, in coalescence theory.29 I will now argue 
that these backward probabilities do not present a problem.
 Coalescence theory gives probabilities of how long ago the most recent ances-
tor of two organisms existed. A simple model of coalescence theory is as follows: 
the population number is constant, i.e., there are N organisms in each generation; 
the likelihood that an organism is a parent of an organism in the next generation 
is 1/N; and the parents of the organisms in a generation are probabilistically inde-
pendent. Under these assumptions, the probability that the first two organisms of a 
generation share a parent is 1/N, and the probability that the most recent common 
ancestor existed t generations in the past is (1-1/N)t-1(1/N). These probabilities are 
backward probabilities in the sense that the question is whether for two organisms 
which live now the most recent common ancestor existed t generations in the past. 
For such backward probabilities the worry is that there are no nontrivial propensi-
ties: the linage of the two organisms is determined. Hence the two organisms either 
have or do not have the most recent common ancestor t generations in the past.
 For single-case propensity interpretations such as Giere’s interpretation dis-
cussed above, this might present a problem. However, there is no problem for the 
propensity interpretation in evolutionary theory, which appeals to kinds of systems. 
For the simple model of coalescence theory, consider the kind of system where 
there are N organisms at the start and the organisms reproduce over t generations. 
Then the probability that the first two organisms have the most recent ancestor t 
generations in the past is the propensity of this kind of system to produce a first and 

28 Colin Howson and Peter Urbach, Scientific Reasoning, the Bayesian Approach. Peru/
Illinois: Open Court 1996, pp. 338–351; Mellor, loc. cit., Section 4.

29 Sober, “Evolutionary Theory and the Reality of Macro Probabilities”, loc. cit.
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a second organism in the t-th generation which have their most recent common an-
cestor t generations in the past. Thus, there is nothing like a backward propensity 
here. For each run of the system the first two organisms either have or do not have 
their most recent ancestor t generations in the past. Yet this is entirely compatible 
with a nontrivial propensity of a system to produce organisms that have their most 
common ancestor t generations in the past.30 To conclude, backward probabilities 
do not represent a problem for propensity theories in evolutionary theory, which 
appeal to kinds of systems.

19.3.2 Frequency Interpretation

The second interpretation is the frequency interpretation. According to the most 
widely accepted version, the probability is the frequency of a hypothetical infinite 
sequence of trials. In our context it is important to note that, according to the fre-
quency interpretation, probabilities are ontic because the frequencies correspond 
to real features of the world. Furthermore, because the notion of a frequency ap-
plies to sequences of outcomes, the probabilities are in principle dispensable for 
predictive purposes.
 Frequentists are confronted with difficult questions.31 A serious worry is that 
the frequency interpretation overstates the relation of probabilities to frequencies. 
As treated in the mathematical field of probability theory, a probability can also 
lead to an infinite sequence of outcomes where the frequency of the sequence dif-
fers from the probability. For instance, a fair coin can land heads each time in an 
infinite run of tosses (though this sequence has probability zero). It is plausible 
to demand that interpretations of probability should allow for this too, but the 
frequency interpretation does not.32 There is no way out of this by postulating 
that the probability for an infinite sequence to yield the correct frequency is one. 
Clearly, this would be circular because probability would be defined by referring 
to probability. Another problem for hypothetical limiting frequentists is to explain 
what exactly fixes the outcomes of hypothetical infinite sequences, why counter-
factual frequencies are determinate, and why they agree with the probability.33 
Furthermore, what can happen more or less frequently is not that a single experi-
ment yields an outcome but that members of some class of experiments yield an 
outcome. This class is called a reference class, and frequentists have to answer the 

30 This solution to Humphrey’s paradox in evolutionary theory is similar to the solution 
proposed by Gillies and Mc Curdy. See Donald Gillies, “Varieties of Propensities”, in: 
The British Journal for the Philosophy of Science 51, 4, 2000, pp. 807–835; Christoper 
S. I. McCurdy, “Humphreys’s Paradox and the Interpretation of Inverse Conditional 
Propensities”, in: Synthese 108, 1, 1996, pp. 105–125.

31 Howson and Urbach, loc. cit., pp. 319–337; Mellor, loc. cit., Section 3.
32 Sober, “Evolutionary Theory and the Reality of Macro Probabilities”, loc. cit.
33 Marshall Abrams, “Infinite Populations and Counterfactual Frequencies in Evolution-

ary Theory”, in: Studies in History and Philosophy of the Biological and Biomedical 
Sciences 37, 2, 2006, pp. 256–268; Mellor, loc. cit., Section 3.
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question of what constitutes a reference class. That this problem is difficult is 
illustrated by the fact that it is easy to change the order of an infinite sequence such 
that the frequency changes. Thus an answer to the reference class problem also 
needs to explain why only a certain order of experiments is allowed and others are 
not allowed.
 In conclusion, the frequency interpretation faces serious problems. In my 
opinion, they do not imply that the frequency interpretation is doomed to failure. 
Yet, some of the problems seem hard to solve, and further work is needed to make 
progress on these problems. Millstein34 has argued that the frequency interpreta-
tion is of no use in evolutionary theory because it faces an insurmountable problem 
involving the change of frequencies. I will now argue that Millstein’s objection is 
misguided.
 Millstein’s argument starts from considering random drift – a process where 
physical differences between organisms are causally irrelevant to differences in 
reproductive success. A simple model of drift is as follows35: suppose that the 
population size is a constant N with 2N alleles and that there are i alleles of type A. 
Further, suppose that the number of alleles of type A in the next generation is the 
sum of 2N independent Bernoulli variables where the probability for an allele of 
type A is i/2N (the ratio of allele A in the current population). Then the probability 
that the population will go from i alleles of type A to j alleles of type A is36:
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Clearly, this implies that when drift occurs over a number of generations, the ra-
tio of alleles of type A can fluctuate from generation to generation, especially in 
small populations. Any interpretation of probability in evolutionary theory has 
to be able to successfully interpret these probabilities. Millstein argues that these 
probabilities cannot be interpreted as frequencies because “frequencies may in-
crease, decrease, or remain constant. In an ensemble of populations, eventually 
each population undergoing drift will go to fixation for one of the types, but which 
type cannot be predicted”.37

 However, Millstein’s worries are unjustified. All the frequency interpretation 
says for the simple model of drift is that if, again and again, one considers a popu-
lation with 2N alleles and i alleles of type A, the frequency that such a population 
will go to j alleles of type A is p

ij
. This is entirely consistent with the fact that the 

ratio of alleles of type A and the transition probabilities can change from one gen-

34 Millstein, “Interpretations of Probability in Evolutionary Theory”, loc. cit., p. 1322.
35 Jonathan Roughgarden, Theory of Population Genetics and Evolutionary Ecology: An 

Introduction. Upper Saddle River: Prentice Hall 1996, pp. 65–66.
36 This equation is a correction of Millstein’s equation, where there is a typo. 
37 Millstein, “Interpretations of Probability in Evolutionary Theory”, loc. cit., p. 1322.
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eration to the next and that populations will go to fixation for one of the types. The 
point is that for a given reference class the frequencies and hence the probabilities 
are well defined. If the number of alleles of type A changes in one generation from 
i to k (i ≠ k), then also the probabilities p

ij
 and p

kj
 will be different. However, far 

from being a problem, this is as it should be because p
ij
 and p

kj
 are the probabilities 

corresponding to different reference classes.
 My argument can be illustrated with a more familiar example. Suppose that 
at time t

0
 a ball is drawn randomly from an urn with six red and six black balls 

(probability for red 1/2, probability for black 1/2), at time t
1
 a ball is drawn ran-

domly from an urn with 3 red and 1 black balls (probability for red 3/4, probability 
for black 1/4), at time t

2
 a ball is drawn randomly from an urn with two red and 

three black balls (probability for red 2/5, probability for black 3/5), and so on. 
Millstein’s argument would amount to the claim that the frequency interpretation 
cannot make sense of the probability to draw a red ball from an urn because the 
proportion of red balls changes with time. This seems misguided. The probabilities 
change with time because they correspond to different reference classes. This is as 
it should be and is unproblematic since for a given reference class the probability 
is well defined.

19.3.3 Humean Chances

As a third interpretation I want to suggest Humean chances as recently endorsed 
by Frigg and Hoefer as a new interpretation of probabilities in evolutionary theo-
ry.38 The Humean mosaic is the collection of all events that actually happen at 
all times. (Here Frigg and Hoefer make the assumption of ontological pluralism, 
i.e., entities at different levels of the world, and not only the entities at the most 
fundamental level, are real.) Humean chances supervene on the Humean mosaic. 
More specifically, imagine all possible systems of probability rules about events in 
the Humean mosaic. There will be a best system in the sense that the probability 
rules of this system can best account for the Humean mosaic in terms of simplic-
ity, strength and fit. The strength of a system of rules is measured by its scope 
to account for large parts of the Humean mosaic, and fit is measured in terms of 
closeness to actual frequencies. Then Humean chances are the numbers that are 
assigned to events by the probability rules of this best system. The reason why the 
best system contains rules about macro-processes, such as the processes involving 
the kinds postulated by evolutionary theory, is simplicity in derivation: even if it 
were the case that the facts about macro-processes could be derived from funda-
mental physics, “it is hugely costly to start from first principles every time you 

38 Roman Frigg and Carl Hoefer, “Determinism and Chance from a Humean Perspec-
tive”, in: Dennis Dieks, Wenceslao Gonzalez, Stephan Hartmann, Marcel Weber, Frie-
drich Stadler and Thomas Uebel (Eds.), The Present Situation in the Philosophy of 
Science. Berlin: Springer 2010, pp. 351–372; Carl Hoefer, “The Third Way on Objec-
tive Probability: A Sceptic’s Guide to Objective Chance”, in: Mind 116, 463, 1007, pp. 
549–596.
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want to make a prediction about the behaviour of a roulette wheel. So the system 
becomes simpler in that sense if we write in rules about macro objects”.39

 Proponents of Humean chances are confronted with the difficult question of 
how to characterise simplicity, strength and fit in detail. Providing a detailed ac-
count of simplicity, strength and fit is crucial because otherwise it remains vague 
and unclear what probabilities really are. For our purposes it is important to note 
that because Humean chances are facts entailed by actual events in the world, prob-
abilities, thus understood, correspond to real features of the world. Furthermore, 
Humean chances as described above differ from Lewis’s original proposal in that 
laws and chances are not analysed together, which implies that the interpretation 
presented here can also apply to probabilities which are in principle dispensable 
for predictive purposes.40 Indeed, Frigg and Hoefer’s main concern is to argue 
for Humean chances as an account of ontic probabilities in deterministic worlds. 
In particular, they defend Humean chances as an interpretation of probability in 
statistical mechanics and as an interpretation of the probabilities associated with 
deterministic processes such as coin tossing and the spinning of roulette wheels.
 In sum, propensities of kinds of systems, frequencies and Humean chances are 
possible interpretations of probabilities in evolutionary theory in the sense that the 
probabilities are ontic and can in principle be eliminated for predictive purposes.

19.4 CritiCism of sansom’s Claim that biologiCal proCesses 
are indeterministiC

Because probabilities are ontic in evolutionary theory, Sansom41 concludes that bi-
ological processes are really indeterministic. This section will argue that Sansom’s 
argument is inconclusive. First of all, Sansom’s argument needs to be introduced 
in more detail. Sansom distinguishes between two kinds of realism, which he re-
gards as the only two versions of realism worthy of further consideration: innocent 
pluralism and monorealism. Innocent pluralism asserts that different theories de-
scribing the same part of the world at different levels can be true and that no level 
of the world is privileged.42 On this view, for instance, the same part of the world 
can be adequately described by quantum theory and macrophysics. Monorealism 
holds that the world is truly described by only one theory. For example, some 
physicists and philosophers have contended that quantum theory is the only theory 
capturing reality.

39 Frigg and Hoefer, loc. cit., p. 21.
40 Hoefer, loc. cit., pp. 558–560.
41 Sansom, loc. cit.
42 Sansom introduces this concept by alluding to the presentation of this view by Sober – 

see Elliott Sober, The Nature of Selection. Cambridge/MA: MIT Press 1984.
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 Imagine an innocent pluralist who thinks that quantum theory and macrophys-
ics truly describe the world watching a ball rolling across a table. Then, assum-
ing that macrophysics is deterministic and that quantum theory is indeterministic, 
from the innocent pluralist’s point of view the process is indeterministic relative 
to quantum theory and deterministic relative to macrophysics. Consequently, as 
Sansom correctly remarks, an innocent pluralist has to accept the “relativity of 
determinism”, namely that the world is neither merely deterministic nor indeter-
ministic, but that whether or not determinism is true is relative to the kinds under 
consideration.
 Sansom argues for realism about evolutionary theory and innocent pluralism 
by referring to Geach’s43 view of relative identity. Because processes are indeter-
ministic relative to the kinds posited by evolutionary theory, Sansom concludes 
that biological processes are really indeterministic.
 Sansom is right that processes are indeterministic relative to the kinds posited 
by evolutionary theory. However, the question arises why one should exclusively 
focus on the kinds posited by evolutionary theory. To understand this point, a com-
parison with physics will help. For an innocent pluralist there are many physi-
cal realities – the processes relative to quantum-mechanical kinds, the processes 
relative to the kinds posited by general relativity theory, the processes relative 
to statistical-mechanical kinds etc. Now suppose that in biology there are also 
two realities: processes involving life relative to the kinds posited by evolutionary 
theory and processes involving life relative to macro-physical kinds. Relative to 
the macro-physical kinds the processes might be deterministic. Then the question 
whether biological processes are deterministic has no clear answer for an innocent 
pluralist: biological processes are indeterministic relative to the kinds posited by 
evolutionary theory and deterministic relative to the macro-physical kinds.
 Sansom’s concern are the biological realities as considered by biologists and 
philosophers of biology.44 He simply assumes and does not provide any argument 
for the exclusive focus on the biological reality of the processes relative to the 
kinds posited by evolutionary theory. Is there no need to justify this assumption 
because it is uncontroversial that there is only one biological reality, viz. the proc-
esses involving life relative to the kinds posited by evolutionary theory? This is not 
so. The extant literature speaks at least about two biological realities: namely, about 
a biological reality of the processes involving life relative to the kinds posited by 
evolutionary theory, and about another biological reality of the processes involv-
ing life relative to macro-physical kinds. Important for our purpose is that the lat-
ter is standardly referred to as a biological reality.45 Indeed, there is a lively debate 

43 Peter Geach, “Ontological Relativity and Relative Identity”, in: Milton K. Munitz 
(Ed.), Logic and Ontology. New York: New York University Press 1973, pp.287–302.

44 Clearly, Sansom cannot arbitrarily decide what to call “biological reality” because this 
would render his argument uninteresting. 

45 Abrams, “Fitness and Propensity’s Annulment?”, loc. cit.; Millstein, “Interpretations 
of Probability in Evolutionary Theory”,, loc. cit.; Millstein, “Is the Evolutionary Proc-
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in the philosophy of biology about the question whether determinism holds true 
for the biological reality of the processes involving life relative to macro-physical 
kinds. As already mentioned in Sect. 19.2, Rosenberg46 argues that this biological 
reality is deterministic. Abrams47 and Graves et al.48 claim that it is indeterministic 
but that all probabilities are very close to zero and one. Others such as Millstein49 
and Weber50 argue that we do not know enough about the role of quantum events at 
the macroscopic level and hence should remain agnostic about whether or not this 
biological reality is deterministic.
 To conclude, Sansom simply assumes that “biological reality” refers to the 
processes relative to the kinds posited by evolutionary theory, but this assumption 
is not justified. The extant literature speaks at least about two biological realities 
– processes involving life relative to the kinds posited by evolutionary theory and 
processes involving life relative to macro-physical kinds. Consequently, for an in-
nocent pluralist the question whether biological processes are deterministic has to 
broken up into (at least) two subquestions: Are processes involving life determin-
istic relative to the kinds posited by evolutionary theory? Are processes involving 
life deterministic relative to macro-physical kinds? Hence for Sansom’s argument 
to be tenable, he would need to show that biological processes are indeterminis-
tic relative to these two sets of kinds. However, he has not shown that processes 
involving life are indeterministic relative to macro-physical kinds. And, as illus-
trated by the debate in philosophy of biology,51 the question whether biological 
processes are deterministic relative to macro-physical kinds is controversial and 
has no easy answer. Consequently, Sansom’s argument that biological processes 
are really indeterministic (for an innocent pluralist) does not succeed.

ess Deterministic or Indeterministic?”, loc. cit.; Rosenberg, “Instrumental Biology 
or the Disunity of Science”, loc. cit.; Rosenberg, “Discussion Note: Indeterminism, 
Probability, and Randomness in Evolutionary Theory”, loc. cit.

46 Rosenberg, “Instrumental Biology or the Disunity of Science”, loc. cit.
47 Abrams, “Fitness and Propensity’s Annulment?”, loc. cit.
48 Graves et al., “Is Indeterminism the Source of the Probabilistic Character of Evolution-

ary Theory?”, loc. cit.
49 Millstein, “Is the Evolutionary Process Deterministic or Indeterministic?”, loc. cit.
50 Weber, “Indeterminism in Neurobiology”, loc. cit. 
51 Robert N. Brandon and Scott Carson, “The Indeterministic Character of Evolutionary 

Theory: No ‘No Hidden Variables Proof’ but Not Room for Determinism Either”, in: 
Philosophy of Science 63, 3, 1996, pp. 315–337; Graves et al. “Is Indeterminism the 
Source of the Probabilistic Character of Evolutionary Theory?”, loc. cit.; Millstein, “Is 
the Evolutionary Process Deterministic or Indeterministic?”, loc. cit.
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19.5 ConClusion

Probability and indeterminism have always been central philosophical themes. 
This paper contributed to understanding these themes by investigating probability 
and indeterminism in biology.
 The starting point was the following argument: an omniscient being would 
not need the probabilities of evolutionary theory to make predictions. Despite this, 
one can still be a realist about evolutionary theory. For a realist about evolution-
ary theory the probabilities are ontic, i.e., they refer to real features of the world. 
This prompted the question of how to understand probabilities which are ontic but 
which are in principle dispensable for predictive purposes.
 The contribution of the paper to this question was to suggest three possible 
interpretations of such probabilities in evolutionary theory. The first interpretation 
was a propensity interpretation of kinds of systems. Since this interpretation at-
tributes a propensity to kinds of system, the probabilities are ontic and are in prin-
ciple dispensable for predictive purposes. Sober’s objection that propensity theo-
ries cannot deal with backward probabilities in biology was discussed. By inves-
tigating backward probabilities in coalescence theory, I concluded that backward 
probabilities are unproblematic because they can be understood as propensities 
of kinds of systems. The second interpretation was the frequency interpretation. 
Since a frequency applies to a sequence of outcomes, the probabilities are ontic 
and are in principle dispensable for predictive purposes. I examined Millstein’s ob-
jection that in the case of drift frequencies often change, implying that biological 
probabilities cannot be interpreted as frequencies. I argued that this objection is 
beside the point because it is normal that there are different frequencies for differ-
ent reference classes. Third, I suggested Humean chances as a new interpretation 
of probability in biology. Humean chances are the numbers assigned to events by 
the probabilities rules of the best system (the best system is identified by the prob-
ability rules that can best account for the collection of all actual events in terms 
of simplicity, strength and closeness to frequencies). Humean chances are ontic 
because they are facts entailed by all actual events. Furthermore, because of sim-
plicity of derivation, probabilities are also assigned to macro-processes, and hence 
Humean chances are in principle dispensable for predictive purposes. All three in-
terpretations suffer from problems, and further research is required to tackle them. 
Yet they at least show us three possible ways of understanding ontic probabilities 
in evolutionary theory.
 Finally, I criticised Sansom’s claim that biological processes are really indeter-
ministic. Sansom is a realist about evolutionary theory and subscribes to the view 
that different theories describing the same part of the world at different levels can 
be true. Because processes are indeterministic relative to the kinds posited by evo-
lutionary theory, Sansom concludes that biological processes are indeterministic. 
Sansom’s argument presupposes that “biological reality” refers to the processes 
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relative to the kinds posited by evolutionary theory. However, this assumption is 
not justified. The extant literature in biology and philosophy is concerned with at 
least two biological realities – processes involving life relative to the kinds pos-
ited by evolutionary theory and processes involving life relative to macro-physical 
kinds. Consequently, Sansom’s argument that evolution is really indeterministic 
is not conclusive. The problem whether biological processes are deterministic or 
indeterministic is still with us.

Department of Philosophy, Logic and Scientific Method
London School of Economics and Political Science
Houghton Street
WC2A 2AE, London
United Kingdom
c.s.werndl@lse.ac.uk
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Chapter 20

Bengt autzen1

Bayesianism, ConvergenCe and moleCular 
phylogenetiCs

aBstraCt

Bayesian methods are very popular in molecular phylogenetics. At the same time 
there is concern among biologists and philosophers regarding the properties of this 
methodology. In particular, there is concern about the lack of objectivity of evidential 
statements in Bayesian confirmation theory due to the role of prior probabilities. One 
standard reply to be found in the Bayesian literature is that as data size grows larger 
differences in prior probability assignments will “wash out” and there will be conver-
gence of opinion among different agents. This paper puts the “washing out of priors” 
argument to the test in the context of phylogenetic inference. I argue that the role of 
nuisance parameters in molecular phylogenetics prevents the application of conver-
gence arguments typically found in the literature on Bayesianism.

20.1 introduCtion

Bayesian methods are used widely across scientific disciplines. For instance, in 
cosmology Bayesian methods have gained considerable popularity due to the in-
crease of cosmological data in combination with modern computational power.2 
Similarly, the dramatic growth in molecular sequence data in biology has lead to a 
heightened interest in Bayesian statistical techniques for the purpose of phylogenetic 
inference.3 Besides its popularity in science, Bayesianism provides the most popular 
account of evidence and confirmation in the philosophy of science.4

1 I would like to thank Eric Raidl and Marcel Weber for their comments on earlier drafts of 
this paper as well as the participants of the ESF workshop ‘Points of Contacts between the 
Philosophy of Physics and the Philosophy of Biology’ for helpful discussion.

2 Roberto Trotta, “Bayes in the Sky: Bayesian Inference and Model Selection in Cosmol-
ogy”, in: Contemporary Physics 49, 2008, pp. 71–104.

3 Mark Holder and Paul Lewis, “Phylogeny Estimation: Traditional and Bayesian 
Approaches”, in: Nature Reviews Genetics 4, 2003, pp. 275–284.

4 Luc Bovens and Stephan Hartmann, Bayesian Epistemology. Oxford: Oxford Univer-
sity Press 2003.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_20,  
© Springer Science+Business Media B.V. 2012
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Tracing back to Carnap,5 there are two distinct notions of confirmation suggested 
by Bayesian epistemologists. According to the ‘relative’ notion of confirmation, 
D confirms H if and only if P(H|D) > P(H). In contrast, the ‘absolute’ notion of 
confirmation asserts that D confirms H if and only if P(H|D) > k, where k denotes 
some threshold of high probability. Typically it is assumed that k equals 1/2.6 Baye-
sian epistemologists evaluate the posterior probability of a hypothesis P(H|D) by 
means of Bayes’ theorem which states that the conditional probability of a hypoth-
esis H given some data D equals the product of the likelihood of the hypothesis 
and the prior probability of the hypothesis divided by the prior probability of the 
data, that is,

P (H | D) = 
 P (D | H) * P (H)

P (D)

Both Bayesian accounts of confirmation require the assignment of prior probabili-
ties. The question of how to assign these prior probabilities is referred to as the 
‘problem of the priors’ in the Bayesian literature. Following Earman7 there are two 
broad strategies of addressing the problem of the priors. The first strategy is to 
constrain the priors. While all Bayesian epistemologists agree that prior degrees of 
belief should satisfy the probability calculus, there is a long-lasting debate about 
imposing further constraints on prior probability distributions. Examples of this 
strategy include the principle of indifference,8 the principle of maximum entropy,9 
or the Principal Principle.10 The second strategy asserts that the numerical val-
ues of prior probabilities do not matter as long as the amount of data analysed is 
sufficiently large. It is argued that as data size grows larger differences in prior 
probability assignments will “wash out” and there will be convergence of opinion 
among different agents.

This paper sets the strategy of constraining prior probabilities aside and focus 
only on the ‘washing out of priors’ strategy. The reason is that if the ‘washing out 
of priors’ argument works in the phylogenetic context, we can avoid the difficult 
task of justifying a particular way of constraining prior probabilities in this domain. 

5 Rudolf Carnap, The Logical Foundations of Probability. 2nd edition. Chicago: Chi-
cago University Press 1967.

6 See, for instance, Peter Achinstein, The Book of Evidence. New York: Oxford Univer-
sity Press 2001, p. 46.

7 John Earman, Bayes or Bust: A Critical Examination of Bayesian Confirmation Theory. 
Cambridge, Mass.: MIT Press 1992, p. 139.

8 John Maynard Keynes, A Treatise on Probability. New York: MacMillan 1921.
9 Edwin Thompson Jaynes, Papers on Probability, Statistics, and Statistical Physics. 

Roger Rosenkrantz (Ed.), Dordrecht: Reidel 1981.
10 David Lewis, “A Subjectivist’s Guide to Objective Chance”, in: Richard Jeffrey (Ed.), 

Studies in Inductive Logic and Probability Vol II. Berkeley: University of California 
Press 1980, pp. 263–293.
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This view parallels Hesse’s position who writes that convergence of opinion theorems 
“if relevant to scientific inference in general, would be a very powerful aid to con-
firmation theory, for it would discharge us from discussing the details of the initial 
probability distribution”.11

Without constraining prior probabilities the Bayesian approach raises the question 
of how it can make sense of the idea that scientific methodology requires that there is 
some interpersonal agreement on how the data bear on the hypotheses under consid-
eration. And without such an agreement the idea of the objectivity of science seems 
futile. In order to counter the charge that confirmation statements are entirely down to 
the subjective beliefs of individual researchers, Bayesians typically invoke the argu-
ment that there will be a convergence of opinions (as well as convergence to the truth 
if the truth is part of the considered hypotheses) from widely differing initial opinions 
as the amount of available data grows larger. Earman12 summarizes what he calls the 
“Bayesian folklore” of ‘washing out of priors’ as follows:

Differences in prior probabilities do not matter much, at least not in the long run; for (as 
the story goes) as more and more evidence accumulates, these differences wash out in the 
sense that the posterior probabilities merge, typically because they all converge to 1 on the 
true hypothesis.

Historically, Bayesian philosophers and statisticians alike have endorsed the 
idea of ‘washing out of priors’. Here are two examples from the literature illustrat-
ing this line of reasoning. Edwards, Lindman, and Savage13 write:

Although your initial opinion about future behaviour of a coin may differ radically from 
your neighbour’s, your opinion and his will ordinarily be transformed by application of 
Bayes’ theorem to the results of a long sequence of experimental flips as to become nearly 
indistinguishable.

Suppes14 argues in a similar vein when he writes:

It is of fundamental importance to any deep appreciation of the Bayesian viewpoint to 
realize the particular form of the prior distribution expressing beliefs held before the ex-
periment is conducted is not a crucial matter […] For the Bayesian, concerned as he is to 
deal with the real world of ordinary and scientific experience, the existence of a systematic 
method for reaching agreement is important […] The well-designed experiment is one that 

11 Mary Hesse, The Structure of Scientific Inference. Berkeley: University of California 
Press 1974, p. 116.

12 Earman, loc. cit., p. 141.
13 William Henry Edwards, Harold Lindman, and Leonard Savage, “Bayesian Statisti-

cal Inference for Psychological Research”, in: Psychological Review 70, 1963, pp. 
193–242.

14 Patrick Suppes, “A Bayesian Approach to the Paradoxes of Confirmation”, in: Jaakko 
Hintikka and Patrick Suppes (Eds.), Aspects of Inductive Logic. Amsterdam: North-
Holland 1966, p. 204.
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will swamp divergent prior distributions with the clarity and sharpness of its results, and 
thereby render insignificant the diversity of prior opinion.

 Underlying the ‘washing out of priors’ reasoning are mathematical conver-
gence to the truth theorems, such as, Savage’s theorem15 or Gaifman and Snir’s the-
orem16 among others. While convergence theorems have been discussed on general 
grounds in the philosophical literature,17 it seems worthwhile to put these theorems 
to the test in particular cases of scientific inference. The reasons for this are two-
fold. For one thing, it is of interest to the scientist whether these theorems provide 
some comfort when confronted with the subjectivity objection raised against the 
Bayesian methodology. For another, it might demonstrate to the philosopher which 
assumptions of these theorems actually conflict with scientific practice.

This paper examines the application of two convergence theorems (i.e., Sav-
age’s theorem and Gaifman and Snir’s theorem) to molecular phylogenetics. I argue 
that the role of auxiliary assumptions in Bayesian phylogenetic inference prevents 
the applications of these theorems. More specifically, the structure of this paper is 
as follows. Section 20.2 gives a brief introduction to Bayesian phylogenetics. 
Section 20.3 discusses the application of Savage’s theorem (Sect.20 3.1) and Gaif-
man and Snir’s theorem (Sect. 20.3.2) to molecular phylogenetics.

20.2 the Bayesian approaCh to phylogenetiC inferenCe

Phylogenetics is the field of biology that seeks to reconstruct phylogenetic trees 
out of molecular data (e.g., amino acid or nucleotide sequences) or morphological 
data. A phylogenetic tree is a graphical representation of the genealogical rela-
tionship among species, among genes, among populations or among individuals. 
For instance, consider the three species chimpanzee, human and gorilla. What is 
the evolutionary relationship among these species? The following phylogenetic 
tree or, more precisely, ‘tree topology’18 T

1
 asserts that chimpanzees (A) are more 

closely related to humans (B) than to gorillas (C).19

15 Leonard Savage, The Foundations of Statistics. New York: Dover 1972.
16 Haim Gaifman and Marc Snir, “Probabilities Over Rich Languages, Testing and Ran-

domness”, in: Journal of Symbolic Logic 47, 1982, pp. 495–548.
17 See, for instance, Hesse, loc. cit., Earman, loc. cit. and Clark Glymour, Theory and 

Evidence. Princeton: Princeton University Press 1980.
18 A ‘tree topology’ is a branching diagram with labels at the tips of the tree.
19 It is often practical to refer to a phylogenetic tree in terms of the ‘Newick format’. 

Written in Newick format, the tree topology T
1
 reads ((A, B), C).
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A B C

Tree T 1

Fig. 20.1 A rooted, binary tree

Biologists call the edges connecting two nodes of the tree the ‘branches’ of the 
tree.

A variety of methods for inferring phylogenetic trees have been proposed in 
the biological literature. This paper deals with the Bayesian approach to phyloge-
netic inference. A Bayesian phylogenetic analysis requires the calculation of the 
posterior probability distribution of phylogenetic trees by means of Bayes’ theo-
rem. In the phylogenetic context Bayes’ theorem states that the conditional prob-
ability of a tree topology T

i
 given some molecular sequence data D equals the 

product of the likelihood of the tree topology and the prior probability of the tree 
topology divided by the prior probability of the data:

P (T
i
 | D) = 

 P (D | T
i
) * P (T

i
)

P (D)

Let us assume that there are m possible tree topologies. We can then calculate the 
probability of the data P(D) by means of the law of total probability:

P (D) = ∑ P (D | T
i
) * P(T

i
) .

m

i = 1

The probability of the data D given a tree topology T
i
 (i.e., the likelihood 

P(D|T
i
)) is not determined without invoking auxiliary assumptions regarding the 

evolutionary process at the molecular level. This is just a token of Duhem’s prob-
lem, that is, the problem that scientific hypotheses typically do not deductively 
entail observable consequences. Consider again tree topology T

1
 = ((A, B), C).  

If this tree is supposed to confer probabilities on observed distributions of 
molecular sequence data for the three species A, B and C, then values must be 
specified for the transition probabilities associated with the four branches of the 
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tree. In order to specify these branch transition probabilities and, hence, calculate 
the likelihood of tree topology T

1
, a model of the evolutionary process at the mo-

lecular level together with other auxiliary assumptions is invoked. In detail, these 
additional auxiliary assumptions are given by a specification of the parameter val-
ues of the model (denoted as θ), and the specification of the vector of times during 
which evolutionary change occurs between the nodes of a tree (denoted as v). The 
vector specifying the physical times during which evolutionary change happens is 
also referred to as the vector of ‘branch lengths’.20

Parameters such as branch lengths, the parameters of a model of molecular 
evolution and the model of molecular evolution itself are called ‘nuisance param-
eters’ in the statistical literature. To the statistician they are a “nuisance” because 
they have to be invoked to calculate numerical probabilities while they are not of 
interest in the particular inference. The Bayesian approach to statistical inference 
treats each nuisance parameter as a random variable and assigns a prior probability 
distribution. Some statisticians, such as Robert,21 consider this way of handling 
nuisance parameters as a key attraction of the Bayesian approach.

In order to simplify the notation, let us assume a particular model of molecu-
lar evolution, and consider the vector of branch lengths v and the vector of model 
parameters θ as random variables with a prior probability distribution (denoted as 
f (v) and g(θ)). Under these assumptions the likelihood of the tree topology T

i
 can 

be calculated as follows:

P (D | T
i
) = ∫ ∫ P (D | T

i 
, v, θ) f (v) g (θ) dv dθ 

.v θ

That is, the likelihood P(D|T
i
) results from integrating the conditional probability 

of the data D given tree topology T
i
, branch lengths v and model parameters θ 

(i.e., P(D|T
i
,v,θ)). The likelihood P(D|T

i
) is called a ‘marginal likelihood’ since the 

nuisance parameters v and θ are integrated out (or ‘marginalized’) given the prior 
probability distributions f(v) and g(θ). Together with prior probabilities of the tree 
topologies (denoted as P(T

j
) for j =1, …, m) the posterior probability P(T

i
|D) can 

then be calculated as follows:

∫ ∫ P (D | T
i 
, v, θ) f (v) g (θ) dv dθ * P (T

i
)

v θ

∫ ∫ P (D | T
j 
, v, θ) f (v) g (θ) dv dθ * P (T

j
)

v θ
∑
j = 1

mP (T
i
 | D) =

20 While here ‘branch length’ is understood as measuring physical time, this term also has 
a different meaning in the biological literature. In graphical representations of a phylo-
genetic tree the length of a branch is seen as a measure of the amount of evolutionary 
change occurring along the branch. In that case ‘branch length’ means the expected 
number of substitutions which is a function of time and the rate of substitutions.

21 Christian Robert, “Evidence and Evolution: A Review”, in: Human Genomics, to 
appear.
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The formula for the posterior probabilities of tree topologies looks very com-
plex. In fact, it is generally too complex to be calculated analytically. Phylogeneti-
cists therefore use the computer algorithm ‘MrBayes’22 to numerically approximate 
the posterior probabilities of phylogenetic trees. MrBayes samples phylogenetic 
trees from the posterior probability distribution of phylogenetic trees. Ideally, the 
proportion of sampled trees adequately reflects the posterior probability of a par-
ticular tree. As a result of this approximation method a posterior probability of a 
tree topology is equal to one if all sampled trees coincide with this topology.

Of course, the Bayesian approach of assigning prior probability distributions 
to nuisance parameters and integrating them out raises the question of how to as-
sign these priors. This question is particularly pressing since different assignments 
of prior probabilities to nuisance parameters can lead to conflicting confirmation 
claims. The problem can be illustrated by means of a recent study on the phylog-
eny of baleen whales due to Yang.23 The study demonstrates that a data set of 12 
protein-coding genes of the mitochondrial genome from 5 baleen whales (includ-
ing the Antarctic minke whale, the fin whale, the blue whale, the grey whale and 
the pygmy right whale) confirms conflicting phylogenetic trees depending on the 
choice of priors of models of molecular evolution and their parameters.24

Consider just two models of molecular evolution invoked in Yang’s study: the 
Jukes-Cantor model and the codon M0 model. The Jukes-Cantor (JC) model25 is 
a continuous-time Markov process which contains a single adjustable parameter λ 
that represents the instantaneous probability of a change from one nucleotide into 
another at a nucleotide site. While the term ‘model’ is used in many ways in sci-
ence and philosophy, it has a fixed meaning in the statistical context. In statistics 
a model is a family of probabilistic hypotheses described in terms of one or more 
adjustable parameters. For instance, in the JC model the family of probabilistic 
hypotheses is characterised in terms of the parameter λ. Each particular numerical 
value of this parameter denotes a stochastic process.

While in models of nucleotide substitution, such as the JC model, the single 
nucleotide is the unit of evolution, the codon constitutes the unit of evolution in 
models of codon substitution. Codons are triplets of nucleotides. The genetic code 
consists of 64 (= 43) triplets of nucleotides which can be divided into 61 ‘sense’ 

22 John Huelsenbeck and Fredrik Ronquist, “MrBayes: Bayesian Inference of Phyloge-
netic Trees”, in: Bioinformatics 17, 2001, pp. 754–755.

23 Ziheng Yang, “Empirical evaluation of a prior for Bayesian phylogenetic inference”, in: 
Philosophical Transactions of the Royal Society B 363, 2008, pp. 4031–4039.

24 Remember that I treat models of molecular evolution itself as nuisance “parameters”. 
This approach corresponds to the Bayesian idea of model averaging (e.g., see John 
Huelsenbeck, Bret Larget, and Michael Alfaro, ”Bayesian Phylogenetic Model Selec-
tion Using Reversible Jump Markov Chain Monte Carlo”, in: Molecular Biology and 
Evolution 21, 2004, pp. 1123–1133).

25 Thomas Jukes and Charles Cantor, “Evolution of protein molecules”, in: Hamish Munro 
(Ed.), Mammalian protein metabolism. New York: Academic Press 1969.
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and 3 ‘non-sense’ or ‘stop’ codons. Every sense codon encodes an amino acid. For 
instance, the codon ‘CTA’ encodes the amino acid Leucine. The stop codons are 
typically not considered in the model since they are not allowed in a functional 
protein.

The codon M0 model26 distinguishes between synonymous and nonsynony-
mous substitutions when describing the substitution rates from one (sense) co-
don to another. A ‘synonymous’ (or ‘silent’) substitution is the substitution of a 
nucleotide that does not change the encoded amino acid. In contrast, a ‘nonsyn-
onymous’ substitution is the substitution of a nucleotide that changes the encoded 
amino acid. For instance, the substitution of the nucleotide ‘A’ by the nucleotide 
‘G’ at the third codon position of the codon ‘CTA’ is a synonymous substitution 
since ‘CTG’ also encodes the amino acid Leucine. In contrast, substituting the 
nucleotide ‘C’ at the first codon position by the nucleotide ‘A’ represents a non-
synonymous substitution since the resulting codon ‘ATA’ encodes the amino acid 
Isoleucine. In Goldman and Yang’s codon model the substitution rate from one co-
don to another is zero when the two codons differ at two or three codon positions. 
The substitution rate between two codons which differ only at one codon position 
depends on whether the substitution is synonymous or nonsynonymous as well as 
whether the substitution constitutes a transition or a transversion.27

Returning to the phylogeny of baleen whales, suppose that we are interested 
in the phylogenetic relationship of the Antarctic minke whale (A), the fin whale 
(F), the blue whale (B) and the grey whale (G). By assigning a full prior to the JC 
model (together with the MrBayes default prior to its parameter λ), the posterior 
probability of tree topology T = (A, ((F, B), G)) equals 0.93 based on the data in 
Yang’s study.28 Put differently, the data set (denoted as D) confirms tree topology 
T independent of whether the absolute or the relative notion of confirmation is 
assumed.29 However, by assigning a full prior to the codon M0 model (as well as 
the MrBayes default prior to its parameters) data D confirm tree topology T* = 
(G, ((F, B), A)) since P(T* | D) = 0.51. Again, this result holds independently of 
whether the absolute or the relative notion of confirmation is assumed. The two 
inferred trees are in conflict since tree topology T asserts that blue whales are more 
closely related to grey whales than to Antarctic minke whales while tree topology 
T* claims that blue whales are more closely related to Antarctic minke whales than 
to grey whales.

26 Nick Goldman and Ziheng Yang, “A codon-based model of nucleotide substitution for 
protein-coding DNA sequences”, in: Molecular Biology and Evolution 11, 1994, pp. 
725–736.

27 Transitions are changes between the nucleotides A and G and between C and T, while 
all other changes are transversions.

28 Yang, loc. cit., Table 3.
29 Here, it is assumed that the 15 possible (binary, rooted) tree topologies for 4 species 

have equal prior probability (i.e., 1/15) and that k = 1/2 in the account of absolute 
confirmation.
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Summing up, Yang’s study demonstrates that the sensitivity of Bayesian con-
firmation claims to the priors of nuisance parameters is not just a possibility oc-
curring only in highly idealized cases discussed by philosophers. Rather, the sen-
sitivity of confirmation claims to priors of nuisance parameters manifests itself in 
scientific practice. Where does this leave us regarding the ‘washing out of priors’ 
argument? Can we reasonably expect that if we had a larger data set at hand, the 
posterior probabilities of phylogenetic trees would merge?

20.3 ConvergenCe and phylogenetiC inferenCe

This section discusses the application of convergence to the truth theorems 
to phylogenetic inference. In particular, I examine the theorems suggested by 
Savage and Gaifman and Snir. The reason for this choice of theorems is that 
Savage’s theorem has traditionally been invoked in the Bayesian literature.30 
Any discussion of washing out of priors should therefore revisit these more 
established debates. Gaifman and Snir’s theorem relaxes a key assumption of 
Savage’s theorem, that is, the assumption of well-defined (or objective) likeli-
hoods. Due to this generalisation of Savage’s result, Gaifman and Snir’s theo-
rem is of interest in the phylogenetic context where tree topologies alone do 
not assign probabilities to observed data.

Before turning to these particular theorems some general remarks are in order. 
Broadly speaking, one can distinguish between convergence results supplemented 
with and without an estimate of the rates of convergence. Convergence results 
coming without an estimate of the rates of convergence might be called ‘ultimate 
convergence results’. An ultimate convergence result asserts that there exists some 
point in the future at which a certain amount of convergence will, with high prob-
ability, have occurred. It remains silent on how far in the future that point lies and 
nothing is guaranteed until that point is reached. Convergence results of this type 
seem of very limited use in underwriting the ‘washing out of priors’ argument 
for scientific practice. Scientists are always working with finite data sets. Without 
knowing anything about the rates of convergence, the promise that at some point in 
the future convergence will kick in with high probability seems to be an absolute 
minimum requirement for the washing out of priors. Ideally, scientists not only 
would like to know the rate of convergence but also be in the situation that the 
rate of convergence is relatively fast in order to buy into the washing out of priors 
reasoning.

30 For instance, Edwards, Lindman and Savage, loc. cit., Hesse, loc. cit., and Glymour, 
loc. cit.
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20.3.1 Savage’s Convergence Theorem

Savage31 presents an argument to the effect that a person typically becomes almost 
certain of the truth when the data set grows larger and larger. Savage’s convergence 
to the truth argument is based on the following mathematical theorem. Suppose that 
{H

1
, H

2
, …, H

m
} is a set of mutually exclusive and jointly exhaustive hypotheses, 

each with prior probability P(H
i
). Let X

1
, X

2
, X

3
, … denote a sequence of independ-

ent and identically distributed (i.i.d.) random variables with a finite set of values 
and X(n) the first n of these variables. Further, suppose that no two hypotheses have 
the same likelihood function, that is, for i ≠ j it is not the case that for all realiza-
tions x = (x

1
, x

2
, x

3
, …) of the sequence of random variables X we have P(X = x | H

i 
) 

= P(X = x | H
j 
) Then, the probability that the posterior probability of the true (but 

unknown) hypothesis given X(n) = x(n) will be greater than α is given by

∑ P (H
i
) ´ P [P(H

i
 | X(n) = x (n)) > α) | H

i
],

i = 1

m

where summation is restricted to those hypotheses with non-zero prior probability 
(i.e., P(H

i
) > 0). Savage shows that this probability goes to 1 as n approaches infin-

ity. More informally, the theorem asserts that the opinions of all agents regarding 
the hypotheses H

i
 will almost surely merge since each agent almost surely con-

verges to certainty on the true hypothesis.
What about the rate of convergence? Savage’s theorem can be supplemented 

with an estimate of the rate of convergence if we make the additional assumption 
that the prior probability of any hypothesis with non-zero prior has a lower bound 
ε.32 That is, for any hypothesis H

i
 with P(H

i
) > 0, we have to assume that P(H

i
) ≥ 

ε > 0 for a fixed, positive constant ε. Without a lower limit on the non-zero prior 
probabilities of hypotheses no statement can be made about the rate of conver-
gence since in any finite time any given hypothesis of the set will have the highest 
posterior probability for some distribution of prior probabilities.33

While the mathematics of Savage’s theorem is not in doubt, its relevance 
for the washing out of priors argument has been questioned by several authors. 
Hesse34 particularly criticises the independence assumption and, what she calls, 
the ‘randomness assumption’ underlying the theorem. Let me start with 
the independence assumption. The independence assumption implies that the 
probability of observing a particular event at stage n is unaffected by having al-
ready observed particular events at earlier stages in the sequence. For instance, 

31 Savage, loc. cit.
32 Hesse, loc. cit., p. 117.
33 One way of measuring the concentration of the posterior probability distribution is to 

calculate the reciprocal of the variance of this distribution. If we do so, then the con-
centration of the posterior can be expected to grow as √n in a ‘Savage-type’ setting. For 
more details, see Earman, loc. cit., p. 148.

34 Hesse, loc. cit.
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independence is assumed when balls are sampled with replacement from an urn. 
Hesse35 argues that the independence assumption is generally not warranted in 
scientific practice since scientific experiments are often designed and scientific 
hypotheses modified in the light of already observed data. In particular, she makes 
the case that conducting a limited number of experiments based on already observed 
data and directed towards modified hypotheses is a more efficient procedure than 
mechanically conducting a long series of independent tests of the same hypothesis.

While the independence assumption is clearly stated in Hesse’s writings, mat-
ters are more difficult when it comes to her ‘randomness assumption’. Accord-
ing to Hesse,36 randomness asserts that “given a particular hypothesis [H

i
], the 

probability of making the test which yields [observation x
n
] is independent of the 

particular order in which it and other evidence is observed”. Hesse’s notion of ran-
domness seems to refer to the statistical assumption that the individual observa-
tions follow the same probability distribution when she writes that the randomness 
assumption contemplates “a situation in which we know nothing about the condi-
tions which differentiate one observation from another”.37 If this reading is cor-
rect, then the assumption of a sequence of identically distributed random variables 
might be violated in some scientific applications and, hence, threaten the relevance 
of Savage’s theorem in a particular domain.

Glymour38 endorses Hesse’s criticism and adds some further critical points in 
his discussion of Savage’s theorem. In particular, Glymour argues that the role of 
second-order probabilities in the theorem weakens its argumentative force. Since 
for a Bayesian second-order probabilities as well as first-order probabilities repre-
sent degrees of belief, the theorem asserts that in the limit as n approaches infinity 
a Bayesian has degree of belief 1 that a Bayesian, whose degrees of belief are 
described by the theorem, has degree of belief, given data x, greater than   in what-
ever hypothesis of the partition which actually obtains. Glymour39 summarizes the 
implications of Savage’s theorem as follows:

The theorem does not tell us that in the limit any rational Bayesian will assign probability 
1 to the true hypothesis and probability 0 to the rest; it only tells us that rational Bayesians 
are certain that he will.

Glymour40 concludes that while Savage’s theorem “may reassure those who are 
already Bayesians, but it is hardly grounds for conversion”.

While both Glymour’s and Hesse’s criticism has its merits, the points they 
raise are not specific to the phylogenetic context. So, can something more subject 

35 Hesse, Ibid., pp. 118–119.
36 Hesse, Ibid., p. 118.
37 Hesse, Ibid., p. 118.
38 Glymour, loc. cit.
39 Glymour, Ibid., p. 73.
40 Glymour, Ibid., p. 73.
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specific be said regarding the application of Savage’s theorem? First, one should 
note that phylogeneticists examine a single data set rather than a growing sequence 
of data as assumed in Savage’s theorem. That is, Bayesian phylogeneticists perform 
a single step of Bayesian updating rather than engage in continuous updating. An 
alternative approach would be to divide the single, large data set into a sequence 
of growing sub-data sets. For instance, one could start with a fixed number of 
codons and add a single codon (or three nucleotides) in each step. This sequence of 
sequence data sets could then be used to perform several Bayesian updates includ-
ing the final one with the complete data set. The latter approach would be more 
congenial for examining the convergence of posterior tree probabilities understood 
as a process. One could examine whether and if so at what speed posterior tree 
probabilities approach each other.

That said, the single step analysis performed in the phylogenetic literature 
could still show the convergence of posterior tree probabilities understood as an 
outcome. That is, the posterior tree probabilities could be very close to each other 
for different assignments of prior probabilities. Why does this not happen in the 
study on the phylogeny of baleen whales? A first proposal might be that the amount 
of data analysed is too small. While this might be the case in some particular stud-
ies this does not seem to be the reason in general. To the contrary, phylogeneticists 
have very large data sets available for their analyses; that is, they routinely analyse 
sequence data sets of 10 kb or even 10 Mb. For instance, in Yang’s study on the 
phylogeny of baleen whales the alignment e contains 3535 codons (i.e., 3535 * 3 
= 10,605 nucleotides). In fact, some phylogeneticists, such as Yang,41 argue that 
they have “too much data”. If convergence understood as an outcome is supposed 
to have any impact for scientific practice – which is always operating on finite data 
sets – then they surely should apply to data sets of the size encountered in the phy-
logenetic context. Think about an analogy. A data set of 10 kb could be a 0-1 se-
quence representing the outcome of 10,000 coin tosses. We surely would hope that 
the posterior probabilities of the parameter of the Bernoulli distribution describing 
the i.i.d. sequence of coin tosses are very close to each other after analysing 10,000 
coin tosses when starting with different assignments of prior probabilities if the 
‘washing out of priors’ argument is supposed to have any bite.

A second and more important difference with the setting of Savage’s theorem 
is to be found in the properties of the likelihoods involved. While Savage assumes 
that the hypotheses H

i
 have well-defined likelihoods without invoking any auxiliary 

assumptions, the likelihood of a tree topology depends on the prior probabilities of 
auxiliary assumptions regarding the evolutionary process on the molecular level. 
Put differently, the hypotheses H

i
 assign probabilities to any element in the event 

space while a tree topology alone does not assign a probability to a set of sequence 
data. Hence, the hypotheses in Savage’s theorem cannot represent phylogenetic 
tree hypotheses.

41 Yang, loc. cit., p. 4037.
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20.3.2 Gaifman and Snir’s Convergence Theorem

In order to overcome the difficulties associated with Savage’s theorem it is desir-
able to establish a convergence theorem which does not require that hypotheses 
have well-defined, objective likelihoods P(D | H). Gaifman and Snir42 present a 
result to this effect. It might come as a surprise that such theorems have been 
suggested in the first place. If likelihoods are supposed to vary freely (or at least 
as freely as the probability calculus allows), then it seems astonishing that con-
vergence to the truth and hence, convergence of opinion will occur. Consider the 
following example.43 Two theologians might come to different conclusion regard-
ing the conditional probability of the occurrence of human tragedies and natural 
catastrophes given the assumption that God exists. Suppose that D denotes the 
occurrence of human tragedies and that H denotes the hypothesis that God exists. 
For theologian A God might be mean spirited and, hence, the likelihood P

A
 (D | H) 

very high, while for theologian B God might be benevolent and, hence, P
B
 (D | H) 

very low. It seems unclear how observing what is happening in the world can lead 
to agreement of opinion between A and B regarding the question of whether or not 
God exists.

Gaifman and Snir’s theorem is formulated in terms of concepts that are more 
akin to traditional philosophical discussions of confirmation theory where prob-
abilities are assigned to sentences in some formal language. As a result some ad-
ditional terminology has to be introduced to present their result. Suppose that L 
denotes a formal language that results from adding finitely many empirical predi-
cates and empirical function symbols to first-order arithmetic containing names 
for each of the natural numbers. A model for L consists of an interpretation of the 
empirical symbols (i.e., empirical predicates and empirical function symbols). The 
set of all models for L is denoted as Mod

L
. Gaifman and Snir sometimes refer to 

the elements of Mod
L
 as ‘worlds’.

Further, for every world and every sentence φ let φ(w) be either φ or – φ depend-
ing on whether or not φ is true in w. If φ

1
, φ

2
, … denotes a sequence of sentences, 

then ∩ φi
   denotes the available data in world w at stage n. Gaifman and Snir44 

suggest that the φ
i
 are “relatively simple sentences whose truth values can be 

found by available testing methods”. Examples include atomic empirical sentences.  
In contrast, it is assumed that the truth or falsity of the hypothesis of interest cannot be 
tested directly in this way.

Finally, Gaifman and Snir introduce the concept of separation, which plays a 
crucial role in their theorem. A sentence φ is said to ‘separate two worlds w

1
 and 

w
2
‘ if and only if it is true in one of them and false in the other. A class of sentences 

Ф ‘separates a set of worlds X’ if and only if every two worlds in X are separated by 

42 Gaifman and Snir, loc. cit.
43 Example adapted from Michael Strevens, “Notes on Bayesian Confirmation Theory”, 

unpublished manuscript, pp. 93–94.
44 Gaifman and Snir, loc. cit., p. 507.

(w)

i < n
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some φ Î Ф. And, a class of sentences Ф ‘is separating’ if and only if it separates 
Mod

L
.

Suppose that ψ is the hypothesis of interest and that {φ
1
, φ

2
, …} is separating. 

Let [ψ](w) denote the characteristic function corresponding to ψ which is defined 
as 1 if ψ is true in w and 0 otherwise. Then subject to some additional technical 
assumptions Gaifman and Snir show that:

P (ψ | ∩ φ
i
   ) → [ψ] (w)(w)   for n → ∞ almost everywhere.45

In more informal terms, the theorem asserts that the truth or falsity of hypothesis 
ψ in w is revealed in the long run. It implies that if P* is a probability measure that 
assigns probability zero to the same elements of the probability space as P, then

 

i < n
P* (ψ | ∩ φ

i
   ) – P(ψ | ∩ φi

   )  → 0
(w) (w)

i < n
  for n → ∞ holds almost everywhere.46

Put informally, agents starting with different but equally dogmatic prior prob-
abilities (i.e., they assign zero probability to the same elements of the probability 
space) converge in their probability assignments in the long run. The observation 
of more and more data not only washes out differences in priors of hypotheses but 
also differences in subjective likelihoods based on differences in priors of nuisance 
parameters.

What about the rate of convergence in Gaifman and Snir’s theorem? In contrast 
to Savage’s theorem it does not come with an estimate of the rate of convergence. 
Even worse, as Earman47 points out, it does not seem possible to derive informa-
tive estimates in the general setting of the theorem. So, its relevance for scientific 
practice is already very limited. But can something more specific be said about its 
application to the phylogenetic context? Not surprisingly, one of the assumptions 
of the theorem is violated. The culprit is to be found in the separation assumption 
of the convergence theorem. The separation condition requires that for any two 
worlds, there exist some (possibly quantified) description of the data that holds in 
one, and is false in the other.

The working of the separation condition can be illustrated in the case of the 
two theologians. Suppose that the set of possible worlds is divided into subsets: 
those worlds in which God exist and those in which He (or She) does not. Further 
suppose that God exists in w

1
 and God does not exist in w

2
. The separation condi-

tion requires that there is an observational sentence D* (w
1
, w

2
) that separates these 

45 The expression ‘almost everywhere’ means that the statement under consideration is 
true for all worlds belonging to some set of probability 1.

46 Note that here ‘almost everywhere’ means the same with respect to probability measure P 
as it does for probability measure P* since the sets of probability 1 are the same for the 
two probability measures.

47 Earman, loc.cit., p. 148.

i < n
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two worlds. In order to simplify the example assume that this observational sen-
tence separates any two worlds that come from the two different subsets. Hence, 
we can drop the reference to the particular worlds w

1
 and w

2
 in D* (w

1
, w

2
), that 

is, D* (w
1
, w

2
) = D*. Say D* is true in worlds in which God exists, and false in 

worlds where God does not exist. For instance, D* might refer to the occurrence of 
a ‘miracle’. Since D* is implied by hypothesis H, the probability calculus requires 
that the likelihood P (D* | H) is equal to one. Further, since –D* is implied by –H, 
the likelihood P(–D* | –H) is also equal to one. While the two theologians differ 
regarding the probability they attribute to the event of observing human tragedies 
(i.e., event D) under the assumption that God exists (i.e., hypothesis H), the two 
scholars must agree in their assignments of P (D* | H) and P (D* | –H). Roughly 
the theorem then works as follows: as more data are collected, ‘separators’, such 
as D*, come into effect by ruling out alternatives to the truth by means of these 
objective likelihoods.

Returning to the phylogenetic context, suppose that w
1
 is a world in which 

fin whales (F) are more closely related to grey whales (G) than to minke whales 
(A), that is, the tree topology ((F, G), A) is true in w

1
. Further, suppose that w

2
 is a 

world in which fin whales (F) are more closely related to minke whales (A) than to 
grey whales (G), that is, the tree topology ((F, G), M) is true in w2

. Finally, let {φ
1
, 

φ
2
, …} denote the sequence of descriptions of DNA sequence data from the three 

species under consideration. Obviously, the genome of any organism has only a 
finite number of nucleotides but let us assume for the sake of argument that these 
organisms have DNA sequences of infinite length. In that case suppose that φ

i
 

denotes the alignment of i nucleotides of each species (i.e., φ
i 
= (a

i
 , f

i
 , g

i
 )) where 

a
i
 denotes the first i nucleotide of species A etc.). Now, the question is whether 

there is any sentence in {φ
1
, φ

2
, …} that separates the two worlds w

1
 and w

2
. Put 

differently, is there any alignment of DNA sequence data of the three species that 
is true in one of the two worlds and false in the other? No, any alignment is com-
patible with both tree topologies given our current understanding of evolutionary 
processes on the molecular level. It is possible that in both worlds w

1
 and w

2
 the 

same alignments obtain. The difference is just that depending on the model of 
molecular evolution assumed, the two tree topologies assign different probabilities 
to an alignment. Gaifman and Snir’s separation assumption is not satisfied in the 
phylogenetic context.

20.4 ConClusion

While philosophical discussions of the washing out of priors strategy typically 
focus on the priors of the hypotheses of interest, this paper discussed the priors of 
nuisance parameters in the context of molecular phylogenetics. Based on a study 
on the phylogeny of baleen whales it was shown that confirmation statements 
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are sensitive to the priors of nuisance parameters. Further, it was argued that two 
prominent convergence theorems fail to apply in molecular phylogenetics. This, 
of course, is no proof that no convergence theorem applies in the phylogenetic 
context. Other convergence theorems have been established in the literature and 
additional theorems might be proven in the future.48 However, the role of nuisance 
parameters in a Bayesian phylogenetic analysis typically renders these results in-
applicable and creates a serious challenge for any future convergence theorems to 
be established.49 Returning to Earman’s two strategies of addressing the problem of 
the priors, this leaves the phylogeneticist with the constraining of priors strategy. This, 
however, is the topic of another paper.

Department of Philosophy, Logic and Scientific Method
London School of Economics
Houghton Street
WC2A 2AE, London
United Kingdom
B.C.Autzen@lse.ac.uk

48 See, for instance, James Hawthorne, “Confirmation Theory”, in: Prasanta Bandyopad-
hyay and Malcolm Forster (Eds.), Philosophy of Statistics, Handbook of the Philoso-
phy of Science, Volume 7. Elsevier (to appear).

49 For instance, Hawthorne’s ‘Likelihood Ratio Convergence Theorem’ (Hawthorne, loc. 
cit.) invokes the ‘Directional Agreement Condition’ when dealing with subjective like-
lihoods. This condition is generally not satisfied in the phylogenetic context.
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Chapter 21

Ilkka NIINIluoto

QuaNtItIes as realIstIC IdealIzatIoNs

The quantitative method is a powerful tool in the natural and social sciences. Depending 
on the research problem, the use of quantities may give significant methodological 
gains. Therefore, it is an important task of philosophers to clarify two related ques-
tions: in what sense do mathematical objects and structures exist? What justifies the 
assignment of numbers and numerals to real objects? The former question is discussed 
in the ontology of mathematics, the latter in the theory of measurement. This paper 
defends constructive realism in mathematics: numbers and other mathematical entities 
are human constructions which can be applied to natural and social reality by means 
of representation theorems. The axioms of such representation theorems are typically 
idealizations in the sense analyzed by critical scientific realists. If the axioms are truth-
like, then quantities can be regarded as realistic idealizations.

21.1 the QuaNtItatIve Method

By the quantitative method we mean the use of quantities, quantitative concepts 
and mathematical methods in science. The history of this method started in the an-
tiquity within optics, astronomy, and statics. In the early modern times, it was 
successfully applied in dynamics and mechanics by Galileo, Kepler, Descartes, 
Newton, and Leibniz. In the nineteenth century, statistical methods were developed 
in genetics and the social sciences. In the twentieth century, mathematical models 
have been employed as a tool in economics and psychology. Today, computers with 
numerical and simulation methods can be used in all fields of research.1

 Philosophers of language have traditionally distinguished the extension and 
intension of a linguistic expression. Concepts are intensions of terms. In particular, 
the intension of a monadic predicate is a property and its extension is a class: the 
term “red” expresses the property of redness and denotes the class of all red ob-
jects. The intension of a two-place predicates is a relational concept, and its exten-
sion is a relation. The intension of a function term or functor is a function concept 
and its extension is a function.

1 Cf. Wenceslao J. Gonzalez, “The Role of Experiments in the Social Sciences: The Case 
of Economics”, in: Theo Kuipers (Ed.), Handbook of the Philosophy of Sciences: Gen-
eral Philosophy of Science – Focal Issues, Amsterdam: Elsevier 2007, pp. 275–301.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_21,  
© Springer Science+Business Media B.V. 2012
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 A related distinction can be given between classificatory, comparative, and 
quantitative concepts.2 The extensions of classificatory terms, like “hot”, are classes. 
Comparative terms, like “is warmer than”, can express comparisons of objects 
with respect to some property. Quantitative terms, and quantitative concepts or 
quantities as their intensions, like temperature in degrees centigrade, attribute 
single numbers (scalars) or several numbers (vectors) to objects. One usually 
thinks that concept formation goes from classificatory to quantitative concepts via 
comparative ones, but movement in the opposite direction is also viable.
 Quantitative methods are contrasted with qualitative research, including 
classification by descriptive terms, functional and teleological explanations, and 
hermeneutic or interpretative methods.3 The use of quantities has many methodo-
logical virtues4: explication or the replacement of everyday terms with exact and 
unambiguous concepts improves precision and accuracy, information and com-
munication. Quantitative vocabulary facilitates the treatment and estimation of 
empirical uncertainty. In empirical science “concept formation and theory forma-
tion go hand in hand”5: quantities allow us to formulate causal laws, dynamic laws, 
theories and models with great systematic power, thereby helping the basic goals 
of scientific inference: reduction, explanation, and prediction. Further, quantitative 
hypotheses may have a high degree of testability.
 In the positivist tradition, the quantitative approach is regarded as the only 
acceptable method in science. Some critics of positivism have mistakenly claimed 
that this approach presupposes that reality can be divided into countable “units” 
or “atoms” – this claim ignores the rich and flexible framework of measurement 
scales. In spite of the importance of measuring instruments (e.g., thermometers6), 
already Hempel7 argued that the operationalist school naively assumes that meas-
uring devices define concepts, when they in fact help to test quantitative state-
ments. The claim that quantitative approaches lead only to trivial results reflects 
the fact that sometimes its proponents have failed to use imagination and boldness 
in their formulation of research problems.
 In general, the potential gains of the use of the quantitative method depend 
on the research problem, cognitive interests of the researcher, and matters of fact 
about the object of inquiry. For a philosopher, the most important critical issue 

2 Carl Gustav Hempel, Fundamentals of Concept Formation in Empirical Science, 
Chicago: The University of Chicago Press 1952; and Rudolf Carnap, An Introduction 
to the Philosophy of Science, New York: Basic Books 1966.

3 Norman K. Denzin, and Yvonna S. Lincoln (Eds.), Handbook of Qualitative Research, 
London: SAGE 1994.

4 Abraham Kaplan, The Conduct of Inquiry: Methodology for Behavioral Science, 
New York: Chandler 1964.

5 Carl Gustav Hempel, Ibid.
6 See Hasok Chang, Inventing Temperature: Measurement and Scientific Progress, 

Oxford: Oxford University Press 2004.
7 Carl Gustav Hempel, Ibid.
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concerns the scope of the quantitative method: are all important aspects of reality 
numerically measurable?

21.2 MatheMatICs

Quantities provide a bridge between empirical science and mathematics. There-
fore, it is important to start with the ontological question about the existence of 
mathematical entities.

For this purpose, it is useful to refer to Popper’s ontological distinction: World 
1 consists of physical or material things and processes, World 2 subjective mental 
states and events, and World 3 abstract entities.
 Platonists place mathematical objects in World 3, understood as a pre-existing 
and ultimate domain of ideal entities. Intuitionist place them as mental construc-
tions in World 2, formalists as material signs in World 1.8 These three positions 
are essentially the same as the views in the classical debate on universals: realism, 
conceptualism, and nominalism.
 Various kinds of naturalists, physicalists, and empiricists locate mathematical 
structures in World 1. Here they agree with the mathematical realism of Galileo 
who argued that the Book of Nature is “written in the mathematical language, and 
the symbols are triangles, circles, and other geometrical figures”. Locke also ar-
gued that “primary qualities” (extension, figure, motion or rest, solidity, number) 
are objective, while “secondary qualities” (color, taste, smell) are subjective.
 The logical empiricists made a sharp distinction between pure mathematics, 
which is a priori and analytic, and interpreted mathematics, which is synthetic and 
a posteriori. For example, physical geometry is a branch of natural science.9

 Popper’s approach in Objective Knowledge10 suggests that one can be at the 
same time a realist and constructivist in the philosophy of mathematics.11 Accord-
ing to Popper, World 3 is human-made: we create abstract objects, among them 
mathematical structures, cultural objects, artefacts, works of art, language, and 
social institutions. Such public constructions are real, sustained by their documen-

8 See Paul Benacerraf and Hilary Putnam (Eds.), Philosophy of Mathematics: Selected 
Readings, Oxford: Blackwell 1964.

9 Rudolf Carnap, Ibid.
10 Karl Raimund Popper, Objective Knowledge, Oxford: Oxford University Press 1972.
11 See Ilkka Niiniluoto, “Reality, Truth, and Confirmation in Mathematics – Reflections 

on the Quasi-Empiricist Programme”, in: Javier Echeverria, Andoni Ibarra, and Tho-
mas Mormann (Eds.), The Space of Mathematics: Philosophical, Epistemological, and 
Historical Explorations, Berlin: Walter de Gruyter 1992, pp. 60–78; Ilkka Niiniluoto, 
“World 3: A Critical Defence”, in: Ian Jarvie, Karl Milford, and David Miller (Eds.), 
Karl Popper: A Centenary Assessment, vol. II. Metaphysics and Epistemology, Alder-
shot: Ashgate 2006, pp. 59–69; and Donald Gillies, “Informational Realism and World 
3”, in: Knowledge Technology and Policy, 23, 1–2, 2010, pp. 7–24.
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tations in World 1 and manifestations in World 2. Yet they transcend their makers 
by not being entirely transparent to us.
 Mathematical structures can be applied to Worlds 1, 2, and 3, even though infi-
nite structures like N (natural numbers) and R (real numbers) cannot be exhausted 
by their physical or mental interpretations. Such applications can be explained 
by modern theories of measurement which show how “metrization” leads from 
comparative to quantitative concepts. The representation theorems do not prove 
the existence of mathematical entities, as the structures N and R are presupposed, 
but they justify the assignment of numerals to physical objects and mental states.

21.3 MeasureMeNt

Campbell distinguished in 1920 “quantities” or “extensive properties” which 
are capable of addition and “qualities” or “intensive properties” which are not. 
He assumed that only quantities can be fundamentally measured.12 However, the 
model-theoretical account of measurement allows for the metrization of intensive 
properties.13 This study, sometimes called “mathematical psychology”, has been 
important for the development of mathematical methodology in economics.
 An empirical system (E, ) is a set E of objects with a binary relation .  
A real-valued measure function m: E → R agrees with  if for all a, b in E,

a  b iff m (a) ³ m (b).

Scales of measurement are then def ined by the uniqueness condition on 
measure m:

 a one-to-one function:  nominal scale
 a strictly increasing function: ordinal scale
 an affine transformation: interval scale
 a similarity transformation: ratio scale
 the identity function:  absolute scale.

The scale determines which mathematical operations (e.g., addition and multipli-
cation) may be performed with numbers, which is an important presupposition 

12 See Norman Robert Campbell, Physics: The Elements, Cambridge: Cambridge Uni-
versity Press 1920. Reprinted as Foundations of Science: The Philosophy of Theory 
and Experiment, New York: Dover 1957.

13 Dana Scott and Patrick Suppes, “Foundational Aspects of Theories of Measurement”, 
in: Journal of Symbolic Logic, 23, 1958, pp. 113–128; David Krantz, Duncan Luce, 
Patrick Suppes, and Amos Tversky, Foundations of Measurement, vol I. New York: 
Academic Press 1971.

300



21 Quantities as Realistic Idealizations 

in the use of quantities in the formation of mathematical models and systematic 
theories.
 Let us consider the example of extensive measurement. Let E be a set of physical 
objects,  a binary relation on E, and o a binary operation on E (concatenation). 
Define a ~ b iff a  b and b  a. Let 1a = a, (n+1)a = (na o a). Then <E, , o> is 
an extensive system if

 (i) is reflexive, transitive and connected in E
 (ii) a o (b o c) ~ (a o b) o c
 (iii) a b iff (a o c)  (b o c) iff (c o a)  (c o b)
 (iv) (a o b) a but not a  (a o b)
 (v) if a b, then for all c, d in E there exists a positive n in N such that (na o c) 

(nb o d)

The following representation theorem can be proved for extensive measure-
ment: < E, , o > is an extensive system iff there exists a positive function m: 
E → R such that for all a, b in E

 a b iff m (a) ³ m (b)
 m (a o b) = m (a) + m (b).

Measure function m is unique up to a similarity transformation m’ = αm for α > 0 
(ratio scale).

For example, define a b by the condition: a is at least as low as b in an equal 
arm balance, and let a o b be the combined object a and b. Then conditions (i)–(iv) 
are factually true, and the measure function m(a) is the mass of object a. When the 
scale has been fixed, we can make factually true statements of the form “2 kg + 1 kg 
= 3 kg”. Similar constructions can be given for the quantities of length, time dura-
tion, resistance, and velocity.
 The possibility of applying arithmetic to reality can also be explained by the 
theory of measurement. Frege argued quite convincingly that Mill, who defended 
empiricism in mathematics,14 confused the applications of arithmetical proposi-
tions and the pure mathematical proposition itself.15 For example, in arithmetic the 
equation “2+1 = 3” can be proved. In the pebble arithmetic it is the case that two 
pebbles and one pebble equal three pebbles. But this holds only if the operation 
of heaping up pebbles factually satisfies the conditions of measurement with an 
absolute scale. A similar rule of addition does not hold for water drops.
 Let A B mean that agent X regards event A at least as probable as event B. 
Assume that

14 See John Stuart Mill, A System of Logic, 8th ed., London: Longmans, Green, and Co. 
1906.

15 See Gottlob Frege, The Foundations of Arithmetic, Oxford: Blackwell 1959, p. 73.
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 is transitive and connected,
 A Ø (impossible event),
 not Ø E (sure event),
 if A ∩ C = B ∩ C = Ø, then A B iff AUC BUC.

Two events A and B are equal if A B and B A. De Finetti’s theorem for 
qualitative probability states that if E can be divided into n equal parts for each n in 
N, then there is a unique probability measure P such that A B iff P (A) ³ P (B).16 
Necessary and sufficient conditions for the representation of qualitative probabil-
ity have been found by Scott in the 1960s.
 Let A B mean that agent X regards option A at least as good as option B. A 
function u which agrees with this preference relation is ordinal utility: A B iff 
u (A) ³ u (B).

Cardinal utilities have been axiomatized by Ramsey in 1926 and von Neu-
mann and Morgenstern in 1944: if u is a utility function, so is u′ = au + b (interval 
scale). Savage17 gave conditions for the existence of a subjective probability meas-
ure P and a utility function u which satisfy the Principle of Subjective Expected 
Utility for all acts A and B:

(SEU) A B iff ExpP u (A) ³ ExpP u (B).

Causal decision theory gives up Savage’s assumption that the probabilities of 
states of nature are independent of the performed act, and this alternative to SEU 
can again be justified by its own representation theorem.18

 The theory of measurement shows that the presupposition of applying the 
quantitative method is not Galilean mathematical realism. One form of this real-
ism in contemporary ontology is the doctrine of quantitative tropes: for example, 
the relation ‘Sam is sadder than Hans’ is internal or grounded in the sadness tropes 
of Sam and Hans.19 Instead, in the representation theorems, comparative relations 
are treated as primary, and the properties of these relations justify the assignment 
of degrees or numerical values to compared objects. This approach is thus compat-
ible with the view that reality as such is qualitative, and the quantitative approach 
is a way of describing and systematizing a research area. The use of this method is 
tantamount to a choice of language.20 The choice between quantitative and qualita-
tive approaches is factual and methodological rather than metaphysical: quantities 

16 See Leonard Jimmie Savage, The Foundations of Statistics, New York: John Wiley 
1954.

17 Leonard Jimmie Savage, Ibid.
18 See Brad Armendt, “A Foundation for Causal Decision Theory”, in: Topoi, 5, 1986, pp. 

3–19.
19 See Kevin Mulligan, “Internal Relations”, in: Jaegwon Kim and Ernest Sosa (Eds.),  

A Companion to Metaphysics, Oxford: Blackwell 1995, pp. 245–246.
20 See Rudolf Carnap, Ibid., p. 59.
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are justified to the extent that the assumptions of the relevant representation 
theorems are true.21

 One should add that in the social world there is an important example of a 
real quantity which is exemplified in coins and banknotes. However, based on 
social conventions and institutions, money is an abstract entity whose existence 
and value can be explained in the same way as mathematical objects in World 3.22

21.4 realIsM aNd IdealIzatIoNs

It is well known that many assumptions of mathematical models in the social sci-
ences are unrealistic or false about real-life agents. For example, economic theories 
and models typically assume that human beings and business firms are perfectly 
rational agents maximizing profit on the basis of complete information.23

 Axioms for qualitative probability and utility are often called “rationality” 
conditions for a person or for her beliefs and preferences. Suppes distinguishes 
rationality axioms and structural axioms.24 Typically the former are universal (e.g., 
transitivity: if A B and B C, then A C), the latter existential (e.g., existence 
of equal n-fold partitions, solvability). Structural assumptions are nonnecessary 
axioms which limit the domain of the applicability of the representation theo-
rems.25

 There are many experimental studies which try to show that decision theory 
is not a descriptively correct account of human behavior.26 The criticism does not 
concern only the structural assumptions needed to prove representations theorems 
for probability and utility. For example, Savage’s model neglects the phenomenon 
of risk aversion and assumes, as necessary conditions, axioms which are often 
violated by the behavior or intuitions of real-life agents (e.g., the transitivity of 
preferences, the sure-thing principle).
 One reaction to these observations is instrumentalism: mathematical models 
are understood as devices for the systematization of observational statements, 
adopted for the sake of convenience and simplicity. For example, Machlup treats 
neoclassical firms as fictions, and Friedman regards economic theories as merely 

21 Ilkka Niiniluoto, “Reality, Truth, and Confirmation in Mathematics — Reflections on 
the Quasi-Empiricist Programme”, op. cit.

22 See Ilkka Niiniluoto, “World 3: A Critical Defence”, op. cit; Gillies, Ibid.
23 See Bert Hamminga and Neil De Marchi, (Eds.), Idealization in Economics, Amster-

dam: Rodopi 1994; Uskali Mäki (Ed.), Fact and Fiction in Economics, Cambridge: 
Cambridge University Press 2002.

24 See Patrick Suppes, Studies in the Methodology and Foundations of Science: Selected 
Papers from 1951 to 1969, Dordrecht: D. Reidel 1969, p. 95.

25 David Krantz et al, Ibid., p. 95.
26 E.g., Amos Tversky, “A Critique of Expected Utility Theory: Descriptive and Normative 

Considerations”, in: Erkenntnis, 9, 1975, pp. 163–174.
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predictive models. The SEU model is often expressed in an instrumentalist spirit: 
if the assumptions of preferences were true, then human agents would behave as if 
they were maximizing cardinal utilities relative to subjective probabilities.
 Another alternative is the normative interpretation: human beings should sat-
isfy the pure axioms of rationality, and mathematical models like SEU express a 
normative constraint for real-life agents.27 On the normative reading, mathematical 
models are not falsifiable statements about human behavior. Many human agents 
are willing to modify their behavior if violation of transitivity is explicitly shown 
to them.28 An interesting comment on this was given by Savage:

I am not familiar with any serious analysis of the notion that a theory is only slightly 
inexact or is almost true, though philosophers of science have perhaps presented some. 
Even if valid analyses of the notion have been made, or are made in the future, for the 
ordinary theories science, it is not to be expected that those analyses will be immediately 
applicable to the theory of personal probability, normatively interpreted; because that 
theory is a code of consistency for the person applying it, not a system of predictions 
about the world around him.29

Another relevant remark is by Mill who in his A System of Logic in 1843 
pointed out that the necessity of conclusions in geometry means that they deduc-
tively or “correctly follow from the suppositions”, but these suppositions “are so 
far from being necessary that they are not even true; they purposively depart, more 
or less, widely from the truth”.30 Mill thus realized that the application of math-
ematics to reality involves simplifying and idealizing assumptions. This is a point 
which has been systematically developed by critical scientific realists.31

 According to critical scientific realism, scientific theories are attempts to 
give true or truthlike descriptions of reality. A theory can represented as a set of 
possible worlds (a disjunction of constituents), and its truthlikeness depends on 
the distances of its elements from the actual world (the true constituent). Such 
distances can be defined between constituents as linguistic entities. Alternatively, 
a theory is true about a model and the model is similar to the real system. More 
precisely, a theory is approximately true if some of its model is close to the real 
system, and truthlike if all of its models are close to the real system. For true theo-
ries truthlikeness covaries with logical strength, but also some false theories may 
be so close to the truth that they are truthlike. This approach can be developed 

27 See Peter Gärdenfors and Nils-Eric Sahlin, (Eds.), Decision, Probability, and Utility: 
Selected Readings, Cambridge: Cambridge University Press 1988.

28 David Krantz et al, Ibid., p. 418.
29 Leonard Jimmie Savage, Ibid., p. 59.
30 See John Stuart Mill, Ibid.
31 See Ilkka Niiniluoto, Critical Scientific Realism, Oxford: Oxford University Press 

1999.
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to all kinds of singular and general statements with classificatory, relational, and 
quantitative terms.32

 For a critical realist, science makes progress so far as its successive theories 
succeed in gaining increasingly truthlike information about real systems. In this 
dynamical picture of progress, rival successive theories can refer to same partly 
unknown entities: by the principle of Charitable Reference, theoretical terms in a 
theory H refer to those real entities which make the theory H most truthlike.
 Idealization is an important feature of the natural sciences as well. Already 
Galileo knew that theories in physics typically contain idealizations and approxi-
mations: some factors are ignored (e.g., resistance of air), some exaggerated 
(e.g., the velocity of light c is infinite or 1/c is zero). Idealized theories can 
be formulated as counterfactual conditionals (if idealizing assumptions were true, 
then …), and in this form they may be true or truthlike. The method of idealization 
and concretization,33 i.e. the introduction and removal of idealizational assump-
tions, is a progressive way of approaching to the truth.34

 Examples of idealizations can be found in the representation theorems of 
measurement theories. The axioms of extensive measurement of mass include 
the idealization that all massive bodies of noninteractive substances can be com-
pared in a frictionless equal arm balance.35 The transitivity of preferences is a 
“quasi-idealization” in Nowak’s36 sense: it may hold for some agents in some situ-
ations but may also fail in other circumstances. Transitivity excludes temporal 
considerations or presupposes that the person has a reliable memory and does not 
change her mind. It also presupposes that the preference scale is one-dimensional: 
violations of transitivity may occur in multi-dimensional choice situations which  
resemble the famous voting paradoxes.37 While the representation theorems are 
valid mathematical statements, their premises are truthlike idealizations which hold 
in worlds similar to the actual world. This may be the case for the SEU model and 
its concretizations in causal decision theory. For a critical realist, this means that 
cardinal utility functions as mathematical constructions may help to give truthlike 
descriptions of rational human decision-making, even though such a quantification 
of preference does not actually exist in the human mind.38

32 Ilkka Niiniluoto, Truthlikess, Dordrecht: D. Reidel 1987.
33 Leszek Nowak, The Structure of Idealization, Dordrecht: D. Reidel 1980.
34 Ilkka Niiniluoto, “Idealization, Counterfactuals, and Truthlikeness”, in: Jerzy Brzezin-

ski et al. (Eds.), The Courage of Doing Philosophy: Essays Presented to Leszek Nowak, 
Amsterdam: Rodopi 2007, pp. 103–122.

35 David Krantz et al., Ibid., p. 89.
36 Leszek Nowak, Ibid.
37 Amos Tversky, Ibid.
38 Ilkka Niiniluoto, “Truthlikeness and Economic Theories”, in: Uskali Mäki (Ed.), 

Fact and Fiction in Economics, Cambridge: Cambridge University Press 2002, pp. 
214–228.
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 What could be the actual charitable reference of the utility function? One of 
the many candidates is money as a real quantity in the social world – even though 
we know that the utility of money for a person may differ from its actual monetary 
worth. Other alternatives might include personal degrees of satisfaction and de-
grees of technical usefulness.39

21.5 CoNClusIoN

The use of quantities allows the scientists to construe fruitful theories and math-
ematical models and to apply the powerful method of idealization and concretiza-
tion. But the introduction of quantities can also be regarded as an idealization: if 
the axioms of representation theorems are truthlike or approximately true, then 
quantities exist in possible worlds that are near to the actual world. In this sense, 
quantities are realistic idealizations.

Department of Philosophy, History, Culture and Art Studies
University of Helsinki
Unioninkatu 40 A
00014, Helsinki
Fiinland
ilkka.niiniluoto@helsinki.fi

39 Bengt Hansson, “Risk Aversion as a Problem of Conjoint Measurement”, in: Peter 
Gärdenfors and Nils-Eric Sahlin, (Eds.), Decision, Probability, and Utility: Selected 
Readings, Cambridge: Cambridge University Press 1988, pp. 136–158.
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Chapter 22

MarCel BouMans

MatheMatiCs as Quasi-matter to Build

Models as instruMents

22.1 introduCtion

I have argued elsewhere that models should be distinguished from theories.1 They 
are not theories about the world but instruments through which we can see the 
world and so gain some understanding of it. As mathematical representations, 
models should also be distinguished from pure formal objects. They should be 
seen as devices that help us to see the phenomena more clearly. models are instru-
ments of investigation, epistemological equivalent to the microscope and the tel-
escope. In a textbook on optical instruments, we find the following description:

The primary function of a lens or lens system will usually be that of making a pictorial 
representation or record of some object or other, and this record will usually be much more 
suitable for the purpose for which it is required than the original object.2

If one replaces “lens or lens system” by “model”, one has an adequate description 
of the way that models are understood and treated in this paper.

One usually associates the word instrument with a physical device, such as a 
microscope or telescope. models, however, are not material objects, they are math-
ematical objects. The absence of materiality makes that the physical methods used 
to test material instruments, such as control and insulation, cannot be applied to 
models.3 This means that we cannot easily borrow from the philosophy of technol-
ogy, which is geared to physical objects. models, being “quasi-material” objects 
belonging to a world in between the immaterial world of theoretical ideas and the 
material world of physical objects, require an alternative epistemology.

1 marcel Boumans, How Economists Model the World into Numbers, London and New 
York: Routledge 2005.

2 Ronald John Bracey, The Technique of Optical Instrument Design, London: The Eng-
lish University Press 1960, p. 15.

3 This requirement of materiality for controllability (in the usual meaning of this term) 
has also been discussed in marcel Boumans, and mary S. morgan, “Ceteris Paribus 
Conditions: materiality and the Applications of Economic Theories”, in: Journal of 
Economic Methodology, 8, 1, 2001, pp. 11–26. This essay also treats the kinds of con-
trollability that are possible in the case of quasi-material or non-material experiments.

307D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_22,  
© Springer Science+Business Media B.V. 2012
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In comparing the epistemological difference between models and experiments, 
morgan4 argues that although both function as “epistemic mediators”5 and can be 
understood to work in an experimental mode, experiments offer greater epistemic 
power than models as a means to investigate the world. This outcome rests on the 
distinction that whereas experiments are versions of the real world captured within 
an artificial laboratory environment, models are artificial worlds built to represent 
the real world. The model world is artificial because made out of mathematics. 
This difference in ontology has epistemic consequences: experiments have greater 
potential to make strong inferences back to the world.6 This latter power is mani-
fest in the possibility that whereas working with models may lead to “surprise”, 
experimental results may be unexplainable within existing theory and so “con-
found” the experimenter.

According to morgan, the reason that working with mathematical models only 
surprises is that the model-builder knows the resources that went into the model. 
Using the model may reveal some surprising, and perhaps unexpected, aspects of 
the model behaviour. But in principle, the constraints on the model’s behaviour are 
set, however opaque they may be, by the model builder so that however unexpected 
the model outcomes, they can be traced back to, and re-explained in terms of, the 
model. “That possibility may not be open to us with material experiments where 
ignorance may prevent us from explaining why a particular set of results occur”,7 
because we might have “the wrong account of theory about what will happen or 
our knowledge of the world might be seriously incomplete”.8

Another reason for a difference in epistemic power is the “potential for inde-
pendent action” by nature in laboratory experiments from which new phenomena 
emerge which confounds the experimenter. This “potential for independent action” 
is, according to morgan, an important consideration in the design of experiments: 
experiments need to be set up with a certain degree of freedom so that the behav-
iour in the experiment is not totally determined by the theory involved, nor by the 

4 mary S. morgan, “Experiments versus models: New Phenomena, Inference and Sur-
prise”, in: Journal of Economic Methodology, 12, 2, 2005, pp. 317–329. See also 
mary S. morgan, “Experiments without material Intervention: model Experiments, 
Virtual Experiments, and Virtually Experiments”, in: Hans Radder (Ed.), The Philos-
ophy of Scientific Experimentation, Pittsburgh: University of Pittsburgh Press 2003, 
pp. 216–235.

5 This term is coined by Lorenzo magnani, “Epistemic mediators and model-Based 
Discovery in Science”, in: Lorenzo magnani and Nancy J. Nersessian (Eds.), Model-
Based Reasoning. Science, Technology, Values, New York: Kluwer Academic/Plenum 
Publishers 2002, pp. 305–329. This article nicely captures the functioning of both 
models and experiments in empirical research.

6 See for this latter claim: Francesco Guala, “models, Simulations, and Experiments”, in: 
Lorenzo magnani and Nancy J. Nersessian (Eds.), Model-Based Reasoning. Science, 
Technology, Values, pp. 59–74.

7 mary morgan, “Experiments without material Intervention”, loc. cit., p. 220.
8 Ibid., p. 220.
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rules of the experiment. If the experimental behaviour is totally predetermined, 
there is no “potential for unexpected patterns to emerge”.9 There must be potential 
to confound the experimenter with noteworthy results which are both surprising 
and unexplainable within the given realm of theory. This potential for laboratory 
experiments to surprise and confound contrasts, according to morgan, with the 
potential for mathematical modelling only to surprise. The indeterminateness of 
nature – even domesticated in a laboratory – allows not only for surprises but also 
will confound the experimenter.

The implicit assumptions morgan uses to distinguish between material experi-
ments and non-material models are that in the artificial world of the model there is 
no potential for unexpected patters, no potential for independent action, no poten-
tial for discovery of new phenomena. As soon as the model-builder knows the re-
sources that went into the model, knows the constraints, than only surprise is what 
can be achieved, surprise that can be traced back, that can be explained. moreover, 
the modeller is much less ignorant about (the theories of) the mathematical tools, 
concept and structures being used, it is only that “we do not already know about 
how those structures behave when the parts of the model are put together or when 
we vary certain things in the model”.10 Discoveries only appear because we can-
not see all the mathematically derivable consequences of a self-constructed math-
ematical world. The world of the model is much more determined compared to the 
world of the experiment.

This paper will show that mathematical models are quasi-empirical objects, 
objects that are made of quasi-material mathematics, and so have potential to con-
found the modeller because of the indeterminateness of the mathematical matter. 
mathematical matter is indeterminate in two different ways: (1) indeterminate with 
respect to ignorance: the possibility of having false or incomplete theories of the 
mathematical structures; (2) indeterminate with respect to potential independence: 
despite the structure may be determined, there is still a certain degree of freedom, 
of indeterminacy, for the patterns of behaviour of the mathematical objects.

22.2 lost Materiality

In mathematics and physics, the term “model” originally specifically referred to 
material objects: “a representation in three dimensions of some projected or exist-
ing structure, or of some material object artificial or natural, showing the propor-
tions and arrangement of its component parts”, or “an object or figure in clay, 
wax, or the like, and intended to be reproduced in a more durable material”.11 

9 mary morgan, “Experiments versus models”, loc. cit., p. 324.
10 mary morgan, “Experiments without material Intervention”, loc. cit., p. 220.
11 Oxford English Dictionary, Oxford: Clarendon Press 1933.
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Boltzmann’s entry for “model” in the Encyclopaedia Britannica12 also indicates 
its material roots: “a tangible representation, whether the size be equal, or greater, 
or smaller, of an object which is either in actual existence, or has to be constructed 
in fact or thought”.13 To Boltzmann, models could only be material.

At the beginning of the twentieth century, the term “mathematical model” 
referred to a physical three-dimensional representation of a mathematical entity. 
models lost their materiality halfway the 1930s. Usually the term “scheme” was 
used to denote a non-material, mathematical representation. This shift in termi-
nology from scheme to (mathematical) model gave name to a new practice of 
“explicit mathematizing as technique” which matched with an empiric-oriented 
reaction to the logical view on mathematics.14

This non-material concept of a model as a Darstellung15 came from Hertz.16 
While a “model” was still considered by Hertz as something material, it stood in 
the same relation to the system of inquiry as the images (Bilder) we made of this 
system. Both image and model should satisfy the “first fundamental requirement”, 
also called the requirement of “correctness”:

For if we regard the condition of the model as the representation of the condition of the 
system, then the consequents of this representation, which according to the laws of this 
representation must appear, are also the representation of the consequents which must 
proceed from the original object according to the laws of this original object.17

Because various images of the same object are possible, Hertz formulated 
two additional requirements an image should fulfil. First, the requirement of “logical  
permissibility”: “We should at once denote as inadmissible all images which  
implicitly contradict the laws of our thought”.18 But two permissible and correct 
images of the same system may yet differ in respect of “appropriateness”.

Of two images of the same object that is the more appropriate which pictures more of the 
essential relations of the object, – the one which we may call the more distinct. Of two im-
ages of equal distinctness the more appropriate is the one which contains, in addition to 
the essential characteristics, the smaller number of superfluous or empty relations, – the 

12 Ludwig Boltzmann, “model”, in: Brian mcGuinness (Ed.), Theoretical Physics and 
Philosophical Problems, Dordrecht: Reidel 1974, pp. 213–220.

13 Ibid., p. 213.
14 Cf. Gerard Alberts, Jaren van Berekening. Toepassingsgerichte Initiatieven in de Ned-

erlandse Wiskundebeoefening 1945–1960, Amsterdam: Amsterdam University Press 
1998, pp. 134–135.

15 In German philosophy, there is a distinction between “Darstellung” and “Vorstellung”. 
While a “Vorstellung” is a passive mental image of a sense datum. A “Darstellung” is 
a consciously constructed scheme for knowing.

16 Heinrich Hertz, The Principles of Mechanics Presented in a New Form, New York: 
Dover 1956.

17 Ibid., p. 177.
18 Ibid., p. 2.
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simpler of the two. Empty relations cannot be altogether avoided: they enter into the images 
because they are simply images, – images produced by our mind and necessarily affected 
by the characteristics of its mode of portrayal.19

In short, the three requirements a representation of a phenomenon should fulfil are 
“conformity” between the relations of the representation and those of the phenom-
enon, logical correctness, and containing the essential characteristics as simple 
as possible. Whether an image satisfies the first two requirements can be decided 
without ambiguity, but

we cannot decide without ambiguity whether an image is appropriate or not; as to this dif-
ferences of opinion may arise. One image may be more suitable for one purpose, another 
for another; only by gradually testing many images can we finally succeed in obtaining the 
most appropriate.20

22.3 rigor

The fulfilment of the second requirement of logical permissibility will appear 
to be dividing line whether a model is considered to be a formal object or a 
quasi-material instrument. To see this, I will use morgan’s distinction between 
two meanings of “formalization”.21 The first meaning is giving form to, shaping 
or providing an outline of something. This will be discussed below. The second 
meaning, morgan attach to “formalization”, is based on the contrast of “formal” 
with “informal”, meaning lacking in exactness or in rules whereas “formal” implies 
something rule bound, following prescribed forms.

The second meaning of formalization is most often taken that the form has 
to be permissible, in the sense of Hertz’s model requirements above; and, permis-
sibility is often taken as the requirement that the formalization should be done 
rigorously, that is, the rules that one has to follow are considered to be the rules 
of logic. For example, it is not permissible to have two inconsistent (formal) state-
ments. moreover, a model of contradictory features is impossible: “If contradic-
tory attributes be assigned to a concept, I say, that mathematically the concept does 
not exist”.22

The semantic view of theories, including its model theory, was highly influ-
enced by Hilbert’s axiomatization program. According to this view, a model for a 
theory is considered as an interpretation on which all the axioms of that theory are 
true. If the axioms are inconsistent, a model does not exist.

19 Ibid., p. 2.
20 Ibid., p. 3.
21 mary S. morgan, “modelling as a method of Enquiry”, in: The World in the Model, 

Cambridge University Press, forthcoming.
22 David Hilbert, “mathematical Problems”, in: Bulletin of the American Mathematical 

Society, 8, 1902, p. 448.
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This identification of rigor with axiomatics has, however, not always been 
made. Israel shows that the interpretation of rigor had changed under the influence 
of Hilbert’s axiomatization program.23 As a result of that program,

a rigorous argument was reconceptualized as a logically consistent argument instead of as 
an argument that connected the problematic phenomenon to a physical phenomenon by use 
of empirical data. Propositions were henceforth ‘true’ within the system considered because 
they were consistent with the assumptions instead of being ‘true’ because they could be 
grounded in ‘real phenomena’.24

Israel discussed the distinction between rigor and axiomatics in relation to the 
“crisis of present-day mathematics”, namely that the axiomatic trend has emptied 
mathematical research of any external determination and content to such as extent, 
that the relation to applications has been lost. Although the role of mathematics in 
applied sciences is growing rapidly, mathematics is still deeply separated from the 
applied sciences. “What appears to be missing, is a codification of the rules which 
should define and guide the use of mathematics as an instrument for the descrip-
tion, interpretation and control of phenomena”.25

models as instruments ask for a different set of rules than those of logic, so 
rigor in instrument making will be different from rigor in an axiomatic system. If 
in an axiomatic system a mathematical object cannot exist when it should fulfil 
contradictory requirements, it is still possible that it practically can be built and 
can be used as an instrument for calculations, measurement or other purposes. To 
understand modelling practices in which models are considered as instruments of 
investigation, a more general idea of mathematical rigorousness is needed, namely 
one that demands that a mathematical object only exist when it is constructed ac-
cording specific rules, not necessarily consistency. Compare this again with the 
approach in instrument making, like the design of a lens system, see above:

Sometimes control with a single lens is impossible since some incompatible features are 
required and a compromise becomes necessary calling for further judgement on the part of 
the designer as to which error should be reduced and to what degree.26

In his design of index numbers (mathematical models that function as measuring 
instruments to measure price levels), Irving Fisher27 makes a similar comparison:

23 Giorgio Israel, “ ‘Rigor’ and ‘Axiomatics’ in modern mathematics”, in: Fundamenta 
Scientiae, 2, 2, 1981, pp. 205–219.

24 Ibid., p. 237.
25 Ibid., p. 219.
26 Ronald John Bracey, ibid., p. 18.
27 American economist (1867–1947). Fisher may be considered as one of the first model 

builder in economics, see mary S. morgan, “Learning from models”, in: mary S. 
morgan and margaret morrison (Eds.), Models as Mediators, Cambridge: Cambridge 
University Press 1999, pp. 350–351.
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[A]lthough in the science of optics we learn that a perfect lens is theoretically impossible, 
nevertheless, for all practical purposes lenses be constructed so nearly perfect that it is well 
worth while to study and construct them. So, also, while it seems theoretically impossible 
to devise an index number, P, which shall satisfy all of the tests we should like to impose, 
it is, nevertheless, possible to construct index numbers which satisfy these tests so well for 
practical purposes that we may profitably devote serious attention to the study and construc-
tion of index numbers.28

The practice of model building where models are supposed to function as in-
struments it seems that formalization should be done in an appropriate way, in the 
sense of Hertz’s model requirements: whether one formalization is more suitable 
for one, e.g. measuring, purpose than another formalization should be tested on 
the comparison of both models in how much they are able to attain that purpose.

22.4 the Making of an instruMent

The reason that most model are more “appropriate” for its purpose than “logical 
permissible” is that they are built by fitting together bits from disparate sources. 
model building is comparable to baking a cake without a recipe.29 It is a trial and 
error process. You create a new pastry by estimating which ingredients to add and 
in what order, on the basis of your knowledge and experience in baking a similar, 
but not identical, cake. A comparable view on model building is expressed by 
Clive Granger30:

I think of a modeler as starting with some disparate pieces – some wood, a few bricks, some 
nails, and so forth – and attempting to build an object for which he (or she) has only a very 
inadequate plan, or theory. The modeler can look at related constructs and can use institu-
tional information and will eventually arrive at an approximation of the object that they are 
trying to represent, perhaps after several attempts.31

Others compared model building with “basteln” – tinkering – to denote the “art” 
of model building.32 The reason that I prefer the analogy of baking is that one of its 

28 Irving Fisher, The Purchasing Power of Money; Its Determination and Relation to 
 Credit, Interest and Crises, New York: Kelley 1963, p. 200.

29 marcel Boumans, “Built-in Justification”, in: mary S. morgan and margaret morrison 
(Eds.), Models as Mediators, pp. 66–96.

30 American economist (1934–2009), 2003 Nobel Prize in economics.
31 Clive W. J. Granger, Empirical Modeling in Economics: Specification and Evaluation, 

Cambridge: Cambridge University Press 1999, pp. 6–7.
32 E.g. Frank Stehling, “Wolfgang Eichhorn and the Art of model Building”, in: Walter 

Erwin Diewert, Klaus Spremann and Frank Stehling (Eds.), Mathematical Modelling 
in Economics; Essays in Honor of Wolfgang Eichhorn, Berlin: Springer-Verlag 1993, 
pp. vii–xi.
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characteristics is that in the end product you can no longer distinguish the separate 
ingredients.

In a model, the ingredients are theoretical ideas, norms and values, mathemati-
cal concepts and techniques, metaphors and analogies, stylized facts and empirical 
data. Integration takes place by reshaping the ingredients into a mathematical form 
and merging them into one framework.

mathematics is the stuff non-material models are made of. The selection of 
mathematical forms must be such that the disparate ingredients can be harmonized 
and homogenized into one effective model. modelling is a process of committing 
oneself to how aspects of a system should mathematically be represented and at 
the same time being constrained by the selected mathematical forms. moreover, 
not every element in the mathematical model necessarily has an empirical mean-
ing. To make the model workable, sometimes, elements of convenience or fiction 
have to be introduced.33

An important element in the modelling process is mathematical moulding. 
mathematical moulding is shaping the ingredients in such a mathematical form 
that integration is possible. As a result, the choice if the mathematical formalism 
ingredient is important. It determines the possibilities of the mathematical model-
ling. However, which formalism should be chosen is not obvious. It is often 
assumed that mathematics is an efficient and transparent language. One of the 
most well-known supporters of this view is Paul Samuelson.34 He considers math-
ematics to be a transparent mode of communication and that it is this transparency 
that will stop people making the wrong deductive inferences. As we will see below, 
mathematics is not always transparent (neither, some would say, is language) and it 
does not necessarily function as a language.

22.5 MatheMatiCs as Quasi-Matter

Physical instruments are made of matter, like metal, wood, or plastic. models are 
made of mathematical matter. To explore what the epistemological implications 
are of this distinction, Fleischhacker’s discussion of substance and quasi-substance 
will be used.35 According to Fleischhacker, mathematical objects can be character-
ised as “quasi-substantial”. This means that it is thought of as substantial, whereas 

33 A similar view, the simulacrum account of models, is developed by Nancy Cartwright, 
How the Laws of Physics Lie, Oxford: Clarendon Press 1983.

34 American economist (1915–2009), 1970 Nobel Prize in economics. Paul Anthony 
Samuelson, “Economic Theory and mathematics – An Appraisal”, in: The American 
Economic Review, Papers and Proceedings, 42, 2, 1952, pp. 56–66.

35 Louk Fleischhacker, “mathematical Abstraction, Idealisation and Intelligibility in Sci-
ence”, in: Craig Dilworth (Ed.), Idealization IV: Intelligibility in Science, Amsterdam, 
Atlanta: Rodopi 1992, pp. 243–263.
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in content it is nothing but structure. In other words, a mathematical object is 
analyzable into “matter” and “form”, but its matter-principle is not physical but 
abstract in the sense that it is understood as the pure principle of structurability. 
While structurability is a real property of the physical world, in its abstract form 
it is the intelligible material principle of the world of mathematical objectivity. 
Structurability is an intelligible aspect of physical indeterminateness, which is the 
physical matter-principle.

This indeterminateness cannot be completely intelligible, because it is a purely passive po-
tency and therefore does not offer any determinate hold to the intellect. It is however known 
to us by the experience of the senses, just like the physical qualities, the concepts of which 
remain essentially dependent on experience.36

Fleischhacker uses the term “quasi-substance” to indicate that mathematical ob-
jects are analyzable into matter and form. To emphasize their matter-aspect, this 
paper uses the term quasi-matter.

The inderminateness of quasi-matter seems to be the underlying assumption of 
Lakatos view on the history of mathematics.37 Lakatos considered mathematical objects 
as “quasi-empirical objects”, and showed that mathematics grows as an “informal, 
quasi-empirical” discipline. 38 His logic of mathematical discovery was a critique and 
even an “ultimate rejection” of “formalism”, that is, “the school of mathematical phi-
losophy which tends to identify mathematics with its formal axiomatic abstraction”.39

But what can one discover in a formalised theory? Two sorts of things. First, one can dis-
cover the solution to problems which a suitable programmed Turing machine could solve 
in a finite time […]. No mathematician is interested in following out the dreary mechanical 
‘method’ prescribed by such decision procedures. Secondly, one can discover the solutions 
to problems […], where one can be guided only by the ‘method’ of ‘unregimented insight 
and good fortune’.40

According to Lakatos, the methodology of the “growth” of mathematical 
knowledge is more similar to the methodology of empirical research than to the 
methodology of a formal deductive science.

36 Ibid., p. 248.
37 Imre Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery, Cam-

bridge: Cambridge University Press 1976.
38 As “quasi-matter”, mathematical objects are, in certain respects, parts of Popper’s third 

world, a world that is not yet fully explored. See Karl Raimund Popper, “Epistemology 
without a Knowing Subject”, in: B. van Rootselaar and John F. Staal (Eds.), Logic, 
Methodology and Philosophy of Science III, Amsterdam: North-Holland 1968, pp. 
333–373.

39 Imre Lakatos, ibid., p. 1.
40 Ibid., pp. 3–4.
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22.6 two illustrative Cases

22.6.1 Cycle Model or Not?

An illustrative case of mathematics as quasi-matter is the assumption held by 
mathematical economists in the 1930s, that mixed difference-differential equa-
tions are the most suitable formalism for business-cycle models. In general, it is 
difficult to solve mixed differential-difference equations. moreover, in the 1930s, 
there were hardly any systematic accounts available. Systematic overviews on 
mixed differential-difference equations did not appear until the early 1950s.41 As a 
consequence, they were studied as if they were the same as the more familiar dif-
ferential equations. The general solution of this latter kind of equation is a finite 
weighted sum of trigonometric and exponential functions, so that their periodic 
behaviour can easily be analyzed. In contrast, the general solution of a mixed dif-
ference-differential equation is an infinite weighted sum of these functions. This is 
not necessarily a periodic movement if the weights are not further specified.

In a more recent study, a well-known model of the business cycle, Frisch’s 
1933 “Rocking Horse model”, a system of three mixed difference-differential 
equations was analyzed and worked out using computer simulations.42 It appeared 
that this system was not a cycle model because when it is subjected to an external 
shock it evolves back to the equilibrium in a non-cyclical manner.

Why such a paradoxically result found in [Frisch 1933] went unnoticed for almost sixty 
years is an intriguing question that, in my opinion, should be of interest to scholars of math-
ematical economics, business-cycle theory and history of economic thought.43

I would like to add here that it also should be of interest to philosophers of science 
with an interest in mathematical modelling.

This case illustrates that working with a mathematical model, in this case 
Zambelli’s computer simulation, can be confounding. This computer simulation 

41 E.g., Richard Bellman and Kenneth L. Cooke, Differential-Difference Equations, 
New York: Academic Press 1963. However, the various mathematical aspects of this 
kind of equations already attracted attention on the 1930s. In the first place, there 
is Ragnar Frisch and Harald Holme, “The Characteristic Solutions of a mixed Dif-
ference and Differential Equation Occurring in Economic Dynamics”, in: Economet-
rica, 3, 1935, pp. 225–239, but also three papers by R.W. James and maurice Henry 
Belz: “On a mixed Difference and Differential Equation”, in: Econometrica, 4, 1936,  
pp. 157–160; “The Influence of Distributed Lags on Kalecki’s Theory of the Trade 
Cycle”, in: Econometrica, 6, 1938, pp. 159–162; “The Significance of the Character-
istic Solutions of mixed Difference and Differential Equations”, in: Econometrica, 6, 
1938, pp. 326–343.

42 Stefano Zambelli, “The Wooden Horse that Wouldn’t Rock: Reconsidering Frisch”, in: 
Kumaraswamy Velupillai (Ed.), Nonlinearities, Disequilibria and Simulation, Basing-
stoke: macmillan 1992, pp. 27–54.

43 Ibid., p. 53.
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did not tell were the former studies went wrong, the surprise could not be traced 
back, but it showed that the theory on mixed difference-differential equations was 
not complete.

22.6.2 Spurious Result or Not?

many textbooks of statistics warn against the use of filters or moving averages 
because they might produce artificial oscillations due solely to the statistical treat-
ment of the data.44 This is the so-called (Yule-)Slutzky effect, after two statisticians 
who studied it in detail. A filter used in current macroeconomics for detrending 
time series, that is, filtering the trend component out of the time series to extract 
the business cycle component, is the Hodrick-Prescott filter (HP-filter). In the 
1990s however several articles appeared claiming that the HP-filter may extract 
spurious cycles.45

The functioning of such filters is mainly discussed in terms of frequencies 
extracted by taking the Fourier transform of a linear filter, also called spectral 
analysis. The problem, however, is that these analyses are not conclusive, because 
spectral analysis can be only applied to stationary time series, non-stationary time 
series do not have a periodic decomposition. So, it is only shown for stationary 
time series that the HP-filter operates like a detrending filter. Hence it is not clear 
yet what the effect of the HP-filter is when applied to non-stationary time series.

macroeconomic time series often have an upward trend which makes them 
non-stationary, and one of the objectives of filtering is transformation to induce 
stationarity. To analyse the HP-filter effect for these non-stationary cases, the HP-
filter is split into two parts. One part is chosen to make the time series stationary so 
that subsequently the resulting part can be analysed to see its effect on the station-
ary data. It was shown that this resulting part taken on its own as a filter leads to a 
Slutzky effect. But one cannot infer from this result that the complete HP-filter has 
this effect, too. Properties of the split parts of the filter do not necessarily sum to 
the properties of the complete filter, they may cancel each other out. The Slutzky 
effect of one part of the filter may be nullified by the other part.46

44 E.g., maurice G. Kendall and Alan Stuart, The Advanced Theory of Statistics, Volume 
3: Design and Analysis, and Time-Series, London: Charles Griffin 1966.

45 E.g., Timothy Cogley and James m. Nason, “Effects of the Hodrick-Prescott Filter 
on Trend and Difference Stationary Time Series: Implications for Business Cycle 
Research”, in: Journal of Economic Dynamics and Control, 19, 1995, pp. 253–278; 
Andrew C. Harvey and Albert Jaeger, “Detrending, Stylized Facts and the Business 
Cycle”, in: Journal of Applied Econometrics, 8, 1993, pp. 231–247; Albert Jaeger, 
“mechanical Detrending by Hordick-Prescott Filtering: A Note”, in: Empirical Eco-
nomic, 19, 1994, pp. 493–500.

46 For a more detailed discussion of this case see marcel Boumans, “Calibration of mod-
els in Experiments”, in: Lorenzo magnani and Nancy J. Nersessian (Eds.), Model-
Based Reasoning. Science, Technology, Values, pp. 75–93.
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This case also shows that the theory is not complete, and so different analyses 
lead to different results. Showing that the HP-filter may lead to spurious results (or 
not) is confounding because these results can not easily be feed back to a theory.

22.7 ConClusion

The ontological difference between the two epistemic mediators model and experi-
ment has consequences for their individual epistemic powers. Because an experi-
ment is built of the same matter as the phenomenon, it has a greater potential to 
make strong inferences back to the world than models which are only representa-
tions of that world. morgan uses two different labels to indicate the difference 
 between these epistemic powers: models can surprise, whereas experiments can 
confound, where surprise is considered to be a weaker epistemic result. models 
(can) only surprise because unexpected outcomes can be traced back and re-ex-
plained by theory. An experiment (can) confound because of a larger extent of 
ignorance: we may have a false or incomplete theory. Parts of the world are still not 
discovered and so new (confounding) phenomena may appear in an experiment.

The underlying assumption for this distinction is that mathematical theories 
are true and complete, in contrast to empirical theories which are admittedly in-
complete and even false. This paper has, however, argued that because mathemati-
cal worlds have a similar indeterminatess as the physical world, experimenting on 
a mathematical world can also lead to confounding results. mathematical objects 
have a materiality epistemological similar to that of the physical world of which 
our knowledge of its structure is dependent on experience. So, our mathematical 
theories can be wrong, or incomplete. mathematics is not a transparent language 
to describe the world, it is quasi-matter out of which we can mould representations 
of the world.
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CHAPTER 23

DAVID F. HENDRY

MATHEMATICAL MODELS AND ECONOMIC

FORECASTING:
SOME USES AND MIS-USES OF MATHEMATICS

IN ECONOMICS

ABSTRACT

We consider three “cases studies” of the uses and mis-uses of mathematics in
economics and econometrics. The first concerns economic forecasting, where a
mathematical analysis is essential, and is independent of the specific forecast-
ing model and how the process being forecast behaves. The second concerns
model selection with more candidate variables than the number of observations.
Again, an understanding of the properties of extended general-to-specific pro-
cedures is impossible without advanced mathematical analysis. The third con-
cerns inter-temporal optimization and the formation of “rational expectations”,
where misleading results follow from present mathematical approaches for real-
istic economies. The appropriate mathematics remains to be developed, and may
end “problem specific” rather than generic.

23.1 INTRODUCTION

Mathematics is ubiquitous in modern economics and especially in econometrics.
We draw on two examples from the latter where mathematics is essential in order
to understand the properties of economic forecasts and the outcomes of empiri-
cal model selection exercises respectively. We then use the findings from the first
of these to demonstrate important flaws in present approaches to the mathemat-
ics of inter-temporal optimization and the formation of expectations, in particular,
so-called “rational expectations” as applied to realistic economic time series. The
three examples are drawn from work by the author jointly with a number of co-
authors. What prompts the need to discuss the obvious, namely the use of math-
ematics in economics, since that discipline intrinsically includes econometrics?
First, it is a long-standing debate, with historical roots in the 19th century.1 A par-
ticularly amusing complaint about the “excessive use of advanced mathematics” is

1 Discussed by John N. Keynes, The Scope and Method of Political Economy, New York:
Kelley and Millman 1891, and Joseph Schumpeter, “The Common Sense of Econo-
metrics” in: Econometrica, 1, 1933, pp. 5–12, among others (see David F. Hendry and

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4 23,
© Springer Science+Business Media B.V. 2012
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the discussant of the brilliant analysis of nonsense regressions when first read to the
Royal Statistical Society,2 although most economics undergraduates today would
find the mathematics straightforward. Second, recent criticisms have elicited a
torrent of supportive responses.3 Third, many non-professional economists seem
to suspect that formalization in economics was a partial cause of not foreseeing
the financial crisis of 2007–2011. For example, HM Queen Elizabeth II ques-
tioned why UK economists had not done so, and the ensuing debate revealed that
viewpoint (more precisely, “a failure of the collective imagination of many bright
people”).4 Fourth, there are formal attacks on our “excessive ambitions”.5 Finally,
the ESF-PSE Workshop on The Debate on Mathematical Modeling in the Social
Sciences reflects a widespread desire to reconsider our tools. As ever, there is
something to be said on both sides of the debate.

First, my forecasting case study is adapted from research which developed
a theory of economic forecasting for settings where the model is mis-specified
in unknown ways for an economic process that unexpectedly shifts at unknown
times by unknown magnitudes.6 That work shows that a general mathematical
analysis is both feasible and insightful, radically changing the interpretation of
the outcomes of forecasting competitions,7 and what can be learned from forecast
failures.8 Building on such results, later research led to explanations as to why

Mary S. Morgan, The Foundations of Econometric Analysis, Cambridge: Cambridge
University Press 1995).

2 By G. Udny Yule, “Why Do We Sometimes Get Nonsense-correlations between Time-
series? A Study in Sampling and the Nature of Time Series (With Discussion)” in:
Journal of the Royal Statistical Society, 89, 1926, pp. 1–64.

3 See e.g., John Llewellyn, “It’s Possible To Subtract Mathematics From Economics”,
in: The Observer, 16 August, 2009 http://www.guardian.co.uk/business/2009/aug/16/
economics-economics.

4 See e.g., http://www.guardian.co.uk/uk/2009/jul/26/monarchy-credit-crunch.
5 Like that to which I responded in “Comment on ‘Excessive ambitions’ (by Jon Elster)”,

in: Capitalism and Society, 4, 2009, DOI: 10.2202/1932-0213.1056.
6 Taken from David F. Hendry and Bent Nielsen, Econometric Modeling: A Likeli-

hood Approach, Princeton: Princeton University Press 2007, building on Michael P.
Clements and David F. Hendry, Forecasting Non-stationary Economic Time Series,
Cambridge, Mass.: MIT Press 1999.

7 See Spyros Makridakis and Michelle Hibon, “The M3-competition: Results, Conclu-
sions and Implications”, in: International Journal of Forecasting, 16, pp. 451–476,
and Robert Fildes and Keith Ord , “Forecasting Competitions–Their Role In Improv-
ing Forecasting Practice and Research”, in: Michael P. Clements and David F. Hendry
(Eds.), A Companion to Economic Forecasting, Oxford: Blackwells 2002, and compare
Michael P. Clements and David F. Hendry, 2001, “Explaining the Results of the M3
Forecasting Competition” in: International Journal of Forecasting, 17, pp. 550–554.

8 See David F. Hendry and Jurgen A. Doornik, “The Implications for Econometric Mod-
elling of Forecast Failure” in: Scottish Journal of Political Economy, 44, 1997, pp.
437–461, and Michael P. Clements and David F. Hendry, “Explaining Forecast Fail-

http://www.guardian.co.uk/business/2009/aug/16/economics-economics.
http://www.guardian.co.uk/business/2009/aug/16/economics-economics.
http://www.guardian.co.uk/uk/2009/jul/26/monarchy-credit-crunch
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some forecasting methods are “robust” to location shifts after they have occurred,9

as well as suggesting possible approaches to forecasting breaks and during breaks.10

The second case study concerns model selection.11 Since the forms, magni-
tudes and timings of breaks are usually unknown, a “portmanteau” approach to
their detection is required that allows for potential location shifts at every possible
point in the sample. Impulse-indicator saturation (IIS) includes an impulse indi-
cator for every observation in the set of candidate regressors, so adds T variables
for T observations, then selects significant indicators from that saturating set.12 Its
ability to detect multiple breaks is established,13 and IIS allows an automatic test
for super exogeneity.14 The properties of model selection in general, especially
when there are more candidate variables, N , for inclusion in the analysis than the

ure in Macroeconomics”, in: Clements and Hendry (Eds.), A Companion to Economic
Forecasting, op. cit.

9 See David F. Hendry, “Robustifying Forecasts From Equilibrium-correction Models”
in: Journal of Econometrics, 135, 2006, pp. 399–426.

10 See Jennifer L. Castle, Nicholas W. P. Fawcett, and David F. Hendry, “Forecasting
Breaks and During Breaks”, in: Michael P. Clements and David F. Hendry, (Eds.),
Oxford Handbook of Economic Forecasting, Oxford: Oxford University Press, 2011.

11 This draws on research by David F. Hendry and Hans-Martin Krolzig, “The Proper-
ties of Automatic Gets Modelling”, in: Economic Journal, 115, 2005, pp. C32–C61;
Jennifer L. Castle, Jurgen A. Doornik and David F. Hendry, “Evaluating Automatic
Model Selection”, in: Journal of Time Series Econometrics, 3 (1), DOI: 10.2202/1941-
1928.1097; Jennifer L. Castle and David F. Hendry, “Automatic Selection of Non-
linear Models”, in: Liuping Wang, Hugues Garnier and T. Jackman (Eds.), System
Identification, Environmental Modelling and Control, New York: Springer forthcom-
ing; Jurgen A. Doornik, “Autometrics”, in: Jennifer L. Castle and Neil Shephard (Eds.),
The Methodology and Practice of Econometrics, Oxford: Oxford University Press
2009, pp. 88–121; David F. Hendry and Grayham E. Mizon, “Econometric Modelling
of Time Series with Outlying Observations”, in: Journal of Time Series Econometrics,
3 (1), DOI: 10.2202/1941-1928.1100.

12 Its properties in a simple setting are analyzed in David F. Hendry, Søren Johansen
and Carlos Santos, “Automatic Selection of Indicators in a Fully Saturated Regres-
sion”, Computational Statistics, 33, 2008, pp. 317–335, Erratum, pp. 337–339, and
extended by Søren Johansen and Bent Nielsen, “An Analysis of the Indicator Satura-
tion Estimator as a Robust Regression Estimator” in: Castle and Shephard (Eds.), The
Methodology and Practice of Econometrics, op.cit., pp. 1–36, to both stationary and
unit-root autoregressive models.

13 See Jennifer L. Castle, Jurgen A. Doornik and David F. Hendry, 2011, “Model Selec-
tion when There Are Multiple Breaks”, in: Journal of Econometrics, forthcoming.

14 See David F. Hendry and Carlos Santos, “An Automatic Test of Super Exogeneity”, in:
Mark W. Watson, Tim Bollerslev, and Jeff Russell (Eds.), Volatility and Time Series
Econometrics, Oxford: Oxford University Press 2010, pp. 164–193, extending earlier
research by Robert F. Engle, David F. Hendry and Jean-Francois Richard, “Exogene-
ity”, in: Econometrica, 51, 1983, pp. 277–304, and Robert F. Engle and David F.
Hendry, “Testing Super Exogeneity and Invariance in Regression Models”, in: Journal
of Econometrics, 56, 1993, pp. 119–139.
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number of observations, T –as must occur with IIS–can only be resolved by math-
ematical analysis and its numerical sister of Monte Carlo simulations. Again, an
understanding of the astonishingly good properties of extended general-to-specific
procedures would be impossible without advanced mathematical analysis.

The third example concerns the mathematics of inter-temporal optimization
and the formation of expectations, in particular, so-called “rational expectations”
(RE), where misleading results follow from present approaches applied to realis-
tic economies. When unanticipated location shifts occur, estimated econometric
models experience forecast failure, as noted above. However, that finding also
entails that conditional expectations formed today of a future period after such
a shift will be biased and potentially far from the minimum mean square error
predictor “proved” in most textbooks under the unstated assumption that the dis-
tributions involved are unchanged. Unfortunately, in economics, location shifts
and other forms of structural break are all too common.15 Conclusions drawn on
the “as if” basis that breaks do not occur are inapplicable when they do: on a much
grander scale, Euclidean geometry was long believed to be “true”, and many the-
orems, such as “the sum of the angles of a triangle add to 180◦”, were proved on
that basis—until Riemann established the existence of non-Euclidean geometries
in which the sum can exceed or fall short of 180◦ depending on the curvature of
the space. Thus, the additional assumption was needed for Euclidean geometry
that space was flat–an assumption that holds approximately locally, but is violated
on the surface of a globe. Similarly, theorems about conditional expectations and
the law of iterated expectations require the additional assumption that distribu-
tions do not shift, and are inapplicable otherwise.16 The appropriate mathematics
for settings where distributions shift remains to be developed, and may end being
“problem specific” rather than generic.

The structure of the chapter is as follows. We first explain how mathematics
was crucial in developing a theory of economic forecasting relevant to the prac-
tical setting where models are mis-specified and the world experiences intermit-
tent unanticipated location shifts, and illustrates some surprising implications that
could not have been deduced without a mathematical analysis. Then we consider
the formalization of model selection when there are more candidate regressors,
N > T , than observations, T , although fewer variables, n < T , actually matter.
Finally we draw the implications of forecast failure for inter-temporal optimization
theory, and conclude.

15 See e.g., James H. Stock and Mark W. Watson, “Evidence on Structural Instability
in Macroeconomic Time Series Relations”, in: Journal of Business and Economic
Statistics, 14, 1996, pp. 11–30, and Ray Barrell, “Forecasting the world economy”,
in: David F. Hendry and Neil R. Ericsson (Eds.), Understanding Economic Forecasts,
Cambridge, Mass.: MIT Press, 2001, pp. 149–169.

16 See David F. Hendry and Grayham E. Mizon, “On the mathematical basis of inter-
temporal optimization”, Working paper 497, Economics Department, Oxford, 2010.
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23.2 FORMALIZING FORECASTING THEORY

There is a well-developed theory of economic forecasting based on the assump-
tion that the econometric model coincides with a stationary economic data gen-
eration process (DGP).17 Consider an n × 1 vector of variables to be forecast
denoted xt ∼ Dxt(xt|Xt−1, θ) for θ ∈ Θ ⊆Rk, where Xt−1 = (. . .x1 . . .xt−1)
and Dxt(xt|Xt−1, θ) is its distribution. A statistical forecast x̃T+h|T = fh

(
X1

T

)
is

made at time T (the forecast origin) for a future date T + h (the forecast horizon).
The key question in this setting is how to select fh.

The answer was “well known”: the conditional expectation x̂T+h|T =
E[xT+h|X1

T ] is unbiased, with E[(xT+h − x̂T+h|T )|X1
T ] = 0. Further, x̂T+h|T

has the smallest mean-square forecast-error matrix:

M
[
x̂T+h|T | X1

T

]
= E

[(
xT+h − x̂T+h|T

) (
xT+h − x̂T+h|T

)′ | X1
T

]
.

However, that analysis finesses ten distinct problems. The first six concern
problems learning about DX1

T
(·) and θ from the available sample information,

and the last four relate to the forecast period:18

(1) Specification of the set of relevant variables {xt};
(2) Measurement of the xs;
(3) Formulation of DX1

T
(·);

(4) Modelling of the relationships;
(5) Estimation of θ, and;
(6) Properties of DX1

T
(·), which determine the “intrinsic” uncertainty.

All of these introduce in-sample uncertainties. Next, over the forecast horizon:
(7) Properties of DXT+1

T+H
(·) determine forecast uncertainty;

(8) Which grows as H increases;
(9) Especially for integrated data;

(10) Increased by changes in DXT+1
T+H

(·) or θ.

These ten issues structure the analysis of forecasting. We now illustrate with a
simple example, although its implications are generic, and hold for all forecasting
models and DGPs, irrespective of the correctness (or otherwise) of the specifica-
tion of the model, and the properties of the DGP (stationary or integrated, with or
without breaks of unknown timing, magnitude and form), and the data accuracy.19

17 See the famous treatise of Trygve Haavelmo, “The probability approach in economet-
rics”, in: Econometrica, 12, 1944, pp. 1–118, extended by Lawrence R. Klein, An
Essay on the Theory of Economic Prediction, Chicago: Markham Publishing Com-
pany 1971.

18 See David F. Hendry and Bent Nielsen, Econometric Modeling: A Likelihood Ap-
proach., op. cit.

19 Cf. Michael P. Clements and David F. Hendry, “Forecasting with Breaks in Data Pro-
cesses”, in: Graham Elliott, Clive W. J. Granger and Allan Timmermann (Eds.), Hand-
book of Econometrics on Forecasting, Amsterdam: Elsevier 2006, pp. 605–657, who
provide a general “non-parametric” analysis.
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23.2.1 Stationary Scalar Example

Consider a simple first-order autoregressive DGP with a known exogenous variable
{zt}:

yt = ρyt−1 + γzt + εt where εt ∼ IN
[
0, σ2

ε

]
with |ρ| < 1, (23.1)

and IN[0, σ2
ε ] denotes an independent normal distribution with mean, E[εt] = 0,

and variance V[εt] = σ2
ε . When ρ and γ are known and constant, the optimal

forecast for T + 1 from yT for known zT+1 is:

yT+1|T = ρyT + γzT+1 (23.2)

In terms of the general analysis above, DX1
T
(·) implies DXT+1

T+1
(·), producing an

unbiased forecast:

E
[(

yT+1 − yT+1|T
)
| yT , zT+1

]
= (ρ− ρ) yT + (γ − γ) zT+1 + E [εT+1] = 0,

with the smallest possible variance determined by DX1
T
(·):

V
[(

yT+1 − yT+1|T
)]

= σ2
ε .

Thus, in this specific case, DXT+1
T+1

(·) implies yT+1 ∼ IN[ρyT + γzT+1, σ
2
ε ].

There will indeed be no forecasting problems, as issues (1)–(10) are “assumed
away”. However, the ten potential problems return when omniscience is unavail-
able, even if zT+1 is known:

[1] Specification is incomplete if (e.g.) xt is a vector not a scalar.
[2] Measurement is incorrect if (e.g.) observe x̃t not xt.
[3] Formulation is inadequate if (e.g.) an intercept is needed.
[4] Modelling is wrong if (e.g.) the wrong variables or lags are selected.
[5] Estimating ρ and γ may add biases ((ρ−E[ρ̂]), and (γ−E[γ̂])), and variances

V[ρ̂, γ̂].
[6] Properties of D(εt) = IN

[
0, σ2

ε

]
determine V[yt].

[7] Assumed εT+1 ∼ IN
[
0, σ2

ε

]
but V[εT+1] could differ.

[8] Multi-step forecast errors cumulate
∑H

h=1 ρ
h−1εT+h with V = 1−ρ2H

1−ρ2 σ2
ε .

[9] ρ = 1 induces a trending forecast variance, Hσ2
ε .

[10] If ρ changes, forecast failure could occur.
A forecaster must be prepared for risks from all of [1]–[10], but some matter more.

To illustrate, we will first “undo” problem (5), so the specification is correct,
but (ρ, γ) have to be estimated from sample data, t = 1, . . . , T . Next, we will also
violate [1] by omitting zt, then [10] by changing ρ. Figure 1 illustrates for Monte
Carlo simulated data from (23.1) when zt ∼ IN[0, 1] with ρ = 0.8, γ = 1 and
σ2
ε = 1 when T = 40 and H = 5. We consider the six panels in turn.

Panel a records forecasts from a single draw of the process in (23.1), both
when (ρ, γ) are known (yT+i|T+i−1 from (23.2) with error bands of ±2σ̂) and
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Figure 23.1: Forecasts under different scenarios

when estimating them (ŷT+i|T+i−1 with bars). The forecasts are almost identi-
cal, and there is only a small increase in uncertainty from estimation relative to
knowing true parameter values. So not problem [5].

Panel b reports forecasts when zt is omitted both in estimation and forecasting:
the forecasts are poorer, but remain well within their ex ante forecast intervals. So
not problem [1].

Panel c adds a shift in ρ at T = 41 to 0.4, so all of [1], [5] and [10] are violated,
yet there is little noticeable impact from halving ρ: the forecasts are close to those
in panel b, and well within the forecast intervals. In fact, a parameter constancy
test barely rejects the false null more often for a halved ρ than for a constant one.
Such changes hardly seem disastrous: moreover, similar results will be found if
white noise measurement errors are added; or model selection is undertaken when
the precise specification is not known. Is forecasting really that resilient in the face
of estimation, mis-specification, selection and breaks?

Consider a slight change to the DGP in (23.1), namely introducing a non-zero
intercept μ = 10:

yt = μ+ ρyt−1 + γzt + εt where εt ∼ IN
[
0, σ2

ε

]
and |ρ| < 1. (23.3)

when everything else remains the same, including the change in ρ of the same mag-
nitude, sign and timing. Since economic data are often indices or have arbitrary
units (millions versus billions), μ is relatively arbitrary.
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As Panel d shows, the forecasts are now catastrophically bad, emphasized by
the dreadful 5-step ahead (dynamic) forecasts in Panel e: every forecast lies well
outside the 95% forecast interval. Parameter constancy tests now reject 100% of
the time. Such an outcome is called forecast failure. The data are identical to
those in Panel a till observation 40, but the sharp fall from observation 41 onwards
is obviously different. The dashed lines in Panel d show that the 1-step forecasts
are systematically too high: at every point, the data are falling yet the forecasts are
above the previous outcome.

Finally, Panel f shows the forecasts for the same break when μ = 0, the
model is correctly specified by including zt, but E[zt] = κ = 10: forecast failure
is manifest and similar to Panel d.

Without a mathematical analysis of the properties of forecasts, such a dramatic
change for the same magnitude, form and timing of a break between no failure in
mis-specified zero-intercept processes and massive failure when there are non-
zero intercepts, would simply be an unexplained surprise. In fact, it is due to the
impact of the non-constant ρ on the pre-existing mean, E[yt] = θ. In (23.1) when
μ = κ = 0, then E[yt] = 0 before and after the shift in ρ. But in the second case:

E[yt] = θ =
μ+ γκ

(1− ρ)

shifts markedly from θ = 50 before the break in ρ to θ∗ = 17 after. Writing the
model in (23.1) as:

Δyt = (ρ− 1) (yt−1 − θ) + γ (zt − κ) + εt (23.4)

reveals it is an equilibrium-correction model (EqCM), where the equilibrium built-
in to the model is θ, so the forecasts will converge back to θ irrespective of what the
data do. Thus, if θ > θ∗, the data will fall, but the forecasts will continually return
towards θ. This location shift is clearly pernicious for forecasting, and explains
Panel f as θ shifts when κ �= 0. Perhaps more surprising, location shifts are the
main problem likely to induce forecast failure, as we now describe, another result
that cannot be established without mathematical analysis.

23.2.2 Forecast-Error Taxonomy

We now change the DGP to involve lagged rather than current z:

yt = θ + ρ (yt−1 − θ) + γ (zt−1 − κ) + εt for t = 1, . . . , T (23.5)

where εt ∼ IN[0, σ2
ε ], E[yt] = θ and E[zt] = κ with γ �= 0, but zt−1 is omitted

from the model:
yt = μ+ ρyt−1 + vt

The break occurs at T , which leads to the post-break DGP:

yt = θ∗ + ρ∗ (yt−1 − θ∗) + γ∗ (zt−1 − κ∗) + εt for t = T + 1, . . . (23.6)
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The forecasting model:

ŷT+1|T = θ̂ + ρ̂
(
ŷT − θ̂

)
(23.7)

is estimated over t = 1, . . . , T delivering parameter estimates (θ̂, ρ̂). The omit-
ted variable and the dynamics induce biases, so E[θ̂] = θe and E[ρ̂] = ρe. The
forecast from an estimated ŷT at the forecast origin yields a forecast error of
ε̂T+1|T = yT+1− ŷT+1|T . Ignoring interaction terms (corresponding to estimation
covariances of Op(T

−1)), the forecast error can be decomposed into the following
taxonomy.

ε̂T+1|T � Component Expectation Variance
(1− ρ∗) (θ∗ − θ) (ia) (1− ρ∗) (θ∗ − θ) 0

+ (ρ∗ − ρ) (yT − θ) (ib) 0 (ρ∗ − ρ)
2
V[yT ]

+ (1− ρ) (θ − θe) (iia) (1− ρ) (θ − θe) 0

+ (ρ− ρe) (yT − θ) (iib) 0 (ρ− ρe)
2 V[yT ]

−ρ (ŷT − yT ) (iii) −ρ (E [ŷT ]− yT ) ρ2V [ŷT − yT ]

− (1− ρ)
(
θ̂ − θe

)
(iva) 0 Op(T

−1)

− (ρ̂− ρe) (yT − θ) (ivb) � 0 Op(T
−1)

+γ∗ (zT − κ∗) (v) 0 (γ∗)2 V [zT ]
+εT+1 (vi) 0 σ2

ε

(23.8)

The third and fourth columns give the game away, but starting at the foot of
the table:
(vi): the innovation error has E[εT+1] = 0 and V[εT+1] = σ2

ε so there is no bias,
but an Op(1) variance component that is irreducible when {εt} is, and remains, an
innovation error;
(v): the omitted variable again has E[γ∗(zT − κ∗)] = 0 and V[γ∗(zT − κ∗)] =
(γ∗)2σ2

z , so there is also no bias despite the omission and the change in parameters,
but an Op(1) variance component (reducible if {zt−1} is included as a regressor
with an offsetting estimation variance effect of Op(T

−1));
(ivb): slope estimation has E[(ρ̂ − ρe)(yT − θ)] � 0 as E[ρ̂ − ρe] = 0 and
E[yT − θ] = 0, with a variance from estimation of Op(T

−1);
(iva): equilibrium-mean estimation has E[(1 − ρ)(θ̂ − θe)] = 0 with an estima-
tion variance of Op(T

−1);
(iii): forecast-origin uncertainty only has E[ρ(ŷT − yT )] = 0 if the forecast ori-
gin is unbiasedly estimated, but that can be achieved using modern methods of
model selection applied to “Nowcasting”20 and has a variance component, proba-
bly of Op(1);

20 See e.g., Jennifer L. Castle, Nicholas W. P. Fawcett, and David F. Hendry, “Nowcasting
Is Not Just Contemporaneous Forecasting”, in: National Institute Economic Review,
210, 2009, pp. 71–89, and Jennifer L. Castle and David F. Hendry, “Nowcasting From
Disaggregates in the Face of Location Shifts”, in: Journal of Forecasting, 29, 2010,
pp. 200–214.
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(iib) slope mis-specification again has E[(ρ − ρe)(yT − θ)] = 0 and an Op(1)
variance component unconditionally;
(iia) equilibrium-mean mis-specification is the first potentially serious compo-
nent as θ �= θe is possible if there have been earlier in-sample location shifts that
were not modelled, but IIS could resolve that difficulty;
(ib) slope change surprisingly has E[(ρ∗ − ρ) (yT − θ)] = 0 as E[yT − θ] = 0
irrespective of ρ∗ �= ρ, a point illustrated above;
(ia) equilibrium-mean change is the fundamental problem: θ∗ �= θ induces fore-
cast failure.

In summary, once in-sample breaks are removed, from good forecast origin
estimates:

E[ε̂T+1|T ] � (1− ρ∗) (θ∗ − θ) (23.9)

and that bias persists at ε̂T+2|T+1 etc., so long as (23.7) is used, even though no
further breaks ensue. Keeping μ constant while shifting ρ to ρ∗ induces a shift
in θ to θ∗. The power of that insight is exemplified by (a) changing both μ and
ρ by large magnitudes, such that θ = θ∗, then demonstrating that the outcome is
isomorphic to μ = μ∗ = 0 (and hence θ = θ∗) as above, so no break is detected;21

and (b) when μ = μ∗ = 0 and zt−1 is correctly included, then κ �= κ∗ induces
forecast failure by shifting θ when ρ changes.22

The specificity of the example is irrelevant to the entailed result, which ap-
plies to all models in the equilibrium-correction class: they fail systematically
when E[y] changes as the models’ forecasts are forced to converge back to θ irre-
spective of the value of θ∗. The class of EqCMs is huge and comprises all regres-
sion models; autoregressions; dynamic systems; vector autoregressions (VARs);
dynamic-stochastic general equilibrium systems (DSGEs); autoregressive condi-
tional heteroscedastic (ARCH) models; and generalized ARCH (GARCH) among
others. Shifts in means are a pervasive and pernicious problem affecting forecasts
from all such models.

23.2.3 Empirically-Relevant Theory

Such a theory needs to allow for the model being mis-specified for the DGP, with
parameters estimated from inaccurate observations, on an integrated-cointegrated
system, intermittently altering unexpectedly from structural breaks. That theory
has achieved some success as it explains the prevalence of forecast failure, ac-
counts for the results of forecasting competitions, and explains much of the good
performance of “consensus” forecasts. Of equal importance, it corrects some
“folklore” of forecasting, namely that forecast failure is not due to “poor econo-

21 Figure 1, Panel a: see e.g., David F. Hendry, “On Detectable and Non-detectable Struc-
tural Change”, in: Structural Change and Economic Dynamics, 11, 2000, pp. 45–65.

22 See e.g., David F. Hendry and Grayham E. Mizon, “On the mathematical basis of inter-
temporal optimization”, op.cit.
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metric methods”, “inaccurate data”, “incorrect estimation”, or “data-based model
selection”.23

Location shifts are the key to break detection: if there were no such shifts,
forecast failure at 1% would be a 1 in 100 event. A crucial feature of (23.8) is that
forecast errors persist unless the model is revised or abandoned. The former is dif-
ficult, as the cause of the forecast failure needs to be rapidly diagnosed and treated,
and unfortunately, previous findings on forecasting breaks and during breaks show
the large uncertainty attached to such attempts.24 The latter requires a new model,
which is even harder after a large unanticipated location shift. Fortunately, there is
another approach–transform the initial model to avoid systematic forecast failure
after location shifts.25

To illustrate that result, reconsider the forecasting model in (23.7), but instead
of using the level, which depends on θ, difference the model, retaining the original
estimated parameter values:

ΔỹT+1|T = ρ̂Δ
(
ŷT − θ̂

)

written as:
ỹT+1|T = ŷT + ρ̂ΔŷT (23.10)

At the break point at time T , (23.10) makes the same magnitude forecast error
as (23.7) precisely because the break is unpredicted. But one period later:

ỹT+2|T+1 = ŷT+1 + ρ̂ΔŷT+1 = yT+1 + ρ̂ΔŷT+1 + (ŷT+1 − yT+1) (23.11)

where (23.11) distinguishes an incorrect estimate of the forecast origin from the
consequences of a break. When unbiased forecast origin estimates are available,
so E [ŷT+1] = yT+1 and the “noise term” ρ̂ΔŷT+1 is omitted to highlight the key
point, then:

ỹT+2|T+1 = yT+1 = θ∗ + ρ∗ (yT − θ∗) + γ∗ (zT − κ∗) + εT+1.

23 See, e.g., the unsubstantiated assertions on what went wrong in economic forecasting
at the Bank of Canada by Don Coletti, Ben Hunt, David Rose and Robert J. Tetlow,
“The Bank of Canada’s New Quarterly Projection Model, Part 3. The Dynamic Model:
QPM”, in: Technical report 75, 1996, Bank of Canada, Ottawa: “the inability of rel-
atively unstructured, estimated models to predict well for any length of time outside
their estimation period seemed to indicate that small-sample econometric problems
were perhaps more fundamental than had been appreciated and that too much attention
had been paid to capturing the idiosyncrasies of particular samples.”

24 See e.g., Jennifer L. Castle, Nicholas W. P. Fawcett and David F. Hendry, “Forecasting
with Equilibrium-correction Models during Structural Breaks”, in: Journal of Econo-
metrics, 158, 2010, pp. 25–36.

25 See David F. Hendry, “Robustifying Forecasts from Equilibrium-correction Models”,
op. cit., and for a non-technical account, see Michael P. Clements and David F. Hendry,
“Economic Forecasting in a Changing World”, in: Capitalism and Society, 3, 2008, pp.
1–18
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Consequently, the forecast error is:

yT+2 − ỹT+2|T+1 = θ∗ + ρ∗ (yT+1 − θ∗) + γ∗ (zT+1 − κ∗) + εT+2

− (θ∗ + ρ∗ (yT − θ∗) + γ∗ (zT − κ∗) + εT+1)

= ρ∗ΔyT+1 + γ∗ΔzT+1 +ΔεT+2 (23.12)

which is noisy, but not systematic, and delivers near unbiased forecasts because:

yT+1 = θ∗ + ρ∗ (yT − θ∗) + γ∗ (zT − κ∗) + εT+1

“contains” zT despite the omission of zT from the forecasting model.
Whereas the estimated in-sample DGP suffers from all the main sources of

forecast error, namely stochastic and deterministic breaks, omitted variables, in-
consistent parameters, estimation uncertainty and innovation errors, the “differ-
enced” transform reflects all the effects needed–parameter changes, differences
of omitted variables, with no estimation components. There are two drawbacks,
namely the unwanted presence of εT+1 in (23.12), which doubles the innova-
tion error variance; and all variables are lagged one extra period, which adds the
“noise” of I(−1) effects. Nevertheless, there is a clear trade-off between avoid-
ing systematic forecast failure and adding somewhat to the forecast-error variance
when no location shifts occur. After the unanticipated occurrence of a location
shift, as with the recent financial crisis, forecast failure is ubiquitous in EqCMs,
but not in differenced variants thereof, so there need be no connection between the
in-sample “quality” (or verisimilitude) of a model and that of its later forecasts.

23.2.4 Designing Monte Carlo Simulations

Simulation evidence is complementary to mathematical analysis in that, while
mathematics is fundamental to understanding the analytically-tractable cases, sim-
ulation analysis helps examine empirically-relevant cases that may be intractable
analytically.26 The insights from mathematical analysis remain essential when de-
signing Monte Carlo studies to focus on “canonical” cases, isolating aspects that
are invariant across the simulations. For example, in a mean-zero autoregressive
process, the units of the error standard deviation are irrelevant, but cease to be so
if there is a non-zero intercept in the data generating process. When all parame-
ters shift but leave the equilibrium mean constant is isomorphic to a zero mean, so
allows a specific simulation to entail general results.

26 A more detailed analysis of efficient Monte Carlo simulation is provided in David
F. Hendry, “Monte Carlo Experimentation in Econometrics”, in: Zvi Griliches and
Michael D. Intriligator (Eds.), Handbook of Econometrics, 2, Amsterdam: North-
Holland 1984, pp. 937–976.
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23.3 SELECTING ECONOMETRIC MODELS FROM A MASS

OF CANDIDATE VARIABLES

There are many critical analyses of model selection, almost all of which assume
“correct” models with constant parameters where simply fitting the given specifi-
cation dominates selection. This is not a realistic characterization of the situation
confronting empirical investigators of economic time series. Data processes are
complicated and evolving, so models derived from economic theory provide only
a guide to some of the main variables, and rarely address breaks or outliers which
vitiate any ceteris paribus assumptions. Thus, model selection is inevitable in
practice, where only some substantively relevant aspects are correctly included,
some are omitted, and some irrelevant aspects are also included, usually correlated
with omitted variables.

Selection is essential when there are large numbers of potential explanatory
variables. But can model selection work well in that setting? The canonical case
of more variables than observations, N > T , is including an impulse indicator
for every observation in the candidate regressor set. In the simplest analysis (the
“split-half” case), one regression only includes the first T/2 of these indicators
initially. By dummying out that first subset of observations, estimates are based
on the remaining data, and any observations in the first half that are discrepant
will result in significant indicators.27 The location of the significant indicators is
recorded, then the first T/2 are replaced by the second half and the procedure
repeated. The two sets of significant indicators are then added to the general model
for selection of those that remain significant together with selecting over the non-
dummy variables. This is the approach called impulse-indicator saturation (IIS)
above.28 IIS is an efficient method: under the null of no breaks, outliers or data
contamination, the cost of applying IIS at a significance level α is the loss of αT of
the sample, so at α = 0.01 and T = 100, IIS is 99% efficient. This follows because
under the null, αT indicators will be retained by chance sampling, and each merely
“dummies out” an observation. Thus, despite adding as many indicator variables
as observations to the set of candidate variables to be selected from, when IIS is not
needed the costs are almost negligible; and if IIS is required, the most pernicious
effects of induced location shifts on non-constant intercepts, slopes and equation
standard errors can be corrected.

27 In essence, that lies behind the approach for testing parameter constancy using indi-
cators in David S. Salkever, “The Use of Dummy Variables to Compute Predictions,
Prediction Errors and Confidence Intervals”, in: Journal of Econometrics, 4, 1976, pp.
393–397.

28 See David F. Hendry, Søren Johansen and Carlos Santos, “Automatic Selection of Indi-
cators in a Fully Saturated Regression”, op. cit., and Søren Johansen and Bent Nielsen,
“An Analysis of the Indicator Saturation Estimator as a Robust Regression Estimator”,
op. cit., who derive the distributions of estimators after IIS when there are no outliers
or breaks, and relate IIS to robust estimation.
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The mathematical analyses supporting these claims are in the references, and
are consistent with a wide range of Monte Carlo simulations. No amount of non-
mathematical thinking could have delivered such an astonishing insight: indeed
most reactions are that adding N > T candidate variables to the model search
cannot be done, and if it could, it would produce garbage. But in fact it is easy to
do, and almost costless.

23.3.1 As Many Candidate Variables as Observations

The analytic approach to understanding IIS can be applied when there are N = T
IID mutually orthogonal candidate regressors zi,t, where none matters under the
null. Formally, the DGP is:

yt = εt (23.13)

and the general, but inestimable, model can be expressed as:

yt =

N∑

j=1

δjzj,t + εt (23.14)

where δj = 0 ∀j = 1, . . . , N . We consider the analogue of the “split-half”
analysis from IIS. Thus, add the first N/2, and select those with |tδj=0| > cα at
significance level α = 1/T = 1/N . Record which were significant, and drop
them all. Now add the second block of N/2, again select those with |tδj=0| > cα
at significance level α = 1/N , and record which are significant. Finally, combine
the recorded variables from the two stages (if any), and select again at significance
level α = 1/N . At both sub-steps, on average αN/2 = 1/2 of a variable will
be retained by chance under the null, so on average αN = 1 will be retained
from the combined stage. Again, despite examining the relevance of N = T
additional irrelevant variables, almost none is retained and the statistical analysis
is 99% efficient under the null at eliminating irrelevant variables, merely costing
one degree of freedom on average.

23.3.2 More Candidate Variables Than Observations

These results can be extended to having N > T general candidate variables in
the search, where n < N are relevant.29 The k theory-determined variables are
not selected over, so are forced to be retained by the search. When the theory is
correctly specified, the costs of searching over the remaining N − k candidates
is trivial for small α, as now α(N − k) irrelevant variables will be retained by
chance and each merely costs a “degree of freedom”. The real surprise is that the
distribution of the estimates of the coefficients of the relevant variables are exactly

29 See David F. Hendry and Søren Johansen, “Model Selection when Forcing Reten-
tion of Theory Variables”, Unpublished paper, Economics Department, University of
Oxford 2010.
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the same as if no search was undertaken at all. This is because the relevant and
irrelevant variables can be orthogonalized without loss of generality, and as the
latter are irrelevant, orthogonalizing does not alter the parameters of the relevant
variables–and it is well known that estimator distributions are unaffected by the
omission or inclusion of orthogonal variables. Without an advanced mathematical
analysis, such a result is unimaginable.

Most economists and econometricians believe model selection is a pernicious
but necessary activity–as shown above, it is in fact almost costless despite N > T ,
and invaluable when needed. Their beliefs were not based on sound mathematics,
and that signals the dangers of not using powerful analytical tools. The practical
difficulty is to be sure the tool is correctly based, and relevant to the target situation,
a problem to which we now turn.

23.4 MODELS OF EXPECTATIONS

The very notation used for the mathematics of expectations in economics is inad-
vertently designed to mislead. Instead of E[xT+h|X1

T ] as above, one must write
conditional expectations as:

ET+h[xT+h|X1
T ].

Thus three time subscripts are needed: that for the date of the conditioning infor-
mation (here X1

T ); that for the date of the variable being expected (here xT+h);
and that for the distribution over which the expectation is formed (here ET+h). If
the distribution is stationary, then ET+h = ET , where the latter is the only feasible
distribution at the time the expectation is formed. Otherwise, we have a paradox if
Dxt(·) is not constant as one needs to know the whole future distribution to derive
the forecast. Worse, one cannot prove that x̃T+h|T = ET [xT+h|X1

T ] is a useful
forecast if DxT+h

(·) �= DxT (·).
Theories of expectations must face the realities of forecasting discussed above.

“Rational” expectations (RE) correspond to the conditional expectation given avail-
able information (denoted It):

yret+1 = E [yt+1 | It] . (23.15)

RE assumes free information, unlimited computing power, and the discovery of
the form of E [yt+1|It] by economic agents. If (23.15) is to be useful, it should be
written as (for a density ft+1(.)):

yet+1 = Et+1 [yt+1 | It] =
∫

yt+1ft+1 (yt+1 | It) dyt+1. (23.16)

Only then is yet+1 even unbiased for yt+1. But (23.16) requires a crystal ball for
future ft+1(yt+1|It). The best an agent can do is to form a “sensible expectation”,
yset+1, forecasting ft+1(·) by f̂t+1(·):

yset+1 =

∫
yt+1f̂t+1 (yt+1 | It) dyt+1. (23.17)
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If the moments of ft+1(yt+1|It) alter, there are no good rules for f̂t+1(·), but
f̂t+1(yt+1|It) = ft(·) is not a good choice. Agents cannot know how It will enter
ft+1(·) if there is no time invariance.

When ft+1(·) �= ft(·), forecasting devices robust to location shifts avoid sys-
tematic mis-forecasting after breaks, as illustrated above. But if agents use robust
predictors, and are not endowed with prescience that sustains an unbiased RE, then
one needs to re-specify expectations in economic-theory models. But the problem
is unfortunately even worse. Consider a very simple example–if xt ∼ IN[μt, σ

2
x],

then:

Et [xt | Xt−1] = μt

Et−1 [xt | Xt−1] = μt−1

when the mean changes, so letting εt = xt − Et−1[xt|Xt−1]:

Et [εt] = μt − μt−1 �= 0 (23.18)

shows that the conditional expectation is biased. But such a result also entails that
the law of iterated expectations does not hold inter-temporally without the addi-
tional assumption that the distribution does not shift, and is inapplicable other-
wise.30 If the distribution shifts, many of the “mathematical derivations of inter-
temporal optimization” are invalid in the same way that Euclidean calculations
are invalid on a sphere. And as with non-Euclidean geometry, a different mathe-
matics is needed depending on the shape of the relevant space, so here, different
calculations will be required depending on the unanticipated breaks experienced
by economies, the abilities of economic agents to learn what those breaks entail,
and the speeds with which they reform their plans and expectations about the fu-
ture. Thus, more powerful mathematical tools are urgently required to enable such
analyses.

23.5 CONCLUSION

The paper has considered three possible situations of the use or mis-use of math-
ematics in economics and econometrics. The first concerned the properties of
economic forecasts and forecast failure in particular, where a mathematical anal-
ysis was both essential and highly revealing. While only a specific example was
given, the analysis holds independently of how well or badly specified the fore-
casting model is, and how the process being forecast actually behaves. Location
shifts were isolated as the primary cause of forecast failure, with the myriad of
other possible model mis-specifications and data mis-measurements playing a sec-
ondary role, despite prior intuitions to the contrary.

30 As shown in David F. Hendry and Grayham E. Mizon, “On the mathematical basis of
inter-temporal optimization”, op.cit.; a non-technical discussion is provided in David F.
Hendry and Grayham E. Mizon, 2011, “What Needs Rethinking in Macroeconomics?”,
in: Global Policy, 2, pp. 176–183.
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The second situation concerned model selection when there are more candi-
date variables N than the number of observations T . Again, an understanding of
the astonishingly good properties of extended general-to-specific based procedures
would be impossible without advanced mathematical analysis. That is particularly
true of the finding that the distributions of the estimated coefficients of a correct
theory model’s forced variables are not affected by selecting over any number of
irrelevant candidate variables. Yet there are innumerable assertions in the econo-
metrics literature (and beyond) that selection is pernicious “data mining”, leads to
“over-fitting”, etc., all without substantive mathematical proofs.

The third concerned the mathematics of inter-temporal optimization and the
formation of expectations, in particular, so-called “rational expectations”, where
misleading results followed from present approaches applied to realistic economies.
Conventional notation fails to address the three different times relevant to expecta-
tions formation, namely that of the available conditioning information, of the target
variable to be forecast and of the time the expectation is formed. Consequently, the
effects of shifts in distributions over which expectations are calculated have been
hidden. Conditional expectations formed today for an outcome tomorrow need not
be unbiased nor minimum variance. The appropriate mathematics remains to be
developed, and may end being “problem specific” rather than generic. Neverthe-
less, the conclusion is inexorable: the solution is more powerful and more general
mathematical techniques, with assumptions that more closely match “economic
reality”.

Acknowledgements: This research was supported in part by grants from the Open
Society Institute and the Oxford Martin School. I am grateful to Jennifer L. Castle
and Grayham E. Mizon for helpful comments.

Economics Department and Institute for New Economic Thinking
Oxford Martin School
University of Oxford
United Kingdom
david.hendry@nuffield.ox.ac.uk



Chapter 24

Javier eCheverria

teChnomathematiCal models in the soCial sCienCes1

24.1 sCienCes and teChnosCienCes

The sciences that universities and scientific societies developed during the modern 
era underwent a radical transformation over the twentieth century. They experi-
enced a structural mutation that affects, above all, the organization of scientific 
practice, as well as the ways of producing, distributing, teaching, and using sci-
entific knowledge. As a result, the technosciences, a hybrid between science and 
technology, have appeared. Because science has changed, the philosophy of sci-
ence must also change. These are the basic hypotheses that I will use as a starting 
point for this contribution.
 Different conceptual proposals for analyzing this change have been made. 
Ziman distinguished between academic and post-academic science, for the pur-
pose of characterizing the “radical, irreversible, and worldwide transformation of 
the way science is organized and carried out”.2 Latour proposed the term techno-
science to underline the close ties between twentieth-century science and technol-
ogy and to “avoid the interminable expression science and technology”.3 In his 
actor-network theory, he also pointed out the existence of a non-human agency, 
that is, technological agency, in research activity. Since 1992, Silvio Funtowicz 
and Jerome Ravetz have been talking about a post-normal science that deals with 
problems that exceed Kuhn’s disciplinary matrixes.4 They have also insisted that, 
in these cases, scientists act in conditions of uncertainty, so scientific research is 
not subject to any kind of determinism. Ilkka Niiniluoto5 referred to the design 
sciences, a proposal that Wenceslao J. Gonzalez6 and other philosophers of science 

1 This paper has been written in the framework of the Research Project FFI 2008- 03599/
FISO financed by the Spanish Ministry of Science and Innovation.

2 John Ziman, Real Science: What It is and What It means. Cambridge UK: Cambridge 
University Press 2000, p. 7.

3 Bruno Latour, Science in Action. Baltimore: John Hopkins University 1983.
4 Silvio Funtowicz and Jerome Ravetz, “Science for the Post-Normal Age”, in: Futures, 

25, 7, 1993, pp. 739–755.
5 Ilkka Niiniluoto, “The aim and structure of applied research”, in: Erkenntnis, 38, 1, 

1993, pp. 1–21.
6 Wenceslao J. Gonzalez (Ed.), Las Ciencias de Diseño: Racionalidad limitada, predic-

ción y prescripción, A Coruña: Netbiblo 2007.

337D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_24,  
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have studied. Previously, Herbert Simon used the expression “sciences of the 
artificial” since 1969. Nowotny, Scott, Gibbons, and others7 declared that a new 
way to produce scientific knowledge has appeared, Mode 2, which is transdisci-
plinary, heterogeneous, and non-hierarchical, in contrast to the academic mode, 
which has traditionally been disciplinary, homogeneous, and hierarchical. In 1997, 
Etzko witz proposed the triple helix model (Academy, Industry, and Government), 
which he and Leydesdorff have successfully developed over the last decade.
 All of these authors, and many others devoted to studying science and tech-
nology, coincide in stating that, since the emergence of Big Science, science has 
changed radically, particularly due to the eruption of the information and com-
munications technologies (ICT). The expression e-science is another name for this 
transformation of contemporary science that is related to the emergence of the 
information society and the economy of knowledge. The conceptual proposals of 
different authors differ, because some emphasize one characteristic or property 
and others, another. What no one denies is the fact that science has changed, becom-
ing strongly tied to technology, in particular, to the ICTs.
 I think that the expression technoscience is the most adequate term for this 
new form of science. However, I do not use it as a container term that covers eve-
rything. In a previous book,8 I tried to specify the concept of technoscience, dis-
tinguishing among techniques, technologies, sciences, and technosciences. They 
all exist at present, but we must not confuse them. The conceptual framework that 
I support can be summarized as follows:
 1. From a philosophical perspective, the main difference between science and 
technoscience refers to knowledge: for science, the search for knowledge is an end 
in itself, for technoscience it is a means. Technoscientific companies and agencies 
are interested in the search for knowledge, as well as its validity, but their objec-
tives go beyond knowledge. In I+D+i systems, the lines of scientific research that 
are given priority are the ones that generate technological developments and, in the 
end, innovations. It is science when the search for knowledge continues to be the 
main objective. It is technoscience when scientific knowledge becomes a means to 
generate new technologies and innovations.
 2. Science aspires to explain the world (phenomena) and, when relevant, to pre-
dict them. Technoscience, on the other hand, aspires to transform the world, not only 
the natural world, but also the social world. Beyond the debate about explanation and 
comprehension in the social sciences, the philosophy of technoscience must deal with 
the types of social science that aspire, above all, to transform social phenomena, either 

7 Nowotny, Scott, Gibbons, and others. Helga Nowotny, Peter Scott and Michael Gib-
bons, Re-thinking Science: Knowledge and the Public in the Age of Uncertainty, 
London: Polity Press & Blackwell Publishers 2001; and Michael Gibbons, Camille 
Limoges, Helga Nowotny et al., The New Production of Knowledge. The Dynamics of 
Science and Research in Contemporary Societies, London: Sage Publications 1994.

8 Javier Echeverría, La revolución tecnocientífica, Madrid: Fondo de Cultura Económica 
2003.
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on a large or a small scale. Marketing is a very clear example of social technoscience, 
but so are designing logos, corporative images, and electoral campaigns.
 3. The sciences continue to exist, not everything is technoscience. Latour, Hot-
tois and other authors tend to state that technoscience has absorbed science. I think 
that this is not true and that we philosophers must distinguish carefully between 
sciences and technosciences, including social sciences and social technosciences. 
It is important to analyze the moment when a technoscientific discipline emerges, 
and how this happens. We will see below that the social technosciences use com-
plex, non-deterministic computing models that are quite different from traditional 
mathematical models.
 4. The transformation mentioned affects not only knowledge but, above all, 
scientific practice. On this point, I disagree with Gibbons, Nowotny, and those who 
propose Mode 2. Not only has the way of producing scientific knowledge changed, 
but the way of presenting it, evaluating it, distributing it (publishing it), storing it, 
and using it have also changed. There are abundant examples. The evaluations of 
impact indexes (Thomson Reuters) are another example of social technoscience, 
which modifies scientific practice and its valuation criteria. The same thing can be 
said about teaching science online (online campuses), about online publications 
(Scopus, ArXiv, electronic journals), about the evaluation procedures for research 
projects, and about digital repositories (Berlin Declaration 2004 in favor of the 
Open Access). The ICTs are penetrating all areas of technoscientific activity, not 
only the production of knowledge. Therefore, my hypothesis is that a technoscien-
tific revolution took place during the second half of the twentieth Century, and that 
the national I+D+i systems, whose ultimate objective is innovation, with research 
subordinated to it, have arisen as a result of this revolution.
 5. From a sociological perspective, academic science is done by scientific 
communities, as Merton showed. Thomas Kuhn even correlated the notions of 
scientific community and paradigm quite closely. Technoscience, in contrast, is 
done by technoscientific companies and agencies, who are the ones who define 
the technoscientific agendas, that is, what should be done in science, technology, 
and innovation (STI). In the economy of knowledge, scientists become knowledge 
workers, losing a large part of their traditional autonomy. Technoscientific practice 
necessarily includes internal conflicts, owing to the structure of its agency, which 
is very different from the agency of science.
 6. Therefore, in the tewnty-first Century, doing philosophy of science, or the 
history of science, is not enough. It is also necessary to do philosophy and history 
of technoscience, including a philosophy of innovation, which is not the same 
thing as the philosophy of scientific research. Neither epistemology nor methodol-
ogy are sufficient for analyzing technoscience. Above all, a philosophy of techno-
scientific practice that includes a theory of scientific and technoscientific action is 
needed, not just a theory of scientific knowledge. I feel that the notion of a techno-
scientific agenda, specifically, is a key notion, as important as the notion of scien-
tific theory is in the philosophy of science. In the case of the social technosciences, it 
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is necessary to analyze the practices of technosocial agents and companies, as well 
as their agendas, not only their theories and mathematical models, although these 
are also important.
 Independently of the divergences between different authors, hardly anyone 
doubts that science has undergone a very profound change during the twentieth 
century. Scientific research on its own is not enough for technoscience. We can 
express this second change by saying that scientific communities are no longer 
the agent-subject of science; public or private technoscientific companies, whose 
strategies are guided by the imperative of innovating, take their place. Managing 
scientific research in a business-like manner and stating that innovation is the final 
objective are two of the distinctive features of present-day technoscience.

24.2 the emergenCe of teChnomathematiCs

Technoscience arose in the USA in the 1940s in the sphere of the experimental 
sciences (Radiation Laboratories, Manhattan Project), but technomathematics 
emerged almost simultaneously (ENIAC Project of the Moore School of Pennsyl-
vania, 1944). In the first period, it focused on numerical calculation (von Neumann 
and non-lineal problems), but right from the start, it also paid attention to symbolic 
calculus (Turing and cryptology). At MIT in 1930, Vannevar Bush had built a 
differential analyzer that solved non-lineal equations that were very important in 
electric circuit theory. The German Konrad Zuse invented a universal calculator, 
the Z3, finished in 1941. Zuse’s Z4 was used in 1943 for operations against Allied 
ships in the Mediterranean.9 Another similar technomathematics project was the 
MARK I, started by Howard H. Aiken at Harvard in 1937. Aiken introduced a data 
register in that machine that later became the memory in computers. Financed by 
IBM, the MARK I was presented in 1944 and was immediately offered to the mili-
tary because of its calculating power. All of these machines were electromechanical. 
The introduction of vacuum tube technology (Atanasoff and Berry, with their ABC 
in 1939) made it possible to create the first electronic calculators, as well as a dig-
ital representation of numbers as opposed to a decimal representation.
 The construction of the ENIAC at the Moore School of Pennsylvania meant 
the integration of the abovementioned advances in technomathematics. Construc-
tion was begun in 1943, although von Neumann introduced important improve-
ments to its design in 1945. Eckert, an engineer, Mauchly, a consultant, and Gold-
stine, the military manager of the project, which was a classified project (project PX 
in the Office of Ballistic Materials) collaborated with him. The ENIAC had 17,648 
vacuum tubes, 70,000 resistances, 10,000 capacitances, 1,500 relays, and 6,000 
manual switches. It was a large, complex machine and a lot of technical abilities 

9 See Philippe Breton, Historia y crítica de la informática, Madrid: Cátedra 1989, pp. 
69–81.
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were necessary for working it. If just one single tube broke, the calculation was 
interrupted and had to be started all over. It cost a fortune, $500,000 at the time, 
but it worked at great speed, it was programmable, and it did different kinds of 
calculations. Its consumption of electricity and heat emission were enormous, so 
it had to be continuously cooled. After von Neumann joined the team, its automa-
tion improved significantly; the EDVAC was produced, and after that a saga of 
technomathematical artifacts designed according to “von Neumann architecture”. 
Financed by the United States Army, the EDVAC can be considered the first com-
puter in the present-day sense of the term.
 In later decades, technomathematics continued to develop, while at the same 
time, in parallel, mathematical research followed its own course. Branches of math-
ematics such as Algebra and Differential and Integral Calculus were expanded by 
technomathematics, through the creation of different packages for mathematical 
and symbolic computation (Macsyma, Reduce, Mathematica, SPSS, etc.). The 
same could be said about Geometry, as computers made it possible to draw and 
solve geometric figures much more easily and rapidly than the classical techniques. 
All of this mathematical software is based on mathematical knowledge, of course, 
but in order to work, it also requires technological and computer knowledge and, in 
particular, programming languages. The mathematical hardware and software not 
only increased the capacity for operating considerably; they also generated new 
mathematical objects, such as fractals, data bases, and coding, decoding, compres-
sion, and ciphering systems. The protocols for interconnecting computers online 
can, in turn, be considered canonical technomathematical artifacts. The novelty is 
that the computers carry out numerous mathematical actions better than people, 
and they can even do operations that the human brain cannot. Technomathemat-
ics is a kind of mathematics that is determined by the ICTs and, in particular, by 
digitalization and by the algorithms and machine languages that make it possible. 
Obviously, this does not mean that mathematics disappears. What happens is that 
in the mid-1940s, a new way of doing mathematics was shaped, a way that later 
was disseminated throughout all the scientific disciplines, determining them all, 
even some social sciences. This hybridization between mathematics and ICTs is 
the foundation of what I call technomathematics.
 There were important consequences to this. In Number Theory, Computa-
tional Number Theory appeared, fundamental for cryptography and for dealing 
with some classic problems such as Goldbach’s and Riemann’s conjectures. The 
majority of the problems of Lineal Algebra can be approached using computer 
programs from Computer Algebra. The same can be said of Mathematical Analy-
sis, an area where there has been great progress in its computerization. One of the 
most outstanding examples of technomathematics was the proof of the four color 
theorem in topology, especially because it introduced radical changes in one of 
the most typical mathematical actions: the action of proving, whose result is the 
proof. An important part of this proof can only be carried out by computer, so that 
technological determination also reached proofs.
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 A third technomathematical canon was the creation in the 1980s of a new 
mathematical language, TEX, designed by Knuth and widely disseminated through-
out the world. Today, mathematicians write in one of the several variants of TEX, 
all sharing one computer language. This mathematical info-writing technique has 
not eliminated the different systems of signs mathematicians use, but rather joined 
them. Another example is infography, and many more examples could be men-
tioned. In short: the history of technomathematics is waiting to be written.

24.3 mathematiCal models and teChnomodels

Mathematical models have had a very important function in modern science: on 
one hand, for representing phenomena and data and, on the other, for expressing 
scientific laws. Mathematics has contributed formal languages that have later had 
different semantic interpretations. Interpreting a formal language consists of as-
signing meanings to its symbols, so that the formulas that express axioms, laws, 
and properties will be true. In this way, mathematical formulas became the canoni-
cal expression of scientific laws, thanks to the universality, the precision, and the 
rigor of their formulations. The mathematical formulas that express the scientific 
laws of a theory, for example, Newton’s laws, do not stop at describing the trajec-
tory of falling objects. These trajectories also verify the corresponding equations, 
which provide truth value for the empirical statements. Scientific laws explain and 
predict the movements of falling objects precisely because the mathematical for-
mulas produce true statements when they are interpreted in empirical terms.
 The notion of the model became one of the main analytical tools in the 
philosophy of science. Carnap, Braithwaite, Nagel, and Suppes, among others, 
defined models as interpretations of a language or formal system, based on the 
logical theory of models and, more specifically, on the definition of Tarski, ac-
cording to which “a possible realization in which all valid sentences of a theory T 
are satisfied is called a model of T”.10 Other philosophers of science (Achinstein, 
Hesse, etc.), in contrast, drew up a notion of mathematical model that was very 
close to the way scientists use these models in their research. We should also re-
member that the philosophers of science who defended the structural conception 
(Sneed, Stegmüller, Balzer, Moulines, etc.) analyzed the structure of theories by 
distinguishing classes of models that verified the laws of the theory, as well as the  
observational statements. The same thing happened in the case of van Fraassen and 
of Giere, who gave greater importance to the notion of model than to the notion 

10 Alfred Tarski, “A General Method Proofs of Undecidability”, in: Alfred Tarski, An-
drzej Mostowski and Raphael M. Robinson (Eds.), Undecidable Theories, Amsterdam: 
North Holland 1953, p. 11.
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of theory, identifying theories with families of models.11 In short: the theory of 
models has been important not only for the logic and the philosophy of mathemat-
ics, but for the philosophy of science in general. Obviously, mathematical models 
have been much used by scientists; as Herfel emphasized: “by and large, scientists 
spend their time building models, testing models, comparing models, discussing 
models and revising models”.12

 Analytical mathematical models have been surpassed by computing sim-
ulations that are based not on formulas but on algorithms. When sufficiently 
complex systems are studied, their behavior cannot be reduced to mathematical 
formulas, not even to systems of equations and formulas, precisely because 
they are phenomena with degrees of complexity that are not polynomial or even 
exponential. Instead of formulas, it is necessary to use different algorithms to 
represent and interpret these systems, for example, in the dynamics of complex 
systems. Bush, Zuse, von Neumann, and many others designed their comput-
ing machines to be able to deal with physical problems (missile trajectories, 
explosions, critical masses) which could not be analyzed using algebraic or dif-
ferential equations, sometimes not even using statistical models, due to the large 
amount of data to be managed and the difficulty of computing these problems 
with traditional means. One of the first successes of emerging technomathemat-
ics was in the Manhattan Project, where the Montecarlo algorithm was used 
to calculate the interactions among 12 hard, mutually impenetrable spheres, an 
issue that could not be dealt with using analytical methods. Since then, compu-
tational methods have been applied to multiple issues (cosmology, elementary 
particles, fluid dynamics, wind tunnels, flight simulation, population dynamics, 
ecosystems, weather forecasting, climate change, macroeconomy, market stud-
ies, cognitive sciences, sociological surveys, migratory flows, etc.), producing 
the distinction between analytical methods and computational methods which 
is the basis of my distinction between mathematical models and technomodels. 
Computational models (technonumerical models, in my terminology) represent 
phenomena and data on computer screens, like mathematical models, but they do 
not fulfill the second function that was mentioned, that is, they do not formulate 
scientific laws because that is not their methodological objective. Technomodels 
are not built to explain phenomena, but to represent possible situations, modi-
fying the corresponding parameters. Their function is, above all, heuristic and 

11 See Bas van Fraassen The Scientific Image, Oxford: Oxford University Press 1980, 
and Ronald Giere, Explaining Science, A Cognitive Approach. Chicago: University of 
Chicago Press 1988, pp. 79–86.

12 William E. Herfel et al. (Eds.), Theories and models in scientific processes, Poznań 
Studies in the Philosophy of the Sciences and the Humanities, 44. Dordrecht: Rodopi 
1995, p. 70.
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experimental,13 although it can also be predictive without, however, resorting 
to a nomological-deductive model. Changes in the state of physical, biological, 
social, and economic systems are represented by sequences of bits, making it 
possible to control later changes and simulate what would happen in different 
initial conditions and contexts. Technomodels do not attempt to explain what 
might happen, because they work in conditions of uncertainty, but they can rep-
resent what might happen in one set of circumstances or another. This is more 
than enough in the case of the social sciences, because they provide an empirical 
basis for making decisions based on data, even though these data are simulations 
of facts, more than scientific facts in the traditional sense of the term.
 Technomodels have a different epistemic function because the final objective 
of the social technosciences is not to obtain knowledge with a truth value, but 
to transform the data, phenomena, and systems studied in an efficient manner, 
whether these systems are economic, social, semiotic, perceptual, or other ones, 
in order to work with them and modify them, having a kind of forecast of what 
can happen if one action or another is taken. As for the objects studied, the social 
technosciences deal with very complex systems and operate in non-deterministic 
conditions, and even in conditions of uncertainty. Both because of the transforma-
tional tendency of technoscience and because of the conditions of uncertainty of 
the objects and processes studied, computer simulations have shown themselves 
to be a very powerful tool to study social phenomena. Thanks to computers and 
computer simulations, the technosciences have been able to deal with very com-
plex scientific, technological, economic, and social problems which were beyond 
the scope of traditional mathematical models. This would not have been possible 
without the ICTs and this is why it is better to call this new kind of mathematical 
model the technomodel, because technologies are indispensable for working with 
these models. Scientific research has always resorted to scientific instruments, but 
in the case of the technosciences, we are not talking about simple instruments but 
authentic determinations of scientific knowledge.
 Several philosophers of science have paid attention to computing simulations, 
as a new conception of mathematical models. Stephan Hartmann stated that “al-
though simulations are therefore of considerable importance in science, philoso-
phers of science have almost entirely ignored them”.14 Frigg and Reiss, criticizing 
some authors, as Galison, Humphreys, Rohrlich and Wingsberg, said that computer 
simulations pose no significant philosophical question: “Simulations, far from 

13 Uskali Mäki, “Models are Experiments, Experiments are Models”, in: Journal of 
Economic Methodology, 12, 2, 2005, pp. 303–315; Anouk Barberousse, Simon Fran-
caschelli and Claude Imbert, “Computer simulations as experiments”, in: Synthese, 
169, 3, 2009, pp. 557–574.

14 Stephan Hartmann, “The World as a Process: Simulations in the Natural and Social 
Sciences”, in: Rainer Hegselmann et al. (Eds.), Modelling and Simulation in the Social 
Sciences from the Philosophy of Science Point of View, Dordrecht: Reidel 1996, p. 78.
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demanding a new metaphysics, epistemology, semantics and methodology, raise 
few if any new philosophical problem”.15

 This kind of statement shows, in my view, an insufficient understanding of the 
philosophy of science. Reiss and Frigg reduce it to epistemology, semantics and 
methodology (more metaphysics), excluding however the praxiology (Kotarbin-
ski) and the axiology (Rescher, Agazzi, etc.), together with the pragmatics of sci-
ence (theory of automated action, for example). For his part, Paul Humphreys has 
disagreed with Frigg and Reiss in a recent issue of the journal Synthese, saying 
that their thesis is false and implies a profound ignorance of the peculiarities of 
computer simulation methods. Their arguments are as follows:

Computational science introduces new issues into the philosophy of science because it uses 
methods that push humans away from the centre of the epistemological enterprise. Until 
recently, the philosophy of science has always treated science as an activity that humans 
carry out and analyze.16

 To my way of thinking, this kind of discussion is produced because the distinc-
tion between science and technoscience has not yet been sufficiently accepted by 
the philosophy of science, despite the recent turn toward the philosophy of scien-
tific practice. In any case, I fully support Hartmann’s and Humphreys’s proposals,  
although I prefer to use the expression technomathematical models (or tech-
nomodels) because it is more general than the expression computing simulations. 
Going back to Simon’s proposals about the new design sciences, I believe that the 
use of mathematical models characterizes science, while the predominant use of 
technomodels (including computer simulations) is one of the distinctive features 
of the technosciences.
 It is not easy to define the notion of model, as several authors have argued,17 
because of the great diversity of models that scientists use. The same is true for the 
case of technomodels. However, Hartmann18 provided a very interesting definition 
of computing simulations: “I maintain that the most significant feature of a simula-
tion is that it allows scientists to imitate one process by another process; process 
here refers solely to a temporal sequence of states of a system”.19 According to 

15 Roman Frigg and Julian Reiss, “The Philosophy of Simulation: Hot New Issues or 
Same Old Stew?”, in: Synthese, 169, 3, 2009, p. 593.

16 Paul W. Humphrey, “The Philosophical Novelty of Computer Simulation Methods”, in: 
Synthese, 169, 3, 2009, p. 616.

17 See, for example, Joseph Agassi, “Why there Is no theory of models?”, in: William 
E. Herfel et al. (Eds.), Theories and models in scientific processes, Poznań Studies in 
the Philosophy of the Sciences and the Humanities, 44, Dordrecht: Rodopi 1995, pp. 
17–26.

18 Stephan Hartmann, ibid.
19 Robert Axelrod, “Advancing the Art of Simulation in the Social Sciences”, in: Rosario 

Conte, Rainer Hegselmann and Pietro Terna (Eds.), Simulating Social Phenomena, 
Berlin: Springer 1997, p. 27.
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this definition, a physical, biological, economic, social, cognitive or other process 
can be simulated using computers, because digitalization and programming lan-
guages cause the numerical simulations of a specific object or state to change their 
state, in turn, which is shown, perceptually, as a modification of the images on the 
screen. Therefore, technomodels are not mathematical formulas or formal lan-
guages, but sequences of bits that are represented by artificial images and sounds 
that resemble the objects and processes studied, in physics or in chemistry or in 
the social sciences. Once they are constructed, technomodels can be controlled 
and operated, so that we can represent natural and social processes using their 
corresponding digital representations, which change as time goes by. This makes 
it possible to represent different possible situations, not only the ones that actually 
occur. Without being predictive in the nomological-deductive sense, technomodels 
make it possible to represent the evolution of different types of systems, as well as 
the changes in their states, all independently of the complexity of the phenomena 
studied. Technomodels are interesting because they make it possible to fully con-
trol the computer processes that take place inside the computers, at least as far as 
the results go. By modifying the parameters and the algorithms, we cannot manage 
to know what is true, nor can we formulate scientific laws, but we can forecast, 
to a certain extent, what will happen in the digitally-represented systems, in one 
set of circumstances or another. Not much more is needed to make decisions and, 
therefore, to prefer one set of representations over another, in the social sciences. 
The different alternatives can be evaluated, not according to the truth values of the 
model theory, but according to other values, such as precision, the efficiency of the 
algorithms, complexity, fruitfulness, empirical fit, etc. In short, technomodels and 
technosciences refer to other kinds of values which are not only epistemic but also 
technological, economic, political, and social.
 I conclude that the philosophy of technoscience should introduce new tools 
for conceptual analysis, for example, the notions of technoscience and technomodels. 
A good number of the models generated by the ICTs cannot be considered to be 
mathematical models, because they are not interpretations of formal languages 
that express true or even likely laws and properties. As Axelrod says, “exploratory 
models should be judged by their fruitfulness, not by their accuracy”.20 The social 
technosciences intend to be effective and fruitful, not true. This is because they 
work with assemblies and sequences of signs, not with statements and proposi-
tions. The traditional categories of the philosophy of science are insufficient for 
technoscience.

20 Ibid., p. 22.
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Chapter 25

DonalD Gillies

the Use of MatheMatiCs in physiCs anD eConoMiCs:
a CoMparison

25.1 the Use of MatheMatiCs in physiCs

The aim of this paper is to compare the use of mathematics in physics and in eco-
nomics. So I will begin in the first section by considering the case of physics. I will 
claim that mathematics has been used in physics to obtain (i) precise explanations 
and (ii) successful predictions.
 A “precise explanation” can be characterised as follows. Suppose physicists are 
studying a particular phenomenon, and connected with this phenomenon there is a 
parameter, Θ say, which can be measured very precisely. If there is a mathematical 
theory, T say, of the phenomenon in question from which a theoretical value for Θ 
can be derived, and, if this theoretical value agrees with the observed value within 
the limits of experimental error, then T gives a precise explanation of Θ.
 A famous example of a precise explanation concerned the motion of the peri-
helion of the planet Mercury. The perihelion of a planet is the point at which it is 
closest to the Sun. The motion of the perihelion of Mercury was calculated us-
ing Newtonian theory in the 19th century, but the theoretical value differed from 
the observed value by a small amount. Newcomb in 1898 gave the value of this 
discrepancy as 41.24˝ + 2.09˝ per century; that is, less than an eightieth part of 
a degree per century. This is a tiny anomaly, and yet even this anomaly was suc-
cessfully explained by the general theory of relativity which Einstein introduced 
in 1915. Einstein’s calculations using his new mathematics gave a value for the 
anomalous advance of the perihelion of Mercury as 42.89˝ per century – a figure 
well within the bounds set by Newcomb.
 Let us now turn to successful predictions. A very nice example here is Max-
well’s prediction of the existence of radio waves. James Clerk Maxwell carried out 
research into electricity and magnetism in the period from 1855. He published his 
results in definitive and rigorous form in his famous Treatise on Electricity and 
Magnetism in 1873. In this work he formulated a number of equations, now known 
as Maxwell’s equations, which apply to electrical and magnetic phenomena. One 
consequence of these equations was that there should exist electromagnetic waves 
travelling at the velocity of light. This led Maxwell to postulate that light was an 
electromagnetic radiation. However, his equations also indicated that there should 

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_25,  
© Springer Science+Business Media B.V. 2012
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be electromagnetic waves having a much longer wavelength than light. These 
electromagnetic waves, now known as radio waves, were generated by Heinrich 
Hertz in 1887. It is worth noting that mathematics played an essential role in the 
work of both Maxwell and Hertz. Maxwell’s prediction of radio waves was only 
possible using his complicated mathematical equations, and Hertz also used Max-
well’s equations to devise a method for generating radio waves.
 Another example of the use of mathematics in physics to obtain a successful 
prediction is provided by Pauli’s prediction of the existence of the neutrino. Pauli 
postulated the existence of a new particle in 1930 as a result of his mathematical 
study of the radioactive phenomenon of β decay. Pauli’s mathematical calculations 
showed that the laws of conversation of energy, momentum, and angular momen-
tum were not satisfied in β decay, if account was taken only of the particles which 
had so far been observed. Pauli therefore postulated that there must be a hitherto 
unobserved particle, whose characteristics would preserve the conservation laws. 
This particle was named “the neutrino” by Fermi in 1934 when he developed Pau-
li’s theory of β decay. Neutrinos were detected for the first time in 1956.
 We see from these examples, and of course many more could be given, that 
mathematics has been used in physics to obtain precise explanations and success-
ful predictions. Let us now turn to the case of economics.

25.2 A CoMpliCation CaUseD by the Many Different 
sChools of eConoMiCs

Economics presents a complication which does not occur in physics. There is a 
consensus within the physics community about the fundamental principles of their 
subject. Virtually all contemporary physicists accept relativity theory and quantum 
mechanics. In Kuhnian terms they share a paradigm. The situation is very differ-
ent in economics. The economics community is divided into different schools. The 
members of each of these schools may indeed share a paradigm, but the paradigm 
of one school can be very different from that of another. Moreover the members of 
one school are often extremely critical of the views of members of another school.
The school of economics which has the most adherents at present is neoclassical 
economics. The majority of economists are neoclassical, and this approach can 
justly be referred to as the mainstream. Indeed Weintraub says:

When it comes to broad economic theory, most economists agree. … ‘We’re all neoclas-
sicals now, even the Keynesians’, because what is taught to students, what is mainstream 
economics today, is neoclassical economics.1

1 E. Roy Weintraub, “Neoclassical”, in: David R. Henderson (Ed.) The Fortune Encyclo-
pedia of Economics, New York: Warner Books 1992. Quotations are from the online 
version in The Concise Encyclopedia of Economics, Library of Economics and Lib-
erty, http://www.econlib.org, 2002, p. 1. (The page numbers are from an A4 print-out 
of the article.)
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There is some truth in what Weintraub says here, and yet he also exaggerates in 
some respects. While most economists are indeed neoclassicals, there is a small, 
but very vocal, minority who reject the neoclassical approach completely. They 
are known as heterodox economists. Weintraub is also correct to say that some 
Keynesians do accept neoclassical economics. Versions of Keynes’ original theory 
have been produced which fit in with the neoclassical framework. This is known 
as the neoclassical synthesis. However, Keynes himself did not accept neoclassical 
economics, and many Keynesians both in the past and today have been sharply 
critical of neoclassical economics.
 Of course Weintraub is aware of this, and he goes on to say:

Some have argued that there are several schools of thought in present-day economics. They 
identify (neo)-Marxian economics, neo-Austrian economics, post-Keynesian economics, 
or (neo)-institutional economics as alternative metatheoretical frameworks for construct-
ing economic theories. To be sure, societies and journals promulgate the ideas associated 
with these perspectives. … But to the extent these schools reject the core building blocks 
of neoclassical economics … they are regarded by mainstream neoclassical economists 
as defenders of lost causes or as kooks, misguided critics, and antiscientific oddballs. The 
status of non-neoclassical economists in the economics departments in English-speaking 
universities is similar to that of flat-earthers in geography departments: it is safer to voice 
such opinions after one has tenure, if at all.2

One can certainly agree with Weintraub that it is difficult for heterodox economists 
to obtain permanent posts in universities, and that, even if they do obtain such a 
post, they may well be treated badly by their neoclassical colleagues. However, 
despite these handicaps, there still remain a significant number of heterodox econ-
omists who are active in the academic world. They are divided into a number of 
schools. Leaving out some of the “neos”, Weintraub mentions: Marxist, Austrian, 
Post-Keynesian, and Institutionalist economists, and one could add some more. 
There are Sraffian, or neo-Ricardian economists, who are followers of the Italian 
economist Sraffa who worked at Cambridge with Keynes, but developed his own 
system. There are also evolutionary economists and economists who use complex-
ity theory.
 Weintraub states correctly that neoclassical economists have a low opinion of 
heterodox economists, but equally most heterodox economists have a low opin-
ion of neoclassical economics. Every few years a book appears by one or more 
heterodox economists denouncing neoclassical economics as intellectual rubbish. 
A well-known example of this genre is Steve Keen, Debunking Economics. The 
Naked Emperor of the Social Science.3 Steve Keen is a Sraffian economist. The 
economics which he debunks is neoclassical economics. According to him it is 
like the naked emperor of Hans Christian Andersen’s fairy tale. Another more 

2 Ibid., pp. 2–3.
3 Steve Keen, Debunking Economics. The Naked Emperor of the Social Science, London 

& New York: Zed Books 2001.
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recent example is Edward Fullbrook, A Guide to What’s Wrong with Economics.4 
This is a collection of papers by contributors most of whom criticize neoclassical 
economics very sharply. The general scene in economics then, with its various 
schools which criticize each other harshly, is quite different from that in physics. 
There just is no group of heterodox physicists who spend their time denouncing 
relativity theory and quantum mechanics as valueless theories.
 The situation in economics which I have just sketched makes it difficulty to 
give a simple answer to the question of how mathematics is used in economics be-
cause different schools of economics have very different attitudes to mathematics. 
There is one point on which nearly all economists agree, namely that mathematical 
statistics is useful for analysing economic data. However, when it comes to the use 
of mathematics in constructing economic theories to explain the data, opinions 
differ. Let us begin with the neoclassical school. The neoclassicals have from the 
start been very favourable to the use of mathematics in economics. Indeed the first 
neoclassical economist, Jevons, declared that economics should be a mathematical 
science. This was at a time when mathematics was not much used in economics. So 
the neoclassicals were responsible for the mathematization of economics.5 Most 
neoclassical economists today use a great deal of mathematics in their work.
 The mature Keynes, however, had a very different attitude to the use of mathe-
matics in economics from the neoclassicals. Keynes started his career as a neoclas-
sical economist, but he abandoned this approach because he thought that neoclas-
sical economics was unable to explain the Wall Street crash of 1929, and the great 
depression of the 1930s. However, Keynes abandoned not only neoclassical theory, 
but also the neoclassical use of mathematics, though, as a wrangler in mathemat-
ics at Cambridge, he was himself well-trained in mathematics. Keynes reached 
the conclusion that mathematics was not an appropriate tool for economics, and 
indeed that neoclassical economists were led astray by their use of mathematics. In 
his most famous book, perhaps the most famous work of economics in the twenti-
eth century, the General Theory of 1936, Keynes uses very little mathematics.
 Most members of the Post-Keynesian school follow Keynes in rejecting the 
use of mathematics in economic theory, though, the Keynesians who accept the 
neoclassical synthesis mentioned earlier, are prepared to used mathematics.
 The Sraffian school are happy to use mathematics in economic theorising. 
Sraffa himself wrote a sophisticated work of mathematical economics (Produc-
tion of Commodities by means of Commodities).6 Keen, who is a Sraffian, strongly 

4 Edward Fullbrook (Ed.), A Guide to What’s Wrong with Economics, London: Anthem 
Press 2004.

5 For further details see Margaret Schabas, A World Ruled by Number. William Stanley 
Jevons and the Rise of Mathematical Economics. Princeton: Princeton University Press 
1990.

6 Piero Sraffa, Production of Commodities by means of Commodities. Cambridge: Cam-
bridge University Press 1960.
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rejects neo-classical economics in his 2001 book,7 but in Chap. 12 of the book, 
wittily entitled: “Don’t shoot me I’m only the piano”, he argues that the use of 
mathematics by the neoclassical school is not the problem, and that mathematics 
has a legitimate use in economic theory. The Austrian economists, while sharing 
with neoclassical economists a love and admiration for the market, hold that there 
is little or no role for mathematics in economic analysis.
 In a short paper like this, I cannot analyse in detail the attitudes towards math-
ematics of all the various schools in economics. So for the rest of the paper, I will 
focus exclusively on the use of mathematics in mainstream, that is, neoclassical, 
economics. As the present section has indicated, this is a considerable simplifica-
tion, but it is not altogether valueless, since, the majority of economists are neo-
classical economists, and the overwhelming majority of mathematical economics 
has been carried out within the neoclassical paradigm.

25.3 the Use of MatheMatiCs in MainstreaM 
(neoClassiCal) eConoMiCs

Neoclassical economics began in the nineteenth century, but, in this paper, I will 
confine myself to neoclassical economics since the Second World War. In Sect. 25. 1 
I argued that mathematics has been used in physics to obtain precise explanations 
and successful predictions. This naturally raises the questions of whether the use 
of mathematics in mainstream economics since 1945 has produced any precise 
explanations or successful predictions. My own reading of the literature of neo-
classical economics has suggested the following conjecture. The use of mathemat-
ics in neoclassical economics since 1945 has produced no precise explanations or 
successful predictions. This seems to me the main difference between the use of 
mathematics in physics and the use of mathematics in neoclassical economics.
 I say that this is a conjecture, and it is indeed a conjecture which is difficult to 
establish. To do so in a strict sense, a researcher would need to read every single 
paper and book on mathematical neoclassical economics written since 1945, and 
to check whether this work contains a precise explanation or a successful predic-
tion. This is something which I have not done, and which would be a virtually 
impossible task. The best that can be done is to propose a conjecture, and to invite 
others to produce counter-examples, and I would certainly be very happy if anyone 
could send me an alleged counter-example to the conjecture for consideration.
However, although it is very difficult to establish this conjecture, it is nonetheless 
possible to produce some evidence supporting it, and this is what I propose to do 
in the rest of the paper. My idea is to examine the most well-known works of a  
selection of the most famous neoclassical economists in the period from 1945 

7 Cf. Steve Keen, ibid.
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to the present. Surely if precise explanations and successful predictions have  
indeed been produced by mathematical neoclassical economists, they are likely 
to be found in a sample of this kind rather than in the papers of less well-known 
economists, perhaps published in obscure journals. So if our sample yields no 
examples of precise explanations or successful predictions, this provides support 
for my conjecture.
 It is easy to select a sample of well-known neoclassical economists since Nobel 
Prizes for economics have been awarded since 1969, and a good number of them 
have gone to practitioners of mathematical neoclassical economics. Actually Nobel 
himself did not create a prize in economics, but in 1968 Sweden’s central bank 
established a prize in economics in memory of Alfred Nobel.
 I have chosen a sample of four mainstream mathematical economists who 
won the Nobel Prize in economics. They are the following, arranged by the date at 
which they won the Nobel Prize.

Name Year of Nobel Prize in Economics

Paul A. Samuelson 1970

Kenneth J. Arrow 1972

Gerard Debreu 1983

Edward C. Prescott 2004

I will now examine some of their best-known works (books or papers) to see 
whether they contain any precise explanations or successful predictions.8

 Let us start with Paul Samuelson. Perhaps his most famous work is his book 
Foundations of Economic Analysis.9 This is one of the classics of mathematical 
economics and has been widely used for teaching purposes in elite universities. 
Let us ask how it compares with classics of mathematical physics. As we have 
seen, one of the great successes of mathematical physicists consisted in their be-
ing able to use mathematics to calculate from their theories results which could 
be compared to observational data and which were found to agree with observa-
tional data to an often amazingly high degree of accuracy. Now if mathematical 
economists are even to begin to emulate this success, the first step must be to use 
mathematics to calculate from their theories results which could be compared to 
observational data. The extraordinary thing is that Samuelson in his classic book 
does not even take this first step. The book consists, in the 1963 edition, of 439 

8 In preparing this part of the paper I was greatly helped by my wife, Grazia Letto-
Gillies, who is an economist. I am also grateful to Guy Lipman who introduced to the 
equity premium puzzle, and drew my attention to the work of Mehra and Prescott cited 
below.

9 Paul Samuelson, Foundations of Economic Analysis, Cambridge: Harvard University 
Press 1947.
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pages almost all of them filled with mathematical formulas, but not even one  
result is derived which could be compared with observational data. Indeed there is 
no mention of observational data in the entire book. One has to conclude that this 
book, far from emulating the successes of mathematical physics, seems more like 
a work of pure mathematics which lacks any empirical content whatever.
 Let us now go on to consider Kenneth Arrow and Gerard Debreu. A joint 
paper, entitled: “Existence of an Equilibrium in a Competitive Economy”, which 
they published in 1954 in Econometrica is regarded as one of the seminal papers 
in contemporary mathematical neoclassical economics. To explain why this paper 
has such a central importance for contemporary neoclassical economists, we must 
introduce the concept of general equilibrium theory.
 Once again it is worth quoting Weintraub’s clear and concise account. He 
says:

Neoclassical economists conceptualized the agents, households and firms, as rational ac-
tors. Agents are modelled as optimizers who were led to ‘better’ outcomes. The resulting 
equilibrium was ‘best’ in the sense that any other allocation of goods and services would 
leave someone worse off.10

In a neoclassical general equilibrium model, we have firms which arrange their 
production in order to maximize their profits, given the existing technology; and 
households which arrange their consumption in order to maximize their utility, 
given their income. It is then shown that, if there is a market with free competition, 
this behaviour leads to an equilibrium which is Pareto-optimal. The conclusion 
which is drawn from this result is that any interference with a freely competitive 
market will produce a sub-optimal outcome.
 The general equilibrium approach was introduced by Walras, and it has be-
come the core of the neoclassical paradigm. This explains incidentally why the 
neoclassicals had to introduce mathematics, because it is impossible to consider 
the maximisation of sums of quantities under constraints without using calculus. 
Walras did indeed represent his economy as a system of simultaneous equations, 
but he was unable to show that these equations have a solution. The search for a 
solution was a problem which he bequeathed to his successors.
 Let us now examine what contribution Arrow and Debreu made to this prob-
lem in their famous 1954 paper. They begin by saying that it has been established 
that a competitive equilibrium, if it exists, is Pareto-optimal. In their words:

It is well known that, under suitable assumptions on the preferences of consumers and the 
production possibilities of producers, the allocation of resources in a competitive equilib-
rium is optimal in the sense of Pareto (no redistribution of goods or productive resources 
can improve the position of one individual without making at least one other individual 

10 E. Roy Weintraub, Ibid., p. 3.
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worse off), and conversely every Pareto-optimal allocation of resources can be realised by 
a competitive equilibrium …11

However, it still needs to be established that a competitive equilibrium exists. They 
then go on to prove two theorems concerning the existence of a competitive equi-
librium.
 One initial point which could be made is that an equilibrium, if it exists, might 
be unstable. That is to say, if the economy moved for a moment into the equilib-
rium state, a slight disturbance would move it immediately away from equilibrium. 
If policy conclusions are to be drawn, it needs to be shown that the economy moves 
into a stable equilibrium, since an unstable equilibrium would hardly be a satisfac-
tory outcome. Yet Arrow and Debreu do not show that their equilibrium is a stable 
one. They say:

Neither the uniqueness nor the stability of the competitive solution is investigated in this 
paper. The latter study would require specification of the dynamics of a competitive market 
as well as the definition of equilibrium.12

The next thing we have to examine is the realism of the assumptions under which 
the two theorems are proved, since if the assumptions are quite unrealistic, there 
is no reason to suppose that the theorems will hold for any actual competitive 
market. Theorem I is the following:

“For any economic system satisfying Assumptions I-IV, there is a competitive 
equilibrium”.13

But what are these assumptions? Curiously enough Arrow and Debreu themselves 
state that one of them (assumption IV) is clearly unrealistic. They say:

The second half of IV.a. asserts in effect that every individual could consume out of his ini-
tial stock in some feasible way and still have a positive amount of each commodity available 
for trading in the market. This assumption is clearly unrealistic.14

The assumption in effect is that every individual in the economy possesses a posi-
tive amount of every commodity produced in that economy. One could hardly 
imagine an assumption so obviously false and so outrageously unrealistic. The 
need for such an assumption casts very great doubt on whether theorem I could be 
successfully applied to any competitive market.
 Arrow and Debreu admit that this is the case, and they try to correct the situ-
ation by proving their Theorem II which states:

11 Kenneth Arrow and Gerard Debreu, “Existence of an Equilibrium for a Competitive 
Economy”, in: Econometrica, 22, 3, 1954, p. 265.

12 Ibid., p. 266.
13 Ibid., p. 272.
14 Ibid., p. 270.
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“For an economic system satisfying Assumptions I-III, IV′, and V-VII, there is a 
competitive equilibrium”.15

Here assumption IV is replaced by IV´, and three additional assumptions V-VII 
are added. But what is the new assumption IV′? Arrow and Debreu explain it as 
follows:

As noted … Assumption IVa, which states in effect that a consumption unit has initially 
a positive amount of every commodity available for trading, is clearly unrealistic, and a 
weakening is very desirable. … IV′.a. is a weakening of IV.a.; it is now only supposed that 
the individual is capable of supplying at least one type of productive labor.16

However, Arrow and Debreu immediately go on to describe a case in which the 
new assumption IV′ is not satisfied. This is what they say:

It is easy to see … how an equilibrium may be impossible. Given the amount of comple-
mentary resources initially available, there will be a maximum to the quantity of labor that 
can be employed in the sense that no further increase in the labor force will increase the 
output of any commodity. … as real wages tend to zero, the supply will not necessarily be-
come zero; on the contrary, as real incomes decrease, the necessity of satisfying more and 
more pressing needs may even work in the direction of increasing the willingness to work 
despite the increasingly less favorable terms offered. It is, therefore, quite possible that for 
any positive level of real wages, the supply of labor will exceed the maximum employable 
and hence a fortiori the demand by firms. Thus, there can be no equilibrium at positive lev-
els of real wages. At zero real wages, on the contrary, demand will indeed by positive but of 
course supply of labor will be zero, so that again there will be no equilibrium.17

This counter-example to one of their own assumptions, concerns an economy, suf-
fering from chronic unemployment, in which the firms cannot increase their output 
of any commodity by employing more workers. For such an economy, many of the 
unemployed workers will be unable to supply productive labor, and so assump-
tion IV′ will not be satisfied. Actually this case could easily occur for many real 
competitive economies. For example, many developing economies may often be 
in this situation.
 We see from this that it is very doubtful whether the general equilibrium mod-
els presented by Arrow and Debreu apply to any real world competitive markets. 
One might therefore expect that the two authors would go on to compare their 
models with data supplied by actual competitive markets to see if agreement can 
be found. However, they do not do this. On the contrary, they behave exactly like 
Samuelson. They do not derive even one result which could be compared with 
observational data, and indeed do not mention observational data in their paper.

15 Ibid., p. 281.
16 Ibid., pp. 279-80.
17 Ibid., p. 281.
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Our next Nobel Prize laureate is Edward C. Prescott who won the Nobel Prize 
for economics in 2004. His most famous paper, entitled: “The Equity Premium. 
A Puzzle”, was written jointly with Rajinish Mehra and published in 1985. It is 
what is called a seminal paper and gave rise to a very considerable literature. In 
this paper an attempt is made to compare an Arrow-Debreu general equilibrium 
model of an economy with data obtained from a real economy, namely the US 
economy in the period 1889–1978. I will now give a brief account of the contents 
of this paper.18

 Let me first explain what is meant by the equity premium. Investors can put 
their money into short-term virtually default-free debt, such as, to give Mehra and 
Prescott’s own example,19 ninety-day U.S. Treasury Bills; or they can buy equities, 
i.e. shares in companies. Now, as Mehra and Prescott say: “Historically the aver-
age return on equity has far exceeded the average return on short-term virtually 
default-free debt”.20

 The difference in average returns is known as the equity premium, or some-
times as the equity risk premium. The latter expression arises because it is thought 
that it is a greater risk to buy equities than virtually riskless government securities. 
This greater risk can, however, be rewarded by the equity risk premium.
 Mehra and Prescott begin by estimating the equity premium for the U.S. econ-
omy in the period 1889–1978. Their results are as follows:

The average real returns on relatively riskless, short-term securities over the 1889–1978 
period was 0.80 percent. … The average real return on the Standard and Poor’s 500 Com-
posite Stock Index over the ninety years considered was 6.98 percent per annum. This leads 
to an average equity premium of 6.18 percent (standard error 1.76 percent).21

They then build a model of the Arrow-Debreu General Equilibrium type to try to 
explain this observed value. Their model has five parameters: α, β, μ, δ, and φ. β is 
by definition in the range 0 < β < 1. μ, δ, and φ were estimated from: “the sample 
values for the U.S. economy between 1889–1978. … The resulting parameter val-
ues were μ = 0.018, δ = 0.036 and φ = 0.43”.22 This leaves the parameter α which 
theoretically could take any value in the range 0 < α < ∞. The meaning of this 
parameter is explained as follows: “The parameter α … measures peoples’ will-
ingness to substitute consumption between successive yearly time periods …”23 

18 Cf. Rajish Mehra and Edward Prescott, “The Equity Premium – A Puzzle”, in: Journal 
of Monetary Economics, 15, 1985, pp. 145–161.

19 Cf. Ibid., p. 147.
20 Ibid., p. 145.
21 Ibid., pp. 155–6.
22 Ibid., p. 154.
23 Ibid., p. 154.
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Mehra and Prescott go on to quote a series of estimates of a by a number of differ-
ent authors.24 These estimates are as follows:

Arrow (1971) α ≈ 1

Tobin and Dolde (1971) α ≈ 1.5

Friend and Blume (1975) α ≈ 2

Kydland and Prescott (1982) 1 < α < 2

Altug (1983) α ≈ 0

Hildreth and Knowles (1982) 1 < α < 2

Kehoe (1984) α ≈ 1

These seven estimates all agree on putting α in the range 0 ≤ α ≤ 2. In the light of 
this, Mehra and Prescott put the following restriction on α:

Any of the above cited studies can be challenged on a number of grounds but together they 
constitute an a priori justification for restricting the value of α to be a maximum of ten, as 
we do in this study. This is an important restriction, for with large α virtually any pair of 
average equity and risk-free returns can be obtained by making small changes in the process 
on consumption. With α less than ten, we found the results were essentially the same for 
very different consumption processes, provided that the mean and variances of growth rates 
equalled the historically observed values.25

So, after all this work of setting up the model and estimating the parameters, what 
result was obtained? Mehra and Prescott state it as follows: “The largest premium 
obtainable with the model is 0.35 percent, which is not close to the observed 
value”.26

 The value obtained from the model is certainly very far from the observed 
value which was 6.18 % (standard error 1.76 %). However, the situation is really 
worse even than this statement suggests. The maximum value of 0.35 percent was 
only obtained with an average risk free rate of 4 %. If we set the average risk free 
rate to its empirical value of 0.8 %, the average equity premium drops to zero. 
Mehra and Prescott attempted to alter this result by varying the other parameters 
(μ, δ, and φ), but without success.
 This is clearly not a precise explanation of an observed parameter. It is a result 
which is completely wrong. Mehra and Prescott’s model gives an equity premium 
of zero, even though they say at the beginning of their paper that historically it has 
been large.
 My survey of well-known works by four famous mathematical neoclassical 
economists who all won the Nobel Prize for economics, has not revealed any 

24 Ibid., p. 154.
25 Ibid., pp. 154–5.
26 Ibid., p. 156.
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precise explanations or successful predictions. This supports my conjecture that 
the use of mathematics in mainstream (or neoclassical) economics has not pro-
duced any precise explanations or successful predictions. This, I would claim, is 
the main difference between neoclassical economics and physics, where both pre-
cise explanations and successful predictions have often been obtained by the use 
of mathematics.

Department of Science and Technology Studies
University College London
Gower Street
WC1E 6BT, London
United Kingdom
donald.gillies@ucl.ac.uk
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Chapter 26

Daniel anDler

MatheMatiCs in Cognitive sCienCe

abstraCt

What role does mathematics play in cognitive science today, what role should 
mathematics play in cognitive science tomorrow? The cautious short answers are: 
to the factual question, a rather modest role, except in peripheral areas; to the nor-
mative question, a far greater role, as the periphery’s place is reevaluated and as 
both cognitive science and mathematics grow. This paper aims at providing more 
detailed, perhaps more contentious answers.

26.1 Clearing the grounD: MatheMatiCs, MoDels,
anD Cognitive sCienCe

Cognitive science and mathematics do not relate to one another as two well-
 defined, stable entities: they evolve and in fact co-evolve. This of course happens 
whenever a new science starts looking for help from mathematics. Take physics, or 
economics: in both of these cases, mathematics has profoundly shaped the emerg-
ing science, and reciprocally the science has impacted mathematics by making it 
develop some specific tools (which then become part of a new branch which can be 
used elsewhere).1 But cognitive science resembles biology more than these other 
disciplines: at least up until recently, mathematics was not seen by a majority of 
cognitive scientists as having an important role to play in their field. Unlike biol-
ogy however, cognitive science is hardly a mature discipline, in fact it is more of a 
loose federation of research programs, still searching for unifying principles.
 The very fact that mathematics has historically been peripheral to cognitive sci-
ence, and cognitive science to mathematics, makes it imperative not to assume that 
the interaction must involve ‘core’ areas of both field. Logic was never, and argu-
ably still is not a core area of mathematics, yet it was for a long time, and it remains 
to a large extent, suitably extended, the main representative of mathematics within 

1 This converse influence is of course much greater in the case of physics than in the 
case of economics: a large part of mathematics owes its existence to the requirements 
of physics, while the branches of mathematics which were developed in response to the 
specific needs of economics are few.
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cognitive science. Symmetrically, vision and motor control are not core areas of 
cognitive science, nor is the physiology of the single neuron or of cortical columns, 
yet they are the main recipients of knowledge stemming from such core areas of 
mathematics as functional analysis, topology, dynamical systems, group theory or 
probability. We should therefore keep an open mind as to what belongs to mathe-
matics or cognitive science. Regarding the former, we should not rule out of bounds 
areas that at present lay at the periphery (say, logic, graph theory, computational 
geometry or theoretical computer science). Regarding the latter, we should refrain 
from imposing upon it some preconceived structure, with (cognitive) neuroscience, 
or artificial intelligence, or developmental psychology, or generative linguistics at 
its center, and, for example basic neuroscience, computational linguistics, artifi-
cial intelligence or motor coordination in subordinate positions. Cognitive science 
is forever reconfiguring and does not seem any closer to unification than when it 
emerged some 60 years ago. Only its nominal object, loosely defined as the con-
junction of the mind and the brain, has remained fixed, with an increased emphasis, 
in the last couple of decades, on the context provided by the body.

Now that I have somewhat narrowed down the relata, I should say something 
about the relation(s) to be examined.

First, among the applications of mathematics to cognitive science, we need 
to distinguish those that merely (though perhaps importantly) impact one of the 
component disciplines or sub-disciplines from those that directly impact, or claim 
to impact, or may impact the enterprise as a whole, in its general methodology.

A second useful distinction we may wish to make is the following. Among 
the mathematical tools and techniques deployed in the various areas of cognitive 
science, some are of such general scope as to be equally applicable to areas uncon-
nected to cognitive science: for example, statistical methods for the aggregation 
and assessment of experimental data that are extensively used in developmental 
psychology, in linguistics, in neuroscience, in neuropsychology, etc., but have no 
relevance to these areas qua members of the cognitive science federation: they 
serve the same purpose as they do in any one of the so-called special sciences. On 
the other hand, certain mathematical tools seem to have a significant impact on 
the content, or the conceptual structure, of the discipline that deploys them. The 
distinction is not necessarily sharp: the mathematics of neuroimaging, for exam-
ple, although quite general – it works for medical imagery and many other kinds 
of imagery – significantly impacts cognitive neuroscience and in particular raises 
specific methodological problems. It has also been argued by Gigerenzer that the 
tools we use sometimes evolve into a structural principle or a general heuristic for 
the field.2 Nonetheless, as a first approximation, it is both useful and feasible to 
concentrate on the second sort of mathematical application.

Third, we can ask whether mathematical modeling – the production of 
 mathematical models of cognitive phenomena – exhausts the topic at hand, or 

2 Gerd Gigerenzer, “From Tools to Theories: A Heuristic of Discovery in Cognitive Psy-
chology”, in: Psychological Review 98, 2, 1991, pp. 254–267.
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whether mathematics can relate to cognitive science in a different way. The thought 
would be that mathematics provides, could or should provide, a framework for 
cognitive science; which would then be, or become, a fully mathematized sci-
ence, in the way of physics for example. If we take our lead from the “queen of 
science”, taken at the most elementary level of sophistication, we can for example 
distinguish between, on the one hand, calculus as a mathematical method (whose 
centrality need not be stressed), and on the other, the differential equations of the 
Earth-Moon system, or of the tides, or of the propagation of heat in a metallic 
bar: these are mathematical models of physical phenomena. The two are obviously 
related, and no less obviously distinct. Perhaps a helpful metaphor might be that 
calculus is, or is part of the language of physics, while models are descriptions 
or representations couched in that language. Alternatively, we could perhaps say 
that mathematics is constitutive of physics, as we know it today, with the con-
sequence that a model in physics is almost by definition a mathematical object; 
while mathematics is not constitutive, e.g., of biology, whose models (moreover) 
are infrequently mathematical objects. Yet another way in which the difference is 
made manifest is that in physics, models are theories; in cognitive science (as in 
biology), models (in most approaches explored today) never rise to the status of 
theories – the one major exception being the proposal by classical AI to regard a 
computer program as a theory.3

Finally, we might want to set up a continuum between two polar situations. 
On one end, we would find “deep” mathematics (mathematical theories with con-
ceptual depth, wide scope, powerful techniques) imparting intelligibility on some 
deep questions in cognitive science. On the other end, we would find simple math-
ematics used to describe or systematize fairly limited domains.

These four distinctions, though in large part conceptually independent, rather 
naturally give rise to two clusters of properties, characteristic of two opposing 
stances. The mathematically modest perspective is content with viewing math-
ematics as a toolbox providing methods, and material, some quite general, some 
more domain-specific, for opportunistically constructing models, piecemeal, of 
various cognitive phenomena at various levels of description. The mathematically 
ambitious perspective aims at couching cognition, so to speak, in the language 
of mathematics, and thereby revealing the deep structure of the mental realm, in 
which the piecemeal models of specific functions obtained from detailed empirical 
work would be seen to find their natural place.

3 See, e.g., Herbert Simon, “Artificial Intelligence: An Empirical Science”, in: Artificial 
Intelligence 77, 1995, p. 97: “The theory is no more separable from the program than 
classical mechanics is from the mathematics of the laws of motion”.
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26.2 FroM prehistoriCal to postMoDern Cognitive sCienCe:
Five stages

As is well known, cognitive science has undergone a number of stages, since its 
inception, which can be placed in the 1940s. It is important to have this history in 
mind, in schematic form, for to each stage corresponds a specific framework for 
the mathematics of cognitive science. The following thumbnail descriptions are 
provided as no more than an aide-mémoire.

The prehistorical phase (1942–1956) was centered on the recently reborn logic 
and the just emerging cybernetics.4 Logic was developed as a branch of mathemat-
ics and as a language for representing certain essential mental operations. It was 
mechanicized in the hands of Turing5 and others, and biologized by McCulloch 
and Pitts and others.6 The broad ambition of cybernetics was to provide an over-
arching theory of mind, brain and machines, couched in the appropriate language 
of information and control. It included a branch concerned with higher functions, 
with logic as its main tool, and a branch concerned with perception and motricity, 
with some classical and new mathematics distinct from logic.

The first phase of the historical period (roughly 1956–1980) centered on 
 artificial intelligence (AI), broadly understood as the science of “intelligent” in-
formation processing, leading up to the so-called classical, or symbolic paradigm 
in cognitive science.7 The formal systems of logic provided the language, and 
theories (at least notionally) took the form of (computer) programs; we would be 
more comfortable today calling them models, but at the time it was important not 
to let the theoretical ambition of AI be watered down: AI was to be the scientific 
theory of human intelligence (of cognition), not a mere methodology for produc-
ing intelligence-like effects. The needed mathematics was logic, automata theory, 
and the nascent computer science or informatics. However, a large part of the work 
was carried out with no visible help from the theoretical parts of these formal disci-
plines. In fact the deepest contributions concerned the development of  programming 

4 Cybernetics may in fact be regarded as an early form of cognitive science. See Jean-
Pierre Dupuy, On the Origins of Cognitive Science: The Mechanization of the Mind. 
Cambridge, MA: MIT Press 2009; Steve Joshua Heims, The Cybernetics Group. Cam-
bridge MA: MIT Press 1991.

5 Alan M. Turing, “On Computable Numbers, with an Application to the Entscheidung-
sproblem”, in: Proceedings of the London Mathematical Society, 42, 2, 1937, pp. 230–
265; reprinted in: Martin Davis (Ed.), The Undecidable. Hewlett, NY: Raven Press 
1965 and many other collections.

6 Warren S. McCulloch, Walter A. Pitts, “A Logical Calculus of Ideas Immanent in Nerv-
ous Activity”, in: Bulletin of Mathematical Biophysics 5, 1943, pp. 115–133; reprinted 
in: Warren S. McCulloch, Embodiments of Mind. Cambridge, MA: MIT Press 1965; 
also in: James A. Anderson and Edward Rosenfeld (Eds.), Neurocomputing. Founda-
tions of Research. Cambridge, MA: MIT Press 1988.

7 See e.g. Max Lungarella, Fumiya Iida, Josh Bongard and Rolf Pfeifer (Eds.), 50 Years 
of Artificial Intelligence. Berlin-Heidelberg: Springer 2007.
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languages, first and foremost Lisp, then Prolog and more recently object-oriented 
languages such as Java, which made writing code for cognitive functions feasible. 
Actually producing a computer program for, say, chess or checkers playing, or 
scene recognition, or parsing, or writing a large corporation’s paychecks, consisted 
in armchair construction of information-flow diagrams, an activity that can hardly 
be taken as part of mathematics. Exception must be made for the study of percep-
tual and motor functions, which recruited several high-powered mathematical ar-
eas, ranging from differential geometry to Fourier analysis and probability theory, 
and in fact extending them to meet specific requirements.

Next came (ca. 1980–1995) connectionism or the neural nets approach, which 
took up the perceptual strand of cybernetics and extended it into a full-fledged 
framework for cognitive science (and AI), competing with the classical, symbolic 
approach.8 Connectionism, which comprises several rather distinct currents, can 
be applied at the functional or mental level, at the neuronal level, or again at an 
intermediate level, abstracted from the neuronal level and reflecting the “micro-
structure” of cognition, understood in informational terms. The mathematics is 
here much more visible than in the symbolic approach, and also much richer and 
more varied, comprising fragments of linear algebra, of probability and signal 
theory, of analysis, and of dynamical systems, although seldom reaching great 
heights of sophistication.

The modern phase, to which the present still belongs, but is morphing into 
what I venture to call post-modern, is characterized, first and foremost, by the 
appearance of a new contender for the status of admiral discipline: cognitive 
neuroscience, supported by functional neuro-imaging technology but also by the 
strengthening of theoretical neuroscience, which consists in applying the  methods 
of physical modeling to phenomena arising at various levels of organization of 
the nervous tissue.9 Mathematical tools have become considerably more sophis-
ticated. Functional imagery calls upon highly complex statistical methods aim-
ing at providing a pictorial representation of the distributed activity in neuronal 
population, taking a gigantic mass of indirect signals as the basis of an inference 
to their sources. Theoretical neuroscience helps itself to a vast repertory of math-
ematical theories. The second most important feature of the modern phase is the 
return of the body, which appears not only under the guise of the brain, material 
“siege” of cognition, but also as organism and genuine bearer of cognition. With 
the body come perception and motricity, which, as we just saw, were never totally 

8 See e.g. James A. Anderson, Andras Pellionisz and Edward Rosenfeld (Eds.), Neuro-
computing II. Cambridge, MA: MIT Press 1990.

9 See e.g. Peter Dayan and Laurence F. Abott, Theoretical Neuroscience: Computational 
and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press 2001; 
Michael A. Arbib, The Handbook of Brain Theory and Neural Networks, 2nd ed. Cam-
bridge, MA: MIT Press 2003; Michael Gazzaniga, The Cognitive Neurosciences, 4th 
ed., Cambridge, MA: MIT Press 2009.
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neglected, but now take on an entirely novel dimension and call for pretty deep 
mathematics.

Post-modernism (a notion which I venture to propose here, but which to my 
knowledge has not been proposed under this or any other name by observers of 
contemporary cognitive science) is characterized by a breakdown of pragmatic 
unity and doctrinal consensus. Cognitive science is at a tipping point. Is it on the 
verge of disintegration, with a majority of programs recategorized inside neuro-
science (and more broadly biology), and the rest reintegrating other main disci-
plines, or is it headed towards a fully integrated field, awaiting a new framework 
in which mathematics is likely to play a fundamental part? While this “crisis” is 
playing out, though, the working scientists are going into high gear, bringing to 
bear, in some areas, extremely powerful and wide-scope principles with strong 
mathematical content. The field is increasingly divided between areas in which a 
hard-science culture is required, and those in which it isn’t, reconstructing, per-
haps, the boundary between the natural and the human sciences.

26.3 MatheMatiCs as a loCal player: a saMple

Not only do the stages overlap, so that the mathematical methods characteristic 
of the various phases actually have co-existed and were sometimes combined, but 
they abstract away from the divisions, at all times, within cognitive science. All 
along, besides the general framework to which some programs explicitly refer, 
specialties have existed and evolved quite independently, developing a proprietary 
methodology with owed little to the general framework. Typically, vision science, 
as has been already mentioned, though in a sense central to the project, due in 
particular to its uncharacteristic success, and yet in another peripheral, due to the 
its de-emphasis on human as opposed to machine (robotic) or animal vision, was 
off to an early start and not only exploited existing theories from contemporary 
mathematics, but developed its own mathematical tools. Meanwhile many other 
branches of cognitive science developed without any mathematics at all. Still, the 
overall trend has been a growing role of mathematics in the field.

As a second pass then, I offer a quick tour of a number of research programs, 
some of which were mentioned in passing, and which call on a variety of math-
ematical techniques or styles, as both language and modeling methodology (as per 
the distinction sketched in Sect. 26.1).

What follows is a mere sample, by no means an exhaustive list. I have divided 
it in three parts, which are not clear-cut but rather denote different attitudes and 
practices in the deployment of mathematics combined with differing approaches 
to cognition.
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 (a) Abstract or pure information-processing theories (also known as compu-
tational theories)
 (i) Logic(s). The study of reasoning is probably the best-known subprogram 
of early cognitive science, a natural extension of the tradition of logic, taking on 
board two crucial dimensions, control and computational (neo-mechanical) feasi-
bility, and straddling cognitive psychology and AI. In the widest sense, it can be 
argued that the guiding assumption of the early period of the field was that cogni-
tion is, at base, reasoning. Though this assumption is no longer in favor, reasoning, 
widely construed, remains a central topic. It encompasses not only deduction from 
firm premises in eternal propositional format (such things as “2+2 = 4” or “force 
equals mass times acceleration”), but also a large variety of inferential regimes 
(inductive, abductive …) deployed on different materials (non-purely proposi-
tional, non-eternal, non-firm, etc.), including coherence maintenance and belief 
revision, as well as problem-solving and even scientific inquiry. The development 
of non-standard systems of logic, including defeasible or non-monotonic logics, 
of algorithmic control systems, and of algorithmic complexity theory, clearly dem-
onstrates the co-evolutionary process affecting cognitive science and mathematics. 
However, the part of cognitive science directly affected by the more sophisticated 
mathematical logic involved belongs to AI and computer science, rather than cog-
nitive or developmental psychology or even formal theories of rationality, core 
areas which recruit no more than primitive mathematical techniques.
 (ii) Signal detection theory [SDT]. How to discriminate noise from signal, 
say in a visual or auditory scene, can be seen as a decision process. Probability 
theory is thus brought to bear on psychophysics, the study of perceptual systems 
as physical measurement devices. But SDT extends to a wider set of phenomena, 
including some that are more clearly cognitive, such as individual or collective 
decision-making under uncertainty.
 (iii) Control theory. Classical robotics relies heavily on control theory, a part 
of dynamical systems theory that also applies to the study of various biological 
processes. Here again, the initial target of the (fairly deep) mathematics involved 
leans towards the machine dimension of cognitive science, or the motoric dimen-
sion, long deemed somewhat peripheral. However, on the one hand this motoric di-
mension has recently been recognized as more important and more closely linked 
to cognition than was previously thought, and on the other, dynamical systems are 
propounded as an alternative to classical computational models for cognitive sci-
ence at large.
 (iv) Machine learning. The first attempt at developing an information-theo-
retic approach to learning was initiated in the 1960s with the aim of formaliz-
ing induction in general, and more particularly, the inductive identification of the 
ambient language by the non-linguistic infant. The acquisition, by a child, of the 
grammar (syntax) of her mother tongue can be seen, and formalized, as a problem 
of induction: the innate language faculty provides a set of constraints which limit 
the set of possible grammars. The child’s job is to identify with which of the 
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possible languages she is in fact confronted, on the limited basis of what she hears. 
This thought has led to the development of formal learning theory, which draws on 
fairly simple notions from discrete mathematics and recursive functions.10 It has 
been extended to the study of scientific inquiry, seen as a process of induction from 
basic empirical data.11

 A very different approach to machine learning, now generally preferred, is the 
PAC paradigm (probably approximate learning) developed in the early 1980s12: 
from a sample of the set to be “learned”, PAC learning produces, with high prob-
ability, a generalization function which suitably approximates the given set. PAC 
involves sophisticated tools drawn from or developed within computational com-
plexity theory.
 (v) Probability theory. Probability lies of course at the foundation of decision 
theory, an area that is traditionally claimed by economics as its core theory but is 
increasingly taken over by “neuro-economics”, a joint venture of economics and 
cognitive science. Less known perhaps outside the field, but quite important, is the 
attempt to attack a very broad collection of cognitive processes13 by postulating an 
optimizing principle operating on non-conscious sensations or data. The so-called 
Bayesian approach is now pre-eminent in vision science; it is also applied to the 
study of memory, and mobilizes fairly sophisticated mathematical tools.
 (vi) Game theory. Decision theory has gone collective with the help of game 
theory, specifically invented for that purpose. But again it is not widely known that 
game theory has become an instrument of choice for the evolutionary approaches 
of collective behavior, and is thus relevant for the study of social cognition, e.g. 
the natural basis of other-oriented behavior and norms.14 The mathematical results 
required for the latter topic are however quite rudimentary.
 (vii) Category theory. Classical first-order logic has been pressed into service 
in the quest for formal models of natural language–this is the well-known pro-
gram of Montague semantics. But just as category theory has claimed to provide 
mathematics with a better foundation than set theory, it has also been promoted as 
the best framework for the semantics of natural language and the associated field 
of categorization. Indeed, some authors have argued that category theory should 

10 Sanjay Jain, Daniel N. Osherson, James S. Royer and Arun Sharma, Systems That 
Learn: An Introduction to Learning Theory (Learning, Development, and Conceptual 
Change), 2nd ed., Cambridge, MA: MIT Press 1999.

11 Eric Martin and Daniel N. Osherson, Elements of Scientific Inquiry. Cambridge, MA: 
MIT Press 1998.

12 Leslie Valiant, “A Theory of the Learnable”, in: Communications of the ACM 27, 11, 
1984, pp.1134–1142.

13 And even cognition as a whole; see Nick Chater and Mike Oaksford (Eds.), The Proba-
bilistic Mind: Prospects for Bayesian Cognitive Science. New York: Oxford University 
Press 2008.

14 Robert Axelrod, The Evolution of Cooperation, Revised Edition. New York: Basic 
Books 2006.
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replace logic (which in some sense it generalizes) as the organon of cognition.15 
Not surprisingly, this last example leads us back to the first as far as conceptual 
ambition goes: like logic in the early days, category theory is poised not (only) as a 
(modeling) tool for this or that cognitive process, but as the true language of cogni-
tion. It must be remarked that this is a minority view, ignored by a vast majority of 
scientists and philosophers of cognitive science.
 (b) Neural dynamics. In this group belong some applications of core 
 mathematical theories to systems that take their inspiration from a general view of 
the basic structure of the brain.
 (i) Linear algebra and statistical physics are the indispensable tools to study 
the dynamics and learning capabilities of feed-forward layered networks of thresh-
old automata, which constitute a large and well-studied family of neural nets. 
In the “parallel distributed processing” (PDP) view,16 such systems are capable 
of supporting a wide variety of cognitive functions and are regarded as a basic 
 architecture competing with the von Neumann computer. Mathematical analysis is 
essential in order to determine the conditions under which a system will stabilize, 
hence provide a definite output in response to a given input and even more impor-
tantly in order to define learning algorithms that work, for example retropropaga-
tion. Learning is of the essence for PDP as it allows a network to implement a 
given input-output function by being exposed to a set of examples.
 (ii) Statistical physics is also used, but at a deeper level, in the study of 
 another family of neural nets, those that are fully interconnected (as opposed to 
feed-forward) and can thus be regarded as autonomous dynamical systems (they 
are sometimes called “attractor neural networks” or ANN).17 The first example of 
this approach was proposed by physicist John Hopfield who exported a modeling 
technique perfected by solid-state physicists, the Ising model, to the study of a 
neural net that he could interpret as a device with a content-adressable memory.18

 (iii) Tools from advanced analysis (ordinary non-linear differential equations, 
partial differential equations, Fourier analysis and wavelets …) and from dynamical 

15 François Magnan and Gonzalo E. Reyes, “Category Theory as a Conceptual Tool in the 
Study of Cognition”, in: John Macnamara and Gonzalo E. Reyes (Eds.), The Logical 
Foundations of Cognition. New York Oxford: Oxford University Press 1994; Jaime 
Gómez and Ricardo Sanz, “Modeling Cognitive Systems with Category Theory. To-
wards Rigor in Cognitive Sciences”, Tech. Report Universidad Politécnica de Madrid 
2009.

16 David E. Rumelhart and James L. McClelland (Eds.), Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition. Cambridge, MA: MIT Press 1986.

17 Daniel J. Amit, Modeling Brain Function: The World of Attractor Neural Networks. 
Cambridge: Cambridge University Press 1992.

18 John Hopfield, “Neural Networks and Physical Systems with Emergent Collective 
Computational Abilities”, in: Proceedings of the National Academy of Sciences USA 
79, 1982, pp. 2554–2558.
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systems theory, often combined with stochastic methods, are deployed in several 
areas19:
 – in basic (i.e. neuron-level) neuroscience, the propagation of the nerve im-
pulse; the receptor field of the ganglia cells of the retina, which play a crucial role 
in early visual processing,20 or of the simple cells in V1, which help the visual 
system deal with noisy stimuli; the functional architecture of V1, etc.21

 – at a higher level of integration, the theory of networks of weakly coupled 
oscillators provides models for complex representations in the brain (i.e. represen-
tations that include independently identifiable components);
 – at a functional level, abstracting away from neural implementation, image 
processing by biologically plausible or by artificial systems calls on variational 
methods.
 (iv) In the theory of motor control (balance, gait, reach, grasp, navigation …), 
geometry is increasingly regarded as encoded at a deep level in the relevant brain 
areas, which literally solve complex geometrical problems. Differential geometry 
and kinematics are thus seen not only as descriptive tools, but as naturally realized 
faculties of the brain.22 On the side of artificial systems, robotics has directly or in-
directly attracted the interest of top mathematicians working in such fields as alge-
braic and differential geometry, Lie theory, optimization theory as far back as the 
19th century. Nowadays, robotics calls on a large spectrum of powerful theories, 
ranging from dynamical systems to Bayesian statistics, discrete and computational 
geometry or topology.23

26.4 Deep vs. shallow engageMent

I have up until now more or less explicitly indexed the depth of mathematization of 
a research program on the depth of the mathematics deployed. On that count, the 
mathematization of classical or symbolic AI or cognitive science is considerably 
shallower, than that of connectionism, and species of connectionism range from 
relatively less deep to quite deep; or again, formal learning theory is mathemati-
cally shallower than PAC learning. Similarly, theories of specific functions, such 
as language acquisition, phonology, pattern recognition, vision, motor control 

19 Alain Berthoz, “Rapport sur les liens entre mathématiques et neurosciences”, in: Rap-
ports sur la science et la technologie 20, 2005, pp. 175–211.

20 David Marr, Vision. San Francisco: W.H.Freeman & Co Ltd 1982.
21 Jean Petitot, Cognitive Morphodynamics: Dynamical Morphological Models of Con-

stituency in Perception and Syntax. New York: Peter Lang Pub Inc 2011.
22 Nikolai Bernstein, The Coordination and Regulation of Movement. New York: Perga-

mon Press 1967; Alain Berthoz, The Brain’s Sense of Movement. Harvard: Harvard 
University Press 2002.

23 “The Interplay between Mathematics and Robotics”, Summary of a Workshop,  National 
Science Foundation, Arlington, VA, 15–17 May, 2000.
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etc. can be roughly ordered according to the sophistication of the mathematics 
they use. This criterion also can serve to identify a general pattern: mathemati-
cal sophistication tends to increase with time, but quite unevenly, leaving some 
non-marginal areas in their essentially non-mathematized initial state, while others 
have undergone radical mathematization.
 However sophisticated the mathematics involved, they do not necessarily have 
a profound effect on the field. First, there may be a “lamppost” effect, when a 
mathematical technique is developed on its own impetus, perhaps to the point of 
creating an entire academic field, but without actually furthering the original prob-
lematic (as seen, at least, from a limited time perspective). But second, and more 
importantly, even a successful mathematization may concern a strictly limited 
area, without bringing consequential changes to the overall landscape. Besides the 
depth of mathematical methods, it is therefore important to distinguish between 
research programs that aim at engaging the entire field of cognitive science with 
mathematics and programs which result in minimal engagement, either due to the 
shallowness of the mathematics employed, or to the limited scope of the program.
 Scientific temperaments vary. To some, grand schemes are suspect and their 
formulation and examination are basically a waste of time. Scholars of that bend 
will therefore be inclined to turn their attention to well-defined problem areas 
where mathematics has a serious potential. Others are loth to abandon the initial 
ambitions of cognitive science, viz. to produce in the fullness of time an integrated 
account of mind and brain, with a density of conceptual connections at least com-
parable to that of biology, if not that of physics. And so, in the face of the increas-
ing fragmentation of cognitive science, they turn to mathematics. Some specific 
proposals of mathematically-induced unification of the field are on offer. To some 
of these I now turn, by evoking a few representative theorists.
 In his landmark monograph,24 the late physicist Daniel Amit proposed the 
most elaborated view of cognitive science as the study of the cooperative prop-
erties of the brain tissue, in the tradition initiated by Hopfield, but with a novel 
concern with neurobiological realism. By applying the know-how of the physi-
cist in deploying statistical mechanics and dynamical systems theory to nature’s 
most complex system, the brain, examined with the utmost care at every level, 
one can hope, according to Amit, to develop a unified theory that would stand to 
the brain in roughly the same relation as state-of-the-art mathematical physics 
to (non- biological) natural systems, by establishing systematic links between the 
various levels of organization. Cognitive science would thus be unified, though not 
reduced, under the banner of a highly sophisticated mathematical physics.
 Paul Smolensky, also trained as a physicist, went on to become the most artic-
ulate and powerful theorist of the PDP school,25 to which he contributed early on a 

24 Daniel J. Amit, op. cit.
25 Paul Smolensky, “On the Proper Treatment of Connectionism”, in: The Behavioral and 

Brain Sciences 11, 1988, pp. 1–23.
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unifying framework which he called “harmony theory”.26 Cognitive processes, in a 
wide (and ever widening) spectrum of cases, consist in attempting to honor a (usu-
ally large) number of “soft constraints”. It is seldom possible to honor them all, so 
that the desired outcome is a state where the sum total of violations is minimal: a 
system that reaches such a state has achieved the highest possible ‘harmony’. Now 
what turns this idea from metaphor to theoretical principle is the  mathematics 
(linear algebra, dynamical systems, probability theory) that shows that, under 
suitable conditions, a feed-forward multi-layered network can actually achieve a 
harmony maximum. Characteristically, Smolensky did not rest content with this 
perspective, which failed to connect with the classical principles and concepts of 
“classical” or “symbolic” cognitive science. He now regards the central challenge 
to be to precisely characterize the kind of abstraction that bridges the biophysical 
properties of the brain to the computational properties of mental representations 
and knowledge – in short, to the mind, and he has taken up the challenge in the 
area of linguistics.27 His mental representations are to be understood as abstract 
theoretical constructs that must be characterized precisely through formal systems 
developed using the methods of mathematics. Thus, he writes, “The ultimate goal 
of my work is to help usher cognitive science through a fundamental transition into 
a truly mathematical discipline.”28

 Methodology, according to Smolensky, has been the great weakness of cogni-
tive science, causing a sterile battle of “isms”, speculative theses regarding the 
true nature of cognition. Between the “ism” level and the “model” level (highly 
specialized accounts of lab-generated data on very specific behaviors) there lacks 
what he calls the level of general theory, which according to him is “largely miss-
ing because sophisticated use of mathematics is required” much of which remains 
to be created by adequately trained cognitive scientists: co-evolution again, as 
the mathematics that cognitive science requires to come of age is itself yet in 
limbo. Now why exactly, one may ask, would mathematics be the means to reach 
the prescribed end? Smolensky’s answer can be broken down in two components. 
First, formalization is indispensable to regiment and justify the use of abstractions 
(so as not to smuggle in occult properties in the guise of theoretic entities), and 
convincing formalizations must yield accounts of complex phenomena from small 
number of principles governing a small number of variables. Mathematics is the 
only known discipline that can achieve this. Second, cognitive science presents a 
special challenge, which is to bridge the gap between the essentially continuous 
physical substratum and the discrete manifestations at the mental level: again, only 
the mathematics of emergence deployed in nonlinear physics are known to achieve 

26 Paul Smolensky, “Information Processing in Dynamical Systems: Foundations of Har-
mony Theory”, in: David E. Rumelhart and James L. McClelland (Eds.), op. cit.

27 Paul Smolensky and Géraldine Legendre, The Harmonic Mind: From Neural Compu-
tation to Optimality-Theoretic Grammar Volume I: Cognitive Architecture; Volume II: 
Linguistic and Philosophical Implications. Cambridge, MA: MIT Press 2006.

28 Personal communication.
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this, for the fairly simple systems studied thus far – and a similar bridge awaits to 
be constructed between the physical brain and the mind.
 Other strong programs are advocated by authors such as Jean Petitot, Scott 
Kelso, Chris Eliasmith, or Mark Bickhard.29 Due to space constraints, no attempt 
will be made to give the reader so much as a flavor of their respective proposals. 
Petitot’s main theoretical sources are dynamical systems theory, nonlinear physics 
(emergence in disordered systems, phase transitions), differential geometry, on 
the one hand, and on the other, strikingly, Husserlian phenomenology turned, so to 
speak, on its head, and thus “naturalized” by virtue of the new mathematical phys-
ics which Husserl could not fathom. Kelso takes his inspiration also from dynami-
cal systems and more particularly from Hermann Haken’s theory of self-organized 
nonequilibrium phase transitions. Eliasmith sees control theory, a branch of theo-
retical computer science, as providing a unifying framework for the necessarily 
pluralistic theories of the mind and brain. Bickhard develops an approach of his 
own, “interactivism”, which aims at reconfiguring cognitive science by way of re-
thinking the naturally emerging high-level properties of living organisms that give 
rise to representations.
 Most of these programs, next to several others, are often grouped under the 
general label of “dynamicism”, and blanket arguments are proffered in favor of 
what is presented as a shared approach. For example, R. D. Beer claims that “By 
supplying a common language for cognition, for the neurophysiological processes 
that support it, for non-cognitive human behavior, and for the adaptive behavior of 
simpler animals, a dynamical approach holds the promise of providing a unified 
theoretical framework for cognitive science, as well as an understanding of the 
emergence of cognition in development and evolution.”30 The trouble with such 

29 J. A. Scott Kelso, Dynamic Patterns. Cambridge, MA: MIT Press 1997; Chris Elia-
smith and Charles H. Anderson, Neural Engineering: Computation, Representation 
and Dynamics in Neurobiological Systems. Cambridge, MA: MIT Press 2003; Jean 
Petitot, Francisco Varela, Bernard Pachoud and Jean-Michel Roy (Eds.), Naturaliz-
ing Phenomenology. Stanford: Stanford University Press 1999; M.H. Bickhard, “The 
Biological Foundations of Cognitive Science”, in: New Ideas in Psychology 27, 1, 
2009, pp. 75–84. Other programs originate in AI (the new wave of so-called “Artifi-
cial General Intelligence”, see Ben Goertzel and Cassio Pennachin, Artificial General 
Intelligence, 1st ed. New York: Springer 2007 ; Ben Goertzel, The Hidden Pattern. A 
Patternist Philosophy of Mind. Florida: BrownWalker Press 2006, or robotics (Rodney 
Brooks, Cambrian Intelligence: The Early History of the New AI. Cambridge, MA: 
MIT Press 1999; Patti Maes, Designing Autonomous Agents. Cambridge, MA: MIT 
Press 1990.

30 Randall D. Beer, “Dynamical Approaches in Cognitive Science”, in: Trends in Cogni-
tive Sciences 4, 3, 2000, pp. 91–99. It is generally accepted that dynamicism came into 
existence as a self-aware and visible orientation within cognitive science with the pub-
lication of two collections: Robert Port and Tim van Gelder (Eds.), Mind as Motion: 
Explorations in the Dynamics of Cognition. Cambridge, MA : MIT Press 1995; Esther 
Thelen and Linda B. Smith (Eds.), A Dynamic System Approach to the Development of 
Cognition and Action. Cambridge, MA: MIT Press 1996; see also Lawrence M. Ward, 
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global views is that they lead to a battle of “isms”, as Smolensky has argued, a 
battle that no side can win, while true theoretical progress lies in unearthing the 
scientific substance of the initial slogans. Better then, perhaps, to examine the vari-
ous programs and judge them on their own merits rather than on their adherence 
to overly general principles.

26.5 strong prograMs, ConCeptual reForM anD the Co-evolution 
oF Cognitive sCienCe anD MatheMatiCs vs. pluralisM 

anD the toolbox philosophy

Still, it is a striking and crucial fact that all of these strong programs aim at putting 
order into chaos by virtue of bringing cognition under the jurisdiction of math-
ematics. And here lie three seemingly major difficulties.
 First, by their very plurality, they add to the buzzing, booming confusion of a 
field that they claim to be desperately in need of regimenting. Second, what their 
proponents are counting on to make this happen, viz. mathematics, cannot yet de-
liver: the requisite mathematical tools do not exist at the present pioneering stage. 
Third, of all the specialized languages and disciplines of science, mathematics is 
the most impenetrable not only to the practitioners of the human and social sci-
ences, philosophers included, but to many biologists and even computer scientists, 
who are, on the side of the natural sciences, the ones with the strongest ties to 
cognitive science. It would seem then that most scientists have at best hands-on 
knowledge of cognition, or of mathematics, but not both, while both are claimed 
to be necessary if cognitive science is ever going to attain maturity.
 The first problem can be counted on being overcome by the mere passage 
of time. Cognitive science is at a stage where it suffers from an acute case of 
the “toothbrush problem” – every major figure in the field with a general theory 
wants to use his own theory, and nobody else’s, but the reasonable hope is that this 
won’t last forever, and more particularly that mathematical models will gain wider 
 acceptance and accelerate convergence.
 The second problem is more interesting. One lesson to be gleaned from the 
most casual inspection of research programs such as those just mentioned is that no 
program for a fully mathematized cognitive science can succeed without a worked-
out program for conceptual reform: just like the founders of the field, tomorrow’s 
architects must provide a structural hypothesis, or, in Newell and Simon’s terms,31 
a “law of qualitative structure” regarding the ontology of cognition, together with a 
unifying methodology. This is of course in line with more mature disciplines such 
as physics and (molecular) biology. Mathematization invariably goes hand in hand 

Dynamical Cognitive Science. Cambridge, MA: MIT Press 2001.
31 Allen Newell and Herbert A. Simon, “Computer Science as Empirical Inquiry: Sym-

bols and Search”, in: Communications of the ACM 19, 3, 1976, pp. 113–126.
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with a set of principles, which are part ontological and part epistemic, the latter 
regulating the necessary abstractions. The principles, in turn, provide traction only 
insofar as they make the phenomena accessible to mathematics. And, with rare 
exceptions, the specific mathematical tools must be developed in tandem with the 
principles (a point forcefully made, in particular, by Petitot and Smolensky, but 
also included or implied in just about all the detailed proclamations of new para-
digms in cognitive science). This situation therefore calls for conceptual reform 
driven by co-evolution of cognitive science and mathematics.
 The third problem is more vexing, and it is not restricted to cognitive science. I 
can think of two optimistic and one pessimistic responses. First, we can hope (like 
Smolensky) that a new generation of mathematically savvy cognitive scientists is 
now emerging from a few pioneering graduate programs, who will be the mov-
ing force of cognitive science in the coming years and decades. Second, we can 
imagine a situation of distributed scientific competence, where the sophisticated 
mathematics lies in one group of brains, the advanced cognitive science in another 
group, without there being many brains, or any for that matter, in both groups. 
Third, and this is the less sanguine view, we can imagine a future where the two 
orientations remain at an increasing, rather than diminishing, distance from one 
another. Mathematical cognitive science would evolve into a separate field, with or 
without occupying center stage: economics and biology are perhaps examples of 
each scenario.
 Yet we should not forget that overarching methodologies stand at one end of 
a continuum, whose other pole reflects a pure “hands on” philosophy, one which 
recommends context-sensitive, case-by-case model construction, and sometimes 
evokes evolutionary theory and the modularity thesis to bolster the case of tinkering 
as the proper method in cognitive science. This stance countenances a thorough-
going pluralism, with at least three dimensions along which models can vary: the 
level of aggregation, or level of reality dimension, from (say) the synaptic cleft to 
consciousness or culture; the genus of models (what counts as a model), as deter-
mined by the basic science and the methodology; and finally the task domain, from 
(say) navigation to chess playing, from face recognition to economic behavior, and 
so forth. The mathematics provides a toolbox to the working cognitive scientist, 
who constructs models of systems whose function is known or hypothesized, and 
whose neural realization is sought. The extent to which this plurality of models can 
be brought under a unifying scheme, and the importance of mathematics in that 
scheme, remain to be determined.
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Chapter 27

LadisLav Kvasz

What Can the soCiaL sCienCes Learn from the proCess 
of mathematization in the naturaL sCienCes

abstraCt

The paper tries to put the conflict of the natural and the human sciences into its 
historical context. It describes the changes in classification of scientific disciplines 
that accompany a scientific revolution, and offers an alternative to Kuhn’s theory. 
Instead of a conflict between the proponents and opponents of the new paradigm it 
interprets the revolution as a conflict between the mixed disciplines and the meta-
phorical realm of the old paradigm.

27.1 introduCtion

For almost two centuries there has been a tension between the natural and the social 
sciences. As Thomas S. Kuhn writes in The Structure of Scientific Revolutions,1 it 
was this tension that led him to the creation of the notion of a paradigm. According to 
Kuhn the difference between natural and social sciences consists in the fact that while 
in natural sciences we have to do with research in the framework of normal science 
based on a widely accepted paradigm, in social sciences there is nothing comparable 
to paradigms and so scholars again and again question the foundations of their disci-
plines. Kuhn thus drew attention to an important difference between these two areas. 
Nevertheless, according to Kuhn this difference does not create a gap between them:

I’m aware of no principle that bars the possibility that one or another part of some human 
science might find a paradigm capable of supporting normal, puzzle-solving research. … 
Very probably the transition I’m suggesting is already under way in some current specialties 
within the human sciences. My impression is that in parts of economics and psychology, the 
case might already be made.2

1 Thomas S. Kuhn, The Structure of Scientific Revolutions, Chicago: University of 
Chicago Press 1962.

2 Thomas S. Kuhn, “The Natural and the Human Sciences”, in: Thomas S. Kuhn, The 
Road since Structure, Chicago: University of Chicago Press 2000, pp. 222–223.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_27,  
© Springer Science+Business Media B.V. 2012
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If we want to understand this problem it is expedient to look at the tension between 
the natural and social sciences in a broader historical perspective.
 The first thing which we probably notice after turning to a broader historical 
perspective is that the conflict between natural and social sciences is not as old 
as it might seem. In the Classical era there was no conflict between the way how 
people understood human and social phenomena on the one hand, and how they 
approached nature on the other. This, of course, does not mean that in the Classi-
cal era the whole knowledge would form a harmonic whole. Also in Greek science 
there was a conflict that in many respects resembles the tension between the natu-
ral and the social sciences that we encounter in modern times. The border, along 
which the tension manifested itself, nevertheless, ran elsewhere. It did not separate 
knowledge of nature from the knowledge of human and social phenomena but 
rather it separated the mathematical knowledge (based on the deductive method 
and using categories such as number, proportion, and shape) from the “organic” 
realm (based on causal explanation and using categories such as purpose, goal, 
and action). In this second realm we could find biological as well as social disci-
plines, i.e. disciplines which according our classification lie on the opposite sides 
of the barricade that separates the natural from the social sciences. Ancient Greeks 
approached in a similar way the study of the “generation of animals” and the study 
of “the psyche” or politics. Starting from the seventeenth century onwards the 
study of the “generation of animals” was gradually incorporated into the realm of 
the newly constituted natural science, while the study of “the psyche” became one 
of the crystallization cores of the emerging social sciences. Therefore, one of the 
first aims of the present paper is to propose a framework for the reconstruction of 
the shifts in the classification of scientific disciplines.

27.2 CLassifiCation of sCientifiC disCipLines aCCording to their 
reLation to the paradigm

In order to be able to understand the transitions of scientific disciplines between 
the categories of “hard” and “soft” sciences it is useful to form a more differenti-
ated image of the “topography of the scientific landscape” that lies between these 
two poles. As a first move we suggest to abandon the terminology of dividing the 
scientific disciplines into “hard” and “soft”. Instead let us call the “hard” disci-
plines paradigmatic disciplines. In contemporary science the paradigm is formed 
by physics and so the paradigmatic disciplines are all those disciplines in which 
the methods of quantification and measurement lead to success. For a more precise 
characterization of a particular area of “soft” disciplines I suggest to introduce 
the term elusive region of the paradigm. It comprises those disciplines where the 
methods and approaches of the particular paradigm cannot be employed. Besides 
these two kinds of scientific disciplines we introduce two other kinds which lie 
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somewhere between the paradigmatic region and the elusive region of the para-
digm.3

The first sort of scientific disciplines that lie between the paradigmatic and 
the elusive region are the mixed disciplines. This term is used by historians to 
describe a remarkable set of disciplines from late Antiquity, such as Euclidean 
optics, Archimedean theory of the lever, the theory of simple machines, or Ptole-
maic astronomy.4 These disciplines have in common the use of exact mathematical 
language in the description of situations which according to the ancient under-
standing of science should not be described using mathematics because matter 
plays a substantial role in them. These disciplines cannot be fully deductive and, 
therefore, they do not fulfill the standards of mathematics. On the other hand, these 
disciplines do not use explanations based on the notions of aim and purpose (final 
cause), that Aristotle considered being the explanation of phenomena that belong 
to the elusive region of the ancient paradigm. Thus, in a whole range of cases the 
practice of ancient science did not follow the standards laid down by Aristotle 
and it formed disciplines the methodological status of which was rather unclear. 
The fact that a lever, a mirror, or a pulley are material objects, but in spite of this, 
in their description scholars use mathematics, is from the ancient point of view 
inconsistent. The mixed disciplines played an important role during the scientific 
revolution of the seventeenth century. Galileo made important discoveries in the 
theory of simple machines, while Fermat and Descartes created theories of refrac-
tion of light. We may say that it were the mixed disciplines where the fundamental 
notions of the paradigm of modern science were born.

The second category of disciplines lying between the paradigmatic and the 
elusive region can be called the metaphorical region of the paradigm. It forms a 
counterpart to the mixed disciplines. While in the case of the mixed disciplines 

3 Kuhn’s notion of paradigm had many meanings. Later Kuhn restricted the scope of this 
notion (see Thomas S. Kuhn, “Second Thoughts on Paradigms”, in: Thomas S. Kuhn, 
The Essential Tension: Selected Studies in Scientific Tradition and Change, Chicago: 
University of Chicago Press 1977, pp. 293–319). But it still remained rather broad. In 
Ladislav Kvasz, “On Classification of Scientific Revolutions”, in: Journal for General 
Philosophy of Science, 30, 1999, pp. 201–232, I suggested to distinguish three kinds 
of scientific revolutions and three kinds of paradigms: the paradigm of idealization, of 
representation and of objectification. For the present paper the paradigm of idealization 
is the most relevant one and in the text that follows, by paradigm I will understand the 
paradigm of idealization.

4 I suggest (in contrast to Kuhn) to consider Euclid’s Elements as the paradigm of Ancient 
science. It may sound unusual to call Elements a paradigmatic theory. We understand 
paradigms as a part of science while for us mathematics does not belong to science. 
Nevertheless, it is problematic to use our contemporary classification of disciplines 
in interpreting antiquity. If we look at Ancient science not from our but from its own 
viewpoint, it is rather the Elements than the Almagest that had a paradigmatic status. 
Therefore, the Ptolemaic astronomy that Kuhn characterized as paradigmatic I prefer 
to include among the mixed disciplines.
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the notions and methods of the paradigm are used in a precise and unambiguous 
way, and the problem is only that they are being used outside the area where their 
use can be justified by the paradigm’s methodology, in the metaphorical region 
the fundamental notions of the paradigm are used with a transferred, distorted 
and stretched meaning. As a representative of the metaphorical region of the an-
cient paradigm we can consider Aristotle’s theory of local motions, according to 
which heavy bodies fall downwards while light bodies float upwards. In a paper on 
Cartesian physics I argued that the Aristotelian theory of local motions is a geo-
metrical theory.5 It is based on the image of a geometrically ordered universe and 
it understands motion as a transition between different places of this geometrical 
order. Nevertheless, geometry (the paradigmatic discipline of ancient science) is 
used here in a different manner from that in the mixed disciplines. Geometry does 
not enter the Aristotelian view of the order of the cosmos in an explicit way as a set 
of exact notions and methods for making constructions and proving theorems (as 
it enters the Archimedean theory of the lever), but only implicitly, as a set of meta-
phors, by means of which we can discern order and meaning in the phenomena. 
Thus, even though Aristotle’s understanding of motion is biological (or organic) 
and, therefore, belongs into the elusive region of the ancient paradigm, a fraction 
of it – the theory of local motions – is based on geometrical metaphors.

We see that besides the paradigmatic region, i.e. the realm of disciplines that 
use the notions and methods of the paradigm in accordance with the methodologi-
cal standards of the paradigm, and the elusive region, i.e. the realm which defies the 
use of the notions and methods of the paradigm, there are at least two other areas of 
scientific disciplines that are constructed using the means of the paradigm. On the 
one hand, the paradigm offers the technical tools for the formation of the region of 
the mixed disciplines, i.e. disciplines that use the notions and methods of the para-
digm in a precise and correct manner but apply them to phenomena which were not 
foreseen by the creators of the paradigm and where it is not possible to fully comply 
with the methodological standards dictated by the paradigm. Further, the paradigm 
leads to the formation of the metaphorical realm of the paradigm, which comprises 
those phenomena that are too complex, and so a precise technical use of the notions 
and methods of the paradigm is not possible. Nevertheless, the paradigm offers a 
whole range of metaphors that make it possible to understand these phenomena at 
least in a qualitative manner and so to incorporate them into the rational discourse 
created by the paradigm. If we wish to understand the relation of natural sciences 
(forming the paradigmatic region of contemporary science) and humanities (lying 
to a great extent in the elusive region of that paradigm), it seems reasonable to re-
place the opposition of the “hard” and “soft” sciences by the following scheme6:

5 Ladislav Kvasz, “The Mathematisation of Nature and Cartesian Physics”, in: Philos-
ophia Naturalis, 40, 2003, pp. 157–182.

6 The scheme represents the topography of the scientific landscape. The horizontal ar-
rows separate the strict use from the metaphorical use of the basic notions (in the 
paradigmatic region and in the mixed disciplines the notions of the paradigm are used 
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METAPHORICAL  REGION
OF THE PARADIGM

REGION OF PARADIGMATI C
DISCIPLINES

ELUSIVE REGION
OF THE PARADIGM

REGION OF MIXED
DISCIPLINES

27.3 an outLine of a reConstruCtion of the sCientifiC revoLution

The above scheme makes it possible to soften the contrast between the paradig-
matic region that is formed by the “hard” disciplines and the elusive region of 
the paradigm that is formed by the “soft” disciplines and so opens a new pos-
sibility for a rational reconstruction of the scientific revolution of the seventeenth 
century. It turns out that it were the mixed disciplines and their conflict with the 
metaphorical realm of the paradigm which were the driving force of that revolu-
tion. Newtonian physics was created not inside the paradigmatic region of the 
old paradigm. The paradigmatic region of ancient science was mathematics. The 
birth of Newtonian physics stimulated the creation of several new mathematical 
disciplines, but despite of this, we cannot say that inside of mathematics there oc-
curred some massive refutation of the previous research (which would be a case if 
a revolution occurred in this region). Also the elusive region of the old paradigm 
(the realm of the organic) did not undergo radical changes. Biology was during the 
scientific revolution of the seventeenth century on the fringe of the scientific inter-
est. It came into the center of interest towards the end of the eighteenth century 
when the scientific revolution already reached its consummation. It is fair to say 
that the scientific revolution of the seventeenth century took place on the contact 
of the mixed disciplines of the ancient paradigm (astronomy, optics, the theory of 
simple machines) and the metaphorical region of that paradigm (the geocentric 
view of the cosmos). And this is rather natural.

In the paradigmatic region of ancient science, i.e. mathematics, the meth-
odological standards are so strict and well founded that a refutation of the overall 
picture is improbable. On the other hand, the elusive region of the paradigm (i.e. 
the realm of biology) is not sufficiently stable and, therefore, changes happen there 
too often to be able to cause some deeper considerations. It is precisely the mixed 
sciences where the methods of the paradigm offer sufficiently effective means of 
research so that their progress is intensive. It is so because the application of the 

in the strict sense, while in the metaphorical and in the elusive regions they are used in 
a distorted sense). The vertical arrows separate the intended area from the unintended 
one (in the paradigmatic region the methods, in the metaphoric region the metaphors 
are applied to those situations, for which they were introduced, while in the region of 
the mixed disciplines and in the elusive region the methods or the metaphors are 
applied to situations, for which they were originally not intended).
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paradigmatic methods to unintended areas of phenomena increases the probability 
of the discovery of something radically new and unexpected, something that will 
be in sharp contrast with all that we are used to expect in the paradigmatic region. 
The metaphorical region of the paradigm is important for another reason. There 
the research is carried out on the fringe of what the paradigm allows to thematize 
and, therefore, the metaphorical region is often the place for the basic cultural pro-
jections with the emotional charge that accompanies such projections. The mixed 
disciplines alone would probably never have led to a revolution. Had Galileo ac-
cepted the suggestions of the Church and discussed the Copernican system only 
as a hypothesis, i.e. if he had restricted himself to the technical realm of the mixed 
disciplines and had not confronted this system with the geocentric world-view, it 
is probable that he Church would have succeeded in keeping the new astronomical 
discoveries on the periphery of the interest of the public as an incomprehensible, 
innocuous technical hypotheses. The dynamic of the scientific revolution of the 
17th century was driven precisely by the conflict of the mixed disciplines with 
the metaphorical region when not absolutely sure results of scientific inquiry got 
into conflict with metaphors by means of which we articulate our place in the 
universe.

METAPHORICAL REGION
OF THE PARRADIGM

REGION OF
PARADIGMATIC DISCIPLINES

ELUSIVE REGION
OF THE PARADIGM

REGION OF
MIXED DISCIPLINES

NEW PARADIGM

In this scheme paradigmatic disciplines are the paradigmatic disciplines of the 
old paradigm, and the same holds for the mixed disciplines as well as for the meta-
phorical and the elusive region. If we restrict ourselves to the scientific revolution 
of the seventeenth century, the above scheme expresses the fact that the paradigm 
of modern physics originated neither in the paradigmatic nor in the elusive region 
of the ancient paradigm, but in the area between them. The paradigmatic region 
of the ancient science was mathematics, which during the seventeenth century 
underwent a dramatic development (creation of the analytic geometry and of the 
calculus), but this development occurred in the framework of normal science. In 
mathematics of the seventeenth century nobody seriously questioned the results 
of the past. The elusive region of the ancient science was the realm of the organic, 
and the founders of modern physics almost completely avoided the discussion of 
questions of biology. Galileo marginally discussed the question of size of organ-
isms and Descartes made occasional dissections.
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It is important to realize that the new paradigm rises from a conflict between 
the mixed disciplines and the metaphorical region of the old paradigm. This indi-
cates where to look for the source of revolutionary changes in the contemporary 
social sciences. The paradigm of the modern science is physics while its elusive 
region is the realm of the subjective (the Cartesian res cogitans), i.e. the area of 
social sciences. The above scheme shows that all those who were waiting for 
“Newton of the social sciences”, waited at the wrong door. Social sciences form 
the elusive region of the physical paradigm. The elusive region is inaccessible to 
scientific methods and, therefore, it will not play any important role in the contem-
porary revolutionary changes. The next fundamental change in science will take 
place not in the elusive region of the physical paradigm, i.e. in the social sciences, 
but on the border of the mixed disciplines and the metaphorical region of physics. 
So let us have a closer look at this border.

27.4 the revoLution in bioLogy

If we want to form a clearer idea about the scientific revolution that is happening 
in contemporary science, it is useful to turn to a scheme, which would contain the 
paradigmatic, mixed, metaphorical, and elusive regions not only of the ancient 
science (that we analyzed in the previous section), but also of the paradigm of the 
contemporary science.

METAPHORICAL REGION
OF ANCIENT SCIENCE

ELUSIVE REGION
OF ANCIENT SCIENCE

PARADIGM OF
MODERN SCIENCE

MIXED DISCIPLINES
ELUSIVE REGION

OF MODERN SCIENCE

METAPHORICAL REGION
OF MODERN SCIENCE

MIXED DISCIPLINES
OF ANCIENT SCIENCE

PARADIGM OF
ANCIENT SCIENCE

As we already mentioned, the elusive region of the ancient paradigm, representing 
the realm of the organic phenomena, did not play any important role in the for-
mation of the Newtonian paradigm. Nevertheless, the elusive region underwent a 
radical change. The elusive region of the ancient science became the center of the 
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area between the metaphorical region and the region of the mixed disciplines of 
the Newtonian paradigm.

Because scientific revolutions happen in the area between the region of the 
mixed sciences and the metaphorical region, it is reasonable to conclude that the 
contemporary scientific revolution is taking place in biology, in the science of the 
organic. The new biological paradigm will emerge from the conflict between the 
mixed disciplines and the metaphorical region of the physical paradigm. So let us 
analyze these regions more thoroughly.

27.4.1 The Mixed Disciplines of Modern Science

The mixed disciplines of modern science use the technical and theoretical tools 
of physics (its experimental methods and laboratory equipments, its theoretical 
notions and mathematical formalism) in the study of nonphysical systems. For 
the mixed disciplines it is characteristic that they use these tools in an exact and 
methodologically correct way; the only problem is that they use these tools in the 
study of biological systems, i.e. systems where strict repeatability of experiments 
is impossible. Despite these difficulties we witness a spectacular progress of ex-
perimental techniques leading from the discovery of the microscope through the 
Roentgen apparatus to the computer tomography. Among the recent developments 
are magnetic resonance imaging and positron emission tomography which make 
it possible to visualize the brain activity during cognitive processes.7 The discov-
ery of a new physical method of registration of data leads to a new breakthrough 
in biology and medicine. A similarly spectacular development has also occurred 
in the area of chemical analysis of living matter, leading from the first artificial 
synthesis of uric acid through the understanding of the structure of hemoglobin to 
the decipherment of the human genome. Therefore, I suggest including disciplines 
such as biochemistry, molecular biology, or neurophysiology among the mixed 
disciplines, the methodological status of which is analogous to Euclidean optics 
or Archimedean theory of the lever in the antiquity. This region of the landscape 
of science does not present any serious problems, except that in the philosophy of 
science these disciplines do not get an adequate attention.

27.4.2 The Metaphorical Region of Modern Science

In contrast with the mixed disciplines, the interpretation of the metaphorical re-
gion of the paradigm is problematic. The elusive region of the physical paradigm is 
the realm of the subjective. It is not important whether we define it metaphysically 
as Descartes did at the dawn of the physical paradigm, or epistemologically as did 
Dilthey, who witnessed its climax at the end of the nineteenth century. What is 

7 See Thomas Koenig and Dietrich Lehmann, “Microstates in Language-Related Brain 
Potential Maps Show Noun-Verb Differences”, in: Brain and Language, 53, 1996, pp. 
169–182, or Naho Ikuta et al., “Brain Activation During the Course of Sentence Com-
prehension”, in: Brain and Language, 97, 2006, pp. 154–161.
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important is to realize the elusive nature of the subjective, i.e. the fact that it cannot 
be dealt with by means of the physical paradigm. From this elusive region of the 
physical paradigm gradually a small part separated itself in a similar way as from 
the Aristotelian organic theory of motion the theory of local motions was sepa-
rated. It is the part that makes use of the metaphors of the paradigmatic disciplines. 
As an example I would like to mention the association psychology, developing 
the ideas of David Hume, the economic theory of the circulation of capital initi-
ated by Francois Quesnay, or classical sociology initiated by August Comte.8 All 
these disciplines use notions like process, dynamics, speed, intensity, increase or 
force. Nevertheless, the use of notions as “mental process”, “intensity of emotional 
experience”, “speed of associations” has very the same epistemological status as 
the use of notions “upwards” and “downwards” in the Aristotelian theory of local 
motions. The point is that these notions are used not in their strict meaning, deter-
mined by the physical paradigm. Physical processes take place in space and the 
metric structure of this space enables us to speak about their velocity. Associations 
do not happen in any space that would have a straightforward metric structure and 
so the term “process” is being used here only in a metaphorical way. Similarly, 
Comte used the terms “social statics” and “social dynamics” in a metaphorical 
way. In the strict sense, i.e. the sense fixed by the physical paradigm, the term 
statics refers to the science studying the equilibria of forces. Force is a physical 
quantity that is measured in unequivocally defined units (kg.m.s – 2). On the other 
hand “forces” acting in society have no units in which we could measure them and 
so we can speak about equilibria in the social context only in a metaphorical sense. 
Similarly metaphorical is the notion of labor force in economics. Labor force is 
not a real force in the physical sense of the term force; it cannot be measured by 
means of the physical units by means of which we measure gravitational or electric 
forces. Similarly the use of the notion of work in economics is a metaphorical use 
of the physical notion of work, which is defined as a path integral of force. In eco-
nomics it is not clear what forces we have to integrate along what path.

The metaphors used in these disciplines cannot be conceptually clarified: from 
the metaphor of social forces or labor forces it is impossible to create a notion 
that would be at least approximately as clear and unambiguous as the notion of 
force in classical physics. It is precisely due to this vagueness and ambiguity of 
the basic notions of sociology and economics why I suggest including them into 
the metaphorical region of the physical paradigm. I would like to suggest that dis-
ciplines such as association psychology, political economy, or classical sociology 
are trying to understand their particular subject matter using metaphors coming 

8 See David Lewisohn, “Mill and Comte on the Methods of Social Science”, in: Journal 
of the History of Ideas, 33, 1972, pp. 315–324. I could mention also historicism the 
view that in human history there are laws similar to physical laws. The discussion of 
historical explanation falls outside the scope of the present paper (see Eugen Zelenak, 
“On Explanatory Relata in Singular Causal Explanation”, in: Theoria, 75, 2009, pp. 
179–195).
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from physics. At the same time the phenomena to which these disciplines apply 
their metaphors come from the elusive region of the paradigm, i.e. from the region 
to which the concepts and methods of the paradigm cannot be unambiguously 
applied. That is the reason why these disciplines have a problematic status (when 
compared with the paradigmatic disciplines), but on the other hand, just like the 
Aristotelian theory of local motion, these disciplines are the place for basic cultur-
al projections and have a great potential for a radical transformation in the course 
of the next scientific revolution.

27.5 the bioLogiCaL revoLution and soCiaL sCienCes

The main weakness of all discussions about the differences between natural and 
social sciences is the dominance of physics and ignorance of biology. All rumina-
tions on the alleged different character of the social sciences can be seen as an 
articulation of the fact that the social sciences have their origin in the elusive 
region of the physical paradigm. This may be correct but the example of biology 
shows that the paradigmatic disciplines of physics do not exhaust the entire region 
of natural sciences. Between the physical disciplines, which are usually taken as 
paradigmatic examples of science, and the biological sciences there are many deep 
differences in the nature of their empirical basis, epistemological status of funda-
mental categories as well as logical structure of the whole theory.9 Biological data 
(say in ecology or in the theory of evolution) are often qualitative; the theory often 
contains notions of different levels of complexity. If we extrapolate the scheme 
presented in the previous chapter one step further, it seems probable that a break-
through in the area of social sciences will occur only when the biological paradigm 
matures, so that it will develop its own mixed disciplines and own metaphorical 
region. The social sciences forming at present the elusive region of the physical 
paradigm will then be clinched between the mixed disciplines and the metaphori-
cal region of the biological paradigm. Biology will thus lead to a fundamental 
change of the social sciences, similar to that which physics brought about in the 
sphere of the organic.10

9 See Allan Franklin, “The Role of Experiments in the Natural Sciences: Examples from 
Physics and Biology”, in: Theo Kuipers (Ed.), Handbook of the Philosophy of Sci-
ence: General Philosophy of Science – Focal Issues, Amsterdam: Elsevier 2007, pp. 
219–274, and William Bechtel and Andrew Hamilton, “Reduction, Integration, and the 
Unity of Science: Natural, Behavioral, and Social Sciences and the Humanities”, in: 
Theo Kuipers (Ed.), Handbook of the Philosophy of Science: General Philosophy of 
Science – Focal Issues, pp. 377–430.

10 This change is already on the way under the heading of the “Naturalist Turn” (see e.g. 
Wenceslao J. Gonzalez, “Trends and Problems in Philosophy of Social and Cultural 
Sciences: A European Perspective”, in: Friedrich Stadler et al. (Eds.), The Present Situ-
ation in the Philosophy of Science, Vienna: Springer 2010, pp. 227–232.)
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Aristotelian theory of local motion, which was initially close to the elusive 
region of the ancient paradigm, was in the course of the scientific revolution of 
the seventeenth century shifted into the very center of the newly emerging math-
ematical physics. It is probable that during the biological revolution a similar shift 
awaits also the metaphorical region of the physical paradigm, namely psychology, 
economics, and sociology. These disciplines will be shifted from the elusive region 
of the physical paradigm (from the realm of social sciences) to the very center of 
the new paradigm of biology. Nevertheless, this will at the same time transform 
biology as well. Similarly as Newtonian physics was no longer physics in the Ar-
istotelian sense of this word. It was not based on the four Aristotelian causes. It 
is probable that biology, after it absorbs psychology, economics and sociology, 
will be not the same science as we know it now. It will be not the theory of living 
systems (i.e. a discipline defined in the contraposition to the theory of non-living 
systems which are the subject matter of physics) but rather it will be the theory 
of systems with biological information (i.e. information understood as a code – in 
contrast to theories of information understood as symbol). From an informational 
point of view a cognitive scheme, the price of a commodity or a social hierarchy is 
similar to the genetic code. The information content can be interpreted as a code 
that represents the degree of adaptation of the system to its environment (the cog-
nitive task, the market, the social, or the natural environment). The affinity of these 
disciplines is visible also from the increasing role which game theory plays in 
them.11 If we define biology by the means of description it uses rather than by the 
subject matter to which these means are applied, then psychology, economics and 
sociology will become biological disciplines, however strange this might sound.
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Chapter 28

Maria Carla Galavotti

probability, StatiStiCS, and law

28.1 Foreword

In recent decades probability and statistics have gradually made their way into the 
realm of law. This has been favoured by the proliferation of forensic techniques 
including identification by means of fingerprints, DNA evidence, marks on bullets, 
etc., and by the ever-increasing amount of epidemiological and medical data, and 
the refinement of risk analysis. These developments have forced those involved 
in forensic matters, particularly if acting in court, to pay increasing attention to 
science. Important steps in that direction were taken by a number of court de-
cisions including the 1993 U.S. Supreme Court’s Daubert decision (Daubert v. 
Merrell Dow Pharmaceuticals) which ruled that the standard for admitting expert 
testimony in federal courts should meet the demands of scientific method. A few 
years later, the 2000 revised version of the Federal Rules of Evidence fixed the re-
quirements of reliability and relevance for the admissibility of testimony in court, 
adding that fulfilment of such requirements depends on compliance with scientific 
methodology.1 This obviously brings probability and statistics to the foreground.

28.2 two ControverSial CaSeS

Let us start by discussing two controversial cases, namely those of Lucia de Berk 
and Sally Clark, which exemplify the problems raised by the use, or better the 
misuse, of statistics in court. Both of these cases provoked ample debate and media 
coverage, also attracting the attention of lawyers, forensic experts, statisticians, 
scientists operating in various fields, and epistemologists.2

 In 1996 Sally Clark’s first son was found dead in his cot at 11 weeks, and in 
1997 her second son died at 8 weeks in the same way. Sally was accused of hav-
ing murdered both babies, and in 1999 was convicted of murder and sentenced to 
life imprisonment. The jury’s verdict was based on paediatrician Roy Meadow’s 

1 A critical survey of U.S. decisions and rules regarding testimony is to be found in 
Susan Haack, “Entangled in the Bramble-Bush”, in: Susan Haack, Defending Science 
– Within Reason, Amherst: Prometheus Books 2003, pp. 233–264.

2 See the Wikipedia articles on both of these cases, with bibliography.
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testimony. As an expert witness he estimated that the probability of one death from 
natural causes (SIDS: sudden infant death syndrome) in one family was about 1 
in 8,543, and the probability of two such deaths 1 in 73 million (8,543 × 8,543). 
The low probability of 1 in 73 million was presumably taken by the jury as ruling 
out the possibility that both Sally’s children had died from natural causes. In 2003, 
after it turned out that the prosecutor’s pathologist had failed to disclose microbio-
logical reports suggesting that one of her sons had died from natural causes, the 
trial was reopened and she was released from prison, but a few years later she died 
from acute alcohol poisoning. The case has been discussed in some detail by the 
statistician Philip Dawid in a number of writings.
 In 2003, the Dutch nurse Lucia de Berk was convicted for seven murders and 
three attempted murders, and sentenced to life imprisonment. There was no evidence 
supporting the charge against her apart from the fact that a number of resuscitations 
had occurred during Lucia’s shifts. As in Sally Clark’s case, the verdict was presum-
ably influenced by statistical calculations brought to court by expert witnesses. The 
probability that so many incidents could have happened by accident during one nurse’s 
shifts was calculated by the expert witness Henk Elffers to be 1 in 7 billion. Later on, 
other calculations gave a probability of 1 in 342 million. These numbers were inter-
preted as ruling out the possibility that the deaths which occurred during Lucia’s shifts 
were due to natural causes. The Dutch philosopher of science Ton Derksen called 
attention to the case, arguing that Lucia’s conviction has been the result of misused 
statistics.3 Lucia’s case was reopened in 2008 and in April 2010 she was acquitted.
 The most striking analogy between these two cases was that neither of them 
produced evidence that a criminal offence had taken place. The deaths of Sally 
Clark’s two children and of seven patients during Lucia’s shifts were classified as 
murders simply because they were judged too improbable to be accidental, or due 
to natural causes. In Lucia’s case there was no evidence apart from the frequency 
of the emergency calls during Lucia’s shifts, and for that reason the case is also 
referred to as the “nurse/roster problem”.
 The data brought to court to incriminate Lucia were biased in various ways. 
The frequency of incidents that caused Lucia’s incrimination was calculated on the 
basis of a disputable concept of “incident”. No clear definition of what counted as 
incident was given: the prosecutor simply took the number of times Lucia called 
a doctor to a patient’s bed, and compared it with the number of times doctors were 
called during other nurses’ shifts. As observed by Gill and Groeneboom, “incidents 
were never formally defined. However, if doctors were expressly called to the bed 
of the patient by nursing staff, then that soon qualified as an accident, especially 
if Lucia was somehow involved”.4 This is obviously not an objective criterion, 

3 The English speaking reader is addressed to Ton Derksen and Monica Meijsing, “The 
Fabrication of Facts: the Lure of the Incredible Coincidence”, in: Hendrik Haptein, 
Henry Prakken and Bart Verheij (Eds.), Legal Evidence and Proof, Farnham: Ashgate 
2009, pp. 39–70.

4 Richard Gill and Piet Groeneboom, “Elementary Statistics on Trial (the case of Lucia de 
B.)”, 2009, p. 5 (online publication available from the Wikipedia article on Lucia de B.).
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for the inclination to call for a doctor when faced with a critical situation could 
be influenced by myriad factors, including experience, ability/inability to detect 
critical situations, psychological elements, and so on. In addition, as observed by 
Derksen and Meijsing, the data used by the prosecutor concerned only three of the 
five wards Lucia had been working on, and only 1 year and 3.5 months out of the 
11.75 years that she worked in those hospitals. Also puzzling is the fact that no 
search was made for incidents outside Lucia’s shifts.
 Various commentators deem it disputable that the data on the frequency of 
incidents, taken as evidence against Lucia, were used twice in the incriminating 
calculations: once in order to state that a criminal offence had taken place, and 
once more to infer that Lucia was responsible.5 In the debate that followed Lucia’s 
sentence, doubts were raised against the statistical calculations that led to the fig-
ure of 1 in 342 million, taken as the probability that the incidents happened during 
Lucia’s shifts could have occurred by chance (the null hypothesis). A number of 
authors, including Derksen, Gill and Groeneboom, objected to the use of Fisher’s 
exact test made by the expert of the prosecution Henk Elffers. Other calculations 
obtained by the same method, but taking into account a more complete body of 
evidential data and avoiding certain assumptions (like independence) resulted in 
totally different figures.6

 The statistical calculations that led to the prosecution of both Sally Clark and 
Lucia de Berk made use of independence assumptions, with no sound justification. 
In Sally Clark’s case the figure of 1 in 73 million was calculated by squaring the 
probability that one infant dies of SIDS within a population having the character-
istics as the parents of the dead children, therefore assuming the independence of 
the two deaths even though commonsense suggests that the deaths of two brothers 
can hardly be judged as independent events.7 Also in Lucia’s case a number of 
independence assumptions were made. Meester, Collins, Gill and van Lambalgen 
list the following (among others): (1) the probability of an incident during a night 
shift is the same as during a day shift (although more people die during the night); 
(2) the probability of an incident during a shift does not depend on the prevailing 
atmospheric conditions (although these have an effect on respiratory problems); 
(3) all nurses have an equal probability of witnessing incidents (whereas on the 

5 See Ton Derksen and Monica Meijsing, “The Fabrication of Facts: the Lure of the In-
credible Coincidence”, op. cit., and David Lucy, “Commentary on Meester et. al. ‘On 
the (Ab)use of Statistics in the Legal Case against Lucia de B.’ ”, in: Law, Probability, 
and Risk, 5, 2006, pp. 251–254.

6 See Ton Derksen and Monica Meijsing, “The Fabrication of Facts: the Lure of the 
Incredible Coincidence”, op. cit.

7 See Philip Dawid, “Bayes’ Theorem and Weighing of Evidence by Juries”, in: Richard 
Swinburne (Ed.), Bayes’s Theorem (Proceedings of the British Academy 113), Oxford: 
Oxford University Press 2002, pp. 71–90.
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contrary terminally ill patients often die in the presence of the nurse they feel most 
comfortable with).8

 Last but not least, at both trials use was made of the argument known as the 
prosecutor’s fallacy. In Sally Clark’s case, the figure of 1 in 73 million, calculated 
as the measure of the initial rarity of the event “two SIDS deaths”, was interpreted 
as the probability that that particular event had in fact happened and was then tak-
en as the probability that Sally Clark was innocent, giving a very high probability 
of her being guilty. Also in Lucia’s case the same kind of fallacy was committed. 
As put by Derksen and Meijsing, the wrong question was addressed: instead of 
asking “Assuming Lucia’s innocence, what is the probability that she meets with 
such a coincidence (the number of incidents) by chance?” the court should have 
asked “Given the coincidence, is there reason to convict Lucia?”.9

 The prosecutor’s fallacy deserves closer inspection. It typically occurs as fol-
lows. Take the so-called “match probability” p, namely the probability that a given 
piece of evidence – such as a trace left at the murder scene, like blood, hair or 
other organic material – is to be ascribed to an individual taken at random from a 
reference population. The fallacy occurs when such probability is interpreted as 
the probability that the defendant is not guilty, and the conclusion is drawn that 
the probability of his guilt is calculated as 1 – p. For instance: a match probability 
p (M | – G) = 1/10,000,000 [M = a trace that was found on the murder scene; – G 
= the defendant is not responsible for it, namely the trace was left by an individual 
chosen randomly from the reference population] is confused with p (– G | M) [the 
probability that the defendant is not guilty, given the piece of evidence found at 
the murder scene]. The probability of the defendant being guilty is then obtained 
as 1 – 1/10,000,000. This is clearly a fallacious way of obtaining a very high prob-
ability of guilt of the defendant, based on the confusion between the probability 
that a certain trace was left by an unknown individual randomly chosen from the 
population and not by the defendant, and the probability that the defendant is not 
guilty, given the piece of evidence found at the murder scene.

28.3 the StrenGth oF CoMpariSon

The cases of Sally Clark and Lucia de Berk – like many others not mentioned 
here – exemplify misuse of statistics in court. How can one make good use of 
statistics for forensic purposes? In the first place, good use of statistics requires 
data to be collected carefully to avoid bias, and all assumptions to be spelled out 
and justified. In addition, a number of authors stress the need to use statistics as 

8 Cf. Ronald Meester, Marieke Collins, Richard Gill and Michiel van Lambalgen, “On 
the (Ab)use of Statistics in the Legal Case Against the Nurse Lucia de B.”, in: Law, 
Probability and Risk 5 (2006), pp. 233–250.

9 See Ton Derksen and Monica Meijsing, “The Fabrication of Facts: the Lure of the 
Incredible Coincidence”, op. cit.
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a means for comparison. Using relative in place of absolute values not only con-
veys more accurate information, it also avoids to incur in bad arguments like the 
prosecutor’s fallacy. In Sally Clark’s case, this line of reasoning led to comparing 
the probability that two infants die of SIDS with the probability that two brothers 
are murdered by their mother (under similar circumstances). As a result of such a 
comparison, Dawid calculates the odds as follows:

(1/2 billion) / (1/73 million) = 0.0365.

 If this value were to be interpreted as a hint of Sally’s guilt or innocence, it 
would obviously speak against conviction beyond any reasonable doubt.10

 The appropriate tool for statistical comparison is the likelihood ratio (LR). 
Not itself a probability, the LR results from comparing two probabilities. Typically, 
it allows the weight of a given body of evidence to be compared to alternative hy-
potheses:

LR = p (E | H) / p (E | G)

or

LR = p (E | H) / p (E | – H)

if one wanted to weigh some body of evidence with respect to a given hypothesis 
and its negation.
 The likelihood ratio relates naturally to the notion of relevance: when its value 
equals 1 the given body of evidence is irrelevant to the hypothesis, when its value 
differs from 1 the given body of evidence is relevant. More particularly, a likeli-
hood ratio greater than 1 indicates how much a given body of evidence favours 
the truth of a certain hypothesis against the alternative which is being considered, 
and conversely if the likelihood ratio is less than 1. The LR is extensively used in 
court to convey information on how evidence can affect the probability of com-
peting hypotheses (typical case: the use of DNA evidence in a paternity dispute). 
Following Evett, Robertson and Vignaux define a likelihood ratio for adoption in 
court as “weak” in the range 1–33, “fair” in the range 33–100, “good”, in the range 
100–330, “strong” in the range 330–1,000, and “very strong” a ratio greater than 
1,000.11

 Although the likelihood ratio can be used alone, as it yields useful informa-
tion of the kind described, supporters of the Bayesian method favour its adoption 
within the Bayesian framework, stressing its crucial role in connection with the 
shift from prior to posterior probabilities. This appears evident if Bayes’ rule is 
expressed in terms of odds:

10 See Philip Dawid, “Statistics and the Law”, in: Andrew Bell, John Swenson-Wright, 
Karin Tybjerg (Eds.), Evidence, Cambridge: Cambridge University Press 2008, pp. 
119–148.

11 Cf. Bernard Robertson and G. A. Vignaux, Interpreting Evidence, Chichester: Wiley 
1995, p. 12. I. W. Evett, “Interpretation: A Personal Odissey”, in: C. G. G. Aitken and 
David Stoney (Eds.), The Use of Statistics in Forensic Science, New York: Ellis Hor-
wood 1991, pp. 9–22.
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[p (H | E) / p (– H | E)] = [p (H) / p (– H)] × [p (E | H) / p (E | – H)].

 By considering the shift from priors to posteriors one can evaluate how a 
given body of evidence is apt to influence the comparison between alternative hy-
potheses, such as hypotheses regarding the cause of a certain event (for instance, 
someone’s death). Forensic literature abounds in examples of the application of 
the likelihood ratio to identification problems by means of evidence related to 
DNA, the glass refraction index, cloth fibres or other materials. In all such cases 
the likelihood ratio can sometimes favour one of two given hypotheses so that even 
in the presence of very little information concerning prior probabilities it is often 
possible to assign it a very high probability.
 The following table gives an idea of the effect of the likelihood ratio in the 
shift from prior probability p (H) to posterior probability p (H | E).12 For a likeli-
hood ratio p (E | H) = 100:

p (H)

p (H | E)

0.001

0.09

0.01

0.50

0.1

0.92

0.3

0.98

0.5

0.99

0.7

0.996

0.9

0.999

Assuming that one wanted to apply Bayes’ reasoning to the two hypotheses of guilt 
(G) and innocence (– G) of a defendant:

[p (G | E) / p (– G | E)] = [p (G) / p (– G)] × [p (E | G) / p (E | – G)]

the table shows how much a piece of evidence which according to the likelihood 
ratio is 100 times more likely to be conditional on the guilt than on the innocence 
hypothesis, affects various priors. In order to obtain a posterior probability of at 
least 99% – that is to say a value that would satisfy the standard of proof of beyond 
any reasonable doubt (BARD)13 – the prior probability, namely the probability 
of guilt before the piece of evidence E is taken into account, needs to be at least 
50%.
 Obviously, the value of priors has to be established on solid grounds, on the 
basis of myriad elements not susceptible of quantitative analysis. For this reason, a 
number of authors recommend application of the Bayesian method at an advanced 
stage of the trial.

12 See Philip Dawid, “Probability and Statistics in Court”, a section of the appendix 
online (“Probability and Proof ”) to the second edition of Terence Anderson, David 
Schum and William Twining, Analysis of Evidence, Cambridge: Cambridge University 
Press 2005.

13 See Dennis Lindley, “Probabilities and the Law”, in: Dirk Wendt and Charles Vlek 
(Eds.), Utility, Probability, and Human Decision Making, Dordrecht–Boston: Reidel 
1975, pp. 223–232.
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28.4 CritiCiSM and replieS

An influential criticism against the use of probability and statistics in court has 
been raised by Laurence Tribe, who objects to the use of probability and statistics 
in court on account of (1) the presumption of innocence (PI) and (2) the BARD 
standard, which he takes to be moral principles that impinge respectively upon 
the beginning and the end of the trial.14 According to Tribe, the moral nature of PI 
and BARD should discourage the idea that the hypothesis of guilt be expressed 
by means of a probability value, calculated by means of Bayes’ rule. He is espe-
cially concerned that posterior probability of guilt is not conflated with the BARD 
standard.
 A possible rejoinder to Tribe’s caveat can be found in Lindley’s writings, where 
the author maintains that when probability is applied to the hypothesis of guilt it 
refers “to the event that the defendant committed the crime with which he has been 
charged […] not to the judgment of guilt”.15 In other words, the hypothesis of guilt 
is taken by Bayesians as a useful working hypothesis, not to be confused with the 
judgment of guilt, which falls within the competence of the judge, or juror, who 
will formulate it on the basis of a complex body of elements usually not reducible 
to the mere quantitative evidence. The same holds for the BARD standard, whose 
nature is too complex to be expressed by means of a probability value. This is 
emphasized by Robertson and Vignaux, who claim that BARD “is a matter for the 
court”, not for statisticians.16

 Obviously, Bayesian inference crucially depends on the value assigned to pri-
ors, and the process of fixing priors is a most delicate matter. Larry Laudan ob-
jects to the use of Bayes’ method in court on the grounds that prior probabilities 
are the expression of the “subjective hunches” of those who fix them.17 However, 
Laudan’s conviction clashes with a vast literature testifying to a totally different at-
titude on the part of supporters of the use of Bayes’ method in court. Among them 
David Kaye, who made serious attempts to rebut the idea that prior probabilities 
are merely the expression of personal feelings. In his words: “there appears to 
be no reason in principle why a juror could not generate a prior probability that 
could be described in terms of objective, relative-frequency sort of probability”.18 
For instance, in identification cases the information on the frequency with which 

14 See Laurence Tribe, “Trial by Mathematics: Precision and Ritual in the Legal Process”, 
in: Harvard Law Review, 84, 1971, pp. 1329–1393.

15 Dennis Lindley, “Probability”, in: C. G. G. Aitken and David Stoney (Eds.), The Use 
of Statistics in Forensic Science, op. cit., p. 27.

16 Cf. Bernard Robertson and G. A. Vignaux, Interpreting Evidence, op. cit., p. 78.
17 See Larry Laudan, “Is Reasonable Doubt Reasonable?”, in: Legal Theory, 9, 2003, pp. 

295–331, and Larry Laudan, Truth, Error, and Criminal Law, Cambridge: Cambridge 
University Press, 2006.

18 David Kaye, “The Laws of Probability and the Laws of the Land”, in: The University 
of Chicago Law Review, 47, 1979, p. 55.
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relevant characters occur in the reference population is used to determine prior 
probabilities.19 The literature on the topic is constantly growing.
 As a further objection against the adoption of Bayes’ method in court, Laudan 
maintains that the presumption of innocence should impose that the probability of 
guilt is assigned the value 0 or at best a value so low as to make it impossible to 
obtain a significant posterior probability, no matter how much evidence is brought 
to court. This argument is mistaken for at least two reasons. First, as pointed out by 
Lindley, prior probability of guilt should never be 0, on the ground of “Cromwell’s 
rule” (after Cromwell’s advice to the Church of Scotland: “I beseech you, … think 
it possible you may be mistaken”).20 Secondly, a very strong likelihood ratio can 
raise the smallest prior to a significantly high posterior.
 Supporters of the Bayesian method, like Lindley, Dawid, Kaye, Robertson and 
Vignaux, and many others recommend its adoption in court as a heuristic device 
to help the parties involved in a trial in interpreting evidence. In this spirit, Richard 
Lempert holds that the Bayesian method can promote understanding of a clus-
ter of issues related to relevance, such as “the meaning of logical relevance” and 
“the principle that only relevant evidence is admissible”.21 Obviously, there is no 
unique way of applying Bayes’ method to a given problem, therefore it is crucial 
to state explicitly what assumptions are made in each particular context. To be 
sure, utilizing the Bayesian method is no easy task. For one thing, the calculation 
of likelihoods can be problematic, and equally tricky is the choice of priors. Also 
important is to make the calculations formulated by experts understood to those 
whose responsibility it is to formulate the final judgment of guilt. These issues are 
the focus of a vast literature.22

 Behind the application of Bayesian methods, and indeed of any kind of sta-
tistical inferences (in court as well as anywhere else) lurks the problem of using 
the appropriate reference class. Identifying a suitable reference class for base rates 
requires that no relevant variables are omitted (in order to avoid confounding), and 
that data are plausibly collected. This challenging problem admits of no simple and 
general solution, but is attracting increasing attention in the realm of law.23

19 See for instance Ira Mark Ellmann and David Kaye, “Probability and Proof: Can HLA 
and Blood Group Testing Prove Paternity?”, in: New York University Law Review, 54, 
1979, pp. 1131–1162.

20 Dennis Lindley, “Probability”, op. cit., p. 43.
21 Richard Lempert, “Modeling Relevance”, in: Michigan Law Review, 75, 1977, p. 

1031.
22 See for instance the discussion in Stephen Fienberg and Michael Finkelstein, “Baye-

sian Statistics and the Law”, in: José Bernardo, James Berger, Philip Dawid, and Adrian 
Smith (Eds.), Bayesian Statistics, Oxford: Oxford University Press 1996, pp. 129–146. 
For an interesting comparison between the Bayesian and frequentist approaches to a 
DNA identification problem see David Kaye, “Case Comment – People v. Nelson: a 
Tale of Two Statistics”, in: Law, Probability and Risk, 7, 2008, pp. 249–257.

23 See for instance Aaron Taggart and Wayne Blackmon, “Statistical Base and Back-
ground Rates: The Silent Issue not Addressed in Massachusetts v. EPA”, in: Law, Prob-
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 It should not go without mention that Jonathan Cohen strongly objected to the 
use of standard (or Pascalian) probabilities in court. His arguments, which cannot 
be recollected here, have been analysed in some detail by a number of authors who 
put forward convincing rejoinders.24

 Instead, the adoption of standard probability in court has been vigorously de-
fended by Dennis Lindley, who claims that

a simple and effective reason for using probability is that it works. I know of no situation in 
which probability is inadequate or fails to yield a reasonable answer. Sometimes the calcula-
tions are horrendous and cannot at the moment be done: but that is a technical difficulty that 
adequate research will, one hopes, overcome. Sometimes it is hard to relate the probability 
model to the actual situation: but again, when it can be done the result is illuminating.25

Kaye also patronizes the use of standard probability in the context of criminal trial, 
observing that

the equations of the axiomatized theory of probability – like the rules of logic and arithme-
tic – work admirably in other contexts. […] Surely the probability axioms work sufficiently 
well for objectively estimated probabilities. Why should they not serve as well when applied 
to thoughtful, subjective estimates?26

28.5 a plea For SubjeCtive probability

As suggested by the above passage, Kaye argues that subjective probability can 
find useful applications in court. A similar conclusion is reached by Philip Dawid, 
who maintains:

The subjectivist philosophy holds that complete objectivity is an illusion, and thus that there 
is no such thing as ‘the’ probability of any uncertain event – rather, each individual is enti-
tled to his or her own subjective probability. This is not, however, to say that anything goes: 
in the light of whatever relevant evidence may be available, certain opinions will be more 

ability and Risk, 7, 2008, pp. 275–304; and David Kaye, “Logical Relevance: Problems 
with the Reference Population and DNA Mixtures in People v. Pizarro”, in: Law, Prob-
ability, and Risk, 3, 2004, pp. 211–220.

24 See Jonathan Cohen, The Probable and the Provable, Oxford: Clarendon Press 1977. 
For comments on Cohen’s arguments see issue n. 4 (1981) of the journal The Be-
havioural and Brain Sciences; Philip Dawid, “The Difficulty about Conjunction”, in: 
The Statistician, 36, 1987, pp. 91–97; Stephen Fienberg, “Misunderstanding, beyond a 
Reasonable Doubt”, in: Boston Law Review, 66, 1986, pp. 651–656; and David Kaye, 
“Do we Need a Calculus of Weight to Understand Proof beyond a Reasonable Doubt?”, 
in: Boston Law Review, 66, 1986, pp. 657–672.

25 Dennis Lindley, “Probability”, op. cit., p. 37.
26 David Kaye, “The Laws of Probability and the Laws of the Land”, op. cit., p. 55.
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reasonable than others. This seems to correspond to the legal conceptions of the ‘reasonable 
man’ and ‘reasonable doubt’.27

 The opinion of these authors is in tune with the position of one of the “fa-
thers” of the subjective interpretation of probability, namely Bruno de Finetti, who 
used to distinguish between the definition of probability as degree of belief and 
its evaluation, regarded as a complex procedure that depends on objective as well 
as subjective elements. The evaluation of probability should take into account all 
available evidence including, whenever available, frequencies and symmetries, 
but for de Finetti it would be a mistake to put these elements, which are useful 
ingredients of the evaluation of probability, at the core of its definition. While 
opposing objectivism, namely the idea that probability is a property of objects, 
having a true value that is usually unknown, de Finetti takes very seriously the is-
sue of objectivity, namely the problem of using good probability appraisers.28 He 
recommends that whenever empirical information is available it should be taken 
into account, because ignoring such information would conflict with the Baye-
sian ideal of rationality, which requires that probability evaluations be guided by 
evidence. Once it is acknowledged that probability is subjective and that there is 
no unique “rational” way of assessing probability, room can be made for a whole 
array of elements to influence and improve probability evaluations. This problem 
was extensively addressed by de Finetti, especially from the Sixties onwards. The 
approach adopted is based on scoring rules such as “Brier’s rule”, named after 
the meteorologist Brier who applied it to weather forecasts. Scoring rules can be 
used to improve probability forecasts made both by a single person and by several 
people, providing a tool for obtaining robust evaluation methods.29

 Regrettably, the wrong idea that subjectivism is some sort of “anything goes” 
approach to probability is still widespread, and there is little awareness that the sub-
jective interpretation of probability is fully compatible with objective assessments. 
In this vein, Laudan claims that adopting subjective probabilities in court would 
mean admitting arbitrary and discretional probability judgments, and Redmayne 
maintains that the assessment of evidence in court needs objective probability and 
discards subjectivism because “when the only constraint on rational belief is co-
herence among a belief set, it can seem that anything goes”.30 Not surprisingly, 

27 Philip Dawid, “Probability and Statistics in Court”, op. cit.
28 More on de Finetti’s attitude towards the problem of objectivity in Maria Carla Gala-

votti, “Subjectivism, Objectivism and Objectivity in Bruno de Finetti’s Bayesianism”, 
in: David Corfield and Jon Williamson (Eds.), Foundations of Bayesianism, Dordrecht–
Boston–London: Kluwer 2001, pp. 173–186, and Maria Carla Galavotti, Philosophical 
Introduction to Probability, Stanford: CSLI 2005.

29 For more on scoring rules see Philip Dawid and Maria Carla Galavotti, “De Finetti’s 
Subjectivism, Objective Probability, and the Empirical Validation of Probability As-
sessments”, in: Maria Carla Galavotti (Ed.), Bruno de Finetti, Radical Probabilist, 
London: College Publications 2009, pp. 97–114.

30 Mike Redmayne, “Objective Probability and the Assessment of Evidence”, in: Law, 
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though, Redmayne is unable to identify an objective theory of probability that 
could adequately represent the uses of probability in court, and turns to “epistemic 
justification” as a criterion for the acceptability of evidentiary arguments to be pre-
sented in a trial. This is not much of a solution, because it remains to be clarified 
what an epistemic justification should consist of. Incidentally, subjectivists have 
a lot to say in that connection; suffice it to think of Frank Ramsey’s conception of 
knowledge as “obtained by a reliable process”,31 together with his idea that the cri-
terion for the reliability of inductive inferences is given by their success. The same 
idea is to be found in de Finetti, and in the vast literature on calibration methods 
developed by statisticians of subjectivist inspiration.32 Whether these ideas can 
find useful applications in court is an open question.
 It should be added that in Expert Evidence and Criminal Justice Redmayne 
takes a milder attitude towards subjective probability, claiming that

various aspects of subjective probability are controversial […] Nevertheless, the notion of 
subjective probability captures, if only crudely, something important about our doxastic 
attitudes: the existence of degrees of belief. Even if the idea of attaching figures to these 
degrees is a simplistic way of conceptualizing them, this simplicity at least buys a rigorous 
way of thinking through various problems.33

In the same book Redmayne puts forward the conviction that a natural way to think 
about evidence in criminal trials is by framing it within explanatory accounts. In 
this connection he refers to the “story model for juror decision making” which has 
been proposed by Nancy Pennington and Reid Hastie as a model of “the cognitive 
strategies that individual jurors use to process trial information in order to make a 
decision prior to deliberation”.34 Redmayne regards the story model and Bayesian 
theory as “the two views of a Necker cube”, claiming that they are different ways 

Probability and Risk, 2 , 2003, p. 276.
31 See Frank Plumpton Ramsey, Philosophical Papers, ed. by Hugh Mellor, Cambridge: 

Cambridge University Press 1990, p. 110; Nils-Eric Sahlin, “Obtained by a Reliable 
Process and always Leading to Success”, in: Theoria, 17, 1991, pp. 132–149, and Mar-
ia Carla Galavotti, “F. P. Ramsey and the Notion of ‘Chance’”, in:  Jaakko Hintikka 
and Klaus Puhl (Eds.), The British Tradition in the 20th Century Philosophy. Proceed-
ings of the 17th International Wittgenstein Symposium, Wien: Hölder-Pichler-Tempsky 
1995, pp. 330–340.

32 See for instance Leonard J. Savage, “Elicitation of Personal Probabilities and Expec-
tations”, in: Journal of the American Statistical Association, 66, 1971, pp. 783–801, 
and Philip Dawid, “Probability Forecasting”, in: Samuel Kotz, Norman Johnson and 
C. B. Read (Eds.), Encyclopedia of Statistical Sciences, 7, New York: Wiley 1986, pp. 
210–218.

33 Mike Redmayne, Expert Evidence and Criminal Justice, Oxford: Oxford University 
Press 2001, pp. 54–55.

34 Nancy Pennington and Reid Hastie, “The Story Model for Juror Decision Making”, in: 
Reid Hastie (Ed.), Inside the Juror, Cambridge: Cambridge University Press 1993, p. 
192.

401



 Maria Carla Galavotti

of representing evidence that “it is not easy to mix”.35 In point of fact, Penning-
ton and Hastie account for these approaches as two contrasting decision models, 
standing in opposition to each other. By contrast, we have seen that most authors 
do not recommend the Bayesian method as a means for taking decisions in court, 
but rather as a tool for helping decision-makers by conveying information on the 
weigh of available evidence. From this standpoint it seems perfectly feasible, al-
beit by no means easy, to combine Bayesian method with an explanatory account 
of facts.

Department of Philosophy
University of Bologna
Via Zamboni 38
40126 Bologna
Italy
mariacarla.galavotti@unibo.it

35 Mike Redmayne, Expert Evidence and Criminal Justice, op. cit., p. 70.
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Chapter 29

adrian Miroiu

experiMents in politiCal sCienCe:
the Case of the Voting rules

Nearly two centuries ago, in his essay On the Definition of Political Economy; and 
on the Method of Investigation Proper to It, John Stuart Mill developed the view 
that in moral sciences the only certain or scientific mode of investigation is the a 
priori method, or that of “abstract speculation”. The following quotation concen-
trates his main argument:

There is a property common to almost all the moral sciences, and by which they are distin-
guished from many of the physical; this is, that it is seldom in our power to make experi-
ments in them. … We cannot try forms of government and systems of national policy on a 
diminutive scale in our laboratories, shaping our experiments as we think they may most 
conduce to the advancement of knowledge. We therefore study nature under circumstances 
of great disadvantage in these sciences; being confined to the limited number of experi-
ments which take place (if we may so speak) of their own accord, without any prepara-
tion or management of ours; in circumstances, moreover, of great complexity, and never 
perfectly known to us; and with the far greater part of the processes concealed from our 
observation.1

For Mill, experiments in political science are not an appropriate means of arriving 
at truth. However, Mill attaches them another important role: experiments help 
verify truth, and reducing as much as possible the “uncertainty before alluded to 
as arising from the complexity of every particular case, and from the difficulty (not 
to say impossibility) of our being assured a priori that we have taken into account 
all the material circumstances”. 2

 Mill’s view is still critical for understanding the role of experiments in politi-
cal science.3 I shall start by discussing some of the views expressed by economists 
concerning the role of experiments in moral sciences. The view developed by 

1 John Stuart Mill (1874). Essays on Some Unsettled Questions of Political Economy, 
Second Edition, Batoche Books, Kitchener, 2000, p. 103.

2 John Stuart Mill (1874). Essays on Some Unsettled Questions of Political Economy, p. 
107.

3 For a general discussion on the role of experiments in social sciences, see Wenceslao J. 
Gonzalez, “The Role of Experiments in the Social Sciences: The Case of Economics”, 
in: Theo Kuipers (Ed.), Handbook of the Philosophy of Science: General Philosophy 
of Science – Focal Issues, Amsterdam: Elsevier 2007, pp. 275–301.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_29,  
© Springer Science+Business Media B.V. 2012
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Vernon Smith is specifically relevant is this context. A main reason is that Smith 
gives institutions a core role in theory construction as well as in experimental set-
tings. Voting rules, i.e. rules to transform the electorate’s votes into a group deci-
sion, are clear examples of institutions. Experiments performed with these rules 
will be discussed. The main argument of this paper is that there is much to gain in 
the experimental approaches by taking into account the study of the voting rules by 
means of the social choice techniques. Social choice theorists showed that voting 
rules can be characterized by appealing to sets of properties they uniquely satisfy. 
Therefore, it is tempting to study not only how voters behave when confronted 
with situations in which a certain voting rule works, but also their attitudes towards 
such properties. For example, one such property some voting rules have is that 
of anonymity. Roughly, it states that all voters should be treated as equals. Then 
a large collection of experiments concerning the topic of voters’ attitudes toward 
equality and fairness becomes relevant for the experimental study of voting rules.

29.1

Vernon Smith received the Nobel Prize in 2002 for his contribution in experimen-
tal economics. According to him, there are at least seven reasons for a researcher 
to devise and conduct experiments.4 She may want to: (i) test a theory, or discrimi-
nate between theories; (ii) explore the causes of a theory’s failure; (iii) establish 
empirical regularities as a basis for new theory (in the laboratory, especially with 
computerization, institutions with complex trading rules are as easier to study); 
(iv) compare environments; (v) compare institutions (using identical environ-
ments, but varying the market rules of exchange, has been the means by which the 
comparative properties of institutions has been established); (vi) evaluate policy 
proposals; (vii) treat the laboratory as a testing ground for institutional design, for 
examining the performance properties of new institutions.

Smith acknowledges that to accept that experiments have such roles is at odds 
with the standard, received view on the way economics is commonly researched, 
taught, and practiced.5 On this view economics is conceived as an a priori science 
consisting in logically correct, internally consistent theories and models, while 
experiments can only be used to “test” alternative model specifications. It is then 
counterintuitive for people trained in this tradition to understand key features of 
the experimentalist economists’ methodology. When confronted with economists 
working in this paradigm, the experimental researcher essentially sees himself as a 
kind of an anthropologist on Mars: he and the traditional economist live in differ-
ent ways of thinking, have different two world views.6

4 Cf. Vernon L. Smith, “Economics in the Laboratory”, in: The Journal of Economic 
Perspectives, 8, 1, 1994, pp. 113–131.

5 Cf. Vernon L. Smith, Rationality in Economics. Constructivist and Ecological Forms, 
Cambridge: Cambridge University Press, 2008.

6 From the point of view of a deductivist economist, allocation mechanisms require 
agents to have complete information, but not mechanism designers. But the experi-
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As an institutionalist theorist, V. Smith is aware of the fact that experimen-
talist economists have been largely influenced by institution-specific theory that 
began to develop about 1960. The lesson they learned is that institutions matter: 
agent incentives in the choice of messages (like bids) are affected by the institu-
tional rules that convert messages into outcomes. Institutions are a core element 
of a theory and, as we shall immediately see, of an experimental setting.7 Let us 
take as an example a special class of economic theories: microeconomic theories. 
Smith distinguishes three ingredients of these theories: the environment, the in-
stitution and the behaviour of the actors.8 The first two ingredients help define the 
micro-economic system to be studied. The third concern the way in which agents 
choose messages. All three components allow for an assessment of the system 
performance.9

The environment can be specified by describing the agents’ characteristics: 
first, the number of the economic agents; secondly, the list of the commodities 
or goods among which they are to choose; third, relevant characteristics of the 
economic agents, such as the agent’s utility or preference function, the endowment 
of agents with resources (technology and knowledge), and the production or cost 
functions. Hence, a microeconomic environment is specified by a set of initial 
circumstances that cannot be altered by the agents or the institutions within which 
they interact. This final aspect is especially important. In an experimental setting, 
the environment should include some circumstances that cannot be altered by the 
agents because they are control variables fixed by the experiment.

Institutions, in D. North’s famous phrase, define the rules of the game under 
which agents may communicate and exchange or transform commodities or goods 
for the purpose of modifying initial endowments in accordance with their private 
tastes and knowledge. The institution specifies first, a language: the set of mes-

mentalist thinks in a quite different manner: “The whole idea of laboratory experiments 
was to evaluate mechanisms in an environment where the Pareto optimal outcome was 
known by the experimental designer but not by the agents so that performance com-
parisons could be made”, Vernon L. Smith, Rationality in Economics. Constructivist 
and Ecological Forms, Cambridge: Cambridge University Press, 2008, p. 294.

7 As Bottom et al. write, “Experiments are uniquely suited for examining institutional 
effects”. William P. Bottom, Ronald A. King and Larry Handlin, “Miller, G. J., Insti-
tutional Modifications of Majority Rule”, in: Vernon L. Smith, Charles R. Plott (Eds.), 
Handbook of Experimental Economics Results, Amsterdam: North-Holland, 2008, p. 
857. The experimental strategy is to hold preferences constant and randomly assign 
subjects to treatments distinguished only by variations in institutional rules. The ob-
vious interpretation is that the resulting differences in behavior are to be ascribed to 
the institutional differences. Significantly, the degree of confidence reached would be 
impossible in natural political settings.

8 Cf. Vernon L. Smith, “Theory, Experiment and Economics”, in: The Journal of Eco-
nomic Perspectives, 3, 1, 1989, pp. 151–169.

9 Cf. Vernon L. Smith, “Microeconomic Systems as an Experimental Science”, in: 
American Economic Review, 72, 1982, pp. 923–55.
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sages that can be sent by each of the agents. A message might be a bid, an offer, 
or an acceptance. Secondly, it specifies the rules: (a) allocation rules – which is 
the resulting commodity or goods allocation to each agent as a function of the 
messages sent by all agents; a subclass of these rules include the imputation rules, 
which specify the payment to be made by each agent as a function of the messages 
sent by all agents; (b) adjustment process rules. In general, these rules consist 
of a starting rule specifying the time or conditions under which the exchange of 
messages shall begin, a transition rule (or rules) governing the sequencing and 
exchange of messages, and a stopping rule under which the exchange of messages 
is terminated.

The third ingredient of the theory is the behaviour of the actors. First, theories 
introduce assumptions about agent behaviour, e.g. that agents maximize utility, 
or expected utility, that common information yields common expectations, that 
agents make choices as if they are risk averse, that expectations adjust using Bayes 
rule, that transactions costs (the cost of thinking, deciding, acting) are negligible, 
etc. The theoretical scheme is this: agents choose messages, and institutions de-
termine the outcomes – the allocations – via the rules that carry messages into al-
locations. The scheme can be used to explain or to make predictions: for example 
the bid(s) that an agent will submit at a sealed bid auction, the price that will be 
posted by an oligopolist, the reservation price below which a price searching agent 
will buy, and so on.

Now let us move to experiments. The crucial point is that Smith regards the 
structure of the experiment as a replica of the theory.10 Experiments also have 
three ingredients: an environment, an institution, and the observed behaviour of 
the agents. The characteristic of the experiments is control. “Control is the essence 
of experimental methodology, and in experimental exchange studies it is important 
that one be able to state that, as between two experiments, individual values (e.g., 
demand or supply) either do or do not differ in a specified way”.11 Control infuses 
the first two ingredients of the experiment. The environment is controlled using 
monetary rewards to induce the desired specific value/cost configuration.12 The 
institution is defined by the experimental instructions which describe the messages 
and procedures of the market, which are most often computer controlled.13

10 Cf. Vernon L. Smith, “Economics in the Laboratory”, in: The Journal of Economic 
Perspectives, 8, 1, 1994, pp. 113–131.

11 Vernon L. Smith, “Experimental Economics: Induced Value Theory”, in: The Ameri-
can Economic Review, 66, 2, 1976, p. 275.

12 A “nonsatiation” condition is here assumed (cf. Vernon L. Smith, “Microeconomic 
Systems as an Experimental Science”, op. cit.): given a costless choice between two 
alternatives, identical (i.e., equivalent) except that the first yields more of a reward 
medium than the second, individuals will always chose the first over the second.

13 Smith acknowledges, however, that full control is an illusion. “I want simply to note 
here that there are similar illusions that control is a panacea for ensuring the quality of 
the information we gather in experiments”, Vernon L. Smith, Rationality in Econom-
ics. Constructivist and Ecological Forms, op. cit., p. 295.
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29.2

I shall use the framework developed by V. Smith to sketch a picture of the way in 
which voting rules can be studied under laboratory conditions. For our purposes, 
the environment can be defined by a set of players, called the voters, and sets of 
policies offered by competing parties. The voters are endowed with votes. Usually, 
each voter is supposed to have exactly one vote. The voters can offer they vote in 
a mass election to one of the competing parties. Since the number of the parties as 
well as they position concerning an electoral agenda are not variables that depend 
upon the behaviour of the agents, they are also taken as circumstances that cannot 
be altered by the agents. Finally, the agents are supposed to have preferences over 
the competing sets of policies, which translate into preferences over competing 
parties.
 The institution is the voting rule. Given the messages (votes) received from 
the voters, the voting rule allocates seats to the parties in the Parliament. Of 
course, indirectly the rule determines if the policies preferred by an actor will be 
among those promoted by the winning party. Various assumptions concerning the 
behaviour of the voters have been proposed. Most general are those that voters 
are rational – they are endowed with a complete and transitive preference rela-
tion – and that they have common knowledge of the voting situation. Others are 
more specific; the voters are supposed: to have single picked preferences (Black); 
to vote for the most preferred party most likely to win (Duverger); to vote for the 
party closest to their ideal point (Downs), etc.

Quite often the role of the voting rules is presented by reference to the so-
called fundamental equation of politics: as Plott phrased it, the outcomes are func-
tion of the preferences and the voting rule.14 We can keep the institution constant 
and let preferences change; or we can keep preferences constant and see which 
outcomes are reached under different voting rules. For experimental research, it is 
provoking to see what happens when players are presented with different rules of 
the game, how their behaviour is affected.

One of the most celebrated pieces of work in political science is due to Mau-
rice Duverger. By comparing electoral systems he concluded that the plurality 
system, or the simple majority single ballot system, tends to favour a two-party 
pattern, while proportional representation creates conditions favourable to foster 
multiparty development.15 To account for these differences, Duverger relied on a 
distinction between mechanical and psychological effects. The mechanical effect 
corresponds to the transformation of votes into seats. So it expresses the working 
of the institution. The psychological effect can be viewed as the anticipation of 
the mechanical system: voters are aware that there is a threshold of representation 

14 Cf. Charles R. Plott, “Will Economics Become an Experimental Science?”, in: South-
ern Economic Journal, 57, 1991, pp. 901–919.

15 Cf. Maurice Duverger, Les partis politiques, Paris: Armand Colin 1951.
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and they decide not to support parties that are likely to be excluded because of the 
mechanical effect. Suppose that there are three parties. Under the plurality rule the 
voters realize that their votes are wasted if they give them to the third party. So they 
decide to transfer their votes to the party which in their order of preference is on a 
higher position. Their “natural tendency” is to choose the less evil and to prevent 
the greater evil. When the simple majority single ballot system is in place, the 
result is then that a polarization effect works: the institution is detrimental to the 
new party or the less favoured of the existing parties. So, the theory predicts that 
under an institutional setting, actors curb their messages, i.e. the way they vote, in 
a specific way. Duverger’s psychological effects are paradigmatic instances of such 
changes in the agents’ behaviour induced by institutions like voting rules.

Since the time of Duverger, the psychological effect is generally explained as 
an instance of strategic voting.16 Theorists developed sophisticated, but appealing 
models of individual voting based on the idea that individuals are rational and vote 
strategically. In the past decades the view, earlier associated with political scien-
tists like W. H. Riker, that strategic voting has a high explanatory capacity, got a 
large support.17

However, the methodology of formal analysis is subject to at least two types 
of critics.18 First, one may wonder about the validity of its assumptions. The (more 
or less) rational voter hypothesis was subject to numerous criticisms. Some of 
them focused on limitations of the individuals’ capacities to behave rationally: are 
ordinary people able to produce complete and/or coherent preference relations, 
or utility functions? Are they able to devise strategic voting procedures? Are they 
able to acquire and process the information required for a rational choice among 
the alternatives? In sum, does strategic voting occurs in real world elections in a 
relevant proportion? Others questioned the whole methodology behind the rational 
voter hypothesis.19

Secondly, there is an epistemological problem of the empirical testing. On the 
one hand, we need to clearly define the consequences of the actors’ behaviour. But 
in many situations this cannot be well-defined. Usually the approaches associated 
with game theory look for the existence of Nash equilibria. The trouble is that 

16 Cf. Gary W. Cox, Making Votes Count: Strategic Coordination in the World’s Electoral 
Systems, Cambridge: Cambridge University Press 1997.

17 “The evidence renders it undeniable that a large amount of sophisticated voting occurs 
– mostly to the disadvantage of the third parties nationwide – so the force of Duverger’s 
psychological factor must be considerable”, William H. Riker, “The Two-Party System 
and Duverger’s Law: An Essay on the History of Political Science”, in: American Po-
litical Science Review, 76, 1982, p. 764.

18 Cf. Jean-François Laslier and M. Remzi Sanver (Eds.), Handbook on Approval Vot-
ing, Springer-Verlag: Berlin, Heidelberg 2010; Cf. André Blais, Jean-François Laslier, 
Annie Laurent, Nicolas Sauger, and Karine Van der Straeten, “One Round versus Two 
Round Elections: An Experimental Study”, in: French Politics, 5, 2007, pp. 278–286.

19 Cf. Donald P. Green and Ian Shapiro, Pathologies of Rational Choice Theory: A Cri-
tique of Applications in Political Science, New Haven: Yale University Press 1994.
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many games have more than one Nash equilibrium, and there seems to be no way 
to predict which equilibrium will be reached (and also how the individuals behave 
at a particular equilibrium).20 Laslier observes that this difficulty goes to the heart 
of our conception of democracy: for in the case of elections it comes to the idea 
that the outcome of voting cannot be predicted from individual opinions.21 On the 
other hand, to test the existence of rational strategic behaviour of the individuals 
we need to measure voters’ preferences among the various candidates as well as 
their beliefs on how other voters will behave in the election and also on how their 
own vote will affect the outcome of the election. Beliefs cannot be directly ob-
served, so we need to use instead proxies for the relevant beliefs.

A similar difficulty is faced when we try to determine the voters’ preferences. 
Preferences are not observable; only choices are revealed. When the institution is 
the plurality rule, the voters are asked to express only their top preference. But if 
a psychological effect is appealed to, then we are also required to consider at least 
which alternative ranks second and third in the individuals’ preferences. Duver-
ger’s argument is that under the plurality rule the voter does not vote for her first 
preference; rather she votes for the second one, in order that her third option would 
have smaller chances to be elected. But empirically we are again presented with (at 
most) one chosen alternative for each individual voter. We have no way to find out 
the entire preference order of the individuals.22 So when studying the real world 
behaviour of the individual voters, how can we conclude that their vote was the 
expression of a psychological effect or not?

One way to overcome these difficulties is to radically change the strategy of 
research, and adopt an experimental setting. The basic principle of the experi-
ments23 “is to observe individual behaviour in situations where the experimenter 
can control individual preferences. The classical way to induce and control prefer-
ences is to use money, that is to pay the subjects more or less, depending on what 
they do and, in group experiments, what the other subjects do”.24 Under an experi-
mental setting, beliefs are also controlled, by letting subjects know relevant infor-
mation about the others’ situation (and also, if applicable, about the way the other 
subjects behaved in previous rounds). Since the experimental situation is simple, it 
is reasonable to assume that subjects will behave in a rational way.

20 Cf. Thomas Schelling, The Strategy of Conflict, Cambridge, MA: Harvard University 
Press, 1960.

21 Cf. Jean-François Laslier and M. Remzi Sanver (Eds.), Handbook on Approval Voting, 
op. cit.

22 The Borda rule requires that the voters reveal more than their top alternative, but not 
necessarily all the preferences.

23 See also Vernon L. Smith, Rationality in Economics. Constructivist and Ecological 
Forms, op. cit., pp. 293–294, on public goods experiments.

24 Jean-François Laslier, “Laboratory Experiments on Approval Voting”, in: Jean-François 
Laslier and M. Remzi Sanver (Eds.), Handbook on Approval Voting, op. cit., p. 339.
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A voting rule can be described simply by pointing to the move the voter is al-
lowed to take in a given situation. There are extremely many voting rules discussed 
in the literature. Three examples are the plurality rule, the Borda rule and the ap-
proval rule. Under the plurality rule, individuals are required to pick up exactly 
one candidate. Under the approval rule, they may cast one vote for as many candi-
dates as they wish. In its simplest form, the Borda rules requires that individuals 
give two votes to one candidate and one vote to one of the other candidates. Most 
laboratory experiments use such simple statements of the voting rules. As Laslier 
observes, “these rules are so simple that, in the laboratory, one does not have to ex-
plain how ballots are counted: people naturally understand that votes are added”.25 
So the fact that people can take into account the possibility to vote strategically is 
quite straightforward.

Experiments in political science concerning voting rules have a long history.26 
However, it is only in the past two decades that their use in political research has 
boomed. One best known field researcher is Elinor Ostrom, a political scientist 
who recently (in 2009) received a Nobel Prize for economics.

Given my reputation as an avid field researcher, colleagues often ask why I “bother” with 
conducting experiments. They ask questions such as “Why would you pay any attention to 
outcomes in an experiment?” and “What more can you possibly learn about institutions and 
resource governance from laboratory experiments that you have not already learned in the 
field?”.27

She advances two reasons. The first is very general: we should learn more from 
multiple research methods applied to the same question than from a single method. 
For the scientific community, confidence is higher when the results of more meth-
ods are corroborated. Secondly, in a field research “one of the frustrating aspects 
is that so many variables are involved that one is never certain that one has isolated 
the specific variable (or limited set of variables) that causes an outcome”. There-
fore, the possibility to control is a main rationale for the use of lab experiments.28 
However, control in the lab is often criticized for factoring out the wider political 

25 Jean-François Laslier, “Laboratory Experiments on Approval Voting”, op. cit., p. 346.
26 Cf. David A. Bositis and Douglas Steinel, “A Synoptic History and Typology of Exper-

imental Research in Political Science”, in: Political Behavior, 9, 1987, pp. 263–284.
27 Elinor Ostrom, “The Value-Added of Laboratory Experiments for the Study of Institu-

tions and Common-Pool Resources”, in: Journal of Economic Behavior & Organiza-
tion, 61, 2006, p. 149.

28 One of the main conclusions Ostrom derives from studying lab experiments on the 
actors’ behavior in commons-dilemma situations is that individuals initially rely on 
a battery of heuristics in response to complexity; while without communication and 
agreements on joint strategies, these heuristics lead to overuse, individuals are still 
willing to discuss ways to increase their own and others’ payoffs over a sequence of 
rounds, cf. Elinor Ostrom, “Coping with the Tragedy of the Commons”, in: Annual 
Review of Political Science, 2, 1999, p. 507.
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context: the real behaviour of the voters in a real election, as well as their strategic 
information and beliefs are largely distorted in the lab.

But control in the lab can be criticized from the opposite side, for being too 
loose: since they leave too much for individual freedom in choosing, lab experi-
ments remain too complex. This complexity is not subject to mathematical models, 
but “open”, in the sense that it not within the control of the researcher. Moreover, 
if the experimental setting is expanded to include more constraints and variables, 
then the experiments itself become hard to manage; on the other hand, conducting 
a theoretical analysis of a more complicated mathematical model would be very 
difficult. The alternative approach that has been proposed is to implement a com-
puter simulation. The principal advantage of a computer simulation is that it can 
be arbitrarily complex. Since the famous tournament experiments of R. Axelrod, 
nearly thirty years ago, this approach was extensively used to observe comparative 
advantages of voting rules.

For example, McCabe-Dansted and Slinko studied comparatively 26 rules.29 
Since most of these rules have never been applied in real world group choices, it 
is infeasible to compare them empirically. Therefore, the authors had to artificially 
generate the data. They fixed three parameters: the size of the group, the number 
of alternatives, and a parameter of group homogeneity. The group was formed of 
85 agents who could choose among five alternatives (this number is sufficiently 
large to discriminate among the rules). Out of the immense number of possible 
profiles of this group, a subclass is chosen. The authors used in simulations sets of 
about one million profiles. For example, if profiles are randomly chosen, and no 
dependency between agents is assumed, their collection is called impartial. Given 
the set of profiles, it is possible to construct a matrix of dissimilarities between the 
rules based on frequency data. Computer simulations show that departing from the 
impartiality assumption brings about considerable changes in the results obtained 
under different rules, and thus offers a new means of comparing voting rules, and 
see similarities between them.30

29.3

In this final section I first argue that the voting rules are much more complex than 
it is usually assumed. In this sense, arguments from social choice theory will be 
briefly discussed. Then I suggest that experimental research on voting rule may 
largely benefit from connections with some quite different experimental research.

29 Cf. John C. McCabe-Dansted and Arkadii Slinko, “Exploratory Analysis of Similari-
ties between Social Choice Rules”, in: Group Decision and Negotiation, 15, 2006, pp. 
77–107.

30 For a randomly generated set of profiles using the same parameter of homogeneity the 
estimated dissimilarity between rules can be defined by appeal to the frequency that 
rules fail to pick the same winning alternative.
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 In most experiments on voting rules, they are assumed to be stated in a simple 
and easy to understand way, as we saw with the plurality rule, the approval or the 
Borda rule. There are of course some more complicated rules. Consider for exam-
ple the Hare rule (also known as Single Transferable Vote or Alternative Vote). By 
this rule, if one alternative’s plurality score is greater than n/2 (n is the number of 
voters), then that alternative is the Hare’s winner; otherwise, eliminate the alterna-
tive with the lowest plurality score; continue until one alternative remains. (The 
plurality score of an alternative is the number of votes for it.) The Hare rule is only 
a bit more complicated than the first three rules, but there are ones much more 
difficult to understand and to compute. However, all the rules are defined by refer-
ence to the aggregation mechanism they use. The votes are aggregated in different 
ways, and sometimes the results are different (while sometimes they are not). So 
it looks that voting rules are very simple institutions, especially as we compare 
them with other political institutions, like the presidential system or federalism. It 
is precisely this characteristic that accounts for the prominent role they played in 
experimental research.

However, some of the most interesting results on voting rules consist in the 
proof of so-called characterization results. The proof goes as follows. First, prop-
erties a voting rule may or may not satisfy are defined. For example, a voting rule 
may treat all the members of the electorate as equal; others do not. Majority rule 
paradigmatically treats all the voters on the same par. But consider the Chair-
person tie rule. According to it, if the votes of the members of a group go for an 
alternative, then it is chosen; but if there is tie, then the vote of the chairperson is 
decisive. Obviously, the chairperson is attached a special position by this rule. Sec-
ondly, we can then form different collections of such properties of the voting rules. 
The properties included in such a collection can be satisfied by more rules, by no 
rule, of by exactly one rule. The second and the third case gained a special interest 
in the social choice literature. K. Arrow’s celebrated impossibility theorem states 
that reasonable such properties cannot be simultaneously satisfied by any rule.31 
May proved that the simple majority rule is the only aggregation procedure that 
jointly satisfies four such properties:32 universal domain, anonymity, neutrality, 
and positive responsiveness.33 Fishburn and Young gave similar characterizations 

31 Cf. Keneth Joseph Arrow, Social Choice and Individual Values, New York: Wiley 
1951.

32 Cf. Kenneth O. May, “A Set of Independent, Necessary and Sufficient Conditions for 
Simple Majoritary Decision”, in: Econometrica, 20, 1952, pp. 680–684.

33 The properties referred to in the above mentioned theorems can be defined rigorously 
in the frame of social choice theory. A rule satisfies universal domain if it accepts all 
logically possible profiles of votes as admissible input. Neutrality basically says that 
the names of candidates should not play any role in determining winning candidates. 
Analogously, anonymity requires that the identity of individual voters does not affect 
the outcome. By positive responsiveness, if one or more voters change their votes in 
favour of an option that is winning or tied and no other voters change theirs, then that 
option is uniquely winning after the change.
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of the approval voting, respectively of the Borda rule.34 Goodin and List general-
ized the classic result of May to the plurality rule.35

So, a voting rule can be identified with a collection of more abstract rules or 
properties that define the voting situation. In this sense, voting rules are complex 
institutions, including different clusters of rules. Some of them are agenda rules: 
who are the candidates for choice, how are they nominated, etc. Others are alloca-
tion rules36: who are the members of the electorate, how many votes they have, 
what is their relative position, etc.; still others are domain rules: which are the 
allowed preference profiles, how are they related, etc.

For example, simple majority rule and absolute majority rule differ in respect 
to the agenda rules that constrain the voters who act under each of them. Indeed, 
the simple majority voting requires the individuals to behave by treating all the 
candidates in an election as equal. But in an absolute majority voting the electorate 
is allowed to weight higher the incumbent president, if he is among the candidates, 
or to favour the present law and make it harder the adoption of an alternative 
regulation. Voting rules differ very much with respect to the allocation rules they 
contain. Under the plurality voting, each voter is attached exactly one vote, while 
under the approval rule each voter can give one vote to as many candidates as 
she wants. But under both voting rules voters are treated in a fair way: no one is 
assumed to have a privileged position. However, some voting rules, weighted ma-
jority rule among them, require that voters be treated unequally. This means that 
they include rules that define the ways in which individuals are not equal in the 
voting procedure. Domain rules help characterize voting procedures as complex 
institutions. They specify the way in which a collection of profiles is generated. As 
already mentioned, computer simulations have been used to investigate different 
“cultures”, i.e. generations of collections of profiles. Different rules behave differ-
ently on such domains.37

Now, the idea is that to experimentally investigate a voting rule turns to be 
quite complicated. It does not simply consist in a simple statement one can easily 
agree or disagree with. The experimenter may try to see how subjects behave when 
faced with different agenda, position or domain rules, etc. Given a domain, which 
agenda rule is preferred by the subjects? How do people react to cases in which the 
neutrality condition is questioned? For example, how do actors behave in situations 
in which candidates are treated asymmetrically? A large collection of experiments 

34 Cf. Peter C. Fishburn, “Axioms for Approval Voting: Direct Proof ”, in: Journal of 
Economic Theory, 19, 1978, pp. 180–185; and H. Peyton Young, “An Axiomatization 
of Borda’s Rule”, in: Journal of Economic Theory, 9, 1974, pp. 43–52.

35 Cf. Robert E. Goodin and Christian List, “A Conditional Defense of Plurality Rule: 
Generalizing May’s Theorem in a Restricted Informational Environment”, in: Ameri-
can Journal of Political Science, 50, 4, 2006, pp. 940–949.

36 Cf. Vernon L. Smith, “Microeconomic Systems as an Experimental Science”, op. cit.
37 Cf. Jean-François Laslier, “In Silico Voting Experiments”, in: Jean-François Laslier 

and M. Remzi Sanver (Eds.), Handbook on Approval Voting, op. cit., pp. 311–335.
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concerning the topic of fairness becomes relevant when allocation rules are taken 
into account.38 How favourable are the subjects to fairness properties like anonym-
ity or weaker alternatives to it? Or, when domain rules are investigated, how much 
do subjects agree with an impartial culture or with a distributive one?39

So, the theoretical results on the axiomatizations of the voting rules may open 
the experimental research to a new class of approaches.
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CHAPTER 30

VOLKER PECKHAUS

THE BEGINNING OF MODEL THEORY

IN THE ALGEBRA OF LOGIC

30.1 INTRODUCTION

Model Theory is commonly closely connected to the work of Alfred Tarski. The
main thesis developed in the present paper is that basic ideas of Model Theory,
in particular as regards its structural and semantical respects, were anticipated in
the work of Ernst Schröder (1844–1902), the main German representative of nine-
teenth century Algebra of Logic.1 The second section is devoted to the clarification
of the notion “Algebra of Logic”. In the third section Schröder’s programme of an
Absolute Algebra is described in order to show that this programme has some
features in common with modern Model Theory. According to Wilfried Hodges
“[ . . . ] in a broader sense, model theory is the study of the interpretation of any lan-
guage, formal or natural, by means of set-theoretic structures, with Alfred Tarski’s
truth definition as a paradigm.”2 The relation between notation, interpretation, and
modelling will be discussed in the fourth section. The paper is concluded with
some observations about Schröder’s notion of modality. An algebraic notation
which is claimed to be suitable for all of logic should be able to express modalities
as well. Schröder’s work contains only some preliminary epistemological remarks
for such algebraic theory of modalities.

1 This paper draws upon results published earlier, e.g., in Volker Peckhaus, Logik, Math-
esis universalis und allgemeine Wissenschaft. Leibniz und die Wiederentdeckung der
formalen Logik im 19. Jahrhundert. Berlin: Akademie-Verlag 1997, ch. 6, pp. 233–
296; Volker Peckhaus, “Calculus Ratiocinator vs. Characteristica Universalis? Two
Traditions in Logic, Revisited”, in: History and Philosophy of Logic 25, 1, 2004, pp.
3–14; Volker Peckhaus, “Schröder’s Logic”, in: Dov M. Gabbay, John Woods (Eds.),
Handbook of the History of Logic. Vol. 3: The Rise of Modern Logic: From Leibnz to
Frege. Amsterdam et. al.: Elsevier North Holland 2004, pp. 557–609. In the present
paper the role of semantics in the Algebra of Logic and its relationship to Model The-
ory is stressed. I would like to thank Anna-Sophie Heinemann, Paderborn, for valuable
comments on an earlier version of the present paper.

2 Wilfried Hodges, “Model Theory”, in: The Stanford Encyclopedia of Philosophy (Fall
2009 Edition), Edward N. Zalta (Ed.), URL =
<http://plato.stanford.edu/archives/fall2009/entries/model-theory/>.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4 30,
© Springer Science+Business Media B.V. 2012
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30.2 WHAT IS ALGEBRA OF LOGIC?

Standard answers to the question “What is Algebra of Logic?” were given by Jan
van Heijenoort and Jaakko Hintikka. Jan van Heijenoort characterized the Algebra
of Logic as “logic as calculus”, distinguishing it from the Fregean kind of logic,
called “logic as language”.3 This distinction was later modified by Jaakko Hintikka
who opposed Algebra of Logic as “language as calculus” to Fregean style logic,
i.e., “language as a universal medium”.4 Both authors take up Leibniz’s distinction
between calculus ratiocinator and lingua characterica,5 obviously inspired by the
dispute between Gottlob Frege and Ernst Schröder about the question whose logi-
cal system represented best the alleged Leibnizian idea of a lingua characterica.6

3 Cf. Jan van Heijenoort, “Logic as Calculus and Logic as Language”, in: Synthese 17,
1967, pp. 324–330. For a critical discussion cf. Peckhaus, “Calculus Ratiocinator vs.
Characteristica Universalis?”, loc. cit.

4 Cf. Jaakko Hintikka, “On the Development of the Model-Theoretic Viewpoint in Log-
ical Theory”, in: Synthese, 77, 1988, pp. 1–36; reprinted in Jaakko Hintikka, Lin-
gua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-
Century Philosophy. Dordrecht/Boston/London: Kluwer 1997, pp. 104–139.

5 The expression “lingua characterica” does not appear in Leibniz’s works. Leibniz
spoke of “lingua generalis”, “lingua universalis”, “lingua rationalis”, “lingua philo-
sophica”, all meaning basically the same. He also introduced the terms “characteris-
tica” viz. “characteristica universalis” representing his general theory of signs. Frege
obviously took the term “lingua characterica” from Adolf Trendelenburg who used the
expression “lingua characterica universalis” in Friedrich Adolf Trendelenburg, “Über
Leibnizens Entwurf einer allgemeinen Charakteristik”, in: Philosophische Abhand-
lungen der Königlichen Akademie der Wissenschaften zu Berlin. Aus dem Jahr 1856.
Berlin: Commission Dümmler 1857, pp. 36–69; reprinted Friedrich Adolf Trendelen-
burg, Historische Beiträge zur Philosophie. Vol. 3: Vermischte Abhandlungen. Berlin:
Bethge 1867, pp. 1–47. Cf. Günther Patzig “Einleitung”, in: Gottlob Frege, Logische
Untersuchungen, edited by Günther Patzig, 2nd rev. ed., Göttingen: Vandenhoeck &
Ruprecht 1976 (1st ed. 1966), p. 10, n. 8; also Peckhaus, Logik, Mathesis universalis
und allgemeine Wissenschaft, op. cit., pp. 178–181; on Trendelenburg’s influence in
the history of logic cf. ibid., ch. 4, Risto Vilkko, A Hundred Years of Logical Inves-
tigations: Reform Efforts of Logic in Germany 1781–1879. Paderborn: Mentis 2002,
ch. 4.

6 This dispute was prompted by Ernst Schröder’s review of Frege’s Begriffsschrift (1879)
in: Zeitschrift für Mathematik und Physik, historisch-literarische Abt., 25, 1880, pp.
81–94. Gottlob Frege responded in the unpublished paper “Booles rechnende Logik
und die Begriffsschrift” (1880/81), in: Gottlob Frege, Nachgelassene Schriften. Edited
by Hans Hermes, Friedrich Kambartel and Friedrich Kaulbach, 2nd rev. ed., Ham-
burg: Felix Meiner 1983, pp. 9–52; and in the paper Gottlob Frege, “Ueber den Zweck
der Begriffsschrift”, in: Sitzungsberiche der Jenaischen Gesellschaft für Medizin und
Naturwissenschaft für das Jahr 1882, supplement to Jenaische Zeitschrift für Natur-
wissenschaft, 16, 1882/1883, reprinted in Gottlob Frege, Begriffsschrift und andere
Aufsätze. Dritte Auflage. Mit E. Husserls und H. Scholz’ Anmerkungen. Edited by Ig-
nacio Angelelli, Darmstadt: Wissenschaftliche Buchgesellschaft 1977, pp. 97–106.
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Dissenting from the standard view on Algebra of Logic represented by van
Heijenoort’s and Hintikka’s distinctions, the present paper characterizes it as such:

• Algebra of Logic is no logic, but the algebra of logic.

• It is an algebraic structure, based on algebraic connecting operations, inter-
preted logically.

• The objects connected are logical objects in the traditional sense: (extensions
of) concepts, judgements (propositions) and inferences.

• These objects allow further interpretations, leading to models of the alge-
braic structures in other fields.

30.3 ABSOLUTE ALGEBRA

The key for this understanding of the Algebra of Logic is the conception of an Ab-
solute Algebra proposed by the German mathematician Ernst Schröder. Schröder’s
first publications on logic were published in the 1870s when he was a grammar
school teacher in Baden-Baden. In 1874 he became Professor of Mathematics at
the Polytechnic in Darmstadt, changing to the Polytechnic in Karlsruhe in 1876.7

He stood in the tradition of Combinatorical Analysis (founded by Gottfried Wil-
helm Leibniz, Carl Friedrich Hindenburg) and Algebraic Analysis (founded by
Heinrich August Rothe, Martin Ohm). According to his own words, the devel-
opment of an Absolute Algebra constituted “his most original field of research”.8

Absolute Algebra is defined as a “general theory of connections, transcending even
the law of associativity”.9 Absolute Algebra is the final step in the development of
Formal Algebra. Schröder suggested the following programme10:

1. Formal Algebra compiles all assumptions that can serve for defining con-
nectives for numbers of a domain of numbers.

2. Formal Algebra compiles, for every premise or combination of premises,
the complete set of inferences, a task that Schröder calls “separation.”

7 For a biographical sketch of Schröder, cf. Peckhaus, “Schröder’s Logic”, loc. cit., pp.
559–564.

8 Ernst Schröder [unsigned], “Grossherzoglich Badischer Hofrat Dr. phil. Ernst
Schröder[,] ord. Professor der Mathematik an der Technischen Hochschule in Karl-
sruhe i. Baden”, in: Geistiges Deutschland. Deutsche Zeitgenossen auf dem Gebiete
der Literatur, Wissenschaften und Musik. Berlin-Charlottenburg: Adolf Eckstein, no
year [1901].

9 Ibid.
10 Ernst Schröder, Lehrbuch der Arithmetik und Algebra für Lehrer und Studirende. Vol.

1: Die sieben algebraischen Operationen. Leipzig: B. G. Teubner 1873, pp. 293–294.
Only the first volume was published.
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3. Formal Algebra investigates in which particular domains of numbers the
defined operations hold.

4. Formal Algebra has finally to decide “what geometrical, physical, or gener-
ally reasonable meaning these numbers and operations can have, what real
substratum they can be given”.

Only after having finished the semantical steps (3) and (4), formal algebra becomes
an “Absolute Algebra.” Absolute Algebra is therefore a Formal Algebra including
all the possible models, and logic is only one of them.

At that time, Schröder was not aware of George Boole’s Algebra of Logic
and its context in the British discussions about Symbolical Algebra. Schröder was
influenced by Hermann Günther Graßmann’s “General Theory of Forms” and by
Robert Graßmann’s (H. G. Graßmann’s brother) architecture of mathematics.11

Hermann Günther Graßmann opened his Lineale Ausdehnungslehre12 with a
“survey of a general theory of forms”, understood as a series of truths being equally
related to all branches of mathematics. The general theory of forms only contains
the general concepts of equality and inequality, of connection and separation.13

The notion of connection is not defined. It is an operation applied to two elements.
Brackets indicate the order of these connecting operations in forming complexes.
They indicate, e.g., commutativity or associativity. Every synthetic connection of
two elements a and b is accompanied by two analytic or “separating” operations,
which lead back to a or b respectively if applied to the result of connecting a and
b. Graßmann then introduces a second connecting operation (with its inverses),
which he regards as a connection of higher level. Both connecting operations are
distributive. The resulting algebraic structure is dependent on the features given to
these operations.

The general theory of forms was not only applied to the Lineale Ausdehnungs-
lehre, but in Graßmann’s Lehrbuch der Arithmetik14 to arithmetic as well. The in-
terdependence between the features of the connecting operations and the resulting

11 On this influence cf. Volker Peckhaus, “The Influence of Hermann Günther Grassmann
and Robert Grassmann on Ernst Schröder’s Algebra of Logic”, in: Gerd Schubring
(Ed.), Hermann Günther Graßmann (1809–1877): Visionary Mathematician, Sci-
entist and Neohumanist Scholar. Papers from a Sesquicentennial Conference. Dor-
drecht/Boston/London: Kluwer 1996 (Boston Studies in the Philosophy of Science; vol.
187), pp. 217–227; Volker Peckhaus, “Robert and Hermann Graßmann’s Influence on
the History of Formal Logic”, in: Hans-Joachim Petsche et al. (Eds.), Hermann Graß-
mann. From Past to Future: Graßmann’s Work in Context. Graßmann Bicentennial
Conference, September 2009. Basel: Birkhäuser 2011, pp. 221–228.

12 Hermann Günther Graßmann, Die lineale Ausdehnungslehre ein neuer Zweig der
Mathematik dargestellt und durch Anwendungen auf die übrigen Zweige der Mathe-
matik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krys-
tallonomie erläutert. Leipzig: Otto Wigand 1844; 21878.

13 Ibid., p. 1.
14 Hermann Günther Graßmann, Lehrbuch der Arithmetik für höhere Lehranstalten.

Berlin: Enslin 1861.
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structure was further elaborated by the two brothers to an architecture of mathe-
matics, published by Robert Graßmann in six short pamphlets in his Formenlehre
oder Mathematik.15

In the theory ofquantities (Grösenlehre, Graßmann introduces the letters a, b,
c, . . . as syntactical symbols for arbitrary quantities. The letter e stands for spe-
cial quantities: elements or, in the Graßmann’s idiosyncratic German terminology,
“Stifte” (“pins”), quantities which do not emerge from other quantities by applying
connecting operations. Besides brackets for indicating the order of connections,
he introduces the equality sign =, the inequality sign �= (Graßmann himself used
a stylized z) and the general sign ◦ for designating connecting operations. As spe-
cial connecting operations he treats “joining” (“fügen”) or adding (symbol +), and
“weaving” (“weben”) or multiplying (juxtaposition or symbols ·, ×). These con-
nections can either occur as inner connections (if e◦e = e), or as outer connections
(if e ◦ e �= e).16

The different results of connecting pins with themselves give the criteria for
distinguishing between the special parts of the theory of quantities. The “theory of
concepts or logic” (“Begriffslehre oder Logik”) is the first part, “the most simple
and, at the same time, the most inward part”, as Graßmann calls it.17 Inner joining
e + e = e and inner weaving ee = e are valid. In the “theory of binding or theory
of combinations” (“Bindelehre oder Combinationslehre”) as the second part of the
theory of forms, inner joining e + e = e and outer weaving ee �= e are valid; in
the “theory of number or arithmetic” (“Zahlenlehre oder Arithmetik”) it is outer
joining e+e �= e and inner weaving ee = e, respectively 1×1 = 1 and 1×e = e. In
the “theory of the exterior or theory of extensions” finally, the “most complicated
and most exterior” part of the theory of forms, outer joining e + e �= e and outer
weaving ee �= e are valid.18

Schröder took up these ideas in his own Lehrbuch der Arithmetik und
Algebra.19 There he treated, as he stressed already in the subtitle of this book,
“the seven algebraical operations”, i.e., the three “direct” operations of adding,
multiplying, and raising to a higher power, and their inverses subtracting, divid-
ing, extracting the roots and forming the logarithms (in the beginning only ap-
plied to natural numbers). Schröder defines (pure) mathematics as the “theory of
numbers”.20 By this definition he deviates from the traditional view of mathemat-
ics as the theory of quantities. Although Schröder calls the objects algebraically
connected “numbers”, he leaves open what kind of objects they are. Hence, the

15 Robert Graßmann, Die Formenlehre oder Mathematik. Stettin: R. Graßmann 1872.
Reprinted Hildesheim: Georg Olms 1966. Vol. 1: Die Grösenlehre; Vol 2: Die Be-
griffslehre oder Logik; Vol. 3: Die Bindelehre oder Combinationslehre; Vol. 4: Die
Zahlenlehre oder Arithmetik; Vol. 5: Die Ausenlehre oder Ausdehnungslehre.

16 Robert Graßmann, Formenlehre I, pp. 8, 26.
17 Ibid., p. 13.
18 Ibid., pp. 12–13.
19 Ernst Schröder, Lehrbuch, op. cit.
20 Ibid., p. 2.
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structure erected needs an interpretation. In a pamphlet entitled Über die formalen
Elemente der absoluten Algebra, which was enclosed to the 1873/1874 issue of
the annual report of his school, he became more specific.21 Schröder proceeds
from the existence of an “unlimited manifold [Mannigfaltigkeit] of objects (of any
kind)” called “domains of numbers” (Zahlengebiete). Examples for such “objects
constituting a manifold” called “general numbers” are “proper names, concepts,
judgements, algorithms, numbers [of pure mathematics], symbols for dimensions
or operations, points, systems of points, or any geometrical object, quantities of
substances, etc.” Schröder’s theory of arithmetic was imbedded into a universal
algebraic programme, his “Absolute Algebra”. And it was also by the Graßmann’s
influence that logic came into his focus. In a voluminous footnote, running over
three pages, he reported about his discoveries in Robert Graßmann’s works22:

The author of the respective work uses in the part devoted to logic the + sign for the col-
lective combination, and regards it downright as an addition – one could say as a “logical”
addition – which has beyond the properties of the usual (numerical) addition the basic prop-
erty: a+ a = a additionally.

[ . . . ]
Especially interesting and new for me was [ . . . ] the role the author assigns to multipli-

cation in the domain of logic. While the sum of two concepts is interpreted as the whole of
the individuals belonging to the one or the other of these concepts, the product of these con-
cepts is a concept which comprises the marks of both. Thus, the real extensional addition is
opposed to an intensional addition or addition of marks as multiplication. This procedure
can indeed not surprise if one takes into account that the basic features of addition and of
multiplication are essentially the same, that both operations have an already fixed relation
to one another only in usual arithmetic, and that one has therefore in new fields from the
beginning the choice between the two conceptions. –

Only in the subsequent years would Schröder learn about the British precur-
sors of his Algebra of Logic.

30.4 MODELLING

The further development of Schröder’s activities in logic was consistent with his
early algebraic programme. For the present he devoted his work to the analysis of
a first interpretation of the formal algebraic structure and, with this, to one model
of Absolute Algebra: logic. In the Operationskreis des Logikkalkuls Schröder
concentrated on the duality between logical addition and logical multiplication
and, stressing the identity of the algebraic structures of these operations. In the

21 Ernst Schröder, Über die formalen Elemente der absoluten Algebra. Beilage zum
Programm des Pro- und Real-Gymnasiums in Baden-Baden für 1873/74. Stuttgart:
Schweizerbart’sche Buchhandlung 1874, p. 3.

22 Ernst Schröder, Lehrbuch, pp. 145–147, footnote. All translations from Schröder’s
works are mine.
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volumes of his monumental, though unfinished Vorlesungen über die Algebra der
Logik,23 Schröder distinguished between the object of logic and its structure. He
called the calculus an “auxiliary discipline” (“Hülfsdisziplin”) that precedes, or
goes along with proper logic. The third volume with the subtitle Algebra und Logik
der Relative provided a further generalization. He always stressed the significance
of Charles S. Peirce’s influence, especially of Peirce’s papers “On the Algebra of
Logic”.24 Schröder emphasized the twofold character of the theory of relatives
consisting of an algebra and a logic of relatives. In the published first part he
presented the algebraic section. The logic of relatives that would have linked his
theory to Absolute Algebra was planned for the second part that he could not finish
before his death.

Already in his “Note über die Algebra der binären Relative”,25 Schröder illus-
trated the power of his method by applying it to an example from the mathematics
discussed at his time. He symbolized those propositions from Richard Dedekind’s
theory of chains (Kettentheorie)26 that laid the foundation of complete induction
(Theorem 59). Schröder sees the advantage of his presentation in extending the
scope of Dedekind’s theorems going beyond the validity for definite mappings and
“systems”, now covering all binary relatives. In addition, Schröder shows that the
theory of chains can be simplified at some places when using his symbolism.

The aim of this example is evident. The possibilities of the new symbolism
as a tool for an alternative presentation of (here: mathematical) connecting opera-
tions should be shown, thereby demonstrating its advantages in respect to brevity,
clarity and simplicity of proofs. This is also exactly the aim Schröder pursued
in his two papers “Ueber zwei Definitionen der Endlichkeit und G. Cantor’sche
Sätze”27 and “Die selbständige Definition der Mächtigkeiten 0, 1, 2, 3 und die
explizite Gleichzahligkeitsbedingung”,28 where he applied the logic of relatives to
Cantorian set theory. In the first paragraph of the first paper, Schröder compares
Dedekind’s definition of infinity from Was sind und was sollen die Zahlen? with

23 Ernst Schröder, Vorlesungen über die Algebra der Logik (exakte Logik). Leipzig: B.G.
Teubner, Vol. 1, 1890; Vol. 2, Pt. 1, 1891; Vol. 2, Pt. 2, 1905; Vol. 3, Pt. 1, 1895.

24 Charles S. Peirce, “On the Algebra of Logic”, in: American Journal of Mathematics 3,
1880, pp. 15–57; Charles S. Peirce, “On the Algebra of Logic. A Contribution to the
Philosophy of Notation”, in: American Journal of Mathematics 7, 1885, pp. 180–202.

25 Ernst Schröder, “Note über die Algebra der binären Relative”, in: Mathematische An-
nalen 46, 1895, pp. 144–158.

26 This theory is formulated in Richard Dedekind, Was sind und was sollen die Zahlen?
Vieweg: Braunschweig 1888, 21893, 31911, Braunschweig: Vieweg & Sohn 81960,
Schröder used the second edition of 1893.

27 Ernst Schröder, “Ueber zwei Definitionen der Endlichkeit und G. Cantor’sche Sätze”,
in: Nova Acta Leopoldina. Abhandlungen der Kaiserlich Leop.-Carol. Deutschen
Akademie der Naturforscher 71, 6, 1898, pp. 301–362.

28 Ernst Schröder, “Die selbständige Definition der Mächtigkeiten 0, 1, 2, 3 und die
explizite Gleichzahligkeitsbedingung”, in: Nova Acta Leopoldina. Abhandlungen der
Kaiserlich Leop.-Carol. Deutschen Akademie der Naturforscher 71, 7, 1898, pp. 364–
376.
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the one given by Peirce 3 years before.29 After reformulating these definitions in
the language of the logic of relatives, it becomes evident for the reader that these
definitions do not formally coincide, but that they can nevertheless be translated
into the respective other form. Peirce’s definition proved to be shorter and simpler.
Schröder obviously tried to show with this application that his symbolism could
serve as a criterion for simplicity and economy of mathematical definitions and
theorems.

Schröder’s considerations in the following sections are of greater systematic
significance. There he discusses Cantor’s propositions A–E from the first paper of
his “Beiträge zur Begründung der transfiniten Mengenlehre”.30 Schröder’s proof
of Cantor’s equivalence theorem B (concerning the equivalence of sets) caused a
sensation.31 Almost at the same time, in winter 1896/1897, Felix Bernstein also
found a proof of the equivalence theorem, which was first published by Émile
Borel.32 The theorem remained connected to the names of Schröder and Bern-
stein, until Alwin Reinhold Korselt published evidence, found already in 1902,
that Schröder’s proof was based on an implicit and incorrect presupposition.33

Already in May 1902, Schröder had admitted this fault, and stated in a letter to
Korselt that he “leaves the honor of having proved G. Cantor’s theorem to Mr F.
Bernstein alone.”34

In the last paragraph (Sect. 30.5) of his paper on Cantorian propositions Schröder
discusses further results from Cantor’s theory of ordered sets. In his résumé he
points out that the Algebra of Logic proves to be able – here Schröder takes up an
idea from a correspondence of Aurel Voss – ,

to provide far more insights which are accessible for verbal thinking and for gaining them
the hitherto common mathematical forms of expression seem to be not sufficient.35

“With this, the new Peirceian discipline”, Schröder writes, “has had [ . . . ] its
opportunity to stand a little acid test. G. Cantor’s theory, as well.” Schröder was
sure that Cantorian set theory could be completely “presented pasigraphically36

with the designation capital of our algebraic logic.”37

29 In Charles S. Peirce, “On the Algebra of Logic. A Contribution to the Philosophy of
Notation”, op. cit.

30 Georg Cantor, “Beiträge zur Begründung der transfiniten Mengenlehre (Erster Ar-
tikel)”, in: Mathematische Annalen 46, 1895, pp. 481–512, esp. p. 484.

31 Ernst Schröder, “Ueber zwei Definitionen der Endlichkeit”, op. cit., § 4, pp. 336–344.
32 Émile Félix Édouard Justin Borel, Leçons sur la théorie des fonctions, Paris: Gauthier-

Villars 1898 (Collection de monographies sur la théorie des fonctions), pp. 103–107.
33 Alwin Reinhold Korselt, “Über einen Beweis des Äquivalenzsatzes”, in: Mathemati-

sche Annalen 70, 1911, pp. 294–296.
34 Schröder to Korselt, dated 25 May 1902; quoted according to Korselt, op. cit., 295.
35 Ernst Schröder, “Ueber zwei Definitionen der Endlichkeit”, op. cit., p. 361.
36 Pasigraphy is a general script.
37 Ibid.
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Also in letters to Felix Klein, to whom he had offered several papers with
applications of the algebra of relatives to set theory for publication in the Mathe-
matische Annalen, Schröder campaigned for his tools stressing especially the short
time period he needed to develop a notational system for set theory standing on the
same level as Cantor’s own, if not superior to it. He wrote:

Mr G. Cantor – I’m far from comparing my modest talents with his genius – was occupied
with the topic of his research for 20 years; although I always thought that it is a desideratum
to go further into it, I found the time to do so only after the publication of his last paper in the
Annalen which was published in November last year. When I now, in a certain sense, caught
up with him in the shortest period of time, it might justified to compare my instrument with
a “bicycle”, with which the most sprightly pedestrian can be caught up quickly (whether
it also applies for clearing the way is another question which can only be decided by the
future).38

In his paper on pasigraphy,39 Schröder illustrates the “implications of our new
logic of relatives”, by presenting pasigraphically some of the most important basic
concepts of arithmetic: the concept of set, the numbers 0, 1 and 2, the relations of
equinumerosity and power equality, the finiteness, the actual infinite, the concepts
of function and substitution, the concept of order as well as the relation greater
than, the successor relation, factor relations, and the notion of a prime. In the pa-
pers mentioned Schröder does not aim at a systematic construction of arithmetic or
set theory. He is interested in a clear demonstration of the possibility to represent
the basic concepts of arithmetic and set theory with the help of the algebra of rela-
tives. Other examples serve the same goal, e.g. from geometry (“z is a point”) and
from the domain of human relationship, “which form a not unimportant chapter in
the Corpus juris for our students of jurisprudence.”40

The Algebra und Logik der Relative represents the attempt to extend the pro-
gramme of Absolute Algebra to a foundational programme for all scientific dis-
ciplines that can be formalized or that work with formal means. This extended
programme was twofold. It consisted of Absolute Algebra as general theory of
connecting operations and the Logic of Relatives as general logical theory. The
Logic of Relatives provided the notational system, i.e., the formal language which

38 Schröder’s letter to Felix Klein, dated Karlsruhe, 16 March 1896, Klein papers, Staats-
und Universitätsbibliothek Göttingen, Cod. Ms. F. Klein 11. Schröder’s correspon-
dences with Felix Klein, editor of the Mathematische Annalen, and Paul Carus, editor
of The Monist, are published in Volker Peckhaus, “Ernst Schröder und die ‘pasigraphis-
chen Systeme’ von Peano und Peirce”, in: Modern Logic 1, 1990/91, pp. 174–205.

39 English version Ernst Schröder, “On Pasigraphy. Its Present State and the Pasigraphic
Movement in Italy”, in: The Monist 9, 1, 1899, published 1898, pp. 44–62; Corrigenda,
p. 320.

40 Ernst Schröder, “Über Pasigraphie, ihren gegenwärtigen Stand und die pasigraphis-
che Bewegung in Italien”, in: Ferdinand Rudio (Ed.), Verhandlungen des Ersten Inter-
nationalen Mathematiker-Kongresses in Zürich vom 9. bis 11. August 1897. Leipzig:
Teubner 1898, pp. 147–162, quote p. 159.
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could be applied to various fields given a suitable interpretation of its schematic
letters and relative operations.

30.5 MODALITIES

Schröder presented his logic as an interpreted algebraic structure which could be
applied (by further interpretation) to mathematics and other domains. Proponents
of new systems of logic usually claim to exceed the power of older systems. This
implies that the new systems are able to handle traditional problems at least as well
as the older systems do. It is therefore not astonishing that Schröder’s Vorlesungen
contain a paragraph “On the Modality of Judgements”,41 where Schröder prepared
an application of his calculus to modalities. These considerations show some ideas
concerning epistemological links between structure and interpretation.

His starting point is Kant’s table of judgements. Under the heading “Modality”
Kant distinguishes the following kinds of judgements (in Schröder’s presentation)42:

• Apodictic judgement: “A has to be B”, or “A is necessarily B”;

• Assertoric judgement: “A is B”, or “A is really, by chance, B”;

• Problematic judgement: “A can be B, or “A is probably (perhaps) B”.

Schröder claims that in a judgement of the type “A is necessarily/really/ prob-
ably B” the adverbs do not belong to the predicate. They also do not inform us
about the subject. They inform us about the state of our knowledge concerning the
judgment “A is B”. The difference between apodictic and assertoric judgments is a
difference of cognitive psychology. The apodictic judgment contains an indication
of evidence, that cannot be found in assertoric judgments.43

Assertoric judgments of traditional logic are in essence always apodictic or
problematic. “Logic knows only one absolute certainty – the 1 of the calculus
of probabilities.”44 In respect to problematic judgements a new (very important)
task arises: to determine the degree of credibility of problematic judgments in the
case where degrees of credibility of premises are given in form of mathematical
probabilities. This is, according to Schröder, a task of exact (deductive) logic.45

Schröder announces to deal with the problem in Vol. 3 of his Lehrbuch der
Arithmetik und Algebra at the latest.46 Of this textbook, only Vol. 1 has ever been
published.

41 Ernst Schröder, Vorlesungen, op. cit., Vol. II, § 56, pp. 506–511.
42 Ibid., p. 506.
43 Ibid., p. 508.
44 Ibid., p. 510.
45 Ibid.
46 Ibid., p. 511.
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30.6 CONCLUSION

It should have become clear that Schröder’s Absolute Algebra and his Algebra of
Logic anticipated basic ideas of Model Theory, according to Hodges’ determina-
tion of Model Theory “in a broader sense” given in the first section as “the study
of the interpretation of any language.” Set theoretic studies played, however, no
significant role in Schröder’s programme. Cantor developed his Set Theory at the
same time when Schröder introduced his Formal Algebra. In the early time Cantor
and Schröder ignored each other, 20 years later Schröder regarded his Algebra of
Relatives as the better alternative to Set Theory.

Contrary to the opinion of van Heijenoort and Hintikka, Schröder aimed at a
scientific universal language consisting of an hierarchy of sub-languages being in-
terpretations of one another and forming what Schröder called “Absolute Algebra”.
All sub-languages can be traced back to a formal algebraic structure and its first
interpretation as a logic, with logical connecting operations, concepts, judgments
(propositions), inferences and relatives as objects. Mathematics is gained only in
the next step by interpreting logical objects as mathematical objects. This method
is certainly against Fregean standards of the unambiguousness of the meaning of
symbols, but it opened the way to Model Theory.
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Chapter 31

Graham StevenS

InComplete SymbolS and the theory of loGICal typeS

31.1 loGICISm and the theory of typeS

Central to Russell’s original logicist project as set out in his 1903 Principles of 
Mathematics1 was the view that there is only one logical type of entity. This meta-
physical doctrine had its formal counterpart in what has come to be called the 
“doctrine of the unrestricted variable”, according to which all entities are within 
the range of the variables of Russell’s formal language. Under pressure from the 
paradoxes afflicting the foundations of set-theory, however, Russell is widely as-
sumed to have abandoned this doctrine by the time of his final statement and dem-
onstration of the logicist thesis in Principia Mathematica (1910–1913).2

 The formal language PM contained in Principia Mathematica, is stratified 
with respect to two distinct (or, at least, distinguishable) hierarchies: the hierarchy 
of types and the hierarchy of orders. The first hierarchy when applied to a higher-
order logic by itself gives us what is usually referred to as ‘simple type-theory’; 
when combined with the second hierarchy, it is yields ‘ramified type-theory’. The 
type hierarchy restricts the arguments a given function may have. Understood in 
terms of the semantics traditionally attributed to PM (though I will challenge this 
tradition in what follows), individuals are of the lowest type (type 0). Only func-
tions of type 1 may take individuals as arguments. Only functions of type 2 can 
take arguments of type 1. In general, a function of type n can only be argument 
to a function of type n + 1. This hierarchy, incidentally, does not have to be stated 
in semantic terms (i.e. in terms which take type restrictions to apply to a domain 
of values of variables), we could just as easily phrase the theory by attaching type 
indices to symbols of PM and, indeed, this would be the usual route, as it allows us 
to incorporate type-distinctions in setting out formation rules for the well-formed 
formulas of the system. The order part of the hierarchy restricts quantification. 
Assuming, inaccurately but for the sake of convenience, that the formulas of PM 
express propositions, every proposition and propositional function has an order, 

1 Bertrand Russell, The Principles of Mathematics, Cambridge: Cambridge University 
Press, 1903.

2 Alfred North Whitehead and Bertrand Russell, Principia Mathematica, Cambridge: 
Cambridge University Press, 1910–1913 (3. Vols).

431D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_31,  
© Springer Science+Business Media B.V. 2012
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such that no proposition can be of equal or lower order than the highest order 
proposition or propositional function quantified over in that proposition.

As mentioned above, it is well known that logicism ran into problems by as-
suming that there was one single domain that individual variables ranged over 
(though Frege and Russell differ slightly on this, both originally counted classes in 
the same domain as all other individuals without restriction, which led to the prob-
lem). Michael Dummett sums up what has become the standard view in reference 
to Frege, though it could equally have been written about Russell:

We neither need nor can follow Frege in supposing that one single all-embracing domain 
will serve for all uses of individual variables: for the most direct lesson of the set-theoretic 
paradoxes is that, at least when we are concerned with abstract objects, there is no one 
domain which includes as a subset every domain over which we can legitimately quantify: 
we cannot give a coherent interpretation of a language, such that every sentence of the lan-
guage can be taken as having a determinate truth-value, by taking the individual variables 
to range over everything that answers to the intuitive notion of a set, or that of a cardinal 
number or that of an ordinal. We must therefore separate Frege’s basic intuition, the use 
of quantification understood as relative to a determinate domain as a fundamental tool in 
the analysis of language, from his incorrect further assumption, that this domain, by being 
stipulated to be all-inclusive, can be taken to be the same in all contexts.3

This final assumption is one shared by Russell in 1903s Principles of Mathemat-
ics. Do the paradoxes really show that it is incorrect?

The standard view, of course, is that Russell came to see that unrestricted 
variation was impossible. Accordingly, a hierarchy of types is found in PM. This 
hierarchy ensures that the range of a variable is adequately restricted so as to 
outlaw, for instance, self-(or non-self-) predicating predicates. Were classes to be 
ultimately present (rather than, as they are, ultimately eliminable by contextual 
definition in terms of propositional functions), the theory of types would also 
ensure that classes cannot be members (or non-members) of themselves either. 
Thus we have no Russell class {x : x  x}, nor a ‘Russell function’ j of non-self-
predicability leading to the contradictory j j ≡ ~jj.

Ironically, however, this retraction of unrestricted variation is also the main 
target of complaints against Russell’s version of logicism. There is something 
decidedly ad hoc about the claim that something is neither a member nor a non-
member of a class. The class complement of {x : Fx} ought to include everything 
lacking the property F. But, in the case of a class r, the fact that r cannot be a 
member of r does not imply that r is not a member of r, for this latter statement is 
just a further violation of type restrictions. Indeed, even more simply, it just seems 
implausible to think that a class cannot share the same property as its members – 
the class of all abstract objects, for example, is surely an abstract object.

This description of type-theory and its failings is, admittedly, a little simplistic, 
but it demonstrates quite clearly the general complaint: types lack a philosophical 
justification. We infer that there are logical types not from any philosophical analysis 

3 Michael Dummett, Frege: Philosophy of Language, London: Duckworth 1973, p. 476.
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of logical objects, but simply because the acceptance of types gives us a means of 
avoiding contradiction. The conclusion usually drawn is that logicism failed.

31.2 InComplete SymbolS aS the SourCe of loGICal typeS

The story just sketched presupposes that type-theory and unrestricted variation are 
irreconcilable. This is unsurprising: one is tempted to say that they are mutually 
exclusive doctrines by definition. For the supposition of a theory of types, surely, 
is the supposition that variables are restricted in range to a specific logical type. 
Surprisingly, however, this presupposition is wrong. To see how these two apparently 
opposed doctrines can be reconciled, one has to understand the relation between 
the theories of descriptions and types. This relation was obscured for a long time 
but has recently been revealed by close studies of Russell’s “substitutional theory 
of classes and relations” developed between 1905 and 1907.

The substitutional theory avoids all mention of classes as entities, replacing 
talk of classes with reference to matrices expressed by symbols of the form ‘p/a’. 
Here both ‘p’ and ‘a’ are understood to be names of entities. A matrix, however, 
is not an entity. The nature of a matrix is best explained by the fact that a matrix 
features in propositions such as that expressed by ‘p/a;x!q’ which can be read as ‘q 
results from the substitution of x for a in all those places if any where a occurs in p’. 
Admitting, as Russell did at this time, that propositions are entities, either p or a may 
be propositions (though neither has to be). This allows Russell to treat a matrix as if 
it were a class and thus ensure that all talk of classes is eliminable in favour of talk of 
matrices. The condition under which an entity x is a member of the “class” p/a is just 
that there is a true proposition resulting from the substitution of x for a in p.

The connection forged by the substitutional theory between the theories of de-
scriptions and types is evident when we reflect on the form that the Russell para-
dox would need to take in the substitutional calculus. About the closest we could get 
would be to write something like ‘p/a;p/a’. But this is mere nonsense, amounting to 
something like ‘the result of replacing a in p by the result of replacing a in p by’. Self-
membership becomes impossible according to the substitutional analysis of classes. 
As Russell says: ‘now “x is an x” becomes meaningless, because “x is an a” requires 
that a should be of the form p/a, and thus not an entity at all. In this way membership 
of a class can be defined, and at the same time the contradiction is avoided’.4

The grammar of substitution yields the kinds of distinctions placed on a stand-
ard theory of classes by simple type-theory and, indeed, it is best understood as 
the original foundation for Russell’s mature theory of types. The complaint com-
monly directed at Russellian type-theory considered above, namely that the theory 
outlaws certain apparent propositions as nonsense on purely ad hoc grounds, is 
obviously unfair once one sees that the theory of types has its origins in the sub-
stitutional theory. From the perspective of the logic of substitution, violations of 

4 Bertrand Russell, ‘On the Substitutional Theory of Classes and Relations’, in: Essays 
in Analysis, ed. D. Lackey, London: Allen and Unwin 1973, p. 172.
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type-distinctions are clearly nonsense in a quite unquestionable way. Furthermore, 
it is because “classes” are incomplete symbols that violations of type-distinctions 
are violations of sense; thus the substitutional theory provides the link between the 
theory of descriptions and the theory of types.

The substitutional theory provides a justification for type theory without de-
parting from the doctrine of the unrestricted variable. In Russell’s words, ‘it ad-
heres with drastic pedantry to the old maxim that, “whatever is, is one” ’.5 Such 
pedantry is not without costs, however. Types have been brought into consistency 
with unrestricted variation only at the expense of casting the things typed out of 
Russell’s ontology. Classes are no longer mind-independent subsisting things, ac-
cording to this analysis. Numbers, being classes of similar classes, are similarly 
bereft of ontological status, as is evident from Russell’s own statements:

The theory which I wish to advocate is that classes, relations, numbers, and indeed almost 
all the things that mathematics deals with, are ‘false abstractions’, in the sense in which ‘the 
present King of England’, or ‘the present King of France’ is a false abstraction. Thus e.g. the 
question ‘what is the number one?’ will have no answer; the question which has an answer is 
‘what is the meaning of a statement in which the word one occurs?’ And even this question 
only has an answer when the word occurs in a proper context.’6

This may look like a radical departure from logicism but, I believe, it should be 
viewed as neither harmful to logicism nor surprising. It should not be surprising 
because it is a fairly predictable consequence of leaning heavily on the theory of 
descriptions. The theory invariably achieves great things by slimming ontologies 
to the point of emaciation. This has always been taken for granted by defenders 
and critics of the theory. Furthermore, the ontological costs here have little 
philosophical significance. Russell simply calls on the theory of descriptions (as 
applied to the substitutional theory) in order to put the metaphysical weight of 
logicism onto an ontology of propositions rather than classes.7 Bearing in mind the 
centrality of the proposition to Russell’s early metaphysics, this has no negative 
consequences (beyond the inevitable complications resulting from the rejection of 
classes) for Russellian logicism.

As I have said, the ontological cutbacks that tend to follow any use of the 
theory of descriptions should come as no surprise. What may come as more of a 
surprise about this particular application of the theory, however, is that it shows 
how the theory can give as well as take. The treatment of classes as incomplete 
symbols robs mathematical objects of reality but, simultaneously, provides the 
philosophical justification for dividing those (now fictional) objects into a hierarchy 

5 Ibid., p. 189.
6 Ibid., p. 166.
7 For a full explanation of how this is carried out, see Graham Stevens, ‘Antirealism 

and the Theory of Descriptions’ in: D. Jacquette and N. Griffin (Eds.), Russell versus 
Meinong: 100 Years After ‘On Denoting’, London: Routledge 2009.
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of types. The contradictions are avoided and we have an explanation of what led 
us into contradiction in the first place: our mistake was to think that classes were 
genuine objects. Once we see that they are in fact incomplete symbols, all we need 
to do is to treat them correctly (that is, in accordance with theory of descriptions) 
in order to avoid (and solve) the contradictions.

It is important to be perfectly clear about what the solution to the contradictions 
being offered here amounts to. Although the solution does entail the restriction 
over quantification, and over the range of variation, urged in the passage quoted 
from Dummett above, it shouldn’t be conflated with it. It is because classes are 
incomplete symbols that unrestricted quantification or variation over them leads 
us into contradiction. Recognition of this point is crucial to understanding the role 
played by the so-called ‘Vicious-Circle Principle’ (VCP) in Russell’s mathematical 
philosophy. The VCP states, in one form, that no proposition may be a value of a 
bound variable contained within itself. Hence, e.g., Epimenides’ proposition

(1) All propositions asserted by Cretans are false,

cannot be a value of the quantifier contained in (1). In this case, the restriction 
placed on quantification by the VCP serves to generate the hierarchy of orders 
in ramified type-theory. If the VCP is understood just as a prescription placed 
on quantifiers in order to evade contradictions, however, it will be prone to just 
the same objections that were first levelled at the type-hierarchy at the start of 
this paper. Like the simple part of type-theory, however, the VCP is intended 
to be a consequence of a correct philosophical diagnosis and solution of the 
contradictions. In the case of the VCP, the philosophical diagnosis is also one 
that isolates the cause of the problem in a false ontological assumption – namely 
the assumption that propositions are entities. Russell abandoned propositions in 
favour of the multiple-relation theory of judgement in PM. This decision turned 
out to be a bad one – the multiple-relation theory was a failure. That is not our 
concern here, however, as I don’t want to be sidetracked into talking about the 
ramified theory or the multiple-relation theory.8 Returning to the hierarchy of 
types, we have already seen how this is intended to be a consequence of the correct 
(substitutional) analysis of mathematical objects. The theory of types is just the 
consequence for mathematical logic of properly digesting the content of the claim 
that classes are not entities.

To summarise so far: we have answered two serious objections to type-theory. 
Firstly, we have shown that the theory is not ad hoc – it can be provided with solid 
philosophical foundations. Secondly, it does not need to contradict the doctrine of 
unrestricted variation. Types sit quite comfortably alongside unrestricted variation 
in the substitutional theory because the theory of types is a logical theory, not an 
ontological one.

8 See Graham Stevens, The Russellian Origins of Analytical Philosophy, London: 
Routledge 2005 for details on each.
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At this point, however, there is a concern that needs addressing. Substitution, 
quite clearly, doesn’t feature in PM. Indeed, it cannot. Substitution only works if an 
ontology of propositions is assumed. With propositions abandoned in favour of the 
multiple-relation theory in PM, substitution cannot provide type-theory with its 
justification. The concern that needs addressing, then, is over the ontological status 
of type-theory in PM. Without substitution to provide foundations for type-theory, 
does the type hierarchy just collapse into an ontological theory in PM?

31.3 PrinciPia MatheMatica

As is well known, PM’s symbols for classes are contextually eliminable in a way 
very similar to the method for contextually eliminating denoting phrases. Just as 
the denoting phrase ‘ix (Fx)’ is to be eliminated in contexts such as ‘G (ix (Fx))’ as 
follows:

G (ix (Fx)) = 
Df

 $ x ((Fx & "y (Fy É x = y)) & Gx)

So the class symbol ‘{x: Fx}’ can be eliminated from contexts such as ‘G{x: Fx}’ 
as follows9:

G{x: Fx} = 
Df $ H (("x (H!x ≡ Fx)) & G(H!û)).

As is equally well known, this contextual definition is more problematic than those 
given for definite descriptions in section *14 of Principia. Most concerning is 
Russell’s quantification over predicate variables. This led Quine to dismiss the 
‘no-classes’ theory of types in PM as little more than a use-mention confusion on 
Russell’s part: Russell thought he had reduced classes to symbolic conveniences; 
what he actually did, according to Quine, was reduce respectably extensional, 
though unpalatably abstract, entities to attributes in intension.

One who works to Quine’s ontological criterion that reads ontological 
commitment off of ineliminable existential quantifications will share Quine’s 
conclusion that Russell has bought ontological freedom from classes only at 
the cost of ontological commitment to whatever the values of PM’s predicate 
variables are supposed to be. Russell and Whitehead are notoriously unclear on 
how PM should be interpreted. No formal interpretation is offered in the way that 
is now customary for any presentation of a formal language. Hence we are left to 
decipher the three dense chapters of philosophical introduction to try and shed 
some light on the mathematical logic that follows. When we do so, we quickly 
find that Russell and Whitehead speak as if predicate variables stand for things 

9 See Whitehead and Russell, Principia Vol. 1, op. cit. *20.01. I have modernised the 
notation.
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called ‘propositional functions’. If propositional functions are understood along 
the same lines as they feature in the Principles of Mathematics, Quine seems to 
be right. There, propositional functions are as much a part of Russell’s ontology as 
propositions are. Taking propositional functions to be of this sort in PM instantly 
turns the theory of types back into an ontological theory. This is evident from the 
justification offered for the type part of the ramified hierarchy of PM. With classes 
reduced to functions it is functions that must be divided into types. Russell and 
Whitehead offer the ‘direct inspection’ argument as justification for the imposition 
of this hierarchy: direct inspection of the nature of a propositional function is 
supposed to reveal, they confidently assert, that:

not only is it impossible for a function jû to have itself or anything derived from it as 
argument, but that, if y û is another function such that there are arguments a with which 
both ‘j a’ and ‘j a’ are significant, then y û and anything derived from it cannot significantly 
be argument to j û.10

If propositional functions are just universals under a different name, then what we 
have here is a claim that we can recognise through our acquaintance with those 
universals that they are essentially incomplete entities akin to Fregean concepts 
and, as such, must be typed in order to explain how they can come together to form 
unified complexes.

There are very good reasons for rejecting this realist (as I will henceforth 
call it) interpretation of propositional functions in PM. For one thing, it is in the 
unfortunate position of being openly contradicted by one of the authors of the work 
it is intended to interpret. Russell, in My Philosophical Development, explicitly 
states that propositional functions are linguistic entities only: ‘A propositional 
function is nothing but an expression. It does not, by itself, represent anything. But 
it can form part of a sentence which does say something, true or false’.11 Secondly, 
and perhaps more importantly, Principia lacks the ontological resources to support 
a realist interpretation. We have already seen that propositions are rejected in PM 
in line with the adoption of the multiple-relation theory of judgement. Bearing 
in mind that the multiple-relation theory is intended to generate the hierarchy of 
orders and thus ultimately, play a central role in guaranteeing the consistency of 
PM, this rejection of propositions is one that must be taken seriously when seeking 
the correct interpretation for PM. But this now poses a surely insurmountable 
problem for the realist interpretation, as we can see if we remind ourselves of how 
Russell and Whitehead describe functions in Principia:

10 Whitehead and Russell, Principia Mathematica Vol. 1, Cambridge: Cambridge Univer-
sity Press, 1910, 2nd edition 1926, p. 47.

11 Bertrand Russell, My Philosophical Development, London: Allen and Unwin 1959, p. 
69.
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Let j x be a statement containing a variable x and such that it becomes a proposition when x 
is given any fixed determined meaning. Then j x is called a ‘propositional function’; it is not 
a proposition, since owing to the ambiguity of x it really makes no assertion at all.12

By a ‘propositional function’ we mean something which contains a variable x, and 
expresses a proposition as soon as a value is assigned to x. That is to say, it differs from a 
proposition solely by the fact that it is ambiguous: it contains a variable of which the value 
is unassigned.13

The problem with this talk of propositional functions ‘becoming’ or ‘expressing’ 
a proposition upon the assignment of a value to x is that this means, according to 
the official ontology of Principia, there is nothing for a propositional function to 
become under such circumstances. Propositions just don’t exist.

It is perhaps unsurprising then that determined adherents of the realist 
interpretation have resorted to simply ignoring what Russell and Whitehead have 
to say about their ontological commitments. So, for example, Church thinks the 
only way to make sense of PM is to abandon any attempt to make the interpretation 
comport with that suggested by Russell and Whitehead:

[W]e take propositions as values of the propositional variables, on the ground that this is 
what is clearly demanded by the background and purpose of Russell’s logic, and in spite of 
what seems to be an explicit denial by Whitehead and Russell.14

The usual excuse for such wilful disregard of what is actually said in Principia, is 
that Russell and Whitehead happily quantify over propositions and propositional 
functions. Thus, the claim goes, the philosophical parts of the work are out of tune 
with the formal parts, the latter being best interpreted as concerned with a domain 
of individuals, functions, and propositions, interpreted in realist terms.

As excuses go, this one is particularly poor. The only valid route to this 
conclusion relies on the assumption that quantification in PM is objectual. But this 
is clearly question-begging, for (at least in this context) to interpret the quantifiers 
objectually just is to give a realist interpretation of them. A better alternative 
(if one wishes to reconcile the formal parts of Principia with its philosophical 
preamble) is to interpret the quantifiers substitutionally. A few attempts have been 
made to interpret PM in this way (e.g. Gödel 1944; Sainsbury 1979; Landini 1996, 
1998).15 Difficulties quickly arise, however. An early casualty of an over-zealous 

12 Whitehead and Russell, Principia Vol. 1, op. cit. p. 14.
13 Ibid., p. 38.
14 Alonzo Church, ‘A Comparison of Russell’s Resolution of the Semantic Antinomies 

with that of Tarski’s’, Journal of Symbolic Logic 41 1978, p. 748, ft. nt. 4.
15 E.g. Kurt Gödel, ‘Russell’s Mathematical Logic’, in: P. A. Schilpp (Ed.), The Philoso-

phy of Bertrand Russell, London: Harper and Row; Mark Sainsbury, Russell, London: 
Routledge 1979; Gregory Landini, Russell’s Hidden Substitutional Theory, Oxford: 
Oxford University Press 1998.
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nominalist interpretation of quantification in PM will be the axiom of infinity. 
Unless this axiom is taken as applying to objects (not their names) it stands no 
chance of being true. However, holding that PM is intended to have a nominalistic 
semantics is not the same as holding that PM is intended to reflect any commitment 
to nominalism as a philosophical doctrine. Indeed, this would be absurd. Russell 
never retracted his ontological commitment to universals. Furthermore, that same 
ontology is suggested in Principia by passages like the following: ‘the universe 
consists of objects having various qualities and standing in various relations’.16 
Other comments made by Russell around the same time make it perfectly clear 
that the ontology gestured at here is very distant from nominalism: ‘A complete 
description of the existing world would require not only a catalogue of the things, 
but also a mention of all their qualities and relations’.17 Evidently, there is no 
mileage in an interpretation that denies Russell’s ontological commitment to 
universals. But this is not an insurmountable problem for the interpreter of PM. Our 
original objection to Quine, Church, etc., was that they deviated from the officially 
stated doctrines of Principia. There is no need to commit the same exegetical error 
by foisting a commitment to nominalism in general on to Russell. The point was, 
rather, that propositional functions should be interpreted nominalistically in order 
to maintain consistency with Russell and Whitehead’s rejection of propositions 
as entities. An ontological commitment to universals is quite consistent with a 
rejection of any ontological commitment to propositional functions so long as we 
resist the temptation to identify functions with universals. But this is just what 
is demanded by a nominalist interpretation of propositional functions anyway 
– propositonal functions can hardly be universals if we are going to withhold 
ontological commitment to them.

As only quantification over predicate variables involves quantification over 
propositional functions, it is only the higher-order quantifiers that demand a 
nominalist treatment if we are to provide a nominalistic semantics for propositional 
functions. An interpretation of PM like that offered by Landini captures this idea. 
Two sorts of quantifier are utilised in the system. The first-order quantifiers are 
interpreted objectually and are unrestricted. Higher-order quantifiers, however, are 
interpreted substitutionally. Thus a nominalistic interpretation of predicate variables 
(propositional functions) is allowed to coexist with a realistic interpretation of e.g. 
the axiom of infinity.

With higher-order quantification interpreted substitutionally, the values of 
predicate variables will simply be formulas. A propositional function is nothing 
more than an open sentence. It is somewhat surprising that this interpretation is 
at odds with the accepted wisdom on PM, when one considers just how well it 
squares with what Whitehead and Russell have to say:

16 Whitehead and Russell, Principia Vol. 1, op. cit. p. 43
17 Bertrand Russell, Our Knowledge of the External World, London: Allen and Unwin 

1914, p. 60.
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Let j x be a statement containing a variable x and such that it becomes a proposition when 
x is given any fixed determinate meaning. Then j x is called a ‘propositional function’; it is 
not a proposition, since owing to the ambiguity of x it really makes no assertion at all.18

The most natural interpretation of this passage, I submit, is the one that just takes 
‘statement’ to be synonymous with ‘sentence’ and holds variables to be symbols 
contained in sentences. Consequently, a propositional function is just an open 
sentence. This interpretation is in tune with the official ontological doctrines of 
Principia and, as we have seen, it also allows us to view the formal aspects of the 
work as subservient to (and consistent with) the same philosophical ambitions.

I mentioned earlier that I would be mainly interested in the type part of the 
ramified hierarchy in this paper. But we do need to address an issue that touches 
on the issue of order. In the absence of propositions, Whitehead and Russell are 
in need of new truthbearers. These are provided by the multiple-relation theory 
of judgement (MRTJ). At the heart of the MRTJ is a recursive definition of truth 
(construed as correspondence between judgements and facts). This definition of 
truth is intended to provide the philosophical foundations for the order part of the 
ramified hierarchy. Russell and Whitehead set it out as follows19:

That the words “true” and “false” have many different meanings, according to the kind of 
proposition to which they are applied, is not difficult to see. Let us take any function fû 
and let fa be one of its values. Let us call the sort of truth which is applicable to fa “first 
truth.” … Consider now the proposition (x) . j x. If this has truth of the sort appropriate 
to it, that will mean that every value j x has “first truth.” Thus if we call the sort of truth 
which is appropriate to (x) . j x “second truth,” we may define “{(x) . j x} has second truth” 
as meaning “every value for j û has first truth,” i.e. “(x) . (j x has first truth).” Similarly, if 
we denote by “($x) . j x” the proposition “j x sometimes,” i.e. as we may less accurately 
express it, “j x with some value of x,” we find that ($x) . j x has second truth if there is an x 
with which j x has first truth; thus we may define “{($x) . j x} has second truth” as meaning 
“some value for fû has first truth,” i.e. “($x) . (j x has first truth).” Similar remarks apply 
to falsehood.20

The MRTJ, like the substitutional theory, is construed by its authors as being, at 
least in some sense, another application of the theory of descriptions. This is clear 
enough from what Whitehead and Russell say when introducing propositions as 
‘incomplete symbols’ in Principia:

Thus “the proposition ‘Socrates is human’” uses “Socrates is human” in a way which 
requires a supplement of some kind before it acquires a complete meaning; but when I 

18 Whitehead and Russell, Principia Vol. 1, op. cit. p. 14.
19 The circumflex device in the formula ‘fû ’is a term-forming operator converting an 

open sentence into a term designating a propositional function. It is perhaps best un-
derstood as a forerunner of the modern lambda abstract ‘lx(fx)’.

20 Ibid., p. 42.
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judge “Socrates is human,” the meaning is completed by the act of judging, and we no 
longer have an incomplete symbol.21

We have to be careful how we read this passage. Although it marks a clear 
application of the doctrine of incomplete symbols, it does not amount to a claim that 
propositions are disguised definite descriptions (in the way that Russell thought e.g. 
names are). Definite descriptions are incomplete symbols whose meaning, while 
lacking in isolation from a wider sentential context, can be contextually defined by 
familiar means. The symbols for classes, similarly, can be contextually defined by 
e.g. PM *20.01. No such claim is being made about propositions, however. Rather, 
the context we are interested in here is the act of judgement. The context is not a 
wider sentential context; it is the context of a mental act.

Calling a proposition an ‘incomplete symbol’ cannot be understood as directly 
parallel to talk of denoting phrases, or class-expressions, as incomplete symbols. 
In the case of descriptions and class-expressions we have explicit contextual 
definitions which license the introduction and elimination of the expressions 
without importing them into the fundamental vocabulary of our language. Thus 
descriptions and class abstracts are incomplete symbols in a purely syntactic 
sense – they are defined expressions which can be eliminated at any point. The 
account of propositions as incomplete symbols, however, is a semantic doctrine 
– a claim about the proper interpretation of certain elements of the lexicon. There 
is no method for eliminating these symbols akin to those given in *14 and *20 
for descriptions and class abstracts respectively. Russell’s talk of propositions 
as incomplete symbols is somewhat metaphorical as a result. This notion of an 
incomplete symbol is a wider, and less precise, one than is licensed by the use of 
explicit contextual definitions, but we can nonetheless appreciate what Russell has 
in mind – just as descriptions and class abstracts appear to refer to things but turn 
out, on analysis, not to; so also sentences, that-clauses, propositional variables, 
etc., seem to refer to entities (propositions) but turn out on analysis no to do so.

In each case that we have examined, we have seen how the treatment of an 
expression as an incomplete or contextually eliminable symbol enabled Russell to 
add to his philosophy while subtracting from his ontology. Classes, propositional 
functions, and propositions, were eliminated by a process that simultaneously 
generated and justified a hierarchy of logical types and orders. The elimination 
of definite descriptions was the model applied and re-applied in each case. In 
this way, type-theory is provided with a justification and simultaneously answers 
the objections considered at the beginning of this paper. The main objections to 
type-theory are objections to (1) the idea that objects should be typed and (2) the 
apparently ad hoc nature of the theory. But, understood as consequence of applying 
the theory of descriptions to the symbols for classes, functions, and propositions, 
the theory of types is immune to both criticisms, for types are generated by the 

21 Ibid., p. 46.
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elimination of the objects in question. Nor is there anything ad hoc about this 
process. This does not demonstrate that Russell’s logicist thesis succeeded, but it 
does answer the objection that it relied on an unjustified theory of logical types.

31.4 ConCluSIon

As far as Principia goes, the project is not, ultimately, successful. The success 
of the project as I have outlined it here is dependent on the success of the MRTJ. 
The MRTJ, however, was a logical fiction too far for Russell. As I have argued in 
detail elsewhere,22 Wittgenstein’s criticisms showed that the theory couldn’t do the 
work Russell needed it to do. It is notable that the project of logical construction 
broke down for Russell at this particular point, for the MRTJ differs in interesting 
ways, as we have seen, from the other eliminativist applications of the theory of 
descriptions. Firstly, it seeks to apply the eliminativist strategy at the semantic 
rather than syntactic level; secondly, and perhaps most importantly, it eliminates 
the very things that had oiled the wheels of Russell’s past successes with the 
elimination of classes and functions – namely, propositions.

School of Social Sciences
University of Manchester
Oxford Road
M13 9PL, Manchester
United Kingdom
Graham.P.Stevens@manchester.ac.uk

22 Graham Stevens, Russellian Origins, op. cit., Ch. 4.
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Chapter 32

Donata romizi

StatiStiCal thinking between natural anD SoCial 
SCienCeS anD the iSSue of the unity of SCienCe:

from Quetelet to the Vienna CirCle

32.1 introDuCtion

The application of statistical methods and models both in the natural and social 
sciences is nowadays a trivial fact which nobody would deny. Bold analogies 
even suggest the application of the same statistical models to fields as different 
as statistical mechanics and economics, among them the case of the young and 
controversial discipline of Econophysics.1 Less trivial, however, is the answer to 
the philosophical question, which has been raised ever since the possibility of 
“commuting” statistical thinking and models between natural and social sciences 
emerged: whether such a methodological kinship would imply some kind of more 
profound unity of the natural and the social domain.
 Starting with Adolphe Quetelet (1796–1874) and ending with the Vienna 
Circle (from the late 1920s until the 1940s), this paper offers a brief historical 
and philosophical reconstruction of some important stages in the development of 
statistics as “commuting” between the natural and the social sciences. This recon-
struction is meant to highlight (with respect to the authors under consideration):
1. The existence of a significant correlation between the readiness to “transfer” 
statistical thinking from natural to social sciences and vice versa, on the one hand, 
and the standpoints on the issue of the unity/disunity of science, on the other;
2. The historical roots and the fortunes of the analogy between statistical models 
of society and statistical models of gases.

1 Cf. Bikas K. Chakrabarti, Anirban Chakraborti, Arnab Chatterjee, Econophysics and 
Sociophysics. Trends and Perspectives, Weinheim: Wiley-VCH 2006; Science and Cul-
ture. Special issue on: Fifteen Years of Econophysics Research, 76, 9–10, 2010.

D. Dieks et al. (eds.), Probabilities, Laws, and Structures, The Philosophy of Science 
in a European Perspective 3, DOI 10.1007/978-94-007-3030-4_32,  
© Springer Science+Business Media B.V. 2012
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32.2 aDolphe Quetelet: StatiStiCS anD the unity of SCienCeS

The Belgian astronomer and social statistician Adolphe Quetelet is a figure who 
has awoken especially in the 1980s, the interest of many historians of probability 
and statistics.2

 One of Quetelet’s most significant features is certainly his interdisciplinary 
outlook. Being the founder and director of the Royal Astronomical Observatory in 
Brussels and pursuing at the same time a brilliant career as a social statistician, he 
found himself at the intersection of different research areas which were developing 
at the same time, and to whose convergence Quetelet himself very much contributed: 
the classical probability calculus, and especially the newly developed “law of large 
numbers”, the theory of observational errors in astronomy and social statistics.
 A unitary conception of natural and social phenomena characterizes Quetelet’s 
perspective and his “transversal” application of statistics. Significantly enough, his 
most famous work was entitled Essai de physique sociale.3 In the “Preface” to the 
first English edition Quetelet explains: “In giving to my work the title of Social 
Physics, I have had no other aim than to collect, in a uniform order, the phenomena 
affecting man, nearly as physical science brings together the phenomena apper-
taining to the material world.”4

 Each of the following constitutive elements of Quetelet’s physique sociale fills 
the gap between social and natural sciences and is, at the same time, intrinsically 
related to the application of probability and statistics.

32.2.1 Observation and Quantification of Facts

Quetelet’s Social Physics starts with the observation of facts, the facts – Quetelet writes –  
that “society presents to our view”.5 This is the first, essential step towards talk-
ing about human beings scientifically, avoiding any speculative “Theory of Man”6.  
Not only “physical qualities” (births, deaths, stature, weight, strength, etc.), but also 

2 For instance, Quetelet’s work is a major topic of many contributions to the volume: 
Lorenz Krüger, Lorraine J. Daston, Michael Heidelberger (Eds.), The Probabilistic 
Revolution, Vol. I: Ideas in History. Cambridge, Mass.: MIT Press 1987. Cf. also Theo-
dore M. Porter, The Rise of Statistical Thinking 1820–1900, Princeton: Princeton Uni-
versity Press 1986 (Part II); Stephen M. Stigler, The History of Statistics, Cambridge, 
Mass. / London: Belknap Press of Harvard University Press 1986 (Part II, Ch. 5); Gerd 
Gigerenzer et al. (Eds.), The Empire of Chance, Cambridge: Cambridge University 
Press 1989 (Ch. 2); Ian Hacking, The Taming of Chance, Cambridge: Cambridge Uni-
versity Press 1990 (Chs. 13–15 and 20–21). 

3 The first version of Quetelet’s Social Physics was published in 1835 with the title Sur 
l’homme et le développement de ses facultés ou Essai de physique sociale. In this paper 
I refer to the first English translation of this edition: Adolphe Quetelet, A Treatise on 
Man and the Development of his Faculties, Edinburgh: William and Robert Chambers 
1842. In 1869, Quetelet would publish a revised and enlarged edition of this work un-
der the title Physique sociale, ou Essai sur le développement des facultés de l’homme.

4 Quetelet, A Treatise on Man and the Development of his Faculties, op. cit., p. vii.
5 Ibid., p. vii.
6 Ibid., p. 8.
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“moral” (dispositions to good or evil) and “intellectual” (intellectual power) qualities 
are conceived of as facts to be observed – if not “directly”, then through their effects:

The analysis of the moral man through his actions and of the intellectual man through his 
production […] form[s] one of the most interesting parts of the sciences of observation, ap-
plied to anthropology. It may be seen, in my work, that the course which I have adopted is 
that followed by the natural philosopher.7

The “qualities of man” are expressed by facts, and these facts are illustrated by statis-
tics: births, deaths, diseases, suicides, crimes, prostitution, production of works of liter-
ature, philosophy, science, etc. Statistics allows us to measure, to quantify the qualities 
of men and society exactly as we would measure the properties of a physical object.

32.2.2 The Law of Large Numbers and Other “Laws”

Once we have collected enough data, “a miracle occurs”: out of the large numbers 
regularities emerge. According to Quetelet, for example, the number of murders com-
mitted in France every year – but also the percentage of these murders committed, say, 
by strangulation – converges toward a mean; furthermore, this mean remains stable 
in the course of the years, provided that the “organization of the social state”8 remains 
the same. Also the physical traits of man, if they are measured sufficiently many times 
for a particular population, would converge toward a mean (so that we can speak, for 
example, of a French homme moyen): “It would appear, then, that moral phenomena, 
when observed on a great scale, are found to resemble physical phenomena”.9

 Relying on the regularities emerging out of the large numbers Quetelet can 
further look for statistical correlations, for example, between the “residence in 
town or country” and the “ratio of births of the two sexes”, or between “the period 
of the maximum of conceptions” and “that of the greatest numbers of rapes”.10 
Quetelet’s aim is the same as the natural scientist’s, to wit, “to discover the laws 
forming the connecting links of phenomena”11:

Having…observed the progress made by astronomical science in regards to worlds, why 
should not we endeavour to follow the same course in respect to man? Would it not be an 
absurdity to suppose, that, whilst all is regulated by such admirable laws, man’s existence 
alone should be capricious […]?12

7 Ibid., p. viii; my emphasis. 
8 Ibid., p. 6.
9 Ibid., p. 6.
10 Cf. Ibid., p. 12 and p. 22 respectively. The revised and enlarged edition of Quetelet’s 

social physics (see above, n. 3.) entails a much greater variety of such correlations. 
11 Ibid., p. 8.
12 Ibid., p. 9. Quetelet’s “normal” distributions and “stable” means, as well as Quetelet’s 

“laws”, appear quite problematic to a modern eye: with respect to the former, cf. for 
instance Ian Hacking, The Taming of Chance, op. cit., S. 113; with respect to the latter, 
cf. Bernard-Pierre Lécuyer, “Probability in Vital and Social Statistics: Quetelet, Farr, 
and the Bertillons”, in: Krüger, Daston, Heidelberger (Eds.), The Probabilistic Revolution, 
Vol. I: Ideas in History, op. cit., pp. 317–335 (see p. 321).
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32.2.3 Causes

Quetelet also infers the existence of causes from statistical regularities. The model 
of causation found in Quetelet’s work follows exactly what Lorenz Krüger – re-
ferring in general to classical probability in the age of determinism – has called 
“the deterministic account of statistical regularities”. This account “was built on 
two complementary ideas: (i) the causal efficacy of structural conditions […] and 
(ii) the mutual compensation of accidental causes”.13 Correspondingly, we find in 
Quetelet, on the one hand, the idea of a constant causal influence, for example, by 
“a given state of society”14 or by a Nature’s tendency to realize the “typical (e.g. 
French) man”. On the other hand, Quetelet talks of “accidental causes” – for ex-
ample, the free decisions or the accidental properties of single individuals – that 
compensate each other and happen to be normally distributed exactly like errors 
in a repeated measurement. This mutual compensation is the effect of what Quete-
let calls the “law of accidental causes”: “Variations, which arise from accidental 
causes, are regulated with such harmony and precision that we can classify them in 
advance numerically and by order of magnitude, within their limits”.15

32.2.4 Predicting

Social Physics is not only a description of facts. It can tell us “in advance” some-
thing about future facts: like the natural sciences, it allows prediction; like the 
probability calculus, it suggests a rational degree of expectation. According to 
Quetelet, “we might even predict annually how many individuals will stain their 
hands with the blood of their fellow-men, how many will be forgers, how many 
will deal in poison, pretty nearly in the same way as we may foretell the annual 
births and deaths”.16

 It should be clear by now that in Quetelet’s thought the application of statisti-
cal models within his social physics a unitary conception of science was intimately 
interwoven with: in particular, the application of statistics to the social domain 
let its kinship with the natural one emerge. But what kind of unity of science was 
advocated by Quetelet? Quetelet refused Comte’s idea of a hierarchy of sciences 
and, of course, did not share Comte’s dislike for the use of mathematics in social 
sciences. In fact, Quetelet was committed to the methodological unity of science.17 

13 Lorenz Krüger, “The Slow Rise of Probablism: Philosophical Arguments in the Nine-
teenth Century”, in: Krüger, Daston, Heidelberger (Eds.), The Probabilistic Revolu-
tion, Vol. I: Ideas in History, op. cit., pp. 59–85 (see p. 71).

14 Quetelet, A Treatise on Man and the Development of his Faculties, op. cit., p. vii.
15 Quetelet, cit. in Lécuyer, “Probability in Vital and Social Statistics: Quetelet, Farr, and 

the Bertillons”, op. cit., p. 320; my emphasis.
16 Quetelet, A Treatise on Man and the Development of his Faculties, op. cit., p. 6.
17 Cf. Porter, The Rise of Statistical Thinking 1820–1900, op. cit., p. 41–42: “Quetelet 

maintained that a single method was appropriate for every science”. Porter deals here 
also with the relationship between Quetelet and Comte.
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Furthermore, his talking of a physique sociale and even of a mecanique sociale, 
as well as his insistence on the law-like character of social phenomena (which 
thus resemble natural ones), both suggest that Quetelet also tended to support a 
nomological and an ontological unity of science.18 Such a unitary conception of 
science and Quetelet’s “transversal” use of statistics went hand in hand and sup-
ported each other.

32.3 reaCtionS to Quetelet’S work in the nineteenth Century

The philosophical issue about the unity/disunity of science played a big role also 
in the context of the reception of Quetelet’s work.
 Notwithstanding Quetelet’s international reputation, his ideas about statis-
tical laws and the unity of the sciences were not welcomed with enthusiasm in 
the German-speaking world. There the will to divorce Naturwissenschaften from 
Sozial- and Geisteswissenschaften went hand in hand with a different conception 
of statistics, one that rejected the notion of statistical law and any causal talk about 
society.19 In the first place, German academic statisticians and social scientists re-
sisted the identification of statistics with numbers until the 1860s. Later, after the 
1860s, statistics was conceived of by most Germans as a method for mass observa-
tion and for description, but most German statisticians, like Engel, Fallati, Casper 
and Rümelin, questioned Quetelet’s idea of statistical regularities being laws or 
symptoms of true causal relations. The German tendency to emphasize the role 
of history and culture in defining the identity of peoples and nations jarred with 
any attempt to apply to a society fixed and unhistorical laws; furthermore, the will 
to promote state-directed reforms clashed with the idea of a society intrinsically 
ruled by “spontaneous” laws.

18 Quetelet always defended himself from the charge of denying human free will by  
underlying that the statistical laws of his Social Physics do not apply to single individu-
als (cf. for instance Quetelet, A Treatise on Man and the Development of his Faculties, 
op. cit., p. 7). Nevertheless, he does not seem to have considered the hypothesis that 
this limitation on the validity of statistical laws could imply an in-principle difference 
between his Social Physics and, say, Newtonian physics.

19 The first German translation of Quetelet’s Physique Sociale appeared already in 1838. 
On the reception of Quetelet’s work in the German speaking world, cf. Wilhelm Win-
kler, “Das Problem der Willensfreiheit in der Statistik“, in: Revue de l’Institut Inter-
national de Statistique / Review of the International Statistical Institute, Vol. 5, No. 2, 
1937, p. 115–131 (see esp. p. 128–130); Paul F. Lazarsfeld, “Notes on the History of 
Quantification in Sociology – Trends, Sources and Problems“, in: Isis, Vol. 52, No. 2, 
1961, p. 277–333 (see p. 283–294 and pp. 309–310); Theodore M. Porter, “Lawless 
Society: Social Science and the Reinterpretation of Statistics in Germany, 1850–1880”, 
in Krüger, Daston, Heidelberger (Eds.), op. cit., pp. 351–375, and Hacking, The Taming 
of Chance, op. cit., Ch. 5 and 15.
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Most importantly, a statistical approach to society would neglect – according to 
the Germans – the single individual and his or her (free) will and motives. The 
German economist and statistician Georg Friedrich Knapp, for example, criticized 
in 1871–72 any approach which, like Quetelet’s one, “explains from the outside to 
the inside; […] sees the constancy of the whole and limits therefore the individual. 
The German school […] explains from the inside to the outside; it takes the indi-
vidual as he is and looks for reasons of the constancy of the whole.”20

 Diametrically opposite ideas both about statistics and about the relationship 
between natural and social sciences are at the bottom of the enthusiastic reaction 
to Quetelet’s work by Thomas Buckle, the author of the gigantic, unfinished work 
History of Civilization in England.21 Buckle appeals to statistics and to Quetelet’s 
work in order to argue for the scientific nature of history. According to him, statisti-
cians have been the first to deliver the “proofs of the regularity of human actions”.22 
Consequently, he feels licensed to pursue his “study of the movements of Man” 
just like natural scientists study the “movements of nature”23: seeking laws24 and 
causes and trying to predict. In fact Buckle makes an explicit plea for the unity of 
science: referring to the moral and the natural domains, he expresses the hope that 
his work “will at least have the merit of contributing something towards filling up 
that wide and dreary chasm, which, to the hindrance of our knowledge, separates 
subjects that are intimately related, and should never be disunited”.25

 For what concerns natural scientists, the British mathematician and astrono-
mer John Herschel wrote a long, favorable commentary on the statistical work of 
his colleague Quetelet in 1850.26 Herschel strongly supports the application of 
statistics and probability calculus to the inquiries in the social and in the political 
domains, and expresses this position in the same breath as his unitary conception 
of science:

[Statistics] is the basis of social and political dynamics, and affords the only secure ground 
on which the truth or falsehood of the theories and hypotheses of this complicated science 
can be brought to the test. It is not unadvisedly that we use the term Dynamics as applied 
to the mechanism and movements of the social body; nor it is by any loose metaphor or 

20 Cit. in Michael Heidelberger, “From Mill via von Kries to Max Weber: Causality, 
Explanation, and Understanding”, in: Ulijana Fest (Ed), Historical Perspectives on 
Erklären and Verstehen, Dordrecht/Heidelberg/London/New York: Springer 2010, pp. 
241–265.

21 Thomas Buckle, History of Civilization in England, vols. I-V, Leipzig: Brockhaus 
1865.

22 Ibid., vol. I, pp. 19-20.
23 Ibid., vol. I, p. 7.
24 Cf. Ibid., vol. I, p. 26.
25 Ibid., vol. I, p. 33.
26 John Herschel, “Quetelet on Probabilities”, in: The Edinburgh Review, July 1850. 

Quetelet would later use this comment as Introduction to his enlarged version of the 
Physique Sociale.
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strained analogy that much of the language of mechanical philosophy finds a parallel 
meaning in the discussion of such subjects.27

Herschel takes here the applicability of statistics within social and political inquir-
ies as indicating a kind of homogeneity between social and natural “Dynamics” 
which is more than a mere analogy.
 On the contrary, according to Glenn Shafer,28 Maxwell and Boltzmann were 
only using “analogies” or “didactic devices” as they – in turn – referred to social 
statistics in their foundational writings on statistical mechanics, as in the following 
passages:

The modern atomists have […] adopted a method which is, I believe, new in the depart-
ment of mathematical physics, though it has long been in use in the section of Statistics. 
When the working members of Section F get hold of a report of the Census, or any other 
document containing the numerical data of Economic and Social Science, they begin by 
distributing the whole population into groups, according to age, income-tax, education, 
religious belief, or criminal convictions. The number of individuals is far too great to allow 
of their tracing the history of each separately, so that, in order to reduce their labour within 
human limits, they concentrate their attention on a small number of artificial groups. The 
varying number of individuals in each group, and not the varying state of each individual, 
is the primary datum from which they work. […] The smallest portion of matter which we 
can subject to experiment consists of millions of molecules, no one of which ever becomes 
individually sensible to us. We cannot, therefore, ascertain the actual motion of any one of 
these molecules; so that we are obliged […] to adopt the statistical method of dealing with 
large groups of molecules.29

As is well known, Buckle has shown by statistics that if only we take a large enough number 
of people, then so long as external circumstances do not change significantly, there is com-
plete constancy not only in the processes determined by nature, such as number of deaths, 
diseases and so on, but also of the relative number of so-called voluntary actions, such as 
marriage at a certain age, crime, suicide and the like. Likewise with molecules […]30

 Shafer’s idea that such references are only “analogies” and “didactic devices” 
is meant to undermine Porter’s thesis according to which Quetelet’s social statis-
tics had inspired the probabilistic thinking and models of natural scientists like 

27 Ibid., pp. 434–435; my emphasis. See also p. 373 and 437.
28 Glenn R. Shafer, “Review of: T. M. Porter, The Rise of Statistical Thinking 1820–1900”. 

In: Annals of Science 47, March 1990, pp. 207–209. 
29 James Clerk Maxwell, “Molecules. A Lecture” [1873], in: W. D. Niven (Ed.), The 

Scientific Papers of James Clerk Maxwell, Vol. II, Cambridge: Cambridge University 
Press 1890, pp. 361–377 (see pp. 373–374).

30 Ludwig Boltzmann, “The Second Law of Thermodynamics” (Engl. transl. of: “Der 
zweite Hauptsatz der mechanischen Wärmetheorie”, 1886), in: Boltzmann, Theoretical  
Physics and Philosophical Problems: Selected Writings, Dordrecht: Reidel 1974,  
pp. 13–32 (see p. 20).
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Maxwell and Boltzmann, thus playing a significant role in the origins of statistical 
mechanics. Again, a certain wish to emphasize the gap between the social and 
natural sciences seems to be responsible for Shafer’s aversion even to the purely 
historical arguments supporting the idea of a transfer of statistical methods from 
the social to the natural sciences.31 Still, his suggestion should be taken seriously. 
An inquiry into Maxwell’s and Boltzmann’s respective conceptions of the relation-
ship between the social and natural sciences would be necessary before one could 
take a stand on this issue, though. If Shafer were right, one could furthermore ask 
why, while importing statistical models from the natural into the social sciences 
had implied a unitary conception of the sciences, importing statistical models from 
social statistics to statistical mechanics would have amounted only to an analogy 
with didactical purposes. These issues cannot be solved within the limits of this 
paper. What I would like to suggest, instead, in the next section, is rather that Max-
well’s and Boltzmann’s “analogies” have had a greater impact and importance than 
Shafer is disposed to recognize.

32.4 StatiStiCS anD the unity of SCienCe in the Vienna CirCle

The analogy between social statistics and statistical mechanics has had a signifi-
cant resonance within the Vienna Circle, and in particular in some writings by 
Neurath, Frank and Zilsel. Considering the significance of Boltzmann for the Vi-
enna Circle, it is possible that its members became acquainted with this analogy 
through him.
 Philipp Frank, in his book on The Law of Causality and its Limits,32 goes as far 
as to refer to a gas model in order to explain the “materialist conception of history” 
and to argue for its scientific nature. Single individuals – writes Frank – are like 
gas molecules, and in principle we could even assume that they behave according 
to deterministic, psychophysical micro laws. But, explains Frank,

Historical and sociological sciences […] do not deal with the psychological states of indi-
viduals; they speak of social conditions like density of population, diseases, political par-
ties, constitutions of states, etc. We then often ask whether we can predict the state variables 
of the future if the present are known. […] In principle we can always assume in the sense of 
classical physics that there are laws if we enter into ever finer structures. We have however 
to assume that all observable state variables define only a macrostate for which there can be 
no strict laws at all, but […] only predictions about average conduct.33

31 Cf. Shafer’s very polemical arguments at p. 208 of his “Review of: T.M. Porter, The 
Rise of Statistical Thinking 1820–1900”, op. cit. 

32 Philipp Frank, The Law of Causality and Its Limits (Engl. transl. of: Das Kausalgesetz 
und seine Grenzen, 1932), Robert S. Cohen (Ed.), Dordrecht: Reidel 1998 (see in par-
ticular Ch. 8). 

33 Ibid., p. 198.
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Frank appeals here – like Quetelet had done in his Physique Sociale – to the  
applicability of statistical models to society as to something that would testify to 
the possibility of pursuing social sciences “scientifically”, and thus speaks in favor 
of the continuity of these latter with the natural sciences. Indeed, the outright rejec-
tion of any in-principle distinction between social and natural sciences was a most 
important matter especially within the so-called “left-wing” of the Vienna Circle, 
which pursued the project of Einheitswissenschaft, or “Unity of Science”. This 
commitment supports Neurath’s contention that the Viennese Logical Empiricism 
was more kindred in spirit to the British and to the French philosophical traditions 
than to the German one.34 The Vienna Circle’s “left-wing” was closer to Quetelet 
and Buckle than to the nineteenth century German statisticians.
 Still, from the last quotation from Frank, a much more “modest” attitude than 
Quetelet’s becomes apparent: Frank places a new emphasis on the limits of pre-
dictions. By the time Frank had written his book, the development of statistical 
mechanics and quantum mechanics had yielded a most interesting and significant 
consequence for the Vienna Circle’s unitary conception of science. While Quetelet 
and his followers pointed to statistics to argue that the social sciences resemble 
the natural sciences with respect to causality, lawfulness, prediction and – in sum 
– determinacy, the Vienna Circle members pointed to statistics to show that the 
natural sciences are not essentially different from the social sciences, since both 
are characterized by a certain degree of indeterminacy, which however does not 
prevent the formulation of laws and predictions.
 This new perspective repeatedly comes to the fore in Zilsel’s writings, from 
the very beginning to the end of his life.35 Zilsel appeals to the degree of indeter-
minacy in physics in order to contest the presumptive non-causal character of life 
sciences,36 sociology and history.37 If physics – he argues – delivers causal laws 

34 Cf. Otto Neurath, “Die Entwicklung des Wiener Kreises und die Zukunft des  
Logischen Empirismus”, in: Neurath, Gesammelte philosophische und methodolo-
gischen Schriften, Rudolf Haller and Heiner Rutte (Eds.), Vienna: Hölder-Pichler-
Tempsky, Vol. 2, pp. 673–702 (see p. 676).

35 In his first book, Das Anwendungsproblem, Zilsel gave an indeterministic foundation 
to all scientific laws, which are conceived of as mere statistical regularities emerging 
from indeterminacy (Edgar Zilsel, Das Anwendungsproblem, Leipzig: Barth 1916). 
Towards the end of his life, in 1941, Zilsel would write: “historical phenomena are 
scarcely more difficult to predict than the weather and certainly not more difficult than 
volcanic eruptions and earthquakes. What would scientists think of a geophysicist who 
gives up the search for geophysical laws because of their inexactness?” (Edgar Zilsel, 
“Physics and the Problem of Historico-Sociological Laws”, in: Philosophy of Science, 
Vol. 8, No. 4, 1941, pp. 567–579; see p. 570).

36 Cf. Edgar Zilsel, “Naturphilosophie” in: Franz Schnaß (Ed.), Einführung in die Philo-
sophie, Osterwieck-Harz: Zickfeldt 1928, pp. 107–143 (see p. 138).

37 Cf. e.g. Zilsel, “Physics and the Problem of Historico-Sociological Laws”, op. cit., and 
Zilsel, “Problems of Empiricism”, in: Neurath (Ed.), Foundations of the Unity of Sci-
ence: Towards an International Encyclopedia of Unified Science, Vol. II, 8, Chicago: 
University of Chicago Press 1947 (first edition 1942), pp. 171–208 (see in particular  
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but nonetheless admits indeterminacy, a degree of indeterminacy in sociology and 
history cannot be taken as proof of their non-causal or non-explicative character.
 Along the same lines, Neurath writes:

When [sociologists] plead their case for the inclusion of sociological predictions, like those 
of all the other sciences, into the unified science of Physicalism, they will be less inclined 
to claim that sociology achieves as much as the most successful sciences. Rather, they will 
point out that certain limitations, to which sociology most obviously is subject, also hold for 
all the other sciences to some degree and that sociological predictions are scientific predic-
tions like all the others.38

Neurath’s idea of a “Sociology in the Framework of Physicalism”39 shows a signifi-
cant resemblance to Quetelet’s program. Neurath himself recognized it:

All empirical sciences are, in the end, physics in the widest sense. Quetelet speaks of ‘social 
physics’, when he derives his average man and then tries to ascertain how certain changes of 
social quantities are linked, for instance changes of criminality with changes in food prices. 
One might speak of the physics of society in the same way as of the physics of a machine.40

Still, a brief comparison between the already mentioned cornerstones of Quetelet’s 
social physics and Neurath’s meta-reflection on sociology brings to light Neurath’s 
realization of the limitations to which both natural and social sciences appear to 
be subjected.

32.4.1 Observation and Quantification of Facts

To Quetelet’s reliance on “social facts” corresponds Neurath’s wish to trace back 
the statements of social science to observable “states of affairs”41 or to spatio-
temporal descriptions.42 Neurath’s “social behaviourism”, and his dislike of any 
reference to “intentions”, “introspection”, “empathy”, “comprehension” or other 
mental states in social science,43 shows an interesting resemblance to Quetelet’s 
idea of investigating moral and intellectual properties “through their products”.

p. 195, where Zilsel also refers – like Frank in 1932 – to a gas model of society).
38 Neurath, “Sociological Predictions” (Engl. transl. of “Soziologische Prognosen”, 

1936), in: Neurath, Economic Writings. Selections 1904–1945, Dordrecht/Boston/
London: Dordrecht 2004, pp. 506–512 (see pp. 511–512).

39 Neurath, “Sociology in the Framework of Physicalism”, (Engl. transl. of “Soziologie 
im Physikalismus”, 1931), in: Neurath, Philosophical Papers 1913–1946, Dordrecht/
Boston/Lancaster: D. Reidel 1983, pp. 58–90.

40 Neurath, “Empirical Sociology” (Engl. transl. of Empirische Soziologie, 1931), in: 
Neurath, Empiricism and Sociology, Dordrecht/Boston: D. Reidel 1973, pp. 319–421 
(see p. 390).

41 This expression recurs in Neurath, Empiricism and Sociology, op. cit.
42 Neurath “Sociology in the Framework of Physicalism”, op. cit., p. 61.
43 Cf. e.g. Neurath, “Empirical Sociology”, op. cit., p. 325 and “Sociology in the Frame-

work of Physicalism”, op. cit., pp. 68ff . 

452



32 Statistical Thinking between Natural and Social Sciences 

 However, Neurath does not share Quetelet’s blind faith in “facts”. With respect 
to statistics in particular – Neurath warns us – the precision and clarity of the 
mathematical form in which statistical “facts” are expressed should not distract 
from the conventional nature of the numerical indexes and of the reference classes 
we choose.44

32.4.2 The “Law” of Large Numbers

The belief in the emergence of stability out of the large numbers is still present in 
Neurath, and it is acknowledged as a heritage from Quetelet (note how Neurath 
formulates here exactly Porter’s above mentioned thesis!):

The scientific approach is most difficult to introduce wherever there is interest in the future 
fate of single individuals […] Where the subject is masses and groupings of men, stability 
is larger, and the instability of the individual is less conspicuous. Therefore such ques-
tions are more amenable to scientific treatment, and the interest in such questions furthers 
the scientific attitude. The modern statistical approach, which has become so significant in 
physics, has its origins in sociological methods that were advocated about the middle of the 
nineteenth century and even earlier by Quetelet and others.45

32.4.3 Correlations Instead of Laws and Causes

Still, Neurath does not share Quetelet’s belief in “statistical laws” and he does not 
like “the cause-effect phraseology”.46 All sciences – Neurath argues – just look 
for correlations.47 The elimination of the reference to laws and causes, and the 
reliance on the “weaker” concept of “correlation” place Neurath in a better posi-
tion than Quetelet’s to argue in favor of the unity of science, since Neurath does 
not have to provide any deterministic account of statistical regularities in order to 
point out what sociology and physics have in common.

32.4.4 Prediction

In fact, Neurath shifts the main focus of attention from the concepts of laws and 
causes to the concept of prediction.48 He warns against the many limits of socio-
logical predictions,49 but – as already mentioned – he also argues that these limits 
hold for every science: it is just a matter of degree.

44 Cf. Neurath, Foundations of the Social Sciences, Chicago: University of Chicago Press 
1944, pp. 24–25 and 33.

45 Neurath, “Ways of the Scientific World-Conception” (Engl. transl. of: “Wege der wis-
senschaftlichen Weltauffassung”, 1930), in: Neurath, Philosophical Papers, op. cit., 
pp. 32–47 (see pp. 44–45). 

46 Cf. Neurath, Foundations of the Social Sciences, op. cit., pp. 20–21.
47 Cf. Neurath, “Sociology in the Framework of Physicalism”, op. cit., p. 68.
48 Cf. Ibid., p. 61 and Neurath, “Sociological Predictions”, op. cit.
49 Cf. Neurath, “Empirical Sociology”, op. cit., §10; “Sociological Predictions”, op. cit.; 

Foundations of the Social Sciences, op. cit., §12.
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To sum up, a significant echo of Quetelet’s unitary conception of the sciences and 
of his “transversal” use of statistical models can be found in Neurath, Frank and 
Zilsel’s writings. Still, the important developments undergone in the meantime by 
science (e.g. the indeterministic turn in Physics) and by its philosophy (e.g. the 
impact of conventionalism and pragmatism) are reflected in an emergent aware-
ness of the limitations to which any science is subjected and in a new deflationist 
attitude with respect to facts, laws and causes: these latter appear to have been  
de-ontologized and to some extent relativized,50 so that any further account about 
their “mirroring” a deterministic world becomes meaningless and pointless.

32.5 ConCluSion

Let me conclude by highlighting the main findings of my selective historical tour 
de force from Quetelet to Neurath with respect to the two main issues mentioned 
in the Introduction.
 1. My reconstruction has shown how in many cases the readiness to “transfer” 
statistical thinking from natural to social sciences and vice versa has been (and still 
is51) related to the corresponding standpoint on the issue of the unity or disunity of 
science.
 In the nineteenth century Adolphe Quetelet, perhaps the most important pio-
neer of the quantitative methods in social science, applied to society the same sta-
tistical methods he used to apply as astronomer, and expressed his unitary concep-
tion of the sciences by dubbing his inquiries into society “social physics”. While 
authors like Thomas Buckle and John Herschel appreciated Quetelet’s statistical 
work and explicitly shared his unitary conception of the natural and the social 
sciences, in Germany a conception of statistics different than Quetelet’s typically 
went hand in hand with the conviction that there is an in-principle gap between the 
natural and the social sciences.
 Interestingly enough, from the late 1920s until the 1940s some Vienna Cir-
cle members still invoked statistics to argue for of the unity of the social and  
the natural sciences – like Quetelet and his followers had done. Nevertheless, one 
can identify an interesting twist in Frank, Zilsel and Neurath’s arguments. While 

50 Concerning Neurath, cf. the incisive résumé of his epistemology in: Nancy Cartwright, 
Jordi Cat, Lola Fleck, Thomas Uebel, Otto Neurath: Philosophy between Science and 
Politics, Cambridge: Cambridge University Press 1996, p. 3: “Knowledge has no foun-
dations. The things we believe can only be checked against other beliefs; nothing is 
certain; and all is historically conditioned”.

51 Cf. the case of Shafer, supra, p. 8. Another, more recent example is Donald Gillies, 
who has argued for interpreting statistics and probability in the natural sciences differ-
ently than in the social sciences as natural and social sciences are in principle differ-
ent (cf. Donald Gillies, Philosophical Theories of Probabilities, New York: Routledge 
2000, pp. 187–200).
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Quetelet and his followers pointed to statistics to argue that the social sciences 
resemble the natural sciences with respect to causality, lawfulness, prediction 
and – in sum – determinacy, the Vienna Circle members pointed to statistics to 
show that the natural sciences are not essentially different from the social sciences, 
since both are characterized by a certain degree of indeterminacy, which however 
does not prevent the identification of significant correlations and the formulation 
of predictions.
 2. The literature by Frank, Zilsel and Neurath which I have considered also 
provides new evidence for Theodore Porter’s thesis according to which “a close 
and significant relationship between social statistics and the origins of probabi-
lism in physics is apparent”.52 The analogy between statistical models of society 
and statistical models of gases – whose historical impact has been minimized by 
Shafer in the context of his criticism of Porter – seems in fact to have been well-
known in the Vienna Circle. Furthermore, Neurath formulated already in 1930 
exactly Porter’s thesis.
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52 Porter, The Rise of Statistical Thinking, op. cit., p. 192.
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Chapter 33

artur KotersKi

the BaCKBone of the straw Man

popper’s Critique of the Vienna CirCle’s induCtiVisM

So, anti-positivism is in fashion. I do not think that it in-
fluenced you but rather that you yourself help to shape it 
even there where in principle you sympathize with logical 
empiricism.1

33.1 introduCtion

In his monograph on the Vienna Circle Kraft writes that “one of the earliest and 
most fundamental insights of the Vienna Circle” was “that no deductive or logical 
justification of induction is at all possible.”2 In Logik der Forschung (hereafter: 
LdF), Popper developed his philosophical conception starting from a very em-
phatic critique of logical positivism and its alleged essential feature-inductivism. 
Although Kraft’s assessment is essentially correct – as the present paper intends to 
show – Popper’s opinion prevailed and came to dominate philosophical handbooks 
for decades. However, it must be admitted that the Vienna Circle’s attitude towards 
induction might have been misleading, and in a sense invited misunderstandings. 
Whilst the members of the Schlick-Kreis clearly recognized the impossibility of 
any logical justification of induction, some of them believed that induction was a 
part and parcel of scientific conduct and instead of denying its existence they tried 
to change its epistemological status.
 The aim of this paper is to display this evasive policy – how to keep induction 
rationally, nevertheless without justification – and demonstrate that Popper’s criti-
cism of the 1930s was already by then an anachronism.

1 Neurath to Popper, 1936-02-04 (Wiener Kreis Stichting [WKS]. Archive materials 
quoted by permission of the Wiener Kreis Stichting, Haarlem, Netherlands. All rights 
reserved.).

2 Victor Kraft, The Vienna Circle, New York: Philosophical Library 1953, p. 130.
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33.2 the target of popper’s CritiCisM

LdF gives the impression that the object of Popper’s critique is characterized in a 
clear and unambiguous manner. He criticizes inductivism and “especially those 
empiricists who follow the flag of positivism.”3 When the Viennese context of that 
time is taken into account, there are strong indications that the Vienna Circle must 
have been his target. However, when we try to justify this impression, we encoun-
ter a series of difficulties.

33.2.1 Inductivism selon Popper

According to Popper, inductivists claim that the “empirical sciences can be char-
acterized by the fact that they use inductive methods.”4 Therefore, the problem of 
induction concerns the validity of inductive methods – “whether inductive meth-
ods are justified, or under what conditions.”5

 Induction may be understood as a method of generalization and/or a method 
of corroboration. Although Popper wants to maintain a sharp division between the 
context of discovery and the context of justification, he identifies both kinds of induc-
tion: “[…] to ask whether there are natural laws known to be true appears to be only 
another way of asking whether inductive inferences are logically justified.”6 The prob-
lem of induction thus identified receives a negative solution: we are not only unable to 
have any logic of discovery, we also have no method of verification/confirmation.
 According to Popper, inductivism consists in the following claims:

I
1
. There are inductive methods of discovery and of justification of universal laws;

I
2
. These are inductive inferences;

I
3
. They can be justified (and the justification is searched for) or they already are;

I
4
. Philosophy should be or it already is turned into a logic of induction.

He opposed and rejected all of them.

33.2.2 Who Are Popperian Inductivists?

Only a few alleged inductivists are mentioned by name, among them Reichenbach 
and Richard von Mises. There should be, however, more of them, otherwise Pop-
per would simply argue against the Berlin Group and Reichenbach’s most outspo-
ken local critic. But he never says anything like that.
 Instead of listing his enemies by name, Popper invokes the already mentioned 
‘empiricists who follow the flag of positivism.’ They can be old, he says, or mod-
ern. Undoubtedly, the modern ones are what we are looking for. So let us see their 
characteristics7:

3 Karl Popper, The Logic of Scientific Discovery, Lon  don: Hutchinson 1959, p. 34.
4 Ibid., p. 27.
5 Ibid., p. 28.
6 Ibid., p. 28.
7 Ibid., p. 35.
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P
1
. A modern positivist claims that science is a system of statements;

P
2
. In his analysis of science, a positivist operates with expressions like ‘pro-

tocol sentences’ or ‘reduction’; he thinks that ‘scientific or legitimate’ 
statements are reducible to atomic, elementary, or protocol sentences;

P
3
. All those ‘basic’ statements are about private experiences, so he is a phe-

nomenalist8;
P

4
. He claims that if an expression is not reducible to them, then it is mean-

ingless;
P

5
. He tries to prove that metaphysics is non-reducible, thus meaningless;

P
6
. He claims that only expressions of science are meaningful;

P
7
. Thus, philosophy is impossible and any reflection on science must be 

naturalized.
P

1
-P

7
 jointly define ‘modern positivists.’ Because of P

2
 and P

3
 , the list also points 

to inductivists. A phenomenalist who accepted the existence of science must also 
accept a thesis of inductive discovery; the reductionist’s claim that all proper prop-
ositions are reducible to ‘basic’ statements, must be – since such reduction is not 
a deductive procedure – about their inductive justification. Thus, inductivism is a 
part of ‘modern positivism,’ actually the most important one as it offers a solution 
to the problem of demarcation, albeit a wrongful one. And there comes the afore-
mentioned impression: as the Vienna Circle was formed by modern positivists 
(without quotation marks), it was a center of inductivism.
 Popper had many opportunities to learn about the views of his future oppo-
nents before his book was sent to the publisher, but – as the above specifications 
(i.e., P

1
-P

7
) show – he did not seize any of them: even the leading figures of the 

Vienna Circle, like Schlick or Carnap, do not satisfy this description.9

33.3 the Vienna CirCle on induCtion

Reconstructing the Viennese problem-situation for Popper’s criticism of induction, 
we encounter two fundamental problems. The first one is that it is impossible to 
identify unambiguously against whom in the Vienna Circle Popper’s criticism was 
directed unless we say it was a straw man.
 As regards the Vienna Circle members themselves, they took LdF to be meant 
as a criticism of their views.10 They stressed, however, that the criticism was  

8 It seems Popper took Frank and Hahn to simply continue (what he though to be) Mach’s 
phenomenalism (cf. ibid., p. 94, fn. 3). He was, however, wrong (cf. Rudolf Haller, 
“Was Wittgenstein a Neopositivist?”, in: Rudolf Haller, Questions on Wittgenstein, 
London: Routledge 1988, p. 39).

9 Cf. Artur Koterski, “Popper i Koło Wiedeńskie. Historyczna analiza sporu”, in: 
Przegląd Filozoficzny 1, 1998, pp. 47–72.

10 Cf. Rudolf Carnap, “Intellectual Autobiography”, in: Paul Schilpp (Ed.), The Philoso-
phy of Rudolf Carnap, La Salle: Open Court 1963, p. 30. Neurath, for one, explicitly 
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hyperbolized and the only open question was to what a degree Popper overstated 
the  differences between them and his own position.11 If we adopt such a policy 
and examine Popper’s critique with respect to induction, we encounter the sec-
ond problem: overemphasizing the dissimilarities or attacking already abandoned 
ideas, Popper only hits a straw man again.
 As rightly noticed by Malachi Hacohen, Popper had no understanding of the 
dynamics of the Vienna Circle and was not able to learn from them.12 The image 
of the Vienna Circle he had, was not only highly fragmentary but practically also 
a still one.13 The following survey outlines the views on induction held by the  
Vienna Circle members up to 1934 and illustrates Popper’s misapprehension about 
their alleged inductivism.

33.3.1 Moritz Schlick

During his carrier Schlick proposed two approaches to the problem of induc-
tion. The first one was expounded in Allgemeine Erkenntnislehre. It was basically  
Humean. According to Schlick, the ampliative judgments are obtained because 
of habituation and rest on associations. Thus, the inductive reasoning is a subject 
of psychology and biology, not logic. The principle of induction, being itself a 
synthetic statement, should be investigated in empirical research.14 The judgments 
derived by inductive reasoning are hypothetical and have only probabilistic valid-
ity. According to Schlick, the explanation of induction appeals to the same proc-
esses as the explanation of causality. It shows that: “This general connection of 

complained: “You anyway do not treat very carefully […] those you admittedly call 
positivists. […] without indicating, which doctrines and persons come under it. Since 
they are pseudo-problems strugglers, therefore perhaps [it is] Carnap, Frank, Neurath, 
Schlick […] – it is not quite clear how much you count as positivists Poincaré, Russell 
etc. […]” (Neurath to Popper, 1935-08-24 [WKS]); cf. Otto Neurath, “Pseudorational-
ism of Falsification”, in: Otto Neurath, Philosophical Papers 1913–1946, Dordrecht: 
D. Rei del 1983, p. 131.

11 Cf. Otto Neurath, “Pseudorationalism of Falsification”, op. cit., pp. 121–131; Rudolf 
Carnap, “Karl Popper: Logik der Forschung”, in: Erkenntnis 5, 1935, p. 293; Kurt 
Grelling, “Karl Popper: Logik der Forschung”, in: Theoria 3, 1937, p. 135; Carl Hemp-
el, “Karl Popper: Logik der Forschung”, Deutsche Literaturzeitung 8, 1937, p. 314; see 
also Victor Kraft, “Popper and the Vienna Circle”, in: Paul Schilpp (Ed.), The Philoso-
phy of Karl Popper, La Salle: Open Court 1974, pp. 187–188.

12 Cf. Malachi Hacohen, Karl Popper: The Formative Years 1902–1945, Cambridge: CUP 
2001, pp. 209–210.

13 It seems Popper took the Vienna Circle to be a philosophical school. He wrote in one 
of his letters: “[…] I have a deep dislike of overly close scientific fraternité: scientific 
friends can and should argue objectively! I do not like ‘schools’!” (Popper to Neurath, 
1935-07-10 [WKS]).

14 Cf. Moritz Schlick, General Theory of Knowledge, Wien: Springer-Verlag 1974, p. 
115.
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habituation […] is nothing other than the causal connection, or rather its subjective 
mirror image.”15

 Induction is rooted in causality: it is a necessary condition for making induc-
tive inferences. If the causes and effects are discoverable and differentiable from 
each other, then we are able to apply tools like Mill’s methods.16 However, causal-
ity cannot serve as the ultimate justification for induction: “That causality and 
hence inductive inference cannot be established by a rational proof was perceived 
quite early with the aid of an empiricist line of argument.”17

 The only acceptable way is to postulate the principle of causality and a fortiori 
the principle of induction: “In the case of these and similar attempts at a founda-
tion […] the strict validity of the causal principle and of […] inductively obtained 
truths figures as a postulate.”18 Schlick’s position, accordingly, allows only for a 
practical justification of induction – it cannot be a replacement for a theoretical 
one but it is enough in life and for science.
 In the period under heavy influence of Wittgenstein and his verificationism, 
Schlick takes a more radical approach according to which the question of induction 
is a pseudo-problem. Laws, having strictly universal character, are not conclusive-
ly verifiable, therefore, they are not proper sentences. The question of justification 
of the inference from the particular to the unrestricted general does not occur any 
longer simply because there is no such inference: “[…] the so-called problem of 
“induction” is […] rendered vacuous.”19 Laws are just prescriptions how to obtain 
singular statements from other singular statements. If we ask, however, how we get 
those prescriptions, the answer is that we get them… inductively – we guess. The 
success of this ‘method’ is possible because scientific guessing is ‘methodologi-
cally guided’.20 Because of this claim Schlick may be charged with I

1
-inductivism. 

He explicitly denied all other kinds by 1931.

15 Ibid., p. 388.
16 Cf. Moritz Schlick, “Philosophical Reflections on the Causal Principle”, in: Moritz 

Schlick, Philosophical Papers, Vol. I, Dord recht: D. Reidel 1979, p. 298; cf. also Her-
bert Feigl, “Zu fall und Gesetz”, in: Rudolf Haller / Th. Binder (Eds.), Zufall und Ge-
setz, Atlanta: Rodopi, p. 179.

17 Moritz Schlick, General Theory of Knowledge, op. cit., p. 394. This said, Schlick pro-
ceeds to criticism and rejects some common attempts at justifying induction – those 
arguments were repeated later by Popper.

18 Moritz Schlick, General Theory of Knowledge, op. cit., p. 395.
19 Moritz Schlick, “Causality in Contemporary Physics”, in: Moritz Schlick, Philosophi-

cal Papers, Vol. II, op. cit., p. 197.
20 Moritz Schlick, “On the Foundation of Knowledge”, in: Moritz Schlick, Philosophical 

Papers, Vol. II, op. cit., p. 380–381.
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33.3.2 Herbert Feigl

In his dissertation,21 Feigl objects that we must be content with psychological and 
biological account of induction. Even if it is good enough for scientists or every-
day agents, it is not satisfactory for a philosopher of science. He attempts to justify 
induction by taking determinism as a necessary presupposition in the theory of 
science.
 The analysis of inductive reasoning in the context of natural science requires 
two questions. (1) Does nature posses the strict lawfulness? If the answer is  
affirmative, there is another one: (2) Is it possible at the present stage of scientific 
research to establish that a lawful relation valid within a limited scope is also 
universally valid? Feigl labels the first question ‘the problem of the general induc-
tion’ and the other ‘the problem of the special induction’. The affirmative answer 
to the problem of general induction expresses only a postulate of searching for the 
universal lawfulness. General induction is, therefore, a heuristic principle.
 It makes sense to pose the first question only once the second has been an-
swered affirmatively. However, the search for laws within the limited scope seems 
to make sense only if we assume the strict lawfulness of nature. Even talking about 
probabilities of physical statements is possible only when some kind of regularity 
is assumed (thus, special induction assumes validity of general induction). This  
assumption is determinism. The possibility of induction requires the assumption 
of causality; and if the principle of causality holds, then we must live in a world 
that is determined to some degree.
 In 1929, Feigl drops the hypothesis of determinism and instead focuses on  
another question from Zufall und Gesetz: what methods lead to discoveries of  
natural laws. These are inductive methods – i.e. extrapolation and interpolation in 
the sense of the most simplifying generalization established with the use of tools 
like Mill’s method, the method of least squares etc.
 Although he points to some methods of discovery, Feigl denies the possibility 
of logic of induction – unless some Obersätze, i.e. superordinated statements are 
assumed. However, they all are doubtful and not needed. Theories, in their origins, 
depend on the creativity and inventive power of scientists. This cannot be recon-
structed and captured by any scheme ready for future application.
 Feigl separates the contexts of discovery and of justification. The origin of a 
theory is rather not an inductive process, and though inductive methods may be  
applied during the creation of a theory, there is no logic of discovery. However, 
when the theory is rationally reconstructed we can induce it from the set of its 
confirmed predictions by the use of the most simplifying generalization: “[…] the 
validity of theories can only be founded inductively.”22

21 Cf. Herbert Feigl, “Zu fall und Gesetz”, pp. 169ff.
22 Herbert Feigl, “Meaning and Validity of Physical Theories”, in: Herbert Feigl, Inquir-

ies and Provocations, Dordrecht: D. Reidel Publishing Company 1981, p. 129.
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Feigl’s views on induction were developed further in 1930–1931 under Wittgen-
stein’s influence. As did Schlick, he also denied that the principle of induction was 
a (declarative) sentence: “[…] it is not a proposition at all. It is, rather, the princi-
ple of a procedure, a regulative maxim, an operational rule.”23

 At that time Feigl rejected once again the possibility of and the very need for 
replacing or supplementing deductive logic with a ‘logic of probability’.24 He also 
denies the possibility of application of what Carnap later called probability

1
 to 

empirical questions.25

 Feigl’s views on induction kept changing. In the years 1927–1930, they could 
be related with I

1
–I

3
 claims. However, in 1931 his position was in principle in-

distinguishable from that of Schlick, so he could be possibly accused of being an 
I

1
-inductivist.

33.3.3 Marcel Natkin

One year after Feigl’s dissertation was defended, another student of Schlick’s 
presented his thesis. In it, Natkin disagreed with Schlick and Feigl as regards  
induction and its role in science. While Schlick tried to root induction in causality, 
Natkin considered such a solution unsatisfactory. If we assume that the principle 
of causality is valid, we still do not know all initial conditions, so our inductions 
may turn out to be false:

It is not only that we cannot infer the validity of the laws we found from the validity of 
the law of causality; we cannot even infer the probability of correct predictions from the 
assumption of validity of our laws. We learn from this that the principle of causality by no 
means coincides with the principle of induction […].26

Thus, causality is not a foundation for the principle of induction.
 While Feigl believed that inductive reasoning is the most important feature of 
empirical science, Natkin removed it from science. The principle of induction is 
not a part of science and it is not necessary to know it in order to grasp the essence 
of science. It is just an instruction how to make use of scientific cognition.27

23 Herbert Feigl, “The Logical Character of the Principle of Induction”, in: Philosophy 
of Science, 1 (1934), p. 27 (written in 1931); cf. Victor Kraft, “The Problem of Induc-
tion”, in: Paul Feyerabend, Grover Maxwell (Eds.), Mind, Matter, and Method, Min-
neapolis: University of Minnesota Press 1966, pp. 310–311.

24 Herbert Feigl, “Probability and Experience”, in: Feigl, Inquiries and Provocations, op. 
cit., p. 107.

25 Cf. ibid., p. 108; Herbert Feigl, “The Logical Character of the Principle of Induction”, 
op. cit., p. 23.

26 Marcel Natkin, “Einfachheit, Kausalität und Induktion”, in: Haller, Binder (Eds.), Zu-
fall und Gesetz, op. cit., p. 293.

27 Cf. ibid., pp. 294–295.
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33.3.4 Otto Neurath

Those passages of the Manifesto where induction is discussed, seem to be written 
or outlined by Neurath. There, the validity of induction is relative to regularity in 
nature. But instead of looking for the foundation of this regularity, as it happened 
in the cases of Schlick and Feigl, the Manifesto encourages to use induction, as 
well as any other method, if it is fruitful – even if it is not theoretically justi-
fied: “The scientific world-conception will not condemn the success of a piece of  
research because it has been gathered by means that are inadequate, logically  
unclear or empirically unfounded.”28 It is a question of our decision whether we 
use such a method.29

 In Empirical Sociology Neurath repeats this thesis in the context of Duhemian 
underdetermination:

More than one system of theorems satisfies the conditions of consistency and of compatibil-
ity with the observation statements. Moreover, we know which description we lack, quite 
apart from the uncertainty which attaches to any induction from the outset. Induction itself 
is based on a decision […].30

On account of underdetermination of hypotheses and theories, and fallibility of 
induction, the latter resembles guessing. Neurath’s remark about the decision to 
use induction must be linked with the specific character of that guessing: it is 
not an arbitrary procedure but, as Schlick put it, a methodologically guided one. 
Of course, Neurath agrees with Mach and Einstein that the possibility of making 
a successful conjecture depends on inventive power of the respective researcher. 
There cannot be any automated discovery.31

 Until 1935, Neurath had no significant reservations about induction. If it is 
fruitful and as far as it does not bring in metaphysics, simply make the decision to 
use it. And this is what actually happens: “Within the physicalist sphere, induction 
always leads to meaningful statements.”32 In 1935, however, he left himself the 

28 Hans Hahn, Otto Neurath, Rudolf Carnap, “The Scientific Conception of the World: 
The Vienna Circle”, in: Otto Neurath, Empiricism and Sociology, Dordrecht: D. Reidel 
Publishing Company 1973, p. 313.

29 Cf. Otto Neurath, “Diskussion über Wahrscheinlichkeit”, in: Erkenntnis 1, 1930/1931, 
p. 277; Otto Neurath, “Physicalism”, in: Neurath, Philosophical Papers 1913–1946, 
op. cit., p. 53; see also Otto Neurath, “Universal Jargon and Terminology”, in: Neurath, 
Philosophical Papers 1913–1946, op. cit., p. 222.

30 Otto Neurath, “Empirical Sociology. The Scientific Content of History and Political 
Economy”, in: Neurath, Empiricism and Sociology, op. cit., p. 407.

31 Cf. Otto Neurath, “The Unity of Science as a Task”, in: Neurath, Philosophical Papers 
1913–1946, op. cit., p. 116; Otto Neurath, “Prognosen und Terminologie in Physik, 
Biologie, Soziologie”, in: Otto Neurath, Gesammelte philosophische und methodolo-
gische Schriften, Wien: Hölder-Pichler-Tempsky 1981, p. 789.

32 Otto Neurath, “Sociology in the Framework of Physicalism”, in: Neurath, Philosophi-
cal Papers 1913–1946, op. cit., p. 74.
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possibility of removing ‘induction’, along with words like ‘true’ and ‘false’ from 
the scientific language.33 From 1935 on, and in a direct reference to Popper’s book, 
he points out the limits of empirical methods, including inductive ones.34 Doing 
so, he rejects Popper’s thesis that ascribes inductivism to logical empiricism; the 
demand of justification for inductive reasoning is, as he explicitly says, pseudo-
rationalistic.
 In later years Neurath unwillingly notices that some of his philosophical  
allies try to establish rules for induction.35 In a paper published only posthumously, 
Neurath specifies whom his worries concern, and, of course, it is Carnap who just 
started his work on probability

1
.36

 Popper believed that Neurath was a phenomenalist (cf. P
3
 in section 2.2), thus 

an I
1
-inductivist; but in actual fact he was not a phenomenalist.37 Nonetheless, ac-

cording to him, the use of inductive methods (educated guessing) was legitimate 
in particular cases, so the anti-I

1
-inductivism charge might be upheld. Neurath 

overtly rejected I
2
 and I

3
 and replaced them with his decisionism. Finally, he was a 

strong adversary of turning methodology into logic of induction.

33.3.5 Rudolf Carnap

Before 1934 Carnap, who was later to become the main target of Popperian anti-
inductivism crusade, was quite laconic about induction. He does not discuss in-
duction but rather takes it as a matter of course. Therefore, there are only some 
short slip-in passages where induction is mentioned en passant.
 Induction – a process that consists in assembling and processing facts – is a 
method of discovery: a method for obtaining universal statements, including natu-

33 Cf. Otto Neurath, “Zur Induktionsfrage”, in: Neurath, Gesammelte philosophische und 
methodologische Schriften, op. cit., p. 631. However, at the end of his encyclopedic 
contribution on foundations of social sciences he attached a list of words used and 
avoided there – and induction belongs to the former (cf. Otto Neurath, “Foundations of 
the Social Sciences”, in: Otto Neurath, Rudolf Carnap, Charles Morris (Eds.), Founda-
tions of the Unity of Science. Toward an International Encyclopedia of Unified Science, 
Vol. II, Chicago: The University of Chicago Press 1970).

34 Cf. Otto Neurath, “Pseudorationalism of Falsification”, op. cit., p. 123; Otto Neur-
ath, “Die Entwicklung des Wiener Kreis und die Zukunft des Logischen Empirismus”, 
in: Neurath, Gesammelte philosophische und methodologische Schriften, op. cit., pp. 
700-701; Otto Neurath, “Individual Sciences, Unified Science, Pseudorationalism”, in: 
Neurath, Philosophical Papers 1913–1946, op. cit., p. 136.

35 Otto Neurath, “Prediction and Induction”, op. cit., p. 244.
36 Cf. Otto Neurath, “After Six Years”, in: Neurath, Economic Writings, Dordrecht: Klu-

wer 2004, p. 553.
37 Popper upheld his charge in the English version of his book (cf. §26) disregarding 

Neurath’s protests: “I think you misunderstood the thesis of physicalism. The point is, 
however, that only physicalistic terms enter protocol sentences – contrary to the earlier 
[thesis] when there was separate experience language etc.” (Neurath to Popper, 1935-
01-22 [WKS]).
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ral laws.38 It does not provide unassailable conclusions, but it is used in science 
anyway, and it is even a guarantee of empiricism.39 There is no reason for despair 
because of lack of logical foundation of induction. It simply works: “[…] induc-
tion has no strict logical justification. However, it can adduce as credentials its 
experimental confirmation.”40

 Induction may seem to be a neglected topic. However, in the discussion during 
the Prague conference (1929), Carnap replied to Kurt Grelling that he was wrong 
in thinking that in Vienna the problem of induction had been pushed aside. Quite 
to the contrary, as Carnap continues, “the problem is extraordinarily important.”41 
But a longer and more illuminating passage on induction was published only in 
1934 (still before Popper’s book was printed):

[…] it is not possible to lay down any set rules as to how new primitive laws are to be es-
tablished on the basis of actually stated protocol-sentences. One sometimes speaks in this 
connection of the method of so-called induction. Now this designation may be retained so 
long as it is clearly seen that it is not a matter of a regular method but only one of a practical 
procedure which can be investigated solely in relation to expedience and fruitfulness. That 
there can be no rules of induction is shown by the fact that the L-content of a law, by reason 
of its unrestricted universality, always goes beyond the L-content of every finite class of 
protocol-sentences.42

This passage, where Carnap reaffirms the views of Schlick and Feigl, on one hand, 
and Neurath’s, on the other, is also an expression of anti-inductivism in Popper’s 
sense (I

1
–I

4
).43 There is no method of discovery, and induction is not a proper 

38 Cf. Rudolf Carnap, “Psychology in Physical Language”, in: Alfred Ayer (Ed.), Logical 
Positivism, New York: The Free Press 1959, p. 169; Rudolf Carnap, “The Physical Lan-
guage as the Universal Language of Science”, in: William Alston, George Nakhnikian 
(Eds.), Readings in Twentieth-Century Philosophy, New York: The Free Press 1963, p. 
398.

39 Cf. Rudolf Carnap, Der Raum, Berlin: Reuther & Reichard 1922, p. 63; Rudolf Car-
nap, “The Elimination of Metaphysics through Logical Analysis of Language”, in: 
Ayer (Ed.), Logical Positivism, op. cit., p. 77.

40 Rudolf Carnap, Physikalische Begriffsbildung, Karlsruhe: G. Braun 1926, p. 8.
41 Rudolf Carnap, “Diskussion über Wahrscheinlichkeit”, Erkenntnis 1, 1930/1931, pp. 

282–283.
42 Rudolf Carnap, The Logical Syntax of Language, London: Kegan Paul, Trench, Trub-

ner & Co. 1937, pp. 317–318.
43 Popper’s anti-inductivist critique from the 1950s and 60s refers mainly to the logic 

of induction in the sense of probability
1
. Recollecting the Vienna Circle period with 

respect to interpretations of probability, Carnap notices that at that time ‘we took for 
granted the frequency conception’ (Carnap, “Intellectual Autobiography”, op. cit., p. 
70). However, not all of them did. Waismann, supported by Schlick, were the excep-
tions; he tried to develop Wittgensteinian conception of probability where probability 
statements are analytical. He presented his paper at the 1929 conference in Prague and 
the very idea of analytic probability was received quite critically. However, with an 
exception again. During the discussion Carnap says: ‘in the outlines the argument of 
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method. Like Schlick, Feigl, Natkin and Neurath, Carnap treats it as a practical 
procedure that we use because it is fruitful, however without having any logical 
justification.
 Carnap’s view on induction in the 1920s reflects that of Poincaré: induction is 
used in science as a method of discovery, and perhaps it would be mad to deny it. 
Nonetheless, it hangs in the air above the theoretical ground and there is not much 
to say to support it. At the beginning of the 1930s Carnap rejects induction in the 
context of discovery. He remains convinced that successful predictions inductively 
support a scientific system of statements.44

 In 1932, being on holidays in Tyrolean Alps, Carnap was joined by Feigl and 
Popper. At that time, Popper was in the middle of writing Die beiden Grundpro-
bleme and he was very eager to discuss it – and the anti-inductivism advocated in 
it. So we may ask whether Carnap changed his mind, when he learnt more about 
Popper’s approach. If so, Popper should have known that such a change had taken 
place and when he was dictating the first chapter of Logik, he should not have had 
Carnap in mind as his anti-inductivist target45. Or, perhaps – à rebours Hacohen – 
it was Popper who learnt that his own views were not so different from Carnap’s 
and Feigl’s?
 In both cases, Carnap would not be among the indictees of Popper’s book. And 
he does not seem to be. Firstly, Carnap is listed there as a kind of proponent of  
hypothetico-deductive conception of science,46 alongside with Kraft47 – another  

Mr. Waismann is right’ (Carnap, “Diskussion über Wahrscheinlichkeit”, op. cit., pp. 
268–269; cf. Friedrich Waismann, “A Logical Analysis of the Concept of Probability”, 
in: Friedrich Waismann, Philosophical Papers, Dordrecht: D. Reidel 1977, pp. 4–21; 
Schlick, “Causality in Contemporary Physics”, p. 201).

44 See. fn. 48. We may note here that in the context of justification at that time ‘inductive 
support’ was a pleonasm. Thus, to deny a possibility of ‘inductive support’ was to deny 
that successful predictions might support a hypothesis under a test.

45 Cf. Karl Popper, “The Demarcation between Science and Metaphysics”, in: Schilpp 
(Ed.), The Philosophy of Rudolf Carnap, op. cit., p. 184.

46 At the end of 1931, i.e. several months before the “Tyrolese summit”, Carnap already 
held that scientific theories cannot be inferred from the protocols, that universal state-
ments always remain hypotheses with respect to protocol sentences. From those hy-
potheses plus singular sentences expressing appropriate initial conditions we may de-
duce a prediction which in turn is to be tested; if the outcome is positive it supports 
given system of statements. It is not, however, conclusive verification (cf. Carnap, “The 
Physical Language as the Universal Language of Science”, op. cit., p. 403).

47 In his habilitation thesis, ten years before LdF – i.e., when Popper preached verification-
ism and inductivism – Kraft wrote: “There is no generalization by ‘inductive inference’ 
from the singular to the general. Further discoveries and assumptions are necessary for 
generalization. Thus, induction cannot constitute any specific method of generaliza-
tion. […] There is, therefore, only practical conduct for trial and error that is modified 
by successful and unsuccessful attempts by which one learns how to adopt himself. […] 
Perhaps it sufficiently explains that knowledge of natural laws does not come from any 
specific procedure of induction, by “inductive inference” […], but [it comes] solely on 
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member of the Circle.48 Secondly, in another footnote Popper admits that his  criticism 
of positivism and naturalism no longer applies to Carnap and his Syntax.49

33.4 ConClusions

Popper’s description of inductivism contains several points (cf. 2.1 above). If we 
understand I

1
–I

4
 as a conjunction then Popper’s description is obviously inadequate 

as a characterization of the Vienna Circle’s views as of 1934. Therefore, I
1
–I

4
 must 

be understood disjunctively. If so, claims I
2
–I

4
 have to be dropped as they are 

openly denied by the Vienna Circle members. Nevertheless, they still would be 
inductivists for Popper, if they support I

1
 at least. If Popper’s criticism is histori-

cally adequate at all, it is adequate to I
1
-degree. However, if guessing counts as a 

method, then even Popper, for whom guessing is the only ‘tool’ for finding new 
ideas in science, is an inductivist too.50

 Popper never corrected his criticism of the Vienna Circle (quite the contrary), 
though he was informed more than once about its misleading character. The clear-
ing of mistakes and misrepresentations would expose the architectural weaknesses 
of Popper’s book where criticism of ‘inductivists’ served as a spring-board for his 
falsificationism.
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the deductive way” (Victor Kraft, Die Grundformen der wissenschaftlichen Methoden, 
Wien: Verlag der Österreichischen Akademie der Wissenschaften 1973, p. 53, italics 
added; cf. Kraft, “The Problem of Induction”, op. cit., p. 317; Karl Popper, “Intellec-
tual Autobiography”, in: Schilpp (Ed.), The Philosophy of Karl Popper, op. cit., pp. 
64–65).

48 Karl Popper, The Logic of Scientific Discovery, op. cit., p. 30, fn. 5
49 Ibid., p. 53, fn. 6.
50 Cf. ibid., p. 278; Hans Reichenbach, “Induction and Probability. Remarks on Popper’s 

‘The Logic of Scientific Discovery’”, in: Hans Reichenbach, Selected Writings 1909-
1953, Vol. II, Dordrecht: Reidel 1978, p. 385.
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Chapter 34

thomas Uebel

Carnap’s logiC of sCienCe and personal probability

The aim of the present paper is to consider how Rudolf Carnap’s later preoccupa-
tion with inductive logic fits into the framework of philosophy of science as a bipar-
tite metatheory, a framework for which the members of the so-called left wing of 
the Vienna Circle can be seen to have provided a blueprint.1 The bipartite metathe-
ory comprises both an a priori logic of science, analysing the structure of scientific 
theories and the entailment relations between its propositions and exploring the 
expressive powers of logically possible languages, and an empiricist pragmatics 
of science, comprising the psychology, sociology and history of science and in-
vestigating the practical utility of possible language forms. The issue is this: while 
the theory of logical probability provided by Carnap in Logical Foundations of 
Probability fits rather neatly into the bipartite schema, the more personalist form of 
inductive logic developed in “A Basic System of Inductive Logic” appears to raise 
difficulties for such an integration.2 By pointing to concurrent developments in Car-
nap’s understanding of what’s involved in pragmatics, I hope to show that such an 
integration can after all be effected. My aim is not, however, to save or revitalise 
inductive logic but to confront a difficulty in the interpretation of Carnap’s work.3

1 On the bipartite metatheory conception, see T. Uebel, “Some Remarks on Current His-
tory of Analytical Philosophy of Science.” In F. Stadler et al., The Present Situation in 
Philosophy of Science, Dordrecht: Springer 2010, 13–28. The present paper investi-
gates a possible objection not considered there.

2 R. Carnap, Logical Foundations of Probability. Chicago: University of Chicago Press, 
1950 (hereafter “LFP”); “A Basic System of Inductive Logic, Part 1.” In R. Carnap and 
R. Jeffrey (Eds.), Studies in Inductive Logic and Probability Vol. I, Berkeley: Univer-
sity of California Press 1971, 33–166 (hereafter “BS1”); “A Basic System of Inductive 
Logic, Part 2.” In R. Jeffreys (Ed.), Studies in Inductive Logic and Probability Vol. II, 
Berkeley: University of California Press 1980, 7–155 (hereafter “BS2”).

3 See also P. Wagner, “Carnap’s Theories of Confirmation”, in: D. Dieks et al. (Eds.), 
Explanation, Prediction, and Confirmation, Dordrecht: Springer, 2011, 477-486. On 
the possible further development of Carnap’s inductive logic, see R. Jeffrey, “Carnap’s 
Inductive Logic.” In J. Hintikka (Ed.), Rudolf Carnap, Logical Empiricist. Dordrecht: 
Reidel 1975, 325–332; on its legacy see S. Zabell, “Carnap on Probability and Induc-
tion.” In M. Friedman, R. Creath (Eds.), The Cambridge Companion to Carnap. Cam-
bridge: Cambridge University Press 2007, 273–294 (2007). For criticisms of it see, 
e.g., C. Howson and P. Urbach, Scientific Reasoning. The Bayesian Approach, 2nd ed., 
Chicago: Open Court 1993, 66–72.
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34.1 the logiC of sCienCe and pragmatiCs

Abstracting here from its origins, we may note that the perspective of a division 
of labour between the logic of science and the empirical sciences of science found 
clear expression in Carnap’s introductory essay for the International Encyclopedia 
of Unified Science.

The task of analyzing science may be approached from various angles. … We may, for 
instance, think of an investigation of scientific activity. … These investigations of scientific 
activity may be called history, psychology, sociology, methodology of science. The subject 
matter of such studies is science as a body of actions carried out by certain persons under 
certain circumstances. Theory of science in this sense … is certainly an essential part of the 
foundation of science.4

By contrast, the logic of science does not focus on the activity but its theoretical re-
sults, for “it is possible to abstract in an analysis of the statements of science from 
the persons asserting the statements and from the psychological and sociological 
conditions of such assertions. The analysis of the linguistic expressions of science 
under such an abstraction is logic of science.”5

 Note that the logic of science abstracts from all psychological issues, consist-
ently with Carnap’s declaration to have abandoned not only metaphysical philoso-
phy but also what he deemed unduly psychologistic epistemology. Carnap moved 
from rational reconstructions of subject-based beliefs to logical explications of 
knowledge claims independent of particular epistemic subjects. The logic of sci-
ence was concerned no longer with doxastic but with a kind of propositional jus-
tification, justification not of individual believings but of propositions in light of 
available evidence – where evidence is conceived of independently of its appre-
ciation by a subject. The question arises whether Carnap’s later understanding of 
inductive logic as “a theory of logical probability providing rules for inductive 
thinking” and of “personal probability” as “the probability assigned to a proposi-
tion or event H by a person X” remained consistent with the subjectless approach 
to epistemological issues that was characteristic of all inquiries in the logic of 
science.6 Before we can begin to answer this question we must consider Carnap’s 
views of pragmatics.

4 R. Carnap, “Logical Foundations of the Unity of Science.” In O. Neurath et al., Ency-
clopedia and Unified Science. Chicago: University of Chicago Press 1938, 42–62, at 
42, orig. emphasis.

5 Ibid., 43, orig. emphasis.
6 R. Carnap, “Inductive Logic and Rational Decisions.” In R. Carnap and R. Jeffrey 

(Eds.), Studies in Inductive Logic and Probability Vol. 1, Berkeley: University of Cali-
fornia Press 1971, 2–32, at 7–8. (Hereafter “BS Intro”. Prev. publ. as “The Aim of 
Inductive Logic.” In E. Nagel, P. Suppes, A. Tarski (Eds.), Logic, Methodology and 
Philosophy of Science. Proceedings of the 1960 International Congress, Stanford: 
Stanford University Press 1962, 303–318.) 
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 The same subjectless approach as to the logic of science is evident in Car-
nap’s adaptation of Charles Morris’s proposal to conceive of all of philosophy 
of science as inquiries into different aspects of the semiotics of the language of 
science.7 In his Encyclopedia monograph Carnap adopted the division of prag-
matics, semantics and syntax, according to which the first concerned “the action, 
state, and environment of a man who speaks or hears” a certain linguistic expres-
sion.8 Carnap recognised the fact that linguistic signs are produced in “order to 
be perceived by other members of the group and to influence their behavior”, but 
warned that since his interest “concerns the language of science” he restricted the 
investigation to “the theoretical side of language, i.e., to the use of language for 
making assertions”.9 The logic of science has no interest in pursuing psychological 
or sociological aspects of the use of the language of science but considers that lan-
guage only as far as syntactic constraints and designation relations are concerned: 
pragmatics was excluded and banished to the empirical sciences of science.
 Carnap also drew a distinction between “pure” and “descriptive” inquiries 
which was superimposed on the categories of (logical) syntax and semantics.10 
Early on, however, he did not entertain the possibility of dividing pragmatics in a 
similar way. Whereas logical syntax and semantics had a pure, analytical core pur-
sued by a priori reasoning, which underwrote their descriptive, empirical variants, 
pragmatics was assigned no such analytical “pure” core. Unlike logical syntax and 
semantics, pragmatics was an essentially empirical discipline for Carnap. Whereas 
descriptive semantics and descriptive syntax not only abstracted from pragmatics, 
but were “strictly speaking part of pragmatics”, pure semantics and syntax were 
“independent of pragmatics”.11 The very “abstraction” from language users and 
historically given languages that syntax and semantics were capable of (in their 
pure variants) reflected, it seems, the independent a priori status of their concep-
tual framework. Pragmatics, by contrast, was descriptive and linked exclusively to 
historically given languages. This was, to be sure, not Morris’s view of the matter 
who long urged that pure pragmatics be recognised.12

 By the mid-1950s, however, when Carnap was engaged in defending inten-
sionalist semantics against Quine, he set out to “clarify the nature of the prag-
matical concept of intension in natural languages” in order to give a “practical 

7 See C. Morris, “Scientific Empiricism.” In O. Neurath et al., Encyclopedia and Unified 
Science, op. cit., 63–75.

8 R. Carnap, Foundations of Logic and Mathematics, Chicago: University of Chicago 
Press 1939, 4.

9 Ibid., 3.
10 R. Carnap, The Logical Syntax of Language. Chicago: Open Court 2002, R. Carnap §2; 

Introduction to Semantics, Cambridge, MA: Harvard University Press 1942, §5.
11 R. Carnap, Introduction to Semantics, op. cit., 13.
12 See C. Morris, Foundations of the Theory of Signs. Chicago: University of Chicago 

Press 1938, 9.
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vindication for the semantical intension concepts”.13 To do so, he elaborated the 
“conceptual framework of theoretical pragmatics” by giving formal explications 
of an expanded notion of the pragmatical concept of intension, making use of the 
also formally explicated concepts of belief and holding true and adding formal 
explications of the concepts of assertion and utterance.14 Carnap now agreed with 
Morris who argued that “if we are to develop a language to talk about the users of 
signs, then we need a body of terms to do so, and the introduction of these terms 
and the study of their relations seems as ‘pure’ as is the development of languages 
to talk about the structures and significations of signs.”15 Carnap conceded that 
there could be such a thing as pure pragmatics separate from descriptive pragmat-
ics (he called it “theoretical” pragmatics) that abstracted from individual users 
and occasions of use and instead gave the logic of the concepts involved.16 Ever so 
carefully delimiting the starting point of theoretical or pure pragmatics in this way 
“to small groups of concepts”, Carnap expressed hope for “tentative outlines of 
pragmatical systems” which, more fully developed, would “include all those con-
cepts needed for discussions in the theory of knowledge and the methodology of 
science”.17 With the recognition of theoretical pragmatics and its abstention from 
empirical theses about uses that were actually made, pragmatics in its “pure” form 
now found its place in the logic of science.

34.2 Carnap’s normative deCision theory in bipartite metatheory

We are now ready to consider whether Carnap’s personalist version of the theory 
of logical probability coheres with the subjectless approach of the logic of science. 
Note, to begin with, that Carnap’s explications of knowledge claims independent 
of particular epistemic subjects found a ready exemplification in his Logical Foun-
dations of Probability. There Carnap argued for a logical understanding of the no-
tion of probability that differed from the objective statistical frequency conception 
but also avoided the subjectivism associated with traditional inductivism – and so 
found its place in the logic of science. Before he settled on this logical concep-
tion, however, the metatheoretical landscape had looked different. Still in his In-
troduction to Semantics, Carnap had distinguished the semantical concept of truth 
from “fundamentally different … concepts like ‘believed’, ‘verified’, ‘highly con-

13 R. Carnap, “Meaning and Synonymy in Natural Language.” In R. Carnap, Meaning 
and Necessity. 2nd ed. with supplementary essays. Chicago: University of Chicago 
Press, 1956, 233–247, at 235.

14 R. Carnap, “On Some Concepts of Pragmatics.” In R. Carnap, Meaning and Necessity, 
op. cit., 248–250, at 248–249.

15 C. Morris, “Pragmatism and Logical Empiricism.” In P. A. Schilpp (Ed.), The Philoso-
phy of Rudolf Carnap. La Salle, Ill.: Open Court 1963, 87–98, at 88–89.

16 R. Carnap, “Replies.” In Schilpp. op. cit., 859–1015, at 861–862.
17 R. Carnap, “On Some Concepts of Pragmatics”, op. cit., 250.
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firmed’, etc.” which “belong to pragmatics and require a reference to a person”.18 
There he distinguished the concepts of statistical probability from that of degrees 
of confirmation with the latter, unlike the former, being designated pragmatical, 
like the concept of degree of belief.19 Likewise, still earlier he had stated that “a 
statement of a degree of confirmation does not characterise an objective situation 
but rather the state of knowledge of a certain person with respect to a certain 
situation, while a statement of probability in the statistical sense characterises an 
objective situation. The first belongs to pragmatics, the second to science itself, 
if expressed with respect to events, or to semantics if expressed with respect to 
the sentences describing the events.”20 According to this characterisation, confir-
mation theory and inductive logic must be excluded from the logic of science on 
account of their use of pragmatical concepts. Yet as Carnap began to explore the 
concept of logical probability, he found that he could characterise probability in 
terms of the evidential support given to propositions by other propositions – in-
dependently of anybody’s belief in these propositions. That of course meant that 
logical probability was not a pragmatical concept, unlike the concept of degree of 
confirmation he had entertained in 1939–1942.
 As Carnap put it when he introduced the concept, he was concerned “with 
what may be called the logical side of confirmation, namely, with certain logical 
relations between sentences”, adding that “both parts of logic” – deductive and 
inductive – “belong to semantics”.21 This logical conception of probability had 
to be distinguished sharply from the frequency conception of probability.22 The 
former designates “the degree of confirmation of a hypothesis h with respect to 
an evidence statement e”, the latter “the relative frequency (in the long run) of 
one property of events or things with respect to another”.23 Another explication 
of logical probability that Carnap endorsed regards them as rational degrees of 
belief or fair betting quotients such that “a bet on h with a betting quotient q for 
the two bettors whose knowledge is e is a fair bet”.24 Yet Carnap’s explication of 
logical probability in terms of the semantic concepts of confirmation and rational 
degrees of belief still had to be distinguished from what, earlier, he had rejected 
from the logic of science as merely pragmatic. Carnap opposed Ramsey’s char-

18 R. Carnap, Introduction to Semantics, op. cit., 28.
19 Ibid., 244–245.
20 R. Carnap, “Science and Analysis of Language.” in: Journal of Unified Science 

(Erkenntnis) 9 (1939), 221–226, at 225.
21 R. Carnap, “Two Concepts of Probability.” In H. Feigl and W. Sellars (Eds.), Readings 

in Philosophical Analysis, New York: Appleton-Century-Crofts, 1949, 330–348, at 
330–331.

22 Ibid., 333–334.
23 R. Carnap, LFP, op. cit., 19.
24 Ibid., 166.
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acterisation of the theory of probability as “the logic of partial belief ” as unduly 
“psychological and subjectivistic”25 and added:

It cannot, of course, be denied that there is also a subjective, psychological concept for 
which the term “probability” sometimes is used. This is the concept of the degree of actual, 
as distinguished from rational belief: “the person X at time t believes in h to the degree r”. 
This concept is of importance for the theory of human behavior, hence for psychology, 
sociology, economics, etc. But it cannot serve as a basis for inductive logic or a calculus of 
probability applicable as a general tool of science.26

So delimited, inductive logic as a theory of logical probability was restored to the 
logic of science (while the frequency conception was assigned to use by first-order 
sciences).
 Carnap did not stay wholly untouched by psychological questions raised by 
his theory of probability – and it is this fact that threatens to confuse our char-
acterisation of metatheoretical inquiries: first, by challenging the neat taxonomy 
developed so far and, second, by casting doubt on its antipsychologistic creden-
tials. Having settled in Logical Foundations of Probability on a particular numeri-
cal function (a c-function) as explicating logical probability (namely c*) – albeit 
warning against thinking it “perfectly adequate …, let alone … the only adequate 
one”27 – Carnap soon came to recognise a plurality of such c-functions each of 
which represented “the optimum method” for different circumstances.28 However, 
in still later work Carnap rejected the view that the choice of an inductive method 
or c-function was objectively determined and declared it instead to be dependent 
on personality traits of different inquirers – this is the “personalist point of view” 
that occasions our worry. In his final “Basic System of Inductive Logic”, Carnap 
sought to delimit this freedom somewhat by means of further constraints, but he 
had to admit that all his inductive logic was able to furnish were “some general 
rules, each of which warns … against certain unreasonable steps”, “certain fea-
tures of a general policy”, all of which left “some freedom for choice within cer-
tain limits” in picking a particular c-function.29 Let’s specify our problem further.
 In his “Basic System” Carnap noted that he understood by “ ‘inductive logic’ 
… a theory of logical probability providing rules for inductive thinking”.30 Ac-
cordingly he took an interest in “normative decision theory” as a theory that 
“states conditions for the rationality of decisions”.31 Normative decision theory 
served as the “connecting link between descriptive decision theory and inductive 

25 Ibid., 45–46.
26 Ibid., 51.
27 Ibid., 563.
28 R. Carnap, The Continuum of Inductive Methods. Chicago: University of Chicago 

Press, 1952, 56.
29 R. Carnap, BS2, op. cit., 106.
30 R. Carnap, BS Intro, op. cit., 7.
31 Ibid., 8.
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logic” because it was concerned not with a person’s actual degrees of belief in a 
proposition but with what their degree of belief should be, in other words, “not 
with actual credence but with rational credence”.32 Normative decision theory ap-
plies inductive logic to decision making. (It is distinct from descriptive decision 
theory which deals in actual degrees of belief, not rational ones.) The concepts of 
normative decision theory are “quasi-psychological” because they are idealised 
counterparts to the concepts of descriptive decision theory: they are “assigned to 
an imaginary subject X supposed to be equipped with perfect rationality and an 
unfailing memory”.33 Due to that idealising supposition the concepts of a rational 
initial credence function (Cr

o
) and a rational stable credibility function (Cred) can 

be regarded as instantiating the values of their corresponding concepts of the in-
ductive measure function (M) and the inductive confirmation function (C).34 The 
latter, of course, are purely logical concepts having “nothing to do with observers 
and agents, whether natural or constructed, real or imaginary”35. Given that “in-
ductive logic studies those M-functions that correspond to rational Cr

o
-functions, 

and those C-functions that correspond to rational Cred-functions”,36 Carnap’s 
claim that inductive logic provides “rules for inductive thinking” is quite unobjec-
tionable since the inductive logic itself dealing with M- and C-functions remains 
purely logical.37

 Yet Carnap now also noted that the “methodological status” of normative de-
cision theory “is in fact somewhat problematic” but did not elaborate.38 It may 

32 Ibid., 13.
33 Ibid., 25.
34 Carnap defined these functions as follows: “I call a system of degrees of belief for a 

given field of propositions a credence function. We wish to distinguish between reason-
able and non-reasonable credence functions. … [T]he credibility function … is defined 
as follows. The credibility of a proposition H, with respect to another proposition A, 
for a person X means the degree of belief that X would have in H if and when his total 
observational knowledge of the world was A. … While the credence functions merely 
reflect his momentary beliefs at various times, his credibility function expresses his 
underlying permanent disposition for forming and changing beliefs under the influence 
of his observations.” (“Inductive Logic and Inductive Intuition.” In I. Lakatos (Ed.), 
The Problem of Inductive Logic. Amsterdam: North Holland 1968, 258–267, at 260 
and 262).

35 Ibid.
36 R. Carnap, BS Intro, op. cit., 25.
37 “Inductive logic … may be regarded as as a part of logic in view of the fact that the 

concepts occurring are logical concepts.” (Ibid., 26) Carnap went on parenthetically in 
the revised version: “Exactly speaking, this holds only for pure inductive logic, not for 
applied inductive logic.” (Ibid.)

38 Ibid., 13. Already in LFP Carnap had noted that “a rule which tells man X, with the 
help of inductive logic, which decisions it would be reasonable for him to make in view 
of his past experiences … does not belong to inductive logic itself but involves the 
methodology of induction and of psychology” (1950a, 252–253) and he stressed that 
“the problems and difficulties here involved belong to the methodology of a special 
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appear that this unclarity could be overcome by declaring that normative decision 
theory is an application of inductive logic. With the theory of logical probability 
part of the logic of science, one might thus place normative decision theory in the 
pragmatics of science.
 Yet putting matters this way overlooks several things. First, that Carnap’s  
“Basic System of Inductive Logic” employed additional psychological-empirical 
parameters, for instance, so-called Lambda-families of functions intended to  
reflect the rate of “learn[ing] … from experience”.39 Carnap’s later view of induc-
tive logic itself appears to be not a purely logical theory of probability but one 
employing quasi-psychological notions. Should Carnap’s worry about the meth-
odological status of normative decision theory perhaps extend to his personalist 
inductive logic itself? Its status as part of the logic of science appears to be called 
into doubt. Second, there is the issue as to which type of pragmatics the normative 
decision theory should be assigned to. Applications of logical theories are often, 
or even typically, assigned to pragmatics as a descriptive empirical inquiry, but 
normative decision theory patently is not empirical. So it cannot be an application 
in the sense in which the descriptive syntax of L

II
 of Logical Syntax represents 

an application of its theory of pure syntax. In addition a problem arises that goes  
beyond issues of classification, to wit, the question of what this personalist turn of 
his inductive logic means for Carnap’s anti-psychologism. Has Carnap not aban-
doned the very principles on which his logic of science was built – and so under-
mined the bipartite metatheory conception?
 The second of these three questions is perhaps the easiest to answer. We can 
take a leaf out of Carnap’s book and make use of his category of theoretical or 
pure pragmatics. As we saw, Carnap expressed the hope that theoretical prag-
matics would give logical explications of families of pragmatical concepts still  
beyond those related to the concept of intension in natural languages. The concepts 
involved in normative decision theory are natural candidates for this extension. As 
Carnap explained, normative decision theory is closely connected with but clearly 
separable from logic:

It is an interesting result that this part of normative decision theory, namely, the logical 
theory of the M- and C-functions, can thus be separated from the rest. We should note, how-
ever, that this logical theory deals only with the abstract, formal aspects of probability, and 
that the full meaning of (personal) probability can be understood only in the wider context 
of decision theory through the connections between probability and the concepts of utility 
and rational action.40

branch of empirical science, the psychology of valuations as a part of the theory of hu-
man behavior, and that therefore they should not be regarded as difficulties of inductive 
logic” (ibid., 254).

39 R. Carnap, BS2, op. cit., 95.
40 R. Carnap, BS Intro, op. cit., 26.
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Normative decision theory – precisely due to the connection of its logical concepts 
with those of utility and rational action – can be counted into pure pragmatics. 
What renders it pure is that no particular individuals are mentioned, but only vari-
ables in their place. This coheres with Carnap’s categorisation of “applied induc-
tive logic”:

The relation between pure and applied IL [inductive logic] is somewhat similar to that 
between pure (mathematical) and empirical (physical) geometry. … The situation in IL is 
analogous. In applied IL, we give an interpretation of the language. … In contrast, in pure 
IL we describe a language system in an abstract way, without giving an interpretation of 
the nonlogical constants (individual and predicate constants). Strictly speaking, we merely 
deal with unspecified individuals a

1
, a

2
, and so on, a family of, say, six unspecified attributes 

P
1
 , P

2
 , …, P

6
 , with corresponding regions X

1
 , X

2
 , …, X

6
 in an abstract space U, and with 

functions d and w.41

Applied inductive logic comes under the heading of descriptive pragmatics since it 
mentions particular individuals. Normative decision theory belongs to pure prag-
matics since no particular individuals are mentioned.
 Yet what are we to make of an inductive logic that includes parameters for 
the rate of learning from experience? Note that the task of inductive logic was 
that “of telling us how to arrive at values for our degree of belief which we can 
defend as rational”.42 Note also that the choice of a particular lambda-function, of 
a particular rate of learning from experience, was left open by the inductive logic 
itself. Thus one might hold that “although certain boundaries for lambda can be 
determined objectively by the consideration of rationality requirements, within 
these limits, everyone is free to make this choice as he pleases”.43 Carnap himself 
once preferred what he called the “personalist point of view”: “we might regard 
X’s choice of a lambda value (and likewise his decisions in other respects in the 
process of constructing a C-function for some form of language) as determined 
by, and therefore symptomatic of, certain features of X’s personality”.44 Accord-
ingly, “the difference may be attributed to their different inductive inertia.”45 Yet 
Carnap also considered the choice of the lambda-value “from an objectivist point 
of view”, namely as determined by the curve of the eta-function. He concluded 
that

there need not be a controversy between the objectivist point of view and the personalist 
or subjectivist point of view. Both have a legitimate place in the context of our work, that 
is, the construction of a system of rules for determining probability values with respect to 
possible evidence. At each step in the construction, a choice is to be made; the choice is 

41 R. Carnap, BS1, op. cit., 69–70.
42 R. Carnap, “Inductive Logic and Inductive Intuition”, op. cit., 259–260.
43 R. Carnap , BS2, op. cit., 111–112.
44 Ibid., 112.
45 Ibid., 114.
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not completely free but is restricted by certain boundaries. Basically, there is a mere dif-
ference in attitude or emphasis between the subjectivist tendency to emphasize the existing 
freedom of choice, and the objectivist tendency to stress the existence of limitations. I give 
more attention to the latter because in my world I am mainly interested in discovering new 
rationality requirements which lead to narrower boundaries.46

Carnap was resigned to finding that not inconsiderable leeway remained in the 
construction of a system of rules for determining probability values with respect 
to possible evidence.
 So inductive logic did not determine the rate of learning from experience: it 
held a place for it, but allowed for different determinations of it. Yet given that such 
psychological parameters were an inherent part of it, what becomes of the place of 
inductive logic in the taxonomy of the pure and descriptive subdisciplines of the 
semiotics of the language of science? As we learnt, Carnap assigned logical prob-
ability to semantics. That over the years Carnap’s favoured explication of logical 
probability shifted from that of indicating the degree of confirmation of h given 
e to that of indicating the degree of rational belief in h given e did not change its 
basic semantic nature. If anything, that shift in interpretation gives grounds to 
assimilate something like the rate of learning from experience to the concepts 
closely related to the semantic notion of probability so understood. (Carnap was, 
after all, interested in a rational rate of learning from experience even though no 
unique value can be determined for it.) Since, moreover, the rate was not only not 
determined by the inductive logic nor was any specific learner indicated as such, it 
is clear that this inductive logic was not to be counted into descriptive semantics. 
Within the logic of science it remained a branch of pure semantics, albeit one that 
was informed – unlike deductive logic – by pure pragmatics.

It is important to notice clearly the following distinction. While the axioms of inductive 
logic themselves are formulated in purely logical terms and do not refer to any contingent 
matters of fact, the reasons for our choice of the axioms are not purely logical. … In order 
to give my reasons for the axiom [of symmetry: M is invariant with respect to any finite 
permutation of individuals], I move from pure logic to the context of decision theory and 
speak about beliefs, actions, possible losses and the like. However, these considerations are 
not in the field of descriptive, but of normative decision theory. Therefore, in giving my rea-
sons, I do not refer to particular empirical results concerning particular agents or particular 
states of nature and the like. Rather, I refer to a conceivable series of observations by X, to 
conceivable sets of possible acts, to possible states of nature, to possible outcomes of the 
acts, and the like. These features are characteristic for an analysis of the reasonableness of 
a given function Cr

o
, in contrast with an investigation of the successfulness of the (initial 

or later) credence function of a given person in the real world. Success depends upon the 
particular contingent circumstances, rationality does not.47

46 Ibid., 119.
47 R. Carnap, BS Intro, op. cit., 26.

478



34 Carnap’s Logic of Science and Personal Probability 

This allows us, finally, to give fairly quick answer to the third question. Did Car-
nap’s personalist turn in inductive logic betray the anti-psychologism on which his 
logic of science was built – and so undermined the bipartite metatheory concep-
tion? All the reasons we gave that allowed both inductive logic itself and normative 
decision theory to remain within the logic of science also dispell this threat.

34.3 ConClUsion

With normative decision theory pursued in pure pragmatics and inductive logic re-
maining part of pure semantics, the architecture of Carnap’s, Neurath’s and Frank’s 
replacement of traditional philosophy by a bipartite metatheory of science stays in-
tact. It is not threatened by Carnap’s personalist turn in inductive logic. Important-
ly, however, the bipartite metatheory conception is not committed to conceiving 
of the theory of probability in just the way Carnap did. If indeed “the probability 
calculus corresponds to some quite objective feature of subjective uncertainty”48, 
then Bayesianism too could find its place therein.

School of Social Science
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M13 9PL, Manchester
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48 C. Howson and P. Urbach, Scientific Reasoning, op. cit., 95.
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Chapter 35

MiChael Stöltzner

erwin SChrödinger, Vienna indeterMiniSt

Whenever Erwin Schrödinger wrote about causality and determinism, he acknowl-
edged Franz Serafin Exner as the first to have advocated a genuinely indeterminist 
conception of physics. Today best known is his 1922 Zurich inaugural address 
“What is a Law of Nature?”, that was published only in 1929 with an introductory 
note stating that the “development of quantum mechanics has brought Exner’s 
sphere of ideas into the focus of scientific interest.” (1929, p. 9/133)
 Scholars substantially disagree about the content and import of Schrödinger’s 
philosophy of physics. To some, he repeatedly changed his mind about fundamen-
tal issues, among them causality and realism; to others, he tenaciously pursued a 
complex philosophical program on various levels that was notoriously misunder-
stood by his Copenhagen opponents. In a classic paper, Paul Forman (1971) has 
attributed Schrödinger’s endorsement of indeterminism in the Zurich speech to 
the influence of the anti-causal and anti-scientific milieu of the early Weimar Re-
public, while his discovery of a seemingly causal quantum mechanics in 1926, the 
Schrödinger wave equation, prompted him to abandon this position. Forman and, 
more explicitly, Paul Hanle have criticized Schrödinger’s – and Exner’s – “fail-
ure to distinguish between indeterminacy in principle and the practical inability 
to analyze the determinate causes in an aggregation of micro-physical events.” 
(Hanle 1979, p. 227) Yemina Ben-Menahem instead holds “that Schrödinger did 
not change his views in any substantial way with regard to causality. To the end 
of his life he was ready to entertain the idea that some of the fundamental laws of 
nature are merely statistical laws.” (1989, p. 309) In the same vein, Michel Bitbol 
considers Schrödinger’s writings of the 1920s as “an early and simplistic way of 
coming close to the interpretation of the 1950s” and concludes from a retrospec-
tive analysis that Schrödinger developed “by fits and starts … a coherent methodo-
logical program” (1996, p. vii).
 Interestingly, interpreters’ stand on continuity versus vacillation strongly de-
pends upon how much importance they assign to philosophy within Schrödinger’s 
overall work. For Forman, his philosophical convictions were determined by the mi-
lieu. To Mara Beller, “Schrödinger was no less a philosophical ‘opportunist’ than 
his Göttingen-Copenhagen opponents” (1999, p. 284), while Ben-Menahem, Bitbol, 
and Henk de Regt take his philosophy very seriously and associate its core traits not 
only with the local Mach-Boltzmann tradition and Exner’s indeterminism, but also 
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with a long list of classical and contemporary views on causality and realism, among 
them Schopenhauer (de Regt 1997; Bitbol 1996), neo-Kantianism (Beller 1999), 
Husserlian and post-modern phenomenology (Bitbol 1996), van Fraassen’s con-
structive empiricism (de Regt 1997), and Putnam’s internal realism (Bitbol 1996).
 The aim of this paper is to investigate Schrödinger’s views about causality 
and indeterminism by embedding them into the thought-style characteristic of the 
Vienna physicists around Boltzmann and Exner. At least until the famous cat paper 
(Schrödinger 1935) changed the focus of the debates about quantum mechanics 
to issues of realism tout court, Schrödinger, I shall argue, remained committed 
to a specific Viennese brand of indeterminism that remained agnostic about the 
alternative ‘in principle’ vs. ‘in practice’ which Hanle, and many other contem-
porary readers, considered impeccable. The tradition that I have called Vienna In-
determinism (Stöltzner 1999) objected to the metaphysical alternative between 
determinism and indeterminism, but favored indeterminism on epistemological 
and methodological grounds. Having thus shown that Schrödinger accepted the 
indeterministic nature of the basic laws of nature already in 1914, what were then 
his problems with the Copenhagen Interpretation? Ironically, one might say, it was 
a kind of static positivism that imposed a priori limits of meaning to basic physi-
cal concepts, against which Schrödinger insisted on the openness of the scientific 
enterprise expressed in Boltzmann’s conception of theories as universal pictures. 
There is of course a development in Schrödinger’s attempts to elaborate a more 
precise formulation of Vienna Indeterminism in the light of changing physical 
theories. While he initially entertained the prospect of a definitive empirical reso-
lution in favor of indeterminism, he later came to consider it as a matter of conven-
tion and ontological parsimony.

35.1 a Brief of Vienna indeterMiniSM

The tradition of Vienna Indeterminism began with Exner’s 1908 inaugural address 
as Rector of the University of Vienna titled “On Laws in the Sciences and Humani-
ties”. Exner combined core traits of Mach’s empiricism and Boltzmann’s philo-
sophical justification of statistical mechanics to argue that chance was the basis of 
all natural laws and that accordingly the apparent determinism in the macroscopic 
domain emerged only as the thermodynamic limit of many random microscopic 
events. To those who took Mach and Boltzmann as the principal foes in the strug-
gle about atomism – as most German physicists did –, such a synthesis seemed 
surprising. But it was characteristic for the thinking of the Viennese physicists, as 
Schrödinger explained in a letter to Arthur S. Eddington in 1940.

[W]e did not consider them irreconcilable. Boltzmann’s ideal consisted in forming abso-
lutely clear, almost naively clear and detailed ‘pictures’ – mainly in order to be quite sure 
of avoiding contradictory assumptions. Mach’s ideal was the cautious synthesis of obser-
vational facts that can, if desired, be traced back till the plain, crude sensual perception. … 
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However, … one was quite permitted to follow one or the other [method of attack] provided 
one did not lose sight of the important principles … of the other one. (from Moore 1989, 
p. 41)

Exner’s speech prompted a staunch criticism by Max Planck (1914), and thus be-
came the starting point of a debate about the relationship between causality and 
physical ontology between Vienna and Berlin that, with a series of new thematic 
twists, lasted until the 1930s. (See Stöltzner 2003) The basic alternative was this: 
Either one followed Kant, as did Planck, by holding that to stand in a causal re-
lationship was a condition for the possibility of the reality of a physical object 
(Kant’s ‘empirical realism’), or one agreed with Mach that causality consisted 
in functional dependencies between the determining elements and that physical 
ontology was about ‘facts’ (Tatsachen), i.e., in stable complexes of such dependen-
cies. To those standing in the Kantian tradition, the Machian stance fell short of the 
aims of scientific inquiry. Those standing in the Machian tradition, however, had 
more leeway in searching for an ontology suitable for a new scientific theory.
 Based upon this basic distinction, Vienna Indeterminism – as pronounced by 
Exner – can be characterized by the following three commitments: (i) The highly 
improbable events admitted by Boltzmann’s statistical derivation of the second law 
of thermodynamics exist. (ii) In a consistently empiricist perspective, the burden 
of proof rests with the determinist who must provide a sufficiently specific theory 
of microphenomena before claiming victory over a merely statistical theory. (iii) 
The only way to arrive at an empirical notion of objective probability is by way of 
the limit of relative frequencies. While many physical systems can practically be 
treated as close to this limit, it is illusory for processes in the descriptive sciences 
and the humanities. Exner’s endorsement of the relative frequency interpretation 
implied that there existed a region of transition between the microscopic and the 
macroscopic; in the years to come it would be filled by an increasing number of 
fluctuation phenomena.

35.2 SearChing for indeterMiniStiC phenoMena:
SChrödinger’S Vienna YearS

Schrödinger’s “first outstanding paper” (Moore 1989, p. 75) harked back to Boltz-
mann’s atomism. To find an explicit example where atomism and continuum phys-
ics yielded diverging scenarios, one encountered a two-fold task: “First, all those 
differential equations first derived by consideration of a continuous medium as 
differential equations in the strict sense, now must instead be derived in the above 
sense as difference equations on the basis of a model constructed of molecules.” 
(Schrödinger 1914, p. 916f.) Second and more importantly, one had to search and 
predict “such conditions under which the differential equation based on a con-
tinuum actually leads to an incorrect result because of the truly atomistic structure 
of matter.” (Ibid., p. 917) Schrödinger thus compared a one-dimensional atomistic 
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model of a string in which one elongates a finite number of isolated atoms with 
the familiar d’Alembert differential equation of the vibrating string. While for 
functions which correspond to averages over a sufficiently large number of at-
oms, both approaches were equivalent, the phenomenon of thermal disturbance 
(Wärmestörung), which corresponded to internal differences of elongation, could 
be described by the atomistic model only.
 Thermal disturbance represented a fluctuation phenomenon. At that time, the 
Viennese already considered them as physical phenomena in their own right that 
had been discovered at the beginning of the century simultaneously in the fields of 
radioactivity research, Brownian motion (the zig-zag motion of suspended parti-
cles in a liquid visible under the microscope), and atmospheric electricity. In 1905, 
Egon von Schweidler, then Exner’s assistant, had shown that the phenomenologi-
cal law of radioactive decay, the Rutherford-Soddy law N (t) = N

t = 0 
e –λt, was only 

valid for a large number of decaying atoms, while for a small number of atoms 
the decay constant λ exhibited fluctuations. In 1906 and independently of Albert 
Einstein, Exner’s former assistant Marian von Smoluchowski derived the formula 
for the position fluctuations of a Brownian particle. (See Stöltzner 2011)
 While most physicists quickly accepted Brownian motion as an experimen-
tal proof of atomism, Schweidler fluctuations, until the 1920s, were typically 
considered as a convenient phenomenological regularity still to be explained by 
the hitherto unknown laws governing the decay of the single atom. The Viennese 
thought differently (Cf. Coen 2002), as can also be seen from a long paper in 
which Schrödinger undertook a detailed statistical analysis of the measurement of 
radioactive fluctuations. He emphasized that Schweidler’s seminal discovery “does 
not consist, as some believe, in any √z- or √i- dependence, but in the fundamental 
recognition of the probabilistic character of the decay constant.” (1919, p. 179) He 
developed a theory of the preferred measuring device, the electroscope, treating 
the motion of its pointer as a Brownian process, or as he put it, a Smoluchowski 
motion. (Cf. ibid., p. 184) Thus he used a phenomenon with a deterministic foun-
dation as the theory of measurement of a phenomenon without such a foundation. 
The important point is that Schrödinger did not distinguish between indeterminacy 
in principle and indeterminacy in practice at all, but took both kinds of fluctuations 
as physical phenomena. For the Vienna Indeterminist did not entertain any a priori 
preference for an indeterminist theory with deterministic foundations at the micro-
level over one without such foundations. In any case, the burden of proof was with 
the determinist.

35.3 zuriCh 1922: “what iS a law of nature?”

In his 1922 Zurich inaugural address, Schrödinger specified the historical scale 
on which this view had emerged. It harked back, beyond Exner, to the days when 
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Boltzmann had just begun to develop his statistical theory of the second law of 
thermodynamics and Ernst Mach had given a new version of Hume’s empiricist 
notion of causality. “Within the past four or five decades physical research has 
clearly and definitely shown that chance is the common root of all the strict regu-
larity that has been observed, at least in the overwhelming majority of natural proc-
esses, the regularity and invariability of which have led to the establishment of the 
postulate of universal causality.” (1929, p. 9/136)
 There was something ironic to the history of this postulate. For, the deeply en-
grained ‘habit of thought’ of presupposing causality had emerged “from observing 
… precisely those regularities [Gesetzmäßigkeiten] in nature which, in the light 
of our present knowledge, are most certainly not causal, or at least not directly 
causal, but directly statistical regularities.” (Ibid., p. 11/144) What we observe on 
the macroscopic scale already involves such a huge number of individual events 
that the statistical laws appear as strict regularities. Although this guarantees a 
practical value for the principle of causality, the inference to a causal behavior on 
the molecular scale is unwarranted. In gas theory,

we generally assume the validity of the mechanical laws for the single event, the collision. 
But this is not at all necessary. It would be quite sufficient to assume that at each individual 
collision an increase in mechanical energy and mechanical momentum is just equally prob-
able as a decrease, so that taking the average of a great many collisions, these quantities 
remain constant in much the same way as two dice cubes, if thrown a million times, will 
yield the average 7 whereas the result of each single throw is purely a matter of chance. 
(Ibid., p. 10/138f.)

Brownian motion and radioactive fluctuations were the crucial experiments to es-
tablish the statistical character of natural laws in the sense of the program he had 
depicted in 1914. “More than by however many examples, our conviction of the 
statistical character of physical laws is strengthened by the fact that the second law 
of thermodynamics, or law of entropy, which plays a role in positively every real 
physical process, has clearly proved to be the prototype of statistical law.” (Ibid., 
p. 10/140f.) The reason for the universality of the second law is its intimate con-
nection with the direction of time and the tendency towards more probable states. 
This had also been Exner’s (1909) point. Thus “the assertion of determinism was 
certainly possible, yet by no means necessary, and when more closely examined 
not at all very probable.” (Schrödinger 1929, p. 10/142f.) Schrödinger was aware 
that this conclusion was controversial and dependent on the respective state of 
physics. Even though the problem of causality remained empirically open, in vir-
tue of Occam’s razor, “[t]he burden of proof falls on those who champion absolute 
causality, and not on those who question it.” (Ibid., p. 11/147). Sticking with cau-
sality come what may, would yield to a “duplication of natural law [that] so closely 
resembles the animistic duplication of natural objects, that I cannot regard it as at 
all tenable.” (Ibid., p. 11/145)
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 Schrödinger followed Exner and Boltzmann in extending the statistical view-
point to the most basic principles of physics. “Naturally we can explain the theo-
rem of energy conservation on the large scale by its already holding true in the 
small [that is, for the single events]. But I do not see that we must do so.” (Ibid., 
p. 10/143) Even the law of gravitation could be of statistical origin, although 
Schrödinger admitted that “Einstein’s theory strongly suggests the absolute valid-
ity of the theories of energy and momentum conservation.” (Ibid., p. 11/146) To 
avoid a conflict, Schrödinger made a surprising move and considered relativity 
theory as virtually irrelevant for the issue of causality. For, “the whole theory of 
gravitation can be considered as the reduction of gravitation to the law of inertia. 
That under certain conditions nothing changes is surely the simplest law that can 
be conceived, and hardly falls within the concept of causal determination. It may 
after all be equally reconcilable with a strictly acausal view of nature.” (Ibid., p. 
11/146)

35.4 the BKS-theorY of 1924: waS the deCiSiVe exaMple 
found?

In 1924, Niels Bohr, Hendrik A. Kramers, and John C. Slater proposed a new 
quantum theory in which energy conservation held only on average, but not for the 
individual atomic processes. Schrödinger was enthusiastic about the BKS-theory 
and wrote to Bohr on 24 May, 1924: “As a pupil of the old Franz Exner, I have 
long ago become accustomed to the idea that the basis of our statistics is probably 
not microscopic ‘regularity’, but perhaps ‘pure chance’ and that perhaps even the 
laws of energy and momentum have only statistical validity.” (in Bohr 1984, p. 
490) Schrödinger’s reading of the new theory corresponded to the second of the 
two tasks he had laid out in 1914. In a survey article in Die Naturwissenschaften 
he emphasized that in the new theory, the conception “that the individual mo-
lecular process is not causally determined by ‘laws’ in a unique fashion, for the 
first time attains a tangible form.” (1924, p. 720) If this theory were true, it would 
confirm the “Exner-Bohr conception” (Ibid., p. 724) according to which energy 
conservation is only of statistical validity, and accordingly put it alongside Schwei-
dler’s fluctuations and Brownian motion as a factual demonstration of indetermin-
ism. Schrödinger provided some rough estimates to show that the new theory did 
not contradict present experiences. However only a year later, Geiger and Bothe 
showed that the energy was conserved in each individual process.
 At the end of the paper, Schrödinger argued that a merely statistical valid-
ity of the theorem of energy conservation would have “much deeper theoretical 
consequences than in the case of the entropy theorem.” (Ibid., p. 724) While in the 
latter case a closed system approaches the exact thermodynamic laws in the limit 
of infinite observation time, in the BKS theory it exhibits an average behavior only 
for relatively short times.
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In the limit t → ¥ its behavior becomes completely undetermined. … We can reduce the 
deviation only by increasing the size of the system, or by considering it as a subsystem of 
a more extended system (“heat bath”). The exact validity of thermodynamics now could 
perhaps be maintained at most … for the double limit t → ¥ and heat bath → ¥. But this 
double limit poses much bigger conceptual difficulties than the single one. … The separated 
individual systems would be, from the standpoint of unity, a chaos. It requires the connec-
tion [with the rest of the world] as a permanent regulator, without which, energetically 
considered, it would wander about at random. (Ibid., p. 724)

Whereas Schrödinger’s article was unambiguously positive about the BKS theory, 
his above-quoted letter continued with some criticism against Bohr’s reality cri-
terion.

Your new account to a large extent signifies a return to the classical theory, as far as radia-
tion is concerned. I cannot completely go along with you when you keep calling this radia-
tion ‘virtual’ … For what is the ‘real’ radiation if it is not that which ‘causes’ transitions, 
i.e., which creates the transition probabilities? Moreover, another sort of radiation is surely 
not assumed. Indeed, if one adopts a purely philosophical standpoint, one might even dare 
to doubt which electron system has a greater reality – the ‘real one’ which describes the 
stationary trajectories or the ‘virtual one’ that emits virtual radiation and scatters impinging 
virtual radiation. (from Bohr 1984, p. 490)

Interpreting this passage, scholar’s have largely followed Linda Wessels’ view that 
“Schrödinger was enthusiastic about the assumption of irreducibly statistical proc-
esses, but objected to the authors’ reluctance to give a coherent physical picture 
for the theory.” (1977, p. 313) De Regt even concludes that “[p]recisely because 
his epistemological position amounts to Machian anti-realism, Schrödinger is in a 
position to object to calling some terms in the theory ‘virtual’. If he had adhered to 
a hard-headed correspondence realism, he would have dismissed the BKS-theory 
out of hand.” (1997, p. 473) De Regt’s assessment is essentially correct, with the 
qualification that the stability of functional dependencies served as Mach’s em-
piricist reality criterion for the basic facts. Accordingly, Mach’s whole conception 
involved a holistic stance, such that no entities were designated in advance as 
‘real’ without their standing in causal relations. Darrigol thus rightly surmises that 
“Schrödinger would not have dared such a loose speculation in a scientific journal 
… had not he been very eager to connect two of his main favorite themes, holism 
and acausality.” (1992, p. 268) In this reading of the BKS-theory, Boltzmann’s 
program had become even more Machian.

35.5 alleged CountereVidenCe: the 1926 letterS to wien

The locus classicus for claims that Schrödinger at least temporarily changed his 
mind in favor of deterministic causality, is a letter he sent to Wilhelm Wien on 25 
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August 1926. He apparently abrogated the main thrust of his 1922 inaugural ad-
dress.

[T]oday I no longer like to assume with Born that an individual event of this kind is “abso-
lutely random”, i.e., completely undetermined. I no longer believe today that there is much 
to be gained from this conception (which I championed so enthusiastically four years ago). 
… the waves must be strictly causally determined through field laws, the wavefunctions 
on the other hand have only the meaning of probabilities for the actual motion of light- or 
material-particles. I believe that Born thereby overlooks that … it would still depend on the 
taste of the observer which he now wishes to regard as real, the particle or the guiding field. 
There exists really no philosophical criterion for reality [Realität] if one does not want to 
say: the real is only the complex of sense impressions, all the rest are only pictures.

At face value, Schrödinger rejected indeterminism and Born’s positivism, and ad-
vocated a spatio-temporal description instead. But what to make of the claim that 
there simply is no other philosophical criterion of reality than Mach’s amended 
by Boltzmann’s pictures? Bohr and Born’s returning to a pure Machian ontology 
happened in such a way that, to Schrödinger’s mind, the theoretical pictures be-
came entirely detached from any possible realities in space and time. Or in more 
historical terms, Born’s positivism on the basis of a still classical particle ontology 
endangered the subtle equilibrium between the teachings of Mach and Boltzmann 
which Schrödinger had imbibed at the Vienna Institute of Physics and, since 1914, 
elaborated into a joint advocacy of continuous pictures and indeterminism.
 Ben-Menahem additionally points to the fact that for Schrödinger, “[c]ausal-
ity and continuity were independent.” (Ben-Menahem 1989, p. 321) Her main 
evidence is an earlier letter to Wien written on 18 June 1926. “It appears, to be 
sure, that at present not all parties are convinced that the renunciation of the basic 
discontinuities, if possible, is to be absolutely welcomed. But I have always whole-
heartedly wished that it would be possible, and would have seized the opportunity 
with both hands – as I did with Bohr-Kramers-Slater.” Here, “Schrödinger himself 
regarded his earlier response to the Bohr-Kramers-Slater paper as fully consist-
ent with the views he held in 1926 when working on wave mechanics.” (Ibid., p. 
322) Because of the interdependence of causality and continuity, the apparently 
odd “claim that there is ‘not much to be gained’ by a probabilistic interpretation 
… makes perfect sense. In the BKS paper causality was renounced but continu-
ity rescued. In Born’s case, however, there was no such pay-off.” (Ibid., p. 326) 
Darrigol’s interpretation is similar: “one theory [wave mechanics] offered a fairly 
detailed space-time picture of radiation processes, despite the quantum jumping, 
while the other [matrix mechanics] explicitly denied the possibility of representing 
quantum processes in space and time. What Schrödinger could not accept was the 
mutual destruction of the claims of causality and visualizability.” (1992, p. 268) In 
one of Schrödinger’s early papers on wave mechanics, Bitbol (1996, p. 17) rightly 
finds the same motive at work against Born’s probabilistic interpretation of wave 
mechanics.
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I am flinching from this conception [Begriffsbildung], not so much on account of its com-
plexity as on account of the fact that a theory which postulates an absolute primary prob-
ability as a law of nature should at least repay us by freeing us from the old ‘ergodic dif-
ficulties’ and establishing us to understand the unidirectionality of natural processes without 
further supplementary assumptions. (Schrödinger 1927, p. 968)

If one adopts a fully probabilistic approach it should at least eliminate the, back 
then notoriously unclear, ergodic hypothesis which arises from the combination of 
a deterministic theory of the microphenomena and a statistical theory at the mac-
roscopic level. So in the end, Copenhagen was simply too classical in ontological 
matters. Or as Bitbol puts it, “Schrödinger did not consider it satisfactory to add 
an empirically void ‘clothing’ to the structure of quantum mechanics just for the 
sake of recovering the classical ontology or for the sake of satisfying the desire for 
pictures. What he wished to demonstrate was rather that there exists an adequate 
picture and a (non-classical) ontology which arises quite naturally from unmodi-
fied quantum mechanics itself.” (1996, p. 68) Indeterminism by itself, it becomes 
clear, was not Schrödinger’s problem.

35.6 Continuing the deBate with planCK: Berlin 1929

In 1927, Schrödinger had assumed Planck’s former chair at the University of 
Berlin. Planck still hoped that Schrödinger’s formulation of quantum mechanics, 
albeit meanwhile proven equivalent to matrix mechanics, promised a return to 
deterministic physics and a realist physical world view. Yet his 1929 inauguration 
speech as a member of the Prussian Academy of Sciences continued the debate 
between Exner and Planck on his teacher’s side. He contemplated whether the 
development of quantum mechanics forced us to abandon

the maxim that fixed laws together with random initial conditions uniquely determine the 
happenings in each individual case. It is the question about the purposivity [Zweckmäßig-
keit] of the unswerving postulate of causality. It is true, in practice we had had to forgo 
causality already within the classical mechanical explanation of nature. (Schrödinger 1929, 
p. 732)

[T]he probabilistic conception of the laws of nature … by itself does not really contradict 
the causal postulate. Uncertainty in this case arises only from the practical impossibility of 
determining the initial state of a body composed of billions of atoms. Today, however, the 
doubt as to whether the processes of nature are uniquely determined is of quite a different 
character. The difficulty of ascertaining the initial state is supposed to be not one of practice 
but of principle. (Ibid., p. 732/xvi)

Had Schrödinger now, as a consequence of the quantum revolution, ultimately 
accepted the distinction between “in practice” and “in principle”, rather than in-
sisting that Brownian motion and radioactivity stood on a par as empirical demon-
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strations of the indeterministic character of a certain domain of phenomena? Not 
quite, but he provided a new philosophical justification as to why the alternative 
was not as fundamental as most physicists thought.

Franz Exner … was the first to mention the possibility and the advantages of an acausal 
conception of nature. … But I do not believe that in this form [this fundamental question] 
will ever be answered. In my opinion this question does not involve a decision as to what 
the real constitution of nature is, but rather as to whether the one or the other predisposition 
of mind be the more purposive and convenient one with which to approach nature. Henri 
Poincaré has illustrated that we are free to apply Euclidean or any kind of non-Euclidean 
geometry we like to real space, without having to fear the contradiction of facts. But the 
physical laws we discover are a function of the geometry which we apply, and it may be that 
the one geometry entails complicated laws, the other much simpler ones. In that case the 
former geometry is inconvenient, the latter is convenient, but the words “right” or “wrong” 
are unsuitable. The same probably applies to the postulate of rigid causality. One can hardly 
imagine empirical facts which ultimately decide on whether the natural phenomena are in 
reality absolutely determined or partially indetermined, but at best on whether the one or 
the other conception permits a simpler survey of what is observed. Even this question will 
probably take a long time to decide. (Ibid., p. 732/xvii f.)

The argument from simplicity was not new; recall Schrödinger’s criticism of the 
duplication of natural law. Moreover, the reference to Poincaré made clear that the 
choice of the proper conception was not empirically void, but guided by simplici-
ty.1 Yet Schrödinger’s (1924) optimism that a decision in favor of indeterminism 
was close has faded away. Admittedly, also Exner had remained open with respect 
to the alternative between determinism and indeterminism. But he had preferred 
the latter in virtue of manifold supportive evidence and because of its more uni-
fied character. Schrödinger’s own works, particularly his proof of the equivalence 
between wave mechanics and matrix mechanics, substantially changed the nature 
of the alternative. There was, on the one hand, a beautifully deterministic differ-
ential equation the application or interpretation of which permitted only statis-
tical predictions. There was, on the other hand, an abstract and openly indeter-
ministic theory which nonetheless integrated the whole conceptual apparatus of 
classical mechanics in a quantized form. What Schrödinger established with his 
equivalence proof corresponded to the systematic classification of all possible ge-
ometries achieved at the end of the nineteenth century which had constituted the 
basis of Poincaré’s conventionalism. In contrast to a Machian view which took 
all theoretical descriptions just as mere economizations, conventionalist choice 
required a precise formal characterization of the alternatives. But it did not reintro-
duce a principal divide between fluctuation phenomena and atomic physics. For 

1 In notes written in 1918 and titled “Kausalität”, Schrödinger had already “quoted Poin-
caré’s statement about principles: ‘They are neither true nor wrong, they are expedient 
[commodes]’ and he commented: ‘This is certainly entirely true of the causality prin-
ciple.” (Darrigol 1992, p. 264)
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ultimately, indeterminism and ontology were intermingled to an even larger extent 
than in statistical mechanics.

35.7 SChrödinger’S indeterMiniSM after 1930

In 1932, Schrödinger assembled two lectures into a small booklet dedicated to 
the memory of Franz Exner. In the first, titled “On Indeterminism in Physics”, 
Schrödinger argued that while one and a half decades ago nobody doubted the 
dogma of determinism, now many physicists believed that the repeated failures to 
understand the experimental results of the preceding three decades by means of 
deterministic pictures had lead to a dismissal of determinism in the sense of clas-
sical mechanics. But repeated failure by itself could not be decisive.

It will be difficult to ever prove that no determined [bestimmtes] picture can be found which 
equally does justice to the facts. But what makes these modern attempts to abandon deter-
minism nonetheless very interesting is that their declarations of a lack of determination are 
not at all vague and undetermined, but entirely precise, quantitative, expressible in cm, g, s 
(Schrödinger 1932, p. 3/55).

Since a “comprehensive and definitive judgment about these matters does not at 
all exist at the present moment” (Ibid., p. 7/59), Schrödinger added three “in part 
loosely connected” (Ibid., p. 6/59) remarks in which he nonetheless defended quite 
specific theses. The conventionalist considerations of the “Antrittsrede” were, 
however, not taken up again.
 Interestingly, the first rehearsed Schrödinger’s 1914 concern (and Boltz-
mann’s teaching) that the issue between determinism and indeterminism had 
to be decided by the more adequate mathematical description. As mechanical 
motions are determined by the accelerations, we got used to count the initial 
velocity among the initial conditions. But this is, strictly speaking, not correct 
because the definition of velocity by means of a differential quotient involves two 
moments in time of which one imagines that they can be made to coincide in the 
limit. “[P]erhaps this mathematical limit … is inadmissible. Perhaps the thought 
machinery [Denkapparat] invented by Newton is not sufficiently adapted to na-
ture. The modern claim, that for sharply defined position in space the concept of 
velocity becomes meaningless points strongly in that direction.” (Ibid., p. 9/62)
 Schrödinger declared, in the second remark, that “the overwhelming majority 
[of natural laws are statistical] because the course of nature is essentially irrevers-
ible, one-sided,” (Ibid., p. 11/64) perhaps except for gravitation. While before the 
advent of quantum mechanics, “the abandonment of determinacy was merely of a 
practical kind, today one assumes that it is theoretical.” (Ibid., p. 12f./66–68) But 
this did not warrant a radical shift. “It was said, and sometimes it is said still today, 
that … without a strictly deterministic background our picture of nature would de-
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generate into a complete chaos and thus would not fit to our given nature because 
nature is in fact not completely chaotic. This is certainly not correct.” (Ibid., p. 
14/68)
 In his third remark, Schrödinger criticized the ontology of the Göttingen-Co-
penhagen picture by claiming “that the concepts ‘position’, ‘trajectory’ [Bahn, 
Bahnkurve] are exaggerated when applied to such small [atomic] spatial and tem-
poral dimensions” (Ibid., p. 22/77). The same held true for a material point whose 
motion constituted a trajectory. “To speak of electrons and protons as material 
points but to deny nevertheless that they have definite trajectories seems to be con-
tradictory and rather crazy. … [F]rom atomistics one can quite well understand, or 
at least conjecture, that the concept of trajectory is lost at very small dimensions.” 
(Ibid., p 17/72)

At this point Schrödinger turned Boltzmann’s atomism against the Göttingen-
Copenhagen picture according to which material particles are the basis of quantum 
mechanical ontology without having well-defined trajectories. If we depart from 
how we actually observe natural phenomena, it seems to be clear that “[e]very 
quantitative, measuring observation is discontinuous by its very nature” (Ibid., p. 
17/72) because it ultimately represents nature’s answer to a finite number of yes-
no question. We complete this finite raw material by interpolation and in this way 
arrive at a continuous trajectory, which in itself is not directly observable. This 
procedure, however, is admissible only if all such measurements could in principle 
be performed by really existing apparatus. To be sure, “we continuously have to 
complete what is directly observed; otherwise there would be no picture of nature 
but only an inextricable patchwork of individual findings [Einzelfeststellungen].” 
(Ibid., p. 21/76f.) By inferring from a finite set of observations to a continuum 
in this way, we run the risk to erroneously complete our factual observations and 
“mess up our picture of nature” (Ibid., p. 21/77) by employing a concept, such as 
‘trajectory’, outside its domain of validity.

Two years later, Schrödinger intensified his criticism that the concepts of clas-
sical point mechanics were still applied albeit with absolute limits of precision. 
“The concepts must be abandoned, not their sharp definitiveness. One tries to get 
around the monstrosity of unsharply defined concepts by hundred thought experi-
ments,” (1934, p. 519) among them the Heisenberg microscope. “Among the con-
cepts to be abandoned is also position. But this means: geometry.” (Ibid., p. 519) 
The reason was that geometry was based on congruence the empirical realization 
of which presupposed the existence of rigid bodies. According to Schrödinger, the 
application of geometry to real objects represented a gedanken experiment which 
had to be consistent with the laws of nature. The classical solution to approximate 
rigid connections by potentials was impossible due to the finite distance between 
energy levels. Thus there could be only approximately rigid bodies. Schrödinger 
concluded that “the spatial structure derived from the group of translations fit to 
nature only approximately – and not merely that there do not exist sufficiently pre-
cise material measuring rods to measure it. The true geometry of physics is … the 
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four-dimensional one of relativity theory. … The difficulty to adapt to the require-
ment of relativity is a well-known crux of quantum mechanics.” (Ibid., p. 520) In 
short, geometry was inapplicable to small distances. And consequently, quantum 
mechanics was at odds with relativity theory. The speculations that even the theory 
of gravity could not escape indeterminism apparently had not gone away. But a 
suitable ontology for such a future theory was not in sight.
 Searching for such ontology would become Schrödinger’s main concern in the 
two decades to come from the cat paper (Schrödinger 1935) onward. Carrying out 
what Bitbol (1996) has convincingly reconstructed as a complex, yet largely co-
herent interpretational program involved additional philosophical ideas that tran-
scend the local Viennese tradition analyzed in the present paper, among them the 
measurement problem and the subject-object divide inherent by the Copenhagen 
interpretation.
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CHAPTER 36

MIKLÓS RÉDEI1

SOME HISTORICAL AND PHILOSOPHICAL ASPECTS

OF QUANTUM PROBABILITY THEORY AND ITS

INTERPRETATION

36.1 THE MAIN CLAIMS

This paper argues that von Neumann’s work on the theory of ‘rings of opera-
tors’ has the same role and significance for quantum probability theory that Kol-
mogorov and his work represents for classical probability theory: Kolmogorov
established classical probability theory as part of classical measure theory (Kol-
mogorov 1933); von Neumann established quantum probability theory as part of
non-classical (non-commutative) measure theory based on von Neumann algebras
(1935–1940). Since the quantum probability theory based on general von Neu-
mann algebras contains as a special case the classical probability theory (Sect. 36.2),
there is a very tight conceptual-structural similarity between classical and quan-
tum probability theory. But there is a major interpretational dissimilarity between
classical and quantum probability: a straightforward frequency interpretation of
non-classical probability is not possible (Sect. 36.3). A possible way of making
room for a frequency interpretation of quantum probability theory is to accept
the so-called Kolmogorovian Censorship Hypothesis, which can be shown to hold
for quantum probability theories based on the theory of von Neumann algebras
(Sect. 36.4), which however has both technical weaknesses and philosophical ram-
ifications that are unattractive, as will be seen in Sect. 36.4.

36.2 QUANTUM PROBABILITY THEORY

A general quantum probability space is the triplet

(N,P(N), φ) (36.1)

where N is a von Neumann algebra, P(N) is the lattice of projection of N and φ
is a normal state on N. (See Kadison and Ringrose 1986 or Takesaki 1979 for the
operator algebraic notions, or Rédei 1998 for a brief review of the basic concepts.)

1 Work supported in part by the Hungarian Scientific Research Found (OTKA), contract
number: K68043.
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Standard Hilbert space quantum probability theory is a particular case of (36.1):
taking as von Neumann algebra the set B(H) of all bounded operators on a Hilbert
space H the projection lattice P(B(H)) of B(H) is the set P(H) of all projec-
tions on H (Hilbert lattice) and φ is a normal state given by some density matrix.
(H,P(H), φ) refers to this situation.

Classical probability theory also can be regarded as a particular case of (36.1)
by taking the von Neumann algebraN to be commutative: a commutative von Neu-
mann algebra is isomorphic to the set L∞(X, S, μ) of essentially bounded measur-
able functions on a set X with a bounded measure μ on some Boolean algebra S

of subsets of X . Elements of X are the elementary random events, the projections
P(L∞(X, S, μ)) in L∞(X, S, μ) can be identified with the characteristic functions
of the subsets of X belonging to S (and thereby they can be identified with gen-
eral random events), and the functions in L∞(X, S, μ) are the classical random
variables. The normal state φ is a σ additive measure on P(L∞(X, S, μ)). Thus
a classical, Kolmogorovian probability measure space (X, S, p) can be recovered
as a particular case of quantum probability theory, showing that the conceptual
structure of classical and quantum probability theory is the same (see Rédei and
Summers 2007 for some more details about how classical probability theory is
contained in quantum probability theory). This is not to say that quantum prob-
ability theory does not have features that are not present in classical probability
theory (for instance entanglement) but the basic structure is the same. The crucial
difference between classical and quantum probability theory, which is the source
of all interpretational difficulties, is that the set of quantum random variables, the
von Neumann algebra P(N), is non-commutative (equivalently: the von Neumann
lattice P(N) is an orthomodular but not distributive lattice), whereas the algebra
of classical random variables L∞(X, S, μ) is commutative (equivalently: S is an
orthocomplemented distributive lattice, Boolean algebra).

The theory of von Neumann algebras was established by von Neumann (partly
in collaboration with J. Murray) during the 1930s in a series of ground-breaking
papers (Murray and von Neumann 1936, 1937; von Neumann 1940; Murray and
von Neumann 1943). Originally, von Neumann algebras were called ‘rings of op-
erators’, it was Dieudonné who suggested in 1954 to call ‘rings of operators’ von
Neumann algebras to acknowledge that it was von Neumann who established the
field (see von Neumann’s letter to Dixmier, June 18, 1954, Rédei (2005)). The
motivation to develop the theory of von Neumann algebras (and in particular clas-
sifying them) was not probability theory as such but the decomposition of quan-
tum systems into independent subsystems and the intention to show that there is
essentially only one way to do the decomposition (see Sect. 3. of the Introduc-
tion in Rédei (2005) for historical comments on the development of von Neumann
algebras).

A major result of Murray and von Neumann (1936) was the classification of
von Neumann algebras. They proved that the factor von Neumann algebras (the
ones in which there is no non-trivial element commuting with every element in
the algebra and from which non-factor von Neumann algebras can be put together)
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can be classified on the basis of the type of range of a so-called dimension function
d defined on the lattice of projections of the algebra. The types are summarized
in the table below. In the table the following notations are used. dim(H) is the
dimension of Hilbert space H. If H is N dimensional with some natural number
N , then this is indicated by writing H = HN . Tr denotes the trace functional on
the set of bounded operators B(H). When N is a type II1 von Neumann algebra
then τ denotes the normalized tracial dimension function on the projection lattice
P(N). In the left column of the table typical classical measure spaces and measures
μ are listed that correspond to the von Neumann algebra types.

From the point of view of probability theory the significance of the classifica-
tion (and of the fact there exist examples for each type), is that quantum probability
theory based on the theory of von Neumann algebras can model probabilistically
all types of quantum physical systems, even ones that cannot be described by stan-
dard Hilbert space probability theory, such as infinite lattice gases and relativistic
quantum fields (see Rédei and Summers 2007 for a concise review of these cases).

Table 36.1: Types of von Neumann algebras
Classical measure spaces von Neumann algebra types Name of type

X = {x1, x2, . . . xN} HN , dimHN = N , N = B(HN) type IN
S = P (X) P(N) = P(HN )
μ(xi) = 1 (i = 1, . . . N) d = Tr
Range of μ = {1, 2, . . . N} Range of d = {1, 2, . . . N}
Finite, discrete measure Finite, discrete measure (type)

X = {x1, x2, . . . xN , . . .} H, dimH = ∞, N = B(H) type I∞
S = P (X) P(N) = P(H)
μ(xi) = 1 (i = 1, . . .) d = Tr
Range of μ = {1, 2, . . .} Range of d = {1, 2, . . .}
Non-finite, discrete measure Non-finite, discrete measure (type)

X = [0, 1] N type II1
S = Borel σ-algebra of [0, 1] P(N)
μ = Lebesgue measure on [0, 1] d = τ dimension function
Range of μ = [0, 1] Range of τ = [0, 1]
Finite, continuous measure Finite, continuous measure (type)

X = IR N type II∞
S = Borel σ-algebra of IR P(N)
μ = Lebesgue measure on IR d dimension function
Range of μ = IR Range of d = IR
Non-finite, continuous Non-finite continuous (type)

N, P(N) type III
d dimension function
Range of d = {0,∞}
Very non-finite
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36.3 INTERPRETATION OF PROBABILITY

The general problem of interpretation of any probability theory is the problem
of specifying the relation between the mathematical structure (N,P(N), φ) and
elements of reality. Specifically, one has to answer these two questions:

1. What elements of reality correspond to elements of P(N) and their relations
as expressed by the lattice operations?

2. What is the meaning of φ(A) = r?

There are several possible answers to these questions but in application of prob-
ability theory in physics probabilities are typically tested by counting (relative)
frequencies, and the Boolean operations are interpreted according to a natural in-
tuition about events:

1. Every A either happens or does not happen.

2. If A happens then A⊥ does not happen.

3. If A happens and B happens then A ∧B happens.

4. If A ∨B happens then either A or B happens.

(1)–(4) mean that, under a natural interpretation of what events are, if P(N)
represents the event structure, then there exists a Boolean algebra homomorphism
h from P(N) into the two element Boolean algebra {0, 1}.

According to the relative frequency interpretation (worked out first system-
atically by Richard von Mises2 1919, 1928), the probability space (X, S, p) has
a relative frequency interpretation if there exists a fixed statistical ensemble E =
{e1, e2, . . .} of (countably infinite) elementary events such that the following hold:

• For every event A, it can be decided unambiguously and without changing
the ensemble whether ei is in A or not (whether ei realizes A or not).

• For every A ∈ S the number p(A) is equal to the limit of relative frequency
of event A in finite initial segments of {e1, e2, . . .}.

Such a frequency interpretation of a general, genuinely quantum (i.e. non-commu-
tative) probability space (N,P(N), φ) does not seem feasible however. We have
seen that under a natural interpretation of what events are, the assumption that the
von Neumann lattice P(N) is an event structure entails the existence of a Boolean
algebra homomorphism from P(N) into the two element Boolean algebra. But no
such homomorphism exists in the case of a genuinely non-classical P(N), as was
shown by Döring (2005):

2 Apart from the two requirements detailed here, von Mises requires the ensemble to be
random, which is a problematic requirement but does not play a role from the perspec-
tive of this paper, thus it is neglected here.
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Proposition 1 Under weak assumptions on the von Neumann algebra N (N must
not contain direct summand of type I1 and I2, see Table 36.1. For the types I1 and
I2), there exists no partial Boolean algebra homomorphism from the von Neumann
lattice P(N) into the two element Boolean algebra; hence there exists no Boolean
algebra homomorphism from P(N) into the two element Boolean algebra either.

A map h from P(N) is a partial Boolean algebra homomorphism if it is a Boolean
algebra homomorphism on every distributive sublattice of P(N).

Another obstacle standing in the way of the frequency interpretation of quan-
tum probabilities along the lines of the frequency interpretation of classical prob-
abilities is the following. The so-called “general additivity rule”:

p(A) + p(B) = p(A ∨B) + p(A ∧B), (36.2)

which holds for a classical probability measure, is a necessary condition for a
relative frequency interpretation in a fixed ensemble (with the understanding that
A ∨ B and A ∧B denote the events “either A or B happens” and “both A and B
happen”). This is because the function # defined by

{e1, e2, . . . eN} ⊇ A �→ #(A) = number of elements ei (i ≤ N ) in A, (36.3)

in terms of which the relative frequencies are computed, behaves like an ordinary
measure, for which (36.2) holds. In general, a quantum probability measure is not
additive in the sense of Eq. 36.2 however, as the following Proposition proved by
Petz and Zemanek (1988) shows.

Proposition 2 A normal state τ on a von Neumann algebra N satisfies the general
additivity rule (36.2) if and only if it is a trace.

The state τ is a trace by definition if

τ(XY ) = τ(Y X) for all X,Y ∈ N (36.4)

This means that only those quantum probabilities can be interpreted as relative
frequencies that are given by a tracial state. Since, however, a tracial state is pre-
cisely the state that disregards the non-commutativity of the algebra (in the sense of
Eq. 36.4), this indicates that genuinely quantum states and quantum probabilities
cannot be interpreted as relative frequencies.

Note that there exists no tracial state whatsoever in the Hilbert space formal-
ism: the only tracial functional on B(H), the standard Tr, is not bounded if H is
infinite dimensional. There exist tracial states on type II1 von Neumann algebras
however (the dimension function d in terms of which the von Neumann factors
are classified, is the restriction of a tracial state on N (see the Table 36.1.)). This
was the reason why von Neumann preferred the type II1 von Neumann algebras
to the Hilbert space formalism (see the papers (Rédei 1996, 1999, 2001, 2007) for
a detailed analysis of von Neumann’s preference of the type II1 algebras.)
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36.4 KOLMOGOROVIAN CENSORSHIP

It is a fact however that many probabilistic statements of quantum theory are tested
experimentally by counting frequencies. How is this compatible with the difficul-
ties outlined in the previous section? One answer to this question is the so-called
Kolmogorovian Censorship hypothesis.

The idea of Kolmogorovian Censorship hypothesis is that there are in fact no
genuinely non-classical probabilities: quantum probabilities are always classical
conditional probabilities of outcomes of measurements of quantum observables,
where the conditioning events are the events of choosing to set up a measuring
device to measure a certain observable.

To maintain such an interpretation, one has to prove formally that quantum
probabilities can in fact be viewed as classical conditional probabilities. A Kol-
mogorovian censorship proposition was first proved rigorously by Bana and Durt
(1997) for non-classical probability theories based on finite dimensional Hilbert
spaces. Subsequently, Szabó (2001) proved a Kolmogorovian Censorship propo-
sition for quantum probability spaces (H,P(H), φ) with an infinite dimensional
Hilbert space H. As it turns out, Szabó’s proof does not depend in any way on any
particular features of the non-classical probability theory (H,P(H), φ) (with an
infinite dimensional Hilbert space H) and could be carried over to von Neumann
algebras without any modification. This was shown in Rédei (2010). The next
Proposition formulates the Kolmogorovian Censorship for general non-classical
probability spaces given by arbitrary von Neumann algebras.

Proposition 3 (Kolmogorovian Censorship for von Neumann algebras)

1. Let (N,P(N), φ) be a non-commutative probability space with φ being a
normal state on the von Neumann algebra N.

2. Let Γ be a countable set of selfadjoint operators in N such that

[Q,R] 	= 0 if Q 	= R, 0 	= Q,R ∈ Γ. (36.5)

3. For every Q ∈ Γ, let P(Q) be a maximal Abelian sublattice of P(N) con-
taining all the spectral projections of Q.

4. Let a map p0 : Γ → [0, 1] be such that
∑

Q∈Γ

p0(Q) = 1 p0(Q) > 0 if Q 	= 0. (36.6)

Then there exists a classical probability space (X, S, p) with the following
properties:
For every projection AQ in any P(Q) there exist events AQ

cl and aQcl in S such that

AQ
cl ⊂ aQcl (36.7)

aQcl ∩ aRcl = 0 if Q 	= R (36.8)

φ(AQ) = p(AQ
cl|aQcl) (36.9)
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The interpretation of the assumptions and of the conclusion of Proposition 3 is the
following.

1. Intuitively, the set Γ of non-commuting selfadjoint operators is the set of
observables that are selected for measurement. The measurement device to
measure Q ∈ Γ is set up with probability p0(Q) specified in Eq. 36.6.

2. Events AQ
cl and aQcl are classical random events; intuitively AQ

cl is the event
representing a certain outcome of a measurement of Q; event aQcl represents
the ordinary, classical event of setting up the measurement device that mea-
sures the value of Q.

3. Condition (36.7) expresses that no outcome is possible without the event of
setting up a measuring device to measure observable Q.

4. Condition (36.8) expresses that incompatible observables Q and R cannot
be simultaneously measured; hence the events aQcl and aRcl representing the
setting up the measuring devices measuring Q and R, respectively, cannot
happen jointly, they are disjoint.

5. Condition (1) states that quantum probabilities can be written as classical
conditional probabilities: conditional probabilities of outcomes of measure-
ments on condition that the appropriate measuring device has been set up to
measure observables.

The Kolmogorovian Censorship Hypothesis makes it possible in principle to inter-
pret quantum probabilities in terms of relative frequencies in a given, fixed experi-
mental situation because it reduces the quantum probabilities to classical probabil-
ities; however, the Kolmogorovian censorship hypotheses is not without problems.
The problems are both technical and conceptual-philosophical.

The technical problem is that while Proposition 3 shows that quantum proba-
bilities can indeed be regarded as conditional probabilities in a classical probability
space, the assumption of countability of the set Γ of observables to be measured is
a serious restriction. In principle, any selfadjoint operator in N can be selected for
measurement and there are an uncountable number of incompatible observables in
N, even if N is the set of all bounded observables on a finite dimensional Hilbert
space; so a countably infinite Γ is a very “small” set. In other words, one the basis
of Proposition 3, one cannot claim that the whole non-commutative probability
theory (N,P(N), φ) can be interpreted according to the idea of Kolmogorovian
Censorship – not even in the case of finite dimensional Hilbert space probability
theory.

One could try to generalize Proposition 3 by allowing Γ to be the whole set of
observables; the problem with such an attempt is that even in this case at most a
countably infinite number of incompatible observables can be chosen to be mea-
sured with non-zero probability because by the definition of p and αaQ one has of
course

p0(Q) = p(αaQ) = p(aQ) (36.10)



504 Miklós Rédei

and it follows that if there are an uncountable number of observables in Γ then there
are an uncountable number of mutually disjoint measuring-device-set-up events
aQ and the σ-additivity of p excludes all having non-zero probability – at most a
countably infinite number of mutually disjoint events all having non-zero probabil-
ities can exist in a classical probability space. Thus there is no hope of a general-
ization of Proposition 3 by allowing Γ to be the whole set of observables, and this
fact limits severely the significance of the Kolmogorovian Censorship Hypothesis
as stated in Proposition 3.

Another, more philosophical problem with Kolmogorovian Censorship is its
instrumental character: accepting this “deconstruction” of quantum probabilities,
we are forced to acknowledge that it is meaningless to talk about quantum prob-
abilities without actually measuring them. Probabilities are thus not features of
quantum systems in and of themselves, they are features that only manifest them-
selves upon measurement. Philosophers (or physicists) with a robust realist con-
viction may find unattractive this strongly instrumentalist flavor of interpretation of
quantum probability forced upon us by the Kolmogorovian Censorship Hypothesis.

To sum up. The theory of von Neumann algebras (1935–1940) provides a
general non-classical (non-commutative) measure theoretical framework that can
accommodate both classical probability theory as this was formulated by Kol-
mogorov in terms of classical measure theory (1933) and standard Hilbert space
quantum probability theory summarized by von Neumann (1932).While there is
thus a very strong structural similarity between classical and quantum probability
theory, a straightforward frequency interpretation of quantum probability theory is
not possible. The Kolmogorovian Censorship Hypothesis re-interprets a general
quantum probability theory in terms of classical conditional probabilities and this
makes it possible to view quantum probabilities as relative frequencies in princi-
ple; however, this comes at the price of having to accept an instrumentalist view of
quantum probabilities. Thus the problem of how to interpret quantum probability
theory remains a conceptually intriguing issue.
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