
Chapter 7
Adders

Addition is a primitive operation for most arithmetic functions, so that FPGA
vendors have dedicated a particular attention to the design of optimized adders. As
a consequence, in many cases the synthesis tools are able to generate fast and cost-
effective adders from simple VHDL expressions. Only in the case of relatively
long operands can it be worthwhile to consider more complex structures such as
carry-skip, carry-select and logarithmic adders.

Another important topic is the design of multi-operand adders. In this case, the
key concept is that of carry-save adder or, more generally, of parallel counter.

Obviously, the general design methods presented in Chap. 3 (pipelining, digit-
serial processing, self-timing) can be applied in order to optimize the proposed
circuits. Numerous examples of practical FPGA implementations are reported in
Sect. 7.9.

7.1 Addition of Natural Numbers

Consider two radix-B numbers

x ¼ xn�1 � Bn�1 þ xn�2 � Bn�2 þ � � � þ x1 � Bþ x0

and

y ¼ yn�1 � Bn�1 þ yn�2 � Bn�2 þ � � � þ y1 � Bþ y0;

where all digits xi and yi belong to {0, 1,…, B-1}, and an input carry c0 belonging
to {0, 1}. An n-digit adder generates a radix-B number

z ¼ zn�1 � Bn�1 þ zn�2 � Bn�2 þ � � � þ z1 � Bþ z0;

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_7,
� Springer Science+Business Media Dordrecht 2012

153

http://dx.doi.org/10.1007/978-94-007-2987-2_3

and an output carry cn, such that

xþ yþ c0 ¼ cn � Bn þ z:

Observe that x ? y ? c0 B 2(Bn-1) ? 1 = 2Bn-1, so that cn belongs to {0, 1}.
The common way to implement an n-digit adder consists of connecting in series

n 1-digit adders (Fig. 7.1). For each of them

xi þ yi þ ci ¼ ci þ 1 � Bþ zi;

where ci and ci ? 1 belong to {0, 1}. In other words

zi ¼ xi þ yi þ cið Þmod B; ciþ 1 ¼ xi þ yi þ cið Þ=Bb c:

The critical path is

x0; y0; c0ð Þ ! c1 ! c2 ! � � � ! cn�1 ! zn�1; cnð Þ;

so that the total computation time is approximately equal to n�Tcarry where Tcarry is
the computation time of ci ? 1 in function of xi, yi and ci.

In order to reduce Tcarry, it is convenient to compute two binary functions
p (propagate) and g (generate) of xi and yi:

p xi; yið Þ ¼ 1 if xi þ yi ¼ B� 1; p xi; yið Þ ¼ 0 otherwise;

g xi; yið Þ ¼ 1 if xi þ yi�B; g xi; yið Þ ¼ 0 if xi þ yi�B� 2; otherwise; any value:
So, ci ? 1 can be expressed under the following way:

ciþ1 ¼ pðxi; yiÞ � ci þ pðxi; yiÞ � gðxi; yiÞ

The last relation expresses that if xi ? yi = B-1, then ci+1 is equal to ci; if
xi ? yi C B, then ci+1 = 1; if xi ? yi B B-2, then ci+1 = 0. The corresponding
implementation is shown in Fig. 7.2. It is made up of two 2-operand combinational
circuits that compute p(xi, yi) and g(xi, yi), and a multiplexer. In an n-digit adder
(Fig. 7.1), all functions p(xi, yi) and g(xi, yi) are computed in parallel, so that the
value of Tcarry is practically equal to the multiplexer delay Tmux.

xn-1 yn-1

cn-1

zn-1

1-digit
adder

cn

x1 y1

c1

z1

1-digit
adder

x0 y0

c0

z0

1-digit
adder

....
c2

Fig. 7.1 n-digit adder

154 7 Adders

7.2 Binary Adder

If B = 2, then p(xi, yi) = xi XOR yi, and g(xi, yi) can be chosen equal to xi (or yi).
A complete n-bit adder is shown in Fig. 7.3. Its computation time is equal to

Tadder nð Þ ¼ Txor þ n� 1ð Þ � Tmux þmax Tmux; Txorf g; ð7:1Þ

and the delay from the input carry to the output carry is equal to

Tcarry�to�carry nð Þ ¼ n � Tmux: ð7:2Þ

Comment 7.1
Most FPGA’s include the basic components to implement the structure of Fig. 7.3,
and the synthesis tools automatically generate this optimized adder from a simple
VHDL expression such as

7.3 Radix-2k Adder

If B = 2k, then p(xi, yi) = 1 if xi ? yi = 2k-1, that is, if the k less significant bits
of si = xi ? yi are equal to 1, and g(xi, yi) = 1 if xi ? yi C 2k, that is, if the most
significant bit of si is equal to 1. The iterative cell of a radix-2k adder is shown
in Fig. 7.4. The critical path of the part of the circuit that computes g(xi, yi) and
p(xi, yi) has been shaded. Its computation time is equal to Tadder(k) +Tand.
An m-digit radix-2k adder is equivalent to an n-bit adder with n = m � k. The total
computation time is

Tadder nð Þ ¼ Tadder kð Þ þ Tand þ m� 1ð Þ � Tmux þ Thalf�adder kð Þ; ð7:3Þ

and the delay from the input carry to the output carry to

Tcarry�to�carry nð Þ ¼ m � Tmux: ð7:4Þ

xi yi

p

xi yi

g

ci+1 ci
1

0

Fig. 7.2 Carry computation

7.2 Binary Adder 155

The following VHDL model describes the basic cell of Fig. 7.4.

An alternative way of computing p = s0�s1�… �sk-1 is

The corresponding circuit is a k-bit half adder that computes t = (s mod 2k) + 1.
The most significant bit tk of t is equal to 1 if, and only if, all the bits of (s mod 2k)
are equal to 1. As mentioned above (Comment 7.1) most FPGA’s include the basic
components to implement the structure of Fig. 7.3. In the particular case where
x = 0, y = s and c0 = 1, the circuit of Fig. 7.4 is obtained. The apparently
unnecessary XOR gates are included because there is generally no direct con-
nection between the adder inputs and the multiplexer control inputs. Actually, the

1

0

x0 y0

c0

z0

1

0

x1 y1

z1

1

0

xn-1yn-1

zn-1

c1cn-1zn

Fig. 7.3 n-bit adder

156 7 Adders

XOR gates are LUTs whose outputs are permanently connected to the carry-logic
multiplexers.

A complete generic model base_2 k_adder.vhd is available at the Authors’ web
page and examples of FPGA implementations are given in Sect. 7.9.

According to (7.3), the non-constant terms of Tadder(n) are:

• m�Tmux,
• k�Tmux included in Tadder(k) according to (7.1),
• k�Tmux included in Thalf-adder(k) according to (7.1).

Thus, the sum of the non-constant terms of Tadder(n) is equal to (2k ? m)�Tmux.
The value of 2k ? m, with m�k = n, is minimum when 2k % m, that is, when
k % (n/2)1/2. With this value of k, the sum of the non-constant terms of Tadder(n) is
equal to (8n)��Tmux. Thus, the computation time is O(n)� instead of O(n).

1-bit
adder

2-input
AND

xi(k-1)

....

yi(k-1)

si(k-1)

xi (1) yi(1) xi(0) yi(0)

si(1) si(0)

0
si(k)

2-input
AND

2-input
AND

1....
pi

ci+1

1
0 ci

1-bit
half adder 1-bit

half adder
1-bit

half adder

si(k-1) si(1) si(0)

zi(k-1) zi(1) zi(0)

......

1-bit
adder

1-bit
adder

Fig. 7.4 Radix 2k adder

1
0

0si(0)

1
1
0

0

1
0

0

....pi

si(1)si(k-1)Fig. 7.5 FPGA
implementation of a k-input
AND

7.3 Radix-2k Adder 157

Comments 7.2

1. The circuit of Fig. 7.4 is an example of carry-skip adder. For every group of
k bits, both the carry-propagate and carry-generate functions are computed.
If the carry-propagate function is equal to 1, the input carry is directly prop-
agated to the carry output of the k-bit group, thus skipping k bits.

2. A mixed-radix numeration system could be used. Assume that n = k1 ?

k2 ? … ? km; then a radix

ð2k1 ; 2k2 ; � � � ; 2kmÞ

representation can be considered. The corresponding adder consists of m
blocks, similar to that of Fig. 7.3, whose sizes are k1, k2,…, and km, respec-
tively. Nevertheless, within an FPGA it is generally better to use adders that fit
within a single column. Assuming that the chosen device has r carry-logic cells
per column, a good option could be a fixed-radix adder with k B r. In order to
minimize the computation time, k must be approximately equal to (n/2)1/2, so
that n must be smaller than 2r2, which is a very large number.

1-bit
adder

1-bit half
adder

xi(k-1)

....

yi(k-1)

zi0(k-1)

xi(1) yi(1) xi(0) yi(0)

zi0(1) zi0(0)

0

1-bit half
adder

1-bit half
adder 1....

1-bit
adder

1-bit
adder

1-bit half
adder

zi1(k-1) zi1(1) zi1(0)

ci0

ci1

ci+1

1
0 ci

......

zi0 zi1

zi

0 1

Fig. 7.6 Carry select adder

158 7 Adders

7.4 Carry Select Adders

Another way of reducing the computation time of a radix-2k adder consists in
computing, at each step, the next carry and the output digit for both values of the
input carry. The corresponding circuit is shown in Fig. 7.6.

The critical path of the part of the circuits that computes the two possible values
of the next carry and of the output digit has been shaded. Its computation time is
equal to Tadder(k) ? Tadder(2). The total computation time is (n = m�k)

Tadder nð Þ ¼ Tadder kð Þ þ Thalf adder 2ð Þ þ m� 1ð Þ � Tmux þ Tmux; ð7:5Þ

and the delay from the input carry to the output carry to

Tcarry�to�carry m � kð Þ ¼ m � Tmux: ð7:6Þ

The following VHDL model describes the basic cell of Fig. 7.6.

A complete generic model carry_select_adder.vhd is available at the Authors’ web
page and examples of FPGA implementations are given in Sect. 7.9.

The non-constant term of Tadder(n) is equal to (k ? m)�Tmux. The minimum
value is obtained when k % m, that is k % (n)�. With this value of k, the non-
constant term of Tadder(n) is equal to (4n)��Tmux. Thus, the computation time is
O(n)� instead of O(n).

xi(k-1··0) yi(k-1··0)

ci1

k-bit adder

zi1(k-1··0)

k-bit adder

0

1

ci0
zi0(k-1··0)

Fig. 7.7 Carry-select adder
(second version)

7.4 Carry Select Adders 159

Comment 7.3
As before (Comments 7.2) a mixed-radix numeration system could be
considered.

As a matter of fact, the FPGA implementation of a half-adder is generally not
more cost-effective than the implementation of a full adder. So, the circuit of
Fig. 7.6 could be slightly modified: instead of computing ci0 and ci1 with a full
adder and a half adder, two independent full adders of any type can be used
(Fig. 7.7).

The following VHDL model describes the modified cell:

The computation time of the modified circuit is

Tadder nð Þ ¼ Tadder kð Þ þ m� 1ð Þ � Tmux þ Tmux ¼ Tadder kð Þ þ m � Tmux: ð7:7Þ

A complete generic model carry_select_adder2.vhd is available at the Authors’
web page and examples of FPGA implementations are given in Sect. 7.9.

7.5 Logarithmic Adders

Several types of adders whose computation time are proportional to the logarithm
of n have been proposed. For example: carry-lookahead adders ([1], Chap. 6), Ling
adders [2], Brent-Kung prefixed adders [3], Ladner-Fischer prefixed adders [4].
Nevertheless, their FPGA implementations are generally not as fast as what could
be theoretically expected. There are two reasons for that. On the one hand, the
special purpose carry-logic included in most FPGAs is very fast, so that ripple-
carry adders are fast. Their computation time is approximately equal to a ? b�n,
where a and b are very small constants: a is the delay of a LUT and b is the delay
of a multiplexer belonging to the carry logic. On the other hand, the structure of
most logarithmic adders is not so regular as the structure of ripple-carry adders, so
that they include long connections which in turn introduce long additional delays.
The practical result is that, except for very great values of n, the adders described
in Sects. 7.2–7.4 are faster and more cost-effective.

Obviously, any optimization method that allows the dividing up of an n-bit
adder into smaller k-bit and m-bit adders, with k�m = n, in such a way that

160 7 Adders

Tadder nð Þ ffi Tadder kð Þ þ Tadder mð Þ;

can be recursively used in order to generate a logarithmic adder. As an example,
consider again a carry-select adder. According to (7.7)

Tadder nð Þ ¼ Tadder kð Þ þ m:Tmux:

Assume that k = r�s. Then each k-bit adder (Fig. 7.7) can in turn be decomposed
in such a way that

Tadder kð Þ ¼ Tadder rð Þ þ s:Tmux;

so that the computation time of the corresponding 2-level carry-select adder is

Tadder nð Þ ¼ Tadder rð Þ þ ðsþ mÞ � Tmux;

where n = r�s�m. Finally, if n = n1�n2�… �nt, then a (t-1)-level carry-select adder,
whose computation time is equal to

Tadder n1 � n2 � . . . � ntð Þ ¼ Tadder n1ð Þ
þ n2 þ . . .þ ntÞ � Tmux ¼ Oðn1 þ n2 þ . . .þ ntð Þ;

can be generated.

Example 7.1
The following VHDL model describes an n-bit 2-level carry-select adder with
n = n1�n2�n3. First, define the basic cell carry_select_step3, in which two 1-level
carry-select adders, with k = n1 and m = n2, are used:

The complete circuit is made up of n3 basic cells:

7.5 Logarithmic Adders 161

A complete generic model carry_select_adder3.vhd is available at the Authors’
web page and examples of FPGA implementations are given in Sect. 7.9.

7.6 Long-Operand Adder

In the case of long-operand additions, the n-digit operands can be broken down
into s-digit groups and the addition computed according to the following algorithm
in which natural_addition is a procedure that computes

zi ¼ xi þ yi þ cið Þmod Bs and ciþ1 ¼ xi þ yi þ cið Þ =Bsb c;

where xi, yi and zi are s-digit numbers, and ci and ci+1 are bits.

xn-1..n-s x2s-1..s xs-1..0
.....

k-1 1 0

yn-1..n-s y2s-1..s ys-1..0
.....

k-1 1 0 sel

s-digit addercout cin

DFF
init.:cin

enk-1 en0en1.....

zn-1..n-s z2s-1..s zs-1..0zn

Fig. 7.8 Long-operand adder

162 7 Adders

Algorithm 7.1: Long-operand addition

The complete circuit (Fig. 7.8, with k = n/s) is made up of an s digit adder,
connection resources (k-to-1 multiplexers) giving access to the s-digit groups,
a D-flip-flop which stores the carries (ci in Algorithm 7.1), an output register
storing z, and a control unit whose main component is a k-state counter.

The following VHDL model describes the circuit of Fig. 7.8 (B = 2).

A complete generic model long_operand_adder.vhd is available at the Authors’
web page.

7.6 Long-Operand Adder 163

7.7 Multioperand Adders

Consider m natural numbers x0, x1,…, xm-1. A multioperand adder computes

z ¼ x0 þ x1 þ � � � þ xm�1: ð7:8Þ

7.7.1 Sequential Multioperand Adders

In order to compute (7.8), the following (obvious) algorithm can be used.

Algorithm 7.2: Basic multioperand addition

The corresponding sequential circuit (Fig. 7.9) is made up of an n-digit adder, an
n-digit register, an m-to-1 n-digit multiplexer, and a control unit whose main
component is an m-state counter.

The following VHDL model describes the circuit of Fig. 7.9 (B = 2). The n�m-
bit vector x is the concatenation of x0, x1,…, xm-1.

x0

.....

0

x1

1

x2

2

xm-1

m -1
sel

n-digit adder

n-digit register
initially: 0

en_acc
load

z

Fig. 7.9 Multioperand
addition

164 7 Adders

A complete generic model multioperand_adder.vhd is available at the Authors’
web page.

The computation time of the preceding m-operand n-digit sequential adder is
approximately equal to

Tsequential m; nð Þ ffi m � Tadder nð Þ: ð7:9Þ

In order to reduce the computation time, a carry-save adder can be used. The basic
component is shown in Fig. 7.10: it consists of n 1-digit adders working in parallel.
Given two n-digit numbers x and y, and an n-bit number c, it expresses the sum
(x ? y ? c) mod Bn under the form z ? d, where z is an n-digit number and d an
n-bit number. In other words, the carries are stored within the output binary vector
d instead of being propagated (stored-carry encoding). As all cells work in parallel
the computation time is independent of n.Let CSA be the function implemented by
the circuit of Fig. 7.10, that is

CSA x; y; cð Þ ¼ z; dð Þ;

where

zi ¼ xi þ yi þ cið Þmod B; di ¼ xi þ yi þ cið Þ =Bb c; 8i 2 0; 1; . . .; n� 1f g:

Assume that at every step of Algorithm 7.2 the value of accumulator is represented
under the form u ? v, where u is an n-digit number and v an n-bit number. Then, at
step j, the following operation must be executed:

u; vð Þ : ¼ CSA u; xj; v
� �

:

The following formal algorithm computes z.

xn-1 yn-1 cn-1

1-digit
adder

zn-1

x1 y-1 c1

1-digit
adder

z1

x0 y0 c0

1-digit
adder

z0dn-1 d1 d0

0....

Fig. 7.10 Carry-save adder

7.7 Multioperand Adders 165

Algorithm 7.3: Multioperand addition with stored-carry encoding

The sequential circuit corresponding to Algorithm 7.3 (Fig. 7.11) is made up of an
n-digit carry-save adder (Fig. 7.10), an n-digit register, an n-bit register, an m-to-1
n-digit multiplexer, a conventional n-digit adder implementing the last step of
Algorithm 7.3, and a control unit whose main component is an m-state counter.The
following VHDL model describes the circuit of Fig. 7.10 (B = 2). As before, x is
the concatenation of x0, x1,…, xm-1.

x0

.....

0

x1

1

x2

2

xm-1

m-1 sel

n-digit carry-save adder

n-digit register
initially: 0

en_acc
load

u

n-bit register
initially: 0

v

n-digit adder

z

Fig. 7.11 Carry save adder

166 7 Adders

A complete generic model CSA_multioperand_adder.vhd is available at the
Authors’ web page.

Taking into account that the computation time of the circuit of Fig. 7.10 is
independent of the number n of digits, the computation time of the circuit of
Fig. 7.10 is approximately equal to

Tsequential csa m; nð Þ ffi m � Tadder 1ð Þ þ Tadder nð Þ: ð7:10Þ

....

...

x0,n-1 x1,n-1 x0,n-2 x1,n-2 x0,n-3 x1,n-3 x0,0 x1,0

x2,n-1 x2,n-2 x2,n-3 x2,0

x3,n-1 x3,n-2 x3,n-3 x3,0

xm-1,n-1 xm-1,n-2 xm-1,n-3 xm-1,0

zn-1 zn-2 zn-3 z0

Fig. 7.12 Multioperand
addition array

7.7 Multioperand Adders 167

7.7.2 Combinational Multioperand Adders

The combinational circuit that corresponds to Algorithm 7.2 is an iterative circuit
made up of m-1 2-operand n-digit adders. If every adder is a simple ripple-carry
adder, then the complete circuit is a 2-dimensional array made up of (m-1)�n one-
digit adders, as shown in Fig. 7.12 in which one of the critical paths has been
shaded. The corresponding computation time is equal to

Tcombinational m; nð Þ ¼ mþ n� 2ð Þ � Tadder 1ð Þ: ð7:11Þ

The following VHDL model describes the circuit of Fig. 7.12 (B = 2). As before,
x is the concatenation of x0, x1,…, xm-1.

x4,2 x5,2 x4,1 x5,1 x4,0 x5,0 x6,2 x7,2 x6,1 x7,1 x6,0 x7,0

z2 z1 z0

x0,2 x1,2 x0,1 x1,1 x0,0 x1,0 x2,2 x3,2 x2,1 x3,1 x2,0 x3,0

Fig. 7.13 Multioperand addition tree

168 7 Adders

A complete generic model comb_multioperand_adder.vhd is available at the
Authors’ web page.

A most time-effective solution is a binary tree of 2-operand n-digit adders
instead of an iterative circuit. An example, with n = 3 and m = 8, is shown in
Fig. 7.13:

x0 ¼ x0;2x0;1x0;0; x1 ¼ x1;2x1;1x1;0; . . .; x7 ¼ x7;2x7;1x7;0:

...

...

...

...

0

0

0

0

x0,n-1

un-1 vn-1

x0,1

u1 v1

x0,0

u0 v0

x3,n-1 x3,1 x3,0

x4,n-1 x4,1 x4,0

xm-1,n-1 xm-1,1 xm-1,0

x1,n-1 x1,1 x1,0x2,n-1 x2,1 x2,0

Fig. 7.14 Combinational carry-save adder

7.7 Multioperand Adders 169

The depth of the tree is equal to dlog2me and its computation time (one of the
critical paths has been shaded) is approximately equal to

Tadder�tree m; nð Þ ffi n þ log2 m � 1ð Þ � Tadder 1ð Þ: ð7:12Þ

The following VHDL model describes the circuit of Fig. 7.13 (B = 2).

A complete generic model eight_operand_adder.vhd is available at the Authors’
web page.

Another way to reduce the computation time, with an iterative architecture
similar to that of Fig. 7.12, is to use the carry-save principle. An m-operand
carry-save array (Algorithm 7.3) is shown in Fig. 7.14 (if B [2, x2 must be an
n-bit number or an initial file that computes x0 ? x1 ? 0 must be added). The
result is the sum of two n-digit numbers u and v. In order to get the actual
result, an additional 2-operand n-digit adder is necessary for computing
u ? v (last instruction of Algorithm 7.3). The corresponding computation time
is equal to

Tcombinational csa m; nð Þ ¼ m� 2ð Þ � Tadder 1ð Þ þ Tadder nð Þ: ð7:13Þ

The following VHDL model describes a 2-operand carry-save adder, also called 3-
to-2 counter (Sect. 7.7.3). It corresponds to a file of the circuit of Fig. 7.14.

The complete circuit is made up of m-2 3-to-2 counters:

170 7 Adders

A complete generic model comb_CSA_mutioperand_adder.vhd is available at the
Authors’ web page and examples of FPGA implementations are given in Sect. 7.9.

Comment 7.4
In all of the previously described multioperand adders, the operands, as well as the
result, were assumed to be n-digit numbers. If all of the operands belong to the
same range, and the result is known to be an n-digit number, whatever the value of
the operands, then the operands can be represented with (n–k) digits where
k % logBm, and the previously described circuits can be pruned.

7.7.3 Parallel Counters

Given two n-digit numbers x and y, and an n-bit number c, the carry-save adder of
Fig. 7.10 allows the expression of the sum (x ? y ? c) mod Bn under the form
z ? d, where z is an n-digit numbers and d an n-bit number. In other words, it
reduces the sum of three digits x, y and c to the sum of two digits z and d. For that
reason, it is also called a 3-to-2 counter.

This 3-to-2 counter can be used as a computation resource for reducing the sum
of m digits x0, x1,…, xm-1 to the sum of two digits u and v as shown in Fig. 7.14.
Thus, the circuit of Fig. 7.14 could be considered as an m-to-2 counter.

This type of construction can be generalized. As an example, consider an adder
that computes the sum of 6 bits x0, x1,…, x5. The result, smaller than or equal to 6,
is a 3-bit number. Thus, this 6-operand 1-bit adder computes

x0 þ x1 þ � � � þ x5 ¼ 4z2 þ 2z1 þ z0 ð7:14Þ

and can be implemented by three 6-input Look Up Tables (LUT6) working in
parallel:

7.7 Multioperand Adders 171

6-operand
1-bit adder

6-operand
1-bit adder

6-operand
1-bit adder

...

u1

v1

w1

x0,n-1x1,n-1··· x5,n-1

un-1

vn-1

wn-1

u0

v0

w0

0

0

0

···

x0,1x1,1··· x5,1 x0,0x1,0··· x5,0Fig. 7.15 6-to-3 counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

6-to-3
counter

x0x1··· x5
x6x7··· x11

x12x13··· x17
x18x19··· x23

Fig. 7.16 24-to-3 counter

172 7 Adders

Then, by connecting in parallel n circuits of this type, a binary 6-to-3 counter is
obtained (Fig. 7.15):

The counter of Fig. 7.15 can in turn be used as a building block for generating

24-to-3
counter

x0x1··· x23

3-to-2
counter

2-operand adder

z

Fig. 7.17 24-operand adder

7.7 Multioperand Adders 173

more complex counters. As an example, the circuit of Fig. 7.16 is a 24-to-3
counter.

The computation time of the circuit of Fig. 7.16 is equal to 3TLUT6. More
generally, a tree made up of 2k-1 6-to-3 counters generates a 6�2k-1-to-3 counter,
with a computation time equal to k�TLUT6. In the case of Fig. 7.16, k = 3 and
6�2k-1 = 24.

Finally, with an additional 3-to-2 counter and an n-bit adder a 24-operand adder
is obtained (Fig. 7.17). Complete VHDL models six_to_three_counter.vhd and
twenty_four_operand_adder.vhd are available at the Authors’ web page and
examples of FPGA implementations are given in Sect. 7.9.

To summarize, an m-operand adder, with m = 6�2k-1, can be synthesized with
2k-1 6-to-3 counters plus a 3-to-2 counter and an n-bit adder. Its computation time is

T m; nð Þ ffi k � TLUT6 þ TFA þ Tadder nð Þ;

where k = log2m ? 1-log26 \ log2m.

Comment 7.5
More complex types of counters have been proposed (see, for example, Chap. 8 of
[1], Chap. 3 of [5], Chap. 11 of [6]). Nevertheless, they do not necessarily give
high performance FPGA implementations. As a matter of fact, in many cases the
best FPGA implementations are based on relatively simple algorithms, to which
correspond regular circuits that allow taking advantage of the special purpose carry

cin

xn yn

zn

n-digit adder

xn-1··0 yn-1··0

zn-1··0

Fig. 7.18 Radix-B B’s
complement adder

xn yn

zn

(B-1)’s
compl.

n-digit
adder

1

xn-1··0 yn-1··0

zn-1··0

y ’n-1··0

Fig. 7.19 Radix-B B’s
complement subractor

174 7 Adders

logic circuitry, and permit the use of efficient design techniques such as pipelining
and digit-serial processing.

7.8 Subtractors and Adder–Subtractors

Given two radix-B naturals x and y, the difference z = x-y could be negative. So,
the subtraction operation must be considered over the set of integers. A convenient
way to represent integers is B’s complement: the vector

xnxn�1xn�2. . .x1x0; with xn 2 0; 1f g and xi 2 0; 1; . . .;B� 1f g8i\n;

represents

x ¼ �xn � Bn þ xn�1 � Bn�1 þ xn�2 � Bn�2 þ � � � þ x1 � Bþ x0:

Thus, xn is a sign bit: if xn = 0, x is a non-negative integer (a natural), and if
xn = 1, x is a negative integer. The range of represented integers is

�Bn� x\Bn:

Let xn xn-1 xn-2… x1 x0 and yn yn-1 yn-2… y1 y0 be the B’s complement repre-
sentations of x and y. If the sum z = x ? y ? cin, being cin an initial carry, belongs
to the interval -Bn B z \ Bn, then z is represented by the vector zn zn-1 zn-2… z1 z0

generated by the mixed-radix adder of Fig. 7.18 (all radix-B digits but the most
significant binary digits xn, yn and zn).

If the difference z = x-y belongs to the interval -Bn B z \ Bn, then z is
represented by the vector zn zn-1 zn-2… z1 z0, generated by the circuit of Fig. 7.19 in
which yi’ is the (B-1)’s complement of yi, Vi \ n.

The sum z = x ? y or the difference z = x-y could lie outside the interval -

Bn B z \ Bn (an overflow situation). In order to avoid overflows, both x and
y should be represented with an additional digit. In the case of B’s complement
representations, digit extension is performed as follows:

xnxn�1xn�2. . .x1x0 ! xnwnxn�1xn�2. . .x1x0; with wn ¼ xn � B� 1ð Þ:

For example, if B = 10 and x = 249, then x is represented by

(n+2)-bit
adder

yn··0

yn
xn··0

xn

zn+1··0

(n+2)-bit
adder

yn··0

y ’n
xn··0

xn

1

zn+1··0

y ’n··0

cin

Fig. 7.20 20s complement
adder and subractor

7.7 Multioperand Adders 175

0249; 00249; 000249; etc:

If B = 10 and x = -249, then x is represented by

1751; 19751; 199751; etc:

Observe that if B = 2, then the bit extension operation amounts to repeating the
most significant bit. In Fig. 7.20 a 20s complement adder and a 20s complement
subtractor are shown. In both cases the comparison of bits zn+1 and zn allows the
detection of overflows: if zn+1 = zn then the result does not belong to the interval
- Bn B z \ Bn.

The following VHDL models describe the circuits of Fig. 7.20.

Generic models two_s_comp_adder.vhd and two_s_comp_subtractor.vhd are
available at the Authors’ web page.

Table 7.1 Binary adders n LUTs Delay

32 32 2.25
64 64 2.98
128 128 4.44
256 256 7.35
512 512 13.1
1024 1024 24.82

Table 7.2 Radix-2k n-bit
adders

n k LUTs Delay

32 4 88 2.92
64 4 176 3.11
64 5 143 3.05
64 8 152 3.64
64 16 140 4.95
128 8 304 3.85
128 12 286 4.73
128 16 280 5.04
256 16 560 5.22
256 12 572 4.98
256 13 551 4.99
512 16 1120 5.59
1024 16 2240 6.31
1024 22 2303 6.15
1024 23 2295 6.13
1024 32 2304 6.41

176 7 Adders

7.9 FPGA Implementations

Several adders have been implemented within a Virtex 5-2 device. All along this
section, the times are expressed in ns and the costs in numbers of Look Up Tables
(LUTs) and flip-flops (FF’s). All VHDL models as well as several test benches are
available at the Authors’ web page.

Table 7.3 n-bit carry-select
adders

n k LUTs Delay

32 6 84 4.83
32 8 72 3.99
32 4 60 3.64
64 8 144 6.06
64 16 199 4.17
64 4 120 4.03
128 12 417 5.37
128 16 399 4.87
256 16 799 5.69
256 32 783 5.26
256 13 819 5.64
512 16 1599 6.10
512 32 1567 6.09
512 23 1561 6.16
1024 16 3199 6.69
1024 64 3103 6.74
1024 32 3135 6.52

Table 7.4 n-bit carry-select
adders (version 2)

n k Delay

32 8 3.99
256 16 5.69
512 32 6.09
1024 32 6.52

Table 7.5 n-bit adders with
n = n1�n2�n3

n n1 n2 n3 LUTs Delay

256 16 4 4 1452 6.32
256 4 16 4 684 6.81
512 8 8 8 2120 10.20
512 4 16 8 1364 7.40
512 16 4 8 2904 7.33
1024 16 4 16 5808 10.33
1024 16 16 4 6242 7.79

7.9 FPGA Implementations 177

7.9.1 Binary Adder

The circuit is shown in Fig. 7.3. The synthesis results for several numbers n of bits
are given in Table 7.1.

7.9.2 Radix 2k Adders

The circuit is shown in Fig. 7.4. The synthesis results for several numbers n = 2k

of bits are given in the Table 7.2. In these implementations, the carry propa-
gation multiplexer muxcy has been explicitly instantiated within the VHDL
description.

Table 7.6 Long-operand adders

n s k FF LUTs Period Total time

128 8 16 135 107 3.21 51.36
128 16 8 134 97 3.14 25.12
128 32 4 133 132 3.18 12.72
128 64 2 132 137 3.45 6.90
256 16 16 263 187 3.40 54.40
256 32 8 262 177 3.51 28.08
256 64 4 261 234 3.87 15.48
512 16 32 520 381 3.92 125.44
512 32 16 519 347 3.78 60.48
512 64 8 518 337 4.26 34.08
1024 16 64 1033 757 4.20 268.80
1024 32 32 1034 717 4.32 138.24
1024 64 16 1031 667 4.55 72.80
2048 32 64 2063 1427 4.45 284.80
2048 64 32 2056 1389 5.04 161.28

Table 7.7 Sequential
multioperand adders

n m FF LUTs Period Total time

8 4 12 23 2.25 9.00
8 8 13 32 2.37 18.96
16 16 22 90 2.71 43.36
16 8 21 56 2.57 20.56
32 32 39 363 3.72 119.04
32 16 38 170 3.09 49.44
32 64 40 684 3.89 248.96
64 64 72 1356 4.62 295.68
64 32 71 715 4.48 143.36
64 16 70 330 4.41 70.56

178 7 Adders

7.9.3 Carry Select Adder

The circuit is shown in Fig. 7.6. The synthesis results for several numbers n = m�k
of bits are given in Table 7.3.

The alternative circuit of Fig. 7.7 has also been implemented for several values
of n. The results are given in Table 7.4.

7.9.4 Logarithmic Adders

The synthesis results for several numbers n = n1�n2�n3 of bits are given in Table 7.5.

7.9.5 Long Operand Adder

The circuit is shown in Fig. 7.8. The synthesis results for several numbers n = k�s
of bits are given in Table 7.6. Both the clock period Tclk and the total delay (k�Tclk)
are given.

Table 7.8 Sequential carry-
save adders

n m FF’s LUTs Period Total time

8 4 19 37 1.81 7.24
8 8 20 46 1.81 14.48
16 16 37 120 1.87 29.92
16 8 36 86 1.84 14.72
32 32 70 425 2.57 82.24
32 16 69 232 1.88 30.08
32 64 71 746 2.68 171.52
64 64 135 1482 2.69 172.16
64 32 134 841 2.61 83.52
64 16 133 456 1.9 30.40

Table 7.9 Multioperand
addition array

n m LUTs Delay

8 4 21 2.82
8 8 47 5.82
16 16 219 11.98
16 8 103 6.00
32 32 947 24.32
32 8 215 6.36
32 16 459 12.35
32 64 1923 47.11
64 64 3939 49.98
64 32 1939 25.04
64 16 939 13.07

7.9 FPGA Implementations 179

7.9.6 Sequential Multioperand Adders

The circuit is shown in Fig. 7.9. The synthesis results for several numbers n of bits
and m of operands are given in Table 7.7. Both the clock period Tclk and the total
delay (m�Tclk) are given.

The carry-save adder of Fig. 7.10 has also been implemented. The results are
given in Table 7.8.

7.9.7 Combinational Multioperand Adders

The circuit of Fig. 7.12 has been implemented. The synthesis results for several
numbers n of bits and m of operands are given in Table 7.9.

The carry-save adder of Fig. 7.14 has also been implemented. The results are
given in Table 7.10.

Table 7.10 Combinational
carry-save adder

n m LUTs Delay

8 4 22 2.93
8 8 68 5.49
16 16 314 10.26
16 8 135 5.59
32 32 1388 20.03
32 8 279 5.95
32 16 649 10.65
32 64 2868 37.75
64 64 5844 39.09
64 32 2828 20.31
64 16 1321 11.35

Table 7.11 8-operand
addition trees

n LUTs Delay

8 50 3.78
16 106 3.97
32 218 4.33
64 442 5.06

Table 7.12 24-operand
adders based on 6-to-3
counters

n LUTs Delay

8 157 4.59
16 341 4.77
24 525 4.95
32 709 5.13
64 1445 5.86

180 7 Adders

As an example of multioperand adddition trees (Fig. 7.13), several 8-bit adders
have been implemented, with the results given in Table 7.11.

Examples of implementation results for 24-operand adders based on 6-to-3
counters (Fig. 7.17) are given in Table 7.12.

7.9.8 Comparison

A comparison between four types of 2-operand adders, namely binary (normal),
radix-2k, carry-select and logarithmic adders, has been done: Fig. 7.21 gives the
corresponding adder delays (ns) in function of the number n of bits.

7.10 Exercises

1. Generate a generic model of a 20s complement adder–subtractor with overflow
detection.

2. An integer x can be represented under the form (–1)s � m where s is the sign of
x and m its magnitude (absolute value). Design an n-bit sign-magnitude adder–
subtractor.

3. Design several n-bit counters, for example

7-to-3,
31-to-3,
5-to-2,
26-to-2.

4. Design a self-timed 64-bit adder with end of computation detection (done
signal).

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

normal

Base_2k

Carry_sel

log_add

Fig. 7.21 Delay in function of the number of bits for several 2-operand adders

7.9 FPGA Implementations 181

5. Generate several generic models of an incrementer/decrementer, that is, a
circuit that computes x ± 1 mod m under the control of an upb/down binary
signal.

References

1. Parhami B (2000) Computer arithmetic: algorithms and hardware design. Oxford University
Press, New York

2. Ling H (1981) High-speed binary adder. IBM J Res Dev 25(3):156–166
3. Brent R, Kung HT (1982) A regular layout for parallel adders. IEEE Trans Comput C-31:260–

264
4. Ladner RE, Fischer MJ (1980) Parallel prefix computation. J ACM 27:831–838
5. Ercegovac MD, Lang T (2004) Digital arithmetic. Morgan Kaufmann, San Francisco
6. Deschamps JP, Bioul G, Sutter G (2006) Synthesis of arithmetic circuits. Wiley, New York

182 7 Adders

	7 Adders
	7.1…Addition of Natural NumbersAdditionnatural numbers
	7.2…AddersbinaryBinary Adder
	7.3…Radix-2k Adder
	7.4…Carry Select Adders
	7.5…Logarithmic Adders
	7.6…Long-Operand Adder
	7.7…Multioperand Adders
	7.7.1 Sequential Multioperand Adders
	7.7.2 Combinational Multioperand AddersMultioperand adderscombinational
	7.7.3 Parallel Counters

	7.8…Subtractors and Adder--Subtractors
	7.9…FPGA ImplementationsAddersFPGA implementation
	7.9.1 Binary AdderAddersbinary
	7.9.2 Radix 2k AddersAddersradix-2k
	7.9.3 Carry Select AdderAdderscarry-select
	7.9.4 Logarithmic AddersAdderslogarithmic
	7.9.5 Long Operand AdderAdderslong operands
	7.9.6 Sequential Multioperand Adders
	7.9.7 Combinational Multioperand Adders
	7.9.8 Comparison

	7.10…Exercises
	References

