
Chapter 5
Electronic Aspects of Digital Design

This chapter is devoted to those electronics aspects important for digital circuit
design. The digital devices are built with analog components, and then some
considerations should be taken into account in order to obtain good and reliable
designs.

Some important electronics aspects, related to the circuit design, the timing and
synchronization aspects are discussed in this chapter. Most of those details are
hidden in reprogrammable logic for simplicity, but these do not eliminate the
consequences.

5.1 Basic Electronic Aspects of Digital Design

Digital devices represent signals by discrete bands of analog levels, rather than by
a continuous range. All levels within a range represent the same signal state.
Typically the number of these states is two, and they are represented by two
voltage bands: one near zero volts (referenced also as ground or earth) and a higher
level near the supply voltage, corresponding to the ‘‘false’’ (‘‘0’’) and ‘‘true’’ (‘‘1’’)
values of the Boolean domain, respectively (Fig. 5.4).

5.1.1 Basic Concepts

Before we start looking at more specific ideas, we need to remember a few basic
concepts.

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_5,
� Springer Science+Business Media Dordrecht 2012

95

5.1.1.1 CMOS Circuits

Complementary metal–oxide–semiconductor (CMOS) is the dominant technology
for constructing digital integrated circuits since mid 1970s. The word ‘‘comple-
mentary’’ refers to the fact that the typical digital design style with CMOS uses
complementary and symmetrical pairs of p-type and n-type metal oxide semi-
conductor field effect transistors (MOSFETs) for logic functions. The key char-
acteristics of CMOS devices are high noise immunity and low static power
consumption. Neglecting other technological details, the power is only drawn
while the transistors in the CMOS device are switching between on and off states.
The CMOS transistors allow creating the logic gates of Fig. 1.1 that are the basics
of the digital design. The key idea is the use of transistors as switches as described
in Fig. 5.1a. The p transistor conducts better the supply voltage meanwhile the
n-type conducts to the ground. With this, the main principle behind CMOS circuits
is the use of p-type and n-type transistors to create paths to the output from either
the voltage source or ground. Figure 5.1b shows the ‘‘complementary-symmetric’’
interconnecttion of p-type and n-type transistors to build some basic gates. More
technological details of these constructions are out of the scope of this book. One
can find excellent surveys and material in [1, 2].

The FPGA technology is a CMOS (re)programmable Application Specific
Integrated Circuit (ASIC). Hence, all the characteristics, peculiarities and conse-
quences of an ASIC design are present.

5.1.1.2 Fan-in and Fan-out

In ASICs technologies and others the fan-in and fan-out are measured in capaci-
tance units (in actual technologies in picofarad or femtofarad). So, the fan-in is the

‘0’

‘1’

‘1’

‘0’

n-typep-type

i out

gnd

Vdd

Vdd Vdd

i1i0

gnd

out

Vdd

out

gndgnd

NOR

out
NAND

outi out

switching action

i0

i1

i0

i1

i0

i1

i0

i1

i0 i1

(a) (b)

Fig. 5.1 CMOS transistors. a Switching action for p-type and n-type. b Some basic gates

96 5 Electronic Aspects of Digital Design

http://dx.doi.org/10.1007/978-94-007-2987-2_1

capacitance that an input of a gate has. Thus, the fan-out is the maximum
capacitance controllable by a gate, while providing voltage levels in the guaran-
teed range. The fan-out really depends on the amount of electric current a gate can
source or sink while driving other gates. Table 5.1 shows examples of fan-in and
fan-out for gates in 0.25 lm technologies (a ten years old technology). Observe,
for example, that a NAND2 gate can drive up 49 similar gates (197pf/4pf) if we
neglect the capacitance of interconnection.

In the case of FPGA the concepts of fan-in and fan-out are simplified and
measured in number of connections. Remember that most of the logic is imple-
mented in look-up tables (LUTs). Then the fan-in is the number of inputs a
computing block has, like a two input AND gate implemented in a LUT has a fan-
in of two, and a three input NAND gate a fan-in of three. The concept of fan-out is
used to express the number of gates that each gate has connected at the output. In
some cases there appears the concept of maximum fan-out as the maximum
number of connections that we can control by a gate.

5.1.1.3 Drive Strength or Drive Capabilities

This means the amount of power a gate or circuit can output (i.e. same concept of
fan-out). The larger drive strength a circuit has, the more power it can deliver and
thus the more capable it is to drive a higher number of other gates. In the particular
case of ASIC libraries, a typical gate has different drive strengths (x1, x2, x4, etc.)
to be able to drive more gates. This allows the designer or the synthesizer to
choose the right one at each time. In FPGAs the internal drive strength is not
controlled by programmers. Nevertheless, the output strength of the output buffers
can be controlled.

Table 5.1 Fan-in, fan-out, internal and external delay of typical gates

fan-in
(pf)

fan-out
(pf)

t_int_hl
(ns)

t_int_lh
(ns)

t_ext_hl
(ns/pf)

t_ext_lh
(ns/pf)

INV 0.003 0.337 0.079 0.151 2.710 4.891
BUF 0.004 0.425 0.265 0.056 1.334 2.399
AND2 0.003 0.334 0.105 0.144 4.470 4.271
AND3 0.007 0.673 0.211 0.131 1.362 2.376
NAND2 0.004 0.197 0.105 0.144 4.470 4.271
NAND3 0.003 0.140 0.071 0.192 6.088 7.212
NOR2 0.004 0.205 0.091 0.162 3.101 8.035
XOR2 0.008 0.645 0.279 0.331 1.435 2.560
CKBUF 0.006 1.160 0.355 0.350 0.782 1.782
CKBUF_N 0.006 1.460 0.183 0.537 0.628 1.881
DFF 0.003 0.703 0.402 0.354 1.256 2.360

5.1 Basic Electronic Aspects of Digital Design 97

5.1.1.4 Pull-up and Pull-down Resistors

The purpose of these resistors is to force an input (or output) to a defined state. The
pull-up and pull-down resistors are mainly used to avoid a circuit input from being
floating if the corresponding external device is disconnected. Figure 5.2 shows a
pull-up and a pull-down resistor. The pull-up resistor ‘‘weakly’’ pulls the internal
voltage towards Vcc (logical ‘1’) when the other components are inactive, and the
pull-down resistor ‘‘weakly’’ pulls the internal voltage towards GND (logical ‘0’).

Pull-up/down resistors may be discrete devices mounted on the same circuit
board as the logic devices, but many microcontrollers and FGPA have internal,
programmable pull-up/pull-down resistors, so that less external components are
needed.

5.1.1.5 Tri-States Buffers and Bus-Keeper

Tri-state (also named as three-state or 3-state) logic allows an output port to
assume a high impedance state (Z, or Hi-Z) in addition to the 0 and 1 logic levels.
The tri-state buffers are used to connect multiple devices to a common bus (or
line).

vcc

pull-up
resistor

input pad

Internal value

pull-down
resistor

input pad Internal value

Fig. 5.2 Pull-up and pull-down resistors connected to input pads

outin

G

outin

G

In G out
0 1 0
1 1 1
- 0 Z

resistor

bus(b)(a)

Fig. 5.3 Tri-state buffer and bus keeper

98 5 Electronic Aspects of Digital Design

As is suggested in Fig. 5.3a, a tri-state buffer can be thought of as a switch. If
G is on, the switch is closed, transmitting either 0 or 1 logic levels. If G is off, the
switch is open (high impedance).

A related concept is the bus-keeper (or bus-holder). The bus-keeper is a weak
latch circuit which holds the last value on a tri-state bus. The circuit is basically a
delay element with the output connected back to the input through a comparatively
high impedance. This is usually achieved with two inverters connected back to
back. The resistor drives the bus weakly; therefore, other circuits can override the
value of the bus when they are not in tri-state mode (Fig. 5.3b).

Many microcontroller and FGPA have internal, programmable tri-states buffers
and the bus-keeper logic at outputs pins, so that minimal external components are
needed to interface to other components.

5.1.2 Propagation Delay—Transition Time

It is the time that an electronic circuit needs to switch between two different stable
states. In a logic circuit performing a change of state, it identifies the rise-time and
the fall-time of the output voltage. These times are related to the times to charge
and discharge capacitances. Figure 5.4 shows typical charge and discharge ramps
of a CMOS gate.

5.1.2.1 Rise Time (Transition Time Low-to-High)

It refers to the time required for a signal to change from a specified low value to a
specified high value. Typically, these values are 10% and 90% of the step height.

Logic ‘1’
V

ol
ta

ge
 (

ar
bi

tr
ar

y
un

its
)

0.0

0.2

0.4

0.6

0.8

1.0

Logic ‘0’

invalid

noise margin

noise margin

Logic values
transition time

high-to-low
transition time

low-to-high

Rise time Fall time

1.0

0.1

0.9

Fig. 5.4 Logic values and transition times (rise and fall time)

5.1 Basic Electronic Aspects of Digital Design 99

5.1.2.2 Fall Time (Transition Time High-to-Low)

It is the time required for the amplitude of a pulse to decrease (fall) from a
specified value, typically 90% of the peak value, to another specified value, usually
10% of the minimum value.

5.1.2.3 Slew Rate

This concept is used in linear amplifiers but also in digital circuits. In the second
case, it is an approximation of the time necessary to change a logic value, without
distinguishing between high-to-low and low-to-high transitions. In the FPGA
arena, the output pins can be configured as slow slew rate and fast slew rate. The
second one is faster, but consumes more power and is prone to transmit internal
glitches to the outputs.

5.1.2.4 Propagation Delay, Intrinsic and Extrinsic Delays

The propagation delay of a gate or digital component depends on two factors, the
intrinsic and the extrinsic delays. The intrinsic delay is the delay internal to the
gate (also known as gate delay or internal delay). In other words, it is the time
taken by the gate to produce an output after the change of an input (in ns, ps, etc.).

On the other hand, the extrinsic delay (also called, differential, load-dependent
or fan-out delay) depends on the load attached to the gate. This value is expressed
in ns/pf. Table 5.1 shows some intrinsic and extrinsic delays for 0.25 lm gates.
The intrinsic delay in fact depends on which input is changing, but for simplicity
this is not taken into account in the table. Observe that the high to low (HL) and
low to high (LH) values are different. As an example, consider an inverter (INV)
whose output is connected to 10 inverters. Assume that the capacitance of every

0.5

1

1.5

2

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0.8

0.9

1.0

1.1

1.2

-60 -40 -20 0 20 40 60 80 100 120 140 160

Typcial Case.
Derating Factoris 1 Typcial Case.

Derating Factoris 1

Operating Temperature (°C) Core Supply Voltage (V)

Derating Curve for Operating Temperatures Derating Curve for Supply Voltage

Fig. 5.5 Typical derating curves for temperature and supply voltage

100 5 Electronic Aspects of Digital Design

connection is equal to 0.1 pf. What is the time required for the INV gate to
propagate the transitions 0 to 1 and the 1 to 0?

Thl ¼ t inthl þ t exthl � capacity
¼ 0:079nsþ 2:710ns=pf � 10 � 0:003pf þ 0:1pfð Þ ¼ 0:4313ns

Tlh ¼ t intlh þ t extlh � capacity
¼ 0:151nsþ 4:891ns=pf � 10 � 0:003pf þ 0:1pfð Þ ¼ 0:7868ns

In FPGA technologies these concepts are hidden, given only a propagation
delay for internal nodes (LUTs, multiplexers, nets, etc.), and do not distinguish
between high to low and low to high transitions.

5.1.2.5 Timing Derating Factors

The propagation delays depend also on the temperature and the supply voltage.
Variations in those parameters affect the circuit delay. The circuit manufacturers
even give tables, graphics or embed the information in the static timing analyzer to
adapt the timing to the operating conditions.

The derating factors are coefficients that the timing data are multiplied by, in
order to estimate the delays corresponding to the operating conditions. Figure 5.5
shows typical derating curves for different operating temperature and supply
voltage (the example is based on a 180 nm process). Table 5.2 is another form to
show the same information.

5.1.3 Glitches in Digital Circuits

An electronics glitch is an undesired transition that occurs before the signal settles
to its proposed final value. In other words, a glitch is an electrical pulse of short
duration, usually unwanted, and typically produced by an imbalance in internal
interconnection delays. A simple example is depicted in Fig. 5.6 where different

Table 5.2 A derating table for temperature and supply voltage

Vcc Temperature (�C)

120 100 80 60 40 32 20 0 -20

2.6 1.39 1.36 1.32 1.27 1.24 1.20 1.19 1.15 1.12
2.8 1.29 1.25 1.22 1.18 1.14 1.11 1.10 1.07 1.03
3.0 1.23 1.20 1.17 1.12 1.09 1.06 1.05 1.02 0.99
3.2 1.18 1.15 1.12 1.08 1.05 1.02 1.01 0.98 0.95
3.3 1.16 1.13 1.10 1.06 1.03 1.00 0.99 0.96 0.93
3.4 1.14 1.11 1.08 1.04 1.01 0.98 0.97 0.94 0.91

5.1 Basic Electronic Aspects of Digital Design 101

delays in interconnections produce unnecessary changes at the output. For
simplicity, in the preceding figure the gates delays are assumed to be equal to 0.

The glitch effect grows with the logic depth. As a simple example, consider two
levels of XOR gates (Fig. 5.7). The four inputs change at the same time (t0) but the
net delays produce different times of arrival to the gates. In this case, changing
from 1010 to 0101 should not produce any output change. Nevertheless, in the
example, four transitions in output G are generated.

5.1.3.1 Runt Pulse and Spikes

A related concept to glitches is the runt pulse. It is a pulse whose amplitude is
smaller than the minimum level specified for correct operation. It is a narrow pulse
that, due to rise and fall times of the signal, does not reach a valid high or low level
value. Typically, it has no influence on the operations, but it increases the power
consumption (see Sect. 5.4).

Some authors define the concept of ‘‘spike’’ as being a short pulse similar to a
glitch, but caused by ringing (an unwanted oscillation of a signal) or crosstalk
(undesired capacitive or inductive coupling).

A

B

A

B

A’

B’

δa

b

C

A’

B’

t0
a

a < b

C

b

t1 t2

A

B

A

B

A’

B’

a

b

C

A’

B’

a

a > b

C

b

`1́

`1´`0́

`0´

`1́

`0́ `1´

`0´

`1´`1́

`1´

`1´`0´

`0´

`1´

`1´`0´

`0´

`0´`0´

t0 t1 t2

δ δ δ

δ

δδ

δ
δ

δ δ

δ

Fig. 5.6 Glitches of a simple gate due to unbalanced interconnection delay

102 5 Electronic Aspects of Digital Design

5.2 Synchronous Design Issues

Digital circuits are mainly ‘‘synchronous’’. The Register Transfer Level (RTL)
model recognizes register and combinational logic connected between them.
The typical form, adopted to synchronize these components, is the True Single
Phase Clock (TSPC). In TSPC a single clock signal is supposed to be dis-
tributed at different register levels. All the registers (flip-flops) are capturing on
the rising (or falling) edge. Figure 5.8 illustrates the classical situation. A clock
edge (rising in Fig. 5.8) captures the information into the first level of registers
(ffi). The contents of registers ffi (B) are propagated into the combinational
logic and generate new results. The output of the combinational circuitry (C)
should be stable before the next clock arrives to the next register stage (ffj).
The following clock edge captures the content of C in ffj and makes D
available.

In an ideal synchronous circuit, every change in the logical levels of its registers
(flip-flops) is simultaneous. These transitions follow the level change of the clock
(clk) signal (positive or negative clock edge). In normal function, the input to each
storage element has reached its final value before the next edge clock occurs, so
the behavior of the whole circuit is exactly predictable.

E

F

e

f

G

c > a > b> d

A

B

a

cC

D

b

d

A’

B’

C’

D’

A’

B’

t1

F

d

t2 t 3

1̀´

`1´0̀´

`0´

C’

D’

1̀´

`1´0̀´

`0´

E
1̀´

`1´1̀´

`1´

`0´

`0´

G
`0´0̀´ `0´

b

t 4t0

c > a > b > d

e = f = XOR = 0

a

cδ
δ

δ
δ

δ
δ
δ δ δ δ

δ
δ

δ

δ δ δ δ

δ δ δ

δ

Fig. 5.7 The avalanche
effect of glitches as the logic
depth grows

5.2 Synchronous Design Issues 103

5.2.1 Edge Sensitive and Level Sensitive Registers

The edge sensitive and level sensitive registers (flip-flop and latch) are electronic
circuits that have two stable states and can be used to store binary information. The
circuits are made to change state by signals applied to one or more control inputs
and will have one or two outputs. The latches are level sensitive circuits that pass
their input D to their output Q when the clock is high (or low) (transparent mode),
and the input sampled on the falling edge of the clock is held stable when the clock
is low (or high)-hold mode. The flip-flops (also called edge-triggered latches) are
edge sensitive circuits that sample the inputs on a clock transition (positive edge-
triggered: 0 ? 1 or negative edge-triggered: 1 ? 0). They are built using latches
(e.g., master–slave flip-flops). Historically, there have been different classes of flip-
flops (FF) depending on the way they work (SR –‘‘set-reset’’, D –‘‘data’’, T –
‘‘toggle’’, and JK). Today’s FPGA have registers that can be configured as latches
or flip-flop, but only as a D-FF.

5.2.2 Temporal Parameters of Flip-Flops

The synchronous flip-flop requires that the data to be sampled is stable some time
before and after (setup and hold times) the clock edge Fig. 5.9. If the input data
changes in the setup-hold windows, metastability could occur (next section).
To summarize: the setup time (tsu) is the minimum amount of time the data signal
should be held steady before the clock event; and the hold time (th) is the minimum
amount of time the data signal should be held steady after the clock event, so that

Am
D Q D Q

nCombinational
circuit

clk

dff

B C D

dff

B

C

clk

clk period

D

Combinational delay

ffi ffj

Fig. 5.8 Typical single
phase synchronization

104 5 Electronic Aspects of Digital Design

the data are reliably sampled. These times are specified for any device or tech-
nology, and are typically between a few tens of picoseconds and a few nanosec-
onds for modern devices.

The data stored in the flip-flop is visible at its output as a propagation delay (tpr)
after the clock edge. This timing value is also known as clock-to-output delay.

Another related concept is the minimum clock pulse of a flip-flop. It is the
minimum width of the clock pulse necessary to control the register.

5.2.3 Metastability

Whenever there is a setup or a hold time violation, the flip-flop could enter in a
metastable state (a quasi-stable state). In this state the flip-flop output is unpre-
dictable and it is considered as a failure of the logic design. At the end of a
metastable state, when the output could reveal an ‘‘in between’’ value, the flip-flop
settles down to either ‘1’ or ‘0’. This whole process is known as metastability.
Figure 5.10 illustrates this situation. The duration of the metastable state is a
random variable that depends on the technology of the flip-flop. The circuit’s
vendors provide information about the metastability in their devices. As an
example, the main vendors of FPGA provide this kind of information [3–5].

Comments 5.1

1. Not all the setup-hold window violations imply a metastable state. It is a
probabilistic event.

2. Not all the metastability states cause design failures. In fact, if the data output
signal resolves to a valid state before the next register captures the data, then
the metastable signal does not impact negatively in the system operation.

IN
D Q

clk

dff
clkOUT

tsu th

IN data
stable

output
stable

OUT output
stable

time

tpr

tpr = propagation delay

tsu = setup time

th = hold time

Fig. 5.9 Setup time, hold time and propagation delay of a register

5.2 Synchronous Design Issues 105

5.2.3.1 Main Causes of Metastability

As previously mentioned, a setup or hold time violation, could produce metasta-
bility, so we have to see when signals violate this timing requirement:

• When the input signal is an asynchronous signal.
• When interfacing two domains operating at two different clock frequencies.
• When the clock skew is too high. (Sect. 5.3.1)
• When the clock slew rate is too high (rise and fall times are longer than the

tolerable values).
• When interfacing two domains operating at the same frequency but with dif-

ferent phase.
• When the combinational delays are such that flip-flop data input change within

the critical window. (setup-hold window)

Observe that that only the first two cases are real metastability problems and we
will discuss possible solutions in the next sections. The other cases are related with
the clock frequency and simple increases of the clock period could solve the
problem. Even a static timing analysis detects these kinds of problems.

5.2.3.2 Mean Time Between Failures (MTBF) in Metastability

The Mean Time Between Failures (MTBF) is a general concept used in reliability.
This concept, applied to the metastability, gives the average time interval between
two successive failures due to this phenomenon. The expression that computes
MTBF is:

MTBF ¼ eTrec�K2

K1 � fclk � fdata
ð5:1Þ

Where:
fclk is the frequency of the clock receiving the asynchronous signal.
fdata is the toggling frequency of the asynchronous input data signal.

IN
D Q

clk

dff clk

OUT tsu th

IN

t pr

t su th t su th

OUT

tpr tpr

Metastable
State

Fig. 5.10 Metastability capturing data in a flip-flop

106 5 Electronic Aspects of Digital Design

Trec is the available metastability settling time (recovery time), or the timing
until the potentially metastable signal goes to a known value ‘0’ or ‘1’.

K1 (in ns) and K2 (in 1/ns) are constants that depend on the device process and
on the operating conditions.

If we can tolerate more time to recover from the metastability (Trec) the MTBF
is reduced exponentially. Faster clock frequencies (fclk) and faster-toggling (fdata)
data worsen (reduce) the MTBF since the probability to have a setup-hold window
violation augments. Figure 5.11 shows a typical MTBF graphic. These graphics
are average data for 300 MHz clock and 50 MHz data in a 130 nm technology.

Comments 5.2

1. Observe the sensitivity to the recovery time. Following Fig. 5.11, if you are
able to ‘‘wait’’ 2 ns to recover from metastability, the MTBF is less than two
weeks. But if you can wait for 2.5 ns the MTBF is more than three thousand
years.

2. Suppose for the previous data (fclk = 300 MHz, fdata = 50 MHz, Trec =

2.5 ns) that give a MTBF of around 3200 years. But, if we have a system with
256 input bits the MTBF is reduced to 12.5 years. If we additionally produce
100,000 systems we have MTBF of 1 h!

3. Measuring the time between metastability events using real designs under real
operating conditions is impractical, because it is in the order of years. FPGA
vendors determine the constant parameters in the MTBF equation by charac-
terizing the FPGA for metastability using a detector circuit designed to have a
short, measurable MTBF [3, 5].

1e18

1e15

1e12

1e9

1e6

1e3

1e0

1e-3

1e-6

0.5 1.0 1.5 2.0 2.5 3.0

1 Billon Years

1 Millon Years

1000 Years

1 Years

1 Day

1 Hr

1 min

Trec (ns)

M
T

B
F

 (
lo

g
se

co
nd

s)

Fig. 5.11 MTBF for 300 MHz clock and 50 MHZ data in a 130 nm technology

5.2 Synchronous Design Issues 107

5.2.3.3 How to Avoid or Mitigate Metastability

In reality, one cannot avoid metastability, without the use of tricky self-timed
circuits. So a more appropriate question might be ‘‘How to mitigate the effect of
metastability?’’

The simplest solution is by making sure the clock period is long enough to
allow the resolution of metastable states and for the delay of whatever logic may
be in the path to the next flip-flop. This approach, while simple, is unpractical
given the performance requirements of modern designs.

The classical solution is the use of a sequence of registers (a synchronization
registers chain or synchronizer) in the destination clock domain (Fig. 5.12). The
idea is to cascade one or more successive synchronizing flip-flops to the flip-flop
that is interfacing with the asynchronous input.

This approach cannot guarantee that metastability cannot pass through the syn-
chronizer; they simply reduce the probability to practical levels. In order to evaluate
the effect, consider the three cases of Fig. 5.13, assuming that tcomb ? tsu % tclk

(combinational delay plus setup time similar to clock period). In the first case,
without registering the asynchronous input, Trec is near zero, raising the MTBF to an
unreliable system. In the second case, with a simple flip-flop capturing the
asynchronous input, Trec % tclk – (tcomb ? tsu). In the final case, using two FFs to
interface the asynchronous input, the recovery time Trec % tclk – tsu. For the data of
Fig. 5.11 (i.e. tclk = 3.33 ns) and assuming a tsu = 350 ps, the MTBF of the
synchronization chain is more than 1 billon years.

5.3 Clock Distribution Network

The clock distribution network (or clock tree) distributes the clock signal(s) from a
common input (an input pin) to the entire synchronous element (registers). Since
this function is vital in an synchronous system, special attention is given to the

asynch
input

D Q

clk

dff

clk

tpr = propagation delay

tsu = setup time

th = hold time

tsu th

INT

tpr

Metastable

D Q

dff

OUT

syncronization chain

INT asynch
input

tpr tpr

OUT

Fig. 5.12 Using a two flip-flops synchronizer to reduce metastability

108 5 Electronic Aspects of Digital Design

design of this component. In ASIC design a special clock synthesizer is used
(a step in physical synthesis) during the design. In FPGA several dedicated pre-
fabricated clock distribution networks are present.

Clock signals are typically loaded with the greatest amount of interconnections
and operate at the highest speeds of any signal in the system. Today’s clock signals
are easily distributed to tens of thousands of points. Due to the driving capability
of the buffers, the clock distribution is designed as trees (Fig. 5.14a).

As a technological example, suppose use of the data of Table 5.1, and use the
buffer BUF to distribute a clock signal. If we neglect the interconnection load (an
unreal case), a simple BUF can drive 141 flip-flops (DFF) (0.425 pf/0.003 pf) and
also 106 similar buffers (0.425 pf/0.004 pf). If we want to distribute the signal to

clk

D Q

.

.

.

. . .

. . .

. . .

.

.

.

.

.

.

D Q

D Q

.

.

.

D Q

.

.

.

ck2

ck2

ck3

ck3

clk

ck1

(b)(a)

Fig. 5.14 Typical clock tree distribution. a Buffers tree. b Ideal H-routing distribution

asynch
input

clk

asynch
input D Q

clk

D Qcomb
n n

D Qcomb
n n

asynch
input

D Q

clk

D Q

syncronization chain

D Q
n n

(a)

(c)

(b)

Fig. 5.13 Synchronizing asynchronous inputs in a design due to the metastability problem. a No
registers. b One synchronization register. c Two register in synchronization chain

5.3 Clock Distribution Network 109

64,000 FF we need at least three levels of those buffers. Real clock trees use
special buffers with more driving capability and with other special characteristics,
and have additional problems related with the interconnections. Figure 5.14 shows
a classic clock tree that present multiple levels of buffers, and the typical H-routing
used to reduce the skew.

5.3.1 Clock Skew

The variation in the arrival times of a clock transition at two different locations on
a chip is commonly known as the clock skew (also timing skew). Being the cause
of the unbalanced delays in the clock distribution network, clock edges could
arrive at clock pins cki and ckj in Fig. 5.15 at different times. This spatial variation
can be caused by many different things, such as wire-interconnect length, tem-
perature variations, material imperfections, capacitance coupling, etc. The skew
between two registers stages i and j could be defined as

skewi;j ¼ delayðckiÞ � delayðckiÞ ¼ ti � tj ð5:2Þ

That leads to two types of clock skew: positive skew (skewi,j [0) and negative
skew (skewi,j \ 0). Positive skew occurs when the transmitting register (launch-
ing flip-flop, ffi) receives the clock later than the receiving register (capturing

Am
D Q D Q

nCombinational
circuit

clk

B C D

B

C

clk

clk period (T)

D

Combinational delay

ffi ffjcki ckj

Launching
flip-flop(s)

Capturing
flip-flop(s)

cki

ckj

new_cold_c

ERROR

ti
tj

tprop

B

C

clk

D

Combinational
delay

cki

ckj

new_cold_c

ti

tj

tprop

new_c

old_b new_b

clk period (T)

(a)

(b) (c)

Fig. 5.15 Setup and hold violations due to clock skew. a Example circuit. b Setup violation or
long-path fault. B. Hold violation or race-through

110 5 Electronic Aspects of Digital Design

flip-flop, ffj). Negative skew is the opposite; the sending register gets the clock
earlier than the receiving register. Two types of time violation (synchronization
failures) can be caused by clock skew: setup and hold violations. They are
described in what follows.

5.3.1.1 Setup Violation due to Clock Skew

If the destination flip-flop receives the clock edge earlier than the source flip-flop
(positive skew), the data signal has that much less time to reach the destination
flip-flop before the next clock edge. If it fails to reach the destination timeously, a
setup violation occurs, so-called because the new data was not stable before the
Tsu (setup time) of the next clock edge. This error is drawn in Fig. 5.15b and is
also called zero-clocking (because nothing is captured properly) or also long-path
fault.

In this case, at time ti
max(assuming several FF at level i, the worst case), the

clock edge arrives at flip-flops ffi. In the worst case, to propagate through the flip-
flops and the combinational logic it takestmax

prop þ tmax
comb: The signal must have settled

down for a duration of tmax
su before the next clock edge arrives at the next flip-flop

stage (ffj) at time tj
min ? Tin order to be captured properly. That transform in the

following general setup time constrain:

tmin
j þ T [tmax

i þ tmax
prop þ tmax

comb ð5:3Þ

Observe that this inequation could be always satisfied if the clock period (T) could
be incremented. In other words, a positive clock skew, as shown in Fig 5.15b,
places a lower bound on the allowable clock period (or an upper bound on the
operating frequency) as follows:

T [tmax
prop þ tmax

comb þ tmax
su þ skewmax

i;j ð5:4Þ

While a positive skewi,j decreases the maximum achievable clock frequency, a
negative clock skew (skewi,j \ 0) actually increases the effective clock period.
Effectively, we may have a combinational block between two adjacent flip-flops
that has a propagation delay longer than the given clock period.

5.3.1.2 Hold Violation due to Clock Skew

The hold violation is caused when the clock travels more slowly than the path from
one register to another (negative skew), allowing data to penetrate two registers in
the same clock tick, or maybe destroying the integrity of the latched data. This is
called a hold violation because the previous data is not held long enough at the
destination flip-flop to be properly clocked through. This situation is also known as

5.3 Clock Distribution Network 111

double-clocking (because two FFs could capture with the same clock tick) or
race-through and is common in shift registers.

To describe this situation, consider the example in Fig. 5.15c. At time ti
min, the

clock edge triggers flip-flops ffi, and the signals propagates through the flip-flop
and the combinational logic tprop

min + tcomb
min (we use the shortest propagation delay,

because we are considering the possibility of data racing). The input signal at ffj
has to remain stable for thold

max after the clock edge of the same clock cycle arrives
(tj

max). We are using max value since we are considering the worst case. To
summarize the constraint to avoid race condition (hold violation) is:

tmax
j þ tmax

hold\tmin
i þ tmin

prop þ tmin
comb ð5:5Þ

This can be rewritten as a constraint for the skew:

skewi;j [tmax
hold � tmin

prop � tmin
comb ð5:6Þ

Observe that a hold violation is more serious than a setup violation because it
cannot be fixed by increasing the clock period.

In the previous analysis we consider several launching and capturing flip-flops.
If the entire FFs have the same characteristics we do not need to consider maxi-
mum or minimum setup and hold time in equations 5.3, 5.4, 5.5 and 5.6.

5.3.2 Clock Jitter

The clock edges at a flip-flop may sometimes arrive earlier and sometimes later
with respect to an ideal reference clock, depending on the operating condition of
the circuit. Such temporal variation in the clock period is referred to as clock jitter.

The concept of absolute jitter refers to the worst case deviation (absolute value)
of the arrival time with respect to an ideal reference clock edge (Fig. 5.16).

The clock period may be shortened or lengthened by the clock jitter. For timing
purposes the worst case is considered, then jitter impacts negatively in the max-
imum frequency of operation.

Ideal clock
edges

jitter

actual clock
edges

Fig. 5.16 Clock jitter
example

112 5 Electronic Aspects of Digital Design

There are several sources of clock jitter. The analog component of the clock
generation circuitry and the clock buffer tree in the distribution network are both
significant contributors to clock jitter. There are also environmental variations that
cause jitter, such as power supply noise, temperature gradients, coupling of
adjacent signals, etc.

5.3.3 Clock Gating

Since the clock distribution network could take a significant fraction of the power
consumed by a chip and, moreover, a large amount of power could be wasted
inside computations blocks even when their output are not used (unnecessary
switching activity), a typical power saving technique applied is the clock gating,
which selectively switches off part of the clock tree.

Clock gating works by taking the enable conditions attached to registers, and
uses them to gate the clocks (Figs. 5.17a and b). The clock gating logic can be
added into a design mainly in two ways. Coding into the RTL code as enable
conditions and using automatic clock gating by synthesis tools, or manually
inserting library specific modules that implement this functionality.

Using clock gating in FPGA deserves some especial considerations. The FPGA
have several low skew and low jitter dedicated clock trees; the use of this network
is vital to distribute the clock and achieve high clock frequencies. In order to
disable safely the clock tree, special clock buffers should be used that allow
switching off the clock without glitches. Observe the potential problem to use
general logic to implement gated clock in the timing diagram of Fig. 5.17c.

Today’s FPGA have several clock trees and also clock buffers to disable part of
it safely at different granularities (more or less logic elements). Moreover, the
synthesis tools allow applying this technique automatically.

5.3.4 Clock Managers

A clock manager is a general name to describe a component that can manipulate
some characteristics of the input clock. The most typical actions performed by a
clock manager are:

• Delay Locked Loop (DLL), synchronizes the input clock signal with the internal
clock (clock deskew, Fig. 5.18).

• Frequency Synthesis (FS): Multiply and divide an incoming clock.
• Phase Shifter (PS): a phase shift (skew) with respect to the rising edge of the

input clock may be configured.
• Recondition clock signal: Reduce jitter, duty cycle correction, etc.

5.3 Clock Distribution Network 113

Today’s FPGA have several of those components, for example the Xilinx
Digital Clock Managers (DCM) and the Altera Phase-Locked Loops (PLL). One of
the main actions performed by those components is to act as a Delay Locked Loop
(DLL).

In order to illustrate the necessity of a DLL, consider the clock tree described in
Sect. 5.3.1, Fig. 5.14, based on the cells of Table 5.1, that is, 64,000 FF that uses
three levels of buffers. The interconnection load is neglected (an unreal case).
Assume, additionally, that we decide to connect 40 buffers to the first buffer, 40
buffers at the output of each buffer of the second level, and finally 40 FFs at the
output of the last 1600 buffers. We will calculate the transition time of a rising
edge at input clk using the concepts of Sect. 5.1.2.4. (Tlh = t_intlh ? t_extlh �
capacity). In this scenario the signal ck1 will see the rising edge 0.44 ns later
(0.056 ns ? 2.399 ns/pf � (40 � 0.004pf ? interconnection)). The ck2 rising edge
will be 0.44 ns after the ck1, and finally the ck3 will be propagated 0.344 ns after
the ck1. That is the clk signal will be at the FF 1.22 ns later (remember that for
simplicity we do not consider the interconnection load). If we want to work with a
clock frequency of 400 MHz (2.5 ns period) the clock will arrive half a cycle later.

clk_out

d
el

ay

d
el

ay

d
el

ay

d
el

ay. . .

phase
controller

clk_in clock
network

clk_fb

. . .

Fig. 5.18 A typical delay locked loop used to synchronize the internal clock

IN
D Q

dff
OUT

clk

clk

en

clk enable

OUT

IN
D Q

en

dff

OUT

clk

clk enable
en

en

(b) (c)(a)

Fig. 5.17 Clock gating. a Register with enable. b Register with clock gating. c Clock gating risk

114 5 Electronic Aspects of Digital Design

5.3.4.1 Delay-Locked Loop (DLL)

A delay-locked loop (DLL) is conceptually similar to a phase-locked loop (PLL)
but using a different operating principle. The main objective is to maintain the
same phase of the input clock inside a device.

The main component of a DLL is a delay chain composed of many delay
components. The input of the chain, and thus of the DLL, is connected to the input
clock (clk_in). A multiplexer is connected to each stage of the delay chain; the
selector of this multiplexer is a phase controller that compares the clock feedback
(clk_fb) from the clock network and the input clock.

This circuit, after several clock cycles, ensures that the input clock rising edge
is in phase with the clock feedback rising edge (offset = 3608).

5.3.5 Interfacing Different Clock Domains

Several times, a digital design needs to interface two different clock domains. This
interfacing is difficult in the sense that design becomes asynchronous at the
interface boundary, which could fail in setup and hold violations with the
consequent metastability (see Sect. 5.2.3). Hence, particular design and interfacing
techniques are necessary.

Two systems become asynchronous to each other when they operate at two
different frequencies or when they operate at the same frequency, but using
different and independent clock sources (Fig. 5.19a). Observe that if we use the
same clock source and a multiple of the same clock (for example, divided or
multiplied by 2) or a phase shifting of the clock (1808) they do not necessarily
become asynchronous.

Synchronization failure is lethal and difficult to debug, so it is important to take
care about this issue. If we have two systems, asynchronous to each other, and we
need to transfer data between them, several methods can be considered:

75 MHz

clk1

System 1
100 MHZ

asynch
input

D Q

clk

D Q

syncronization chainSystem 2
75 MHz

clk2

synch
input

clk2

clk1

System 1

System 2

(b)(a)

Fig. 5.19 Interfacing different clock domains using synchronization chain

5.3 Clock Distribution Network 115

• Using synchronizer.
• Handshake signaling method.
• Asynchronous FIFO.
• Open loop communication.

5.3.5.1 Using Synchronizer

It is the simplest method, useful only for very low speed communication. As
described in Sect. 5.2.3, a simple method to mitigate metastability is the use a
cascade of flip-flops. Fig. 5.19b shows the simple solution using a synchronization
chain (synchronizer).

This method could lead to errors when it is used to synchronize a bus. As a
simple example consider Fig. 5.20. If the input bus changes at the capturing edge
of the clock, different paths and different flip-flops could react differently, making
a misalignment of the data in the bus. The answer to this problem is the use of a
handshaking protocol.

Comments 5.3
A related synchronization pitfall could occur if a single bit is synchronized in

different places. The same problem described for buses in Fig. 5.20 could appear.

5.3.5.2 Handshake Signaling

In this method system 1 sends data to system 2 based on the handshake signals req
(request) and ack (acknowledge). A simple handshaking protocol (known as
4-phase) will work as follow:

• Sender outputs data and asserts req.
• Receiver captures data and asserts ack.
• Sender, after ack is detected, deasserts req.
• Receiver sees req deasserted, deasserts ack when ready to continue.

D Q D Q
sig0[0]

D Q D Q

clk

sig0[1]

sig1[0]

sig1[1]

clk

clk period (T)

sig0[0]

sig0[1]

t prop

sig1[0]

sig1[1]

Fig. 5.20 Synchronization problems with buses

116 5 Electronic Aspects of Digital Design

This method is straightforward, but the metastability problems could be present. In
fact, when system 2 samples system 1’s req and system 1 samples system 2’s ack
line, they use their internal clock, so setup and hold time violations could arise. To
avoid this, we can use double or triple stage synchronizers, which increase the
MTBF and thus reduce the metastability to a good extent. Figure 5.21 shows a
handshaking protocol using a two stage synchronizer in req and ack lines.

As shown in the example, the use of double or triple stage synchronizing
reduces significantly the transfer rate, due to the fact that a lot of clock cycles are
wasted for handshaking.

However, a simpler handshaking is possible (2-phase or edge based). In this, the
sender outputs data and changes the state of req; it will not change the state of req
again until after the state of ack changes. The receiver latches data; once the
receiver is ready for more, it changes the state of ack. This method (2-phase)
requires one bit of state to be kept on each side of the transaction to know the ack
state. Additionally, a reliable reset is necessary to start the synchronization.

Handshaking works great, but reduces the bandwidth at the clock crossing
interface because many cycles of handshaking are wasted. The high bandwidth
solution that maintains reliable communication is the use of asyncronous FIFOs.

5.3.5.3 Asynchronous FIFO

An asynchronous FIFO (First In First Out) has two interfaces, one for writing the
data into the FIFO and the other for reading the data out (Fig. 5.22a). Ideal dual

D Q

data_s

req

clk1

data_r

new_value

clk2

new_value

ack

D Q

clk2

receiving
hand

shaking
FSM

D Q

clk2

en

data_rdata_s

Q DQ D

sending
hand

shaking
FSM

D Q
en

clk1

clk1

System 1 System 2

req

ack

Fig. 5.21 Handshaking protocol using a two stage synchronizer

5.3 Clock Distribution Network 117

port FIFOs write with one clock, and read with another. The FIFO storage provides
buffering to help rate match between different frequencies. Flow control is needed
in case the FIFO gets totally full or totally empty. These signals are generated with
respect to the corresponding clock. The full signal is used by system 1 (when the
FIFO is full, we do not want system 1 to write data because this data will be lost or
will overwrite an existing data), so it will be driven by the write clock. Similarly,
the empty signal will be driven by the read clock.

FIFOs of any significant size are implemented using an on-chip dual port RAM
(it has two independent ports). The FIFO is managed as a circular buffer using
pointers. A write pointer to determine the write address and a read pointer to
determine the read address are used (Fig. 5.22b). To generate full/empty condi-
tions, the write logic needs to see the read pointer and the read logic needs to see
the write pointer. That leads to more synchronization problems (in certain cases,
they can produce metastability) that are solved using synchronizers and Gray
encoding.

Comments 5.4

1. Asynchronous FIFOs are used at places where the performance matters, that is,
when one does not want to waste clock cycles in handshake signals.

2. Most of today’s FPGAs vendors offer blocks of on-chip RAMs that can also be
configured as asynchronous FIFOs.

3. A FIFO is the hardware implementation of a data stream used in some com-
putation models.

data_in

clk1

full
we

data_out

read
empty

clk2

Dual Port RAM

WR_data

we

WR_ptr

RD_data

FIFO
Write
logic

data_in

clk1

full
we

FIFO
Read
logic

data_out

read
empty

clk2

RD_ptr

Port 1 Port 2 clk2
clk1

(a)

(b)

Fig. 5.22 Asynchronous FIFO. a Abstract FIFO design. b Detailed view

118 5 Electronic Aspects of Digital Design

5.3.5.4 Open Loop Communication

When two systems of bounded frequency need to communicate, open loop
synchronization circuits can be used (also known as mesosynchronous designs). In
this approach no ack signal is used)

The benefits of mesosynchronous designs are in less synchronization based
circuitry and are of a lower latency in contrast to a 4-phase handshaking. The main
drawback is that this method only works at certain frequency ratios
(clk1 % clk2 ± 5%). Figure 5.23 shows this synchronization method assuming
that the sender holds two cycles of the req signal.

5.4 Power Consumption

Power dissipation is one of the main concerns in today’s digital design. For
portable devices the battery life is essential, the amount of current and energy
available in a battery is nearly constant and the power dissipation of a circuit or
system defines the battery life. On the other hand, the heat generated is propor-
tional to the power dissipated by the chip or by the system; an excessive heat
dissipation may increase the operating temperature and thus degrades the speed
(see Sect. 5.1.2.5, derating factor) and causes circuitry malfunctions. The neces-
sary cooling systems (fans, heatsinks, etc.) when excessive power is used, increase
the total system cost. Additionally, the life of the circuitry is typically shortened
when working at higher temperatures (electromigration and others).

D Q

data_s

req

a_value

clk1

D Q

receiving
hand

shaking
FSM

D Q

clk2

en

data_rdata_s

sending
hand

shaking
FSM

D Q
en

clk1

System 1

System 2

new_value

Assuming:
clk1 @clk2 ± 5%

Fig. 5.23 Open loop communication (mesosynchronous)

5.3 Clock Distribution Network 119

5.4.1 Sources of Power Consumption

CMOS gates are considered very power efficient because they dissipate nearly zero
power when idle. As the CMOS technology moved below sub-micron size this
assumption became relative since the static power is more important. The power
dissipation in CMOS circuits occurs because of two components:

• Static power dissipation. Is the power consumed when the output or input are
not changing. The main contributions are the subthreshold and leakage current.

• Dynamic power dissipation. It is the power consumed during state transitions.
The two main components are charging and discharging of load capacitances
and the short circuit dissipation.

Thus the total power dissipation is the addition of the static power dissipation plus
the dynamic power dissipation.

5.4.1.1 Static Power Consumption

In the past, the subthreshold conduction of transistors has been very small, but as
transistors have been scaled down, leakages from all sources have increased.
Historically, CMOS designs operated at supply voltages much larger than their
threshold voltages (Vdd 5 V, and Vth around 700 mV) and the static power con-
sumption was negligible. As transistor size is reduced, i.e. below 90 nm, the static
current could be as high as 40% of the total power dissipation. The static power
consumption reduction is one of the main concerns in today’s technological
development of new CMOS processes.

5.4.1.2 Dynamic Power Consumption

CMOS circuits dissipate power mainly by charging the different load capacitances
(gates, wire capacitance, etc.) whenever they are switching (Fig. 5.24). In one
complete cycle of CMOS logic, current flows from power supply Vdd to the load
capacitance (0 to 1 transition) to charge it and then flows from the charged load
capacitance to ground during discharge (1 to 0 transition). Therefore in one
complete charge/discharge cycle, a total load Q = C � Vdd is thus transferred from
Vdd to ground. If we multiply by the switching frequency to get the current, and
multiply again to supply voltage we obtain the power dissipated for a gate as:
P = f � C � Vdd

2 Some authors recognize the transition power (the power per
transition) as P = 1/2 � f � C � Vdd

2 (half power charging, half the power dis-
charging). Since most gates do not operate/switch at the clock frequency, they are
often accompanied by a factor a, called the activity factor (also switching activity).
Now, the dynamic power dissipation may be re-written as P = a � f � C � Vdd

2 .

120 5 Electronic Aspects of Digital Design

A clock in a system has an activity factor a = 1, since it rises and falls every
cycle. Most data has an activity factor lower than 0.5, i.e. switches less than one
time per clock cycle. But real systems could have internal nodes with activity
factors grater then one due to the glitches.

If correct load capacitance is calculated on each node together with its activity
factor, the dynamic power dissipation at the total system could be calculated as:

P ¼
X

i
f � ðai � ciÞ�V2

dd ð5:7Þ

Another component in the dynamic component is the short circuit power dissi-
pation. During transition, due to the rise/fall time both pMOS and nMOS tran-
sistors will be on for a small period of time in which current will find a path
directly from Vdd to gnd, hence creating a short circuit current. In power esti-
mation tools this current also can be modeled as an extra capacitance at the output
of the gates.

5.4.1.3 Power and Energy

Power consumption is expressed in Watts and determines the design of the power
supply, voltage regulators and the dimensions of the interconnections and even-
tually short time cooling. Moreover, the energy consumed is expressed in Joules
and indicates the potency consumed over time, as shown in Equation 5.8.

Energy ¼ power � delay joules ¼ watts � secondsð Þ ð5:8Þ

The energy is associated with the battery life. Thus, less energy indicates less
power to perform a calculation at the same frequency. Energy is thus independent

i out

gnd

Vdd

gnd

pMOS
network

Vdd

out

nMOS
network gnd

gnd

i0
i1

in

Q0®1= CL . Vdd2

CL

(a) (b)

Fig. 5.24 Dynamic power consumption. a An inverter. b A general CMOS gate charging a
capacitance

5.4 Power Consumption 121

of the clock frequency. Reducing clock speed alone will degrade performance, but
will not achieve savings in battery life (unless you change the voltage).

That is why, typically, the consumption is expressed in mW/Mhz when com-
paring circuits and algorithms that produce the same amount of data results per
clock cycle, and normally nJoules (nanoJoules) are used when comparing the total
consumption of different alternatives that require different numbers of clock cycles
for computing.

5.4.2 Power Reduction Techniques

The power reduction could be tackled at different abstraction levels. At higher
abstraction levels, bigger possibilities to reduce the power exist.

The static power consumption is reduced mainly at a technological level and is
beyond the scope of this book. Excellent surveys and trends are in [6] and [7].

To a designer of digital systems, Equation 5.7 gives information about the main
sources of reduction. The quadratic influence of the power supply is an interesting
source of power reduction. The lower supply voltage the device employs, the
lower power the systems will use. Today’s systems are supplied at different
voltages for cores and pads in order to reduce, when possible, the power budget.

On the other hand, the operation frequency (f), the activity (a), and the
capacitance (c) are linear sources of power reduction.

At circuit level, the reduction of glitches, data reordering to reduce activity, or
the fan-out reduction are typical techniques. Parts of these ideas are present in the
automatic synthesis for low power provided by EDA tool vendors.

At algorithm level, the complexity and the regularity of algorithms, the data
representation, and other techniques, offer a big scope for optimizations. The
concept of energy and power is useful in this case (Sect. 5.4.1.3); a faster algo-
rithm consuming the same power will consume less energy.

At system level, the partition of the system allows to apply dynamic power
management, that is, applying sleep modes (shut down) to part of or to the
complete system. These power management techniques could be applied manually
by the designer or partially automated by the synthesis tools.

The power consumption is an important issue for today’s FPGA vendors.
Compared to ASICs, FPGAs are not power-efficient components because they use
a larger amount of transistors to provide programmability on the chip (typically
an order of one magnitude more power). That leads to some specific FPGAs
called ‘‘low power FPGA families’’, optimized for power dissipation at the cost of
performance. FPGA vendors use different transistors, trading off speed versus
power in their devices, and also the availability to shut off the unused components.
They also offer power estimation tools and some optimization tools at synthesis
level.

122 5 Electronic Aspects of Digital Design

5.4.3 Power Measurement and Estimation

The power measurement is based on the measure of the supply voltage and the
instant current (P = I * V). Some systems have supply sources that measure the
current and allow measurement of the power. There also are other methods to
measure the total energy consumed, but they are out of scope of the present
discussion.

For power estimation, there are specific tools either for ASIC and FPGA. Some
tools use estimated activities for different blocks; others are based on post place
and route simulation to obtain the ‘‘exact’’ activity. The power estimation tool uses
this activity information in Equation 5.7 to calculate the dynamic power con-
sumption (more details are given in Chap. 6). The main drawback is the possibility
to simulate a real situation to obtain the ‘‘real’’ activity of a circuit.

5.5 Exercises

1. Redraw Fig. 5.5 (glitches for unbalanced paths) considering: (a) NAND gate,
(b) NOR gate, (c) XOR gate.

2. Redraw Fig. 5.6 (cascade effect of glitches paths) considering the transition
(a) from 0000 to 1111; (b) from 0100 to 1101; (c) from 0101 to 1101;

3. Supposing one has a simple ripple carry adder (Fig. 7.1) of four bits. Analyze
the glitch propagation when changing to add 0000 ? 0000 to 1111 ? 1111.

4. What is the rise time and fall time of an AND2 gate that connects at his output
four XOR2 gates? Assume a total interconnection load of 12 pf (use data of
Table 5.1).

5. How many DFF can drive a CKBUF assuming the unreal case of no inter-
connection capacitance? Which is the propagation delay of the rising edge?

6. Assuming the derating factors of Table 5.2, what is the delay of exercise 4 and
5 for 80�C and a supply voltage of 3.0 V.

7. Determine the MTBF for K1 = 0.1 ns, K2 = 2 ns-1; with clock frequency of
100 MHz and data arrival at 1 MHz, for recovery time of 1, 5, 10 and 20 ns.

8. What is the MTBF expected for an asynchronous input that uses two syn-
chronization flip-flops working at 100 MHz and using the data of the previous
problem? The FFs have a setup time of one ns.

9. What is the delay of the falling edge with the data used in Sect. 5.3.4. i.e.
64,000 FF that uses three levels of BUF, neglecting the interconnection load?

10. Calculate the level of clock buffers (CKBUF) necessary to control 128,000
registers (DFF) of Table 5.1. Suppose additionally that any interconnection
has a load of 0.006 pf.

11. For the previous clock tree. Determine the propagation delay from the input
clock signal to the clk input of a FF.

5.4 Power Consumption 123

http://dx.doi.org/10.1007/978-94-007-2987-2_6
http://dx.doi.org/10.1007/978-94-007-2987-2_7

12. Draw a timing diagram of a two stage handshaking protocol. Assume that the
sending clock is faster than the receiving clock.

13. For the circuit of the figure, suppose that the FF has a propagation delay
between 0.9 and 1.2 ns, a setup time between 0.4 and 0.5 ns and a hold time
between 0.2 and 0.3 ns.

m
D Q D Q

nCombinational
circuit

clk

ffi ffjcki ckj

Launching
flip-flop(s)

Capturing
flip-flop(s)

The clock arrives to the different FF of level i with a delay between 2.1 ns and
3.3 ns, and to level j with delays between 2.5 ns and 3.9 ns. What is the
maximum combinational delay acceptable to work at 100 MHz?

14. Using the data of the previous exercise, what is the minimum combinational
delay necessary to ensure a correct functionality?

15. A system ‘A’ works with a supply voltage of 1.2 V and needs 1.3 mA during
10 s to perform a computation. A second system ‘B’ powered at 1.0 V con-
sumes an average of 1.2 mA and needs 40 s to perform the same task. Which
consumes less power and energy?

16. In the shift register of the figure, assuming that all the flip-flops have a
propagation delay of 0.9 ns, a setup time of 0.3 ns and a hold time of 0.2 ns,
what is the maximum skew tolerated if the interconnection has a delay (d1 and
d2) of 0.1 ns?

D Q D Q

clk

ffi ffkcki ckk

D Q

ffjckj

d1 d2

17. For the previous problem. What is the maximum frequency of operation?
18. The following FF (with same temporal parameters as in exercise 16) is used to

divide the clock frequency. What is the minimum delay d of the inverter and
interconnection necessary for it to work properly?

D Q

clk

ffi

d

124 5 Electronic Aspects of Digital Design

References 125

References

1. Rabaey JM, Chandrakasan A, Nikolic B (2003) Digital integrated circuits, 2nd edn. Prentice-
Hall, Englewood Cliffs

2. Wakerly JF (2005) Digital design principles and practices, 4th edn. Prentice-Hall, Englewood
Cliffs. ISBN 0-13-186389-4

3. Xilinx Corp (2005) XAPP094 (v3.0) Metastable Recovery in Virtex-II Pro FPGAs, XAPP094
(v3.0). http://www.xilinx.com/support/documentation/application_notes/xapp094.pdf

4. Actel Corp (2007) Metastability characterization report for Actel antifuse FPGAs; http://
www.actel.com/documents/Antifuse_MetaReport_AN.pdf

5. Altera corp (2009) White paper: Understanding metastability in FPGAs. http://www.altera.
com/literature/wp/wp-01082-quartus-ii-metastability.pdf

6. Pedram M (1996) Tutorial and survey paper—Power minimization in IC design: principles and
applications. ACM Trans Design Autom Electron Syst 1(1):3–56

7. Rabaey JM (1996) Low power design methodologies. Kluwer Academic Publishers, Dordrecht

http://www.xilinx.com/support/documentation/application_notes/xapp094.pdf
http://www.actel.com/documents/Antifuse_MetaReport_AN.pdf
http://www.actel.com/documents/Antifuse_MetaReport_AN.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf
http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf

	5 Electronic Aspects of Digital Design
	5.1…Basic Electronic Aspects of Digital Design
	5.1.1 Basic Concepts
	5.1.1.1 CMOS CircuitsCMOS circuit
	5.1.1.2 Fan-indrivingfan-in and Fan-outdrivingfan-out
	5.1.1.3 Drive Strengthdrivingdrive streng or Drive Capabilitiesdrive capabilities
	5.1.1.4 Pull-uppull-up and Pull-downpull-down Resistors
	5.1.1.5 Tri-States Bufferstri-states and Bus-Keeperbus-keeper

	5.1.2 Propagation Delaydelaypropagation delay---Transition Timetransition time
	5.1.2.1 Rise Timedelayrise time (Transition Time Low-to-High)
	5.1.2.2 Fall Timedelayfall time (Transition Time High-to-Low)
	5.1.2.3 Slew Ratedelayslew rate
	5.1.2.4 Propagation Delaypropagation delay, Intrinsic and Extrinsic Delaysdelayintrinsic delays
	5.1.2.5 Timing Derating Factorsdelayderating factors

	5.1.3 Glitchesglitch in Digital Circuits
	5.1.3.1 Runt Pulserunt pulse and Spikesspikes

	5.2…Synchronous Designsynchronous design Issues
	5.2.1 Edge Sensitiveedge sensitive register and Level Sensitive Registerslevel sensitive registers
	5.2.2 Temporal Parameters of Flip-Flopsflip-floptemporal parameters
	5.2.3 Metastabilitymetastability
	5.2.3.1 Main Causes of Metastability
	5.2.3.2 Mean Time Between Failures (MTBF) in Metastability
	5.2.3.3 How to Avoid or Mitigate Metastability

	5.3…Clock Distribution Networkclockdistribution network
	5.3.1 Clock Skewclockskew
	5.3.1.1 Setup Violationsynchronizationsetup violation due to Clock Skew
	5.3.1.2 Hold Violationsynchronizationhold violation due to Clock Skew

	5.3.2 Clock Jitterclockjitter
	5.3.3 Clock Gatingclockgating
	5.3.4 Clock Managersclockmanager
	5.3.4.1 Delay-Locked Loop (DLL)Delay Locked Loop (DLL)

	5.3.5 Interfacing Different Clock Domains
	5.3.5.1 Using Synchronizersynchronizationsynchronizer
	5.3.5.2 Handshake Signalingsynchronizationhandshake signaling
	5.3.5.3 Asynchronous FIFOsynchronizationasynchronous FIFO
	5.3.5.4 Open Loop Communication

	5.4…Power Consumptionpower consumption
	5.4.1 Sources of Power Consumptionpower consumptionsources
	5.4.1.1 Static Power Consumptionpower consumptionstatic
	5.4.1.2 Dynamic Power Consumptionpower consumptiondynamic
	5.4.1.3 Power and Energy

	5.4.2 Power Reduction Techniques
	5.4.3 Power Measurement and Estimation

	5.5…Exercises
	References

