
Chapter 8
Multipliers

Multiplication is a basic arithmetic operation whose execution is based on 1-digit
by 1-digit multipliers and multi-operand adders. Most FPGA families include the
basic components for implementing fast and cost-effective multipliers. Further-
more, they also include optimized fixed-size multipliers which, in turn, can be used
for implementing larger-size multipliers.

The basic multiplication algorithm is described in Sect. 8.1. Several combi-
national implementations are proposed in Sect. 8.2. They correspond to different
types of multi-operand adders: iterative ripple-carry adders, carry-save adders,
multi-operand adders based on counters, radix-2k and mixed-radix adders.
Sequential implementations are proposed in Sect. 8.3. They used the shift and add
method implemented with either a ripple-carry adder or a carry-save adder. If
integer operands are considered, several options are proposed in Sect. 8.4. A first
method consists of multiplying B’s complement integers as they are naturals; the
drawback of this conceptually simple method is that the operands must be rep-
resented, and multiplied, with as many digits as the final result. Better options are a
modification of the shift and add algorithm, multiplication of naturals followed
by a post-correction, and the Booth algorithms. The last section describes a
LUT-based method for implementing a constant multiplier, that is to say, circuits
that compute c � y ? u, where c is a constant.

8.1 Basic Algorithm

Consider two radix-B numbers

x ¼ xn�1 � Bn�1 þ xn�2 � Bn�2 þ . . . þ x1 � Bþ x0 and

y ¼ ym�1 � Bm�1 þ ym�2 � Bm�2 þ . . . þ y1 � Bþ y0;
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where xi and yi belong to {0, 1,…, B -1}. An n-digit by m-digit multiplier
generates a radix-B number

z ¼ znþm�1 � Bnþm�1 þ znþm�2 � Bnþm�2 þ . . . þ z1 � Bþ z0

such that

z ¼ x � y:

A somewhat more general definition considers the addition of two additional
numbers

u ¼ un�1 � Bn�1 þ un�2 � Bn�2 þ . . . þ u1 � Bþ u0 and

v ¼ vm�1 � Bm�1 þ vm�2 � Bm�2 þ . . . þ v1 � Bþ v0;

so that

z ¼ x � yþ uþ v: ð8:1Þ

Observe that the maximum value of z is

Bn � 1ð Þ Bm � 1ð Þ þ Bn � 1ð Þ þ Bm � 1ð Þ ¼ Bnþm � 1:

In order to compute (8.1), first define a 1-digit by 1-digit multiplier: given four
B-ary digits a, b, c and d, it generates two B-ary digits e and f such that

a � bþ cþ d ¼ e � Bþ f ð8:2Þ

(Fig. 8.1a).
If B = 2, it amounts to a 2-input AND gate and a 1-digit adder (Fig. 8.1b).
An n-digit by 1-digit multiplier made up of n 1-digit by 1-digit multipliers is

shown in Fig. 8.2. It computes as

z ¼ x � bþ uþ d ð8:3Þ

where x and u are n-digit numbers, b and d are 1-digit numbers, and z is an
(n ? 1)-digit number. Observe that the maximum value of z is

Bn � 1ð Þ B� 1ð Þ þ Bn � 1ð Þ þ B� 1ð Þ ¼ Bnþ1 � 1:
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Fig. 8.1 1-digit by 1-digit
multiplier. a Symbol,
b internal structure (B = 2)
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Using the iterative circuit of Fig. 8.2 as a computation resource, the computation
of (8.1) amounts to computing the m n-digit by 1-digit products

z 0ð Þ ¼ x � y0 þ uþ v0;

z 1ð Þ ¼ x � y1 þ v1ð ÞB;
z 2ð Þ ¼ x � y2 þ v2ð ÞB2;

. . .

z m�1ð Þ ¼ x � ym�1 þ vm�1ð ÞBm�1;

ð8:4Þ

and to adding them, that is

z ¼ z 0ð Þ þ zð1Þ þ zð2Þ þ . . . þ zðm�1Þ ¼ x � yþ uþ v: ð8:5Þ

For that, one of the multioperand adders of Sect. 7.7 can be used. As an example, if
Algorithm 7.2 is used, then z is computed as follows.

Algorithm 8.1: Multiplication, right to left algorithm

8.2 Combinational Multipliers

8.2.1 Ripple-Carry Parallel Multiplier

The combinational circuit of Fig. 8.3 implements Algorithm 8.1 (with n = 4 and
m = 3). One of its critical paths has been shaded. Its computation time is equal to

Tmultiplier n;mð Þ ¼ nþ 2m� 2ð Þ � Tmultiplier 1; 1ð Þ: ð8:6Þ

x x x x

xn-1 b xn-2 x1 x0b b bun-1 un-2 u1 u0

d
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zn-1 zn-2 z1 z0zn

Fig. 8.2 n-digit by 1-digit multiplier
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The following VHDL model describes the circuit of Fig. 8.3 (B = 2).
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Fig. 8.3 Combinational multiplier
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A complete generic model parallel_multiplier.vhd is available at the Authors’
web page.

8.2.2 Carry-Save Parallel Multiplier

A straightforward modification of the multiplier of Fig. 8.3, similar to the
carry-save principle, is shown in Fig. 8.4. The circuit is made up of an n-by-
m array of 1-by-1 multipliers, whose computation time is equal to n � T(1,1),
plus an m-digit output adder. Its critical path has been shaded. Its computation
time is equal to

Tmultiplier n;mð Þ ¼ n � Tmultiplier 1; 1ð Þ þ m � Tadder 1ð Þ � nþ mð Þ � Tmultiplier 1; 1ð Þ:
ð8:7Þ

The following VHDL model describes the circuit of Fig. 8.4 (B = 2).
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A complete generic model parallel_csa_multiplier.vhd is available at the Authors’
web page.
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Fig. 8.4 Carry-save combinational multiplier
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8.2.3 Multipliers Based on Multioperand Adders

A straightforward implementation of Eqs. (8.4) and (8.5) can also be considered
(Fig. 8.5). For that, any type of multioperand adder can be used.

Example 8.1
Consider an n-bit by 7-bit multiplier. The 7-operand adder can be divided up into a 7-
to-3 counter, a 3-to-2 counter and a ripple-carry adder. The complete structure is shown
in Fig. 8.6 and is described by the following VHDL model:

A complete generic model N_by_7_multiplier.vhd is available at the Authors’
web page.

Numerous multipliers, based on trees of counters, have been proposed and
reported, among others the Wallace and Dadda multipliers (Wallace [4]; Dadda
[3]). Nevertheless, as already mentioned before (Comment 7.5), in many cases the
best FPGA implementations are based on relatively simple algorithms, to which
correspond regular circuits that allow taking advantage of the special purpose carry
logic circuitry. To follow, an example of efficient FPGA implementation is
described.

Consider the set of equations (8.4). If two successive steps are merged within an
only step (loop unrolling), the new set of equations is:

z 1;0ð Þ ¼ x � y1 þ v1ð ÞBþ x � y0 þ uþ v0;

z 3;2ð Þ ¼ x � y3 þ v3ð ÞBþ x � y2 þ v2ð Þ½ �B2;

. . .

z m�1;m�2ð Þ ¼ ½ x � ym�1 þ vm�1ð ÞBþ x � ym�2 þ vm�2ð Þ�Bm�2;

ð8:8Þ
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and the product is equal to

z ¼ z 1;0ð Þ þ zð3;2Þ þ . . . þ zðm�1;m�2Þ:

Assuming that u = 0, the basic operation to implement (8.8) is

z iþ1;ið Þ ¼ x � yjþ1 þ vjþ1
� �

Bþ x � yj þ vj

� �

to which corresponds the circuit of Fig. 8.7 (with n = 4).
The circuit of Fig. 8.7 can be decomposed into n ? 1 vertical slices of the type

shown in Fig. 8.8a (with obvious simplifications regarding the first and last slices).
Finally, if B = 2 and vj = 0, the carries of the first line are equal to 0, so that the
circuit of Fig. 8.8a can be implemented as shown in Fig. 8.8b.

Comment 8.1

Most FPGA’s include the basic components for implementing the structure of
Fig. 8.8b, and the synthesis tools have the capability to generate optimized mul-
tipliers from a simple VHDL expression, such as

z \¼ x � y;

Furthermore, many FPGA’s also include fixed-size multiplier blocks.

8.2.4 Radix-2k and Mixed-Radix Parallel Multipliers

The basic multiplication algorithm (Sect. 8.1) and the corresponding ripple-carry
and carry-save multipliers (Sects. 8.2.1 and 8.2.2) have been defined for any radix-
B. In particular, radix-2k multipliers can be defined. This allows the synthesis of
n � k-bit by m � k-bit multipliers using k-bit by k-bit multipliers as building blocks.
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Fig. 8.7 4-digit by 2-digit multiplier
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The following VHDL model defines a radix-2k ripple-carry parallel multiplier.
The main iteration consists of m � n instantiations of any type of k-bit by k-bit
combinational multiplier that computes z = a � b ? c ? d and represents z under
the form zH � 2k þ zL; where zH and zL are k-bit numbers:
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Fig. 8.8 Iterative cell of a parallel multiplier
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A complete generic model base_2k_parallel_multiplier.vhd is available at the
Authors’ web page.

The stored-carry encoding can also be applied. Once again, the main iteration
consists of m � n instantiations of any type of k-bit by k-bit multiplier, and the
connections are similar to those of the carry-save multiplier of Sect. 8.2.2. A
complete generic model base_2k_csa_multiplier.vhd is available at the Authors’
web page.

A straightforward generalization of relations (8.2) to (8.5) allows defining
mixed-radix combinational multipliers. First consider the circuit of Fig. 8.1a,
assuming that

a; c 2 0; 1; . . . ;B1 � 1f g; and b; d 2 0; 1; . . . ;B2 � 1f g:

Then

z ¼ a � bþ cþ d� B1 � 1ð Þ � B2 � 1ð Þ þ B1 � 1ð Þ þ B2 � 1ð Þ ¼ B1 � B2 � 1;

so that z can be expressed under the form

z ¼ e � B1 þ f ; with e 2 0; 1; . . . ;B2 � 1f g; f 2 0; 1; . . . ;B1 � 1f g:

Then, consider the circuit of Fig. 8.2, assuming that x and u are n-digit radix-B1

numbers, and b and d are 1-digit radix-B2 numbers. Thus,

x � bþ uþ d ¼ zn � Bn
1 þ zn�1 � Bn�1

1 þ . . . þ z1 � B1 þ z0; ð8:9Þ

with

zn 2 0; 1; . . . ;B2 � 1f g and zi 2 0; 1; . . . ;B1 � 1f g; 8i in 0; 1; . . . ; n� 1f g:

Finally, given two n-digit radix-B1 numbers x and u, and two m-digit radix-B2

numbers y and v, compute

z 0ð Þ ¼ x � y0 þ uþ v0;

z 1ð Þ ¼ x � y1 þ v1ð ÞB2;

z 2ð Þ ¼ x � y2 þ v2ð ÞB2
2;

. . .

z m�1ð Þ ¼ x � ym�1 þ vm�1ð ÞBm�1
2 :

ð8:10Þ

Then

z ¼ z 0ð Þ þ zð1Þ þ zð2Þ þ . . . þ zðm�1Þ ¼ x � yþ uþ v: ð8:11Þ

Consider the case where

B1 ¼ 2k1 ; B2 ¼ 2k2 :
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An easy way to define a VHDL model of the corresponding multiplier consists
in first modelling a circuit that implements (8.9). The main iteration consists of
n instantiations of any type of k1-bit by k2-bit combinational multiplier that
computes

a � bþ cþ d ¼ zH � 2k1 þ zL;

where zH is a k2-bit number and zL a k1-bit number:

Then, it remains to instantiate m rows:

A complete generic model MR_parallel_multiplier.vhd is available at the Authors’
web page.

The circuit defined by the preceding VHDL model is a bidirectional array
similar to that of Fig. 8.3, but with more complex connections. As an example,
with k1 = 4 and k2 = 2, the connections corresponding to cell (j, i) are shown in
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Fig. 8.9. As before, a stored-carry encoding circuit could also be designed, but
with an even more complex connection pattern. It is left as an exercise.

8.3 Sequential Multipliers

8.3.1 Shift and Add Multiplier

In order to synthesize sequential multipliers, the basic algorithm of Sect. 8.1 can be
modified. For that, Eq. (8.4) are substituted by the following:
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Fig. 8.9 Part of a 4n-bit by 2n-bit multiplier using 4-bit by 2-bit multiplication blocks
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z 0ð Þ ¼ uþ x � y0 þ v0ð Þ=B;

z 1ð Þ ¼ zð0Þ þ x � y1 þ v1

� �
=B;

z 2ð Þ ¼ z1Þ þ x � y2 þ v2

� �
=B;

. . .

z m�1ð Þ ¼ zðm�2Þ þ x � ym�1 þ vm�1

� �
=B:

ð8:12Þ

Multiply the first equation by B, the second by B2, and so on, and add the so
obtained equations. The result is

z m�1ð ÞBm ¼ uþ x � y0 þ v0 þ x � y1 þ v1ð ÞBþ . . . þ x � ym�1 þ vm�1ð ÞBm�1

¼ xyþ uþ v:

Algorithm 8.2: Shift and add multiplication

A data path for executing Algorithm 8.2 is shown in Fig. 8.10a. The following
VHDL model describes the circuit of Fig. 8.10a (B = 2).
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Fig. 8.10 Shift and add multipliers
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The complete circuit also includes an m-state counter and a control unit.
A complete generic model shift_and_add_multiplier.vhd is available at the
Authors’ web page.

If v = 0, the same shift register can be used for storing both y and the least
significant bits of z. The modified circuit is shown in Fig. 8.10b. A complete
generic model shift_and_add_multiplier2 is also available.
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The computation time of the circuits of Fig. 8.10 is approximately equal to

Tmultiplier n;mð Þ ¼ m � Tmultiplier n; 1ð Þ ¼ m � n � Tmultiplier 1; 1ð Þ: ð8:13Þ

8.3.2 Shift and Add Multiplier with CSA

The shift and add algorithm can also be executed with stored-carry encoding. After
m steps the result is obtained under the form

sn�1 Bnþm�1 þ cn�2 þ sn�2ð ÞBnþm�2 þ . . . þ c0 þ s0ð ÞBm þ zm�1 Bm�1 þ . . .
þ z1Bþ z0;

and an additional n-digit adder computes

sn�1 Bn�1 þ cn�2 þ sn�2ð ÞBn�2 þ . . .þ c0 þ s0ð Þ
¼ zmþn�1 Bn�1 þ . . . þ zmþ1 Bþ zm:

The corresponding data path is shown in Fig. 8.11. The carry-save adder computes

y1 þ y2 þ y3 ¼ sþ c;

where y1, y2 and y3 are n-bit numbers, and s and c are (n ? 1)-bit numbers. At the
end of step i, the less significant bit of s is zi, and the n most significant bits of s and
c are transmitted to the next step:

x

cn..1 s0

carry-save adder
y

register
initially: v

shift register
initially: y

zm-1..0

sn..1

y1

register
initially: u

y2 y3

zn+m-1..m

adder

Fig. 8.11 Sequential carry-
save multiplier
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The complete circuit also includes an m-state counter and a control unit. A com-
plete generic model sequential_CSA_multiplier.vhd is available at the Authors’
web page. The minimum clock period is equal to the delay of a 1-bit by 1-bit
multiplier. Thus, the total computation time is equal to

Tmultiplier n;mð Þ ¼ m � Tmultiplier 1; 1ð Þ þ Tadder nð Þ � nþ mð Þ � Tmultiplier 1; 1ð Þ:
ð8:14Þ

Comment 8.2

In sequential_CSA_multiplier.vhd the done flag is raised as soon as the final values
of the adder inputs are available. A more correct control unit should raise the flag
k cycles later, being k � Tclk an upper bound of the n-bit adder delay. The value of
k could be defined as a generic parameter (Exercise 8.3).

8.4 Integers

Given four B’s complement integers

x ¼ xnxn�1xn�2. . .x0; y ¼ ymym�1ym�2. . .y0; u ¼ unun�1 un�2. . .u0;

v ¼ vmvm�1vm�2 . . . v0;

belonging to the ranges

�Bn� x\Bn;�Bm� y\Bm;�Bn� u\Bn;�Bm� v\Bm;

then z = x � y ? u ? v belongs to the interval
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�Bnþmþ1� z\Bnþmþ1:

Thus, z is a B’s complement number of the form

z ¼ znþmþ1 znþm znþm�1 . . . z1z0:

8.4.1 Mod 2Bn+m Multiplication

The integer represented by a vector xn xn�1 xn�2 . . . x1 x0 is

x ¼ �xnBn þ xn�1 Bn�1 þ xn�2 Bn�2 þ . . .þ x1Bþ x0;

while the natural natural(x) represented by this same vector is

natural xð Þ ¼ xnBn þ xn�1 Bn�1 þ xn�2 Bn�2 þ . . .þ x1Bþ x0:

As xn [ {0, 1}, either natural(x) = x or natural(x) = x +2Bn. So,

natural xð Þ ¼ x mod 2Bn:

The following method can be used to compute z = x � y ? u ? v. First, represent
the operands x, y, u and v with the same number of digits (n ? m ? 2) as the result
z (digit extension, Sect. 7.8). Then, compute z = x � y ? u ? v as if x, y, u and
v were naturals:

z ¼ natural xð Þ � natural yð Þ þ natural uð Þ þ natural vð Þ ¼ natural x � yþ uþ vð Þ:

Finally, reduce z modulo 2Bnþmþ1: Assume that before the mod 2Bnþmþ1 reduction

z ¼ . . . þ znþmþ1 Bnþmþ1 þ znþm Bnþm þ znþm�1 Bnþm�1 þ . . .þ z1Bþ z0;

then

z mod 2Bnþmþ1 ¼ . . .þ znþmþ1 mod 2ð ÞBnþmþ1 þ znþm Bnþm þ znþmþ1 Bnþm�1

þ . . .þ z1Bþ z0:

In particular, if B is even,

z mod 2Bnþmþ1 ¼ znþmþ1 2ð ÞBnþmþ1 þ znþm Bnþm þ znþm�1 Bnþm�1 þ . . .þ z1Bþ z0:

Example 8.2
Assume that B = 10, n = 4, m = 3, x = 7918, y = -541, u =

-7017, v = 742, and compute z = 7918�(-541) ? (-7017) ? 742. In 10’s
complement: x = 07918, y = 1459, u = 12983, v = 0742.

1. Express all operands with 9 digits: x = 000007918, y = 199999459, u =

199992983, v = 000000742.
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2. Compute x � y ? u ? v: 000007918�199999459 ? 199992983 ? 000000742 =

1583795710087.
3. Reduce 1583795710087 modulo 2�108: (1583795710087) mod 2�108 = (7 mod 2)�

108 ? 95710087 = 195710087.

The result 195710087 is the 10’s complement representation of -4289913.
Thus, any multiplier for natural numbers can be used. As an example, an

(n ? m ? 2)-digit by (n ? m ? 2)-digit carry-save multiplier could be used
(Fig. 8.4). As the result is reduced modulo 2Bn+m+1, only the rightmost part of the
circuit is used (if B is even), so that there is no output adder, and the most
significant digit is reduced mod 2. An example with n = 3 and m = 2 is shown in
Fig. 8.12. The corresponding computation time is equal to

nþ mþ 2ð Þ � Tmultiplier 1; 1ð Þ: ð8:15Þ

This delay is practically the same as that of a carry-save combinational multiplier
(8.7). Nevertheless, the number of 1-digit by 1-digit multiplication cells is equal to
1þ 2þ 3þ . . .þ nþ mþ 2ð Þ ¼ nþ mþ 2ð Þ nþ mþ 3ð Þ=2 instead of n � m.
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e f

xj·yi + c + d = 2e + f

Fig. 8.12 Carry-save multiplier for integers (n = 3, m = 2)
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A very simple way to generate a VHDL model consists of defining
(n ? m ? 2)-bit representations of all operands and instantiating an (n ? m ? 2)-
bit by (n ? m ? 2)-bit carry-save multiplier:

Only n ? m ? 2 output bits of the carry-save multiplier are connected to output
ports, and the synthesis program will prune the circuit accordingly.

A complete generic model integer_CSA_multiplier.vhd is available at the
Authors’ web page.

To conclude, this approach is conceptually attractive because any type of
multiplier for natural numbers can be used. Nevertheless, the cost of the corre-
sponding circuits is very high.

8.4.2 Modified Shift and Add Algorithm

Consider again four B’s complement integers

x ¼ xn xn�1 xn�2 . . . x0; y ¼ ymym�1 ym�2 . . . y0; u ¼ un un�1 un�2 . . . u0;

v ¼ vm vm�1 vm�2 . . . v0:

A set of equations similar to (8.12) can be defined:

z 0ð Þ ¼ uþ x � y0 þ v0ð Þ=B;

z 1ð Þ ¼ zð0Þ þ x � y1 þ v1

� �
=B;

z 2ð Þ ¼ z1Þ þ x � y2 þ v2

� �
=B;

. . .

z m�1ð Þ ¼ zðm�2Þ þ x � ym�1 þ vm�1

� �
=B;

z mð Þ ¼ zðm�1Þ � x � ym � vm

� �
=B:

ð8:16Þ
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Multiply the first equation by B, the second by B2, and so on, and add the m ? 1
so obtained equations. The result is

z mð ÞBmþ1 ¼ uþ x � y0 þ v0 þ x � y1 þ v1ð ÞBþ . . . þ x � ym�1 þ vm�1ð ÞBm�1

� x � ym þ vmð ÞBm

¼ xyþ uþ v:

Algorithm 8.3: Modified shift and add multiplication

In what follows it is assumed that vm = 0, that is to say v C 0; so, in order to
implement Algorithm 8.3, the two following computation primitives must be
defined:

z ¼ uþ x � bþ d ð8:17Þ

and

z ¼ u� x � b; ð8:18Þ

where

�Bn� x\Bn;�Bn� u\Bn; 0 � b\B; 0 � d\B:

Thus, in the first case,

�Bnþ1� z\Bnþ1;

and in the second case

�Bnþ1 þ B� 1ð Þ � z\Bnþ1;

so that in both cases z is an (n ? 2)-digit B’s complement integer and natu-
ral(z) = z mod 2Bn+1.

The first primitive (8.17) is implemented by the circuit of Fig. 8.13 and the
second (8.18) by the circuit of Fig. 8.14. In both, circuit zn+1 is computed
modulo 2.

As an example, the combinational circuit of Fig. 8.15 implements Algorithm
8.3 (with n = m = 2). Its cost and computation time are practically the same as in
the case of a ripple-carry multiplier for natural numbers. It can be described by the
following VHDL model.
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x x x

b

xn x0

b bun un u0

b
.....

zn z0zn+1

x

xn-1

b un-1
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Fig. 8.14 Second computation primitive

x x x

xn b xn x0b bun un u1 u0

d
.....

zn z0zn+1

x

xn-1 b un-1
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Fig. 8.13 First computation primitive
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x x xx

x2 y3 x2 x1 x0y3 y3 y3 z2

y3

Fig. 8.15 Combinational
multiplier for integers
(B = 2, m = n = 2)
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A complete generic model modified_parallel_multiplier.vhd is available at the
Authors’ web page.

The design of a sequential multiplier based on Algorithm 8.3 is left as an
exercise.

8.4.3 Post Correction Multiplication

Given four B’s complement integers

x ¼ xn xn�1 xn�2 . . . x0; y ¼ ym ym�1 ym�2 . . . y0; u ¼ unun�1 un�2 . . . u0;

v ¼ vmvm�1 vm�2 . . . v0;

then z = x � y ? u ? v, belonging to the interval �Bnþmþ1� z\Bnþmþ1; can be
expressed under the form

z ¼ X0 � Y0 þ U0 þ V0ð Þ þ xn � ym � Bnþm � xn � Y0 þ unð Þ � Bn

� ym � X0 þ vmð Þ � Bn;

where X0, Y0, U0 and V0 are four naturals

X0 ¼ xn�1 xn�2 . . . x0; Y0 ¼ ym�1 ym�2 . . . y0; U0 ¼ un�1 un�2 . . . u0;

X0 ¼ vm�1vm�2 . . . v1v0

deduced from x, y, u and v by eliminating the sign bits. Thus, the computation of
z amounts to the computation of

Z0 ¼ X0 � Y0 þ U0 þ V0;

that can be executed by any type of multiplier for naturals, plus a post correction
that consists of several additions and left shifts.

If B = 2 and u = v = 0, then
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z ¼ x � y ¼ X0 � Y0 þ xn � ym � 2nþm � xn � Y0 � 2n � ym � X0 � 2n:

The (n ? m ? 2)-bit 2’s complement representations of �xn � Y0 � 2n and
�ym � X0 � 2m are

ð2mþ1 þ 2m þ ðxn � ym�1Þ � 2m�1 þ . . .þ ðxn � y0Þ � 20 þ 1Þ � 2n mod 2nþm�2;

and

ð2nþ1 þ 2n þ ðym � xn�1Þ � 2n�1 þ . . . þ ðym � x0Þ � 20 þ 1Þ � 2m mod 2nþm�2;

so that the representation of xn � ym � 2nþm � xn � Y0 � 2n � ym � X0 � 2n is

ð2nþmþ1 þ xn � ym � 2nþm þ ðxn � ym�1Þ � 2nþm�1 þ . . .þ ðxn � y0Þ � 2n

þ2n þ ðym � xn�1Þ � 2nþm�1 þ . . .þ ðym � x0Þ � 2m þ 2mÞ mod 2nþmþ2:

A simple modification of the combinational multipliers of Fig. 8.3 and 8.4
allows computing x � y, where x is an (n ? 1)-bit 2’s complement integer and y an
(m ? 1)-bit 2’s complement integer. An example is shown in Fig. 8.16 (n = 3,

x
nand x x x

x3 y0 x2 x1 x0y0 y0 y01 0 0 0

0

x

x3 y1 x2 x1 x0y1 y1 y1

xx
0

x

x3 y2 x2 x1 x0y2 y2 y2

1

z3 z2

z1

z0

z6 z5 z4

x
nand

x
nand

x
nand

x
nand

Fig. 8.16 Multiplier with post correction
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m = 2). The nand multiplication cells are similar to that of Fig. 8.1b, but for the
substitution of the AND gate by a NAND gate [1].
The following VHDL model describes the circuit of Fig. 8.16.

A complete generic model postcorrection_multiplier.vhd is available at the
Authors’ web page.

8.4.4 Booth Multiplier

Given an (m ? 1)-bit 2’s complement integer y ¼ �ym � 2m þ ym�1 � 2m�1 þ
. . . þ y1 � 2þ y0; define

y00 ¼ �y0 and y0j ¼ �yj þ yj�1; 8i in 1; 2; . . .;mf g;
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so that all coefficients yi’ belong to {-1, 0, 1}. Then y can be represented under the
form

y ¼ y0m � 2m þ y0m�1 � 2m�1 þ . . .þ y01 � 2þ y00;

the so-called Booth’s encoding of y (Booth [2]. Unlike the 2’s complement rep-
resentation in which ym has a specific function, all coefficients yi’ have the same
function. Formally, the Booth’s representation of an integer is the same as the
binary representation of a natural. The basic multiplication algorithm (Algorithm
8.1), with v = 0, can be used.

Algorithm 8.4: Booth multiplication, z 5 x�y 1 u

The following VHDL model describes a combinational circuit based on Algorithm
8.4.

A complete generic model Booth1_multiplier.vhd is available at the Authors’ web
page.

Higher radix Booth multipliers can be defined. Given an (m ? 1)-bit 2’s
complement integer y ¼ �ym � 2m þ ym�1 � 2m�1 þ . . .þ y1 � 2þ y0; where m is
odd, define

y00 ¼ �2 � y1 þ y0; y
0
i ¼ �2 � y2 � iþ1 þ y2 � i þ y2� i�1; 8i in 1; 2; . . .; m� 1ð Þ=2f g;

so that all coefficients yi’ belong to {-2, -1, 0, 1, 2}. Then y can be represented
under the form
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y ¼ y0m�1ð Þ=2 � 4 m�1ð Þ=2 þ y0m�1ð Þ=2�1 � 4 m�1ð Þ=2�1 þ . . . þ y01 � 4þ y00;

the so-called Booth-2 encoding of y.

Example 8.3
Consider the case where m = 9 and thus (m-1)/2 = 4. The 2’s complement
representation of -137 is 1101110111. The corresponding Booth-2 encoding is -

1 2 -1 2 -1 and, indeed, -44 ? 2 � 43 - 42 +2 � 4 - 1 = -137.The basic radix-
4 multiplication algorithm, with v = 0, can be used.

Algorithm 8.5: Radix-4 Booth multiplication, z 5 x � y 1 u

A sequential implementation is shown in Fig. 8.17. It includes a shift register
whose content is shifted two positions at each step, a parallel register and an adder
whose second operand is -2x, -x, 0, x or 2x depending on the three least sig-
nificant bits (y2�i+1, y2�i, y2�i-1) of the shift register. At each step, two output bits are
generated. Hence, the total computation time is equal to (m ? 1)/2�Tclk, where Tclk

must be greater than the computation time of an (n ? 3)-bit adder. Thus,

Tðn;mÞ ffi mþ 1
2
� Tadderðnþ 3Þ:

With respect to a radix-2 shift and add multiplier (Sect. 8.2.1), the computation
time has been divided by 2.

The following VHDL model describes the circuit of Fig. 8.17.

y

register
initially: u

shift register
initially: y.0

zn+m+1..m+1 zm..0

adder

n+1 2
3

2x
x
0
-x
-2x100

110,101
111,000
010,001

011
Fig. 8.17 Sequential radix-4
Booth multiplier
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The complete circuit also includes an (m ? 1)/2-state counter and a control
unit. A complete generic model Booth2_sequential_multiplier.vhd is available at
the Authors’ web page.

8.5 Constant Multipliers

Given an n-bit constant natural c and an m-bit natural y, the computation of
c � y can be performed with any n-bit by m-bit multiplier whose first operand is
connected to the constant value c. Then, the synthesis tool will eliminate useless
components. In the case of FPGA implementations, an alternative method is to
store the constant c within the LUTs.

Assume that the technology at hand includes k-input LUTs. The basic com-
ponent is a circuit that computes w = c � b, where b is a k-bit natural. The
maximum value of w is

2n � 1ð Þ 2k � 1
� �

¼ 2nþk � 2k � 2n þ 1;
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so w is an (n ? k)-bit number. The circuit is shown in Fig. 8.18, with k = 6. It is
made up of n ? 6 LUT-6, each of them being programmed in such a way that

w6jþ5 ... 6j bð Þ ¼ c1 � b½ �6jþ5 ... 6j:

Its computation time is equal to TLUT6.
The following VHDL model describes the circuit of Fig. 8.18.

The function LUT_definition defines the LUT contents.

b5..0

w5..0

w11..6

wn+5..n

··· ···

Fig. 8.18 LUT
implementation of a k-bit by
n-bit constant multiplier
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The circuit of Fig. 8.18 can be used as a component for generating constant
multipliers. As an example, a sequential n-bit by m-bit constant multiplier is
synthesized. First define a component similar to that of Fig. 8.2, with x constant. It
computes z = c � b ? u, where c is an n-bit constant natural, b a k-bit natural, and
u an n-bit natural. The maximum value of z is

2n � 1ð Þ 2k � 1
� �

þ 2n � 1 ¼ 2nþk � 2k;

so it is an (n ? k)-bit number. It consists of a k-bit by n-bit multiplier (Fig. 8.18)
and an (n ? k)-bit adder (Fig. 8.19).

Finally, the circuit of Fig. 8.19 can be used to generate a radix-2k shift and add
multiplier that computes z = c � y ? u, where c is an n-bit constant natural, y an
m-bit natural, and u an n-bit natural. The maximum value of z is

2n � 1ð Þ 2m � 1ð Þ þ 2n � 1 ¼ 2nþm � 2m;

so z is an (n ? m)-bit number. Assume that the radix-2k representation of y is
Ym/k-1 Ym/k-2… Y0, where each Yi is a k-bit number. The circuit implements the
following set of equations:

z 0ð Þ ¼ uþ c � Y0ð Þ=2k;

z 1ð Þ ¼ zð0Þ þ c � Y1

� �
=2k;

z 2ð Þ ¼ z1Þ þ c � Y2

� �
=2k;

. . .

z m=k�1ð Þ ¼ zðm=k�2Þ þ c � Ym=k�1

� �
=2k:

ð8:19Þ

Thus,

z m=k�1ð Þ � 2k
� �m=k¼ uþ c � Y0 þ c � Y1 � 2k þ . . .þ c � Ym=k�1 � 2k

� �m=k�1
;

that is to say

z m=k�1ð Þ � 2m ¼ c � yþ u:

The circuit is shown in Fig. 8.20.
The computation time is approximately equal to

T ffi m=kð Þ � ðTLUT�k þ Tadder nþ kð Þ:

b5..0
wn+5..0

Fig.8.18

u
(n+6)-bit 

adder
z

Fig. 8.19 Computation of
w = c � b ? u
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The following VHDL model describes the circuit of Fig. 8.20 (k = 6).

A complete model sequential_constant_multiplier.vhd is available at the
Authors’ web page.

The synthesis of constant multipliers for integers is left as an exercise.

u

b

zn+k-1..k zk-1..0

Fig. 8.19

register
initially: u

shift register
initially: y

zn+m-1..m zm-1..0

Yi

Fig. 8.20 n-bit by m-bit
constant multiplier
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8.6 FPGA Implementations

Several multipliers have been implemented within a Virtex 5-2 device. Those
devices include Digital Signal Processing (DSP) slices that efficiently perform
multiplications (25 bits by 18 bits), additions and accumulations. Apart from
multiplier implementations based on LUTs and FFs, more efficient implementa-
tions, taking advantage of the availability of DSP slices, are also reported. As
before, the times are expressed in ns and the costs in numbers of Look Up Tables
(LUTs), flip-flops (FFs) and DSP slices. All VHDL models as well as several test
benches are available at the Authors’ web page.

8.6.1 Combinational Multipliers

The circuit is shown in Fig. 8.3. The synthesis results for several numbers n and
m of bits are given in Table 8.1.

A faster implementation is obtained by using the carry-save method (Fig. 8.4;
Table 8.2).

If multipliers based on the cell of Fig. 8.8b are considered, more efficient
circuits can be generated. It is the ‘‘by default’’ option of the synthesizer
(Table 8.3).

Finally, if DSP slices are used, better implementations are obtained (Table 8.4).

Table 8.1 Combinational
multiplier

m n LUTS Delay

8 8 96 13.29
16 16 384 28.26
32 16 771 36.91
32 32 1536 57.46
64 32 3073 74.12
64 64 6181 119.33

Table 8.2 Carry-save
combinational multiplier

m n LUTS Delay

8 8 102 8.05
16 16 399 15.42
32 16 788 16.99
32 32 1580 29.50
64 32 3165 32.08
64 64 6354 60.90
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8.6.2 Radix-2k Parallel Multipliers

Several m � k bits by n � k bits multipliers (Sect. 8.2.4) have been implemented
(Table 8.5).

A faster implementation is obtained by using the carry-save method
(Table 8.6).

The same circuits have been implemented with DSP slices. The implementation
results are given in Tables 8.7, 8.8

8.6.3 Sequential Multipliers

Several shift and add multipliers have been implemented. The implementation
results are given in Tables 8.9, 8.10. Both the clock period Tclk and the total delay
(m � Tclk) are given.

Table 8.3 Optimized
combinational multiplier

n m LUTs Delay

8 8 113 5.343
16 16 435 6.897
32 16 835 7.281
32 32 1668 7.901
64 64 6460 11.41
64 32 3236 9.535
32 64 3236 9.535

Table 8.4 Combinational
multiplier with DSP slices

n m LUTs DSPs Delay

8 8 0 2 4.926
16 16 0 2 4.926
32 16 77 2 6.773
32 32 93 4 9.866
64 64 346 12 12.86
64 32 211 6 11.76
32 64 211 6 11.76

Table 8.5 Radix-2k parallel
multipliers

m n k m � k n � k LUTs Delay

2 2 8 16 16 452 10.23
4 4 4 16 16 448 17.40
2 2 16 32 32 1740 12.11
4 4 8 32 32 1808 20.29
4 2 16 64 32 3480 15.96
4 4 16 64 64 6960 22.91
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8.6.4 Combinational Multipliers for Integers

A carry-save multiplier for integers is shown in Fig. 8.12. The synthesis results for
several numbers n and m of bits are given in Table 8.11.

Table 8.6 Carry-save radix-
2k parallel multipliers

m n k m � k n � k LUTs Delay

2 2 8 16 16 461 8.48
4 4 4 16 16 457 10.09
2 2 16 32 32 1757 10.36
4 4 8 32 32 3501 11.10
4 2 16 64 32 1821 12.32
4 4 16 64 64 6981 14.93

Table 8.7 Radix-2k parallel
multipliers with DSPs

m n k m � k n � k DSPs LUTs Delay

2 2 8 16 16 8 0 12.58
4 4 4 16 16 32 0 27.89
2 2 16 32 32 8 0 12.58
4 4 8 32 32 32 0 27.89
4 2 16 64 32 16 0 16.70
4 4 16 64 64 32 0 27.89

Table 8.8 Carry-save radix-
2k parallel multipliers with
DSPs

m n k m � k n � k DSPs LUTs Delay

2 2 8 16 16 8 15 9.90
4 4 4 16 16 32 15 17.00
2 2 16 32 32 8 31 10.26
4 4 8 32 32 32 31 17.36
4 2 16 64 32 16 63 11.07
4 4 16 64 64 32 63 18.09

Table 8.9 Shift and add
multipliers

n m FFs LUTs Period Total time

8 8 29 43 2.87 23.0
8 16 46 61 2.87 45.9
16 8 38 72 4.19 33.5
16 16 55 90 4.19 67.0
32 16 71 112 7.50 120.0
32 32 104 161 7.50 240.0
64 32 136 203 15.55 497.6
64 64 201 306 15.55 995.2
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Another option is the modified shift and add algorithm of Sect. 8.4.2 (Fig. 8.15;
Table 8.12).

In Table 8.13, examples of post correction implementations are reported.
As a last option, several Booth multipliers have been implemented

(Table 8.14).

Table 8.10 Sequential carry-
save multipliers

n m FFs LUTs Period Total time

8 8 29 43 1.87 15.0
16 8 47 64 1.88 15.0
16 16 56 74 1.92 30.7
32 16 88 122 1.93 30.9
32 32 106 139 1.84 58.9
64 32 170 235 1.84 58.9
64 64 203 268 1.84 117.8

Table 8.11 Carry-save mod
2n+m+1 multipliers

n m LUTs Delay

8 8 179 12.49
8 16 420 18.00
16 8 421 20.41
16 16 677 25.86
32 16 1662 42.95
32 32 2488 55.69

Table 8.12 Modified shift
and add algorithm

n m LUTs Delay

8 8 122 15.90
8 16 230 27.51
16 8 231 20.20
16 16 435 31.81
32 16 844 39.96
32 32 1635 62.91

Table 8.13 Multipliers with
post correction

n m LUTs Delay

8 8 106 14.18
8 16 209 24.60
16 8 204 18.91
16 16 407 30.60
32 16 794 39.43
32 32 1586 62.91
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8.6.5 Sequential Multipliers for Integers

Several radix-4 Booth multipliers have been implemented (Fig. 8.17). Both the
clock period Tclk and the total delay (m � Tclk) are given (Table 8.15).

8.7 Exercises

1. Generate the VHDL model of a mixed-radix parallel multiplier (Sect. 8.2.4).
2. Synthesize a 2n-bit by 2n-bit parallel multiplier using n-bit by n-bit multipliers

as building blocks.
3. Modify the VHDL model sequential_CSA_multiplier.vhd so that the done flag

is raised when the final result is available (Comment 8.2).
4. Generate the VHDL model of a carry-save multiplier with post correction

(Sect. 8.4.3).
5. Synthesize a sequential multiplier based on Algorithm 8.3.
6. Synthesize a parallel constant multiplier (Sect. 8.5).
7. Generate models of constant multipliers for integers.
8. Synthesize a constant multiplier that computes z = c1�y1 ? c2�y2 ? … ?

cs�ys ? u.

Table 8.14 Combinational
Booth multipliers

n m LUTs Delay

8 8 188 13.49
8 16 356 25.12
16 8 332 13.68
16 16 628 25.31
32 16 1172 25.67
32 32 2276 49.09

Table 8.15 Sequential radix-
4 Booth multipliers

n m FFs LUTs Period Total time

8 9 25 58 2.90 26.1
8 17 34 68 2.90 49.3
16 9 33 125 3.12 28.1
16 17 42 135 3.12 53.0
32 17 58 231 3.48 59.2
32 33 75 248 3.48 114.8
64 33 107 440 4.22 139.1
64 65 140 473 4.22 274.0
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