
Chapter 2
Architecture of Digital Circuits

This chapter describes the classical architecture of many digital circuits and presents,
by means of several examples, the conventional techniques that digital circuit
designers can use to translate an initial algorithmic description toan actual circuit.The
main topics are the decomposition of a circuit into Data Path and Control Unit and the
solution of two related problems, namely scheduling and resource assignment.

In fact, modern Electronic Design Automation tools have the capacity to directly
generate circuits from algorithmic descriptions, with performances—latency, cost,
consumption—comparable with those obtained using more traditional methods.
Those development tools are one of the main topics of Chap. 5. So, it is possible
that, in the future, the concepts and methods presented in this chapter will no longer
be of interest to circuit designers, allowing them to concentrate on algorithmic
innovative aspects rather than on scheduling and resource assignment optimization.

2.1 Introductory Example

As a first example, a ‘‘naive’’ method for computing the square root of a natural
x is considered. The following algorithm sequentially computes all the pairs
[r, s = (r ? 1)2] with r = 0, 1, 2, etc.:

Initially r = 0 and thus s = 1. Then, at each step, the pair [r ? 1, (r ? 2)2] is
computed in function of r and s = (r ? 1)2:

r þ 2ð Þ2¼ r þ 1ð Þ þ 1ð Þ2¼ r þ 1ð Þ2þ2 � r þ 1ð Þ þ 1 ¼ sþ 2 � r þ 1ð Þ þ 1:

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_2,
� Springer Science+Business Media Dordrecht 2012

23

http://dx.doi.org/10.1007/978-94-007-2987-2_5
http://dx.doi.org/10.1007/978-94-007-2987-2_5

The same method can be used for computing the square root of x. For that, the loop
execution is controlled by the condition s B x.

Algorithm 2.1: Square root

The loop is executed as long as s B x, that is (r ? 1)2 B x. Thus, at the end of the
loop execution,

r2� x\ r þ 1ð Þ2:

Obviously, this is not a good algorithm as its computation time is proportional to
the square root itself, so that for great values of x (x % 2n) the number of steps is
of the order of 2n/2. Efficient algorithms are described in Chap. 10.

In order to implement Algorithm 2.1, the list of operations executed at each
clock cycle must be defined. In this case, each iteration step includes three oper-
ations: evaluation of the condition s B x, s ? 2�(r ? 1) ? 1 and r ? 1. They can
be executed in parallel. On the other hand, the successive values of r and s must be
stored at each step. For that, two registers are used. Their initial values (0 and 1
respectively) are controlled by a common load signal, and their updating at the end
of each step by a common ce (clock enable) signal. The circuit is shown in Fig. 2.1.

To complete the circuit, a control unit in charge of generating the load and ce
signals must be added. It is a finite state machine with one input greater (detection
of the loop execution end) and two outputs, load and ce. A start input and a done
output are added in order to allow the communication with other circuits. The
finite state machine is shown in Fig. 2.2.

The circuit of Fig. 2.1 is made up of five blocks whose VHDL models are the
following:

• computation of next_r:

• computation of next_s:

(multiplying by 2 is the same as shifting one position to the right)

24 2 Architecture of Digital Circuits

http://dx.doi.org/10.1007/978-94-007-2987-2_10
http://dx.doi.org/10.1007/978-94-007-2987-2_10

1adder

x2

r+1

1adder

next_s

load
ceregister

initial value : 1

s

comparator

x

greater

load
ceregister

initial value : 0

r

next_r s+2·(r+1)+1

Fig. 2.1 Square root computation: data path

0

start=1/
nop

reset 1 2

start=0/
nop

start=0/
nop

start=1/
begin

greater=0/
update

greater=1/
nop

ce load done
nop 0 0 1

begin 0 1 0
update 1 0 0

Fig. 2.2 Square root
computation: control unit

2.1 Introductory Example 25

• register r:

• register s:

• end of loop detection:

The control unit is a Mealy finite state machine that can be modeled as follows:
• next state computation:

• output state computation:

26 2 Architecture of Digital Circuits

The circuit of Fig. 2.1 includes three n-bit adders: a half adder for computing
next_r, a full adder for computing next_s and another full adder (actually a sub-
tractor) for detecting the condition s [x. Another option is to use one adder and to
decompose each iteration step into three clock cycles. For that, Algorithm 2.1 is
slightly modified.

Algorithm 2.2: Square root, version 2

A circuit able to execute the three operations, that is r ? 1, s ? 2�r ? 1 and
evaluation of the condition s [x must be defined. The condition s [x is equivalent
to s C x ? 1 or s ? 2n - 1 - x C 2n. The binary representation of 2n - 1 - x is
obtained by complementing the bits of the binary representation of x. So, the
condition s [x is equivalent to s ? not(x) C 2n. Thus, the three operations amount
to additions: r ? 1, s ? 2�r ? 1 and s ? not(x). In the latter case, the output carry
defines the value of greater. The corresponding circuit is shown in Fig. 2.3. It is an
example of programmable computation resource: under the control of a 2-bit
command operation, it can execute the three previously defined operations.
The corresponding VHDL description is the following:

2.1 Introductory Example 27

The complete circuit is shown in Fig. 2.4.
A control unit must be added. It is a finite state machine with one input greater

and five outputs load, ce_r, ce_s, ce_greater. As before, a start input and a done
output are added in order to allow the communication with other circuits. The
finite state machine is shown in Fig. 2.5.

The building blocks of the circuit of Fig. 2.4 (apart from the programmable
resource) are the following:

• register r:

• register s:

0 1,2

0

r

0 1 2

x2

x

operation (1..0)

operand2operand1

adder not(operation(1))

result(n-1..0)

result(n)

s

Fig. 2.3 Square root
computation: programmable
computation resource

28 2 Architecture of Digital Circuits

0

start=1/
nop

reset 1 2

start=0/
nop

start=0/
nop

start=1/
begin

greater=1/
nop

34

greater=0/
update_r

- /
update_s

- /
update_g

commands ce_r, ce_s, ce_ greater, load, operation , done

nop 0 0 0 0 0 1
begin 0 0 0 1 0 0

update_r 1 0 0 0 0 0
update_s 0 1 0 0 1 0

update_greater 0 0 1 0 2 0

Fig. 2.5 Square root computation, second version: control unit

load
ce_sregister

initial value: 1

load
ce_rregister

initial value: 0

r s

operationprogrammable
resource

x

ce_greaterFF

greater

Fig. 2.4 Square root computation, second version: data path

2.1 Introductory Example 29

• flip-flop greater

The control unit is a Mealy finite state machine whose VHDL model is the
following:

• next state computation:

• output state computation:

30 2 Architecture of Digital Circuits

Complete VHDL models (square_root.vhd) of both circuits (Figs. 2.1, 2.4) are
available at the Authors’ web page.

2.2 Data Path and Control Unit

The general structure of a digital circuit is shown in Fig. 2.6. It consists of a data
path and a control unit. The data path (leftmost part of Fig. 2.6) includes com-
putation resources executing the algorithm operations, registers storing the algo-
rithm variables, and programmable connections (for example multiplexers, not
represented in Fig. 2.6) between resource outputs and register inputs, and between
register outputs and resource inputs. The control unit (rightmost part of Fig. 2.6) is
a finite state machine. It controls the sequence of data path operations by means of
a set of control signals (commands) such as clock enables of registers, program-
ming of computation resources and multiplexers, and so on. It receives from the
data path some feedback information (conditions) corresponding to the algorithm
control statements (loop, if, case).

In fact, the data path could also be considered as being a finite state machine. Its
internal states are all the possible register contents, the next-state computation is
performed by the computation resources, and the output states are all the possible
values of conditions. Nevertheless, the number of internal states is enormous and
there is generally no sense in using a finite state machine model for the data path.
However, it is interesting to observe that the data path of Fig. 2.6 is a Moore

2.1 Introductory Example 31

machine (the output state only depends on the internal state) while the control unit
could be a Moore or a Mealy machine. An important point is that, when two finite
state machines are interconnected, one of them must be a Moore machine in order
to avoid combinational loops.

According to the chronograms of Fig. 2.6, there are two critical paths: from the
data registers to the internal state register, and from the data registers to the data
registers. The corresponding delays are

Tdata�state ¼ t4 þ t1 ð2:1Þ

clk

internal_state

conditions

commands

next_state

t4

t1

t2

next-state
computation

(t1)

next state
(clk)

internal state

command
generation

(t2)

start

conditions

done

computation
resources

(t3)

(clk)

next_data

registers

data

commands

(t4)

data_indata_out

data

next_data

t3

Fig. 2.6 Structure of a digital circuit: data path and control unit

32 2 Architecture of Digital Circuits

and

Tdata�data ¼ t4 þ t2 þ t3; ð2:2Þ

where t1 is the computation time of the next internal state, t2 the computation time
of the commands, t3 the maximum delay of the computation resources and t4 the
computation time of the conditions (the set up and hold times of the registers have
not been taken into account).

The clock period must satisfy

Tclk [max t4 þ t1; t4 þ t2 þ t3f g: ð2:3Þ

If the control unit were a Moore machine, there would be no direct path from the
data registers to the data registers, so that (2.2) and (2.3) should be replaced by

Tstate�data ¼ t2 þ t3 ð2:4Þ

and

Tclk [max t4 þ t1; t2 þ t3f g: ð2:5Þ

In fact, it is always possible to use a Moore machine for the control unit. Generally
it has more internal states than an equivalent Mealy machine and the algorithm
execution needs more clock cycles. If the values of t1 to t4 do not substantially
vary, the conclusion could be that the Moore approach needs more, but shorter,
clock cycles. Many designers also consider that Moore machines are safer than
Mealy machines.

In order to increase the maximum frequency, an interesting option is to insert a
command register at the output of the command generation block. Then relation
(2.2) is substituted by

Tdata�commands ¼ t4 þ t2 and Tcommands�data ¼ t3; ð2:6Þ

so that

Tclk [max t4 þ t1; t4 þ t2; t3f g: ð2:7Þ

With this type of registered Mealy machine, the commands are available one cycle
later than with a non-registered machine, so that additional cycles must be
sometimes inserted in order that the data path and its control unit remain
synchronized.

To summarize, the implementation of an algorithm is based upon a decom-
position of the circuit into a data path and a control unit. The data path is in charge
of the algorithm operations and can be roughly defined in the following way:
associate registers to the algorithm variables, implement resources able to execute
the algorithm operations, and insert programmable connections (multiplexers)
between the register outputs (the operands) and the resource inputs, and between
the resource outputs (the results) and the register inputs. The control unit is a finite
state machine whose internal states roughly correspond to the algorithm steps, the

2.2 Data Path and Control Unit 33

input states are conditions (flags) generated by the data path, and the output states
are commands transmitted to the data path.

In fact, the definition of a data path poses a series of optimization problems,
some of them being dealt with in the next sections, for example: scheduling of the
operations, assignment of computation resources to operations, and assignment of
registers to variables. It is also important to notice that minor algorithm modifi-
cations sometimes yield major circuit optimizations.

2.3 Operation Scheduling

Operation scheduling consists in defining which particular operations are in the
process of execution during every clock cycle. For that purpose, an important
concept is that of precedence relation. It defines which of the operations must be
completed before starting a new one: if some result r of an operation A is an initial
operand of some operation B, the computation of r must be completed before the
execution of B starts. So, the execution of A must be scheduled before the exe-
cution of B.

2.3.1 Introductory Example

A carry-save adder or 3-to-2 counter (Sect. 7.7) is a circuit with 3 inputs and 2
outputs. The inputs xi and the outputs yj are naturals. Its behavior is defined by the
following relation:

x1 þ x2 þ x3 ¼ y1 þ y2: ð2:8Þ

It is made up of 1-bit full adders working in parallel. An example where x1, x2 and
x3 are 4-bit numbers, and y1 and y2 are 5-bit numbers, is shown in Fig. 2.7.

The delay of a carry-save adder is equal to the delay TFA of a 1-bit full adder,
independently of the number of bits of the operands. Let CSA be the function
associated to (2.8), that is

y1; y2ð Þ ¼ CSA x1; x2; x3ð Þ: ð2:9Þ

Using carry-save adders as computation resources, a 7-to-3 counter can be
implemented. It allows expressing the sum of seven naturals under the form of the
sum of three naturals, that is

x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 ¼ y1 þ y2 þ y3:

In order to compute y1, y2 and y3, the following operations are executed (op1 to op4

are labels):

34 2 Architecture of Digital Circuits

http://dx.doi.org/10.1007/978-94-007-2987-2_7
http://dx.doi.org/10.1007/978-94-007-2987-2_7

op1 : a1; a2ð Þ ¼ CSA x1; x2; x3ð Þ;
op2 : b1; b2ð Þ ¼ CSA x4; x5; x6ð Þ;
op3 : c1; c2ð Þ ¼ CSA a2; b2; x7ð Þ;
op4 : d1; d2ð Þ ¼ CSA a1; b1; c1ð Þ:

ð2:10Þ

According to (2.10) and the definition of CSA

a1 þ a2 ¼ x1 þ x2 þ x3;
b1 þ b2 ¼ x4 þ x5 þ x6;
c1 þ c2 ¼ a2 þ b2 þ x7;
d1 þ d2 ¼ a1 þ b1 þ c1;

so that

c1 þ c2 þ d1 þ d2 ¼ a2 þ b2 þ x7 þ a1 þ b1 þ c1

¼ x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ c1:

Thus

c2 þ d1 þ d2 ¼ a2 þ b2 þ x7 þ a1 þ b1 þ c1 ¼ x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7

and y1, y2 and y3 can be defined as follows:

y1 ¼ d1; y2 ¼ d2; y3 ¼ c2:

The corresponding precedence relation is defined by the graph of Fig. 2.8,
according to which op1 and op2 must be executed before op3, and op3 before op4.
Thus, the minimum computation time is equal to 3�TFA.

For implementing (2.10) the following options could be considered:

1. A combinational circuit, made up of four carry-save adders, whose structure is
the same as that of the graph of Fig. 2.8. Its computation time is equal to 3�TFA

and its cost to 4�CCSA, being CCSA the cost of a carry-save adder. This is
probably a bad solution because the cost is high (4 carry-save adders) and the
delay is long (3 full-adders) so that the minimum clock cycle of a synchronous
circuit including this 7-to-3 counter should be greater than 3�TFA.

2. A data path including two carry-save adders and several registers (Sect. 2.5).
The computation is executed in three cycles:

x12 x22

FA

y13 y23

x32

FA

y12 y22

x13 x23 x33 x10 x20

FA

y11 y21

x30

FA

y10 y20

x11 x21 x31

0

y24y14

0

Fig. 2.7 Carry-save adder

2.3 Operation Scheduling 35

The computation time is equal to 3�Tclk, where Tclk [TFA, and the cost equal to
2�CCSA, plus the cost of the additional registers, controllable connections and
control unit.

3. A data path including one carry-save adder and several registers. The com-
putation is executed in four cycles:

The computation time is equal to 4�Tclk, where Tclk [TFA, and the cost equal to
CCSA, plus the cost of the additional registers, controllable connections and
control unit.

In conclusion, there are several implementations, with different costs and delays,
corresponding to the set of operations in (2.10). In order to get an optimized
circuit, according to some predefined criteria, the space for possible implemen-
tations must be explored. For that, optimization methods must be used.

x1,x2,x3 x4,x5,x6

b2a2a1 b1

c1 c2

d1,d2

x7

y1,y2

y3

op1 op2

op3

op4

Fig. 2.8 Precedence relation
of a 7-to-3 counter

36 2 Architecture of Digital Circuits

2.3.2 Precedence Graph

Consider a computation scheme, that is to say, an algorithm without branches and
loops. Formally it can be defined by a set of operations

opJ : xi; xk; . . .ð Þ ¼ f xl; xm; . . .ð Þ; ð2:11Þ

where xi, xk, xl, xm,… are variables of the algorithm and f one of the algorithm
operation types (computation primitives). Then, the precedence graph (or data flow
graph) is defined as follows:

• associate a vertex to each operation opJ,
• draw an arc between vertices opJ and opM if one of the results generated by opJ

is used by opM.

An example was given in Sect. 2.3.1 (operations (2.10) and Fig. 2.8).
Assume that the computation times of all operations are known. Let tJM be the

computation time, expressed in number of clock cycles, of the result(s) generated
by opJ and used by opM. Then, a schedule of the algorithm is an application Sch
from the set of vertices to the set of naturals that defines the number Sch(opJ) of
the cycle at the beginning of which the computation of opJ starts. A necessary
condition is that

SchðopMÞ� SchðopJÞ þ tJM ð2:12Þ

if there is an arc from opJ to opM.
As an example, if the clock period is greater than the delay of a full adder, then,

in the computation scheme (2.10), all the delays are equal to 1 and two admissible
schedules are

Schðop1Þ ¼ 1; Schðop2Þ ¼ 1; Schðop3Þ ¼ 2; Schðop4Þ ¼ 3; ð2:13Þ

Schðop1Þ ¼ 1; Schðop2Þ ¼ 2; Schðop3Þ ¼ 3; Schðop4Þ ¼ 4: ð2:14Þ

They correspond to the options 2 and 3 of Sect. 2.3.1.
The definition of an admissible schedule is an easy task. As an example, the

following algorithm defines an ASAP (as soon as possible) schedule:

• initial step: Sch(opJ) = 1 for all initial (without antecessor) vertices opJ;
• step number n ? 1: choose an unscheduled vertex opM whose total amount of

antecessors, say opP, opQ,… have already been scheduled, and define
Sch(opM) = maximum{Sch(opP) ? tPM, Sch(opQ) ? tQM,…}.

Applied to (2.10) the ASAP algorithm gives (2.13). The corresponding data flow
graph is shown in Fig. 2.9a.

An ALAP (as late as possible) schedule can also be defined. For that, assume
that the latest admissible starting cycle for all the final vertices (without successor)
has been previously specified:

2.3 Operation Scheduling 37

• initial step: Sch(opM) = latest admissible starting cycle of opM for all final vertices opM;
• step number n ? 1: choose an unscheduled vertex opJ whose all successors, say

opP, opQ,… have already been scheduled, and define Sch(opJ) = mini-
mum{Sch(opP) - tJP, Sch(opQ) - tJQ,…}.

Applied to (2.10), with Sch(op4) = 4, the ALAP algorithm generates the data
flow graph of Fig. 2.9b.

Let ASAP_Sch and ALAP_Sch be ASAP and ALAP schedules, respectively.
Obviously, if opM is a final operation, the previously specified value ALAP_-
Sch(opM) must be greater than or equal to ASAP_Sch(opM). More generally,
assuming that the latest admissible starting cycle for all the final operations has been
previously specified, for any admissible schedule Sch the following relation holds:

ASAP Sch opJð Þ� Sch opJð Þ�ALAP Sch opJð Þ; 8opJ : ð2:15Þ

Along with (2.12), relation (2.15) defines the admissible schedules.
An example of admissible schedule is defined by (2.14), to which corresponds

the data flow graph of Fig. 2.9c.
A second, more realistic, example is now presented. It corresponds to part of an

Elliptic Curve Cryptography algorithm.

Example 2.1
Given a point P = (xP, yP) of an elliptic curve and a natural k, the scalar product
kP = P ? P+ ��� ? P can be defined [1, 2]. In the case of the curve
y2 ? xy = x3 ? ax ? 1 over the binary field, the following formal algorithm [3]
computes kP. The initial data are the scalar k = km - 1 km - 2…k0 and the x-
coordinate xP of P. All the algorithm variables are elements of the Galois field
GF(2m), that is, polynomials of degree m over the binary field GF(2) (Chap. 13).

x1,x2,x3 x4,x5,x6

b2a2a1 b1

c1 c2

d1,d2

x7

y1,y2

y3

op1 op2

op3

op4

1 1

2

3

x1,x2,x3 x4,x5,x6

b2a2a1 b1

c1 c2

d1,d2

x7

y1,y2

y3

op1 op2

op3

op4

2 2

3

4

x1,x2,x3 x4,x5,x6

b2a2 b1

c1 c2

d1,d2

x7

y3

op1 op2

op3

op4

1 2

3

4

a1

(a) (b) (c)

Fig. 2.9 7-to-3 counter: a ASAP schedule. b ALAP schedule. c Admissible schedule

38 2 Architecture of Digital Circuits

http://dx.doi.org/10.1007/978-94-007-2987-2_13
http://dx.doi.org/10.1007/978-94-007-2987-2_13

Algorithm 2.3: Scalar product, projective coordinates

In fact, the preceding algorithm computes the value of four variables xA, zA, xB and
zB in function of k and xP. A final, not included, step would be to compute the
coordinates of kP in function of the coordinates of P (xP and yP) and of the final
values of xA, zA, xB and zB.

Consider one step of the main iteration of Algorithm 2.3, and assume that
km - i = 0. The following computation scheme computes the new values of xA, zA,
xB and zB in function of their initial values and of xP. The available
computation primitives are the addition, multiplication and squaring in GF(2m)
(Chap. 13).

2.3 Operation Scheduling 39

http://dx.doi.org/10.1007/978-94-007-2987-2_13
http://dx.doi.org/10.1007/978-94-007-2987-2_13

The updated values of xA, zA, xB and zB are xA = l, zA = i, xB = g, zB = d. The
corresponding data flow graph is shown in Fig. 2.10. The operation type corre-
sponding to every vertex is indicated (instead of the operation label). If km - i = 1
the computation scheme is the same but for the interchange of indexes A and B.

Addition and squaring in GF(2m) are relatively simple one-cycle operations,
while multiplication is a much more complex operation whose maximum com-
putation time is tm � 1. In what follows it is assumed that tm = 300 cycles.
An ASAP schedule is shown in Fig. 2.11. The computation of g starts at the
beginning of cycle 603 so that all the final results are available at the beginning of
cycle 604. The corresponding circuit must include three multipliers as the
computations of a, b and h start at the same time.

The computation scheme includes 5 multiplications. Thus, in order to execute
the algorithm with only one multiplier, the minimum computation time is 1,500.
More precisely, one of the multiplications e, f or h cannot start before cycle 1,201,
so that the next operation (g or i) cannot start before cycle 1,501. An ALAP
schedule, assuming that the computations of g and i start at the beginning of cycle
1,501, is shown in Fig. 2.12.

2.3.3 Optimization Problems

Assuming that the latest admissible starting cycle for all the final operations has
been previously specified then any schedule, such that (2.12) and (2.15) hold true,
can be chosen. This poses optimization problems. For example:

1. Assuming that the maximum computation time has been previously specified,
look for a schedule that minimizes the number of computation resources of
each type.

a
*

xA,zB

*

xB,zA

b

+

c

squ

d

*

xP

*

f

e

+

g

*

xA,zA

h

squ

i

+

xA,zA

j

squ

k

squ

l

Fig. 2.10 Example 2.1:
precedence graph

40 2 Architecture of Digital Circuits

2. Assuming that the number of available computation resources of each type has
been previously specified, minimize the computation time.

An important concept is the computation width w(f) with respect to the com-
putation primitive (operation type) f. First define the activity intervals of f. Assume
that f is the primitive corresponding to the operation opJ, that is

opJ : xi; xk; . . .ð Þ ¼ f xl; xm; . . .ð Þ:

Then

Sch opJð Þ; Sch opJð Þ þ maximumftJMg½ �

a
*

xA,zB

*

xB,zA

b

+

c

squ

d

*

xP

*

f

e

+

g

*

xA,zA

h

squ

i

+

xA,zA

j

squ

k

squ

l

1 1 1 1

301

302

303

603

301 301 2

3

Fig. 2.11 Example 2.1:
ASAP schedule

a
*

xA,zB

*

xB,zA

b

+

c

squ

d

*

xP

*

f

e

+

g

*

xA,zA

h

squ

i

+

xA,zA

j

squ

k

squ

l

1501

1201

1200

1199

899

1201

899

1501

1201

1501

1500

1499

Fig. 2.12 Example 2.1:
ALAP schedule with
Sch(g) = 1501

2.3 Operation Scheduling 41

is an activity interval of f. This means that a resource of type f must be available
from the beginning of cycle Sch(opJ) to the end of cycle Sch(opJ) ? tJM for all
M such that there is an arc from opJ to opM. An incompatibility relation over the set of
activity intervals of f can be defined: two intervals are incompatible if they overlap. If
two intervals overlap, it is obvious that the corresponding operations cannot be
executed by the same computation resource. Thus, a particular resource of type f must
be associated to each activity interval of f in such a way that if two intervals overlap,
then two distinct resources of the same type must be used. The minimum number of
computation resources of type f is the computation width w(f).

The following graphical method can be used for computing w(f).

• Associate a vertex to every activity interval.
• Draw an edge between two vertices if the corresponding intervals overlap.
• Color the vertices in such a way that two vertices connected by an edge have

different colors (a classical problem of graph theory).

Then, w(f) is the number of different colors, and every color defines a particular
resource assigned to all edges (activity intervals) with this color.

Example 2.2
Consider the scheduled precedence graph of Fig. 2.11. The activity intervals of the
multiplication are

a : ½1; 300�; b : ½1; 300�; h : ½1; 300�; f : 301; 600½ �; e : 303; 602½ �:

The corresponding incompatibility graph is shown in Fig. 2.13a. It can be colored
with three colors (c1, c2 and c3 in Fig. 2.13a). Thus, the computation width with
respect to the multiplication is equal to 3.

If the scheduled precedence graph of Fig. 2.12 is considered, then the activity
intervals of the multiplication are

a : 899; 1198½ �; b : 899; 1198½ �; h : 1201; 1500½ �; f : 1201; 1500½ �; e : 1201; 1500½ �:

The corresponding incompatibility graph is shown in Fig. 2.13b. It can be colored
with three colors. Thus, the computation width with respect to the multiplication is
still equal to 3.

Nevertheless, other schedules can be defined. According to (2.15) and
Figs. 2.11 and 2.12, the time intervals during which the five multiplications can
start are the following:

a : 1; 899½ �; b : 1; 899½ �; h : 1; 1201½ �; f : 301; 1201½ �; e : 303; 1201½ �:

As an example, consider the admissible schedule of Fig. 2.14. The activity
intervals of the multiplication operation are

a : ½1; 300� ; b : 301; 600½ �; h : 601; 900½ �; f : 901; 1200½ �; e : 1201; 1500½ �:

42 2 Architecture of Digital Circuits

They do not overlap hence the incompatibility graph does not include any edge
and can be colored with one color. The computation width with respect to the
multiplication is equal to 1.

Thus, the two optimization problems mentioned above can be expressed in
terms of computation widths:

1. Assuming that the maximum computation time has been previously specified,
look for a schedule that minimizes some cost function

C ¼ c1 � wðf 1Þ þ c2 � wðf 2Þ þ � � � þ cm � wðf mÞ ð2:16Þ

where f1, f2,…, fm are the computation primitives and c1, c2,…, cm their cor-
responding costs.

2. Assuming that the maximum computation width w(f) with respect to every
computation primitive f has been previously specified, look for a schedule that
minimizes the computation time.

Both are classical problems of scheduling theory. They can be expressed in
terms of integer linear programming problems whose variables are xIt for all

a

b

h e

f

c1

c2

c3
c1

c1

a

b

h e

f

c1

c2 c3

c1

c2

(a) (b)

Fig. 2.13 ColoringComputation width: graph coloring

a
*

xA,zB

*

xB,zA

b

+

c

squ

d

*

xP

*

f

e

+

g

*

xA,zA

h

squ

i

+

xA,zA

j

squ

k

squ

l

1 1

601

602

1201

1501

901
2

3

301 601

901

Fig. 2.14 Example 2.1:
admissible schedule using
only one multiplier

2.3 Operation Scheduling 43

operation indices I and all possible cycle numbers t: xIt = 1 if Sch(eI) = t, 0
otherwise. Nevertheless, except for small computation schemes—generally trac-
table by hand—the so obtained linear programs are intractable. Modern Electronic
Design Automation tools execute several types of heuristic algorithms applied to
different optimization problems (not only to schedule optimization). Some of the
more common heuristic strategies are list scheduling, simulated annealing and
genetic algorithms.

Example 2.3
The list scheduling algorithm, applied to the graph of Fig. 2.10, with tm = 300 and
assuming that the latest admissible starting cycle for all the final operations is
cycle number 901 (first optimization problem), would generate the schedule of
Fig. 2.15. The list scheduling algorithm, applied to the same graph of Fig. 2.10,
with tm = 300 and assuming that the computation width is equal to 1 for all
operations (second optimization problem), would generate the schedule of
Fig. 2.14.

2.4 Resource Assignment

Once the operation schedule has been defined, several decisions must be taken.

• The number w(f) of resources of type f is known, but it remains to decide which
particular computation resource executes each operation. Furthermore the def-
inition of multifunctional programmable resources could also be considered.

• As regards the storing resources, a simple solution is to assign a particular
register to every variable. Nevertheless, in some cases the same register can be
used for storing different variables.

a
*

xA,zB

*

xB,zA

b

+
c

squ

d

*

xP

*
f

e

+
g

*

xA,zA

h

squ

i

+

xA,zA

j

squ

k

squ

l

1

599

600

601

901

601

3

601

901

299

2

1

Fig. 2.15 Example 2.3:
schedule corresponding to the
first optimization problem

44 2 Architecture of Digital Circuits

A key concept for assigning registers to variables is the lifetime [tI, tJ] of every
variable: tI is the number of the cycle during which its value is generated, and tJ is
the number of the last cycle during which its value is used.

Example 2.4
Consider the computation scheme of Example 2.1 and the schedule of Fig. 2.14.
The computation width is equal to 1 for all primitives (multiplication, addition and
squaring). The computation is executed as follows:

In order to compute the variable lifetimes, it is assumed that the multiplier reads
the values of the operands during some initial cycle, say number I, and generates
the result during cycle number I ? tm - 1 (or sooner), so that this result can be
stored at the end of cycle number I ? tm - 1 and is available for any operation
beginning at cycle number I ? tm (or later). As regards the variables xA, zA, xB and
zB, in charge of passing values from one iteration step to the next (Algorithm 2.3),
their initial values must be available from the first cycle up to the last cycle during
which those values are used. At the end of the computation scheme execution they
must be updated with their new values. The lifetime intervals are given in
Table 2.1.

The definition of a minimum number of registers can be expressed as a graph
coloring problem. For that, associate a vertex to every variable and draw an edge
between two variables if their lifetime intervals are incompatible, which means
that they have more than one common cycle. As an example, the lifetime intervals
of j and k are compatible, while the lifetime intervals of b and d are not.

The following groups of variables have compatible lifetime intervals:

2.4 Resource Assignment 45

zBðinitial! 1Þ; jð1! 2Þ; kð2! 3Þ; lð3! finalÞ;
xBðinitial! 301Þ; bð600! 901Þ; f ð1200! 1501Þ; gð1501! finalÞ;
zAðinitial! 601Þ; cð601! 602Þ; dð602! finalÞ;
xAðinitial! 601Þ; hð900! 901Þ; eð1500! 1501Þ;
að300! 901Þ; ið901! finalÞ:

Thus, the computing scheme can be executed with five registers, namely xA, zA, xB,
zB and R:

Table 2.1 Lifetime intervals a [300, 901]
j [1, 2]
k [2, 3]
l [3, final]
b [600, 901]
h [900, 901]
c [601, 602]
d [602, final]
f [1200, 1501]
i [901, final]
e [1500, 1501]
g [1501, final]
xA [initial, 601]
zA [initial, 601]
xB [initial, 301]
zB [initial, 1]

46 2 Architecture of Digital Circuits

2.5 Final Example

Each iteration step of Algorithm 2.3 consists of executing a computation scheme,
either the preceding one when km - i = 0, or a similar one when km - i = 1. Thus,
Algorithm 2.3 is equivalent to the following algorithm 2.4 in which sentences
separated by commas are executed in parallel.

Algorithm 2.4: Scalar product, projective coordinates (scheduled version)

The data processed by Algorithm 2.4 are m-bit vectors (polynomials of degree
m over the binary field GF(2)) and the computation resources are field multipli-
cation, addition and squaring. Field addition amounts to bit-by-bit modulo 2
additions (XOR functions). On the other hand, VHDL models of computation
resources executing field squaring and multiplication are available at the Authors’
web page, namely classic_squarer.vhd and interleaved_mult.vhd (Chap. 13). The
classic_squarer component is a combinational circuit. The interleaved_mult
component reads and internally stores the input operands during the first cycle
after detecting a positive edge on start_mult and raises an output flag mult_done
when the multiplication result is available.

2.5 Final Example 47

http://dx.doi.org/10.1007/978-94-007-2987-2_13
http://dx.doi.org/10.1007/978-94-007-2987-2_13

The operations executed by the multiplier are

xA � zB; xB � zA; xA � zA;R � xB; xP � zA; xB � zB;R � xA; xP � zB:

An incompatibility relation can be defined over the set of involved variables: two
variables are incompatible if they are operands of a same operation. As an
example, xA and zB are incompatible, as xA�zB is one of the operations. The cor-
responding graph can be colored with two colors corresponding to the sets

fxA; xB; xPg and fzA; zB;Rg:

The first set of variables can be assigned to the leftmost multiplier input and the
other to the rightmost input.

The operations executed by the adder are

xA þ zA;Rþ xB; xA þ xB; xB þ zB;Rþ xA; xB þ xA:

The incompatibility graph can be colored with three colors corresponding to the
sets

fxA; zBg; fxB; zAg and fRg:

The first one is assigned to the leftmost adder input, the second to the rightmost
input, and R to both inputs.

Finally, the operations realized by the squaring primitive are

z2
B; z

2
A; x

2
A; x

2
B:

The part of the data path corresponding to the computation resources and the
multiplexers that select their input data is shown in Fig. 2.16. The corresponding
VHDL model can easily be generated. As an example, the multiplier, with its input
multiplexers, can be described as follows.

Consider now the storing resources. Assuming that xP and k remain available
during the whole algorithm execution, there remain five variables that must be
internally stored: xA, xB, zA, zB and R. The origin of the data stored in every register
must be defined. For example, the operations that update xA are

48 2 Architecture of Digital Circuits

So, the updated value can be 1 (initial value), product, adder_out or zB. A similar
analysis must be done for the other registers. Finally, the part of the data path
corresponding to the registers and the multiplexers that select their input data is
shown in Fig. 2.17. The corresponding VHDL model is easy to generate. As an
example, the xA register, with its input multiplexers, can be described as follows.

xA xB xP zA zB R

sel_p1 sel_p2
0 21 0 21

product

interleaved_mult
start_mult

mult_done

xA zB R xB zA R

sel_a1 sel_a2
0 21 0 21

adder_out

XOR gates

zA zB xA

sel_sq
0 21

xB

square

3

classic_squarer

Fig. 2.16 Example 2.4: computation resources

2.5 Final Example 49

A complete model of the data path scalar_product_data_path.vhd is available at
the Authors’ web page.

The complete circuit is defined by the following entity.

It is made up of

• the data path;
• a shift register allowing sequential reading of the values of km - i;
• a counter for controlling the loop execution;

product zB

sel_xA
0 21

load
en_xA

adder_out

register
initially: 1

product zA

sel_xB
0 21

load
en_xB

adder_out

register
initially:xP

adder_out R

sel_zA
0 21

load
en_zA

square

register
initially: 0

xA xB

zB

3

zA

adder_out zA

sel_zB
0 21

load
en_zB

square

register
initially:1

R

3

zB

product square

sel_R
0 1

en_Rregister

R

Fig. 2.17 Example 2.5: data registers

50 2 Architecture of Digital Circuits

• a finite state machine in charge of generating all the control signals, that is
start_mult, load, shift, en_xA, en_xB, en_zA, en_zB, en_R, sel_p1, sel_p2,
sel_a1, sel_a2, sel_sq, sel_xA, sel_xB, sel_zA, sel_zB and sel_R. In particular,
the control of the multiplier operations is performed as follows: the control unit
generates a positive edge on the start_mult signal, along with the values of
sel_p1 and sel_p2 that select the input operands; then, it enters a wait loop until
the mult_done flag is raised (instead of waiting for a constant time, namely 300
cycles, as was done for scheduling purpose); during the wait loop the start_mult
is lowered while the sel_p1 and sel_p2 values are maintained; finally, itgenerates
thesignals forupdating the register that stores the result.Asanexample, assume that
the execution of the fourth instruction of the main loop, that is xB:= xB�zA, starts at
state 6anduses identifiers start4,wait4 andend4for representing thecorresponding
commands. The corresponding part of the next-state function is

and the corresponding part of the output function is

• a command decoder (Chap. 4). Command identifiers have been used in the
definition of the finite state machine output function, so that a command decoder
must be used to generate the actual control signal values in function of the
identifiers. For example, the command start4 initializes the execution of
xB:= xB�zA and is decoded as follows:

In the case of operations such as the first of the main loop, that is R:= xA�zB,
zB:= xA ? zA, the 1-cycle operation zB:= xA ? zA is executed in parallel with the
final cycle of R:= xA�zB and not in parallel with the initial cycle. This makes the
algorithm execution a few cycles (3) longer, but this is not significant as tm is
generally much greater than 3. Thus, the control signal values corresponding to
the identifier end1 are:

2.5 Final Example 51

http://dx.doi.org/10.1007/978-94-007-2987-2_4
http://dx.doi.org/10.1007/978-94-007-2987-2_4

The control unit also detects the start signal and generates the done flag. A com-
plete model scalar_product.vhd is available at the Authors’ web page.

Comment 2.1
The interleaved_mult component is also made up of a data path and a control unit,
while the classic_squarer component is a combinational circuit. An alternative
solution is the definition of a data path able to execute all the operations, including
those corresponding to the interleaved_mult and classic_squarer components. The
so-obtained circuit could be more efficient than the proposed one as some com-
putation resources could be shared between the three algorithms (field multipli-
cation, squaring and scalar product). Nevertheless, the hierarchical approach
consisting of using pre-existing components is probably safer and allows a
reduction in the development times.

Instead of explicitly disassembling the circuit into a data path and a control unit,
another option is to describe the operations that must be executed at each cycle,
and to let the synthesis tool define all the details of the final circuit. A complete
model scalar_product_DF2.vhd is available at the Authors’ web page.

Comment 2.2
Algorithm 2.4 does not compute the scalar product kP. A final step is missing:

The design of a circuit that executes this final step is left as an exercise.

52 2 Architecture of Digital Circuits

2.6 Exercises

1. Generate several VHDL models of a 7-to-3 counter. For that purpose use the
three options proposed in Sect. 2.3.1.

2. Generate the VHDL model of a circuit executing the final step of the scalar
product algorithm (Comment 2.2). For that purpose, the following entity,
available at the Authors’ web page, is used:

It computes z = g�h-1 over GF(2m). Several architectures can be considered.

3. Design a circuit to compute the greatest common divisor of two natural
numbers, based on the following simplified Euclidean algorithm.

4. Design a circuit for computing the greatest common divisor of two natural
numbers, based on the following Euclidean algorithm.

5. The distance d between two points (x1, y1) and (x2, y2) of the (x, y)-plane is
equal to d = ((x1 - x2)2 ? (y1 - y2)2)0.5. Design a circuit that computes
d with only one subtractor and one multiplier.

6. Design a circuit that, within a three-dimensional space, computes the distance
between two points (x1, y1, z1) and (x2, y2, z2).

7. Given a point (x, y, z) of the three-dimensional space, design a circuit that
computes the following transformation.

xt

yt

zt

2
4

3
5 ¼

a11 a21 a31

a21 a22 a32

a31 a32 a11

2
4

3
5�

x
y
z

2
4
3
5

8. Design a circuit for computing z = ex using the formula

2.6 Exercises 53

ex ¼ 1þ x

1!
þ x2

2!
þ x3

3!
þ � � �

9. Design a circuit for computing xn, where n is a natural, using the following
relations: x0 = 1; if n is even then xn = (xn/2)2, and if n is odd then
xn = x�(x(n-1)/2)2.

10. Algorithm 2.4 (scalar product) can be implemented using more than one
interleaved_multiplier. How many multipliers can operate in parallel? Define
the corresponding schedule.

References

1. Hankerson D, Menezes A, Vanstone S (2004) Guide to elliptic curve cryptography. Springer,
New York

2. Deschamps JP, Imaña JL, Sutter G (2009) Hardware implementation of finite-field arithmetic.
McGraw-Hill, New York

3. López J, Dahab R (1999) Improved algorithm for elliptic curve arithmetic in GF(2n). Lect
Notes Comput Sci 1556:201–212

54 2 Architecture of Digital Circuits

	2 Architecture of Digital Circuits
	2.1…Introductory Example
	2.2…Data Path and Control Unit
	2.3…Operation Scheduling
	2.3.1 Introductory Example
	2.3.2 Precedence Graph
	2.3.3 Optimization Problems

	2.4…Resource AssignmentResource Assignment
	2.5…Final Example
	2.6…Exercises
	References

