
Chapter 4
Control Unit Synthesis

Modern Electronic Design Automation tools have the capacity to synthesize the
control unit from a finite state machine description, or even to extract and syn-
thesize the control unit from a functional description of the complete circuit
(Chap. 5). Nevertheless, in some cases the digital circuit designer can himself be
interested in performing part of the control unit synthesis. Two specific synthesis
techniques are presented in this chapter: command encoding and hierarchical
decomposition [1]. Both of them pursue a double objective. On the one hand they
aim at reducing the circuit cost. On the other hand they can make the circuit easier
to understand and to debug. The latter is probably the most important aspect.

The use of components whose latency is data-dependent has been implicitly
dealt with in Sect. 2.5. Some additional comments about variable-latency opera-
tions are made in the last section of this chapter.

4.1 Command Encoding

Consider the control unit of Fig. 2.6 and assume that commands is an m-bit vector,
conditions a p-bit vector and internal_state an n-bit vector. Thus, the command
generation block generates m ? 1 binary function of p ? n binary variables.
Nevertheless, the number s of different commands is generally much smaller than
2m. An alternative option is to encode the s commands with a t-bit vector, with
2t C s. The command generation block of Fig. 2.6 can be decomposed into two
blocks as shown in Fig. 4.1: the first one generates t ? 1 binary functions of
p ? n variables, and the second one (the command decoder) m binary functions of
t binary variables.

A generic circuit-complexity measure is the number of bits that a memory
(ROM) must store in order to implement the same functions. Thus, the complexity
of a circuit implementing m ? 1 functions of p ? n variables is

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_4,
� Springer Science+Business Media Dordrecht 2012

83

http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2#Fig6
http://dx.doi.org/10.1007/978-94-007-2987-2_2#Fig6


mþ 1ð Þ � 2pþnbits; ð4:1Þ

and the total complexity of two circuits implementing t ? 1 function of
p ? n variables and m functions of t variables, respectively, is

t þ 1ð Þ � 2pþn þ m � 2tbits: ð4:2Þ

Obviously, this complexity measure only takes into account the numbers of out-
puts and inputs of the combinational blocks, and not the functions they actually
implement.

Another generic complexity measure is the minimum number of LUTs (Chap. 1)
necessary to implement the functions, assuming that no LUT is shared by two or
more functions. If k-input LUTs are used, the minimum number of LUTs for
implementing a function of r variables is

r � 1ð Þ= k � 1ð Þd eLUTs;

and the minimum delay of the circuit is

logkrd e � TLUT

being TLUT the delay of a k-input LUT.
The complexities corresponding to the two previously described options are

mþ 1ð Þ � pþ n� 1ð Þ= k � 1ð Þd eLUTs ð4:3Þ

and

t þ 1ð Þ � pþ n� 1ð Þ= k � 1ð Þd e þ m � t � 1ð Þ= k � 1ð Þd eLUTs; ð4:4Þ

and the delays

logk pþ nð Þd e � TLUT and ð logk pþ nð Þd e þ logktd eÞ � T ð4:5Þ

Example 4.1
Consider the circuit of Sect. 2.5 (scalar_product.vhd, available at the Authors’
web page). The commands consist of 26 bits: eight one-bit signals

internal state

generation of 
encoded 

commands

conditions

done

commands

p

ntcommand 
decoder

m

Fig. 4.1 Command encoding

84 4 Control Unit Synthesis

http://dx.doi.org/10.1007/978-94-007-2987-2_1
http://dx.doi.org/10.1007/978-94-007-2987-2_1
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2


and nine two-bit signals

There are four binary conditions:

and the finite-state machine has 40 states. Thus, m = 26, p = 4 and n = 6.
Nevertheless, there are only 31 � 226 different commands, namely

that can be encoded with t = 5 bits.
Thus, the complexities in numbers of stored bits (4.1 and 4.2) to be compared

are

mþ 1ð Þ � 2pþn ¼ 27 � 210 ¼ 27; 648 bits; ð4:6Þ

t þ 1ð Þ � 2pþn þ m � 2t ¼ 6 � 210 þ 26 � 25 ¼ 6; 976 bits; ð4:7Þ

and the complexities in numbers of LUTs (4.3 and 4.4), assuming that 4-input
LUTs are used, are

mþ 1ð Þ � pþ n� 1ð Þ=3d e ¼ 27 � 9=3d e ¼ 81 LUTS; ð4:8Þ

t þ 1ð Þ � pþ n� 1ð Þ=3d e þ m � t � 1ð Þ=3d e ¼ 6 � 9=3d e þ 26 � 4=3d e ¼ 70 LUTs:

ð4:9Þ

The corresponding minimum delays (4.7) are

logk pþ nð Þd e ¼ log410d e ¼ 2TLUT ; ð4:10Þ

ð logk pþ nð Þd e þ logktd eÞ � TLUT ¼ log410d e þ log45d e ¼ 4TLUT : ð4:11Þ

The second complexity measure (number of LUTs) is surely more accurate than
the first one. Thus, according to (4.8–4.11), the encoding of the commands
hardly reduces the cost and increases the delay. So, in this particular case, the
main advantage is clarity, flexibility and ease of debugging, and not cost
reduction.

4.1 Command Encoding 85



4.2 Hierarchical Control Unit

Complex circuits are generally designed in a hierarchical way. As an example, the
data path of the scalar product circuit of Sect. 2.5 (Fig. 2.18) includes a polyno-
mial adder (XOR gates), a classic squarer and an interleaved multiplier, and the
latter in turn consists of a data path and a control unit (Fig. 4.2). This is a common
strategy in many fields of system engineering: hierarchy improves clarity, security,
ease of debugging and maintenance, thus reducing development times.

Nevertheless, this type of hierarchy based on the use of previously defined
components does not allow for the sharing of computation resources between
several components. As an example, one of the components of the circuit of
Sect. 2.5 is a polynomial adder, and the interleaved multiplier also includes a
polynomial adder. A slight modification of the operation scheduling, avoiding
executing field multiplications and additions at the same time, would allow to use
the same polynomial adder for both operations. Then, instead of the architecture of
Fig. 4.2, a conventional (flat) structure with a data path including only a poly-
nomial adder could be considered. In order to maintain some type of hierarchy, the
corresponding control unit could be divided up into a main control unit, in charge
of controlling the execution of the main algorithm (scalar product) and a sec-
ondary control unit, in charge of controlling the execution of the interleaved
multiplication.
Consider another, simpler, example.

Example 4.2
Design a circuit that computes

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

:

data path
(interleaved
multiplier)

other components

control

control
(interleaved
multiplier)

Fig. 4.2 Hierarchical circuit

86 4 Control Unit Synthesis

http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2#Fig18
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2


The following algorithm computes z:

A first solution is to use three components: a squaring circuit, an adder and a square
rooting circuit, for example that of Sect. 2.1. The corresponding circuit would include
two adders, one for computing c, and the other within the square_root component
(Fig. 2.3). Another option is to substitute, in the preceding algorithm, the call to
square_root with the corresponding sequence of operations. After scheduling the
operations and assigning registers to variables, the following algorithm is obtained:

This algorithm can be executed by the data path of Fig. 4.3.
In order to distinguish between the main algorithm and the square root

computation, the control unit can be divided up as shown in Fig. 4.4.
A command decoder (Sect. 4.1) is used. There are eight different commands,
namely

that are encoded with three bits. The following process describes the command
decoder:

4.2 Hierarchical Control Unit 87

http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2#Fig3


0

r

0 1 3

x2

c

sel_a20 1

x y

sel_sq

squaring

square

0 1 sel_r

2

s

0 1

r s

sel_a1

adder cy_ incy_out

sum

0 1 sel_s

en_r
load

r

en_s
load

s

en_c

c

en_signb

signb
cy_out

Fig. 4.3 Data path

control unit 1
(main algorithm) control unit 2

(square root )

conditions

commands

start_ root

root _done

start done

Fig. 4.4 Hierarchical control unit

88 4 Control Unit Synthesis



The two control units communicate through the start_root and root_done sig-
nals. The first control unit has six states corresponding to a ‘‘wait for start’’ loop,
four steps of the main algorithm (operations 1, 2, 3, and the set of operations 4–8),
and an ‘‘end of computation’’ detection. It can be described by the following
process:

The second control unit has five states corresponding to operations 4, 5, 6, and
7, and ‘‘end of root computation’’ detection:

4.2 Hierarchical Control Unit 89



The code corresponding to nop is 000, so that the actual command can be
generated by ORing the commands generated by both control units:

A complete VHDL model example4_1.vhd is available at the Authors’ web
page.

Comments 4.1

• This technique is similar to the use of procedures and functions in software
generation.

• In the former example, the dividing up of the control unit was not necessary. It
was done only for didactic purposes. As in the case of software development,
this method is useful when there are several calls to the same procedure or
function.

90 4 Control Unit Synthesis



• This type of approach to control unit synthesis is more a question of clarity (well
structured control unit) and ease of debugging and maintenance, than of cost
reduction (control units are not expensive).

4.3 Variable-Latency Operations

In Sect. 2.3, operation scheduling was performed assuming that the computation
times tJM of all operations were constant values. Nevertheless, in some cases the
computation time is not a constant but a data-dependent value. As an example, the
latency tm of the field multiplier interleaved_mult.vhd of Sect. 2.5 is dependent on
the particular operand values. In this case, the scheduling of the operations was
done using an upper bound of tm. So, an implementation based on this schedule
should include ‘‘wait for tm cycles’’ loops. Nevertheless, the proposed imple-
mentations (scalar_product.vhd and scalar_product_DF2.vhd) are slightly differ-
ent: they use the mult_done flag generated by the multiplier. For example, in
scalar_product_DF2.vhd (Sect. 2.5), there are several sentences, thus:

In an implementation that strictly respects the schedule of Fig. 2.14, these par-
ticular sentences should be substituted by constructions equivalent to

In fact, the pipelined circuit of Fig. 3.6 (pipeline_DF2.vhd) has been designed
using such an upper bound of tm. For that, a generic parameter delta was defined
and a signal time_out generated by the control unit every delta cycles. On the other
hand, the self-timed version of this same circuit (Example 3.4) used the mult_done
flags generated by the multipliers.

Thus, in the case of variable-latency components, two options could be con-
sidered: a first one is to previously compute an upper bound of their computation
times, if such a bound exists; another option is to use a start-done protocol: done is
lowered on the start positive edge, and raised when the results are available. The
second option is more general and generates circuits whose average latency is
shorter. Nevertheless, in some cases, for example for pipelining purpose, the first
option is better.

Comment 4.2
A typical case of data-dependent computation time corresponds to algorithms that
include while loops: some iteration is executed as long as some condition holds
true. Nevertheless, for unrolling purpose, the algorithm should be modified and the
while loop substituted by a for loop including a fixed number of steps, such as for i

4.2 Hierarchical Control Unit 91

http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2#Fig14
http://dx.doi.org/10.1007/978-94-007-2987-2_3#Fig6


in 0 to n - 1 loop. Thus, in some cases it may be worthwhile to substitute a
variable-latency slow component by a constant-latency fast one.

An example of a circuit including variable-latency components is presented.

Example 4.3
Consider again Algorithm 2.3, with the schedule of Fig. 2.17, so that two finite
field multipliers are necessary. Assume that they generate output flags done1 and
done2 when they complete their respective operations. The part of the algorithm
corresponding to km-i = 0 can be executed as follows:

The following VHDL model describes the circuit:

92 4 Control Unit Synthesis

http://dx.doi.org/10.1007/978-94-007-2987-2_2#Fig17


A complete model unbounded_DF.vhd is available at the Authors’ web page.
Other implementations, using latency upper bounds and/or pipelining or self-
timing, are proposed as exercises.

4.3 Variable-Latency Operations 93



4.4 Exercises

1. Design a circuit that computes z = (x1 - x2)1/2 ? (y1 - y2)1/2 with a hierar-
chical control unit (separate square rooter control units, see Example 4.2).

2. Design a 2-step self-timed circuit that computes z = (x1 - x2)1/4 using two
square rooters controlled by a start/done protocol.

3. Design a 2-step pipelined circuit that computes z = (x1 - x2)1/4 using two
square rooters, with a start input, whose maximum latencies are known.

4. Consider several implementations of the scalar product circuit of Sect. 2.5,
taking into account Comment 2.2. The following options could be considered:

• hierarchical control unit;
• with an upper bound of the multiplier latency;
• pipelined version;
• self-timed version.

Reference

1. De Micheli G (1994) Synthesis and optimization of digital circuits. McGraw-Hill, New York

94 4 Control Unit Synthesis

http://dx.doi.org/10.1007/978-94-007-2987-2_2
http://dx.doi.org/10.1007/978-94-007-2987-2_2

	4 Control Unit Synthesis
	4.1…Command Encoding
	4.2…Hierarchical Control Unit
	 4.3…Variable-Latency Operations
	4.4…Exercises
	Reference


