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Abstract Two classes of lipid phosphatases selectively dephosphorylate the 3 po-
sition of the inositol ring of phosphoinositide signaling molecules: the PTEN and
the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P3, acting in direct
opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation
and polarity and is an important tumor suppressor. Although there are several PTEN-
related proteins encoded by the human genome, none of these appear to fulfill the
same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and
PtdIns(3,5)P2, making them antagonists of the Class II and Class III PI 3-kinases and
regulators of membrane traffic. Both phosphatase groups were originally identified
through their causal mutation in human disease. Mutations in specific myotubular-
ins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy;
and loss of PTEN function through mutation and other mechanisms is evident in as
many as a third of all human tumors. This chapter will discuss these two classes of
phosphatases, covering what is known about their biochemistry, their functions at
the cellular and whole body level and their influence on human health.
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8.1 Introduction

Phosphoinositides are second messengers that relay extracellular signals to initiate
cellular signaling cascades. They are derived from the precursor phosphatidylinositol
(PtdIns), which can be transiently phosphorylated at the D3, D4 or D5 position of the
inositol head group. Seven phosphoinositide species have been currently identified,
each with unique subcellular localization patterns and distinct roles in cellular sig-
naling pathways. Generation of phosphoinositides phosphorylated at the D3 position
of the inositol head group is a critical component in phosphoinositide metabolism,
and in the coordination of cellular responses required for appropriate physiologi-
cal development. Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) levels
are low in quiescent cells but increase transiently in response to agonist stimula-
tion. Agonist-induced activation of the class I phosphatidylinositol 3-kinase (PI3K)
results in the generation of PtdIns(3,4,5)P3 at the plasma membrane through the
phosphorylation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) at the D3
position of its inositol head group. PtdIns(3,4,5)P3 directs numerous cellular pro-
cesses, including cell proliferation, growth, survival, cell polarity and migration.
Phosphatidylinositol 3-phosphate (PtdIns(3)P) is constitutively generated at the site
of early endosomes by the class III PI3K (Vps34) or by the class II PI3K. PtdIns(3)P
regulates endosomal fusion and motility; receptor sorting and recycling; and vesi-
cle trafficking. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) is generated
by phosphorylation of PtdIns(3)P by the PIKfyve kinase on early and/or late en-
dosomes and regulates endosomal sorting and endomembrane homeostasis. The
downstream cellular effects of 3-phosphorylated phosphoinositides are transmit-
ted via the recruitment of specific phosphoinositide-binding proteins. This occurs
either through interaction of the phosphoinositide inositol head group with basic
amino acid residues or alternatively via interaction with discrete phosphoinositide-
binding domains, for example pleckstrin homology (PH) domains. Dysregulation
of 3-phosphoinositide metabolism leads to the disruption of cellular function and
the development of disease. Therefore, their levels are tightly regulated by the ac-
tivity of the phosphoinositide kinases, which generate them; and the activity of
phosphoinositide 3-phosphatases, which selectively remove the phosphate group at
the D3 position of their inositol head-groups. The phosphoinositide 3-phosphatases
include PTEN and its related homologs; and the multiple members of the myotubu-
larin (MTM) family. These enzymes share a highly conserved phosphatase domain,
containing a CX5R catalytic motif, and both will be described within this chapter.
While in vitro kinetic analyses have demonstrated enzyme activity of PTEN and
MTMs toward membrane-bound phosphoinositides and soluble inositol phosphates,
membrane-bound phosphoinositides are recognized as their preferred physiological
substrates. Therefore, at the functional level, the 3-phosphatases act preferentially
at membrane microdomains at the plasma membrane or on intracellular organelles
such as early endosomes.

PTEN is a recognized tumor suppressor gene, which is frequently mutated at
the 10q23 chromosomal locus in both spontaneous cancers and hereditary cancer
predisposition syndromes. PtdIns(3,4,5)P3 is the recognized physiological substrate
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of PTEN, generating PtdIns(4,5)P2. Therefore, PTEN directly antagonizes the Class
I PI3K at the plasma membrane, and thereby regulates cell proliferation, survival,
cell cycle progression, cell polarity, migration, invasion, embryonic development,
immune function, insulin signaling and glucose metabolism. The myotubularins
are a large family consisting of 9 catalytically active and 7 catalytically inactive
family members. Heterodimeric interaction between active and inactive members
of the myotubularin family regulates catalytic activity and/or sub-cellular protein
localization of the active family members. Myotubularins hydrolyze PtdIns(3)P and
PtdIns(3,5)P2, to generate PtdIns and PtdIns(5)P respectively. Therefore, MTMs
antagonize Class II and III PI3Ks, thereby regulating phosphoinositide-dependent
endosomal membrane homeostasis. Mutations in various members of the myotubu-
larin family are associated with human disease, including the peripheral neuropathy
Charcot-Marie Tooth disease; and mytobular or centronuclear myopathies. Dephos-
phorylation of phosphoinositides at the D3 position of the inositol head-group is
also a function of Sac1, which has been extensively described in Chap. 7, and will
not be further described here. The following chapter will discuss the prominent
features of these two families of 3-phosphoinositide phosphatase enzymes, focusing
on current studies that enhance our knowledge of how the loss of function of these
proteins contributes to human diseases.

8.2 PTEN

PTEN/MMAC/TEP1 (phosphatase and tensin homolog deleted on chromosome
ten/mutated in multiple advanced cancers/TGFβ-regulated and epithelial cell-
enriched phosphatase) is a tumor suppressor that is frequently mutated in sporadic
human cancers and also in the inherited autosomal dominant cancer predisposi-
tion syndromes, Cowden disease, Lhermitte-Duclos disease, Bannayan-Zonana
syndrome, and Proteus and Proteus-like syndromes (Yin and Shen 2008). These
syndromes are characterized by developmental disorders, including neurological
abnormalities, multiple hamartomas, and an associated increased risk of cancer de-
velopment in later life, including breast, thyroid, and endometrial cancers (Liaw et al.
1997; Marsh et al. 1997; Tsuchiya et al. 1998). Other PTEN-like phosphatases have
been identified in humans including the Trans-membrane Phosphatase with Tensin
homology (TPTE), and the TPTE and PTEN homologous inositol lipid phosphatase
(TPIP/TPTE2). However, these enzymes appear to be expressed predominantly in
the testis, and although their functions are poorly defined, they seem quite distinct
from those of PTEN, reviewed in (Sasaki et al. 2009).

PTEN shares sequence homology with the protein tyrosine phosphatase family
and initial reports identified PTEN as a dual-specificity protein phosphatase (Li and
Sun 1997; Myers et al. 1997). Subsequent studies using recombinant PTEN iden-
tified its 3-phosphatase activity toward PtdIns(3,4,5)P3, PtdIns(3,4)P2, PtdIns(3)P,
and Ins(1,3,4,5)P4 (Maehama and Dixon 1998). Whilst constitutive elevation of
both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 have been identified in PTEN-null cells
(Haas-Kogan et al. 1998; Taylor et al. 2000b), there is evidence to indicate that
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PtdIns(3,4,5)P3 is the major physiological target of PTEN. Firstly, a H93A PTEN mu-
tant selectively reduces PTEN activity toward PtdIns(3,4,5)P3, but not PtdIns(3,4)P2

(Lee et al. 1999). Furthermore, the catalytic efficiency of PTEN for PtdIns(3,4,5)P3 as
a substrate is 200-fold greater than that for PtdIns(3,4)P2 (McConnachie et al. 2003).
Therefore, in the physiological context, it is likely PTEN is a phosphoinosi-
tide phosphatase that preferentially hydrolyzes the D3-position phosphate from
PtdIns(3,4,5)P3, to generate PtdIns(4,5)P2, and thereby directly antagonizes phos-
phoinositide 3-kinase (PI3K) signaling and attenuates Akt activation to regulate cell
survival and proliferation (Salmena et al. 2008).

8.2.1 PTEN Structure

Several domains and motifs have been identified in PTEN that contribute to its ac-
tivity, stability or localization (Fig. 8.1). PTEN contains two major domains, which
associate across an extensive interface through hydrogen bonding (Lee et al. 1999;
Li et al. 1997; Steck et al. 1997). Within the amino-terminal domain is the catalytic
phosphatase domain, that contains a conserved CX5R catalytic motif; and also an ex-
treme amino-terminal PtdIns(4,5)P2—binding motif (Walker et al. 2004; Campbell
et al. 2003; Iijima et al. 2004). The carboxyl-terminal domain contains a calcium-
independent phospholipid binding C2 domain that regulates its plasma membrane
localization; two PEST (proline, glutamic acid, serine, threonine) sequences, and a
PDZ (Post synaptic density protein, Drosophila disc large tumor suppressor, zonula
occludens-1 protein)-binding domain, that mediates the interaction with several bind-
ing partners and can affect PTEN protein stability (Salmena et al. 2008). Examination
of PTEN’s crystal structure reveals the presence of a more enlarged catalytic pocket,
in comparison to protein tyrosine phosphatases, which also have a CX5R catalytic
motif, facilitating the association of PtdIns(3,4,5)P3 with particular basic catalytic
residues (Lee et al. 1999). The amino-terminal PtdIns(4,5)P2—binding motif, in
addition to the C2 domain, regulates the transient association of PTEN from the
cytosol to the plasma membrane, positioning the phosphatase for maximal access to
its membrane-bound phosphoinositide substrate.

8.2.2 Regulation of PTEN

PTEN can be regulated both at the level of transcription, or by post-translational
modification. Indeed, regulation of PTEN at the transcriptional level plays a promi-
nent role in those cancers or cases of Cowden disease in which mutation of PTEN is
absent, but PTEN expression is lost. Naturally occurring alternative splice variants of
PTEN have been identified in both normal and cancerous tissue (Sharrard and Mait-
land 2000). However, in identified PTEN mutation-negative cases of Cowden disease
or sporadic breast cancers, alternative splice variants of PTEN are found to associate
with decreased transcription of full-length PTEN (Sarquis et al. 2006; Agrawal and
Eng 2006). Epigenetic silencing of the PTEN promoter through methylation and the
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Fig. 8.1 Schematic representation of the major domains of the human PTEN family. The domain
structure of human PTEN is shown, along with its closest 7 relatives within the human genome.
More distantly related phosphatases display both lower sequence identity through the phosphatase
domain and lack an adjacent recognizable C2 domain. Numbers below each protein name show
the sequence identity with PTEN through the phosphatase domain. Domains are those identified
in the NCBI/CDD database. Abbreviations: GAK Cyclin G-associated Kinase, PTP/DSP Protein
tyrosine phosphatase/dual specific phosphatase, M Transmembrane domain, SH2 Src homology 2,
PTB Phosphotyrosine binding, S/T Kinase Serine/Threonine Protein Kinase, PDZB binding motif
for PDZ domains (Post synaptic density protein, Drosophila disc large tumor suppressor, zonula
occludens-1 protein)

actions of several oncogenic microRNAs also decrease PTEN protein expression in
sporadic cancers (Khan et al. 2004; Whang et al. 1998; Mirmohammadsadegh et al.
2006; Salvesen et al. 2004; Poliseno et al. 2010a).

Post-translational modifications of PTEN may regulate protein stability, expres-
sion, catalytic activity or sub-cellular localization. PTEN interacts with PCAF
(p300/CBP-associated factor), a histone acetyltransferase that regulates gene tran-
scription (Okumura et al. 2006; Yao and Nyomba 2008). Interaction of PTEN and
PCAF results in increased acetylation of Lys125 and Lys128, within the catalytic
cleft of PTEN, inhibiting PTEN’s phosphatase activity. Several studies have shown
that phosphorylation of specific residues within the carboxyl-terminal of PTEN by
a number of kinases also regulates protein stability and turnover. Phosphorylation
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of PTEN at a cluster of phosphorylation sites (Ser380, Thr382, Thr383 and Ser385)
in the carboxyl-terminal tail region by casein kinase 2 promotes a conformational
change in PTEN, indirectly increasing PTEN’s resistance to proteosome-mediated
degradation, but decreasing its membrane association and cellular activity (Vazquez
et al. 2000, 2001, 2006; Torres and Pulido 2001; Maccario et al. 2010). Conversely,
glycogen synthase kinase 3β (GSK3β)-mediated phosphorylation of PTEN at Thr366

in its carboxyl-terminal tail results in protein destabilization (Maccario et al. 2007).
Phosphorylation of PTEN by the Src family of protein-tyrosine kinases, probably
within the C2 domain, may also regulate protein stability or its sub-cellular local-
ization (Lu et al. 2003). Additionally, the candidate tumor suppressor, PICT-1 (also
known as GLTSCR2) promotes PTEN phosphorylation and stability, although the
precise mechanism is unclear (Okahara et al. 2004). PEST sequences are commonly
found in proteins that are targeted for degradation within the ubiquitin pathway.
Phosphorylation-dependent polyubiquitination has been proposed as a potential
molecular mechanism targeting PTEN for proteosomal degradation (Tolkacheva et al.
2001), however, the identification of the physiological ubiquitin ligase remains to
be confirmed. Studies in which NEDD4-1 levels were manipulated through ectopic
expression or RNA interference, identified this protein as the E3 ubiquitin ligase
that polyubiquinates PTEN (Wang et al. 2007, 2008). However, studies in Nedd4-1
knockout mice, showed that Nedd4-1 was dispensable for the regulation of PTEN
stability, activity and/or localization (Fouladkou et al. 2008). The reasons for these
apparent contradictory findings are yet to be resolved.

Recently PTEN was demonstrated to interact with P-Rex2, a multi-domain pro-
tein that contains a Rac GEF domain and a domain with homology to the inositol
polyphosphate 4-phosphatases. Within this latter domain P-Rex2 contains a CX5R
motif, but there is no evidence that P-Rex2 or the related P-Rex1 are catalytically
active phosphoinositide phosphatases (see Chap. 7). The interaction between P-Rex2
and PTEN inhibits PTEN catalytic activity, and as a consequence cell proliferation
and survival is enhanced (Fine et al. 2009).

8.2.3 Functional Roles of the Protein Versus Lipid Phosphatase
Activity of PTEN

Lipid phosphatase-independent roles for PTEN are currently emerging; however, the
identification of the G129E missense mutation in Cowden disease kindred, which
selectively eliminates the lipid phosphatase activity of PTEN, while retaining its pro-
tein phosphatase activity, demonstrates that the lipid phosphatase activity of PTEN
is essential for tumor suppression (Furnari et al. 1998; Myers et al. 1998). However,
while PTEN is the central regulator of the PI3K signaling pathway, reports from many
studies suggest a role for the protein phosphatase activity of PTEN, particularly in
adhesion and cell migration, and the functional role of PTEN may indeed require
both its lipid and protein phosphatase activities. Potential PTEN protein substrates
include FAK, Shc and platelet-derived growth factor receptor (PDGFR) (Gu et al.
1999; Tamura et al. 1998; Mahimainathan and Choudhury 2004); however, whether



8 The PTEN and Myotubularin Phosphoinositide 3-Phosphatases 287

these are bona fide physiological targets of PTEN remains unresolved (Davidson
et al. 2010).

In Dictyostelium discoideum (D. discoideum), PTEN sub-cellular localization is
restricted to the rear and lateral aspects of the cell, ensuring PtdIns(3,4,5)P3 is lo-
calized to the leading edge of chemotaxing cells (Funamoto et al. 2002; Iijima and
Devreotes 2002). The reconstitution of wild-type PTEN into PTEN-null mouse fi-
broblasts inhibits cell migration, and decreases the activation of the small GTPases
Rac1 and Cdc42, dependent on the lipid phosphatase activity of PTEN (Liliental et al.
2000). However, studies using the G129E mutant (Furnari et al. 1998; Myers et al.
1998) have shown that PTEN can inhibit mammalian cell migration through a mech-
anism that is dependent on PTEN’s protein phosphatase activity (Tamura et al. 1998,
1999a; Dey et al. 2008; Leslie et al. 2007; Gildea et al. 2004; Gu et al. 1999). The
most compelling function of the protein phosphatase activity of PTEN in the regula-
tion of mammalian cell migration is its proposed role in the auto-dephosphorylation
of its carboxyl-terminal tail to reveal its lipid-binding C2 domain. PTEN inhibits cell
migration in glioblastoma cells, independent of its lipid phosphatase activity, but
reliant on its protein phosphatase activity (Raftopoulou et al. 2004). The C2 domain
alone can also inhibit cellular migration in microinjection experiments, suggesting
that this activity of the C2 domain may be regulated by the full-length protein. The
dephosphorylation of PTEN is essential to C2 domain activation and is dependent
solely on the protein phosphatase activity of PTEN. Raftopoulou et al. identified the
specific dephosphorylation of residue Thr383 as important in this process; however
analysis in many cell types by multiple groups using phospho-specific antibodies
has failed to delineate the significance of this site as compared to the other phospho-
rylation cluster sites Ser380, Thr382 and Ser385 in the regulation of PTEN’s activity
and function (Odriozola et al. 2007; Leslie et al. 2007; Rahdar et al. 2009). PTEN
has previously been shown to exhibit preferential protein substrate specificity toward
highly acidic proteins and peptides (Myers et al. 1997). The PTEN carboxyl-terminal
tail is predominantly acidic, which may implicate the protein phosphatase activity
of PTEN in its autodephosphorylation, leading to the activation of the C2 domain
and inhibition of cellular migration. In support of this, a 71 amino acid region within
the carboxyl-terminal tail of PTEN has been identified as an auto-inhibitory domain
that regulates membrane localization and catalytic activity through an intramolecular
association with the CBRIII motif of the C2 domain (Odriozola et al. 2007). One
report suggests that PTEN is involved in the regulation of two distinct processes that
require the co-operation of both its lipid and protein phosphatase activities to mediate
cell migration during embryonic development (Leslie et al. 2007). The protein phos-
phatase activity of PTEN is required for the control of epithelial-to-mesenchymal
transition (EMT) via the autodephosphorylation of its carboxyl-terminal domain,
while the lipid phosphatase activity of PTEN regulates PtdIns(3,4,5)P3-dependent
cell polarization and directionality of mesodermal cell migration. A recent study has
also contributed to the contention that both the lipid and phosphatase activities of
PTEN are required to act in co-operation to regulate physiological processes. David-
son et al. generated a novel PTEN mutant, Y138L, which retains lipid phosphatase
activity, but lacks phosphatase activity toward protein substrates (Davidson et al.
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2010). Using this mutant alongside the well-described G129E mutant, the role of the
lipid and protein phosphatase activities of PTEN in physiological processes was fur-
ther delineated. The lipid phosphatase activity of PTEN regulated cell proliferation in
soft agar and cell spreading. Adherent cell migration was regulated by either the pro-
tein or lipid phosphatase activities of PTEN; whereas cellular invasion required the
coordinated actions of both activities. Therefore, the lipid and protein phosphatase
activities of PTEN may be required for the regulation of cellular processes important
in development and disease prevention.

8.2.4 A Nuclear Function for PTEN

Apart from its function as a negative regulator of PI3K-mediated signaling pathways
at the plasma membrane, a role for PTEN within the cell nucleus is currently emerg-
ing. The localization of PTEN within the nucleus has been described in a range of both
normal and tumor cells, with nuclear exclusion of PTEN associated with increased
cancer progression (Zhou et al. 2002; Perren et al. 2000; Fridberg et al. 2007). At
the functional level, targeted expression of PTEN within the nucleus does not affect
catalytic activity in vitro, but leads to loss of PTEN function in cellular assays of pro-
liferation, promotes cell cycle arrest and inhibits anchorage-independent cell growth
(Ginn-Pease and Eng 2003; Liu et al. 2005b; Chung and Eng 2005; Denning et al.
2007). Therefore, control of PTEN localization may become a future therapeutic tool.

While a traditional NLS (nuclear localization signal) has not been identified in
PTEN to date, a number of mechanisms regulating PTEN nuclear localization have
been proposed. PTEN has been shown to enter the nucleus through passive diffusion
in a RAN (Ras-related nuclear protein)-independent manner (Liu et al. 2005a). Puta-
tive NLS-like sequences have additionally been identified in PTEN that are required
for nuclear import, mediated through interaction with MVP (major vault protein)
(Chung et al. 2005). A further mechanism has identified both putative NLS and
nuclear exclusion motifs as necessary for nuclear localization of PTEN, mediated
through currently unidentified importin proteins and RAN (Gil et al. 2006). Finally,
mono-ubiquitination is emerging as a critical means of regulating PTEN localiza-
tion. NEDD4-1-mediated mono-ubiquitination of Lys289 or Lys13 residues within
PTEN has been identified as a molecular mechanism that regulates nuclear import
of the protein (Trotman et al. 2007). Although the nuclear function of PTEN re-
mains to be fully characterized, the K289E mutation in the carboxyl-terminal tail
of PTEN is associated with Cowden disease. This point mutation does not affect
catalytic activity or plasma membrane localization (Georgescu et al. 2000), but
prevents mono-ubiquitination at this site (Trotman et al. 2007). Alternative reg-
ulation of mono-ubiquitination of PTEN occurs through the opposing actions of
HAUSP (herpesvirus-associated ubiquitin-specific protease) and PML (promyelo-
cytic leukemia protein) via the adapter protein DAAX (death domain-associated
protein) (Song et al. 2008). PTEN localization is abnormal in acute promyelocytic
leukemia where PML function is impaired; and HAUSP is over-expressed in human
prostate cancer and is associated with nuclear exclusion of PTEN.
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While a nuclear pool of PtdIns(3,4,5)P3 has been identified, this may be insen-
sitive to PTEN expression (Lindsay et al. 2006), suggesting a phosphoinositide
phosphatase-independent role for nuclear PTEN. In support of this, several groups
have described phosphatase-independent functions of PTEN within in the nucleus,
which may promote chromosome stability. These functions are predominantly
associated with the regulation of protein interactions within the nucleus. Phosphatase-
independent protein interactions between PTEN and p300 in the nucleus induce
hyper-acetylation of p53, inducing cell cycle arrest in response to DNA damage
(Liu et al. 2006). An association between loss of PTEN and chromosomal fragmen-
tation has recently been described, suggesting a possible role for PTEN in DNA
repair mechanisms. Endogenous PTEN was identified at the centromere, where it
associated with the core centromeric protein Cenp-C, a protein required for kineto-
chore assembly and also during mitosis for metaphase to anaphase transition (Shen
et al. 2007). This association was mediated via the carboxyl-terminus of PTEN,
independently of catalytic activity.

8.2.5 PTEN Function as Revealed by Mouse Knock-out Studies

To dissect PTEN function, both global and tissue-specific deletion of PTEN in
mice have been undertaken over the last 10 years. These studies have revealed
roles for PTEN in autoimmune disease, non-alcoholic steatohepatitis, insulin hy-
persensitivity, heart failure, angiogenesis via regulation of endothelial cell function,
macroencephaly, bone density, respiratory distress syndrome, immunoglobulin class
switching, and resistance to hair graying to name a few (Knobbe et al. 2008). Ho-
mozygosity for a null mutation of Pten in mice results in early embryonic lethality
(Di Cristofano et al. 1998, 1999; Podsypanina et al. 1999; Stambolic et al. 1998;
Suzuki et al. 1998). Many different tissue-specific mouse Pten knockouts have been
generated and their phenotypes are summarized in Table 8.1. For more detailed de-
scriptions of conditional Pten mutant mice the reader is referred to recent reviews
(Suzuki et al. 2008; Knobbe et al. 2008).

8.2.6 Disruption of PTEN Correlates with Tumorigenesis
and Cancer Progression

After p53, PTEN is the second most frequently mutated tumor suppressor gene in
human cancer. It was identified as the tumor suppressor gene at the 10q23 human
chromosomal locus, a region frequently mutated in a vast range of sporadic can-
cers (Li and Sun 1997; Steck et al. 1997). The classification of PTEN as a tumor
suppressor is further sustained through the identification of germline mutations of
PTEN in the autosomal dominant cancer predisposition syndromes, Cowden disease,
Lhermitte-Duclos disease and Bannayan-Zonana syndrome. While targeted disrup-
tion of Pten in mice results in early embryonic death between embryonic day 6.5 and
9.5, the phenotype exhibited in heterozygotes varies, possibly as a result of variations
in targeting constructs; however, increased susceptibility to tumor formation is
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Table 8.1 Genetically modified PTEN murine models

PTEN knockout
mouse model

Phenotype Reference

Constitutive Pten knockout mice
Global Homozygotes: Embryonic death at E6.5-E9.5

Heterozygotes: Increased susceptibility to tu-
mor development in multiple tissues. Increased
autoimmune responses

(Di Cristofano et al.
1998, 1999;
Podsypanina et al.
1999; Stambolic et al.
1998; Suzuki et al.
1998)

Conditional Pten knockout mice (single mutants)
Adipocyte-specific
(aP2Cre)

Improved systemic glucose tolerance and
insulin sensitivity. Increased resistance to
diabetes

(Kurlawalla-Martinez
et al. 2005)

B-cell-specific
(CD19Cre)

Impaired immunoglobulin class switching and
defective B-cell homeostasis.
Hyper-proliferation, resistance to apoptosis and
enhanced migration of splenic B-cells.
Abrogation of BCR-mediated apoptosis and
restoration of BCR-induced cell cycle
progression via PtdIns(3,4,5)P3-dependent
signaling pathways in immature B cells

(Suzuki et al. 2003b;
Anzelon et al. 2003;
Cheng et al. 2009)

Cardiomyocyte-
specific
(MckCre)

Cardiac hypertrophy from 10 weeks of age and
decreased cardiac contractility

(Crackower et al. 2002)

Cerebellum-specific
(En2Cre-neuronal
and glial cells of the
vermis of the
cerebellum)
(L7Cre-Purkinje
cells)

Reduced proliferation and progressive loss of
Purkinje cells, beginning in early postnatal
development, characterized by increasing
vacuolation of the cells and the accumulation of
fibrillary inclusions. Increased cerebellar size,
neurons with larger soma size and thickened
dendrites, dysplastic astrocytes and abnormally
localized oligodendrocytes

(Marino et al. 2002)

Chrondrocyte-
specific
(Col2a1Cre)

Contrasting phenotype reported in two
independent studies. Ford-Hutchinson et al.
showed increased skeletal size, increased
vertebrae size, and primary spongiosa
development. They described disorganization
of long bone growth plates, matrix
overproduction and accelerated hypertrophic
differentiation. No evidence of hamartoma,
benign bone lesions, or chondrosarcoma was
reported, however, 2/12 mice followed for a
period of 12 months, developed metastatic
osteosarcoma. However, Yang et al. described a
phenotype with chondrocyte-specific deletion
of Pten resulting in dyschondroplasia, as a
result of delayed chondrocyte differentiation
and decreased proliferation. Pathological
cartilaginous neoplasms were evident from
birth resembling human enchondroma

(Ford-Hutchinson et al.
2007; Yang et al. 2008)
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Table 8.1 (continued)

PTEN knockout
mouse model

Phenotype Reference

Endothelial
cell-specific
(Tie2Cre)

Homozygotes: Embryonic death prior to E11.5,
associated with bleeding and cardiac failure as a
result of impaired recruitment of pericytes and
vascular smooth muscle cells to blood vessels,
and cardiomyocytes to the endocardium
Heterozygotes: Enhanced tumorigenesis due to
increased angiogenesis, associated with altered
expression of endothelial cell receptor proteins,
vascular adhesion molecules and vascular
growth factors

(Hamada et al. 2005)

Hematopoietic stem
cells (pIpc-inducible
Mx1Cre)

Rapid development of myeloproliferative
disorders within 4–6 weeks of age, which
progressed to acute myeloid leukemia or acute
lymphoblastic leukemia

(Yilmaz et al. 2006;
Zhang et al. 2006)

Hepatocyte-specific
(AlbCre)

Increased hepatomegaly, steatohepatitis and an
accumulation of triglycerides similar to that in
human non-alcoholic steatohepatitis (NASH).
Increased levels of C16:1 and C18:1 acids
within the liver. Increased induction of
adipocyte-specific genes (adipsin, adiponectin,
and aP2) and lipogenic genes. Increased
development of liver adenoma and
hepatocellular carcinoma within 78 weeks of
age. Decreased serum glucose levels due to
insulin hypersensitivity, and reduced serum
insulin. Hepatic steatosis, inflammation, and
carcinogenesis in Pten-deficient mice were
attenuated in females compared to males.
Decreased hepatic protein levels of apoB100
and microsomal triglyceride transfer protein

(Horie et al. 2004;
Anezaki et al. 2009;
Stiles et al. 2004;
Qiu et al. 2008)

Hypothalamic
POMC-specific
(PomcCre)

Development of hyperphagia and
sexually-differential diet-induced obesity. In
male mice, increased body weight was
associated with increased consumption of a
normal diet. Females maintained normal body
weight on a normal chow diet, but became
obese on a high-fat diet. Pomc-expressing
neurons were larger in Pten-null cells and had
more efferent fibers than wild-type neurons

(Plum et al. 2006)

Intestinal epithelial
cell-specific
(Tg(Cyp1a1-
cre)1Dwi or
Tg(Vil-
cre/ESR1)23Syr)

No effect on the normal architecture or
homeostasis of the epithelium within adult or
embryonic epithelial cells

(Marsh et al. 2008)

Intestinal stem
cell-specific
(Mx1Cre)

Deletion of PTEN in the epithelial and stromal
cells of the small intestine results in increased
proliferative intestinal stem cells that initiate
intestinal polyp formation, resembling
intestinal polyposis, within 1 month

(He et al. 2007)
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Table 8.1 (continued)

PTEN knockout
mouse model

Phenotype Reference

Keratinocyte-
specific (k5Cre,
MMTVCre)

Epidermal hyperplasia, hyperkeratosis, and
shaggy hair. Decreased body weight, with
approximately 90% of mutants dying from
malnutrition within 3 weeks of birth, as a result
of esophageal hyperkeratosis. Mice that survive
beyond 2 months of age show increased
susceptibility to the development of squamous
papilloma squamous cell carcinoma, sebaceous
carcinoma and adenocarcinoma of the sweat
gland within 9 months

(Suzuki et al. 2003a;
Yang et al. 2005;
Backman et al. 2004)

Lung epithelial
cell-specific
(Doxycycline-
inducible
SP-C-rtTA/ (tetO)7-
Cre)

Ninety percent of mutant mice that receive
doxycycline in utero (E10-16) die of hypoxia
within 2 h of birth. Hyperplasia of
bronchioalveolar epithelial cells and
myofibroblast precursors. Enlarged
undifferentiated alveolar epithelial cells, and
impaired production of surfactant proteins.
Increased numbers of bronchioalveolar stem
cells, which are putative initiators of lung
adenocarcinoma. Increased susceptibility of the
surviving mutants, and mice receiving
doxycycline postnatally (P21-27), to
spontaneous or induced lung adenocarcinoma

(Yanagi et al. 2007)

Macrophage-
specific
(LysMCre)

Increased susceptibility to infection and
reduced clearance of infection, resulting from
decreased secretion of tumor necrosis factor,
correlating with reduced expression of
inducible nitric oxide synthase and reduction in
nitric oxide production

(Kuroda et al. 2008)

Mammary-specific
(MMTVCre)

Enhanced lobulo-alveolar development,
excessive ductal branching, delayed involution
and severely reduced apoptosis in mutant
mammary tissue. Increased development of
mammary tumors in mutant females within
2 months of age

(Li et al. 2002a)

Melanocyte-specific
(DctCre)

Increased melanocytes in the dermis of
perinatal mice. Protection against hair graying.
No change in spontaneous tumor development,
but increased susceptibility to the development
of large nevi and melanoma after carcinogen
exposure

(Inoue-Narita et al.
2008)
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Table 8.1 (continued)

PTEN knockout
mouse model

Phenotype Reference

Neuronal
cell-specific
(GfapCre)

Increased neurological defects including
seizures and ataxia within 6–9 weeks of birth,
death within 29–48 weeks of age.
Macroencephaly, hydrocephaly and dysplasia
of several neural cell populations, including
enlarged soma in Pten-null neurons,
accompanied by enlarged caliber of neuronal
projections and increased dendritic spine
density. Abnormal synaptic structures and
severe myelination defects, with weakened
synaptic transmission and plasticity at
excitatory synapses. Disorganized architecture
as a result of neuronal migratory defects that
lead to abnormal accumulation of granule cells
in the external granule cell layer

(Backman et al. 2001;
Kwon et al. 2001; Yue
et al. 2005; Fraser et al.
2008)

Neuronal
(differentiated cells
of cortical layer
III-IV NseCre)

Increased soma hypertrophy, macroencephaly
and premature death in the forebrain and
hippocampus. Increased axonal outgrowth and
altered spine morphology. Abnormal social
interaction, increased anxiety, hyperactivity and
increased sensory sensitivity, reminiscent of
autistic spectrum disorders in humans.
Increased sporadic spontaneous seizures

(Kwon et al. 2006;
Ogawa et al. 2007)

Neuronal progenitor
cell-specific
(NestinCre)

Early perinatal death. Enlarged,
histoarchitecturally abnormal brains, as a result
of increased cell proliferation, decreased cell
death and enlarged cell size

(Groszer et al. 2001)

Neutrophil-specific
(LysMCre)

Increased superoxide production. Enhanced
actin polymerization, membrane ruffling, and
pseudopod formation, which resulted in
increased chemotaxis and migratory speed, but
loss of directionality

(Zhu et al. 2006a)

NKT cell-specific
(LckCre)

Reduced levels of serum γ-interferon, in
response to NKT activation. Impaired NKT cell
development, with increased numbers of
immature NKT cells and decreased numbers of
mature NKT cells, with impaired functionality.
Increased tumorigenesis, resulting from
decreased immune surveillance

(Kishimoto et al. 2007)

Oocyte-specific
(GDF9Cre)

Premature activation of the complete primordial
follicle pool, resulting in ovarian failure

(Reddy et al. 2008)

Osteoblast-specific
(OcCre)

Progressively increasing bone mineral density
throughout life, as a result of increased
differentiation and reduced apoptosis

(Liu et al. 2007)
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Table 8.1 (continued)

PTEN knockout
mouse model

Phenotype Reference

Ovarian granulosa
cell-specific
(Cyp19Cre)

Increased ovary volume, increased production
of oocytes during ovulation and increased
number of pups

(Fan et al. 2008)

Pancreatic-specific
(Pdx1Cre, RipCre)

Increased islet cell numbers and total islet mass
evident at P15 and persisting through adulthood
in RipCrePtenflox/flox mice, in which Pten is
deleted in pancreatic β-cells only.
Hypoglycemic and diabetic resistance in adult
mice, with smaller body mass and reduced
lifespan, but no evidence of pancreatic tumor
development.
However, Pdx1CrePtenflox/flox mice, which lack
Pten expression in all pancreatic cells, show
progressive replacement of the acinar pancreas
with highly proliferative ductal structures,
containing mucins and expressing markers of
pancreatic progenitor cells, with increased
development of ductal malignancy. Mice
exhibited delayed onset of
streptozotocin-induced diabetes and sex-biased
resistance to high-fat-diet -induced diabetes

(Stanger et al. 2005;
Stiles et al. 2006;
Nguyen et al. 2006;
Tong et al. 2009)

Primordial germ
cell-specific
(TNAPCre)

Bilateral testicular teratoma development in all
new-born males, as a result of impaired mitotic
arrest and outgrowth of cells with immature
characters. Increased pluripotent embryonic
germ cell production in both sexes

(Kimura et al. 2003)

Prostate-specific
(PbCre, PbCre4,
MMTVCre PSACre,
PSACreER(T2))

Development of prostatic hypoplasia within the
early postnatal period, rapidly progressing to
high-grade prostatic intraepithelial neoplasia,
then to invasive adenocarcinoma, and
metastatic carcinoma

(Ma et al. 2005;
Backman et al. 2004;
Trotman et al. 2003;
Wang et al. 2003;
Ratnacaram et al. 2008)

Retinal ganglionic
cell-specific
(AAVCre surgical
delivery)

Increased RGC survival, protein synthesis and
axon regeneration following optic nerve injury

(Park et al. 2008)

Retinal pigment
epithelium-specific
(TRP1Cre)

Progressive degeneration of both RPE cells and
their photoreceptors due to an inability of RPE
cells to maintain basolateral adhesions, the
development of an epithelial-to-mesenchymal
transition (EMT), and subsequent cellular
migration out of the retina

(Kim et al. 2008)
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Table 8.1 (continued)

PTEN knockout
mouse model

Phenotype Reference

Smooth muscle
cell-specific
(TaglnCre,
Sm22αCre)

Elevated incidence of smooth muscle cell
hyperplasia and abdominal leiomyosarcomas,
within 2 months of age
Early perinatal lethality, increased development
of medial and intimal smooth muscle cell
hyperplasia, and vascular recruitment of
progenitor/proinflammatory cells

(Hernando et al. 2007;
Nemenoff et al. 2008)

Skeletal
muscle-specific
(MckCre)

Enhanced protection from insulin resistance
and diabetes on a high-fat diet
Reversal of high-fat diet-induced impairment of
muscle regeneration

(Wijesekara et al. 2005)

T-cell-specific
(LckCre, CD4Cre)

Defective thymic negative selection, increased
autoimmune responses. Lymphadenopathy,
splenomegaly, and enlarged thymus within 6–8
weeks. Post-natal death prior to 20 weeks of
age as a result of malignant T-cell lymphoma

(Suzuki et al. 2001;
Hagenbeek and Spits
2008; Hagenbeek et al.
2004; Xue et al. 2008)

Thyroid follicular
cell-specific
(TpoCre)

Increased induction of thyroid hyperplasia and
diffuse colloid goiter, caused by an increased
thyroid mitotic index. Increased neoplastic
transformation within 10 months of age

(Yeager et al. 2007)

Ureteric bud
epithelial cell-
specific (HoxB7Cre)

Defective branching morphogenesis in
developing mouse kidneys, mislocalization
of glomeruli and post-natal lethality before P26

(Kim and Dressler
2007)

Urothelial
cell-specific
(FabpCre)

Increased urothelial hyperplasia with complete
penetrance at 6–8 weeks after birth. Increased
spontaneous pedicellate papillary transitional
cell carcinoma and increased susceptibility to
chemically-induced carcinogenesis

(Tsuruta et al. 2006;
Yoo et al. 2006)

Conditional Pten knockout mice (double mutants)
B-cell-specific
(CD19Cre) Pten &
Ship1

Development of spontaneous and lethal B cell
neoplasms consistent with marginal zone
lymphoma or follicular or centroblastic
lymphoma

(Miletic et al. 2010)

Central nervous
system-specific
(hGFAPCre) Pten &
p53

Complete CNS deletion of Pten resulted in
lethal hydrocephalus in early postnatal life.
hGFAP-Cre+;p53lox/lox;Ptenlox/ + mice
presented with acute-onset neurological
symptoms, including seizure, ataxia and/or
paralysis. Mice developed penetrant acute-onset
high-grade malignant glioma with clinical,
pathological and molecular resemblance to
primary glioblastoma multiforme in humans

(Zheng et al. 2008)
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Table 8.1 (continued)

PTEN knockout
mouse model

Phenotype Reference

Endothelial
cell-specific
(Tie2Cre) Pten &
Pdk1

Slight delay in embryonic lethality, resulting
from defective vascular remodeling and cardiac
development

(Feng et al. 2010)

Intestinal epithelial
cell-specific
(Tg(Cyp1a1-
cre)1Dwi or
Tg(Vil-
cre/ESR1)23Syr)
Pten & Apc

Accelerated tumorigenesis through increased
activation of Akt, resulting in the rapid
development of adenocarcinoma

(Marsh et al. 2008)

Keratinocyte-
specific (k5Cre)
Pten & Smad4

Development of early onset hyperplasia and
dysplasia in the esophageal and forestomach
epithelia and accelerated tumor formation in
the forestomach. Squamous cell carcinomas
developed at 1 month of age, which progressed
to invasive SCC with 100% penetrance by
2 months. Mice exhibited progressive growth
retardation and post-natal death between P10
and P100

(Teng et al. 2006)

Prostate-specific
(PBCre4) Pten &
Trp53

Development of invasive prostate cancer by 2
weeks post-puberty, with disease progression
and death prior to 7 months of age

(Chen et al. 2005)

Renal tubular
cell-specific
(NseCre) Pten &
TSC1

Development of severe polycystic kidney
disease and increased post-natal lethality

(Zhou et al. 2009)

T-cell-specific
(LckCre) Pten &
Mnk1/Mnk2

Suppression of malignant T-cell lymphoma
associated with T-cell-specific deletion of Pten
in mice

(Ueda et al. 2010)

Urothelial
cell-specific
(AdenoCre—
surgical
delivery)Pten & p53

Development of bladder tumors with 100%
penetrance by 6 months of age, displaying the
histological features of carcinoma in situ, as
well as high-grade invasive carcinoma

(Puzio-Kuter et al.
2009)

observed in multiple tissues, signifying haploinsufficiency of Pten in mouse models
(Di Cristofano et al. 1998; Podsypanina et al. 1999; Suzuki et al. 1998).

Indeed, PTEN is frequently mutated or its expression lost in many human can-
cers including glioblastomas, breast, kidney and uterine endometrioid carcinomas,
lung cancer, colon cancer, and melanoma (Jiang and Liu 2008; Salmena et al. 2008;
Steck et al. 1997). The incidence of somatic mutation or deletion of PTEN is high in
high-grade glioblastoma (estimated prevalence 30–40%), breast (10%), melanoma
(7–20%), prostate cancer (15%), and endometrial cancer (50%). PTEN mutations
have been reported at lower rates in bladder, lung, ovary, colon cancers, and in lym-
phoma (Cairns et al. 1997; Gronbaek et al. 1998; Kim et al. 1998; Kohno et al. 1998;
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Sansal and Sellers 2004). PTEN inactivation results in multiple abnormal processes
leading to abnormal cell polarity and invasion, cell proliferation and survival, cell ar-
chitecture, chromosomal integrity, cell cycle progression, and stem cell self-renewal.
In the early stages of some cancers, including prostate, breast, colon, or lung can-
cers, monoallelic PTEN mutation or deletion is detected, however, the second PTEN
allele remains active (Salmena et al. 2008), and it is only in late stage or metastatic
cancers that biallelic loss of PTEN is observed. Most PTEN mutations lead to loss
of phosphatase activity both to phosphoinositide and protein substrates.

Examination of tissue-specific Pten deletion in mice further supports a role for
Pten in the prevention of tumorigenesis, with hyper-proliferation and neoplastic
change observed in tissues where Pten is selectively inactivated (Backman et al.
2004; Horie et al. 2004; Yanagi et al. 2007; Yeager et al. 2007). Furthermore, in-
jection of Pten-deficient ES cells, PTEN-null tumor cells or catalytically inactive
PTEN mutants in nude or syngeneic mice results in enhanced tumor generation, due
to increased anchorage-independent cell growth and abnormal differentiation (Di
Cristofano et al. 1998; Li and Sun 1998). Studies in cell culture models have re-
vealed loss of PTEN function results in increased proliferation, growth and survival,
correlating with increased basal PtdIns(3,4,5)P3 levels and enhanced Akt activation
(Subramanian et al. 2007; Li and Sun 1998; Furnari et al. 1998; Myers et al. 1998;
Stambolic et al. 1998; Lee et al. 1999; Davies et al. 1998; Haas-Kogan et al. 1998).
Conversely, expression of PTEN induces apoptosis and promotes cell cycle arrest
(Furnari et al. 1998; Li and Sun 1998; Maehama and Dixon 1998; Davies et al. 1998;
Koul et al. 2001; Tamura et al. 1999a; Stambolic et al. 1998).

PTEN’s haploinsufficiency is sufficient to promote tumor formation. Analysis of
a series of hypomorphic mouse mutants, developed in order to assess a correlation
between PTEN levels and cancer progression, reveals that heterozygous Pten loss in a
mouse model of prostate cancer leads to prostate epithelial hyperplasia and low-grade
lesions with incomplete penetrance (Trotman et al. 2003). Further reduction in Pten
is associated with massive prostate hyperplasia in all mice, with accelerated tumor
progression, and complete loss of Pten leads to highly invasive and aggressive cancer.
These studies suggest the reduction in PTEN expression below the heterozygous loss
of function level may lead to more aggressive cancer. Recently it was reported even
a subtle reduction (20%) in Pten expression may promote cancer susceptibility in
mice. Pten hypermorphic mice (Ptenhy/+), which express 80% of normal levels
of Pten, develop a variety of tumors, with the most common being breast cancer
(Alimonti et al. 2010). These mice show reduced survival, develop autoimmune
disease, with lymphadenopathy and splenomegaly, but significantly, females show
an increased susceptibility to epithelial cancers including breast cancer (∼75%) and
uterine cancer (67%). Even this small reduction in PTEN by 20% is sufficient to
promote the activation of a pro-proliferative gene expression signature.

Interestingly, in some tissues complete loss of PTEN from untransformed cells
may trigger cellular senescence, a process which protects against tumor initiation
(Alimonti et al. 2010). Cell senescence is a very stable form of cell cycle arrest,
which is activated in response to stress, including oncogenic signaling and telomere
shortening (Collado and Serrano 2010). Recent studies have revealed constitutive
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activation of Akt promotes senescence via inhibition of the transcription factors
FOX01/03 (Nogueira et al. 2008).

Altered PTEN expression in cancer may be due to inherited germ line mutations,
sporadic mutations or chromosomal alterations, transcriptional repression, epige-
netic silencing, post-transcriptional gene regulation, post-translational modification,
and aberrant PTEN localization, which can in turn regulate the initiation, progression
and long term survival from cancer (Sasaki et al. 2009). Recent studies have revealed
a significant role for post-transcriptional silencing of PTEN by multiple microRNAs
(miRNAs) from precursors with a single hairpin structure (miR-21, miR-22, miR-214
and miR-205) or from a polycistronic structure (mir-17-92, mir-106b, mir-367-302b
and mir-221-22) that recognizes target sequences in PTEN and thereby regulates its
expression, reviewed in (He 2010). Interestingly, the related PTENP1 may act as a
decoy for the same miRNA species to rescue PTEN loss of expression (He 2010).
Consistent with this contention, PTENP1 chromosome deletion has been reported in
colon and breast cancer associated with decreased PTEN expression (Poliseno et al.
2010b).

PTEN localizes to the cytosol, plasma membrane and nucleus, and its function as
a tumor suppressor appears to be dependent on its appropriate localization within the
cell. Numerous inactivating mutations of PTEN have been identified in both heredi-
tary and spontaneous human cancers that map to the phosphatase domain of PTEN,
however, many mutations map to areas outside of this region (Marsh et al. 1998).
These residues may be crucial for the regulation of protein stability, or localization
patterns. For example, mutations that map to the C2 domain, or that disrupt the
phosphatase/C2 domain interface, have been identified, which prevent the correct
positioning of PTEN at the plasma membrane and thereby access to PtdIns(3,4,5)P3

(Lee et al. 1999). Loss-of-function hereditary mutations have also been described
within the promoter region of PTEN, leading to increased Akt signaling (Zhou et al.
2003). As described earlier, the nuclear import-defective PTEN mutants, K289E and
K13E, are associated with hereditary and spontaneous cancer respectively (Trotman
et al. 2007; Duerr et al. 1998). PTEN mutations within the conserved polybasic
amino-terminal motif required for PtdIns(4,5)P2 binding have also been identified in
sporadic cancer. While retaining catalytic activity, mutation of PTEN within this re-
gion disrupts PtdIns(4,5)P2 binding, thus preventing the correct orientation of PTEN
at the plasma membrane and access to PtdIns(3,4,5)P3 (Han et al. 2000; Walker et al.
2004).

Loss of PTEN is associated with highly invasive cancer, implicating this enzyme
in cell motility and invasion. Indeed, disruption of Pten in D. discoideum impairs
cell polarization, actin polymerization and both the speed and directionality of cell
migration (Iijima and Devreotes 2002; Funamoto et al. 2002). In contrast, disruption
of PTEN in numerous mammalian cells increases cell migration (Gao et al. 2005;
Gu et al. 1999; Liliental et al. 2000; Suzuki et al. 2003b; Tamura et al. 1998, 1999b).
Chemoattractant-induced Transwell migration of Pten-deficient murine neutrophils
is increased, however, defects in directionality are evident in single-cell chemotaxis
assays (Subramanian et al. 2007) and in the prioritization of chemoattractant cues
(Heit et al. 2008). On the other hand, these results contrast with studies in human
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cell lines that show that while loss of PTEN increases the rate of chemokine-induced
migration, it does not affect directionality (Lacalle et al. 2004). Also in primary
neutrophils a more dominant role for the PtdIns(3,4,5)P3 5-phosphatase, SHIP1,
than PTEN has been shown (Nishio et al. 2007). Interestingly, subventricular zone
precursor cells (Li et al. 2002a) and isolated primary B cells (Fox et al. 2002) from
Pten+/− mice also exhibit greater motility than wild-type cells, providing further
evidence that in mice, Pten is haploinsufficient.

PTEN may exert a tumor suppressive effect via regulation of surrounding fibrob-
lasts. Recently PTEN loss of function has been linked to the regulation of stroma
and tumor cell signaling (Trimboli et al. 2009). Genetic inactivation of Pten in
stromal fibroblasts of mouse mammary glands accelerates the initiation and malig-
nant transformation of mammary epithelial tumors. Notably there was significant
remodeling of the extracellular matrix with increased angiogenesis. Global gene ex-
pression profiling of PTEN-depleted mammary stromal cells reveals activation of
the Ets2-specific transcription program (Trimboli et al. 2009). Ets2 inactivation in
Pten stroma-deleted tumors decreases tumor growth and progression, revealing the
Pten–Ets2 axis as a stroma-specific signaling pathway that suppresses mammary
epithelial tumors.

8.2.7 The Tumor Context of PTEN Loss of Function

There are several points which will be considered here regarding the occurrence of
changes in other oncogenes and tumor suppressors in tumors, in addition to PTEN.
Firstly, does additional activation of other components of the broad PI3K/growth
factor receptor signaling network occur in PTEN null tumors? Secondly, are there
other independent pathways that are favorably mutated in parallel with PTEN in
certain tumor types? And thirdly, are there oncogenes and tumor suppressors that
affect malignant transformation indirectly through their influence on PTEN function,
in the way that murine double minute 2 (MDM2) amplification drives tumorigenesis
through suppression of p53 function?

In other major functional pathways implicated in cancer, such as the Rb and
MDM2/p53 pathways, mutation of more than one component of the same definable
functional pathway is generally very rare (Cancer Genome Atlas Research Network
2008). However, in the PI3K pathway, mutation of multiple components, such
as both PTEN and p110α PI3K is not uncommon (Yuan and Cantley 2008; Can-
cer Genome Atlas Research Network 2008). Because many factors independently
influence cellular PtdIns(3,4,5)P3 levels and localization, and because there are many
PtdIns(3,4,5)P3-binding proteins and Akt substrates, that regulate diverse biological
processes with different dose responses to changes in PtdIns(3,4,5)P3 levels, it seems
unsurprising that multiple mutations within the pathway are able to drive further
selective advantages to a tumor.

Extensive genomic and expression analyses of large numbers of tumors has con-
firmed their classification into identifiable groups that share patterns of genomic and
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expression changes. For example, 94% of the “classical” sub-type of glioblastomas
share high level amplification of EGFR and homozygous deletion of CDKN2A (Ver-
haak et al. 2010). However, in many tumor types, PTEN loss is common in many
independently identifiable sub-groups of tumors. For example, in a categorization
of glioblastomas, loss of one allele of PTEN occurs at very high levels in all four
categories of glioblastoma, with lowest frequency being in “proneural” tumors, but
still as high as 67% (Verhaak et al. 2010). However, there are cases with notable
association of PTEN mutation with other events. For example, several studies have
identified a strong association between TMPRSS2-ERG translocations and loss of
PTEN in a large fraction of human prostate cancers (Taylor et al. 2010) and have
demonstrated the functional significance of this genetic interaction in transgenic
mice (Carver et al. 2009). Similarly, co-operating pathways have been identified in
experiments in mice, with for example, experimental deletion of Pten from T-cells
leading to lymphomas that are also found to display myc translocations (Liu et al.
2010).

Finally, data has emerged over the last few years showing that several regulators of
PTEN function are mutated or over-expressed in tumors and that this may represent a
mechanism by which they affect tumor development indirectly through the regulation
of PTEN. These include P-REX2 and SIPL1 that appear to directly inhibit PTEN
activity, RAK and PICT1/GLTSCR2 that stabilize the PTEN protein and the E3
ubiquitin ligase, NEDD4 (Fine et al. 2009; He et al. 2010; Okahara et al. 2006;
Wang et al. 2007; Yim et al. 2009). These findings have been recently reviewed in
depth (Leslie et al. 2010).

8.2.8 PTEN and Cellular Senescence

Loss of PTEN function appears to be a common early event in endometrial cancer
(Mutter et al. 2000). However, this appears not to be the case in most other tu-
mor types, and PTEN loss has been described at highest frequencies in late stage
tumors in many tissues (Salmena et al. 2008). In particular, complete PTEN loss
is infrequent in early stages of prostate cancer (Taylor et al. 2010). Interestingly,
acute complete loss of PTEN may induce cell senescence, a cellular program in
mitotic cells that induces irreversible growth arrest as an anti-tumor mechanism.
This program may be initiated by tumor suppressor genes in response to DNA dam-
age and/or oncogene activation (Campisi and d’Adda di Fagagna 2007). Complete
acute loss of Pten from untransformed cells, rather than promoting enhanced pro-
liferation, induces a significant senescence response that opposes tumor progression
associated with enhanced p19Arf–p53 signaling (Chen et al. 2005). Therefore, com-
plete loss of PTEN can oppose tumorigenesis by triggering a p53-dependent cellular
senescence response. Inactivation of PTEN concomitantly with p53 allows escape
from senescence, promoting invasive cancer. PTEN-induced cell senescence has
also been shown in primary human epithelial cells (Kim et al. 2007). PTEN-loss—
induced cellular senescence occurs rapidly after Pten inactivation, in the absence of
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cellular proliferation and DNA damage checkpoint responses, and is associated with
enhanced p53 translation. Pharmacological inhibition of PTEN or p53-stabilizing
drugs potentiates senescence and its tumor suppressive potential (Alimonti et al.
2010).

Pten-loss—induced cellular senescence exerts its effects using molecular path-
ways distinct from oncogenic-induced cell senescence. Skp2 protein is an E3-
ubiquitin ligase that mediates degradation of a number of proteins, including p21
and p27. Mice lacking Skp2 are viable, but Skp2 inactivation restricts tumorigenesis
by promoting cellular senescence during oncogenic conditions, such as following
expression of the Ras oncoprotein. In the absence of Skp2, cells lacking Pten be-
come more sensitized to senescence (Lin et al. 2010). Mice with loss of one copy
of Pten and deficient in Skp2 (Pten+/−; Skp2−/−) are protected from cancer. Recent
studies have revealed PTEN also acts as a critical determinant of cell fate between
senescence and apoptosis in several glioma cell lines in response to ionizing radi-
ation. Depletion of Akt or scavenging of reactive oxygen species (ROS) prevents
radiation-induced senescence in PTEN-deficient glioma (Lee et al. 2011).

8.2.9 PTEN and the Brain

As previously described, germline mutations in PTEN are associated with Cow-
den disease, Lhermitte-Duclos disease and Bannayan-Zonana syndrome, which are
collectively described as the PTEN hamartoma tumor syndromes (PHTS) (Salmena
et al. 2008). Whether these are indeed separate syndromes, or only one syndrome
with a broad clinical spectrum remains to be determined, however, neurological ab-
normalities are a prominent feature of these disorders. PTEN is widely expressed
in the mammalian brain and is enriched in large pyramidal, Purkinje, olfactory and
mitral neurons. Conditional deletion of Pten specifically in the mouse brain results
in macrocephaly and increased neurological defects including seizures and ataxia,
commencing within 6–9 weeks of birth (Groszer et al. 2001; Backman et al. 2001;
Kwon et al. 2001). The macrocephaly is associated with abnormal brain patterning,
as a consequence of increased neuronal cell number, enhanced cell survival, and
enlarged cell size, as a result of enhanced PI3K/Akt signaling, subsequent activation
of the mTOR complex and the promotion of protein translation. Pten−/− mice addi-
tionally exhibit dysplasia of neuronal cell populations, abnormal synaptic structures
and severe myelination defects. The number of neuronal stem cells in the fetal brain
is also regulated by PTEN, with loss of PTEN in neuronal stem cells shown to stim-
ulate stem cell proliferation and enhance self-renewal capacity (Groszer et al. 2006).
The observed phenotypes in Pten−/− mice recapitulate many of those described in
PHTS, in particular Lhermitte-Duclos disease (Waite and Eng 2002). In addition,
PTEN function is implicated in depression and anxiety (Bandaru et al. 2009), and
also in response to drug addiction (Ji et al. 2006). Pharmacological inhibition of
PI3K by wortmannin treatment leads to increased depression and anxiety (Bandaru
et al. 2009) and impaired fear memory (Lin et al. 2001). Conditional knockout of
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Pten in specific differentiated neurons results in increased anxiety and decreased
social interaction suggesting that either up- or down-regulation of PI3K signaling,
and thus too much or too little PtdIns(3,4,5)P3, is critical to these processes (Kwon
et al. 2006).

PTEN not only controls neuronal cell number and size but is also implicated
in regulating responses to neuronal injury, including brain ischemia (Chang et al.
2007). Increased expression of PTEN in hippocampal neurons promotes neuronal
cell death following exposure to the excitatory amino acid glutamate via regulation of
the Akt signaling pathway, while decreased expression of endogenous Pten increases
neuron resistance to seizure-induced cell death (Gary and Mattson 2002). In a rat
model of transient cerebral ischemia, PTEN phosphorylation is enhanced in the
ischemic core (Omori et al. 2002), which is proposed to decrease PTEN phosphatase
activity (Torres and Pulido 2001) and thereby increaseAkt signaling. In a rat model of
chronic exposure to ethanol, increased PTEN expression is associated with cerebellar
hypoplasia and increased neuronal cell death (reviewed in (Chang et al. 2007)).
Therefore, downregulating the activity and/or expression of PTEN may be a novel
therapeutic treatment for brain injury.

The precise molecular mechanisms surrounding the role of PTEN in ischemic
neurodegeneration remain to be determined, and PTEN may co-operatively regulate
numerous down-stream effectors. A direct role for PTEN has been described in the
regulation of neurodegeneration during oxidative stress via mitochondria-dependent
apoptosis. Neuronal precursor cells, that lack one copy of PTEN, exhibit increased
resistance to oxidative stress-induced apoptosis (Li et al. 2002b). In many cells in
response to growth factor stimulation, PTEN translocates to the plasma membrane to
degrade PtdIns(3,4,5)P3 and inhibit Akt signaling; however in staurosporine-treated
hippocampal neurons, mitochondrial accumulation of PTEN is observed, consistent
with a role for PTEN in the regulation of mitochondria-dependent apoptotic path-
ways. Knockdown of PTEN protects hippocampal cells from apoptotic damage by
inhibiting staurosporine-induced release of cytochrome c and caspase-3 activity (Zhu
et al. 2006b). Down-regulation of PTEN decreases the activity of apoptosis signal-
regulating kinase 1 (ASK1), an upstream component of the mitogen-activated protein
kinases (Wu et al. 2006). The activity of the pro-apoptotic c Jun N-terminal kinases
1/2 is reduced as a result of decreased PTEN activity and increased Akt activation
following ischemic injury (Zhang et al. 2007). PTEN regulates the generation of
intracellular ROS in response to oxygen–glucose deprivation (OGD) and neurotoxin
1-methyl-4-phenylpyridinium iodide (Zhu et al. 2007). Suppression of PTEN activ-
ity also complexes with the N-methyl-d-aspartate (NMDA) receptor (NMDAR), a
subtype of excitatory glutamate receptor that promotes excitotoxicity-induced neu-
ronal death, to inhibit extrasynaptic NMDAR activity, leading to protection against
ischemic neuronal death in vitro and in vivo (Ning et al. 2004).

PTEN may also play a role in regulating neurodegeneration associated with
Alzheimer disease (AD) and Parkinson disease. Decreased PTEN expression has
been reported in the hippocampus ofAD brains (Griffin et al. 2005). Three mitochon-
drial associated genes parkin, DJ-1 and PINK1 (PTEN-induced putative kinase 1),



8 The PTEN and Myotubularin Phosphoinositide 3-Phosphatases 303

have recently been shown to be associated with early-onset recessive parkinsonism
(reviewed in (van der Vegt et al. 2009)). PINK1 is a serine/threonine kinase, which
is transcriptionally activated by PTEN (Valente et al. 2004), and phosphorylates
TRAP1, preventing oxidative stress-induced mitochondrial cytochrome c release
(Pridgeon et al. 2007). Parkin is an E3 ubiquitin ligase and DJ-1 functions in parallel
to the PINK1/parkin pathway to maintain mitochondrial function in the presence of
oxidative stress (Inzelberg and Jankovic 2007). Mutations in PINK1 occur in famil-
ial Parkinson disease and loss of PINK1 function increases sensitivity to oxidative
stress, followed by neuronal death (Gispert et al. 2009). DJ-1 inhibits PTEN’s neg-
ative regulation of the PI3K/Akt/mTOR pathway, which exerts a pro-survival effect
during oxidative stress (Delgado-Esteban et al. 2007). siRNA knock-down of DJ-1
enhances cellular sensitivity to oxidative stress in Drosophila and mice brains (Kim
et al. 2005; Shendelman et al. 2004). DJ-1 and PINK1, with PTEN, may contribute
to the regulation of neuroprotection and neurodegeneration. Thus when PTEN levels
are high, DJ-1 signaling will decrease and the PI3K/Akt/mTOR pathway will be
suppressed, enhancing sensitivity of neuronal cells to oxidative stress. When PTEN
levels are low, PINK1 levels will also be low, and oxidative stress-induced neuronal
mitochondrial death pathways may be enhanced (Bonifati et al. 2003).

8.2.10 The PTEN and p53 Association

Over several years, many studies have implied a specific functional connection be-
tween PTEN and p53, the stress-induced transcription factor that is itself the most
frequently mutated tumor suppressor in human cancers (Liu et al. 2008). p53 may
influence PTEN expression through the presence of potential p53-binding sites in
the PTEN promoter. This mediates induction of PTEN transcription, as part of a p53
transcriptional program in response to stresses, such as gamma irradiation (Stam-
bolic et al. 2001). Conversely, PTEN has been reported to affect p53 in several
ways. p53 expression is normally maintained at low levels by the action of a proto-
oncogenic E3 ubiquitin ligase, MDM2. Two reports simultaneously described the
phosphorylation of MDM2 by the PTEN-regulated kinase, AKT, and showed that
MDM2 ligase activity is increased by phosphorylation on these sites (Mayo and Don-
ner 2001; Zhou et al. 2001). PTEN activity, or inhibition of PI3K, suppresses MDM2
transcription by negatively regulating its P1 promoter (Chang et al. 2004), thereby
enhancing p53 levels. A direct physical interaction between PTEN and p53 has also
been reported, and PTEN-null ES cells and immortalized mouse embryonic fibrob-
lasts (MEFs) exhibit reduced p53 levels (Freeman et al. 2003). Together these studies
provide good evidence that loss of PTEN can lead to reduced p53 function in several
settings. However, more recent work has added a complication to this picture, show-
ing that genetic deletion of both Pten copies from primary MEFs, or in the murine
prostate, leads to an induction of p53 expression and cellular senescence as described
here earlier (Chen et al. 2005). A resolution to these somewhat contradictory findings
and a better understanding of the complex relationship(s) between PTEN and p53
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will require further study, and may be critical given the frequency with which both
tumor suppressors are deregulated in cancer.

8.2.11 PTEN Function and Stem Cell Fate

Much of our knowledge of PTEN function comes from tissue-specific genetic dele-
tion of Pten in mouse models (see Table 8.1). Several such mouse models have
revealed the specific effects of Pten in the regulation of stem cell fate in different
lineages. Deletion of Pten early in development from the mouse brain leads to in-
creased numbers of neural stem cells and increases in differentiated cell numbers and
size (Groszer et al. 2001). These increases in neural stem cell number are caused by
promotion of the G0-G1 cell cycle progression and a gene expression signature asso-
ciated with rapid proliferation and a rapid cell cycle (Groszer et al. 2006). In contrast,
studies of mice lacking Pten in hematopoietic stem cells (HSCs) have indicated that
Pten loss promotes a short term proliferation of these cells, yet leads to a long term
depletion of the self-renewing stem cell compartment (Yilmaz et al. 2006). Crucially,
Pten loss in HSCs leads to the rapid development of leukemia in these mice, yet this
disease is characterized by the presence of Pten-null self-renewing leukemic stem
cells (LSCs). These apparently distinct characteristics of normal HSCs versus LSCs
suggests that their self-renewal is regulated by different mechanisms and provides
hope for therapies that target LSCs, without killing normal HSCs. The short term
proliferation of HSCs driven by Pten loss is associated with enhanced G0-G1 cell
cycle transition, as observed in neuronal stem cells. However, why in HSCs, this
leads to a transient, rather than long term expansion in stem cell numbers, as seen in
the brain, is unclear. Studies of other lineages imply that other stem cell populations
can be similarly classified, with Pten loss in melanocyte stem cells also leading to
long term stem cell expansion (Inoue-Narita et al. 2008). This proposed role for
PTEN in the maintenance of the normal stem cell compartment is supported by the
identification of PTEN as the most significantly reduced transcript in microarray
analyses of gene expression differences between normal fetal neuronal stem cells
and glioblastoma stem cells isolated from brain tumor patients (Pollard et al. 2009).
By regulating PTEN expression this may allow in future therapeutic approaches that
target cancer stem cells (or cancer-initiating cells) without affecting normal stem cell
compartments (Rossi and Weissman 2006).

8.2.12 PTEN and the Immune System

The role of the PI3K signaling network in the immune system has been studied exten-
sively. This research activity has been driven by the recognition that PI3K signaling
plays key roles in the survival and proliferation of several normal and transformed
immune cell populations and also in other immune cell functions such as migration,
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phagocytosis and reactive oxygen species generation (Fruman and Bismuth 2009).
Of particular significance was the initial discovery that mice selectively lacking the
gamma catalytic isoform of PI3K (p110γ) were viable and fertile, yet their T-cells and
neutrophils displayed reduced chemotaxis in vitro and recruitment in vivo (Hirsch
et al. 2000; Sasaki et al. 2000; Li et al. 2000). This has lead to intense drug discovery
activity attempting to target p110γ, and also p110δ, for inflammatory diseases, that
have been sustained by subsequent discoveries (Ruckle et al. 2006).

The tumor suppressor activity of PTEN is important in the avoidance of both T
cell and B cell malignancies, due to its roles in promoting non-proliferative states and
apoptosis. Studies of mice, in which Pten has been specifically deleted in immune cell
populations have also identified roles for the phosphatase in the suppression of B-cell
and neutrophil migration in vivo (Suzuki et al. 2003b; Subramanian et al. 2007; Heit
et al. 2008; Li et al. 2009). Furthermore, Pten-null macrophages exhibit elevated
phagocytosis and Fcγ-mediated signaling (Cao et al. 2004). Given these specific ac-
tions of PTEN to limit the selection and proliferation of immune cell populations and
also in suppressing immune cell activities, it is not surprising that autoimmunity is a
striking phenotype of Pten loss in mice. As discussed, tight regulation of PI3K and
thus PtdIns(3,4,5)P3 levels is important for normal development and responsiveness
of the immune system and also to prevent immunopathology. Some studies have
shown that diminished PI3K activity can also lead to similar autoimmune condi-
tions (Oak et al. 2006), while hyperactivation of this pathway in T-cells also leads
to lymphoproliferation and systemic immunity (Suzuki et al. 2001). Consistent with
this, Pten heterozygous (Pten+/−) mice develop lymphoproliferative syndrome with
autoimmune features (Di Cristofano et al. 1999; Suzuki et al. 2001). Several mech-
anisms have been proposed for PTEN’s role in suppressing autoimmunity. PTEN
can regulate Fas-mediated apoptosis (an autoimmunity repression mechanism) and
also IL-4 production and thus regulate CD4(+) T-cell function (Di Cristofano et al.
1999; Liu et al. 2010). Mice with higher expression of microRNA miR-17-92 have
been shown to have similar autoimmune disorders and this is believed to be due to
miR-17-92-mediated suppression of PTEN expression (Xiao et al. 2008).

8.2.13 PTEN Function in Epithelial Biology

The frequent loss of PTEN function observed in epithelial-derived solid tumors
(carcinomas) has stimulated investigations into the functions of PTEN in normal
and transformed epithelial biology. Significantly, several pieces of evidence point
towards distinct roles for PTEN and PI3K signaling in epithelia, regulating both cell
growth, proliferation and also cell polarity/architecture (Liu et al. 2004; Leslie et al.
2008). In this context, it is notable that PtdIns(3,4,5)P3 is found to be enriched in the
basolateral membrane of several epithelial cell types (Liu et al. 2004; Watton and
Downward 1999) and PTEN appears to be strongly enriched in the apical domains
of some but not all, epithelial cell types, such as the Drosophila melanogaster (D.
melanogaster) photoreceptors and embryonic epithelia (von Stein et al. 2005; Pinal
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et al. 2006), chick epiblast (Leslie et al. 2007) and murine retinal pigment epithelium
(Kim et al. 2008). These localization data and the identified interactions of PTEN
with proteins such as PAR3 and MAGI1 indicate that PTEN is enriched in apical cell-
cell junctional complexes, almost certainly including adherens junctions (Pinal et al.
2006; von Stein et al. 2005; Kotelevets et al. 2005). Functional studies in cultured
epithelial cells suggest that PTEN acts to suppress PI3K-dependent epithelial cell-
cell junctional destabilization (Kotelevets et al. 2001; Martin-Belmonte et al. 2007;
Liu et al. 2004). In particular, in epithelial cell lines cultured in 3D matrices, the
knockdown of PTEN expression leads to a dramatic loss of cell polarity and tissue
organization (Martin-Belmonte et al. 2007). Knockdown of PTEN in normal human
mammary epithelial cells causes the formation of disorganized hyperplastic lesions
when introduced into humanized murine mammary fat pads (Korkaya et al. 2009).

The phenotypes of mice with different epithelial tissue-specific deletion of Pten,
reveals a range of related effects but dramatic differences in the severity of the phe-
notype. Inducible deletion of Pten from the intestinal epithelium has no overt effects
on the morphology of the tissue in the absence of further alterations (Marsh et al.
2008). Deletion of PTEN from the kidney leads to defects in branching morphogene-
sis within the organ, which although not affecting the integrity of the epithelium still
appear responsible for the death of these animals within a month of birth (Kim and
Dressler 2007). Similarly, MMTV-Cre driven mammary-specific deletion of PTEN
in mice leads to hyperproliferative development of the gland with dysregulated ductal
branching and mammary tumors (Li et al. 2002a). In addition, deletion of Pten in the
lung leads to increased epithelial cell size, abnormal lung morphogenesis and ade-
nocarcinoma in mice that escape the hypoxic postnatal lethality (Yanagi et al. 2007).
Perhaps most remarkably, deletion of Pten from the retinal pigment epithelium, that,
significantly, displays a strongly polarized localization of the Pten protein, causes a
full EMT and complete disruption of the tissue (Kim et al. 2008). This supports a
model in which PTEN function plays a role in establishing, although perhaps less
significantly maintaining, epithelial cell-cell junctions, with loss of PTEN driving a
shift to a more motile, mesenchymal phenotype (Leslie et al. 2007; Song et al. 2009;
Kim et al. 2008).

8.3 Myotubularins

The myotubularins are a large family of conserved proteins in eukaryotes. They
dephosphorylate PtdIns(3)P and PtdIns(3,5)P2, to form PtdIns and PtdIns(5)P re-
spectively. Despite the large number of myotubularins (MTMs) and shared specificity
for their substrates, mutations in individual myotubularins can cause different human
diseases. Myotubularins exhibit varied sub-cellular localization, and integrate into
protein/signaling complexes. These lipid phosphatases are required for the cellular
control of diverse processes, including ion channel-stimulated excitation-contraction
coupling and signaling, endocytic trafficking, autophagy and cell proliferation.
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The myotubularins are defined by conserved myotubularin-related and dual spe-
cific protein tyrosine phosphatase CX5R-containing domains. 16 myotubularins have
been described in mammalian cells, the first was designated myotubularin (MTM1),
and the other family members “myotubularin-related phosphatases” (MTMR1-15)
(Table 8.2). Seven of the myotubularins possess inactivating mutations within the
catalytic motif, and are phosphatase dead, however, a number of these proteins
still play an active role in cellular functions and when mutated can cause disease
(Begley et al. 2006). Myotubularins possess a number of additional domains, con-
served across most family members; including PH-GRAM (Pleckstrin-Homology-
Glucosyltransferase, Rab-like GTPase Activator), and coiled-coil domains (Laporte
et al. 2003) (Fig. 8.2). However, the two most recently described myotubularins,
MTMR14 and MTMR15, exhibit very little homology at the PH-GRAM or coiled-
coil regions. Myotubularins also contain conserved SID (Set Interacting Domain),
and RID (Rac Induced Recruitment Domain) domains (Begley et al. 2003, 2006;
Laporte et al. 2003). Individual myotubularins also contain a number of additional
protein or lipid interacting modules, described in more detail below.

A phylogenetic survey of 31 different species across broad taxonomic groups
counted varied complements of different myotubularins, ranging from one in fungi
such as Saccharomyces cerevisiae and Aspergillus niger, to 19 in Entamoeba
histolytica (Kerk and Moorhead 2010). Additionally, the inactive myotubularin ho-
mologs appear to have evolved on three separate occasions in different eukaryotic
lineages, highlighting their presence as more than simply an interesting observation.
Phylogenetic analysis also permits the grouping of the myotubularins into similarity
clusters—three for active myotubularins, and three for inactive (See Fig. 8.2) (Laporte
et al. 2003; Kerk and Moorhead 2010). Some organisms with lower complements of
myotubularins have representatives of these groups (Robinson and Dixon 2006; La-
porte et al. 2003). For example, for Caenorhabditis elegans (C. elegans) these are:
M1-mtm-1 (CeY110A7A.5); R3-mtm-3 (CeT24A11.1); R6-mtm-6 (CeF53A2.8);
R5-mtm-5 (CeH28G03.6) and mtmr-9 (CeY39H10A) (Xue et al. 2003). Recently,
MTMR14 (also known as hJumpy or MIP) has been characterized, and it contains an
active CX5R phosphatase motif and homology to the myotubularin-related domain,
but no PH-GRAM domain (Alonso et al. 2004; Tosch et al. 2006; Vergne et al. 2009).
A sixteenth myotubularin has also been identified, MTMR15, which shares little ho-
mology with other myotubularins, and has an inactive phosphatase site (Alonso et al.
2004). This protein functions as a DNA repair enzyme and as such, its characteri-
zation as a myotubularin awaits further clarification. Many myotubularins (MTM1,
MTMR1-6 and MTMR12) are expressed in a broad range of tissues and cell types
(Laporte et al. 1998; Nandurkar et al. 2001; Zhao et al. 2001). In contrast, MTMR5
is concentrated in the testis, and MTMR7 shows a brain-specific expression (Laporte
et al. 1998; Firestein et al. 2002). Non-redundancy may be a result of differences in
the sub-cellular distribution of various myotubularins, and also by different protein
and lipid interactions. This in turn may regulate myotubularin access to specific pools
of PtdIns(3)P and/or PtdIns(3,5)P2 in a directed manner, with different functional
consequences (Kim et al. 2002; Lorenzo et al. 2006), as described below.
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Fig. 8.2 Schematic representation of the major domains of the human myotubularins. Groups
are named as reported by (Laporte et al. 2003; Kerk and Moorhead 2010). Domain associations
were obtained from searches on conserved domains using NCBI/CDD and SMART databases, as
well as those reported by (Laporte et al. 2003). Abbreviations: PH-GRAM Pleckstrin-Homology-
Glucosyltransferase, Rab-like GTPase Activator; PTP/DSP Protein tyrosine phosphatase/dual
specific phosphatase; CC Coiled-coil; PDZ Post synaptic density protein, Drosophila disc large
tumor suppressor, zonula occludens-1 protein; FYVE, Fab1, Yotb, Vac1p and EEA1; DENN
Differentially Expressed in Neoplastic versus Normal cells; ZnFRad18, Rad18-like CCHC Zinc
finger
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8.3.1 Myotubularin Structure and Substrate Specificity

The crystal structure of MTMR2 has been solved, and shows a larger active site
pocket than most other protein tyrosine phosphatases, which is postulated to be
required to accommodate the large inositol head group of phosphoinositides (Begley
et al. 2003). The “WPD” loop also differs from most protein tyrosine phosphatases,
lacking an aspartic acid, prompting Begley et al. to speculate a unique phosphatase
action for the myotubularins (Begley et al. 2003). The tertiary structure also reveals
that the then-named “GRAM domain” (Doerks et al. 2000) is similar to the PH
domain, a phosphoinositide, phosphotyrosine and protein-protein interacting region,
and that the SID domain is part of the protein phosphatase domain (Begley et al.
2003). The PH-GRAM domain may interact with PtdIns(5)P (Lorenzo et al. 2005),
PtdIns(3,5)P2, PtdIns(4)P, and PtdIns(3,4,5)P3 (Berger et al. 2003), although this
predicted role in lipid binding is not fully established. MTMR2 binds PtdIns(3)P
and PtdIns(3,5)P2 in its active site, however, no lipid binding was detected at the
PH-GRAM domain (Begley et al. 2006).

Despite showing the properties consistent with the tyrosine phosphatase superfam-
ily, the myotubularins exhibit predominant activity against 3-phosphorylated phos-
phoinositides (Taylor et al. 2000a; Zhao et al. 2001). PtdIns(3)P and PtdIns(3,5)P2

are hydrolyzed at their 3-position phosphate by the MTMs, in vitro forming PtdIns
and PtdIns(5)P respectively (Velichkova et al. 2010; Naughtin et al. 2010; Tosch
et al. 2006; Berger et al. 2002, 2006; Tronchere et al. 2004; Schaletzky et al. 2003;
Begley et al. 2003: Zhao et al. 2001; Walker et al. 2001; Taylor et al. 2000a; Blon-
deau et al. 2000). Myotubularins exhibit significantly less catalytic activity against
PtdIns(3,4,5)P3, PtdIns(3,4)P2, PtdIns(4,5)P2, PtdIns(4)P or PtdIns(5)P (Blondeau
et al. 2000; Walker et al. 2001; Zhao et al. 2001; Berger et al. 2002; Schaletzky
et al. 2003; Tronchere et al. 2004; Tosch et al. 2006). One exception is MTMR14,
which exhibits phosphatase activity against a larger number of phosphoinositides
(PtdIns(3,5)P2 > PtdIns(3,4)P2 > PtdIns(4,5)2 > PtdIns(3)P) (Shen et al. 2009). How-
ever, in a separate study using immunoprecipitates from HEK293 cells, MTMR14
selectively degraded only PtdIns(3)P and PtdIns(3,5)P2 (Tosch et al. 2006).

The cellular localization of PtdIns(3)P and PtdIns(3,5)P2 is predominantly endo-
somal, and some of the myotubularins are predicted to control endosomal PtdIns(3)P
levels, although there are conflicting reports. The different effects of MTM over-
expression or decreased expression on endosomal PtdIns(3)P may relate to different
experimental approaches. Many microscopy-based studies have detected endosomal
PtdIns(3)P, by expression of GFP-tagged constructs containing two FYVE domains
in tandem, with co-localization with endosomal markers. Another approach has uti-
lized purified GST-2xFYVE as a probe, detected by GST antibodies after cellular
fixation and permeabilization (Gillooly et al. 2000). Over-expression of MTM1,
MTMR2-4, and MTMR14 decreases endosomal PtdIns(3)P in both cell lines as well
as in primary cells (Kim et al. 2002; Kelley and Schorey 2004; Lorenzo et al. 2006;
Tosch et al. 2006; Cao et al. 2007; Naughtin et al. 2010; Taguchi-Atarashi et al.
2010). Expression of the D. melanogaster mtm decreases endosomal PtdIns(3)P in
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hemocytes (Velichkova et al. 2010). However, other studies have shown that expres-
sion of MTM1 (Laporte et al. 2002), or MTMR2 (Kim et al. 2002) does not influence
endosomal PtdIns(3)P levels, and in fibroblasts from human patients with different
MTM1 mutations, no alteration in endosomal PtdIns(3)P probe fluorescence was de-
tected (Tronchere et al. 2004). Fili and colleagues used a chimeric MTM1 protein
designed to be recruited to Rab5 positive membranes only upon addition of rapa-
logue (Fili et al. 2006). Expression of the MTM1-FKB chimera in HeLa cells did not
decrease GST-2xFYVE staining until rapalogue was added, which induced MTM1
targeting to early endosomes (Fili et al. 2006). In contrast, siRNA knockdown of
different myotubularins increases endosomal PtdIns(3)P in some studies (Cao et al.
2008; Naughtin et al. 2010; Taguchi-Atarashi et al. 2010; Velichkova et al. 2010).
Some of the differences in the effects of myotubularin expression on PtdIns(3)P
might be accounted for by the frequent reliance of over-expression of myotubu-
larins and/or GST-2xFYVE probe over-expression and the associated difficulties
in comparing cells with different expression levels. Expression of a GFP-2xFYVE
probe per se, as opposed to application of a recombinant GST-2xFYVE probe af-
ter cellular fixation, itself interferes with PtdIns(3)P-dependent events (Vieira et al.
2004; Gillooly et al. 2000). In addition, most studies have presented qualitative
representative images of cells with little quantification. Of special note, Cao et al.
used siRNA to MTM1 or MTMR2, and with quantitation demonstrated increased
PtdIns(3)P in cells by analysis of GFP-2xFYVE fluorescence (Cao et al. 2008). In-
terestingly, MTM1 knockdown did not alter total GFP-2xFYVE fluorescence, but
increased the fraction of GFP-2xFYVE which co-localized with the early endosomal
marker, EEA1. In contrast MTMR2 siRNA increased late endosomal GFP-2xFYVE
(Cao et al. 2008). Additionally, GST-2xFYVE staining was quantified in HeLa cells
treated with MTMR4 siRNA (Naughtin et al. 2010). This study reported that in
knockdown cells, the increased GST-2xFYVE signal did not reflect an increase in
the fluorescence associated with individual endosomes, but rather was a result of
a large increase in the number of GST-2xFYVE-positive endosomes per cell. This
suggests a function of MTMR4 is to restrict PtdIns(3)P from certain endosomal
populations.

Despite being characterized as a dual specific phosphatase, the ability of a my-
otubularin to utilize phosphoprotein(s) as substrates has only been identified in one
study. Recently, negative regulation of TGFβ signaling by MTMR4 was demon-
strated, via binding to and dephosphorylation of the R-SMADS, SMAD2 and
SMAD3 (Yu et al. 2010). Expression of MTMR4 rendered cells resistant to the
anti-proliferative effects induced by TGFβ treatment (Yu et al. 2010). This raises
the possibility that MTMR4 and other myotubularins may exhibit biological activity
against additional phosphoprotein substrates.

To determine the sub-cellular localization of specific MTMs, many studies have
relied on ectopic over-expression of myotubularin in cells (Blondeau et al. 2000;
Taylor et al. 2000a; Firestein et al. 2002; Walker et al. 2001; Kim et al. 2002; Berger
et al. 2003, 2006; Chaussade et al. 2003; Kim et al. 2003; Tsujita et al. 2004; Robin-
son and Dixon 2005; Lorenzo et al. 2006; Tosch et al. 2006; Vergne et al. 2009;
Taguchi-Atarashi et al. 2010; Plant et al. 2009). These various studies have reported
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discordant results for the sub-cellular localization of some of the myotubularins, per-
haps as a result of different experimental techniques or differences in cell types and/or
the level of over-expression achieved. Multiple reports have localized recombinant
MTM1 to the cytosol, at the plasma membrane and on membrane ruffles (Blondeau
et al. 2000; Fili et al. 2006; Kim et al. 2002; Laporte et al. 2002; Lorenzo et al. 2006;
Nandurkar et al. 2003; Taylor et al. 2000a; Tsujita et al. 2004). In contrast, endoge-
nous myotubularin is reported to localize to early endosomes, where it regulates a
pool of PtdIns(3)P (Cao et al. 2007, 2008). The only myotubularin which has been
consistently reported to localize to endosomes is MTMR4, which contains a FYVE
domain. When expressed in cells recombinant MTMR4 exhibits an endosomal dis-
tribution, co-localizing with early, late and recycling endosomal markers (Lorenzo
et al. 2006; Naughtin et al. 2010; Plant et al. 2009; Yu et al. 2010).

Several reports have localized recombinant MTMR2 to the cytosol, with some
perinuclear enrichment (Kim et al. 2002, 2007; Robinson and Dixon 2005) as well
as the nucleus (Lorenzo et al. 2006), whilst endogenous MTMR2 is detected on
late endosomes (Cao et al. 2008). Some of the inconsistencies in these reports on
the different sub-cellular localizations of myotubularin and the MTMs may be a
consequence of different protein:protein interactions between myotubularins, and/or
the localization may change with agonist specific-cell stimulation, or may be cell
type-specific. For example stimulation of COS7 or FlpIn293 cells with EGF results
in a MTM1 or MTMR2 cytosolic redistribution to punctate and vesicular structures
(Tsujita et al. 2004; Berger et al. 2011).

Several other myotubularins exhibit a cytosolic localization, with non-specific
patterns of punctate or reticular localization (Lorenzo et al. 2006). Over-expressed
wild-type MTMR3 localizes to a cytosolic and reticular distribution, with some over-
lap with the endoplasmic reticulum (Walker et al. 2001), and despite the presence
of a FYVE domain it shows little endosomal localization. In addition, mutations in
MTMR3 have been associated with significant alterations in its sub-cellular distri-
bution (Walker et al. 2001; Lorenzo et al. 2005). A single mutation at the cysteine
in the MTMR3 catalytic site (C413S) results in its punctate cellular distribution, co-
localizing with structures which by ultrastructural analysis have the appearance of
autophagosomes, and by light microscopy co-localize with autophagosome markers
such as WIPI-1α and DFCP1 (Walker et al. 2001; Taguchi-Atarashi et al. 2010).
Double mutation of MTMR3 C413S, together with deletion of the PH domain,
surprisingly induces Golgi localization of MTMR3 (Lorenzo et al. 2005).

8.3.2 Myotubularin Association with Human Disease

Mutations in either active or inactive myotubularins lead to human disease. MTM1
is mutated in X-linked centronuclear (myotubular) myopathy (Laporte et al. 1996).
This congenital disease is characterized by severe muscle weakness in affected males,
which often results in death in infancy from respiratory failure (Laporte et al. 1996).
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Pathological analysis of muscles from affected patients reveals small rounded mus-
cle cells with centrally placed nuclei and a surrounding halo devoid of contractile
elements (Laporte et al. 1996). Mtm1−/− mice exhibit growth retardation with a
shortened life span, associated with a progressive muscle phenotype that resembles
the human disease, attributed to a defect in muscle maintenance, but not myogenesis
(Biancalana et al. 2003). MTMR2 mutation is associated with the peripheral neu-
ropathy Charcot-Marie-Tooth disease type 4B1, and mutation in its inactive binding
partner MTMR13 leads to a similar clinical syndrome, Charcot-Marie-Tooth disease
type 4B2 (Bolino et al. 2000; Berger et al. 2002; Azzedine et al. 2003; Senderek
et al. 2003). Pathological analysis of affected patients reveals a demyelinating neu-
ropathy with focally folded myelin sheaths. Mice have also been generated with a
deletion of Mtmr2, or Mtmr13 genes (Bolino et al. 2004; Tersar et al. 2007; Robinson
and Dixon 2005). Mtmr2−/− mice with a complete deletion are viable, but under-
represented according to Mendelian predictions, and exhibit growth retardation, but
no apparent weakness (Bolino et al. 2004). These mice show a peripheral neuropa-
thy on nerve conduction and histopathological analyses, and also exhibit azospermia
(Bolino et al. 2004). Conditional loss of Mtmr2 in Schwann cells, but not neu-
rons, reproduces the neuropathy phenotype (Bolis et al. 2005). In a separate study,
mice expressing a truncated transcript lacking the phosphatase domain of Mtmr2
were born within the expected Mendelian frequency, and showed normal growth and
physical appearance (Bonneick et al. 2005). Histopathological analysis, however,
revealed the characteristic features observed in humans with Charcot-Marie-Tooth
4B1 (Bonneick et al. 2005). Mtmr13−/− mice are viable and are born at the predicted
Mendelian frequency (Tersar et al. 2007; Robinson et al. 2008). These mice do not
exhibit an obvious disease phenotype, however, defects were observed on detailed
motor testing at 12 months age, with electrophysiological and histopathological ev-
idence of neuropathy (Tersar et al. 2007). A mouse knock-out of Mtmr5 exhibits
azospermia, perhaps related to abnormalities in Sertoli cell function (Firestein et al.
2002). Mutations of MTMR14 are implicated in some cases of human autosomal
recessive centronuclear myopathy (Tosch et al. 2006). Mtmr14−/− mice have a nor-
mal appearance, but exhibit abnormal motor testing during strenuous exercise, and
abnormalities of excitation-contraction coupling (Shen et al. 2009).

8.3.3 Inactive Myotubularins and Protein Complex Formation

Inactive myotubularins have been speculated to regulate the catalytic activity of the
active myotubularins, or alternatively to interact with active myotubularins and direct
their sub-cellular localization (Berger et al. 2003, 2006; Kim et al. 2003; Nandurkar
et al. 2003). For example, the inactive MTMR13 increases the activity of MTMR2
toward PtdIns(3)P and PtdIns(3,5)P2, by 10- and 25-fold amounts respectively
(Berger et al. 2006). This might provide a molecular basis for the observation that
mutations in the inactive MTMR13 result in Charcot Marie Tooth type 4B2 neuropa-
thy in humans and in mouse models. Both endogenous and recombinant MTMR2
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and MTMR13 form homodimers in cells via interaction of their coiled-coil domains
(Berger et al. 2006). These myotubularins also interact with each other in a tetrameric
protein complex (Berger et al. 2006). The sub-cellular distribution of MTMR13
overlaps with MTMR2 under resting conditions, but diverges under conditions of
hypo-osmotic stress, suggesting that in addition to regulating enzyme activity of an
active phosphatase, the inactive phosphatase regulates the sub-cellular localization
of the active phosphatase (Berger et al. 2006). Similarly, MTMR12 forms a complex
with MTM1, which requires the SID domain. This interaction directs the localization
of MTM1 away from the plasma membrane with reversal of MTM1-induced changes
in filopodial formation in COS7 cells (Nandurkar et al. 2003). Interactions have also
been observed for many other recombinant myotubularins, but whether these interac-
tions occur in vivo is unclear due to a general difficulty in this field in making specific
high affinity antibodies to any of the myotubularins: MTM1 interacts with MTMR10
(Lorenzo et al. 2006); MTMR2 interacts with MTMR5, MTMR10, MTMR12 and
MTMR13, and the interaction between MTMR5 and MTMR13 requires the coiled-
coil domain and increases phosphatase activity (Nandurkar et al. 2003; Kim et al.
2003; Robinson and Dixon 2005; Lorenzo et al. 2006; Berger et al. 2006). MTMR3
interacts with MTMR4 and co-expression of MTMR3 and MTMR4 alters the sub-
cellular localization of each phosphatase (Lorenzo et al. 2006); MTMR6, MTMR7
and MTMR8 interact with MTMR9; the MTMR7/MTMR9 interaction requires the
coiled-coil domain and results in increased MTMR7 phosphatase activity (Mochizuki
and Majerus 2003; Lorenzo et al. 2006). Protein complex formation is not restricted
only to other myotubularins. MTM1 and MTMR2 interact in a multi-protein com-
plex with the Class III PI3K (hVps34) and hVps15 (Cao et al. 2007, 2008). MTMR2
also interacts with PSD95, an excitatory postsynaptic scaffolding protein, as well as
with disc-large1 (Dlg1) (Bolis et al. 2009; Lee et al. 2010). MTRM4 interacts with
R-SMADs, and the ubiquitin ligase, NEDD4 (Plant et al. 2009; Yu et al. 2010).

8.3.4 Myotubularins and Cellular Function

The functional role that individual myotubularins play in the cellular control of phos-
phoinositide signaling is currently a target of much work. PtdIns(3)P localizes to early
and late endosomes, the plasma membrane and the forming autophagosome (Gillooly
et al. 2000, 2003; Tooze and Yoshimori 2010). The localization of PtdIns(3,5)P2 is
within endosomes/lysosomes (Dove et al. 2009). A number of the myotubularins may
regulate endosomal PtdIns(3)P. This suggests potential roles for the myotubularins
in regulating endocytic trafficking, including endocytosis, degradative and recycling
pathways and autophagy. In C. elegans, mutations in mtm-6 or mtmr-9 impair en-
docytosis by coelomocytes (Fares and Greenwald 2001; Xue et al. 2003). siRNA
depletion of MTMR4 decreases endocytosis of transferrin by HeLa cells (Naughtin
et al. 2010). Conversely, siRNA depletion of MTMR2 in neuronal cells enhances
endocytosis and impairs synaptic maintenance (Lee et al. 2010). Sorting of EGFR
for degradation is an important PI3K-dependent pathway. Expression of MTM1 or
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MTMR2 inhibits EGFR degradation (Tsujita et al. 2004; Berger et al. 2011). In con-
trast, Lorenzo and colleagues found that over-expression of MTMR4, but not MTM1,
MTMR2 or MTMR3, impaired EGFR degradation in some cells (Lorenzo et al.
2006). Expression of a catalytically inactive MTMR4, or treatment with MTM1 or
MTMR2 siRNA also results in impairment of EGFR degradation, possibly suggest-
ing that tight control of phosphoinositide levels is necessary for normal degradative
receptor sorting (Lorenzo et al. 2006; Cao et al. 2008). Recycling of transferrin can
occur by both PI3K-dependent and independent pathways, and over-expression of
MTMR4 impairs the sorting of transferrin from early endosomes (Naughtin et al.
2010). In contrast, expression of a phosphatase inactive MTMR4 mutant increases
transferrin recycling (Naughtin et al. 2010). Recycling of MIG-14/Wls is necessary
for Wnt secretion, a signaling process important in tissue development and disease,
and it has recently been reported that this is disrupted in C. elegans mtm-6 and mtmr-
9 mutants (Silhankova et al. 2010). The authors also reported that mtm-6 and mtmr-9
regulate the localization of sorting nexin 3 to PtdIns(3)P-positive endosomes and
maintain normal trafficking of MIG-14/Wls to control Wnt secretion (Silhankova
et al. 2010).

Autophagy is a cellular process whereby portions of the cellular contents are in-
ternalized in double membrane autophagosomes and degraded. PtdIns(3)P plays a
significant role in autophagosome initiation (Tooze and Yoshimori 2010). MTMR3
and MTMR14 localize to the site of autophagosome formation and negatively reg-
ulate autophagy (Vergne et al. 2009; Dowling et al. 2010; Taguchi-Atarashi et al.
2010). Additionally MTMR14 Danio rerio (D. rerio) morphants show elevated au-
tophagic markers, and a double morphant embryo of MTM1 and MTMR14 exhibits
significantly greater autophagic markers and autophagic structures by ultrastructural
analysis (Dowling et al. 2010). Taken together, this data suggests that at least three
of the myotubularins may inhibit autophagy.

A number of reports have recently linked the muscle defects observed in my-
otubularin mutations with alterations in skeletal muscle triad structure and function.
Ultrastructural defects in T-tubules and the sarcoplasmic reticulum have been de-
scribed in animal models of myotubular myopathy, including Mtm1−/− mice,
knockdown of mtm1 in D. melanogaster and D. rerio and a spontaneous Mtm1
mutation in Labrador retrievers, as well as in the tissues of patients with myotubular
myopathy (Al-Qusairi et al. 2009; Dowling et al. 2009, 2010; Beggs et al. 2010;
Toussaint et al. 2010). In skeletal muscle, MTM1 localizes to the region of the
T-tubule (Buj-Bello et al. 2008; Dowling et al. 2009). Mtm1−/− mice show de-
pressed calcium release from the sarcoplasmic reticulum with lower protein levels
of the type 1 ryanodine receptor (RyR1). MTM1 D. rerio morphants show abnor-
mal excitation-contraction coupling (Al-Qusairi et al. 2009; Dowling et al. 2009).
MTMR14 D. rerio morphants show normal muscle triad ultrastructure, but defec-
tive excitation-contraction coupling and a motor phenotype (Dowling et al. 2010).
A mouse Mtmr14−/− model exhibits prolonged muscle relaxation and fatigability, a
result of spontaneous calcium leakage from the sarcoplasmic reticulum (Shen et al.
2009). Intriguingly, the Mtmr14−/− mouse shows increased PtdIns(3,5)P2 (Shen et al.
2009). PtdIns(3,5)P2 and PtdIns(3,4)P2 directly activate the RyR1 calcium channel,
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linking the observed muscle weakness with an accumulation of these phosphoinosi-
tides (Shen et al. 2009). In addition to the effect of MTM1 and MTMR14 on muscle
calcium channel signaling, a third myotubularin has also been linked to ion channel
signaling. MTMR6 negatively regulates the calcium-dependent activated potassium
channel, KCa3.1 (Srivastava et al. 2005; Choudhury et al. 2006). MTMR6 functions
as a negative regulator of calcium influx and proliferation of reactivated CD4 + T
cells (Srivastava et al. 2006). Very recently myotubularin has been shown to bind
desmin, and regulate desmin function (Hnia et al. 2010). Desmin is a major inter-
mediate filament protein in skeletal muscle, and mutations in desmin are associated
with cardiomyopathy and myopathy (Omary et al. 2004). Loss of MTM1 results
in abnormal desmin intermediate filament assembly and mitochondrial positioning,
and this is independent of the phosphatase activity of MTM1 (Hnia et al. 2010).

Several MTMs have also been associated with abnormal muscle maturation and
atrophy. Abnormal regulation of the MTMR1 gene has been described in myotonic
dystrophies types 1 and 2 (Buj-Bello et al. 2002a; Santoro et al. 2010). MTMR4 inter-
acts with the ubiquitin ligase NEDD4, and in atrophying muscle increased levels of
NEDD4 correlate with decreased levels of MTMR4 (Plant et al. 2009). Additionally,
aged mice show progressive loss of Mtmr14, together with altered motor function
and calcium homeostasis, suggesting a role for the loss of MTMR14 in sarcopenia
(Romero-Suarez et al. 2010).

The molecular basis of myotubularin mutations and resultant neurological man-
ifestations are also slowly emerging. MTMR2 forms a protein complex, interacting
with the scaffolding protein Dlg1, the plus-end kinesin motor protein, Kif13b, and
the exocyst component Sec8 (Bolis et al. 2009). Dlg1 and Kif13b transport MTMR2
to sites of membrane remodeling, where MTMR2 restricts and Sec8 promotes mem-
brane addition to regulate Schwann cell myelination (Bolis et al. 2009). Additionally,
expression of recombinant MTM1 or MTMR2 mutants, but not wild type MTM1,
results in aggregation of neurofilaments in an adrenal carcinoma cell line (Goryunov
et al. 2008). MTMR2 interacts with the scaffolding protein, PSD95, and knockdown
of MTMR2 results in reduced excitatory synapse number and synapse transmission
(Lee et al. 2010).

Two of the myotubularins have also been linked in gene association studies to
metabolic defects. Single nucleotide polymorphisms (SNPs) of MTMR4 are associ-
ated with elevated plasma total cholesterol values, and SNPs in MTMR9 associate
with obesity and hypertension (Dolley et al. 2009; Yanagiya et al. 2007). However
the molecular basis of these interesting observations remains currently unknown.

A number of the myotubularins may also positively regulate cell proliferation
and/or inhibit apoptosis. MTMR6 expression promotes resistance to etoposide-
induced apoptosis, an effect enhanced by MTMR9 (Zou et al. 2009a). Silencing of
MTMR2 in cultured Schwann cells results in decreased proliferation and enhanced
caspase-dependent cell death (Chojnowski et al. 2007). MTMR2 and MTMR13 pos-
itively regulate Akt signaling and prevent the degradation of EGFR (Berger et al.
2011). MTMR4 expression suppresses growth inhibition induced by TGFβ, through
its action in dephosphorylating R-SMADS (Yu et al. 2010). Taken together this data
suggests that at least five of the myotubularins are pro-proliferative, by yet to be
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defined molecular mechanisms. RNAi-mediated knockdown of the D. melanogaster
homologs of human MTM1, MTMR5/13 or MTMR 6/7/8 result in mitotic defects,
suggesting a role for myotubularins in the regulation of cell division (Chen et al.
2007). These findings are of interest given recent evidence that shows PtdIns(3)P
localizes to the midbody during division (Sagona et al. 2010).

Additional diverse functions of myotubularins have been reported. MTMR8 may
be involved in angiogenesis as Mtmr8 knockdown in D. rerio results in abnormal
vascular development (Mei et al. 2010). Mtm1 knockdown in D. melanogaster pro-
duces defects in cell cytoskeletal responses to hormone stimulation, and alters the
wound recruitment of hemocytes (Velichkova et al. 2010). Mtm1 also functions in
C. elegans as a negative regulator of corpse engulfment during development (Zou
et al. 2009b).

8.4 Concluding Remarks

We have described a wealth of research conducted over 15 years or so, that has shown
us how these two contrasting groups of PI 3-phosphatases, which play roles in the
fundamental cellular processes of signal transduction and of membrane traffic, have
important influences on human health and disease. The ability to use biochemistry
and genetics to link strongly the related catalytic activities of these phosphatases to
human diseases provides an excellent framework for future studies, which are both
biological and translational. Ongoing work should provide a deeper understanding of
the complex biology by which aberrant PI 3-kinase functions cause these pathologies
and it is hoped that drug discovery efforts in these areas, many targeting the lipid
kinases, may lead to successful treatments Table 8.3.

Additional information regarding sequences and online database entries is shown
on Table 8.3.
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