
Chapter 5
PI3Ks—Drug Targets in Inflammation
and Cancer

Matthias Wymann

Abstract Phosphoinositide 3-kinases (PI3Ks) control cell growth, proliferation, cell
survival, metabolic activity, vesicular trafficking, degranulation, and migration.
Through these processes, PI3Ks modulate vital physiology. When over-activated
in disease, PI3K promotes tumor growth, angiogenesis, metastasis or excessive im-
mune cell activation in inflammation, allergy and autoimmunity. This chapter will
introduce molecular activation and signaling of PI3Ks, and connections to target of
rapamycin (TOR) and PI3K-related protein kinases (PIKKs). The focus will be on
class I PI3Ks, and extend into current developments to exploit mechanistic knowledge
for therapy.

Keywords Cancer inflammation allergy metabolism phosphatidylinositol phospho-
inositide phosphoinositide 3-kinase · PI3K target of rapamycin · TOR · mTOR
protein kinase B · Akt · PKB 3-phosphoinositide phosphatase and tensin ho-
molog deleted in chromosome ten · Also PTEN wortmannin LY294002 rapamycin
pharmacology signal transduction

5.1 PI3Ks—Molecular Mechanisms

5.1.1 Introduction to PI3Ks

The deregulation of phosphoinositide 3-kinase (PI3K) pathways interferes with cel-
lular hemostasis and contributes to the over-activation of many cell types. In this
respect, PI3Ks have been shown to play a central role in the control of cellular
metabolism, growth, proliferation, survival and migration, intracellular membrane
transport, secretion and more.
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Although cancer and inflammatory disease include a wide variety of disorders with
a broad degree of severity and clinical outcome, both emerge from preexisting, but
derailed physiologic repair and defense mechanisms. To enter a tissue repair or host
defense mode, cells have to switch from a quiescent to an activated state. Cell surface
receptor-controlled PI3Ks produce PtdIns(3,4,5)P3 at the inner leaflet of the plasma
membrane, where the lipid provides a docking site for signaling molecules with lipid
receptor domains (Balla and Varnai 2002; Lemmon 2008). The prototype for these is
the Ser/Thr protein kinase B (PKB, also called Akt)(Bellacosa et al. 1991), which in-
directly relays the activation of PI3K to the target of rapamycin (TOR or mammalian
TOR, mTOR), which in turn regulates protein synthesis and growth. Via the activa-
tion of guanine nucleotide exchange factors (GEFs), PtdIns(3,4,5)P3 levels modulate
Rho GTPase activities and thus cytoskeletal rearrangements, cell polarity and migra-
tion. The importance of PtdIns(3,4,5)P3 levels in these processes has been validated
by the loss of one of the counter-players of PI3Ks: when the expression of the lipid 3′-
phosphatase PTEN (Phosphatase and Tensin homolog deleted on chromosome Ten) is
lowered, PtdIns(3,4,5)P3 rises, and develops its oncogenic potential (Stambolic et al.
1998; Di Cristofano et al. 1998; Leslie et al. 2008; Zhang andYu 2010). In fact, most
cases of Cowden Syndrome are due mutations in PTEN (Eng 1998), and result in the
formation of hyperplasia and adenoma formation in various tissues, which constitute
early forms of cancer (Liaw et al. 1997; Sansal and Sellers 2004; Hobert and Eng
2009; Farooq et al. 2010). But also the genetic attenuation of lipid 3′-phosphatases de-
grading PtdIns(3,5)P2 or PtdIns-3-P gives rise to progressive disease, as mutations
in the gene coding for myotubularin 1 (MTM1) cause X-linked myotubular my-
opathy (XLMTM), and loss of phosphatase activity in myotubularin-related protein
2 (Mtmr2) correlates with Charcot-Marie-Tooth disease type 4B1 (CMT4B1, Berger
et al. 2002; Cao et al. 2008). This demonstrates that a delicate balance between lipid
kinase and lipid phosphatase activities controls the flux through the phosphoinosi-
tide pathway, and that phosphoinositide levels play an important part in cellular
homeostasis (Fig. 5.1).

Initially, PI3Ks were discovered as lipid kinases associated with viral oncogens
(Whitman et al. 1985; Sugimoto et al. 1984; Macara et al. 1984), and for the last two
decades the link between cancer and elevated PtdIns(3,4,5)P3 levels has been corrob-
orated (Vivanco and Sawyers 2002; Wymann and Marone 2005; Cully et al. 2006;
Engelman et al. 2006; refer to Vol. 1, Chap. 4). While there is a clear-cut connection
between elevated PtdIns(3,4,5)P3 levels and progression of cancer, chronic inflam-
mation, allergy, metabolic disease, diabetes and cardiovascular problems, it has been
challenging to associate specific PI3K isoforms with defined disease states. The
combination of genetic and pharmacological approaches has somewhat elucidated
the integration of distinct PI3K isoforms in disease-associated signaling cascades
during the past decade, which has helped to validate PI3Ks as drug targets in cancer
and chronic inflammation.
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Fig. 5.1 Lipid kinases (indicated in black) and lipid phosphatases (grey) mediate the flow of
phosphoinositides from phosphoinositol (PtdIns, PI) to PtdIns(3,4,5)P3 [PI(3,4,5)P3]. The main
synthesis pathways relevant in physiology and disease are indicated: PI is phosphorylated by phos-
phatidylinositol 4-kinase (PI4K) to PI4P (Balla and Balla 2006; Graham and Burd 2011), which is
turned over into PI(4,5)P2 by PI5K (type I phosphatidylinositol phosphate kinase; PIPKI (Anderson
et al. 1999; Ling et al. 2006)). PI(4,5)P2 is then converted to PI(3,4,5)P3 by class I PI3Ks [PI3K(I)].
The 3′-lipid phosphatase PTEN (Stambolic et al. 1998; Di Cristofano et al. 1998; Leslie et al. 2008;
Zhang and Yu 2009) reverses the action of PI3K(I), while the 5′-lipid phosphatase SHIP (Krystal
et al. 1999) produces PI(3,4)P2. PI(3,4)P2 could eventually also be produced by class II PI3Ks
[PI3K(II)] from PI4P. PI(3,4)P2 is degraded mostly by inositol polyphosphate 4-phosphatases, e.g.
INPP4, to form PI3P. The latter is formed directly from PI by class III PI3K (PI3K(III)/Vps34)
or class II PI3Ks from PI. PI3P can be converted to PI(3,5)P2 by PIKfyve (yeast Fab1) as re-
sponse to cellular stress (Dove and Johnson 2007; Dove et al. 2009). Myotubularins (MTM) and
myotubularin-related (MTMR) constitute a family of lipid phosphatases that dephosphorylate PI3P
and PI(3,5)P2 (Laporte et al. 2001; Mruk and Cheng 2010). Simplified, PI(4,5)P2 and PI(3,4,5)P3

are localized in the plasma membrane, golgi and ER are rich in PI4P (Graham and Burd 2011);
PI3P is a marker for early endosomes; and late endosomes and multi-vesicular bodies contain
PI(3,5)P2. Excellent reviews elucidation phosphoinositide localization and conversions further are
(Di Paolo and De Camilli 2006; Sasaki et al. 2009; Bunney and Katan 2010). Other useful source:
http://www.genome.jp > KEGG Pathway > map04070

5.1.2 The PI3K Family and PI3K-related Protein Kinases

The core PI3K family consists of three PI3K classes (Wymann and Pirola 1998;
Vanhaesebroeck et al. 2001; Wymann et al. 2003b; Vanhaesebroeck et al. 2010),
which have been defined according to structural characteristics and their in vitro
substrate specificity (Fig. 5.2). The complete set of all PI3K family members has
first been identified in the fruit fly Drosophila melanogaster (MacDougall et al.
1995; Leevers et al. 1996), and work in model organisms like Caenorhabditiselegans
(Morris et al. 1996; Roggo et al. 2002), Dictyosteliumdiscoideum (refs see (Chen
et al. 2007)) and yeast (Schu et al. 1993), has much contributed to the elucidation of
the function of members of the PI3K family (Engelman et al. 2006).
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Ligand-activated receptors located in the plasma membrane relay their signals to
class I PI3Ks, which are the only PI3K members able to convert PtdIns(4,5)P2 to
PtdIns(3,4,5)P3. Although class I PI3K are capable to phosphorylate PtdIns to PtdIns-
3-P, and PtdIns-4-P to PtdIns(3,4)P2 in vitro, they have a preference for PtdIns(4,5)P2

as a substrate in vivo (Stephens et al. 1993; Cantley 2002). All members of the class
I PI3Ks are heterodimers, contain a catalytic subunit of 100–120 kD (referred to as
p110 proteins and genes named PIK3c).

Although class II PI3Ks were reported to be direct downstream targets of growth
factor receptors like the epidermal growth factor receptor (EGFR) or platelet-derived
growth factor receptor (PDGFR) and stem cell factor receptor (SCFR, c-kit; Arcaro
et al. 2000, 2002), their main connection to signaling at the plasma membrane is likely
to be mediated via clathrin-mediated endocytosis (Domin et al. 2000; Gaidarov et al.
2001; Falasca and Maffucci 2007). Class II PIKs were proposed to produce PtdIns-
3-P and PtdIns(3,4)P2. Class III PI3Ks are represented by Vps34p (vacuolar protein
sorting mutant 34; Schu et al. 1993), which generates PtdIns-3-P only. Vps34p is
involved in vesicular transport to yeast vacuolar and mammalian early endosomal
compartments, protein sorting (Simonsen et al. 2001), autophagy (Backer 2008;
Simonsen and Tooze 2009; Funderburk et al. 2010) and has recently been proposed
to promote cytokinesis (Sagona et al. 2010; Nezis et al. 2010).

The members of the PI3K family have close relatives, which are the type III
phosphoinositide 4-kinases (PI4Ks; Minogue et al. 2001; Barylko et al. 2001;
Balla and Balla 2006) refer to Vol. 1, Chap. 1 and protein kinases referred to
as class IV PI3Ks or phosphoinositide 3-kinase-related kinases (PIKKs). These
include the target of rapamycin (TOR; also dubbed FRAP or mTOR), DNA-
dependent protein kinase (DNA-PKcs), ATM (ataxia telangiectasia mutated), ataxia
telangiectasia-related (ATR), suppressor of morphogenesis in genitalia-1 (SMG-1)
and transformation/transcription domain-associated protein (TRRAP). DNA-PKcs,
ATM, ATR and SMG-1 take part in DNA-damage repair responses. DNA-PKcs and
ATM respond mainly to double strand break (DSB), while ATR and SMG-1 are
activated due to ultraviolet-induced stress, DNA-damage, and DSB (Durocher and
Jackson 2001; Hiom 2005). SMG-1 is involved also in mRNA surveillance mecha-
nisms, genotoxic stress responses and non-sense-mediated mRNA decay (Yamashita
et al. 2005; Oliveira et al. 2008). TOR, on the other hand, is regulated by growth
factors receptors and the availability of nutrients. Two distinct TOR complexes coor-
dinate protein and lipid synthesis, cell growth and proliferation (Wullschleger et al.
2006; Laplante and Sabatini 2009; Sancak et al. 2010; Kapahi et al. 2010).

5.1.3 The PI3K Catalytic Core, Enzymatic Activities

PI3Ks and PIKKs share a similar catalytic core (PI3Kc), where the ATP- and lipid
and protein substrate-binding sites are localized (Fig. 5.2). Interestingly, early PI3K
inhibitors like wortmannin (Arcaro and Wymann 1993; Yano et al. 1993; Wymann
and Arcaro 1994) and LY294002 (Vlahos et al. 1994) inhibit multiple enzymes of
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the PI3K and PIKK family at elevated concentrations (Wymann and Arcaro 1994;
Marone et al. 2008). For class I PI3Ks wortmannin’s IC50 is 1–5 nM, for class II
PI3K the IC50 was reported to be isoform-dependent [PI3K-C2α: IC50

∼= 500 nM;
PI3K-C2β: IC50

∼= 2–5 nM; for human Vps34p class III PI3K the IC50 is ca. 3 nM,
while yeastVps34p was reported to be rather resistant to wortmannin (Panaretou et al.
1997; Woscholski et al. 1994); and for type III PI4Ks IC50

∼= 100–300 nM (Falasca
and Maffucci 2007; Balla and Balla 2006). PIKKs were inhibited at somewhat higher
concentrations: IC50s for wortmannin have been reported for SMG-1 around 60 nM,
for DNA-PKcsfrom 20–120 nM, for mTOR and ATM from 100–200 nM, while ATR
requires ca. 1.8 μM (IC50) of wortmannin (Yamashita et al. 2005; Brunn et al. 1996;
Izzard et al. 1999; Chan et al. 2000; Sarkaria et al. 1998).

Wortmannin binds covalently to a conserved lysine residue in the catalytic pocket
of PI3Ks (Lys 802 in p110α (Wymann et al. 1996); Lys833 in p110γ (Stoyanova et al.
1997; Walker et al. 2000)) and PIKKs (e.g. Lys2187 in TOR (Brunn et al. 1996)).
This active site Lys residue is conserved in protein and lipid kinases, and is critical for
the transfer of the γ-phosphate group of ATP to kinase substrates. The ε-amino group
of this Lys residue is especially nucleophilic and is capable to form a Schiff-base with
the carbon-20 of the furan ring of wortmannin. This adduct is stable at a physiologic
pH and can be detected by immunoblotting with anti-wortmannin antibodies (Balla
and Balla 2006; Marone et al. 2008; Wymann et al. 1996). Data obtained using
wortmannin as a PI3K inhibitor above 100 nM must therefore be interpreted with
great caution, last but not least because it was reported that also polo-like protein
kinases involved in the control of mitosis are inhibited by wortmannin in the nM range
(IC50

∼= 30–50 nM; Liu et al. 2005). Although wortmannin and LY294002 remain
useful tools to explore the importance of PI3K signaling in a cellular context, panels
of more selective inhibitors are now available, and should be used complementary
(see Table 5.1 and sections below).

A productive transfer of the γ-phosphate group ofATP to the D3-OH position of the
phosphoinositide substrate depends also on a tight interaction of the phosphoinositide
head group with the PI3K catalytic pocket. For the higher phosphorylated phospho-
inositides this poses the problem that the negatively charged phosphate groups must
be accommodated. In class I PI3Ks, the so-called activation loop contains two es-
sential positively charged amino acid side chains (for p110α these are Lys942 and
Arg949), which interact with the 4- and the 5-phosphate groups of PtdIns(4,5)P2. If
these charges are removed, or if the class I PI3K activation loop is replaced with a se-
quence derived from other PI3K family members, the resulting mutant enzyme looses
its ability to turn over PtdIns(4,5)P2, but can still phosphorylate phosphatidylinositol
(Fig. 5.2b, Bondeva et al. 1998; Pirola et al. 2001). As the experimental transfer of
an activation loop from class II PI3Ks (containing one correctly positioned positive
charged amino acid side chain corresponding to the Arg949 in p110α) to class I en-
zymes retains the ability to phosphorylate PtdIns-4-P and to generate PtdIns(3,4)P2,
while the insertion of a class III activation loop only conserves the reactivity towards
phosphatidylinositol, it is possible to classify PI3Ks solely on the basis of their ac-
tivation loop sequences. Based on the analysis of the activation loop, class I PI3K
are the only PI3Ks to produce PtdIns(3,4,5)P3, and class III PI3K can only generate
PtdIns-3-P. The in vitro products of class II PI3K were reported to be PtdIns-3-P
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and PtdIns(3,4)P2, but it was shown that PI3K-C2α bound to clathrin was able to
generate PtdIns(3,4,5)P3 in vitro (Gaidarov et al. 2001). Activation loop sequences
would predict that this does not happen in a PI3K-C2α monomer, and suggests that
clathrin takes part in the presentation of PtdIns(4,5)P2 as a substrate for this lipid
kinase. Presently, the physiologic role, lipid product(s) and selective downstream
targets of class II PI3Ks remain largely undefined.

5.1.4 Structural Features and Activation of Class IA PI3Ks

Class IA PI3K catalytic subunits p110α (encoded by the gene named PIK3ca), p110β
(PIK3cb), and p110δ (PIK3cd) bind tightly to a regulatory subunit harboring two
src-homology 2 (SH2) domains. The latter docks specifically to phosphorylated
tyrosines in pYxxM (phospho-Tyr-x-x-Met) motifs on growth factor receptors or
protein tyrosine kinase substrates. Mammalia have three genes encoding five major
p85-like regulatory subunits subunits (PIK3r1 encodes p85α and splice variants
p55α, and p50α; PIK3r2 yields p85β; and PIK3r3 gives rise to p55γ). Each regulatory
subunit contains a coiled-coil region located between the N- and C-terminal SH2
domains (dubbed interSH, or iSH domain), which tightly binds to the N-terminus
(designated as p85-binding region, p85B) of the catalytic subunits p110α, p110β, and
p110δ (Fig. 5.2). The class IA regulatory p85-like subunits exert an inhibitory action
onto the catalytic subunit, which keeps the potentially oncogenic class I enzymes
silent (Zhao et al. 2005; Kang et al. 2006). Inhibition is released by the translocation
of p85 regulatory subunits to growth factor receptors and binding of the SH2 domains
to pYxxM motifs (for reviews see (Wymann and Marone 2005; Vanhaesebroeck et al.
2001; Wymann et al. 2003b; Cantley 2002; Backer 2010)). The isolated domain
structures of the regulatory p85 subunit have been determined early on (for the SH3
domain of p85α see (Batra-Safferling et al. 2010); the N-terminal SH2 domain of
p85α (nSH2) see (Nolte et al. 1996); for the iSH2 of p85β see (Schauder et al. 2010);
for the C-terminal SH2-domain (cSH2) of p85α see (Hoedemaeker et al. 1999)), but
the mechanism of this important inhibitory action has only been elucidated recently:
the structural determination of p85-fragments bound to p110α (Miled et al. 2007)
and the resolution of a p85α iSH-cSH2 fragment in a complex with p110β suggest
that both SH2 domains interact with perpendicularly oriented C-terminal α-helices
dubbed “the regulatory square” (Zhang et al. 2011). For class I PI3K it is thus
clear, that phosphorylated YxxM motifs on growth factor receptors do not only
translocate PI3Ks to the plasma membrane to secure access of the catalytic subunit
to PtdIns(4,5)P2, but that they also relieve two to three safety latches from class IA
PI3K complexes.

Some growth factor receptors directly recruit class IA PI3Ks, but for other input
signals, adaptor molecules are key to the activation and localization of class IA PI3Ks
(Fig. 5.3). As such, Grb2-associated binders (Gab1-3) and insulin receptor substrates
(IRS1-4) display pYxxM sites to class IA PI3Ks. They belong to aYxxM-multisite
adaptor protein family including daughter of sevenless (Dos). The insulin and IGF-1
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receptors directly phosphorylate IRSs, while members of the IL-4 receptor family
(γc-chain-containing cytokine receptors, see Fig. 5.2) require Janus kinases (JAK)
to complete the phosphorylation of YxxM motifs. IRS1 and Gab proteins display
a pleckstrin homology (PH) domain that is selective for PtdIns(3,4,5)P3, and can
potentially provide amplification of the PI3K response. The importance of Gabs for
PI3K signaling has been demonstrated in various systems, e.g. acquired immunity
(Pratt et al. 2000), allergy (Gu et al. 2001) and transformation of myeloid cells by the
p190BCR/Abl protein tyrosine kinase driving chronic myelogenousleukemia (CML;
Sattler et al. 2002). The E3 ligase Cbl, has also been shown to recruit PI3K to growth
factor and cytokine receptors. In vivo, however, c-Cbl and Cbl-b significantly reduces
PI3K activity downstream of the T cell receptor. That the inhibitory action of Cbl is
dominant in the long term was demonstrated in mice with disrupted c-Cbl, resulting
in enhanced thymic positive selection (Murphy et al. 1998). Mice without Cbl-b
displayed increased susceptibility for autoimmune diseases (Bachmaier et al. 2000).

Downstream of the T cell (TCR), B cell (BCR) and immunoglobulin receptors
(FcRs) so-called immunoreceptor tyrosine-based activation motifs (ITAM) serve
as initiation points for protein tyrosine kinase cascades. After the cross-linking
of immunoreceptors, src-like membrane-anchored protein tyrosine kinases (Fyn,
Blk, Lck) are concentrated, and locally phosphorylate ITAMs. ITAMs then recruit
SH2 domain-containing protein tyrosine kinases including ZAP-70 and Syk. This
enforced phosphorylation activity generates further PI3K docking sites on transmem-
brane adapter proteins (TRAPs) such as CD19, CD28, T cell receptor interacting
molecule (TRIM), NTAL (also called LAB/Lat2) and linker for activation of T cells
(LAT). Mice without LAT cannot generate T cells beyond the CD4−/CD8− stage
(Zhang et al. 1999; Roncagalli et al. 2010; Fuller et al. 2011). As for the growth
factors mentioned above, soluble adapter proteins [Grb2, Gab and the B cell adaptor
for phosphoinositide 3-kinase (BCAP)] contribute to PI3K activation. Deletions of
BCAP (Yamazaki et al. 2002) or CD19 (Rickert et al. 1995) both lead to severe B
cell phenotypes (Simeoni et al. 2004).

Toll-like receptor (TLR)-triggered responses are essential in host defense. The
activation of TLRs by various ligands has been reported to activate PI3K. Elevated
PI3K activity was mostly associated with an attenuation of the NFκB (nuclear factor
kappa-light-chain-enhancer of activated B cells) pathway and cytokine production
at multiple levels (Fukao and Koyasu 2003; Hazeki et al. 2007). Depending on
the stimuli and TLR receptor targeted, PI3K mediated pro- and anti-inflammatory
effects (for a review see (Fukao and Koyasu 2003)). The activation of class I PI3Ks
can take place via the interaction of p85 with aYxxM sequence on either TLR1,
TLR2, or TLR6 (Li et al. 2010) or by p85 binding to Mal (MyD88-adaptor-like;
also named Toll—IL-1 receptor domain-containing adaptor protein, TIRAP; Santos-
Sierra et al. 2009). When the PI3K downstream target 3-phosphoinositide-dependent
protein kinase-1 (PDK) was cell-specifically targeted in the myeloid cell linage,
macrophages without PDK1 became more susceptible to lipopolysaccharide (LPS)
stimulation via TLR4, and activation by Pam3CysSerLys4 (Pam3CSK4), a potent
TLR2 agonist acting through TLR2/TLR1. This resulted in increased production
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of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and a dramatically
increased sensitivity to LPS-induced septic shock (Chaurasia et al. 2010).

5.1.5 Class IB PI3K: PI3Kγ

The PIK3cg gene encodes the only PI3K class IB member, PI3Kγ (Stoyanov et al.
1995; Stephens et al. 1997), which associates with a p101 (PIKr5; Stephens et al.
1997) or a p84/p87PIKAP adapter protein (PIKr6; Suire et al. 2005; Voigt et al. 2006;
Bohnacker et al. 2009). PI3Kγ and its adapter subunits are highly expressed in
leukocytes, and at lower levels in smooth muscle cells, endothelia and cardiomy-
ocytes (Wymann and Marone 2005; Wymann et al. 2003b; Patrucco et al. 2004;
Vecchione et al. 2005; Alloatti et al. 2005; Okkenhaug and Vanhaesebroeck 2003;
Ghigo et al. 2010). The PI3Kγ complex is translocated and activated by βγ subunits
(Gβγ) of trimeric G proteins. PI3Kγ is expressed at high levels in white blood cells
throughout the hematopoietic system, and mainly relays signals downstream of G
protein-coupled receptors (GPCRs). Thus linked to a plethora of chemokine and
other receptors of inflammatory mediators, PI3Kγ mediates processes in inflamma-
tory and allergic reactions (Wymann et al. 2003b; Ghigo et al. 2010; Deane and
Fruman 2004). Although lower PI3Kγ expression was detected in cardiomyocytes,
vascular smooth muscle and endothelia, PI3Kγ plays a role in the control of vascular
tone (Vecchione et al. 2005), heart contractility (Patrucco et al. 2004; Crackower
et al. 2002; Oudit et al. 2004) and progress of atherosclerosis (Fougerat et al. 2008).
The role of the p101 and p84 adapter subunits has not yet been fully explored, but
they are required for a functional relay of GPCR signals to PI3Kγ. In this respect, the
p101 adapter subunit sensitizes the PI3Kγ complex to Gβγ subunits (Stephens et al.
1997; Krugmann et al. 1999; Maier et al. 1999; Brock et al. 2003; Kurig et al. 2009),
while p84 does not fulfill this function. Interestingly, p84-p110γ complexes require
the interaction with activated Ras (see below), while p101 functions even when Ras
activation is blocked (Kurig et al. 2009). As p101-p110γ and p84-p110γ complexes
were found to generate functionally distinct pools of PtdIns(3,4,5)P3 (Bohnacker
et al. 2009), it is likely that the two adapter subunits moderate input and output
signals of the respective PI3Kγ complexes.

Alternatively, Gβγ subunits were also shown to activate p110β. Here early studies
demonstrated that Gβγ subunits and phosphorylated Tyr peptides activated p85-
p110β complexes synergistically (Maier et al. 1999; Kurosu et al. 1997; Tang and
Downes 1997). Cellular studies using overexpression of GPCRs, p110β, genetic and
pharmacological tools proposed that p110β was the main PI3K downstream of some
GPCRs. While this makes sense for receptors that do not couple exclusively to B.
Pertussis toxin-sensitive G proteins, for example the receptors for lysophosphatidic
acid (LPA), thrombin, the bradykinine and A1 adenosine receptors, the sphingosine-
1-phosphate receptor and more (Roche et al. 1998; Graness et al. 1998; Kubo et al.
2005; Guillermet-Guibert et al. 2008), the data for some other GPCRs has to be re-
viewed critically for receptor transactivation and co-operation with protein tyrosine
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kinase activities (Guillermet-Guibert et al. 2008). As an example, there is conflicting
data demonstrating one hand that complement fragment 5a (C5a) signals exclusively
via p110γ in macrophages (Hirsch et al. 2000), while others claimed that p110β was
required (Guillermet-Guibert et al. 2008).

5.1.6 Activation of Class I PI3Ks by Small GTPases

A potential common activator for class I PI3Ks is activated, GTP-loaded Ras,
as all class I PI3Ks display a Ras-binding domain (Fig. 5.2). This interaction is
well documented for p110α (Sjolander and Lapetina 1992; Sjolander et al. 1991;
Rodriguez-Viciana et al. 1994, 1996) and p110γ (Rubio et al. 1997, 1999). For p110α,
Ras-interactions were demonstrated to be relevant in Ras-driven tumor promotion
(Gupta et al. 2007), and an intact Ras-binding domain was shown to be crucial for
the activation of the NADPH oxidase in neutrophils by GPCR ligands (Suire et al.
2006). These findings were corroborated by the resolution of the crystal structure of
a Ras-p110γ complex defining the interface of the two proteins in detail. Ras-induced
conformational changes in p110γ show that Ras is not only a docking site for p110
at the membrane, but a potent activator (Pacold et al. 2000). The importance of Ras
activation upstream of p110β is controversial (Kang et al. 2006; Rodriguez-Viciana
et al. 2004; Marques et al. 2008), and p110β was suggested to interact with the
small GTPase Rab5 localized on early endosomes (Christoforidis et al. 1999; Shin
et al. 2005; Kurosu and Katada 2001; Ciraolo et al. 2008; Jia et al. 2008). The p110δ
catalytic subunit interacts with TC21 (or RRas2 (Rodriguez-Viciana et al. 2004; Del-
gado et al. 2009)), and depends on the GTPase for a translocation to T- and B-cell
receptors (Delgado et al. 2009).

5.1.7 Class II PI3Ks

Class II PI3Ks are large enzymes (170–200 kDa) and include the three family mem-
bers PI3K-C2α, β, and γ, which all have a C-terminal extension containing a Phox
homology (PX) and a C2 homology domain. The C-terminal C2 domain is Ca2+-
insensitive due to the lack of a conserved aspartate residue (Falasca and Maffucci
2007; for a new classification of C2 domains see (Zhang and Aravind 2010)). The
founder of the class II PI3K family was the drosophila PI3K_68D (MacDougall et al.
1995).

In contrast to class I PI3Ks, no class II regulatory subunits were identified. Class II
PI3Ks have been mapped to the trans-Golgi network and low-density microsomes, but
their mode of action is still poorly defined. The PI3KC2α and β isoforms have been
reported to associate with their N-terminal region with clathrin (Domin et al. 2000;
Gaidarov et al. 2001, 2005; Wheeler and Domin 2006). PI3KC2α has been clearly
attributed roles in clathrin assembly and clathrin-mediated, microtubule-dependent
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vesicular trafficking (Domin et al. 2000; Gaidarov et al. 2001, 2005; Zhao et al. 2007).
Recent reports identified PI3KC2α as an essential factor in dynamin-independent
endocytosis and fluid-phase endocytosis. As PI3KC2α and the PtdIns-3-P -binding
Early Endosomal Antigen (EEA1) were recruited to cargo vesicles, it is likely that
the relevant in vivo product involved in the process was PtdIns-3-P (Krag et al. 2010).

Several extracellular stimuli activate class II PI3Ks, such as growth factors like
EGF, PDGF, insulin and SCF, chemokines (MCP-1), cytokines (leptin, TNF-α), and
lysophosphatidic acid (LPA; Arcaro et al. 2000; Maffucci et al. 2005). Proline-rich
regions in the N-terminus, and interactions with signaling adapters like Grb2 were
proposed to mediate interaction with growth factor receptors (Wheeler and Domin
2006). For PI3KC2β it was shown that this enzyme can promote LPA-induced cell
migration of ovarian and cervical cancer cells (Maffucci et al. 2005; for a review
on class II PI3K in cancer see (Traer et al. 2006)). Other results point to a role of
class II PI3Ks in insulin signaling (Cui et al. 2011; Falasca et al. 2007; Dominguez
et al. 2011), which is supported by the finding that class II regulates exocytosis of
insulin granules in pancreatic beta cells (Dominguez et al. 2011). Interestingly, a
polymorphism in the PIK3C2G gene (encoding PI3KC2γ could be associated with
type 2 diabetes in a Japanese population (Daimon et al. 2008)), and the nematode
C. elegans accumulates fat when its only class II PI3K gene (F39B1.1) product
is down-regulated. So far, these findings were not duplicated in mice where the
PIK3C2A (PI3KC2α) and PIK3C2B (PI3KC2β) loci were targeted: in the latter mice,
fat and body mass were actually significantly reduced. It must be said, however,
that the mice lacking functional PI3KC2β were mainly investigated for epithelial
differentiation (Harada et al. 2005), and that the mice with a modified PIK3C2A
locus displayed a defect in renal function and still expressed a trace of a truncated
PI3KC2α protein lacking the C-terminal PX and C2 domains (Harris et al. 2011).

The available data connects class II PI3Ks to multiple signaling events like the
activation of MAPK (but not PKB/Akt (Cui et al. 2011)), activation of Ca2+-triggered
potassium channels (KCa3.1; Srivastava et al. 2009), the regulation of Rho (Wang
et al. 2006), clathrin coated vesicular movement on microtubules (Zhao et al. 2007),
exocytosis (Meunier et al. 2005) and endocytotic events mentioned above. For class
II PI3Ks it is presently not possible to delineate connected signaling pathways, and
to define a predictive network linked to general signaling outputs.

5.1.8 Class III PI3Ks

Class III PI3K: The Saccharomyces cerevisiae Vps34 protein (Vps34p, vacuolar
protein sorting mutant 34) is the prototype of class III PI3K and plays an essential
role in vesicular and protein trafficking from the Golgi to the yeast vacuole, which is
the yeast equivalent to lysosomes in mammals (Schu et al. 1993). In yeast, Vps34p
binds to the N-terminally myristoylatedSer/ThrkinaseVps15p. It has been shown that
a functional Vps15p kinase is needed for the activation and recruitment of Vps34p
to Golgi membranes (Herman et al. 1992). The Vps15p orthologue in mammals is
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p150 (also referred to as hVps15), which translocates hVps34p to Rab5-positive
early endosomes and Rab-7 positive late endosomes. Therefore, hVps34p is also
central to endocytosis, vesicular trafficking (Christoforidis et al. 1999; Murray et al.
2002), and phagocytic uptake of bacteria (Sun et al. 2008).

Moreover, Vps34p interacts directly with Beclin-1 (yeast Atg6/Vps30p) and
Atg14L to form a complex I, and alternative complexes containing UVRAG or
UVRAG and Rubicon at the place of Atg14L (Funderburk et al. 2010; Matsunaga
et al. 2010), which all play an important role in autophagy (Simonsen and Tooze
2009). Recently, it was proposed that the Vps34p-hVps15p-Beclin-1-Atg14L com-
plex would also involve p110β as an element to regulate the autophagy (Dou et al.
2010). In yeast, deletion ofAtg14 leads to defects in autophagy, while own regulation
of cellular Beclin-1 affects autophagy and vesicular trafficking minimally (Kihara
et al. 2001). In contrast, mice heterozygous for Beclin-1 display a decreased rate of
autophagy and enhanced tumor formation (Qu et al. 2003;Yue et al. 2003). Recently,
Vps34p was linked to the induction of autophagy in nutrient, amino acid, as well as
energy (glucose) -deprived cells, and a role for Vps34p in the amino acid-induced
activation of mTOR was proposed (Dann and Thomas 2006; Gulati and Thomas
2007; Nobukuni et al. 2007). The latter connection is controversial, and the deletion
of VPS34 in fruit flies did not affect TOR activity (Juhasz et al. 2008). In mice, Vps34
(encoded by PIK3C3) is required in early embryogenesis, and effects on mTOR ac-
tivation were documented (Zhou and Wang 2010). Further in-depth reviews on class
III PI3Ks can found in (Backer 2008; Simonsen and Tooze 2009; Funderburk et al.
2010; Backer 2010).

5.1.9 Downstream of Class I PI3Ks

The class I PI3K product PtdIns(3,4,5)P3 is produced at the plasma membrane, where
it serves as a docking site for proteins with PtdIns(3,4,5)P3-specific PH domains (Fer-
guson et al. 2000). Members of the protein kinase B family (PKBα,β,γ/Akt1,2,3) are
the most prominent representants of these signaling molecules, and link PI3Ks to
the control metabolic activity, growth, proliferation and cellular survival pathways
(Fig. 5.4). When PKB/Akt is recruited the plasma membrane, it is phosphorylated
on Thr308 (numbers refer to PKBα/Akt1) by PDK1. In this process, binding of
PDK1 itself to PtdIns(3,4,5)P3 is crucial, as cells harboring a PDK1 with a non-
functional PH domain cannot efficiently trigger PKB/Aktphosphorylation (McManus
et al. 2004). To gain full activity, a second phosphorylation in the C-terminal, hy-
drophobic motif of PKB/Akt (Ser 473) by activities classified as “PDK2s” is required
(Yang et al. 2002; Biondi and Nebreda 2003). A number of kinases have been shown
to classify as PDK2 activities, such as mitogen-activated protein kinase-activated
kinase 2 (MAPKAP-2), integrin-linked kinase (ILK), DNA-dependent protein ki-
nase (DNA-PKcs; Feng et al. 2004; Hanada et al. 2004; Bozulic and Hemmings
2009) and protein kinase Cβ (PKCβ; Kawakami et al. 2004). Finally it has been
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shown that the TOR complex 2 (TORC2, the [Rictor]-TOR complex [rapamycin-
insensitive companion of TOR]) displays major PDK2 activity (Sarbassov et al. 2005,
for reviews see (Bozulic and Hemmings 2009; Polak and Hall 2006; Manning and
Cantley 2007; Zoncu et al. 2011)). PKB/Akt-mediated phosphorylations regulate
many downstream targets, both positively and negatively (see Fig. 5.4). Besides the
modulation of PKB/Akt activity, the phosphorylation of Ser 473 seems also to be
required for an efficient phosphorylation of N-terminal residues of the PKB/Akt sub-
strates FOXO1/3A/4 (Jacinto et al. 2006). The hydrophobic motif phosphorylation
might thus direct the PKB/Akt substrate selectivity (for a review see (Manning and
Cantley 2007)).

The activation of the PI3K/PKB pathway is counteracted by two phosphoinositide
phosphatases: (i) the 3-phosphoinositide phosphatase and tensin homolog deleted in
chromosome ten (PTEN) regenerates PtdIns(4,5)P2 from PtdIns(3,4,5)P3 (Stambolic
et al. 1998). PTEN is often mutated in tumors, leading to the accumulation of Pt-
dIns(3,4,5)P3 and a constitutive activation of the PI3K pathway (Liaw et al. 1997;
Sansal and Sellers 2004; Hobert and Eng 2009; Farooq et al. 2010; Vivanco and
Sawyers 2002; Wymann and Marone 2005; Cully et al. 2006). (ii) the SH2-domain-
containing inositol phosphatase (SHIP), which has a 5-phosphoinositide phosphatase
activity, generates PtdIns(3,4)P2 from PtdIns(3,4,5)P3 (Majerus et al. 1999; Kisse-
leva et al. 2000; Rohrschneider et al. 2000; Kalesnikoff et al. 2003). Besides the
above lipid phosphatases, the protein phosphatase PHLPP can dampen PKB/Akt
activation by the removal of the phosphate group at Ser 473 (Brognard et al. 2007;
Gao et al. 2005; Mendoza and Blenis 2007).

5.1.10 Control of Cellular Growth, Transcription, and Translation

PKB/Akt controls cell growth via the nutrient sensor mTOR: PKB/Akt phospho-
rylates and thus inhibits TSC2 (tuberin), which constitutes together with TSC1
(hamartin) the tuberous sclerosis complex (Pan et al. 2004). In its active form, the
TSC1/2 complex prevents the exchange of GDP for GTP on the GTPaseRheb. As
the activation of TOR requires GTP-loaded Rheb, the PKB/Akt-mediated phospho-
rylation of TSC2 therefore initiates the activation of the TOR complex 1 (TORC1,
or [Raptor]-TOR complex [regulatory-associated protein of TOR]). Active TORC1
phosphorylates and blocks 4E-BP1, which releases translation of mRNAs with
5′-polypyrimidin regions, which is supported by the parallel, TORC1-mediated phos-
phorylation of p70S6K (p70 S6 kinase) on Thr 389. S6K targets the ribosomal protein
S6 (Dufner and Thomas 1999; Garami et al. 2003; Dann et al. 2007). Furthermore,
TORC1 can be negatively regulated by PRAS40—controlling TORC1 substrate ac-
cess (Van der Haar et al. 2007; Wang et al. 2007; Fonseca et al. 2007), or by an
allosteric inhibition caused by the binding of the macrolide Rapamycin/FKBP12
complex to the FRB (FKBP/Rapamycin-binding) domain of TOR (Choi et al. 1996).
When TORC1 signaling is permitted, transcription and translation are elevated, and
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protein and lipid biosynthesis drive an increase in cell mass required for the entry in
cell cycle progression.

5.1.11 PI3K-mediated Control of Cell Cycle Progression

Entry into cell cycle progression is tightly controlled by the alternating expression
of cyclins and their interaction with cyclin-dependent kinases (CDKs) or CDKs
inhibitors. Activated PKB/Akt phosphorylates forkhead transcription factors of the
class O (FOXOs) on three different sites (for a review see (Manning and Cantley
2007)). When phosphorylated, FOXOs bind to 14-3-3 proteins, which act as phospho-
Ser and phosphor-Thr “receptors” and retain FOXOs in the cytosol (Burgering and
Kops 2002). When in the nucleus, FOXOs repress many genes required for cell cycle
entry, and a cytosolic retention of FOXOs thus releases the transcription of cyclin
D1, while the transcription of the CDK inhibitor p27Kip1 is attenuated (Alvarez
et al. 2001; Burgering and Medema 2003). Glycogen synthase kinase 3β (GSK3β)
phosphorylates cyclin D1, triggering its targeting and degradation to the proteasome.
When phosphorylated by PKB/Akt, GSK3β is inhibited, and cyclin D1 accumulates
(Liang and Slingerland 2003). The resulting increase in cyclin D1 levels combined
with the concerted reduction in p27Kip1 allows cells to transit from G1 to the S phase
(Liang and Slingerland 2003; Foijer and te Riele 2006).

5.1.12 PI3Ks—Driving Cell Survival and Anti-apoptotic Signaling

The stimulation of the PI3K/PKB pathway branches into many anti-apoptotic events:
PKB/Akt directly phosphorylates and inhibits caspase 9, a protease crucial for the ini-
tiation of the apoptotic cascade (Cardone et al. 1998; for a cross-species comparison
see (Datta et al. 1999)). PKB/Akt also inactivates the Bcl-2-associated death pro-
moter (BAD) by a phosphorylation at Ser 136, which then liberates the anti-apoptotic
proteins Bcl-2 and Bcl-XL (del Peso et al. 1997; Datta et al. 1997). In another branch
PKB/Akt phosphorylates IκB kinase (IκBK), which blocks the action of the inhibitor
I-κB to release the transcription factor NF-κB. NF-κB is now free to translocate to
the nucleus where it activates transcription of cell survival proteins such as Bcl-2 and
Bcl-XL (Li and Verma 2002; Ozes et al. 1999; for reviews see (Schinzel et al. 2004;
Kaufmann et al. 2004)). As mentioned above, FOXOs are retained in the cytosol by
the action of PKB/Akt. As FOXOs promote transcription of FasL, PKB/Akt prevents
ligand-induced apoptosis (Brunet et al. 1999). The connections of these pathways
are further detailed in Fig. 5.4.

In the above signaling scenarios, the PtdIns(3,4,5)P3 → PDK1 → PKB/Akt axis
seems to play a central role in the control of cellular growth, the entry into the cell
cycle and the initiation of survival pathways. When PtdIns(3,4,5)P3 is elevated due
to loss of PTEN, this disrupts embryonic development in mice (Di Cristofano et al.
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1998) and fruit flies (Stocker et al. 2002). Viability could be restored in PTEN null
flies by the manipulation of the drosophila PKB/Akt PH domain: when flies expressed
PKB/Akt with a PH domain with a low affinity for PtdIns(3,4,5)P3, “lethal levels
of PtdIns(3,4,5)P3” were tolerated, suggesting that PKB/Akt was the major hub
for PtdIns(3,4,5)P3-sensing in the fly (Stocker et al. 2002). In the human genome
there are, however, > 275 PH domain-containing proteins encoded (source: SMART
database at smart.embl-heidelberg.de). These are complemented with 48 proteins
with PX domains (a domain first found in phagocyte NADPH oxidase cytosolic
factors), 27 with FYVE (Zinc finger domain first found in Fab1, YOTB, Vac1 and
EEA1) domains, 20 with ENTH (EpsinN-terminal homology) domains, ANTH,
FERM and other lipid-binding domains (Varnai et al. 2005; Balla 2005; Takenawa
and Itoh 2006). For many of these proteins interactions with poly-phosphorylated
phosphoinositides have been reported, and some prominent signaling molecules
bind PtdIns(3,4,5)P3 through PH domains (see also Fig. 5.4): TEC family protein
tyrosine kinases including Btk (Brutons’s tyrosine kinase; Readinger et al. 2009;
Mohamed et al. 2009), and PLCγ1 (phospholipase Cγ1; Rebecchi and Pentyala
2000; Maroun et al. 2003; Ji et al. 1997) play an important role in innate and
acquired immunity; and β-ARK1/GRK2 (β-adrenergic receptor kinase1/G protein-
coupled receptor kinase; Takenawa and Itoh 2006; Jaber et al. 1996) modulates
GPCR signaling and cardiovascular functions. Structural data for PtdIns(3,4,5)P3-
bound PH domains is available (Ferguson et al. 2000; Milburn et al. 2003), and the PH
domain protein families have been thoroughly analyzed across various species (Park
et al. 2008). In spite of the existing diversity of PtdIns(3,4,5)P3 selective PH domain
containing proteins, PKB research is with > one third of all articles overrepresented
in the PI3K literature (for a recent in-depth review on phospholipid-binding domains
see (Lemmon 2008)).

5.1.13 PI3Ks—A Connection to Migration and Polarization

Small Rho family GTPases including Rac, Cdc42, TC10 and Rho play important roles
in cell migration, polarization and cytoskeletal rearrangements. The activity of these
Rho GTPases is regulated by GAPs (GTPase activating proteins), GDIs (guanine
nucleotide dissociation inhibitors) and guanine nucleotide exchange factors (GEFs).
While GAPs increase the rate of hydrolysis of the GTP bound to activatedGTPases
to GDP, GDIs retain Rho GTPases in the cytosol. Activated GEFs promote the
reloading of small GTPases with GTP, and thus enable their subsequent interaction
with downstream effectors (Heasman and Ridley 2008). Rho GEFs can be divided
in (i) Dbl-like proteins (> 70 members), which contain the catalytic Dbl homology
(DH) domain and a pleckstrin homology domain, and (ii) Dock family proteins
(11 members) with the active Dock homology region (DHR-2; also named Docker-
ZH2 domain) and a DHR-1 mediating translocations (Cote and Vuori 2007).

A number of Dbl-like GEFs contain PtdIns(3,4,5)P3-binding PH domains. Many
of these GEFs, like Tiam (T-lymphoma invasion and metastasis inducing protein; a
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GEF for Rac), PIX (PAK-associated guanine nucleotide exchange factor; reloading
Rac and Cdc42), Vav (targeting RhoA, Rac, and Cdc42), and ARNO (Arf nucleotide
binding site opener; activating Arf1,6) integrate the PI3K signal with the input of an
upstream protein kinase, before they are fully active (for a review see (Wymann and
Marone 2005)). In contrast, P-Rex binds to Gβγ subunits released from trimeric G
proteins after GPCR activation and PtdIns(3,4,5)P3 before it activates Rac (Welch
et al. 2002). For Dock family proteins, Dock2 and Dock180 were shown to bind
PtdIns(3,4,5)P3 via their DHR-1 domain (Cote and Vuori 2007).

The regulation of Rho GTPases by GEFs is crucial in many physiological
processes and disease contexts. While Ras proteins are activated by mutations (Diaz-
Flores and Shannon 2007), deviations in Rho family GTPasesignaling is often caused
by the overexpression of corresponding GEFs (Ellenbroek and Collard 2007; Vega
and Ridley 2008). Rho GTPase activation promotes the dissemination of cancer cells
and immune cells throughout tissues, driving metastasis and chronic inflammation.
A subset of small GTPases such as RhoA, Rac and Cdc42 also activate transcriptional
events (for a review see (Benitah et al. 2004)).

5.2 PI3Ks in Physiology and Disease

As outlined above, and illustrated in Figs. 5.3 and 5.4, PI3K relays growth factor,
cytokine and G protein receptor-coupled signaling to a network balancing a cell’s ac-
tivities and cellular energy consumption. Downstream of PI3Ks, the TOR complexes
1 and 2 are important hubs integrating hormonal input, energy and nutrient availabil-
ity. PtdIns(3,4,5)P3-dependent kinase cascades originating for example from PDK1,
PKB/Akt, TEC family kinases or the activation of PtdIns(3,4,5)P3-sensitive GEFs
contribute to the control of growth, cell cycle, survival and migration. In chronic
inflammatory and autoimmune disease, an overshooting cytokine network triggers
the activation of immune cells, while in cancer oncogenes are activated by mutations
and epigenetic effects. Many PI3K-dependent pathways are shared in cancer and in-
flammation, but operate in different contexts and yield cell-specific outputs. Various
cell types use specific class I PI3K isoforms, and an understanding of PI3K isoform
selective signaling is a prerequisite to develop refined targeted therapies in cancer
and inflammation.

5.2.1 PI3Ks in Innate and Acquired Immunity

In acquired immunity, T lymphocytes and B lymphocytes are activated by specific
antigens exposed to them by antigen-presenting cells, such as dendritic cells (DCs)
and activated macrophages. The development of T cell subsets (Th1, Th2, Th17,
Treg, CD8+ cytotoxic T cells, etc.) is fine tuned by cytokine signals and regulated by
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PI3Ks (Deane and Fruman 2004; Okkenhaug and Fruman 2010). T helper cells (Th)
are then required for B cell development and to raise a humoral immune response.

Mice lacking functional PI3Kγ (Patrucco et al. 2004; Hirsch et al. 2000; Li et al.
2000; Sasaki et al. 2000) and/or PI3Kδ (Okkenhaug et al. 2002; Clayton et al. 2002;
Jou et al. 2002) are viable and fertile, and were extensively studied in inflammatory
disease models. Mutant mice without the catalytic subunit of PI3Kδ (p110δ; Clayton
et al. 2002; Jou et al. 2002), or mice expressing a catalytically inactive p110δ (with a
D910A mutation; Okkenhaug et al. 2002) display impaired development of marginal
zone B-cells and peritoneal B1-cells, and signals emerging from the B-cell receptor
(BCR) are attenuated. In mice lacking the p110δ protein completely, T cell matu-
ration in the thymus was normal, while mice with the catalytically inactive p110δ
produced more naïve peripheral T-cells. Later it was reported that mice with inac-
tive PI3Kδ have elevated counts of Foxp3+ regulatory T-cells (Treg) in the thymus,
but Foxp3+ cell numbers were reduced in peripheral organs, likely modulated by a
PI3K-FOXO1/3a connection. Interestingly, in spite of impaired BCR signaling and
reduced IgM and IgG responses, mice with inactive p110δ increase IgE production,
and have a tendency to develop autoimmunity (Oak et al. 2006; Ji et al. 2007; Patton
et al. 2006; Merkenschlager and von Boehmer 2010). As Th2 responses are also
reduced in mice without functional p110δ, elevated IgE levels are best explained by
the negative regulatory effect of p110δ on the IgE class switch (Zhang et al. 2008;
Omori et al. 2006), or mechanisms of IgE production that do not require cognate T
cell help (McCoy et al. 2006).

In T cells without functional PI3Kγ, initial TCR signaling is not affected directly
(Sasaki et al. 2000), but secondary signals, and the accumulation of 3-phosphorylated
phosphoinositides at the immune synapse is impaired (Alcazar et al. 2007). As a
result, T-cells of mice without functional PI3Kγ display significant developmental
and signaling defects, yielding impaired thymocyte selection, reduced numbers of
double-positive (CD4+ CD8+) cells and an altered CD4 to CD8 ratio (Rodriguez-
Borlado et al. 2003), as shortened CD4+ memory T-cell survival (Barber et al. 2006).
When PI3Kγ and PI3Kδ were genetically targeted, double mutant mice displayed
severe defects in thymocyte development, loss of thymus structure reducing the
number of CD4+/CD8+ double positive cells, and a dramatic shift towards Th2
immune responses resulting in highly elevated IgE levels (Ji et al. 2007; Webb et al.
2005).

PI3Kγ has been shown to be instrumental in migration of neutrophils,
macrophages (Hirsch et al. 2000; Li et al. 2000; Sasaki et al. 2000; Wymann et al.
2000; Jones et al. 2003) and dendritic cells (Del Prete et al. 2004) towards chemokines
and other GPCR ligands. PI3Kγ-derived PtdIns(3,4,5)P3 was thus dubbed “the com-
pass of leukocytes” (Rickert et al. 2000; Servant et al. 2000; Wang et al. 2002).
Detailed investigations of neutrophil migratory processes confirmed that PI3Kγ is
key for migration, but rather for cell polarization and “stop and go” decisions than
for path finding (Ferguson et al. 2007). That a PtdIns(3,4,5)P3 gradient is required
in the process was nicely demonstrated in neutrophils from mice lacking the lipid
5′-phosphatase SHIP (Nishio et al. 2007), or from mice expressing constitutively
membrane targeted PI3Kγ (Costa et al. 2007). While loss of PTEN did not affect
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neutrophil migration (Nishio et al. 2007), PTEN was essential for the formation
of gradients in PtdIns(3,4,5)P3 in the amoebic form of Dictyosteliumdiscoideum
(Chen et al. 2007; Funamoto et al. 2002). In T cells is has been shown that the
guanine nucleotide exchange factor DOCK2 (dedicator of cytokinesis 2) mediates
the activation of Rac largely independent of PI3K (Nombela-Arrieta et al. 2004,
2007). In neutrophils DOCK2 translocation to the leading edge is PtdIns(3,4,5)P3-
dependent, but was recently suggested to be supported by phosphatidic acid generated
by ligand-stimulated phospholipase D activity (Nishikimi et al. 2009; Kunisaki et al.
2006).

Simplified, one could deduce from the above that resting cells of the myeloid
linage depend on PI3K for migration and adhesion, while manipulations of PI3Ks in
lymphocytes modulate linage development. Loss of a single class PI3K modulates
the output of both the innate and the acquired immune system, but did not lead
to severe immune deficiencies in mice. PI3Kγ and PI3Kδ are thus considered as
valuable targets in inflammatory, allergic and autoimmune disease.

5.2.2 PI3K in Inflammation and Allergy

Tissue resident cells including macrophages and mast cells initiate inflammation
and allergy when triggered by pathogens or antigens. Cytokines and chemokines
released by these cells activate endothelia in close-by blood vessels to recruit neu-
trophils, monocytes or lymphocytes to the site of inflammation. PI3Kγ is required
for chemokine-dependent recruitment of neutrophils to tissues, and macrophages re-
quire PI3Kγ to fight peritoneal infections (Hirsch et al. 2000). In allergy, tissue mast
cell concentrations are elevated, and migration of mast cells also depends on PI3Kγ
(Kitaura et al. 2005). Invading pathogens are opsonized by triggering the comple-
ment cascade, and are decorated with specific antibodies, or interact with Toll-like
receptors (TLRs). All these actions can lead to PI3K activation and the promotion of
cytokine production (Ghigo et al. 2010; Wymann et al. 2000, Fig. 5.3).

5.2.3 Atherosclerosis and Cardiovascular Disease

Atherosclerosis is initiated by the excessive uptake of oxidized low-density lipopro-
teins by (LDL) by macrophages. These macrophages accumulate in the intima of
blood vessels, and chronic lipid uptake turns them into foam cells. The disintegra-
tion of foam cells leads to the formation of fatty streaks and atherosclerotic plaques.
Finally, rupture and repair of atherosclerotic plaques leads to stenosis and eventually
to the closure of arteries by thrombosis, culminating in myocardial infarction and
stroke (Lusis 2000; Glass and Witztum 2001). Atherosclerosis is an inflammatory
disease (Hansson and Hermansson 2011), and mouse genetic data demonstrates that
chemokine receptor signaling selectively recruits monocytes (Boring et al. 1998) and
T cells (Heller et al. 2006; Braunersreuther et al. 2007a, 2007b; Damas et al. 2007)
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during the onset of atherosclerosis. These findings have initiated the search for novel
drugs to treat atherosclerosis beyond statins (Opar 2007).

Oxidized LDL activates PI3K in macrophages, and the release of granulo-
cyte/macrophage colony-stimulating factor (GM-CSF) promotes the on-site prolif-
eration of macrophages (Biwa et al. 2000a, 2000b). Interestingly, oxidized LDL
did not activate PI3K in macrophages derived from PI3Kγ null mice (Chang et al.
2007). Mice devoid of apo-lipoprotein E (apoE; Zhang et al. 1992; Plump et al. 1992;
Nakashima et al. 1994) or the LDL receptor (LDLR; Ishibashi et al. 1993) rapidly
develop atherosclerotic plaques, which were significantly reduced in mice without
PI3Kγ (Fougerat et al. 2008; Chang et al. 2007). The attenuation of plaque forma-
tion observed in PI3Kγ null mice was also reproduced using AS605240 (Fougerat
et al. 2008; Chang et al. 2007), a selective PI3Kγ inhibitor (Camps et al. 2005).
It has been reported that the lack of PI3Kγ attenuates E-selectin-dependent neu-
trophil adhesion to endothelial cells, and a role of PI3Kγ in endothelial cells was
proposed to control cell recruitment significantly (Puri et al. 2005). Bone marrow
transplantation experiments could, however, demonstrate that the main role of PI3Kγ
in atherosclerosis is associated with the hematopoietic compartment (Fougerat et al.
2008, 2009). Macrophages are without doubt the executers of atherosclerosis, but a
role for type 1 helper T cells (Th1) in the acceleration of atherosclerotic lesions has
been proposed (Song et al. 2001), while regulatory T cells counteract the formation
of plaques (Ait-Oufella et al. 2006; Nilsson et al. 2009).

The formation of atherosclerotic lesions remains non-symptomatic for a long time,
and only stenosis and complete occlusion of critical blood vessels is noticed. The fre-
quency of plaque rupture is enhanced in patients with hypertension due to increase
shear forces. Interestingly, PI3Kγ null mice are protected against angiotensin II-
induced hypertension (Vecchione et al. 2005). Moreover, loss of PI3Kγ also protected
mice from ADP-induced thromboembolic vascular occlusion, which is initiated by
micro-coagulation of blood platelets (Hirsch et al. 2001). Pharmacologic experi-
ments using p110β selective compounds (TGX-221) demonstrated subsequently the
importance of PI3Kβ in platelet-mediated thrombosis triggered by ADP, collagen
and integrin-dependent stimulation (Jackson et al. 2005). These data were confirmed
in mice expressing a catalytically inactive form of the p110β catalytic subunit of
PI3Kβ (Canobbio et al. 2009). PI3Kβ downstream of alpha(IIb)beta3 integrins, and
PI3Kγ and PI3Kβ downstream of the ADP-binding P2Y12 receptor thus cooperate
to maintain stable platelet aggregates (Cosemans et al. 2006).

PI3Ks also promote cardiac hypertrophy, which is a consequence of chronic hyper-
tension in humans: when specifically expressed in the heart, constitutively activated
PI3Kα caused an increase in heart and cardiomyocyte size. In these mutant mice,
cardiac function and architecture as determined by echocardiography was not af-
fected (Shioi et al. 2000). A more dramatic increase in heart size could even be
achieved by the targeted expression of a permanently activated form of PKB/Akt.
Interestingly, this phenotype could be counteracted by treatment with rapamycin,
demonstrating that the PI3K/PKB/TOR pathway is an important regulator of cell
and organ size (Shioi et al. 2002). Similar results were obtained by the inactivation
of PTEN in cardiomyocytes: heart size was increased due to an increase cell size
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of cardiomyocytes, but additionally a reduced cardiac contractility was observed in
hearts lacking PTEN. Surprisingly it was found that the combination of targeting
PTEN and elimination of PI3Kγ protein in cardiomyocytes reconstituted contractil-
ity without reverting heart size (Crackower et al. 2002). Class I PI3Ks, and likely
PI3Kα (Luo et al. 2005), seem therefore to control cardiomyocyte size, while PI3Kγ
is linked to the regulation of contractile force. Unchallenged PI3Kγ knock-out mice
do not display a cardiovascular phenotype, but when subjected to pressure overload
by transverse aortic constriction (TAC), they rapidly suffered from fatal heart failure.
As mice expressing a catalytically inactive PI3Kγ protein had no signs of apopto-
sis and fibrosis in the heart, it became clear that PI3Kγ had a function in the heart
that is not linked to its lipid kinase activity. Finally it was determined that PI3Kγ
functions as a scaffold for cAMPsignaling, as it interacts with phosphodiesterase
3B. If PI3Kγ protein is absent in the heart, cAMP rises and contractility under stress
increases (Patrucco et al. 2004). Recently, it was found that cAMP regulation works
in both directions, because cAMP-dependent kinase (PKA) can phosphorylate and
inactivate PI3Kγ in the heart (Perino et al. 2011).

In summary, inhibition of PI3K in hypertension, hypertrophy and atherosclero-
sis appears to be beneficial. Recent pharmacological studies indeed demonstrated
that the inhibition of PI3Kγ and PI3Kδ reduced infarct size caused by inflammatory
processes initiated after ischemia/reperfusion damage. Mice treated with the dual-
specific PI3Kγ/δ inhibitor TG100-115 displayed reduced inflammation and edema at
infarct sites. Tissue repair processes and endothelial cell mitogenesis, which are re-
quired after myocardial infarction, were not affected by the compounds (Doukas et al.
2006, 2007). Clinical trials in patients suffering from acute myocardial infarction
were concluded (Table 5.1; refer to Vol. 1, Chap. 6).

5.2.4 Allergic and Hypersensitivity Responses

Mast cell are primary effector cells in inflammation, allergic disease such as, asthma,
rhinitis and atopic dermatitis. Mast cells bind IgE with a high affinity receptor
(FcεRI). Crosslinking of FcεRI receptors tips the balance towards mast activation, as
src-like protein tyrosine kinases (e.g. Lyn) phosphorylate immunoreceptor tyrosine-
based motifs (ITAMs) on the FcεRI receptor’s β and γ chains. Subsequently, the
SH2-containing Syk protein tyrosine is recruited and promotes the phosphorylation
of multiple tyrosines on membrane-anchored adapters such as LAT, NTAL/LAB
(Rivera 2005), and Grb2-associated binder 2 (Gab2; Gu et al. 2001). Class IA PI3Ks
are then translocated and activated to trigger Bruton’s tyrosine kinase (Btk) and
phospholipase Cγ (PLCγ) by providing PtdIns(3,4,5)P3 as a docking site for the PH
domains of Btk and PLCγ. Activation of PLCγ leads eventually to the release of Ca2+
from intracellular stores, which trigger store operated Ca2+ channels to finally cause
the release of histamine-containing granules and the production of inflammatory
mediators (Kraft and Kinet 2007; Kim et al. 2008).
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Surprisingly, it has been found that mice lacking functional PI3Kγ (knock-outs or
catalytically inactive K833R mutants) are protected in models of passive systemic or
cutaneous anaphylaxis. This finding was corroborated in bone marrow-derived mast
cells (BMMCs), which depend on PI3Kγ for a full-scale degranulation response when
exposed to IgE/antigen complexes. It was then established that a release of adenosine
triggered PI3Kγ activation, which synergizes with the protein tyrosine kinase cascade
downstream of FcεRI receptors (Laffargue et al. 2002; Wymann et al. 2003a). Mice
harboring a catalytically inactive PI3Kδ also displayed a partially attenuated response
to IgE/antigen complexes, while the relay of stem cell factor signaling to PI3K was
completely abrogated, suggesting that in mast cells PI3Kδ is the only class IA PI3K
associating with the c-kit receptor (Ali et al. 2004, 2008). PI3Kγ and PI3Kδ are thus
currently evaluated as therapeutic targets in allergic disease: although asthma models
in the mouse have a somewhat limited predictive value for the clinical outcome in man
(Stevenson and Birrell 2011), studies using the PI3Kδ-selective inhibitor IC87114
in ovalbumin challenged BALB/c mice attenuated a number of disease parameters
like leukocyte recruitment, mucus secretion, and Th2-derived release of cytokines
and IgE into lung cavities (Lee et al. 2006a, 2006b). Paradoxically, other studies
showed that unspecific and ovalbumin-specific IgE levels increase due to PI3Kδ
inhibition (Zhang et al. 2008; Omori et al. 2006). Dual inhibition of PI3Kγ and PI3Kγ
was achieved using aerosols of TG100-115 in ovalbumin-challenged mice, and was
efficiently reducing airway hyper-responsiveness (AHR) even in a semi-therapeutic
setting where the drug was applied after the ovalbumin challenge (Doukas et al. 2009).
Other studies pointed to a role of PI3Kγ in the chemokine-mediated and ovalbumin-
induced leukocyte recruitment to the lung in response to ovalbumin sensitization
(Thomas et al. 2005, 2009).

While patients with allergic asthma often respond to treatment with corticosteroids
or β2-adrenergic agonists acting as bronchodilators, chronic obstructive pulmonary
disease (COPD) patients suffer from a progressive disease refractive to current treat-
ment (Barnes 2008; Hansel and Barnes 2009). COPD is induced by smoking in >90%
of all cases, and exposure to cigarette smoke or LPS are used in animal models to
mimic the human disease driven by type 1 helper T cells (Th1). In a smoke exposure
model, TG100-115 successfully attenuated inflammatory readouts and reversed the
steroid resistance observed in these settings (Doukas et al. 2009). As similar results
were obtained by genetic inactivation of PI3Kδ (Marwick et al. 2009), and using
PI3Kδ-specific inhibitors (IC87114; To et al. 2010), resolution of COPD parameters
might have been mediated by the inhibition of PI3Kδ even in the case of TG100-115.
Because ARH and COPD models are currently discussed controversially (Stevenson
and Birrell 2011), and reference molecules for COPD models are missing, definitive
conclusions concerning the best PI3K isoform profiles require further studies.

5.2.5 Autoimmune Diseases: Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a systemic autoimmune disease and affects about 1% of
the world’s population. RA has a gradual onset inflicting initially a limited number of
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synovial joints, where inflammation progresses to cause cartilage and bone erosion,
culminating in joint destruction. RA can involve other tissues like skin, blood vessels,
heart, lungs and muscles. The disease is initiated by CD4+ memory T cells, which
cross the synovial membrane. Subsequently, they release cytokines including IL-2
and interferon γ (IFN-γ), which in turn activate macrophages and fibroblasts, and
trigger monocyte recruitment. A wave of pro-inflammatory cytokines such has TNF-
α, IL-1 and IL-6 isthen released to set off chronic inflammation (Firestein 2003,
2006; Steiner 2007). In the final stage of the disease, T- and B-cells, dendritic
cells, macrophages, mast cells, and hyperplastic synovial fibroblasts collaborate to
maintain inflammation. A constant influx of high numbers of neutrophils into the joint
endorses cartilage and bone destruction, and tissue repair and neovascularization in
the synovial membrane promote the process. As mentioned above, PI3Kγ and PI3Kδ
have non-redundant roles in T- and B-cell differentiation and function, and the lipid
kinases are key to leukocyte and mast cell migration, and mast cell degranulation.

Mouse models for RA include active immunization models like collagen-induced
arthritis (CIA, Stuart et al. 1984) and passive models utilizing auto-antibodies from
immunized or auto-immune mice (anti-collagen II-IA: Terato et al. 1992; K/BxN
serum model: Korganow et al. 1999; Schaller et al. 2001). CIA is initiated by the
intradermal injection of type II collagen. Subsequently, features of the human disease
like cell-infiltration into the synovial space, hyperplasia, pannus formation, and
cartilage and bone erosion, can be observed. CIA needs functional T- and B-cells,
whereas in the passive models full T- and B-cell function is dispensable. In contrary
to mouse models, no specific auto-antigen has been identified in the human disease.

When PI3Kγ null mice were challenged in a passive (αCII-IA) RA model, mutant
mice were protected from RA development, and showed minimal paw swelling, and
bone and cartilage erosion. An orally available salt of the PI3Kγ-specific inhibitor
AS605240 was effective in the CIA and αCII-IA model, and even had a therapeutic
effect when added after the onset of the disease. Both, the genetic ablation of PI3Kγ
and the pharmacological inhibition of the enzyme suppressed the recruitment of
neutrophils to the joints, which is a hallmark of RA (Camps et al. 2005).

5.2.6 Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a complex autoimmune disease correlating
with polygenic genetic disposition (Harley et al. 2008; Fairhurst et al. 2006). The
disease is initiated by autoreactive CD4+ memory T-cells, which trigger polyclonal
B-cell expansion, leading to hyper-gammaglobulimia. Anti-nuclear autoantibodies
(ANAs) often precede the clinical manifestation of the disease by years. In the late
stage of the disease, patients eventually develop glomerulonephritis due deposition
of autoantibody complexes in the kidney, culminating in renal failure.

Inbred mice of the MRL strain, which are homozygous for the lymphoproliferation
(lpr) mutation (the MRL-lpr/lpr model; Cohen and Eisenberg 1991; Singer et al.
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1994) progress spontaneously towards a SLE-like autoimmune disease. The MRL-
lpr/lpr mice show clinical features of the human disease like the generation ofANAs,
increased numbers of autoreactive CD4+ T-cells, and finally the accumulation of
immunoglobulin complexes in kidney and salivary glands (Liu and Wakeland 2001).

That PI3K signaling could be relevant in the progress of SLE emerged when it
was observed that the heterozygous deletion of PTEN, or the constitutive activation
of class IA PI3K by the transgenic expression of a truncated regulatory subunit (Lck
promoter—p65(PI3K) transgene), in T lymphocytes led to a SLE-related disease
(Di Cristofano et al. 1999; Borlado et al. 2000). When PI3Kγ was deleted from Lck-
p65 mice, these animals showed an attenuated form of SLE. Lymphoproliferation and
T-cell infiltration was still imminent (Barber et al. 2006), but the survival of CD4+
T-cells was impaired. This resulted in a reduced progress of nephritis and longer
life span (Barber et al. 2005). The importance of PI3Kγ in the SLE progression
was further underlined by the action of the PI3Kγ inhibitor AS605240 in MRL-
lpr/lprmice, where it reduced CD4+ T-cells, autoantibody concentrations and kidney
failure, thus increasing live span. In mice, PI3Kγ inhibition was better tolerated than
dexamethasone used as a reference drug. It must be noted that glucocorticoids lead
to a dramatic immunosuppression in rodents, which makes them very susceptible to
infections (Chatham and Kimberly 2001). The comparison of dexamethasone and
AS605240 indicated that PI3Kγ inhibitors might have a decent therapeutic window
in SLE, without causing too severe side effects.

5.2.7 PI3Ks in Chronic Inflammation and Allergy—Preliminary
Conclusions

Combining mechanistic, cellular and mouse model data, we have a good validation
that PI3Ks are valuable drug targets in chronic inflammation, allergy and autoim-
mune disease. As mentioned above, PI3Kγ and PI3Kδ are required for B- and T-cell
development and function, and PI3Kγ has a prominent role modulating chemotaxis
and recruitment of myeloid cells. PI3Kβ and PI3Kγ are involved in platelet aggre-
gation. A role for PI3Kγ has also been demonstrated in pancreatitis (Lupia et al.
2004). Other diseases like psoriasis (Lowes et al. 2007; Schon and Boehncke 2005),
and multiple sclerosis (Hauser and Oksenberg 2006; Hemmer et al. 2002) rely on
cellular networks that should also respond to PI3K inhibition. The effects of PI3Kγ
on cardiovascular tone open avenues for preventive treatments in hypertension and
cardiovascular disease (refer to Vol. 1, Chap. 6).

In spite of all these findings, there are not too many isoform-specific PI3K in-
hibitors available (see Table 5.1), and only one was transiently in clinical trials for
anti-inflammatory actions (TG100-115). One reason for this might be that PI3K in-
hibitors in non-fatal disease have to meet higher safety standards, another that they
have to be better and cheaper than existing medication, as they compete with steroids,
non-steroidal anti-inflammatory drugs (NSAIDs), and recently developed biological
targeted therapies (e.g. anti-TNF-α, IgE, IL neutralizing antibodies). Data of biotech
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companies has been presented in recent scientific meetings, demonstrating that there
is a pipeline for isoform specific inhibitors.

5.3 The PI3K/mTOR Pathway in Cancer

Patients with metastatic solid tumors have often a very bad prognosis, and even un-
der best possible standard care the survival after diagnosis is short. The development
of imatinib/Gleevec and its success as BCR-abl kinase inhibitor for the treatment
of chronic myelogenousleukemia raised hopes that targeted therapies with limited
adverse effects could be achieved for other cancers. As shown in Fig. 5.3, many
oncogenes activated or amplified in cancer feed into the PI3K pathway: ErbB2/Her2
is amplified in breast cancer, c-kit is mutated in gastrointestinal stromal tumors
(GIST), VEGFR promotes angiogenesis in growing tumors, EGFR drives prolifer-
ation of non-small cell lung cancer of non-smokers, mutated Ras signals in lung
cancer of smokers, and last but not least, antagonists of the PI3K pathway such as
lipid phosphatases are frequently lost in cancer.

5.3.1 PtdIns(3,4,5)P3 Rising—Loss of PTEN

The tumor suppressor PTEN counteracts and balances the action of PI3K by hy-
drolysis of PtdIns(3,4,5)P3. In normal cells, PTEN levels and activity are tightly
controlled by transcription factors, methylation, oxidation, phosphorylation, ubiqui-
tination, micro RNAs and more (for reviews see (Leslie et al. 2008; Carracedo et al.
2011)). The importance of levelingPtdIns(3,4,5)P3 was convincingly demonstrated
in mice with a targeted PTEN locus: even Pten heterozygous mice developed mul-
tiple forms cancers, manifesting in the prostate, breast, uterus, and other organs (Di
Cristofano et al. 1998; Suzuki et al. 1998; Podsypanina et al. 1999).

Many tumors attenuate expression of PTEN, which often occurs by methylation
of the PTEN promoter, or by a process called “loss of heterozygosity”. This involves
the deletion of both PTEN alleles, and results in a complete loss of PTEN protein
expression. Downregulation of PTEN by promoter methylation has been frequently
detected in melanoma, prostate, breast, endometrial and colorectal cancer, as well
as and leukemia (Khan et al. 2004; Goel et al. 2004; Stahl et al. 2004; Mirmoham-
madsadegh et al. 2006). Spontaneous mutations in PTEN have been identified in
more than half of all melanoma, glioma, prostate, endometrial and ovarian cancers,
while attenuation of PTEN is less frequent in breast cancer (Mirmohammadsadegh
et al. 2006; Li et al. 1997; Cairns et al. 1997; Wu et al. 2003). Mutation of PTEN is
a late step in tumor progression (discussed in more detail in (Wymann and Marone
2005)), and is usually detected in late stage or metastatic tumors (for reviews see
(Vivanco and Sawyers 2002; Wymann and Marone 2005; Cully et al. 2006; Abraham
2004)). A reason for the late appearance of changes in PTEN in tumors is likely to be
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“oncogene-inducible senescence” (for a short review see (Braig and Schmitt 2006)).
Oncogene-inducible senescence was observed before for Ras and BRaf, and has
been described as a fail-safe mechanism preventing tumor growth after single onco-
gene mutations. For PTEN, oncogene-inducible senescence has been demonstrated
in a conditional PTEN-deficient mouse model: deletion of both PTEN alleles in the
prostate is surprisingly slow to generate prostate cancer. When p53 was targeted at
the same time, however, aggressive and fatal prostate cancer developed rapidly (Chen
et al. 2005), demonstrating that loss of PTEN is opposed by p53 tumor suppressor
genes. Tumors thus profit from loss of PTEN only at a late stage and as “second hit”
mutagenesis.

5.3.2 Mutations in PIK3CA (p110α)

The key role for PI3Ks in cancer progression was further underlined by frequently
occurring mutations in the gene coding for the catalytic subunit of PI3Kα (PIK3CA)
in human tumors. PIK3CA mutations cluster in two hotspots coding for the helical
(see PI3Ka in Fig. 5.2; exon 9) and the catalytic domain (PI3Kc; exon 20; Samuels
et al. 2004; Thomas et al. 2007; TCGA study 2008; Parsons et al. 2008; Stemke-
Hale et al. 2008; for a review see (Bader et al. 2005)). When mutated, both sites
yield a constitutive active enzyme with transforming capacity in fibroblasts. Cells
expressing mutant p110α display also an increased invasive capacity. This implies
that PIK3CA mutations promote tumor cell survival and metastasis (Kang et al.
2005; Ikenoue et al. 2005; Samuels et al. 2005). In human cancers, the helical
domain residues Glu542 and Glu545 are usually mutated to Lysine, and the C-
terminal kinase domain residue His1047 is converted to Arginine. A rational for the
increased activity of mutant p110α was provided by crystallographic data obtained
from a complex of p85 fragments bound to the N-terminus of p110α (Miled et al.
2007; Huang et al. 2007). As described above, the p85 regulatory subunit interacts
tightly with p110α, stabilizes the p110α protein and inhibits PI3K activity at the
same time. In normal wild type p110α, the N-terminal SH2 domain of p85 (nSH2)
mediates its inhibition via contacts within the helical domain. When negative charges
in the helical domain are inverted by the mutation to Lys (Glu545Lys), charge-charge
interactions are disrupted and full PI3K activity is released. The activation of p110α
by C-terminal mutations (His1047Arg) can be best understood in the context of the
concept of the “regulatory square” recently proposed for the regulation of p110β
activity (Zhang et al. 2011; Vogt 2011). Of a set of three α-helices forming a square
around the catalytic groove of p110s, the “elbow” at the start of the last α-helix is in
contact with the C-terminal SH2 domain of p85 (cSH2). In the presence of the cSH2,
the C-terminal helix in p110 seems to be clamped into a conformation that constrains
residues in the catalytic loop into an inactive conformation. In wild type p110β, a
Leucine (Leu1043 in p110β) at the elbow position allows for high basal activity,
and p110β activity could indeed be restrained when Leu1043 was exchanged for a
Histidine (Zhang et al. 2011). The His1047 in the elbow region seems thus to restrict
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p110α activity inherently, while p110β and p110δ are constrained by the cSH2 of
p85 (for reviews see (Backer 2010; Vogt 2011; Vadas et al. 2011)).

PIK3CA is amplified in various tumors, frequently in ovarian, cervix and lung
cancers (Shayesteh et al. 1999; Zhang et al. 2002; Racz et al. 1999). Activating
PIK3CA mutations were detected in solid tumors in breast, endometrial, colorectal,
upper digestive tract, gastric, pancreas, brain, lung and hepatocellular carcinomas
(Bader et al. 2005; Samuels and Ericson 2006; for a list of mutation frequencies see
(Liu et al. 2009)).

5.3.3 Mutations in p85 Regulating Class IA PI3Ks

Truncated forms of p85 regulatory subunits have been shown earlier to constitutively
activate class IA PI3Ks. A truncation mutant containing amino acids 1-571 of p85α
fused to a fragment of the eph tyrosine kinase family (p65-PI3K) has been isolated
from a mouse lymphoma model (Borlado et al. 2000; Chan et al. 2002; Jimenez
et al. 1998; for mechanistic investigations see (Shekar et al. 2005, #40429; Backer
2010, #62337; Huang et al. 2008, #56273; Huang et al. 2007, #46673; Miled et al.
2007, #38727)), but was not identified in human cancers. A somewhat longer trunca-
tion mutant was isolated from a human lymphoma cell line (p76-PI3K; Jucker et al.
2002), and an infrequent incidence of p85α (PIK3R1) mutations were reported in
ovarian and colon tumors (Philp et al. 2001), and breast cancer (Wood et al. 2007).
The highest frequency of p85α mutations was detected in glioblastoma (TCGA study
2008; Parsons et al. 2008). Until recently, little was known concerning their capacity
to activate p110α, and their relevance in tumor progression. A meta-analysis of p85α
mutations was performed in (Jaiswal et al. 2009), where a number of mutants modu-
lating contacts between the p85α-iSH2 and the p110 C2 domain were investigated. In
particular Asn564Asp and Asp560Tyr mutants of p85α were effectively promoting
fatal tumorigenesis in a BaF3 cell mouse model (Jaiswal et al. 2009). PI3KR1 was
also recently identified as a colon cancer oncogene in a transposon insertion screen
(Starr et al. 2009). The attenuation of lipid kinase activity by p85-p110 interactions is
therefore crucial in cellular hemostasis, and the discussed structural studies are key
for the understanding how mutations in the class IA heterodimer releases constraints
on lipid kinase in disease.

5.3.4 Downstream of PI3K: TOR

Cellular growth is an important parameter in tumor progression, and is regulated by
the availability of energy and nutrients. A central hub to integrate nutrient, energy,
but also hormonal inputs are the target of rapamycin (TOR) complexes. There are
two target of rapamycin (TOR) complexes: (i) TORC1, where the TOR protein
kinase is associated with Raptor and (ii) TORC2 is bound to Rictor. TORC1 is
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activated by downstream of PKB/Akt (schematically shown in Fig. 5.4, for a in
depth review on TOR signaling see (Zoncu et al. 2011)) and the Ras/MAPK cascades
(not discussed here), which phosphorylate and inactivate TSC2. An energy sensing
pathway acting via AMPK (AMP-dependent protein kinase) can shut off TORC1
when AMP accumulates. Finally, amino acids regulate TORC1 association with
RAG proteins, re-localizing the complex to late endosomes (Sancak et al. 2010;
Sancak and Sabatini 2009). Activation of TORC1 initiates cap-dependent translation
via phosphorylation of 4E-BP1 (eIF4E-binding protein 1), and phosphorylation of
p70S6K promotes translation of ribosomal proteins (Dufner and Thomas 1999) and
ribosome biogenesis (Wullschleger et al. 2006).

Mutations or loss of heterozygosity in TSC components gives rise to the ini-
tially benign, autosomal dominant TSC syndrome (van Slegtenhorst et al. 1997),
manifested by hamartomas in a variety of organs (Cheadle et al. 2000), and an el-
evated risk to develop renal carcinoma. The serine-threonine protein kinase LKB1
upstream of AMPK normally balances TORC1 activity (Woods et al. 2003). Loss
of function of LKB1 causes the Peutz-Jeghers syndrome, a familial colorectal polyp
disorder. Peutz-Jeghers syndrome patients have a high risk for cancers in various
tissues (Boudeau et al. 2003). Some signaling molecules downstream of TOR were
also used as diagnostic markers: elevation of eIF4E correlates with a bad prognosis
in a variety of cancers (Bjornsti and Houghton 2004).

5.4 Pharmacological Targeting of PI3K/TOR Signaling

Drugs to inhibit signals emerging from mutated or up-regulated growth factor recep-
tors are already on the market or in clinical trails, and include neutralizing antibodies
and protein tyrosine kinase receptor inhibitors. Knowledge from targeted therapies
interfering with for example EGFR, ErbB2/Her2, and VEGFR, have validated two
strategies to attack tumor cells: a first one aiming to reverse tumor autonomous
signaling, and a second one targeting tumor-induced angiogenesis. As it turns out,
targeting PI3K and TOR contributes to both approaches.

5.4.1 Targeting TOR—Rapamycin and Derivatives

Besides their effects on immune cells, Rapamycin derivatives (rapalogs; see Ta-
ble 5.1) act as anti-angiogenic drugs. Rapamycin considerably reduces the production
of VEGF, and more importantly intercepts the action of this growth factor on vas-
cular endothelia (Guba et al. 2002). The latter has been shown to be mediated by
the inhibition of hypoxia-inducible factor 1α (HIF1α) expression (Lane et al. 2009).
RAD001, CCI-779, AP23573 and other rapalogs are highly specific, allosteric in-
hibitors of TORC1. Rapalogs bind to FK506-binding protein 12 (FKBP12) with a
Kd in the sub-nanomolar range (Banaszynski et al. 2005), and this rapalog/FKBP12
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complex then tightly interacts with the FRB domain of the TOR kinase. The activity
of TORC2 is not affected by rapalogs.

Presently, there are >700 clinical trials registered exploring the actions of
these compounds in proliferative disease, mostly designed as studies combining
rapalogs and best standard of care, chemotherapy, or other targeted therapies.
RAD001/Everolimus and CCI-779/Temsirolimus made it recently to market, and
are approved for the treatment of organ rejection and renal cell carcinoma (Motzer
et al. 2008; Atkins et al. 2009; Dancey 2010; for more references see Table 5.1).
The endpoint of the clinical studies was progression-free survival (PFS). Renal cell
carcinoma patients receiving Everolimus had a median PFS of 4.9 month, while
the PFS of patients receiving placebo was 1.9 month (Motzer et al. 2008; Atkins
et al. 2009; FDA documentation at http://www.accessdata.fda.gov/drugsatfda_
docs/label/2009/022334lbl.pdf). Encouraging results with rapalogs were also ob-
tained in mantle cell lymphoma (Johnston et al. 2010b; see also the approval of
Temsirolimus (Dancey 2010)), soft tissue and bone sarcoma (Blay 2011), and en-
dometrial cancer (for reviews see (Hay 2005; Faivre et al. 2006; Guertin and Sabatini
2007)).

In a subset of tumor-derived cell lines and patient biopsies elevated levels of
PKB/Akt Ser473 phosphorylation were detected after the inhibition of TORC1 us-
ing rapalogs (Sun et al. 2005; O’Reilly et al. 2006; O’Donnell et al. 2008; Tabernero
et al. 2008). It has been established, that p70S6K, activated downstream of TORC1,
phosphorylates insulin receptor substrate-1 (IRS1), and blocks its interaction with
the insulin receptor. This leads to reduced phosphorylation of IRS on YxxM motifs,
and thus attenuates recruitment of p85/p110 complexes and class IA PI3K (Shaw and
Cantley 2006; Harrington et al. 2005; Manning 2004). When the activity of p70S6K is
blocked due to TORC1 inhibition, PKB/Akt is hyper-phosphorylated and eventually
promotes cell survival and metastasis (see Fig. 5.4). Others have reported that the
targeting of TORC1 can trigger a PI3K-dependent feedback loop activating MAPK
in human cancer (Carracedo et al. 2008). All this raised concerns that feedback ac-
tivation of these stimulatory pathways would diminish the success of rapalog-based
therapies (Hay 2005; Shaw and Cantley 2006; Rosen and She 2006). In contrast, it has
been recently demonstrated that high basal levels of PKB/Akt Ser473 phosphoryla-
tion correlate with a sensitivity to RAD001, and that a subsequent RAD001-induced
increase in phospho-PKB/Akt does not correlate with cell viability after rapalogs
exposure (Breuleux et al. 2009). It has already been demonstrated earlier, that cells
expressing constitutively activated PKB/Akt (myr-PKB/Akt; N-terminally myris-
toylated) were sensitive to CCI-779 (Neshat et al. 2001). Similarly, it was found that
transgenic expression of myr-PKB/Akt in endothelial cells induced a pathological,
tumor-like form of angiogenesis in non-tumoral tissues, which could be reversed by
rapamycin (Phung et al. 2006). Early notions that loss of PTEN was an indicator
for sensitivity to rapalogs (Neshat et al. 2001), have been disputed recently (Yang
et al. 2008; for in-depth reviews see (Faivre et al. 2006; Hay 2005; Dancey 2010)).
In the future it will be interesting to compare the efficiency of rapalogs with the
performance of molecules targeting PI3K and mTOR kinase activities in clinical
settings.
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5.4.2 Targeting PI3K and mTOR Kinase

Although wortmannin (IC50 = low nM, Arcaro and Wymann 1993; Yano et al. 1993;
Wymann and Arcaro 1994) and LY294002 (IC50 = high μM, Vlahos et al. 1994)
inhibit a broad range of PI3K and PIKK family enzymes, the two compounds were in-
strumental to dissect PI3K signaling and to initiate PI3K drug development (Marone
et al. 2008; Wymann and Schneiter 2008). The development of drug-like PI3K in-
hibitors was complicated by the relative difficulty to set up relevant in vitro and
cell-based high throughput assays. Phosphoinositides are (still) complicated sub-
strates, and variations of assay conditions can influence PI3K activity considerably.
Moreover, cellular PI3K activity is mostly detected indirectly by phosphorylated
PKB/Akt, where the readout can be convoluted by feedback mechanisms. The direct
detection of cellular PtdIns(3,4,5)P3 is cumbersome (Dove and Michell 2009), and
only recently non-radioactive, mass-spectroscopy-based methods became available
to determine cellular PtdIns(3,4,5)P3 (Clark et al. 2011; Kiefer et al. 2010; Pettitt
et al. 2006; for a commentary see (Wymann and Wenk 2011)).

Early efforts to produce drug-like molecules from wortmannin have been ini-
tiated even before PI3K was identified as the inhibitor’s target. Wander AG in
Bern, Switzerland, was the first pharmaceutical company to unknowingly develop
“PI3K inhibitors” as anti-inflammatory compounds (Baggiolini et al. 1987). Trials
to separate toxicity and pharmacological action of wortmannin-derivatives were not
successful before the target enzyme was identified (Arcaro and Wymann 1993; Yano
et al. 1993; Wymann and Arcaro 1994; Thelen et al. 1994), but were taken up by
others later: Ihle and colleagues (Ihle et al. 2004) modified the furan ring of wort-
mannin to slow down covalent reactions of wortmannin-derivatives (Wymann et al.
1996). The result of this work led to the development of the wortmannin-derivative
PX-866, which displays reduced liver toxicity as compared to wortmannin, and is
currently in clinical trials in solid tumors (see Table 5.1, Ihle et al. 2004; Williams
et al. 2006).

Semaphore Pharmaceuticals modified LY294002, and linked it to a RGD peptide
to yield SF1126. SF1126 displays an increased solubility and targets the LY294002-
derivative to integrins on cancers cells (Garlich et al. 2008; Ozbay et al. 2010).

Recently, the design of small molecules targeting PI3K has been facilitated by
the availability of an extensive collection of inhibitor/PI3K structures. The release
of the first class I PI3K structure—the catalytic PI3Kγ subunit p110γ (Walker et al.
1999)—was soon followed by p110γ bound to ATP and a variety of PI3K inhibitors
such as wortmannin, LY294002, and the less specific kinase inhibitors staurosporine
and quercetin (Walker et al. 2000). The elucidation of the PI3Kγ structure bound to
Ras provided further insight into the regulation of the lipid kinase, and its putative
orientation in respect to the plasma membrane (Pacold et al. 2000). The elucidation
of structures of partial p110α bound to p85 fragments (Miled et al. 2007; Huang
et al. 2007) and p110β (Zhang et al. 2011) provided insight into the regulation of
class IA PI3K activities (see above, for a review see (Vadas et al. 2011)). Finally, the
resolution of crystal structures for p110δ and bound inhibitors clarified the dynamics
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of the various p110 isoform structures, and explained specific structural dynamics
opening a specificity pocket in proximity to Met752 of p110δ, which is relevant for
p110δ inhibitor isoform specificity (e.g. for the p110δ inhibitor IC87114 (Knight
et al. 2006; Berndt et al. 2010)).

In the past years, PI3K inhibitors have been refined, and several molecules tar-
geting all class I PI3K isoforms (pan-PI3K inhibitors) have entered clinical testing
(see Table 5.1 for molecules and references). There is a plethora of data available
documenting the preclinical action and efficacy of PI3K inhibitors, which was estab-
lished in xenograft and in syngeneic mouse models (for reviews see (Marone et al.
2008; Liu et al. 2009; Engelman 2009)). In these models it was clearly documented
that PI3K inhibition acts usually cytostatic, arrests the cell cycle of tumor cells in G1
and only exceptionally triggers apoptosis (in vitro). In the in vivo setting, pan-PI3K
inhibition displays a strong anti-angiogenic effect, which results in PI3K-induced tu-
mor cell death and impressive reduction in tumor size in mouse models. Importantly,
the effects of pharmacological targeting of PI3Ks was matched in genetic models.
In this respect, it was demonstrated that PI3Kα plays not only an important role in
driving tumor cell growth (see mutations in p110α, above), but takes a central role
in angiogenesis (Graupera et al. 2008). Interestingly, the ablation of PI3Kβ activity
attenuated tumor growth in the mammary gland (Ciraolo et al. 2008) and prostate
(Jia et al. 2008; in mutant mice. When prostate cancer tumor formation was induced
by the loss of PTEN, is was only the inactivation of PI3Kβ that was efficiently pre-
venting tumor growth, while the inactivation of PI3Kα remained without significant
effect (Jia et al. 2008). These results were confirmed using inducible shRNA vectors
targeting specific PI3K isoforms (Wee et al. 2008).

Although class I PI3Ks and their lipid product PtdIns(3,4,5)P3 are central to
metabolic control (Wymann et al. 2003b), PI3K inhibitors did not display exces-
sive toxicity in mouse models. As constitutive, genetic inactivation of PI3Kα causes
embryonic lethality (Graupera et al. 2008; Bi et al. 1999), and genetic inactivation
of PI3Kβ effects male fertility (Ciraolo et al. 2010) and triggers late stage insulin
resistance (Ciraolo et al. 2008; Jia et al. 2008), but pharmacological pan-PI3K in-
hibition only mildly lowers blood glucose levels, it is tempting to speculate that an
intermediate restoration of PI3K signaling in non-tumor tissue due to a short half-life
of PI3K inhibitors reduces toxicity.

Many of the early PI3K inhibitors and clinical candidates act on PI3K and TOR in
parallel. This dual mode of action was predicted for wortmannin early on (Wymann
et al. 1996), and is followed by compounds like PI-103 (Fan et al. 2006), BEZ235
(Maira et al. 2008; Marone et al. 2009), BGT226, PX-866 and other molecules
listed in Table 5.1. As for the pan-PI3K inhibitors above, dual-PI3K/mTOR kinase
inhibitors produce impressive tumor responses in vivo (Marone et al. 2009; Workman
et al. 2010; Ihle and Powis 2010; Falasca 2010; Roock et al. 2011; for reviews see
(Marone et al. 2008; Liu et al. 2009; Engelman 2009; Wong et al. 2010)). In some
cases, strong, prolonged mTOR kinase inhibition induces a dose-dependent hyper-
phosphorylation of PKB/Akt (as observed for PI-103 in melanoma (Marone et al.
2009)). Like for the TORC1-mediated feedback loop discussed above for rapamycin,
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it might be crucial to better elucidate feedbacks in the PI3K/mTOR pathway to
optimize the action of dual-PI3K/mTOR inhibitors.

5.4.3 Plasticity of Tumorsignaling Pathways—Resistance

Cancer progression is a complex process and involves signaling pathways distinct
from PI3K. Feedback loops and cross-talk between signaling pathways can provide
escape routes for cancer cells and lead to adaptive resistance. A better knowledge of
the plasticity and dynamics of signaling pathways in a given patient’s tumor maxi-
mizes the chances of successful targeted therapies. Imatinib (Gleevec) inactivating
the constitutively activated Bcr-Abl kinase in chronic myelogenousleukemia (CML)
patients is initially very efficient, because Bcr-Abl is initially the exclusive driver of
CML cell proliferation. Only when Bcr-Abl is further mutated to prevent imatinib
binding, or when leukemia cells acquire further oncogenic mutations, resistance to
imatinib occurs.

PI3K integrates plenty of input signals from upstream receptors (Fig. 5.3) that
are currently targeted with neutralizing anti-bodies or protein tyrosine kinase in-
hibitors. As such, breast cancer patients with tumors depending on HER2/ErbB2
are treated with trastuzumab (Herceptin), while non-small cell lung cancer patients
with EGF receptor amplifications or mutations are treated with gefitinib (Iressa) or
erlotinib (Tarceva). In these settings, PI3K inhibition is expected to be beneficial.
Cells with a loss of PTEN or activating mutations in p110α have been shown to be
sensitive to PI3K inhibition. When Ras is mutated in a tumor, such as lung cancer,
the MAPK pathway and PI3K signaling are activated in parallel. Here, mouse mod-
els have demonstrated that PI3K inhibitors meet resistance, but are efficient when
combined with Raf or MEK inhibitors (Wee et al. 2009; Grant 2008; Engelman et al.
2008; Downward 2008). That tumor cells develop resistance to PI3K inhibitors by
the mutation of gatekeeper residues is presently considered to be unlikely, as muta-
tional screens to generate inhibitor resistant PI3K did not produce inhibitor-resistant
enzyme with relevant activity (Zunder et al. 2008).

5.5 Closing Remarks

Looking back two decades when PI3K, wortmannin, TOR, and PKB/Akt (at that time
called RAC1) entered the picture, we came a long way: a plethora of input signals
for PI3Ks have been identified, and the map downstream of PI3K is well filled and
connected to important hubs signaling through PKB/Akt and TOR. In some instances,
the available literature focuses still too much on “topical” molecules, and we thus lack
a deeper understanding if specific isoforms or relatives of lipid and protein kinases
and phosphatases have non-redundant physiologic functions. The same is true for the
PI3K regulatory and adaptor subunits and their splice variants, where we lack precise
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mechanisms how they control PI3K isoform-specific signaling in time and space.
The feedback of TOR and S6K attenuating the coupling of PI3K to the activation of
the insulin receptor illustrates that the whole PI3K-PKB-TOR pathway is regulated
in a highly complex manner. Present therapeutic strategies using ATP-binding site
inhibitors to block PI3K and PIKK activities does not quite match the complexity
of the signaling network. Allosteric inhibitors and compounds targeting specific
signaling complexes could provide more specific tools. Future approaches will also
require solid quantification and the establishment of phosphoinositide fluxes.

Acknowledgements I apologize for not citing numerous excellent original articles due to space
restrictions.
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