
Chapter 13
Finite-Field Arithmetic

Finite fields are used in different types of computers and digital communication
systems. Two well-known examples are error-correction codes and cryptography.
The traditional way of implementing the corresponding algorithms is software,
running on general-purpose processors or on digital-signal processors. Neverthe-
less, in some cases the time constraints cannot be met with instruction-set proces-
sors, and specific hardware must be considered.

The operations over the finite ring Zm are described in Sect. 13.1. Two multi-
plication algorithms are considered: ‘‘multiply and reduce’’ (Sect. 13.1.2.1) and
‘‘interleaved multiplication’’ (Sect. 13.1.2.2). The Montgomery multiplication,
and its application to exponentiation algorithms, are the topics of Sect. 13.1.2.3.
Section 13.2 is dedicated to the division over Zp, where p is a prime. The proposed
method is the ‘‘binary algorithm’’, an extension of an algorithm that computes the
greatest common divider of two naturals. The operations over the polynomial ring
Z2[x]/f(x) are described in Sect. 13.3. Two multiplication algorithms are consid-
ered: ‘‘multiply and reduce’’ (Sect. 13.3.2.1) and ‘‘interleaved multiplication’’
(Sect. 13.3.2.2). Squaring is the topic of Sect. 13.3.2.3. Finally, Sect. 13.4 is
dedicated to the division over GF(2n).

As a matter of fact, only some of the most important algorithms have been
considered. According to the Authors’ experience they generate efficient FPGA
implementations (Sect. 13.5). Furthermore, non-binary extension fields GF(pn) are
not considered. A much more complete presentation of finite field arithmetic can
be found in [1] and [2].

13.1 Operations Modulo m

Given a natural m, the set Zm ¼ 0; 1; . . .;m� 1f g is a ring whose operations are
defined as modulo m.

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_13,
� Springer Science+Business Media Dordrecht 2012

337

13.1.1 Addition and Subtraction Mod m

Given two natural numbers x and y belonging to Zm, compute z = (x ? y) mod
m. Taking into account that 0� xþ y\2 � m; z must be equal to either x ? y or
x ? y - m, the following algorithm computes z.

Algorithm 13.1: Mod m addition

As regards the computation of z = (x - y) mod m, take into account that
-m \ x - y \ m, so that z must be equal to either x� y or x� yþ m: The cor-
responding algorithm is the following.

Algorithm 13.2: Mod m subtraction

The circuit of Fig. 13.1 is an adder-subtractor, which computes z = (x ? y) mod
m if operation = 0 and z = (x - y) mod m if operation = 1. It is described by the
following VHDL model in which k is the number of bits of m.

x y

operation+/-

s1
sign1

+/-

m

s2 sign2

z

0 1 c
C.C.

Fig. 13.1 Adder–subtractor
modulo m

338 13 Finite-Field Arithmetic

A complete VHDL model is mod_m_AS.vhd is available at the Authors’ web page.

13.1.2 Multiplication Mod m

Given x and y [Zm, compute z = x�y mod m, where m is a k-bit natural.

13.1.2.1 Multiply and Reduce

A straightforward method consists of multiplying x by y, so that a 2k-bit result
product is obtained, and then reducing product mod m. For that, any combination
of multiplier and mod m reducer can be used. For fixed values of m, specific
combinational mod m reducers can be considered.

As an example, synthesize a mod m multiplier with m = 2192 - 264 - 1. Any
192-by-192 multiplier can be used. A 384-bit to 192-bit mod m reducer can be
synthesized as follows: given x ¼ x383 � 2383 þ x382 � 2382 þ . . .þ x0 � 20; it can
be divided up under the form

ðx383 � 263þx382 � 262þ ...þx320 � 20Þ2320þðx319 �263þx318 �262þ ...þx256 � 20Þ2256

þðx255 � 263þx254 � 262þ ...þx192 � 20Þ2192þx191 � 2191þx190 � 2190þ ...þx0 � 20:

Then, substitute 2320 by 2128 ? 264 ? 1 : 2320 mod m, 2256 by
2128 ? 264 : 2256 mod m, and 2192 by 264 ? 1 : 2192 mod m.
So, x : x0 ? x00 ? x¢¢¢ ? x0000, where

x0 ¼ ðx383 � 2191 þ x382 � 2190 þ . . .þ x320 � 2128Þ
þ ðx383 � 2127 þ x382 � 2126 þ . . .þ x320 � 264Þ
þ ðx383 � 263 þ x382 � 262 þ . . .þ x320 � 20Þ;

x00 ¼ ðx319 � 2191 þ x318 � 2190 þ . . .þ x256 � 2128Þ
þ ðx319 � 2127 þ x318 � 2126 þ . . .þ x256 � 264Þ;

x000 ¼ ðx255 � 2127 þ x254 � 2126 þ . . .þ x192 � 264Þ
þ ðx255 � 263 þ x254 � 262 þ . . .þ x192 � 20Þ;

x0000 ¼ x191 � 2191 þ x190 � 2190 þ . . .þ x0 � 20:

13.1 Operations Modulo m 339

The sum s ¼ x0 þ x00 þ x000 þ x0000 is smaller than 4 � ð2192 � 264 � 1Þ ¼ 4 m; so
that x mod m is either s, s - m, s - 2m or s - 3m.

The corresponding circuit is shown in Fig. 13.2 and is described by the
following VHDL model.

A complete VHDL model is mod_p192_reducer2.vhd is available at the Authors’
web page.

In order to complete the multiplier design, any 192-bit by 192-bit multiplier can
be used (Chap. 8). This is left as an exercise.

13.1.2.2 Interleaved Multiplier

Another option is to modify a classical left-to-right multiplication algorithm based
on the following computation scheme

x � y ¼ . . . 0 � 2þ xn�1 � yð Þ � 2þ xn�2 � yð Þ � 2þ . . .þ x1 � yð Þ � 2þ x0 � y:

Algorithm 13.3: Mod m multiplication, left-to-right algorithm

The data path corresponding to Algorithm 13.3 is shown in Fig. 13.3. It is
described by the following VHDL model.

340 13 Finite-Field Arithmetic

http://dx.doi.org/10.1007/978-94-007-2987-2_8
http://dx.doi.org/10.1007/978-94-007-2987-2_8

A complete VHDL model mod-_m_multiplier.vhd-, including a k-state counter and
a control unit, is available at the Authors’ web page.

x 383..320&x383..320&x383..320 x191..0

192 -bit adder

x319..256&x319..256 x255..192

128 -bit adder

x255..192

s1,192..0 s2,192..64
s2,63..0

193 -bit adder

s193..0

subtractor

m

z1

subtractor

2m

z2

subtractor

3m

z3sign1 sign2 sign3

sign1..3
1-- 01- 001 000

Fig. 13.2 Mod 2192 � 264 � 1 reducer

13.1 Operations Modulo m 341

If ripple-carry adders are used, the minimum clock period is about k�TFA, so that
the total computation time is approximately equal to k2�TFA. In order to reduce the
computation time, the stored-carry encoding principle could be used [2]. For that,
Algorithm 13.3 is modified: accumulator is represented under the form
accs ? accc; the conditional sum (accs ? accc) �2 ? xn-k-i�y is computed in stored-
carry form, and every sum is followed by a division by m, also in stored-carry form
(Sect. 9.2.4), without on-the-fly conversion as only the remainder must be com-
puted. The corresponding computation time is proportional to k instead of k2. The
design of the circuit is left as an exercise.

s

subtractor

m

z1

subtractor

2m

z2sign1 sign2

1- 01 00

acc

adder

sign1..2

register
initially: 0

shif register
initially: x

xn-i-1

y

2·acc

load
update

load
update

Fig. 13.3 Interleaved mod m multiplier

342 13 Finite-Field Arithmetic

http://dx.doi.org/10.1007/978-94-007-2987-2_9
http://dx.doi.org/10.1007/978-94-007-2987-2_9

13.1.2.3 Montgomery Multiplication

Assume that m is an odd k-bit number. As m is odd, then gcd(m, 2k) = 1, and there
exists an element 2-k of Zm such that 2k � 2�k� � 1 mod m. Define a one-to-one
and onto application T from Zm to Zm:

T xð Þ ¼ x:2k mod m and T�1 yð Þ ¼ y:2�k mod m:

The following properties hold true: T((x ? y) mod m) = (T(x) ? T(y)) mod m,
T((x - y) mod m) = (T(x) - T(y)) mod m, T(x�y mod m) = T(x)�T(y).2-k mod
m. The latter suggests the definition of a new operation on Zm, the so-called
Montgomery product MP [3]:

MP x; yð Þ ¼ x � y � 2�k mod m:

Assume that the value 22k mod m has been previously computed. Then

T xð Þ ¼ MP x; 22k mod m
� �

and T�1 yð Þ ¼ MP y; 1ð Þ:

The main point is that the Montgomery product MP is easier to compute than the
mod m product. The following algorithm computes MP(x, y).

Algorithm 13.4: Montgomery product

The data path corresponding to Algorithm 13.4 (without the final correction) is
shown in Fig. 13.4. It is described by the following VHDL model.

If ripple-carry adders are used, the total computation time is approximately equal
to k2�TFA. In order to reduce the computation time, the stored-carry encoding
principle could be used [2, 4].

13.1 Operations Modulo m 343

Algorithm 13.5: Montgomery product, carry-save addition

The corresponding computation time is proportional to k instead of k2. The design
of the circuit is left as an exercise.

In order to compute z = x�y mod m, the Montgomery product concept should
be used in the following way: first (initial encoding) substitute x and y by
x0 ¼ T xð Þ ¼ MPðx; 22k mod mÞ and y0 ¼ T yð Þ ¼ MPðy; 22k mod mÞ; then com-
pute z0 = MP(x0, y’); finally (result decoding) compute z ¼ T�1 z0ð Þ ¼ MP z; 1ð Þ:
This method is not efficient, unless many operations involving the same initial data
are performed, in which case the initial encoding of those data is performed only
once. Consider the following modular exponentiation algorithm; it computes
z = yx mod m and is based on the following computation scheme:

z ¼ yx0þx1 � 2þx2 � 22þ...þxk�1 � 2k�1 ¼ yx0 � ðy2Þx1 � ðy22Þx1 � . . . � ðy2k�1Þxk�1 mod m:

y

xishif register
initially: x

load
update

m

p0

y0xi

q

adder

p

register
initially: 0

load
update

p

Fig. 13.4 Montgomery product

344 13 Finite-Field Arithmetic

Algorithm 13.6: Mod m exponentiation, LSB-first

Mod m operations can be substituted by Montgomery products. For that, 1 is
substituted by T 1ð Þ ¼ 2k mod m, and y by T yð Þ ¼ MPðy; 22k mod mÞ: Thus,
assuming that 2k mod m and 22k mod m have been previously computed, the
following algorithm computes z = x�y mod m.

Algorithm 13.7: Modulo m exponentiation, Montgomery algorithm,
LSB-first

The corresponding circuit is made up of two Montgomery multipliers working in
parallel, with some kind of synchronization mechanism. A data-flow VHDL
description mod_m_exponentiation.vhd is available at the Authors’ web page. At
each step both multipliers MP1 and MP2, with their corresponding done1 and done2

signals, are synchronized with a wait instruction:

An MSB-first exponentiation algorithm could also be considered. For that, use the
following computation scheme:

z ¼ yx0þx1 � 2þx2 � 22þ...þxk�1 � 2k�1

¼ ðð. . .ð12 � yxk�1Þ2 � yxk�2Þ2 � . . . � yx1Þ2 � yx0 mod m:

13.1 Operations Modulo m 345

Algorithm 13.8: Mod m exponentiation, MSB-first

As before, mod m multiplications can be substituted by Montgomery products. For
that, 1 is substituted by T(1) = 2k mod m, and y by T(y) = MP(y, 22k mod m). There is
a precedence relation between the two main operations T(e) : = T(e2) = MP(T(e),
T(e)) and T(e) : = T(e�y) = MP(T(e), T(y)). Thus, a direct implementation includes
only one Montgomery multiplier, but needs up to 2k cycles instead of k in the case of
the LSB-first algorithm. The design of the corresponding circuit is left as an exercise.

13.2 Division Modulo p

If p is prime, than all non-zero elements of Zp have a multiplicative inverse. Thus,
given x and y = 0 in Zp, there exists an element z of Zp such that z = x�y-1 mod p.

There are several types of algorithms that compute z. Some of them are gen-
eralizations of algorithms that compute the greatest common divider: Euclidean
algorithm [5, 6], binary algorithm [7], plus-minus algorithm [8–10]. Another
option is to substitute division by multiplications: according to the Fermat’s little
theorem z = x�yp-2 mod p. As an example, the following binary algorithm com-
putes z = x�y-1 mod p. It uses four variables a, b, c and d, initially equal to p, y, 0
and x, respectively. At each step, a and b are updated in such a way that their gcd is
unchanged and that b decreases. For that, observe that if b is even and a is odd,
then gcd(a, b) = gcd(a, b/2), and if both a and b are odd, then gcd(a, b) = gcd
(a, |b-a|) = gcd(b, |b-a|). As initially a = p and b = y, where p is a prime, after a
finite number of steps a is equal to 1. On the other hand, c and d are updated in
such a way that c�y : a�x mod p and d�y : b�x mod p. Initially, c = 0,
a = p : 0 mod p, d = x and b = y, so that the mentioned relations are satisfied.
It can be proven that if c and d are updated in the same way as a and b, both
relations remain true. In particular, if a = 1, then c�y : x mod p, and z = c.

346 13 Finite-Field Arithmetic

Algorithm 13.9: Mod p division, binary algorithm

The corresponding circuit is made up of adders, registers and connection resour-
ces. A data-flow VHDL description mod_p_division2.vhd is available at the
Authors’ web page.

An upper bound of the number of steps before a = 1 is 4k, k being the number
of bits of p. So, if ripple-carry adders are used, the computation time is shorter than
4�k2�TFA (a rather pessimistic estimation).

13.3 Operations Over Z2½x�=fðxÞ

Given a polynomial f xð Þ ¼ xm þ fm�1xm�1 þ . . .þ f1xþ f0; whose coefficients fi
belong to the binary field Z2, the set of polynomials of degree smaller than m over
Z2 is a ring Z2[x]/f(x) whose operations are defined modulo f(x).

13.3.1 Addition and Subtraction of Polynomials

Given two polynomials a xð Þ ¼ am�1xm�1 þ . . .þ a1xþ a0 and b xð Þ ¼ bm�1xm�1

þ. . .þ b1xþ b0; then

a xð Þ þ b xð Þ ¼ a xð Þ � b xð Þ ¼ cm�1xm�1 þ . . .þ c1xþ c0;

where ci ¼ ðai þ biÞ mod 2; 8i in 0; 1; . . .;m� 1f g: In other words, the corre-
sponding circuit is a set of m 2-input XOR gates working in parallel, which can be
described by the following VHDL sentence:

13.3.2 Multiplication Modulo f(x)

Given two polynomials a xð Þ ¼ am�1xm�1 þ . . .þ a1xþ a0 and b xð Þ ¼ bm�1xm�1

þ. . .þ b1xþ b0 of degree smaller than m, and a polynomial f ðxÞ ¼ xm þ fm�1xm�1

þ. . .þ f1xþ f0; compute c(x) = a(x)�b(x) mod f(x).

13.2 Division Modulo p 347

13.3.2.1 Multiply and Reduce

A straightforward method consists of multiplying a(x) by b(x), so that a polyno-
mial d(x) of degree smaller than 2m-1 is obtained, and then reducing d(x) mod f(x).

The coefficients dk of d(x) are the following:

dk ¼
Xk

i¼0
ai � bk�i; k ¼ 0; 1; . . .; m� 1;

dk ¼
X2m�2

i¼k
ak�iþðm�1Þ � bi�ðm�1Þ; k ¼ m; mþ 1; . . . ; 2m� 2:

The preceding equations can be implemented by a combinational circuit made up
of 2-input AND gates and XOR gates with up to m inputs.

It remains to reduce d(x) modulo f(x). Assume that all coefficients ri,j, such that

xmþj mod f xð Þ ¼ rm�1; jx
m�1 þ rm�2; jx

m�2 þ � � � þ r1;jx
1 þ r0;j;

have been previously computed. Then the coefficients of c(x) = a(x)�b(x) mod
f(x) are the following:

cj ¼ dj þ
Xm�2

i¼0
rj;i � dmþi; j ¼ 0; 1; . . . ; m� 1: ð13:1Þ

348 13 Finite-Field Arithmetic

The preceding equations can be implemented by a combinational circuit made up
of m XOR gates with up to m inputs. The number of gate inputs is determined by
the maximum number of 1’s within a column of the matrix [ri,j], and this depends
on the chosen polynomial f(x).

A complete VHDL model classic_multiplier.vhd, including both the polyno-
mial multiplier and the polynomial reducer, is available at the Authors’ web
page.

Every coefficient dk is the sum of at most m products ai�bk-i, and every coef-
ficient cj is the sum of, at most, m coefficients dk. Thus, if tree structures are used,
the computation time is proportional to log m. On the other hand, the cost is
proportional to m2. Hence, this type of multiplier is suitable for small values of
m. For great values of m, the cost could be excessive and sequential multipliers
should be considered.

13.3.2.2 Interleaved Multiplier

The following LSB-first algorithm computes c(x) = a(x)�b(x) mod f(x) according
to the following computation scheme:

c xð Þ ¼ b0 � a xð Þ þ b1 � a xð Þ � xð Þ þ b2 � a xð Þ � x2
� �

þ . . .þ bm�1 � a xð Þ � xm�1
� �

:

Algorithm 13.10: Interleaved multiplication, LSB-first

The first operation c(x) ? bi�a(x) is executed by the circuit of Fig. 13.5a. In order
to compute a(x)�x mod f(x), use the fact that xm mod f xð Þ ¼ fm�1xm�1 þ
fm�2xm�2 þ . . .þ f0: Thus,

13.3 Operations Over Z2½x�=fðxÞ 349

a xð Þ � x mod f xð Þ ¼ am�1 � fm�1xm�1 þ fm�2xm�2 þ . . .þ f0
� �

þ am�2xm�1

þ am�3xm�2 þ . . .þ a0x:

The corresponding circuit is shown in Fig. 13.5b. For fixed f(x), the products am-1�fj
must not be computed: if fj ¼ 1; aþj ¼ aj�1 þ am�1

� �
mod 2, and if fj ¼ 0;

aþj ¼ aj�1:

The circuit also includes two parallel registers a and c, a shift register b, an
m-state counter, and a control unit. A complete VHDL model interleaved_mult.vhd
is available at the Authors’ web page.

13.3.2.3 Squaring

Given a xð Þ ¼ am�1xm�1 þ . . .þ a1xþ a0; the computation of c(x) = a2(x) mod
f(x) can be performed with the algorithm of Sect. 13.3.2.1. The first step (multiply)
is trivial:

d xð Þ ¼ a2 xð Þ ¼ ðam�1xm�1 þ . . .þ a1xþ a0Þ2

¼ am�1x2 m�1ð Þ þ am�2x2 m�2ð Þ þ . . .þ a1x2 þ a0:

Thus, di = ai/2 if i is even, else di = 0. According to (13.1),

cj ¼ aj=2 þ
P

0� i�m�2
mþi even

rj;i � aðmþiÞ=2; j ¼ 0; 2; 4; . . .

cj ¼
X

0� i�m�2
mþi even

rj;i � aðmþiÞ=2; j ¼ 1; 3; 5; . . .

The cost of the circuit depends on the chosen polynomial f(x), which, in turn,
defines the matrix [ri,j]. If f(x) has few non-zero coefficients, as is the case of
trinomials and pentanomials, then the matrix [ri,j] also has few non-zero coeffi-
cients, and the corresponding circuit is very fast and cost-effective. Examples of
implementations are given in Sect. 13.5.

cm -1
+

c
(a)

(b)m-1 am-1 cm-2 am-2 c0 a0

bi

cm -2
+ c0

+

·····

am-1
+ am-2

+ a1
+

·····
am-2

am-1·fm-1

am-3 a0

am-1·fm-2 am-1·f1 am -1·f0

a0
+

Fig. 13.5 Interleaved multiplier, computation of c(x) ? bi�a(x) and a(x)�x mod f(x)

350 13 Finite-Field Arithmetic

13.4 Division Over GF(2m)

If f(x) is irreducible, then all non-zero polynomials in Z2[x]/f(x) have a multipli-
cative inverse. Thus, given g(x) and h xð Þ 6¼ 0 in Z2 x½ �=f xð Þ; there exists a poly-
nomial z(x) in Z2[x]/f(x) such that z xð Þ ¼ g xð Þ � h�1 xð Þ mod f xð Þ:

There are several types of algorithms for computing z(x). Some of them are
generalizations of algorithms that compute the greatest common divider, like the
Euclidean algorithm and the binary algorithm. Another option is to substitute the
division by multiplications: according to the Fermat’s theorem z xð Þ ¼ g xð Þ �
hq�2 xð Þ mod f xð Þ where q = 2m. As an example, the following binary algorithm
computes z xð Þ ¼ g xð Þ � h�1 xð Þ mod f xð Þ: It uses four variables a(x), b(x),
u(x) and v(x), initially equal to f(x), h(x), 0 and g(x), respectively. At each step,
a(x) and b(x) are updated in such a way that their greatest common divider is
unchanged and that the degree of a(x) ? b(x) decreases. For that, observe that if
b(x) is divisible by x and a(x) is not, then gcd(a(x), b(x)) = gcd(a(x), b(x)/x), and if
neither a(x) nor b(x) are divisible by x, then gcd a xð Þ; b xð Þð Þ ¼ gcdða xð Þ; ða xð Þ þ
b xð ÞÞ=xÞ ¼ gcdðb xð Þ; ða xð Þ þ b xð ÞÞ=xÞ: As initially a(x) = f(x) and b(x) = h(x),
where f(x) is irreducible, after a finite number of steps b(x) = 0 and
a(x) = gcd(f(x), h(x)) = 1. On the other hand, u(x) and v(x) are updated in such a
way that u(x)�h(x) : a(x)�g(x) mod f(x) and v(x)�h(x) : b(x)�g(x) mod f(x).
Initially, u(x) = 0, a(x) = f(x) : 0 mod f(x), v(x) = g(x) and b(x) = h(x), so that
both equivalence relations are satisfied. It can be proven that if u(x) and v(x) are
updated in the same way as a(x) and b(x), both relations remain true. In particular,
if a(x) = 1, then u(x)�h(x) : g(x) mod f(x), and z(x) = u(x).

Algorithm 13.11: Mod f(x) division, binary algorithm

Given a polynomial w(x), then w xð Þ � x�1 mod f xð Þ ¼ w xð Þ þ w0 � f xð Þð Þ=x:
A data path for executing the preceding algorithm is shown in Fig. 13.6. The small
circles connected to f1, f2,…, represent programmable connections: if fi = 1, the
rightmost input of the corresponding XOR gate is connected to w0, else it is
connected to 0.

13.4 Division Over GF(2m) 351

A drawback of the proposed algorithm is that the degrees of a(x) and b(x) must be
computed at each step. A better option is to use upper bounds a and b of the
degrees of a(x) and b(x).

Algorithm 13.12: Mod f(x) division, binary algorithm, version 2

The data path is the same as before (Fig. 13.6). An upper bound of the number of
steps is 2m. As the operations are performed without carry propagation, the com-
putation time is proportional to m. A data-flow VHDL description mod_f_divi-
sion2.vhd is available at the Authors’ web page.

0 1 0 10 1

am

bm-1

am-1bm-1 b1 a1

b0

0

bm-2 b0

initially: h(x) ce_bv

0 1 0 1

um-1vm-1 v1 u1

b0
0 1

v0 u0

fm-1

initially: g(x) ce_bv

vm-1 vm-2 v0initially: f(x) ce_au

0

am am-1 a0am-2
initially: 0 ce_au

um-1 um-2 u0

...

...

...

...

...

... f1

w0w1wm-1

Fig. 13.6 Binary algorithm for polynomials

352 13 Finite-Field Arithmetic

In the preceding binary algorithms, the number of steps is not fixed; it depends
on the input data values. This is an inconvenience when optimization methods,
such as digit-serial processing (Chap. 3), are considered. In the following algo-
rithm [11] a and b are substituted by count = |a-b-1|, and a binary variable state
equal to 0 if a[b, and equal to 1 if a B b.

Algorithm 13.13: Mod f(x) division, binary algorithm, version 3

The data path is still the same as before (Fig. 13.6), and the number of steps is 2m,
independently of the input data values. As the operations are performed without
carry propagation, the computation time is proportional to m. A data-flow VHDL
description mod_f_division3.vhd is available at the Authors’ web page. Further-
more, several digit-serial implementations, with different digit definitions, are
given in Sect. 13.5.

13.5 FPGA Implementations

Several circuits have been implemented within a Virtex 5–2 device. The times are
expressed in ns and the costs in numbers of Look Up Tables (LUTs) and flip-flops
(FFs). All VHDL models are available at the Authors’ web page.

Two combinational multipliers (multiply and reduce) have been implemented
(Table 13.1).

For greater values of the degree m of f(x), sequential implementations should be
considered. Several interleaved multipliers have been implemented (Table 13.2).

In the case of the squaring operation, combinational circuits can be used, even
for great valued of m (Table 13.3).

13.4 Division Over GF(2m) 353

http://dx.doi.org/10.1007/978-94-007-2987-2_3
http://dx.doi.org/10.1007/978-94-007-2987-2_3

Several sequential mod f(x) dividers (Sect. 13.4) have been implemented
(Table 13.4).

13.6 Exercises

1. Generate the VHDL model of a reducer modulo 239.
2. Generate the VHDL model of a multiplier modulo m ¼ 2192 � 264 � 1:
3. Design an interleaved modulo m multiplier using the stored-carry principle.
4. Design a modulo p divider based on Fermat’s little theorem.
5. Generate the VHDL model of a multiplier over Z2[x]/f(x) where f xð Þ ¼ x8þ

x4 þ x3 þ xþ 1:

Table13.1 Classic mod f(x)
multipliers

m LUTs Delay

8 37 3.2
64 2,125 5.3

Table 13.2 Interleaved mod
f(x) multipliers

m FFs LUTs Period Total time

8 32 34 1.48 13.3
64 201 207 1.80 117.0

163 500 504 1.60 262.4
233 711 714 1.88 439.9

Table 13.3 Mod
f(x) squaring (square and
reduce)

m LUTs Delay

8 8 0.7
64 129 0.7

163 163 0.7
233 153 0.7

Table 13.4 Mod
f(x) dividers

m FFs LUTs Period Total time

8 43 34 2.41 41.0
64 273 157 2.63 339.3

163 673 370 2.96 967.9
233 953 510 2.98 1391.7

354 13 Finite-Field Arithmetic

6. Generate the VHDL model of a divider over Z2[x]/f(x) where f xð Þ ¼ x8þ
x4 þ x3 þ xþ 1:

7. Design a squarer over Z2 x½ �=f xð Þwhere f xð Þ ¼ x8 þ x4 þ x3 þ xþ 1:

References

1. Rodríguez-Henríquez F, Saqib N, Díaz-Pérez A, Koç ÇK (2006) Cryptographic algorithms
on reconfigurable hardware. Springer, Heidelberg

2. Deschamps JP, Imaña JL, Sutter G (2009) Hardware implementation of finite-field arithmetic.
McGraw-Hill, New York

3. Montgomery PL (1985) Modular multiplication without trial division. Math Comput 44:
519–521

4. Sutter G, Deschamps JP, Imaña JL (2011) Modular multiplication and exponentiation
architectures for fast RSA cryptosystem based on digit serial computation. IEEE Trans
Industr Electron 58(7):3101–3109

5. Hankerson D, Menezes A, Vanstone S (2004) Guide to elliptic curve cryptography. Springer,
Heidelberg

6. Menezes A, van Oorschot PC, Vanstone S (1996) Handbook of applied cryptography. CRC
Press, Boca Raton

7. Knuth DE (1981) The art of computer programming, Seminumerical algorithmsvol, vol 2.
Addison-Wesley, Reading

8. Deschamps JP, Bioul G, Sutter G (2006) Synthesis of arithmetic circuits. Wiley, New York
9. Meurice de Dormale G, Bulens Ph, Quisquater JJ (2004) Efficient modular division

implementation. Lect Notes Comp Sci 3203:231–240
10. Takagi N (1998) A VLSI algorithm for modular division based on the binary GCD algorithm.

IEICE Trans Fundam Electron Commun Comp Sci 81-A(5):724–728
11. Kim C, Hong C (2002) High-speed division architecture for GF(2m). Electron Lett 38:

835–836

13.6 Exercises 355

	13 Finite-Field Arithmetic
	13.1…Operations Modulo m
	13.1.1 Addition and Subtraction Mod mModulo m OperationsAddition
	13.1.2 Multiplication Mod mModulo m OperationsMultiplication
	13.1.2.1 Multiply and Reduce
	13.1.2.2 Interleaved Multiplier
	13.1.2.3 Montgomery MultiplicationModulo m operationsMontgomery multiplication

	13.2…Division Modulo p
	13.3…Operations Over {{\bf Z}}_{{{\bf 2}}} {\bf [} {\mathbf {x}} {\bf]}{\bf /}{\mathbf {f}}{\bf (} {\mathbf {x}} {\bf)}
	13.3.1 Addition and Subtraction of PolynomialsModulo f(x) operationsaddition and subtraction
	13.3.2 Multiplication Modulo f(x)Modulo f(x) multiplicationOperations over Z2[x]/f(x)multiplication
	13.3.2.1 Multiply and Reduce
	13.3.2.2 Interleaved Multiplier
	13.3.2.3 Squaring

	13.4…Division Over GF(2m)
	13.5…FPGA ImplementationsImplementationsfinite field arithmetic
	13.6…Exercises
	References

