
Chapter 3
Special Topics of Data Path Synthesis

Several important implementation techniques are presented in this chapter. The
first one is pipelining, a very commonly used method in systems that process great
volumes of data. Self-timing is the topic of the second section. To some extent it
can be considered as an extension of the pipelining concept and is especially
attractive in the case of very big circuits. The third section is an introduction to a
circuit level, or even algorithm level, transformation known as ‘‘loop unrolling’’.
It permits the exploration of different cost—performance tradeoffs, from combi-
national iterative circuits to completely sequential circuits. Finally, the last section
tackles the problem of reducing the number of connection resources.

3.1 Pipeline

A very useful implementation technique, especially for signal processing circuits,
is pipelining [1, 2]. It consists of inserting additional registers so that the maximum
clock frequency and input data throughput are increased. Furthermore, in the case
of FPGA implementations, the insertion of pipeline registers has a positive effect
on the power consumption.

3.1.1 Introductory Example

Consider the introductory example of Sect. 2.3.1. The set of Eq. (2.10) can be
implemented by a combinational circuit (option 1. of Sect. 2.3.1) made up of four
carry-save adders, with a computation time equal to 3�TFA. That means that the
minimum clock period of a synchronous circuit including this 7-to-3 counter
should be greater than 3�TFA, and that the introduction interval between successive
data inputs should also be greater than 3�TFA. The corresponding circuit is shown
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in Fig. 3.1a. As previously commented, this is probably a bad circuit because its
cost is high and its maximum clock frequency is low.

Consider now the circuit of Fig. 3.1b in which registers have been inserted in
such a way that operations scheduled in successive cycles, according to the ASAP
schedule of Fig. 2.9a, are separated by a register. The circuit still includes four
carry-save adders, but the minimum clock period of a synchronous circuit
including this counter must be greater than TFA, plus the set-up and hold times of
the registers, instead of 3�TFA. Furthermore, the minimum data introduction
interval is now equal to Tclk: as soon as a1, a2, b1 and b2 have been computed, their
values are stored within the corresponding output register, and a new computation,
with other input data, can start; at the same time, new computations of c1 and c2,
and of d1 and d2 can also start. Thus, at time t, three operations are executed in
parallel:

To summarize, assuming that the set-up and hold times are negligible,

Tclk [ TFA; latency ¼ 3 � Tclk; r ¼ Tclk;
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Fig. 3.1 a Combinational circuit. b Pipelined circuit
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where latency is the total computation time and r is the minimum data introduction
interval.

Another implementation, based on the admissible schedule of Fig. 2.9c is show
in Fig. 3.2. In this case the circuit is made up of two stages separated by a pipeline
register. Within every stage the operations are executed in two cycles. During the
first cycle the following operations are executed

and during the second cycle, the following ones are executed

The circuit of Fig. 3.2 includes two carry-save adders instead of four, and its
timing constraints are the following:
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Tclk [ TFA þ Tmultiplexor; latency ¼ 4 � Tclk; r ¼ 2 � Tclk:

To summarize, the main parameters of a pipelined circuit are the following.

• Latency (also called delay, response time): total delay between the introduction
of a new set of input data and the generation of the corresponding output results.
It is equal to n�Tclk where n is the number of pipeline stages and Tclk the clock
period.

• Pipeline rate (also called pipeline period): data introduction interval.
• Throughput (also called speed, bandwidth, production): number of input data

processed per time unit. For great numbers of processed data, it is the inverse of
the pipeline rate r.

Assuming that the combinational delay of stage number i is equal to ti, and that
the register set-up and hold times are negligible, the minimum clock period is the
maximum of all ti’s. In the first example (Fig. 3.1a) t1 = t2 = t3 = TFA, while in
the second example (Fig. 3.2) t1 = t2 = TFA ? Tmultiplexor.

A very common situation is that of the first example (Fig. 3.1). An initial
combinational circuit has a delay equal to C, so that it is able to process 1/C input
data per time unit. It is divided up into n pipeline stages, all of them with the same
delay C/n (balanced stages). Then

Tclk ffi C=n; r ¼ 1=Tclk ffi n=C; latency ¼ n � Tclk ffi C; T mð Þ
¼ n � Tclk þ m� 1ð Þ � Tclk;

where T(m) is the time necessary to process m input data. Thus, the average number
of input data processed per time unit is equal to m/T(m) = m/(n ? m - 1)�
Tclk % mn/(n ? m - 1)�C. For great values of m, the number of input data
processed per time unit is equal to n/C. Thus, with respect to the initial combinational
circuit, the throughput has been multiplied by n.

The actual speedup factor is smaller if the connection and register delays are
taken into account. Assume that those additional delays are equal to d time units.
Then, the minimum clock period is equal to Tclk = C/n ? d, r = 1/Tclk = n/
(C ? nd), latency = n�Tclk = C ? nd, T(m) = (n ? m-1)�Tclk = (n ? m-1)�(C/
n ? d) % m�(C/n ? d), m/T(m) % 1/(C/n ? d) = n/(C ? nd). Hence, the
throughput increase factor is equal to n�C/(C ? nd) = n/(1 ? a) where a = nd/C.

3.1.2 Segmentation

Given a computation scheme and its precedence graph G, a segmentation of G is
an ordered partition {S1, S2,…, Sk} of G. The segmentation is admissible if it
respects the precedence relationship. This means that if there is an arc from opJ [
Si to opM then either opM belongs to the same segment Si or it belongs to a different
segment Sj with j [ i. Two examples are shown in Fig. 3.3 in which the segments
are separated by dotted lines.
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The segmentation of Fig. 3.3a, that is S1 = {op1, op2}, S2 = {op3, op4},
S3 = {op5, op6}, is admissible, while that of Fig. 3.3b, that is S1 = {op1, op3},
S2 = {op2, op5}, S3 = {op4, op6}, is not (there is an arc op2 ? op3 from S2

to S1).
Once an admissible partition has been defined, every segment can be synthe-

sized separately, using the same methods as before (scheduling, resource assign-
ment). In order to assemble the complete circuit, additional registers are inserted:
if an arc of the precedence graph crosses the line that separates segments i and
i ? 1, then a register must be inserted; it will store the output data generated by
segment i that in turn are input data to segment i ? 1. As an example, the structure
of the circuit corresponding to Fig. 3.3a is shown in Fig. 3.4.

Assume that Ci and Ti are the cost and computation time of segment i. The cost
and latency of the complete circuit are

C ¼ C1 þ C2 þ � � � þ Ck þ Cregisters and T ¼ T1 þ T2 þ � � � þ Tk þ Tregisters

where Cregisters represents the total cost of the pipeline registers and Tregisters the
additional delay they introduce. The time interval d between successive data inputs is

d ¼ max T1; T2; . . .; Tkf g þ TSU þ TP ffi max T1; T2; . . .;Tkf g

where TSU and TP are the set-up and propagation times of the used flip-flops.
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Fig. 3.3 a Admissible segmentation. b Non-admissible segmentation
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A second, more realistic, example is now presented. It corresponds to part of an
Elliptic Curve Cryptography algorithm (Example 2.1).

Example 3.1
An admissible segmentation of the precedence graph of Fig. 2.10 is shown in
Fig. 3.5.

The operations corresponding to each segment are the following.

stage 1:
op1 and op2

stage 2:
op3 and op4

stage 3:
op5 and op6

Fig. 3.4 Pipelined circuit
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• Segment 1:

• Segment 2:

• Segment 3:

• Segment 4:

• Segment 5:

So, every segment includes a product over a finite field plus some additional
1-cycle operations (finite field additions and squares) in segments 2, 4 and 5. The
corresponding pipelined circuit, in which it is assumed that the output results are
g, d, l and i, is shown in Fig. 3.6.

A finite field product is a complex operation whose maximum computation time
tm, expressed in number of clock cycles, is much [1. Thus, the latency T and the
time interval d between successive data inputs of the complete circuit are

T ffi 5tm and d ffi tm:

The cost of the circuit is very high. It includes five multipliers, three adders, four
squarers and four pipeline registers. Furthermore, if used within the scalar product
circuit of Sect. 2.5, the fact that the time interval between successive data inputs has
been reduced (d % tm) does not reduce the execution time of Algorithm 2.4 as the
input variables xA, zA, xB and zB are updated at the end of every main loop execution.

As regards the control of the pipeline, several options can be considered. A simple
one is to previously calculate the maximum multiplier computation time tm and to
choose d[ tm ? 2 (computation time of segment 2). The control unit updates the
pipeline registers and sends a start pulse to all multipliers every d cycles. In the
following VHDL process, time_out is used to enable the pipeline register clock every
delta cycles and sync is a synchronization procedure (Sect. 2.5):
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In order to describe the complete circuit, five multipliers, three adders and four
squarers are instantiated, and every pipeline register, for example the segment 1
output register, can be described as follows:

A complete VHDL model pipeline_DF2.vhd is available at the Authors’ web page.
Another interesting option could be a self-timed circuit (Example 3.4).

3.1.3 Combinational to Pipelined Transformation

A very common situation is the following: a combinational circuit made up of
relatively small blocks, all of them with nearly equal delays, has been designed,
and its computation time is equal to T seconds. If this combinational circuit is used
as a computation resource of a synchronous circuit, then the clock cycle must be
greater than T, and in some cases it could be an over extended time (a too low
frequency). In order to increase the clock frequency, as well as to reduce the
minimum time interval between successive data inputs, the solution is pipelining.
As the combinational version already exists, it is no longer necessary to use the
general method of Sect. 3.1.2. The combinational circuit can be directly seg-
mented into stages.

Consider a generic example. The iterative circuit of Fig. 3.7 is made up twelve
identical blocks, each of them with a maximum delay of tcell seconds. The max-
imum propagation time of every connection is equal to tconnection seconds. Thus,
the computation time of this circuit is equal to T = 6tcell ? 7tconnection (input and
output connections included). Assume that this circuit is part of a synchronous
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circuit and that all inputs come from register outputs and all outputs go to register
inputs. Then the minimum clock cycle TCLK is defined by the following relation:

TCLK [ 6tcell þ 7tconnection þ tSU þ tP; ð3:1Þ

where tSU and tP are the minimum set-up and propagation times of the registers
(Chap. 6).

If the period defined by condition (3.1) is too long, the circuit must be seg-
mented. A 2-stage segmentation is shown in Fig. 3.8. Registers must be inserted in

*

xA zB

a

xP

*

xB zA

b’

+
c’

sq

d’

*

e’’

*
f’’’

+
g’’’

*

+
jiv

xP’

xP’’

a’

a’’

xB’ zA’ xA’

d’’ b’’ zA’’ xA’’

e’’’ a’’’
b’’’

zA’’’ xA’’’

zA
iv xA

iv

kiv

hiv
liv

i iv

giv div

sqsq

sq

Fig. 3.6 Pipelined circuit
(V s: s0 = s(t - 1),
s00 = s(t - 2), s0 0 0 =

s(t - 3), siv = s(t - 4))

3.1 Pipeline 63

http://dx.doi.org/10.1007/978-94-007-2987-2_6
http://dx.doi.org/10.1007/978-94-007-2987-2_6


all positions where a connection crosses the dotted line. Thus, seven registers must
be added. Assuming that the propagation time of every part of a segmented
connection is still equal to tconnection, the following condition must hold:

TCLK [ 3tcell þ 4tconnection þ tSU þ tP: ð3:2Þ

A 5-stage segmentation is shown in Fig. 3.9. In this case, 32 registers must be
added and the following condition must hold:

TCLK [ tcell þ 2tconnection þ tSU þ tP: ð3:3Þ

Consider a practical example.

Example 3.2
Implement a 128-bit adder made up of four 32-bit adders. A combinational
implementation is described in Fig. 3.10. The computation time T of the circuit is
equal to 4�Tadder, where Tadder is the computation time of a 32-bit adder.

Fig. 3.7 Combinational
circuit

Fig. 3.8 2-stage
segmentation
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A 4-stage segmentation is shown in Fig. 3.11. Every stage includes one 32-bit
adder so that the minimum clock cycle, as well as the minimum time interval
between successive data inputs, is equal to Tadder. The corresponding circuit is
shown in Fig. 3.12. In total, (7�32 ? 1) ? (6�32 ? 1) ? (5�32 ? 1) = 579 addi-
tional flip-flops are necessary in order to separate the pipeline stages.

Fig. 3.9 5-stage segmentation
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Comments 3.1

• The extra cost of the pipeline registers could appear to be prohibitive. Never-
theless, the basic cell of a field programmable gate array includes a flip-flop,
so that the insertion of pipeline registers does not necessarily increase the total
cost, computed in terms of used basic cells. The pipeline registers could consist
of flip-flops not used in the non-pipelined version.

• Most FPGA families also permit implementing with LUTs those registers that
do not need reset signals. This can be another cost-effective option.

• The insertion of pipeline registers also has a positive effect on the power con-
sumption: the presence of synchronization barriers all along the circuit drasti-
cally reduces the number of generated spikes.

3.1.4 Interconnection of Pipelined Components

Assume that several pipelined circuits are used as computational resources for
generating a new pipelined circuit. For example, consider a circuit that computes
g = a�b and f = (a�b ? c)�d, and uses a 2-stage pipelined multiplier and a 3-stage
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Fig. 3.12 Pipelined 128-bit adder
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pipelined adder, both of them working at the same frequency 1/Tclk and with the
same pipeline rate r = 1. The operations can be scheduled as shown in Fig. 3.13.
Some inputs and outputs must be delayed: input c must be delayed 2 cycles, input
d must be delayed 5 cycles, and output g must be delayed 5 cycles. The corre-
sponding additional registers, which maintain the correct synchronization of the
data, are sometimes called skewing (c and d) and deskewing (g) registers.

An alternative solution, especially in the case of large circuits, is self-timing.
As a generic example, consider the pipelined circuit of Fig. 3.14a. To each

stage, for example number i, are associated a maximum delay tMAX(i) and an
average delay tAV(i). The minimum time interval between successive data inputs is

d ¼ max tMAX 1ð Þ; tMAX 2ð Þ; . . .; tMAX nð Þf g; ð3:4Þ

and the minimum circuit latency T is

T ¼ n � max tMAX 1ð Þ; tMAX 2ð Þ; . . .; tMAX nð Þf g: ð3:5Þ

A self-timed version of the same circuit is shown in Fig. 3.14b. The control is
based on a Request/Acknowledge handshaking protocol:

• a req_in signal to stage 1 is raised by an external circuit; if stage 1 is free, the
input data is registered (ce = 1), and an ack_out signal is issued;

• the start signal of stage 1 is raised; after some amount of time, the done signal of
stage 1 elevates indicating the completion of the computation;

• a req_out signal to stage 2 is issued by stage 1; if stage 2 is free, the output of
stage 1 is registered and an ack_out signal to stage 1 is issued; and so on.

If the probability distribution of the internal data were uniform, inequalities (3.4)
and (3.5) would be substituted by the following:
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d ¼ max tAV 1ð Þ; tAV 2ð Þ; . . .; tAV nð Þf g; ð3:6Þ

T ¼ tAV 1ð Þ þ tAV 2ð Þ þ � � � þ tAV nð Þ: ð3:7Þ

Example 3.3
The following process describes a handshaking protocol component. As before,
sync is a synchronization procedure (Sect. 2.5):
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Fig. 3.14 a Pipelined circuit. b Self-timed pipelined circuit
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The corresponding signals are shown in Fig. 3.15.

Example 3.4
Consider a self-timed version of the circuit of Example 3.1 (Fig. 3.6). In stages 1
and 3, the done signals are the corresponding done outputs of the multipliers. In
stages 2, 4 and 5 an additional delay must be added. Stage 2 is shown in Fig. 3.16:
a synchronous delay D, greater than the sum of the computation times
of c0 = a0 ? b0 and d0 = (c0)2, has been added. A complete VHDL model
pipeline_ST.vhd is available at the Authors’ web page.

reqi-1

cei

acki

starti

donei

reqi

acki

segment i exectution

Fig. 3.15 Handshaking protocol
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With regards to the generation of the done signal in the case of combinational
components, an interesting method consists of using a redundant encoding of the
binary signals (Sect. 10.4 of [3]: every signal s is represented by a pair (s1, s0)
according to the definition of Table 3.1.

The circuit will be designed in such a way that during the initialization (reset),
and as long as the value of s has not yet been computed, (s1, s0) = (0, 0). Once the
value of s is known s1 = s and s0 = not(s).

Assume that the circuit includes n signals s1, s2,…, sn. Every signal si is
substituted by a pair (si1, si0). Then the done flag is computed as follows:

done ¼ s11 þ s10ð Þ � s21 þ s20ð Þ. . . sn1 þ sn0ð Þ:

During the initialization (reset) and as long as at least one of the signals is in
transition, the corresponding pair is equal to (0, 0), so that done = 0. The done
flag will be raised only when all signals have a stable value.

In the following example, only the signals belonging to the critical path of the
circuit are encoded.

Example 3.5
Generate an n-bit ripple-carry adder (Chap. 7) with end of computation detection.
For this purpose, all signals belonging to the carry chain, that is c0, c1, c2,…, cn - 1,
are represented by the form (c0, cb0), (c1, cb1), (c2, cb2),…, (cn - 1, cbn - 1). During
the initialization, all ci and cbi are equal to 0. When reset goes down,

axP
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Fig. 3.16 Self-timed pipelined circuit: stage 2

Table 3.1 Redundant
encoding

s s1 s0

Reset or in transition 0 0
0 0 1
1 1 0
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c0 ¼ cin; cb0 ¼ cin;

ciþ1 ¼ xi � yi þ xi � ci þ yi � ci; cbiþ1 ¼ xi � yi þ xi � cbi þ yi � cbi;
8i 2 0; 1; . . .n� 1f g:

The end of computation is detected when

cbi ¼ ci; 8i 2 0; 1; . . .; nf g:

The following VHDL process describes the circuit:

The corresponding circuit is shown in Fig. 3.17.
A complete model adder_ST2.vhd is available at the Authors’ web page.

In order to observe the carry chain delay, after clauses have been added (1 ns for
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Fig. 3.17 a Iterative cell. b Initial cell
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ci ? 1 and cbi ? 1, 0.2 ns for eoci ? 1). For synthesis purpose, they must be
deleted.

3.2 Loop Unrolling and Digit-Serial Processing

Consider an iterative algorithm whose main operation consists of executing a
procedure iterative_operations(a: in; b: out):

Assuming that a combinational component that implements iterative_operations
has been previously developed, two straightforward implementations of the
algorithm are shown in Fig. 3.18. The first one is an iterative combinational circuit
whose cost and delay are

Ccombinational ¼ p � Ccomponent; Tcombinational\p � Tcomponent:

The second one is a sequential circuit whose main characteristics are

Csequential ¼ Ccomponent þ Cregisters þ Ccontrol; Tclk [ Tcomponent; Tsequentiall ¼ p � Tclk:

An alternative option consists of a partial unroll of the ‘‘for’’ loop [1, 2]. Assume
that p = k�s. Then, s successive iteration steps are executed at each clock cycle.

initial_values

iterative_operations

data_1

iterative_operations

data_2

iterative_operations

·····
data_p-1

final_results

(a)

iterative_operations

registers
initially: initial_values

final_results

(b)

control

Fig. 3.18 Iterative algorithm
implementation
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An example, with s = 3, is shown in Fig. 3.19. Obviously, the clock cycle, say
Tclk

0, must be longer than in the sequential implementation of Fig. 3.18b (Tclk).
Nevertheless, it will be generally shorter than s�Tclk. On the one hand, the critical
path length of s serially connected combinational circuits is generally shorter than
the critical path length of a single circuit, multiplied by s. For example, the delay
of an n-bit ripple-carry adder is proportional to n; nevertheless the delay of two
serially connected adders, that compute (a ? b) ? c, is proportional to n ? 1, and
not to 2n. On the other hand, the register delays are divided by s. Furthermore,
when interconnecting several circuits, some additional logical simplifications can
be performed by the synthesis tool. So,

Cunrolled ¼ s � Ccomponent þ Cregisters þ Ccontrol; Tunrolled

¼ p=sð Þ � T 0clk; where T 0clk\s � Tclk:

Example 3.6
Given two naturals x and y, with x \ y, the following restoring division algorithm
computes two fractional numbers q = 0.q-1 q-2 … q-p and r \ y�2-p such that
x = q�y ? r and, therefore, q B x/y \ q ? 2-p:

iterative_operations

registers
initially: initial_values

final_results

control

iterative_operations

iterative_operations

Fig. 3.19 Unrolled loop
implementation (s = 3)
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Algorithm 3.1: Restoring division algorithm

The corresponding circuit is made up of a combinational component (Fig. 3.20), a
register that stores the successive remainders r0, r1,…, rp, a shift register that
serially stores the quotient bits q-1, q-2,…, q-p, and a control unit. The combi-
national component can be defined as follows:

A complete model restoring.vhd is available at the Authors’ web page.
An unrolled version, with s = 2, is made up of a combinational component

consisting of two serially connected copies of the component of Fig. 3.20, a
register that stores the successive remainders r0, r2, r4,…, a shift register that stores
the successive quotient bits q-1, q-3, q-5,…, another shift register that stores q-2,
q-4, q-6,…, and a control unit. The combinational component can be defined as
follows:

2r

subtractor

y

sign
q-i

1 0

next_r

Fig. 3.20 Restoring
algorithm (combinational
component)
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A complete model unrolled_divider.vhd is available at the Authors’ web page.
The first implementation (restoring.vhd) of Example 3.6 generates one quotient

bit at each step, while the second one (unrolled_divider.vhd) generates two quo-
tient bits at each step. So, as regards to the quotient generation, the first imple-
mentation could be considered as bit-serial and the second one as digit-serial,
defining in this case a digit as a 2-bit number. This is a common situation in
arithmetic function implementation: an algorithm processes data, or part of them,
in a bit-serial manner; a modified version of this initial algorithm permits the
processing of several bits, described as D, concurrently. The second implemen-
tation is called digital-serial and D is the digit size. This technique is used in many
examples during the course of this book, in order to explore cost—performance
tradeoffs: small values of D generate cost-effective circuits, while high values of
D yield fast circuits.

4r

subtractor

y

sign1

z1

subtractor

2y

z2

sign2
subtractor

3y

z3

sign3

sign1,sign2,sign3 1-- 01- 001 000

next_r

comb.
circ.

q-2i+1

q-2i

Fig. 3.21 Digit serial restoring divider (D = 2)
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Example 3.7
Consider again a restoring divider (Example 3.6). Algorithm 3.1 is modified in
order to generate two quotient bits (D = 2) at each step.

Algorithm 3.2: Base-4 restoring division algorithm (p even)

The corresponding circuit is made up of a combinational component (Fig. 3.21), a
register that stores the successive remainders r0, r2, r4,…, a shift register that stores
the successive quotient bits q-1, q-3, q-5,…, another shift register that stores q-2,
q-4, q-6,…, a circuit that computes 3y, and a control unit. The combinational
component can be defined as follows:

A complete model restoringDS.vhd is available at the Authors’ web page.
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The components of Fig. 3.20 (initial restoring algorithm) and Fig. 3.21 (digit-
serial restoring algorithm, with D = 2) have practically the same delay, namely
the computation time of an n-bit subtractor, so that the minimum clock period of
the corresponding dividers are practically the same. Nevertheless, the first divider
needs p clock periods to perform a division while the second only needs p/2. So, in
this example, the digit-serial approach practically divides by 2 the divider latency.
On the other hand the second divider includes three subtractors instead of one.

Loop unrolling and digit-serial processing are techniques that allow the
exploration of cost—performance tradeoffs, in searching for intermediate options
between completely combinational (maximum cost, minimum latency) and com-
pletely sequential (minimum cost, maximum latency) circuits. Loop unrolling can
be directly performed at circuit level, whatever the implemented algorithm, while
digit-serial processing looks more like an algorithm transformation. Nevertheless it
is not always so clear that they are different techniques.

3.3 Data Path Connectivity

In the data paths described in Chap. 2, multiplexers are associated with all the
computation resource and register data inputs. With this structure, sets of opera-
tions such as Ri := CRj(…) using different resources CRj can be executed in
parallel. In other words, this type of data path has maximum connectivity.

Assuming that the computation resources have at most p data inputs, another
option is to add p - 1 registers acc1, acc2,…, accp - 1, and to realize all the data
transfers with two multiplexers: the first one connects all the register outputs and
external signals to the first data input of every resource as well as to every register
acci; the second one connects the resource data outputs and the first multiplexer
output to the register data inputs. With this structure, an operation such as

Ri :¼ CRj R0;R1; . . .;Rp�1
� �

;

must be decomposed as follow:

acc1 :¼ R1; acc2 :¼ R2; . . .accp�1 :¼ Rp�1; Ri :¼ CRj R0; acc1; . . .; accp�1
� �

;

Obviously, it is no longer possible to execute several operations in parallel. On the
contrary, every operation is divided up into (at most) p steps. So, this option only
makes sense if one resource of each type is used.

Example 3.8
Figure 3.22 shows a minimum connectivity data path for the example of Sect. 2.5.
The operations of the first branch (km - i = 0) of Algorithm 2.4 are executed as
follows:
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This 2-multiplexer structure includes ten multiplexer inputs instead of thirty-two
in Figs. 2.18 and 2.19, but does not allow the concurrent execution of compatible
operations. Nevertheless, in this case, the total computation time is defined by the
only time consuming operations, which are the five products R := xA�acc, xB

:= xB�acc, xA := xA�acc, xB := R�acc and xA := xP�acc, so that the latency of the
circuit is still of the order of 5tm, tm being the delay of a multiplier. In conclusion,
the circuit of Fig. 3.22 has practically the same computation time as that of
Figs. 2.18 and 2.19, and uses less multiplexing resources.

3.4 Exercises

1. Generate VHDL models of different pipelined 128-bit adders.
2. Design different digit-serial restoring dividers (D = 3, D = 4, etc.).
3. The following algorithm computes the product of two natural numbers x and y:
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A computation resource mult_and_add that computes 2r ? xi�y, is available.

a. Define a combinational circuit using mult_and_add as a computation
resource.

b. Define and compare several pipelined versions of the circuit.
c. Unroll the loop in several ways and synthesize the corresponding circuits.

4. The following algorithm divides an integer x by a natural y, where -y B x \ y,
and generates a quotient q = q0�q1 q2…qp % x/y (Chap. 9).

mult XOR

register
initially: 1

register
initially: xP

register
initially: 0

xA xB zA

register
initially: 1

zB

register

R

acc

xA xB zA zB R

0 1 2 3 4

0 1 2 3

xP

5

square

Fig. 3.22 Example of minimum connectivity data path
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An adder-subtractor that computes 2r ± y, under the control of an add/sub
variable, is available.

a. Define a combinational circuit.
b. Define and compare several pipelined versions of the circuit.
c. Unroll the loop in several ways and synthesize the corresponding circuits.

5. In the following combinational circuits, the delays of every cell and of every
connection are equal to 5 ns and 2 ns, respectively.

For each circuit:

a. Compute the combinational delay.
b. Segment the circuit in two stages. How many registers must be added?
c. Segment the circuit in three stages. How many registers must be added?
d. What is the maximum number of segmentation stages?
e. Assume that the cutting of a connection generates two new connections

whose delays are still equal to 2 ns, and that the registers have a propa-
gation delay of 1 ns and a setup time of 0.5 ns. Which is the maximum
frequency of circuits b. and c. ?

6. The following pipelined floating-point components are available: fpmul com-
putes the product in 2 cycles, fpadd computes the sum in 3 cycles, and fpsqrt
computes the square root in 5 cycles, all of them with a rate r = 1.

a. Define the schedule of a circuit that computes the distance d between two
points (x1, y1) and (x2, y2) of the (x, y)-plane.

b. Define the schedule of a circuit that computes the distance d between two
points (x1, y1, z1) and (x2, y2, z2) of the three-dimensional space.

c. Define the schedule of a circuit that computes d = a ? ((a - b)�c)0.5.
d. In every case, how many registers must be added?
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