
Chapter 15
Embedded Systems Development:
Case Studies

Embedded systems are computers designed and programmed to meet the
requirements of a specific application. Applications may not require an OS
(Operating System) or may rely on a customized OS. The system architecture is
usually composed of a low-cost microprocessor, memory and peripherals inter-
connected through busses. It may also include a coprocessor to speed-up a specific
computation.

This chapter introduces the design of embedded systems on Xilinx FPGAs
through a set of case studies. The studies focus on the hardware development of a
peripheral and a coprocessor, as well as their software drivers. It assumes you are
familiarized with the VHDL necessary on the hardware implementation, and with
C/C++ which is required during the software development. In order to simplify the
contents, they only expose the most relevant steps and interesting portions of the
source files. They usually make references to specific documentation available in
the Xilinx software, to get more details. The full examples can be downloaded
from the authors’ website.

15.1 Introduction to Xilinx EDK

The FPGA implementation of embedded systems requires a set of tools which
permits the building of the hardware and the software (also named firmware).
It also provides utilities to simulate and debug the embedded system.

The Xilinx Embedded Development Kit (EDK) suite facilitates the develop-
ment of those systems. The system’s hardware is composed of a general-purpose
microprocessor connected to some peripherals through busses. The software
development provides the firmware executed by the microprocessor. The EDK
generates the bitstream of the system in order to program the FPGA, which can be
connected to the debugger tools, in order to test it on a real scenario. EDK also

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_15,
� Springer Science+Business Media Dordrecht 2012

371

permits the building of a simulation model in order to check the hardware design
through a Hardware Description Language (HDL) simulator.

The EDK is frequently updated and upgraded. We will focus this chapter on the
ISE Design Suite 13.1 for Windows since it is probably the most popular oper-
ating system for PCs, but there are no significant differences with versions for
other operating systems. Although the case studies included in this chapter can be
implemented on other upgraded EDK versions, they might require some small
changes.

The EDK is composed of a set of tools:

• Xilinx Platform Studio (XPS). A graphical user interface that permits the
designing of the hardware of the embedded system from a set of interconnected
IP cores. It is the top-level tool which takes care of the necessary files and steps
needed to successfully complete the hardware design. The XPS implements the
design flow which runs other low-level tools in order to compute the hardware
synthesis and implementation (Platgen), the generation of the bitstream (Bit-
Gen) and the simulation model (Simgen).

• Software Development Kit (SDK). An integrated environment based on the
Eclipse/CDT to manage the development of the software. It launches the C/C++
cross-compiler and linker to build the binary which is executed by the embedded
microprocessor. Moreover, it also provides a simple interface with the debugger
and profiler tools used by more advanced users. SDK also builds the BSP (Board
Support Package) through a low-level tool (Libgen). The BSP contains the set of
software drivers used to control the hardware from the executable.

• IP cores. The library of configurable cores (microprocessors, peripherals, busses,
etc.) that are used as basic building blocks of the embedded system. Most of
these cores are licensed with the EDK, but there are also some cores that must
be licensed separately. Many cores include a set of programming functions and
drivers that can be used to facilitate the software development.

• GNU tools chain. The set of tools that generate the software libraries and the
executable binaries. It includes the GNU C/C++ cross-compiler and linker. The
GNU tools are developed for the Linux operating system, but EDK includes
ported versions to the Windows OS.

Additionally, the EDK relies on other tools:

• ISE tools. They synthesize and implement the hardware, generate the bitstream
and program the device. They also include other tools to generate the simulation
model, implement the internal memory, the timing analysis and others. Platform
Studio calls the required ISE tools, simplifying the design flow since the user
can be abstracted from many specific details.

• Supported HDL simulator. It is recommended if the user designs a new IP, since
it permits the simulation of the hardware of the embedded system. Some IP
cores deployed with EDK are protected and encrypted, therefore, they can be
simulated only on supported simulators. The ISE tools provide the ISim, but the
user can choose a third-party simulator.

372 15 Embedded Systems Development: Case Studies

• A development board with a Xilinx FPGA. There is a wide range of boards with
different FPGAs (Spartan or Virtex series), memories, displays, communication
interfaces and other elements.

• A Xilinx programmer, such as the Parallel III/IV or the Platform Cable USB
I/II. Some development boards provide an embedded USB programmer. The
programmers can be used to program the FPGA and to debug the executable
through the Xilinx Machine Debugger (XMD) low-level tool.

Two files play an important role in the design flow (see Fig. 15.1): the
Microprocessor Hardware Specification (MHS) and the Microprocessor Software
Specification (MSS). The XPS manages the hardware design flow using a Xilinx
Microprocessor Project (XMP) project file. The XPS project relies on the MHS file
which configures a set of instances to IP cores that are interconnected as building
blocks. The XPS can export the hardware design to SDK in order to generate the
Board Support Package (BSP) for the embedded system. The BSP generation
relies on the MSS file which configures the drivers and libraries that can be used by
the executable to control the hardware.

User’s Hardware
(VHDL files)

User’s Software
(C/C++)

Platgen

ISim

EDK and Xilinx
Simulation

libraries

EDK IP drivers and
libraries

EDK IP cores

FPGA
development

board

Software Development Kit (SDK)

Microprocessor
Software

Specification
(MSS file)

Libgen

XST

User’s Drivers
(C files)

GNU Tools
Chain

(Compiler /
Linker)

DebuggerData2MEM

Simgen

Xilinx Platform Studio (XPS)

Microprocessor
Hardware

Specification
(MHS file)

GNU Tools
Chain

(Compiler /
Linker)

BitGen

Fig. 15.1 Overview of the EDK design flow

15.1 Introduction to Xilinx EDK 373

15.1.1 Case Study 1-A: A Basic Embedded System

This case study builds a basic embedded system, composed of the MicroBlaze
processor [16], internal memory, and some peripherals. The system controls a
4-digit, 7-segment led display to visualize the hexadecimal content of a variable.
The system attaches to two external switches that turn on/off the display and show/
hide the left-side zeros. The display can also be controlled by an external computer
connected through the serial interface.

The development FPGA board is the Xilinx Spartan-3 Starter Kit [2], a cheap
board composed of a XC3S200 FPGA interconnected to a 7-segment display, a
serial port and other elements. The four digits of the display share the segment inputs
and each digit is enabled with a dedicated anode input, as depicted in Fig. 15.2.
The system must continuously perform a time-multiplexed control to refresh the
display, driving a single digit during a short time slot (a few milliseconds).
Depending on the board, the inputs of the display are asserted to low or high logic
levels. The case study can be easily adapted to any FPGA board which provides a
similar display.

The display could be continuously controlled by the microprocessor in a loop to
enable one digit per refresh cycle. This system is quite inefficient, since most of the
execution time would be devoted to wait the refresh of the display, and to poll the
serial interface and the state of the switches. A better approach uses two interrupt
service routines (ISR) to attend the interrupts from two peripherals. A timer
peripheral can, periodically, request an interrupt which triggers an ISR in order to
read the switches and refresh the display. The Universal Asynchronous Receiver
Transmitter (UART) peripheral requests an interrupt when a new character is
received from the serial interface, and its ISR will process it.

The design of an embedded system involves the hardware and software devel-
opment phases. The output of the hardware phase is a BIT (bitstream) file which
configures the hardware resources of the FPGA except the contents of the internal
BRAM (Block RAM) used as the microprocessor’s local memory. The output of
the software phase is the Executable and Linkable Format (ELF) file which must be

a

b

c
d

e

f
g

a

b

c

d

e

f

g

anode-2anode-3 anode-1 anode-0

Fig. 15.2 The 4-digit, 7-segment led display

374 15 Embedded Systems Development: Case Studies

allocated into the microprocessor’s memory. In order to program the FPGA the
design flow executes the Data2MEM tool to generate a new bitstream file which
configures the FPGA including the BRAM contents to store the executable binary.

15.1.2 Hardware

The system is composed of the MicroBlaze, the internal BRAM and a set of
peripherals (see Fig. 15.3). The BRAM implements the microprocessor’s local
memory and it is connected through two Local Memory Bus (LMBs). The periph-
erals are connected through a Processor Local Bus (PLB). The MicroBlaze can
control the display and the two switches through General Purpose Input Output
(GPIO) peripherals. The UART peripheral permits the serial communication with
the external PC through the RS-232 interface. The timer and the UART will request
the microprocessor to interrupt, therefore, the system includes an interrupt con-
troller. Finally, the Machine Debug Module (MDM) permits the debugging of the
application executed by the MicroBlaze through the FPGA programmer and the
XMD tool.

PLB

MicroBlazeBRAM

Interrupt
Controller

DLMB
Controller

ILMB
Controller

ILMB

DLMB MDM

rs232
UART

Timer
led7seg
GPIO

switches
GPIO

clock reset
system

50MHz Reset
button

4-digit,
7-segment
led display

switches

JTAG
programmer

Serial
communication

External
oscillator

Fig. 15.3 Overview of the system hardware

15.1 Introduction to Xilinx EDK 375

The hardware generation involves three main steps:

(1) Hardware specification in the MHS file
(2) Synthesis of the hardware
(3) Implementation of the FPGA layout and bitstream generation

15.1.2.1 Specification

The first step is to specify the hardware of the embedded system in the MHS file.
The easiest way to start is by using the Base System Builder (BSB) wizard.
It creates the project file and a valid MHS file [14] which describes the system
composed of the microprocessor attached to local memory and peripherals. Open
the Xilinx Platform Studio (XPS) and follow the steps:

(1) XPS opens a dialog window. Choose the BSB wizard
(2) The next dialog window configures the project file and directory. Change the

path to C:\edk13.1\led7seg and the project name to system.xmp
(3) Next, a new dialog configures the system bus. The AXI is currently supported

only on the newer FPGA families (Spartan-6, Virtex-6). Therefore, select the
PLB [4] since it is supported by all the FPGA families.

(4) Select the option Create a new design in the dialog Welcome.
(5) The dialog can configure a pre-built system for a supported FPGA board.

Choose Create a system for a custom board to setup the system from scratch.
Then select the Spartan-3 xc3s200-ft256-4 device and any polarity for the reset
button. These parameters can be easily modified later.

(6) Choose a single processor system since it simplifies the design.
(7) The next dialog configures the frequencies of the reference and system clocks

as well as the capacity of the microprocessor’s local memory. Leave the
default parameters since they are changed later.

(8) The BSB permits the connecting of a set of peripherals to the system. Just
continue until the end of the wizard since they are added later. The BSP
creates the hardware specification of a basic embedded system.

The XPS permits to display and modify the system in a graphical way using the
tab System Assembly View, as shown in Fig. 15.4. The view Bus Interfaces shows
the system composed of instances to IP components that are interconnected
through busses. The microprocessor (microblaze_0) is connected to the BRAM
(lmb_bram) through the data and instruction LMBs (dlmb, ilmb) [17] and their
memory controllers (dlmb_cntrl, ilmb_cntrl). The peripherals attach to the system
through the PLB as slaves. The instruction and data PLB sides of the micropro-
cessor are the bus masters. The MDM (mdm_0) peripheral attaches to the
microprocessor through the PLB (mb_plb). The MicroBlaze is master of the
busses, meanwhile, the peripheral and memory controllers are the slaves. Finally
the last two instances are the generators of the internal clock (clock_generator_0)
and reset (proc_sys_reset_0) that are required by the system.

376 15 Embedded Systems Development: Case Studies

The IPs provide a set of parameters that can be fixed, auto-computed or con-
figurable. Select an instance and open the contextual menu (click the right button of
the mouse) to configure the IP graphically (see Fig. 15.5). The HDL name of a
parameter is the same as it appears in the MHS file. The configurable parameters
C_BASEADDR and C_HIGHADDR of the LMB controllers setup the address space
of the microprocessor’s local memory. Changing the C_HIGHADDR to 0 9 3FFF
of both LMB controllers increases the auto-computed parameter C_MEMSIZE of
the BRAM to 16 KB (0 9 4000). Every IP deployed by EDK provides a PDF file
which details the parameters, the input/output ports and internal architecture.

The MHS file is a text file which can be manually edited, as shown in Fig. 15.6.
It is synchronized with the System Assembly View. Therefore, they both update

2

1

Fig. 15.4 Bus interfaces of the system in EDK

Fig. 15.5 Configuration parameters of the data LMB controller

15.1 Introduction to Xilinx EDK 377

when the other one is modified. The MHS specifies the system’s hardware as a set
of interconnected instances and external FPGA ports. Each instance contains
configurable parameters, interface to busses and other ports. The parameters that
are not declared in the MHS take a default or the auto-computed value. The bus
interfaces or ports that are not declared in the MHS are disconnected.

At the beginning of the MHS file there are the declarations of the external
FPGA ports used to input the clock and the reset. The external ports are connected
to the internal signals CLK_S and sys_rst_s that are used by the clock and reset
generators. The parameter CLK_FREQ declares the frequency of the external
oscillator and the RST_POLARITY declares the logic level when the reset input
asserts. Both parameters must be modified according to the FPGA board.

The instance proc_sys_reset_0 generates the internal reset signals required by
the system. The configurable parameter C_EXT_RESET_HIGH must be modified
according to the reset polarity which was declared in the external port.

Fig. 15.6 MHS file in the XPS project

378 15 Embedded Systems Development: Case Studies

The instance clock_generator_0 infers a Digital Clock Manager (DCM) circuit to
generate the system clock from a reference clock (external oscillator). The param-
eter C_EXT_RESET_HIGH must be configured as in the reset generator.
The parameter C_CLKOUT0_FREQ configures the generated frequency from the
reference clock defined by the C_CLKIN_FREQ. The BSP generated a signal named
clk_66_6667 MHz (or similar) which carries out the generated clock, but it can be
renamed to sys_clk. Also change the name of the signal which drives the clock port
of the busses. An incorrect configuration of the clock frequencies will lead to errors
during the synthesis or implementation of the hardware.

In order to accommodate it to the desired application, the hardware must add
new peripherals. The first peripheral is a GPIO [5] which controls the 7 segments
and the 4 anodes of the display. As depicted in Fig. 15.7:

15.1 Introduction to Xilinx EDK 379

(1) Drag the XPS General Purpose IO from the IP Catalog to the System
Assembly View.

(2) XPS opens a dialog to configure it. Set the data width of the first channel
(parameter C_GPIO_WIDTH) to 11 in order to control the display.

(3) Click the created instance and change the name to led7seg.
(4) Click the PLB interface to connect the peripheral’s SPLB (Slave PLB).

Go to the view Addresses and configure automatically the addresses of the
peripheral (see Fig. 15.8). The internal registers of the GPIO are accessible from
the microprocessor within this addresses range. By default, XPS assigns the
addresses range to 64 KB (0 9 10000) from an address above the 0 9 80000000.

1

2 6
7

3 5
4

Fig. 15.7 Adding the new GPIO peripheral

380 15 Embedded Systems Development: Case Studies

The user can change the range, but they must not overlap to the other memory-
mapped peripherals.

Finally, the 11-bit width GPIO’s output port must be connected to the external
FPGA ports that drive the display. Figure 15.9 shows the view Ports which permits
the external connection of the output port GPIO_IO_O. Change the default name to
fpga_0_led7seg_pin in a similar fashion as the rest of the external FPGA ports and
check that the direction is configured as output. Finally, set the range order to [10:0]
to declare them in descending order. The MSB and the LSB are indexed as 10 and 0,
respectively.

Open the MHS file to observe the previous changes. There is a new entry in the
section of the external FPGA ports. It also contains the new GPIO instance
including its configuration parameters and connections.

The next step adds a new GPIO to read the state of the two switches. The
hardware can also be modified by editing the MHS file. Copy the previous GPIO
instance and change the instance name to switches and the data width to 2. Set
the addresses range to 64 KB and do not overlap it to the other peripherals.
Connect the input port GPIO_IO_I to a signal which is connected to an external
FPGA port named fpga_0_switches_pin. Save the MHS file to update the
graphical view. The project will close if there is an error in the MHS file, which
must be manually corrected.

21

Fig. 15.8 Automatic configuration of the addresses for the GPIO peripheral

15.1 Introduction to Xilinx EDK 381

The next step adds the two peripherals to the PLB that will request interrupts.
The timer [6] will be programmed to request a periodic interrupt. The parameter
C_ ONE_TIMER_ONLY configures a single timer to minimize the size of the
peripheral.

1

2

3 4 5

Fig. 15.9 External FPGA connection of the GPIO’s output port

382 15 Embedded Systems Development: Case Studies

The UART [7] will request an interrupt when it receives a new character from
the RS232. It will also transmit messages to the user through the serial commu-
nication. Therefore the UART ports transmission (TX) and reception (RX) are
connected to external FPGA ports. The parameters C_BAUDRATE and
C_USE_PARITY configure the speed and parity of the communication.

Some displays provide an extra input to turn on a dot placed beside the digit.
This case study just turns off the dot connecting the net_gnd or net_vcc to its
associated external port.

The system requires an interrupt controller [8] since MicroBlaze provides a
single input port for the interrupt requests. The interrupt controller attaches to the
PLB in order to permit the MicroBlaze to enable/disable interrupts or to check the
interrupt source. The interrupt controller (int_control_0) connects the interrupt
requests from the timer and UART peripherals to Microblaze. The controller
receives the concatenated signal from the two peripherals and drives the interrupt
port of MicroBlaze. The interrupt priority is higher when the interrupt source is
concatenated at the right side. The UART is assigned to the lower priority since it

15.1 Introduction to Xilinx EDK 383

provides a receiving First Input First Output (FIFO) memory which temporarily
stores the characters. Therefore, a new character received can be processed when
the display is not refreshing.

MicroBlaze provides configurable parameters to optimize area/performance and
to implement optional machine instructions. The parameter C_AREA_OPTIMIZED
configures a 3-stage pipeline architecture which optimizes the area of the imple-
mentation. The parameter C_USE_BARRELL implements a barrel shifter and its
related machine instructions. Therefore, the C/C++ compiler provides a set of flags
to build the BSP and the executable for the configured microprocessor. By default,
the MicroBlaze attaches to a MDM instance (mdm_0) which permits the debugging
of executables.

15.1.2.2 Synthesis

The XPS menu Hardware ? Generate Netlist synthesizes the design to generate
a set of NGC netlist files. It calls the Platgen tool [13] which starts performing a
Design Rule Check (DRC). Then it calls the Xilinx Synthesis Technology (XST)
[3] tool to synthesize the IP instances to get their NGC files. The embedded
system is finally synthesized and optimized to get the top-level netlist file.
A change in the MHS file will force Platgen to synthesise only the required

384 15 Embedded Systems Development: Case Studies

modules to speed-up the execution. If desired, the XPS can clean up the gen-
erated files to start the Platgen from scratch. Synthesis is dependent of the FPGA,
therefore, the user must select the correct device in the Project Options
(see Fig. 15.10) before proceeding.

Figure 15.11 shows the tab Design Summary which displays the report files
generated by the Platgen and XST in order to check details about the design, such
as the occupied FPGA resources or the estimated maximum frequency of the
clock.

15.1.2.3 Implementation

The implementation computes the FPGA layout which is stored in a Native Circuit
Description (NCD) file. The design flow executes three main tools: NGDBUILD,
MAP and PAR [15]. The NGDBUILD translates the NGC files and annotates
constraints from a User Constraints File (UCF). The following tools compute the
layout based on the annotated constraints. The design flow continues with
the MAP and PAR tools to map the netlist into the FPGA resources and to compute
their placements and routings.

The BSB wizard generates the UCF for the selected prototyping board. The
XPS project refers the UCF which must be edited to specify the attachment of the
display and switches to the FPGA board. The UCF also specifies the clock
frequency of the external oscillator.

1

2

Fig. 15.10 Selection of the device in the XPS project

15.1 Introduction to Xilinx EDK 385

The XPS menu Hardware ? Generate Bitstream launches the BitGen tool [15]
which generates the bitstream file from the FPGA layout. First, the XPS executes
the design flow to implement the FPGA layout, if necessary. Then it generates the
BIT (bitstream) file system.bit and the BlockRAM Memory Map (BMM) file
system_bd.bmm. The microprocessor’s local memory is implemented on BRAMs,

1

2

3

Fig. 15.11 Report files from the Platgen and synthesis

386 15 Embedded Systems Development: Case Studies

but the generated BIT file does not initialize them, since the executable binary is
not available at this stage. The file system_bd.bmm annotates the physical place-
ment of the BRAMs with the microprocessor’s local memory. This file will be
required later to update the BRAM contents of the bitstream. The tab Design
Summary shows the reports generated by the implementation tools.

15.1.2.4 Software

The XPS menu Project ? Export Hardware opens a dialog window to export the
required files to SDK, as shown in Fig. 15.12. Select the option to export the BIT
and BMM files to permit SDK to program the FPGA. It creates a new directory
which is allocated in the XPS project folder.

SDK starts opening a dialog to set the workspace folder. Write the path
c:\edk13.1\led7seg\SDK\workspace to create it into the SDK folder which was generated
by XPS during the hardware exportation. The software development involves two stages:

(1) The BSP generation. Creates a set of headers and libraries to control the
hardware from the microprocessor.

(2) The executable ELF file. It builds the file executed by the embedded
microprocessor.

15.1.2.5 Board Support Package

The BSP provides the Application Programming Interface (API) for the target
hardware and Operating System (OS). The BSP generates a set of libraries and
header files that facilitates the development of software executables. The appli-
cation C/C++ source files are compiled and linked using the API to build the
binary ELF which is executed by the microprocessor.

The SDK menu File ? New ? New Board Support Package Project launches a
wizard to create a BSP project (see Fig. 15.13). Choose the platform hw_platform_0
which is the hardware exported from XPS. Then set the standalone OS [18] since it
provides interrupts management and it does require a large memory capacity. Other

1

2

Fig. 15.12 Hardware export
from EDK to SDK

15.1 Introduction to Xilinx EDK 387

OS provide more advanced features, but they require external memory. The BSP
project standalone_bsp_0 is located by default in a folder contained in the SDK
workspace.

The wizard generates the BSP project which is linked to a MSS file. The MSS
[14] is a text file which list the drivers used by the peripherals and the OS for the
microprocessor. The Libgen [13] tool reads the MSS file to generate the BSP. As
with the MHS file, the MSS can be graphically or manually edited. Figure 15.14
shows the graphical view which configures the MSS. Change the standard input
(stdin) and output (stdout) to the instance rs232 in order to permit the console
functions to use the UART peripheral.

The MSS file can also be manually edited, and it reflects the configuration
changes done in the previous dialog.

The rest of the MSS file shows the drivers and peripherals. A peripheral driver
is a collection of declarations and functions that can be used to control it from the
executable. By default the BSP wizard sets a specific driver to every peripheral,
but the user can change it to set a generic driver or no driver. The generic driver
can control any peripheral, but the user must have a deeper knowledge about its
internal architecture. The system’s hardware provides two GPIO peripherals: the

c:\edk13.1\led7seg\workspace\standalone_bsp_0

1

2

3

Fig. 15.13 Configuration of the BSP project

388 15 Embedded Systems Development: Case Studies

switches and the led7seg instances. Select the generic driver for them in order to
understand better the role of internal registers of peripherals.

The SDK automatically calls the Libgen tool [13] when the MHS is changed to
build the BSP. The user may disable the Build Automatically behaviour in order to
clean or build the BSP using the commands under the menu Project. The Libgen
tool compiles the source files of the peripheral drivers and the OS, and it stores
them into the A (archive) library files. It also generates the H (header) files that
declare the functions contained in the libraries. The library and header files are
stored in the folders lib and include of the instance microblaze_0. The SDK can
display the contents of both folders and open the header files.

1

2

3

5

6

4

Fig. 15.14 Configuration on the BSP

15.1 Introduction to Xilinx EDK 389

An important header file is the xparameters.h which declares a set of param-
eters about the hardware. Every peripheral has its own parameters that are obtained
from the exported hardware, as the addresses range of the GPIOs. The declarations
can be used by the C/C++ source files to control the peripherals.

15.1.2.6 Executable

The SDK will build the ELF executable from the source C++ files that are compiled
and linked with the functions stored in the BSP libraries. Click the menu
File ? New ? Xilinx New C++ Project which opens a wizard to create a C++
project for the BSP. Change the default project name to app1 and select the
previously generated BSP standalone_bsp_0, as depicted in Fig. 15.15. The wizard
creates a nested folder app1/src in the SDK workspace to store the source files that
will be compiled.

Using the Windows Explorer delete the template file main.cc which was
created by the wizard, and copy the new source files: ledseg7.cc, led7seg.h and
application.cc. Go to SDK and click the menu Refresh of the contextual menu
(right button of the mouse) of the project app1, in order to update the list of
source files. The SDK can open and display the source files in its integrated
editor (see Fig. 15.16).

The source files led7seg.h and led7seg.cc declare and implement a C++ class
named CLed7Seg which controls the display through the GPIO. The EDK
peripherals implement a set of 32-bit registers that are used to control them.
The peripheral’s registers are memory-mapped, therefore, MicroBlaze can access
them when it executes read/write instructions to the content of a C/C++ pointer.
The application can directly control the peripheral, although, it is necessary to
have a deeper knowledge about the internal architecture. The first register of a
GPIO [5] is the GPIO_DATA which is mapped at the base address of the
peripheral. The register retrieves/sets the state of the input/output ports depending
if the microprocessor reads/writes it.

The class constructor assigns the input argument to the integer (32-bit) pointer
GPIO_Data. Any pointer used to access a peripheral’s register should be declared
volatile. If not, the compiler may optimize a set of sequential memory accesses
through the pointer, changing the order or deleting some of them. The GPIO

390 15 Embedded Systems Development: Case Studies

method concatenates the anodes and segments to write them into the GPIO_DATA
register through its pointer. The header file of the class declares the two parameters
that configure the active state of the anodes and segments of the display, therefore,
they can be easily changed to adapt it to another prototyping board.

1

3

2

Fig. 15.15 Creating a new C++ project in SDK

1

2

Fig. 15.16 Displaying the C++ source files

15.1 Introduction to Xilinx EDK 391

The class declares two member variables: Data and Config. The Data is a
16-bit variable which stores the number which is displayed. The Config is an 8-bit
variable which uses the two LSBs to turn on/off the display and to show/hide the
left-side zeros of the number. The method Refresh is periodically executed since
the timer’s ISR calls it. It reads the member variables and calls the Digit method
to display one of the digits starting at the left side. The Digit method first com-
putes the segments and anodes of a digit and then it calls the GPIO method to
display it.

The application C++ file is composed of 4 sections. The first section opens the
required header files. The application controls the GPIOs directly, but the rest of
the peripherals are controlled through their drivers. Therefore, it opens the header
files that declare the functions stored in the BSP libraries. The file xparameter.h
declares base addresses that are necessary to use the driver functions.

The second section initializes the object Display for the class CLed7Seg. The
object’s constructor gets the base address of the GPIO which drives the display.
The section also declares the global variables data and endloop that are managed
by the ISR of the UART.

The third section is composed of the two ISRs. The timer’s ISR periodically
reads the state of the two external switches and refreshes the display. First, it reads
the register GPIO_DATA of the peripheral which attaches to the two external
switches. Then, it compares the state of the switches against the previous call.
A change in one of the switches will swap one of the two bits that configure the
display, using the bitwise XOR operators. Finally, it refreshes the display. The
other ISR is executed when the UART receives a new character which is read

392 15 Embedded Systems Development: Case Studies

using its driver function [9]. Depending on the received character, it changes the
data or the configuration of the display, or it quits the application.

The last section is the main function of the application. It configures and
enables the interrupt sources, and then it executes a loop until the application
quits. The loop can execute any computation without affecting the control of the
display.

The timer peripheral [6] implements two registers to periodically generate an
interrupt request: Timer Control/Status Register 0 (TCSR0) and Timer Load
Register 0 (TLR0). The configuration of both registers asserts the interrupt signal
every 5 ms (250,000 counts, 50 MHz clock). The constants and functions of the
timer driver are declared in the header file tmrctr_l.h [10] which was generated by
the BSP. They are low-level API functions since the programmer knows the
functionality of the registers. These functions compute the address of the registers
and write data into them through a pointer.

The driver of the interrupt controller provides functions [11] to register ISRs and
to enable the interrupts sources. Finally the application enables the MicroBlaze’s
interrupt input through an OS function [18].

15.1 Introduction to Xilinx EDK 393

By default, the wizard of the C++ project generates two targets: Debug and
Release. They differ in the flags of the GNU compiler [13]. The target Debug
compiles source files without optimizations and enabling debug symbols. The
target Release compiles source files with optimizations to build smaller and faster
code which is not suitable to debug. The targets configure other compiler flags that
are derived from the MicroBlaze’s configuration in order to use the optional
machine instructions. The menu Project ? Build Project builds the active target
which can be changed anytime using the Project ? Build Configurations ? Set
Active. Then, SDK runs the GNU tool chain which compiles the source files and it
links the resulting object code with the BSP libraries. The executable ELF file is
stored in a nested folder which is named as the target.

15.1.3 Programming and Debugging

The SDK menu Xilinx Tools ? Program FPGA opens a dialog window which
displays the BIT and BMM files that were imported from EDK, as shown in
Fig. 15.17. Select the ELF file app1.elf of any of the two targets and press the
button Program. It calls the Data2MEM tool [20] which generates a new bitstream
download.bit from an existing bitstream and its annotated BMM file. The new
bitstream configures the entire FPGA including the BRAM contents with the
selected ELF file. Then, the new bitstream is programmed into the FPGA and the
application begins to run.

The serial ports of the FPGA board and the PC are attached to test the
application. The PC should execute a terminal configured with the same
communication parameters as the embedded system. The terminal displays the
received characters from the FPGA and sends the characters that are pressed on
the keyboard. The SDK provides its own terminal which can be used for this

394 15 Embedded Systems Development: Case Studies

purpose (see Fig. 15.18). Press the reset button of the FPGA board and play with
the terminal.

The Xilinx Microprocessor Debugger (XMD) [13] is a low-level tool which
manages the programming and debugging of the embedded system through the
MDM peripheral and the JTAG programming cable. The user can interact with the
XMD clicking the SDK menu Xilinx Tools ? XMD console

c:\edk13.1\led7seg\SDK\workspace\hw_platform_0\system.bit

c:\edk13.1\led7seg\SDK\workspace\hw_platform_0\system_bd.bmm

c:\edk13.1\led7seg\SDK\workspace\app1\Release\app1.elf

1

2

3

Fig. 15.17 Bitstream configuration to program the FPGA

1 2

3

4

Fig. 15.18 Configuration of the terminal in SDK

15.1 Introduction to Xilinx EDK 395

The debugging permits the programmer to inspect variables, insert breakpoints
or execute step-by-step, in order to correct or improve the executable. Click the
menu Run ? Debug Configurations to open the dialog shown in Fig. 15.19.
Ensure it selects the ELF under the target Debug. SDK will ask to switch to a new
perspective which facilitates the debugging tasks, therefore it is recommended to
confirm it. The debug perspective shows the source code, disassembly, variables,
microprocessor’s registers, memory, breakpoints, XMD console and more. The
user can debug the executable, manually launching XMD commands which is
quite uncomfortable. The SDK debugger relies on XMD to send or retrieve data
through a graphical view. The debugger starts uploading the ELF into the BRAM
and suspending it at the first executable line of the source file.

Set a breakpoint on a line of the timer’s ISR and resume the application to
observe the display refreshing (see Fig. 15.20). The tab Variables shows the local
variables of the ISR that are updated when the user plays with the switches and
resumes the application. The tab Expressions permits to display the object Display
and the global variables data and endloop.

1

2

3

Fig. 15.19 Configuration of the debugger

396 15 Embedded Systems Development: Case Studies

In a similar way the user can place another breakpoint at the assignment of the
variable rs232_char in the ISR of the UART. The application will suspend when it
receives a new character from the PC. Then, the ISR updates the data or the
configuration of the display.

15.2 Case Study 1-B: Creating a Custom Peripheral

The previous embedded system devotes three peripherals (two GPIOs and a timer)
to drive the display and to read the switches. The executable uses the timer’s ISR
to periodically read the switches and refresh the display. A dedicated peripheral
can improve the design since it can replace the ISR and peripherals that are
devoted to a specific task. The main disadvantage is the greater design effort since
the designer must develop the source files of the hardware and the software driver.
The designer will surely require simulating the source VHDL files, in order to
verify and modify the hardware of the peripheral.

This case study starts from the previous one. It modifies the hardware design
and the executable to incorporate the new peripheral. Copy the previous project
folder and rename it to led7seg_ip. Then, open the XMP file to launch the XPS.

15.2.1 Design of a Custom Peripheral

A peripheral performs a specific task on hardware. Typically they are attached to
the PLB bus as a slave in order to permit the microprocessor to access their

1

2 3

4

Fig. 15.20 Debugging the application

15.1 Introduction to Xilinx EDK 397

internal registers to control them. More sophisticated peripherals can be attached
as PLB masters in order to access memory themselves. These kinds of peripherals
are quite harder to develop and they are much less common, therefore, they are not
covered in this example.

The hardware of a peripheral is implemented from a set of source VHDL files.
The driver of a peripheral is compiled from a set of source C and H files to build
the BSP. The source files must be organized in a set of named folders in order to
use the new peripheral in the EDK and SDK.

15.2.1.1 Hardware Design

The hardware is described in a set of VHDL files that are synthesized during the
design flow. EDK requires two files in order to permit the integration of the
peripheral to the embedded system: the MPD and PAO. The peripheral wizard from
XPS generates the folders and a set of template files that must be modified in order to
develop the desired IP. Open the wizard by clicking the menu Hardware ? Create
or Import Peripheral.

(1) Select the option Create templates for a new peripheral.
(2) Select the XPS project repository to create the template files into the local

repository which is stored in the XPS directory. The folders pcores and drivers
contain the local repository of the hardware and software.

(3) Set the name the peripheral to plb_led7seg, and the version to 1.00.a. The
wizard will create the folders plb_led7seg_v1_00_a in the local repositories.

(4) Select the PLB attachment.
(5) Unselect all the slave and master services of the IPIF (IP InterFace) to generate

the simplest template files. The IPIFs are IPs deployed with EDK to facilitate
the PLB interface.

(6) Continue with the default options of the next three dialogs.
(7) Select the option Generate template driver file. This option creates the tem-

plate files for the driver in the software repository.

The MPD and PAO files are stored in the folder data which is nested in the
local hardware repository pcores.

The Microprocessor Peripheral Description (MPD) file [14] is composed of four
sections. The first section declares the description and implementation options.
The second section sets the bus interface to Slave PLB (SPLB). The last two
sections declare the parameters and ports of the SPLB. The data generated by the
wizard in the MPD template must not be modified. However, the designer can add
more parameters and ports to extend the peripheral. The parameters will be passed
as VHDL generics and ports during the synthesis.

The new peripheral adds three parameters in order to configure the peripheral
from XPS. The refresh period is an integer parameter which contains the number of
microseconds, and its default value is set to 5,000 ls. The boolean data configure the
active state of the ports that drive the display. The peripheral adds two output ports to

398 15 Embedded Systems Development: Case Studies

drive the 7 segments and the 4 anodes of the display. Finally, it declares two input
ports that attaches to the external switches that configure the display.

IPIF

PLB

IP2Bus_*

PLB_*

Bus2IP_*

Sl_*

reg_controlreg_data

plb_led7seg.vhd

user_logic.vhd

led7seg.vhd

core

anodes segments

16 2

74

GLUE LOGIC

switch_off switch_zeros

counter

Fig. 15.21 Hierarchical schematic of the peripheral

15.2 Case Study 1-B: Creating a Custom Peripheral 399

Figure 15.21 shows a hierarchical schematic of the peripheral and related files.
The wizard created two VHDL files that are stored in the folder hdl\vhdl which is
nested in the hardware repository. The plb_led7seg.vhd is the top-level file which
connects an instance of the user logic to the PLB. The user_logic.vhd is a dummy
peripheral, therefore, the file must be modified to perform the desired function-
ality. The tasks related to the timer’s ISR are now described as hardware in this
file. The computation related to the class CLed7Seg class is now described in the
new hardware file led7seg.vhd.

The Peripheral Analyze Order (PAO) file [14] is the ordered list (bottom to top
level) of libraries and files required to synthesize the IP. The first two entries refer
to EDK libraries due to the selected IPIF. Then, it continues with the list of VHDL
files that will be synthesized into the target library. The target library must be
named as the repository folder of the peripheral.

The top-level file declares the entity plb_dec7seg and its architecture.
The template of the entity leaves space to add new generics and ports, therefore,
the user must complete it. The VHDL generics and ports of the entity must be
declared in the same way as in the MPD file.

The architecture declares an instance to the user logic. It leaves space to map the
new generics and ports. The two switches are directly connected from the top-level

400 15 Embedded Systems Development: Case Studies

input ports to the user logic. The glue logic attaches the output ports from the user
logic to the top-level ports, in order to drive the display. The synthesizer will
infer inverters between these ports if the configuration parameters are set to true.
The user logic will provide its internal timer, therefore, the instance requires a new
generic which configures the number of clock cycles to refresh the display. It is
computed from the MPD parameters that define the refreshing period (microsec-
onds) and the clock period (picoseconds). Finally, the user logic also requires a
generic which configures the number of internal registers.

The architecture also contains the IPIF instance which eases the PLB con-
nection. It adapts the PLB handshake to/from IP signals named ipif_Bus2IP_*/
ipif_IP2Bus_*. The IPIF also decodes the PLB address bus to enable one of the
peripheral’s internal registers. The architecture declares the number of internal
registers in the user logic, which is two in this case. This number affects the width
of the signals Bus2IP_RdCE (Read Chip Enable) and Bus2IP_WrCE (Write Chip
Enable) that arrives to the user logic. When MicroBlaze executes a read/write
instruction to a peripheral’s address range, the IPIF decoder sets one of the enable
bits, in order to read/write one of the internal registers of the user logic. The IPIF
maps registers on 32-bit boundaries from the peripheral’s base address. The first
register is mapped on C_BASEADDR, the second register on C_BASEADDR+4,
and so on. In order to simplify the IPIF, the C_HIGHADDR parameter is usually

15.2 Case Study 1-B: Creating a Custom Peripheral 401

configured much higher than necessary, but it leads to an incomplete address
decoding. In this case, the peripheral’s registers can be accessed from different
addresses since the IFPF does not decode some bits of the address bus.

The template of the user logic is a dummy design which must be modified. The
entity template declares an important generic which is the number of registers. The
entity must be completed according to the top-level file. Therefore, the designer must
add the new generics to configure the refreshing counts and the new ports to drive the
display and to read the switches. The default values of the generics are overwritten
since they are passed from the instance at the top-level file.

The architecture of the user logic declares two registers to control the display
that are accessible from the PLB. The first one (reg_data) is a 16-bit data register
which sets the 4 digits to display. The second one (reg_control) is a 2-bit register
which controls the display configuration: one bit to turn on/off the display and the
other bit to show/hide the left-hand zeros. The input ports Bus2IP_RdCE and
Bus2IP_WrCE provide a single bit for each register to read or write them. The data
comes from the port Bus2IP_Data during a write access to one of the registers.
During a read access, one of the registers drives the port IP2Bus_Data.
The architecture uses the signals bus_data/ip_data to get/set the data bus, since
they are declared in descending bit order as the registers. The PLB must
acknowledge the access completion before MicroBlaze can continue with a new
access. The user logic asserts the ports IP2Bus_RdAck/IP2Bus_WrAck when it
completes the access to the registers. In this case, the user logic does not require
wait states to read/write the registers.

402 15 Embedded Systems Development: Case Studies

The rest of the user logic performs the tasks executed in the timer’s ISR in the
software application. It implements a counter which periodically asserts the signal
refresh. This signal is used to refresh the display and to capture the state of the
switches in order to modify the control register. There is an instance, named core,
of the IP led7seg, which drives the display from the registers contents.

15.2 Case Study 1-B: Creating a Custom Peripheral 403

The file led7seg.vhd implements the functionalities described in the C++ class
CLed7Seg in the software application. It generates the signals that drive the dis-
play, updating the displayed digit when the port refresh is asserted. The archi-
tecture is composed of two processes. The first process updates the index of the
digit to refresh, starting at the left side. The second process computes the display’s
ports based in the input ports off, zeros and data that are driven from the
peripheral’s registers.

15.2.1.2 Driver Design

A peripheral’s driver is built from header and implementation files. The C files
implement functions that control the peripheral. The header H files contain the
declarations required to use the functions. The SDK requires two additional files,
the MDD and the TCL, and a structured folder organization in a repository in order
to build the BSP with the peripheral’s driver. The Microprocessor Driver Definition
(MDD) file [14] declares the supported peripherals, dependencies of the driver and
files to copy. The TCL file is a script used to compile the source files and build the
library. The XPS peripheral wizard generates the template files and folders.
The designer usually does not modify the MDD and TCL files, but he must rewrite
the H and C files to develop the driver.

The MSS file controls the peripheral drivers that are built in the BSP. The
Libgen tool creates a folder named as the microprocessor and copies the H files
into the folder include. Then it compiles the C files and adds the functions into the
library libxil.a which is stored in the folder lib of the BSP.

The header file contains the declarations that are used to build the BSP and the
executable. First, it defines the masks to control the display. Next, it declares C
macros to read or write the peripheral’s registers through a pointer. Finally, there
are the declarations of the visible functions.

404 15 Embedded Systems Development: Case Studies

The C file of the driver is compiled during the BSP generation. The library file
stores the functions, but not the C macros. The library may store other internal
functions that are not visible for the programmer since they are not declared in the H
file. The function which swaps one of the bits of the control register executes two
accesses to the register. First, MicroBlaze reads the register and changes one bit
according to a mask. Next, it writes the resulting value into the same register.

PLB

MicroBlazeBRAM

Interrupt
Controller

DLMB
Controller

ILMB
Controller

ILMB

DLMB MDM

rs232
UART

led7seg
plb_led7seg

clock reset
system

50MHz Reset
button

4-digit,
7-segment
led display

switches

JTAG
programmer

Serial
communication

External
oscillator

Fig. 15.22 Overview of the modified system architecture

15.2 Case Study 1-B: Creating a Custom Peripheral 405

15.2.2 System’s Hardware/Software Modification

The new peripheral replaces the timer and the GPIOs connected to the display and
switches, as well as the software code related to them. Therefore, the hardware and
software of the new system must be modified, accordingly.

15.2.2.1 Hardware Modification

The MHS file of the new system adds the instance led7seg of the PLB display
controller plb_led7seg, and it removes the timer and GPIOs, as depicted in
Fig. 15.22. The external ports connected to the display and switches are assigned
to the display controller. The parameters that configure the refresh period and
active state of the anodes and segments can be easily modified to adapt them to
other FPGA board. The MHS parameters overwrite the default values defined in
the peripheral’s MPD file. The modified system requires just one interrupt source
for the UART, therefore, the interrupt controller could be eliminated. However, the
system maintains it since it does not increase significantly the area and it provides
the possibility to add new peripherals to request interrupts.

Fig. 15.23 Selection of the ELF to generate the simulation model

406 15 Embedded Systems Development: Case Studies

The names of the external FPGA ports, connected to the display and switches,
have changed, therefore, the UCF must be updated.

At this point, the designer can easily test the peripheral’s hardware using the
XMD tool. Using the XPS, implement the new hardware. Then, click Device
Configuration ? Download Bitstream to create the download.bit file and program
the FPGA. If the XPS project has no ELF file, the bitstream configures the BRAM
to store the default executable bootloop which runs a dummy loop. In order to
program the FPGA, XPS calls the iMPACT tool with the commands of the batch
file download.cmd. Check the number of the –p flag, which configures the FPGA
position in the JTAG chain.

15.2 Case Study 1-B: Creating a Custom Peripheral 407

Once the FPGAis successfully programmed, click the Debug ? Launch XMD to open
the command shell. The XMD shell initially shows the microprocessor configuration when
it connects to the MDM. Then, the user can test the peripheral when he runs the XMD
commands: mwr (memory write) and mrd (memory read). Write the peripheral’s base
address (0 9 84C00000) to change the displayed number. Write the next register
(0 9 84C00004) to change the configuration of the display. The peripheral’s registers are
accessible from different addresses due to the incomplete IPIF decoder.

15.2.2.2 Software Modification

At the software level, the executable has to be also modified in order to delete the
code related to the GPIOs and the timer’s ISR. Export the new hardware from XPS
and create a SDK workspace in the c:\edk13.1\led7seg_ip\SDK\workspace path.
Check that the imported hardware presents the new display controller.

Create a new BSP project and select the standalone OS. By default, the MSS
assigns the generic driver to the display controller led7seg. A more convenient
way is to assign the specific driver to the peripheral in order to build the BSP.

408 15 Embedded Systems Development: Case Studies

The Libgen tool generates the BSP according to the information described in
the MSS file. It gets the source files from the folder plb_led7seg_v1_00_a which
must be stored in the driver repositories. Then, it copies the header files and builds
the libraries. The file libgen.options must be modified to configure the local
repository to the XPS directory.

The C++ code related to the GPIOs and timer’s ISR is deleted. Therefore, the
files that declare and implement the class CLed7Seg are deleted in the project.
The modified file application.cc calls the driver’s functions to control the
display.

The application can be programmed and debugged following the same steps as
in the previous case study. Check that the BIT and BMM files are the imported
ones from the current XPS project, before proceeding.

15.2.3 Functional Simulation

The source VHDL files should be simulated if the peripheral is not working as
expected. The easiest way to test the VHDL files is by performing a functional
simulation of the embedded system. The system can be simulated with the ISim or
other supported simulator. The XPS can select the simulator when you click the
Edit ? Preferences. The Xilinx ISim has some limitations when it is compared
with other third-party simulators. However, the ISim is easy to use, and it provides
the simulation libraries.

Instead of simulating the application executable, which depends on the serial
communication, it is preferable to develop a much simpler executable. Create a

15.2 Case Study 1-B: Creating a Custom Peripheral 409

new Xilinx C++ project in SDK named simulation. Modify the C++ template file
main.cc to add a sequence which just writes the peripheral’s registers, as desired.
The function delay is called to improve the observation on the simulation results.
Build the target Debug to get the file simulation.elf.

The XPS project must import the ELF file in order to generate the simulation
model. Click the menu Project ? Select Elf file and choose the file simulation.elf
which is stored in the SDK project (see Fig. 15.23)

XPS launches the Simgen tool [13] to generate the set of files required to sim-
ulate the embedded system running the selected executable. Click the XPS menu
Project ? Project Options which opens the dialog window shown in Fig. 15.24.
Select the options: VHDL, generate testbench template and behavioural model.
This is the recommended model since it simulates the peripheral’s source files. The
other models are more complicated, since they simulate the output files from the
synthesis or the implementation stages. Click the XPS menu Simulation ?
Generate Simulation HDL Files to call the Simgen tool. The Simgen does not
support some FPGA families, such as the Spartan-3, but there is a workaround.
Choose any supported device since it does not affect the behavioural simulation of
the peripheral, because it does not require the synthesizing of its source VHDL files.
Finally, click the menu Simulation ? Launch HDL Simulator which takes some
time to compile the simulation files before starting the ISim [19].

Simgen creates the testbench file system_tb.vhd. It declares the instance dut
(Device Under Test) of the system and the stimulus applied to its inputs. ISim
shows the hierarchical view of the instances to simulate. Open the contextual menu
of the top-level instance system_tb and click Go To Source Code in order to edit
the testbench template, as shown in Fig. 15.25.

The template file drives the clock and reset signals, and it provides a user’s
section to write more stimulus. In order to simulate the external switches, change
the state of the switch, which turns off/on the display, at 250 and 260 ls.

410 15 Embedded Systems Development: Case Studies

The simulation will take a huge number of clocks to refresh the display. The
display’s ports are updated every 200,000 clock cycles when the refresh cycle is
set to 4,000 ls (50 MHz clock frequency). Each instance of a peripheral is sim-
ulated from a wrapper file which configures the IP according the MHS file. Go
through the hierarchical view, and select the instance led7seg. Open the wrapper
file led7seg_wrapper.vhd, and change the generic C_REFRESH_PERIOD_US to
shorten the simulation of the refresh. This change does not affect the synthesis or
the implementation since it does not modify the MHS file.

1

2

3

4

5

6

Fig. 15.24 Configuration of the simulation model

15.2 Case Study 1-B: Creating a Custom Peripheral 411

1

2

3

Fig. 15.25 Hierarchical
view of the instances to open
the testbench file

3
4

1
2

5

Fig. 15.26 Configuring the waveform window

412 15 Embedded Systems Development: Case Studies

Any change in the VHDL files requires the compilation of the model before starting
the simulation. Therefore, click the ISim menu Simulation ? Relaunch. In order to
display the external ports of the system, select the instance system_tb and drag the desired
signals into the waveform window. Add a divider, named USER LOGIC, in order to
display a new group of waveforms separately from the previous ones. Go to the hierarchy
of the instances system_tb ? dut ? led7seg ? led7seg ? USER_LOGIC_I and
drag the IPIF signals and the peripheral’s registers to the waveform. Repeat the previous
steps to display the signals of the instance core, as shown in Fig. 15.26.

12

3

4

Fig. 15.27 Simulation waveform

15.2 Case Study 1-B: Creating a Custom Peripheral 413

By default, signals are displayed in binary radix which is uncomfortable for
some signals. Select the peripheral’s registers and the IPIF busses to change the
radix to hexadecimal.

Write 100 ls on the simulation time, and run the simulation, as shown in
Fig. 15.27. The resulting waveform can be zoomed in/out to show the desired time
interval. Check that the signal refresh is asserted during a clock cycle every 1 ls, due
to the change done in the wrapper file. Display the peripheral’s registers at 35 ls. At
this point MicroBlaze has already executed the first four lines of the C++ file,
therefore, the peripheral’s registers (reg_data, reg_control) contain the expected
values. The ports anodes and segments that drive the display are refreshed according
to the value stored in those registers.

The simulation should continue another 100 ls to display how Microblaze
executes the driver function Led7Seg_SwapOff. The function executes two
consecutive accesses to the register control_reg: a read followed by a write access.
The registers are accessed when the microprocessor executes read/write instructions
to memory addresses within the peripheral’s address range. The IPIF decodes the
PLB address bus in order to assert one of the enabler bits of the signals
Bus2IP_RdCE/Bus2IP_WrCE that arrive to the user logic, in order to read/write a
peripheral’s registers. The register control_reg is associated with the index 1 of these
signals. The waveform window permits a search for the next/previous transition of a
signal. Search a rising edge of the bit Bus2IP_RdCE(1), as shown in Fig. 15.28.
At this time, the MicroBlaze is reading the control register. The peripheral carries the
register’s content on the signal IP2Bus_Data and it asserts the IP2Bus_RdAck to
complete the read access. The next access, MicroBlaze writes the control register.
The peripheral gets the new content from the Bus2IP_Data and asserts the
IP2Bus_WrAck to complete the write access.

Figure 15.29 shows the simulation of the user action on a switch at 250 ls and
260 ls to turn off/on the display, as described in the testbench file. The peripheral
updates the control register when the signal refresh is asserted, after the user action.

If the C/C++ code of the simulation executable is changed it is necessary to
close the ISim before executing Simgen. Save the waveform file before exiting
ISim. Then, build the SDK project to get the new ELF file and generate the new
simulation model with XPS. Finally, launch ISim, open the saved waveform file,
and run a new simulation.

Once the simulation is finished, select the target FPGA in the project options
and generate the bitstream. The system will be synthesized and implemented for
the selected device.

15.3 Case Study 2: Implementation of a Custom Coprocessor

A coprocessor is a specific processor aimed to accelerate an algorithm. The
hardware architecture is designed to efficiently speed-up a specific computation.
The rest of computations and tasks are carried on the general-purpose

414 15 Embedded Systems Development: Case Studies

1

2

3

4 5

Fig. 15.28 Simulation of a read/write accesses to a peripheral’s register

1 2

Fig. 15.29 Simulation of the user’s action on a switch

15.3 Case Study 2: Implementation of a Custom Coprocessor 415

microprocessor. The microprocessor writes commands and data to the copro-
cessor’s registers in order to perform a computation. When the coprocessor
completes, the microprocessor retrieves the computed data in order to continue
the algorithm.

This case study presents an embedded system which communicates with an
external PC in order to set the state of some led diodes and to read the state of some
switches. The system is connected through the serial port, but the communications
are ciphered using the Advanced Encryption Standard (AES-128). The system
decrypts the commands received from the PC and encrypts the answer messages.
The MicroBlaze cannot decrypt the messages at the desired speed, therefore, a
coprocessor is developed to accelerate the AES-128 computation.

15.3.1 A Brief Introduction to the AES-128 Cipher

The AES [1] standard comprises three symmetric-key block ciphers: AES-128,
AES-192 and AES-256, where the number denotes the key size. The cipher
encrypts a fixed-size block of plain text to get a block of ciphered text. It also
decrypts ciphered blocks in the reverse way using the same key. The block size of
the AES ciphers is 128 bits independently of the key size.

All the steps executed during AES encryption/decryption are done using a
variable named state. It is a 128-bit data arranged on an array of 4-rows x 4-columns
of 8-bit elements (bytes). During the AES-128 encryption the state is initially
written with a block of plain text. Then it is processed 9 rounds, and each round is
composed of 4 steps, as shown in Fig. 15.30. The initial and the final rounds are
slightly different since some steps are skipped. The AES state stores intermediary
computations and the block of ciphered text at the end of the final round. In a similar
way the decryption initializes the state with the ciphered block which is processed
with inverted computations and steps to get the block of plain text.

One of the AES steps applies the expanded key which must be computed from
the cipher key. The expansion of the key can be computed online or offline. The

SubBytes

ShiftRows

MixColumns

AddExpKey

AddExpKey

AddExpKeyExpanded
Key

Plain
block

Encrypted
block

key

InvShiftRows

InvSubBytes

AddExpKey

AddExpKey

AddExpKey

InvMixColumns

Expanded
Key

Plain
block

Encrypted
block

key

Fig. 15.30 Block encryption (left) and decryption (right) in the AES-128 cipher

416 15 Embedded Systems Development: Case Studies

offline mode computes the expanded key before starting the rounds, therefore, it is
computed only when the cipher key changes.

The transmitter divides a message into blocks that are encrypted and trans-
mitted. The receiver decrypts the received blocks to build the message. There are
several operation modes and padding schemes to permit block ciphers to work
with messages of any length [22]. This case study chooses the Electronic Code-
Book (ECB) mode and null padding, due to its simplicity. The other modes require
the IV (Initialization Vector) generator and a different block partitioning, but this
fact does not affect the AES block cipher.

15.3.2 Software Implementation of the AES-128 Cipher

In order to study the applicability of a coprocessor on this application, the AES-
128 cipher is implemented as a C++ class named CAES128. The system receives/
transmits ciphered messages from/to the external PC and it uses the C++ class to
decrypt/encrypt blocks according to the cipher key. Microblaze reacts to the
messages to set the leds or to report the state of the switches.

The hardware specification is quite similar to the first case study, but it
pro-vides a single GPIO peripheral to read two switches and to set two leds.
Copy the folder which allocates the XPS project of the first case study and
rename it as co-processor. Edit the MHS file to add the 4-bit width GPIO and
connect its bidirectional port to an external FPGA port. The timer will not only
measure the time taken to encrypt/decrypt blocks, but it will also be used for the
cipher’s profiling. The profiler requires the timer to be able to interrupt the

2

1

Fig. 15.31 Enabling and configuring the profiling in the BSP

15.3 Case Study 2: Implementation of a Custom Coprocessor 417

microprocessor, therefore, the MHS connects their interrupt ports. The system
removes the interrupt controller since there is a single interrupt source.

The UCF file is modified to attach the external port to the switches and leds
according the FPGA board. Implement the hardware and export it to SDK.

Open the SDK workspace c:\edk13.1\coprocessor\SDK\workspace. Modify the
BSP settings to enable the profiling and configure the profile timer (see Fig. 15.31).
Clean and build the new BSP which includes a new library which is required when
the application is profiled.

Delete the previous C++ projects and create a new project named server which
targets the new BSP. The server application is composed of four files.

The files caes128.h and caes128.cc are the source files of the C++ class
CAES128 which implements the cipher. It is a straightforward implementation in
order to facilitate the next steps. The class can be improved, in terms of speed and
security, but it requires a deeper knowledge of the AES. The class provides the
method SetKey to compute the expanded key at the beginning of the application.
Then, it provides methods to Encrypt or Decrypt a single 128-bit block.

418 15 Embedded Systems Development: Case Studies

The file app.cc implements the application. It waits for commands launched
from a PC in order to set the leds or to report the state of the switches. Any
command produces an answer message which is transmitted to the PC. Com-
mands and answer messages are encrypted during their transmission on the serial
interface. The function send_rs232_cipher implements the ECB operation mode
and null padding. It divides an answer message into 128-bit blocks that are
individually encrypted and transmitted. In a similar way, the function
get_rs232_cipher builds a command message from the received and decrypted
blocks.

1

2

3

4

5

Fig. 15.32 Settings to build the release target

15.3 Case Study 2: Implementation of a Custom Coprocessor 419

The application stores into the variables EncryptMaxCycles/DecryptMaxCycles
the maximum number of clock cycles taken to encrypt/decrypt a block. It relies on
the file cchronometer.h which implements the C++ class to get the number of
clock cycles from the timer. The compiler can skip the code related to the

1
2

3

Fig. 15.33 Project cleaning
and building

420 15 Embedded Systems Development: Case Studies

chronometer when the CIPHER_CHRONOMETER declaration is commented. The
application also declares the CIPHER_DISABLE which can be used to skip the
cipher to facilitate debugging.

Click the menu Project ? Properties to edit the settings of the build of the
target Release, as shown in Fig. 15.32. The compiler can optimize the code to
improve the execution speed, by changing the order of instructions or the unrolling
of loops. The ELF may not fit in the BRAM memory if the optimization level at
the maximum (-O3). In order to display the measured encryption/decryption time,
lower the optimization level (-O2) and set the debug to the maximum level (-g3).

Set the Release as the active target. Then, click the menu Project ? Clean to
clean the C++ project in order to build it from scratch (see Fig. 15.33).

In order to test or debug the application, the PC must also use the AES-128
cipher. There are many PC programs that permit the ciphering of messages
through a communication channel, but they usually employ sophisticated pro-
tocols (SSH, SSL, etc.) to authenticate users before transmitting the cipher keys.
The presented application is much simpler, since the PC and the embedded
system are programmed with the same cipher key. In order to test the applica-
tion, the PC executes a Linux program to encrypt/decrypt messages from/to a
console which redirects the input/output to the serial port. The folder
linux_aes128 stores the executable files for Linux or Cygwin. Cygwin permits
the execution of applications written for Linux on Windows PC. Cygwin cannot
execute the Linux binaries, but it requires the building of the executable from the
Linux source files.

Install Cygwin or a Linux virtual machine and open a shell to launch a set of
commands. The first command changes to the directory which contains the path of
the executable (it may change). The next one configures the communication
parameters on the serial port (/dev/com1 may change). The third command maps a
file descriptor to the serial port. The last two commands decrypt or encrypt
messages between the console and the serial port. The cipher key is set to the
same value as the embedded system. Finally, program the FPGA and test
the application. The Linux console shows unreadable text if the cipher keys are
mismatched.

In order to display the time taken to encrypt/decrypt blocks, debug the ELF of
the target Release using SDK. Set a breakpoint at the last instruction of the C++
file to pause the execution when the user launches the quit command. Then resume
the application and launch several commands to the embedded system through the
Linux console. The variables EncryptMaxCycles and DecryptMaxCycles contain

15.3 Case Study 2: Implementation of a Custom Coprocessor 421

the maximum number of clock cycles required to encrypt and decrypt a block. The
decryption of a block takes 1.76 ms (87,338 clock cycles, 50 MHz clock
frequency), but the serial communication requires 1.39 ms to transmit it (115,200
bps). The FIFO of the UART may overrun during the reception of large messages
since the MicroBlaze cannot decrypt blocks at the required speed. To solve the
problem, the transmission speed can be lowered or the system can implement a
flow control. A better solution is to accelerate the most time-spending
computations.

15.3.3 Profiling

The profiler [12] is an intrusive tool which is used to test the application perfor-
mances. It reports the number of calls and the execution time of every function.
The profiling requires a dedicated timer able to interrupt the microprocessor in
order to sample the program counter. The source files of the application must be
compiled to add profiling ISR and code (compiler switch—pg). The linker attaches
to the profiling library to build the executable.

The server application is not adequate to profile the since most of the execution
time is devoted to wait for user messages from the serial port. A better approach is
to execute a new application which continuously encrypts and decrypts messages.
Therefore, create a new C++ project named profiling. The application file, named
profiling_app.cc, uses the class CAES128 to encrypt/decrypt messages in a loop.
Change the compiler switches of the target Release to enable the profiler and the
same optimization level as the server application (switches -pg -O2). Next, clean
the project in order to build the application from scratch.

The profiler collects data and stores it in memory during the execution. Once
the application completes, the collected data is downloaded to the PC in order to
analyze it. The SDK must set the profiler memory which cannot be overlapped to
the application memory. Use the SDK to program the FPGA with the imported
bitstream and BMM, and set the ELF to bootloop. Open the XMD console to
launch some commands. The first command changes the working directory to the
application’s folder. The second command establishes the connection to the
MicroBlaze’s MDM. The last command tries to download the ELF file into
memory. It fails since the profiler memory is not defined, but it reports the allo-
cated memory of the ELF. The hardware implements the local memory from the
address 0 9 0000 to 0 9 3FFF, and the XMD reported there is available free
memory from address 0 9 2248.

422 15 Embedded Systems Development: Case Studies

The profiling data can be stored into any free space of memory. Click the menu
Run ? Run Configurations to open the dialog depicted in Fig. 15.34. Then add
the application to profile and set the profile memory from the 0 9 3000 address.
Finally, run the application and wait until the application ends. The PC downloads

1

2

3

4

Fig. 15.34 Run configuration to profile

15.3 Case Study 2: Implementation of a Custom Coprocessor 423

the collected data which is stored in the file gmon.out. It is a binary file which is
interpreted by the GNU gprof tool.

Double click on the file gmon.out to display the results (see Fig. 15.35). The
SDK shows a graphical view of the collected data which can be arranged in several
ways, as the percentage of execution time devoted to each function. Two methods
of the CAES128 class take the 88% of the processing time: X and Multiply. They
are child functions called from the function InvMixColumn which is one of the
steps executed during the decryption. The child function X is also called from the
step MixColumn during the encryption.

The profiling information can be used to re-implement the most time-spending
functions to improve the execution time. However, a coprocessor can greatly
accelerate a specific computation.

15.3.4 Coprocessor Design

The coprocessor aims to accelerate the step InvMixColumn and its child functions.
The step MixColumn is quite similar, therefore, the hardware design of both steps
does not significantly increase the effort. The coprocessor will accelerate the
computations that take the 92% of the processing time obtained from the profiler.

1 2

3

Fig. 15.35 Collected data from the application profiling

424 15 Embedded Systems Development: Case Studies

Copy the previous XPS folder and rename it as coprocessor_ip in order to
develop the coprocessor, its driver, and to update the hardware and software of the
application.

15.3.4.1 Hardware Design

Coprocessors are attached to MicroBlaze through Fast Simplex Link (FSLs), as
depicted in Fig. 15.36 (top). A MicroBlaze’s master-FSL connects to the copro-
cessor’s slave-FSL in order to write the coprocessor’s registers. In the reverse way,
the MicroBlaze’s slave-FSL permits the reading of the coprocessor’s registers.

The FSL [21] is a point-to-point link which permits a low latency and fast
communication due to its simple handshake. The FSL does not provide an address
bus, as seen in Fig. 15.36 (bottom). Therefore, the coprocessor’s registers must be
sequentially accessed in a predetermined order. Each FSL provides, by default, a
16-depth FIFO which can temporally store data written from the master, when the
slave is not ready to read it. The FSL provides a single 32-bit width bus
(FLS_M_Data, FSL_S_Data) which can carry data or commands, depending on the
control signal (FSL_M_Control, FSL_S_Control). In order to read data, the FIFO
signals when data is available to read (FSL_S_Exists), and the slave acknowledges

Fig. 15.36 Attachment of the MicroBlaze and coprocessor (top), and FSL schematic (bottom)

15.3 Case Study 2: Implementation of a Custom Coprocessor 425

when data is retrieved (FSL_S_Read). Similarly, in order to write data, the FIFO
signals when there is no free space (FSL_M_Full), and the master requests to write
data (FSL_M_Write).

XPS can create the template files for coprocessors through the same wizard
used for peripherals. Launch the wizard by clicking the menu Hardware ? Create
or Import Peripheral:

(1) Choose create templates in the XPS directory
(2) Set the name to fsl_mixcolumns and the version to v1.00.a
(3) Select FSL attachment and go ahead with the default settings
(4) Select to implement the driver template and finish the wizard

The coprocessor does not require additional parameters, ports or VHDL files,
therefore, the MPD and PAO files are not modified. The template file
fsl_mixcolumns.vhd is modified to design the coprocessor. It implements a 4x4
matrix of 8-bit registers (reg_state) to compute and store the AES state.
Additionally, a 1-bit register (reg_mode) configures the computation mode as
MixColumns or InvMixColumns. MicroBlaze will execute a control-type write
instruction to the coprocessor’s slave FSL to set the mode register. Next, it
follows four data-type write instructions to set the registers of the AES state.
Matrices are stored in rows in the microprocessor’s memory, and each 32-bit
data sets the 4 registers of a row in the coprocessor. The coprocessor starts the
computation when the registers reg_state and reg_mode have been written. The
coprocessor must acknowledge the read of data to the slave-FSL in order to
delete it from the FIFO.

The coprocessor computes and stores the result in the registers reg_state. The
coprocessor writes the resulting data to its master-FSL in a quite similar way. It
writes a new row on the FSL when the computation is completed and the FIFO is
not full. MicroBlaze executes four read instructions to the FSL in order to retrieve
the resulting AES state.

A key idea to accelerate a computation is in parallel processing. A full-parallel
implementation could compute the entire array of the AES state in a single clock
cycle, although it may occupy a large area. However, MicroBlaze would not
completely take profit of this architecture since it takes several more clock cycles
to execute the FSL instructions to set and retrieve the AES state. A semi-parallel
architecture offers a good trade-off between speed and area. The coprocessor
computes the left-side column of the reg_state in a clock cycle. The state register
shifts one column and the computation is repeated for the next 3 columns.
Therefore, it takes 4 clock cycles to complete.

426 15 Embedded Systems Development: Case Studies

15.3 Case Study 2: Implementation of a Custom Coprocessor 427

15.3.4.2 Driver Design

The XPS wizard generates the H and C templates for the coprocessor’s driver. The
driver provides a single function which sends the AES state and gets the result
through FSLs. It executes a control-type write instruction followed by four data-
type instructions to set the computation mode and the AES state. The state is
transmitted in rows to avoid rearrangement of data from memory to the FSL. The
last instructions read the resulting state.

The function uses macros to set/get data to/from FSLs. During the BSP
generation, the compiler replaces them by the MicroBlaze instructions that read
or write an FSL slot. MicroBlaze provides 16 master-FSLs and 16 slave-FSLs.
The input slot is the FSL index from which the coprocessor reads the input data
(coprocessor’s slave-FSL). The output slot is the FSL index which connects to
the coprocessor’s master-FSL. The slot names must match with the name of the
coprocessor’s instance (fsl_mixcolumns_0) which will be declared in the MHS
file, otherwise the BSP will fail.

428 15 Embedded Systems Development: Case Studies

15.3.5 Modification of the Embedded System

The hardware must be modified to attach MicroBlaze to the coprocessor through
FSLs. The class CAES128 must accelerate the computation of the steps MixColumns
and InvMixColumns using the coprocessor’s driver.

15.3.5.1 Hardware Modification

The XPS offers a wizard (see Fig. 15.37) to connect a coprocessor when clicking
the menu Hardware ? Configure Coprocessor. It modifies the MHS file to
attach the coprocessor’s instance (fsl_mixcolumns_0) to MicroBlaze through two
FSLs.

15.3 Case Study 2: Implementation of a Custom Coprocessor 429

15.3.5.2 Software Modification

Export the new hardware to SDK and set the workspace to the path
c:\edk13.1\coprocessor_ip\SDK\workspace before continuing. By default, the
MSS associates a generic driver to the coprocessor. The BSP generation with
the coprocessor’s driver is similar to the case of the peripheral. First, edit the file
libgen.options to add the local repository which contains the driver’s source files.
Then, edit the MSS file to change the driver associated to the coprocessor.

Clean and build the BSP project to generate the new BSP from scratch. The
software applications use the C++ class CAES128 which implements the block

430 15 Embedded Systems Development: Case Studies

cipher. The member methods MixColumns and InvMixColumns are modified in
order that the coprocessor computes these steps. The class also provides condi-
tional compilation to permit the computation by software for testing purposes.

The rest of the source files are not modified, since the class CAES128 carries
out the encryption/decryption of blocks. Build the C++ projects to generate the
new executables.

15.3.6 Simulation

The coprocessor can be simulated in a very similar way as described for the
peripheral. The application profiling is used to build the simulation model since it
continuously encrypts/decrypts blocks using the coprocessor.

Search when the coprocessor asserts the signal start which launches the com-
putation, as shown in Fig. 15.38. The waveform previously shows the execution of
five FSL write instructions by MicroBlaze. The coprocessor reads the data from its
slave-FSL. The first FSL instruction is a control-type access which writes the mode
register (reg_mode). The next four FSL instructions are data-type accesses to write
the rows of the state register (reg_state). The coprocessor starts the computation
after the completion of the five write accesses.

Figure 15.39 shows that the coprocessor takes 4 clock cycles to compute the
state register. Then, it writes the four rows of the resulting reg_state to its master-
FSL, in order the MicroBlaze can read them. The coprocessor does not have to
wait for the MicroBlaze to read the resulting data, since the FIFO of the FSL is not
full.

15.3 Case Study 2: Implementation of a Custom Coprocessor 431

1
2

3

Fig. 15.37 EDK wizard to connect a coprocessor

1

2

Fig. 15.38 Simulation of the coprocessor’s slave FSL

432 15 Embedded Systems Development: Case Studies

1

2

Fig. 15.39 Simulation of the coprocessor computation and the master FSL

1 2

3

Fig. 15.40 Profiling data with the coprocessor

15.3 Case Study 2: Implementation of a Custom Coprocessor 433

15.3.7 Experimental Results

Follow the steps previously described to collect the new profiling data. Before
programming the FPGA, check the directories used to get the BIT, BMM and ELF
files are in the current SDK workspace. Figure 15.40 shows the functions
MixColumns and InvMixColumns currently represent only the 6.14% of the exe-
cution time. The time in these functions is mainly devoted to the transmitting and
receiving of the state variable through the FSL instructions.

The application server can be tested as described before. The measured number
of clock cycles to encrypt and decrypt a block are now 5,189 and 5,150, respectively.
Therefore the decryption time is greatly improved from 1.76 ms to 103 ls (50 MHz
clock frequency), which represents about 17 times faster.

References

1. Nist (2002) NIST Advanced Encryption Standard (AES) FIPS PUB 197
2. Xilinx (2005) Spartan-3 Starter Kit Board User Guide (UG130)
3. Xilinx (2010a) XST User Guide for Virttex-4, Virtex-5, Spartan-3, and Newer CPLD

Devices (UG627)
4. Xilinx (2010b) LogiCORE IP Processor Local Bus PLB v4.6 (DS531)
5. Xilinx (2010c) XPS General Purpose Input/Output (GPIO) v2.00.a (DS569)
6. Xilinx (2010d) LogiCORE IP XPS Timer/Counter v1.02.a (DS573)
7. Xilinx (2010e) LogiCORE UART Lite v1.01.a (DS571)
8. Xilinx (2010f), LogiCORE IP XPS Interrupt Controller v2.01.a (DS572)
9. Xilinx (2010g) Xilinx Processor IP Library. Software Drivers. uartlite v2.00.a

10. Xilinx (2010h) Xilinx Processor IP Library. Software Drivers. tmrctr v2.03.a
11. Xilinx (2010i) Xilinx Processor IP Library. Software Drivers. intc v2.02.a
12. Xilinx (2010j) EDK Profiling Use Guide (UG448)
13. Xilinx (2011a) Embedded System Tools Reference Manual (UG111)
14. Xilinx (2011b) Platform Specification Format Reference Manual (UG642)
15. Xilinx (2011c) Command Line Tools User Guide (UG628)
16. Xilinx (2011d) MicroBlaze Processor Reference Guide (UG081)
17. Xilinx (2011e) LogicCORE Local Memory Bus LMB v10 (DS445)
18. Xilinx (2011f) Standalone (v.3.0.1.a) (UG647)
19. Xilinx (2011g) ISim User Guide v13.1 (UG660)
20. Xilinx (2011h) Data2MEM User Guide (UG658)
21. Xilinx (2011i) LogiCORE IP Fast Simplex Link (FSL) V20 Bus v2.11d (DS449)
22. Menezes AJ, Oorschot PC, Vanstone SA (1996) Handbook of applied cryptography. CRC

Press, Boca Raton

434 15 Embedded Systems Development: Case Studies

	15 Embedded Systems Development: Case Studies
	15.1…Introduction to Xilinx EDKEDK
	15.1.1 Case Study 1-A: A Basic Embedded System
	15.1.2 Hardware
	15.1.2.1 Specification
	15.1.2.2 Synthesis
	15.1.2.3 Implementation
	15.1.2.4 Software
	15.1.2.5 Board Support Package
	15.1.2.6 ExecutableExecutable

	15.1.3 Programming and Debugging

	15.2…Case Study 1-B: Creating a Custom Peripheral
	15.2.1 Design of a Custom Peripheral
	15.2.1.1 Hardware Design
	15.2.1.2 Driver Design

	15.2.2 System’s Hardware/Software Modification
	15.2.2.1 Hardware Modification
	15.2.2.2 Software Modification

	15.2.3 Functional Simulation

	15.3…Case Study 2: Implementation of a Custom Coprocessor
	15.3.1 A Brief Introduction to the AES-128AES-128 Cipher
	15.3.2 Software Implementation of the AES-128 Cipher
	15.3.3 ProfilingProfiling
	15.3.4 CoprocessorCoprocessor Design
	15.3.4.1 HardwareCoprocessorhardware Design
	15.3.4.2 DriverCoprocessordriver Design

	15.3.5 Modification of the Embedded System
	15.3.5.1 Hardware Modification
	15.3.5.2 Software Modification

	15.3.6 Simulation
	15.3.7 Experimental Results

	References

