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Preface

Statistical methods are important tools for scientific research to extract information

from data. Some statistical methods are simple whilst others are more complex, but

without such methods our data are just numbers and useless to our understanding of

the world we are living in. In epidemiology, researchers use more advanced and

complex statistical methods than colleagues who work with experimental data,

often under more controlled conditions than can be achieved with the larger

datasets and more “real-life” conditions required by observational data. The issues

of observational data are not just about the amount of data but also the quality of

data. Epidemiological data usually contains missing values in some variables for

some patients, and the instruments used for data collection may be less accurate or

precise than those used for experimental data. Therefore, textbooks of epidemiology

often contain much discussion of statistical methods for dealing with those problems

in analysis and interpretation of data, and very often they also contain some

discussion of the philosophy of science. This is because elaborating causes and

their consequences from observational data usually requires certain epistemological

theories about what constitutes “causes” and “effects”.

Routine applications of advanced statistical methods on real data have become

possible in the last 10 years because desktop computers have become much more

powerful and cheaper. However, proper understanding of the challenging statistical

theory behind those methods remains essential for correct application and inter-

pretation, and rarely seen in the medical literature. This textbook contains a general

introduction to those modern statistical methods that are becoming more important

in epidemiological research, to provide a starting point for those who are new to

epidemiology, and for those looking for guidance in more modern statistical

approaches. For those who wish to pursue these methods in greater depth, we

provide annotated lists of further reading material, which we hope are useful for

epidemiological researchers who wish to overcome the mathematical barrier of

applying those methods to their research.

The Centre for Epidemiology and Biostatistics at the University of Leeds,

United Kingdom, where we have been working for many years, has a masters
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degree programme in the field of Statistical Epidemiology, aiming to provide a

unique opportunity for researchers to obtain further training in both epidemiology

and statistics. Several modules in the programme teach statistical methods that are

not discussed in standard textbooks of epidemiology or biostatistics. For example,

very few textbooks of epidemiology discuss multilevel modelling, whilst very few

textbooks of biostatistics discuss confounding using Directed Acyclic Graphs

(DAGs). Here we bring these two important topics in modern epidemiology

together in the same book. For topics such as G-estimation, latent class analysis,

regression trees, or generalised additive modelling, students have previously had to

dig into monographs or journal articles for those methods, which are usually aimed

at more advanced readers. We feel that there is a need for a textbook that can be

used for teaching modern, advanced statistical methods to postgraduate students

studying epidemiology and biostatistics and also a good source of self-learning for

researchers in epidemiology and medicine. We therefore invited colleagues from

Leeds, Bristol, Cambridge and London in the United Kingdom, and colleagues in

Denmark and South Africa, all leading experts in their respective fields, to contrib-

ute to writing this book.

This volume contains 17 chapters dedicated to modern statistical methods for

epidemiology. The opening chapter starts with the most important, but also the most

controversial concept in epidemiology: confounding. Before the introduction of

DAGs into epidemiology, the definition of confounding was sometimes confusing

and deficient. Graham Law and his co-authors provide an overview of DAGs and

show why DAGs are so useful in statistical reasoning surrounding the potentially

causal relationships in observational research. Chapter 2 discusses another trou-

bling issue in observational research: incomplete data or missing data. James

Carpenter and his colleagues provide an overview of incomplete data problems in

biomedical research and various strategies for imputing missing values. At the heart

of all epidemiology is an appropriate assessment of exposure. Chapter 3 discusses

this problem of measurement error in epidemiological exposures. Darren Green-

wood provides a concise introduction to the problems caused by measurement error

and outlines some potential solutions that have been suggested. Chapter 4 discusses

the issue of selection bias in epidemiology, a particular problem in the context

of case-control studies. Graham Law and his co-authors use DAGs as a tool to

explain how this problem affects the results of observational studies and how it may

be resolved.

Chapter 5 discusses multilevel modelling for clustered data, a methodology also

widely used in social sciences research. Andrew Blance provides an overview of the

basic principles of multilevel models where random effects are assumed to follow a

normal distribution. In Chap. 6, Mark Gilthorpe and his co-authors discuss the

issues of outcomes formed from a mixture of distributions and use zero-inflated

models as an example. Chapter 7 can be seen as an extension of Chaps. 5 and 6.

Wendy Harrison and her co-authors discuss scenarios where the assumption that

random effects follow a normal distribution is not appropriate, instead assuming

a discrete distribution, describing discrete components that can be viewed as latent

classes. Chapters 8 and 9 both discuss Bayesian approach for sparse data, where
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observations of events are scattered in space or time, Chap. 8 discussing bivariate

disease mapping and Chap. 9 discussing multivariate survival mapping models.

Samuel Manda and Richard Feltbower use data from the Yorkshire region in

the United Kingdom and from the South Africa to illustrate these approaches. In

Chap. 10, Darren Greenwood discusses meta-analysis of observational data. This is

more complex than meta-analysis of randomised controlled trials because of greater

heterogeneity in design, analysis, and reporting of outcome and exposure variables.

Methods and software packages available to deal with those issues are discussed.

Chapter 11 returns to the concepts introduced in the opening chapters, focusing

on the resemblance between DAGs and path diagrams. Yu-Kang Tu explains how

to translate regression models into both DAGs and path diagrams and how those

graphical presentations can inform us the causal relations in the data. Chapter 12

discusses latent growth curve modelling, which is equivalent to multilevel model-

ling for longitudinal data analysis. Yu-Kang Tu and Francesco D’Auito use a

dataset from Periodontology to illustrate the flexibility of latent growth curve

modelling in accommodating nonlinear growth trajectories. These ideas are extended

in Chap. 13 by allowing random effects to follow a discrete distribution. DarrenDahly

shows how growthmixture modelling can be used to uncover distinctive early growth

trajectories, which may be associated with increased disease risk in later life. Chapter

14 focuses on the problem of time-varying confounding, and Kate Tilling and her

colleagues explain how G-estimation may be used to overcome it.

Chapter 15 discusses generalised additive modelling for exploring non-linear

associations between variables. Robert West gives a concise introduction to this

complex method and shows how it can be extended to multivariable models.

He then continues to explain regression trees and other advanced methods for

classification of variables in Chap. 16. These methods have become popular in

biomedical research for modelling decision-making. In the final chapter, Mark

Gilthorpe and David Clayton discuss the intricate issues surrounding statistical

and biological interaction. They use the example of gene-environment interaction

to show that statistical interactions and biological interactions are different con-

cepts and much confusion arises where the former is used to describe the latter.

Editing this book has been an exciting experience, and we would like to thank all

the authors for their excellent contributions. We also want to thank Dr Brian Cattle

for his help with the preparation of the book and our editors in Springer for their

patience with this project.

Leeds, UK Yu-Kang Tu

Darren C. Greenwood
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Chapter 1

Confounding and Causal Path Diagrams

Graham R. Law, Rosie Green, and George T.H. Ellison

1.1 Causal Models

The issue of causation is a challenging one for epidemiologists. Politicians and the

public want to know whether something of concern causes a disease or influences

the effectiveness of healthcare services. However, the training provided to

statisticians, and to scientists more generally, tends to stress that non-experimental

research will only ever offer evidence for association and that suitably designed

experimental studies are required to offer robust evidence of causation. In the real

world, where experimental data are rare, difficult or impossible to produce, the

extent to which associations between variables can and should be interpreted as

evidence of causality is less a technical question than a philosophical, moral,

cultural or political one. These issues have been discussed at some length elsewhere

(see for example Susser 1973; and Pearl 1998, 2000), and although these influence

the extent to which associational evidence from non-experimental studies is (and

should be) used in real-world settings, the following Chapter will focus on the more

technical issue of strengthening the causal inferences drawn from non-experimental

data by using causal path diagrams when designing and describing the analysis of

data from non-experimental studies. In this chapter we will introduce causal path

diagrams (specifically Directed Acyclic Graphs; DAGs) and explore the issue of

confounding.
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1.1.1 Directed Acyclic Diagrams (DAGs), Nomenclature
and Notation

A causal path diagram is a visual summary of the likely (and, where relevant, the

speculative) causal links between variables. Constructing these diagrams is based

on a priori knowledge and, in the case of speculative and hypothesised relationships
being explored in the analysis, on conjecture. Causal path diagrams have been used

informally for many years in causal analysis and in recent years have been formally

developed for use in expert-systems research (Greenland et al. 1999). Although

such diagrams are beginning to be adopted by the epidemiological community

(Hoggart et al. 2003; Hernandez-Dı̀az et al. 2006; Shrier and Platt 2008; Head et al.

2008, 2009; Geneletti et al. 2011; Tu and Gilthorpe 2012), a causal diagram is still a

novel epidemiological tool which can be used in a variety of ways: to think clearly

about how exposure, disease and potential confounder variables, relevant to the

research hypothesis, are related to each other; to communicate these inter-

relationships to academic and professional audiences; to indicate which variables

were important to measure; and to inform the statistical modelling process –

particularly the identification of confounding, confounders and competing

exposures.

In this Chapter we discuss the use of causal path diagrams (Pearl 2000), specifically

Directed Acyclic Graphs (DAGs), to develop models that can inform the analysis of

one variable (the ‘exposure’) as a potential cause of another (the ‘outcome’). Within

epidemiology, such analyses include exploring: the potential role of risk factors

(as ‘exposures’) in the aetiology of disease (where the ‘outcome’ is the prevalence,

incidence or severity of disease); and the role of specific characteristics of healthcare

systems (where these characteristics are the ‘exposures’) in the effective and efficient

delivery of health services (where this constitutes the ‘outcome’).

1.1.1.1 Nomenclature and the Construction of DAGs

The nomenclature of DAGs is still evolving, and can be off-putting to the uninitiated,

particularly when accompanied by statistical notation (such as that developed by

Geneletti et al. (2009)). However, the terminology that is developing helps to specify

each of the components of DAGs in a way that facilitates their consistent application

and further utility. And, with this in mind, we have provided a comprehensive

glossary of terms in Table 1.1, and a more detailed explanation of these below.

Nodes, Arcs and Directed Arcs

In statistical parlance, each variable in a DAG is represented by a node (also known

as a vertex), and relationships between two variables are depicted by a line connecting
the nodes, called an arc (or alternatively an edge or a line). A directed arc indicates

2 G.R. Law et al.



known (i.e. from a firm grasp of established functional biological, social or clinical

relationships between variables); likely (i.e. from previous robust empirical studies);

or speculative (i.e. hypothesised) relationships between any two variables, with an

arrow representing causality – the direction of causality following in the direction of

the arrow. For example, ‘X causes Y’ would be represented as X! Y, where X and Y
are nodes (or vertices) and the arrow between them is an arc (or edge or line).

Parents, Children, Ancestors and Descendants

DAGs are usually depicted with the nodes arranged in a temporal and thus causal

sequence, with the preceding variables to the left of the diagram and subsequent

Table 1.1 Glossary of terms for causal diagrams

Term Description

Ancestor A variable that causes another variable in a causal path in which there are

intermediary variables situated along the causal/direct path between them

Arc A line with one arrow that connects two nodes (synonymous with edge and
line)

Backdoor path A path that goes against the direction of the arc on the path, but can then follow
or oppose the direction of any subsequent arc

Blocked path A path that contains at least one collider

Causal path A path that follows the direction of the arcs (synonymous with direct path)

Child A variable that is directly affected by another variable, with no intermediary

variables situated along the causal path between them

Collider A variable that a path both enters and exits via arcs

Descendant A variable that is caused by one or more preceding variables in a direct causal
path in which there is one or more intermediary variables situated along the

causal path between them

Direct path A path that follows the direction of the arcs (synonymous with causal path)

Directed arc An arrow between two variables that indicates a known, likely or speculative

causal relationship between them

Edge A line with one arrow that connects two nodes (synonymous with arc and line)

Line A line with one arrow that connects two nodes (synonymous with arc and
edge)

Node A point within the diagram which denotes a variable, such as the (key)

exposure variable of interest, the (key) outcome (of interest), and another

covariates (synonymous with vertex)

Parent A variable that directly affects another variable, with no intermediary variables

situated along the causal path between them

Path An unbroken route between two variables, in either direction (synonymous

with route)

Route An unbroken route between two variables, in either direction (synonymous

with path)

Unblocked path A path that does not contain a collider

Vertex A point within the diagram which denotes a variable, such as the (key)

exposure variable of interest, the (key) outcome (of interest), and another

covariates (synonymous with vertex)
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variables to the right. This is not mandatory, but can help when deciding which of

two closely related variables precedes the other and acts as its cause. A node

immediately preceding another node to which it is connected (i.e. a node at the

non-arrow end of an arc) is known as a parent of the node at the arrow end of the

arc, which is in turn known as a child. Thus, in the example X! Y, X is the parent

node and Y is the child. Similarly, a node ‘preceding’ another node but connected to

another node via at least one other node is known as an ancestor, whereas the

preceding node from which it is separated is known as a descendent. Therefore,
in the example X ! Y ! Z, X is the ancestor of Z, and Z is the descendent of

X; while Y (which is a child of X and a parent of Z) lies on the causal pathway

between X and Z.

Directed Paths, Backdoor Paths, Colliders and Blocked Paths

A path is the sequence of arcs connecting two or more nodes, thus X ! Y ! Z is

the path (or route) connecting the nodes X and Z. A direct (or causal) path is one

where the arcs all follow in the direction of causality. In contrast, a backdoor path is
where one exits a node along an arc pointing into it, against the causal direction, to

another node across any number of arcs pointing in either direction. For example,

when X  Z ! Y backdoor path exists between X and Y via Z. A node becomes a

collider where both arcs of the path entering and leaving the node have arrows

pointing into it. For example, Y is a collider when X! Y  Z and a path is blocked
if it contains at least one collider. A directed acyclic graph occurs if no directed

path forms a closed loop, reflecting the assumption that that no variable can cause

itself (an assumption that may limit the utility of DAGs for modelling functional

processes containing positive or negative feedback loops).

Identification of Arcs

All arcs in a DAG reflect a priori presumptions about cause and effect in a specific

context. Some of these presumptions will be based on known causal relationships

between variables (drawing on established functional biological, social and clinical

processes); others on likely causal relationships (drawing, for example, on the

statistical findings of previous robust empirical studies); as well as speculative

relationships (drawing on unsubstantiated hypotheses – including the specific

hypotheses being tested in the analyses). These arc-related presumptions cannot

(and should not) be inferred empirically from data on which the analyses will be

conducted, but must be drawn from established mechanisms or strong research

evidence, both of which are crucial for developing an accurate DAG as the basis on

which suitable statistical analyses can then be designed (Tu et al. 2004; Weinberg

2005; Tu and Githorpe 2012).

4 G.R. Law et al.



1.1.1.2 Notation

An additional technical approach to represent the statistical relationships

between variables (as nodes) in causal path diagrams is to use the notation

developed by Geneletti et al. (2009). For example, the notation A � BjC signifies

A as being independent of B given C, where A, B and C are known variables.

For example the DAG represented in Fig. 1.1 consists of 5 variables: E the

exposure of interest, O the outcome of interest and 3 other additional variables

A, B, and C.
In Fig. 1.1a the exposure, E, causes the outcome, O. This can be represented as

O n� E

1.1.2 The Speculative Nature of DAGs and Their Limitations

In most research studies the causal pathways described and summarised within

causal path diagrams are not established (i.e. ‘proven’) causal relationships, but

are in the main based on evidence from whatever previous studies are available.

Proof in this context is essentially more of a philosophical than a scientific

concept, and can be subject to intense debate. The pathways included in the

diagrams are therefore often based on: (i) incomplete or predominantly theoretical

understanding (rather than established knowledge) of the functional relationships

between the variables involved; (ii) the statistical findings of empirical research

which may not themselves be definitive; and (iii) hypotheses based on putative,

tentative or speculative beliefs about the sorts of relationships that exist – not least

the one between the exposure(s) and the outcomes that the study set out to

address. These three very different ingredients involved in the conceptualisation

of causal pathways are important to recognise as they influence both: the extent to

which different causal path diagrams can be drawn for the same variables

(reflecting different views of what is known, likely or speculative) and the extent

E 

A 

O 

C 

B 

E 

A 

O 

C 

B 

a b c
E 

A 

O 

C 

B 

Fig. 1.1 An example of Directed Acyclic Graphs. Key to variables: E exposure, O outcome, A, B,
C additional
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to which these different diagrams might be more (or less) useful for generating

robust evidence of causality between two or more specific variables. Despite this

DAGs are useful because they force researchers to make explicit their

presumptions about the relationships between pairs of variables, whether or not

these presumptions prove to be correct. Other analysts are then able to critique,

(re)interpret and (where necessary) repeat and improve on the analyses

conducted, based on different presumptions or firmer knowledge of the causal

relationships involved.

However, alongside their assumption that no variable can be its own cause

(which, as mentioned earlier, reduces the utility of DAGs for modelling systems

containing feedback loops), a key limitation of DAGs is that they will only ever be

able to include variables (as nodes) that are (as Donald Rumsfeld would have it)

‘knowns’ (i.e. are recognised as conceptual entities within the epistemological

context concerned). Likewise, analyses based on DAGs will only ever be

able to include those variables for which data are available (i.e. that have been

measured – in Donald Rumsfeld’s parlance, ‘known knowns’). This is a fundamen-

tal limitation of all analyses of data from non-randomised non-experimental stud-

ies, not least because unknown or unmeasured confounders cannot be taken

into account when modelling or analysing potential causal relationships. Nonethe-

less, using DAGs to identify the most appropriate statistical analyses for any given

set of measured variables will reduce the likelihood that these are subject to

confounding (from known and measured confounders) and help others to critique,

(re)interpret and (where necessary and possible) repeat and improve on the analyses

conducted. These then are the core strengths of using DAGs to design the analysis

of data from non-experimental studies – strengths we explore in greater detail in

Sect. 1.2.4, below.

Meanwhile, another potential limitation of DAGs is that, despite the potential

for visual complexity (particularly for those DAGs with more than a handful of

nodes), they are essentially an oversimplification of the causal relationships

between variables. For example, a causal diagram does not indicate whether

an effect is harmful or protective or whether effect modification is actually

occurring (Hernan et al. 2004 – although Weinberg 2007 recently suggested how

DAGs might be modified to include this), nor does a causal diagram identify

whether a cause is sufficient or necessary to elicit the outcome(s) involved

(Rothman 1976). Nonetheless, it bears restating that one of the key strengths

of such diagrams is that they enable researchers to think clearly and logically

about the research question at hand, and to make explicit any presumptions that

are being made about the (presumed) relationships between the pairs of variables

involved. This visual summary can then be used as an aid to communicate

these inter-relationships to academic and professional audiences and to explicitly

identify, for example, if important variables or relationships are missing from

or misrepresented in the diagram or, indeed, whether any of the presumed

relationships are contentious.
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1.1.3 Notation

One way to represent the statistical relationships between variables (as nodes) in

causal diagrams is to use the notation developed by Geneletti and colleagues

(2009). For example, the notation A � BjC signifies A is independent of B given

C, where A, B and C are known variables. For example the DAG represented in

Fig. 1.1 consists of 5 variables: E the exposure of interest, O the outcome of interest

and 3 other additional variables A, B, and C.
In Fig. 1.1a the exposure, E, causes the outcome, O. This can be represented as

O n� E

A common practice in epidemiology is to consider other covariates at the same

time as the exposure. For example, these might include a measure of socio-

economic status, age or sex.

1.2 Confounding and Confounders

Confounding is a central concept in epidemiological research. It is a process that

can generate biased results when examining the association between exposure and

outcome. Historically there have been many definitions of confounding, but they

may be divided broadly into two main types: “comparability-based” and “collaps-

ibility-based” (Greenland and Robins 1986):

• In terms of the “comparability-based” definition, confounding is said to occur

when there are differences in outcome in the unexposed and exposed populations

that are not due to the exposure, but are due to other variables that may be

referred to as ‘confounders’. This results in bias in the estimate of the effect of a

particular exposure on a particular outcome (McNamee 2003).

• In terms of the “collapsibility-based” definition, confounding may be: (i)

reduced by adjusting the data by the potential confounder; or (ii) eliminated by

stratifying the data by the potential confounder (McNamee 2003). This second

definition is therefore based solely on statistical considerations and confounding

is said to occur if there is a difference between unadjusted or “collapsed”

estimates of the effect of exposure on outcome and estimates that have been

adjusted or stratified by the potential confounder.

Although these two definitions of confounding have often been considered indis-

tinguishable, focusing on confounding as a causal rather than a statistical issue leads

one to adopt the “comparability-based” definition over the “collapsibility-based”

definition (Greenland and Morgenstern 2001). The “comparability-based” definition

of confounding can then be used to establish which epidemiological criteria can and

should be used to establish whether a variable should be classified as a confounder or

not. First, the variable concerned must be a cause of the outcome (or a proxy for a
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cause) in unexposed subjects (i.e. a ‘risk factor’). Second, the variable concernedmust

be correlated with the exposure variable within the study population concerned.

Finally, the variable concerned must not be situated on any causal pathway between

exposure and outcome (Hennekens and Buring 1987). More recently, the last of these

three conditions has been replaced with an even stricter one: the variable concerned

must not be an effect of the exposure (McNamee 2003).

Confounding can exist at the level of the population, or as a consequence of a

biased sample. This is an important point; the consideration of confounding should

not be solely based on a study sample, indeed it may be the case that apparent

confounding in a study is due to sampling and is not true confounding in the

population as a whole. Many studies are often able to identify more than one

relevant confounder in their analyses, and we will discuss later how one might

establish whether the analyses have accounted for a sufficient set of confounders (or

whether too few/too many have been included in the analyses: see Sect. 1.2.3,

below).

We may have a situation where E! O and A! O, but there is no association

between E and A. This happens in a successfully randomised controlled trial (RCT)

where baseline variables (A) are balanced between groups – so A is independent of

E (due to the success of randomisation for treatments). Nonetheless, because A is a

competing exposure for O, the precision with which the relationship between E and

O is characterised improves after adjusting for A.

1.2.1 Confounding and DAGs

The use of causal path diagrams to identify confounding and confounders in

epidemiological research was introduced by Greenland et al. (1999). The use of

DAGs represents a rigorous approach to assessing confounding and identifying

confounders, and DAGs are particularly useful given the absence of any objective

criteria or test for establishing the presence (or absence) of confounding. Compared

with the use of traditional epidemiological criteria to identify confounders, the

key additional insight that DAGs provide is the extent to which adjustment for

a confounding variable may create further confounding which in turn requires

adjustment (Greenland et al. 1999). DAGs also allow analysts to select a subset

of potential confounders (i.e. a subset selected from all identified potential

confounders) that is sufficient to adjust for potential confounding. Indeed, DAGs

can be used to identify the full range of such subsets and thereby test and select the

most appropriate one to use (Greenland et al. 1999).

1.2.2 Identifying Confounding

In order to explain how DAGs can be used to determine whether there is potential

for confounding in the apparent relationship between an exposure and an outcome

let us first use a simple DAG as an example (see Fig. 1.1a). To determine
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if confounding is present the following algorithm is applied to the DAG (Greenland

et al. 1999):

(i) delete all single headed arrows that exit from the exposure variable (i.e. remove

all exposure effects); and

(ii) check if there are any unblocked backdoor paths from exposure to outcome

(i.e. examine whether exposure and outcome have a common cause).

If there are no unblocked backdoor paths the relationship between exposure and

outcome should not be subject to potential confounding (albeit from those variables

that have been measured precisely and are available for inclusion in the model and

its related statistical analyses). For example, in order to check if the relationship of

E on O in Fig. 1.1a is subject to potential confounding:

(i) the arrow between E and O is deleted; and

check if there are any unblocked backdoor paths from E to O (there are three:

E  C ! O; E  A ! C ! O; and E  C  B ! O)

Because there are three unblocked backdoor paths from E to O, there is the

potential for confounding of the effect of E on O, because we can identify three

potential confounders – A and B, and C (which lies on the pathway between A and

O, and between B and E). When confounding is present an additional algorithm can

be applied to identify where adjustment is required and of which variables (see

Sect. 1.2.3 below).

However, before we address this it is important to point out that two variables

that are not associated with each other, and that share a child (or descendent) that is

a confounder, may also become associated within at least one stratum of the

confounder. This is a well-established observation in epidemiological research

(Weinberg 1993). Adjusting for one confounder may also alter the associations

between other variables. In a DAG, this is equivalent to creating a non-directed arc

between the two variables and therefore a new backdoor path that has to be dealt

with when adjusting for confounding. This can be illustrated using the example in

Fig. 1.1a, where controlling only for C in the relationship between E and O may

create an association between A and B, because both A and B are parents of C. If this
is the case, then A and Bmust also be included as confounders, otherwise additional

confounding will have been introduced by adjustment for C alone.

1.2.3 Sufficient Set of Confounders

Where confounding is present it is usually possible and desirable to identify

a subset of variables (S) using a DAG that is sufficient to address confounding

through adjustment. In other words, S constitutes the subset of variables with which
it is possible to address all confounding through adjustment. In order to
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assesswhether S removes all confounding another algorithm is applied to the DAG

(Pearl 1993):

(i) delete all single headed arrows that exit from the exposure variable;

(ii) draw non-directed arcs that connect each pair of variables that share a child

that is either in S or has a descendant in S (i.e. account for any associations

between variables that are generated by controlling for S); and
(iii) check if there are any unblocked backdoor paths from exposure to outcome

that do not pass through S – if there is no unblocked backdoor path then S is

sufficient for control of confounding.

If we apply this algorithm to the five-variable DAG described earlier in Fig. 1.1a

to check whether a tentative set of variables (S’) that contains A, B and C would be

sufficient for controlling for any potential confounding control would involve:

(i) deleting the arrow between E and O;
(ii) drawing a nondirected arc between A and B (since C is a child of A and B; see

Fig. 1.1c); and

(iii) assessing whether there are no unblocked backdoor paths from E to O that do

not pass through A, B and C (there are none).

Using this approach in this example would therefore lead us to conclude that

adjusting for A, B and C would be sufficient to address potential for confounding in

the relationship between E and O.
However, in order to check whether there might be an even smaller subset of the

tentative subset of confounders (S’; A, B, and C) it is worth exploring the

consequences of deleting each of these variables in turn:

Deleting A would still mean that:

• the backdoor path E  A � B ! O in Fig. 1.1c would be blocked at B;
• E  A � B ! C ! O would be blocked at B;
• E  A ! C ! O would be blocked at C; and
• E  C ! O would be blocked at C.

Therefore B and C are minimally sufficient. In other words, it is not necessary to

adjust for A in addition to B and C.
Deleting B would mean that:

• the backdoor path E  A � B ! O in Fig. 1.1c would be blocked at A;
• E  A � B ! C ! O would be blocked at A;
• E  A ! C ! O would be blocked at A; and
• E  C ! O would be blocked at C.

Therefore A and C (like B and C, above) would also be minimally sufficient.

Deleting C would mean that:

• the backdoor path E  A ! C ! O in Fig. 1.1c would be blocked at A;
• E  C ! B ! O would be blocked at B; and
• E  C ! O would be blocked

Therefore A and B would not be minimally sufficient.
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As this example shows, there can be more than one minimally sufficient set (S).
However, these sets may also vary in size and may not necessarily overlap

(Greenland et al. 1999). It can therefore be helpful to identify all minimally

sufficient sets so that the best one can be chosen for dealing with confounding

through adjustment. For example, some sets may need to be rejected if they contain

variables that were not measured in the study. Others may be rejected due to

concerns about measurement error, or because they contain many more variables

than other sets and would thereby generate less precise estimates from multivari-

able statistical analyses on the sample sizes available. As such an important

advantage of using DAGs over traditional approaches to identifying potential

confounding is that the latter are usually unable to identify any of the potential

sufficient subsets of potential confounders, and all potential confounders would

therefore need to be included in the analysis (at cost to the precision of the estimates

produced).

1.2.4 Strengths and Weaknesses of Causal Path Diagrams

As we have shown in this chapter, DAGs can be used to identify confounding and

confounders in a systematic way, and by helping researchers to identify these

objectively and explicitly, DAGs can help to reduce bias and advance debate.

Moreover, despite the various limitation mentioned earlier in this Chapter

(see Sect. 1.1.2, above), one of the main strengths of using causal path diagrams

in epidemiological analyses of data from non-experimental studies is that it enables

researchers to think clearly and logically about the known, likely and speculative
causal relationships between variables that are relevant to the research hypothesis

and related analytical questions. Causal path diagrams thereby facilitate the com-

munication of any causal presumptions that have been made during data analysis to

academic and professional audiences using a structured approach that is explicit

and easy to critique or re-model.

DAGs also enable the identification of variables that are important to measure in

a prospective research study, and thereby improve the efficiency of both data

collection and statistical analyses by avoiding the unnecessary measurement or

inclusion of variables that are irrelevant to the study and its analysis.

Nonetheless, a somewhat surprising feature of tackling confounding using

DAGs is that incorrect specification of the model itself can itself create more

problems than it solves. For example, bias may be introduced by including variables

that are consequences of the exposure, while additional confounding may be

created by including variables that are common descendents of other confounders.

Likewise, as we saw earlier, stratification may lead to key changes to some of the

paths within the DAG, and these changes may lead to previously blocked paths

becoming unblocked and causing further confounding. However, both of these

potential flaws can be put to good use in identifying whether adjustment for specific

confounders might create new associations between variables that may generate
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further confounding that will also need to be addressed. As such, these features are

arguably an additional strength of using DAGs in analytical design.

One important weakness of DAGs is that with increasing numbers of highly

inter-related variables they can rapidly become visually complex to read.

DAGs also represent an inherent oversimplification of causal relationships between

variables as they do not indicate whether: any relationships are positive or negative

(e.g. harmful or protective); effect modification might occur; each causal relation-

ship is weak or strong; and some of the variables might only be able to cause an

effect in combination with other variables.

Moreover, as with all causal models, DAGs are only as good as the functional

and empirical knowledge and speculative hypotheses on which they are based.

In particular, DAGs may be based on a set of presumptions that are wrong (either as

a result of incorrect knowledge, weak empirical evidence or fallacious hypotheses).

However, because DAGs ensure that these presumptions are explicitly stated, the

key benefit of DAGs is that they facilitate criticism, (re) interpretation and (where

necessary) modification of the model to assess whether different conclusions would

be reached about: which variables are true confounders (see Chap. 11 on structural

equation modelling); and which subset of variables are best to adjust for in order to

address confounding while taking into account the availability and quality of data

on each of the variables involved.

1.3 Conclusions

Directed acyclic graphs (DAGs) have great potential utility in epidemiological

analyses of data from non-experimental studies; not least because they encourage

researchers to formally structure presumed and predicted causal pathways.

These causal path diagrams are essentially intuitive to construct but nonetheless

require considered thought. As with all models, careful interpretation remains

imperative. Following established algorithms, they can nonetheless be used to

identify sufficient sets of confounders which will greatly advance analytical

modelling strategies and their subsequent interpretation, critique, testing and

re-modelling by other researchers.

References

Geneletti, S., Richardson, S., & Best, N. (2009). Adjusting for selection bias in retrospective,

case-control studies. Biostatistics, 10, 17–31.
Geneletti, S., Gallo, V., Porta, M., Khoury, M. J., & Vineis, P. (2011). Assessing causal

relationships in genomics: From Bradford-Hill criteria to complex gene-environment

interactions and directed acyclic graphs. Emerging Themes in Epidemiology, 8, 5.
Greenland, S., & Morgenstern, H. (2001). Confounding in health research. Annual Review of

Public Health, 22, 189–212.

12 G.R. Law et al.

http://dx.doi.org/10.1007/978-94-007-3024-3_11


Greenland, S., & Robins, J. M. (1986). Identifiability, exchangeability, and epidemiological

confounding. International Journal of Epidemiology, 15, 413–419.
Greenland, S., Pearl, J., & Robins, J. M. (1999). Causal diagrams for epidemiologic research.

Epidemiology, 10, 37–48.
Head, R. F., Gilthorpe, M. S., Byrom, A., & Ellison, G. T. H. (2008). Cardiovascular disease in a

cohort exposed to the 1940–45 Channel Islands occupation. BMC Public Health, 8, 303.
Head, R. F., Gilthorpe, M. S., & Ellison, G. T. H. (2009). Cholesterol levels in later life amongst

UK Channel Islanders exposed to the 1940–45 German occupation as children, adolescents and

young adults. Nutrition and Health, 20, 91–105.
Hennekens, C. H., & Buring, J. E. (1987). Epidemiology in medicine (1st ed.).

Boston/Toronto: Little Brown and Company.

Hernan, M. A., Hernandez-Dı̀az, S., & Robins, J. M. (2004). A structural approach to selection

bias. Epidemiology, 15, 615–625.
Hernandez-Dı̀az, S., Schisterman, E. F., & Hernan, M. A. (2006). The birth weight “paradox”

uncovered? American Journal of Epidemiology, 146, 1115–1120.
Hoggart, C. J., Parra, E. J., Shriver, M. D., Bonilla, C., Kittles, R. A., Clayton, D. G., & McKeigue,

P. M. (2003). Control of confounding of genetic associations in stratified populations.

American Journal of Human Genetics, 72, 1492–1504.
McNamee, R. (2003). Confounding and confounders. Occupational and Environmental Medicine,

60, 227–234.
Pearl, J. (1993). Comment: Graphical models, causality and intervention. Statistical Science,

8, 266–269.
Pearl, J. (1998). Graphs, causality, and structural equation models. Sociological Methods and

Research, 27, 226–284.
Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge: University Press.

Rothman, K. J. (1976). Causes. American Journal of Epidemiology, 104, 587–592.
Shrier, I., & Platt, R. W. (2008). Reducing bias through directed acyclic graphs. BMC Medical

Research Methodology, 8, 70.
Susser, M. (1973). Causal thinking in the health sciences. New York: Oxford University Press.

Tu, Y.-K., & Gilthorpe, M. S. (2012). Statistical thinking in epidemiology. Boca Raton: CRC

Press.

Tu, Y.-K., West, R. W., Ellison, G. T. H., & Gilthorpe, M. S. (2004). Why evidence for the fetal

origins of adult disease can be statistical artifact: The reversal paradox examined for hyperten-

sion. American Journal of Epidemiology, 161, 27–32.
Weinberg, C. R. (1993). Toward a clearer definition of confounding. American Journal of

Epidemiology, 137, 1–8.
Weinberg, C. R. (2005). Barker meets Simpson. American Journal of Epidemiology, 161, 33–35.
Weinberg, C. R. (2007). Can DAGs clarify effect modification? Epidemiology, 18, 569–572.

1 Confounding and Causal Path Diagrams 13



Chapter 2

Statistical Modelling of Partially Observed

Data Using Multiple Imputation:

Principles and Practice

James R. Carpenter, Harvey Goldstein, and Michael G. Kenward

2.1 Introduction

Missing data are inevitably ubiquitous in experimental and observational

epidemiological research. Nevertheless, despite a steady flow of theoretical work

in this area, from the mid-1970s onwards, recent studies have shown that the way

partially observed data are reported and analysed in experimental research falls far

short of best practice (Wood et al. 2004; Chan and Altman 2005; Sterne et al. 2009).

The aim of this Chapter is thus to present an accessible review of the issues raised

by missing data, together with the advantages and disadvantages of different

approaches to the analysis.

Section 2.2 gives an overview of the issues raised by missing data, and Sect. 2.3

explores those situations in which a ‘complete case’ analysis, using those units with

no missing data, will be appropriate. Section 2.4 describes the advantages and

disadvantages of various methods for the analysis of partially observed data and

argues that multiple imputation is the most practical approach currently available to

applied researchers. Section 2.5 reviews some key issues that arise when using

multiple imputation in practice. We conclude with a worked example in Sect. 2.6

and discussion in Sect. 2.7.
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2.2 Issues Raised by Missing Data

We illustrate the issues raised by missing data using Fig. 2.1, which shows the

frontage of a high-level mandarin’s house in the New Territories, Hong Kong.

First, we notice missing data can either take the form of completely missing

figurines, or damaged— i.e. partially observed—figurines. The former is analogous

to what is usually termed unit non-response, while the latter is analogous to item

non-response. However, the statistical issues raised are the same in both cases.

For simplicity, we therefore assume there are no completely missing figurines.

Next, we see that the effect of missing data on any inference depends crucially

on the question at hand. For instance, if interest lies in the position of the figurines in

the tableau shown in Fig. 2.1, then missing data are not a problem. If, instead,

interest is in the height, or facial characteristics of the figurines, then missing data

raises issues that have to be addressed. Thus, when assessing the impact of missing

data it is not the number, or proportion of missing observations per se that is the key,

rather the extent of the missing information about the question at hand. Changing

the example, if we are interested in the prevalence of a rare disease, missing the

disease status of two individuals—potentially non-randomly—out of 1,000 means

we have lost a substantial amount of information.

Now suppose we are interested in estimating a facial characteristic—say average

hair length—of the four figurines shown. Two are missing their heads, and we

cannot be sure why. In order to estimate the average hair length we need to make an

assumption about why the two heads are missing, and/or how their mean hair length

relates to those whose heads are present. Our assumptions must take one of the

following three forms:

1. the reason for the missing heads is random, or at any rate unconnected to any

characteristics of the figurines;

2. the reason for the missing heads is not random; but within groups of ‘similar’

figurines (e.g. with similar neckties) heads are missing randomly, or

3. the reason for the missing heads is not random, and—even within groups of

apparently similar figurines—depends on hair length (i.e. depends directly on

what we want to measure).

In case 1, the ‘data’ (hair length) are said to be Missing Completely At Random

(MCAR). What is usually termed the missingness mechanism may depend on the

position of the figurines relative to missing tiles in the roof above, but is indepen-

dent of information relevant to the question at hand. Under this assumption there is

no difference in the distribution of hair-length between the figurines, so we can get a

valid estimate using the complete cases (i.e. figurines with heads). In case 2,

the data are said to be Missing At Random (MAR). The reason for the missing

data (hair length) depends on the unseen value (hair length) but we can form groups

based on observed data (e.g. necktie) within which the reason for the missing data

does not depend on the unseen value (missing hair length). If we assume hair length

is MAR given necktie, we can estimate hair length among figurines with straight
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neckties, and among those that end in a bobble. We can then calculate a weighted

average of these—weighting by the number with each kind of necktie—to estimate

mean hair length across the ‘population’ of figurines.

In case 3, the data are said to be Missing Not At Random (MNAR). In this case,

we cannot estimate average hair length across the figurines without knowing either

(i) the relationship between the chance of a headless figurine and hair length or (ii)

the difference in mean hair length between figurines with, and without, heads.

This terminology was first proposed by Rubin (1976), and despite the slightly

counter-intuitive meaning of ‘Missing At Random’ it is now almost universally

used. We now highlight two things, implicit in the above discussion, which are

universal in the analysis of partially observed data:

2.2.1 Ambiguity Caused by Missing Data

Given Fig. 2.1, we do not know which of the assumptions 1–3 above is correct;

furthermore each has different implications for how we set about validly estimating

mean hair length. Therefore, the best we can do is state our assumptions clearly,

arrive at valid inference under those assumptions, and finally report how inference

Fig. 2.1 Mandarin’s house, New Territories, Hong Kong (Photo H. Goldstein)
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varies with the assumptions. The latter is referred to as sensitivity analysis, and is

fundamental to inference from partially observed data. We hope that our inference

is pretty robust to different assumptions about the missing data, so that we can be

fairly confident about our conclusions. However, as we cannot verify our

assumptions using the data at hand, our readers can reasonably be expected to be

informed if this is indeed the case.

2.2.2 Duality of Missingness Mechanism and Distribution
of Missing Data Given Observed Data

Each of the assumptions 1–3 above makes a statement both about the probabilistic

mechanism causing the missing data (which we refer to as the missingness

mechanism) and the difference between the distribution of the missing data

given the observed data. To see this, suppose that Y is hair length, X is

characteristics of the body (observed on all figurines) and R ¼ 1 if the head is

present and 0 if absent.

Under MCAR, the chance of R ¼ 1 given X, Y —for which we use the notation

[R|X, Y]—does not depend on X or Y, that is [R|X, Y] ¼ [R]. This means that the

distribution of Y given X does not depend on R. More formally, using the definition

of conditional probability,

½YjX;R� ¼ ½Y;X;R�
½X;R� ¼ ½RjX; Y�½X; Y�

½RjX�½X�
¼ ½R�½Y;X�

½R�½X� (because of MCAR assumption)

¼½YjX� (2.1)

Thus the missingness mechanism tells us about the distribution of the missing

data given the observed, and vice versa.

A similar argument gives (2.1) if data are MAR, for then the chance of R ¼ 1

does not depend on Y once we take X into account, so that [R |Y, X] ¼ [R|X]. Thus,

if data are MCAR or MAR, the distribution of the partially observed variables (hair

length) given the fully observed ones (body characteristics) is the same across

individuals, regardless of whether—for a particular individual—the partially

observed variable (hair length) is seen or not.

However, this relationship does not hold if data are MNAR. In that case

the chance of R ¼ 1 depends on both X and Y, and this means that the distribution

of [Y |X] is different depending on whether Y is observed or not (i.e. whether R ¼ 1

or not). This makes MNAR analyses more difficult, as we either have to say (i)

exactly how [R] depends on Y, X or (ii) exactly how [Y |X] differs according to

R—i.e. whether Y is observed or not.
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The aim of this Section was to use a pictorial example to sketch out the intuition

behind the standard jargon in the missing data literature. This is a key step in

understanding its relevance to the analysis of any partially observed dataset. It is

also important to bear in mind the question the analysis is addressing, and how the

answers might be affected by plausible missing data mechanisms.

The next Section elaborates this further.

2.3 When Will Complete Cases Do?

Analyses of a partially observed data set which include only individuals with no

missing data (or at least no missing data on the variables in the current model) are

often called ’Complete Case’ analyses.

The question in the section heading is often posed, but given the discussion

above is not appropriate as it stands. Instead, the question is whether a complete

case estimator is appropriate given the inferential question at hand and assumptions

about the missing data mechanism. An important secondary question concerns the

efficiency of a complete case estimator, relative to other estimators such as

those obtained using multiple imputation. We now discuss this further, taking a

simple setting as an example.

Suppose we have four variables, W, X, Y, Z. In a more general setting,

these could be groups of covariates. Let our model of interest be the regression of

Y on X and Z. We consider two situations: first that the response Y is partially

observed but the other variables are complete, and second that the covariate X is

partially observed.

2.3.1 Response Y Partially Observed, Other Variables Complete

Given the results in the previous Section we know that, if Y values are MCAR, then

the complete case analysis is unbiased. Now suppose Y is MAR given X and Z.

In this situation, the complete case analysis is also unbiased. To see this, we note

that the contribution to the likelihood for an individual with missing data is simply

the likelihood with the missing data integrated out. With a missing response it is

thus

Z
½YjX; Z�dY ¼ 1 (2.2)

This also means that in this setting a complete case analysis is efficient.

Next, we suppose that W is predictive of the response Y being missing, so that

Y is MAR given W and possibly the X, Z, but values of W are independent of Y
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(this also means W is not a confounder). This situation may occur, for example,

when W describes how the data collection process has changed over time, but this

administrative change is unrelated to the actual values of Y. Once again, the

complete case analysis is unbiased, as W contains no information on the parameters

in the regression of interest.

Now suppose that W is both not independent of Y and predictive of Y being

missing, so that Y is MAR given W and possibly X, Z. Here a complete case

analysis is inconsistent. Consistent estimation requires that we take account of the

information in W. We could include W as an additional covariate; however this

changes the model of interest. This may not be desirable, because it changes the

goal of the analysis. In this setting, we need to use one of the more sophisticated

methods described below.

The last possibility is that the response Y is MNAR. From the discussion in the

previous Section it should be clear that a complete case analysis will be inconsistent

here.We need to make an assumption about the difference between [Y |X, Z, R ¼ 1]

(i.e. the complete case estimate) and [Y |X, Z, R ¼ 0] (i.e. the regression relation-

ship in individuals where Y is missing). Only given such an assumption can we

estimate the regression parameters relating Y to X and Z.

2.3.2 Covariate X Partially Observed

We again consider the regression of Y on X, Z but now suppose that Y, Z are fully

observed and X is partially observed. If X is MCAR, then the complete case

analysis will be unbiased, as above. However, in this setting (in contrast to that of

a missing response, equation (2.2) we can recover information about the regression

coefficients from individuals with Y and Z observed. The key to this is the

introduction of an assumed distribution for X in terms of Y and Z. This distribution

buys information about the missing data, though it cannot be definitively validated

from the observed data. This information can be incorporated using for example

multiple imputation or EM-type algorithms, as described in Sect. 2.4.

Next suppose X is MAR given Z, but given Z the mechanism does not depend on

Y. In this case, analysis using complete cases will again be unbiased, but—as with

X MCAR—more information on the regression coefficients can be obtained from

individuals with Y and Z observed. If the covariate X is MAR and the mechanism

depends on the response Y and covariate Z, then analysis based on complete cases

will be biased, as well as potentially inefficient. In such settings a more sophisti-

cated analysis is needed, taking account of the information in the partially observed

cases. As usual, this relies on an assumed distribution of the missing data given the

observed data, which cannot be definitively validated from the observed data.

Again, this information can be incorporated using for example multiple imputation

or EM-type algorithms.

Similarly, if X is MAR but the mechanism depends on another variable W which

is not in our model of interest, but which is associated with Y, then the complete
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case analysis will be biased, and an analysis valid under MAR is required.

However, if—as above—W is associated with the chance of seeing X, but not

with the distribution of X, then there is no gain in including W in the analysis.

Next, if the covariate X is MNAR, depending on X and possibly Z but given

these not on the response Y, then the complete case analysis is unbiased. A more

efficient analysis is possible, but only if we correctly specify the MNAR

missingness mechanism. In practice, we are unlikely to be able to do this. Further,

an analysis under the MAR assumption is not valid here—as the true missingness

mechanism is MNAR. Since for this particular MNAR mechanism the complete

case analysis is unbiased, an analysis under MAR could introduce bias.

Finally, if X is MNAR, depending on X, Y and possibly Z then the complete case

analysis is biased, as is an analysis under the MAR mechanism. Quite often the

MAR analysis will be less biased than the complete case analysis but this is

not guaranteed. Only if we can correctly specify the MNAR mechanism—i.e.

the difference in the conditional distribution of X when X is observed and

unobserved—will our analysis be unbiased in general.

Taken together, the above underlines the importance of exploring the data

carefully, and understanding plausible missingness mechanisms, before using a

more sophisticated—and potentially time consuming—analysis. This can yield

important insights about whether a more sophisticated analysis is required, how

to formulate it, and how plausible the results are likely to be. Nevertheless, the

uncomfortable fact remains that all analysis with partially observed data rest on

inherently untestable assumptions. Thus sensitivity analyses—where we explore

the robustness of our inference to different assumptions about the missing

data—have a key role to play.

2.4 Methods for Analysis of Partially Observed Data

Here we briefly review the advantages and disadvantages of different methods for

analysing partially observed data. All the methods have an extensive literature, to

which we give some pointers.

2.4.1 Inverse Probability Weighting

Under this approach, we calculate the probability of cases being complete as a

function of the observed data, usually using logistic regression. Then, we weight the

complete case analysis, weighting each case (typically observations from an

individual) by the inverse of the probability of observing their data. Thus, those

complete cases which represent individuals who are likely to have missing data are

up-weighted relative to individuals whose data are more likely to be observed.

See, for example, Carpenter and Plewis (2011).
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This approach only re-weights those with no missing data, whereas other

approaches (discussed later in this section) assume a distribution for the missing

data given the observed. Thus we can view inverse probability weighting as trading

efficiency for robustness. If our weight model is correctly specified, our parameter

estimates are consistent. However, if we are prepared to specify a distribution of the

missing data given the observed we can obtain consistent and more efficient

estimates. Note that neither approach avoids the need to make untestable

assumptions. Specifically with regard to inverse probability weighting, the data

we need to check the assumptions made in estimating the weights are missing.

This point has triggered extensive methodological work, and the emergence of

augmented inverse probability weighting and doubly robust estimation. These
approaches both make some additional assumptions in order to buy information

relative to inverse probability weighting. Thus doubly robust methods incorporate a

term which is a function of the mean of the missing data given the observed data.

Assuming that the (as usual inherently untestable) assumption under which this

mean is estimated is correct, and that the model for the weights is correct, the

resulting estimates are consistent and comparably precise to those obtained using

the methods described in the rest of this section. They also have the desirable

property that if either the weights are wrong, or the mean of the missing data given

the observed data is wrong, consistent parameter estimates result. For a relatively

accessible introduction see Carpenter et al. (2006) or Vansteelandt et al. (2010).

The principal drawback of these approaches remain the difficulty of dealing with

the non-monotone missing data patterns (which arise naturally in most observa-

tional data and some experimental data) under a general MAR mechanism, concern

about instability in the weights (now an active research area, see Cao et al. (2009)),

and the lack of software. For a lively discussion see Kang and Schafer (2007).

2.4.2 EM-Algorithm and Related Methods

The second widely used approach to parameter estimation with missing data is the

Expectation-Maximisation (EM) algorithm and its derivatives, which was devel-

oped in the early 1970s (Orchard and Woodbury 1972; Dempster et al. 1977).

This is an iterative method for obtaining maximum likelihood estimates with

missing data, based on iteratively calculating the expectation of the likelihood

over the distribution of the missing data given the observed data, and then

maximising this expected likelihood with respect to the parameters of interest.

Although it can work well, convergence is often slow, estimating the standard

errors of parameters can be tricky (Louis 1982) and calculating the expectations

involved can be tricky. This has led to the development of various approaches

which use Monte-Carlo methods to estimate the expectations involved; see for

example Little and Rubin (2002) and Clayton et al. (1998), who also discuss other

algorithms for maximising incomplete data likelihoods. Once Monte-Carlo

methods are used in the estimation, a key attraction of the EM algorithm relative
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to multiple imputation is removed. This, convergence difficulties and difficulties in

developing general software—in particular to take account of information in

auxiliary variables such as W in the discussion in the previous Section, has limited

its use.

2.4.3 Repeated Measures Modelling

If missing data are primarily in an outcome measured repeatedly over time, it may

often be possible to embed the simpler model of interest in a more complex

repeated measures model. If there are no missing data, the two give the same

inference for the parameters of interest, but if data are missing, the latter gives

inference under a broader class of MAR mechanisms. This approach requires care,

but is most suitable for clinical trials with continuous repeatedly measured outcome

data subject to patient withdrawal. This approach is reviewed and applied in this

context in Chap. 3 of Carpenter and Kenward (2008), and also compared to multiple

imputation. It is limited by the difficulty of setting up such model in general,

particularly when covariates are missing.

2.4.4 Multiple Imputation

The fourth option we consider here, Multiple Imputation (MI), was conceived as a

two-stage Bayesian approach for parameter estimation in the presence of missing

data. However, if done properly, inferences have very good frequentist properties.

Thus MI can be viewed as a method of maximising an incomplete data likelihood.

Indeed, provided the underlying incomplete data likelihood is the same, asymptoti-

cally equivalent estimates will be obtained from the EM-type algorithms and

repeated measures modelling. It follows that MI can also be viewed an approxima-

tion to a full Bayesian analysis in which the analyst’s model of interest and the

imputation model for the missing data given the observed are fitted concurrently.

MI was introduced by Rubin (Rubin 1987, 1996); for a recent review

see Kenward and Carpenter (2007). A joint model is formed for the observed

data, where partially observed variables are the response. This model is fitted,

and then used to create a number of imputed datasets, by drawing the missing

data from its conditional distribution given the observed data, taking care to fully

accommodate the statistical uncertainty in this process. This results in a number of

‘complete’ datasets. Then the model of interest is fitted to each of these in turn, and

the results combined for final inference using Rubin’s rules. These rules are simple

and general, and although naturally derived using a Bayesian argument,

the resulting inferences have good frequentist properties.

The attraction of MI relative to the methods above include (i) it can be

implemented in terms of regression models, so developing general robust software

is more straightforward; (ii) convergence issues do not arise in the same way as with
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EM-type algorithms; (iii) information from auxiliary variables, not in the model of

interest, can naturally be included, and (iv) it can readily be used for sensitivity

analysis to the MAR assumption. Thus it is becoming increasingly established as

the leading practical approach to analysing partially observed datasets (Sterne et al.

2009; Klebanoff and Cole 2008). Although there is an increasing range of statistical

software packages available, they vary in their accessibility to data analysts. More

fundamentally, some software uses the full conditional specification approach

(also known as the chained equation approach; for an early example see van Buuren

et al. (1999)), which does not explicitly model the joint distribution but forms

univariate models for each incomplete variable in turn conditional on all the others.

There is no guarantee in general that these correspond to a proper joint model. Other

software is based on an explicit joint model, as described for example in Schafer

(1997). Moreover, some software treats discrete data as continuous in the imputa-

tion model, and most packages do not allow for a multilevel structure (Kenward and

Carpenter 2007). Table 2.1 gives some more details.

In the light of the above, we believe multiple imputation is currently the most

general and accessible method for a wide range of analyses. In the next Section, we

therefore review some key issues that arise in its application, before illustrating its

use in a multilevel setting in Sect. 2.6.

Table 2.1 Some of the software packages available for multiple imputation

Imputation

method

Software

package

Name of

imputation package Available from

Full conditional

specification

Stata icea Install within Stata using the ssc command;

packaged with Stata 12 onwards

R micea Install as additional package from

http://cran.r-project.org/

mia Install as additional package from

http://cran.r-project.org/

SAS IVEwarea Download from

http://www.isr.umich.edu/src/smp/ive/

Joint modelling MLwiN mi macrosb Download from

http://www.missingdata.org.uk

SAS PROC MI

(with the MCMC

option)

Standard from SAS v9

Stand alone norm, PANb, mixa Download from

http://sites.stat.psu.edu/~jls/misoftwa.html

Stata MI Standard with Stata version 11 and later

Stand alone REALCOMa,b Download from

http://www.bristol.ac.uk/cmm/

Designed to work with MLwiN; interface to

Stata and other packages from

http://www.misssingdata.org.uk

All websites accessed 25 Jan 2012
a indicates software which does not treat discrete data as continuous
b indicates software allowing for multilevel structure
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2.5 Practical Application of MI: Issues to Consider

Assuming that the user knows the model of interest they wish to fit in the absence of

missing data, the multiple imputation procedure follows a fixed set of standard steps

once the user has specified the imputation model. This is because the computer fits

the imputation model to the partially observed data, imputes the missing data from

this to create the ‘completed’ data sets, fits the user’s model of interest to each

imputed dataset and then combines the results for final inference using Rubin’s

rules.

2.5.1 Formulating the Imputation Model

The implication is that care needs to be taken in formulating the imputation model—

this is the make or break step. In particular this needs to be compatible/congenial with

the model of interest—in the sense described below—and valid under a general

missing at random mechanism.

By compatibility we mean that the imputation model should ideally allow the

same richness of structure between the variables as the model of interest. Thus all

the variables in the model of interest, including the response, need to go into the

imputation model. This is important, for otherwise the imputed data will be

independent of these variables. For most outcomes, this is straightforward;

for survival data we need to remember to include the censoring indicator as well

as a suitable measure of survival. Work by White and Royston (2009) suggests the

cumulative hazard is preferable. Survival data with censoring—when we know the

event occurred after censoring—can also be viewed as an example of situations

where we have prior information about the range of values the missing data can

take. Goldstein et al. (2009) discuss how such information can be incorporated.

2.5.2 Non-linear Relationships and Interactions

Problems are more likely to arise when the model of interest contains

non-linearities and/or interactions. If these are functions of fully observed variables,

then they should be included as covariates in the imputation model. However, if

they include partially observed variables then more care needs to be taken, and in

some settings it is challenging to handle this correctly. If this is not done correctly,

estimates of interactions and non-linearities in the model of interest will tend to be

biased towards the null. This is obviously of greatest concern where inference

focuses on precisely these interactions/non-linearities. For a detailed discussion

and worked example, see Carpenter and Plewis (2011).

2 Statistical Modelling of Partially Observed Data Using Multiple Imputation. . . 25



2.5.3 Multilevel Data

A further issue of compatibility concerns the correlation structure of the data. If the

data are multilevel, then this structure should be reflected in the imputation model.

Failure to do this will generally result in the imputations being weighted towards

those level two units with the most data, and the variance of the imputed data will be

too small. Multilevel multiple imputation is more problematic with the full

conditional specification approach (Royston 2007; van Buuren et al. 2006).

However, it can be handled naturally within a joint modelling approach, as can

missing values for level two variables. This approach is described in Goldstein et al.

(2009) and can handle discrete and continuous variables at different levels of the

multilevel data hierarchy. Experimental software implementing this is available at

http://www.bristol.ac.uk/cmm/.

2.5.4 Auxiliary Variables

Validity under a general missing at random mechanism is most plausible if we

include in the imputation model additional variables, associated with both the

chance of data being missing and the actual unseen values, but not in the model

of interest. Such auxiliary variables, for example may lie on the causal path between

our exposure and response. However, the desire to include a number of such

variables needs to be balanced against the risk of numerical problems in fitting

the imputation model that may arise. Such problems are most likely when a number

of the partially observed variables are binary. In practice, it seems best to include

key auxiliary variables, rather than all auxiliary variables, and monitor the imputa-

tion model to check for evidence of overfitting (e.g. unduly large standard errors for

some coefficients in the conditional regression imputation models).

2.5.5 Multiple Imputation Is Not Prediction

In conclusion, we note that multiple imputation does not have the same goal

as prediction. To see this, consider a model with a number of covariates, such as

the model for obtaining educational qualifications by age 23, fitted to the 1958

National Childhood Development Study data by Carpenter and Plewis (2011). For

fitting the model of interest, there were only 10,279 complete cases, i.e. 65% of the

target sample. The advantage of multiple imputation is that, even if our imputations

are very imprecise, we can bring in the information from the observed data for the

35% of individuals with incomplete data. In most cases—especially with the

judicious use of auxiliary variables (Spratt et al. 2010)—improved prediction will

result in more accurate inference for the model of interest. However, multiple

imputation can be useful when prediction is poor. For a full discussion of these

points see Rubin (1996).
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2.6 Example: Multilevel Multiple Imputation

In this Section we illustrate some of the key points above, using data from a study of

the effect of class size on children’s achievement in their first 2 years at school.

We explore the importance of multilevel structure in the imputation model. The

data come from a class size study kindly made available to us by Peter Blatchford at

the Institute of Education, London. This study sought to understand the effect of

class size on development of literacy and numeracy skills in the first 2 years of

English children’s full time education. The analysis below is illustrative; for a fuller

analysis and more details of the study see Blatchford et al. (2002).

The version of the dataset we explore below was derived from the original; we

restrict the analysis to a complete subset of 4,873 pupils in 172 schools. School

sizes vary greatly in these data and this is reflected in the number of pupils each

school contributes to the analysis, which ranges from 1 to 88. The dataset is thus

multilevel, with children at level 1 belonging to classes at level 2. Our model of

interest regresses literacy score at the end of the first year on class size, adjusting for

literacy measured when the children started school, eligibility for free school meals

and gender. The pre- and post- reception year (i.e. first school year) literacy scores

were normalised as follows. For each test, the pupils’ results were ranked. Then for

observation in rank order i, where N pupils sat the test, the normalised result was

calculated as the inverse normal of i/(n + 1).
We will explore the following:

1. fitting the multilevel model of interest to the 4,873 complete cases;

2. fitting the same model ignoring the multilevel structure;

3. making some values of pre-reception literacy score missing at random, and

(a) analysing the remaining complete cases;

(b) using multilevel multiple imputation to handle the missing data, and

(c) using single level multiple imputation to handle the missing data.

Let j denote class and i denote pupil. Our illustrative model of interest is:

nlitpostij ¼ b0ij þ b1nlitpreij þ b2gendj þ b3fsmnj

b0ij ¼ b0 þ uj þ eij

uj � Nð0; s2uÞ
eij � Nð0; s2eÞ (2.3)

where the variable names are given in Table 2.2.

Parameter estimates from fitting this to the 4,873 cases are shown in column 2 of

Table 2.3. Estimates from the single level model, where s2u is constrained to be 0,

are shown in column 3. We see that there is a substantial component of variability

between schools, and that when this is taken out of the analysis the gender coeffi-

cient in particular changes by more than one standard error, consistent with a

stronger effect of gender in the larger schools.
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We now make the data missing according to the following mechanism:

log itfPrðobserve nlitpreijÞg ¼ 1:5þ 0:5� nlitpostij � fsmnj � gendj: (2.4)

This mechanism says we are more likely to see nlitpre for girls with higher

nlitpost who are not eligible for free school meals. Using these probabilities, we

generate 4,873 random numbers from a uniform distribution on [0, 1] and make

each individual’s data missing if these are greater than their probability implied by

(2.4). This results in 3,313 complete cases. Fitting the model of interest to these, we

see that the gender effect, and to a lesser extent the eligibility for free school meals,

are diluted so that they are no longer significant (column 4, Table 2.3).

We now perform multilevel multiple imputation, using MLwiN 2.15 and the

multiple imputation macros available from www.missingdata.org.uk. We first fit

our model of interest, (2.3). The software then analyses this and proposes the

following imputation model, where j indexes school and i pupil:

nlitpreij ¼ b0 þ b1gendj þ b2nlitpostij þ u1j þ e1ij

fsmnij ¼ b3 þ b4gendj þ b5nlitpostij þ u2j þ e2ij

u1j

u2j

� �
� Nð0;OuÞ

e1ij

e2ij

� �
� Nð0;OeÞ (2.5)

Table 2.2 Description of variables in class size data used in this analysis

Variable name Description

nlitpost Normalised literacy score at the end of 1st school year

nlitpre Normalised literacy score at the start of 1st school year

fsmn Binary variable, 1 indicates pupil is eligible for free school meals

gend Binary variable, 1 for boys and 0 for girls

Table 2.3 Parameter estimates from fitting model (2.3) to various datasets; full details in text

Estimates (standard errors) from

Parameter

Original data Original data Reduced data Multilevel MI Single level MI

Multilevel

model

Single level

model

Complete

cases

on reduced

data

on reduced

data

(n ¼ 4,873) (n ¼ 4,873) (n ¼ 3,313) (n ¼ 3,313) (n ¼ 3,313)

b0 0.088 (0.040) 0.065 (0.017) 0.121 (0.041) 0.092 (0.041) 0.107 (0.037)

b1 0.733 (0.010) 0.662 (0.012) 0.717 (0.012) 0.731 (0.011) 0.647 (0.012)

b2 �0.058 (0.018) �0.086 (0.022) �0.020 (0.022) �0.056 (0.020) �0.070 (0.022)

b3 �0.068 (0.027) �0.095 (0.030) �0.036 (0.037) �0.101 (0.034) �0.103 (0.034)

s2u 0.237 (0.028) � 0.231 (0.028) 0.243 (0.029) 0.182 (0.022)

s2e 0.372 (0.008) 0.573 (0.012) 0.360 (0.009) 0.367 (0.009) 0.425 (0.011)
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for 2 � 2 covariance matrices Ωu, Ωe . Note that the fully observed fsmn has been

included as a response, since the software requires two or more responses in the

imputation model in order to perform multiple imputation. Although this is not

strictly compatible with (2.3), as the missing data is in nlitpre, the error induced by
treating fsmn as continuous is negligible. This is because the properties of the

bivariate normal distribution mean that we would get similar imputations if we

instead had fsmn as a covariate in a univariate imputation model for nlitpre.
The software fits this imputation model using Markov Chain Monte Carlo

(MCMC), taking improper priors for the regression coefficients and Wishart priors

for the covariance matrices. It then imputes the missing data as draws from the

Bayesian posterior, fits the model of interest to each imputed dataset and combines

the results for inference using Rubin’s rules.

We used a ‘burn in’ of 500 MCMC updates and updated the sampler a further

200 times between drawing each of 50 imputed datasets. The results are shown in

the rightmost two columns of Table 2.3. Column 5 shows the result of multilevel

multiple imputation; in column 6 we create the imputations using (2.5), but withΩu

set to zero. This is equivalent to single level imputation, as available in other

packages. Looking at the results, we see that multilevel multiple imputation gives

point estimates much closer to the original, fully observed, data but with slightly

increased standard errors (reflecting the lost information in the partially observed

data). Comparing with single level multiple imputation, we see the latter results in

an overestimated gender coefficient. This is because the difference between boys

and girls is greater in the larger schools; single level imputation carries this stronger

effect to all schools and results in a greater gender coefficient. Further, the school

level component of variance is substantially reduced after single level multiple

imputation, compared with multilevel multiple imputation. The pupil level variance

is correspondingly increased. This makes sense: single level imputation puts extra

variability at the pupil level. Finally, each multiple imputation analysis took about

90s with a 2.4 GHz chip.

Although our model is quite simple, we can readily handle additional variables

with missing data. These are included as additional responses on the left hand side.

In general, as described in Goldstein et al. (2009) this can include appropriate

models for discrete and unordered categorical variables. This example illustrates

the potential of multiple imputation, and also illustrates the importance of allowing

for the multilevel structure in the imputation, when it is present in the data.

2.7 Conclusions

In this Chapter we have argued that, when data are missing, analysis cannot proceed

without inherently untestable assumptions about the missingness mechanism.

We gave an intuitive illustration of missingness mechanisms and related this to

common terminology in the literature. Armed with this, we described the likely

effect of missing covariate and response data, under different mechanisms.
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We then gave a brief review of the advantages and disadvantages of various

statistical methods for handling missing data, concluding that MI currently has the

edge in terms of the range of problems that can be tackled using available software.

Another attraction is that it is possible to explore the sensitivity of the conclusions

to departures from MAR to MNAR missing data mechanisms, see for example

Carpenter et al. (2007, 2012). This is important in many applications. We illustrated

the potential of multiple imputation using educational data. In common with much

medical and social science data, this has a multilevel structure and the analysis

indicated the importance of multilevel multiple imputation in this setting.
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Chapter 3

Measurement Errors in Epidemiology

Darren C. Greenwood

3.1 Background to the Problem of Measurement Error

3.1.1 General Context

The purpose of many epidemiological studies is to attempt an exploration of

possible relationships between disease and an exposure of interest within a defined

population. The exposure may be an environmental factor, an occupation, a life-

style, another disease, or an individual’s genotype or phenotype, for example.

Generalised Least Squares models handle variation in the outcome measure but

assume that predictor variables, e.g. exposures and potential confounders, are

perfectly known. However, in epidemiological settings this is rarely the case.

Many characteristics of human beings and our environment vary over time;

long-term measurements may be impractical or the relevant time window may

not be known. Some characteristics, like personality, may be impossible to measure

perfectly. Aspects of long-term nutrition and diet are particularly difficult to

measure. Exposures based on laboratory analysis are not immune: methods may

give very precise results, but often only relate to short periods of time. For example,

use of doubly labelled water as a recovery biomarker for total energy intake will

give a precise measure of intake over 24 h, but not a lifetime. Thus laboratory

measures are still subject to potentially large random error or variation when

compared to long-term true exposure. These are all examples of what is referred

to as “measurement error” or “errors-in-variables” and can lead to biased estimates

and loss of power.
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Measurement error relative to the true exposure is also introduced by

categorisation of an exposure or confounder. It is common practice for epidemiolo-

gist to categorise variables to facilitate simple presentation and interpretation of

results. However, it is not widely recognised that this is at the expense of informa-

tion loss, which is simply another phrase for measurement error. Whether

introduced in exposure assessment or analysis, measurement error is a cause of

much bias in estimates from observational epidemiology.

3.1.2 Biased Estimates

There is a widespread view that such measurement error in an exposure can only

dilute any association between exposure and outcome (Bashir and Duffy 1997;

Fuller 1987; Gladen and Rogan 1979; Weinberg et al. 1994; Wong et al. 1999a).

However, the belief that this is always the case is flawed for several reasons (Bjork

and Stromberg 2002; Carroll et al. 1995; DelPizzo and Borghesi 1995; Dosemeci

et al. 1990; Flegal 1999; Phillips and Smith 1991; Richardson and Ciampi 2003;

Sorahan and Gilthorpe 1994; Weinberg et al. 1994; White et al. 2001; Wong et al.

1999b): First, even in simple situations where this is generally the case, this is only

“on average”, so situations will exist where by chance the bias is away from the null;

second, this assumes a simple linear regression scenario with classical additive non-

differential measurement error (see Sect. 3.2.2) (Carroll et al. 1995), and for logistic

regression, for instance, the resulting bias may be in either direction (Stefanski and

Carroll 1985). Even if the exposure is measured without error, biased estimates can

be caused bymeasurement error in confounding variables (Brenner 1993; Greenland
1980; Wong et al. 1999b). Even with additive measurement error in linear regres-

sion, measurement error in a confounding variable often leads to under-adjustment

for the confounder and this can readily lead to distortion of the estimated effect of the

exposure in either direction, depending on the direction of the confounder’s effect

(Wong et al. 1999b). In addition, bias away from the null is possible under certain

situations with other more complex error structures (Carroll et al. 1995; Fuller

1987). One implication of the effects of measurement error not always biasing

estimates towards the null is that trends are not always preserved (Carroll et al.

1995; Weinberg et al. 1994), even under non-differential measurement error

(Sect. 3.2.2.4). One situation where bias may not be relevant is in the context of

prediction, e.g. a risk score based on measured exposures (Wikipedia contributors

2007). However, in aetiological epidemiology, such bias could substantially influ-

ence conclusions relating to the true level of exposure.

It can be argued that, for the purposes of prediction or public health advice,

measurement error in an exposure is irrelevant, because the prediction is based on

the measured exposure, not the true exposure. The problem with interpreting such

models based on error-prone exposures is that few clinicians have a good apprecia-

tion for the amount of variation in such measures. Therefore, an analysis based on an

error-prone exposuremay lead to the erroneous conclusion that a particular exposure
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is unimportant or does not strongly (or significantly) predict the outcome. Many

naı̈ve analyses may lead to this variable being dropped from the model entirely, or

the public health implications being under-estimated. If the measurement error is in

a confounder, then this would lead to under-adjustment for the confounder, again

potentially leading to incorrect interpretation of the model. Finally, if there is a

nonlinear association between the outcome and an error-prone exposure, then this

can lead to a shift in location as well as a bias in the regression slopes.

3.1.3 Loss of Power

In addition to potential bias in estimates, leading to incorrect conclusions

surrounding the magnitude of an association, the observed variance structure is

altered, so that for a given measured exposure, the outcome is generally more varied

than if the true exposure were used. These distortions not only lead to the biases

described above, but in addition, the altered variance structure and biased estimates

can lead to a loss of power using the measured exposure compared to the true

exposure (Aiken and West 1991; DelPizzo and Borghesi 1995; Elmstahl and

Gullberg 1997; Freedman et al. 1990; Kaaks et al. 1995; Rippin 2001; Schatzkin

et al. 2001a; White et al. 1994). Whilst methods to correct for the effects of

measurement error will generally reduce bias, they have little effect on loss of

power (Armstrong 1998).

3.2 The Structure of Measurement Error

3.2.1 Characterising Measurement Error

When considering the exposure-disease relationship it is helpful to consider the

overall model as three submodels, based on terminology introduced by Clayton

(1992):

1. the disease model (relating outcome Y to true exposure X and other error-free

covariates Z);
2. the exposure model (describing the distribution of true exposure X);
3. the measurement model (relating measured exposure W to true exposure X).

3.2.2 Underlying Mechanisms for Measurement Error

There is a large literature on measurement error in linear regression, going back

many years. This is comprehensively discussed by Fuller (1987). More recent work

has focussed on nonlinear models such as logistic regression (Carroll et al. 1995)
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(nonlinear in the sense of using a link function other than the identity link).

This more recent work is of far greater relevance to most branches of epidemiology

because exposures are often being related to dichotomous disease outcomes using

logistic regression or Poisson regression models, or through methods for survival

analysis. The mechanisms underlying measurement error in covariates are common

to both linear and nonlinear models, though their impact on estimates may differ.

One general distinction to be drawn between assumed underlying mechanisms is

based on whether the measurement error model focuses on modelling the observed

measure (W) conditional on the true exposure (X) and other covariates (Z), the
classical model, or whether the focus is on modelling the true measure (X)
conditional on the observed (W) and the other covariates (Z), the Berkson model.

3.2.2.1 Classical Measurement Error

In its simplest form the classical measurement error model is:

W ¼ X þ U;where U � N 0; su2
� �

;E UjXð Þ ¼ 0

Under this model there is random error around the true value and it is assumed

that any measurement error is not associated with the true exposure. In more

complicated forms, it is assumed that measurement error is only independent of

true exposure conditional upon other covariates.

Classical measurement error can be described using the three submodels

outlined above, where it is helpful to express the conditional independence

assumptions of this model in terms of model conditional distributions:

Disease model: YjX;Z; b½ �
Exposure model: XjZ; p½ �
Measurement model: WjX; l½ �

Where b, p and l are model parameters, which in the general case are vector

quantities.

Disease status Y is only dependent on the true exposure X, the known covariates
Z and the unknown parameters b. Therefore, conditional on the true exposure, X,
being known, the imperfect observed measures W do not contribute any informa-

tion to the outcome Y.
The aim of methods to control for measurement error is to discover the disease

model free of any bias caused by measurement error. To achieve this, one needs to

know the distribution of X|W, ignoring perfectly measured covariates and other

parameters for the moment. Knowledge of the measurement model W|X is not

sufficient in itself to identify the true disease-exposure relationship. One also

requires the exposure model, the distribution of X, as demonstrated by Bayes’

theorem: prob(X|W) / prob(W|X) prob(X).
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This provides the Bayes estimate of X and is the basis for Bayesian approaches

to handling classical measurement error, because we now have an estimate of the

true exposure. This provides a justification for conceptually separating the mecha-

nism into three sub-models.

3.2.2.2 Berkson Measurement Error

The basic form of the Berkson measurement error model is:

X ¼ W þ U;where U � N 0; su2
� �

;E UjWð Þ ¼ 0

For the Berkson measurement error model, it is assumed that any measurement

error is not associated with the measured exposure. In terms of the three submodels,

where b and l are model parameters:

Disease model: YjX;Z; b½ �
Exposure model: not required

Measurement model: XjW; l½ �

This type of measurement error is also known as “control-knob” error because

the knob operator of, say, a piece of machinery, turns the knob to a setting he/she

believes to be the true exposure. However, what they see on the dial is a measureW
that contains a component of error. That error is simply a random component in

addition to the measuredW and is independent of the measured exposureW. This is

an example of Berkson error.

3.2.2.3 Random and Systematic Error

Both classical and Berkson error models assume random errors. Alternative

mechanisms extend these fundamental approaches to encompass systematic errors

(Thomas et al. 1993) where values that are measured are not randomly distributed

around the truth (classical) or measured values (Berkson). For example, food

frequency questionnaires are notorious for either over-estimating energy and nutri-

ent intakes (Byers 2001; Cade et al. 2002; Calvert et al. 1997) or under-estimating

them (Kipnis et al. 2001, 2003; Schatzkin et al. 2003; Subar et al. 2003). A situation

where dietary intake is under-estimated for people (in absolute terms) for people

with larger intakes, and over-estimated for people with lower intakes would be a

systematic error that depended systematically on the true exposure. The underlying

measurement error mechanism potentially may be more complicated if it systemati-

cally depends on unmeasurable person-specific characteristics. This is a particular

problem in the field of nutrition epidemiology.
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3.2.2.4 Differential and Non-differential Error

Both systematic and random measurement error structures can be sub-divided into

differential or non-differential. This distinction depends on whether the errors in the

exposure variable are conditionally independent of the outcome Y, given true

exposure X and perfectly known covariates Z. If the misclassification of the

measured exposure depends on the outcome, then this is a differential measurement

error. If, on the other hand, the measured exposure W given true exposure X and

known covariates Z contains no additional information about Y, then the measure-

ment error is said to be non-differential, i.e. p(Y|X,Z,W) ¼ p(Y|X,Z). When this

occurs, W can be said to be a surrogate for X, because W is conditionally indepen-

dent of the outcome Y. Where measurement error can be assumed to be

non-differential, then relatively straightforward methods can be used to correct

for the measurement error bias.

3.2.2.5 Additive and Multiplicative Error Structures

Measurement error models have also traditionally been considered to fall into

two separate categories: additive or multiplicative. Additive error structures

are those that define the measurement error model in terms of adding a component

of error, e.g. W ¼ X + U in the classical model, or X ¼ W + U in the Berkson

model. Multiplicative error structures are those that define the measurement

error model in terms of multiplying a component of error, e.g. W ¼ XU
or X ¼ WU. However this distinction is often a false one, when a multiplicative

error structure is additive on the log scale, e.g.W ¼ XU implies ln(W) ¼ ln(XU) ¼
ln(X) + ln(U).

3.2.2.6 Functional and Structural Modelling

Along with these basic mechanisms and distinctions between approaches,

historically there has been a distinction in the approach to correcting for

measurement error between functional modelling and structural modelling

(Carroll et al. 2006). In the functional modelling approach the distribution of

the true predictor is not modelled parametrically, but the values of the true

exposure X are regarded as fixed. An example of this approach, introduced later

in Sect. 3.3.5.1, is regression calibration. In contrast, the approach of structural

modelling is to model the distribution of the true predictor, e.g. Bayesian

modelling, introduced in Sect. 2.2.6. There is some controversy as to which

approach is better, functional or structural (Carroll et al. 2006): for example,

structural models make assumptions about the distribution of X that may not

be appropriate.
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3.2.3 A Simple Example

3.2.3.1 Biased Slope

Consider a straightforward non-differential additive measurement error model in

the case of simple linear regression. In this situation the regression model is given

by Y ¼ b0 + bxX + e where Y is the outcome, the true exposure X ~ N(m, sx
2),

the error term e is independent of X, and e ~ N(0, se
2). Consider also the observed

exposure W where W ¼ X + U, and U is the amount of measurement error,

independent of X, such that U ~ N(0, su
2). If we regress Y on W then the standard

least squares estimate of the slope bW, denoted bX
*, is:

b�X ¼Cov Y;Wð Þ
VarðWÞ ¼ Cov Y;Xð Þ

VarðWÞ if U is independent of X:

¼ Cov Y;Xð Þ
VarðXÞ þ VarðUÞ

¼ VarðXÞ
VarðXÞ þ VarðUÞ �

Cov Y;Xð Þ
VarðXÞ

¼ lbX (3.1)

Therefore, if we regress Y onW then we do not get a consistent estimate of bx but a
biased estimate bx

* where bx
* ¼ l bx and where the constant l (often referred to as

the reliability ratio or the attenuation ratio, with 0 � l � 1) is:

l ¼ VarðXÞ
VarðXÞ þ VarðUÞ (3.2)

3.2.3.2 Biased Intercept

In this simple example of linear regression with additive error in the classical

model, the intercept is also biased. If we regress Y on W, the standard least squares

estimate of the intercept is:

b�0 ¼ mY � b�X mW
¼ mY � lbX mW
¼ b0 þ bX mX � lbXmX
¼ b0 þ 1� lð ÞbX mX

So that the estimated intercept is biased by the constant (1�l)bX mX
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3.2.3.3 Inflated Residual Variance

Similarly, in a standard least squares regression of Y on W, the residual variance is

estimated as:

Var YjWð Þ ¼ 1

n� 2
s2YY � bWsWY

� �

using s2YY to represent the observed sample variance of Y and sWY to represent the

observed sample covariance of W and Y. Since, from Eq. 3.1, bW ¼ lbX, this
becomes:

¼ 1

n� 2
s2YY � lbXsWY

� �

and from the working given above demonstrating the biased estimate of the slope,

sWY ¼ s2WbW ¼ (s2X + s2U)bW ¼ (s2X + s2U)lbX ¼ s2XbX, so the residual vari-

ance becomes

¼ 1

n� 2
s2YY � lb2Xs

2
X

� �

¼ 1

n� 2
s2YY � b2Xs

2
X

� �þ 1� l½ �b2Xs2X
� �� �

Which is the true residual variance inflated by the factor (1�l )bX
2s2X.

3.2.3.4 Reduced Power

The estimate of l also affects power. In general sample size calculations, for a given

required power, dividing the effect size one wishes to detect by a constant

c increases the number of subjects required by c2. Using this argument, if the

estimated regression coefficient changes by multiplying by l, then the number of

study participants required will change by 1/l2 (Carroll et al. 2006). When l is <1,

this leads to a substantial increase in the required sample size, or loss of power for

the same sample size.

3.2.3.5 Summary of Simple Example

In this simple example, the constant l tends to be less than 1 because of shrinkage.

This is because classical measurement error in an exposure will, in the long run,

tend to make the measured exposure appear more extreme than the true exposure.

For this simple example it is relatively straightforward to demonstrate how the

constant l can be used to quantify, on average, the amount of attenuation of

the association (flattening of the regression slope) caused by measurement error,

bias in the intercept, and in the residual variance.
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In many epidemiological settings, however, the simple classical model may not

hold. For radiation exposures, the Berkson model is sometimes more appropriate.

Multiplicative error structures may also hold for some exposures. In nutrition

epidemiology, dietary exposures often have intercept and slope components to

the measurement model, and in particular may well have correlated errors

(Day et al. 2004; Kipnis et al. 2001). Adjustment for confounding, measured with

or without error, adds further complexity. In these more complicated examples the

algebra is more involved than that presented here and the potential for bias could

easily be in either direction. Measurement error in gene-environment interactions

also poses different problems (Greenwood et al. 2006a; Huang et al. 2005; Murad

and Freedman 2007; Wong et al. 2003, 2004).

3.3 Reducing the Effects of Measurement Error

3.3.1 Design

The effects of measurement error can be reduced by using a more precise measure

of exposure, and more precise measures of important confounders. In practice, this

may mean that more lengthy or costly exposure measures are used, and that smaller

samples are all that can be achieved. However, this is almost always offset by the

reduction in the effects of measurement error outlined earlier. For example,

in nutrition epidemiology, coding of weighed food diaries to derive nutrient intake

is very expensive compared to simpler food frequency questionnaires, but will yield

far more realistic results. Use of objective measures of dietary intake such as

biomarkers or itemised till receipts will reduce bias further (Greenwood et al.

2006b; Kipnis et al. 1999).

The effect of measurement error can also be reduced by increasing the variance

of the true exposure (Freedman et al. 2007; Schatzkin et al. 2001b). This is because

increasing s2X has the benefit of making l closer to 1 and therefore reducing bias on
average. The easiest way to do this is to ensure sampling a wide range of exposures.

Whilst the best approach to reducing the effects of measurement error are to

avoid it in the first place through better exposure measure, the effects can be

mitigated by statistical techniques using additional information from external or

internal validation samples based on comparison with a measure of the true

exposure (if one exists), or surrogate measures (including replicated measures).

3.3.2 Correction Using Aggregate-Level Surrogates

Use of aggregate-level surrogate measures of exposure is most prominent in

occupational epidemiology where exposure information is not widely available

for individuals, and must be derived from aggregate-level information on groups

of individuals. For example, a nuclear power plant may have a precise and accurate
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measure of the radioactive emissions released from the facility. However, only a

cheap error-prone measure of the radiation dose to an individual is available using

a tag clipped to an individual’s uniform. The more accurate measure is, however,

the aggregate measure applying to everyone in the plant. Ideally, one would like to

somehow calibrate the inaccurate and imprecise measures from the individuals by

using the accurate and precise aggregate measure. This differs from designs with

individual-level surrogates because imprecision in the exposure information

applied to the individual has also to be accounted for. In nutrition epidemiology

this may occur when diet is measured at the household level using household

inventories or records of purchases, but inferences are required regarding the health

of individuals. This second situation may become more common if databases of

supermarket purchasing behaviour for households are linked to individuals’

subsequent health (Greenwood et al. 2006b; Ransley et al. 2001, 2003).

3.3.3 Correction Using Individual-Level Surrogate Measures

Use of individual-level measures of diet, where dietary information (the measured

exposure) is available on individuals, is far more common than aggregate-level

measures (Richardson 1996). Designs can be further specified according to the

source of the individual-level information required to estimate l:

(a) A validation sample where the true X are known for a sub-sample of

individuals. Wider use of the true measure of exposure on the entire sample is

often limited by cost, time to complete, difficulty to implement or invasiveness,

so the sub-sample is often small by comparison.

(b) A replicate sample where the measured exposureW is repeated at least once on

a sample of individuals. This allows su
2 to be estimated, and hence l, assuming

a simple classical measurement error model, i.e. the measure is unbiased and

the error is purely random, with no systematic component. It is important for

the sub-sample to be selected at random, rather than self-selected to avoid

underestimating between-individual variation, with associated underestimation

of measurement error (Wang et al. 1996).

(c) An instrumental variable where an instrument T exists on a sub-sample, and T
is an unbiased measure of X, but contains random measurement error. T will be

an imprecise surrogate of the true exposure X measured at the same time as W.

T may be a second measure of the exposure obtained by a completely different

method that may even be a biased measure providing it is an internal sub-

sample. In a recent book, Dunn makes the point that T need not even be a

measure of X, so long as it is correlated with it (Dunn 2004). To be an

instrumental variable, T must be: (i) correlated with X, (ii) independent of

W – X, i.e. errors independent from those in W. (e.g., the instrumental variable

must not be prone to the same problem as the observed measure W), and (iii) a

surrogate for X in that, given Z, it does not contribute anything more than X to

the outcome Y.
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Using an instrumental variable requires a weaker assumption than a replicate

because it may be a biased measure. However, use of an instrumental variable is

less desirable than using the original measure X for validation purposes because it

introduces greater imprecision.

3.3.4 Using External Sources of Information

Sometimes, instead of a sub-sample from the same study, the repeat or validation

sample is from an external source, a second study. However, even if the same

exposure measure is used in the second study, it is unlikely that the distribution of X
would be identical, and therefore unlikely that l would be the same. Rather than try

to apply the reliability ratio l to the data, it is more sensible to extract the

measurement error variance itself, su
2, from the second study, and use this in

conjunction with the distribution of X found in the study needing correction for

the effects of measurement error (Carroll et al. 2006). The ability to use a parameter

(such as the reliability ratio or measurement error variance) obtained from one

study to inform another is known as “transportability”. For the reasons I have

outlined above, the measurement error variance is considered more transportable

than the reliability ratio (Carroll et al. 2006).

The different combination of internal and external sources of information in the

context of nutritional epidemiology has been summarised by Spiegelman et al.

(2005). Whilst Lyles et al. explore the possibility of combining both internal and

external validation (Lyles et al. 2007).

3.3.5 Statistical Methods

There are many statistical methods suggested for correcting for measurement error

in a variety of situations. Many approaches for linear regression have been

reviewed by Fuller et al. (Fuller 1987), and for nonlinear models (nonlinear link

functions) by Carroll et al. (2006). I now introduce a few of the common or widely

applicable methods that are available using standard statistical software.

3.3.5.1 Regression Calibration

Regression calibration is a widely applicable approach to measurement error in

generalised linear models. The basis of it is replacing X (which we can’t measure),

with the regression of X on Z andW (which we can estimate) in the analysis model.

This approximation on which regression calibration is based is exact for linear

regression (apart from a change in the intercept parameter) where Var(X|Z,W) is

constant, and is an “almost exact” approximation for logistic regression (Carroll

et al. 1995) and Cox’s proportional hazards model (Hughes 1993).
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In its simplest form, regression calibration follows the algorithm below:

1. Using replicates, a validation sample or instrumental data, estimate X
_

, the

regression of X on Z and W.

2. Replace the unobserved X by its estimate X
_

from step 1 and run the standard

analysis to derive the parameter estimates.

3. Adjust the standard errors of these parameters to allow for the fact that X is only

estimated in the calibration model, using either bootstrapping or sandwich

estimates.

If we define E(Y|X,Z) ¼ f(Z,X,B), then the approximation made in the

regression calibration model is to assume: E(Y|W,Z) � f(Z,X
_

,B). Since in this

equation the X is replaced by X
_

, the expected values no longer depends on X, but
on W. This assumes non-differential measurement error. With replicate data, the

measurement error variance matrix Suu can be estimated from a variance

components model (Carroll et al. 2006). Estimation of the standard errors of the

resulting parameters requires bootstrapping or sandwich estimates.

Where a validation sample exists, it is still preferable to use these true measures

of X wherever they are known. To facilitate this, it is advisable to insert a dummy

variable indicating the source of the X – whether exactly observed, or estimated

from the first stage of the regression calibration.

Regression calibration is generally applicable to generalised linear models,

though this depends to some extent on the linear approximation used in the

calibration equation (Carroll et al. 2006). Some exploration of alternative “better”

approximations have been made, but the linear approximation has been shown to

be “adequate” providing the effects of X are “not too large” (Carroll et al. 1995;

Kuha 1994; Rosner et al. 1989, 1990; Spiegelman et al. 1997; White et al. 2001;

Whittemore 1989). Where imperfectly measured covariates are a mixture of

continuous and binary, conventional regression calibration may lead to

over-correction, because errors in the binary covariate are not independent of the

true value. Extensions to the method are required in this situation (Bashir and Duffy

1997; Kuha 1997; Richardson and Gilks 1993b; White et al. 2001).

In the case of logistic regression, the conditions for regression calibration are

satisfied if the disease is rare, the relative risk small, and measurement error small

(Kuha 1994; Rosner et al. 1989). Carroll, in particular, has explored the application

of regression calibration to logistic regression under what he calls four worst case

scenarios covering additive and multiplicative error, normally distributed and

skewed error distributions (Carroll et al. 2006). All four scenarios include very

large measurement error. In each of these the regression calibration algorithm still

works well and gives good estimates. In addition, in epidemiology, any effects of

environmental exposures on outcomes such as cancer or death are generally either

large and already known, or quite small and under investigation. This, then, also

supports the use of the approximation in most future research.

Historically, the regression calibration method has been suggested as a general

method by Carroll and Stefanski (1990), Gleser (1990), and Armstrong (1985),

whilst Prentice, Clayton and Hughes have extended its use to the context of survival

44 D.C. Greenwood



analysis and Cox proportional hazards regression (Clayton 1992; Hughes 1993;

Prentice 1982), where it has been used in two large cohorts: the Nurses’ Health

Study (Spiegelman et al. 1997) and EPIC (Gonzalez et al. 2006a, b). The method

was “popularised” amongst statisticians by Rosner et al. (Carroll et al. 1995; Rosner

et al. 1989, 1990), though methods are still not widely used, even amongst

statisticians or epidemiologists, and they are certainly not well recognised yet

within clinical circles.

Caroll et al.’s version of regression calibration is available in Stata (StataCorp

2005) for a range of generalised linear models characterised by any sensible

combination of link function and distribution families (Hardin et al. 2003a).

Versions are also available in SAS (Rosner et al. 1992; Weller et al. 2007). It is

also easy to implement the algorithms in R.

3.3.5.2 Simulation Extrapolation (SIMEX)

SIMEX and regression calibration are both functional approaches to adjusting for

the effects of measurement error. Regression calibration uses a modelling-based

solution to this, but in contrast SIMEX is simulation-based, using a particular

resampling algorithm (Carroll et al. 1995; Cook and Stefanski 1994). This simple

method is widely applicable to a broad range of models. Loosely speaking,

the algorithm keeps adding a small known amount of error and re-estimates the

parameters each time. A trend in the effect of the measurement error is then

estimated, and extrapolation made to the case where there is no measurement

error. The algorithm is as follows:

1. The model is fitted “as is” to obtain estimated coefficients b
_

and an estimate of

s_
2

u based on variance components analysis (Carroll et al. 2006) or deemed

“known” from external validation data.

2. Additional error is added as follows:

(a) Additional random error is generated at y times the estimated s_
2

u and added

to the original values of X, such that added error ey ~ N(0, ys_
2

u).

(b) The model is then refitted to the new X and new coefficients b
_

estimated.

3. This is repeated r times and the mean or median coefficient
�
b
_

of these parameter

estimates is then calculated. Step 2 is then repeated for different of values of y,
e.g. {.5, 1, 1.5, 2}. The original model fitted in step 1 is taken as an additional

observation with y ¼ 0.

4. For each coefficient in the model, the estimate is plotted against the value of

y used. The trend is then extrapolated back to y ¼ �1. This then is the estimate

without measurement error. Methods for extrapolation include linear or

quadratic extrapolants. The most stable of these is the quadratic extrapolant

(Carroll et al. 1995, 1996; Cook and Stefanski 1994; Hardin et al. 2003b;

Wang et al. 1998).
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The SIMEX method does allow for plots that can be informative in terms of the

effects of measurement error, and the robustness of the results from taking this

approach.

This approach does not have the elegance of a simple closed formula, and it

may be sensitive to the choice of method used to extrapolate the curve over the

values of y. However, in practice it appears to work well. SIMEX is available in

Stata for a range of generalised linear models characterised by any sensible

combination of link function and distribution families (Hardin et al. 2003b).

SIMEX is also available through R’s simex package. It is also easy to implement

the algorithm in SAS.

3.3.5.3 Multiple Imputation

The historical divergence of methods to handle missing data from those

for mismeasured data is charted by Caroll (Carroll et al. 1995). Longford,

however, has proposed multiple imputation (Rubin 1987; Schafer 1997) as a

general approach to all forms of missingness in data, including variables

measured with error, rounding error, coarse data, and completely missing

data (Longford 2001). There is some conceptual advantage in using the same

approach to handle these different types of “corrupted” observations, and it

has been suggested that under some situations multiple imputation has greater

power than other methods (Cole et al. 2006). As with multiple imputation of

missing data, a number of imputed datasets would then be available for standard

statistical analyses before simple pooling of estimates, making results corrected

for measurement error more accessible to non-statisticians. However, one disad-

vantage is that multiple imputation requires validation data on a sub-sample

(rather than replicates or instruments), and in many situations may have less

power than other methods (White 2006). Multiple imputation is discussed at

greater length in Chap. 2, and procedures are widely available in standard

software such as Stata, R, and SAS.

3.3.5.4 Latent Variable and Multilevel Methods

Measurement error can profitably be viewed as a latent variable problem, with the

latent true exposure estimated on the basis of replicates, surrogate measures or

instrumental variables. The methods and software described elsewhere in this book

for latent traits and latent classes are therefore directly relevant to correcting for

errors in continuous and categorical exposure variables (see Chaps. 6 and 7).

Two particularly flexible approaches to estimating disease associations with latent

true exposures are Bayesian and quadrature-based methods.
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3.3.5.5 Bayesian Approaches

Bayesian methods are ideally suited for modelling the conditional dependency

models described by the disease, exposure and measurement models outlined in

Sect. 3.2.2. The structural modelling approach has the advantage of naturally taking

account of the hierarchical structure of data incorporating latent true exposures,

repeated observed exposures and measurement error. In addition they allow the

incorporation of prior information on the measurement error variance or the

distribution of the true covariate. Through inclusion of prior information they

may also provide a solution to non-identifiability of the measurement error model

in some circumstances (White et al. 2001). This leads to very flexible models in that

they can be applied to a wide range of measurement error problems.
Whilst regression calibration has two main steps (regressing X on W to

estimate X
_

, then using X
_

in place of X in the standard analysis), the Bayesian

approach models all the estimates (nodes) simultaneously. This means that cyclical

structural equation models cannot be fitted using some popular software

(Spiegelhalter et al. 1996, 2004). In addition, Gustafson suggests that the need for

an exposure model with the structural Bayesian approach, and the possibility of

misspecifying this, makes it more susceptible to bias than regression calibration

(Gustafson 2004).

Richardson has applied a range of Bayesian models in the context of both

validation samples and replicate samples (Richardson and Gilks 1993a, b).

She has extended these models to the situation where the prior distribution is a

mixture of different distributions, to allow greater flexibility (Richardson et al.

2002), and has outlined how the approach may be used on aggregate level data

(Gilks and Richardson 1992; Richardson 1996; Richardson and Best 2003).

In addition, some discussion and development of these tools for use in epidemiol-

ogy has been made by Bashir and Duffy (1997), by Mishra and Day (Day and

Mishra 2003, 2004), by Gustafson (Gustafson et al. 2002; Gustafson 2004) and

others (Bashir and Duffy 1997; Bennett and Wakefield 2001; Berry et al. 2002;

Dunson 2001; Moala and Baba 2003; Raghunathan and Siscovick 1998; Schmid

and Rosner 1993; Song et al. 2002; Whittaker et al. 2003).

Advantages of using MCMC within a Bayesian framework include the ability to

model measurement error correlation structures, extension of simple classical mea-

surement errormodels to include correlated person-specific biases and flattening of the

regression ofX onW. A range of exposure distributions can bemodelled, or a mixture

of distributions could be used if justified, e.g. for zero-inflated data (see Chap. 6).

Disadvantages of Bayesian methods include possible subjectivity in specification of

priors, potential lack of convergence to a stationary distribution, and length of time

taken to achieve convergence, given the heavy computational requirement.

MCMC methods are implemented in the BUGS software family (Classic BUGS,

WinBUGS, and OpenBUGS) (Spiegelhalter et al. 1996, 2007), JAGS (Plummer

2003), and for a limited range of models in MLwiN (Browne 2004; Rasbash

et al. 2004). Bayesian models are often described using directed acyclic graphs

(DAGs), and this graphical approach to modelling is described in detail in Chap. 9.
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3.3.5.6 Quadrature-Based Methods

An alternative to using MCMC methods to perform numerical integration is

Gauss-Hermite quadrature. This procedure evaluates the integral approximately

by taking a weighted sum of the integrand evaluated at each of a set of values

(known as quadrature points or masses) of the variable being integrated out

(Skrondal and Rabe-Hesketh 2004). However, a large number of quadrature points

may be required in many circumstances relating to correcting for measurement

error (Crouch and Spiegelman 1990), so the procedure may take a considerable

time to achieve accurate approximation. Adaptive quadrature allows the standard

methods for quadrature to be fine-tuned, so that the quadrature points are placed in

the most efficient places, e.g. under the peak of the integrand. These methods are

implemented in Stata’s gllamm (Rabe-Hesketh et al. 2001) and cme (Rabe-Hesketh

et al. 2003), a Stata command based on gllamm with simplified syntax specific to

measurement error problems. They are also implemented through R’s npmlreg and

SAS PROC NLMIXED.

This approach to maximum likelihood using adaptive quadrature is very flexible

and can be extended to a variety of measurement error models that MCMC can

handle (Rabe-Hesketh et al. 2001, 2002, 2003), including allowing for non-classical

error structures and the use of instrumental variables (see Sect. 3.3.3). Criticisms of

quadrature include its slow speed, particularly when implemented in Stata, but

offset by its great flexibility.

3.4 Practical Example

The importance of correcting for the effects of measurement error are well

demonstrated by research into the relationship between dietary fat and breast cancer

(Bingham et al. 2003). Researchers in Cambridge investigated this association

using both a food frequency questionnaire (FFQ) and a 7-day food diary.

FFQs are known to lack precision, but are often used in large cohort studies because

they are cheaper to administer and derive nutrient intakes from for large numbers of

participants.

A nested case-control design was used, with four controls for every case,

matched on age and date of entry to the study. Conditional logistic regression

was then used to derive odds ratios (equivalent here to hazard ratios). After

adjustment for potential confounders, including energy intake from non-fat sources,

the FFQ measure of total fat yielded a hazard ratio of 1.06 (95% CI: 0.89–1.25) for

each fifth of total fat intake. The same analysis based on the food diary gave a

hazard ratio of 1.17 (95% CI: 1.00–1.36). For saturated fat, the contrast was just as

clear, with 1.10 (0.94–1.29) using the FFQ and 1.22 (1.06–1.40) using the diary.

With the less precise measure, estimates of the size of the association were small

and confidence intervals spanned the null, whilst using the more precise measure
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the association appeared stronger and confidence intervals further from the null.

Yet food diaries themselves have been strongly criticised for containing a large

component of error, and that error being correlated between repeat measures, and

with other self-report tools such as FFQs (Day et al. 2004; Greenwood et al. 2006b;

Kipnis et al. 1999, 2001). The implication is that even food diaries yield strongly

biased estimates of diet-disease associations, possibly as much as halving the true

association. Only the use of unbiased, objective measures such as recovery

biomarkers, till receipts or household inventories can offer unbiased results.

3.5 Future Developments

Measurement error methods have only recently started to be used in major cohorts,

e.g. the Nurses’ Health Study (Spiegelman et al. 1997), EPIC (Ferrari et al. 2009;

Gonzalez et al. 2006a, b), The UK Women’s Cohort (Cade et al. 2007), and the

Centre for Nutritional Epidemiology in Cancer Prevention and Survival

(Dahm et al. 2010), but their use is not yet widespread. As their benefits are more

widely recognised and they become accepted in the clinical community, we will

begin to see less biased estimates of some difficult to measure environmental

exposures. Recent incorporation into standard software packages should also facil-

itate their use. Areas of further development may be specific to particular

exposures, such as development of a wider range of objective biomarkers of various

exposures, including dietary exposures.
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Chapter 4

Selection Bias in Epidemiologic Studies

Graham R. Law, Paul D. Baxter, and Mark S. Gilthorpe

Bias is inherent in epidemiology, and researchers go to great lengths to avoid

introducing bias into their studies. However, some bias is inevitable, and bias due

to selection is particularly common. We discuss ways to identify bias and how

authors have approached removing or adjusting for bias using statistical methods.

4.1 Introduction

Observational epidemiological studies are designed to elucidate the association

between disease and risk factors through making observations on people, in contrast

to randomised controlled trials and other designed experiments where exposures are

assigned by the researcher. All epidemiological studies, whether randomised con-

trolled trials or observational studies, are prone to various possible errors that can

lead to bias. Bias is the distortion of truth that leads to inappropriate conclusions,

and this needs to be minimised. The potential for incorrect conclusions needs to be

minimised through robust study design and appropriate statistical analysis. The job

of the epidemiologist is to minimise the potential for research to draw incorrect or

distorted conclusions. With this aim, it is often helpful to consider the various

sources of potential error.
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4.2 Observational Epidemiology and Bias

There are three main types of error recognised in epidemiology: random error or

chance, confounding, and systematic error. Random error is the most widely-

understood form of error, and is introduced through the inevitable use of random

samples from the population. Confidence intervals and statistical analysis have for a

long time been used to address this form of error. The epidemiologist seeks also to

address the other forms of error and associated potential bias. A substantive

potential for bias can arise from what is characterised as confounding,
when associations are inappropriately attributed as caused by an exposure of

interest rather than to some other characteristic of the study participants.

The identification and control of confounding was described in Chap. 1 and are

further explored in Chap. 11.

The third source of error, bias due to systematic error, has traditionally been

characterised by the cause of the bias. Bias due to errors in measuring the observed

exposure or outcome, known as information bias, can have many causes. Chapter 2

discusses bias introduced through missing data, an extreme form of information

bias. Chapter 3 discussed a subtler form of information bias, caused by errors

in measuring the exposure or confounders. A more widely recognised source

of information bias is differential recall, which arises where people with different

outcomes remember information in different ways; this can be controlled and

reduced through the design and implementation of a study.

4.2.1 Selection Bias

Selection bias is a form of systematic error in observational studies;

though this is perhaps less well-understood by most biomedical researchers com-

pared to other forms of bias (especially that due to random error). Part of the

training for an epidemiologist is to consider carefully the design of a study to avoid

initially selecting their subjects in an inappropriate way (random selection is always

preferred where possible, though may not be achievable). Randomised selection

from lists, for both people with a disease of interest, or for those without a disease,

is usually implemented in research studies. However, despite the best designed

selection process, active participation of human subjects is desirable, and indeed

often essential, for investigating putative risk factors for disease. A sample

of individuals, affected by participation, may not represent the population

from which it was drawn. Unfortunately, participation rates in health-related

studies have been decreasing over recent years (Galea and Tracy 2007).

These studies are also looking for increasingly smaller and smaller effect sizes.

Therefore, the problems arising from participation bias, which in turn stem from

selection bias, are likely to be ever more important to the understanding of future

epidemiological research.
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4.2.2 Selection Bias and Study Design

Selection bias, particularly through differential participation, may arise in

commonly-used study designs such as the case-control study. Frequently problems

may arise when the design of the study is retrospective to the development

of disease of interest. This leads to differing motivation amongst potential

participants, and often different sampling frames to be used for capturing

the various categories of participant. We focus here on the two most commonly

implemented designs in observational epidemiology: case-control study and

cohort study.

The case-control study has become embedded as a standard epidemiological

tool, with application to a wide range of human disease research. The inherent

strength of this design, that it uses individual rather than aggregated data, is also

a potential weakness. Many case-control studies are unable to assess the

characteristics of those individuals that did not participate, leading to an absence

of information about the magnitude of participation bias and its potential impact.

Reassurance has often come from the understanding that ‘adjusting’ for a variable

related to selection employs the same process as adjusting for a confounder:

i.e. selection bias is effectively ‘removed’ during the analysis phase of the study

(Law et al. 2002). However, this is an oversimplification of an important issue,

which we address in this chapter in more detail.

In contrast to the case-control study, the cohort study design has fewer problems

with recruitment and participation being differential between groups. Historical

cohorts may sometimes require participants to volunteer after the disease outcome

is known, and so be more prone to the problem than traditional cohorts, but such

historical or “retrospective”, cohorts are less common than their traditional

counterparts (Henderson and Page 2007).

In this chapter we focus on participation bias arising in a case-control study due

to differential selection between cases and controls. We address the different ways

in which bias may arise, identifying criteria under which there are possibilities for

statistical adjustment. In particular, we demonstrate how one approach, extensively

used in epidemiology, does not always provide the correct statistical adjustment –

indeed, the bias may be increased. To proceed with this discussion, we first

introduce the valuable tool of graphical models.

4.3 Graphical Models and Notation

We use graphical models (Pearl 2000), or Directed Acyclic Graphs (DAGs), to

explore model specification for investigating the exposure as a cause of the

outcome (see Chap. 1 for definitions) and the impact of selection bias (Greenland

et al. 1999).
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4.3.1 An Epidemiological Illustration

Imagine an epidemiological investigation in a population is to be conducted

into whether an exposure (E) causes an outcome (O). Figure 4.1 shows DAGs

depicting causal relationships for this population, with an arrow between O and E
representing the focus of a study to determine whether the exposure causes

the outcome.

(i) A is not a confounder (ii) A is a confounder
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Fig. 4.1 Directed acyclic graphs representing two scenarios (i) one where an auxiliary factor (A)

is not a confounder for the exposure (ii) and one where it is. Key to variables: E exposure,

A auxiliary, O outcome, OS sampled outcome, S selection, U-unmeasured; 1balanced case and

control sampling; 2differential control sampling
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In notation for Fig. 4.1a

O n� E (4.1)

A common practice in epidemiology is to consider other covariates in parallel

with an exposure. For example, these might include a measure of socio-economic or

educational status, age, sex or ethnic group and we will refer to these as auxiliary

variables (A). An auxiliary variable may have a cause in common (U) with the risk

factor (E), such as depicted in Fig. 4.1a but not be a cause of the outcome.

E n� A (4.2)

A confounder may be present in any study, regardless of the study design.

To consider a variable to be a confounder, it must be: (i) a cause, or a proxy of a

cause, of the disease (ii) correlated with the exposure under study (iii) unaffected by

the exposure, that is not on the causal pathway from exposure to the outcome (Tu

et al. 2004). When these criteria are satisfied, a confounder is present, indicating

that adjustment should be made within the analysis. DAGs are a particularly useful

tool in identifying a confounder. If a backdoor path exists between the outcome and

the exposure, via an auxiliary variable, then that variable should be considered a

confounder (Greenland et al. 1999; McNamee 2003). Figure 4.1b shows such a

situation, where the auxiliary variable is a cause of the outcome (O), thus leading to
the conclusion that A is a confounder. Again, further to Eqs. 4.1 and 4.2:

O n� A (4.3)

It is important to be aware of variables that might impact upon the outcome of

interest but not qualify as a confounder. These variables may be considered

competing exposures as they qualify as an exposure were they of direct interest

for their role on affecting outcome, yet they are not assigned this status in the study

in question. Although not confounders, and therefore of little concern in the

statistical adjustment for potential confounding, inclusion of these variables in the

statistical analysis may prove beneficial by improving precision in the estimated

impact of the exposure of interest. This is demonstrated for Fig. 4.1 where both E

and A affect O, but A is independent of E; A may thus be considered an independent
competing exposure.

By introducing A in the statistical analyses (e.g. in regression analysis), the

variation in the O ~ E relationship is reduced – one might think of the varying

O ~ E relationships as being coalesced when the variable A is introduced.

The improved precision from introducing A into the analysis is offset by consuming

a greater number of degrees of freedom. Therefore there may not always be an

advantage in including independent competing exposures. In general, it is important

not only to consider which variables are confounders (of the main exposure

of interest), but also to identify which variables are independent competing exposures

and to explore the value of including these in the analyseswhere parsimony is attained.
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4.4 Representing Selection Bias

In order to consider selection bias, Geneletti and colleagues (2009) imagine that in

the study population there is no causal link between the exposure and the outcome:

O n� E (4.4)

This is shown as a DAG in Fig. 4.1c, d depending on the absence or presence of a

confounder respectively.

Selection for a study may be represented as a node, S, in the DAGs as

summarized by Greenland and Brumback (Greenland and Brumback 2002) where

S is either 0 or 1 for each individual, representing refusal or participation respec-

tively. Figure 4.1e shows a causal diagram, from the study population represented

in Fig. 4.1c where a variable A, such as socioeconomic status, is associated with the

probability that someone will participate in a study. In this situation the selection

and participation into a study is also associated with the disease outcome. This is the

situation for a case-control study.

When the study conditions on S, all participants have S equal to unity, and an

artefactual association between A and O will be found. This is a frequently

observed result, for example see Smith and colleagues (Smith et al. 2004).

Again using notation:

O n� EjS ¼ 1 (4.5)

This is key to describing the results from many case-control studies where an

association is shown but it can be explained through effects due to selection. In this

situation some epidemiologists incorrectly believe that statistical adjustment for A
will remove the bias due to selection. However this is a simplification of a more

complex situation; this will be developed later.

Figure 4.1f shows a similar situation to Fig. 4.1e, though this time the A variable

can be considered to be a true confounder. This is not due to conditioning on

selection, but A is a separate and distinct cause of the outcome. In this situation

making statistical adjustment for A would be appropriate for interpreting whether E

causes the outcome O.

4.5 Study Design and Selection Bias

4.5.1 Case-Control Study

The case-control study is a popular design, particularly for rare diseases, to investi-

gate putative risk factors in epidemiology. A “target-population” (Geneletti

et al. 2009) is defined and the whole, or a random sample of the whole, population
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with a disease (cases) arising within that population are targeted for study: selection

for a case-control study follows the diagnosis of disease in the cases. For two

reasons selection bias is a particularly important issue for case-control studies:

(i) the direct participation by the study subjects is usually required to obtain data on

disease, risk factors, other auxiliary factors, and for ethical reasons, and (ii) cases

are usually selected through a health system, such as clinic lists for the relevant

disease, whilst controls are usually selected from a different sampling frame. When

the researcher is aiming to recruit controls that represent the general population, a

population register will be employed, such as birth registers.

If the case and control selection procedures produce a representative sample of

the target-population, whereby selection bias is not present, the DAGs for the case-

control study are an exact copy of those defined for the population, as shown in

Fig. 4.1a, b. In practice, the probability that any individual, selected for inclusion in

a study, will participate is usually higher for cases than for those without the disease

(controls). It has been recognised that the effect of such differential or non-random

sampling, and the bias it introduces, must be taken into account in the analysis of a

case-control study. This is represented in Fig. 4.1e, f, dependent upon whether A is

a true confounder or not.

4.5.2 Prospective Cohort Design

In a prospective cohort study, a sample from the target-population is made and the

exposure measured, in advance of any diagnosis. After an appropriate length of

follow-up time the proportion of cases of the disease could be compared in respect

of their exposure. Every person in the target-population has equal probability of

being approached at the outset: selection would not be conditioned on outcome (O).
Figures 4.1g, h show the situation where selection is not associated with the

outcome. This situation would be normal for prospective studies such as a cohort

study. Within the cohort sample, conditioned on S, there would not be an arc

between O and S. For this reason Eq. 4.4 holds.

4.6 Suggested Solutions to Selection Bias

in a Case-Control Study

A large number of possible solutions to selection bias have been suggested,

following the important step of recognising that selection bias may be a problem.

When using most study designs, researchers are governed by practical and ethical

constraints which require individuals to agree to participate. Of course, the best and

most reliable option is to avoid the problem in the first place. When a case-control

study can be conducted without requiring active participation from study subjects
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the design may allow a selection bias-free implementation. However, as most

studies do require permission from study subjects, they are left open to error in

selection and its effects. The aspect of the study most prone to error is control

selection. This has long been recognised. Indeed, one of the first books detailing the

conduct of case-control studies by Schlesselman (1982) explained that “The best-

designed sampling scheme, assuring complete ascertainment of cases and a proba-

bility sample of control, can be vitiated by high rates of refusal.”

4.6.1 Illustrative Example

The UK Childhood Cancer Study (UKCCS), amongst other research questions,

sought to identify whether radon gas causes acute lymphoblastic leukaemia (ALL)

in children (The UK Childhood Cancer Study Investigators 2002). The UKCCS

aimed to enrol all cases of cancer, diagnosed in persons under the age of 15, in

England, Scotland and Wales (The UK Childhood Cancer Study Investigators

2000). A comparison group was created: two children for each case were selected

from all children living in the same National Health Service administration region

(Family Health Services Authority for England and Wales and Health Board for

Scotland) as the case.

It was argued that most of the cases arising in the target-population were

recruited: multiple sources of case notification were interrogated (The UK Child-

hood Cancer Study Investigators 2000). The initial selection of control children has

been shown to be reassuringly similar to the target-population for which it was

designed to represent (Law et al. 2002). In contrast, it has been demonstrated that

control participation was associated with a measure of socioeconomic status

(Law et al. 2002), where it is thought that this acts as a proxy for closely related

factors, such as educational status, which directly influences willingness to partici-

pate in the study as a control.

In our illustrative example, there is substantial evidence of an association

between the socioeconomic status of the area in which a household resides

(the auxiliary A) and the level of radon gas in their home (E) (Gunby et al. 1993;

The UK Childhood Cancer Study Investigators 2002). This link is complex, but

household income (U in Fig. 4.1) allows double glazing and draught proofing to be

installed which can cause radon to increase in the home (Gunby et al. 1993).

Household income also provides for greater material wealth and hence a higher

measure of socioeconomic status (A). There was no evidence of any direct causal

relationship between socioeconomic status and the probability of a child developing

ALL (the outcome O) (Law et al. 2003). These variable inter-relationships suggest

that Fig. 4.1a is the most appropriate representation of the population addressed by

the UKCCS. Given this, the best model for estimating the association between

radon and childhood leukaemia is not to adjust for the auxiliary variable, socioeco-

nomic status. Hence, the population-level risk estimate in the UKCCS for the
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sample, with selection bias, cannot be recovered by statistical adjustment for the

auxiliary variable.

When a study is conducted it is normal for the researchers to pick a sample of

controls and approach them for participation. We can refer to these as “first-choice

controls” (Law et al. 2002, 2003); subsequent choice controls will be made until the

required number of controls is recruited. It has been suggested that you could use

participating first-choice controls only. Figure 4.2 shows the results for participa-

tion in controls in the UKCCS, fitted by a Lowess smoothed line (Cleveland and

Devlin 1988). It is clear that the association between participation and deprivation

does not differ by the choice of controls selected. This is intuitively correct, as the

control selection is an exchangeable process, where controls selected later in the

process possess the same characteristics as those selected earlier.

First-choice controls have been used; for example, Law and colleagues used all

first-choice controls without requiring their participation (Law et al. 2003). This is

because the exposure measures were derived from postal addresses linked to

national census data. These controls should be a representative sample of the

target-population; given the initial selection procedures were robust.

4.6.2 Statistical ‘Adjustment’ for Participation

One approach to dealing with selection bias is to ‘adjust’ for variables thought to

cause, or influence, selection in a statistical model. Some authors have argued that

adjusting for selection bias is identical to the process of adjusting for confounding:

the variables associated with selection are incorporated into a regression model

(e.g. Breslow and Day, 1980).

To investigate this a simulation study was conducted in R (R Development Core

Team 2004) to investigate the effect of adjusting for a variable that is related to

0P
ro

po
rt

io
n 

of
 p

ar
tic

ip
an

ts
.2

.4
.6

.8
1

−10 −5 0
Deprivation

5 10

Fig. 4.2 Proportion of controls participating by deprivation categorised into control choice groups
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participation in a case-control study. Target-populations were defined with 106

members; all individuals belonging to each population possessed attributes

representing A and E. Both variables for each individual were a random draw

from a standard normal distribution, with A and E constrained to be correlated

(r ¼ �0.8). For 1,000 of these individuals, selected as cases, O was assigned a

value of one which represented the presence of the disease. O was set to zero for the

rest of the population; these individuals were eligible to be sampled as controls.

The population level relative risk of the exposure (E) for the outcome (O) for each
population ranged over a series of plausible risk estimates: between 0.2 and 1.0 for

each standard deviation of E.
Two scenarios for the causal relationship between A and O were simulated:

(i) The auxiliary variable (A) was independent of the outcome; (ii) The auxiliary

variable was causally associated with the outcome. The population level relative

risk for O was 1.0 (range 0.96–1.04) and 0.75 (range 0.71–0.78) for each standard

deviation of A, for scenarios (i) and (ii) respectively. Three logistic regression

models were built to determine the population level relative risks for: E alone;

A alone; both E and A.
In both scenarios two control sampling regimes were employed to select 2,000

controls: (a) A case-control study without participation bias – controls randomly

sampled from individuals without the disease; (b) A case-control study with

participation bias – controls sampled with a probability of selection that was

monotonically related to A, the probability being defined as p ¼ 0:4� A=10.
All 1,000 cases were selected for all case-control study simulations. The three

logistic regression models outlined above were estimated repeatedly for 1,000

independent samples. The median and 95% empirical confidence intervals for

each model estimate were obtained, and were plotted against the true, population-

level relative risk.

The simulation study showed that, when A was independent of O, the odds ratios
obtained by case-control studies employing an unbiased sampling regime estimated

the population relative risk with a high degree of accuracy (Fig. 4.3(i) unbiased

model E). When A was a true confounder and was adjusted for in the model the

unbiased study also recovered the population relative risk consistently across a

broad range of risks (Fig. 4.3(ii) unbiased model E + A).

We have already determined that when the auxiliary variable A is not a true

confounder, independence between an outcome and exposure may be artefactually

produced (Eq. 4.5 and Fig. 4.1e). The case-control study has already conditioned on

S rendering any adjustment route, O ! S ! A ! U ! E, blocked. However,

when the auxiliary variable is also a true confounder, a route O ! A ! U ! E
exists to adjust for selection.

The auxiliary variable was therefore not a confounder in this context

(McNamee 2003), and there was no meaningful way to ‘adjust’ for its complex

influence on the outcome. This was supported by the simulation study, which

showed that for the scenario, where A was not a true confounder, the biased case-

control studies consistently and significantly underestimated the population

relative risk (Fig. 4.3(i) biased model E). Furthermore, simulations support
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the assertion that attempting to recover the relative risk estimate for the scenario

where A was not a true confounder, through statistical adjustment for A, fails
to obtain an odds ratio close to the original relative risk (Fig. 4.3(i) biased model

E + A), unless the true relative risk was close to unity. We must, therefore,

conclude that we cannot statistically ‘adjust’ for the auxiliary variable’s impact

on selection bias.

(i) Auxiliary (A) not a confounder, but associated with exposure (E )

(ii) Auxiliary (A) a confounder 
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Fig. 4.3 Odds ratios (point) and 95% empirical confidence intervals (vertical bar) for biased and

unbiased simulated case-control studies (1,000 cases fixed, 2,000 controls, sampled 1,000 times)

applied to two populations (106 individuals, 1000 cases, sampled once), contrasted to the ‘true’

population relative risk (thick solid line). (i) Auxiliary (A) not a confounder, but associated with

exposure (E). (ii) Auxiliary (A) a confounder
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When A was a true confounder, the conclusion is quite different. The simulation

study showed that the biased models overestimated the relative risk (Fig. 4.3(ii)

biased model E). In contrast to the first scenario, statistical adjustment by inclusion

of A in the model recovered accurately and consistently the population relative risk

(Fig. 4.3(ii) biased model E + A).

4.6.3 ‘Bias Breaking’ Model

This model was introduced by Geneletti and colleagues (2009) to provide a

statistical solution to selection bias. The basic assumption behind the model is

that there is a variable, termed the bias breaking variable, which is associated with

both the selection and the exposure, and in some-way “separates” them. This is the

variable that we have termed the auxiliary earlier in this chapter. Formalised

assumptions are:

(i) The case and control selection procedures are independent processes and can

be treated separately. This is common in case-control studies and is a valid

assumption as was described earlier.

E � SjðO;AÞ (4.6)

(ii) This states that, conditional on the outcome within strata of the auxiliary,

exposure is independent of selection for the study. This requires the auxiliary

to be stratified into categories.

(iii) The bias breaking variable must have additional data available to the

researcher, outside of the study, so that a distribution of the bias breaker in

relation to the outcome can be obtained.

Where there is no case selection bias, it is possible to use the distribution of A for

both cases and controls to estimate the overall distribution of A, regardless of the

outcome status. Further details are available to estimate the unbiased estimate of

the odds ratio (Geneletti et al. 2009).

4.6.4 Other Statistical Methods

In the survey literature, the issue of differential selection, and the bias that may

arise, is known as informative sampling. The issues arising in survey sampling are

analogous to the selection of cases and controls in a case-control study.

Informative sampling has a long history in the literature of complex social

surveys (see, for example, Rubin 1976). The bias it can cause, if not taken account

of, is widely acknowledged (for example, Pfeffermann 1996). One approach

to identify this bias is to model the distribution of the sample data as a function
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of the population distribution and the sampling weights (Pfeffermann and

Sverchkov 2003). The density function fs Yi xijð Þ of a response variable Y is defined

as f Yi xi; i 2 sjð Þ where s denotes the sample and xi ¼ x1i; :::; xkið Þ represents the

values of predictor variables X1; :::;Xk for observation i. Denoting the population

density (before sampling) as fu Yi xijð Þ Bayes’ theorem yields the result:

fs Yi xijð Þ ¼ P i 2 s Yi; xijð Þfu Yi xijð Þ
P i 2 s xijð Þ (4.7)

Unless P i 2 s Yi; xijð Þ ¼ P i 2 s xijð Þ for all possible values of Y the sample and

population densities differ and the sampling is said to be informative. In the context

of case-control studies Y ¼ 1 would correspond to cases and Y ¼ 0 to controls.

The approaches taken by Pfeffermann and Sverchkov (Pfeffermann 1996;

Pfeffermann and Sverchkov 2003) to fit generalised linear models between

response Y and predictors X1; :::;Xk rest on redefining the population density fu :ð Þ
by the sample density fs :ð Þ assuming known forms for P i 2 s Yi; xijð Þ and P i 2 s xijð Þ.

These methods are yet to be fully exploited in epidemiological studies though

Samuelsen and colleagues discuss the use of stratification and sampling weights in

case-cohort studies (Samuelsen et al. 2007). The non-cases are divided into strata

according to the values of covariates, and the probability of sampling an individual

from each strata is included as an inverse probability weight in the parameter

estimation process.

4.7 Conclusions

We have shown how a biased sampling regime within a study may lead to a biased

estimate of the relative risk for an exposure. We agree with Hernán and colleagues

that authors should be encouraged to approach modelling in a structured way,

allowing readers to assess the likelihood of selection biasing the exposure risk

estimates, and the potential success of any statistical adjustments (Hernan et al.

2004). Using the case-control sample as the ‘oracle’ for defining potential causal

pathways for variables at the population level, one might erroneously conclude that

A is a confounder when it is not. This may be due wholly to the influence of

differential participation between cases and controls. The decision to assign an

auxiliary variable as a confounder may be complicated by the evidence from the

case-control study that suffers from selection bias; an association between A and O
may be present. It is worth noting that considering all possible auxiliaries as

confounders, when they may not all have a causal relationship with the outcome,

seems erroneous even though this practice appears to be commonly employed.

Case-control studies reliant upon individual participation, suffer from selection

bias (Law et al. 2002). In the example of Sect. 4.1, a variable identified as causing

selection, socioeconomic status, was not a true confounder. As a consequence, it is
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not possible to recover the population-level relative risks by adjustment within a

regression model. Epidemiology may therefore need to revisit the many case-

control studies already conducted where the statistical analyses included all

perceivable confounders, many of which may have been rather cavalierly labelled

as such.

Whilst we are aware that a prospective cohort study may be financially prohibi-

tive, it does provide a solution to this problem. Epidemiology may therefore need to

re-evaluate the benefit of many case-controls studies prone to selection bias, against

the cost of conducting a large, prospective cohort study.

We believe this example is not an isolated case. Participation rates are dropping

globally, ethical constraints are making sample selection increasingly difficult, and

methods for selecting individuals use difficult-to-check procedures. It is clear that

alternative strategies are required in these situations.

Case-control studies are prone to selection bias induced by differential partici-

pation between cases and controls. There are two possible scenarios for the analysis

of case-control data where participation bias is anticipated; each has a different

outcome:

i. When there is an auxiliary variable that is associated with sampling and it is not

a genuine confounder, statistical adjustment will not recover the population-

level exposure relative risk.

ii. When the auxiliary variable is a genuine confounder, statistical adjustment will

obtain the correctly estimated relative risk for the exposure.

Correctly specifying the causal model is essential to the understanding of how

appropriate statistical adjustment may be achieved. DAGs and their development

may substantially assist with this task and allow the implementation of novel newly

developed methods.
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Chapter 5

Multilevel Modelling

Andrew Blance

5.1 Introduction

Independence (only one observation per individual) amongst the observations is an

underlying assumption of single-level analyses (Armitage et al. 2002; Bland 2000).

In reality, this assumption is often violated due to clustering of observations.

For example, siblings clustered with families or students clustered within classes

of a school. Observations which possess such clustering are considered as forming a

hierarchical data structure. When a hierarchy is present, a simple (perhaps simplest)

solution to the violation of independence is to use the observations within each

cluster to produce a single summary or ‘global’ measure for each top-level

(independent) unit and perform subsequent analyses at this level. However, this is

not only an inefficient use of the data collected but (more importantly) ignoring the

hierarchical structure potentially ignores far more interesting considerations

provided by exploring the nature of the hierarchy. In instances such as this, the

technique of Multilevel Modelling (MLM) comes into its own, not only dealing

with the lack of independence but exploiting it to its advantage.

A discussion detailing the pitfalls of ignoring data hierarchy is outlined.

The assumptions and limitations of MLM are outlined and contrasted with those of

single-level modelling. An illustration of the effects of clustering introduces variance

components. This simplest (null) multilevel model is used to outline the notation used

to specify a multilevel model. The initial variance components model is further deve-

loped to illustrate random intercepts and (complex) slopes. Markov Chain Monte

Carlo (MCMC) methods appropriate for estimating multilevel models are introduced.

Model fit diagnostics are considered. Finally, complex (non-strict) hierarchies are

outlined. A periodontal example is used throughout the chapter for illustration.
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5.1.1 Periodontal Example

As we age, the gum around our teeth recedes resulting in attachment loss. This gives

the appearance of longer teeth, hence the saying “long in the tooth”. The rate of

attachment loss varies from person to person and is influenced by (amongst other

things) the standard of oral hygiene. The illustrative example used throughout this

chapter consists of observations of (clinical) attachment loss (CAL) measured in

millimeters around each tooth, up to 28 teeth per individual (all teeth excluding

third molars, i.e. wisdom teeth). The data structure, or hierarchy, can be depicted as

in Fig. 5.1.

5.1.2 Independence

Two observations are defined as independent if one is in no way predictable from

the other (Armitage et al. 2002; Machin et al. 2007). An alternative way of stating

two variables as being independent is to say that the distribution of one is the same

for all values of the other. This independence is an essential assumption of

‘standard’ statistical regression methods. Generalised linear models require that

outcome observations are independent. Clinical data often violate the assumption

that the outcome is independently observed, usually arising from clustering, or

nesting of the outcome variable. In the periodontal example, attachment loss

measurements for each tooth are clustered/nested within each individual. Knowing

the attachment loss of one tooth would tell us something about the attachment

losses of the other teeth, owing to the teeth all sharing the same oral environment.

5.1.3 Effect of Ignoring Lack of Independence

In single-level modelling, the standard error (SE) associated with an estimated

coefficient is proportional to one over the square root of the number of observations

(N): SE / 1
� ffiffiffiffi

N
p

(Altman 1991). In our periodontal example we have 17,858

observations of attachment loss (potentially 28 teeth per individual and 1,000

individuals). If the 17,858 observations were subject to a single-level analysis the

resulting standard errors would be proportional to (1/√17858) 1/134. However,

Individual

ToothTooth Tooth Level 1

Level 2
Fig. 5.1 Data hierarchy
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if the data were analysed with the number of independent observations correctly

taken to be 1,000, the standard errors would be proportional to (1/√1000) 1/32.
Therefore, ignoring inherent hierarchy in this instance yields standard errors that

are an order of magnitude (32/134) smaller than they should be. This also leads to

an increase in the potential for Type I errors; incorrectly identifying a covariate as

influencing the outcome of interest.

5.1.4 Dealing with Hierarchy

Ignoring the lack of independence, what might be termed the ‘Ostrich’ approach of

burying your head in the sand, is clearly not an acceptable solution. A work-around

would be to sample just one lower-level unit per highest level-unit (one attachment

loss per individual). Alternatively a subgroup analysis could be performed (e.g. all

teeth analysed for each individual separately) yielding as many separate analyses as

there are individuals. If and only if the data are balanced (equal numbers of identical

teeth per individual), the hierarchy can initially be ignored in estimating

coefficients. Correct coefficient standard errors can subsequently be obtained by

making the appropriate adjustment to account for the hierarchy. All of these are

workarounds to the lack of independence. The statistical analyses are rendered

statistically valid. However, they fail to get the most out the data due to a great loss

of detailed information. Further, they can lead to more general problems, such as

drawing inferences about lower-level units through higher-level analyses, thereby

running the risk of committing the ecological fallacy (Bland 2000).

A more optimal solution would be to use statistical methods that yield robust

standard errors by dealing with the hierarchy explicitly. These methods can be

viewed as belonging to one of two groups: (i) those that treat the hierarchy as a

nuisance or, (ii) those which treat the hierarchy as a special feature to be exploited.

Examples of the former are Generalised Estimating Equations (Ziegler et al. 1998)

and Sandwich Estimates (Qian and Wang 2001; White 1980). An example of the

latter is what is now termed multilevel modelling (UK) (Leyland and Goldstein

2001) or hierarchical linear modelling (US) (Raudenbush and Bryk 2002).

5.2 Assumptions and Advantages of MLM

5.2.1 Assumptions Underpinning MLM

MLM requires compliance with the same assumptions of single-level generalised

linearmodelling (Kirkwood and Sterne 2003;Machin et al. 2007). Namely, a correctly

specified link function with appropriate form of explanatory variables in the linear

(additive) predictor, appropriately distributed residuals and appropriately structured
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outcome variance across each covariate. However, providing the non-constant

variance structure (heteroscedasticity) is modelled explicitly, the ‘constant variance’

assumption may be relaxed within a multilevel model (Hox 2002).

A multilevel model makes the assumption that cluster units are broadly similar,

with differences being attributable to known fixed and random variation.

In theory, with sufficient information, all measures of variation can be estimated.

In reality there may not be sufficient information collected to determine all fixed

and random effects giving rise to variations in the outcome measure.

Consequently, inference can only be drawn conditional on the relationship of

measured factors associated with the outcome. Explicitly, a fixed effect can only

be interpreted whilst ‘controlling’ for measured confounding factors.

The resulting inference of the fixed effects may nevertheless be biased due to

unmeasured (and possibly unknown) confounding factors. The same behaviour

applies to random effects.

An intuitive way to view a multilevel model is to think of each level as

containing a sample of members drawn from a potentially larger population.

Since it is necessary for the distributional properties of observations at each level

to be estimated, a minimum of 20 top-level units is required. Fewer units at the

upper-most level can lead to the distributional properties being poorly estimated,

with consequent (negative) implications on the lower-level distributional estimates.

The same constraint does not apply to lower levels, since each lower-level unit

occurs many times within all higher-level units.

5.2.2 Importance of Centring

MLM is only invariant to linear transformations of the explanatory variables in the

absence of random slopes. It is therefore essential that to avoid biased estimates of

the random structure of a multilevel model, all covariates that exhibit random

variation should be centred about their mean (Hox 2002). Otherwise, covariance

estimates are artificially inflated.

5.2.3 Advantages of MLM

Framing random structure firmly within a hierarchical context gives rise to major

benefits (Gilthorpe and Cunningham 2000; Quene and van den Bergh 2008).

Not least, it provides a naturally intuitive understanding. For example, patients

are often the unit of concern, yet observations are frequently made at a lower level.

Further, in contrast to techniques that treat clustering as a nuisance to derive robust

estimates of the fixed effects, a key feature of MLM is that it provides insights into

random effects. The full power of MLM in exploiting random structure will only be

realised for research questions posed such that the random effects provide the

research answer.
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5.3 Constructing Multilevel Models

5.3.1 Variance Components

Partitioning the total variance by its source yields insight as to the relative weights

of each source. Consider the 2-level hierarchy of the periodontal example where

teeth are clustered within individuals. Figure 5.2 illustrates the variation in attach-

ment loss amongst 140 teeth. The 1,400 observations relate to just 5 individuals as

illustrated in Fig. 5.3.

Some of the variation is due to variation between individuals and some within
individuals. Thus the total variance can be partitioned according to that which is

attributable to teeth and individual. This is known as variance components and

represents the simplest MLM (Snijders and Bosker 1999). The variance

components model has no explanatory variables (only the intercept is present)

and is often termed the null model. Variance components models are mathemati-

cally equivalent to ‘random effects’ ANOVA (Snijders and Bosker 1999). They are

useful in establishing the relative proportions of variation across all levels, allowing

the variation at each level to be known a priori to the introduction of ‘explanatory’

terms. This in turn allows consideration of the reduction in variation associated with

the inclusion of an explanatory term.

0 20 40 60 80 100 120 140

CAL

Fig. 5.2 Variation in

attachment loss amongst teeth

0 1 22 3 4 5

CAL

Fig. 5.3 Variation in

attachment loss by

individuals
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Within MLM, the first stage of the analysis is to determine the appropriate

multilevel structure. If the variance at a given level does not contribute substan-

tially to the total variance, this level may be obsolete and might therefore be

ignored. However, the extent of variation at any specified level may appear

insubstantial (or even zero) whilst it remains masked by larger, as yet unmodelled,

fixed and random effects. For this reason, it is unwise to discard a particular level

simply because its variation is small (or even zero) and not significant, when no

other terms have been included in the model. Only where this remains consis-

tently to be true throughout model development would it suggest that the level

could be discarded. Thus producing a more parsimonious model, perhaps increas-

ing its interpretability.

5.3.2 MLM Notation

In introducing the theory of MLM, it is useful to outline the notation (algebra) used.

Considering a two-level model, the general algebraic formula may be written:

yij ¼
XN
m¼0

bmijxmij (5.1)

where yij is the outcome measure for the i-th level 1 unit, clustered within the j-th
level 2 unit; xmij (m � 1) is the m-th of N covariates with coefficients bmij; x0ij ¼ 1

such that b0ij (the intercept) is the outcome when all explanatory variables are zero.

To aid comprehension of this generic formulation, we start with the simplest of

all multilevel models and build the MLM algebra from first principles.

5.3.2.1 Variance Components Notation

A variance components model has only the intercept present. The effect of having

no explanatory variables present is that N ¼ 0. Thus the variance components

model is derived from (5.1) by setting N ¼ 0:

yij ¼ b0ij ¼ b0 þ u0j þ e0ij

where b0 is the mean value of the outcome variable yij, with the total variance

partitioned across each level such that: e0ij � N 0; s20e
� �

, the level 1 residuals (e0ij)
have zero mean and are normally distributed with variance s20e across all units;

and similarly for u0j � N 0; s20u
� �

(level 2 residuals), where s20u is the variance

across all units.
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5.3.2.2 Periodontal Example

We have two sources of random variation: variation between individuals and

variation between teeth (variation within individuals).

yij ¼ b0ij ¼ b0 þ u0j þ e0ij

where yij is the attachment loss (CAL) for the i-th tooth, clustered within the j-th
individual; b0 is the mean value of the attachment loss yij, with the total variance

partitioned across each level such that: e0ij � N 0; s20e
� �

, tooth level residuals (e0ij)
have zero mean and are normally distributed with variance s20e across all units;

similarly for u0j � N 0; s20u
� �

(individual level residuals), where s20u is the variance
across all units. Thus, the total variation is given by Var CALij

� � ¼ s20u þ s20e.

5.3.3 Random Intercepts Model

A Random Intercept model is a variance components model that includes

explanatory covariates (Snijders and Bosker 1999). It is so termed as each level-

2 unit (individual) has the same linear relationship between the outcome and

explanatory covariate, whilst exhibiting random variation ‘around’ the collective

level-2 mean intercept. Analogous to single-level modelling, covariates are sought

for inclusion in the model so as to ‘explain’ as much variation in the outcome as

possible. The effect of each covariate is estimated by a partial regression coeffi-

cient. The unexplained variation is important in assessing the adequacy of the

model (with larger residual variation reflecting a poorer fit) and the coefficient in

assessing the effect of that factor on the outcome. The difference from single-level

is that covariates primarily ‘operate’ at a specific level, with potential for some

‘cross-level’ interactions, and variation occurs at every level of the hierarchy.

The inclusion of a fixed effect may lead to the reduction of variation at more than

one level. For example, although smoking status will primarily operate at the

subject-level, it may also operate differentially across teeth within the same indi-

vidual, thereby providing a cross-level interaction between the subject- and the

tooth-level.

5.3.3.1 Example of a Random Intercept Model

Consider our periodontal example where we have a 2-level model with only one

covariate (age). Consider the relationship between attachment loss (CAL) and age

within a longitudinal dataset of clinical measures obtained from repeated full-

mouth recordings on a sample of individuals. Suppose we ignore the natural

hierarchy and observe a near-linear relationship, as illustrated in Fig. 5.4.
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Residuals in this single-level illustration are the discrepancies between the

observed measures (denoted by each cross) and the predicted measures (denoted

by the ‘fitted’ line) measured along the CAL axis. Clearly, variation in CAL is

(partially) ‘explained’ by age. However, this is not the complete picture; we do not

expect all individual’ observations to fall on the line, but variation between

individuals is masked and merged with variation within individuals, because the

data hierarchy has been ignored.

In a multilevel framework, the random variation at level-1 (teeth) is similar to that

for the single-level analysis, but there is also additional variation in a 2-level model

that allows for level-2 random variation to occur across all level-2 units (individuals),

as illustrated in Fig. 5.5. The heavy line represents the estimated average relationship

across all subjects with a mean intercept denoted by b0. In addition, the lighter

‘parallel’ lines represent the relationship for data belonging to each level-2 unit

(individual). The gradient of this relationship (how much CAL changes for one unit

change in age) is obtained from the estimated coefficient for the age covariate.

5.3.3.2 Random Intercept Notation

In general, to include covariates that ‘operate’ at the various levels, such as x1j for
the individual-level (i.e. level-2) covariate age, and x2ij for the tooth-level covariate
presence/ absence of plaque, a 2-level random intercept model may be written:

yij ¼ b0ij þ b1x1j þ b2x2ij ¼ b0 þ b1x1j þ b2x2ij
� �þ e0ij þ u0j

� �

age

CALFig. 5.4 CAL against age;

fitted linear relationship

obtained from a single-level

analysis

age

CAL

β0

Fig. 5.5 CAL against age;

fitted linear relationships

obtained from individual

single-level regression

analysis
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where the first part (b0 þ b1x1j þ b2x2ij) is similar to any single-level model which

contains the two covariate effects plus the intercept, whilst the second part

(e0ij þ u0j) is the multilevel random structure for the total variation partitioned

across each level of the hierarchy. The subscript j is present for the first covariate
(x1j) to represent covariate values that vary across individuals (and are constant for

all sites within individuals); whereas the subscripts ij are present for the second

covariate (x2ij) to represent that these covariate values vary across teeth (within

individuals) as well as across individuals (it is not constant for all sites within

individuals). The multilevel model thus estimates the parameters of the fixed part of

the model (b0,b1,b2) alongside the parameters of the random part of the model

(s20e,s
2
0u). The random terms (e0ij,u0j) are not estimated; only their variances are

estimated.

5.3.4 Complex Level-1 Models

Multilevel complex (non-constant) level-1 variation has an analogy in single-level

terms, where it is termed heteroscedasticity (Hox 2002). However, within most

single-level data structures, non-constant variance is generally deemed a nuisance,

requiring a transformation of either the outcome or explanatory variable (or both).

Within MLM, non-constant level-1 variance may be modelled explicitly and be of

particular interest (Goldstein 2003). This allows MLM to deal with a wider range of

complex data structures.

For instance, a natural biological system might yield data that would not

be expected to satisfy the constant variance requirement of standard regression,

and the only way to address any particular research questions directed at such a

system would be to model the full complexity of the variation present.

An example might be periodontal measurements, since it has been speculated

that CAL suffers both natural biological variations and measurement errors that

increase in relation to their ‘true’ or unobserved value. This may be modelled

explicitly within MLM. For instance, if we followed several individuals and

plotted their pocket probing depth against age, we might see something that

looks like Fig. 5.6.

CAL is bounded below by zero (and above, though this may be less important)

and values generally increase with age. Therefore, variability in these outcomes

is constrained when they are observed close to zero. Conversely, variation may

be greater amongst sites with more disease (when they are measured far

from zero). This occurs for multiple teeth within each individual; therefore

the non-constant variance observed in Fig. 5.6 occurs for each individual

separately.

Complex level-1 variation may occur for three broad reasons. Firstly,

constraints within the outcome variable mean that the degree of variation in

the outcome changes as a function of a covariate. Secondly, the intrinsic

structure of the data due to temporally or spatially distributed outcomes results
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in auto-correlation. Thirdly, since regression analyses assume error free

covariates, ‘spurious’ complex level-1 variation may manifest itself as a result

of measurement ‘error’.

5.3.4.1 Complex Level-1 Notation

If we were to try and model the complex variation in Fig. 5.6, where it is assumed

that, for each individual, the within-mouth variation widens with increasing mean

CAL (or increasing age), we would express the 2-level model as:

CALij ¼ b0ij þ b1iagej ¼ b0 þ b1agej
� �þ e0ij þ u0j þ e1ijagej

� �

where the first part (b0 þ b1agej) is similar to any single-level model that fits the

mean covariate relationship, including an intercept term. The second part

(e0ij þ u0j þ e1ijagej) is the multilevel random structure for the total variation

partitioned across each level of the hierarchy, including additional random struc-

ture at level-1 that depends upon age. In this instance, age is acting as a proxy/

surrogate for mean CAL. The subscript j is present for all references to the

covariate age, since the covariate value varies across individuals (and is constant

for all teeth within individuals). The additional random parameter, e1ij, satisfies the
usual assumptions, and represents the level-1 (random) variation which is effec-

tively ‘scaled’ by the age covariate. At level-1, the two random terms (e0ij,e1ij) give
rise to two variances and one covariance (s20e,s

2
1e,s01e), where the covariance

depicts any underlying relationship (if one exists) between one random term

varying ‘in tune’ with the other.

The multilevel model thus estimates the parameters of the fixed part of the model

(b0,b1) alongside the parameters of the random part of the model (s20e, s
2
1e, and s01e

for level-1; s20u for level-2). The variance ‘function’ at level-1 now has a complex

form: level-1 variance ¼ Var e0ij þ e1ijagej
� � ¼ s20e þ 2s01eagej þ s21eagej

2, since

age is a fixed covariate. In other words, the level-1 variance structure is a quadratic
function of the covariate age (Fig. 5.7). Different level-1 variance functions can be

obtained by appropriate transformation(s) of the selected covariate(s).

age

CALFig. 5.6 Individual’s CAL

measurements over several

years, with linear fit
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5.3.5 Random Slope Models (or Random Coefficient Models)

A key assumption in single-level regression is that random variation occurs only

within the outcome (‘around’ the intercept) and that fixed variation may be

‘explained’ by the inclusion of covariates. Within MLM, covariates may also

exhibit variation, either random, fixed, or both. Random slopes are where there

exists complex (non-constant) random variation at any level above level-1, where

covariates exhibit random variation ‘around’ their (mean) coefficient estimates

(Snijders and Bosker 1999).

Complex variation above level 1 can occur as a result of random biological

variation or a constraint on the explanatory variables. Random biological variation

would arise when not all individuals within a study are alike in their response to

various factors, for example due to differences in genetic predisposition or lifestyle.

Constraints on explanatory variables again arise due to boundary effects amongst

the explanatory variables. However, in this instance it is the influence of the

covariate upon the outcome that is attenuated by boundary constraints; the covariate

(not the outcome) is bounded (either above or below) and the impact of the

covariate on the outcome is less likely to vary near its boundary values.

Perhaps a more intuitive way to understand random slope models is to first

consider a 2-level random intercept model with a single covariate describing

(initially) the same gradient across all level-2 units (as shown previously in

Fig. 5.5). If the gradient varies randomly across (level-2) individuals, the model

would become a random slope model and there would exist a different linear

relationship between the outcome and covariate for each individual, as illustrated

in Fig. 5.8, where the heavy line represents the mean slope of all individuals (level-

2 units).

However, it is unlikely that the data exhibit a consistent intercept for all

individuals. Figure 5.9 indicates the more likely scenario of simultaneous non-

zero random slope and non-zero random intercept.

It is worth noting that random covariate effects might occur even when

the mean covariate (age) effect is not significant (close to zero), as shown

in Fig. 5.10.

age

CALFig. 5.7 Individual’s CAL

measurements over

several years, with complex

level-1 variance
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5.3.5.1 Random Slope Notation

If we were to model the simple random slope model, illustrated in Fig. 5.10, the

2-level model would be:

CALij ¼ b0ij þ b1jagej ¼ b0 þ b1agej
� �þ e0ij þ u0j þ u1jagej

� �

age

CALFig. 5.8 CAL against age;

random variation across

individuals occurring

‘around’ the age coefficient

mean

age

CALFig. 5.9 CAL against age;

the random slope model may

simultaneously exhibit

random variation about the

intercept

age

CALFig. 5.10 CAL against age;

how random covariate effects

might occur even when the

covariate effect is zero
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where the fixed part (b0 þ b1agej) is akin to any single-level model, and now

the random part (e0ij þ u0j þ u1jagej) represents the multilevel random

structure, with the total variation partitioned across each level of the hierarchy,

including additional random structure at level-2 that depends upon age.
The additional random parameter, u1j, satisfies the usual assumptions

(normally distributed with mean zero), but only varies from individual to individ-

ual. This term represents level-2 (random) variation, which is effectively ‘scaled’

by the age covariate. At level-2, the two random terms (u0j,u1j) give rise to

two variances and one covariance (s20u,s
2
1u,s01u), where the covariance

depicts any underlying relationship (if one exists) between one random term

changing ‘in tune’ with the other.

The multilevel model thus estimates the parameters of the fixed part of the model

(b0,b1) alongside the parameters of the random part of the model (s20e for level-1;
s20u,s

2
1u, and s01u for level-2), only now the complex variation occurs at level-2 and not

at level-1.Thevariance ‘function’at level-2 againhas acomplex form: level-2 variance
¼ Var u0j þ u1jagej

� � ¼ s20u þ 2s01uagej þ s21uagej
2, since age is not a random vari-

able. Thus, the level-2 variance structure is a quadratic function of the covariate age.
Something that is peculiar to multilevel modelling occurs if the covariate,

about which we model random slopes, is binary. Consider the covariate sex in

a similar model to that previously described for age: CALij ¼ b0ij þ b1jsexj
¼ b0 þ b1sexj

� �þ e0ij þ u0j þ u1jsexj
� �

. Then: level-2 variance ¼ s20u þ 2s01usexj
þs21usexj

2, since sex is not a random variable. Although the level-2 variance struc-

ture appears to be a quadratic function of the covariate sex, it is not, since sex can
only take two values, usually coded 0 and 1, in which case sex2 ¼ sex. Thus: level-
2 variance ¼ s20u þ 2s01u þ s21u

� �
sexj, and it therefore becomes impossible to

determine, simultaneously, the complex variance associated with sex (s21u) and the

covariance between sex and the intercept (s01u). In this situation, we have to

constrain one of these two terms to be zero and adopt either s20u þ 2s01usexj or s20u þ
s21usexj as the variance function at level-2.

Now, the problem is, if we adopt s20u þ 2s01usexj as the correct expression,

we have what appears to be an absurd situation. The model determines a variance

for the random intercept and a covariance between the random intercept

and random covariate (e.g. sex), whilst constraining the variance of the random

covariate for sex to be zero. However, this parameterisation (s20u þ 2s01usexj)
is correct and the alternative (s20u þ s21usexj) is only correct in a limited number

of circumstances. This is because variance terms can only be positive,

whereas the covariance term may be negative also, providing that total variance

remains positive. Thus, were sex coded such that males were 0 and females

were 1, and outcome variation was greater amongst males than females, the

expression s20u þ s21usexj could not capture this situation correctly, since s21u can
only be positive when it would need to be negative. The expression

s20u þ 2s01usexj on the other hand accommodates all situations adequately, since

s01u may be negative.
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5.3.6 Complex Random Slope Models

Complex random slopemodels are an extension to the random slopemodel, where the

variation in a slope is not entirely random, butmay systematically vary as a function of

other covariates (Goldstein 2003). For instance, changes in CAL with age may vary

randomly across individuals, though this slopemay also differ systematically between

males and females. Thus, revisiting the relationship presented in Fig. 5.6, if instead of

heteroscedasticity (as shown in Fig. 5.7), suppose that within- individual variation in

CAL values was constant across all ages for all individuals, but that mean levels of

CAL within each individual progressed at different rates. In other words, complex

random structure occurs at level-2 and not at level-1 (Fig. 5.11).

Now consider the hypothetical scenario that, on average, males progress faster

than females could be visualised by Fig. 5.12.

5.3.6.1 Complex Random Slope Notation

If we were to model the complex random slope model, illustrated in Fig. 5.12, the

2-level model would be:

CALij ¼ b0ij þ b1jagej þ b2agej � sexj

¼ b0 þ b1agej þ b2agej � sexj
� �þ e0ij þ u0j þ u1jagej

� �

age

CALFig. 5.11 CAL

measurements over time;

linear fit for each individual,

revealing a random slope

model

age

CAL
males 

females 

Fig. 5.12 CAL

measurements over time;

overall linear fit for males

(solid lines) and females

(dotted lines) separately,
revealing a complex random

slope model
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where the fixed part (b0 þ b1agej þ b2agej � sexj) is akin to a single-level model

with an interaction term included (b2agej � sexj), and the random part

(e0ij þ u0j þ u1jagej) is as before, with the total variation partitioned across each

level, including additional random structure that depends upon age. What is

perhaps most striking is how the fixed part includes an interaction term without

both covariates present, sex is not included as an independent covariate and only

within the interaction. This is not so strange within MLM, since there need be no

underlying outcome differences by sex for there to be any differences in the male

and female slopes. Nevertheless, it is likely that a genuine underlying gender

difference is frequently observed, hence the more realistic model would be:

CALij ¼ b0ij þ b1jagej þ b2agej � sexj þ b3sexj;

where

CALij ¼ b0 þ b1agej þ b2agej � sexj þ b3sexj
� �þ e0ij þ u0j þ u1jagej

� �
:

The multilevel model estimates the parameters of the fixed part of the model

(b0,b1,b2, and b3) along with the parameters of the random part of the model (s20e
for level-1; s20u,s

2
1u, and s01u for level-2).

Now, it is possible that the degree of random variation is different for males and

females, in which case the model could become:

CALij ¼ b0ij þ b1jagej � mj þ b2jagej � fj;

where

CALij ¼ b0 þ b1agej � mj þ b2agej � fj
� �
þ e0ij þ u0j þ u1jagej � mj þ u2jagej � fj
� �

;

such that mj ¼ 1 for males, and zero otherwise; and similarly fj ¼ 1 for females, or

zero otherwise. If there were no underlying gender outcome differences being

sought, this would be modelled explicitly by constraining the covariate

coefficients to be equal (b1 � b2). The random parameters, u1j and u2j, depict
two random slopes with respect to age, for males and females, respectively.

The model estimates the parameters of the fixed part (b0,b1, and b2) along with

the parameters of the random part (s20e for level-1; s
2
0u,s

2
1u,s

2
2u,s01u,s02u and s12u

for level-2), where some covariance terms (s01u,s02u,s12u) might be zero or small

and not significantly different from zero. In which case, it might be appropriate to

constrain these to be zero where model convergence is not readily achieved.

Each constraint could be relaxed again in turn if specifically being sought.

In any event, the variance structure at level-2 is now very complex. If all variance

and covariances are to be estimated, the total level-2 variance structure is:

Var u0j þ u1jagej � mj þ u2jagej � fj
� �

, which simplifies to (assuming sex2 ¼ sex):

level�2 variance ¼ s20u þ 2 s01u þ s02u � s01uð Þsex½ �age
þ s21u þ s22u � s21u

� �
sex

� �
age2:
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5.4 Markov Chain Monte Carlo (MCMC)

Maximum likelihood methods are the usual method employed to obtain estimates

of model parameters. The probability of the observed data is written as a function of

the unknown parameters (the likelihood function); with the coefficient estimates

taking the values of the unknown parameters that maximizes this function. This

poses no problems for single-level logistic regression, since the likelihood function

can be written explicitly. However, the likelihood function for a multilevel logistic

regression cannot be written as an explicit function and thus alternative model fit

methods are required. Broadly speaking, there are three strategies for obtaining the

estimates sought. Firstly, the likelihood function could be approximated. Maximum

Quasi-Likelihood (MQL) and Partial Quasi-Likelihood (PQL) are appropriate

examples (Moerbeek et al. 2003). These methods are in general computational

amenable but produce (to varying degrees) biased estimates. The second method

would be to perform numerical integration. Performing numerical integration over

all random parameters can be rather computationally intensive. Finally, a Bayesian

approach, for example Markov Chain Monte Carlo (MCMC), could be adopted

(Gilks et al. 1996). MCMC is also computationally intensive but will yield unbiased

estimates of the random structure.

In addressing the computational demand of MLM, there is always a balance

between speed and accuracy that has to be sought. A suggested approach that seems

logical is to gain benefit from the increased speed of an approximate maximum

likelihood method (for example PQL) during model development. Speed

can subsequently be sacrificed for accuracy by using MCMC whenever any

doubt arises. In any case, MCMC should at least be used to obtain estimates of

a final model.

5.4.1 Overview of MCMC

An initial guess of the model coefficients is made based on a simplified version of

the model, usually a standard (biased) multilevel estimation. From this, whilst

considering the complex data structure and by adopting the coefficients of

all other parameters as correct, the marginal distribution of each coefficient is

used to simulate a dataset with properties conforming to the specified model.

This yields an updated model estimate for the coefficient being sought, which is

then taken as fixed and the same process is applied to the next model coefficient.

This is repeated for all model coefficients, in rotation, constantly generating revised

estimates.

It has been shown that, providing certain criteria are satisfied, these simulated

estimates of model coefficients eventually fit the correct distribution of

model coefficients after many repeated simulations. After what is termed

a ‘burn-in’ period, which is where initial (less accurate) simulations are discarded,
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the MCMC process yields a set of estimates that are useful for making inferences

regarding the model. The simulated estimates are representative of a hypothetical

population of all possible model estimates, for which the sample data

represents only one example. By examining the simulated estimates, it is possible

to check if the simulations have converged on the correct values, and that

the number of simulations is sufficient to provide meaningful summary

information.

The necessary criteria for convergence include ‘reasonable’ starting values and,

in loose terms, a reasonable degree of freedom in how far a new simulation can

‘stray’ from the previous one. MCMC chains should possess good ‘mixing’

characteristics; variation around the parameter estimate should be random. That

is, no pattern(s) should exist amongst the estimates of a parameter at each iteration

of the chain. Good mixing will yield a symmetric (Gaussian) distribution for the

kernel density (empirical distribution) of the parameter. For this reason, the MCMC

diagnostics should always be considered. Finally, attention should be drawn to the

fact that the variance cannot be negative and that the objective of assessment should

be in identifying how inherent outcome variability ought to be specified, namely at

which level(s) any variance structure exists.

A comprehensive coverage is given by Goldstein (Goldstein 2003), while

Browne (Browne 2006; Browne and Draper 2000; 2006) provides in-depth cover-

age of many aspects of MCMC pertinent to MLM.

5.5 Model Fit Diagnostics

5.5.1 The Fixed Part

The fixed part of the model is checked in the same manner as single-level models.

Specifically, the relationship between the outcome and predictor variables should be

correctly specified, the residuals should be normally distributed for every value of the

predictor variables and the variance of the outcome should be the same at each value of

the predictor variables.

5.5.2 The Random Part

Simulated data from the fitted model should ‘look’ like the observed data.

The model is not valid if the simulated data differ (in a non-random way) from

the observed data.
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5.6 Complex Hierarchies

Multilevel methodology can be used for data structures that are not strictly

hierarchical, or are not typically thought of as representing a natural hierarchy

(Fielding and Goldstein 2006). Examples can be drawn from multivariate data,

repeated measures, categorical outcomes, meta-analyses, and cross-

classifications. For multivariate data, the lowest level represents the multiple

outcomes under consideration. Repeated measures and categorical outcomes

work in a similar manner, with occasion/category represented at level 1 for

repeated measures and categorical outcomes respectively. Meta-analysis can

incorporate covariates (meta-regression) and thus help in addressing the issue of

heterogeneity between studies.

An example of a model with no strict hierarchy is General Practitioner (GP)

referral for hospital-based treatment. As shown in Fig. 5.13, hospitals are cross-

classified with referring GPs. Thus, patients that belong to a particular practice

attend different hospitals, and vice versa. This approach can account for differences

between hospitals due to organisational procedures, whilst accounting for GP

variation in their referral behaviour. Furthermore, the model can incorporate

covariates at the patient-level (e.g. age, gender), the hospital-level (e.g. proportion

of cases undertaken as day-cases), and the GP-level (e.g. level of qualification,

experience).

5.7 Current Areas of Research and Further Reading

The interested reader may wish to consult Hox (2002) or Snijders and Bosker

(1999) for fuller coverage. Goldstein (2003) provides readers with useful details

of the fit algorithms, while Leyland and Goldstein (2001) provide a text dedicated to

MLM in the context of health. An extension of multilevel modelling is to allow the

random effects to follow a discrete distribution. This is known as latent class

GP GP GP

Hospital Hospital

Patient Patient Patient Patient Patient Patient PatientPatient

Hospital

Patient

Fig. 5.13 A cross-classified data structure of patients nested within GDPs and nested within

hospitals
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modelling and Chap. 7 in this book provides an introduction to this application.

The application of multilevel modelling to longitudinal data can be found in Chap.

12 on latent growth curve modelling and Chap. 13 on growth mixture modelling.
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Chapter 6

Modelling Data That Exhibit an Excess

Number of Zeros: Zero-Inflated Models

and Generic Mixture Models

Mark S. Gilthorpe, Morten Frydenberg, Yaping Cheng, and Vibeke Baelum

6.1 Overview

Within biomedical research, count data may appear to possess an ‘excess’ of zeros

relative to standard statistical distributions. There is a plethora of statistical litera-

ture addressing how best to model such outcomes. The Zero-inflated Poisson (ZiP)

and the zero-inflated binomial (ZiB) are two common modelling strategies pro-

posed. More recently, generic mixture models have also been suggested (Skrondal

and Rabe-Hesketh 2004). We discuss these modelling strategies in some depth,

introducing the concepts of mixture modelling in simpler terms in this chapter

before examining in a wider context in later chapters. Crucial issues surrounding

the modelling of counts with an excessive proportion of zeros are addressed,

specifically outlining common potential pitfalls, and we provide some helpful tips

in model selection and model interpretation.
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6.2 An Example Taken From Oral Health

Research – Dental Caries

In order to examine the ideas we explore in this chapter, we choose for illustration

an oral health dataset that is in the public domain and has been analysed extensively

already to study different methods for analysing data with excess zeros compared to

standard count distributions. The example data are from a prospective study that

examined the effect of four interventions to improve the oral health status amongst

children. An established indicator of oral health involves counting the number of

decayed (d/D), missing (m/M), and filled (f/F) deciduous ‘milk teeth’ (t) or perma-

nent teeth (T), yielding the measure of dmft or DMFT (B€ohning et al. 1999).

The dmft count ranges between 0 and 20, whereas the DMFT count assumes values

between 0 and 32. Amongst relatively healthy individuals, or during the early

stages of dentition development, there is potential for an excess number of zero

dmft/DMFT counts.

The example dataset derives from a study conducted in the urban area of

Belo Horizonte, Brazil, during the 1990s (B€ohning et al. 1999). The effect of four

caries prevention methods were examined amongst 797 school children aged

7 years at the start of the study. Data were recorded for the eight deciduous molars;

hence the outcome ranges between 0 and 8. The research question was how might

different intervention methods prevent caries incidence (new lesions). Interventions

were administered in six settings: (1) oral health education; (2) enrichment of the

school diet with rice bran; (3) mouthwash with 0.2% sodium fluoride (NaF)

solution; (4) oral hygiene; (5) all the interventions combined; and (6) none of the

interventions (control). The study was clustered in design, with children nested

within schools, which in turn were allocated to one of the intervention groups.

The outcome therefore was change in dmft count from baseline and was analysed by

B€ohning et al. (1999) to illustrate that ZiP regression models are useful in

evaluating intervention effects on dental caries when data exhibit an excess of

zero counts.

The data may be downloaded from the publishers of the original B€ohning et al.

(1999) article (http://www.blackwellpublishers.co.uk/rss); or from the webpage of

the vendor of the software LatentGOLD4.0™ (Vermunt and Magidson 2005a) as

the data were used as part of a tutorial (http://www.statisticalinnovations.com).

6.3 Zero-Inflated and Generic Mixture Models

A good review of zero-inflated models is given by Ridout et al. (1998), which

examines several methods, particularly in relation to the Poisson distribution.

The zero-inflated Poisson (ZiP) model (B€ohning 1998; Lambert 1992; Mullahy

1986) is the most common option, encountered extensively within the biomedical

literature. The basic concept behind the ZiP model is that the overall distribution is
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made up of a mixture of two distributions: one with a central location (mean) of

zero and the other with a non-zero central location that is estimated empirically; the

proportions of each distribution are determined empirically. In other words, one

takes a standard Poisson distribution and combines this with a ‘spike’ of zeros to

make the total overall distribution that consequently possess ‘too many’ zeros

compared to the standard Poisson. The total number of zeros is a combination of

those that belong to the ‘spike’ (otherwise termed the zero ‘bin’) and those that

belong to the Poisson distribution; the proportion of each is estimated as part of the

modelling process.

The zero-inflated binomial (ZiB) model is another modelling strategy (Hall

2000; Vieira et al. 2000), analogous to the ZiP model, but used in the case of

bounded count data (i.e. where the tail of the distribution is no longer infinite but

pre-specified). For counts that are bounded above by relatively large numbers, or

where the distribution mean is relatively low, there may be little difference between

the Poisson and binomial models in their performance in modelling the data, but

where the upper bound is smaller (as with the example oral health dataset), or where

the distribution mean is half way or farther along the count spectrum, the binomial

distribution may provide a more appropriate model. This is because the infinite tail

of the Poisson might otherwise provide too many predicted counts beyond the upper

bound of the outcomes scale, even though the frequency for each outcome value

may be small, and the combined total of all counts exceeding the upper bound might

be substantial. In any event, where counts are bounded above and one has doubts

about the appropriateness of the Poisson distribution, the binomial distribution may

be worth exploring as an alternative. It is important to note, however, that interpre-

tation of binomial model parameters is different to that of Poisson model

parameters, as will be discussed in more detail later.

In statistical notation, ZiP/ZiB models are expressed as a mixture of two

Poisson/binomial distributions, where one distribution takes the value of zero

only and the other may depend upon covariates, yielding the combined response

probability (Vermunt and Magidson 2005b):

P yijxið Þ ¼ pg yi; 0ð Þ þ 1� pð Þg yi; f
�1 x0ib½ �� �

where p is a weight between zero and one; g yi; mið Þ is the Poisson or binomial

probability with parameter mi; f mi½ � is the link function, which takes the form of the

natural logarithm for Poisson probability and the logit for binomial probability; and

x0ib is the vector of linear predictors (covariates). The standard probability

distributions are given by:

Poisson: g yi; mið Þ ¼ myii exp �mið Þ
yi!

or binomial: g yi; mið Þ ¼ N!

yi! N � yið Þ ! m
yi
i 1� mið ÞN�yi
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where yi is the outcome count, mi is the Poisson mean or the binomial distribution

parameter, and N is the binomial denominator (the upper bound of the

count outcome).

An extension to these models is where one allows for ‘over-dispersion’, which

may occur within a dataset for a number of reasons. The most common cause of

over-dispersion is lack of heterogeneity because outcomes are not truly indepen-

dent. This often occurs due to clustering, i.e. where outcomes are grouped, as

frequently occurs in biomedical research. To accommodate this explicitly within

the Poisson/binomial distribution, we adapt the distribution parameter to follow

another distribution. The over-dispersed Poisson, also known as the negative
binomial, is derived from the Poisson when its distribution parameter follows a

gamma distribution (denoted by G) with mean mi and variance m2i
�
n2:

g yi; mið Þ ¼ G yi þ v2ð Þ
yi!G v2ð Þ

v2

v2 þ mi

� �v2 mi
v2 þ mi

� �yi
:

The expected value of yi is mi, and variance is no longer equal to the expected

value, but is a factor 1þ mi
�
v2 larger; as 1

�
v2 ! 0, the over-dispersed

Poisson distribution reduces to the standard Poisson distribution. Similarly, the

over-dispersed binomial, also known as the beta-binomial, is derived from

the binomial when with its distribution parameter follows the beta distribution

(denoted by B) with mean mi and variance mi 1� mið Þ� n2 þ 1ð Þ:

g yi; mið Þ ¼ B miv
2 þ yi; 1� mið Þv2 þ N � yið Þð Þ

B miv2; 1� mið Þv2ð Þ
N!

yi! N � yið Þ! :

The expected value of yi is miN, and variance is no longer equal to mi 1� mið ÞN but

is a factor 1þ N � 1ð Þ� 1þ v2ð Þ larger; as 1�v2 ! 0, the beta-binomial distribution

reduces to the standard binomial distribution. For the rest of this chapter, we refer to

these extensions to the Poisson/binomial as over-dispersed Poisson/binomial.

A further extension to the zero-inflated model is achieved by including

covariates in the mixture part of the model, to determine the proportions conditional

on these covariates. For the ZiP/ZiB models, this involves replacing the weight p
with a function of the covariates:

P yijxi; zið Þ ¼ p h�1 z0ig½ �� �
g yi; 0ð Þ þ 1� p h�1 z0ig½ �� �� �

g yi; f
�1 x0ib½ �� �

where g yi; mið Þ and f mi½ � are as previously defined, p is now determined

by covariates, h�1 z0ig½ � is the inverse of the link function and takes the form

of the logit, and z0ig is a vector of covariates for the class membership model

(these covariates need not be identical to those in the distribution part of the model,
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and caution should be exercised in covariate selection, as will be discussed later).

Either the standard or over-dispersed probability distributions apply.

A final extension to the zero-inflated model is where the number of distributions

being combined is two or more and no one is constrained to be identically zero

(i.e. we no longer have a ‘spike’ of zeros as one of the distributions being

combined). These generic mixture models, also known as latent class models, or
discrete latent variable models, determine a number of latent classes or subgroups
of the data, the optimum choice of which is made by the researcher, though usually

informed by log-likelihood statistics. The model parameters of each latent class,

along with their relative contribution to the combined outcome distribution, are

determined empirically. The most general probability structure of a mixture model,

with class membership informed by covariates, is defined by the function:

(Vermunt and Magidson 2005b)

d yijxi; zið Þ ¼
XC
c¼1

P cjzið Þd yijc; xið Þ

where d yijxi; zið Þ is the probability density corresponding to a particular yi, given
a particular set of xi covariates that affect the response and given another set of zi
covariates that affect class membership (again note that the xi and zi may be the same

or different, though the choice of model covariates is not straightforward, as

we discuss later); the unobserved variable c intervenes between zi and yi via

P cjzið Þ, the probability of belonging to the latent class c given the covariate values;

and d yijc; xið Þ is the probability density of yi given xi and c. The class membership

model is a multinomial logistic regression model and coefficients are log odds ratios.

Caveat While many generic mixture model options are available, not all are

intuitive and interpretable, and in some instances models may not be identifiable.

Where a covariate impacts differently within each latent class and where class

membership is also predicted by the covariate that operates within each latent class

distribution, model interpretation becomes challenging if not impossible, even if the

model is identifiable. This is because there is circularity in the conditional interrela-

tionships of covariate parameters in the distribution parts and the class membership

part of the same model. Where identifiable but not interpretable for purpose of

inference, such models may however be used for prediction. As we remain inter-

ested in inference, we only consider only two forms of generic mixture model in

this chapter where: (i) covariate parameters vary across latent classes that are not
predicted by the same covariates – which we shall call a class-dependent covariate
model because the parameter estimates depend upon the class in which they

operate; and (ii) covariate parameters are constrained to be equal across classes

(the marginal impact of each covariate), whilst class membership is predicted

by these covariates – which we shall call a class-independent covariate model

because the distribution parameters operate identically in each latent class

whilst these same covariates determine the class structure. The ideal number
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of latent classes, hence the preferred generic mixture model, is determined by

inspection of model-fit criteria. The most commonly adopted model-fit criteria

are likelihood-based statistics, which are discussed in the next section.

6.4 Establishing Model-Fit Criteria

The model log-likelihood is a measure of how well the model fits the data.

The use of this statistic directly, without any adjustment for parsimony, is not

generally favoured as a model-fit criterion alone, since one can nearly always

improve upon it (hence improve model fit, ultimately towards the point of a

saturated model) by increasing model complexity. One option is to plot changes

in the likelihood value against increasing model complexity, e.g. for each increment

in the number of latent classes (keeping all other parameter configurations consis-

tent). One then ‘eyeballs’ the point of complexity at which there is an ‘elbow’,

signifying acceleration in the diminishing return in model improvement for increas-

ing model complexity. This approach is similar to the use of scree plots for those
familiar with principal component analysis; there is no hard and fast rule employed.

Alternatives strategies to the raw likelihood statistic are penalized versions, such

as the Bayesian Information Criterion (BIC) (Vermunt and Magidson 2005b)

or Akaike’s Information Criterion (AIC) (Vermunt and Magidson 2005b), both of

which incorporate a sense of parsimony by accommodating the varying number of

model parameters. These statistics effectively provide a trade-off between growing

model complexity and how well the model fits the data. There is no consensus,

however, on which penalized form of the likelihood statistic should be adopted.

In general, one should consider a range of likelihood-based statistics for model-fit

criteria. In this chapter, we adopt the BIC and AIC, though we also consider model-

fit criteria that reflect how well count models perform along the outcome range in

terms of predicted counts.

Given the focus of zero-inflated modelling to accommodate an excess numbers of

zeros compared to standard distributions, model-fit criteria should perhaps examine

how well zero-inflated models do in predicting the total number of zero counts.

A transition or contrast from zero to one typically represents the onset of disease in

longitudinal data, or elevated disease prevalence in cross-sectional data, which has

direct clinical importance. To acknowledge the importance of zero counts, we there-

fore contrast the number of predicted and observed zeros. However, other count

thresholds along the outcome scale may also have clinical importance. For instance,

the tail of the distribution (truncated for binomial or infinite for Poisson) typically

denotes increasing disease severity. Crossing a ‘critical’ threshold may represent a cut-

off that distinguishes between ‘high’ and ‘low’ risk groups (for the purpose of targeted

preventions) or in some instances may signify irreversibility or a critical state, such as

mortality (e.g. a tooth exfoliates or an individual dies). The entire range of the outcome

might have importance for clinical diagnostic or prognostics reasons. Model-fit criteria

should therefore seek to capture this.
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For an overall assessment of the distribution, we assess the ‘root mean squared

error’ (RMSE) between predicted and observed counts (for the viable range) as

a proportion of the number of observations. This is achieved by initially

differencing the observed (Obsi) and predicted (Predi) counts for the entire scale,

squaring these differences and summing, where the ‘scale’ is either determined by

the distribution (i ¼ 0 . . . N, where N is the binomial maximum or an arbitrary

observed maximum count for the Poisson, or set by the user, beyond which all

predicted Poisson counts are grouped). One then divides by the number of

categories set by the choice of scale (N + 1), takes the square-root, multiplies by

the number of categories (N + 1), and divides by the total number of observations,

n, to express as a fraction:

RMSE ¼ N þ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼0 Obsi � Predið Þ2

N þ 1ð Þ

s
:

Although the RMSE statistic may seem somewhat arbitrary, as indeed it is not

directly comparable across different datasets or for different model parameter-

isations of the same dataset (e.g. Poisson vs. binomial), its construction is such

that, in very crude terms, it may be thought of as representing the maximum

proportion of ‘misallocated’ counts. For instance, for an outcome scale of 0–3, if

the predicted number of ‘zeros’ were 3 more than observed, the number of ‘ones’

3 less, the number of ‘twos’ 3 more, and the number of ‘threes’ 3 less, out of a

total of 48 observations, there is crudely speaking 25% misallocated counts

(12 misallocated observations out of 48). Calculating RMSE: 32 ¼ 9 occurs

four times (36), averaged over four categories (9), square-rooted (3), multiplied

by four categories (12), expressed as a fraction of the number of observations

(0.25). Were the same predicted counts distributed such that one frequency

miscount was 6 over and another 6 under, RMSE: 62 ¼ 36 occurs twice (72),

averaged over four categories (18), square-rooted (4.24), multiplied by four

categories (16.97), expressed as a fraction of the number of observations

(0.35). Thus, where misallocation is evenly distributed, RMSE represents the

proportion of misallocated observations; if misallocation is not evenly

distributed, RMSE is higher. Hence, the proportion of counts misallocated is

no larger than the RMSE. Examples are given for the illustrative dental dataset

used later in this chapter.

Caveat Model-fit criteria per se donot always provide enough insight as to howwell

a particular modelling strategy suits the data. This becomes particularly apparent for

data exhibiting an excess numbers of zeros compared to standard distributions, as

there is the potential for what might be seen as a ‘dual’ or ‘two-stage’ process of data

generation. In such circumstances, it is feasible that likelihood statistics and

predicted counts fail to distinguish between differently parameterised models, as

shown for the example dental data in this chapter. Understanding data generation

might then usefully inform model choice and hence model interpretation.
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6.5 Covariates in the Distribution Part Must Also Be

Considered for the Mixture Part

Bias resulting from the omission of an important covariate from the distribution part

of a model is well known, but less well known is that bias may also occur when

important covariates are omitted from the mixture part. We demonstrate this for

ZiP/ZiB models. This may not be immediately obvious, which is perhaps why many

researchers have overlooked this problem. However, consider for one moment a

hypothetical example of dental data, similar to the Brazilian study, with dmft
recorded for all deciduous teeth and modelled using a zero-inflated Poisson

model with only one covariate (sex) and assume this is included only in the

distribution part of the model. Accordingly, the proportion of children in the

zero-bin must be the same for boys and girls. This is an implicit constraint resulting

from not modelling sex to predict class membership. The impact on such a model is

illustrated by simulation.

We undertook a two-stage simulation process whereby dmft data were

generated, in the statistical software package R (http://www.r-project.org/) using

the function rpois, to represent 50,000 boys and 50,000 girls: 20% of the boys had a

dmft count of zero, the remainder taking values from a Poisson distribution with

mean 2; and 80% of the girls had a dmft of zero, the remainder taking values from a

Poisson distribution with mean 1. Data were then modelled using a standard ZiP

model (ZiP), i.e. with the covariate sex in the Poisson part of the model only.

Including sex in the ZiP model to predict class membership emulates the two-stage

simulation process, so we focus only on how unreliable the standard ZiP model is

for this scenario. The log-likelihood, BIC and AIC were obtained by maximising:

l p; mF; mMð Þ ¼
X
sex

X1
k¼0

ptrue k; sexð Þ log p
ZiP Z

k; sex; p; mF; mMð Þð Þ;

where ptrue k; sexð Þ is the true probability of observing k for each sex based on the

true model and p
ZiP Z

k; sex; p; mF; mMð Þ is the same probability under a zero-inflated

model with parameters p (proportion in the zero bin), mF (mean of the females

distribution part), and mM(mean of the male distribution part). LatentGOLD4.0™
(http://www.statisticalinnovations.com) was used to generate the standard zero-

inflated Poisson model and results are presented in Table 6.1.

It is apparent that the standard ZiP model does not perform well for girls. The

proportion of children in the zero bin, constrained to be identical for both girls and

boys, was estimated to be 22.87%. This was close to the true value of 20% for boys,

but was far from the true value of 80% for girls. The distribution mean for girls was

also far from true (0.27 opposed to 1.00), though less biased for boys (2.03 opposed to

2.00). The inappropriately specified zero-inflated model yielded considerable devia-

tion from truth in terms of size, shape and central location of the distribution part for

girls, yet overall predicted counts were indistinguishable from the simulated data, as

seen in Fig. 6.1.
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Two different model parameterisations (the standard ZiP with sex in the distri-

bution part only and the extended ZiP with sex in both the distribution and mixture

parts) can yield near-identical predicted outcomes, yet each give rise to very

different model inferences. If focus was specifically given to the distribution part

of the model, the inferred Poisson distribution for girls would look very different to

that from the true distribution from which the simulated data were sampled, as

illustrated in Fig. 6.2.

Table 6.1 Model fit criteria for the ZiP model undertaken with the simulated data

Simulated true ZiP estimated

Log-likelihood �100,088a �111,700.74

BIC 200,212a 223,436.02

AIC 200,184a 223,407.48

Zero 0 1,573.74

RMSE 0% 13.7%

Girls

Proportion in the Zero-bin 80% 22.87%

Distribution mean dmft count (95% CI) 1 0.27 (0.26, 0.28)

Boys

Proportion in the Zero-bin 20% 22.87%

Distribution mean dmft count (95% CI) 2 2.03 (1.97, 2.07)

ZiP standard zero-inflated Poisson model with sex as a covariate in the non-zero part only (not as a
class predictor), BIC Bayesian Information Criterion, AIC Akaike’s Information Criterion, Zero
the absolute difference between observed and predicted number of zero counts, RMSE root mean

squared error (see Sect. 3.1) for categories 0–10, CI Confidence Interval
aTrue log-likelihood, BIC and AIC are based on the asymptotic likelihood, which was maximised

numerically
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Fig. 6.1 Simulated dmft counts for boys and girls: predicted and true distributions for the

simulated dataset (including the zero-bin)
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Despite a deliberately large difference in the simulated number of boys and girls

in the zero bin, the standard ZiP model readily accommodated the implied and

unnecessary constraint of equal proportions of boys and girls in the zero bin by

distorting the distribution part of the model. Were the extended ZiP model

evaluated, it would be favoured in this instance due to likelihood-based model fit

criteria. However, in many instances researchers do not consider covariates in the

mixture part of the model. Many zero-inflated models have been evaluated where

covariates are identified as important for the distribution part only, and no consid-

eration is given to these same covariates in the mixture model. The implications of

this will vary, but undoubtedly in some instances the most suitable model may have

been overlooked, the distribution part may have been biased, and model interpreta-

tion may have been misleading. One should thus consider carefully the role of

covariates in determining the mixture in zero-inflated models. Considering this

problem more generally, if one observes covariate differences in the proportion of

total zeros, there may be genuine differences in the mixture proportions. Therefore,

exploring bivariate associations between the binary outcome (zero/non-zero) and

each covariate could be a good indicator of which covariates ought to be included in

the mixture part of the model, at least initially.

Caveat The converse, however, does not necessarily follow, since the absence of

any bivariate association between the binary outcome and a covariate does not

preclude that covariate from being important to the mixture model. One might err

on the side of caution and include all possible covariates in the mixture part, but

there is a price to pay in terms of lack of model parsimony, with potentially

redundant covariates in the mixture model. The extent by which researchers then

seek to trade potential small biases in their models for small improvements in the
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Fig. 6.2 Distributions of the dmft counts for girls: the true distribution from which the simulated

sample was drawn (solid line) and the inferred distribution from the standard Poisson model (both

excluding the zero bin)
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precision of model estimates is a matter of judgement pertaining to model context

and purpose. As a broad guide, one should perhaps discard a covariate from the

mixture part of the zero-inflated model only when there are no notable changes to

parameter estimates elsewhere in the model.

6.6 Revisiting the Brazilian Caries Dataset

Skrondal and Rabe-Hesketh revisited the Brazilian dataset (modelling follow-up

outcomes only), exploring the utility of generic mixture models by relaxing the

constraint of there being only two mixtures with one having to be identically zero

(Skrondal and Rabe-Hesketh 2004). We re-examine the models by B€ohning et al.

and by Skrondal and Rabe-Hesketh, for illustrative purposes, and we include a few

additional parameterisations of our own.

Issues become apparent that could arise in many similar situations when dealing

with data that possess excessive zeros, though it may not always be obvious that

there are pitfalls and problems that may lead researchers to settle unwittingly upon

the ‘wrong’ model. Here, we mean ‘wrong’ in the sense of inappropriate for the

context of the data, even though model fit might seem good in terms of both

likelihood statistics and predicted outcomes. The unwary might therefore end up

with potentially erroneous model interpretations. To understand how this might

occur requires a hypothetical consideration of the role of data generation processes

and their role in the formulation of modelling strategies. What follows in later

sections is therefore not only relevant for dental caries data. In particular, we

consider carefully the issue of model selection and interpretation.

Caveat There were a few drawbacks to the original analytical strategy worthy of

discussion, to show how study setting and design are as critical as appropriate

modelling strategies. Although the allocation of schools was random, there was

only one school assigned per intervention arm, which is insufficient to be ade-

quately cluster-randomised. Baseline differences in mean dmft across intervention
groups may not have been solely due to chance. Without adequate randomisation,

causal inferences could not be inferred. B€ohning et al. sought to accommodate

baseline mean differences in disease levels across schools by including baseline

dmft as a covariate in their analysis of covariance (ANCOVA) (B€ohning et al.

1999). However, this did not overcome the problem. Although ANCOVA

accommodates within-group heterogeneity in baseline outcomes, a fundamental

requirement of ANCOVA is that between-group population values must be bal-

anced (usually achieved by randomisation) (Senn 2006). Baseline mean outcome

differences amongst groups not attributable to chance could then yield biased

results, known as Lord’s paradox (Blance et al. 2007; Lord 1967,1969).

The original analyses were thus potentially erroneous and the original study

findings questionable. Although Skrondal and Rabe-Hesketh modelled the follow-

up data from the same study, to illustrate the utility of generic mixture models
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(Skrondal and Rabe-Hesketh 2004), baseline group differences would yield

problems and the interpretation of model findings remain difficult. It is for this

reason that we do not seek to interpret the Brazilian dataset, though we still use the

data for methodological illustration.

6.7 Model Selection

Before moving into the realm of model selection and interpretation (in relation to

data generation), we first examine some of the more fundamental issues about

model generation.

6.7.1 Outcome Distribution

Skrondal and Rabe-Hesketh questioned the use of a Poisson distribution for the

Brazilian dataset, since the study counts represented the number of dmft
(‘successes’) out of a total of eight deciduous molars (‘trials’) (Skrondal and

Rabe-Hesketh 2004). Model fit then becomes relevant for a finite range

of the outcome scale only (counts of 0–8). Using their Generalized Linear Latent

and Mixed Models (GLLAMM) software, the ZiB model was introduced

and compared with the ZiP model. This generally revealed that Poisson

models predicted unrealistically long tails and binomial models performed

much better. Similarly, our focus will be given to binomial models for the example

dataset.

In general, it is important that the familiarity of the Poisson model to most

researchers, compared to the binomial model say, does not dictate modelling

strategy; especially when it is clear that data are bounded above. One should also

consider model interpretation and not be stuck with overly familiar practices.

For instance, it seems almost standard practice within the oral health research

field to interpret model coefficients in relation to an individual’s mean dmft (as
with a Poisson model), whereas risk ratios for increments along the dmft index scale
(as with a binomial model) have not gained widespread use. Yet the latter is

probably more appealing in terms of what really happens in terms of data genera-

tion, since individuals and teeth that are more prone to disease succumb first and the

more individuals and teeth that do succumb, the more difficult is it for the remaining

individuals and teeth to become unaffected. It is therefore not surprising that

binomial outcome models were preferable for the Brazilian dataset, as

demonstrated by Skrondal and Rabe-Hesketh (2004), and this may not be

just because the data are bounded above.
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6.7.2 Over-Dispersion

Within the Brazilian dataset, the dmft outcome was derived in a clustered setting of

children nested within schools. Since clustering can predispose to outcome over-

dispersion (i.e. heavier tails than expected for either the Poisson or the binomial

outcome), we explore this explicitly. One could deal with clustering directly within

a multilevel model, as described in other chapters, or one could employ a marginal

model, such as GEE (Liang and Zeger 1986), but for the purposes of this chapter we

maintain focus on the aggregated outcome and accommodate over-dispersion

directly. This is because what follows then applies to situations where one typically

models aggregated outcomes, as with disease counts within epidemiological

studies.

6.8 Hypothetical Data Generation Processes

In order to understand our data better, and to inform modelling strategy, it is

important to consider data generation, whether known a priori or speculated.

Considering caries, for instance, disease onset requires one tooth to become

decayed, filled, or extracted for there to be a dmft increment from 0 to 1. Thereafter,

an increment to this score requires another tooth to suffer a similar fate.

The cariogenic environment of the individual (i.e. the level of oral hygiene

maintained: the amount and frequency of starch/sugar-rich snacking) does not

depend upon whether or not a tooth has already been affected. It might then seem

reasonable to assume that underlying latent risks of caries onset and progression are
identical. It is well known, however, that some teeth and some tooth surfaces are

more prone to caries development than others (Carlos and Gittelsohn 1965; Leroy

et al. 2005; Macek et al. 2003; Parner et al. 2007; Poulsen and Horowitz 1974;

Wong et al. 1997). The nature of the cariogenic exposure is also important, since

different teeth have different caries risks depending on their morphology and

position in the mouth relative to the salivary gland ducts and accessibility for

tooth brushing. Moreover, teeth erupt or are shed (exfoliated) at different times,

and the ‘risk set’ thus varies over time, i.e. the period ‘at risk’ may vary from one

tooth to the next. Amongst adults, teeth may also be extracted for reasons that have

little to do with caries, thereby initiating the diseased state for reasons unrelated to

subsequent caries.

Consequently, distinguishing between disease onset and progression, one might

assume a two-stage process of initial onset of disease (i.e. the first occurrence of a
caries lesion) followed by subsequent disease progression (i.e. new lesions in

children with lesions), each with a potentially different underlying risk (Holst

2006). For longitudinal data one might observe differences between the rate of

disease onset and the rate of disease progression; for cross-sectional data one might

simply observe an excess in the proportion of zero counts (i.e. the proportion
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disease-free) compared to standard count distributions. Support for such a

dual caries model for longitudinal caries data is found in the now classic water

fluoridation studies carried out in Tiel and Culemborg (Groeneveld 1985).

These studies show that water fluoridation markedly affects the caries progression

rate, whereas the caries incidence is hardly changed. Similarly, as pointed out by

Holst, the caries prevalence and extent observed at any given time in a cross-

sectional study is a complicated function of two underpinning parameters:

the caries incidence and the caries progression rate (Holst 2006). Poulsen et al.

compared Lorenz curves based on cross-sectional DMFT data for 15-year old

Danes in 1980 (97% caries prevalence) and in 1995 (70% caries prevalence)

including and respectively excluding the caries-free subjects, and noted that the

Lorenz curves differed markedly indicating a skewed distribution of caries risk

(Poulsen et al. 2001).

Whether dealing with longitudinal data (onset and progression) or cross-sectional
data (prevalence and extent), manifest differences in the outcome are potentially

consequent on the underlying risk differences in the dual processes of disease

initiation and progression. It is therefore important to consider how disease risk

varies both between and within individuals (between teeth/tooth surfaces) and these
ideas are illustrated in Fig. 6.3 for hypothetical underlying latent risks of disease

over time. Figure 6.3(i) represents the situation where: (A) initially there is no latent

risk (e.g. prior to any teeth erupting); (B) individuals experience the risk of disease

onset, i.e. are on course to yielding a non-zero dmft score, though initially will have a
zero score; and (C) individuals with disease experience the same underlying latent

risk of disease progression as for disease onset. Since there is a period where some

teeth are not at risk of disease, the estimated underlying risk of disease onset (the
dotted line) appears different to that for the risk of disease progression, even though
the ‘true’ underlying latent risks are identical for the ‘at risk’ period. Figure 6.3(ii)

represents the situation where there are three latent sub-types of children, each with

varying latent risks of disease onset and disease progression. For latent class one
(LC1), the latent risk of disease onset and progression are identical. For latent class
two (LC2), the underlying risk of disease onset is less than that of disease progres-
sion. The third latent class (LC3) exhibits the opposite in that the underlying risk of
disease onset is greater than that of subsequent disease progression. LC1 and LC2

exhibit near identical underlying latent risks of disease progression despite having

markedly different underlying risks of disease onset. When the period ‘not at risk’ is

included, the estimated underlying latent risks of disease onset appear differently
from ‘true’ for LC1 and LC2 and, for this example, the estimated underlying latent

risks of disease onset and progression appear to differ for LC1 and LC2 whilst they
seem similar for LC3 – all contrary to ‘true’.

Relating these concepts to the types of model we may choose to evaluate the

dental caries outcome, i.e. distinguishing between disease onset and progression,
one might assume a two-stage process of initial onset of disease (i.e. the

first occurrence of a caries lesion) followed by subsequent disease progression
(i.e. new lesions in children with lesions), each with a potentially different under-

lying risk. For longitudinal data one might observe differences between the rate
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of disease onset and the rate of disease progression; for cross-sectional data

one might observe differences between the proportions of observed and expected

disease-free (i.e. disease prevalence) given the disease extent (number of lesions

per child) amongst those diseased. Thus, whether dealing with longitudinal

data (onset and progression) or cross-sectional data (prevalence and extent), mani-

fest differences in the outcome are potentially consequent on the underlying

risk differences in the dual processes of disease initiation and development.

The ZiP/ZiB models would thus seem most suitable.
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Fig. 6.3 Hypothetical risk models for the onset and progression of dmft. Chart gradients represent
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Alternatively, if the underlying risks for caries onset and progression were

identical for any one child, but differed across children, generic mixture modelling

would seem suitable; this approach encapsulates the concept of ‘subtypes’ of

children. These concepts are not mutually exclusive and where underlying com-

plexity warrants it (i.e. where caries onset and progression differs both within and

between children), both modelling strategies could be valid simultaneously; it is

possible to have generic mixture models with latent classes subdivided into a zero-

bin and standard distribution. It is thus valuable to have a priori hypotheses of how
data may have been generated in terms of underlying differences in caries onset and
progression, in order to select the most appropriate modelling strategy between the

zero-inflated and generic mixture models.

6.9 Re-analysing the Brazilian Oral Health Data

We re-examine the dental dataset considering over-dispersion, covariates in the

mixture part of zero-inflated models, and generic mixture models with both class

dependent and independent covariates. Table 6.2 summarises the observed and

predicted counts for all the models considered along with the various model-fit

criteria. The best model according to the BIC is the standard over-dispersed zero-

inflated binomial regression model with covariates in the non-zero part only, i.e.

where no covariates predict class membership (oZiB). However, as illustrated by

the simulation, this model is problematic. In contrast, according to the AIC, the best

two models are the 2-class binomial mixture model with class independent

covariates and with class predicted by covariates, and the over-dispersed equivalent

(2LCiB_CP and o2LCiB_CP). Considering only zero counts, the best models are

the two ZiB models that include covariates as class predictors (ZiB_CP and

oZiB_CP). Assessment by the RMSE indicates that the over-dispersed 2-class

binomial mixture models with class-independent covariates also predicting class

membership (o2LCiB_CP) or class-dependent covariates not predicting class mem-

bership (o2LCdB) are favoured. In general, models with over-dispersion fit better

than models without. The favoured zero-inflated model is oZiB_CP and the

favoured generic mixture model is o2LCiB_CP, but it is difficult to choose between

them using either likelihood statistics or predicted outcomes (Table 6.3).

Due to the study limitations mentioned already, we do not seek to interpret

models clinically. Instead we are interested in what factors aid model selection.

Predicted probabilities for all 36 types of children (6 interventions � 2 genders

� 3 ethnicities) for our two preferred models (oZiB_CP and o2LCiB_CP), have

expected counts that are very close (r ¼ 0.98) and a Bland-Altman plot (Bland and

Altman 1999) reveals no systematic bias in their differences, as shown in Fig. 6.4.

Choosing between the two models is therefore not assisted by either likelihood

statistics or predicted outcomes, so we seek a priori knowledge regarding potential

data generation processes to inform model selection.
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The Brazilian dataset is too small and insufficiently robust to provide evidence to

support or rebut the hypothesised two-stage data generation process. Nevertheless,

findings from such a relatively simple evaluation might inform a modelling strategy

and steer a preference between zero-inflated or generic mixture models, particularly

where model-fit criteria and predicted outcomes make no such distinction. Regard-

ing the dental caries data, if we assume that disease follows a two-stage process it

would be more suitable to adopt a zero-inflated model; if we had evidence that

caries onset and progression have similar underlying risks within individuals and

differences occur only between individuals, then generic mixture models would be

more suitable. Despite the lack of evidence either way from the Brazilian dataset,

given extensive a priori clinical knowledge of caries onset and progression that

supports a dual process, we opt for the zero-inflated model (oZiB_CP) as our

preferred model.

6.10 Summary

B€ohning et al. rightly argued that one needs to consider the problem of excess zeros

in dental data and they advocated the use of the zero-inflated Poisson model for the

Brazilian oral health dataset. However, the Poisson distribution is not always ideal

for bounded data. Within the Brazilian dataset, counts represented the number of

successes (dmft) out of a finite number of trials (eight deciduous molars) and

consequently the binomial distribution was more suitable. Where data are also

inherently clustered, over-dispersion needs to be modelled explicitly and adopting

data-specific model-fit criteria may be useful in evaluating the performance of

models with respect to predicted outcomes where there is clinical importance

for certain thresholds. The estimated proportion of zeros is an obvious marker

of model performance when evaluating data with excessive zeros compared to
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Fig. 6.4 Bland-Altman plot of contrast between two over-dispersed Binomial models (oZiB_CP

and o2LCiB_CP)
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standard count distributions. We also propose the use of a root mean squared error

(RMSE) between observed and predicted counts for the entire viable outcome

range. However, data-specific model-fit criteria do not generally agree with

the likelihood-based criteria, endorsing the cautious use of log-likelihood statistics

in isolation.

For cross-sectional analyses of a randomised study, one anticipates that mem-

bership of the zero bin is balanced across all treatment groups at baseline (due to

randomisation), but there is no reason for other covariates to have balanced zero

counts. In non-randomised studies, inadequately randomised studies, or within

longitudinal studies where the analyses are of follow-up data, the assumption of

balanced zeros across intervention groups is no longer viable. For zero-inflated

models, it is thus necessary to consider covariates in the mixture model, especially

if identified as necessary in the distribution part.

As different model parameterisations can yield near-identical predicted

outcomes and model fit statistics, whilst yielding potentially diverse model

inferences, it becomes necessary to consider data generation to inform model

selection and model interpretation. This could be particularly valuable where

different covariates affect onset and progression differently. In epidemiology, for

instance, it is proposed that childhood cancers are triggered by infection and that the

infectious agents are transmitted via population mixing (Kinlen et al. 1990).

A small community may be free from an infectious assault (a period of ‘not at

risk’), but once circumstances change due to factors associated with population

mixing, the community may become exposed to the infectious agents (start of

exposure) and the rate of spread of infection then depends upon other factors

associated with population mixing. The underlying risk of cancer is affected by

exposure to infectious agents and factors specific to the infected individuals.

Different factors are associated with population mixing and would potentially

have a different impact upon the onset and progression of rates of cancer in each

community. Where the number of cancers across several small areas within a region

is modelled assuming a zero-inflated Poisson distribution, different population

mixing measures could be evaluated. A measure that captures elevated risk to a

community of exposure to incoming infectious agents should be associated with

elevated rates of communities belonging to the distribution part of the zero-inflated

model. Similarly, a measure that captures elevated risk to a community of infec-

tious agents spreading within communities should be associated with elevated rates

of communities having higher prevalence rates of cancers (conditional on the

community belonging to the distribution part). It may thus be possibly to evaluate

more carefully the infectious agent hypothesis using zero-inflated models and

evaluating measures of population mixing in terms of where their impact lies in

the model parameterisation of a zero-inflated model.

Introducing the flexibility of generic mixture models might at first seem to evade

the problem of needing to explore covariates for the mixture part of the model, since

the implicit constraint on zero counts imposed by zero-inflated models with no

covariates in the mixture part is circumnavigated (unless one latent class is deter-

mined empirically to have a central location of zero). However, the problem is
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shifted from an issue surrounding a single threshold (zero/one) to the entire

outcome range, and one might reasonably ask if generic mixture models should

not also have class prediction by all available covariates. We might be satisfied in

some instances that class predictors are appropriate, though not essential, providing

the model is identifiable and interpretable. The problem of deciding between zero-

inflated or generic mixture model (especially when there are no discernable model

differences in terms of likelihood statistics and predicted outcomes) is then best

guided by a priori hypotheses on data generation. If one believes in a two-stage data
generation process, the zero-inflated model is firmly favoured. Where the outcome

is change in disease status, interpretation is attributable to differences in the

underlying risks of onset and progression. For cross-sectional data, consistency
with this notion is sought via inspection of prevalence and extent of disease. Whilst

caution must be exercised, since such interpretations are only ‘consistent with’ and

‘supportive of’ hypothesised historical data generation processes, modelling

strategies and model selection may nevertheless be enhanced by a priori hypotheses
surrounding data generation; possibly more than by model-fit criteria per se.

6.11 Conclusions

When dealing with biomedical count data that exhibit an excess of zeros, model

selection is not straightforward. It is crucial to consider appropriate outcome

distributions and explore context-specific model-fit criteria. For zero-inflated

models, one should consider covariates in the mixture model if identified as

necessary in the distribution part. Difficulties in distinguishing between models

based solely on likelihood statistics and predicted counts need to be informed by a
priori hypotheses of data generation. Zero-inflated models reflect whether or not

there are or have been risk differences in the onset and progression of disease,

whereas generic mixture models identify sub-types of individuals; both model

strategies can be employed simultaneously. Model selection is not about model fit

per se, but also about interpretation and robustness in the model truly reflecting the

context in which the data were generated.

6.12 Further Reading

A couple of textbook chapters of interest regarding caries incidence include: “The
epidemiology of dental caries” by Burt BA, Baelum V, Fejerskov O. Pp. 123–145;

and “The role of dentistry in controlling caries and periodontitis globally” by

Baelum V, van Palenstein Helderman W, Hugoson A, Yee R, Fejerskov O.

Pp. 575–605; in: Fejerskov O, Kidd E edsDental caries. The disease and its clinical
management Blackwell Munksgaard, 2008. There are a plethora of other biomedi-

cal examples where data exhibit an excess of zeros compared to standard count
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distributions, especially within the epidemiology of rare diseases, which often

involves spatial modelling with the incidence of disease per small geographical

area of interest and many small areas yielding zero counts. For books dedicated to

this there is Andrew Lawson’s handbook of spatial analyses: “Statistical Methods in
Spatial Epidemiology” Lawson, AB; Wiley, 2006. For spatial modelling in

general: “Zero-inflated models with application to spatial count data” by Agarwal

DK, Gelfand AE, Citron-Pousty S; Springer Netherlands, 2004; and “The SAGE
Handbook of Spatial Analysis” by Fotheringham AS, Rogerson PA eds; Sage, 2009.
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Chapter 7

Multilevel Latent Class Modelling

Wendy Harrison, Robert M. West, Amy Downing, and Mark S. Gilthorpe

7.1 Overview

Multilevel latent class models can reveal new insights into clustered data.

For instance, within observational studies, latent class analysis of multilevel data

allows groups or clusters of patients to be identified (e.g. according to casemix or

different pathways through the healthcare system) and allows sub-groups of

organisations to be derived (e.g. according to the treatments available, quality of

care, or differences in patient outcomes). It is also feasible to generate organisation-

level latent classes with similar patient casemix and differences between these

casemix-adjusted latent classes can then be evaluated, whereby factors that differ

across the organisational classes are then tested for their association with

differences in clinical outcomes. This allows areas of healthcare provision to be

targeted for intervention and evaluation to improve patient care. The same methods

can be adopted in a cluster-randomised setting, where the multilevel latent class

methodology improves on the cluster-randomisation, generating organisational

classes that are balanced in terms of patient casemix – a form of pseudo-

randomisation of observational data.
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7.2 An Epidemiological Study of Colorectal Cancer Mortality

To illustrate the methodology, we consider a practical example based on routinely

collected data for patients registered with colorectal cancer. Many factors may

influence survival from colorectal cancer, including place of diagnosis and treat-

ment centre (hospital within Trust), stage at diagnosis, and risk factors such as

age at diagnosis, sex, and socioeconomic background (SEB); the latter reflects

how patients vary in terms of exposure to diet and smoking (Davy 2007; Duncan

et al. 1999; James et al. 1997; Macdonald et al. 2007), or healthcare seeking

behaviours that lead to varying stages of disease progression at diagnosis (Adams

et al. 2004; Ionescu et al. 1998). Patients are nested within hospitals and therefore

Trusts. Within our example, we seek to identify different sub-types of both

patients and Trusts. We model simultaneously how patients might vary and how

Trusts differ in performance, to seek out which factors might be associated with

patient survival.

7.2.1 The Linked Dataset

Patients with colorectal cancer (ICD-10 (World Health Organisation 2005) codes

C18, C19 and C20) diagnosed between 1998 and 2004 and resident in the

Northern and Yorkshire regions were identified from the Northern and Yorkshire

Cancer Registry and Information Service (NYCRIS) database. Patient age, sex,

tumour stage at diagnosis (using the Dukes classification (Dukes 1949)), diag-

nostic centre (Trust), and whether or not the patient received treatment were

extracted. Socioeconomic background (SEB) was defined at the 2001 enumera-

tion district level of residence (super output area) using the Townsend Index

(Townsend et al. 1988) and matched to patients using their postcode of

residence.

We adopted the outcome of mortality (alive/dead) at 3 years after diagnosis, as

this was considered to be clinically meaningful and facilitated ready comparison

with other studies. Whilst interest lies in investigating potential treatment centre

characteristics associated with colorectal cancer survival, this can be complex to

assess, as patients may be treated at different Trusts throughout their care.

In our data, 90% were treated initially within the same Trust as they were

diagnosed, though only 75% remained within this Trust throughout. We neverthe-

less choose to analyse by Trust of diagnosis in order to include all patients, whether

treated or not, and maintain a reasonable proportion of patients whose treatment

was initially received within the same Trust as they were diagnosed. As 78 patients

had diagnostic centres found to be external to Trusts within the Northern and

Yorkshire region, these were excluded, yielding 24,455 patients available for

analysis.
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7.3 Research Question, Aims and Objectives

We seek to answer two distinct research questions with the example dataset:

i. “What is the relation between 3-year mortality and socioeconomic background
(SEB) of patients and what factors affect this relationship?”

This research question is an example within epidemiology of seeking to

determine the impact of an exposure or risk factor (SEB in this instance) on

an outcome (3-year survival) where it is impossible to conduct a randomised

controlled trial. When seeking to determine the outcome–exposure relationship,

adjustment for potentially confounding factors is crucial. Achieving this is not

always straightforward, as we will discuss.

ii. “How does Trust performance vary after accommodating patient (casemix)
differences?”

This research question seeks to assess variation in Trust performance (in

terms of mean 3-year survival rates) over and above differences anticipated due

to patient casemix. Some Trusts may perform better or worse than others in

terms of their median survival rates due to their patient casemix (which likely

varies geographically), or due to underlying differences in the effectiveness of

Trust function and healthcare delivery, or both. It is important to identify good

and poor performing Trusts in order to identify good clinical practice.

Before addressing each research question, we discuss the scope of potential

models available within a multilevel latent-class framework, because each research

question requires a slightly different multilevel latent class model to deliver the

appropriate analytical strategy.

7.4 The General Concept of Multilevel Latent-Class Models

The concept of latent classes was introduced in Chap. 6. Within a multilevel dataset it

is possible to have a latent-class structure at each level of the data hierarchy.

Considering latent classes at more than one level permits several complex model

configurations, each relating to different assumptions, with slightly different

interpretations, not all of which have analogues to continuous latent-variable models

or standard multilevel models. As mentioned in Chap. 6, some parameterisations may

not be identifiable, and some identifiable models may not be interpretable. These

issues only become more complex in a multilevel setting.

7.4.1 Building a Multilevel Latent Class Model

To extend our thinking slowly, we may begin by considering multilevel latent-class

structures as if built one level at a time. For instance, with the two-level colorectal
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cancer dataset (patients nested within Trusts), we may consider initially that

patients belong to different latent classes (i.e. sub-groups of individuals that are

homogeneous within groups, though heterogeneous between groups in their 3-year

mortality). Conditional on belonging to a given patient-level class, the Trusts in

which they are treated may then be grouped according to similarities or differences
in terms of patient outcomes.

If grouped according to similarities, a Trust class might contain Trusts that have

roughly the same mean levels of 3-year survival, whilst the proportion of patients

within each patient-level class might differ. Trust classes are then homogeneous

with respect to patient outcomes, whilst heterogeneous in terms of patient-class

profiles. This modelling strategy is appropriate for research question (i).

If grouped according to outcome differences, Trust classes might contain Trusts

that have the same proportions of patients within each patient class, where patient

classes differ in terms of mean 3-year survival. Trust-level classes are then homo-

geneous with respect to patient-class profiles (i.e. casemix), whilst heterogeneous in

terms of patient outcomes (survival). This modelling strategy is appropriate for

research question (ii).

In practice, within the estimation process, there is no sense of ordering in terms

of at which level the latent classes are formed ahead of other levels, because this

happens simultaneously, i.e. patient-level classes are determined simultaneously
with Trust-level classes. Models are an optimum solution for all classes, at all

levels, conditional on covariates considered in the model; estimation procedures

seek to maximise the likelihood function in a single process.

The simplest scenario is where the continuous latent variable at the upper level is

replaced by a categorical latent variable. The usual constraint of normally

distributed upper-level residuals is then no longer applicable. Within a standard

multilevel model of the colorectal cancer data, the mean outcome for each Trust

(the proportion of patients who survive 3 years) is assumed to be normally

distributed and the model estimates an overall Trust mean 3-year survival fraction

and its variance. If a categorical latent variable were adopted instead, Trust classes

are determined such that each Trust is assigned to a class according to probabilities

that sum to one over all Trust classes. The model estimates the mean 3-year survival

for each Trust class and also the size of each Trust class (i.e. summation of

individual Trust probabilities for each Trust class); and no assumptions are made

regarding the distribution of Trust class means or Trust class sizes.

7.4.2 Model Covariates – Standard Regression Covariates
and Class Predictors

As was seen in Chap. 6, covariates can be entered into a latent-class model in the

usual way, as within a standard regression model, i.e. as ‘predictors’ of the

outcome variation. The same covariates may also enter the model as ‘predictors’
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of the latent-class structure. In either scenario, causality should not be inferred.

The term ‘predictor’ is unfortunate in that it may mislead users to infer causality

when it only implies an association between outcome variation and the covariate in

question. With this in mind, the nomenclature favoured here is that covariates in the

regression part of model (referred to as the distribution part of the model in Chap. 6)

are referred to as ‘covariates’, whilst the covariates (same or different) in the class

membership part of the model (distinguishing between a zero bin and the distribu-

tion in Chap. 6) will be referred to as ‘class predictors’, though causality must not

be inferred.

Chapter 6 also indicated that there may be circumstances in which it is preferable

or even necessary to include covariates in both the fixed part of the model and as

class predictors. As with multilevel modelling, covariates may operate at any level.

Similarly for multilevel latent-class models, covariates may predict class member-

ship at any level. For the two-level colorectal cancer dataset, we can simultaneously

predict patient- and Trust-class membership, though certain covariates will operate

at the patient-level (e.g. age, sex, socioeconomic background) whilst other

covariates will operate at the Trust-level (e.g. Trust size, number of specialists).

Patient-level covariates can seek to predict either patient- or Trust-class member-

ship, though for our illustration we allow patient covariates to predict patient-class

membership only. Similarly, Trust-level covariates can predict class membership at

both levels, though for our illustration we do not consider any Trust-level

covariates.

In addition, covariates can be included as inactive within the model. These

covariates are not used to predict class membership, though once the patient- and

Trust-classes have been identified their distribution across these classes is observed

and interpreted. For example, it may be of interest to determine the proportion of

patients treated within each patient class. In our illustration, we include treatment,

position of the tumour, and type of tumour (determined using the ICD-10 code) as

inactive covariates.

7.4.3 Class Dependent/Independent Intercepts

When adopting a multilevel latent class structure, the central location of each class is

estimated for all levels of the hierarchy simultaneously, i.e. each latent class at any

level has its own intercept or mean probability. This is very broadly analogous to

random interceptswithin a continuous latent variablemultilevelmodel.Discrete latent

variable intercepts at a lower level, however, may be either class dependent or class
independent in relation to class structures at higher levels. Consider, for instance, the
two-level colorectal cancer dataset, where patients are nested within Trusts. With say

MP classes at the patient level (MP � 2), andMT classes at the Trust level (MT � 2),

MP intercepts may exhibit relative differences that are either identical or different

within each Trust class. Where they are identical, patient-class intercepts differ by the

same degree, irrespective of which Trust class their treatment centre is assigned to:
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patient-class intercepts are thus Trust class independent. Where patient classes vary

across Trust classes, they are Trust class dependent. Model interpretation differs

between these two latent-class multilevel models and the choice of model is driven

by context.

Let us consider the context of the illustrative dataset. Individuals tend to

vary in many ways, such as in their willingness to seek medical advice if feeling

ill, or in their diet, or their levels of daily exercise. It is therefore likely that

some patients are more homogenous in their experience of disease and other

characteristics, some of which may be related either to their risk of developing

disease or to their bodies’ ability to cope with illness once disease has developed.

Similarly, some Trusts are more likely to share common practices and procedures,

offering standard treatment pathways for patients of a particular kind, whereas

others may differ slightly due to local factors, such as size and the numbers of

medical specialists (consider for instance differences between teaching hospitals,

city general hospitals, and ‘cottage’ hospitals). The Trust-class independent
configuration enables identical contrasts to be made amongst patient classes

within Trust classes, in a relative sense, i.e. the patient classes with ‘best’ and

‘worst’ mortality differ in relative terms identically for each Trust class. If the

Trust class dependent configuration were adopted, contrasts in survival amongst

patient classes in one Trust class could, relatively speaking, mean different things

according to which Trust class were considered. In both instances, Trust classes

may differ in their overall 3-year mortality. For illustration and ease of inter-

pretation within the colorectal cancer dataset, we adopt the class independent
configuration for model intercepts – this is not essential, though helpful in

this context. In other circumstances (especially for different datasets) the class

dependent configuration might be more appropriate.

7.4.4 Class Dependent/Independent Covariate Effects

Similar to the concept surrounding random intercepts, random covariate effects

may be modelled as Trust class dependent or independent. Within standard multi-

level models, covariate effects are usually referred to as fixed effects and we adopt

this nomenclature here. Consider the two-level colorectal cancer dataset with CF

subject-level covariates in the fixed part of the model (e.g. age, sex, socioeconomic

background). In standard multilevel models, the CF covariates could have estimated

regression coefficients that remain fixed for all Trusts (hence the term fixed effects).
Alternatively, an extension would be that these covariates could randomly vary

across Trusts, thereby yielding random effects, sometimes referred to as random
slopes.

In a multilevel latent class model, if there are MT Trust classes, we might

constrain each subject-level covariate to have identical estimated parameter values

for each of theMT Trust classes (Trust class independent), or we may wish to relax

this constraint and explore any number of these covariate parameters (e.g. CR)
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to have different estimated values for each Trust class (i.e. to be Trust class

dependent). This latter option is akin to random slopes in the standard multilevel

model, but where the random effects (represented by a continuous latent variable)

are effectively categorised and multiple fixed effects parameter values are estimated

for each Trust latent class.

Not all covariate fixed effects would necessarily be modelled this way, and so

the number of patient-level covariates that are Trust class dependent could be fewer
than the total number of patient-level covariates, i.e. CR � CF, yielding CR �MT

parameters to be estimated. This can nevertheless be much less parsimonious than

the standard multilevel model, since the latter has only one continuous latent

variable variance to be estimated per covariate random slope, opposed to multiple

fixed effects parameter values for each Trust class. This is why it is necessary to

consider carefully the pros and cons of class dependent vs. independent covariate
effects. Furthermore, interpretation again differs between these two types of multi-

level latent-class models and choice is driven by context.

Considering the context of the colorectal cancer dataset, we initially adopt the

class dependent configuration to allow for random effects, though for parsimony we

switch to class independent covariate effects if there is little evidence that a covariate
parameter value varies substantially across classes. A combination of configurations

is possible and may be more parsimonious. For instance, one covariate might have

two distinct parameter values across six latent classes, such that parameter estimates

are constrained to take one value for three classes and another value for the other

three classes. Although technically possible, a complex a priori grasp of how the data

are generated should prevail to warrant such complex model structures.

7.4.5 Class Dependent/Independent Class Sizes

Class size may also be class dependent or independent. Consider again the 2-level

colorectal cancer dataset with MP patient-level and MT Trust-level latent classes.

There are MP �MT latent classes and each may have a different proportion of the

total number of patients (Trust class dependent). Some patient classes may possess

no patients at all because the number of patient classes per Trust class is fixed in the

model parameterisation, yet in practice some Trust classes might favour fewer

patient classes, so some are ‘empty’. Alternatively, it is possible to constrain

class sizes such that the proportion of each patient class remains the same for

each Trust class (Trust class independent). The total number of patients per Trust

class can still vary. Model interpretation differs according to which strategy is

adopted, which is again driven by context.

Considering the colorectal cancer dataset, model strategy (i) requires that patient

class sizes are Trust class dependent, to reflect that each Trust class may be made up

of differing proportions of patient classes. Model strategy (ii) requires patient classes

to be Trust class independent, to reflect that each Trust class is required to have

exactly the same profile of patient classes (and hence patient casemix characteristics).
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7.4.6 Latent-Class Misclassification Error

Patients are assigned probabilistically to classes, i.e. they have a probability of

belonging to each patient class (which sums to one, as each patient must be fully

assigned to all patient classes) and they also have a probability of belonging to each

Trust class (which also sums to one). Depending upon whether class dependent or

independent, patient-class probabilities may either be constrained to be the same for

each Trust class or they may vary across Trust classes. With modal assignment,

each patient is entirely placed into a patient class and Trust class according to the

highest membership probability at each level. The proportion of patients deemed to

be ‘misclassified’ is the discrepancy between the number of patients assigned

modally and the number assigned probabilistically (the latter need not be an integer,

as it is a sum of probabilities between zero and one). This discrepancy, termed

classification error (CE), is usually expressed as a percentage. We observe a CE

value at both the patient and Trust levels. One purpose of including class member-

ship covariates might be to reduce CE.

A low CE indicates that latent classes are more ‘real’, in that they correspond to

groups where individuals or Trusts are almost entirely assigned to a single class.

A lower CE may be favoured because it results in greater interpretability of the

latent classes when considering individuals or Trusts, i.e. the latent subgroups

comprise complete patients and entire Trusts. In contrast, a large CE indicates

that latent classes are more ‘virtual’, i.e. a construct of probabilistic assignment

only, as they differ substantially from model assignment. In this case, the latent

classes may be regarded as purer, more ‘distilled’ classifications than are observed

for individual patients or Trusts. The latent classes thus describe well-differentiated

‘traits’ or ‘characteristics’, and whilst all patients and Trusts possess one or more of

these traits and characteristics, for a large CE, rarely will any one class correspond

to a distinct subgroup of patients or Trusts.

It therefore depends upon the context and purpose of the model as to whether

or not one worries about CE values, low or high. It is perhaps important to be

mindful of the magnitude of classification errors in order that in some instances one

might prefer models where classification errors are not too large, or not too close to

zero, depending upon whether one is more interested in obtaining distinct

subgroups or merely a well-differentiated characterisation of traits. Being able

to interpret meaningfully the latent-class structure is crucial, and as indicated in

Chap. 6, latent class model selection should not be determined solely by likelihood

statistics.

7.4.7 Model Construction

The statistical software LatentGold (Vermunt and Magidson 2005a) was used

for all latent variable models. The number of latent classes at the patient and Trust
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levels is sequentially increased from one to identify the optimummodel according

to a number of model-fit criteria, including the Bayesian Information Criterion

(BIC) (Schwarz 1978), the Akaike Information Criterion (AIC) (Akaike 1974)

and change in log-likelihood (LL). Both the BIC and AIC incorporate a sense

of model parsimony by accommodating the varying number of model parameters

(Vermunt and Magidson 2005b) while the LL does not. Use of the BIC

implies that the true model is among those compared, although this may not be

the case as modelling inherently simplifies the data; whereas use of the AIC may

suggest a more complex model than necessary, as it may over-fit the data.

Although the LL improves with an increasing number of classes at both levels,

improvements grow more slowly to reveal a diminishing return for increased

model complexity.

We evaluate a standard multilevel model (continuous upper-level latent vari-

able) as well as the latent-class multilevel model to contrast the standard approach

with the latent-class approach. We select models that minimise all three criteria,

while providing a useful model and informative results.

7.5 Modelling Outcome-Exposure Relationships

with Observational Data

To address research question (i), we take stock of the generic problems in analysing

outcome-exposure relationships with observational data. Whilst discussed in terms

of our illustrative dataset, issues raised here affect all epidemiological datasets.

7.5.1 Statistical Adjustment for ‘Confounders’
on the Causal Path

Previous studies investigating the association between cancer mortality and

known potential risk factors, e.g. age, sex and socioeconomic background

(SEB), have typically considered stage of disease (where available) as a potential

confounder. When assessing the impact of a single risk factor, appropriate statis-

tical adjustment is commonly sought for all known potential confounders, if

recorded. If the primary risk factor under investigation causally precedes an

alleged confounder, statistical adjustment may be inappropriate, as discussed in

Chap. 4 and illustrated using directed acyclic graphs (DAGs) (Pearl 2000).

Problems arise because statistical adjustment for an alleged confounder on the

causal path from exposure to outcome can suffer bias (Kirkwood and Sterne 2003)

known as the reversal paradox (Stigler 1999). This has been shown to be a

potentially serious problem in epidemiology (Hernandez-Diaz et al. 2006;

Tu et al. 2005).
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When considering SEB as the main exposure variable, it has been suggested that

SEB may influence late presentation (Ionescu et al. 1998; Kogevinas et al. 1991),

which may then influence stage at diagnosis. Therefore, SEB causally precedes

stage at diagnosis. Figure 7.1 shows the proposed relationships amongst all avail-

able variables at the population level by use of a DAG. If stage is adjusted for by

inclusion in a regression model examining the relationship between SEB and

mortality, this may introduce bias and lead to inappropriate model interpretation.

This may explain why findings into the impact of SEB on cancer mortality vary,

with some studies finding a significant relationship between worsening SEB and

increased cancer mortality (Coleman et al. 1999; Pollock and Vickers 1997;

Schrijvers et al. 1995), whilst others have found no such association (Lyratzopoulos

et al. 2004; Wrigley et al. 2003). It depends upon whether or not any statistical

adjustment for alleged confounding has indeed removed the impact of genuine

confounding (for which the alleged confounding is merely a proxy), introduced bias

due to the reversal paradox, or an unknown combination of both.

7.5.2 Measurement Error and Incomplete Data

Standard regression analyses may give rise to biased results when model covariates

(such as stage at diagnosis) are measured with error, or have missing values

(Carroll et al. 2006; Fuller 1987), and this bias is exacerbated within product

interaction terms (Greenwood et al. 2006), e.g. when investigating the role of

SEB across different levels of stage at diagnosis. Stage, widely used as a potential

confounder, often suffers from a large proportion of incomplete data (24% missing

Survival

Age at
diagnosis

Sex

SEB
Stage at
diagnosis

Time to first
treatment

Treated
yes/no

Fig. 7.1 Directed acyclic graph showing the relationship amongst all available variables at the

population level
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in NYCRIS in 2008) (UKACR Quality and Performance Indicators 2008: Final

2008). The Dukes classification of colorectal cancer identifies four distinct grades

of tumour ranging from stage A to D. Tumours are graded according to pathology,

and variability in the quality of pathology can lead to patients being classified

incorrectly (Quirke and Morris 2006); classification is thus prone to error. There is

also potential bias in the grading of stage as the quality of pathology can sometimes

lead to patients being ‘under-staged’ (Morris et al. 2007a). For example, for the

tumour to be classified at stage C, lymph nodes must be involved. The number of

lymph nodes retrieved, however, is highly variable and if few nodes are available

this limits the likelihood of identifying node involvement, so the tumour may

instead be classified at stage B. This has an impact on the treatment received, as

patients diagnosed with a stage B tumour may not receive beneficial chemotherapy

(Morris et al. 2007b). Additionally, the recording of stage has changed somewhat

over time. If a tumour is initially graded at stage C, but clinical evidence of

metastatic disease is then found, the current policy in the NYCRIS region is to

‘up-stage’ the tumour to stage D. This may not have occurred in previous years,

leading to additional potential bias in longitudinal data.

Including stage as a covariate and exploring its statistical interactions with any

risk factor therefore has the potential to introduce large bias, even where the

reversal paradox does not occur. Where stage lies on the causal path between

exposure and outcome, as it appears to between SEB and survival, the additional

uncertainty of bias from inappropriate statistical adjustment also needs to be

considered.

7.5.3 Indices of Socioeconomic Background (SEB)

When investigating the relationship between patients’ socioeconomic

circumstances and cancer mortality, individual measures of deprivation are rarely

available, especially when using routine data. Indices of socioeconomic back-

ground (SEB), such as the Townsend Index (Townsend et al. 1988) and the Index

of Multiple Deprivation (Noble et al. 2004), are all that is usually routinely

available. These indices are measured at the small-area level, such as electoral

ward or super-output area. This can lead to the ecological fallacy (Robinson 1950)

if area-based findings are extrapolated to individuals living in each area. For this

reason, another level should ideally be introduced – the small-area level – and this

would be cross-classified with Trusts, i.e. patients from one small area might attend

different treatment centres and similarly patients from one Trust may be drawn

from different small areas of residence.

Theoretically, it is possible to conduct a cross-classified multilevel latent-class

model (where small areas may also be grouped into latent classes). Our primary

interest, however, is illustration of the multilevel latent class methodology, and our

primary research question also pertains to the population or sub-populations

(i.e. latent classes), not individuals. We therefore adopt the simplified approach

7 Multilevel Latent Class Modelling 127



of attributing small-area scores of SEB to individual patients and adopt a strict

two-level hierarchy only, omitting the cross-classified small-area level completely.

Similar analyses have recently been undertaken to investigate the association

between SEB and mortality from breast cancer, while including area of residence

at the upper level (Downing et al. 2010).

7.5.4 Model Construction for Research Question (i)

Deriving multiple patient latent classes divides patients into sub-groups such that the

relationship between survival and SEB might vary within each latent class. The latent

classes then correspond to specific patient features that can be labelled post-hoc

according to outcome (e.g. ‘good’ or ‘poor’ survivors) or covariates (e.g. ‘early-’ or

‘late-’ stage disease at diagnosis). Adopting multiple latent classes for the Trusts

effectively groups diagnostic or treatment centres, though the relationship between

mortality and SEB varies only across patient classes, not Trust classes.

The continuous measures of patient age at diagnosis and Townsend score (SEB)

exhibited non-linear relationships with 3-year survival. Generalised additive models

(GAMs; discussed in more detail in Chap. 15), identified the higher order terms

required for each; the statistical software used was R 2.9.0 (Venables and Smith

1990). For both terms, the non-linearity was explored and threshold values identified,

to simplify the number of higher order terms required. Patient age at diagnosis was

centred on the study mean of 71.5 years and Townsend score was centred on the

population mean of zero (the study mean was�0.040). Models were also adjusted for

sex.

Stage was included as a class predictor rather than as a fixed-effect covariate,

meaning the resultant patient classes had a graduated mortality risk analogous to

that observed for different stages of disease. This allowed the relationship between

mortality and various risk factors to be explored across patient classes, introducing

an implicit ‘interaction’ with stage at diagnosis, without the risk of exacerbated bias

due to measurement error. Additional variables were included as inactive

covariates, which allowed them to be interpreted within the classes but did not

allow them to predict class membership.

7.5.5 Results

Table 7.1 shows the results of the standard multilevel-regression analysis.

The reference group in these study data comprised males of mean age (71.5 years)

with stage A at diagnosis and a Townsend score of zero. In the study population,

12,856 patients (52.2%) died within 2 years. There was a substantial association

between being female and decreased odds of death, and between increasing depriva-

tion or increasing age and increasing odds of death.
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All multilevel latent class models revealed an improved fit comparedwith standard

multilevel regression analysis according to all model-fit criteria considered. Although

the model-fit criteria identified different optimum models (the LL and BIC identified

the model with three patient classes and one Trust class while the AIC identified the

model with four patient classes and three Trust classes) the preferred model was that

with three patient classes and two Trust classes, because this sufficiently differentiated

patient characteristics, while four patient classes and either extra or fewer Trust classes

added little insight to patient and hospital variation. For the final model, patient CE

was 22% and Trust CE was 8%.

Table 7.2 summarises the preferred multilevel latent class model, with patients

apportioned into either a large good-prognosis group, a small reasonable-prognosis

group, or an even smaller poor-prognosis group. Patient class 1 contained 42% of

cases of which 10% died within 3 years, compared with patient class 2 with 31%

of cases of which 69% died within 3 years, and patient class 3 with 27% of cases of

which 99% died within 3 years.

The impact of deprivation differed insubstantially across the patient classes.

In classes 1 and 2 (good and reasonable prognosis), living in a more deprived area

was clearly associated with increased odds of death. In class 3 (poor prognosis), the

association was less clear, with the odds ratio indicating only slightly decreased

odds of death and with a wide confidence interval. This indicates that the role of

SEB in 3-year colorectal mortality operates somewhat differently for differently

staged individuals, with SEB having less impact for those with late-stage disease.

The mean Townsend scores also differed across the classes, indicating that

individuals in class 2 (reasonable prognosis) generally lived in more deprived

areas than individuals in either of the other two classes.

The impact of sex differs substantially across the classes. In class 3 (poor

prognosis), females had an increased risk of death compared to males, whereas in

class 1 (good prognosis), females had a decreased risk of death and in class

2 (reasonable prognosis), females also had a decreased risk of death. This difference

Table 7.1 Multilevel regression results from standard analysis: odds

of death within 3 years with stage included as a class predictor

Model statistics Prevalence

Overall 52%

Reference group 49%

Model covariates OR (95% CI)

Female 0.86 (0.81–0.91)

Townsend (per SD more) 1.18 (1.16–1.21)

Age (per 5 years older) 1.33 (1.30–1.35)

Age squared (per 5 years older) 1.01 (1.01–1.01)

CI Confidence Interval; there were 12,856 (52%) deaths within 3 years in

the entire study population; the reference group comprised males, aged

71.5 years classified as Stage I at diagnosis, and attributed a Townsend

score of zero
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in risk profile by sex across classes indicates that the role of sex in 3-year colorectal

mortality operates differently for differently staged individuals, with women faring

better than men with early-staged disease, and the reverse with late-stage disease.

The proportions of females differed across the classes (class 1: 42%; class 2: 33%;

class 3: 25%), indicating that the majority of females had a decreased risk of death

compared with males.

The impact of age in the model differed substantially across classes. In class

2 (reasonable prognosis), older age was clearly associated with increased odds of

death, as too in class 1 (good prognosis), though the association was reduced. In

contrast, in class 3 (poor prognosis), the odds ratio indicates a decreased odds of

death for older age. The mean age also differed across the classes (class 1:

71.6 years, SD 8.6 years; class 2: 76.6 years, SD 8.4 years; class 3: 71.5 years,

SD 8.8 years), indicating that individuals in class 2 (reasonable prognosis) were, on

average, older than the individuals in either of the other two classes.

The stage profile differed across the patient classes. Class 1 (good prognosis)

corresponded to early stage diagnosis with 69% of the stage A/B patients versus 28%

Table 7.2 Results for the subject classes in the 3-patient-, 2-Trust-class multilevel regression

model: odds ratio of death within 3 years

Model covariates

OR (95% CI) Wald test

(p-value)Class 1 Class 2 Class 3

Female 0.60 (0.46–0.77) 0.84 (0.61–1.15) 1.75 (0.48–6.30) 0.022

Townsend (per SD) 1.21 (1.07–1.37) 1.59 (1.31–1.92) 0.99 (0.55–1.77) 0.048

Age (per 5 years) 2.18 (0.83–5.75) 2.53 (2.00–3.21) 0.58 (0.22–1.53) 0.011

Age squared (per 5 years) 1.00 (0.96–1.03) 1.01 (1.00–1.02) 1.06 (0.96–1.16) 0.340

Model summary statistics

Class size 42% 31% 27%

Overall prevalence 10% 69% 99%

Reference group prevalence 6% 69% 97%

Model class profiles

Stage A 23% 6% 0.5%

Stage B 47% 19% 8%

Stage C 27% 30% 16%

Stage D 0.5% 12% 69%

Missing 3% 32% 7%

Patients treated 98% 76% 69%

ICD-10 C18 (colon) 58% 57% 62%

ICD-10 C19

(rectosigmoid jct.)

11% 10% 11%

ICD-10 C20 (rectum) 31% 34% 27%

Tumour on left side 69% 67% 61%

Tumour on right side 28% 25% 29%

Tumour across both sides 3% 8% 11%

OR Odds Ratio, CI Confidence Interval; there were 12,856 (52%) deaths in the entire study

population; the reference group comprised males, aged 71.5 years classified as Stage I at diagnosis,

and attributed a Townsend score of zero
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of the stage C/D patients. Class 2 (reasonable prognosis) corresponded to more

evenly balanced staging at diagnosis with 25% of the stage A/B patients and 43%

of the stage C/D patients. This class also contained 32% of patients with missing

stage. Class 3 (poor prognosis) corresponded to late stage diagnosis with only 8% of

the stage A/B patients versus 85% of the stage C/D patients. Of particular note is the

proportion of stage D patients in each class, with a negligible proportion (0.5%) in

class 1 (good prognosis), class 2 (reasonable prognosis) containing 12%, and class

3 (poor prognosis) containing 69%. A higher proportion of patients was treated in

class 1 (98%) compared to either class 2 (76%) or class 3 (69%), whichmay be due to

their stage at diagnosis. Treatment relates to curative treatment only, and early-stage

patients are more likely to receive curative, rather than palliative treatment (National

Institute of Clinical Excellence 2004). The proportions of patients diagnosed with

each type of tumour, based on the ICD-10 codes, was similar across the patient

classes. The proportions of patients diagnosed with tumours in any of the defined

positions of the body were also similar across the patient classes. There is no

indication from these data that either the type or position of the tumour is associated

with survival.

We do not investigate the Trust classes here, as patient class differentiation was

our primary focus. In this model, no adjustment has been made for patient casemix

so we cannot make any inference at this stage as to the performance of the hospitals

within each Trust class.

7.5.6 Discussion

The multilevel latent class regression model substantially improved fit for the

illustrative dataset compared to the standard multilevel model. As both patients

and Trusts were categorised into latent classes, this led to an improved inter-

pretation of the data. We are therefore able to investigate how risk factors associate

with mortality within sub-groups, rather than only for all patients or Trusts, as in

the standard multilevel model. New insights were available that were not previously

apparent using the standard multilevel model. For instance, although the standard

analysis found age, sex and SEB differences in survival, multilevel LCA showed

that within latent classes, age and sex differences varied according to patient class

and SEB varied according to patient sub-type; Trusts, whilst heterogeneous, did

not have a huge impact on the association between patient factors and 3-year

mortality.

By not modelling stage as a covariate, we have attempted to avoid the reversal

paradox and minimise bias due to measurement error and incomplete data. As the

patient classes correspond to stage at diagnosis, we have been able to determine

how the covariates associate with mortality within different stage groupings,

without using product interaction terms. Categorising missing values in stage

allows the modelling to take account of incomplete data and assign patients to the
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most suitable patient class according to how their outcome corresponds to other

patients. There are some limitations:

First, with stage included as a class predictor, bias is minimised, though it will

not be completely eradicated. Patient classes may, however, be derived without

stage as a class predictor and the same differentiation across patient classes may

then be observed. For patients presenting with early- or mid-stage disease,

their characteristics may help determine their chances of dying from colorectal

cancer, whilst for patients presenting with late-stage disease, their characteristics

are less likely to be associated with mortality. Second, it would be more sophisti-

cated to explore survival as a continuous measure, e.g. using Cox’s proportional

hazards regression. This was not undertaken as this would have introduced even

further complexity. Third, as already suggested, SEB is really measured at

the area-level and so should be considered as a separate level, effectively

cross-classified with the Trust level. This too could be accommodated, but to

achieve these more complex models – cross-classified Cox proportional hazards

regression – one needs more powerful software, e.g. WinBUGS (Lunn et al. 2000)

or eventually MPlus (Muthén and Muthén 2007), once developed for

cross-classified modelling.

We have considered a number of model-fit criteria when assessing our

‘best-fit’ model and we have chosen the model that minimises these criteria while

providing a useful and informative summary of the data. Alternative models could,

however, have been selected. Our chosen model has a low classification error at the

Trust level (8%), meaning that the classes are more ‘real’ and we can differentiate

between the Trusts, categorising them into good or poor performance groups. At the

patient level, the classification error was higher (22%), meaning that these classes are

more ‘virtual’. Some patients will fall into one class entirely, whilst others may

‘belong’ substantially to more than one patient class.

7.5.7 A Multilevel Latent-Class Model Approach
to Casemix Adjustment

To address research question (ii), we wish to ‘adjust’ for patient casemix in order to

assess the relative (ranked) performance of Trusts. We contrast this approach to that

of adopting Trust standardised mortality ratios (SMRs).

7.5.8 Model Construction for Research Question (ii)

For research question (ii), there is no concern surrounding the role of

confounding, hence we are not seeking confounder adjustment, since we do not

seek to inference the role of any exposure(s); rather, we seek to optimise outcome
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prediction by modelling patient characteristics in order to accommodate casemix

differences. Consequently, all available covariates for which there is complete

data (age, sex, and SEB) are considered. In addition, stage at diagnosis

(coded A to D for increasing severity and missing coded X) is also considered,

despite its extent of missing data (13.1%), because stage plays a crucial role

in affecting survival outcomes and it is easy to code the missing data as a separate

category. Although additional patient variables are available, these all

have substantial incomplete data that would bring into question their utility

were a missing category introduced, and these additional patient variables were

therefore not used as outcome predictors. If it were deemed necessary to include

these other variables, imputation techniques might be adopted, though that

distracts from the salient issue here of illustrating the multilevel latent class

methodology.

The modelling strategy adopted was thus to determine patient-level latent classes

having first included patient-level covariates, with Trust-level variation

accommodated via a continuous latent variable; the optimum number of patient

classes was determined by considering model parsimony, thoughmore patient classes

might be preferred to discriminate amongst patient subtypes. With patient-level

subtype structure ascertained, Trust classes were sought where the continuous latent

variable was replaced by a categorical latent variable. The optimum number of Trust

classes was again determined considering parsimony, though also with a mind on

utility; a minimum of two Trust classes is necessary to exhibit discretised Trust-class

differences in patient outcomes, though in some instances more classes might be

necessary to differentiate amongst certain Trusts, as discussed later. Having

incorporated available patient-level covariates, and having modelled patient class

uncertainty associated with unavailable patient-level covariates, the resulting Trust

class differences in patient outcomes were thus adjusted for patient casemix. Trust

classes then exhibited a graduated patient outcome (3-year survival), which was used

to generate ranks of Trust performance: Trusts were ordered based on their probabil-

ity weights of belonging to the better survival Trust class.

For the comparison of methods, SMRs for each Trust were derived and a scaled

difference from ‘SMR ¼ 1’ determined for each Trust by dividing by the square

root of the Trust size. For both the SMRs and the multilevel latent class models, 200

bootstrapped datasets were generated from the original dataset and each analysed

individually in the same manner to generate 95% confidence intervals (CIs) from

sample percentiles. Trusts were ranked in order of ‘best’ to ‘worst’ survival

determined by the multilevel latent class model and contrasted to ranks generated

from the Trust SMRs.

7.5.9 Results

Table 7.3 summarises the ‘ideal’ MLLC model determined by the procedures

described. Patients were assigned to two latent classes of similar size, one with
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reasonable prognosis (PC1: 54.3% of cases, of which 63.0% died within 3 years),

and one with better prognosis (PC2: 45.7% of cases, of which 39.3% died within

3 years). Trusts were similarly assigned to two latent classes. The largest Trust

class, with 53.1% of patients, had better prognosis (TC1: 51.3% of patients died

within 3 years; TC2: 53.2% of patients died within 3 years).

Table 7.4 summarises the number of deaths within each patient class by stage.

Allocating patients to classes according to their largest class probability

(modal assignment), all patients in PC1 diagnosed either at stage B or C died within

3 years; in PC2, all patients diagnosed at stage A, B or C survived. This difference is

anticipated, as stage at diagnosis is an important predictor of survival. Most of the

early- or mid-stage patients died within 3 years in PC1 compared to PC2, and there

was a clear graduation in survival with increasing stage at diagnosis from early- to

late-stage within both classes.

Trust ranks and their bootstrapped 95% CIs, according to both methods consid-

ered, are summarised in Table 7.5; a low ranking value indicates a better survival

rate than expected. Differences in the median rank of Trust performance between

the MLLC model approach and the Trust SMRs are well within their estimated 95%

CIs. Figure 7.2 provides a graphical representation of these results, in order of

increasing median probability of belonging to the best survival Trust class for the

MLLC methodology.

For the final model, patient CE was 35% and Trust CE was 17%. The large

patient-level CE indicates that patient classes are more a ‘distilled’ classification

of patient traits than well-defined subgroups or subtypes of individuals. The Trust-

level CE indicates that Trusts also comprise shared traits, though it is feasible that

some Trust classes comprise more a distinct subgroup of Trusts.

Table 7.3 Results for the subject classes in the 2-patient-, 2-Trust-class multilevel latent class

regression model: odds ratio of death within 3 years

Model summary statistics Class 1 Class 2

Class size 54.3% 45.7%

Overall prevalence 63.0% 39.3%

Reference group prevalence 23.2% 7.0%

Model covariates OR (95% CI)

Stage ¼ B 2.40 (1.63–3.54) 0.55 (0.21–1.43)

Stage ¼ C 7.72 (4.61–12.94) 1.74 (0.75–4.06)

Stage ¼ D 20.19 (8.88–45.89) Infinitea

Stage ¼ X 6.30 (1.89–20.97) 33.41 (7.93–140.68)

Female 0.94 (0.78–1.14) 0.58 (0.38–0.88)

Townsend (per SD) 1.32 (1.21–1.43) 1.03 (0.81–1.31)

Age (per 5 years) 1.51 (1.42–1.60) 2.53 (1.31–4.90)

Age squared (per 5 years) 1.005 (0.997–1.012) 0.984 (0.960–1.008)

OR Odds Ratio, CI Confidence Interval. There were 12,856 (52.2%) deaths in the study popula-

tion. The reference group comprised males, aged 71.5 years, classified as Stage A at diagnosis, and

attributed a Townsend score of zero
aThe odds ratio could not be estimated as there were zero patients who survived 3 years in this

subcategory
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7.5.10 Discussion

The simplest multilevel latent class model, where the continuous latent variable at

the upper level is replaced by a categorical latent variable, estimates the mean

outcome for each Trust class and the size of each Trust class (summation of Trust

probabilities for each Trust class) with no assumptions made regarding the distribu-

tion of means or class sizes. The upper-level discrete latent variable allows for

individual Trusts to be assigned probabilistically to the discrete latent trust classes,

Table 7.5 Trust ranks from the multilevel latent class model and the calculation of Trust SMRs

Trust Median probability of belonging to best survival Trust class

Median rank (95% CI)

ML LC SMR

1 1.000 1 (1–9.5) 6 (2–11)

2 0.999 3 (1–11) 4 (1–10.5)

3 0.997 4 (1–11) 3 (1–10.5)

4 0.996 4 (1–15) 8 (3–14.5)

5 0.993 5 (1–12.5) 5 (1–13)

6 0.956 8 (2–16) 9 (2–17)

7 0.912 9 (3–17) 5 (1–17)

8 0.908 9 (2–17) 6 (1–18)

9 0.897 9 (3–18) 5 (1–18)

10 0.816 10 (3–17) 8 (1–18)

11 0.575 11 (3.5–18) 11 (3–17)

12 0.476 13 (5.5–18) 12.5 (3–18)

13 0.372 12 (4–18.5) 11.5 (5.5–17)

14 0.359 12 (3–19) 12 (7–17)

15 0.152 14 (5.5–19) 15 (4.5–18)

16 0.070 14 (4–19) 13 (7–18)

17 0.070 15 (7.5–19) 16 (7.5–18)

18 0.003 18 (7–19) 15 (10–18)

19 0.002 18 (13.5–19) 19 (18–19)

Table 7.4 Deaths within 3 years, by stage, in each of the 2-patient classes for the 2-patient,

2-Trust multilevel latent class regression model

Modal class 1, died within 3 yrs Modal class 2, dies within 3 yrs

Stage at diagnosis No Yes No Yes

A 1,099 550 1,210 0

B 0 1,955 4,829 0

C 0 2,736 3,437 0

D 437 3,202 0 1,962

X 413 2,360 359 91

TOTAL 1,949 10,803 9,835 2,053
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providing less restricted weighting of Trust relative performance than the standard

normal assumption. This likely improves the accuracy of estimated patient diff-

erences across Trust classes, which in turn improves the estimated patient casemix

adjustment for individual Trusts. The multilevel latent-class model is also more

likely to capture contextual effects due to inherent data hierarchy than by merely

estimating Trust ranks according to their SMRs.

Continuous and discrete latent variables, if combined, may prove more parsimo-

nious, with variation within each Trust class captured by the continuous latent

variable, potentially leading to fewer Trust classes to describe efficiently the overall

Trust-level variation. If determination of Trust ranks is important, however,

the estimation of Trust outcomes is more straightforward if the categorical latent

variable only is used at the Trust level, as this avoids having to derive the normally

distributed random effects within each Trust class. Improvements in patient

casemix modelling might be feasible were more patient variables considered,

but this could incorporate incomplete data, which can cause bias. Within a

latent-class framework the uncertainty surrounding unrecorded or unused patient

characteristics is modelled explicitly – with ‘fuzzy’ matching.

In fixing patient-level latent-class composition and modelling patient casemix

differences, the residual Trust-class differences in outcome reflect variations in

Trust performance. This paves the way for the analysis of treatment centre

characteristics (in addition to patient casemix characteristics), whereby differences

in the patient pathway of care are modelled explicitly to evaluate organisational
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Fig. 7.2 Trust Median Ranks and 95% Confidence Intervals, ordered by the multilevel latent class

(ML LC) analysis
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features in relation to patient outcomes (survival or which treatments are received).

Such strategies permit hypothesis generation around which healthcare delivery and

organisational features might warrant intervention to bring about improvements in

patient care. Preliminary investigation of observational data using these methods

could inform prospective cluster-randomised trials targeted at changing service

organisation and healthcare delivery.

The probabilities of Trust class membership in Table 7.5 are marked, with most

Trusts belonging entirely or predominantly to one Trust class, with only a few Trusts

exhibiting a mixed assignment to both Trust classes. This is unsurprising, as there is

only a modest difference between the two classes in median survival, and probabi-

listic assignment differentiates between the two by providing a class weighted

combined survival rate. It is not feasible, however, for a Trust to be assigned a

class weighted survival rate below that of the poorer survival class, or above that of

the better survival class. This is an implicit constraint on the estimated weighted

survival for Trusts allocated entirely to one of the two classes (e.g. Trust 1). To

alleviate this, one could incorporate a continuous Trust-level latent variable along-

side the discrete Trust-level latent variable, though the estimation of Trust survival

rates then becomes more complex. Alternatively, more Trust-level classes could be

sought, increasing the number until no Trust had a probabilistic assignment of

exactly one to classes at the extremities of the range of Trust outcome means.

The main advantage of the multilevel latent class approach is that it introduces the

concept of mixtures at the upper levels, leading to improved accuracy of the estimated

outcome differences across Trust classes, hence improved ‘casemix adjustment’ for

individual Trusts. Trust level covariates may then be included, capturing additional

casemix complexity. This simplified illustration demonstrates a principle that could

readily extend to a number of more sophisticated model scenarios (e.g. time-to-event

analysis, multiple treatment centres, cross-classified structures).

7.6 Concluding Remarks

Multilevel latent class analysis has considerable utility. It improves upon standard

multilevel models by yielding better fit and providing enhanced insight. The

introduction of latent classes allows for investigation into how the risk factors

considered are associated with survival within patient classes and within Trust

classes, rather than for all patients and across all Trusts.

7.7 Further Reading

The book Multilevel Modelling of Health Statistics (Leyland AH, Goldstein

H. Wiley Series in Probability and Statistics) gives a valuable introduction to

techniques used in the analysis of hierarchical data, including those for modelling
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repeated measurements. Binomial regression and Poisson regression are discussed,

together with multivariate multilevel models and multinomial regression, before

ending with a chapter on software. The book Multilevel Analysis Techniques and
Applications (Hox J. Lawrence Erlbaum Associates, Mahwah NJ. 2002) builds

from a basic two-level regression model. It contains a thorough discussion of

estimation methods and model comparison and includes more advanced methods

such as bootstrapping estimates and Bayesian estimation methods. The analysis of

longitudinal data is also included, as are logistic regression modelling and cross-

classified multilevel models. Sample size and power analysis is considered and the

book ends with a move towards latent curve modelling. The book Generalized
Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation
Models (Skrondal A, Rabe-Hesketh S) focuses on latent variable modelling and

includes multilevel regression, factor models, structural equation models and lon-

gitudinal models. A general model framework is introduced and estimation

methods are examined in detail. A very useful aspect of this book is the applications

section where real research is introduced and analysed. Multiple outcome measures

are considered here: dichotomous, ordinal, counts, durations and survival, compar-

ative and mixed responses.
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Chapter 8

Bayesian Bivariate Disease Mapping

Richard G. Feltbower and Samuel O.M. Manda

8.1 Introduction

The geographical distribution of disease is an important aspect of epidemiological

research, providing a useful indication of the heterogeneity of disease incidence as

a way of developing and testing aetiological hypotheses. However, incidence of

rare diseases aggregated over small geographical areas provide problems for

presentation and modelling. For example, deriving or mapping relative risks

(RR) for areas with very small populations is likely to produce artificially inflated

estimates. Similarly, plotting estimated significance values, which is not

something one would generally recommend, associated with disease risk will

tend to accentuate those areas which are more densely populated compared to

more rural areas. Bayesian methods have therefore been proposed (Besag et al.

1991) to deal with sparse data arising, for example, through small incidence or

mortality rates within the context of an ecological analysis; this approach improves

the precision and stability of risk estimates. These methods also provide a frame-

work to model simultaneously the spatial and non-spatial (or heterogeneity)

effects on disease risk.

By way of introducing these concepts, it is worth reminding ourselves how in the

classical ‘frequentist’ model risk estimates are generally derived when undertaking

an ecological analysis investigating geographical disease epidemiology. A Poisson

regression model is fitted to the observed numbers of disease cases in each area.

The expected number of cases in each area is parameterised as the product of the

expected cases and the underlying risk. A log-linear model is then based on the
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mean of the Poisson distribution, specified by the sum of two parts: the logarithm of

the expected cases, which is just an offset term, and the logarithm of the underlying

risk (McCullagh and Nelder 1989). The expected number of cases is typically

obtained from the age-gender specific incidence rates for the entire region under

study. However, when considering how risk estimates differ across areas, especially

if the disease of interest is rare (such as the case with childhood cancer or diabetes

where incidence rates are of the order 3–20 per 100,000 person years) then it is not

uncommon to observe areas which exhibit zero counts. Similarly, if the population

of a rural area is extremely sparse with an associated expected disease count of just

greater than zero, we may actually observe at least one case. In these scenarios, our

estimate of disease risk – the standardised incidence (or mortality) ratio SIR

(or SMR) – for certain areas will be zero or artificially inflated, thus our inferences

concerning epidemiology will be seriously flawed.

The rest of the chapter will cover an introduction to Bayesian smoothing

approaches, where we will consider multivariate spatial models when we wish

to model more than one disease simultaneously. An example investigating

the epidemiological similarities and correlation between childhood leukaemia

and Type 1 diabetes (T1D) over small areas will be used to illustrate these

techniques, where we compare classical and Bayesian approaches to spatial

disease modelling.

8.2 Bayesian Smoothing

The rationale behind using Bayesian techniques to underpin disease mapping is that

for any given area i say, all neighbouring areas j are likely to share similar

environmental exposures and therefore one would expect disease rates and RR

estimates for area i to resemble those of all adjacent areas. The Bayesian approach

uses this principle to borrow strength or information from neighbouring areas to

provide more robust risk estimates for each area within the study region of interest.

This also overcomes the problem of relying on the unlikely assumption that disease

risks are independent across geographical areas, a concept which is difficult to

justify when there may be significant evidence of clustering or extra-Poisson

variation.

Bayesian ‘spatial’ smoothing is traditionally used to refer to RR estimates

which have been derived according to the local distribution of RR in areas

which are close or adjacent to one another. This is in contrast to ‘non-spatial’

smoothing which uses the global distribution of RR for all areas within the study

region (Clayton and Kaldor 1987). A further advantage of spatial smoothing

techniques is the ability to remove or reduce the effect of arbitrary geographical

boundaries, since geo-political areas are unlikely to be related to the disease of

interest. Thus, any artefactual variation exhibited in the data by methods of data

aggregation is reduced.
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8.2.1 The Besag Model

A conventional way of applying spatial modelling was set out by Besag et al. (1991)

within the context of image analysis. The principles which underpin Besag’s

statistical model allow us to differentiate between the relative contribution of the

spatial and non-spatial effects on disease risk. The non-spatial or heterogeneity

random effects appear in the model as extra-Poisson variation and arise through the

variation among the underlying populations at risk due to omitted covariates. The

spatial random effects control for unmeasured spatial covariates. That are similar

across close or adjacent geographical areas.

The model is defined such that the observed disease countsOi in each area i, with
associated expected counts Ei, are assumed to take a Poisson distribution, i.e. Oi �
Poisson ðEiRRiÞ for i ¼ 1; � � � ;N areas, where RRi is the relative risk of disease in

area i. The maximum likelihood estimate of the relative risk of disease in area i
equals Oi=Ei, which is the SIRi.

We might wish to extend this model by including area-level covariates such as

socio-economic status, whilst accounting for both the spatially structured and

unstructured (heterogeneity) random effects for the relative risks across areas.

Referring to the model of Besag et al. (1991), the logarithm of the RR for each

area i is modelled so that:

logðRRiÞ ¼ a0 þ bTxi þ ui þ vi (8.1)

where a0 represents the intercept of the log relative risk; xi represents the covariate
for each area with associated parameter b; ui represent the independent heteroge-

neity effects between areas (Clayton and Kaldor 1987) and are synonymous with

extra-Poisson variation; vi represent the spatially dependent random effects which

are defined by a range of different structures describing adjacency or closeness in

space. This class of models is referred to as convolution models and generally we

may define a normal prior distribution (Besag et al. 1991) for the non-spatial

heterogeneity effects such that ui � Normalð0; s2uÞ.
We may assume that the spatially correlated random effects vi arise through a

combination of independent random effects errors ei that are normally distributed

i.e. ei � Normalð0;s2eiÞ as set out by Langford et al. (1999) and Leyland et al.

(2000). Here we assume that the components vi may be written as

vi ¼

P

j2Yi

ej

ni
(8.2)

where Yi represents the set of areas sharing a common boundary with area i, with ni
denoting the number of neighbours for area i. Thus, through the averaging of the

independent random effects, ej defines the effect of area j on the disease risk in area i.
In this context Eq. 8.1 effectively then becomes a multilevel model, with each area i
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occurring at the second level and it’s neighbours inYi being at the third level where

the first level is the observed disease incidance. Multilevel modelling concepts are

covered in more detail in chapters 5 and 7. Alternatively, instead of an adjacency

model defined in the above example, the distance between the centroids of two areas

could be taken as the combined effect of the neighbouring areas.

In the preceding construction, the total variation in disease risk (8.1) for each

area i is the sum of variance of the heterogeneity and spatial effects and is

dependent on the number of neighbours ni i.e.

VarðlogRRiÞ ¼ s2u þ
s2e
ni

(8.3)

The proportion of variation attributable to the heterogeneity (non-spatial) and

spatial random effects can therefore be easily calculated, the latter being scaled by

an appropriate summary of the count of the number of neighbours for any area; for

example, the modal number of neighbouring areas (Feltbower et al. 2005).

8.2.2 Bayesian Multivariate Spatial Models

Further benefits of using Bayesian techniques can be gained by jointly modelling

more than one disease outcome, for example through an improvement in the

precision and efficiency of parameter estimates for the other disease (Leyland

et al. 2000). By considering the simple extension of modelling two disease counts

jointly, we can define a Bayesian bivariate spatial model which allows us to test

common epidemiological or aetiological features among different conditions, and

also calculate the degree of correlation within small areas. In addition, this approach

enables us to describe the association of both diseases with covariates of interest.

Langford et al. (1999) and Leyland et al. (2000) describe how the multivariate

(bivariate) spatial model is defined within a multilevel context. These models also

provide a framework to identify diseases which may share common risk factors, or

indeed differences in risk between diseases and disease-specific risk factors (Knorr-

Held and Best 2001; Dabney and Wakefield 2005). Alternative multivariate spatial

models involve modelling common and specific latent factors within ‘shared

component’ models (Knorr-Held and Best 2001; Held et al. 2006), although the

application of these are not covered in this chapter.

8.2.3 Markov Chain Monte Carlo (MCMC)
Simulation Methods

Empirical Bayes methods for disease mapping were originally developed and

described more than 20 years ago by Clayton and Kaldor (1987). Empirical

Bayes methods rely on the conditional distributions given the overall observed
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data and hyperparameters that are estimated marginally from the data using

maximum likelihood (ML) or iterative generalised least squares (IGLS) methods.

Thus, these hyperparameters are simply entered into the estimation of the random

effect means. Compared to a fully hierarchical Bayesian approach using MCMC

based methods, such as Gibbs sampling (Smith 1993), maximum-likelihood (ML)

based estimation methods have the advantage of being fast to compute and easier to

identify convergence of the final estimates. However, since ML methods do not

account for the uncertainty in the hyperparameters, the variability in the random

effects is underestimated, which might lead to erroneous inferences.

Modern computing power however has now largely meant that MCMC

techniques have superseded the empirical Bayes approach when describing and

modelling disease rates across geographical areas. The two main advantages of

the fully Bayesian approach are that prior information can be incorporated into the

modelling process and the full posterior distribution can be derived. Further details

of MCMC techniques can be found in Gilks et al. (1996) and are also covered in

chapter 9.

8.3 Methods for Illustrative Example

We illustrate the methods outlined in this chapter using an example taken from a

paper describing the epidemiological similarities and spatial correlation between

acute lymphoblastic leukaemia (ALL) and T1D (Feltbower et al. 2005).

8.3.1 Incidence Data

We extracted data on children aged under 15 and diagnosed with ALL and Type 1

diabetes (T1D) between 1986 and 1998 from two population-based disease registers

covering the former Yorkshire Regional Health Authority in the north of the United

Kingdom (UK) (Feltbower et al. 2003; McKinney et al. 1998). The registers cover a

geographical area of 12,000 km2 and a childhood population of 700,000. We

limited the case series to a period centred at the time of the 1991 national UK

census to ensure the inclusion of relevant socio-demographic denominator data.

ALL and T1D were chosen as there is growing epidemiological evidence

suggesting that both diseases may be linked to infectious exposure (Greaves

1997; Parslow et al. 2001; Feltbower et al. 2004).

Patients’ addresses and postcodes (equivalent to zip codes) at the time of

diagnosis were validated and linked to one of 532 Electoral Wards in existence in

Yorkshire, UK, at the time of the 1991 UK Census. These small geographical areas

have a median childhood population count of 750 (interquartile range 400–2,030).
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8.3.2 Population Data

Population estimates from the 1991 UK Census were used to calculate age-sex

standardised incidence rates.

8.3.3 Covariates

We compared separately the risk for both diseases from three socio-demographic

factors previously linked to disease onset, measured at Ward level. These included:

(i) population mixing, measured using the Shannon index (Stiller and Boyle 1996;

Parslow et al. 2001), describing the diversity of origins of incomers into each

Ward for the childhood population (ages 0–14); (ii) person-based childhood popu-

lation density (Parslow et al. 2001), which is a population weighted average of

population density (persons per hectare), and more appropriate for investigating

infectious aetiology as it reflects the population density at which a typical person

lives; and (iii) deprivation, measured using the Townsend Score (Townsend et al.

1988) which was derived from the following census variables: unemployment,

household overcrowding, car ownership and housing tenure.

Incidence rate ratios (IRR) and 95% confidence (credible) intervals are

presented according to categories used in previous epidemiological publications

for comparative purposes (Parslow et al. 2001; Stiller and Boyle 1996) and are

based on the rankings of the values across all Wards for each covariate. They were

defined as follows:

• Population mixing: <10th percentile, 10th–90th percentiles (reference group)

and >90th percentile. This grouping enables effects to be detected at the

extremes of the range, as there is little variation in the value of the Shannon

Index for the majority of Wards.

• Population density: three equal groups in size of Wards (lowest density taken as

the reference group).

• Deprivation: five equal groups in size of Wards (least deprived taken as the

reference group).

8.3.4 Classical (Frequentist) Poisson Regression Approach

For each disease, a Poisson regression model was fitted to the observed numbers

of cases in each Ward using the log of the number of expected cases as the offset

derived from age-sex specific incidence rates for Yorkshire between 1986 and 1998.

This was implemented within a classical framework. All three socio-demographic

variables (population density, mixing and deprivation) were included separately in

the Poisson model, whilst no other confounding factors were added to this initial

model. The effect on SIRs of including all three covariates was then assessed.

146 R.G. Feltbower and S.O.M. Manda



Evidence of any extra-Poisson variation, or overdispersion, was undertaken

using negative binomial regression. All frequentist statistical analyses were

performed using Stata version 8.

8.3.5 Bivariate Spatial Model

We modelled the two disease counts jointly, examining the effects from each

covariate using Bayesian spatial and non-spatial smoothing. By extending Eq. 8.1

for the case of two diseases, we can denote the disease-specific RR as:

logðRi1Þ ¼ a01 þ b01 xi þ ui1 þ vi1

logðRi2Þ ¼ a02 þ b02 xi þ ui2 þ vi2
(8.4)

Where a0h is an intercept of the log relative risk for disease h (h ¼ 1,2) in ward i;
xi is a covariate vector with the corresponding parameter bh;
ui1 and ui2 are the independent unstructured random effects (representing global

smoothing);

vi1 and vi2 are the spatially structured random effects (representing local

smoothing).

8.3.6 Model Estimation and Sensitivity Analysis

We assume the four random effect terms ui1, ui2, ei1, and ei2 arise from a

multivariate normal distribution with zero mean vector and covariance matrix X

(Langford et al. 1999; Leyland et al. 2000), though we chose to adopt a hierarchi-

cal Bayesian approach (Congdon 2003) rather than use IGLS estimation. All fixed

effect parameters were given vague but proper Normal (0, 1,000) prior

distributions.

However, for the covariance matrix D describing the four random effects, a

sensitivity analysis was performed consisting of both informative and vague

specifications for the scale matrix in the parameterization of the Wishart distribu-

tion for the precision matrix D�1.

Posterior estimation of all the model parameters was carried out using the Gibbs

sampling algorithm implemented in the software package WinBUGS (Lunn et al.

2000). The variance and covariance between the spatial effects vi1 and vi2 and the

total risk variation (ui1 + vi1) and (ui2 + vi2) were computed empirically at each

iteration of the Gibbs sampler.

For each model considered, three parallel Gibbs sampler chains from indepen-

dent starting positions were run for 50,000 updates. All fixed effects and covariance

parameters were monitored for convergence to stationary distributions. Trace plots
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of sample values of each of these parameters showed that they were converging to

the same distributions. A burn-in period of 15,000 updates was used as convergence

of the three chains was shown to have been reached after this period had

elapsed, since Gelman-Rubin reduction factors (Gelman and Rubin 1992) were all

estimated near 1.0. For posterior inference, we used a combined sample of the

remaining 35,000 iterations. Finally, the effect on the degree of spatial correlation

between both diseases was examined with and without adjustment for each socio-

demographic factor previously linked to the spatial distribution of disease incidence.

Numerous diagnostic tests have been developed such as the Deviance Informa-

tion Criterion (DIC), which is a natural extension of the Akaike Information

Criterion (AIC) derived from the chains produced by the MCMC run. The DIC is

a composite assessment combining both overall model fit with complexity and

penalises additional parameters to encourage parsimony.

8.4 Results of the Illustrative Example

299 children with ALL and 1,551 with T1Dwere included in the dataset. Figures 8.1

and 8.2 showing the spatially smoothed SIR illustrate the variation in disease rates

across wards, especially in the South-Eastern part of the region below the Humber

estuary. Lower rates of ALL and T1D were seen in the more urban county of West

Yorkshire, whereas higher disease rates were observed in the more rural county of

North Yorkshire. The median (and interquartile range) for the number of cases

distributed across all 532 Wards was 0 (0–1) and 2 (1–4) for ALL and T1D

respectively.

8.4.1 Classical (Frequentist) Approach

Table 8.1 shows the unadjusted and adjusted IRRs for each covariate, for ALL and

T1D separately. Generally, we infer higher rates of ALL and T1D in areas of low

population mixing; however, in areas with high mixing, significantly lower rates of

ALL were observed, although no similar association in incidence was seen for

diabetes.

An inverse association was present for population density for each condition

with lower rates associated with higher levels of population density. However, this

association disappeared for T1D and was reversed for ALL once the effects from

population mixing and deprivation were taken into consideration. There was some

evidence of a negative association between deprivation and diabetes, although no

clear relationship was evident between deprivation and ALL.

Although all three variables included in the model were positively correlated, we

saw no evidence of multi-collinearity. Variance inflation factors were all less than

2.5. Population mixing exhibited the least degree of correlation of any of the
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Fig. 8.1 Spatially smoothed standardised incidence ratios for childhood type 1 diabetes diagnosed

between 1986 and 1998 across electoral wards in Yorkshire, UK

Fig. 8.2 Spatially smoothed standardised incidence ratios for childhood acute lymphoblastic

leukemia diagnosed between 1986 and 1998 across electoral wards in Yorkshire, UK
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covariates; for example, areas with high levels of mixing had an equal number of

areas in the medium and highest population density categories. A graphical com-

parison between the observed counts and predicted counts from a simulated model

showed good symmetry for each disease.

8.4.2 Bayesian Bivariate Modelling Approach

By modelling the effects of both disease counts together as a bivariate outcome, and

assuming dependent random effects between diseases with no adjustment for

covariates, we found that 50% of the variation occurred through the spatial compo-

nent for diabetes and ALL, with the remainder occurring through heterogeneity

effects. A modest degree of positive spatial correlation was found between diseases

of 0.33 (95% CI �0.20 to 0.74).

Compared to the classical univariate model (Tables 8.1 and 8.2), the parameter

estimates largely remained the same after allowing for dependent random effects

and the contribution of each covariate on its own (Table 8.3). The spatial correlation

between diseases fell from 0.33 to 0.18 (95% CI �0.62 to 0.82), 0.14 (�0.50 to

0.78) and 0.06 (�0.59 to 0.69), respectively, after separately accounting for popu-

lation mixing, population density, and deprivation. Adding the spatial component

of variation into a model already containing the heterogeneity component signifi-

cantly improved model fit using the DIC.

After adjusting for all three covariates simultaneously (Table 8.4), the spatial

correlation fell to 0.12 (�0.63 to 0.73), whilst the parameter estimates were similar

to the adjusted IRRs presented in Tables 8.1 and 8.2 from the classical approach.

Table 8.1 Incidence rate ratios (IRR) and 95% Confidence Intervals (CI) derived using the

classical (frequentist) approach for Type 1 diabetes

Unadjusted estimates Adjusteda estimates

Covariate IRR 95% CI IRR 95% CI

Population density

Low 1.00 1.00

Medium 0.92 0.77–1.09 1.01 0.83–1.23

High 0.75 0.63–0.88 0.95 0.76–1.19

Population mixing (Shannon Index)

<10th percentile 1.50 1.11–2.02 1.29 0.94–1.78

10th–90th percentile 1.00 1.00

>90th percentile 1.01 0.88–1.16 0.94 0.82–1.08

Townsend deprivation score

1 Least deprived 1.00 1.00

2 1.05 0.86–1.29 1.07 0.87–1.32

3 1.03 0.84–1.26 1.06 0.87–1.30

4 0.86 0.71–1.04 0.90 0.73–1.12

5 Most deprived 0.76 0.63–0.91 0.81 0.65–1.02
aEach covariate is adjusted for each of the other two covariates
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Furthermore, there was little change in the proportion of variation attributable to

spatial and non-spatial effects between the unadjusted and adjusted models in

Tables 8.3 and 8.4. Performing a sensitivity analysis based on different prior

specifications of the scale matrix showed that the fixed effect estimates and random

effect variances remained largely the same, although the unadjusted spatial corre-

lation fell to around 0.10.

A small positive spatial correlation of 0.10 (�0.55 to 0.78) and 0.13 (�0.32 to

0.55) was observed between the unstructured random effects (ui1 and ui2) and the

overall residuals (ui1 + vi1 and ui2 + vi2), indicating the presence of a modest

correlation between the ‘net’ risks of each disease which was not explained by

the three covariates in the model.

8.5 Discussion

In this chapter, we have shown that mapping the spatial distribution of diseases

using Bayesian smoothing techniques can help to both visualise and assess the level

of spatial and non-spatial variation across geographical areas. For instance, in our

example with ALL and diabetes in Yorkshire, UK, we observed lower rates of

disease in the more populated county of West Yorkshire and elevated rates in the

less populated county of North Yorkshire.

We were also able to test for evidence of a common environmental aetiology

between ALL and T1D by considering a bivariate outcome within a hierarchical

framework. The similarity in risk between diseases could be quantified across small

Table 8.2 Incidence rate ratios (IRR) and 95% CI derived using the classical (frequentist)

approach for acute lymphoblastic leukaemia

Unadjusted estimates Adjusteda estimates

Covariate IRR 95% CI IRR 95% CI

Population density

Low 1.00 1.00

Medium 0.92 0.62–1.38 1.14 0.72–1.79

High 0.83 0.56–1.23 1.21 0.73–2.03

Population mixing (Shannon Index)

<10th percentile 1.36 0.67–2.74 1.27 0.59–2.75

10th–90th percentile 1.00 1.00

>90th percentile 0.74 0.54–0.99 0.64 0.47–0.89

Townsend deprivation score

1 Least deprived 1.00 1.00

2 1.28 0.78–2.11 1.47 0.89–2.43

3 1.24 0.77–2.00 1.38 0.85–2.24

4 1.11 0.70–1.77 1.10 0.67–1.81

5 Most deprived 0.92 0.59–1.44 0.88 0.52–1.47
aEach covariate is adjusted for each of the other two covariates
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geographical areas, such that we observed a positive and statistically non-significant

joint spatial correlation of 0.33 (95% CI �0.20 to 0.74). We found that the spatial

correlation was attenuated once we allowed for the effects of deprivation, in contrast

to less attenuation after adjusting for either population mixing or population density.

Our Bayesian smoothing approach also revealed substantial heterogeneity in

incidence across Wards, accounting for half of the observed variation for each

condition. The parameter estimates for all three fixed effects using a classical

(frequentist) approach were almost identical to the Bayesian results, and the ability

to specify prior knowledge made no difference to the results.

As with all ecological analyses, inferences derived from the results should be

made with some degree of caution because estimated fixed effects at the community

level may not directly resemble those at the individual level. More importantly, in

modelling disease outcomes for rare conditions, such as childhood cancer and

childhood diabetes, Poisson regression is prone to overdispersion where the sample

variance is higher than the mean. This can often occur when counts of disease

cluster within certain geographical areas, and may be difficult to ignore if we are

interested in a common aetiological factor, although this extra-Poisson variation

can be easily incorporated in both a Bayesian and frequentist modelling framework.

Furthermore, the small disease counts across wards was difficult to overcome and

we could not have determined the spatial correlation between diseases in a classical

manner without smoothing incidence rates across wards using Bayesian methods.

Table 8.4 Fixed and random effects estimates (median and 95% credible intervals) from a

Bayesian bivariate model with dependent errors and all three covariates considered simultaneously

All covariates entered into the model as fixed effects

Diabetes Leukemia

Random effects

Heterogeneity 0.02 (0.00–0.06) 0.04 (0.01–0.10)

Spatial 0.01 (0.06–0.24) 0.05 (0.01–0.11)

Proportion of total variation 48% (9–85%) 52% (20–85%)

Spatial correlation 95% CI ¼ (�0.63–0.73)

Fixed effects

Population density

Low 1.00 1.00

Medium 1.02 (0.83–1.25) 1.18 (0.71–1.90)

High 0.97 (0.75–1.22) 1.29 (0.74–2.40)

Population mixing

<10th 1.30 (0.94–1.72) 1.32 (0.58–2.49)

10th–90th 1.00 1.00

>90th 0.95 (0.81–1.08) 0.65 (0.46–0.87)

Deprivation

1 (lowest) 1.00 1.00

2 1.08 (0.87–1.32) 1.53 (0.93–2.45)

3 1.06 (0.87–1.31) 1.43 (0.87–2.15)

4 0.91 (0.73–1.15) 1.17 (0.73–1.90)

5 (highest) 0.82 (0.65–1.01) 0.92 (0.55–1.48)
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8.6 Conclusions

A Bayesian smoothing approach in modelling the spatial correlation between

diseases therefore brings a number of advantages and is particularly appropriate

for these types of data. Equally, the methodology can be easily applied

to other studies investigating the co-occurrence of disease incidence or mortality.

Spatio-temporal modelling techniques are now emerging which allow for changing

rates of disease over time, enabling much more extensive datasets spanning large

time periods to be analysed. They can also be used to investigate similarities and

differences in risk profiles between diseases using a shared-component model.

8.7 Further Reading

A number of books have appeared in recent times that are devoted to the field of

spatial epidemiology. In particular, Lawson et al. (2003) and Lawson (2008) cover

basic disease mapping and a review of multivariate disease mapping. Recently,

flexible multivariate models such as Generalised Hierarchical Multivariate Condi-

tional Autoregressive (GMCAR) and Order-free Coregionalized Lattice Models are

emerging and they offer a unified approach (Jin et al. 2005). They are based on

theoretical work on multivariate Gaussian Markov random fields (Mardia 1988).

In addition, generalized spatial structural equation models, which handle the case of

multivariate latent spatial factors, are being developed. The new class of models are

versatile and practical and can account for associations between different diseases

within areal units as well as the spatial association between areal units.

Acknowledgement We are grateful to Oxford University Press for permission to reproduce

tables which originally appeared in the following article: American Journal of Epidemiology,

Vol 161, Issue 11 , pp 1168–1180, 2005, “Detecting small-area similarities in the epidemiology of

childhood acute lymphoblastic leukemia and diabetes mellitus, Type 1: a Bayesian approach.”

References

Besag, J., York, J., & Mollie, A. (1991). Bayesian image restoration, with two applications in

spatial statistics (with discussion). Annals of the Institute of Statistical Mathematics, 43, 1–75.
Clayton, D., & Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for

use in disease mapping. Biometrics, 43, 671–681.
Congdon, P. (2003). Applied Bayesian models. Chichester: Wiley.

Dabney, A. R., & Wakefield, J. C. (2005). Issues in the mapping of two diseases. Statistical
Methods in Medical Research, 14, 83–112.

Feltbower, R. G., McKinney, P. A., Parslow, R. C., Stephenson, C. R., & Bodansky, H. J. (2003).

Type 1 diabetes in Yorkshire, UK: Time trends in 0–14 and 15–29 year olds, age at onset and

age-period-cohort modelling. Diabetic Medicine, 20, 437–441.

154 R.G. Feltbower and S.O.M. Manda



Feltbower, R. G., McKinney, P. A., Greaves, M. F., Parslow, R. C., & Bodansky, H. J. (2004).

International parallels in leukemia and diabetes epidemiology. Archives of Disease in Child-
hood, 89, 54–56.

Feltbower, R. G., Manda, S. O. M., Gilthorpe, M. S., Greaves, M. F., Parslow, R. C., Kinsey, S. E.,

Bodansky, H. J., & McKinney, P. A. (2005). Detecting small-area similarities in the epidemi-

ology of childhood acute lymphoblastic leukemia and diabetes mellitus, type 1: A Bayesian

approach. American Journal of Epidemiology, 161, 1168–1180.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulations using multiple sequences.

Statistical Science, 7, 457–472.
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in

practice. London: Chapman and Hall.

Greaves, M. (1997). Etiology of acute leukemia. The Lancet, 349, 344–349.
Held, L., Natario, I., Fenton, S. E., Rue, H., & Becker, N. (2006). Towards joint disease mapping.

Statistical Methods in Medical Research, 14, 61–82.
Jin, X., Carlin, B. P., & Banerjee, S. (2005). Generalised hierarchical multivariate CARmodels for

areal data. Biometrics, 6, 539–557.
Knorr-Held, L., & Best, N. G. (2001). A shared component model for detecting joint and selective

clustering of two diseases. Journal of the Royal Statistical Society A, 164, 73–85.
Langford, I. H., Leyland, A. H., Rasbash, J., & Goldstein, H. (1999). Multilevel modelling of the

geographical distributions of diseases. Journal of the Royal Statistical Society C, 48, 253–268.
Lawson, A. B. (2008). Bayesian disease mapping: Hierarchical modeling in spatial epidemiology.

Boca Raton: CRC Press.

Lawson, A. B., Browne, W. J., & Vidal Rodeiro, C. L. (2003). Disease mapping with WinBUGS
and MLwiN. London: Wiley.

Leyland, A. H., Langford, I. H., Rabash, J., & Goldstein, H. (2000). Multivariate spatial models for

event data. Statistics in Medicine, 19, 2469–2478.
Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). WinBUGS – A Bayesian modelling

framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325–337.
Mardia, K. V. (1988). Multi-dimensional multivariate Gaussian Markov random fields with

application to image processing. Journal of Multivariate Analysis, 24, 265–284.
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London: Chapman

and Hall.

McKinney, P. A., Parslow, R. C., Lane, S. A., Lewis, I. J., Picton, S., Kinsey, S. E., & Bailey, C. C.

(1998). Epidemiology of childhood brain tumors in Yorkshire, UK 1974–1995: Changing

patterns of occurrence. British Journal of Cancer, 78, 974–979.
Parslow, R. C., McKinney, P. A., Law, G. R., & Bodansky, H. J. (2001). Population mixing and

childhood diabetes. International Journal of Epidemiology, 30, 533–538.
Smith, A. F. M. (1993). Bayesian computations via the Gibbs sampler and related Markov Chain

Monte Carlo methods. Journal of the Royal Statistical Society B, 55, 3–23.
Stiller, C. A., & Boyle, P. J. (1996). Effect of population mixing and socioeconomic status in

England and Wales, 1979–85, on lymphoblastic leukemia in children. BMJ, 313, 1297–1300.
Townsend, P., Phillimore, P., & Beattie, A. (1988). Health and deprivation: Inequality and the

North. London: Croom Helm.

8 Bayesian Bivariate Disease Mapping 155



Chapter 9

A Multivariate Random Frailty Effects

Model for Multiple Spatially Dependent

Survival Data

Samuel O.M. Manda, Richard G. Feltbower, and Mark S. Gilthorpe

9.1 Introduction

In the analyses of clustered failure-time data, independent and identically

distributed random effects (frailties) are used to account for possible correlation

structures between observations in the same cluster (Clayton 1991; Sastry 1997;

Abrahantes et al. 2007). These developments arose from a seminal article by

Vaupel et al. (1979), who introduced the notion of unobserved heterogeneity or

frailty for univariate survival data amongst subjects. A standard model assumes a

univariate random effect, which is a constant term common to the individuals in a

cluster; thus these models are sometimes referred to as shared frailty models.

Hougaard (2000) discusses a number of the specifications and the resulting

inferences for shared frailty models.

The univariate random frailty models have a number of undesirable properties

including the limitation that correlations amongst the observations in a cluster are

positive. Additionally, all observations in a cluster are constrained to have the

same frailty effect value, which might be unrealistic when there are different

types of failure-time events in a cluster (Abrahantes et al. 2007). However, a

greater limitation of the univariate random frailty model with independent and

identically distributed random frailties is that, although they may partially

account for unmeasured and unobserved covariates, they do not explicitly allow
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for possible spatial dependence in hazard rates among clusters that are spatially

arranged (Banerjee et al. 2003). The latter may arise, for instance, through lesser

variation in hazard rates in neighbouring densely urban populated areas, as

opposed to sparsely populated rural areas, or through similarities in the underly-

ing cultural and traditional beliefs affecting timing of events.

Thus, it becomes necessary to include both the effect of area under investigation

and the effect of surrounding areas in modelling spatially observed time-to-event

data. In this chapter, we focus on the ideas developed in Banerjee et al. (2003) by

using spatially correlated survival models for failure-time data which are spatially
arranged. However, rather than model the spatial dependence using a conventional

conditional autoregressive (CAR) normal model (Besag et al. 1991), we instead use

a multiple membership multiple classification (MMMC) model (Browne et al.

2001) to capture both the unstructured heterogeneity and spatially structured

random effects. Further, we consider an extension of the univariate spatially

correlated survival model (the 2-way spatial frailty effect model) to include multi-

ple frailty effects of order 2� K, where K is the number of possible failure type

events that can happen to a subject. The resulting 2� K spatial random effects are

modeled using a 2K-multivariate normal model (Leyland et al. 2000). By

incorporating information from all types of failure events, the resulting fixed and

random parameter estimates have improved efficiency. Furthermore, similarities

and differences can be made on the effect of risk factors (Manda et al. 2009), in

addition to identifying event-specific risk factors, which otherwise would have been

masked by well known common factors (Manda and Leyland 2007). The methods

presented in this chapter are therefore somewhat similar to those in Chap. 8, where

we modelled joint aggregated count data.

The proposed multivariate frailty model for correlated survival data is illustrated

with an analysis of timing of first childbirth and timing of first marriage amongst

women aged between 15 and 49 years across health districts in South Africa.

We investigate differential patterns of early childbearing and marriage rates using

key covariates – age of woman, education, type of residence and race – while

accounting for possible variation in the hazard rates due to the effects of unobserved

and unmeasured covariates, which may induce spatial dependence in hazard rates

among women in the same health district. The excess fitted hazard risks are mapped

in order to highlight parts of the country with persistent excess hazard risks for

early child bearing and marriage, thereby generating in-depth epidemiological

investigations on what could be causing the interjectory between the districts.

9.2 Basic Survival Model with Random Frailty Effects

We adopt a counting process construction for modelling survival data (Andersen

and Gill 1982). In the set-up considered here, it is supposed there are I clusters and
that the ith cluster has ni subjects; each subject could experience any number of the

K possible failure events. For event of type kðk ¼ 1; . . . ;KÞ, subject ij i ¼ 1; . . . ; I;ð
j ¼ 1; . . . ; niÞ has an observed process NijkðtÞ, which counts the number of such
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events that have occurred to the subject by time t. In addition, a process YijkðtÞ,
which indicates whether or not the subject was at risk for the event of type k at time t,
is also observed. The intensity process lijkðtÞ of event of type k for subject ij is a
product of the risk indicator and the event hazard function hijkðtÞ; i.e.

lijkðtÞ ¼ YijkðtÞhijkðtÞ. We also measure a (possibly time-varying) p-dimensional

vector of risk factors xijðtÞ, where p is the number of risk factors being investigated.

Thus, for subject ij, the observed data are D ¼ NijkðtÞ; YijkðtÞ; xijðtÞ; t� 0; k ¼ 1;
�

. . . ;Kg and are assumed independent. Furthermore, suppose dNijkðtÞ is the incre-

ment of NijkðtÞ in the infinitesimal interval ½t; tþ dtÞ and Ft� are the available data

just before time t, such that the increment dNijkðtÞ is constrained to take only values
0 and 1. This constraint implies that the mean increase of NijkðtÞ during the infinites-
imal interval ½t; tþ dtÞ is given by lijkðtÞdt ¼ Pr dNijkðtÞ ¼ 1jFt�

� �
.

The effect of the risk factors on the baseline intensity function of type k for

subject ij at time t is given by the Cox proportional hazards model:

lijk tjl0kðtÞ; bk; xijðtÞ;wik

� � ¼ YijkðtÞl0kðtÞexpðbTk xijðtÞ þ wikÞ (9.1)

where bk is the failure-specific p-dimensional parameter vector of regression

coefficients; wik is the failure-specific random effect that captures the risk of the

unobserved or unmeasured risk variables; and l0k is the baseline intensity of type k
event. Under non-informative censoring, the likelihood of the observed data D over

all the subjects and event types is proportional to:

YI
i¼1

Yni
j¼1

YK
k¼1

YT
t� 0

lijkðtjl0kðtÞ; bk; xijðtÞ;wikÞdNijkðtÞexpð�ðlijk tjl0kðtÞ; bk; xijðtÞ;wik

� �
dtÞ

(9.2)

which, by taking increments dNijkðtÞ as independent random variables, is a

Poisson likelihood, where the means of the derived Poisson variables are given

by lijk tjl0kðtÞ; bk; xijðtÞ;wik

� �
dt ¼ YijkðtÞ exp bkxijðtÞ þ wik

� �
dL0kðtÞ. The function

dL0kðtÞ is the increment in the integrated baseline hazard function of type k event

in interval ½t; tþ dtÞ. The baseline hazard function is modeled as piecewise con-

stant, where in each interval the increment dL0k tð Þ ¼ dtl0k ¼ dt expðy0kðtÞÞ, where
y0k(t) is the piecewise log baseline hazard function.

The model described in Eq. 9.1 is the univariate shared frailty model for clustered

survival data. A common approach is to model the cluster-specific event-specific

random effects wik with independent and identically distributed normal and log-

gamma random variables (Hougaard 2000). This specification has been based on

computational easiness; however, nonparametric frailty effects are possible (Manda

2011). The univariate model in (9.1) has been extended to include both random

intercepts (frailties) and random covariate effects (random coefficients) (Sargent

1998), and a number of estimation methods for such models are given in Abrahantes

et al. (2007). However, these extensions are still using independent and identically

distributed random variables, which now aremultivariate in nature. The focus here is
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on models that account for possible spatial correlation in hazard among clusters that

are spatially arranged. In particular, we extend the spatial survival models as

described in Banerjee et al. (2003) to situations where individuals in a cluster can

experience multiple failure-time events of different types. The models considered

here could be termed multivariate spatially correlated survival models.

9.3 Multivariate Model for Correlated Cluster Frailty Eefects

As discussed in Sect. 9.1, in many epidemiological contexts it is very unlikely that

health outcome risks are independent across geographical areas. For any given area

i say, all the neighbouring areas are likely to share similar environment exposures

and therefore one would expect hazards rate estimates for the area i to resemble

those of all the adjacent areas.

In order to incorporate explicitly the spatial dependency in the data, the

event-specific spatial random effect wik is split into two components – uik and vik –
representing the unstructured and spatially structured random effects, respectively,

in area i. Banerjee et al. (2003) considered the spatially structured random effect

using the conditional autoregressive (CAR) normal model. Here, we adopt a multi-

ple memberships multiple classifications (MMMC) model (Browne et al. 2001),

where we use two classifications: an area classification, which captures non-spatial
variation (classification level 2); and neighbour classification (classification level 3),
which captures effects due to neighbouring areas.

For our application, suppose that mi is the number of neighbours of district i.
Within the framework of MMMC spatial modelling, the hazard risks for the timing

of childbearing and the timing of marriage among women in South Africa were

modelled as log-hazards:

log lij1ðtÞ ¼ logðYij1Þ þ log dL01ðtÞ þ bT1xijðtÞ þ u1
ð2Þ
districtðiÞ

þ
X

l2NeighboursðiÞ wl1u
ð3Þ
l1 (9.3a)

log lij2ðtÞ ¼ logðYij2Þ þ log dL02ðtÞ þ bT2xijðtÞ þ u2
ð2Þ
districtðiÞ

þ
X

l2NeighboursðiÞ wl2u
ð3Þ
l2 (9.3b)

where now uik ¼ uk
ð2Þ
districtðiÞ ðdistrictðiÞ 2 1; 2; . . . ; Ið ÞÞ are the disease-specific

unstructured random effects and vik ¼
P

l2NeighboursðiÞ wlku
ð3Þ
lk ðNeighbour 2 1; 2;ð

. . . ;miÞÞ are the spatially structured random effects. The error u
ð3Þ
lk represents the

effect of the lth district on other districts’ hazard rates of type k event. The effect is
captured by the weight wlk indicating the relevance of the l

th district to the ith district
(Leyland et al. 2000). The weight could be a scaled representations of distance

between two districts. The simplest model has weight given as w
ð3Þ
lk ¼ 1=mi
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if district i and j are neighbours and 0 otherwise. Thus, all districts that border a

particular district are part of neighbour classification for that district. The direct

district effects uk
ð2Þ
districtðiÞare modeled as uk

ð2Þ
districtðiÞ � Normalð0;s2ukð2ÞÞ and the

neighbouring district effects u
ð3Þ
lk by u

ð3Þ
lk � Normalð0; s2ukð3ÞÞ. Thus the spatial

structured effect vik is normally distributed with mean 0 and variance s2ukð3Þ=:mi
.

Thus, the between district spatial dispersion is inversely proportional to the

number of neighbours a district has. We model the event-specific time-intercepts

y0tk with a random walk prior y0tk � Normal 0; s20
� �

; y0tk � Normal a0ðt�1Þk; s20
� �

for time t ðt � 2Þ.
In order to model possible dependence in the two types of failure events, the four

random effects are modelled using a multivariate normal prior distribution (Leyland

et al. 2000; Manda and Leyland 2007). For simplicity, suppose fi is the overall

district-level spatial vector with elements fi ¼ ðuð2Þ1 ; u
ð2Þ
2 ; u

ð3Þ
1 ; u

ð3Þ
2 Þ, a vector of

unstructured direct district effects and neighbouring district effects for the timing of

first childbirth and marriage, respectively. The random effects vector fi will usually

have mean vector yf ¼ ð0; 0; 0; 0Þ and covariance matrix Sf, having diagonal

elements ðs2u1ð2Þ; s2u2ð2Þ; s2u1ð3Þ; s2u2ð3ÞÞ and (upper) off-diagonal elements ðsu1ð2Þu2 2ð Þ;
su1ð2Þu1ð3Þ; su1ð2Þu2ð3Þ; su2ð2Þu1ð3Þ; su2ð2Þu2ð3Þ; su1ð3Þu2ð3ÞÞ. This specification provides

interpretation for variances and covariances between disease risk profiles within and

between districts. For instance, the overall disease-specific district variance is given

by s2ujð2Þ þ s2ujð3Þ=:mi
and the covariance between the two disease-specific direct-

unstructured effects within a district is su1u2ð22Þand between the two disease-specific

neighbour effects within a district is given by su1u2ð33Þ
�
mi

from which the respective

correlation coefficients are:su1ð2Þu2ð2Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2u1ð2Þs
2
u2ð2Þ

q
and su1ð3Þu2ð3Þ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2u1ð3Þs

2
u2ð3Þ

q
the

later being a conditional correlation ince the number of neighbouring district has been

omitted.

Our modelling approach also allows the computation of relative contributions

of spatial and unstructured heterogeneity to the total variation of the random

effects. As the unstructured and structured variances are marginal and condition,

for ease of comparison, the relative contributions are obtained empirically

using the sample values of the unstructured and spatial random effects (Feltbower

et al. 2005).

9.4 Maternal Health in South Africa

Improvement in maternal health is one of the goals of the Millennium Development

declaration (Human Sciences Research Council (HSRC) 2009). Under this goal,

governments were asked to make concentrated efforts at reducing maternal mortal-

ity ratios and at increasing universal access to reproductive health services, both

of which are affected by early childbearing and marriage. Early childbearing,

especially among teenage mothers, exposes the mother and child to higher risk

of adverse health (Sharma et al. 2003; Gupta and Mahy 2003; Magadi 2004).
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On the other hand, early marriage, in the absence of using contraceptives, increases

the risk of early childbearing. Thus, rising ages at first childbirth and at first

marriage are important domains of public health policy-making, as they both play

roles in fertility levels, maternal and child health, and women’s status in a society

(Kalule-Sabiti et al. 2007; Palamuleni 2011).

Improvements in social and economic conditions among the women in

South Africa, and in many parts of the world, have attributed to reduction

in rates of teenage childbearing and marriage (Department of Health 2002;

Kalule-Sabiti et al. 2007). However, both rates have been shown to vary

according to women’s educational level, employment status, ethnicity, and

period of birth (Kalule-Sabiti et al. 2007). There is evidence of differences in

the rates by provinces, with the most economically advanced provinces

(Gauteng and Western Cape) having the lowest rates of childbearing; and the

predominately rural and underdeveloped provinces such as Limpopo, Eastern

Cape andMpumalanga have the highest childbearing rates (Statistics South Africa

2010). On the other hand, the more economically advanced provinces have higher

rates of early marriage than provinces that are less economically advanced

(Palamuleni et al. 2007).

Thus, an understanding of the factors, whether individual or ecological, affecting

the risks of early childbearing and marriage among women, especially in the sub-

Saharan Africa, could contribute to reductions in the maternal mortality ratios and

to increases in universal access to reproductive health services. A study carried out

in some sub-Saharan African countries showed that risk factors for first childbirth

and first marriage are similar (Lloyd and Mensch 2006), but they used separate

univariate proportional hazards models. Presently, there is a scarcity of research

studies in South Africa and the region investigating spatial variation in the rates

below the provincial level. One such study, carried out by Statistics South Africa

(2010), only described the district level observed spatial rates in fertility, which,

with all things being equal, is linked to timing of childbirth and marriage (Manda

and Meyer 2005; Palamuleni 2011). However, the Statistics South Africa study did

not undertake any modelling of dependence of the observed rates between districts.

Thus, the lack of studies investigating childbearing and marriage rates for lower

levels than provinces has adversely affected local government health-policy

planning regarding maternal and reproductive health.

To the best of our knowledge, this is the first attempt to employ the recent

methodological advances in spatial modelling that accounts for multiple

outcomes (see, for example Chap. 8). We use joint spatial models to investigate

dependence structures between and within rates of timing of childbearing and

marriage. In the context of substantive issues within maternal and child health,

we investigate the spatial distributions of hazard of early childbearing and

marriage using spatially dependent models to account for the spatial correlation

of the two maternal health events. We are not aware of any previous work that

uses joint spatial hazards models to estimate geographical distribution of hazard

rates for multiple maternal health outcomes, at least within the sub-Saharan African

region.
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9.4.1 Application Data

We use data from South African Demographic and Health Survey (SADHS) of

1998, which was a nationally representative probability sample of nearly 12,000

women between the ages of 15 and 49 years (Department of Health 2002). The

women were selected using a two-stage sampling design; using enumeration areas

(EAs) as primary sampling units and households as secondary sampling units. We

extracted the following women-level explanatory variables for use in the models:

urban or rural residence, used to capture effects of urbanisation and modernisation

of timing of childbearing and marriage; birth cohort, used to capture effects of

changing generations and behaviour on early childbearing and marriage; and

education level of woman, to capture the effects of social status and modernisation

of women. In addition, we model the health district spatial random effect to account

for unmeasured and unobserved district-level risk factors, such as differences in

social and material deprivation (this was not available for the study time) and

cultural influences, both of which have been shown to contribute to differences in

the timing of childbearing and marriage. Some of the observed characteristics of the

sample women are shown in Table 9.1.

9.4.2 Results

In a preliminary analysis, we used the Kaplan-Meier product limit method to

calculate proportion of the women that were mothers and proportion of women

have been married by various ages across the different population groups. These are

shown in Fig. 9.1a, b, for timing of childbearing and timing of marriage, respec-

tively. There are ethnic differences in the timing of both childbearing and marriage.

However, the ethnic effects are not systematic: while Black African and Coloured

women start childbearing at younger ages than White and Indian women, Black

African women enter marriage much later than White and Indian women.

We then fitted three models to the data: two separate univariate spatially

correlated survival model for timing of first childbirth and first marriage, and a

four-way random frailty model for the bivariate time-to-event data outcome (timing

of first childbirth and first marriage). The fit of the models was implemented in

WinBUGS simulation-based Bayesian estimation software (Lunn et al. 2000). For

each model, we ran three parallel MCMC chains for 20,000 iterations from over-

dispensed starting positions. All models had rapid mixing and convergence to the

stationary distribution within 5,000 iterations. Posterior summaries were obtained

using the remaining 3 � 15,000 ¼ 45,000 iterations. The effects of birth cohort,

type of residence, ethnicity and education on the risks of timing of first childbirth

and first marriage, from fitting the various spatial models, are shown in Table 9.2,

together with the various random effects parameter estimates. Since, in all three

models, all the predictor effects are similar and are significant at the 5%-level, we

concentrate on the hazard ratios from the multivariate frailty model.
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Table 9.1 Distributions of characteristics of women

aged 15–49 years, South Africa Demographic and

Health Survey, 1998

Characteristic Frequency Percent

Birth cohort

1948–1959 2,746 23.40

1960–1969 3,331 28.39

1970–1979 4,037 34.40

1980–1983 1,621 13.81

Place of residence

Urban 6,518 55.54

Rural 5,217 44.46

Region of residence

Western Cape 919 7.83

Eastern Cape 2,756 23.49

Northern Cape 1,041 8.87

Free State 936 7.98

Kwazulu-Natal 1,826 15.56

North West 931 7.96

Gauteng 1,057 9.01

Mpumalanga 1,131 9.64

Limpopo 1,138 9.70

Ethnicity of woman

Black/African 8,993 77.03

Coloured 1,533 13.13

White 755 6.47

Asian/Indian 393 3.37

Education level of woman

No education 810 6.90

Grade 1–7 3,134 26.71

Grade 8–11 5,175 44.10

Grade 12 1,754 14.95

Higher 862 7.35

Total 11, 753 100
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Fig. 9.1 (a) Proportion of women who are already mothers by population group. (b) Proportion of

women who have been married before by population group



Overall, women born in the earlier decades before the 1980s have significantly

higher rates of early childbearing and marriage. For instance, women born in the

1960s had rates of first childbirths and first marriage that are about 7 and 10 times the

rates of the women born in the 1980s. Compared to women with more than 12 years

of schooling years, women with lower years of education have significantly higher

rates of early motherhood and marriage. In addition, women residing in the rural

areas have significantly higher rates of first childbirth and marriage. Racial

differences among the sampled women in the age at first childbirth and marriage

are observed, with BlackAfrican and Colouredwomen beingmore likely thanWhite

and Indian women to be early mothers. On the other hand, Black African and

Coloured women have rates of marriage about half that of White women. Indian

and White women have similar rates for both timing of childbearing and marriage.

In all the models, the condition structured variation is larger than that for the

structured variation. This is also reflected in the larger contribution of the structured

random effect to the total variation. The hazard rates for timing of first marriage are

more variable than those of timing of first childbirth. As the variations and

contributions could not be taken as negligible, especially of the structured random

effects, it indicates there are still missing important covariates that are causing spatial

correlation in the observed data. The estimated fitted hazards on the log-scale for

various spatial models of the risk of timing of first childbirth and timing of first

marriage are shown in Fig. 9.2a–d. These figures show that both rates are highest in

the north-eastern provinces of Limpopo, Mpumalanga, Kwazulu-Natal, and parts of

Eastern Cape province. Districts in the most urbanised and economically advanced

provinces of Gauteng and Western Cape, and metropolitan districts have lower rates

of early childbearing. Most metropolitan districts, and those districts that are in the

more economically developed provinces, have higher rates of early marriage than

those districts that are more rural (results not shown).

9.5 Discussion

We have used recent methodological and estimation techniques in spatial epidemi-

ology to model multiple time-to-event data that are spatially correlated. We have

extended the spatially correlated survival model to enable similarities in putative

risk factors to be identified by appropriate statistical modelling and estimation of

the timing to first childbirth and timing to first marriage in South Africa. This has

been achieved within a multiple membership multiple classification construction in

modelling spatially dependent outcomes (Browne et al. 2001). The computations of

the model parameters were carried out within a Bayesian hierarchical multivariate

survival frailty model. In using Bayesian methods, as implemented using MCMC

computational algorithms, we were able to fit and estimate a more realistic model

that captures various sources of variation. We avoided the need to adopt model

simplifications or approximations.
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Fig. 9.2 (a) Estimated district level first childbirth log-hazards for the univariate spatial survival

model of timing of first childbirth. (b) Estimated district level first marriage log-hazards for the

univariate spatial survival model of timing of first marriage. (c) Estimated district level first

childbirth log-hazards for the multivariate spatial survival model. (d) Estimated district level

first marriage log-hazards for the multivariate spatial survival model
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Fig. 9.2 (continued)
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We investigated the effects of birth cohort, ethnicity, education and type of

residence in the timing of first childbirth and marriage. This investigation is

paramount in the context of public health policy; more so in measuring progress

towards meeting some of the Millennium Development Goals (Human Sciences

Research Council (HSRC) 2009). The fitted results of the fixed effects confirm

previous findings regarding women’s age, education, place of residence, and ethnic

differences in the timing of first childbirth and first marriage (Palamuleni et al.

2007; Upchurch et al. 1998). These differences operate through various avenues,

such as socioeconomic status and cultural differences (Jewkes et al. 2009; South

1993). The added benefits of our modelling approach has been in the generation of

maps of the smoothed frailties. Such maps have the potential to reveal districts

that could be targeted for further investigations, or where effective use of limited

resources could optimally target maternal and child health outcomes at local

government levels (Statistics South Africa 2010).

We could also have used exceedance maps which, rather than plotting the fitted

hazard rates, show probabilities that the hazard rates exceed a certain threshold.

In modelling the baseline hazards for each event, we opted for simplicity in using

piecewise constant hazards for each event averaged across the districts. We could

have allowed the baseline hazards to vary from district to district, as in Carlin and

Hodges (1999). Under this scenario, the district-specific baseline hazard could then

be modelled with an independent and identically distributed or a spatially correlated

random variable, as suggested by Banerjee et al. (2003). Other extensions could be

considered where the baseline hazards are modelled non-parametrically using

mixture distributions (Cai and Meyer 2011).

9.6 Conclusions

We have demonstrated the utility of recent developments in the modelling of

multiple events data that are spatially dependent over many small areas. These

methods allow simultaneous modelling and estimation of multiple survival

outcomes, where estimates of similarities and differences in the risk effects are

possible, in addition to estimating within and cross spatial correlation effects. In

terms of substantive issues, the methods can be applied to produce robust covariate-

adjusted maps that may indicate underlying latent risk profiles. Such maps may help

the search for possible persistent spatial correlations, which may suggest links with

district-specific covariates and thus help policy-making bodies and stakeholders to

prioritise the available resources to places and sub-groups that are in greater need.

It is hoped that this work will encourage a greater uptake of these methods by

researchers and practitioners in maternal and child health, especially in the devel-

oping countries where such data are routinely collected but not always appropri-

ately analysed.
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9.7 Further Reading

The concept of frailty was developed by Vaupel et al. (1979) for univariate survival

data, and it was subsequently developed by Clayton (1978), Oakes (1982), Clayton

(1991), Clayton and Cuzick (1985) for bivariate model based on a gamma frailty

effect; the later also extending to account for covariates. Hougaard (2000) present an

excellent introduction into the concepts of frailty and important different frailty

model specification estimation procedures. In particular, the shared frailty models

for various forms of bivariate and multivariate survival distributions are presented

and exemplified with typical data sets. Most of these earlier developments have been

on independent and identically distributed frailty effects. Recently, extensions to

modelling spatially structured shared frailty effects have been developed and can be

found in Banerjee and Carlin (2003a); Banerjee et al. (2003b); and Banerjee et al.

(2004) using the CARmodel.We proposed aMMMCmodel which was based on the

concept of amultivariate spatial model outlined by Leyland et al. (2000) and Browne

and colleagues (2001), which accounts for both unstructured heterogeneity and

spatially structured random effects. These closely adhere to applications of previous

spatial modelling carried out by Feltbower et al. (2005) and Manda et al. (2009).
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Chapter 10

Meta-analysis of Observational Studies

Darren C. Greenwood

10.1 Introduction

Meta-analysis has become a popular means of pooling estimates from a number or

randomised controlled trials (RCTs) where there remains uncertainty over the

benefit of particular interventions. Similar uncertainty can exist in observational

epidemiology when a number of studies provide contradictory results. However,

observational studies such as those used to investigate lifecourse epidemiology

present particular challenges for meta-analysis (Sutton et al. 2000). Results are

often prone to large heterogeneity because of different populations sampled, differ-

ent designs, different outcome or exposure definitions, adjustment for different

covariates, and vulnerability to biases that randomised controlled trials are largely

immune from.

Even if the studies are conducted and analysed in identical fashion, results may

be presented in a number of different ways in the different publications. Relative

risks may have been presented for a unit increment of a continuous exposure, giving

the linear trend. Alternatively, the exposure may have been categorised into groups

containing equal numbers of individuals, or some other categorisation, with relative

risks for each category compared with a reference category. This categorisation

could be into any number of groups.

The potential bias introduced by such categorisation is a form of measurement

error, and is discussed in Chap. 2. Alternatively the data may have been presented

as mean exposure for cases compared to controls. In this chapter methods for meta-

analysis of observational studies are illustrated using a real example from a

meta-analysis in the field of diet and cancer.
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10.2 General Principles

For meta-analysis to be possible, all the differently presented results from the

observational studies need to be converted to one metric. Combining studies with

entirely different designs, e.g. cohort and case-control studies, is often unreason-

able, and so analyses should be stratified by design and separate estimates presented

(Sutton et al. 2000). Even so, substantial heterogeneity is common between studies

of the same design, due to different population structures and adjustment for

confounding. It is important to characterise these differences in tables and to

explore any heterogeneity using standard tools such as stratified forest plots and

meta-regression techniques.

Epidemiologists sometimes like to compare extreme categories of exposure,

such as the highest versus lowest categories. Although this allows most studies to

be combined, this is often unwise for the following reasons: categorisation often

differs between studies, definition of quantiles depends on the population exposure

distribution, and categorisation loses information by introducing measurement error

(see Chap. 2). These issues introduce unwanted heterogeneity that often render the

combined estimates useless. The common metric that reduces these problems is to

present results as a linear dose-response trend.

10.3 Statistical Methods for Deriving Dose-Response

To allow these different studies to be included in the same meta-analysis, all results

need to be converted to a relative risk for a unit increase of exposure, giving a linear

dose-response trend. This is done using the methods attributable to Greenland and

Longnecker (1992) (the “pool last” approach) and Chêne and Thompson (1996).

The method of Greenland and Longnecker is particularly useful in that it (i)

provides dose-response estimates that take account of the correlation between the

estimates for each category induced by using the same reference group (Berlin et al.

1993; Greenland and Longnecker 1992), and (ii) enables derivation of dose-

response relative risk estimates that are adjusted for whatever confounding factors

were considered in the particular study.

Using the notation given in Greenland and Longnecker (1992), these methods

are applied in the following steps:

Step 1. Use an iterative algorithm to estimate the cell counts Ax and Bx, where Ax

is the fitted number of cases at exposure level x and Bx is the number of

non-cases.

Step 2. Let Lx be the adjusted log relative risk for exposure level x when x 6¼ 0

compared to the reference level (assumed to be x¼ 0). For x 6¼ z, estimate the

correlation rxz between Lx and Lz by rxz¼ (1/A0 + 1/B0)/sxsz for case-control

studies, rxz¼ (1/A0 – 1/B0)/sxsz for cohort studies without person-time, and

rxz¼ 1/(A0sxsz) for cohorts involving person-time, where sx
2 is the crude variance
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estimate. Calculating sx
2 depends on the study type too: sx

2¼ (1/Ax+ 1/Bx+ 1/

A0 + 1/B0) for case-control studies, sx
2¼ (M1/AxA0 – 1/N0 – 1/Nx) for cohort

studies without person-time, and sx
2¼M1/AxA0 for cohort studies with person-

time data, where Nx is the total number of subjects at exposure level x, andM1 is

the total number of cases.

Step 3. Estimate the covariance cxz of Lx and Lz by cxz ¼ rxz
ffiffiffiffiffiffiffiffi
vxvz

p
where vx is the

estimated variance of Lx.
Step 4. Estimate the dose-response slope b* (and the variance of its estimate, vb*)

by weighted least squares for correlated outcomes as follows: b*¼ vb*x´C
�1 L

and vb*¼ (x´C�1x)�1 where x is the vector of exposure levels excluding the

reference level, and C is the estimated covariance matrix of L, and has diagonal

element vx and off-diagonal element cxz. When the mean exposure in the

reference category is non-zero, appropriate subtraction from the remaining

category means is required. For linear trends this is simply subtracting the

mean for the reference category from all category means.

The information required to derive a dose-response is not presented in the

majority of papers and a number of approaches should taken in order to derive

the information required. These need to be applied in the following order of

priority:

1. Where the exposure is measured as a continuous variable, and the dose-response

slope given, then this should be used directly. This does not allow extension to

nonlinear trends. Where nonlinear trends need to be modelled, results based on

three or more categories are required.

2. Where the slope (and its standard error or confidence interval) is not given in the

text, these should be estimated using the methods of Greenland and Longnecker

(1992) using the mean exposure in each category given in the paper. No

additional assumptions are required.

3. Greenland and Longnecker’s method requires the total numbers of cases

and controls to be known, and starting estimates for the number of cases in

each category. Where these are not presented, values should be estimated

based on the ratio of cases to controls, the basis for any categorisation using

quantiles (whether based on the whole population or just controls), or on the

information contained in each category estimated from the width of the

confidence intervals.

4. The mean exposure for each category is rarely given, so the methods of Chêne

and Thompson(1996) can be used to estimate the means for use in the

Greenland and Longnecker technique. This approach makes the assumption

of a normally distributed exposure, or a distribution that could be transformed

to normality. Many environmental or dietary exposures will follow a

lognormal distribution adequately enough for these purposes. This is not

necessarily the case for exposures where a large group of unexposed

individuals may reasonably be assumed to come from a separate distribution,

i.e. zero-inflated, or a mixture of two distributions. Episodically consumed

foods such as alcohol or meat are two examples where this approach may not
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be appropriate. Where an unexposed group can be treated separately, this may

still allow the remainder of category means to be modelled, providing enough

categories exist.

5. Where it is not possible to derive mean exposures for each category, the

midpoints can be used instead as a basis for the Greenland and Longnecker

technique.

6. Where no confidence intervals for estimates (RR or OR) are given in the paper,

but approximate standard errors can be obtained from the cell counts, these can

be used to derive approximate confidence intervals for the adjusted estimates.

Greenland and Longnecker’s method can then be applied using means or

midpoints, as described above.

7. Using the methods of Chêne and Thompson, one can also derive an estimate of

the dose-response slope through a weighted logistic regression if the mean

exposure for cases and controls is known. This method also requires the numbers

of cases and controls to be known, and a measure of variability such as standard

deviation for each group. Unless the means presented were adjusted means, this

would yield an unadjusted estimate.

8. Where the above methods cannot be used, the methods of Chêne and Thompson

can still be applied to derive a dose-response curve directly from cell counts, if

individual cell counts are provided. This estimate would unfortunately be unad-

justed for any confounding, even if the relative risks presented in the study were

adjusted, because it is only based on the cell counts.

9. Where these fail, a comparison based on the extreme categories can be used to

estimate the dose-response trend, ignoring the information from categories in-

between. This still requires information to quantify the exposure so the mean

exposure in each category can be estimated. This does not allow extension to

nonlinear curves.

Alternative methods to those of Greenland and Longnecker are possible, so long

as the correlation structure is properly modelled, e.g. using a Bayesian framework.

10.4 Information Required for Meta-analysis

The quality of presentation of results of observational studies lags behind

randomised controlled trials (Elm et al. 2007). It is therefore common to find

insufficient information for the dose-response to be estimated from one of the

above approaches. To be included, they need one of the following combinations

of pieces of information to be derivable or at least approximately estimable:

• Dose-response slope and measure of uncertainty, i.e. standard error or confi-

dence interval.

• Mean exposure in each category, the total number of cases and controls,

estimated relative risks for each category, a way of quantifying uncertainty

around these estimates, e.g. confidence intervals.
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• Range of exposure for each category, the total number of cases and controls,

estimated relative risks for each category, a way of quantifying uncertainty

around these estimates, e.g. confidence intervals.

• Mean exposure for cases and controls separately, number of cases and controls,

along with a measure of uncertainty in the mean, e.g. standard deviation or

standard error.

The method of Greenland and Longnecker should be applied using standard

errors that depend on the study type (cohort) and the form of the relative risk

estimate (relative risk or odds ratio). For these cohort studies, relative risks derived

from person-years of exposure should also be taken into account if presented.

For the purpose of meta-analysis, it may be possible for estimates of relative risk

to be treated as good approximations because of the outcome, i.e. odds ratios may

be considered as a good approximation to the relative risk in some situations

(Greenland et al. 1986; Greenland and Thomas 1982).

10.5 Excluding Studies

Where the information required for meta-analysis is not available, studies cannot be

included in that meta-analysis. As discussed above, whilst allowing wider inclusion

of studies, comparison of extreme categories introduces heterogeneity.

For example, as part of the World Cancer Research Fund and American Institute

for Cancer Research series of systematic literature reviews of “Food, Nutrition,
Physical Activity and the Prevention of Cancer”, a systematic review was

conducted of the association between processed meat intake and gastric cancer

(World Cancer Research Fund/American Institute for Cancer Research 2007).

All original, aetiological, peer-reviewed studies were considered with no exclusions

on the basis of study quality or publication date, or language. Data were extracted

from 29 studies, but of these, only 17 studies (59%) contained sufficient informa-

tion to contribute to the dose-response meta-analysis. Of these, 9 were case-control

studies prone to substantial recall and selection biases, leaving just 8 cohort studies,

28% of the initial number of studies extracted. It is typical for the more recent

studies to provide better quality information. Similarly a greater proportion of

cohort studies tend to contain more information useable for meta-analysis than

the case-control studies, although in some fields cohort studies are rare.

10.6 Selecting Results to Include

Cohort studies sometimes publish more than one paper from the same study,

separated by a number of years’ follow-up. In this situation the paper containing

the larger number of cases should usually be used, which is often the most recent
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paper. In the even more common situation where the same exposure is analysed in

several ways, with different levels of adjustment, a decision needs to be made

regarding which model is the one with the “most appropriate” adjustment for

confounding. The most appropriate adjustment is often the maximally adjusted

analysis given in the paper, or the one with the narrower confidence intervals.

However, the best model is not always the maximally adjusted one and sometimes a

model with less adjustment is more appropriate because it avoids collinearity and

over-adjustment (see Chap. 1). Where estimates are presented only by subgroup,

e.g. men and women, then the subgroups can be included in the meta-analysis

separately and give valid overall pooled estimates. However, this leads to

underestimation of the heterogeneity by including the same study as an apparently

independent observation, and incorrect degrees of freedom in the test for heteroge-

neity, so it is better to first pool these subgroup results and include this pooled

estimate as the single result from that study.

10.7 Separate Zero Exposure Groups

Where there was a category representing a zero exposure, i.e. non-consumers, then

this presents a situation similar to that discussed in Chap. 6. For the purposes of

estimating the category means required for Greenland and Longnecker’s method,

this zero category may be treated separately for the purposes of estimating means in

each category. For example, for processed meat intake, this would include

vegetarians. Such “never” categories often lead to a peak in the distribution at

zero, which means that the data follow neither a normal nor a lognormal distribu-

tion. By using a mean of zero for the “never” category and estimating means for the

other categories separately, this allows distributional assumptions to be made for

the remaining exposure categories, and therefore more studies can be included in a

meta-analysis.

10.8 Presentation

Because of the large potential for heterogeneity in meta-analysis of observational

studies, it is often appropriate to present both fixed and random effects estimates.

It is also helpful to view the trends in relative risk estimates across each study

visually, and to present scatter plots with the area of the circles plotted for each

estimate being proportional to the precision associated with that estimate. These

plots aid assessment of linearity of response.

When assessing whether estimates from smaller studies differ from larger

studies, either visually using funnel plots, or using Begg’s test or Egger’s test, it

is important to consider this assessment as investigating “small study bias” rather

than “publication bias”. That is because there are other possible causes for this
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effect other than differential probability of publication. In observational studies it is

possible that smaller studies are less biased, if they are carried out in more detail,

whereas large studies may contain poorer exposure measures.

Finally, a checklist has been developed that summarizes recommendations for

reporting meta-analyses of observational studies, known as the Meta-analysis Of

Observational Studies in Epidemiology (MOOSE) guidelines. (Stroup et al. 2000)

The checklist covers reporting of the relevant background, search strategies,

methods, presentation and discussion of results, and how conclusions are reported.

10.9 Practical Example

10.9.1 Introduction and Methods

The World Cancer Research Fund and American Institute for Cancer Research

series of systematic literature reviews of “Food, Nutrition, Physical Activity and the
Prevention of Cancer” form a seminal series of meta-analyses of observational

studies (World Cancer Research Fund/American Institute for Cancer Research

2007). All original, aetiological, peer-reviewed studies were considered with no

exclusions on the basis of study quality or publication date, or language. Studies

were identified through a comprehensive literature search (Butrum et al. 2006). One

of the reviews conducted was of the association between processed meat intake and

gastric cancer. Data were extracted from eight cohort studies (Galanis et al. 1998;

Gonzalez et al. 2006; Khan et al. 2004; McCullough et al. 2001; Ngoan et al. 2002;

Nomura et al. 1990; van den Brandt et al. 2003; Zheng et al. 1995).

In order to combine studies presenting results as portions of processed meat with

those presenting results as grams of intake, a standard portion size was used to convert

portions to grams, based on standard food tables (Ministry of Agriculture 1988).

10.9.2 Results

Study characteristics are given in Table 10.1 with category definitions and relative

risk estimates given in Table 10.2. It is sometimes helpful to also to show these

results graphically for each study, converted into standard portion sizes. The forest

plot shows results for both the fixed effects with inverse-variance weighting (“I-V

overall”) and DerSimonian and Laird random effects (“D +L overall”) analyses

(DerSimonian and Laird 1986) (Fig. 10.1). The fixed effects estimate of relative

risk was 1.02 (95% CI: 1.00–1.05) per 20 g/day of processed meat. There was

hardly any excess heterogeneity within the cohort studies (I2¼ 1%). The random

effects estimate of relative risk was almost the same as the fixed effects estimate

because there was very little excess heterogeneity (relative risk¼ 1.03, 95% CI:

1.00–1.05).
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What little heterogeneity existed was explored by meta-regression on each of the

following factors specified a priori: year of publication, mean age, gender, ethnicity

and nationality of study participants, dietary assessment method used, number of

categories used to define the exposure, statistical method used to derive dose-

response slope, unit of exposure measurement, adjustment for age, sex, smoking,

helicobacter pylori status, socio-economic status, alcohol consumption, anthropo-

metric measures, total energy intake, ethnicity, family history of gastric cancer,

nutrient intake, non-nutrient intake, physical activity, other concomitant diseases,

and presence of infection, either by matching or through modelling. There was no

strong evidence that any of these factors were associated with variation in the

estimates.

Egger’s test suggested no evidence of any small-study bias, though power for

this test would be low. The possibly more informative funnel plot showed no

evidence of asymmetry.

In addition to the sensitivity analyses outlined previously, each individual study

was omitted in turn to investigate the sensitivity of the pooled estimates to inclusion

or exclusion of particular studies. No single study had any great influence on the

pooled estimate; exclusion of no one study caused the pooled estimates to change

substantially.

I-V Overall  (I-squared = 1.1%, p = 0.421)

D+L Overall

Ngoan, 2002

Nomura, 1990

Galanis, 1998

Gonzalez, 2005

Zheng, 1995

Study
ID

van den Brandt, 2003

Khan, 2004

McCullough, 2001

1.02 (1.00, 1.05)

Estimated relative
risk for 20g/day

increment (95% CI)

1.03 (1.00, 1.05)

1.06 (0.90, 1.24)

1.04 (0.97, 1.11)

0.99 (0.81, 1.22)

1.22 (1.03, 1.45)

1.27 (0.92, 1.76)

0.74 (0.29, 1.91)

0.97 (0.79, 1.20)

1.02 (0.98, 1.05)

1.02 (1.00, 1.05)

1.03 (1.00, 1.05)

1.06 (0.90, 1.24)

1.04 (0.97, 1.11)

0.99 (0.81, 1.22)

1.22 (1.03, 1.45)

1.27 (0.92, 1.76)

0.74 (0.29, 1.91)

0.97 (0.79, 1.20)

1.02 (0.98, 1.05)

1.5 .6 .7 .8 .9 1 1.2 1.4 1.6 1.8 2

Estimated relative risk for 20g/day increment

Fig. 10.1 Forest plot for fixed-effects meta-analysis ignoring measurement error
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10.10 Correcting for Measurement Error in Pooled Estimates

Substantial work has been done by others on correction for the effects of missing

data in the context of meta-analysis, allowing for the uncertainty that it introduces

using Bayesian methods (Sutton et al. 2000; White et al. 2008a, b). In simple

situations it is possible to apply the methods described in Chap. 2 to the estimates

from each study before pooling, to correct for the effects of measurement error on

pooled estimates in meta-analysis. A particular problem for meta-analysis of

published data is that the exposure is often presented in categorized form, thus

suffering from loss of information and associated bias introduced by this form of

measurement error. Bayesian methods can be used to address these issues, with the

benefit of taking into account the uncertainty in the measurement error variance,

and flexibility for use with non-additive or non-classical measurement error

mechanisms.

10.11 Nonlinear Trends and Meta-Analysis

10.11.1 Methods

So far the methods described have assumed that there is a linear dose-response

curve. It is possible that the curve is nonlinear, and for some exposures, particularly

dietary components such as alcohol intake, this is likely. Considering a non-linear

dose-response curve is not possible using Greenland and Longnecker’s “pool last”

approach outlined in Sect. 10.3, i.e. slopes derived before pooling, but is possible if

means and covariance matrices from individual studies are pooled before
estimating the slopes, known as the “pool first” approach (Greenland and

Longnecker 1992).

One way to fit a nonlinear curve, using the “pool first” approach within Stata, is

to select the best fitting nonlinear dose-response curve from a limited but flexible

family of fractional polynomials (Bagnardi et al. 2004; Royston et al. 1999;

Royston and Altman 1994, 2000). For the example in this chapter, the family of

second-order fractional polynomials were used with ln(RR|x)¼ b1x
p + b2x

q, with

p and q taking values of �2, �1, �0.5, 0, 0.5, 1, 2, 3. When p or q are zero, xp or xq

are taken to be ln(x). When p¼ q, the model is taken as ln(RR|x)¼ b1x
p + b2x

qln(x).
These provided simple models but still with a good range of possible curves,

including a range of commonly observed tick-shaped (J-shaped) and U-shaped

curves. The best model was the one that gave the most improvement (decrease)

in deviance compared to the linear model.

The “pool-first” approach is similar to the “pool-last” approach outlined in

Sect. 10.3 but more flexible for including covariates. Using the same notation as
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before, let xk, and Lk be vectors of exposure levels for study k excluding

the reference levels, Ck be the estimated covariance matrix for Lk, G be a

block-diagonal matrix whose kth diagonal block is Ck
�1. The pooled estimate of

the coefficients b̂ is VX´GL, with estimated covariance matrix V¼ (X´GX)�1. The

model fit can be assessed by comparing e´Ge to a chi-squared distribution on

degrees of freedom equal to the number of elements in e – 2, where e is the vector

of residuals e¼L – Xb̂.
When the mean exposure in the reference category is non-zero, the value of the

fractional polynomial function evaluated at the mean of the reference category

needs to be subtracted first.

10.11.2 Results

A scatterplot of log relative risk of gastric cancer against level of processed meat

intake was plotted with the area of the plotting symbol proportional to the precision

of the relative risk associated with it. This represents the raw data extracted in a way

that summarises the observations clearly on one graph (Fig. 10.2).

The best fitting fractional polynomial (based on the deviance) was ln(RR|x)¼
b1x

3 + b2x
3ln(x) with b1¼ 6.17� 10�6 (s.e. ¼ 3.35� 10�6) and b2¼�1.31� 10�6

(s.e. ¼ 7.30� 10�7).

The coefficients appear small because of the size of x3 and x3lnx. This model had

the lowest deviance (Chi-squared goodness of fit test¼ 9.0, on 13 df, p¼ 0.78) but

.8
1

1.
2

1.
5

2

E
st

im
at

ed
 R

R

0 20 40 60 80 100

Processed meat intake (g/day)

Reference categories
RR for processed meat intake

Fig. 10.2 Scatterplot of ln(RR) vs. processed meat. The area of the circle representing each

estimate is proportional to the precision associated with that estimate. Reference categories are

indicated by points with ln(RR)¼ 0
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was not significantly better than the linear model (decrease in deviance¼ 2.0, on 1

df, p¼ 0.16). This curve is plotted in Fig. 10.3 with 95% confidence bands.

The curve shows very little excess risk for the first 30–40 g/day of processed

meat rising more steeply to a peak risk with 80 g/day intake before dropping

slightly with higher intakes. For higher intakes, the confidence intervals are very

wide, so this curve could also indicate a threshold effect beyond which additional

processed meat intake does not confer any further harm. The risks associated with

intakes of processed meat above 20 g/day were statistically significant, though 95%

confidence intervals include negligible effects for intakes up to 40–50 g/day.

10.11.3 Potential Alternative Approaches

Eilers (2007) has also viewed the problem of nonlinear dose-response curves in

meta-analysis as a latent trait on which the categorised exposure is based. Eilers

considers a non-parametric smooth latent distribution of event probabilities, and

uses an EM algorithm to do it. Further work could extend this to allow for

measurement error. Extensions of established multilevel methods for meta-analysis

(Higgins et al. 2001; The Fibrinogen Studies Collaboration 2006) (see also Chap. 5)

and latent variable methods within a Bayesian framework (Higgins et al. 2001;

Salanti et al. 2006; Spiegelhalter et al. 2007; Sutton et al. 2000, 2008) (see also

Chaps. 8 and 9) may also be successfully applied.

1
1.
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1.

5

P
re

di
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ed
 R

R

0 20 40 60 80 100

Processed meat intake (g/day)

Best fitting fractional polynomial
95% confidence interval

Fig. 10.3 Predicted relative risk vs. processed meat intake from fractional polynomial model.

Shaded area represents 95% confidence interval around fitted curve
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10.12 Software

The methods of Greenland and Longnecker have been implemented in the Stata

function “glst.ado”. This implementation includes both fixed and random effects

meta-analysis, and both the “pool last” or “pool first” methods. This allows explora-

tion of heterogeneity as well as modelling linear and nonlinear dose-response

curves. However, substantial work can sometimes be required to extract and derive

the appropriate information from the included studies, and some additional pro-

gramming is required to select an appropriate fractional polynomial and plot the

curves. A package such as WinBUGS or JAGS is required for work within the

Bayesian framework (Spiegelhalter et al. 2007; Plummer 2003).

10.13 Individual Patient Data

Most statistical techniques to correct for confounding (other than design-based

methods such as matching or stratification), incomplete data and measurement

error require access to individual patient data. Rather than pooling estimates from

each study, a better approach to reaching overall combined estimates is to access

the individual patient data, and analyse these. With this approach, confounding in

each study is handled consistently, because the same covariates can be included in

the model for each study, provided the data has been collected. This provides a

solution to heterogeneity from adjustment for covariates. Similarly, imputation for

incomplete data and correction for measurement error (see Chap. 2) can be

achieved, using standard methods that can take full account of uncertainty involved

in the process. However, although adjustment for confounding can use the same

covariates, not all studies will have recorded the same information, so analysis often

defaults to the lowest common denominator.

Where some published results do not present the information required to include

the study in meta-analysis, with access to the individual patient data this is no

longer a problem. However, gaining access to individual patient data often is a

problem, and so combined analyses may still contain an unrepresentative sample of

studies. It is less likely that data from older studies will be available. Current studies

may not wish to give access to data from ongoing research. Datasets will be in

differing formats, with different definitions, interpretations and categorisation of

similar important items.

Examples of successful pooling of individual patient data from observational

studies include for the investigation of birth size and breast cancer risk where 32

observational studies were successfully pooled (Collaborative Group on Pre-Natal

Risk Factors and Subsequent Risk of Breast Cancer 2008), and the MRC Centre for

Nutritional Epidemiology in Cancer Prevention and Survival (CNC), a collabora-

tion of eight universities in the United Kingdom to pool cohorts investigating diet

and cancer using similar methodology (Bingham and Day 2006).
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10.14 Conclusions

Ultimately, the amount of information presented in observational studies on which

meta-analyses are based appears to be inadequate for the task. In addition, substan-

tial heterogeneity if often found, introduced by adjustment for different covariates,

differing exclusion criteria and categorisation of exposures. This adds further

argument for the use of individual patient meta-analysis in these situations. Further

discussion and an extensive bibliography can be found in Sutton et al. (2000).
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Chapter 11

Directed Acyclic Graphs and Structural

Equation Modelling

Yu-Kang Tu

11.1 Introduction

One of the major challenges for epidemiologists is to understand and infer causal

relationships between risk factors and health outcomes in the population by

analysing data from observational studies. For many risk factors, it is either unethi-

cal or impractical to conduct randomised controlled trials to test their health effects.

It would therefore be very desirable if there is a methodology for observational

studies to discover causes and effects amongst variables or at least confirm or refute

the proposed causal relationships. Epidemiologists need a methodology which is

sort of a combination of the directed acyclic graphs (DAGs, see Chap. 1) for

conceptual construction of causal models and regression analysis for testing those

models. It is therefore surprising that structural equation modelling (SEM) has not

been so frequently used in epidemiology as in the social sciences, given that both

epidemiologists and social scientists want to delineate causes and effects from

observational data. The difference between DAGs and path diagrams in SEM is

trivial: the path between two variables can only have one direction in DAGs

(Greenland and Brumback 2002; Iacobucci 2008), whilst in SEM the paths can be

in both directions at once. An individual path in SEM is tested in the same way as the

regression coefficient is in regression analysis, and model fit indices provided by

SEM software packages help the analysts to assess the adequacy of the proposed

causal model compared to the observed associations in the sample data (Pearl 2000;

Kline 2011).

Why then is SEM still under-utilised in epidemiology? This is a question posed

by Der (2002) a few years ago. The answers cited included that SEM used

unfamiliar terminology, because mathematical models in SEM are formulated in
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matrix algebra, and the first SEM software, LISREL, uses eight matrices in Greek

letters; the restriction in the assumptions of variables requires that the outcome

variables need to be continuous and follow multivariate normality; it is quite

tedious to set up SEM models to test interaction amongst variables and non-linear

relationship. More importantly, two different causal models may imply the same

covariance structure and consequently, it is impossible to tell which is better,

known as the equivalent models problem. Recent advances in SEM theory and

software development has nevertheless resolved some of these issues. We now

known that the maximum likelihood estimator is quite robust to the violation of

multivariate normality, and new estimation methods do not require the strict

assumption of multivariate normality (Shipley 2000). Software packages can now

estimate non-continuous outcome variables (Skrondal and Rabe-Hesketh 2004;

Muthen and Muthen 2006; Hancock and Samuelson 2007). From a statistical

viewpoint, all general and generalised linear models (such as linear regression,

analysis of variance, and logistic regression), and multivariate statistics (such as

path analysis, multivariate analysis of variance, canonical correlation, and factor

analysis) are part of SEM family. As a result, almost all epidemiologists are ‘doing’

SEM every day, though most of them are not aware of this.

Since Karl J€oreskog first proposed his famous LISREL model in 1970s, SEM has

become a very important research tool for quantitative social scientists, because it

provides a very powerful and versatile framework for formulating research

hypotheses and testing them. SEM is a vast and rapidly evolving field, and there

are more than a dozen of textbooks and monographs dedicated entirely to SEM.

Chapter-length introduction can be found in many statistics textbooks covering

multivariate methods. Therefore, the aim of this Chapter is not to explain the

mathematical theory of SEM or to demonstrate how to use SEM software. Instead,

the aim of this Chapter is to discuss the relation between DAGs and SEM, rationale

behind SEM, and the limitation of SEM philosophy. Readers who are interested in

applying this methodology can consult the textbooks and software manuals for

further details. The structure of this Chapter is as follows: we first explain the path

diagrams used by SEM and the similarity between them and DAGs (Sects. 11.2 and

11.3). Then, we explain how SEM may be useful for the identifications of causal

relationships (Sects. 11.4 and 11.5). Finally, we explain the philosophy behind

SEM testing and its limitations (Sect. 11.6).

11.2 Path Diagrams

Path diagram is a graphical presentation of linear models. Both observed and

unobserved variables can be included in the diagram. When we become familiar

with the rules of path diagrams, they can be used to visualise the causal

relationships amongst the variables in the model. Observed variables are usually

in squares and unobserved (latent) variables in circles. For instance, in a bivariate

Pearson product-moment correlation between variable X and Y, both are observed
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variables and there is no direction in their relationship. As a result, X and Y are

connected by a double arrow (Fig. 11.1). We may think of the correlation without

causal direction as a manifestation of an unobserved causal variable, i.e. the

observed correlation between X and Y is due to a latent variable U which is the

cause of both X and Y (Fig. 11.2). Therefore, if we can identify U and measure it,

X and Y would become independent conditional on U. In mathematical notations,

this relationship amongst the three variables is noted as Y⊥X|U following the

notations introduced in Chaps. 1 and 4. From a statistical viewpoint, this means

that the partial correlation between X and Y is zero after the adjustment of U, and
regression coefficient for X is zero when Y is regressed on both X and U together.

When substantive theory suggests that X is a cause of Y, i.e. when X changes, Y
will change accordingly, we draw a single arrow from X to Y (Fig. 11.3). In contrast,

if we believe Y is a cause of X, the arrow should be drawn from Y to X (Fig. 11.4).

Note that from a pure statistical viewpoint, these four models in Figs. 11.1, 11.2,

11.3 and 11.4 are not distinguishable, i.e. without knowledge external to the system,

it is impossible to tell which model is true, because all the four models make the

same prediction in the observed relationship between X and Y in a non-experimental

setting. All the four models imply an observed correlation between X and Y,
although the causal relationships between X and Y are different.

Passive observation such as measuring X and Y in a sample from a population is

insufficient to identify which model is true. In other words, testing the statistical

relationship between X and Y alone is not able to discriminate between the variety

Fig. 11.1 Path diagram for

correlation between X and Y

Fig. 11.2 Path diagram for

observed correlation between

X and Y caused an unobserved

common ancestor of U

Fig. 11.3 Path diagram for

regressing Y on X

Fig. 11.4 Path diagram for

regressing X on Y
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of possible models. We need to test the causal relationship using active observation,

i.e. we need to intervene into the system, observe the consequences, and compare

them to the predictions made by the models.

For instance, the causal models in Figs. 11.1, 11.2 and 11.4 suggests that if

we change X, Y will not change because X is not a cause of Y. Therefore if change
in Y does occur when we increase X by one unit in a selected sample by

conducting an experiment, the three causal models in Figs. 11.1, 11.2 and 11.4

are rejected because their predictions are refuted by the experiment. On the

other hand, if change in Y does not occur when we increase X by a unit, the

three causal models are tentatively accepted because their predictions pass

the experiment, but further experiments are required to tell which of the three

models is the best. For instance, we can increase Y by a unit and see if X will

change. If X changes, this means that the causal models in Figs. 11.1 and 11.2 are

rejected, because according to their predictions, Y is not a cause of X and should

not change (Tu et al. 2008).

Suppose we do not observed any change in X when Y is increased by one unit,

and this will reject the prediction by the model in Fig. 11.4. But what about the

models in Figs. 11.1 and 11.2? How can we know which one is the best? In fact,

there is no genuinely causal relationship in the model in Fig. 11.1, and as a result, no

experiment can be undertaken to test its truthfulness. This is why in DAGs, double

arrows are not allowed. For the causal model in Fig. 11.2, although there is no

double arrow, conducting experiments to test it will not be easy. First, we need to

identify the unobserved variable U and measure it. When U increases, we expect to

see changes in both X and Y. The problem is if we observe no change in X and Y, this
is not sufficient to reject the model, because we might identify an incorrect U.
Therefore, the model in Fig. 11.2 needs to pass three tests: (1) when X changes,

Y does not change; (2) when Y changes, X does not change; (3) U is identified and

whenU changes both X and Y change. Then we may tentatively accept this model as

the most plausible one amongst the three causal models.

The discussion so far may look recognisable for readers who are familiar with

the writings of Sir Karl Popper, an influential philosopher of science in the last

century. His famous slogan: conjectures and refutations, has once been considered

as the demarcation criteria between science and pseudo-science. A good scientific

theory clearly specifies the conditions where it may be rejected, i.e. to make

predictions which have not been but can be observed, and then experiments are

designed to test the predictions. If the scientific theory passes the test, its truth-

content has increased; if it fails the test, it may need to be modified or in extreme

circumstances rejected. Of course, in real research, the process is quite complex, as

we need to take into account the accuracy of our measurements and to decide the

extent of deviations between predictions and observations that suffice to falsify our

theory. Note that according to Popperian philosophy, we cannot ‘prove’ a theory

true by undertaking an experiment or observation, because the theory may fail in

the next test. This is an asymmetry in the acceptance and refutation of a scientific

theory: one experiment or observation may refute a theory forever but only

corroborate it (Popper 2002).
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Popperian philosophy was once very popular amongst natural and social

scientists, and there have been many discussions about its application in epidemi-

ology. In SEM literature, Popper’s philosophy has been used to defend the values of

SEM in finding causal relationships in data from passive observations (Bollen

1989). In the following sections, we will discuss why it is not always easy to

practice (so-called naı̈ve) Popperian conjectures and refutations in SEM.

11.3 Directed Acyclic Graphs

One limitation of classical SEM analysis is that the manifest (observed) variables

for the outcomes have to be continuous variables such as Y in Fig. 11.3 and X in

Fig. 11.4 (there is no such limitation for X in Fig. 11.3 and Y in Fig. 11.4). Recent

advances in SEM theory and software development have overcome this by

implementing new estimation procedures (Little et al. 2007; Muthén 2001).

These new developments make SEM a useful tool for causal modelling in epidemi-

ology, because many outcome variables in epidemiology are binary or counts.

DAGs, which have been known to epidemiologists for nearly two decades, have

received greater attention in the last few years (see Chaps. 1 and 4 for more details).

They have mainly been used by epidemiologists to identify confounders and

potential biases in the estimation of causal relationships, and DAGs are a particular

type of path diagrams.

11.3.1 Identification of Confounders

The question of which variables are confounders and should be adjusted for in

statistical analysis has been a controversial issue within epidemiology (Weinberg

2005; Kirkwood and Sterne 2003; Jewell 2004). Only with the consideration of

DAGs can the relevant issue be resolved. According to DAGs theory, confounders

are variables which are causally associated with both the outcome and exposure but
are not on the causal pathway from the exposure to the outcome variable

(Greenland et al. 1999; Pearl 2000; Tu et al. 2005; Glymour 2006; Glymour and

Greenland 2008). For instance, variable Z is a confounder for the relation between

the exposure X and the outcome Y in Fig. 11.5a, because there are arrows from Z to

X and Y (i.e. they are causally associated), and Z is not on the causal path from X to

Y. In contrast, Z is not a confounder for the relation between the exposure X and the

outcome Y in Fig. 11.5b, because although there are arrows from Z to Y and from X
to Z (i.e. they are causally associated), Z is on the causal path from X to Y.
Therefore, if we want to estimate the impact of X on Y, Z is a confounder and

should be adjusted for according to Fig. 11.5a, but Z is not a confounder according

to 11.5b. From the viewpoint of path diagram, the adjustment of Z in Fig. 11.5b is

the partition of direct and indirect effect, and this is very common in SEM literature.

11 Directed Acyclic Graphs and Structural Equation Modelling 195

http://dx.doi.org/10.1007/978-94-007-3024-3
http://dx.doi.org/10.1007/978-94-007-3024-3


11.3.2 Direct and Indirect Effects

Most SEM software can produce the results of direct and indirect effects upon

request. The path from X to Y in Fig. 11.5b is interpreted as the direct effect of X on

Y, and the path from X to Z and Y is the indirect effect of X on Y. To estimate the

former, we need to adjust for an intermediate variable between X and Y. This
practice is also known as ‘mediation’ analysis in social sciences (MacKinnon

2008). The total effects are just the sum of direct and indirect effects. Therefore,

although the adjustment of Z in a regression model will change the estimate of

regression coefficient for X, it matters little in SEM because both unadjusted and

adjusted regression coefficients are reported: the former is the total effects and the

latter the direct effects.

11.3.3 Backdoor Paths and Colliders

We may ask why Z is a confounder and should be adjusted for in Fig. 11.5a and

what would happen if Z is not adjusted for. Before we answer this question, we first

look at Fig. 11.2 again. Suppose the arrows from U to X and Y represent positive

associations. When U increases, we will observe that both X and Y increase. If we

do not know that there is U behind the observed increases in X and Y, we may

therefore conclude that either X influences Y or vice versa, but actually if we change

the values of X (or Y), nothing would happen to Y (or X).U is therefore a confounder

for the relation between X and Y, and this can be identified by tracing the path from
X to Y or Y to X known as a backdoor path (see Chap. 1). When there are backdoor

paths from the exposure to the outcome, the estimate of their causal relation is

contaminated (in statistical jargon, biased). To block the backdoor paths, variables

such as U need to be adjusted for, and in epidemiological terminology, these

variables are confounders.

A related issue is to identify colliders in DAG (see Chap. 1 for the definition of a

collider). Consider Fig. 11.6. There are paths from X to Z and Y to Z, i.e. changing

Fig. 11.5 Path diagram for

confounding: (a) Z is a

confounder for the

relationship between X and Y;
(b) Z is a not confounder for

the relationship between X
and Y, because Z is on the

causal pathway from X to Y
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either X or Ywill give rise to change in Z, but changes in X will not cause changes in

Y, and vice versa. However, if we adjust for Z when we regress Y on X (or X on Y),
we will find a spurious association between Y and X. The non-mathematical

explanation for this phenomenon is as follows: we know both X and Y can influence

X, say, positively; if we observe a positive change in Z, we know either X or Y is the

cause but we are uncertain of which is the cause. However, if we then know X had

changed, that Y had also changed becomes less probable than that Y had not, so a

negative relation between X and Y would be observed. Mathematically speaking, X
and Y are independent unconditionally, but they are dependent, conditional on Z.
In this scenario, Z acts as a collider, because two arrows (one from X and the other

from Y) go toward it, so Z blocks the pathway from X to Y (and Y to X). However,
statistical adjustment of Z will open this path, and X and Y will become correlated.

In path diagram, X and Y are assumed to independent, i.e. when their

relationships with Z are estimated, the correlation between X and Y will be

constrained to be zero, even though their observed correlation may not be zero.

11.3.4 Example of a Complex DAG

Suppose we want to estimate the “true effect” of X on Y in Fig. 11.7, which

variables should be measured and adjusted for (Greenland and Brumback 2002)?

As discussed before, variables to be adjusted for are confounders, i.e. the adjust-

ment of these variables can block the backdoor paths from X to Y. The most obvious

confounder in Fig. 11.7 is Z, as there is a backdoor path: X  Z ! Y. Following
the same principle, U and V are also confounders for the estimation of the causal

effects of X on Y. The question is do we need to adjust for all three variables? For

instance, suppose that it would take a lot of efforts and resources to measure either

U or V, so the question is to determine the minimum set of confounders for

statistical adjustment (see Chap. 1 for the definition of minimum set of

confounders). We then note that when Z is blocked (i.e. statistically adjusted for),

the backdoor path from X to U, Z and Y is also blocked. As a result, blocking Z will

block two backdoor paths from X to Y. The same applies to V. When Z is blocked,

the backdoor path from X to Z, V and Y is also blocked. However, does this mean

that the adjustment of Z would be sufficient to block all the backdoor paths? The

answer is no, because Z is also a collider for U and V. When Z is adjusted for, a new

backdoor path from X to U, V and Y is opened, and therefore, the minimum set of

confounders is either Z and U or Z and V.

Fig. 11.6 Path diagram for Z
regressed on X and Y, and X
and Y are uncorrelated
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11.4 Implied Correlation Matrix in SEM

Structural equation modelling (SEM) looks at the model in Fig. 11.7 from a slightly

difference perspective. To simplify our discussion, we standardise all the variables

used in Fig. 11.7, so that their means are zero and their variances are one. The lower

case letters accompanying each path represent the standardised path coefficients

which can be interpreted as standardised regression coefficients from multiple

regression analysis. From Fig. 11.7 it is possible to work the estimated correlations

between each pair of variables in the model using Sewell Wright’s Rules of Tracing

(Loehlin 2004). Wright was a geneticist and invented path analysis in 1920s. His

path analysis was largely ignored by statisticians but adopted by econometricians in

1950s. In 1960s and 1970s, path analysis and factor analysis were incorporated into

one single general statistical framework, SEM, by Karl J€oreskog and others.

Wright’s rules can be summarised as follows:

1. No loops are allowed. In tracing from one variable to another, the same variable

cannot be passed through twice.

2. No going forward and then backward. Once following a path forward, e.g.

following the path from X to Y (X ! Y) in Fig. 11.7, it is not allowed to follow

backward across the path, e.g. following the path backward from Y to Z (Y  Z)
in Fig. 11.7 not allowed. However, going backward and then forward is possible,

e.g. flowing the path backward from Y to Z (Y  Z) and then from Z to X
(X ! Y) in Fig. 11.7 is allowed.

3. Only one double arrow is allowed in tracing from the first variable to the last

variable, e.g. tracing from X to Y is allowed in Fig. 11.1.

Note that we will not need rule No.3 for DAGs for reasons explained previously,

and the rule No.2 is equivalent to how we identify backdoor paths and colliders in

the previous section. It is better to use examples to explain how to apply these rules.

For instance, the correlation between U and V in Fig. 11.7 is zero according to the

rule No.2. The correlation between X and Z is (b + d*e). The former is a direct

effect from Z to X and the latter the confounding effect due to U, i.e. the estimated

correlation between X and Z is the sum of the genuine effect and the spurious

confounding effects. If the model is correct, this will also be the observed correla-

tion between X and Z in the population. The correlation between X and Y is

Fig. 11.7 Path diagram for a

complex scenario, where the

aim of investigation is to

estimate an unbiased relation

between X and Y
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(a + b*c + d*e*c + b*f *g) of which a is the genuine (unconfounded) effect of

X on Y. We can write down all the mathematical relationships between observed

(on the left hand side of the equations) and estimated (the the right hand side of the

equations) correlations as:

rU;V ¼ 0; (11.1)

rX;Z ¼ bþ d � e; (11.2)

rX;Y ¼ aþ b � cþ d � e � cþ b � f � g; (11.3)

rX;V ¼ b � f ; (11.4)

rX;U ¼ d þ b � e; (11.5)

rU; Z ¼ e; (11.6)

rU;Y ¼ e � cþ e � b � aþ d � a; (11.7)

rV;Y ¼ gþ f � cþ f � b � a; (11.8)

rV;Z ¼ f ; (11.9)

rZ;Y ¼ cþ b � aþ e � d � aþ f � g; (11.10)

There are seven standardised regression coefficients in Eqs. 11.1–11.10: the

seven lower case letters, and there are ten known correlation coefficients on

the left hand side of the equations. Some standardised regression coefficients

have already been given from the equations, e.g. e ¼ rU;Z and f ¼ rV;Z, but the
other five remain to be estimated. As there are more correlations than unknown

parameters, there is no unique solution, and SEM in general uses maximum

likelihood method to minimise the differences between the observed and estimated

correlations. If the proposed model is correct, the estimated correlations amongst

the five variables would be exactly observed correlations in the population, and the

unconfounded effect of X on Y is therefore a.
Suppose we mistakenly believe that Fig. 11.8 is the correct model for the

relationships amongst X, Y and Z instead of Fig. 11.7. The relationships between

the observed and estimated correlations become:

rZ;X ¼ b0; (11.11)

rZ;Y ¼ b0 þ a0 � c0; (11.12)

rX;Y ¼ a0 þ b0 � c0; (11.13)
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It becomes apparent that a0 6¼ a, i.e. the estimated effect of X on Y in Fig. 11.8 is

biased.

11.5 Model Testing in SEM

The basic rationale behind the model testing in SEM is straightforward: multiple

linear equations are used to specify causal relationship between variables some of

which are manifest variables (observed and collected by the researchers), while

others are latent variables derived from the observed variables by specifying their

relations using equations, such as those in factor analysis. The multiple equations in

each causal model describe particular correlation structure between the observed

variables which is usually presented as a correlation (or covariance) matrix S.
The estimation procedure is to minimise the difference between S and the observed

correlation or covariance matrix S formulated by a likelihood function:

FML ¼ log
X��� ���� log Sj j þ trace S

X �1
� �

� pþ qð Þ;

where p and q is the number of independent and dependent variables, respectively.

A w2 test is then used to evaluate the difference between these two matrices by

taking into account the number of the estimated parameters in the proposed model.

When the w2 value is large (i.e. the difference between the two matrices is large)

relative to the model’s degree of freedom, the proposed model is rejected, i.e. the

causal relationships in the proposed model might be mis-specified. When the w2

value is small, we do not reject the model or even tentatively accept the model as

adequate.

Why do we only tentatively accept the proposed model as adequate when the w2

value is small? This is because of the possibility of equivalent models. In other

words, our model may actually be wrong in terms of the causal relations amongst

variables but happen to estimate the same correlation structure (the same S) of the

‘true’ model. For example, suppose the true relationship is Y ! X ! Z, but we
wrongly specify their relationships as Z ! X ! Y. Both models imply that the

three variables are correlated and Y and Z are independent conditional on X.
Therefore, both models will obtain the same w2 value with the same one degree

of freedom.

Fig. 11.8 The same research

question as the one in Fig. 11.7,

but here variables U and V

are not included in the model,

yielding biased estimate for

the relation between X and Y
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One controversy in the SEM model testing is whether a large w2 value relative to
the model degree of freedom necessarily means that the proposed model is wrong

and should be modified or even rejected, because the statistical power of the w2 test
to reject a model increases with the sample size. As a result, a causal model whose

model fit deems acceptable in a small sample is considered unacceptable when the

sample size increases. The problem is inherent in hypothesis testing (Gardner and

Altman 1986; Altman and Bland 1995). Therefore, many alternative model fit

indices have been proposed that take into account the sample size and model

degrees of freedom. Many software packages also provide modification indices to

help researchers identify possible ways to modify the models to reduce the w2 value.
Model modification should be guided by more than just the reduction in the w2

value, because this may be entirely caused by chance, and the modified model may

make little sense from a theoretical point of view.

A more fundamental issue in SEM model testing is why the aim of SEM is to

produce a model that has the same correlation/covariance structure in the sample as

that in the population. The rationale is that if a model faithfully represents the “true”

causal relationships amongst variables, the estimated relationships should corre-

spond to the observed ones in the data. In reality, there may be biases in the data

collection that cause the observed correlation/covariance structure to deviate from

the true one in the population. Furthermore, reality is often complex, and many of

the causes and effects may be subtle and intricate; we may never be able to capture a

full picture. Even if we do, the model may be too complex to be useful, and a

simpler model with a simplified version of theory may be more useful for our

understanding of reality. According to the popular version of Popperian philosophy

(we call it popular version, because Popper himself recognised the process of

conjectures and refutations is far more complex in the practice of science), a

model may survive many attempts to refute it, but if it fails just one test, we should

modify or even reject it. Is it always a good approach that we give up our carefully

formulated model and modify our theory because it does not fit one data set? Or

should we try to identify the reasons for the poor fit, such as random sampling

errors?

11.6 No Causes In No Causes Out

Nancy Cartwright, a prominent philosopher of science, argued “no causes in, no

causes out” (Cartwright 1989), and epidemiologists will never prove or refute a

causal relationship from observational studies, if causes and effects are not part of

their statistical models. Causality has to be incorporated into statistical analysis, if

we want to make causal inference from the results. DAGs have been used widely by

many studies in justifying the adjustments of confounders and corrections for

biases. We agree that both DAGs and path diagrams are very useful tools for

explicitly formulating the causal relationships amongst variables in the models.

However, DAGs and path diagrams cannot turn passive observations into active
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ones, i.e. the conditional relationships and covariance structure in the proposed

DAGs and path diagrams may be very close to the ones in the sample data, but this

alone may not be able to prove the proposed causal relationships. Ideally, we would

like to conduct experiments to make changes to the system in the model and

observed whether the consequence follows the prediction made by the model.

This may not always be feasible and does not mean no causal inference can be

made without experiments. For example, we could never take Moon away from our

galaxy and then see what change this might cause to how the Earth moves around

the sun; but we still believe Newton’s law is correct. Causal thinking can still be

incorporated in the statistical analysis and causal inference can still be made using

data from careful observations (Arah 2008, Tu 2009).

11.7 Further Reading

Two book chapters (Glymour 2006, and Glymour and Greenland 2008) provide a

comprehensive but accessible coverage of DAGs for epidemiologists. Judea Pearl’s

book (Pearl 2000) discusses both DAGs and SEM in much deeper depth, but people

without strong statistical background may find it difficult. Kline (2011) and Loehlin

(2004) are both good introductory textbooks on SEM without relying too much on

linear algebra for explaining the concepts.
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Chapter 12

Latent Growth Curve Models

Yu-Kang Tu and Francesco D’Auito

12.1 Introduction

Many clinical and epidemiological studies make repeated measurements of

continuous variables during the period of observation. Statistical analysis of longi-

tudinal data often requires advanced, sophisticated methods to explore the com-

plexity of information within the data. Standard statistical methodologies include

the use of summary statistics (Senn et al. 2000), multilevel modelling (MLM)

(Goldstein 1995; Hox 2002; Raudenbush and Bryk 2002; Gilthorpe et al. 2003;

Singer and Willett 2003; Twisk 2003; Twisk 2006) and generalized estimating

equations (GEE) (Liang and Zeger 1986; also see Chap. 15 on Generalised Additive

Models).

During the development of MLM in the social sciences (also known as random

effects modelling in biostatistics), another statistical methodology, latent growth

curve modelling (LGCM), has been developed (Byrne and Crombie 2003; Bollen

and Curran 2006; Duncan et al. 2006) within the framework of structural equation

modelling (SEM) (Bollen 1989; Loehlin 2004; Kline 2011; see also Chap. 11).

Theoretical development in the last decade has shown that MLM yields the same

answers as those of SEM with regards to longitudinal data analysis (Curran 2003;

Bauer 2003; Steele 2008), and therefore SEM software can be used to analyze

multilevel or random effects models. This discovery has a potential to have a great
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impact on practical data analysis, especially in clinical and epidemiological

research, because the SEM framework offers greater flexibility than MLM in

statistical modelling with the incorporation of latent variables (Curran 2003).

The aim of this chapter is to present a concise introduction to LGCM for

epidemiologists showing the possible benefits they might gain from using this

methodology for some study designs compared to MLM or GEE when modelling

longitudinal data. The structure of this chapter is as follows. In Sect. 12.2, we

explain how commonly used statistical methods such as simple and multiple linear

regression can be visualized using path diagrams. In Sect. 12.3, we use an example

from a clinical trial to explain how to employ LGCM to test a two-level growth

curve model. In Sect. 12.4, we show how LGCM can provide greater flexibility in

modelling non-linear growth curves and changing processes of multiple outcomes.

Finally, we conclude in Sect. 12.5 by discussing the advantages and limitations of

LGCM. We use statistical software Mplus (version 5.2, Muthén and Muthén 2006)

for LGCM analysis throughout this chapter.

12.2 Path Diagram for Linear Regression

As discussed in Chap. 11, structural equation modelling (SEM) can be considered

as a general theoretical framework for all univariate and multivariate linear statisti-

cal models, i.e. correlation, linear regression, analysis of variance, multivariate

analysis of variance, canonical correlation, and factor analysis. Whilst SEM can be

expressed using linear algebra, a sometimes clearer way to appreciate the concepts

of SEM is through understanding the path diagrams of these statistical models. As

shown in Chap. 11, path diagrams are a graphical way of presenting the

relationships amongst variables in statistical models. Some SEM software provides

a graphical interface for users to draw path diagrams for their models on the

computer, and the software then performs the analyses specified in the path

diagrams.

12.2.1 The Path Diagram for Simple Linear Regression

To illustrate how to draw path diagrams for growth models, we begin with a simple

example of linear regression with one outcome variable (known as the dependent

variable) and one explanatory variable (known as the independent variable or

covariate). Figure 12.1 is the path diagram for a simple linear regression model

given as:

y ¼ b0 þ b1xþ e; (12.1)
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where y is the outcome variable, x the explanatory variable, e the residual error

term, b0 the intercept, and b1 the regression coefficient for x.
From Eq. 12.1, we see that when x is zero, y is b0, and when x increases by one

unit, y is expected to increase by the amount of b1. The residual error term is the

difference between the observed values of the outcome and the predicted values of

the outcome. In path diagrams, observed variables such as x and y are within

squares, and latent (unobserved) variables such as residual errors (e in Eq. 12.1)

are within circles. An arrow from variable x to variable y in a path diagram means

that x affects y in the specified statistical model, but y does not affect x. In contrast, a
double arrow connecting x and y means that these two variables are correlated

without specific causal direction. When there is no arrowed line (single or double)

between x and y, this means that x and y are assumed to be causally independent, i.e.

the underlying population correlation between them is assumed to be zero in the

specified model. For instance, x and e are assumed to be uncorrelated, and this is

one of the assumptions behind regression analysis: explanatory variables and

residual errors are independent.

The arrow from one variable to another is called a path in the diagram. In

Fig. 12.1, there are two paths that specify the relationships between variables in

the model: one from x to y, and another from e to y. As a result, two parameters

associated with those two paths may need to be estimated. The parameter for the

path from x to y is b1, which is unknown and needs to be estimated, but another

parameter for the path from e to y is fixed to be unity. Only one free parameter for

the relationship between x and y requires estimation, though other free parameters

also require estimation, for example, the variances of x and e.

12.2.1.1 Regression Weights, Path Coefficients, and Factor Loadings

In linear regression, b1 is usually known as the regression coefficient, but in SEM,

the parameters for the paths are sometimes called path coefficients or factor

loadings. Despite the confusing jargon, all these terms can be interpreted as

regression coefficients, and in this Chapter, we simply call them regression

coefficients. One exception is where double arrow are used between two variables:

the estimated path coefficient with a double arrow is the covariance between the

two variables.

Fig. 12.1 Path diagram for

simple linear regression in

Eq. 12.1. The factor loading

b1 in the path diagram is

equivalent to the regression

coefficient b1 in Eq. 12.1
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12.2.1.2 Exogenous and Endogenous Variables

In a path diagram such as Fig. 12.1, variables like x are known as exogenous

variables because there is no arrow from another variable in the model directed

towards them. In contrast, variables like y are known as endogenous variables,

because there is at least one arrow from other variables (x in this model) directed

toward it. Endogenous variables are accompanied by residual errors, such as e in

our model, because it is unlikely that the variations in y can be completely

explained by x. SEM estimates the means and variances for exogenous variables

whilst estimating the intercepts for the endogenous variables. This is because the

variance of an endogenous variable is derived from exogenous variables as well as

residual errors associated with the endogenous variable. For example, in the linear

regression given in Eq. 12.1, the intercept for y will be estimated by b0. Both the

mean and variance of x will be estimated, although they are not explicitly expressed

in Eq. 12.1. The mean of the residual errors is fixed to zero and the path from it to

the associated endogenous variable is fixed to be unity (reflected by the regression

coefficient for e in Eq. 12.1 being 1). Therefore, the only parameter to be estimated

is its variance. The mean and variance of y can then be derived from Eq. 12.1. Note

that observed and unobserved variables can be exogenous or endogenous variables.

12.2.2 The Path Diagram for Multiple Linear Regression

Multiple linear regression tests the relationship between one outcome variable and

more than one explanatory variable. Fig. 12.2 is the path diagram for a multiple

linear regression with three explanatory variables denoted:

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ e; (12.2)

where y is the outcome variable, x1 to x3 the explanatory variables, e the residual

error term, b0 the intercept, and b1 to b3 the regression coefficients for x1 to x3,
respectively.

In Fig. 12.2, the three paths from each of the three explanatory variables to y are
equivalent to the regression coefficients given by Eq. 12.2, and the interpretations

of these paths are the same as that for the regression coefficients. Note that there are

three double arrows in Fig. 12.2 that connect x1, x2 and x3, representing the

covariances amongst the three explanatory variables (their means and variances

will also be estimated). This indicates the relationship between y and each x is

determined whilst also taking into account the correlations amongst the three

explanatory variables. Note that when multiple regression analysis is undertaken

using standard software packages, the explanatory variables are always assumed to

be correlated, whether or not subsequent interpretation of the regression coefficients

recognizes this.
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12.3 Univariate Latent Growth Curve Models

12.3.1 Data

For illustration, we use data from a randomized controlled trial (RCT) on the effects

of periodontal treatments on clinical outcomes and laboratory biomarkers for

systematic inflammation (Tonetti et al. 2007). In general, the treatments of gum

(periodontal) diseases aim to control infection and inflammation by eradicating the

periodontal pathogens within the dental plaque on the tooth or root surfaces. The

periodontal pocket is the small space between a tooth and the surrounding gum

(gingivae), and its healthy depth is usually about 1–3 mm. As periodontal disease

progresses, the depth of periodontal pocket increases due to both the swollen gum

(caused by inflammation) and the loss of attachment between the tooth and the

surrounding supporting structure (such as periodontal ligament and bone). Pocket

depth is measured by a periodontal probe with markings, and it is the most

commonly used clinical variable for measuring periodontal diseases and treatment

effects. Many recent studies have shown an association between periodontal infec-

tion and an increased risk of cardiovascular diseases. The aim of the original study

was to test whether changes in clinical outcomes were associated with the changes

in inflammatory biomarkers and vascular function.

The details of the RCT have been reported elsewhere (Tonetti et al. 2007).

To summarise, 120 patients with chronic periodontal diseases were randomized

into two groups: the control group (59 patients) received conventional periodontal

treatment (CPT), i.e. professional cleaning of teeth without removal of dental

plaque and calculus in the periodontal pockets. This is the treatment what patients

would receive from their general dentist. The test group (61 patients) received

intensive periodontal treatment (IPT), i.e. specialist periodontal treatments to

remove dental plaque and calculus within periodontal pockets within a single

appointment. It is called intensive, because traditionally the specialist treatment

was usually given in several appointments over a few weeks. Previous studies have

shown that intensive periodontal treatment may induce short-term sharp rise in the

level of inflammatory biomarkers.

Fig. 12.2 The path diagram

for multiple regression
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Full mouth pocket depths have been measured three times over this 6-month

study: baseline, 2 months and 6 months. Blood tests for inflammatory biomarkers

were undertaken at baseline, 1 day, 7 days, 1 month, 2 month and 6 months. In this

section, we first look at the difference in the changes in pocket depths, and Fig. 12.3

shows the individual trajectories of pocket depths for the two groups.

12.3.2 Multilevel Model

A two-level multilevel model for the analysis of change in the pocket depths for

these patients can be written as:

PDij ¼ p0ij þ p1jMonthij; (12.3)

p0ij ¼ b0 þ b2Txj þ e0ij þ u0j; (12.4)

and

p1j ¼ b1 þ b3Txj þ u1j; (12.5)

Expanding by substituting p0ij and p1j, the new multilevel model becomes:

PDij ¼ b0 þ b1Monthij þ b2Txj þ b3Tx
�Monthij þ m1jMonthij þ m0j þ e0ij (12.6)

where PD is the average full mouth pocket depth in millimeters on the ith occasion
(level-1, i ¼ 1, 2, 3) for the jth subject (level-2, j ¼ 1,. . ., 120), Month is time in

months since baseline (i.e. 0, 2, 6), Txj is a binary variable (IPT coded 1 and CPT
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Fig. 12.3 Profile plots for pocket depths at baseline, 2 and 6 months
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code 0), and Tx*Monthij is a product interaction term between Tx and Month
(i.e. Months multiplied by Tx).

The two-level multilevel model given by Eqs. 12.3–12.5 is a linear growth

model, i.e. a straight line was fitted to the distance measured on three occasions

between baseline and 6 month for each of the 120 patients. The baseline pocket

depths and their changes varied across patients, so there were variations in the

intercepts and slopes of the fitted straight lines. These variations were modelled as

normally distributed random effects in MLM, and as we shall explain later,

modelled as latent variables in LGCM.

The intercept b0 is the average baseline pocket depth for the CPT group, and b2
(the regression coefficient for Txj) is the additional baseline pocket depth for the

IPT group, i.e. the average baseline distance for boys is b0 þ b2. The regression

coefficient forMonthij is b1, which is the estimated average change in pocket depth

per month for CPT; and b3 (the regression coefficient for the interaction term

Tx*Monthij) is the difference in the slopes between the CPT and IPT groups.

The slope, b1, is the predicted amount of changes in the pocket depth per month
for the CPT group, and the total amount of growth is therefore b1 � 6. The slope for
the IPT group is b1 þ b3, and the total amount of predicted growth in the depth is

ðb1 þ b3Þ � 6. As a result, the difference in the growth between the two groups is

b3 � 6.

12.3.3 Latent Growth Curve Model (LGCM)

The multilevel model in Sect. 12.3.2 can be specified using LGCM, and the path

diagram in Fig. 12.4 shows the general concept of LGCM. As explained previously,

observed and measured variables are represented by squares. In this model, the

observed variables are the three measurements of pocket depths made at baseline

(PD0M), 2 months (PD2M), and 6 months (PD6M). Note that software for MLM

usually requires the data in long format, for example, the variable PDij in Eqs. 12.3

and 12.6 is created by stacking the three measurements of pocket depth into

one column. In contrast, software for LGCM requires the data in wide format,

i.e. the outcome measured on different occasions is treated as three separate

variables. Another observed variable in the model is Tx, which is a binary variable

(CPT is coded 0 and IPT coded 1). The parameters m3 and v3 are the mean and

variance of Tx.
The latent variables are represented by circles: F1 and F2 are two latent

variables which model the growth trajectories (i.e. the change patterns) for the

pocket depth. The parameters m1 and m2 are the intercepts for F1 and F2; the D1
and D2 are residual error terms for F1 and F2. Recall that for endogenous variables
(i.e. F1, F2, and the three measurements of pocket depth in this model) only the

intercepts are estimated, because they are affected and ‘explained’ by exogenous

variables (i.e. Tx in this model) and their associated residual errors (D and E).
Like residual error terms in regression analysis, the means ofD1 andD2 are fixed to
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be zero, and d1 and d2 are their variances, respectively. E1 to E3 are the error terms

for each observed variable; E1 to E3 are assumed to be uncorrelated and to have a

mean of zero. By contrast, the two latent variables F1 and F2 are assumed to be

correlated (there is a double arrow between them indicating that their covariance is

estimated in Fig. 12.4).

Note that F1 and F2 are unobserved (latent) variables or factors, which means

that unlike PD, they are not directly measured but are estimated by extracting

information from the observed variables. Therefore, the meaning of F1 and F2
depends upon how this information is extracted, i.e. it depends upon how the

relationships between them and PD are defined in the model by specifying the

parameters for the arrows from F1 and F2 to PD. The regression coefficients for the
arrows from F1 to the three measurements of PD are fixed to be unity, and those for

the arrows from the residual errors (D and E) are also fixed to be unity. So a latent

growth curve model or structural equation model can be viewed as an attempt to use

multiple equations to define the relationships amongst observed and unobserved

variables in the model.

For instance, the equation for the relationship between PD0M and other

variables in Fig. 12.4 is given as:

PD0M ¼ 1�F1þ l1
�F2þ 1�E1: (12.7)

Similarly, the equation for PD2M and PD6M in Fig. 12.5 are given as:

PD2M ¼ 1�F1þ l2
�F2þ 1�E2: (12.8)

Fig. 12.4 Path diagram for

univariate latent growth curve

models. Observed variables

such as Tx and PD are in

squares and latent variables

such as F1 and F2 are in

circles. D1 and D2 are

residual errors for F1 and F2,
respectively. E1, E2, and E3
are residual errors for PD0M,

PD2M and PD6M,

respectively
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PD6M ¼ 1�F1þ l3
�F2þ 1�E3: (12.9)

F1 ¼ m1þ g1
�Txþ 1�D1: (12.10)

F2 ¼ m2þ g2
�Txþ 1�D2; (12.11)

where m1 an m2 are the intercepts in Eqs. 12.10 and 12.11 for F1 and F2,
respectively; and l1, l2, l3, l4, g1, g2 are regression coefficients. Recall the simple

linear regression given by Eq. 12.1: y ¼ b0 þ b1xþ e, where b0 and b1 are two

unknown parameter which need to be estimated. The regression coefficient for e is
actually fixed to be unity just like those for E1 to D2 in Eqs. 12.7–12.11. Therefore,
we can view LGCM (or SEM in general) as a system of multiple equations for the

relationships amongst the observed and latent variables and to identify their

relationships by solving these equations simultaneously. In Eqs. 12.7–12.11,

some of the parameters have been given (such as the factor loadings fixed to be

unity), and the unknown parameters, such as g and l, need to be estimated. In

Fig. 12.4, all the means of residual errors are fixed to be zero, just like the means of

residual errors in the ordinary regression models. It is noted that the intercepts of

observed outcome variables PD0M, PD2M and PD6M in Eqs. 12.7–12.9 are also

fixed to be zero, because the expected means of these variables will be estimated via

the latent variables F1 and F2.

12.3.3.1 Equivalence Between MLM and LGCM

To specify a LGCMmodel (given by Eqs. 12.7–12.11) equivalent to MLM given by

Eqs. 12.3–12.5, we fix the regression weights for the paths from F2 to PD0, PD2M
and PD6M, i.e. l1, l2 and l3, to be 0, 2 and 6, respectively, to match the time when
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Fig. 12.5 Profile plots for log transformed IL-6 levels in blood samples at baseline, 1, 2 and

6 months
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they are measured. The latent variables F1 and F2 are then equivalent to

the estimated baseline pocket depths and the estimated changes in pocket

depths over 6 months, respectively. Recall that Eq. 12.7 is written as: PD0M ¼
1�F1þ l1

�F2þ 1�E1. When l1 ¼ 0, PD0M ¼ 1�F1þ 1�E1, i.e. PD0M is

decomposed into a latent variable F1 and residual errors variable E1. On the other

hand, F1 can be viewed as the unobserved true PD0M by removing themeasurement

errors and random variations. Therefore, F2, which is estimated from the differences

between PD0M, PD2M and PD6M, is the estimated change from F1.
The variances of D1 and D2 (d1 and d2), i.e. the variations in the estimated

baseline pocket depths and changes in pocket depths, are equivalent to the random

effects of the intercept (u0j) and slope (u1j) in Eqs. 12.4 and 12.5, respectively.

By constraining the variances of E1, E2, and E3, i.e. e1, e2, and e3, to be equal, they
are equivalent to e0ij in Eq. 12.4. In Eqs. 12.5 and 12.6, b3 is the difference in the

change in average pocket depth per month between CPT and IPT groups over the

6-month observation, and its equivalent in LGCM is g2. The equivalents of b0, b1,
and b2 in LGCM are m1, m2 andg1.

In summary, for longitudinal data analysis, both MLM and LGCM estimate a

linear growth trajectory (i.e. a change pattern) for each patient. Variations in the

intercepts and slopes of these trajectories, regarded as random effects in MLM, are

explicitly specified in LGCM as latent variables, because unlike PD, which is

directly observed and measured, these trajectories and their variations (random

effects) are unknown and need to be estimated.

12.3.4 Analysis Using LGCM

The results from Mplus using maximum likelihood estimation are shown in

Table 12.1. Mplus (and other SEM software) provides many additional indices

for accessing model fit. Two most commonly used are the Chi-square test and Root

Mean Square Error of Approximation (RMSEA). The Chi-square value for the

model is 250.5 with 4 degrees of freedom (P < 0.001), and RMSEA is 0.717. In

SEM, the null hypothesis for the Chi-square test is that there is no difference in the

covariance structures between the proposed model and the data, and a P-value
greater than 0.05 means that we cannot reject the null hypothesis. This is different

from the usual null hypothesis testing where researchers seek to reject the null

hypothesis. In contrast, a small RMSEA means that the proposed model fits the data

relatively well (0.06 is usually used the cut-off value) (Kline 2011). Apparently,

this linear latent curve model is not acceptable and requires modification. More-

over, the estimated variance of D2 is �0.013, which is not acceptable, because the

variance is the square of the standard deviation and should always be a positive

value. The case of negative variance is known as a Heywood Case in SEM literature

(Loehlin 2004; Kline 2011), i.e. an offending estimate which indicates serious flaws

in the model specifications. This should not be surprising, as Fig. 12.3 clearly shows
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that the change in pocket depths did not appear to be linear. Traditional approach

would be to add a quadratic term for Month in order to fit a curve-linear model.

However, as there are only three measurements of pocket depths, quadratic curve

fitting is not the best approach. Although results seem to suggest that patients in IPT

group had lower average pocket depth at baseline (�0.392 mm, P < 0.001) and

greater pocket depth reduction (�0.218 mm, P < 0.001), the validity of these

results is highly questionable.

12.3.5 Non-linear Latent Growth Curve Model

The observed trajectories shown in Fig. 12.3 suggest a non-linear growth curve, and

there are many simple and advanced approaches to model non-linear curves in the

statistical literature (see Chap. 15). Because there are only three measurements of

pocket depths over the 6-month period, most advanced methods, such as fractional

polynomials and splines (see Chap. 15), are not suitable.

LGCM provides an elegant way to model the non-linear growth curve. Recall

that in the linear growth curve model, the paths from F2 to PD0M, PD2M and
PD6M (l1, l2, and l3) are fixed to be 0, 2 and 6, respectively. To capture the non-

linearity, we can fixed the first path (l1) to be 0 and the final path (l3) to be 6 but

allow l2 to be a free parameter for estimation (Bollen and Curran 2006; Duncan

et al. 2006; Tu et al. 2008). If the estimated values for l2 are close to 2, this

indicates that the growth curves are approximately linear. The results from this

approach using Mplus (Table 12.2) show that l2 is 5.45, indicating that most of the

change in pocket depths occurred during the first 2 months. The Chi-square value

for the model is 7.64 with 3 degrees of freedom (P ¼ 0.054) and RMSEA ¼ 0.114.

In contrast to the results from the previous model, patients in the IPT group did not

have a significantly lower average pocket depth at baseline (�0.009 mm,

P ¼ 0.948), but they did show greater pocket depth reduction (�0.253 mm,

P < 0.001) at 6 months.

The large difference in the Chi-square values between the linear and nonlinear

models indicates a substantial improvement in the model fit. However, the Chi-

square value and RMSEA are still not ideal. The P-value for the Chi-square test is
just greater than 0.05, whereas the statistical power of the Chi-square test to reject a

structural equation model is related to sample size. As our sample size is moderate,

we should not feel complacent about the result of the Chi-square test. Also note that

when the degree of freedom becomes zero, the model will get a perfect fit, i.e. the

Chi-square value will certainly become zero. This is known as a saturated model.

The aim of statistical model building is therefore to seek models that approximate

the relationships between variables in a parsimonious way. A good model is one

with a small Chi-square value relative to the model’s degree of freedom. In this

nonlinear model, it is assumed that changes in pocket depth within both the CPT

and IPT groups followed similar patterns, but the profile plots in Fig. 12.3 showed

that there was a steeper change in pocket depth for the IPT group between baseline
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and 2 months. This may be the cause of misfit, and to accommodate this subtle

difference in the trends, we add an additional path from Tx to PD2M in Fig. 12.4.

This additional path is to capture the additional change in pocket depth between

baseline and 2 months in the IPT group. After adding the additional path, the Chi-

square value becomes 1.63 with 2 degrees of freedom (P ¼ 0.44) and RMSEA is

zero, indicating a further improvement in model fit. This final model shows both

groups had similar average pocket depths at baseline, but the IPT group achieved

greater pocket depth reduction (�0.249 mm, P < 0.001) at 6 months.

Table 12.2 Results of univariate latent growth curve models for IL-6 following the SEM outlined

in Fig. 12.4

Linear model

Regression coefficients

Estimate SE P

F1  Tx 0.121 0.240 0.614

F2  Tx 0.001 0.044 0.982

tIL6_0  F1 1

tIL6_0  F2 0

tIL6_1  F1 1

tIL6_1  F2 1

tIL6_2  F1 1

tIL6_2  F2 2

tIL6_6  F1 1

tIL6_6  F2 6

Intercepts

Estimate SE P

F1 �0.220 0.171 0.199

F2 �0.032 0.032 0.316

Covariances

Estimate SE P

D1 $ D2 �0.046 0.031 0.141

Correlations

Estimate

D1 $ D2 �0.234
Variances

Estimate SE P

E1 0.632 0.058 <0.001

E2 0.632 0.058 <0.001

E3 0.632 0.058 <0.001

E4 0.632 0.058 <0.001

D1 0.412 0.224 <0.001

D2 0.027 0.008 0.001

Model fit indices

Chi-square df ¼ 10 11.49 0.32

RMSEA 0.035
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12.4 Multivariate LGCM

One advantage of LGCM over other approaches is that it provides a flexible

framework to test the relationships for multiple outcomes, i.e. we can test the

growth curve models of different outcomes and their associations. In this section,

we use LGCM to test the relationships between change in pocket depth and the level

of interleukin-6 (IL-6), an inflammatory biomarker.

Four measurements of IL-6 made at baseline, 1, 2 and 6 months are used for our

analysis. Like many blood tests results, the distributions of IL-6 are severely

positively skewed, so a natural log transformation of the original variables are

undertaken to make their distribution symmetrical before LGCM analysis is

conducted. The profile plots in Fig. 12.5 shows the trends in the levels of log

transformed IL-6 during the 6-month observations. We first fit a linear latent curve

model, and the results show a very good model fit (Table 12.2). IL-6 levels slightly

decreased after 6 months and there is no statistically significant difference in the

baseline IL-6 levels or change in IL-6 between the two treatment groups.

Figure 12.6 shows the conceptual path diagram of the multivariate latent curve

model for pocket depths and IL-6 after periodontal treatments. We hypothesize that

patients with greater baseline pocket depths would have higher levels of IL-6 at

baseline, and patients with greater reduction in pocket depths would also have

greater reduction in IL-6 levels. Table 12.3 shows that the Chi-square value of the

multivariate model is 21.43 with 21 degrees of freedom (P ¼ 0.43) and RMSEA is

0.013, and both tests indicate an acceptable model fit. The results from Mplus show

that patients with 1 mm greater baseline pocket depths had 0.29 unit greater log

transformed IL-6 at baseline (0.29, P ¼ 0.291), and patients with 1 mm greater

reduction in pocket depths had 0.394 unit greater reduction in IL-6 levels

(P ¼ 0.21). Patients with greater average pocket depths at baseline also showed

greater reduction in IL-6 levels (0.065, P ¼ 0.078). Nevertheless, none of these

associations are statistically significant. Patients in the IPT group showed greater

reduction in pocket depths (0.249 mm, P < 0.001) than the CPT group, but there is

no statistically significant difference in the reduction of IL-6 levels between the two

groups. Therefore, though the directions of relationships between the changes in

pocket depths and IL-6 levels follow what have been hypothesized, the effect sizes

are not sufficiently large to reject the null hypothesis. A larger study with greater

statistical power is therefore required to test the complex relationships between

these two outcomes.

12.5 Conclusion

In this article, we demonstrate how to apply LGCM to analyze longitudinal data.

These methods, if applied properly, can be very useful and powerful statistical tools

for epidemiological researchers. Any statistical method has its limitations, and

LGCM is no exception. In our examples, the intervals between the measurements
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of outcomes were approximately identical for all subjects. If, for example, PD was

measured at baseline, 2 and 6 months after interventions for some patients but at

baseline, 4 and 7 months for others, this will not pose any problem in the analyses

employing multilevel modeling, but this is currently a problem when undertaking

LGCM for some SEM software packages (though not a problem for Mplus). This

reflects the limitations of current statistical software rather than the method itself.

Therefore, researchers should choose the methods (and software) best suited for

their research questions and study design. We strongly encourage epidemiologists

to consult professional statisticians when they plan to use these methods to analyze

their longitudinal data.

Fig. 12.6 Path diagram for multivariate latent growth curve model. To simplify the presentation,

the residual errors for F1 to F4 (D1 to D4) are omitted. The variances (e1) of residual error terms

(E1) for the three pocket depths are fixed to be equal, and the variances (e2) of four residual errors
(E2) for log transformed IL-6 measured at baseline (tIL6_0M), 1 month (tIL6_1M), 2 months

(tIL6_2M) and 6 months (tIL6_6M), respectively, were also fixed to be equal
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12.6 Further Reading

For readers with knowledge of linear algebra, Bauer (2003) and Curran (2003)

explain whyMLM and LGCM yield the same results. Bollen and Curran (2006) and

Duncan et al. (2006) are two textbooks dedicated to LGCM. The former is more

mathematical. Many examples for the applications of LGCM can be found in

psychological journals. Tu et al. (2008) provides an example for applying LGCM

to biomedical data with multiple outcomes.

Table 12.3 Results of multivariate latent growth curve models following the SEM outlined in

Fig. 12.6

Regression coefficients:

Estimate S.E. P

F1 (PD)  Tx �0.007 0.135 0.959

F2 (PD)  Tx �0.248 0.018 <0.001

F3 (tIL-6)  Tx 0.123 0.237 0.604

F4 (tIL-6)  Tx 0.100 0.090 0.265

F3  F1 0.290 0.172 0.091

F4  F2 0.394 0.314 0.290

F4  F1 0.065 0.037 0.078

PD2M  Tx 4.714 0.296 <0.001

Intercepts

Estimate S.E. P

F1 4.681 0.096 <0.001

F2 �0.026 0.013 0.039

F3 �1.578 0.822 0.055

F4 �0.324 0.170 0.057

Covariances

Estimate S.E. P

D1 $ D2 �0.034 0.008 <0.001

D3 $ D4 �0.050 0.031 0.103

Correlations

Estimate

D1 $ D2 �0.555
D3 $ D4 �0.268
Variances

Estimate S.E. P

D1 0.507 0.071 <0.001

D2 0.007 0.001 <0.001

D3 1.369 0.219 <0.001

D4 0.026 0.008 <0.001

E1 0.038 0.005 <0.001

E2 0.632 0.058 <0.001

Model fit indices

Chi-square df ¼ 21 21.43 0.43

RMSEA 0.013
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Chapter 13

Growth Mixture Modelling for Life

Course Epidemiology

Darren L. Dahly

13.1 Introduction

Life course epidemiology is the study of how physical and social exposures occurring

across the entire life course, or even inter-generationally, can impact chronic disease

risk later in life (Ben-Shlomo and Kuh 2002). The life course approach to chronic

disease epidemiology is not a new one, though it was overshadowed during much of

the twentieth century by research on the importance of adulthood lifestyle risk factors

such as smoking and diet (Kuh and Ben-Shlomo 2004). Recently, however, the life

course approach to epidemiology has been given more attention by researchers,

funding agencies, and policy makers (Ben-Shlomo and Kuh 2002; De Stavola et al.

2006; Kuh and Ben-Shlomo 2004; Kuh et al. 2003; Pickles et al. 2007).

A key life course theme is the Developmental Origins of Health and Disease

(DOHaD) paradigm. In its most basic formulation, it hypothesises that environmen-

tal influences during critical periods of development can impact physiology in a

manner that increases disease risk later in life (Gillman 2005; Gluckman and Hanson

2004; Barker 2004). While early DOHaD research focused on nutritional and other

influences during foetal development (Barker 2001), there is a growing interest in

post-natal influences, particularly in the role that post-natal growth may play in the

aetiology of later obesity, diabetes, and cardiovascular disease (Ong and Loos 2006;

Baird et al. 2005; Monteiro and Victora 2005; Stein et al. 2005; Stettler 2007).

Not surprisingly, reviews of published research paint a complex picture. Some

evidence suggests rapid growth in early infancy is associated with obesity later in

life (Baird et al. 2005; Monteiro and Victora 2005; Ong and Loos 2006), while other

research suggests that poor growth in early life is associated with diabetes and heart

disease (Eriksson et al. 2001; Eriksson et al. 2003). Existing evidence largely
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consists of observed associations between the rate of weight change over a specific

period in infancy or childhood (e.g. birth to 6 months) and later disease. Building

upon this research, more sophisticated approaches such two stage least squares

(Healy 1974; Gale et al. 2006; Keijzer-Veen et al. 2005; Adair et al. 2009), multi-

level spline models (Ben-Shlomo et al. 2008), and partial least squares regression

(Tu et al. 2010) have been employed to try and identify critical periods where

growth is associated with later disease, independent of final attained size and

growth in other periods. One important limitation of these methods is that they

fail to consider that growth may be more important than the sum of its parts, i.e.

they do not consider possible interactions between varying rates of growth over

different periods of time. Recognising this, some have suggested that later disease is

associated with overall patterns of pre- and postnatal growth (Victora and Barros

2001). To investigate this possibility, we need a way to identify mutually exclusive

groups of people who share a similar growth trajectory, and then relate those groups

to later disease and other covariates. This chapter aims to illustrate the utility of

growth mixture models for just this purpose.

13.2 Mixture Models

Epidemiologists often aim to detect meaningful differences in groups of people

(e.g. by treatment group, gender, or social class). We typically group people based

on the hypothesis being tested, and then relate group membership to other

covariates through a statistical model (e.g. a linear regression of systolic blood

pressure on treatment arm in a randomized controlled trial). In some cases we might

expect the association to vary across levels of another observed variable, such as

gender, which could be tested by including the appropriate product interaction term

in the model (see Chap. 17). However, there could also be unmeasured

characteristics that modify the impact of treatment. This concept is referred to as

unobserved heterogeneity.
Mixture modelling, broadly speaking, is a clustering method that aims to detect

unobserved heterogeneity by allowingmodel parameters to vary across a multinomial

latent class variable. The complexity of the model can range from a simple mean to

very complex structural equation models. When the underlying model is a latent

growth curve (see Chap. 12), the addition of a latent class variable results in aGrowth
Mixture Model (Jung andWickrama 2008;Muthén andMuthén 2000).While must be

specified in advance (a point we will come back to shortly), and the prior probabilities

of membership in each class are estimated.

By allowing the parameters describing the latent growth curve to vary across

classes, growth mixture models can be used to identify mutually exclusive subgroups

of individuals who share a similar growth curve. Growth mixture modelling has been

illustrated in studies of alcohol use (Li et al. 2001; Muthén andMuthén 2000; Muthén

2001), criminology (Kreuter and Muthén 2008), and educational attainment (Muthén

2001). To date, this method has been largely overlooked in life course epidemiology

(a rare examples include Li et al. 2007; Østbye et al. 2011).
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To illustrate the method for an audience of applied life course researchers, we

used growth mixture modelling to group individuals based on their body mass index

(BMI) trajectories from birth to 2 years, and then related subgroup membership to

later systolic blood pressure and waist circumference, while controlling for socio-

economic status (SES). We recommend that the reader become familiar with

Chapters. 6 (which includes an overview of mixture models), 11 (structural equa-

tion models) and 12 (latent growth curve models), before continuing here.

13.3 Data

Data are from 1,620 young adult males enrolled in the Cebu Longitudinal Health

and Nutrition Survey (CLHNS), a community based study of a 1-year birth

cohort living in Metropolitan Cebu, Philippines. Detailed information on the

study design is given by Adair et al. (2010), and data are available to download at

http://www.cpc.unc.edu/projects/cebu.

Surveys were conducted during the third trimester of pregnancy; birth; bimonthly

to 24 months; and at 8.5, 11.5, 16, 19, and 21.5 years (mean ages). The estimated

trajectories are based on 13 measures of BMI from birth to 24 months, calculated as

kg/m2 from measured lengths and weights using standard techniques (Lohman et al.

1988). BMI is a measure of bodymass that is relatively independent of height/length

across the life course and is most often used as a proxy for adiposity in population

based studies. While it is correlated with percent body fat, there are limitations to it

use (Hall and Cole 2006), though these concerns go beyond the scope of this chapter.

We focused on systolic blood pressure and waist circumference as the distal

health outcomes, measured in young adulthood. The former was calculated as the

mean of three repeat measures using a mercury sphygmomanometer taken after a

10 min seated rest; the latter was measured in cm at the midpoint between the

bottom of the ribs and the top of the iliac crest. We also included SES scores,

measured at birth and young adulthood, as key covariates. These were derived from

a principal components analysis of interviewer observed household goods and

housing materials (Vyas and Kumaranayake 2006; Victora et al. 2008).

13.4 Statistical Modelling

We estimated a variety of statistical models for this analysis, all of which are

described in detail below. We started with a latent growth curve model that only

included the repeated BMI measures from the first 2 years of life. We then extended

this to a growth mixture model though the inclusion of a categorical latent class

variable. We then modeled class membership as a predictor of the two distal health

outcomes, systolic blood pressure and waist circumference, while controlling for

SES at birth and young adulthood. While we are not able to cover every detail for

each estimated model, all models were estimated using Mplus 5.2 (Muthén &

Muthén, Los Angeles, USA), and the code used is included in the appendices.
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13.4.1 Latent Growth Curve Model

First we estimated a latent growth curve model which will serve as the base of our

later mixture modelling. The model is presented graphically in Fig. 13.1. It includes

the following variables: the 13 observed measures of BMI (abbreviated by the

ellipsis . . .), the corresponding time specific latent error terms (E), and the latent

intercept and slope growth factors (I1 and S1). Freely estimated parameters include

the error variances (e1-e13), the intercept and slope variances (var1, var2) and
means (m1, m2), and the covariance of the slope and intercept (cov1). The error

means and the intercepts of themeasured BMI variables are set at zero, and the factor

loadings for I1 are set at one. The factor loadings l1 and l2 are set at zero and one,

respectively. The remaining factor loadings are freely estimated (l3-l13), resulting
in a freed-loadingmodel (Bollen and Curran 2006;Meredith and Tisak 1990).While

this complicates the interpretation of the slope factor, freeing these factor loadings

helps us avoid making any a priori assumptions regarding the functional form of the

BMI trajectory. This seems particularly advantageous given our eventual goal of

identifying unobserved heterogeneity in the BMI trajectories.

The estimated parameters, standard errors, and multiple indices of model fit are

given inTable 13.1.MeanBMI at birth,m1, was 12.40 kg/m2 (SE0.036);mean change

in BMI from birth to month 2, m2, was 3.27 kg/m2 (SE 0.045). Both growth factors

had a non-zero variance (var1 and var2), and their covariance, cov1, was negative.

Fig. 13.1 Graphical representation of a latent growth curve model (13.4.1) for body mass index

(BMI) from zero (birth) to 24 months. The model hypothesizes that the observed value of a

person’s BMI at any time point is a function of random intercept and slope factors and time

specific random error
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Using the time specific error variances (e1-e13) estimated by the model, and the

observed variances of the BMI measures, we can calculate R2 values. They show

that themodel explainsmuch of the variation in BMI from 6 to 24months (~50–75%),

but considerably less of the variation from birth to 4 months.

The freely estimated factor loadings (l3- l13) can be interpreted as the change in
BMI from birth, relative to the change in BMI from birth to 2 months (accom-

plished by setting their respective l at zero and one, respectively). In other words,

the scale of the slope factor is the change in BMI (kg/m2) from birth to 2 months.

For example, the estimate of l3 indicates that BMI increased 1.33 times more from

birth to 4 months than it did from birth to month 2. According to the model, BMI

increased rapidly from birth to 6 months, and then slowly declined to month 24.

Figure 13.2 displays the model estimated mean BMI trajectory, along with

the observed trajectories of 20 randomly selected individuals. While the

mean curve is what we would expect, given what we know about BMI in infancy

(e.g. Cole et al. 2000), there is clearly a great deal of variation around the curve. In a

latent growth curve model, deviations from the mean trajectory are explained by

individual variation in the growth factors and time specific errors. However, a

cursory inspection of Fig. 13.2 suggests that this explanation may be inadequate,

Table 13.1 Results from the latent growth curve model (13.4.1)

Estimate SE R2 Estimate SE

Means Covariance

I1 (m1) 12.401 0.036 – I1 and S1 (cov1) �0.217 0.066

S2 (m2) 3.274 0.045 –

Factor loadings

Variances l1 (BMI0) 0.000 –

I1 (var1) 0.642 0.073 – l 2 (BMI2) 1.000 –

S1 (var2) 0.930 0.077 – l 3 (BMI4) 1.326 0.019

l 4 (BMI6) 1.382 0.019

e1 (BMI0) 1.425 0.076 0.26 l 5 (BMI8) 1.311 0.017

e2 (BMI2) 2.240 0.084 0.14 l 6 (BMI10) 1.225 0.016

e3 (BMI4) 1.765 0.069 0.36 l 7 (BMI12) 1.158 0.015

e4 (BMI6) 1.205 0.050 0.53 l 8 (BMI14) 1.105 0.014

e5 (BMI8) 0.841 0.036 0.64 l 9 (BMI16) 1.072 0.014

e6 (BMI10) 0.640 0.028 0.70 l 10 (BMI18) 1.047 0.014

e7 (BMI12) 0.495 0.022 0.75 l 11 (BMI20) 1.032 0.013

e8 (BMI14) 0.439 0.019 0.76 l12 (BMI22) 1.037 0.014

e9 (BMI16) 0.414 0.018 0.74 l13 (BMI24) 1.034 0.014

e10 (BMI18) 0.362 0.017 0.76

e11 (BMI20) 0.393 0.018 0.73

e12 (BMI22) 0.529 0.023 0.63

e13 (BMI24) 0.661 0.028 0.56

MODEL FIT: w2 3,998.352, 75df, p < 0.0001 (where adequate model fit is often indicated when

p > 0.05); Comparative Fit Index 0.757; Tucker Lewis Index 0.747; Log Likelihood

�23,771.442; Akaike Information Criterion 51,599.237; Bayesian Information Criterion

51,755.552; Root Mean Square Error of Approximation 0.180 (90% CI 0.175–0.184);

Standardized Root Mean Square Residual 0.207
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particularly as there there are apparent differences between individuals in the timing

of peaks and troughs in the curve. This phase variation (Hermanussen and Meigen

2007), while potentially very important, cannot be captured by the latent growth

curve model since the estimated factor loadings (l) that describe the functional form
of the BMI curve are fixed effects (i.e. assumed to be the same for every individual in

the sample). The poor model fit, indicated by the various criteria given in Table 13.1,

further suggests that this parameterization of BMI changes in infancy is not a very

good one. Next we set out to determine whether the variation in BMI trajectories is

better explained by the idea that our overall sample contains subgroups

characterized by BMI curves with different functional forms.

13.4.2 Growth Mixture Modelling

To test this idea, we added a categorical latent variable to the latent growth curve

model we just described. Each parameter that was freely estimated in the latent

growth curve model was allowed to vary across latent classes (including any

estimated factor loadings) with the following exception: the variances of the growth

factors, var1 and var2, were constrained as zero in all classes. These constraints to

the growth mixture model result in a specific form that is referred to as latent class
growth analysis (Jung and Wickrama 2008) or semi-parametric group-based lon-
gitudinal models (Nagin 1999), and was largely popularized by the SAS procedure

TRAJ (Jones et al. 2001).

Fig. 13.2 Estimated mean BMI curve in infancy (heavy solid line) from the latent growth curve

model (13.4.1), and observed curves for 20 randomly selected individuals (dashed lines)
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The model makes the following theoretical statement: individual variation

around the mean BMI trajectory exists because our population is composed of

subgroups, each with their own distinct curve. In other words, the mean population

BMI curve we are trying to parameterize is in reality a mixture of different subgroup

BMI curves, each described by their own distinct set of parameters. Furthermore,

this model says that within latent classes there is no individual variation in the

growth factors that make up the trajectory, only time specific error variances.

Ideally, the researcher will have an a priori hypothesis about the number of latent

classes they expect to find. However, these models are more often used in an explor-

atory manner, asking the question, “How many latent classes are needed to best

describe the data.” A key challenge to mixture modelling is that the “ideal” number

of classes is not something that is estimated. Instead, the number of latent classes to

include in the model must be specified in advance. Thus, in practice, multiple models

are estimated, each specifying a different number of latent classes, and a “best” model

is chosen. While there are no concrete rules for determining the optimum number of

classes, the standard criteria are the degree to which the latent classes can bemeaning-

fully interpreted, the fit to the observed data, and the quality with which it classifies

individuals into latent classes. Each of these criteria should be evaluated across all

estimated models, but for brevity, we will focus on a 6-class model from the outset.

13.4.2.1 Substantive Interpretation

The estimated mean BMI trajectories for each class are given in Fig. 13.3.

Class 1 contains 25.5% of the sample and has a similar functional form to the latent

growth curve model estimated in Sect. 13.4.1. With the exception of classes 2 and 4,

Fig. 13.3 Latent class growth analysis (13.4.2): BMI trajectories for the 6-class solution
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the other class trajectories have a functional form similar to the class 1 trajectory.

Conversely, the class 2 curve is characterized by a low birth BMI, followed by a

slow but steady gain in BMI that doesn’t peak until the 22nd month, while Class 4,

which only contains 2.5% of the sample, is characterized by rapid early increase in

BMI that continues to 8 months (vs. 6 months in the other classes).

13.4.2.2 Model Fit

While the 6-class solution results in interesting groups with potentially important

differences between them, does it fit the data better than other solutions? Unlike

most structural equation models, Pearson w2 tests (comparing the observed covari-

ance matrix to the model estimated matrix) cannot be used to distinguish mixture

models with different numbers of specified latent classes (Garrett and Zeger 2000).

We must instead rely on likelihood based statistics, such as the log likelihood, the

Akaike Information Criterion, and the Bayesian Information Criterion (Nylund

et al. 2007). There is no definitive answer as to which fit index is best, though

there is some suggestion that BIC out-performs the other two (Nylund et al. 2007).

Table 13.2 includes information on model fit for a series of models specifying

between one and nine latent classes. Typically we are looking for the model that gives

the largest log likelihood and the smallest Akaike Information Criterion and Bayesian

Information Criterion, though failure to arrive at these extrema is common in

practice. The values can be plotted to help the researcher weigh improvements in

model fit versus parsimony (similar to the scree plots often used in factor analysis; see

Jackson 1993). For example, Fig. 13.4 indicates large improvements in the Bayesian

Information Criterion moving from one to three latent classes, and then more

moderate improvements with additional classes. Other tests of model fit possible in

Mplus include the Lo-Mendel-Rubin likelihood ratio test (Lo et al. 2001) and

parametric bootstrapped likelihood ratio test (McLachlan and Peel 2000), though

their properties under various scenarios are not as well understood, and they require

more time and computing power to estimate.

13.4.2.3 Classification Quality

For each individual, we can estimate the posterior probabilities of membership in

each latent class (using Bayes’ theorem, Dolan et al. 2005). High classification

quality occurs when individuals have a high probability of being placed in one

class, and low probabilities of being placed in other classes. Mplus output includes

the average probability of latent class membership for individuals assigned to their

most likely latent class. These averages for the 6-class LCGMare given inTable 13.3.

For example, among people assigned to class 1 (row 1), the mean probability of

being in class 1 is 81%. When these data are arranged as they are in Table 13.3, a

high classification quality is indicated by higher values along the diagonal. This

information is also summarized by the entropy value (Table 13.2), with values closer

to 1 indicating better classification quality (Celeux and Soromenho 1996) .
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13.4.3 Adding Covariates

We then added covariates, including distal health outcomes. It is important to note

that the addition of covariates can result in changes to model fit, as well as how

individuals are classified. Thus it is important to reevaluate the optimum number of

latent classes once covariates are added. However, for brevity we will simply

continue to expand on the 6-class solution.

Fig. 13.4 Bayesian Information Criteria values for the latent class growth analysis (13.4.2), com-

paring solutions with one to nine latent classes specified. The plot illustrates a a distinct improvement

improvement in model fit moving from a 1 to 3 class solution, with diminishing improvement from

additional classes

Table 13.3 Mean probability of latent class membership for individuals assigned to their most

likely latent class (highest posterior probability). For example, among individuals from whom

membership in class 1 is most likely (row 1), the mean probability of being in that class is 81%

(column 1), while their mean probability of being in class 2 is 5.3% (column 2), and so on

Assigned latent class

Latent class

1 2 3 4 5 6

1 0.807 0.053 0.057 0.002 0.022 0.058

2 0.026 0.874 0.000 0.000 0.026 0.074

3 0.063 0.020 0.911 0.000 0.002 0.003

4 0.000 0.000 0.000 0.952 0.048 0.000

5 0.010 0.026 0.004 0.012 0.904 0.044

6 0.050 0.055 0.002 0.001 0.044 0.848
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SES at birth was modeled as a determinant of SES in adulthood and the probability

of latent class membership. Both of these were modeled as determinants of waist

circumference and systolic blood pressure in young adulthood. Lastly, waist circum-

ference was modeled as an influence on systolic blood pressure. A schematic of the

final model is given in Fig. 13.5.

This relationship between SES score at birth and class membership is estimated

by a multinomial logistic regression. The results from this part of the model are best

summarized by plotting the estimated probabilities of latent class membership as a

function of SES at birth (Fig. 13.6). Individuals with higher SES at birth were more

likely to be assigned into classes 2, 4 and 5, and less likely to be in classes 1, 3, and 6.

Fig. 13.5 Estimated probabilities of latent class membership as a function of SES at birth (13.4.3).

With increasing SES, probability of membership in classes 2, 4, and 5 increases; while probability

of membership in classes 1, 3, and 6 decreases

Fig. 13.6 Schematic for the final model in the latent class growth analysis (13.4.3)
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The following relationships are estimated with linear regressions: SES score at

birth was positively associated with SES score in adulthood (b ¼ 0.68 SES/SES;

95% CI: 0.59 to 0.77), which in turn was a positive predictor of waist circumference

(b ¼ 0.70 cm/SES; 95% CI: 0.52 to 0.89) but not systolic blood pressure

(�0.05 mmHg/SES; 95% CI: �0.29 to 0.20); waist circumference was positively

associated with systolic blood pressure (0.47 mmHg/cm; 95% CI: 0.37 to 0.56).

Lastly, we can look at the estimated intercepts of waist circumference

and systolic blood pressure within each latent class, which are displayed in

Fig. 13.7. These intercepts reflect the mean values of the outcomes within each

class, independent of the linear influence of other predictor variables (SES for waist

circumference; SES and waist circumference for systolic blood pressure). There are

no apparent differences in the systolic blood pressure intercepts, although class 3,

which was characterized by very poor growth in early life, had the lowest value

(80.27 mmHg, 95% CI: 73.12 to 87.42). Classes 4 and 5 have the largest WC

intercepts (79.98 cm, 95% CI: 71.49 to 88.46; and 74.63, 95% CI: 73.38 to 75.88,

respectively). Both groups are characterized by relatively large BMI values at birth,

rapid early BMI gains, and have the largest BMI values at 24 months.

13.5 Conclusion

Perhaps contrary to expectations, we did not identify an early life BMI trajectory

that was clearly associated with systolic blood pressure in this sample of young

adult Filipino males, independent of waist circumference and SES. While we did

identify a subgroup characterized by larger waist circumferences, the small num-

bers of individuals falling in to this group prevented us from drawing any confident

conclusions. Given that this was an abridged analysis, there are a number of

important caveats needing exploration. Some of these, which we include as food

for thought, are:

• What is the impact of non-normality in BMI measures on the model (see Bauer

and Curran 2003)?

• Should raw scores be used, or are z-scores (internal or externally referenced)

more appropriate?

• Should the model focus on growth velocity, or acceleration, versus growth

distance?

• Would a model which includes both height and weight (adjusted for height) be

more appropriate?

• What is the impact when measurements are not evenly spaced? For example, if

we had many early measures and few later measures, would results be dispropor-

tionally driven by the former? Would it then make more sense to look for groups

based on two or more latent categorical variables, each capturing parts of the

total trajectory?
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Fig. 13.7 Systolic blood pressure and waist circumference and intercepts (and 95% confidence

intervals) by latent class (13.4.3)
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• Should the models include autocorrelation structures or additional latent

variables that account for additional sources of shared variation over specific

periods of time (infancy, childhood, etc.)?

• What is the impact of constraining the intercept and error variances at zero?

While freeing these parameters likely leads to improvement in model fit (which

can of course be tested), what would be the impact on theoretical interpretation

of the classes?

• How can the models be specified to account for important developmental

“signposts,” such as puberty, that occur at different ages?

• What is the best way to account for the fact that individuals are not actually

measured at the exact same ages during each survey?

Individuals wanting to learn more about mixture modelling and growth mixture

modelling should start with the citations from this chapter, many of which were

included because they provide excellent overviews of these topics. Of particular

interest are Jones et al. (2001); Li et al. (2001); McLachlan and Peel (2000); Muthén

(2001); Muthén and Muthén (2000); Nagin (1999); and Pickles and Croudace

(2010).

Appendix 1

13.4.1: Latent Growth Curve Model for Mplus

! Factor loadings defining the growth curve

i1 s1 | bmi0@0 bmi2@1 bmi4* bmi6* bmi8* bmi10* bmi12* bmi14* bmi16*

bmi18* bmi20* bmi22* bmi24*;

! Freely estimated factor variances, means, and covariance

i1*;

s1*;

[i1*];

[s1*];

i1 WITH s1*;

! Freely estimated error variances

bmi0*;

bmi2*;

bmi4*;

bmi6*;

bmi8*;

bmi10*;

bmi12*;
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bmi14*;

bmi16*;

bmi18*;

bmi20*;

bmi22*;

bmi24*;

Appendix 2

13.4.2: 2-Class Latent Class Growth Analysis for Mplus

Variable:

Classes ¼ c (2); ! Increase this for more classes

Analysis:

Type ¼ Mixture ;

STARTS ¼ 100 20;

STITERATIONS ¼ 20;

Model:

%OVERALL%

! Factor loadings defining the growth curve

i1 s1 | bmi0@0 bmi2@1 bmi4* bmi6* bmi8* bmi10* bmi12* bmi14* bmi16*

bmi18* bmi20* bmi22* bmi24*;

! Freely estimated factor means; variances constrained as zero

i1@0;

s1@0;

[i1*];

[s1*];

! Freely estimated error variances

bmi0*;

bmi2*;

bmi4*;

bmi6*;

bmi8*;

bmi10*;

bmi12*;

bmi14*;

bmi16*;

bmi18*;

bmi20*;
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bmi22*;

bmi24*;

%c#1%

[Repeat code from OVERALL model]

%c#2%

[Repeat code from OVERALL model]

! Add more class models as needed

Appendix 3

13.4.3: 6-Class Latent Class Growth Analysis with Covariates
for Mplus

Variable:

Classes ¼ c (2);

Analysis:

Type ¼ Mixture ;

STARTS ¼ 100 20;

STITERATIONS ¼ 20;

Model:

! Factor loadings defining the growth curve

i1 s1 | bmi0@0 bmi2@1 bmi4* bmi6* bmi8* bmi10* bmi12* bmi14* bmi16*

bmi18* bmi20* bmi22* bmi24*;

! Freely estimated factor means; variances constrained as zero

i1@0;

s1@0;

[i1*];

[s1*];

! Freely estimated error variances

bmi0*;

bmi2*;

bmi4*;

bmi6*;

bmi8*;

bmi10*;

bmi12*;

bmi14*;
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bmi16*;

bmi18*;

bmi20*;

bmi22*;

bmi24*;

! Covariates

! Multinomial logit of C on SES

c ON ses0;

! Linear regression of SES in young adulthood on SES at birth

ses258 ON ses0;

! Linear regression of systolic blood pressure on SES and waist circumference

sys258 ON waist258 ses258;

! Linear regression of waist circumference on SES

waist258 ON ses258;
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Chapter 14

G-estimation for Accelerated

Failure Time Models

Kate Tilling, Jonathan A.C. Sterne, and Vanessa Didelez

14.1 Time-Varying Confounding

There is an increasing interest in life-course epidemiology (Ben-Shlomo 2007;

Ben-Shlomo and Kuh 2002), with the quantification of the effects of exposures

over long periods of time. For example, several papers recently have examined

the effects of socioeconomic position at different stages of life, and changes in

that exposure between these stages, on outcomes including risk of stroke and

respiratory function, and health behaviours including midlife drinking and smok-

ing patterns (Amuzu et al. 2009; Glymour et al. 2008; Tehranifar et al. 2009;

Tennant et al. 2008).

In longitudinal studies, the effects of risk factors on outcome may be estimated

in different ways, with different interpretations. The usual approach is to examine

the relationship between baseline exposure and rates of disease or death.

For reasonably constant exposures, this estimates the cumulative effects of expo-

sure. For example, in a longitudinal study the association between baseline diabetes

and subsequent mortality represents the association of lifetime diabetes with mor-

tality. Alternatively we may estimate time-varying effects of exposure. For exam-

ple, subjects may take up smoking or quit smoking at various stages during the

longitudinal study (usually we assume that the exposure level remains constant

from one measurement occasion to the next). Here, the time-varying association

between smoking and mortality represents the relationship between smoking at a

given visit and mortality after that visit. If follow-up is fairly short this represents

the instantaneous association between smoking and mortality and can be

investigated using standard regression methods (e.g. survival models, structural
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equation models, etc.). However, increased interest in exposures, confounders and

outcomes which vary over time highlights a potential problem, referred to as time-
varying confounding.

A covariate is a time-varying confounder (Mark and Robins 1993; Robins 1986;

Young et al. 2010) for the effect of exposure on outcome if it is

1. a time-dependent confounder, i.e. past covariate values predict current exposure

and current covariate value independently predicts outcome and also

2. past exposure predicts current covariate value.

As an example, suppose smokers (exposed ) with high blood pressure are advised
to quit smoking, so are less likely to smoke in future (condition 1 above). Suppose

also that smoking raises blood pressure (condition 2), and that high blood pressure

is a risk factor for death by another pathway other than through smoking (condition

1). In this situation, high blood pressure is a time-varying confounder for the effect

of smoking on mortality. Figure 14.1a shows a directed acyclic graph (DAG, see

Chaps. 1 and 11) for this example of time-varying confounding. The possible

interplay between past and future exposure and confounders makes this very

different from the usual definition of a confounder (Chap. 10) where a confounder

is always assumed to precede exposure (with DAG for non time-varying

confounding shown in Fig. 14.1b). The added complications due to time-varying

confounding are twofold. Firstly, if a future covariate is affected by past exposure

and independently predicts outcome, then it has the role of a mediator for the effect

of past exposure and we do not want to adjust for mediators when estimating the total

effect, but at the same time we have to adjust for it because it may confound future

exposure and outcome. Secondly, if a covariate is affected by past exposure and

other unobserved variables that also predict outcome (e.g. blood pressure may be

affected by diet which also predicts survival), then adjusting for this covariate may

Quitting 
smoking

Death

SBP

SBP

TIME

Quitting
smoking

Death

SBP

SBP

TIME

a b

Fig. 14.1 (a) Time-varying confounding by SBP of the effect of quitting smoking on mortality.

(b) Non time-varying confounding by SBP of the effect of quitting smoking on mortality
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introduce selection bias (Hernan et al. 2004), but again, we have to adjust for it if it

confounds future exposure and outcome. Hence the question is how to adjust for

time-varying confounding without interrupting mediated effects nor introducing

selection bias. Standard statistical methods for the analysis of cohort studies (for

example Cox or Poisson regression) often get this wrong and yield biased estimates

(Robins et al. 1992a), while G-estimation provides a valid method.

We illustrate the problemwith an example.When analysing the effect of smoking

on mortality we could employ several possible strategies, including: examining the

effect of baseline smoking; examining the effect of time-updated smoking;

controlling for baseline covariates; and controlling for time-updated covariates.

The unadjusted estimate of the effect of baseline smoking will be biased

(favouring smoking, in this case), because those who are both smokers and have

high blood pressure (and therefore have the highest mortality risk) will tend to quit

subsequently, and thus will reduce their mortality risk. Controlling for baseline

covariates such as blood pressure which are measured at the start of the study will

still give biased estimates of the effect of smoking, because it ignores the fact that

individuals who quit after the start of the study will tend to be those whose blood

pressure increased over time.

Controlling for time-updated measurements of covariates such as blood pressure

will still give biased estimates of the effect of smoking, because smoking

acts on mortality at least partly by raising blood pressure. Controlling for a variable

(e.g. blood pressure) which is intermediate on the pathway between the exposure

(e.g. smoking) and the outcome (e.g. mortality) will estimate only the direct effect

of the exposure (ignoring the effect mediated through the covariate) and may

additionally introduce selection bias (Hernan et al. 2004).

Example 1 To illustrate the bias of the usual survival analysis in the situation

described above, we simulated data for 2,000 people with four assessment

occasions (visits) 3 years apart. Each person had a randomly-generated (log-

normally distributed) survival time representing how long they would survive if

never exposed, which was then decreased by high blood pressure or smoking.

Survival time for a smoker was 0.67 of survival time for a non-smoker with the

same covariate history, and survival time decreased by 4% per 1 mmHg increase in

current blood pressure. Blood pressure increased by 2 mmHg for current smokers,

and by 1 mmHg for ex-smokers (i.e. if an individual smoked at the previous visit

but not the current visit, blood pressure was 1 mmHg higher than if they had been a

non-smoker at both visits). The odds of smoking were decreased by 0.3 if the

participant had high blood pressure at the previous visit. All 2,000 participants were

“followed up” until either they died (n ¼ 1,672) or until 3 years after the fourth

visit. We took visit 1 to be a baseline visit, and measured time to event/censoring

from visit 2. Table 14.1 shows the simulated number at each visit, together with

number smoking at that visit and average blood pressure at that visit.

The data were analysed using a Weibull model with the accelerated failure

time parameterisation, because this is the parameterisation which corresponds to

g-estimation (i.e., calculating the survival ratio rather than the hazard ratio).
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The accelerated failure time model assumes for the individual failure times Ti with
covariates xi that:

Ti ¼ expðyTxi þ eiÞ
where ei has a standard extreme value distribution with scale parameter 1/g, where g
is the shape parameter.

Survival models including current smoking, current smoking and blood pressure,

current smoking plus baseline smoking and blood pressure, and smoking and blood

pressure at current and previous visits, were all fitted. The model including current

smoking only estimated the survival time ratio for smokers compared to non-

smokers as 1.14 (95% CI 1.06–1.23), concluding that smoking had little (possibly

even a positive) effect on survival. The model including current smoking

and current blood pressure estimated the ratio as 0.87 (95% CI 0.84–0.89),

that including current smoking and baseline smoking and blood pressure as 0.93

(95% CI 0.90–0.96) and that including all time-updated variables as 0.93 (95% CI

0.91–0.94). Thus all these standard analyses under-estimated the true adverse effect

of smoking on mortality (a mortality ratio of 0.67).

14.2 Investigating Time-Varying Confounding

Relationships between time-varying exposures and covariates can be examined

using a logistic regression of exposure on concurrent values of the other covariates,

values of all exposures and covariates at the previous visit and at baseline (visit 1),

and non time-varying covariates. All data from all n visits should be used, so each

individual can contribute multiple observations to the model for an exposure.

This model will examine condition (1) above. The other part of Condition 1

(whether the covariate affects outcome) can be examined using a model relating

outcome to exposure and covariates (e.g. a survival model in the above example,

where mortality is the outcome). Condition (2), whether past exposure predicts

current covariate values, can be examined using similar logistic regression models

of each time-varying covariate on concurrent values of the other covariates and

exposure, values of all exposures and covariates at the previous visit and at baseline

(visit 1), and non time-varying covariates.

Table 14.1 Simulated data

for Example 1 Visit N N smokers (%)

Mean blood

pressure (sd)

1 2,000 140 (7) 142 (4.70)

2 2,000 139 (7) 143 (4.87)

3 1,880 108 (6) 143 (3.80)

4 1,153 67 (6) 141 (4.27)
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14.2.1 G-estimation

G-estimation of causal effects was proposed by Robins (see e.g. Robins et al.

1992a; Witteman et al. 1998) as one method to allow for confounders which are

also on the causal pathway, i.e. time varying confounding. G-estimation has been

used in various applications, to estimate the causal association between: quitting

smoking and time to death or first CHD (Mark and Robins 1993); isolated systolic

hypertension and cardiovascular mortality (Witteman et al. 1998); therapy and

survival for HIV-positive men (Joffe et al. 1997, 1998); graft versus host disease

and relapse after bone marrow transplants in leukaemia (Keiding et al. 1999);

various cardiovascular risk factors and mortality (Tilling et al. 2002); to estimate

the total causal effect of highly active antiretroviral therapy (HAART) on the time

to AIDS or death among those infected with immunodeficiency virus (HIV)

(Hernan et al. 2005); and to correct for non-compliance in clinical trials (Korhonen

et al. 1999). G-estimation has also been implemented as a Stata programme (Sterne

and Tilling 2002).

14.2.2 Counterfactual Failure Time

The unbiased estimation of causal effects usually requires the assumption of no
unmeasured confounding (Lok et al. 2004; Robins 1992). Roughly speaking this

means that we have measured and included in the model all variables that determine

whether a subject is exposed at each measurement occasion and which are also

(directly or indirectly) associated with the outcome. G-estimation exploits the

assumption of no unmeasured confounding in the following way.

For each subject i, Ui is defined as the time to failure if the subject was not

exposed throughout follow-up. This time (the counterfactual failure time (Mark and

Robins 1993; Robins et al. 1992a; Witteman et al. 1998)) is unobservable for

subjects with any exposure. The assumption of no unmeasured confounding

(which cannot be tested using the observable data) implies that the exposure for

an individual i at a given time will be independent of their counterfactual failure

time, Ui, conditional on covariate and exposure history so far. G-estimation pro-

ceeds by reconstructing Ui from the observed data and then determining the value

of the causal parameter as the one for which this conditional independence is true.

An example of this assumption is that, conditional on past weight, smoking status,

blood pressure and cholesterol measurements, the decision of an individual to quit

or start smoking is independent of what his/her survival time would have been had

he/she never smoked. A violation of this assumption would typically occur if

the decision depends on unobserved factors, e.g. alcohol consumption, that are

informative for the counterfactual survival time Ui. Exposure does not have to be

independent of subjects’ current life expectancy (smokers may choose to quit

precisely because they recognise that smoking reduces their life expectancy).

14 G-estimation for Accelerated Failure Time Models 247



In its simplest version, G-estimation proceeds by assuming that exposure

accelerates failure time by expð�CÞ, i.e. Ui expð�CÞ ¼ Ta
i where Ta

i is the

survival time for subject i if they are exposed throughout. The actually observed

failure time Ti will typically be in between Ui and Ta
i for subjects who have been

exposed for some but not all the time. For a given C, the counterfactual survival

time Ui;C can be calculated backwards from the observed data for subjects who

experience an event at time Ti by:

Ui;C ¼
Z Ti

expðC� ei;t) dt (14.1)

where ei;t is 1 if subject i is actually exposed at time t and 0 if subject i is unexposed.
Note that the above model that links the counterfactual survival time Ui;C with the

observed survival time Ti can be generalised by choosing a more flexible function

inside the integral.

For the case where we follow individuals for n follow-up visits (where the first is
the baseline visit), we could calculate the counterfactual survival time for subjects

who experience an event by:

Ui;C ¼
Xn
v¼1

ðtvÞ � expðC� ei;vÞ
� �

where tv is the time from visit v to either the event or the next visit.

Example 2 The simulated data on smoking and blood pressure used in example 1

were analysed using g-estimation. We had four visits, of which the first was the

baseline. Thus, for a given value of C, the estimated counterfactual survival time

for an individual is given by Ui;C where

Ui;C ¼
X4
v¼1

ðtvÞ � expðC� ei;vÞ
� �

where tv is the time from visit v to either the event or the next visit and

ei;v ¼ whether individual i smoked at visit v. Data from three simulated individuals

are shown in Table 14.2:

The first individual in this simulated dataset (individual A) was a smoker at visits

1 and 2, and survived for a total of 4.88 years (i.e. 1.88 years from visit 2).

Table 14.2 Simulated data for three individuals in Example 2

Smoking status Observed survival

time (years)Individual Visit 1 Visit 2 Visit 3 Visit 4

A 1 1 4.88

B 1 1 1 0 11

C 1 1 0 0 14
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Suppose we assume that smoking halves life expectancy, i.e. expð�CÞ¼0.5, so

C¼0.69. Then the counterfactual survival time for this individual at visit 1 (i.e. the

length of time they would have survived from visit 1 had they not been a smoker at

visit 1 and visit 2) is: ð3� expðC� 1ÞÞ þ ð1:88� expðC� 1ÞÞ ¼ 9:76 years:
The second individual in this simulated dataset (individual B) was a smoker at

visits 1, 2 and 3, then gave up and survived for a further 2 years. Again assuming that

smoking halves life expectancy then the counterfactual survival time for this indi-

vidual at visit 1 (i.e. the length of time theywould have survived from visit 1 had they

not been a smoker at visits 1, 2 and 3) is: ð3� expðC� 1ÞÞ þ ð3� expðC� 1ÞÞ þ
ð3� expðC� 1ÞÞ þ ð2� expðC� 0ÞÞ ¼ 20 years:

Thus, for all individuals who are followed up until death, the counterfactual

survival time can be calculated in a similar way.

14.2.3 Definition of G-estimation

G-estimation uses the assumption of no unmeasured confounders to estimate the effect

of exposure on survival by examining a range of values forC, and choosing the value

C0 forwhich current exposure is independent of counterfactual survival timeUi (Mark

andRobins 1993; Robins 1992; Robins et al. 1992a;Witteman et al. 1998). This can be

done by fitting a series of logistic regression models relating current exposure ei;v to
Ui;C, controlling for all confounders (this still assumes that there was no censoring):

logit (ei;vÞ ¼ mUi;C þ
X
k¼0

akxik þ
X
j

bjcij;v þ
X
j¼1

djcij;v�1 þ
X
j¼1

ljcij;1 v ¼ 2;:::; n

for different values of C, where cij;v are the time-varying confounders and xik the
time-invariant confounders. Alternatively, one logistic model could be fitted

including data from all visits, with allowance made for clustering within

individuals (e.g. by using a GEE). The time-varying confounders may include

the values of exposure at previous time-points and at baseline. In fact, the above

model for exposure can be generalised and should be chosen according to what is

judged appropriate based on subject matter knowledge about the exposure pro-

cess. For example when exposure is treatment, we may have specific information

on the rules according to which treatment was administered. Subjects contribute

an observation for each occasion at which their exposure was assessed.

The g-estimate C0 is the value of C for which the Wald statistic of m in this

logistic regression is zero (P value 1, i.e. no association between current expo-

sure and Uij;C0
). The upper and lower limits of the 95% confidence interval forC0

are the values of C for which the two-sided P-value for the Wald statistic of m in

this logistic regression is 0.05.
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This g-estimate C0 is minus the log of the “causal survival time ratio”.

Thus expð�C0Þ estimates the ratio of the survival time of a continuously exposed

person to that of an otherwise identical person who was never exposed.

If expð�C0Þ>1 then exposure is beneficial (i.e. exposure increases time to the

outcome event).

14.3 Censoring – Type I – End of Study

The counterfactual survival time Ui;C can only be derived from the observed data

for a subject who experiences the event. If the study has a planned end of follow-up

(at time Ci for individual i) that occurs before all subjects have experienced the

outcome event, not all subjects’ counterfactual failure times will be estimable. If Ci

is independent of the counterfactual survival time, then this problem can be

overcome by replacing Ui;C with an indicator variable (Di;C) for whether the

event would have been observed both if the person had been exposed throughout

follow-up and if they had been unexposed throughout follow-up, as described by

Witteman et al. (1998).

Di;C ¼ indðUi;C<Ci;CÞ

where Ci;C ¼ Ci if C�0 and Ci;C ¼ Ci � expðCÞ if C<0. Thus Di;C is zero for all

subjects who do not experience an event during follow-up, and may also be zero for

some of those who did experience an event.

Example 3 Continuing with the data from example 1, this study had a planned end

of follow-up 12 years after visit 1. Suppose we assume that smoking halves life

expectancy, i.e. expð�CÞ¼0.5, soC¼0.69. Then for each individual, the indicator

variable Di;0:69 is equal to 1 if the counterfactual failure time (givenC¼0.69) is less

than 12 years and 0 otherwise. The first individual in this simulated dataset

(A, above) was a smoker at visits 1 and 2, and survived for 4.88 years from visit 1.

The counterfactual survival time for this individual (see example 2) is 9.76 years,

and thus the indicator variable Di;0:69 takes the value 1 for this individual. The

counterfactual failure time for individual B, who smoked at visits 1, 2 and 3 then

gave up and survived for another 5 years, was 20 years. Thus the indicator variable

Di;0:69 takes the value 0 for this individual. Another individual (C) smoked at visits 1

and 2, then gave up and survived until the end of follow-up (dying 14 years after

visit 1). As this individual did not experience an event during follow-up, their value

for the indicator variable Di;0:69 is 0. The value of the indicator variable Di;C can be

calculated for all individuals, whether or not they experienced an event during

follow-up.

Once the value of the indicator variable has been calculated for each individual,

for a given value of C, then the g-estimation can proceed by performing a logistic

regression of the exposure of each individual at each timepoint on their
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counterfactual failure time. The data for individuals A, B and C are shown in

Table 14.3, assuming that smoking halves life expectancy):

Each individual i then contributes ni observations to a logistic regression

model with exposure as the outcome, where ni is the number of visits at which

that individual has observations. Thus in the example above, individuals A, B and C

contribute 1, 3 and 3 observations respectively. In each case, the logistic regression

relates their exposure to all their baseline covariates, and previous covariates and

exposures, and to the indicator variable for their counterfactual failure time (Di;C).

We used g-estimation to estimate the effect of smoking on mortality using the

entire simulated dataset. The g-estimate of C was 0.41 (95% CI 0.37–0.44), and

the g-estimated survival ratio was 0.66 (95% CI 0.64–0.69) compared to the

true value of 0.67. This is closer to the true value than all the other (biased)

models (see Example 1), and also has a slightly narrower confidence interval.

In this one hypothetical example, g-estimation performs better than the usual

survival analysis.

14.4 Censoring – Type II – Competing Risks

Censoring by competing risks can occur when subjects leave the study early or, in

the case of cause-specific mortality models, die from other causes. For example, in

models where systolic or diastolic blood pressure are the exposures, individuals

might be censored when they first reported use of anti-hypertensive medication

(Tilling et al. 2002). Subjects could also withdraw from the study because they felt

too ill to participate in further follow-ups. In each of these cases, censoring is not

independent of the underlying counterfactual survival time. Thus the above method

for dealing with censoring by the planned end of a study cannot be used to deal with

censoring by competing risks.

As outlined byWitteman et al. (1998), censoring by competing risks is dealt with

by modelling the censoring mechanism, and using each individual’s estimated

probability of being censored to adjust the analysis. This is a similar idea to using

weighting for non-response to adjust for missing data (Little and Rubin 2002).

Multinomial (if there are several censoring mechanisms) or logistic regression

(if there is only one censoring mechanism), based on all available data, is used to

relate the probability of being censored at each measurement occasion to the

exposure and covariate history. The probability of being uncensored to the end of

Table 14.3 Simulated data for three individuals in Example 3

Smoking status Observed survival

time (years)Individual Visit 1 Visit 2 Visit 3 Visit 4 Di;0:69

A 1 1 4.88 1

B 1 1 1 0 11 0

C 1 1 0 0 14 0
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the study for each individual is then estimated. The inverse of this probability is used

to weight the contributions of individuals to the logistic regression models used

in the g-estimation process, to which now only uncensored individuals contribute.

This can be done by using probability weights, or by replacing Di;C by
Di;C

p(not censored)
. This approach means that observations within the same individual

are no longer independent, so the logistic regression models for the g-estimation

process use robust standard errors allowing for clustering within individuals (using

the Huber-White sandwich estimator (Stata Corporation 2007)). This is equivalent

to the procedure suggested by Witteman et al., to use a robust Wald test from a

generalized estimating equation with an independence working correlation matrix

(Witteman et al. 1998). The confidence intervals obtained using this procedure are

conservative.

For example, suppose we are examining the effect of systolic and diastolic blood

pressure (as exposures) on mortality, and that individuals were censored when

they first reported use of anti-hypertensive medication. The probability of being

censored at each visit will depend on blood pressure at previous visits, and is likely

to be related to other factors also (e.g. smokers may be more likely to have other

health problems and therefore to visit the GP). The censoring process is modelled,

using logistic regression, with whether the individual was censored (i.e. prescribed

anti-hypertensive medication) at each occasion as the outcome. This logistic

regression model is then used to derive, for each individual, the probability that

they remained uncensored to the end of the study. The inverse of this probability is

used to weight all of that individual’s contributions to the g-estimation model (using

probability weights as before). For example, suppose a person with high initial

blood pressure has a chance of 0.25 of being uncensored at the end of the study.

In g-estimation the contribution of such a person to the model is multiplied by 4,

representing the ‘total’ of 4 people with high blood pressure, 3 of whom were

censored before the end of the study.

14.5 Converting to Survival Analysis

The parameter estimated by the g-estimation procedure, the causal survival time ratio,

describes the association between exposure and survival using the accelerated failure

time parameterisation. In epidemiology, the more usual parameterisation for survival

analysis is that of proportional hazards. It would thus be useful to be able to express the

causal survival time ratio in the proportional hazards parameterisation. One obvious

way to do this is via the Weibull distribution, as this can be expressed in either

parameterisation.

The Weibull hazard function at time t is hðtÞ ¼ fgtg�1, where f is referred to as

the scale parameter and g as the shape parameter. If the vector of covariates xi does
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not affect g, the Weibull regression model can be written as either the usual

epidemiological proportional hazards:

hðt; xiÞ ¼ h0ðtÞ exp ðbTxiÞ
or accelerated failure time, using the expected failure time:

Ti ¼ expðyTxi þ eiÞ
where ei has a standard extreme value distribution with scale parameter 1/g.
The Weibull shape parameter g can thus be used to express results from the

accelerated failure time parameterisation as proportional hazards: y ¼ �b/g.
If the underlying survival times follow a Weibull distribution, the Weibull shape

parameter can be estimated from the survival data and used to express the

g-estimated survival ratio as a hazard ratio for the exposure (Witteman et al. 1998).

The 95% confidence intervals for g-estimated effects are generally wider than

those for corresponding Weibull estimates, particularly with rare outcomes and for

estimates close to 1. This is because G-estimation discards information when

censoring, by dichotomising the outcome variable.

Example 4 G-estimation has been used to examine the effects of changes in

cardiovascular risk factors in mid-life on all-cause mortality and incidence of

coronary heart disease (CHD) (Tilling et al. 2002). Cardiovascular risk factors

(systolic and diastolic blood pressure, smoking, diabetes, HDL and LDL choles-

terol) were measured four times, with the first measure being used as the baseline in

the g-estimation model.

To identify the extent of time-varying confounding, the relationships between

each exposure and past and current values of all covariates were examined.

This was done using one regression model for each exposure, to which each

individual could contribute up to three observations. These models showed that

there was substantial time-varying confounding, with inter-relationships among

most of the time-varying exposures. Weibull survival analysis (with the accelerated

failure time parameterisation) was used to relate all the covariates to survival, and

the shape parameter from this model (1.26, 95% CI 1.17–1.36) was later used to

express the g-estimated survival ratios as hazard ratios for each exposure.

Separate g-estimation models were fitted for each exposure. In each g-estimation

model all risk factors (other than the exposure of interest) were included as

time-varying covariates. Baseline variables (e.g. age and sex) were included as

non time-varying covariates. In the models for systolic and diastolic blood pressure,

individuals were censored when they first reported use of anti-hypertensive medica-

tion. The probability of being on anti-hypertensive medication at each visit was

dependent on blood pressure at baseline and previous visits, and was also related to

baseline and time-varying values of BMI, smoking and diabetes, and to age and sex.

This censoring process was modelled, using logistic regression, and the probability

of each individual being censoredwas taken into account in the g-estimationmethod.

Table 14.4 (modified from (Tilling et al. 2002) with permission of Oxford

University Press and the Society for Epidemiologic Research) shows the baseline,
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time-varying and g-estimated hazard ratios for mortality for selected cardiovascular

risk factors. The comparisons of the results for the usual survival analysis (relating

exposure at baseline to mortality) and g-estimation shed some light on the likely

mechanisms for each exposure. Diabetes at baseline was associated with a hazard

ratio of 2.04 (Tilling et al. 2002). The g-estimated hazard rate ratio for time-varying

diabetes (1.62) was weaker than that for baseline diabetes, indicating that the

cumulative effect of diabetes is stronger than the instantaneous effect. The time-

varying effect of diabetes was underestimated by the standard analysis (hazard

ratio ¼ 1.26). The g-estimated hazard ratio for systolic blood pressure was again

weaker than the baseline effect, showing that the effect of blood pressure on

mortality was long-term rather than instantaneous. G-estimation and Weibull anal-

ysis showed a higher risk of death for those with low BMI and no evidence of

increased mortality among subjects with high BMI. The validity of G-estimation

depends on there being no unmeasured confounders. Confounders not included

here, such as comorbid conditions, may influence the relation between BMI and

mortality. Alternatively, BMI may have a cumulative effect, and so short-term

changes in weight (assessed by these time-varying models) have a different relation

to mortality than long-term weight.

For blood pressure and diabetes, the time-varying effects of exposure were

underestimated by the usual survival analysis, whereas the adverse effect of low

BMI appeared to be over-estimated by the usual survival analysis. Thus the time-

varying confounding present in this example led to biases in the estimation of the

effects of time-varying exposures. The confidence intervals for the g-estimated hazard

ratios were wider than those for the Weibull estimates, because g-estimation discards

information when dichotomising the outcome variable to deal with censoring.

14.6 Extensions to G-estimation

G-estimation (as described above) assumes a binary exposure. The effect of trichot-

omous exposures on outcome has been estimated using g-estimation and an itera-

tive procedure (Tilling et al. 2002). For each exposure, the middle category was

chosen as the reference. One of the other two categories was selected, and the effect

of the dichotomous exposure defined by that category and the middle category

estimated using g-estimation. This estimate was then included as a fixed value in

the g-estimation of the effect of the dichotomous exposure defined by the third

category and the middle category. This procedure was iterated to convergence.

The standard errors for the effects of variables with three categories estimated in

this way may be under-estimated, because each iteration assumes that the effect of

the other category on survival is known (rather than estimated). Ideally, both

parameters should be estimated simultaneously and a 95% confidence region for

their joint distribution calculated. However, this has not yet been carried out in

practice. Similarly, there has to date been no extension of g-estimation to continu-

ous exposures.
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The parameterisation used in the g-estimation procedure described above

assumes that the effect of exposure is both immediate and unlimited. Thuswe assume

that quitting smoking affects survival from the moment of quitting, and that this

effect remains throughout the rest of the non-smoking lifecourse. Alternativemodels

are possible (Lok et al. 2004), for example by generalisations of the integral in

Eq. 14.1. They include examining a lagged effect of exposure, or allowing exposure

to be related to outcome immediately after exposure, with a lesser effect after a period

of time (Joffe et al. 1998). For example, one could hypothesise that the effect of

quitting smoking on lung cancer mortality might be lagged, so might not start until

5 years after quitting smoking. The effects of a treatment could also be limited in time

– the effect of a particular treatment on outcomemay be different in the short and long

term (say, before and after 30 months) for example (Joffe et al. 1998). The way in

which the counter-factual survival time depends on the exposure can be easily

amended to take these alternative hypotheses into account (Joffe et al. 1998).

The use of g-estimation is not restricted to survival outcomes – for example,

g-estimation has been used to examine the effects of treatment regimes on non-

survival outcomes in randomised clinical trials, allowing for non-compliance (Toh

and Hernan 2008). The principle of g-estimation, exploiting the conditional indepen-

dence between a baseline counterfactual and exposure, has also been used for

estimating direct/indirect effects (Goetgeluk et al. 2008), genomic control

(Vansteelandt et al. 2009), and for finding optimal treatment strategies (Robins 2004).

14.7 Unmeasured Confounding

G-estimation depends crucially on the assumption of no unmeasured confounding.

In particular, it relies on having all variables determining exposure both observed

and included in the model. However, in many cohort studies, the factors related to

exposure are not measured. For example, when looking at smoking as an exposure

there may be many factors related to an individual’s decision to quit and success in

quitting smoking, which may also be related to the outcome. If these are not all

recorded, then there may still be bias in the G-estimation of the effect of smoking.

Thus, in order for G-estimation to be used successfully, the factors determining

treatment decisions need to be well standardised and well measured. The assump-

tion of no unmeasured confounding is, of course, necessary for the validity of all

observational epidemiological analyses.

14.8 Alternatives to G-estimation

Marginal structural models (MSMs) are one type of alternative to g-estimation for

analysing longitudinal data (Hernan et al. 2000, 2002; Young et al. 2010). In these

models each observation is weighted by the probability of exposure based on past

covariate and exposure history, and a model is then fitted to the weighted data and
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coefficients interpreted as in a standard analysis. For example, weighted Cox

proportional hazards models were used to estimate the joint effect of zidovudine

(AZT) and prophylaxis therapy for Pneumocystis carinii pneumonia on the survival

of HIV-positive men, controlling for time-dependent confounding (Hernan et al.

2001), and the effect of zidovudine therapy on mean CD4 count among HIV-

infected men (Hernan et al. 2002; Sterne et al. 2005). The weights were based on

the inverse of each patient’s probability of the treatment history they actually had,

given their covariate history. These inverse probability weights were stabilised and

modified to adjust for censoring (Hernan et al. 2001). MSMs were designed to

estimate marginal causal parameters and are difficult to adapt to situations where

exposure or treatment interacts with covariates. G-estimation in contrast can rela-

tively simply be adapted to include such interactions by modifying the function in

the integral and hence the way Ui is calculated back from Ti.
A second alternative to G-estimation is G-computation; also referred to as

(parametric) G-formula (Robins et al. 1999; Taubman et al. 2009). The G-formula

computes the causal effect of a given exposure or treatment sequence by assuming

regression models for all covariates that we wish to adjust for at all measurement

time points given the past as well as an outcome regression model, and then

integrating out the covariates. In practice this integral needs to be approximated

by Monte Carlo simulation. The G-formula is somewhat cumbersome to imple-

ment, but has been successfully implemented (Robins et al. 1999; Taubman et al.

2009) and interest in its use is growing (Snowden et al. 2011). The G-formula can

also be derived from a decision-theoretic point of view avoiding counterfactuals

(Dawid and Didelez 2010).

All three approaches, G-estimation, MSMs, and G-formula, correctly adjust for

time-varying confounding but require the same no unmeasured confounding

assumption; they differ in that the former two require a valid exposure model in

addition to the outcome model, while the latter requires valid models for the time-

varying covariates in addition to the outcome model.

14.9 Conclusions and Further Reading

Time-varying confounding may occur in longitudinal studies where exposure and

covariates change over time. Where time-varying confounding occurs, it may cause

bias in the results of usual survival analyses. G-estimation is one possible method

used to overcome this problem, and has been shown to reduce bias in some cases.

For those interested in exploring g-estimation further, the following references may

be helpful: (Hernan et al. 2005, 2006; Robins 1992, 2008; Robins et al. 1992b,

2007; Tanaka et al. 2008; Yamaguchi and Ohashi 2004; Young et al. 2010).

An overview and comparison of three methods of analysing data with time-depen-

dent confounding (marginal structural models and two forms of g-estimation)

is provided by Young et al. (2010). A summary of confounding, in particular

time-dependent confounding (in the context of marginal structural models)

demonstrated using causal diagrams may be found in Robins et al. (2000).
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Chapter 15

Generalised Additive Models

Robert M. West

15.1 Introduction

The inclusion of continuous covariates in generalised linear models is common in

epidemiological applications. For example, age and deprivation are very common

confounders and so are often ‘adjusted for’. Sometimes, although covariates are

continuous, they are entered in discretised form. This is one method employed to

account for nonlinearity and is discussed in more detail below. The issue

concerning this chapter is that covariates need not enter a generalised linear

model merely as linear terms.

Specifically consider the outcome variable to be mortality and that a logistic

regression is used to model the effects of covariates. The model will be used to

explain mortality rather than simply to predict mortality. Epidemiological study

focuses on an exposure, which enters as a covariate. Age often has a clinically and

statistically large impact on mortality and, although often just a nuisance variable,

needs to be included as a covariate. It is sometimes, but not often, plausible that the

log odds of mortality increases linearly with age. More commonly the relationship

has greater complexity. If age is poorly modelled then the estimate of the exposure

of interest will be less accurate and biased. The log odds of mortality and age is

most likely to increase with age and is plausibly smooth: the question becomes how

the best model fit is obtained. The answer might be to use a transformation of the

covariate, consider higher-order terms, to fit splines, or to make use of the

techniques employed in Generalised Additive Models (GAMs).

Nonlinearity is not the only consideration that motivates the use of GAMs.

The difficulty of interactions, see Chap. 16, for continuous covariates has been

noted. In particular determining the functional form of second- and higher-order
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interactions is even more challenging than for a single main effect. The techniques

available with GAMs provide a suitable means to tackle this ferocious challenge.

The first step however is to focus on the challenges of nonlinearity for a single

main effect. Throughout this chapter data from a study of sympathetic nerve

activity has been selected to illustrate issues and procedures.

15.2 Sympathetic Nerve Activity: Basic Model

Sympathetic nerve activity (sna) is known to increase with age and so is a conve-

nient example for the topic of this chapter. Further, there is a complex relationship

with systolic blood pressure (sbp) as well, so that there are two continuous covariates
to explore inmodels of sna (Burns et al. 2007). The setting for this example is a study

where 172 volunteers were recruited in order to investigate certain aspects of the

variation of sna between individuals. For simplicity here only the effects of sex, age,
and sbp on sna will be considered, and although the causal relationship might be

debated, in this and the next chapter, sna is taken to depend upon the other variables.
The outcome sna is a measurement on a continuous scale, sex is a dichotomous

covariate (factor), and as mentioned above, age and sbp are continuous covariates.

A basic model will fit just linear terms as covariates. All modelling will be

undertaken in R since this statistical language is widely available (R Development

Core Team 2010) and has good capabilities, once the relevant libraries have been

downloaded. In R, models are specified by notation suggested by Wilkinson and

Rogers (1973), and is straightforward to follow. The basic model is specified by

sna ~ as.factor(sex) + age + sbp and the fitted model yields the results

given in Table 15.1.

Note that for this model the adjusted sum of squares is 0.60: 60% of variation is

explained by the model. The errors were also explored through plots, and it was

seen that the residual plot against the fitted values, the normal QQ plot, the scale

location plot and the leverage plots were all satisfactory. This is also true for all the

subsequent residual plots in this chapter.

For this basic model, the effects of age and sbp are clear: they are simply linear

terms. For completeness, and to permit comparison with later plots, graphical

representations are provided in Figs. 15.1 and 15.2. These include rug plots along

the abscissas to indicate for which ages and SBPs measurements of sna have been

recorded. Note also the ranges of the ordinates.

Table 15.1 Table of coefficients for the basic model

Coefficient Estimate 95% CI p-value

Intercept �16.6 (�26.5, �6.6) 0.00123

Male 7.3 (3.8, 10.8) 5.37e-05

Age 0.70 (3.8, 10.8) 6.24e-12

SBP 0.25 (0.16, 0.33) 4.54e-08
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Fig. 15.1 Term plot for linear age

Fig. 15.2 Term plot for linear SBP
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The use of discretisation of age into age groups has a long history. John Graunt

(1662) is one of the earliest to publish material (life tables) and establish this

methodology that has been exploited to great effect by modern insurance

companies as just one example. As more data is available, the width of the age

groups can be diminished, any errors due to discretisation will be minimal, and age

can be considered to be modelled sufficiently well.

Such fine discretisation is not however undertaken throughout epidemiology,

even when sample sizes are large: widths of age groups of 5 or 10 years can be

found. There is an issue of parsimony in the model. If m age groups are to be used

then (m-1) variables are required to model age. Then a polynomial of degree (m-1)
is just as parsimonious and should be considered, see Sect. 15.4.

Discretisation might be favoured for reasons of interpretation, especially with

logistic regression. For example age might be discretised as: Under 60, 60–69,

70–85, and Over 85 years. Then logistic regression delivers three odds ratios compar-

ing the odds of mortality for persons in the three older groups with those in the

youngest group. Interpretation is very simple in relation to the age effect. Effectively

though, age has been modelled as a step function. An individual of age 69 steps up

their risk on their seventieth birthday. There is certainly a discretisation error.

The main concern though is that inaccuracy in modelling age will result in inaccuracy

and bias for the role of other covariates including the exposure of interest.

Another concern about discretisation is that the number of groups and the group

boundaries need to be chosen. There may be clinical or political reasons for

specifying boundaries, such as achieving adult status at age 18, achieving retire-

ment age at 65, etc. The results achieved for all covariate coefficients will differ

when boundaries are changed. From a modelling perspective, the boundaries may

be chosen for example by minimising the Akaike Information Criterion (AIC),

although this may lead to what seem strange boundary values that once more lead to

interpretation difficulties, albeit a fascinating challenge to obtain an interpretation.

Where there is a choice of the number of groups and their boundaries,

there is ‘temptation’ to choose them to deliver the coefficient values of other

covariates that are most favoured—especially if the main exposure has a coefficient

close to statistical significance, but these issues are always present in complex

modelling situations.

When a continuous variable is discretised, it is easy to define a further category

of ‘missing’ when values are not recorded for some participants. This has great

appeal if such an approach is appropriate for the modelling of missing values—for

example where values are missing at random. In other circumstances however this

could be disastrous. Consider the case where age is withheld by either the very

young or very old for reasons of identifiability of those with a rare disease.

Then such a category is misleading and it might be more appropriate to consider

an imputation technique to handle missingness.

It is possible that some continuous covariates are discretised due to doubt about

their true nature. An example might be a score from a psychometric test, which is

not truly continuous, being the sum of (weighted) responses to a questionnaire.
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Established thresholds might be used, for example defining a patient as depressed if

he/she scores over a certain value on a depression scale. The underlying scale may

not regarded by all as ordinal, let alone continuous. It is not clear if the use of the

established thresholds improves matters. Information is lost regarding a variable

whenever it is discretised and so error is introduced into the model, and the model

cannot be improved by adding discretisation error. In such circumstances the

variable might be considered as measured with error: refer to Chap. 3.

Deprivation scores are also composites and their full validity is sometimes in

doubt: specifically the deprivation score of an area is associated with an individual.

Often in epidemiological studies continuous measures of deprivation such as the

Index of Multiple Deprivation or Townsend Score, are divided into fifths.

This allows for nonlinearity but again there must be discretisation error as well as

measurement error. The discretisation error might be avoided by using higher-order

terms of deprivation scores: polynomial expressions of deprivation. Plots of the

impact of deprivation on the modelled outcome will be required to facilitate

interpretation as seen below in Sect. 15.4.

15.3 Sympathetic Nerve Activity: Discretisation

The basic model provided a fit for all three covariates with highly significant values

for the three coefficients, but nonlinearity does potentially exist and an investiga-

tion is warranted. Here both age and sbp are discretised into five categories forming

the new variables agegp and sbpgp. Cut points for age were taken as 30, 40, 50, and
60 years. Those for sbpwere taken as 120, 140, 160, 180 mmHg. For both variables

the categories are all reasonably evenly populated whilst the cut points are easy to

interpret. Values of sbp above 140 mm Hg suggest hypertension and so 140 mm Hg

has some clinical meaning.

The model is specified by sna ~ as.factor(sex) + as.factor

(agegp) + as.factor(sbpgp), and results given in Table 15.2.

The contributions of the covariates age and sbp are expressed graphically in

Figs. 15.3 and 15.4. Note that one clear effect is that the ranges of the effects are

much reduced from those in the basic model: compare the graphs. For this model

with discretised covariates, the adjusted R2 ¼ 0.63, so that on the basis of the

proportion of variation that is represented, the model with discretised age and sbp is
preferred to the basic model.

From Table 15.2 it is strongly tempting to coalesce some categories, thus

improving the adjusted R2. In particular the exact match of the category boundary

for sbp with the definition of hypertension sbp ¼ 140 mm Hg, is extremely

tempting. Such a data-driven approach however can be regarded as over-fitting to

the dataset. If disctretisation is to be employed, it is advisable to fix the boundaries

of all categories before fitting to the data.
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Table 15.2 Table of

coefficients for the model

with discretised covariates

Coefficient Estimate 95% CI p-value

Intercept 25.0 (20.1,29.9) < 2e-16

Male 7.3 (4.0,10.7) 2.93e-5

Age [30,40) 13.4 (6.8,20.0) 9.33e-5

Age [40,50) 20.3 (3.9,26.7) 2.99e-9

Age [50,60) 22.7 (15.9,29.4) 5.13e-10

Age � 60 28.8 (20.5,37.1) 1.51e-10

SBP [120,140) 2.2 (�3.1,7.5) 0.413

SBP [140,160) 17.9 (12.1,23.7) 7.29e-9

SBP [160,180) 16.0 (10.3,21.7) 1.22e-7

SBP � 180 15.0 (6.8,23.2) 0.000419
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15.4 Higher-Order Terms

A very straightforward way to check if a covariate should appear as a linear term

only is to fit higher-order terms and test their significance. Thus if age has been

entered as a linear term, then adding age2 and age3 will reveal if the relationship is

more complex. Interpreting the contribution of that covariate is not so easy to from

a table of coefficients. It will be necessary to construct the fitted polynomial and

plot it in order to make the position clear.

A phrase attributed to George Box is commonly cited: ‘all models are wrong’.

By better fitting of covariates, the models will be improved and the effects of

exposures better assessed. Hence the added complexity of polynomial terms can be

justified. Measures of fit of models can be used to balance complexity against fit

such as adjusted R2, AIC, and others. There are often automated searches available

within software packages to obtain the best fit against these criteria. For example, R

has a function R::leaps::regsubsets(), Miller (2002), that can search for the

best fit by adjusted R2, and the functions R::stats::step() and R::MASS::

stepAIC() Venables and Ripley (2002) to search for the best fit by AIC. So there

can be few excuses for not exploring this approach.

Searching higher-order terms can be made more efficient and robust by using

orthogonal polynomials, Kennedy and Gentle (1980), due to increased numerical

stability and the ease with which the best degree can be determined: orthogonality

helps. In R, the function R::stats::poly() provides this ability. The function

R::stats::termplot() can be used to display the functional representation

and its influence on the outcome variable.

15.5 Sympathetic Nerve Activity: Higher-Order Terms

For the illustrative example, orthogonal polynomials were chosen, the formula in the

R code being sna ~ as.factor(sex) + poly(age,3) + poly(sbp,3).

From Table 15.3, the impact of the covariates on the outcome sna is not

immediately clear. This is where graphical representations become important.

Figures 15.5 and 15.6 demonstrate the effect of age and sbp effectively. Comparing

the graphical figures for each of the models that have been fitted, it appears that the

effect of age gives the largest range of effect in the model with higher-order terms,

the youngest age resulting in a sizable decrease in sna: see Sect. 15.6 below for

further comment.

Inspecting Fig. 15.6, the final downturn in the effect of SBP can be seen from

the rug plot to be based on just a few measurements where sbp is above 200 mmHg.

Considering also the marginal statistical significance (p ¼ 0.0744) of the cubic

term for sbp, many might consider refitting with only a quadratic polynomial

for sbp. The cubic representation is chosen here to identify that there is an

issue of how best to identify the degree of polynomial representations of covariates

in general: this issue is dealt with in Sect. 15.8.
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Table 15.3 Table of

coefficients for model with

higher-order terms of

covariates

Coefficient Estimate 95% CI p-value

Intercept 52.6 (50.2,54.9) < 2e-16

Male 6.3 (2.9,9.6,) 0.000265

Poly(age,3) 1 108.9 (81.4,136.4) 5.95e-13

Poly(age,3) 2 �27.3 (�49.9,�4.8) 0.0179

Poly(age,3) 3 42.2 (20.7,63.7) 0.000152

Poly(sbp,3) 1 85.7 (58.2,113.2) 5.60e-9

Poly(sbp,3) 2 �24.0 (�46.5,�1.5) 0.0364

Poly(sbp,3) 3 �19.4 (�40.7,1.9) 0.0744
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Note that for the model fitted with higher-order terms has two fewer parameters

than the model for which the continuous covariates have been discretised. It is not

only more parsimonious, but has an adjusted R2 ¼ 0.65, up from 0.63.

15.6 Splines

The complexity of the relationship between the continuous covariate and the

modelled outcome may be efficiently represented using splines. These are low-

order polynomials that are fitted locally but joined at knots smoothly, meaning that

at the knots the function represented by the spline, and perhaps also some of its

derivatives, are continuous. There are also advantages of numerical stability.

The term spline derives from thin strips of flexible wood that have been used in

construction to represent complex smooth curves. Fitting splines to covariates can

be thought of as taking a nonparametric approach.

In the few situations where a small extrapolation might be considered, splines

can often provide less extreme behaviour immediately beyond the range of the

covariate. Note that this was a concern in the example above, where the model with

higher-order terms predicted very low sna for the youngest subjects of the study.

Similarly the sharp decline of sna with increasing sbp above 200 mm Hg provides a

further reason to reconsider the model that was fitted. Runge’s phenomenon, Runge

(1901), which occurs with higher-order polynomials can become problematic.

A very nice overview of splines together with a discussion is provided by Eilers

and Marx (1996).

There are many ways to specify a basis for a spline fit, Wahba (1990), some

examples are B-splines de Boor (1978), P-splines Eilers and Marx (1996), natural

cubic splines, and O’Sullivan splines O’Sullivan et al. (1986). The order of the

spline approximation must be chosen, as must the number and the location of knots.

Penalised splines can be employed, see Sect. 15.8, and then further parameters are

involved: the smoothness parameter and the derivative to be smoothed. Smoothing

is not considered in this introductory section, but deferred until Sect. 15.8. Knots

are often evenly spaced, or placed at certain percentiles of the covariate.

15.7 Sympathetic Nerve Activity: Splines

To illustrate the use of splines, natural cubic splines are selected. A single internal

interpolation point is chosen as the median (50th percentile) for each of the two

covariates. The end points of the range of a covariate are automatically used as

knots, and without internal knots the spline degenerates to a polynomial fit.

The formula for use with R is sna ~ as.factor(sex) + ns(age,knots ¼
median(age)) + ns(sbp,knots ¼ median(sbp)).

In tabulated form, the results of the fit are provided in Table 15.4. It is noted that

the fit is not so satisfactory, with the adjusted R2 ¼ 0.62. The effects of the

covariates are given graphically in Figs. 15.7 and 15.8.
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Table 15.4 Table of coefficients for model with spline fits for covariates

Coefficient Estimate 95% CI p-value

Intercept 7.6 (�0.6,15.8) 0.0689

Male 6.2 (2.8,9.7) 0.000480

ns(age,knots ¼ median(age)) 1 57.1 (41.5,72.6) 1.63e-11

ns(age,knots ¼ median(age)) 2 20.7 (11.2,30.2) 2.80e-5

ns(age,knots ¼ median(sbp)) 1 46.0 (29.0,63.1) 3.33e-7

ns(age,knots ¼ median(sbp)) 2 20.7 (10.4,31.0) 0.000109
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By comparison of Figs. 15.7 and 15.8 with preceding ones, it can be seen that

this particular spline fit gives rather different results for the effects of age and sbp
than the other models considered. The fit is better than that of the basic model, but it

is clear that there are challenges in finding the best spline representation. Those

providing libraries for GAMs have also provided tools to make spline selection

much easier and much more efficient: see Sect. 15.8.

15.8 Generalised Additive Models

Generalised additive models have continued to receive attention since their intro-

duction by Hastie and Tibshirani, see Hastie and Tibshirani (1986, 1990). Additive

models are ones where the effects of each covariate are added: there are no interac-

tion terms and so the additivity of effects is assumed. This chapter focusses on

nonlinearities whilst Chap. 16 enables the exploration of interactions. Hence here

the initial attention has been to the representation of the effect of each covariate with

a graphical representation of that effect to enable interpretation. GAMs continue this

theme. The generalised term simply refers to the fact that the methodology of

additive models (spline fits to covariates) can be just as easily applied to generalised

models, such as logistic regression, as well as it can be applied to linear regression.

Given the large number of parameters that need to be selected for a spline fit,

tools to provide automated choices save considerable effort and can provide some

objectivity. The principle of parsimony where a model with fewer parameters

is preferred to a more complex model is often to the forefront of automated

procedures. A statistical epidemiologist will be concerned with estimating the

effects of each covariate rather than intricate and subtle choices of parameters in

spline fitting and will want to utilise developed software tools with automated

choices rather than lavish time and resources on a general spline fit. There is

software available to fit GAMs in several statistical packages but here attention is

restricted to three libraries that are available in R and which provide more than

enough material for discussion in a single book chapter.

15.9 Smoothed Low-Order Splines

The fitting of very low-order splines as an initial data-exploration technique is well

established and often referred to as ‘lowess’ or ‘loess’. This approach is available for

covariates in generalised linear models and has been provided by Trevor Hastie in

the function R::gam::gam. The default settings are for a spline with degree ¼ 1

and span ¼ 0.5 so that fitting is performed with a proportion of the data (span) equal

to 0.5. Data points receive a tri-cubic weighting proportional to their distance from

the estimation point. It is possible to change the degree to be in {0, 1, 2} and the span

to be in (0,1]. The best policy might be to accept the default settings unless there is

evidence not to do so and focus attention on interpreting the effects of covariates.

15 Generalised Additive Models 271

http://dx.doi.org/10.1007/978-94-007-3024-3_16


With the same function in the R::gam library it is possible to fit penalised

splines (smooths). The target number of degrees of freedom needs to be specified.

Rather than expand this aspect here, smooths are considered with the R::mgcv

package discussed in Sect. 15.11.

15.10 Sympathetic Nerve Activity: Loess Splines

The model was reformulated to include loess representation of the two continuous

covariates through the formula sna ~ as.factor(sex) + lo(age) + lo

(sbp). The fit is excellent with the adjusted R2 ¼ 0.66 and the significance of

terms is given in Table 15.5 with the nonlinear nonparametric effects of the

covariates shown in Figs. 15.9 and 15.10. Note that there is a facility to display

the partial deviance residuals, which was exploited and that upper and lower point-

wise twice-standard-error curves were included.

The fits obtained by R::gam::gam provide good material for an epidemiologist

to consider. The main features of the fits should be explained. Smaller details that

lead to a little jaggedness might be ignored in many cases. This approach to

interpretation suggests that a smoother fit might be warranted.

Table 15.5 Table of

coefficients for model with

loess fits for covariates

Coefficient Npar DF Npar F p-value

lo(age) 2.5 7.71 0.000232

lo(sbp) 3.1 6.88 0.000187
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15.11 Generalised Cross Validation

The advantages of automatic determination of parameters have been emphasised.

Simon Wood (2006) has published a most useful library for automatically fitting

GAMs with smooths for covariates, namely R::mgcv. Note that this library has a

function R::mgcv::gam so that it is important to ensure that the correct library has

been loaded into R.

A generalised linear model can be fitted by R::mgcv::gam identifying which

covariates a smooth is to be used: see example below. By cross validation, the ‘best’

smoothing parameter is chosen, yielding a totally automated procedure. In fact the

procedure used is generalised cross validation, which is numerically efficient and

yields results close to those of cross validation. Hence a powerful tool is made

available to explore smooth non-parametric nonlinearities in covariates for gener-

alised linear models.

15.12 Sympathetic Nerve Activity: Cross Validation

The formula needed to indicate smooths for age and sbp that is used in R::mgcv::

gam is sna ~ as.factor(sex) + s(age) + s(sbp) which reports signifi-

cance of smooths as is Table 15.6. The effects are shown graphically in

Figs. 15.11 and 15.12. Note the great similarity to the results with loess smoothing,

although of course the representation of each covariate effect is much smoother,

and perhaps therefore more credible in some circumstances. Partial residuals are

shown, as are ‘twice standard error’ curves.
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Table 15.6 Table of

coefficients for model

with smooths as

covariates

Coefficient edf Ref. df F p-value

s(age) 4.289 4.789 16.41 1.05e-12

s(sbp) 4.812 5.312 10.39 5.40e-9
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Although the main philosophy of GAMs is to assume additivity of covariate

effects, modelling can be extended in dimension by fitting higher-dimensional

splines to groups of covariates. This enables interactions to be visualised and

compared to strictly additive models. For example two covariates might be

suspected of interacting and it would then be appropriate to fit a two-dimension

spline. The function R::mgcv::gam enables higher-dimensional splines.

15.13 Sympathetic Nerve Activity: Two-Dimensional GAM

The fit with a two-dimensional spline for age and sbp give the best fit to date with

adjusted R2 ¼ 0.69 (Table 15.7). Thus there is evidence of an interaction between

age and sbp, see Chap. 16 where this interaction effect is considered further.

Figure 15.13 shows that there are no younger participants with hypertension

(high values of sbp) and no older participants with sbp in the normal range.

This might have been a property of the recruiting strategy, or it may be that older

people who volunteer for studies tend to have higher systolic blood pressure.

The study is cross-sectional rather than longitudinal but there are longitudinal

explanations that account for the relationship. Sympathetic nerve activity tends to

increase with age and is higher for hypertensives. For younger participants with

higher sbp, the increase of sna with age is more rapid (contours closer together).

Table 15.7 Table of

coefficients for model

with 2d smooth

Coefficient edf Ref. df F p-value

s(age,sbp) 12.82 13.32 26.15 <2e-16
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Note that standard error curves were omitted: the plot is already complex and

needs full-colour treatment if further information is to be included. For the 2d plot,

the standard se curves are �1 standard error rather than �2 standard errors as with

the one-dimensional curves.

15.14 Further Aspects of GAMS

This chapter provides an introduction only to GAMs motivating their use through

exploration of nonlinearities in covariate effects. Here is a brief mention of further

aspects.

A third library is available in R, namely Vector Generalised and Additive

Models, see Yee and Wild (1996). R::VGAM, that has been made available by

Thomas Yee and makes use of B-splines and O’Sullivan splines that have certain

advantages. The VGAM library is huge and there is a focus on multivariate

outcomes for generalised linear models and generalised additive models.

Random effects can be included in GAMs through the function R::mgcv::

gamm. Thus GAMs can be used in a multilevel context.

15.15 More on the Case Study

Further description of the case study of sympathetic nerve activity was delayed until

this point as the primary interest was the methodology for exploring nonlinearities

in covariates. Exploring different models however often helps to develop under-

standing of a situation, indeed that is one of the aims of modelling.

From each of the models it is clear that both age and sbp make significant

contributions to sna, explaining well over 50% of the variation in results. Exploring

residuals revealed nothing unusual so that for this application there was no indica-

tion that a linear model was unsuitable as regards the distribution of residuals.

Discretisation of covariates provided little extra information other than indicating

that the effect of sbp was far from linear. It is possible that a different discretisation

would have produced different results: model fitting has challenges. Fitting higher-

order terms was found to be no easier. By contrast the procedures for fitting GAMs

made modelling far simpler.

Figures 15.10 and 15.12 show partial residuals. These again indicate that the

distribution of residuals satisfy distributional assumptions of normality and homo-

geneity of variance. It is revealed also that there may be some digit preference for

some of the participants: those with sbp values of 110, 120 and 130, possibly 100,

whereas for other values there is no evidence of digit preference. Possibly a

different sphygmomanometer was employed for these participants, at a time

when younger normotensive volunteers were recruited to the study.
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Fitting of statistical models cannot of course reveal biological mechanisms, but

knowledge of biological mechanisms may aid in the interpretation of the statistical

models. For example, a plausible biological mechanism is that a state of hyperten-

sion where sbp is constantly raised can result in thickening of the left ventricle and

in central sympathetic nerve activity. This suggests that a step increase in sna is

plausible for patients with sbp above the acknowledged threshold for hypertension

of 140 mm Hg.

In Sect. 15.13 it was mentioned that the study was cross-sectional but the most

plausible interpretation was longitudinal. This suggests that a longitudinal study on

sympathetic nerve activity would be of interest. If sna is an indicator of progression
of cardiovascular disease, then a longitudinal study recording sna and cardiovascu-
lar events is suggested with analysis using random-effect GAMs.

15.16 Chapter Summary

A range of methods to explore nonlinearity in covariates has been outlined and

demonstrated with an example. There are considerable modelling challenges posed

when there are so many modelling options, and automated procedures were

advocated. Different approaches to modelling with GAMs were mentioned.

In particular, loess fits can be exploited through R::gam::gam and smooths can

be automatically selected through R::mgcv::gam. Both of these approaches with

GAMs have been shown to be capable of producing good modelling results with the

effects of covariates made clear through graphical plots.
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Chapter 16

Regression and Classification Trees

Robert M. West

16.1 Introduction

Interactions in (generalised) linear models can be difficult, mainly due to the fact

that there are so many potential interactions to consider when there are a number of

covariates and factors in the model. For example, if a generalised linear model has

four factors and each factor has four levels, then there are four main effects, six two-

way terms, four three-way terms, and one four-way term to be considered: the four

main effects and 11 interactions. Perhaps eight continuous covariates have been

identified and it has been determined that they enter the model only in a linear

manner, although if interactions have not yet been identified it is doubtful that there

is any certainty about linearity of covariates, then there is 1 seven-way product, 7

six-way products, 21 five-way products and so on. Considering all interactions in a

model with a large number of covariates and factors involves a huge number of

terms and hence extensive modelling time.

One common approach to ‘work around’ this is to decide that such complexity is

beyond reasonable modelling capabilities given the limited amount of data avail-

able. It is rare to encounter studies or trials that have been designed to investigate

full details of all possible interactions. In that case an additive assumption may be

made and additive models used: see Chap. 15 on generalised additive models.

The approach suggested in this chapter is to make use of regression trees and

classification trees according to the nature of the outcome variable. In general

specifying a model for datasets with multiple factors and covariates can be chal-

lenging. The idea here is to use trees to suggest viable models and in particular a

shortlist of appropriate potential interaction terms.
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16.2 Trees

Regression trees, and classification trees, are simplemodels but are not familiar to all,

hence this section is included to give some background to them. The popularity of

classification trees and regression trees was greatly spurred by Breiman, Friedman,

Stone, andOlshen; see Breiman et al. (1984), and this remains an excellent source for

more detail. Trees will continue their popularity since there are numerous software

tools available, which are easy to apply, and the resultant tree models are simple to

implement and interpret, even for non-specialist users of statistics.

16.3 Regression Trees

First consider regression trees for continuous outcomes. Fitting is done by succes-

sively splitting the data twoways according to a single covariate or factor: branching.

Start with the whole dataset and search through all the covariates and factors and all

the possible cut points. For example a continuous covariate agemight be split at any

cut point that lies midway between two adjacent values for age. The split is chosen so
that the difference between the two groups so defined gives maximal difference in

the mean outcome variable. If the outcome is sympathetic nerve activity sna then the
mean values of sna of the two groups is calculated. The residual sums of squares

about those means are calculated and the two sums added to produce a residual sums

of squares for that split (partition). The best split is the one that produces the smallest

residual sum of squares: the means are maximally distinguished. The two groups

defined by the first step are then each split again by the same procedure of searching

through all variables and all cut points. The process continues and can continue until

there are only single values at the end of each branch.

Note that linearity of covariates is not an issue for regression trees: there is no

need to assume linearity, nor monotonicity. As will be seen, interactions can be

revealed and need not pose any difficulties.

Regression trees (and classification trees) are restricted in the manner in which

they are fitted. Splits can occur along only one axis (covariate or factor) at a time.

A better fit might be obtained by considering multiple fits at each step: that is a

multiple split may reduce the residual sums of squares significantly whereas a split

on only one covariate or factor would achieve only a small RSS reduction.

16.4 R Libraries

Trees are relatively straightforward to programme and there is much software

available to fit trees, including specialist code. Software aspects are discussed here

through the statistical programming language R (R Development Core Team 2010),

which is widely available and much used by statisticians and epidemiologists.

There are two commonly used libraries in R that enable tree modelling, R::tree

and R::rpart.
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16.5 Sympathetic Nerve Activity

Often an example helps to demonstrate a methodology so here regression tree

modelling is applied to the dataset considered in Chap. 15. The outcome, sympa-

thetic nerve activity sna, was recorded with covariates age and systolic blood

pressure sbp, as well as a factor, sex (male and female). Fitting a regression tree

will indicate which covariates and factors (one in this case) are important for

explaining variation in sna, if there may be nonlinearities, and if there might be

interactions.

For this example the function R::rpart::rpart was used. With the default

settings the two functions produce slightly different results and here the simpler one

has been selected. The tree model produced is shown in Fig. 16.1. Note that:

• the length of the branch indicates the relative importance of the variable upon

which the split has been made: the relative improvement of the fit

• the terminal nodes report the value of sna fitted by the model

• branch left if the rule is satisfied

• both sbp and age can be seen to offer important contributions

• there is a contribution from sex through some of the branches

• further pruning may be indicated by clinical judgement: older people with high

sna are likely to be hypertensive, others may be distinguished just through

overfitting.

Fig. 16.1 Tree model for sympathetic nerve activity. Here the expression as factor(sex) ¼ a is to

be read as sex ¼ female
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As with linear modelling, attention should be given to the distribution of

residuals. A plot of residuals against fitted values is shown in Fig. 16.2.

Since the branches in Fig. 16.1 show dependence upon both sbp and age before
arriving at the terminal nodes, an interaction between sbp and age is suggested by

the model: see Sect. 16.6.

Although a least squares fit does not require the residuals to be normally

distributed to provide a pragmatic modelling tool, it is useful to also inspect

residuals for normality. See Fig. 16.3. There is a suggestion, apart from one result,

that the residuals do not depart from normality and therefore the residual sums

of squares is an appropriate measure of fit for the model. The one ‘outlier’ might

be inspected.

16.6 Interactions and Complexity

Discussion of interactions has been delayed until after the example on sympathetic

nerve activity. In Fig. 16.1, the two most important covariates/factors are seen to be

sbp and age. It is the early splits that involve these and the height/depth of

Fig. 16.2 Plot of residuals from the tree model fitted by R::rpart::rpart
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the branches for these splits is greater reflecting their greater contribution to

the reduction of the residual sum of squares. Often when an interaction occurs

between two variables, after the branch due to the first variable only one part of the

tree branches according to the second. Thus the second variable is of greater

importance for a certain range of the first: hence there is an interaction. In this

example both sides of the tree split by age after the split by sbp, but the split by age
is different on separate sides of the tree. Again an interaction is revealed, here

between age and sbp.
Trees with a few branches are especially easy to interpret. As there are more

branches, the complexity of the model is displayed. Thus trees are very useful for

determining:

• which covariates and factors should be considered

• where interactions between covariates might occur

• how complex the model might be.

A way to quantify the complexity of a tree model is available with the R::

rpart library through the function R::rpart::plotcp. Such a plot is provided

in Fig. 16.4 for the sympathetic nerve activity example. It shows the relative gain in

the reduction of the residual sums of squares (more broadly the objective function

selected for the fit) for additional splits.
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16.7 Issues for Regression Trees

As with a linear model, if the outcome variable is transformed, then the model is

changed: a different tree will be fitted since the residual sums of squares will

be defined in a different way. Hence if the outcome is the concentration of a

toxin in a urine sample, then the model will change if the logarithm of the

concentration is taken as the outcome. The issues are the same as in least squares

fitting of a linear model: are the residuals better represented on the original scale or

the transformed one.

One of the largest issues is how to determine the best tree model. The tree with

each terminal branch giving a unique value is in almost all circumstances over-

fitting the model.

The above fitting procedure can be regarded as the tree equivalent of linear

modelling, being based on least squares. The procedure is generalised by defining

deviance rather than a residual sum of squares for outcomes based on the binomial,

Poisson, multinomial etc.

Missing values can be handled easily in some circumstances. For factors,

missing values might be assigned another factor value/level. If missing values

occur at random, then this approach is justified. If values are missing at random

for a covariate, then a suitable weighting must be applied in order to compare splits

between different covariates. The challenge as always with modelling is how to

deal with missing values when missingness does not occur at random.
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When there is a large dataset perhaps with many covariates and factors, then the

number of splits to investigate rapidly becomes very large. So the are computational

challenges for larger datasets. One option is to consider subsets of covariates and

factors – see Sect. 16.9 on Random Forests.

16.8 Classification Trees

If the outcome variable is categorical, it has been mentioned that deviance can be

used to consider partitions of the tree. Two alternatives are entropy and the Gini

index. In the R::tree library, the default splitting method for R::tree::tree is

deviance and an average deviance across the terminal modes is reported. The R::

rpart::rpart function from the R::rpart library uses the Gini index as its

default method.

For illustrative purposes, consider the new indicator variable defined from the

sympathetic nerve activity dataset, namely the variable ht which takes the value 0 if
sbp < 140 and 1 otherwise: that is ht indicates ‘hypertension’. Taking ht as the

outcome, a classification tree is required rather than a regression tree, but the

modelling process is of course similar. With the default settings for R::tree::

tree, the model resulting is shown in Fig. 16.5. Similar tree models are produced

irrespective of the method of splitting, but the default settings provide different

amounts of pruning. The deviance results, being the default for the R::tree::tree

function are displayed in Fig. 16.5.

It is interesting to note that:

• the proportion of hypertensives is displayed at the terminal nodes

• sympathetic nerve activity sna and age are useful predictors of hypertension and
interact

• The factor sex is not needed by the model and so has little impact on hyperten-

sive status.

Close inspection of Fig. 16.5 with clinical expertise would suggest that further

pruning would be merited, thus as seen with tree regression the default settings in

this scenario provide a good starting point for the model but there is further work

to be done.

16.9 Random Forests

As the number of covariates and factors increases, regression trees and classifica-

tion tree become more difficult to handle. One way to facilitate data fitting would

be to take subsets of the variables and fit with those. There are greater advantages

obtained by taking this idea further and using random forests, see Breiman (2001).
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The algorithm for random forest fitting is as follows:

1. Draw bootstrap samples of size n1 from the original samples of observations:

sample with replacement and set n1 be less than or equal to the original sample

size. There will be n2 such bootstrap samples.

2. For each of the n2 samples grow a tree without any pruning and allow each split

to be based on a subset of n3 covariates and factors. It is suggested that n3 is taken
to be around one third of the total number of covariates and factors available.

3. Aggregate the tree produced by taking an average for a regression tree and taking

the majority vote for a classification tree.

An interesting aspect of the random forest algorithm is that, for each bootstrap

sample, there will (almost always) be observations that are not included, called out-

of-bag samples. These can be used to cross validate the tree based on that sample.

An average of the error rates over the n1 bootstraps is often used. For regression the
importance of covariates and factors can be quantified.

The downside of random forests is that interpretability is almost completely lost

and this is a major drawback for statistical epidemiology. There is no tree output as

there is for regression or for classification trees, prediction is from an average of

Fig. 16.5 Classification tree modelling hypertension
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many trees. The clearest outcomes from fitting a random forest are the importance

of covariates and the proportion of variation that might be achieved. See the

example below in Sect. 16.10.

16.10 Sympathetic Nerve Activity

The example of sympathetic nerve activity is not an ideal application for random

forests since there is a very limited number of covariates and factors: just three.

For completeness and to illustrate performance, a random forest was fitted using

the function R::randomForest::randomForest. The sample size in each

bootstrap n2 was taken as 130 (the original sample size is 172), the default number

of trees n2 ¼ 500 was used and the number of variables to consider at each node n3
was restricted to 2. The resulting forest explains 62% of variation. Figure 16.6

shows how the error reduces as the number of trees in the forest increases: such a

plot is a useful tool for indicating the number of trees to sample, in this case 200

trees appears sufficient. Figures 16.7 and 16.8 show how predictions vary from

Fig. 16.6 Reduction in error with size of forest
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Fig. 16.7 Observed (o) and fitted (+) values
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observed values. The importance of the covariates and factor are given in

Table 16.1. It is clear that the two covariates sbp and age are the most important

in agreement with the results from the regression tree and the generalised additive

models fitted in Chap. 15.

16.11 Other Approaches

The subject of regression trees and, in particular, classification trees has interest to

computer scientists as well as statisticians and associated with pattern recognition,

classification, machine learning, and data mining. Consequently there are a large

number of interested researchers developing the techniques and a wide variety of

methods that can be exploited. Just couple of alternative approaches are considered

here.

Boosting is a technique that can be used with a range of prediction methods

including GAMs and trees, but is perhaps most commonly applied to trees. The idea

of boosting for trees is to compute a sequence of simple trees with very few nodes,

where each successive tree is built for the residuals of the preceding tree. Random

forests can be thought to work in parallel and tree boosting thought to work in

series. If a tree has difficulty with some cases then these will have larger residuals

and have greater influence in the next tree, hence there is some focus on the more

difficult cases.

Boosting for trees is implemented in R and one library is R::gbm based on the

work of Friedman (2001) and others, see Hastie et al. (2001). Initial experimenta-

tion with the dataset for sympathetic nerve activity achieves a fit that is not very

good in terms of least squares. Importance is reported with sbp being more

important than age but sex not entering the model. There is little interpretable

output.

Neural networks have been often used as black-box predictors and there is

opportunity to use them in R through the library R::nnet. The black-box nature

provides no understanding, but neither is any knowledge of the process necessary.

One may to use R::scale() in order to standardise the scale of all variables

before use. Neural nets can be effective for large datasets and are often good for

prediction in those circumstances.

It is possible to plot marginal effects to obtain a little understanding of the effect

of each covariate or factor. It can also be the case that a neural network model

produces a very different model from a statistical model and this prompts effort to

determine why this might be so.

Table 16.1 Importance of

covariates and factors as

indicated by fitting a random

forest

Covariate or factor % Increase in mean square error

sex 15.48

age 41.01

sbp 47.97
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16.12 Chapter Summary

Regression trees and classification trees were suggested as tools to be able to assess

the appropriateness of covariates and factors, together with their interactions for

linear models. The R libraries R::tree and R::rpart were briefly introduced

and there is much software available for fitting tree models. Random forests,

boosting and neural networks can also have benefits but their interpretability limits

their use in statistical epidemiology.
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Chapter 17

Statistical Interactions and Gene-Environment

Joint Effects

Mark S. Gilthorpe and David G. Clayton

17.1 Overview

Statistical interactions are often employed within epidemiology, where one is

exploring the joint association or action of putative causal agents in relation to a

single outcome. Different language is occasionally used to describe such processes,

e.g. effect modification. The concept of interaction is entirely separate from that of

confounding, discussed in Chap. 4. An important example of a statistical interaction

is the exploration of the joint effects of genes and environmental factors on disease

risk. In this chapter, we explore the issue of gene-environment interactions specifi-

cally, with a view to highlight issues regarding the use and interpretation of

statistical interaction in general.

We focus on gene-environment interactions because they are widely reported in

the literature, but are not often used or interpreted correctly (Clayton 2009).

Therefore, despite remaining quite basic in theoretical terms, this chapter addresses

some important misunderstandings within modern epidemiological methods.

Whilst dealing with these misconceptions, there is little complexity to what

is discussed. Part of the discussion is more philosophical than theoretical, and

controversy over statistical interaction will likely persist. However, no epidemiol-

ogy book (modern or otherwise) is complete without discussing causality and,

given the often implicit link, the interpretation of statistical interaction must then

follow (Cox 1984).
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17.2 Biological vs. Statistical Interaction

Statistical interaction is a well-defined concept, but its interpretation in our every-

day attempts to understand the world around us can prove troublesome. Seeking to

combine biological insight and statistical models is not straightforward. This is

particularly true for gene-environment interactions, in part because the different

scientific communities use language differently to communicate biological and

statistical ideas. It has been widely noted that statistical and biological interactions

are different concepts that do not readily correspond to each other (Kupper and

Hogan 1978; Rothman et al. 1980; Saracci 1980; Walter and Holford 1978).

However, both concepts are often misunderstood, leading to incorrect conclusions

being drawn from studies into the joint effects of genes and the environment.

We therefore examine these concepts, building upon work in the context of multiple

behavioural and environmental causes.

17.2.1 Gene-Environment Interaction

Although gene-environment interactions receive considerable attention in the liter-

ature, little reference is made to a lively debate amongst epidemiologists during the

early 1980s, which focussed on the over-interpretation of statistical interaction,

particularly in logistic regression models that are the main analytical tool in the

epidemiology of multifactorial disease. Whilst many researchers acknowledged

that a statistical interaction is only a product interaction term within a generalised

linear model, how this maps onto biology remains ambiguous. Biologists use the

word interaction rather loosely, in a mechanistic sense, and it is challenging, if not

impossible, to project statistical model interpretations directly onto biological

phenomenon.

In considering biological processes and wishing to describe the joint effects of

genes and the environment, there are a plethora of biological processes that depict

joint action. Separately, genetic and environmental effects can operate mechanisti-

cally in different ways, so their joint action is likely to be complicated. For instance,

a genetic polymorphism may ‘program’ a condition to occur absolutely, e.g. cystic

fibrosis occurs definitively as a consequence of the CFTR polymorphism on

chromosome seven (Rowntree and Harris 2003). Alternatively, individuals might

merely have a greater predisposition of developing a condition, e.g. deep vein

thrombosis (DVT) is more likely, though not definitively, a consequence of Factor

V Leiden genetic mutation on chromosome one (Vandenbroucke et al. 1994), and

DVTs occur amongst normal individuals. The mechanism by which an outcome

occurs therefore potentially involves multiple stages in biology, of which

some steps may be necessary and sufficient whilst others attenuate the likelihood

of occurrence.
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To a statistician, where likelihood (probability between zero and one) is involved,

this invokes the idea of an underlying latent (unobserved) process (e.g. risk of DVT)
that is manifest in intermediate events (e.g. localised blood clot) or end point

(e.g. DVT). We may consider these latent processes to be either categorical or

continuous, though the underlying risk of an event occurring is more naturally

thought of as a continuous concept. Although genetic and environmental factors

may combine biologically in a cascade of processes, to describe these phenomena in

some kind of statistical model requires the conceptual projection of a statistical

model onto the underlying biology, or vice versa, and it may be a matter of

convenience how the biological processes are represented. Even where a statistical

model employs categorical variables, one cannot escape the inherent underlying

latent complexity, which may be continuous. It is therefore a matter of subjectivity,

driven by statistical convenience, as to which statistical analogue is used as a

representation of the biological domain.

17.2.2 A Linear Regression Model

A model is linear because successive terms (covariates) are included additively.

A model may be linear and yet represent curvilinear relationships between the

outcome and covariates (such as where a quadratic term of the covariate is included

in the model additively with the original form of the covariate). A non-linearmodel

occurs if there is a functional relationship of a covariate, such as where the

logarithm (or any other function) is applied to the covariate. A functional relation-
ship that operates on the outcome is a link function. If the set of covariates remain

linear (i.e. they are combined additively without transformation), one may have a

linear model with a non-identity link. This is not a non-linear model, as is some-

times described (i.e. referring to the link function and not the covariates).

The logistic regression model, a key analytical tool in the epidemiology of multi-

factorial disease, uses the logit link:

logit pð Þ ¼ ln
p

1� p

� �
¼ g0 þ g1x1 þ g2x2 þ x (17.1)

where p is the probability of disease (usually coded one), 1� p is the probability of
being disease-free, xi and gi (i ¼ 1. . .2) are covariates and associated regression

coefficients, and the residual error (x) follows the binomial distribution with

variance p=
ffiffiffi
3

p
. The exponential of g1 is the odds ratio (OR) of disease, i.e. the

odds of disease occurring if x1 ¼ 1 divided by odds of disease occurring if x1 ¼ 0.

Most statistical regression methods evaluating genetic and environmental factors

affecting disease outcomes are likely to be a linear logistic regression model using

the logit link function.
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17.2.3 Biological Interpretation of Interaction

Consider Factor V Leiden genetic mutation again, where individuals with the

mutation have more coagulants in their blood and are thus at greater risk of DVT.

Genetically normal individuals can develop DVT, but the risk is elevated amongst

individuals with the genetic mutation. Amongst women, exposure to the combined

oral contraceptive pill (COCP) brings about changes in hormone levels that can also

raise levels of coagulant proteins and lower levels of anticoagulant proteins, thereby

yielding an elevated risk of DVT (Vandenbroucke et al. 1996). Considering the

joint action of the genetic mutation and the environmental impact of the combined

pill, both exposures are binary (i.e. present or absent), as too is the outcome (DVT

or no DVT), yet the putative causal process is best captured by the underlying risk
of developing DVT, which is a continuum between zero and one. The genetic and

environmental exposures operate jointly to affect the risk of DVT along this

continuum, and the impact of either genetic or environmental exposure on the

risk of DVT probably varies from woman to woman. To use a statistical model to

describe this situation, one ought to acknowledge the continuous underlying latent

risk and random variation amongst women. However, more often than not, a

logistic model (with binary outcome of DVT present/absent) with two binary

covariates (genetic and environmental exposures present/absent) is as an oversim-

plification of the underlying biology. The question becomes: what is the biological
interpretation of the gene-environment statistical interaction in this scenario?

17.2.4 Statistical Interpretation of Interaction

Interpretation of statistical models in epidemiology is context-specific. Statistical

interaction has only one mathematical form in a linear regression model, namely the

product interaction term, and it describes deviation from additive effects on some

context-driven predefined scale. For a statistician, the test for interaction between

two factors is a test of the fit of a particular model of joint action and the extent of

deviation from the additive model on the predefined scale. There is no explicit
interpretation of biological mechanisms unless the statistical model has a biological

analogue, in which case there may be implicit interpretation, though one needs to be
careful in relating biological mechanistic processes to aspects of a statistical model.

It is important within a regression model to recognise that the statistical interaction

is both linear and scale-dependent. These two points are often overlooked, yet they
are crucial in seeking to interpret statistical interactions meaningfully.
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17.3 The Importance of Scale in Statistical Interaction

When modelling a continuous outcome using standard linear regression, the

covariates in the model are included additively and these covariates operate on

the outcome scale additively. Consider the following linear model (with identity
link function):

y ¼ b0 þ b1x1 þ b2x2 þ e (17.2)

where y is a continuous outcome, b0 is the intercept (value of y when all covariates

are zero), xi and bi (i ¼ 1. . .2) are covariates and associated regression coefficients
respectively, and e is residual error, which is assumed to be normally distributed

with mean zero and variance s2.
If the values of x1 and x2 change by one unit, the outcome changes by b1 þ b2,

i.e. the effects of x1 and x2 are combined additively. Considering the logistic

linear model in Eq. 17.1, however, whilst the effect on logit pð Þ is additive (i.e.

the effect of changing x1 and x2 by one unit each is to change logit pð Þ by the amount

g1 þ g2), this transpires to a change in the original outcome via the inverse link

function logit�1 g1 þ g2ð Þ. Denoting the odds ratio for x1 as c1 ¼ exp g1ð Þ, the odds
ratio for x2 as c2 ¼ exp g2ð Þ, and denoting change in outcome probability as Dp,
we have:

ln
Dp

1� Dp

� �
¼ g1 þ g2 ) Dp ¼ c1c2

1þ c1c2ð Þ (17.3)

where change in outcome probability is constrained to ensure 0 � Pr p ¼ 1ð Þ � 1.

The property of the logit link is such that if x1 changes by one unit, the log odds of
the outcome changes additively by the factor g1, but the odds of the outcome

changes multiplicatively by c1; similarly for a unit change in x2. Thus, if the values
of x1 and x2 change by one unit, the odds of the outcome changesmultiplicatively by
the factor c1 � c2. The choice of link function (identity vs. logit) therefore affects

the scale upon which covariate changes are associated with outcome changes.

Switching between the continuous model (identity link) and the binary model

(logit link) changes the model scale from additive to multiplicative.

17.3.1 Example

We consider models with and without statistical interaction for these two link

functions and illustrate the impact of model scale on perception of presence or

absence of statistical interaction and its associated magnitude. This is a simple

illustration of how we perceive and hence interpret the additive and multiplicative
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scales in linear models. For the example, initially we consider the continuous

outcome Blood Pressure (BP) measured in millimetres mercury (mmHg). This is

dichotomised across the threshold of 160 mmHg to create the binary outcome

Hypertension (Hyp). We consider two covariates: a genetic binary variable (G)
that depicts individuals to have a genetic mutation predisposing to hypertension

(coded one if present or zero otherwise); and an environmental variable (E) that is
recorded as a binary to depict high or low salt intake (coded one or zero respec-

tively). We assume that both genetic mutation and high salt intake elevate blood

pressure.

The normal linear model is:

BP ¼ b0 þ b1Gþ b2Eþ b3GEþ e (17.4)

The binary logistic model is:

logit Hyð Þ ¼ ln
p

1� p

� �
¼ g0 þ g1Gþ g2Eþ g3GEþ x: (17.5)

For no statistical interaction, b3 ¼ 0 in Eq. 17.4 and g3 ¼ 0 in Eq. 17.5; for a

synergistic interaction, b3>0 in Eq. 17.4 and g3>0 in Eq. 17.5. We chart hypotheti-

cal data in two ways: (a) using a single chart for all model coefficients showing their

relative effect sizes with reference to the genetic wild type and low salt intake

group; (b) & (c) using two separate charts for high and low salt intake respectively,

contrasting genetic mutation to the genetic wild type.

With no statistical interaction between genetic mutation and salt intake, the

difference in blood pressure within the normal model between those with and

without the genetic mutation is 10 mmHg and the difference between those with

and without high salt intake is 15 mmHg, seen in both chart formats (Fig. 17.1a–c).

With statistical interaction present, we note that greater elevated blood pressure

occurs due to the genetic mutation amongst those with a high salt intake (20 mmHg)

compared to those with a low salt intake (10 mmHg), again seen in both chart

formats (Fig. 17.2a–c).

Considering the logistic model, something inconsistent happens in chart formats

when plotting odds ratios (the exponential of the model coefficients). With no

statistical interaction present, the absolute difference in the odds ratios for hyper-

tension between low and high salt intake is 3.3 (Fig. 17.3a), not zero as anticipated.

When the odds ratios for hypertension are plotted separately for low and

high salt intake, however, their absolute difference is zero, as anticipated

(Fig. 17.3b, c). With a synergistic statistical interaction present, the combined

chart reveals a non-zero difference in the odds ratios for hypertension of 4.9

(Fig. 17.4a), and the separate charts for low and high salt intake indicate the

absolute difference in the odds ratios for hypertension is only 2.0 (Fig. 17.4b, c).

Therefore, how model coefficients are plotted can give rise to different indications
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tion showing model coefficients: (a) combined; and separately for low (b) and high (c) salt intake
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of the presence or absence of statistical interaction and the extent of the interaction;

only the two-chart format is correct.

Such confusion arises because the scale upon which the odds ratio operates is

multiplicative and charts reflect differences additively. The separate charts are more

reliable because they contrast within exposure groups, separately for low and high

salt intake, revealing accurately any differences as a true indication of statistical

interaction. This reveals how much scale is important in our perception and hence

interpretation of statistical interaction.

All regression models are scale dependent, but this matters greatly when seeking

to interpret statistical interaction. There is nothing special about the scales adopted

by models that use either the identity or logit link functions, as these links are used

out of statistical convenience. The identity link may seem a natural choice for

continuous outcomes, as it preserves the original scale of the outcome, and

covariates operate additively on the original outcome scale. The logit link function

has specific utility because model coefficients are interpretable as odds ratios (via

exponentiation), and covariates therefore operate multiplicatively on the odds ratio

scale. There are, however, an infinite number of possible scales upon which model

covariates might relate to the outcome, depending upon the choice of link function.

As there are only a handful of regularly used link functions, it is easy to overlook

how arbitrary scale is, and how it always depends upon the choice of link function.

17.4 The Importance of Linearity in Statistical Interaction

Consider the following linear model:

y ¼ b0 þ b1xþ b2x
2 þ b3zþ b4xzþ e (17.6)

where y is a continuous outcome, b0 is the intercept, x and z are two covariates that
without loss of generality we assume to be continuous, bi (i ¼ 1. . .4) are covariate
regression coefficients, and e is residual error, assumed to be normally distributed

with mean zero and variance s2. This is a linear model that has a quadratic term in x
and a product interaction term xz.

If we assume that x and z are correlated, i.e. collinear, then as the x-z correlation
increases, collinearity increases between xz and x2 (i.e. overlap between the

‘explained’ outcome variance increases). If we assume the relationship between y
and x to be curvilinear, i.e. b2 6¼ 0, but assume there to be no xz interaction, i.e.
b4 ¼ 0, the correct model we need to adopt is:

y ¼ b0 þ b1xþ b2x
2 þ b3zþ e: (17.7)

Were we instead to adopt Eq. 17.6 but without the quadratic term (x2):

y ¼ b0 þ b1xþ b3zþ b4xzþ e (17.8)
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a ‘spurious’ interaction (i.e. b4 6¼ 0) would be observed for the xz product

interaction (Ganzach 1997). The collinearity between x and z effectively ‘mops

up’ the unaccounted outcome variance that ideally should have been

accommodated by the curvilinear relationship between y and x, and hence a non-

zero statistical interaction is now observed. It is the assumption of linearity between

the outcome y and covariate x that is not upheld which gives rise to the apparent

statistical interaction.

It is therefore vitally important to verify model linearity assumptions, though

this is rarely undertaken as rigorously as it should be. Whilst researchers may check

model residuals, perhaps seeing if they are normally distributed and with constant

variance, rarely do researchers verify implicit model assumptions of linearity.

Statistical models that seek to emulate biological processes without due care

regarding the issue of linearity amongst variable relationships are likely to observe

statistical interactions that might be nothing more than artefact from a miss-

specified model.

17.4.1 Example

Barrett’s Oesophagus (often abbreviated by BE since the US spelling is Esophagus)

is named after the doctor who first described the condition in 1957 (Barrett 1957)

and is an abnormal lining of the oesophagus (gullet). The condition is found in

about 10% of patients who seek medical care for heartburn and reflux (acid and bile

moving into the gullet), and may progress in a minority of patients through a series

of stages (such as dysplasia) to oesophageal cancer (Koppert et al. 2005). Adipose

tissue (AT) is loose connective fatty tissue situated about the body. Its main role is to

store energy in the form of fat. Obesity or being overweight depends upon the

amount of body fat, especially adipose tissue. It is therefore adipose tissue that

is crucial for some adverse outcomes of obesity, such as diabetes, since adipose

tissue serves as an important endocrine organ. The formation of adipose tissue is

controlled by the adipose gene. It is observed that there are sex differences in BE
(Corley et al. 2009) and sex differences in the distribution of adipose tissue around

the body (Ross et al. 1994). It has also been observed that BE is related to adipose

tissue, though this might not be directly causal since the impact of adipose tissue

on BE might operate via obesity inducing a greater risk of reflux (Moayyedi 2008).

We therefore question if sex differences in BE might be explained by sex

differences in adipose tissue, or if there is an ‘interaction’ between sex and AT
in their joint association with BE. To do this we examine the following statistical

model:

logit BEð Þ ¼ g0 þ g1AT þ g2sexþ g3AT:sexþ x (17.9)

where BE is binary (present or absent), AT is continuous, sex is binary (male or

female), AT.sex is a product interaction, and x the binomial residual error. For some
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researchers, evidence of a biological interaction between adipose tissue and sex is

provided if a statistical interaction is observed, i.e. if g3 6¼ 0. For such an interpre-

tation to be correct, however, the assumption of linearity must be upheld between

the log odds of BE and the continuous measure of AT.
We plot a hypothetical relationship between the log odds of BE and AT

(Fig. 17.5), in which it is seen that the log odds of developing Barrett’s Oesophagus

increases with increasing levels of adipose tissue, though the rate of increase

diminishes for larger adipose tissue levels; this yields an underlying relationship

between the log odds of BE and AT that is curvilinear. This seems reasonable

if obesity and increasing overweight lead to greater bouts of reflux, which in turn

lead to an elevated risk of BE, and there becomes a point beyond which increasing

obesity produces no further increases in reflux. In any event, one should anticipate

curvilinear relationships as there is no natural biological reason to suppose that

changes in the log odds of BE should be linearly related to changingAT levels (recall
that the logistic scale is statistical convenience and has no biological basis). Further,

if the association between AT and BE has no direct causal foundation, it is likely

that common biological process would be sufficiently convoluted to yield a non-

linear relationship.

Females have on average more adipose tissue for their weight than men. After

accounting for overall weight differences one might anticipate that the distributions

of AT levels for men and women would form a mixture, with the male mean AT
value to the left of the female mean AT value along the adipose tissue axis in

Fig. 17.5. Modelling men and women separately:

logit BEM
� � ¼ gM0 þ gM1 AT þ xM & logit BEF

� � ¼ gF0 þ gF1AT þ xF (17.10)

Log-odds BE

Males

Females

Fig. 17.5 The inter-relationships amongst Barrett’s Oesophagus (BE), adipose tissue (AT) and
sex: the underlying hypothesised relationship between the log odds of BE and AT is curvilinear;

any linear relationship modelled using logistic regression might reveal different gradients for each

sex, which manifests as an AT.sex statistical interaction within a regression model
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where superscripts denotes sex (M for males, F for females). Given different

AT distributions for men and women, in conjunction with the overall curvilinear

log odds BE ~ AT relationship, we would obtain different estimates for the log

odds BE ~ AT slope for men and women, and we anticipate gM1 >gF1. Differences
in the two slopes is entirely due to the data for males and females lying on

different parts of the curvilinear relationship between the log odds of BE and

levels of AT.
The two separate models in Eq. 17.10 identically represent the combined

model in Eq. 17.9, in which the product interaction term is non-zero. There is a

statistical interaction between sex and AT in their jointly modelled association

with BE, but this does not signify a joint biological process; it is consistent with

separate biological processes, where sex affects AT levels and AT levels affect BE
(via reflux, perhaps). The statistical interaction is a consequence of adopting

the linear model approach when the underlying log odds BE ~ AT relationship

is curvilinear (on the statistically convenient log odds scale for the binary

outcome BE).
Where an underlying curvilinear relationship is overlooked within a linear

model, statistical interaction is observed that might be referred to as ‘spurious’,

yet the statistics are sound and the issue is one of interpretation. Statistical interac-

tion is correctly estimated, though its cause (hence model interpretation) may be

misguided. Statistical interaction need not be a reflection of joint biological action,

as it is typically attributed, rather a consequence of an overlooked curvilinear

relationship between outcome and (environmental) exposure. Without a priori
knowledge of any underlying curvilinear relationships between the outcome and

covariates, we would be too hasty in seeking to interpret statistical interaction

without also evaluating the model assumption of linearity. Conversely, we might

consider statistical interaction an indication of potential curvilinear relationships

between outcome and model covariates, as we discuss later.

17.5 Effect Size of Joint Effects vs. Testing

for Statistical Interaction

It might be argued that most diseases result from gene-environment joint effects and

that the emphasis of research is to elucidate the magnitude of these effects.

To describe the outcome contingent on a range of options, one is not compelled

to assume any statistical model, i.e. to assume any particular model scale. Trying to

compress the complexity of biology into the simplicity of a statistical model might

be misguided and only mislead or misinform, as the information sought may not

lend itself to the form of a statistical test, supporting or refuting a hypothesised

mechanism; rather it should be more concerned with absolute effect size, which

has clinical relevance. We therefore ask: for what purpose do we test?More insight

might be gained by forgoing the questions ‘if’ and ‘how’ joint effects occur

biologically, and instead ask ‘to what extent’ or ‘by how much’ are joint effects
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observed in terms of their effect size, which can be derived irrespective of

model scale.

For illustration consider the example of DVT, Factor V Leiden genetic mutation,

and combined oral contraceptive pill (COCP) once more. We seek the joint associ-

ation of genetic mutation and COCP with respect to DVT. At the outset we

acknowledge that the environmental exposure (COCP) is not strictly categorical,

since the COCP exposure varies according to dose and extent of use, though we

return to this point later. For simplicity, therefore, we categorise this underlying

continuous measure into present or absent, i.e. according to whether or not a woman

uses the COCP. We then use a tabular method to examine statistical interaction, as

suggested by Botto and Khoury (Botto and Khoury 2001). From a case-control

study of DVT in relation to both Factor V Leiden genetic mutation and the COCP

(Vandenbroucke et al. 1994), data are summarised in Table 17.1. Only point

estimates are presented here, though attention should always additionally be

given to confidence intervals.

As the analysis is undertaken using odds ratios, it is typical to consider

the multiplicative scale. We might examine departure from a multiplicative
model with no statistical interaction on the odds ratio scale by considering the

observed (34.7) and expected (3.7 � 6.9 � 1.0 ¼ 25.7) odds ratios. Departure

is assessed as the ratio of observed to expected, i.e. 34.7/25.7 ¼ 1.4, which is a

small deviation from 1.0 (perhaps statistically significant for large studies). Alterna-

tively, we might examine departure from an additive model with no statistical

interaction on the additive scale by considering the observed (34.7) and expected

(3.7 + 6.9�1.0 ¼ 9.6) odds ratios additively. Departure is assessed as the differ-

ence, i.e. 34.7�9.6 ¼ 25.1, which is substantively far from zero (most likely

statistically significant, except for very small studies).

Is there any insight gained from formally testing either deviation if we do not

know how to interpret the statistical interaction (whether present or absent) on

either scale? It may be apparent that the multiplicative model fits the data better

than the additive model, statistically speaking, suggesting that the joint effects of

the genetic mutation and environmental exposure operate close to multiplicatively

(on the odds ratio scale). From a public health perspective, however, what does the

information in Table 17.1 really inform women considering the COCP?

Table 17.1 Summary of the case-control study investigating the joint

association of both Factor V Leiden genetic mutation and the combined oral

contraception pill (COCP) use with respect to deep vein thrombosis (DVT)

Factor V/COCP Cases Controls OR

+/+ 25 2 34.7

+/� 10 4 6.9

�/+ 84 63 3.7

�/� 36 100 1.0

Totals 155 169
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Relative to not having Factor V Leiden genetic mutation and not using the

COCP, taking the contraceptive increases a woman’s relative risk (RR) for DVT

by approximately 3.6 fold (since DVT is rare, OR � RR). If there was no reason for

the woman to suspect she had the genetic mutation, which has a prevalence of

around 4.4% in Europe (Rees et al. 1995), these increased risks might not trouble

her. On the other hand, if she was aware of a family history of DVT, she might

suspect an elevated possibility of having the genetic mutation. Considering the

relative risk of having both the mutation and using COCP (RR � 34.7) compared

to merely having the mutation (RR � 6.9), she might instead seek to use an

alternative contraception or explore being genetically tested.

There is no knowing how an individual woman would chose to use the informa-

tion in Table 17.1. It is perhaps dubious to suppose that her interest would lie in the

p-value of a formal test for a synergistic statistical interaction on the additive scale,

or the indication that a multiplicative odds ratio scale fits the data better. The mental

framework in which a woman’s decisions are informed seems more likely to be

based on the relative risk effect sizes (along with confidence intervals) than formal

testing of statistical interaction on any scale. This begs the question why we focus

on formal testing of statistical interaction. A related question is why are we so

concerned about the statistical power of such tests? This is addressed later.

17.6 Non-causal Gene-Environment Attenuation

Gene-environment joint effects are often investigated via statistical interaction to

evaluate if the environmental exposure attenuates the genetic effect, or vice versa.
Despite seemingly to suggest a causal relationship that may not be appropriate, the

pursuit of whether an environmental exposure operates differently according to

genetic makeup is a legitimate question. Unless one knows a priori the exact

relationship between outcome and continuous environmental exposure, however,

it is not possible to model this explicitly and the environmental exposure (raw or

transformed) may exhibit a curvilinear association with the outcome (via whichever

link function is used for statistical convenience). Consequently, it becomes impos-

sible to identify if the environmental effect on the outcome differs according to

genotype unless the distribution of the environmental exposure is balanced across

all levels of the genotype, which is typically ensured only if the genetic exposure is

randomly assigned. Alternatively, the genetic effect must have no association with

the environmental effect and there should be no intermediate variables linking the

genetic and environmental factors. This is counterfactual to the notion of biological

joint action of gene and environment.

Thus, where the underlying relationship between outcome and environmental

exposure is too complex to be modelled explicitly, where random allocation of the

genetic effect is ruled out, and the genetic and environmental effects are unrelated,

one can legitimately seek to evaluate if the environmental exposure attenuates the
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genetic effect, or vice versa. But this would not be deemed joint action, in a

biological mechanistic sense, and the effect of the environmental exposure on the

outcome (if inferred to be causal) is noted only to differ by genotype; there is no

inferred directmechanistic relationship between environmental exposure and geno-

type. It should be noted that whilst epidemiologists cannot randomise genes,

Mendelian randomisation (Davey and Ebrahim 2003) has been proposed to select

individuals according to a genetic predisposition to succumb to, or evade, an

environmental exposure. This may not always guarantee that the distribution of

the environmental exposure is balanced across levels of the genotype if intermediate

variables are involved jointly with both the genetic and environmental exposures.

17.7 Measurement Issues: Continuous vs. Categorical

Most concerns raised regarding the investigation of statistical interaction pertain to

the use of at least one continuous exposure, as it is upon a continuous scale that

interpretation becomes problematic. In the most part, simple genetic effects are

categorical, though for complex traits, as with multiple gene-gene joint effects,

categorical representation might be supplanted by an underlying continuous latent
trait. Notwithstanding such instances, genetic effects are otherwise viewed as

categorical. In contrast, environmental exposures are predominantly continuous,

even if not always treated as such; there is typically an underlying continuum, even

where the environmental exposure is quantified as present or absent, since there is

often an underlying latent and continuous concept of risk.
Furthermore, environmental exposures may be measured correctly as continuous

only to have measurement error introduced by categorisation, which is a common

bad habit amongst epidemiologists, leading potentially to substantial biases in the

estimates of statistical interaction (Greenwood et al. 2006; Tu et al. 2007). Worse

still, when continuous measurement is possible, a study might choose to measure

categorical exposures, thwarting any possibility of evaluating continuous data

subsequently. So rarely are environmental exposures intrinsically categorical (i.e.

not categorised continuous), and whenever an environmental exposure is treated

as categorical, we must not fail to recognise its likely underlying continuous nature.

In the DVT example, the environmental exposure for oral contraception was

categorical for simplicity, as this did not alter the relative importance of effect

size over statistical interaction. In reality, women experience different doses of

the COCP due to different periods of exposure and different pill formulations. In the

hypothetical example where salt intake was categorised, interpretation of the

statistical interaction for both the continuous and logistic outcome models is

difficult, as there is no readily interpretable scale for the relationship between

blood pressure and salt level that is not also dependent upon the threshold of the

continuous environmental exposure. Were we to seek meaning from a model

coefficient, its magnitude depends upon which model is adopted (normal or logis-
tic), which thresholds were adopted for salt intake (and blood pressure in the
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logistic model), and whether or not the BP-Salt relationship is linear or not on either
scale (it cannot be linear on more than one scale; it may not be linear on either

conveniently adopted scale).

In the very limited circumstances that environmental exposures are intrinsically

categorical, the interpretation of joint effects is straightforward, as with purely

gene-gene interactions. For g genetic categories and e environmental categories,

g� e joint effects are to be estimated. These could be evaluated as within

Table 17.1, or within a regression model that could then consider, simultaneously,

other potentially confounding factors (though interpretation of confounding needs

careful consideration, as discussed in Chap. 4). The g� e joint effects of the gene-
environment interaction are readily derived and their impact, hence interpretation,

is observed directly via model coefficients along with confidence intervals. There is

little more to interpret than the effect-size estimated.

17.8 To Test Linearity and Multivariate Normality

Focus thus far has been given to interpreting statistical interaction biologically, as

this is the area of considerable misunderstanding and where most errors are reported

in the literature. There is, however, statistical utility in understanding statistical

interaction, which in some instances has biological utility also. It has been proposed

in the statistical literature that testing the product term in a linear regression model

is suitable for examining both linearity (between outcome and covariates via a

suitable link function) and the multivariate normality of covariates (Cox and

Small 1978; Cox and Wermuth 1994). Consider the statistical linear model with

three continuous measures:

y ¼ b0 þ b1x1 þ b2x2 þ b3x1x2 þ e (17.11)

where y is the outcome, xi (i ¼ 1. . .2) are covariates, bi (i ¼ 1. . .3) regression
coefficients, and e is residual error, assumed to be normally distributed with mean

zero and variance s2. If the variables y, x1, and x2 are multivariate normal, it can be

shown mathematically that there is no statistical interaction (i.e. b3 ¼ 0), regardless

of the bivariate correlation structure amongst all three variables (Tu et al. 2007).

Were these variables to represent biological measures, this indicates that linearity

and multivariate normality are upheld amongst all three measures. Conversely, any

deviation from linearity or multivariate normality yields a statistical interaction.

Biologically, interpretation is more about understanding outcome and covariate

inter-relationships with respect to linearity and multivariate normality, and not joint

biological action. Consider, for instance, the situation where the variables are

multivariate normal (hence b3 ¼ 0) and x2 is log-transformed:

y ¼ b̂0 þ b̂1x1 þ b̂2ln x2ð Þ þ b̂3x1ln x2ð Þ þ ê (17.12)

306 M.S. Gilthorpe and D.G. Clayton

http://dx.doi.org/10.1007/978-94-007-3024-3_4


where b̂i (i ¼ 1. . .3) are the revised regression coefficients, and ê is the revised

residual error. It is now highly implausible that the statistical interaction is zero (i.e.

b̂3 6¼ 0), though not as a consequence of anything that has biological meaning,

since nothing has changed biologically between models Eq. 17.11 and Eq. 17.12;

only the log-transformation of x2 is different. Statistical interaction is generated

where there was none before by transformation of the data. This would be true

irrespective of which variable is transformed. If the outcome were transformed, this

is analogous to using a non-identity link function, which is why the absence of

statistical interaction on one scale (the normal scale) can become statistical inter-

action on a transformed scale (the logit scale).
Biological measures are often transformed for statistical convenience, e.g.

positively skewed outcomes might be log-transformed to attain a more normal
distribution (though it is model residuals and not variable values that must be

normally distributed for normal models). Variable transformation is required

amongst covariates only if the assumption of linearity is not upheld and this cannot

be modelled via a curvilinear or some other parameterisation. Where model

assumptions are not satisfied, the act of transformation to improve model perfor-

mance will affect the statistical interaction. If biological measures are ‘well

behaved’ and several such measures are multivariate normal (or multivariate log-

normal if log-transformed), there will be few statistical interactions in a regression

model. Alternatively, if biological measures are ‘messy’, or do not capture well the

underlying processes under investigation (such that the data collected do not follow

multivariate normality), then statistical interactions will be present, though these

will have limited biological interpretation. If the modelling process indicates data

transformation may be required to improve model performance, statistical

interactions may come and go, even changing sign, merely due to data manipula-

tion. Since nothing changes biologically, biological interpretation of statistical

interaction in these instances is nonsensical.

The correct interpretation of statistical interaction is thus concerned with the

outcome and covariates inter-relationships with respect to linearity andmultivariate
normality, and not joint biological action. Statistical interaction indicates that, as

entered into the model, the outcome and covariates do not exhibit linearity and

covariates do not exhibit multivariate normality. This can have utility if seeking to

determine a scale upon which covariates exhibit multivariate normality, as with

variables that are mechanistically closely linked. Where changes in one measure are

thought to cause changes in others in a linear fashion, underlying multivariate

normality might be anticipated. One could then seek the absence of statistical

interaction to determine the correct joint scale of the variables.

17.9 Statistical Power to Test for Interaction

It is well documented that much larger sample sizes are required to test statistical

interactions than for main effects (Greenland 1983), and it is a criticism directed

at many studies for being too small to examine gene-environment interactions.
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Notwithstanding the overzealous nature to test (and the associated undesirable

dependency on p-values), the reasoning behind such sample-size criticisms is

flawed, since the statistical power of an interaction is just as scale-dependent as

the statistical interaction itself. Without a meaningful scale upon which the test is

sought, there is no basis for power calculations; it is the confidence interval of the

estimated effect size that is informative. Perversely, one might use existing data

from pilot studies and transform away and test repeatedly until one finds a scale

upon which the sample size needed is minimal. This strategy might save enormous

amounts of money in epidemiology were it not pointless because interpretation of

the interaction derived for a minimum sample size is meaningless if the scale

adopted upon which the test is conducted has no interpretable utility.

Unfortunately, this issue is not just overlooked by researchers, since referees

for journals and grants, as well as journal editors, can be quite over-enthusiastic,

sometimes vigilant, in pursuit of power calculations for gene-environment

interactions that have no interpretable utility. Were a meaningful scale found,

upon which it is appropriate to interpret statistical interaction, and hence evaluate

statistical power, it then becomes a matter of whether or not this scale lends itself to

a viable model, where all model assumptions are met. Without due care and

attention in considering model assumptions and model scale, most of what purports

to be an investigation into statistical interaction is found wanting in both rigour and

biological meaning.

17.10 Summary

Testing the effect of a risk factor on individuals may have a clear biological

interpretation, but testing for statistical interaction between two factors has a

mathematical interpretation, which is different. If the model has no biological

analogue, hence no biological interpretation, then testing for statistical interaction

might not contribute to biological understanding; indeed, it could confuse. Whilst

the quantification of joint effects remains a legitimate aim, its utility does not lie in

the elucidation of biological processes. There is an overreliance on the linear

regression model, with too few checks and balances to verify model assumptions.

There is also an overzealous interpretation of models invoking potential biological

mechanisms.

Model scale and linearity assumptions are typically overlooked, potentially

leading to confusion surrounding the interpretation of statistical interaction,

particularly within the domain of gene-environment interaction. Such arguments

have been made before, yet the previous literature that warned against these poor

practices, continues to receive little acclaim, as pointed out two decades ago by

Thompson when he reflected upon the even earlier debate on statistical interaction

at the start of the 1980s: “A decade ago the concept of interaction among causes of

disease was at the center of a lively debate. Since that time, controversy over the
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nature of interaction has largely subsided, although there seems never to have

been an adequate resolution of the conceptual and pragmatic issues that had

been raised” (Thompson 1991). He went on: “Unfortunately, choice among

theories of pathogenesis is enhanced hardly at all by the epidemiological assess-

ment of interaction . . . What few causal systems can be rejected on the basis

of observed results would provide decidedly limited etiological insight”

(Thompson 1991).

Problems persist with the misinterpretation of statistical interaction and over-

zealous attempts to interpret statistical interaction with biological meaning.

Researchers continue to pursue gene-environment interactions with no robust

insight as to what they mean. There is now almost an obsession to include some

form of formal testing for joint genetic and environmental effects wherever a study

records both, without an adequate a priori statement of what it is that is being

confirmed or refuted, either biologically or otherwise. This behaviour fuels atten-

tion to study sample size, pressuring researchers to seek statistical power sufficient

for the elucidation of significant gene-environment statistical interactions. Conse-

quently, there is a perceived and falsely legitimised demand for increasingly large

epidemiological studies. Less attention is given to the estimated size of main effects

and joint effects for clinical interpretation, or the evaluation of plausible underlying

causal paths amongst the factors being considered. There is perhaps an unease to

consider more sophisticated methods, such as structural equation modelling (SEM).

This is why one author of this chapter and his colleague felt it necessary in 2001 to

reaffirm the many points said throughout the previous decades and rehearsed here:

“The prospects for epidemiology in the post-genomic era depend on under-

standing how to use genetic associations to test hypotheses about causal pathways,

rather than modelling the joint effects of genotype and environment” (Clayton

and McKeigue 2001).

It thus remains necessary to spell out repeatedly and vehemently the many issues

associated with interpretation of statistical interaction in the hope to encourage

better epidemiological practice and dispel persistent and inappropriate pursuit of

the gene-environment statistical interaction. It is more appropriate to employ

statistical models to understand causal pathways than pursue statistical interaction.

Whilst statistical modelling (indeed statistical epidemiology) opens a window

on the biological world for investigation of cause and effect, one has to know

how to investigate what we go in search of, how to see what we find, and how
to interpret what we see. Otherwise, we kid ourselves with nothing more than

smoke and mirrors.

17.11 Further Reading

In addition to citations in this chapter, there are those provided in the papers

commentating on the recurring debate surrounding statistical interaction within

epidemiology by Thompson (1991) and by Clayton and McKeigue (2001).
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Amongst the citations here, the more recent by Clayton (2009) is a good source for

the genetics literature and a must for the more generic overview is the seminal

review by Cox (1984).
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