
Chapter 6
EDA Tools

The Electronic Design Automation (EDA), is a group of software tools for
designing electronic systems such as integrated circuit (ASICs), printed circuit
boards (PCBs), or reprogrammable hardware as FPGA, etc. The general ideas of
EDA tools and the particular for FPGA designs will be discussed in this section.
Typically these tools work in a design flow that hardware and system designers use
to design and analyze entire system behavior. This chapter explains the main
concepts related to the EDA tools and presents an example using Xilinx ISE and
Altera Quartus tools.

6.1 Design Flow in FPGA EDA Tools

The design flows are the combination of EDA tools to carry out a circuit or system
design. Current digital flows are very modular and are the consequence of the
evolution of the standalone tools for synthesis, placement, and routing.

Naturally, the tools are evolving, driven by Moore’s law from standalone tools
to integrated construction and analysis flows for design closure.

The FPGA design flow is a kind of simplification of the ASIC design flow and
we will concentrate on it. The FPGA vendors groups the EDA tools in ‘‘design
suites’’ such as Libero from Actel [5, 7] or Quartus II from Altera [2]. Figure 6.1
shows a typical design flow; in what follows we will describe the different main
stages.

The design flow can be used as command-line executables or scripting, or by
using the GUI (graphical user interface). Figures 6.5 and 6.14 shows the GUI
aspects for Xilinx ISE and Altera Quartus II, respectively. The graphical interface
is the preferred design entry for newcomer designers and for small projects.

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_6,
� Springer Science+Business Media Dordrecht 2012

127

6.1.1 Design Entry

The design entry is the way you describe the hardware that you want to implement
into an FPGA (or in an electronic device) based on a system specification. There
are different methods:

• Using a Hardware Description Language (HDL).
• Using schematics.
• Using Intellectual Property (IP) blocks.
• Using Electronic System Level (ESL) languages.

Today’s EDA tools allow the mixing of different design entries in a hierarchical
structure. It is common to see a schematic top level, with several predesigned IPs,
some specific components developed in VHDL and or Verilog and subsystems
designed in an ESL language.

6.1.1.1 HDL Design Entry

There are now two industry standard hardware description languages (HDL),
Verilog and VHDL. Some vendors used to have their own proprietary HDL lan-
guages but these are displaced by the use of the standard languages.

Design Verification
Design Entry

RTL (VHDL, Verilog, Schematic)

Synthesis

Netlist (edif, propietary)

Implementation

Mapping
Place & Route

Netlist (propietary)

system specification

Generate
program. File

Bitstream

Behavioural
Simulation

Functional
Simulation

Back
annotation

Timing
Simulation

In-circuit
Testing

Post Implem.
Simulation

Synthesis constraints

Implementation
constraints
(pads and Timming)

Program.
Tool

Fig. 6.1 A typical design flow for FPGA design

128 6 EDA Tools

HDL is the de facto design entry in most digital designs. In ASIC designs
Verilog is much more used but, FPGA designer’s use either VHDL and/or Verilog.
All FPGA tools support both languages and even projects mixing the use of booth
languages.

The Verilog hardware description language has been used far longer than
VHDL and has been used extensively since it was launched by Gateway Design
Automation in 1983. Cadence bought Gateway and opened Verilog to the public
domain in 1990. It became IEEE standard 1364 in 1995. It was updated in 2001
(IEEE 1364-2001) and had a minor update in 2005 (IEEE 1364-2001).

On the other hand, VHDL was originally developed at the request of the U.S
Department of Defense in order to document the behavior of existing and future
ASICs. VHDL stand for VHSIC-HDL (Very high speed integrated circuit Hard-
ware Description Language) became IEEE standard 1076 in 1987. It was updated
in 1993 (IEEE standard 1076-1993), and the last update in 2008 (IEEE 1076-2008,
published in January 2009).

Xilinx ISE and Altera Quartus have text editors with syntax highlighting and
language templates for VHDL and Verilog to help in the edition.

6.1.1.2 Schematic Design Entry

With schematic capture or schematic entry you draw on your computer using a
schematic capture tool. The main advantage in the use of schematics is that it
documents the design in an easily readable format. However big designs rapidly
become difficult to maintain and the file formats are incompatible between ven-
dors. A HDL code is easier to be parameterized and regular structures are easily
replicated. ASIC and FPGA users rarely use schematics.

6.1.1.3 Intellectual Property (IP) Blocks

In order to make simpler the design of complex systems, there exist libraries of
predefined complex functions and circuits that have been tested and optimized to
speed up the design process. These predefined circuits are commonly called IP
cores (or IP blocks) and are available from FPGA vendors and third-party IP
suppliers. The IP Cores can be distributed as a compiled netlist or as an HDL
source code. Moreover, the FPGA vendors have tools to generate most typical IP
cores (Xilinx CORE generator in Xilinx, Altera megafunctions). The simplest IP
cores are typically free, but the complex one rarely is without charge, and typically
released under proprietary licenses.

In the FPGA arena a related concept is the idea of ‘‘hard IP core’’ and ‘‘soft IP
core’’. In today’s FPGA several heterogeneous block are built in the FGPA such as
multipliers, blocks of memories, clock managers, transceivers, memory control-
lers, etc. These components are called ‘‘hard IP cores’’ to differentiate from the
ones implemented using general purpose logic (soft IP blocks).

6.1 Design Flow in FPGA EDA Tools 129

6.1.1.4 Electronic System Level (ESL) Languages

As FPGA applications have grown in complexity and FPGA chips have become
more complex, there is an increasing need for more efficient less time-consuming
development methodologies. In order to address this requirement, many chip and
tool providers have developed ‘‘high-level’’ development tools. In this environ-
ment, ‘‘high-level’’ means that the input to the tool is a target independent
language as C, C++or Java instead an HDL language.

To refer to these tools and methodologies, several names are used such as High-
level synthesis (HLS), High Level Languages (HLL), C synthesis, C to hardware,
electronic system level (ESL) synthesis, algorithmic synthesis, or behavioral
synthesis and others.

The high-level synthesis seems to be the future design entry for numerous fields
of applications. There are several successful products from the big EDA vendors
and from small companies fighting in this field. Most of those products generate, as
a result, an HDL (Verilog or VHDL) description of the circuit in order to use it in a
traditional design flow.

Related to this ‘‘high-level’’ concept and in the DSP (Digital Signal Processing)
field, the design productivity of DSP system is increased using MatLab/Simulink
design entry. The big EDA companies have tools for DSP design based on
MatLab/Simulink, even booth leaders in the FPGA field: Altera (DSP builder) and
Xilinx (System Generator).

6.1.2 Synthesis

The synthesis (or logic synthesis) is the process by which an abstract form (an
HDL description) of the circuit behavior is transformed into a design implemen-
tation in terms of logic gates and interconnections. The output is typically a netlist
and various reports. In this context, a ‘‘netlist’’ describes the connectivity of the
electronic design, using instances, nets and, perhaps, some attributes.

There are several proprietary netlist formats but, most synthesizers can generate
EDIF (Electronic Design Interchange Format) that is a vendor-neutral format to
store electronic netlist.

FPGA vendors have their own synthesizers (Xilinx XST, Altera Quartus II Integrated
Synthesis) but, main EDA vendors have syntheses for FPGA (Precision by Mentor
Graphics and Synplify by Synplicity) that can be integrated in the FPGA EDA tools.

6.1.2.1 Synthesis Optimizations

The synthesis process performs several target independent optimizations (logic
simplification, state assignment, etc.) but, also the synthesis tools take into account
the target technologies and make target dependent optimizations.

130 6 EDA Tools

The optimizations available depend on the synthesizer but, most typical opti-
mizations are present in all of them. Typical optimizations are for the area
reduction, the speed optimization, the low power consumption, and the target
frequency of the whole design.

Nevertheless, much more details can be controlled, such as:

• Hierarchy Preservation: control if the synthesizer flattens the design to get better
results by optimizing entities and module boundaries or maintaining the hier-
archy during Synthesis.

• Add I/O buffers: enables or disables the automatic input/output buffer insertion:
this option is useful to synthesize a part of a design to be instantiated, later on.

• FSM Encoding: selects the Finite State Machine (FSM) coding technique.
Automatic selection, one-hot, gray, Johnson, user defined, etc.

• Use of embedded components: use embedded memory or multipliers blocks or
use general purpose LUTs to implement these functionalities.

• Maximum fan-out: limits the fan-out (maximum number of connections) of nets
or signals.

• Register duplication: allows or limit the register duplication to reduce fan-out
and to improve timing.

• Retiming or Register Balancing: automatically moves registers across combina-
torial gates or LUTs to improve timing while maintaining the original behavior.

The complete description of synthesis optimization can be found at the
synthesis tool documentation (for example for FPGA [3, 4, 6, 8]).

The synthesis behavior and optimization can be controlled using synthesis
constraints. The constraints could be introduced using the integrated environment,
a constraint file or embedding in the HDL code.

6.1.2.2 Synthesis Constraints

The synthesis optimizations are controlled globally (for the complete design) or
locally for each part of the HDL code. The global optimization can be introduced
in the integrated environment (then translated as switches in command line or to an
additional file), or in a specific constrain file. The local optimization can be
specified in a constraint file or embedded in the HDL code.

The synthesis constraint file is, typically, a plain text file having different
syntax, depending on the tool. Xilinx use the xcf (Xilinx Constraint File) [8],
Altera for timing use SDC files (TimeQuest Timing Constrains) and QSF (Quartus
Settings File) for I/O and others [2, 3], and simplify uses SDC (Synopsys Design
Compiler) constraint files [6].

The main advantage of using constraint files (generated by a graphical interface
or entered in a text editor) is that it makes your source code more portable and
separates the functionality described in the HDL of the synthesis detail.

The HDLs (VHDL and Verilog) allow you to embed constraints in the design
code. This method is recommended for constraints that define the desired result of

6.1 Design Flow in FPGA EDA Tools 131

the HDL (encoding of FSM, type of memories or multipliers) or specific opti-
mization (duplicate registers, registers balancing, maximum fan-out, etc.). In
VHDL this is done using ‘‘attributes’’ defined in the declaration. The following
lines of code define the maximum fan-out of signal ‘‘a_signal’’ to 20 connections
in XST [8].

6.1.2.3 Synthesis Reports

The synthesis reports show the results of the netlist generation synthesis process.
The synthesizer gives, typically, a text report, where you can see a summary of
your synthesis options, and a summary and analysis of the netlist generation. Some
tools generate an HTML, XML or other proprietary formats which are easier to
navigate into the information.

This report is important in order to see if the hardware generated by the syn-
thesizer agrees with the described HDL. The main parts in a synthesis report are:

• Synthesis Options: a summary of selected optimizations used. Important to
check if differences in results appear.

• HDL Compilation and Analysis: syntax errors and hierarchy are analyzed and
information reported.

• HDL Synthesis: is the main part, where the inferred hardware is reported. The
tool informs what is generated in each part of the code.

• Optimization reports: the advanced optimization and low level optimization are
also informed.

• Final resource and timing: a summary of the device resource utilization and a
preliminary timing analysis with the worst path is informed. Take into account
that this information is previous to the implementation (placement and routing)
and the interconnection delay is only estimated.

Additionally, most synthesis tools can generate graphical information (a
schematic) of the resulted synthesis. Typically, you can see graphically the RTL
view or a technological view (using the target low level components).

6.1.3 Implementation (Mapping, Placement and Routing)

The implementation step is a vendor specific tool that mainly places and routes the
design in the target device. In Altera Quartus II this tool is known as a ‘‘fitter’’ [2,
3], meanwhile, in Xilinx ISE [7, 8] is composed of three processes (translate, map,
and place & route).

132 6 EDA Tools

The inputs to the implementation are the netlist(s) generated in synthesis and
the design implementation constraints. The output is a proprietary placed and
routed netlist (ncd file in Xilinx, an internal database representation in Altera) and
several reports summarizing the results. Typically the design implementation uses
timing and area constraints; a general description is in Sect. 6.2.

6.1.3.1 Implementation Reports

The implementation tools generate different information about that process.
Typically, a text report includes detailed information about the used resources, the
clock distribution (including skew), the final timing obtained with respect to the
constraints and other information.

Nevertheless, more information can be obtained of the implementation, such as
internal delay of the interconnections, a description of the used pads, a graphical
view of the placed and routed design in the target device, a simulatable HDL file
including timing information, and a power consumption estimation.

6.1.4 Programming File Generation and Programming

The programming file generation creates a bitstream file (.bit in Xilinx,.rbf in Altera)
that can be downloaded to the device or can be recorded in an external EPROM. This
tool in Altera Quartus II is call ‘‘assembler’’, meanwhile, in Xilinx ISE ‘‘Bitgen’’.

The generated bitstream can be converted in a standard format for EPROM
programming or directly downloaded to an FPGA device using a JTAG connection
(iMPACT in Xilinx, Programmer in Altera).

6.2 Implementation Constraints

The complexity of today’s FPGA designs and the demand for higher performance
makes necessary the use of complex timing and placement constraints to meet the
performance requirements. Implementation constraints are instructions given to
the FPGA implementation tools to direct the mapping, placement, routing, timing
or other guidelines for the implementation tools.

Implementation constraints are placed in constraint file(s) but, may exist in the
HDL code, or in a synthesis constraints file and propagated for implementation.
Xilinx uses the User Constraint File (.ucf), meanwhile Altera uses the Quartus II
Settings File (.qsf) or, in the case of timing constraints, the Synopsys Design
Constraints file (.sdc). The constraint files are plain text but, there are several
graphical tools that help in the edition of such constraints avoiding the necessity to
know the exact syntax.

6.1 Design Flow in FPGA EDA Tools 133

Figure 6.2 shows the basic constraints of a digital synchronous design:

• Internal clock speed for one or several clocks.
• I/O speed.
• Pin to Pin timing.
• Pin Locations and Logic Locations (floor-planning).

The first three are timing constraints, meanwhile, the last are area constraints.

6.2.1 Timing Constrains

As suggested previously (Fig. 6.2) the timing constrain includes the clock defi-
nition, input and output timing requirements and the combinatorial path require-
ments. Creating global constraints for a design is the easiest way to provide
coverage of the constrainable connections in a design, and to guide the tools to
meet timing requirements for all paths. For example given a constraint of fre-
quency of 100 MHz, we are constraining each combinational path in the design.

Nevertheless sometimes the designer needs to relax some global constraint and
inform the implementation tools that some path can take more time. The typical
cases are:

• False Paths: if there is a paths that is static in nature, or is not of much sig-
nificance for timing.

• Multi-cycle paths: paths between registers (combinational path) that intention-
ally take more than one clock cycle to become stable.

• Fast or Slow path: combinational path that can work at slower speed than the
global constrain.

In these cases you can use directives to eliminate the paths from timing con-
sideration in implementation.

D Q D Q

clk

ffi ffkcki ckk

d1

Combinational
path

Comb
path

Combinational
path

clk

X

Y

Z

S

pin to pin speed

clk speedinput speed output speed

Pin
Location

Logic
Location

d2

d3

Fig. 6.2 What is possible to be constrained

134 6 EDA Tools

6.2.2 Placement and Other Constrains

The placement constraints instruct the implementation tools, where to locate the
logic element into the FPGA (I/O pads, Flip-flops, ROMs, RAMs, LUTs, etc.).
Since every component in the design carries a unique name, you can use these
name to assign to a region in the FPGA where put this components. A represen-
tative placement constraint, always used in a design, is the position of the input/
output pins. Nevertheless, there are others commonly used constraints:

• Relative placement constraints: allow to place logic blocks relative to each other
to increase speed and use die resources efficiently.

• Routing constraints: mechanism of locking the routing in order to maintain
timing.

• Input/output characteristics: specifies the i/o standard, the use of internal pull-
ups or pull-downs, slew rate, asynchronous delay, etc.

• Dedicated block configuration: how the multipliers are configured, digital clock
managers, memory blocks, SERDES, etc.

• Mapping Directives: allow eliminating the simplification of internal nets for
observability, or how the logic is grouped.

• Maximun Skew: allow to control the maximum skew in a line (Sect. 5.3.1).
• Derating Factors: specifies different supply voltage and temperature. Used to de-

rate the timing factors (Sect. 5.1.2.5).

As previously mentioned, implementation constraints (timing and placement) are
placed in separated constraint file(s) but, may be directly written in the HDL code.

6.3 System Verification

Figure 6.3 shows the typical system verification flow for FPGA. The logic sim-
ulation is the most used technique in early stage of development. Nevertheless, the
reprogrammable nature of FPGA gives other alternatives as in-circuit simulation,
testing and debugging.

6.3.1 Simulation

Logic simulation is the primary tool used for verifying the logical correctness of a
hardware design. In many cases, logic simulation is the first activity performed in
the process of design. There are different simulation points were you can simulate
your design, the three more relevant are:

• RTL-level (behavioral) simulation. No timing information is used.
• Post-Synthesis simulation. In order to verify synthesis result.

6.2 Implementation Constraints 135

http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5

• Post implementation (post place & route) simulation. Also known as timing
simulation because it includes blocks and nets delays.

The behavioral (RTL-level) simulation enables you to verify or simulate a
description at the system level. This first pass simulation is typically performed to
verify code syntax, and to confirm that the code is functioning as intended. At this
step, no timing information is available, and simulation is performed in unit-delay
mode to avoid the possibility of a race condition. The RTL simulation is not
architecture-specific, but can contain instantiations of architecture-specific com-
ponents, but in this case additional libraries are necessary to simulate.

Post-synthesis simulation, allows you to verify that your design has been
synthesized correctly, and you can be aware of any differences due to the lower
level of abstraction. Most synthesis tools can write out a post-synthesis HDL
netlist in order to use a simulator. If the synthesizer uses architecture-specific
components, additional libraries should be provided.

The timing simulation (post implementation or post Place & Route full timing)
is performed after the circuit is implemented. The general functionality of the
design was defined at the beginning but, timing information cannot be accurately
calculated until the design has been placed and routed.

After the implementation tools, a timing simulation netlist can be created and
this process is known as back annotation. The result of a back annotation is an
HDL file describing the implemented design in terms of low level components and
additional SDF (Standard Delay Format) file with the internal delays that allows
you to see how your design behaves in the actual circuit.

Xilinx ISE has his own simulator (ISE simulator, ISim) but, can operate with
Mentor Modelsim or Questa and operate with external third-party simulation tools

Design Verification

HDL RTL
(behavioual)
simulation

Synthesis

Implementation
(Place & Route)

Generate
program. File

Bitstream

post-synthesis
(gate level)
Simulation

Back
anotation

Timming
Simulation

In-circuit
Testing

Program.
Tool

HDL Desing

Tesbench
Stimulus

In-circuit
Simulation

Vendor
Libraries

Timing
Libraries

Fig. 6.3 The design verification flow in FPGAs

136 6 EDA Tools

(Synopsys VCS-MX, Cadence NCSim, Aldec Active-HDL). Altera Quartus II uses
Mentor Modelsim and can use other third party simulators.

6.3.2 Formal Verification

The formal verification is the act of proving the correctness of a system with
respect to a certain formal specification, using formal mathematical methods.
Since hardware complexity growth continues to follow Moore’s Law, the verifi-
cation complexity is even more challenging and is impossible to simulate all
possible states in a design. In order to implement the formal verification, Hardware
Verification Language (HVL) can be used. A HVL is a programming language
used to verify the designs of electronic circuits written in a hardware description
language (HDL). System-Verilog, OpenVera, and SystemC are the most com-
monly used HVLs. The formal verification is widely used by the big companies in
the ASIC world but, is relatively new in the FPGA arena. The adoption of formal
verification in FPGA flow is still poor but, increasingly important.

6.3.3 In-Circuit Co-Simulation

The idea is to simulate the system at hardware speed but, maintaining a part of the
flexibility of a traditional simulation. The simulation executes the RTL code
serially while a hardware implementation executes it fully in parallel. This leads to
differences not only in execution time but, also in debugging. In simulation, the
user can stop simulation to inspect the design state (signals and memory contents),
interact with the design, and resume simulation. Downloading the design to an
FPGA, the visibility and observability is greatly reduced.

EDA vendors offer products to simulate the complete or a part of the design in
circuits but, controlling externally the execution. In this line, Xilinx added their
simulator (Isim), the so called ‘‘Hardware co-simulation’’, as a complementary
flow to the software-based HDL simulation. This feature allows the simulation of a
design or a sub-module of the design to be offloaded to hardware (a Xilinx FPGA
regular board). It can accelerate the simulation of a complex design and verify that
the design actually works in hardware.

6.3.4 In-Circuit Testing and Debugging

In order to test the functionality, a simple configuration of the FPGA allows testing
of the circuit. In the typical in-circuit debugging, the user employs an external

6.3 System Verification 137

logic analyzer for visibility but, can see only a limited number of signals which
they determined ahead of time.

The reprogramability of FPGA opens new ways to debug the designs. It is
possible to add an ‘‘internal logic analyzer’’ within the programmed logic. Xilinx
ChipScope Pro Analyzer and Altera SignalTap II Logic Analyzer are tools that
allow performing in-circuit verification, also known as on-chip debugging. They
use the internal RAM to store values of internal signals and communicate to the
external world using the JTAG connection.

Another intermediate solution includes inserting ‘‘probes’’ of internal nets
anywhere in the design and connecting of the selected signals to unused pins
(using Xilinx FPGA Editor, Altera Signal Probe, Actel Designer Probe Insertion).

6.3.5 Design for Test

A recurring topic in digital design is the design for test (DFT). The DFT (or also
Design for Testability) is the general name for design techniques that add certain
testability features to a hardware design.

In the ASIC world, tests are applied at several stages in the manufacturing flow.
The tests usually are accomplished by test programs that execute in Automatic
Test Equipment (ATE). For test program generation, several automatic algorithms
are used as the ‘‘Stuck-at’’ fault model and other algorithmic methods.

One of the main issues in a test is to gain control (controllability) and observe
(observability) internal nodes in order to check functionality and this leads to the
concept of scan chain.

In scan chain, registers (flip-flops or latches) in the design are connected in a
shift register chain in order to set the vales or read the values when a test mode is
selected. Figure 6.4 shows the addition of a multiplexer to a simple register to
support the scan chain mode. Observe that only using four signals (clk, Sin, Sout,
test) and an option reset it is possible to gain access to any register inside a device.

The FPGA are pretested ASIC circuits that have their own circuitry to test the
manufacturing procedure. Nevertheless, some techniques of DFT are useful for
FPGA design debugging and testing. The main useful characteristic is the access to
the internal state of the FPGA using the internal scan chain through the JTAG port.
JTAG (Joint Test Action Group) is the name for standard test access port and
boundary-scan architecture. It was initially devised for testing printed circuit boards
using boundary but, today it is also widely used for integrated circuit debug ports.

The FPGA devices allow the accessing of the internal state (read-back) of any
internal register, even the configuration ones using the JTAG port. The possibility
to read and write the internal state of the device allows several standard and ad-hoc
techniques for testing purposes. The access to the entire registers content allows,
for example, the reconfiguration of the device, the partial reconfiguration, read
internal states for in-circuit debugging (Sect. 6.3.4), communicate internal values
to implement an internal logic analyzer, and several other techniques.

138 6 EDA Tools

6.4 Timing Analysis

Static timing analysis (STA or simply timing analysis) is the method of computing
the expected timing of a digital circuit without requiring simulation. The word
static refers to the fact that this timing analysis is carried out in an input inde-
pendent manner. The objective is to find the worst case delay of the circuit over all
possible input combinations.

The computational task is to review the interconnection graph that represents
the final netlist and determine the worst case delay. The methods used are specific
optimization of typical graph algorithm such as a depth-first search. Modern static
timing analyzers bear similarities with project management models such as PERT
(Program Evaluation and Review Technique) or CPM (Critical Path Method).

There are some common terms used in timing analysis:

• Critical path: is the path with the maximum delay between an input and an
output (or two synchronous points).

• Arrival time: is the time elapsed for a signal to arrive at a certain point.
• Required time: is the latest time at which a signal can arrive without making

the clock cycle longer than desired (or a malfunction).
• Slack: is the difference between the required time and the arrival time. A negative

slack implies that a path is too slow. A positive slack at a node implies that the arrival
time at that node may be increased without affecting the overall delay of the circuit.

In a synchronous digital system, data is supposed to move on each tick of the
clock signal (Sect. 5.2). In this context, only two kinds of timing errors are pos-
sible (see Sect. 5.2.2):

• Hold time violation: when an input signal changes too fast, after the clock’s
active transition (race conditions).

• Setup time violation: when a signal arrives too late to a synchronous element
and misses the corresponding clock’s edge (long path fault).

test

D Q

clk

dff

OUTIN
SIN

reset

D Q
OUT

D Q
OUT

D Q
OUT

D Q
OUT

SIN (Scan Input)

. . .

D Q
OUT

D Q
OUT

D Q
OUT

D Q
OUT

.

D Q
OUT

D Q
OUT

D Q
OUT

D Q
OUT

SOUT (Scan output)

. . .

. . .

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

Fig. 6.4 Scan chain register and organization of a scan chain

6.4 Timing Analysis 139

http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5

Since the timing analysis is capable of verifying every path, it can detect the
problems in consequence of the clock skew (Sect. 5.3) or due to glitches
(Sect. 5.1.3).

The timing analysis can be performed interactively, asking for different paths
but, typically is used to report the slack upon the specified timing requirements
expressed in the timing constraint (Sect. 6.2.1).

The FPGA tools, after implementing the design, make a default timing analysis
to determine the design system performance. The analysis is based on the basic
types of timing paths: Clock period; input pads to first level of registers; last level
of registers to output pads, and pad to pad (in asynchronous paths).

Each of these paths goes through a sequence of routing and logic. In Xilinx ISE
the tool calls ‘‘Timing Analyzer’’ and in Altera Quartus II Altera ‘‘TimeQuest’’.
More advanced options can be analyzed upon using the specific tool.

6.5 Power Consumption Estimation

Power dissipated in a design can be divided into static and dynamic power
(Sect. 5.3). In FPGA designs, due to the reprogramability nature, the total power is
also divided into three components for each power supply:

Total Power ¼ Device Staticþ Design Staticþ Dynamic Power

Where the components are:

• Device Static: depends on manufacturing, process properties, applied voltage,
and temperature.

• Design Static: blocks in an FPGA (I/O termination, transceivers, block RAM,
etc.) are disabled by default and enabled depending on the design requirements.
When these blocks are enabled they consume power, regardless of user design
activity.

• Dynamic Power: depends on the capacitance and activity of the resources used,
and also scales with the applied voltage level.

FPGA vendors offer early power estimators spreadsheet (Altera PowerPlay
Early Power Estimator, Xilinx XPower Estimator) typically used the pre-design
and pre-implementation phases of a project. These spreadsheets are used for
architecture evaluation; device and power supply selection and helps to choose the
thermal management components which may be required for the application.

For a more accurate estimation, the power analyzer tools (Xilinx XPower,
Altera PowerPlay) perform power estimation, post implementation. They are more
precise tools since they can read from the implemented design netlist the exact
logic and routing resources used. In order to obtain good and reliable results the
activity of each node should be provided. If you do not supply the activity, the
software can predict the activity of each node but, the accuracy is degraded.

140 6 EDA Tools

http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5

The power analyzer takes the design netlist, the activity of the circuit, the
supply voltage and the ambient temperature and reports the consumed current
(power) and the junction temperature. Nevertheless, the junction temperature itself
depends on the ambient temperature, voltage level, and total current supplied. But
the total current supplied includes the static current as a component that depends
on temperature and voltage, so a clear circular dependency exists. The tools use a
series of iterations to converge on an approximation of the static power for given
operating conditions.

A significant test bench that models the real operation of the circuit provides the
necessary activity of each node. The simulation result of the activity is saved in a
file (SAIF or VCD file) that is later used in conjunction with the capacitance
information by the power analyzer.

The Value Change Dump (VCD) file is an ASCII file containing the value
change details for each step of the simulation and can be generated by most
simulators. The computation time of this file can be very long, and the resulting
file size is typically huge. On the other hand, the SAIF (Switching Activity
Interchange format) file contains toggle counts (number of changes) on the signals
of the design and is supported also for most simulators. The SAIF file is smaller
than the VCD file, and recommended for power analysis.

6.5.1 Reducing the Power Consumption

Using the results of a power analyzer, having a complete system-level under-
standing and the accurate power model will permit the designer to make the
decisions necessary to reduce the power budget (Sect. 5.3), including:

• Selecting the best device.
• Reducing the device operating voltage.
• Optimizing the clock frequencies.
• Reducing long routes in the design.
• Optimizing encodings.

With regards to the EDA automatic improvements for low power, as mentioned
previously, in synthesis it is possible to have, as a target, the power reduction. In
implementation, it is possible to specify optimal routing to reduce power
consumption. In this case, it allows to specify an activity file (VCD or SAIF) to
guide place & route when it optimizes for power reduction.

6.6 Example of EDA Tool Usage

In order to review the concepts of EDA tools we will deploy a simple example
using Xilinx ISE 13.1 and Altera Quartus 11.0. The example is the combinational

6.5 Power Consumption Estimation 141

http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5

floating point adder of Chap. 12 that we will implement in both vendor tools. The
simple example uses three VHDL files: FP_add.vhd, FP_right_shifter, and
FP_leading_zeros_and_shift.vhd.

If you want to begin with no previous experience, it is highly recommendable to
start with the tutorial included in the tools. In the case of Quartus, follow the
‘‘Quartus II Introduction for VHDL/verilog Users’’ accessible form help menu. If
you will start using ISE we recommend using the ‘‘ISE In-Depth Tutorial’’,
accessible using help ? Xilinx on the web ? Tutorials.

6.6.1 Simple Example Using Xilinx ISE

We create a new project (file ? new project…) with name fp_add. We select a
Virtex 5, XC5VLX30 ff324 -1. For synthesis XST, simulation ISIM and preferred
language VHDL. Then we add to the project the three VHDL source files (pro-
ject ? add source) (Fig. 6.5).

6.6.1.1 Design Entry and Behavioral Simulation

The design entry in this simple project is not used, since the VHDL code is
provided. Nevertheless to create a new source file you can use ‘‘project ? new
source’’, and then choose the design entry type of source code. In the case of using
VHDL or Verilog module you have a graphical wizard to describe the input and
output of the circuit.

Fig. 6.5 A simple project in Xilinx ISE

142 6 EDA Tools

http://dx.doi.org/10.1007/978-94-007-2987-2_12
http://dx.doi.org/10.1007/978-94-007-2987-2_12

In order to make a behavioral simulation we add to the project a test bench
(fp_add_tb.vhd) selecting ‘‘project ? add source’’. The simple test bench reads
the stimuli text file (contains two encoded operands to add and the corresponding
result) and verifies the results (Fig. 6.6).

In order to launch the simulation, select the test bench (fp_add_tb.vhd), and
double click ‘‘Simulate Behavioral Model’’ in the processes window. Before that,
ensure that you have selected the ‘‘simulation’’ view radio button, in order to be
able to see the simulation process.

6.6.1.2 Synthesis and Synthesis Report

To run the synthesis, double click the ‘‘synthesis—XST’’ process in processes
view (Fig. 6.7). The global options of the synthesis are available using the right
button at the option ‘‘process option’’. The more specific constrain can be either
embedded in the HDL code or in the Xilinx constraint file (.xcf). The xcf is a
plain text file that needs to be linked in the process option. The details are
available at [8].

Fig. 6.6 Behavioral simulation in Xilinx ISE using ISIM simulator

Fig. 6.7 Synthesis and synthesis report

6.6 Example of EDA Tool Usage 143

After the synthesis you can review the graphical representation of the synthe-
sized circuit (View RTL schematic) or review the synthesis report (.syr file). This
report gives relevant information. The ‘‘HDL synthesis’’ part of report describes
the inferred component as a function of the HDL and the ‘‘final report’’ summa-
rizes the resource utilization and performs a preliminary timing report.

6.6.1.3 Implementation: Constraints and Reports

In order to implement a design, we need to generate the implementation
constraints. We will firstly assign the position of the pads. We can edit manually
the ucf (user constraint file) text file or double click the ‘‘I/O pin planning (plan
ahead)’’ and use the graphical interface.

Then we can assign timing constraints using the ‘‘create timing constraint’’
option. We will assign a period constraints (‘‘clock domain’’ in constraint type
view) of 80 MHz (12.5 ns) and the same restriction for inputs and outputs
(‘‘inputs’’ and ‘‘outputs’’ in constraint type view, respectively). You can check the
generated restriction editing the ucf file (Fig. 6.8).

We can assign global options to the implementation using right click over the
implementation icon in processes window and selecting ‘‘process properties…’’

We implement the design double clicking in ‘‘implementation’’. The three step
in the Xilinx implementation flow will be executed (translate, map, place & route).

In ISE the design implementation, comprises the following steps:

• Translate: merges the incoming netlists from synthesis and the imple-mentation
constraints into a proprietary Xilinx native generic database (NGD) file.

• Map: fits the design into the available resources on the target device. The output
is a native circuit description (NCD) file.

• Place and Route: takes a mapped NCD file, places and routes the design, and
produces another NCD file.

Fig. 6.8 Assigning timing constraints, and the generated ucf text file

144 6 EDA Tools

The result of the implementation is a proprietary placed and routed netlist (ncd
file) and several reports. There are three main reports generated: the map report
(.mrp), the place and route report (.par) and the ‘‘Post-PAR static timing report’’
(.twr) (Fig. 6.9).

The map report shows detailed information about the used resources (LUTs, slices,
IOBs, etc.), the place and route report gives clock network report including the skew
and informs which constraints were met and which were not. Finally, Post-PAR static
timing report gives the worst case delay with respect to the specified constraints.

You can obtain additional graphical information about the place and route
results using FPGA editor and PlanAhead. Use the FPGA Editor to view the actual
design layout of the FPGA (in the Processes pane, expand ‘‘Place & Route’’, and
double-click ‘‘View/Edit Routed Design (FPGA Editor)’’). The PlanAhead soft-
ware can be used to perform post place & route design analysis. You can observe,
graphically, the timing path onto the layout, and also perform floorplaning of the
design. In order to open PlanAhead in the Processes pane, expand Place & Route,
and double-click ‘‘Analyze Timing/Floorplan Design (PlanAhead)’’.

6.6.1.4 Post Place and Route Simulation

The post place and route (or timing) simulation is accessed by selecting ‘‘simu-
lation’’ in the view panel and selecting ‘‘post-route’’ from the drop-down list. Then
select the test bench and double click ‘‘Simulate Post-Place & Route Model’’. This
will execute the back annotation process (netgen). Then the simulation is
performed. Observe that the resulting simulation gives some errors. Why?
The answer is simple, the test bench generates a clock of 100 MHz (10 ns period)

Fig. 6.9 Implemented design. Access to the reports

6.6 Example of EDA Tool Usage 145

and the implementation that we perform is slower. Then, some input pattern
combination violates setup time and gives, consequently, errors. You can modify
the test bench in order to operate at a lower frequency (Fig. 6.10).

6.6.1.5 Running a Static Timing Analysis

We can review, more carefully, the timing aspects, by opening the ‘‘analyze post-
Place & Route Static Timing’’ (expand Implement Design ? Place &
Route ? Generate Post-Place & Route Static Timing to access this process). By
default, this runs an analysis of the worst case delays with respect to the specified
constraints giving the three worst paths (Fig. 6.11).

In order to control more aspects of the timing analysis you can run an analysis
(Timing ? Run Analysis), you can control the type of analysis (Analyze against),
control the amount of path reported, control the timing derating factors
(Sect. 5.1.2.5), filter nets and paths in the analysis, etc.

6.6.1.6 Generating Programming File and Programming the FPGA

After implementing the design and performed the corresponding timing analysis,
you need to create configuration data. A configuration bitstream (.bit) is created for
downloading to a target device or for formatting into a PROM programming file
(Fig. 6.12).

6.6.1.7 Using Command Line Implementation

All the previous step could be executed in command line and group it in order to
create scripts. The ISE software allows you extract the command line arguments

Fig. 6.10 Post place and route simulation

146 6 EDA Tools

http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5

for the various steps of the implementation process (Design Utilities ? View
Command Line Log File). This allows you to verify the options being used or to
create a command batch file to replicate the design flow.

Fig. 6.11 Post place and route static timing analysis

Fig. 6.12 Generating programming file and programming the FPGA

6.6 Example of EDA Tool Usage 147

6.6.1.8 Estimating the Power Consumption

After place and route of the design it is possible to obtain power consumption
estimation. The accuracy of the estimation relies upon the activity given to the
xpower tool. The activity file is generated with a post place & route simulation
(Sect. 6.6.1.4) but instructing the ISim simulator to generate the SAIF (Switching
Activity Interchange Format) file. In order to do that, right click ‘‘simulate post place
and route model’’, click on ‘‘process properties…’’ then select ‘‘Generate SAIF File
for Power Optimization/Estimation’’, it is possible to assign different file names.

In order to check the power estimation results, based on the activity computed,
you can even generate a simple text report by double clicking on ‘‘Generate Text
Power Report’’, or by opening the interactive tool Xpower double clicking
‘‘Analyze Power Distribution (Xpower Analyzer)’’ (Fig. 6.13). Observe that by
browsing into the details you have access to the activity of each node, the fan-out
of nets and the corresponding power.

6.6.2 Simple Example Using Altera Quartus II

Designing for Altera devices is very similar, in concept and practice, to designing
for Xilinx devices. In most cases, the same RTL code can be compiled by Altera’s

Fig. 6.13 Xpower analyzer result

148 6 EDA Tools

Quartus II as was explained for Xilinx ISE (Sect. 6.6.1). Altera has an application
note ‘‘Altera Design Flow for Xilinx Users’’ [1], where this process is carefully
explained.

We can start creating a new project (file ? New Project Wizard) with name
fp_add. We add to the project the three VHDL source files (step 2 of 5).We select a
Stratix III device, EP3SL50F484C3. Leave the default synthesis and simulation
options (Fig. 6.14).

For the rest of the steps in the implementation and simulation flow, Table 6.1
summarizes the GUI (graphical user interface) names for similar task in Xilinx ISE
and Altera Quartus II.

6.7 Exercises

1. Implement the floating adder of Chap. 12 in Altera Quartus in a Stratix III
device. What are the area results? Add implementation constraints in order to
add FP numbers at 100 MHz. Constraints are met?

2. Implement the floating point multiplier of Chap. 12 in Xilinx ISE in a Virtex 5
device. What are the area results? It is possible to multiply at 100 MHz?
Remember to add implementation constraints. Multiplying at 20 MHZ what is the
expected power consumption? Use the XPower tool and the provided test bench.

Fig. 6.14 Quartus II project

6.6 Example of EDA Tool Usage 149

http://dx.doi.org/10.1007/978-94-007-2987-2_12
http://dx.doi.org/10.1007/978-94-007-2987-2_12
http://dx.doi.org/10.1007/978-94-007-2987-2_12
http://dx.doi.org/10.1007/978-94-007-2987-2_12

3. Implement the pipelined adder of Chap. 3. Analyze the area-time-power trade off
for different logic depths in the circuit. Use, for the experiment, a Virtex 5 device
and compare the result with respect to the new generation Virtex 7. What hap-
pened in Altera, in comparing stratix III devices with respect to Stratix V?

4. Implement the adders of Chap. 7 (use the provided VHDL models). Add to the
model input and output registers in order to estimate the maximum frequency of
operation.

5. Compare the results of implementation of radix 2 k adders of Sect. 7.3 in Xilinx
devices using muxcy and a behavioural description of the multiplexer (use the
provided VHDL models of Chap. 7).

6. Implement the restoring, non-resorting, radix-2 SRT and radix 2 k SRT divider
of Chap. 9 in Xilinx and Altera devices (use the provided VHDL models of
Chap. 9).

7. Compare the results of square root methods of Chap. 10 in Altera and Xilinx
design flow.

Table 6.1 GUI names for similar tasks in Xilinx ISE and Altera Quartus II

GUI feature Xilinx ISE Altera quartus II

HDL design entry HDL editor HDL editor
Schematic entry Schematic editor Schematic editor
IP entry CoreGen and architecture

wizard
Megawizard plug-in manager

Synthesis Xilinx synthesis technology
(XST)

Quartus II integrated
synthesis (QIS)

Third-party EDA synthesis Third-party EDA synthesis
Synthesis constraints XCF (xilinx contraint file) Same as implementation
Implementation

constraint
UCF (user constraint file) QSF (quartus II settings file) and

SDC (synopsys design
constraints file)

Timing constraint
wizard

Create timing constraints Quartus II timequest timing analyzer
SDC editor

Pin constrain wizard PlanAhead (PinPlanning) Pin planner
Implementation Translate, map, place and

route
Quartus II integrated synthesis (QIS),

fitter
Static timing analysis Xilinx timing analyzer Timequest timing analyzer
Generate programming

file
BitGen Assembler

Power estimator XPower estimator Powerplay early power estimator
Power analysis XPower analyzer Powerplay power analyzer
Simulation ISE simulator (ISim) Modelsim–Altera starter edition

Third-party simulation tools Third-party simulation tools
Co-simulation ISim co-simulation –
In-chip verification Chipscope pro SignalTap II logic analyzer
View and editing

placement
PlanAhead, FPGA editor Chip planner

Configure device iMPACT Programmer

150 6 EDA Tools

http://dx.doi.org/10.1007/978-94-007-2987-2_3
http://dx.doi.org/10.1007/978-94-007-2987-2_3
http://dx.doi.org/10.1007/978-94-007-2987-2_7
http://dx.doi.org/10.1007/978-94-007-2987-2_7
http://dx.doi.org/10.1007/978-94-007-2987-2_7
http://dx.doi.org/10.1007/978-94-007-2987-2_7
http://dx.doi.org/10.1007/978-94-007-2987-2_7
http://dx.doi.org/10.1007/978-94-007-2987-2_7
http://dx.doi.org/10.1007/978-94-007-2987-2_9
http://dx.doi.org/10.1007/978-94-007-2987-2_9
http://dx.doi.org/10.1007/978-94-007-2987-2_9
http://dx.doi.org/10.1007/978-94-007-2987-2_9
http://dx.doi.org/10.1007/978-94-007-2987-2_10
http://dx.doi.org/10.1007/978-94-007-2987-2_10

References

1. Altera corp (2009) AN 307: Altera design flow for Xilinx users. http://www.altera.com/
literature/an/an307.pdf

2. Altera corp (2011a) Altera quartus II software environment. http://www.altera.com/
3. Altera corp (2011b) Design and synthesis. In: Quartus II integrated synthesis, quartus II

handbook version 11.0, vol 1. http://www.altera.com/
4. Mentor Graphics (2011) Mentor precision synthesis reference manual 2011a. http://

www.mentor.com/
5. Microsemi SoC Products Group (2010) Libero integrated design environment (IDE) v9.1.

http://www.actel.com/
6. Synopsys (2011) Synopsys FPGA synthesis user guide (Synplify, Synplify Pro, or Synplify

Premier). http://www.synopsys.com/
7. Xilinx inc (2011a) Xilinx ISE (Integrated Integrated software environment) design suite. http://

www.xilinx.com/
8. Xilinx inc (2011b) XST (Xilinx Synthesis Technology) user guide, UG687 (v 13.1). http://

www.xilinx.com/

References 151

http://www.altera.com/literature/an/an307.pdf
http://www.altera.com/literature/an/an307.pdf
http://www.altera.com/
http://www.altera.com/
http://www.mentor.com/
http://www.mentor.com/
http://www.actel.com/
http://www.synopsys.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/

	6 EDA Tools
	6.1…Design Flow in FPGA EDA Tools
	6.1.1 Design Entry
	6.1.1.1 HDL Design Entry
	6.1.1.2 Schematic Design Entry
	6.1.1.3 Intellectual Property (IP) Blocks
	6.1.1.4 Electronic System Level (ESL) Languages

	6.1.2 Synthesissynthesis
	6.1.2.1 Synthesis Optimizationssynthesisoptimizations
	6.1.2.2 Synthesis Constraintssynthesisconstraints
	6.1.2.3 Synthesis Reportssynthesisreports

	6.1.3 Implementation (Mapping, Placement and Routing)
	6.1.3.1 Implementation Reports

	6.1.4 Programming File Generation and Programming

	6.2…Implementation Constraints
	6.2.1 Timing Constrainstimingconstrainsconstraintiming
	6.2.2 Placement and Other Constrainsconstrainarea

	6.3…System Verification
	6.3.1 Simulationsimulation
	6.3.2 Formal Verification
	6.3.3 In-Circuit Co-Simulationsimulationin-circuit
	6.3.4 In-Circuit Testing and Debugging
	6.3.5 Design for Test

	6.4…Timing Analysistiminganalysis
	6.5…Power Consumption Estimation
	6.5.1 Reducing the Power Consumption

	6.6…Example of EDA Tool Usage
	6.6.1 Simple Example Using Xilinx ISE
	6.6.1.1 Design Entry and Behavioral Simulation
	6.6.1.2 Synthesis and Synthesis Report
	6.6.1.3 Implementation: Constraints and Reports
	6.6.1.4 Post Place and Route Simulation
	6.6.1.5 Running a Static Timing Analysis
	6.6.1.6 Generating Programming File and Programming the FPGA
	6.6.1.7 Using Command Line Implementation
	6.6.1.8 Estimating the Power Consumption

	6.6.2 Simple Example Using Altera Quartus II

	6.7…Exercises
	References

