
Chapter 15

Generalised Additive Models

Robert M. West

15.1 Introduction

The inclusion of continuous covariates in generalised linear models is common in

epidemiological applications. For example, age and deprivation are very common

confounders and so are often ‘adjusted for’. Sometimes, although covariates are

continuous, they are entered in discretised form. This is one method employed to

account for nonlinearity and is discussed in more detail below. The issue

concerning this chapter is that covariates need not enter a generalised linear

model merely as linear terms.

Specifically consider the outcome variable to be mortality and that a logistic

regression is used to model the effects of covariates. The model will be used to

explain mortality rather than simply to predict mortality. Epidemiological study

focuses on an exposure, which enters as a covariate. Age often has a clinically and

statistically large impact on mortality and, although often just a nuisance variable,

needs to be included as a covariate. It is sometimes, but not often, plausible that the

log odds of mortality increases linearly with age. More commonly the relationship

has greater complexity. If age is poorly modelled then the estimate of the exposure

of interest will be less accurate and biased. The log odds of mortality and age is

most likely to increase with age and is plausibly smooth: the question becomes how

the best model fit is obtained. The answer might be to use a transformation of the

covariate, consider higher-order terms, to fit splines, or to make use of the

techniques employed in Generalised Additive Models (GAMs).

Nonlinearity is not the only consideration that motivates the use of GAMs.

The difficulty of interactions, see Chap. 16, for continuous covariates has been

noted. In particular determining the functional form of second- and higher-order
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interactions is even more challenging than for a single main effect. The techniques

available with GAMs provide a suitable means to tackle this ferocious challenge.

The first step however is to focus on the challenges of nonlinearity for a single

main effect. Throughout this chapter data from a study of sympathetic nerve

activity has been selected to illustrate issues and procedures.

15.2 Sympathetic Nerve Activity: Basic Model

Sympathetic nerve activity (sna) is known to increase with age and so is a conve-

nient example for the topic of this chapter. Further, there is a complex relationship

with systolic blood pressure (sbp) as well, so that there are two continuous covariates
to explore inmodels of sna (Burns et al. 2007). The setting for this example is a study

where 172 volunteers were recruited in order to investigate certain aspects of the

variation of sna between individuals. For simplicity here only the effects of sex, age,
and sbp on sna will be considered, and although the causal relationship might be

debated, in this and the next chapter, sna is taken to depend upon the other variables.
The outcome sna is a measurement on a continuous scale, sex is a dichotomous

covariate (factor), and as mentioned above, age and sbp are continuous covariates.

A basic model will fit just linear terms as covariates. All modelling will be

undertaken in R since this statistical language is widely available (R Development

Core Team 2010) and has good capabilities, once the relevant libraries have been

downloaded. In R, models are specified by notation suggested by Wilkinson and

Rogers (1973), and is straightforward to follow. The basic model is specified by

sna ~ as.factor(sex) + age + sbp and the fitted model yields the results

given in Table 15.1.

Note that for this model the adjusted sum of squares is 0.60: 60% of variation is

explained by the model. The errors were also explored through plots, and it was

seen that the residual plot against the fitted values, the normal QQ plot, the scale

location plot and the leverage plots were all satisfactory. This is also true for all the

subsequent residual plots in this chapter.

For this basic model, the effects of age and sbp are clear: they are simply linear

terms. For completeness, and to permit comparison with later plots, graphical

representations are provided in Figs. 15.1 and 15.2. These include rug plots along

the abscissas to indicate for which ages and SBPs measurements of sna have been

recorded. Note also the ranges of the ordinates.

Table 15.1 Table of coefficients for the basic model

Coefficient Estimate 95% CI p-value

Intercept �16.6 (�26.5, �6.6) 0.00123

Male 7.3 (3.8, 10.8) 5.37e-05

Age 0.70 (3.8, 10.8) 6.24e-12

SBP 0.25 (0.16, 0.33) 4.54e-08
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Fig. 15.1 Term plot for linear age

Fig. 15.2 Term plot for linear SBP
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The use of discretisation of age into age groups has a long history. John Graunt

(1662) is one of the earliest to publish material (life tables) and establish this

methodology that has been exploited to great effect by modern insurance

companies as just one example. As more data is available, the width of the age

groups can be diminished, any errors due to discretisation will be minimal, and age

can be considered to be modelled sufficiently well.

Such fine discretisation is not however undertaken throughout epidemiology,

even when sample sizes are large: widths of age groups of 5 or 10 years can be

found. There is an issue of parsimony in the model. If m age groups are to be used

then (m-1) variables are required to model age. Then a polynomial of degree (m-1)
is just as parsimonious and should be considered, see Sect. 15.4.

Discretisation might be favoured for reasons of interpretation, especially with

logistic regression. For example age might be discretised as: Under 60, 60–69,

70–85, and Over 85 years. Then logistic regression delivers three odds ratios compar-

ing the odds of mortality for persons in the three older groups with those in the

youngest group. Interpretation is very simple in relation to the age effect. Effectively

though, age has been modelled as a step function. An individual of age 69 steps up

their risk on their seventieth birthday. There is certainly a discretisation error.

The main concern though is that inaccuracy in modelling age will result in inaccuracy

and bias for the role of other covariates including the exposure of interest.

Another concern about discretisation is that the number of groups and the group

boundaries need to be chosen. There may be clinical or political reasons for

specifying boundaries, such as achieving adult status at age 18, achieving retire-

ment age at 65, etc. The results achieved for all covariate coefficients will differ

when boundaries are changed. From a modelling perspective, the boundaries may

be chosen for example by minimising the Akaike Information Criterion (AIC),

although this may lead to what seem strange boundary values that once more lead to

interpretation difficulties, albeit a fascinating challenge to obtain an interpretation.

Where there is a choice of the number of groups and their boundaries,

there is ‘temptation’ to choose them to deliver the coefficient values of other

covariates that are most favoured—especially if the main exposure has a coefficient

close to statistical significance, but these issues are always present in complex

modelling situations.

When a continuous variable is discretised, it is easy to define a further category

of ‘missing’ when values are not recorded for some participants. This has great

appeal if such an approach is appropriate for the modelling of missing values—for

example where values are missing at random. In other circumstances however this

could be disastrous. Consider the case where age is withheld by either the very

young or very old for reasons of identifiability of those with a rare disease.

Then such a category is misleading and it might be more appropriate to consider

an imputation technique to handle missingness.

It is possible that some continuous covariates are discretised due to doubt about

their true nature. An example might be a score from a psychometric test, which is

not truly continuous, being the sum of (weighted) responses to a questionnaire.
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Established thresholds might be used, for example defining a patient as depressed if

he/she scores over a certain value on a depression scale. The underlying scale may

not regarded by all as ordinal, let alone continuous. It is not clear if the use of the

established thresholds improves matters. Information is lost regarding a variable

whenever it is discretised and so error is introduced into the model, and the model

cannot be improved by adding discretisation error. In such circumstances the

variable might be considered as measured with error: refer to Chap. 3.

Deprivation scores are also composites and their full validity is sometimes in

doubt: specifically the deprivation score of an area is associated with an individual.

Often in epidemiological studies continuous measures of deprivation such as the

Index of Multiple Deprivation or Townsend Score, are divided into fifths.

This allows for nonlinearity but again there must be discretisation error as well as

measurement error. The discretisation error might be avoided by using higher-order

terms of deprivation scores: polynomial expressions of deprivation. Plots of the

impact of deprivation on the modelled outcome will be required to facilitate

interpretation as seen below in Sect. 15.4.

15.3 Sympathetic Nerve Activity: Discretisation

The basic model provided a fit for all three covariates with highly significant values

for the three coefficients, but nonlinearity does potentially exist and an investiga-

tion is warranted. Here both age and sbp are discretised into five categories forming

the new variables agegp and sbpgp. Cut points for age were taken as 30, 40, 50, and
60 years. Those for sbpwere taken as 120, 140, 160, 180 mmHg. For both variables

the categories are all reasonably evenly populated whilst the cut points are easy to

interpret. Values of sbp above 140 mm Hg suggest hypertension and so 140 mm Hg

has some clinical meaning.

The model is specified by sna ~ as.factor(sex) + as.factor

(agegp) + as.factor(sbpgp), and results given in Table 15.2.

The contributions of the covariates age and sbp are expressed graphically in

Figs. 15.3 and 15.4. Note that one clear effect is that the ranges of the effects are

much reduced from those in the basic model: compare the graphs. For this model

with discretised covariates, the adjusted R2 ¼ 0.63, so that on the basis of the

proportion of variation that is represented, the model with discretised age and sbp is
preferred to the basic model.

From Table 15.2 it is strongly tempting to coalesce some categories, thus

improving the adjusted R2. In particular the exact match of the category boundary

for sbp with the definition of hypertension sbp ¼ 140 mm Hg, is extremely

tempting. Such a data-driven approach however can be regarded as over-fitting to

the dataset. If disctretisation is to be employed, it is advisable to fix the boundaries

of all categories before fitting to the data.
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Table 15.2 Table of

coefficients for the model

with discretised covariates

Coefficient Estimate 95% CI p-value

Intercept 25.0 (20.1,29.9) < 2e-16

Male 7.3 (4.0,10.7) 2.93e-5

Age [30,40) 13.4 (6.8,20.0) 9.33e-5

Age [40,50) 20.3 (3.9,26.7) 2.99e-9

Age [50,60) 22.7 (15.9,29.4) 5.13e-10

Age � 60 28.8 (20.5,37.1) 1.51e-10

SBP [120,140) 2.2 (�3.1,7.5) 0.413

SBP [140,160) 17.9 (12.1,23.7) 7.29e-9

SBP [160,180) 16.0 (10.3,21.7) 1.22e-7

SBP � 180 15.0 (6.8,23.2) 0.000419
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15.4 Higher-Order Terms

A very straightforward way to check if a covariate should appear as a linear term

only is to fit higher-order terms and test their significance. Thus if age has been

entered as a linear term, then adding age2 and age3 will reveal if the relationship is

more complex. Interpreting the contribution of that covariate is not so easy to from

a table of coefficients. It will be necessary to construct the fitted polynomial and

plot it in order to make the position clear.

A phrase attributed to George Box is commonly cited: ‘all models are wrong’.

By better fitting of covariates, the models will be improved and the effects of

exposures better assessed. Hence the added complexity of polynomial terms can be

justified. Measures of fit of models can be used to balance complexity against fit

such as adjusted R2, AIC, and others. There are often automated searches available

within software packages to obtain the best fit against these criteria. For example, R

has a function R::leaps::regsubsets(), Miller (2002), that can search for the

best fit by adjusted R2, and the functions R::stats::step() and R::MASS::

stepAIC() Venables and Ripley (2002) to search for the best fit by AIC. So there

can be few excuses for not exploring this approach.

Searching higher-order terms can be made more efficient and robust by using

orthogonal polynomials, Kennedy and Gentle (1980), due to increased numerical

stability and the ease with which the best degree can be determined: orthogonality

helps. In R, the function R::stats::poly() provides this ability. The function

R::stats::termplot() can be used to display the functional representation

and its influence on the outcome variable.

15.5 Sympathetic Nerve Activity: Higher-Order Terms

For the illustrative example, orthogonal polynomials were chosen, the formula in the

R code being sna ~ as.factor(sex) + poly(age,3) + poly(sbp,3).

From Table 15.3, the impact of the covariates on the outcome sna is not

immediately clear. This is where graphical representations become important.

Figures 15.5 and 15.6 demonstrate the effect of age and sbp effectively. Comparing

the graphical figures for each of the models that have been fitted, it appears that the

effect of age gives the largest range of effect in the model with higher-order terms,

the youngest age resulting in a sizable decrease in sna: see Sect. 15.6 below for

further comment.

Inspecting Fig. 15.6, the final downturn in the effect of SBP can be seen from

the rug plot to be based on just a few measurements where sbp is above 200 mmHg.

Considering also the marginal statistical significance (p ¼ 0.0744) of the cubic

term for sbp, many might consider refitting with only a quadratic polynomial

for sbp. The cubic representation is chosen here to identify that there is an

issue of how best to identify the degree of polynomial representations of covariates

in general: this issue is dealt with in Sect. 15.8.
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Table 15.3 Table of

coefficients for model with

higher-order terms of

covariates

Coefficient Estimate 95% CI p-value

Intercept 52.6 (50.2,54.9) < 2e-16

Male 6.3 (2.9,9.6,) 0.000265

Poly(age,3) 1 108.9 (81.4,136.4) 5.95e-13

Poly(age,3) 2 �27.3 (�49.9,�4.8) 0.0179

Poly(age,3) 3 42.2 (20.7,63.7) 0.000152

Poly(sbp,3) 1 85.7 (58.2,113.2) 5.60e-9

Poly(sbp,3) 2 �24.0 (�46.5,�1.5) 0.0364

Poly(sbp,3) 3 �19.4 (�40.7,1.9) 0.0744
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Note that for the model fitted with higher-order terms has two fewer parameters

than the model for which the continuous covariates have been discretised. It is not

only more parsimonious, but has an adjusted R2 ¼ 0.65, up from 0.63.

15.6 Splines

The complexity of the relationship between the continuous covariate and the

modelled outcome may be efficiently represented using splines. These are low-

order polynomials that are fitted locally but joined at knots smoothly, meaning that

at the knots the function represented by the spline, and perhaps also some of its

derivatives, are continuous. There are also advantages of numerical stability.

The term spline derives from thin strips of flexible wood that have been used in

construction to represent complex smooth curves. Fitting splines to covariates can

be thought of as taking a nonparametric approach.

In the few situations where a small extrapolation might be considered, splines

can often provide less extreme behaviour immediately beyond the range of the

covariate. Note that this was a concern in the example above, where the model with

higher-order terms predicted very low sna for the youngest subjects of the study.

Similarly the sharp decline of sna with increasing sbp above 200 mm Hg provides a

further reason to reconsider the model that was fitted. Runge’s phenomenon, Runge

(1901), which occurs with higher-order polynomials can become problematic.

A very nice overview of splines together with a discussion is provided by Eilers

and Marx (1996).

There are many ways to specify a basis for a spline fit, Wahba (1990), some

examples are B-splines de Boor (1978), P-splines Eilers and Marx (1996), natural

cubic splines, and O’Sullivan splines O’Sullivan et al. (1986). The order of the

spline approximation must be chosen, as must the number and the location of knots.

Penalised splines can be employed, see Sect. 15.8, and then further parameters are

involved: the smoothness parameter and the derivative to be smoothed. Smoothing

is not considered in this introductory section, but deferred until Sect. 15.8. Knots

are often evenly spaced, or placed at certain percentiles of the covariate.

15.7 Sympathetic Nerve Activity: Splines

To illustrate the use of splines, natural cubic splines are selected. A single internal

interpolation point is chosen as the median (50th percentile) for each of the two

covariates. The end points of the range of a covariate are automatically used as

knots, and without internal knots the spline degenerates to a polynomial fit.

The formula for use with R is sna ~ as.factor(sex) + ns(age,knots ¼
median(age)) + ns(sbp,knots ¼ median(sbp)).

In tabulated form, the results of the fit are provided in Table 15.4. It is noted that

the fit is not so satisfactory, with the adjusted R2 ¼ 0.62. The effects of the

covariates are given graphically in Figs. 15.7 and 15.8.
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Table 15.4 Table of coefficients for model with spline fits for covariates

Coefficient Estimate 95% CI p-value

Intercept 7.6 (�0.6,15.8) 0.0689

Male 6.2 (2.8,9.7) 0.000480

ns(age,knots ¼ median(age)) 1 57.1 (41.5,72.6) 1.63e-11

ns(age,knots ¼ median(age)) 2 20.7 (11.2,30.2) 2.80e-5

ns(age,knots ¼ median(sbp)) 1 46.0 (29.0,63.1) 3.33e-7

ns(age,knots ¼ median(sbp)) 2 20.7 (10.4,31.0) 0.000109

20

−3
0

−2
0

−1
0

0

P
ar

tia
l f

or
 n

s(
ag

e,
 k

no
ts

 =
 m

ed
ia

n(
ag

e)
)

10
20

30 40 50

age

60 70

Fig. 15.7 Term plot for

model with natural spline fit

for age

100

−2
0

−1
5

−1
0

−5
0

P
ar

tia
l f

or
 n

s(
sb

p,
 k

no
ts

 =
 c

(m
ed

ia
n(

sb
p)

))

5
10

120 140 160
sbp

180 200

Fig. 15.8 Term plot for

model with natural spline fit

for sbp

270 R.M. West



By comparison of Figs. 15.7 and 15.8 with preceding ones, it can be seen that

this particular spline fit gives rather different results for the effects of age and sbp
than the other models considered. The fit is better than that of the basic model, but it

is clear that there are challenges in finding the best spline representation. Those

providing libraries for GAMs have also provided tools to make spline selection

much easier and much more efficient: see Sect. 15.8.

15.8 Generalised Additive Models

Generalised additive models have continued to receive attention since their intro-

duction by Hastie and Tibshirani, see Hastie and Tibshirani (1986, 1990). Additive

models are ones where the effects of each covariate are added: there are no interac-

tion terms and so the additivity of effects is assumed. This chapter focusses on

nonlinearities whilst Chap. 16 enables the exploration of interactions. Hence here

the initial attention has been to the representation of the effect of each covariate with

a graphical representation of that effect to enable interpretation. GAMs continue this

theme. The generalised term simply refers to the fact that the methodology of

additive models (spline fits to covariates) can be just as easily applied to generalised

models, such as logistic regression, as well as it can be applied to linear regression.

Given the large number of parameters that need to be selected for a spline fit,

tools to provide automated choices save considerable effort and can provide some

objectivity. The principle of parsimony where a model with fewer parameters

is preferred to a more complex model is often to the forefront of automated

procedures. A statistical epidemiologist will be concerned with estimating the

effects of each covariate rather than intricate and subtle choices of parameters in

spline fitting and will want to utilise developed software tools with automated

choices rather than lavish time and resources on a general spline fit. There is

software available to fit GAMs in several statistical packages but here attention is

restricted to three libraries that are available in R and which provide more than

enough material for discussion in a single book chapter.

15.9 Smoothed Low-Order Splines

The fitting of very low-order splines as an initial data-exploration technique is well

established and often referred to as ‘lowess’ or ‘loess’. This approach is available for

covariates in generalised linear models and has been provided by Trevor Hastie in

the function R::gam::gam. The default settings are for a spline with degree ¼ 1

and span ¼ 0.5 so that fitting is performed with a proportion of the data (span) equal

to 0.5. Data points receive a tri-cubic weighting proportional to their distance from

the estimation point. It is possible to change the degree to be in {0, 1, 2} and the span

to be in (0,1]. The best policy might be to accept the default settings unless there is

evidence not to do so and focus attention on interpreting the effects of covariates.
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With the same function in the R::gam library it is possible to fit penalised

splines (smooths). The target number of degrees of freedom needs to be specified.

Rather than expand this aspect here, smooths are considered with the R::mgcv

package discussed in Sect. 15.11.

15.10 Sympathetic Nerve Activity: Loess Splines

The model was reformulated to include loess representation of the two continuous

covariates through the formula sna ~ as.factor(sex) + lo(age) + lo

(sbp). The fit is excellent with the adjusted R2 ¼ 0.66 and the significance of

terms is given in Table 15.5 with the nonlinear nonparametric effects of the

covariates shown in Figs. 15.9 and 15.10. Note that there is a facility to display

the partial deviance residuals, which was exploited and that upper and lower point-

wise twice-standard-error curves were included.

The fits obtained by R::gam::gam provide good material for an epidemiologist

to consider. The main features of the fits should be explained. Smaller details that

lead to a little jaggedness might be ignored in many cases. This approach to

interpretation suggests that a smoother fit might be warranted.

Table 15.5 Table of

coefficients for model with

loess fits for covariates

Coefficient Npar DF Npar F p-value

lo(age) 2.5 7.71 0.000232

lo(sbp) 3.1 6.88 0.000187
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15.11 Generalised Cross Validation

The advantages of automatic determination of parameters have been emphasised.

Simon Wood (2006) has published a most useful library for automatically fitting

GAMs with smooths for covariates, namely R::mgcv. Note that this library has a

function R::mgcv::gam so that it is important to ensure that the correct library has

been loaded into R.

A generalised linear model can be fitted by R::mgcv::gam identifying which

covariates a smooth is to be used: see example below. By cross validation, the ‘best’

smoothing parameter is chosen, yielding a totally automated procedure. In fact the

procedure used is generalised cross validation, which is numerically efficient and

yields results close to those of cross validation. Hence a powerful tool is made

available to explore smooth non-parametric nonlinearities in covariates for gener-

alised linear models.

15.12 Sympathetic Nerve Activity: Cross Validation

The formula needed to indicate smooths for age and sbp that is used in R::mgcv::

gam is sna ~ as.factor(sex) + s(age) + s(sbp) which reports signifi-

cance of smooths as is Table 15.6. The effects are shown graphically in

Figs. 15.11 and 15.12. Note the great similarity to the results with loess smoothing,

although of course the representation of each covariate effect is much smoother,

and perhaps therefore more credible in some circumstances. Partial residuals are

shown, as are ‘twice standard error’ curves.
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Table 15.6 Table of

coefficients for model

with smooths as

covariates

Coefficient edf Ref. df F p-value

s(age) 4.289 4.789 16.41 1.05e-12

s(sbp) 4.812 5.312 10.39 5.40e-9
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Although the main philosophy of GAMs is to assume additivity of covariate

effects, modelling can be extended in dimension by fitting higher-dimensional

splines to groups of covariates. This enables interactions to be visualised and

compared to strictly additive models. For example two covariates might be

suspected of interacting and it would then be appropriate to fit a two-dimension

spline. The function R::mgcv::gam enables higher-dimensional splines.

15.13 Sympathetic Nerve Activity: Two-Dimensional GAM

The fit with a two-dimensional spline for age and sbp give the best fit to date with

adjusted R2 ¼ 0.69 (Table 15.7). Thus there is evidence of an interaction between

age and sbp, see Chap. 16 where this interaction effect is considered further.

Figure 15.13 shows that there are no younger participants with hypertension

(high values of sbp) and no older participants with sbp in the normal range.

This might have been a property of the recruiting strategy, or it may be that older

people who volunteer for studies tend to have higher systolic blood pressure.

The study is cross-sectional rather than longitudinal but there are longitudinal

explanations that account for the relationship. Sympathetic nerve activity tends to

increase with age and is higher for hypertensives. For younger participants with

higher sbp, the increase of sna with age is more rapid (contours closer together).

Table 15.7 Table of

coefficients for model

with 2d smooth

Coefficient edf Ref. df F p-value

s(age,sbp) 12.82 13.32 26.15 <2e-16
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Note that standard error curves were omitted: the plot is already complex and

needs full-colour treatment if further information is to be included. For the 2d plot,

the standard se curves are �1 standard error rather than �2 standard errors as with

the one-dimensional curves.

15.14 Further Aspects of GAMS

This chapter provides an introduction only to GAMs motivating their use through

exploration of nonlinearities in covariate effects. Here is a brief mention of further

aspects.

A third library is available in R, namely Vector Generalised and Additive

Models, see Yee and Wild (1996). R::VGAM, that has been made available by

Thomas Yee and makes use of B-splines and O’Sullivan splines that have certain

advantages. The VGAM library is huge and there is a focus on multivariate

outcomes for generalised linear models and generalised additive models.

Random effects can be included in GAMs through the function R::mgcv::

gamm. Thus GAMs can be used in a multilevel context.

15.15 More on the Case Study

Further description of the case study of sympathetic nerve activity was delayed until

this point as the primary interest was the methodology for exploring nonlinearities

in covariates. Exploring different models however often helps to develop under-

standing of a situation, indeed that is one of the aims of modelling.

From each of the models it is clear that both age and sbp make significant

contributions to sna, explaining well over 50% of the variation in results. Exploring

residuals revealed nothing unusual so that for this application there was no indica-

tion that a linear model was unsuitable as regards the distribution of residuals.

Discretisation of covariates provided little extra information other than indicating

that the effect of sbp was far from linear. It is possible that a different discretisation

would have produced different results: model fitting has challenges. Fitting higher-

order terms was found to be no easier. By contrast the procedures for fitting GAMs

made modelling far simpler.

Figures 15.10 and 15.12 show partial residuals. These again indicate that the

distribution of residuals satisfy distributional assumptions of normality and homo-

geneity of variance. It is revealed also that there may be some digit preference for

some of the participants: those with sbp values of 110, 120 and 130, possibly 100,

whereas for other values there is no evidence of digit preference. Possibly a

different sphygmomanometer was employed for these participants, at a time

when younger normotensive volunteers were recruited to the study.
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Fitting of statistical models cannot of course reveal biological mechanisms, but

knowledge of biological mechanisms may aid in the interpretation of the statistical

models. For example, a plausible biological mechanism is that a state of hyperten-

sion where sbp is constantly raised can result in thickening of the left ventricle and

in central sympathetic nerve activity. This suggests that a step increase in sna is

plausible for patients with sbp above the acknowledged threshold for hypertension

of 140 mm Hg.

In Sect. 15.13 it was mentioned that the study was cross-sectional but the most

plausible interpretation was longitudinal. This suggests that a longitudinal study on

sympathetic nerve activity would be of interest. If sna is an indicator of progression
of cardiovascular disease, then a longitudinal study recording sna and cardiovascu-
lar events is suggested with analysis using random-effect GAMs.

15.16 Chapter Summary

A range of methods to explore nonlinearity in covariates has been outlined and

demonstrated with an example. There are considerable modelling challenges posed

when there are so many modelling options, and automated procedures were

advocated. Different approaches to modelling with GAMs were mentioned.

In particular, loess fits can be exploited through R::gam::gam and smooths can

be automatically selected through R::mgcv::gam. Both of these approaches with

GAMs have been shown to be capable of producing good modelling results with the

effects of covariates made clear through graphical plots.
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