
Chapter 11
Decimal Operations

In a number of computer arithmetic applications, decimal systems are preferred to
the binary ones. The reasons come, not only from the complexity of coding/
decoding interfaces but, mostly from the lack of precision in the results of the
binary systems.

For the following circuits the input and output operators are supposed to be
encoded in Binary Encoded Digits (BCD).

11.1 Addition

Addition is a primitive operation for most arithmetic functions, and then it
deserves special attention. The general principles for addition are in Chap. 7, and
in this section we examine special consideration for efficient implementation of
decimal addition targeting FPGAs.

11.1.1 Decimal Ripple-Carry Adders

Consider the base-B representations of two n-digit numbers

x ¼ xn�1 � Bn�1 þ xn�2 � Bn�2 þ � � � þ x0 � B0;

y ¼ yn�1 � Bn�1 þ yn�2 � Bn�2 þ � � � þ y0 � B0:

The following (pencil and paper) Algorithm 11.1 computes the (n ? 1)-digit
representation of the sum z = x ? y ? cin where cin is the initial carry.
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Algorithm 11.1: Classic addition (ripple carry)

For B = 10, the classic ripple-carry for a BCD decimal adder cell can be
implemented as suggested in Fig. 11.1 The mod-10 addition is performed adding 6
to the binary sum of the digits, when a carry for the next digit is generated. The
VHDL model ripple_carry_adder_BCD.vhd is available at the Authors’ web page.

As described in Chap. 7, the na implementation of an adder (ripple-carry,
Fig. 7.1) has a meaningful critical path. In order to reduce the execution time of
each iteration step, Algorithm 11.1 can be modified as shown in the next section.

11.1.2 Base-B Carry-Chain Adders

In order to improve the ripple-carry adder, a better solution is the use of two binary
functions of two B-valued variables, namely the propagate (P) and generate
(G) functions.

pi¼ p xi;yið Þ¼ 1if xiþyi¼B�1; p xi;yið Þ¼ 0 otherwise;

gi¼ g xi;yið Þ¼ 1if xiþyi�B; g xi;yið Þ¼ 0if xiþyi�B�2; otherwise; anyvalue:
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s3 s2 s1 s0

HA FA HA

s4 ∨ 
s3.(s2∨s1)

x3(i) y3(i) x2(i) y2(i) x1(i) y1(i) x0(i) y0(i)
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Fig. 11.1 Decimal ripple-
carry adder cell
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So, ci ? 1 can be expressed under the following way:

ciþ1 ¼ pi � ci þ not pið Þ � gi:

The corresponding modified Algorithm 11.2 is the following one.

Algorithm 11.2: Carry-chain addition

The use of propagate and generate functions allow generating a n-digit adder
carry-chain array of Fig. 11.1. It is based on the Algorithm 11.2. The Generate-
Propagate (G-P) cell calculates the Generate and Propagate functions; and the
carry-chain (Cy.Ch) cell computes the next carry. Observe that the carry-chain
cells are binary circuits, whereas the generate-propagate and the mod B sum cells
are B-ary ones. As regards the computation time, the critical path is shaded in
Fig. 11.2. (It has been assumed that Tsum [ TCy. Ch)
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Fig. 11.2 n-digits carry-chain adder
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11.1.3 Base-10 Carry-Chain Adders

If B = 10, the carry-chain circuit remains unchanged but the P and G functions as
well as the modulo-10 sums are somewhat more complex. In base 2 (Chap. 7), the
P and G cells are respectively synthesized by XOR and AND functions, while in
base 10, P and G are now defined as follows:

pi ¼ 1 if xi þ yi ¼ 9; pi ¼ 0 otherwise; ð11:1Þ

gi ¼ 1 if xi þ yi [ 9; gi ¼ 0 otherwise; ð11:2Þ

A straightforward way to synthesize P and G is shown at Fig. 11.3a. That is add
the BCD numbers and detects if the sum is equal to nine and greater than nine
respectively. Nevertheless, functions P and G may be directly computed from xi, yi

inputs. The following formulas (11.3) and (11.4) are Boolean expressions of
conditions (11.1) and (11.2).

pi ¼ P0 � ½K1 � ðP3 � K2 _ K3 � G2Þ _ G1 � K3 � P2� ð11:3Þ

gi ¼ G0 � ½P3 _ G2 _ P2 � G1� _ G3 _ P3 � P2 _ P3 � P1 _ G2 � P1 _ G2 � G1 ð11:4Þ

where Pj ¼ xj � yj; Gj ¼ xj � yj and Kj ¼ x
0
j � y

0
j are the binary propagator, generator

and carry-kill for the jth components of the BCD digits x(i) and y(i).
The BCD carry-chain adder ith digit computation is shown at Fig. 11.3b and it

is made of a first binary mod 16 adder stage, a carry-chain cell driven by the G-
P functions, and an output adder stage performing a correction (adding 6)
whenever the carry-out is one. Actually, a zero carry-out c(i ? 1) identifies that
the mod 16 sum does not exceed 9, so no corrections are needed. Otherwise, the
add-6 correction applies. Naturally, the G-P functions may be computed according
to Fig. 11.3, using the outputs of the mod 16 stage, including the carry-out s4.

The VHDL model cych_adder_BCD_v1.vhd that implements a behavioral
model of the decimal carry-chain adder is available at the Authors’ web page.

p = s4.s3.s2.s1.s0

g = s4  s3.(s2 ∨ ∨ s1)

FA FA FA HA

s4 s3 s2 s1 s0

p g

x3 y3 x2 y2 x1 y1 x0 y0
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...
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c(i)
c(i+1) 1

0
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z3(i) z2(i) z1(i) z0(i)

Fig. 11.3 a Simple G-P cell for BCD adder. b Carry-chain BCD adder ith digit computation
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11.1.4 FPGA Implementation of the Base-10 Carry-Chain Adders

The FPGA vendors provides dedicated resources to implement binary carry-chain
adders [1, 2]. As mentioned in Chap. 7 a simple HDL description of a binary adder
is implemented efficiently using the carry-logic. Nevertheless in order to use this
resources in other designs it is necessary to instantiate the components manually.

Figure 11.4 shows a Xilinx implementation of the decimal carry-chain adder.
The VHDL model cych_adder_BCD_v2.vhd that implements a low level com-
ponent instantiation model of the decimal carry-chain adder is available at the
Authors’ web page.

Observe that the critical path includes a 4-bit adder, the G-P computation; the n-
digits carry propagation and a final 3-bit correction adder. Xilinx 6-input/2-output
LUT is built as two 5-input functions while the sixth input controls a 2-1 multi-
plexor allowing to implement either two 5-input functions or a single 6-input one;
so G and P functions fit in a single LUT as shown at Fig. 11.5a.

Other alternatives to implement in FPGA the decimal carry-chain adders, include
computing the functions P and G directly from the decimal digits (x(i), y(i) inputs)
using the Boolean expressions, instead of the intermediate sum bits sk [3].
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Fig. 11.4 FPGA implementation of an N-digit BCD Adder
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For this purpose one could use formulas (11.3) and (11.4), nevertheless, in order
to minimize time and hardware consumption the implementation of p(i) and g(i) is
revisited as follows. Remembering that p(i) = 1 whenever the arithmetic sum
x(i) ? y(i) = 9, one defines a 6-input function pp(i) set to be 1 whenever the
arithmetic sum of the first 3 bits of x(i) and y(i) is 4. Then p(i) may be computed as:

pðiÞ ¼ ðx0ðiÞ � y0ðiÞÞ � ppðiÞ: ð11:5Þ

On the other hand, gg(i) is defined as a 6-input function set to be 1 whenever the
arithmetic sum of the first 3 bits of x(i) and y(i) is 5 or more. So, remembering that
g(i) = 1, whenever the arithmetic sum x(i) ? y(i) [ 9, g(i), may be computed as:

gðiÞ ¼ ggðiÞ _ ðppðiÞ � x0ðiÞ � y0ðiÞÞ: ð11:6Þ

As Xilinx LUTs may compute 6-variable functions, then gg(i) and pp(i) may be
synthesized using 2 LUTs in parallel while g(i) and p(i) are computed through an
additional single LUT as shown at Fig. 11.5b.

11.2 Base-10 Complement and Addition: Subtration

11.2.1 Ten’s Complement Numeration System

B’s complement representation general principles are available in the literature.
One restricts to 10’s complement system to cope with the needs of this section.
A one-to-one function R(x), associating a natural number to x is defined as follows.

Every integer x belonging to the range –10n/2 B x \ 10n/2, is represented by
R(x) = x mod 10n, so that the integer represented in the form xn�1xn�2 � � � x1x0 is

xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 if xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � �
þ x0\10n=2;

ð11:7Þ

xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 � 10n if xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � �
þ x0� 10n=2:

ð11:8Þ

The conditions (11.7) and (11.8) may be more simply expressed as

xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 if xn�1\5; ð11:9Þ

xn�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 � 10n if xn�1� 5: ð11:10Þ

Another way to express a 10’s complement number is:

x
0

n�1 � 10n�1 þ xn�2 � 10n�2 þ � � � þ x0 ð11:11Þ
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where x
0
n�1 ¼ xn�1 ��10 if xn�1� 5 and x

0
n�1 ¼ xn�1 if xn�1\5; while the sign

definition rule is the following one: if x is negative then xn – 1 C 5; otherwise
xn - 1 \ 5.

11.2.2 Ten’s Complement Sign Change

Given an n-digit 10’s complement integer x, the inverse z = -x of x, is an n-digit
10’s complement integer. Actually the only case -x cannot be represented with
n digits is when x ¼ �10n=2; so� x ¼ 10n=2: The computation of the represen-
tation of -x is based on the following property. Assuming x to be represented as an
n-digit 10’s complement number R(x), -x may be readily computed as

�x ¼ 10nþ1 � R xð Þ: ð11:12Þ

A straightforward inversion algorithm then consists of representing x with
n ? 1 digits, complementing every digit to 9, then adding 1. Observe that sign
extension is obtained by adding a digit 0 to the left of a positive number, or 9 for a
negative number, respectively.

11.2.3 10’s Complement BCD Carry-Chain Adder-Subtractor

To compute X ? Y similar algorithm as in Algorithm 11.2 (Sect. 11.1.2) can be
used. In order to compute X - Y, 10’s complement subtraction algorithm actually
adds (-Y) to X.

10’s complement sign change algorithm may be implemented through a dig-
itwise 9’s complement stage followed by an add-1 operation. It can be shown that
the 9’s complement binary components w3;w2;w1;w0 of a given BCD digit
y3; y2; y1; y0 are expressed as

w3 ¼ y03 � y02 � y01; w2 ¼ y2 � y1; w1 ¼ y1; w0 ¼ y00 ð11:13Þ

An improvement to the adder stage could be carried out by avoiding the delay
produced by the 9’s complement step. Thus, this operation may be carried out
within the first binary adder stage, where p(i) and g(i) are computed as

p0 ið Þ ¼ x0 ið Þ � y0 ið Þ � A
0
=S

� �
; p1 ið Þ ¼ x1 ið Þ � y1 ið Þ;

p2 ið Þ ¼ x2 ið Þ � y2 ið Þ � y1 ið Þ: A
0
=S

� �

p3 ið Þ ¼ x3 ið Þ � y3 ið Þ
0
�y2 ið Þ

0
�y1 ið Þ

0
� �

� A
0
=S

� �
� y3 ið Þ � A

0
=S

� �0
ð11:14Þ

gk ið Þ ¼ xk ið Þ; 8k: ð11:15Þ
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A third alternative is computing G and P directly from the input data. As far as
addition is concerned, the P and G functions may be implemented according to
formulas (11.4) and (11.5). The idea is computing the corresponding functions in
the subtract mode and then multiplexing according to the add/subtract control
signal A0/S.

11.2.4 FPGA Implementations of Adder Subtractors

To compute X – Y, 10’s complement subtraction algorithm actually adds (-Y) to
X. So for a first implementation, Fig. 11.6 presents a 9’s complement imple-
mentation using 6-input/2-output LUTs, available in the Xilinx (Virtex-5, Virtex-6,
spatan6, 7-series) technology. A0/S is the add/subtract control signal; if A0/S = 1
(subtract), formulas (11.13) apply, otherwise A0/S = 0 and wj ið Þ ¼ yj ið Þ8i; j:

The complete circuit is similar to the circuit of Fig. 11.4, but instead of input y,
the input w as produced by the circuit of Fig. 11.5.

The better alternative intended to avoid the delay produced by the 9’s com-
plement step, embeds the 9’s complementation within the first binary adder stage,
as depicted in Fig. 11.7a, where p(i) and g(i) are computed as explained in (11.14)
and (11.15).

The VHDL model addsub_1BDC.vhd that implements the circuit of Fig. 11.7a
is available at the Authors’ web page. The VHDL model has two architectures a
behavioral and a low level that instantiates components (Luts, muxcy, xorcy, etc.).
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Fig. 11.5 FPGA carry-chain for decimal addition. a. P-G calculation using an intermediate
addition. b. P-G calculation directly from BCD digits
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Then we can use the circuit of Fig. 11.6a to compute the P-G function using the
previous computed addition of BDC digits. The VHDL model addsub_BDC_v1.vhd
that implements a complete decimal adder-subtractor and it is available at the
Authors’ web page. To complete the circuit, a final correction adder (cor-
rect_add.vhd) corrects the decimal digit as a function of the carries.

The third alternative is computing G and P directly from the input data. For this
reason, assuming that the operation at hand is X ? (±Y), one defines on one hand
ppa(i) and gga(i) according to (11.4) and (11.5) (Sect. 11.1.4), i.e. using the
straight values of Y’s BCD components. On the other hand, pps(i) and ggs(i) are
defined using wk(i) as computed by the 9’s complement circuit (11.13). As
wk(i) are expressed from the yk(i) both pps(i) and ggs(i) may be computed directly
from xk(i) and yk(i). Then the correct pp(i) and gg(i) signal is selected according to
the add/subtract control signal A0/S. Finally, the propagate and generate function
are computed as:

p ið Þ ¼ ðx0 ið Þ � y0 ið Þ � ðA0=SÞÞ � pp ið Þ; ð11:16Þ

g ið Þ ¼ gg ið Þ _ ðpp ið Þ � x0 ið Þ � ðy0 ið Þ � ðA0=SÞÞÞ: ð11:17Þ

Figure 11.7b shows the Xilinx LUT based implementation. The multiplexers
are implemented using dedicated muxF7 resources.

The VHDL model addsub_BDC_v2.vhd that implements the adder-subtractor
using for the P-G computation from the direct inputs (carry-chain_v2.vhd) is
available at the Authors’ web page.
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Fig. 11.7 FPGA implementation of adder-subtractor. a Adder-subtractor for one BCD digit.
b Direct computation of P-G function
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11.3 Decimal Multiplication

This section presents approaches for BCD multipliers. It starts by discussing algo-
rithmic alternatives to implement a 1 9 1 BCD digit multiplier. Then, this section
proposes an implementation for an N 9 1 BCD multiplier. This operation can be used
to carried out an N 9 M multiplier, but by itself, the N 9 1 multiplication appears to
be a primitive for other algorithms, such as logarithm or exponential functions.

11.3.1 One-Digit by One-Digit BCD Multiplication

11.3.1.1 Binary Arithmetic with Correction

The decimal product can be obtained through a binary product and a post cor-
rection stage [4, 5]. Let A and B be two BCD digits (a3 a2 a1 a0) and (b3 b2 b1 b0)
respectively. The BCD coded product consists of two BCD digits D and C such
that:

A�B ¼ D�10þ C ð11:18Þ

A * B is first computed as a 7-bit binary number P(6:0) such that

A�B ¼ P ¼ p6 p5 p4 p3 p2 p1 p0 ð11:19Þ

Although a classic binary-to-BCD decoding algorithm can be used, it can be
shown that the BCD code for P can be computed through binary sums of correcting
terms described in Fig. 11.8. The first row in Figure shows the BCD weights. The
weights of p3, p2, p1 and p0 are the same as those of the original binary number
‘‘p6 p5 p4 p3 p2 p1 p0’’. But weights 16, 32 and 64 of p4, p5, and p6 have been
respectively decomposed as (10, 4, 2), (20, 10, 2) and (40, 20, 4). Observe that ‘‘p3

p2 p1 p0’’ could violate the interval [0, 9], then an additional adjust could be
necessary.

First the additions of Row 1, 2, 3, and correction of ‘‘p3 p2 p1 p0’’ are completed
(least significant bit p0 is not necessary in computations). Then the final correction
is computed.

One defines (Arithmetic I):

1. the binary product A�B ¼ P ¼ p6 p5 p4 p3 p2 p1 p0

2. the Boolean expression: adj1 ¼ p3 ^ ðp2 _ p1Þ;

80 40 20 10 8 4 2 1
p6 p5 p4 p3 p2 p1 p0

+ p6 p5 p4 p4

p6 p5

d3 d2 d1 d0
c3 c2 c1 c0

Fig. 11.8 Binary to BCD
arithmetic reduction
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3. the arithmetic sum: dcp ¼ p6 p5 p4 p3 p2 p1 p0 þ 0 p6 p5 0 p4 p3 þ 0 0 0 0p6 p5 0þ
0 0 0 0 adji adj1 0;

4. the Boolean expression: adj2 ¼ ðdcp3 ^ ðdcp2 _ dcp1ÞÞ _ ðp5 ^ p4 ^ p3Þ:

One computes

dc ¼ dcpþ 0 0 0 0 adj2 adj2 0: ð11:20Þ

Then

D ¼ dc7 dc6 dc5 dc4 and C ¼ dc3 dc2 dc1 dc0

A better implementation can be achieved using the following relations
(Arithmetic II):

1. the product A�B ¼ P ¼ p6 p5 p4 p3 p2 p1 p0

2. compute:

cc ¼ p3 p2 p1 p0 þ 0 p4 p4 0þ 0 p6 p5 0;

dd ¼ p6 p5 p4 þ 0 p6 p5

(cc is 5 bits, dd has 4 bits, computed in parallel)

3. define:

cy1 ¼ 1 iff cc [ 19; cy0 ¼ 1 iff 9\cc\20

(cy1 y cy2 are function of cc3 cc2 cc1 cc0, and can be computed in parallel)

4. compute:

c ¼ cc3 cc2 cc1 cc0 þ cy1 cy1 or cy0ð Þ cy 0 0; ð11:21Þ

d ¼ dd3 dd2 dd1 dd0 þ 0 0 cy1 cy0

(c and d calculated in parallel)

Compared with the first approach, the second one requires smaller adders (5 and
4-bit vs. 8-bit) and the adders can operate in parallel as well. The VHDL models
bcd_mul_arith1.vhd and bcd_mul_arith2.vhd that described the previous method
for digit by digit multiplication are available at the Authors’ web page.

11.3.1.2 Using ROM

Actually a (100 9 8)-bit ROM can fit to store all the A* B multiplications.
However, as A and B are two 4-bit operands (BCD digits) the product can be
mapped into a 28 9 8-bit ROM. In FPGA devices there mainly two main memory
recourses: Block and distributed RAMS. For the examples in Xilinx devices two
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main possibilities are considered: Block RAMs BRAM’s or distributed RAM’s
(LUT based implementation of RAM’s).

BRAM-based implementation: Xilinx Block RAM’s are 18-kbit (or 36-kbits)
configurable and synchronous dual-port RAM (or ROM) blocks. They can be
configured into different layouts. The 211 9 8-bit configuration option has been
selected, though wasting some memory capacity. As BRAM is dual-port, two one-
by-one digit multiplications can be implemented in a single BRAM and in a single
clock cycle. However the main characteristic to cope with is that BRAM’s are
synchronous, so either the address or the output should be registered.

Distributed RAM (LUT-based): 6-input LUT’s can be configured as 64 9

1-bit RAM’s. Moreover the four 6-LUTs in a slice has additional multiplexers to
implement 256 9 1 bit RAMs. Then the 28 9 8-bit ROM can be implemented
using 8 slices (32 LUT’s).

A trivial optimization reduces the area considering the computation of the BCD
final result components c0 and d3 straightforward. Actually c0 ¼ a0 ^ b0 and d3 ¼
a0 ^ b0 ^ a3 ^ b3: That is, c0 is related to the parity while d3 emphasizes that most
significant bit is set for one in only one case (decimal 9 9 9 = 81). It is thus
possible to reduce the required memory size to a 28 9 6-bit ROM only plus two
LUTs to implement c0 and d3.

Comments

1. BRAM-based design is fast but synchronous. It is useless for combinational
implementations, but suitable for sequential and pipelined ones.

2. The existence of ‘‘do-not-care’’ conditions in the memory definition allows the
synthesizer to reduce the effective memory requirement.

The VHDL model bcd_mul_bram.vhd implements the BRAM based imple-
mentation for the digit by digit multiplication. Additionally, and bcd_mul_-
mem1.vhd and bcd_mul_mem2.vhd provides the LUT based implementation of
decimal BCD multiplication. These models with the corresponding test bench
(test_mul_1by1BCB.vhd) are available at the Authors’ web page.

11.3.2 N by One BCD Digit Multiplier

A N 9 1 BCD digit multiplier is readily achieved through N 1 9 1-digit multi-
plications followed by a BCD decimal addition. Fig. 11.9 shows how the partial
products are arranged to feed the BCD N-digit adder stage. The carry-chain adder
of Sect. 13.1 can be used.

The VHDL model mult_Nx1_BCD.vhd and mult_Nx1_BCD_bram.vhd that
describe the N by one decimal multiplier are available at the Authors’ web page.
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11.3.3 N by M Digits Multiplier

Using the previously designed N by one digit multiplier it is possible to perform
the N 9 M digits multiplication. The best area compromise is obtained using a
sequential implementation that uses an N 9 1 digits multiplier and an N ? 1 digit
adder. Figure 11.10 show the scheme of the Least Significant Digit (LSD) first
algorithm implemented. The B operand is shifted right at each clock cycle. The
LSD digit of B is multiplied by the A operand and accumulated in the next cycle to
shorten the critical path. After M ? 1 cycles, the N ? M digit result is available.

The VHDL models mult_BCD_seq.vhd and mult_BCD_bram_seq.vhd that
describes the N by M digits decimal multiplier and the matching test bench
(test_mult_BCB_seq.vhd) is available at the Authors’ web page.
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Fully combinational implementations of N 9 M digits multipliers are possible
also based on the N 9 1 digit multiplication cell. After the first multiplication, an
adder tree sums up the intermediate result and gives the N ? M digit result.
Figure 11.11 show an N 9 8 digit multiplication example.

The VHDL model mult_BCD_comb.vhd that describes the N by M digits
decimal multiplier and the test bench (test_mult_BCB_comb.vhd) are available at
the Authors’ web page.

11.4 Decimal Division

As described in Chap. 9, the basic algorithms are based on digit recurrence. Using
Eqs. (9.1), (9.2) and (9.3) at each step of (9.2) q-(i ? 1) and ri+1 are computed in
function of ri and y in such a way that 10 � ri ¼ q�ðiþ1Þyþ riþ1; with �
y� riþ1\y; that is

riþ1 ¼ 10 � ri � q�ðiþ1Þy; with � y� riþ1\y: ð11:22Þ

The Robertson diagram applied to radix-10 (B = 10) is depicted at Fig. 11.12. It
defines the set of possible solutions: the dotted lines define the domain

10 � ri; riþ1ð Þj � 10 � y� 10 � ri\10 � y and � y� riþ1\yf g; and the diagonals
correspond to the equations riþ1 ¼ 10 � ri � ky with k 2 �10;�9; . . .;f
�1; 0; 1; . . .; 9; 10g: If ky� 10 � ri\ k þ 1ð Þy; there are two possible solutions for
q-(i ? 1), namely k and k ? 1. To the first one corresponds a non-negative value of
ri ? 1, and to the second one a negative value.
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11.4.1 Non-Restoring Division Algorithm

A slightly modified version of the base-10 non-restoring algorithm (Sect. 9.2.1) is
used. For that y must be a normalized n-digit natural, that is 10n�1� y\10n: The
remainders ri satisfy the condition -y B ri \ y and belong to the range -

10n \ ri \ 10n. Define wi ¼ 10 � ri; so that

�10nþ1\wi\10nþ1: ð11:23Þ

Thus, wi is an (n ? 2)-digit 10’s complement number. The selection of every
digit q�ðiþ1Þ is based on a truncated value of wi, namely w0 ¼ wi=10ab c; for some a
that will be defined later, so that wi � 10a\w0 � 10a�wi and

w0 � 10a�wi\w0 � 10a þ 10a: ð11:24Þ

According to (11.23) and (11.24), �10nþ1 � 10a\w0 � 10a\10nþ1; so that

�10nþ1�a�w
0
\10nþ1�a: ð11:25Þ

Thus, w0 is an (n ? 2 - a)-digit 10’s complement number. Assume that a set of
integer-valued functions mk(y), for k in {-10, -9,…, -1, 0, 1,…, 8, 9}, satisfying

k � y�mk yð Þ � 10a\ k þ 1ð Þ � y� 10a ð11:26Þ

has been defined. The interval [k�y, (k ? 1)�y - 10a] must include a multiple of
10a. Thus, y must be greater than or equal to 2�10a. Taking into account that
y C 10n - 1, the condition is satisfied if a B n - 2.

The following property is a straightforward consequence of (11.24) and (11.26):

Property 11.1 If mk yð Þ�w
0
\mkþ1 yð Þ; then k � y�wi\ k þ 2ð Þ � y:

According to the Robertson diagram of Fig. 11.12, a solution q�ðiþ1Þ can be chosen
as follows:

if w
0
\m�9 yð Þ then q�ðiþ1Þ ¼ �9;

if w
0 �m8 yð Þ then q�ðiþ1Þ ¼ 9;

if mk yð Þ�w
0
\mkþ1 yð Þ for some k in �9;�8; . . .;�1; 0; 1; . . .; 7f g; then q�ðiþ1Þ ¼ k þ 1:

10.ri

- 10 -9 -8 - 7 -6 -5 -4 -3 -2 -1 0 1 3 4 5 6 7 8 9

10

2

-9y -8y -7y -6y -5y -4y -3y -2y -y y 2y 3y 4y 5y 6y 7y 8y 9y

ri+1qi+1 =

Fig. 11.12 Robertson diagram for radix 10
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Thus, this non-restoring algorithm generates a p-digit decimal quotient 0.q-1

q-2…q-p and a remainder rp satisfying

x ¼ 0 � q�1q�2. . .q�p

� �
yþ rp � 10�p; with � y � 10�p� rp � 10�p\y � 10�p;

ð11:27Þ

where every q-i is a signed decimal digit. It can be converted to a decimal number
by computing the difference between two decimal numbers

pos ¼ q0�1 � 10�1 þ q0�2 � 10�2 þ � � � þ q0�p � 10�p and

neg ¼ q00�1 � 10�1 þ q00�2 � 10�2 þ � � � þ q00�p � 10�p;

with q0�i ¼ qi if qi [ 0; q0�i ¼ 0 if qi\ 0; q00�1 ¼ qi if qi\0; q00�i ¼ 0 if qi [ 0:

It remains to define a set of integer-valued functions mk(y) satisfying (11.26). In
order to simplify their computation, they should only depend on the most signif-
icant digits of y. The following definition satisfies (11.26):

mk yð Þ ¼ k � y0=10b c þ bias where y0 ¼ y=10a�1
� �

if k� 0 and

mk yð Þ ¼ � �k � y0=10b c þ bias if k\0;

where bias is any natural belonging to the range 2 B bias B 6. With a = n-2, y0 as
a 3-digit natural, and w0 and mk(y) are 4-digit 10’s complement numbers. In the
following Algorithm 1 mk(y) is computed without adding up bias to
k � y0=10b cor� �k � y0=10b c; and w0 is substituted by w0—bias.

Algorithm 11.3: Non-restoring algorithm for decimal numbers
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The structure of the data path corresponding to Algorithm 11.3 is shown in
Fig. 11.13. Additionally, two decimal shift registers storing pos and neg and an
output subtractor are necessary. Alternatively the conversion could be done on-the
fly. The computation time and complexity of the k_y’s generation and range
detection components are independent of n. The execution time of the iteration
step is determined by the n-digit by 1-digit multiplier and by the (n ? 1)-digit
adder. The total computation time is O(p�n).

The simplified VHDL model decimal_divider_nr.vhd that describes the N by
N digits divider that produces P digits of decimal result and the test bench
(test_dec_div_seq.vhd) are available at the Authors’ web page.

11.4.2 An SRT-Like Division Algorithm

In order to make the computation time linear, a classical method consists of using
carry-save adders and multipliers instead of ripple-carry ones. In this way, the
iteration step execution time can be made independent of the number n of digits.
Nevertheless, this poses the following problem: a solution q�ðiþ1Þ of Eq. (9.2) must
be determined in function of a carry-stored representation (si, ci) of ri, without
actually computing ri = si ? ci. An algorithm similar to the SRT-algorithms for
radix-2K dividers can be defined for decimal numbers (Sect. 9.2.3). Once again the
divisor y must be assumed to be a normalized n-digit natural.
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All along the algorithm execution, ri will be encoded in the form wi ¼ si þ ci

(stored-carry encoding) where si and ci are 10’s-complement numbers. Define wi

and w0 as in previous section, that is wi ¼ 10 � ri; and w0 ¼ wi=10ab c: Thus, wi ¼
10 � si þ 10 � ci and w0 ¼ 10 � si þ 10 � cið Þ=10ab c: Define also truncated values st

and ct of 10�si and 10�ci, that is st ¼ 10 � si=10ab c and ct ¼ 10 � ci=10ab c; and let w00

be the result of adding st and ct. The difference between w0 ¼
10 � si þ 10 � cið Þ=10ab c and w00 ¼ 10 � si=10ab c þ 10 � ci=10ab c is the possible

carry from the rightmost positions, so that w0 � 1�w00 �w0; and thus

w00 �w0 �w00 þ 1: ð11:28Þ

According to (11.25) and (11.28),

�10nþ1�a � 1�w00\10nþ1�a; ð11:29Þ

so that w00 is an (n ? 3-a)-digit 10’s-complement number. The relation between
wi and the estimate w00�10a of wi is deduced from (11.24) and (11.28):

w00 � 10a�wi\w00 � 10a þ 2 � 10a: ð11:30Þ

Assume that a set of integer-valued functions Mk(y), for k in {-10, -9,…, -1,
0, 1,…, 8, 9}, satisfying

k � y�Mk yð Þ � 10a\ k þ 1ð Þ � y� 2 � 10a; ð11:31Þ

have been defined. The interval [k�y, (k ? 1)�y - 2�10a[ must include a multiple of
10a. Thus y must be greater than or equal to 3�10a. Taking into account that
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y C 10n - 1, once again the condition is satisfied if a B n - 2. The following
property is a straightforward consequence of (11.30) and (11.31).

Property If Mk yð Þ�w00\Mkþ1 yð Þ; then k � y�wi\ k þ 2ð Þ � y:
Thus, according to the Robertson diagram of Fig. 11.12, a solution q�ðiþ1Þ can

be chosen as follows:

if w00\M�9 yð Þ then q�ðiþ1Þ ¼ �9;

if w00 �M8 yð Þ then q�ðiþ1Þ ¼ 9;

if Mk yð Þ�w00\Mkþ1 yð Þ for some k in �9;�8; . . .;�1; 0; 1; . . .; 7f g; then q�ðiþ1Þ ¼ k þ 1:

This SRT-like algorithm generates a p-digit decimal quotient 0.q-1 q-2…q-p and
a remainder rp satisfying (11.27), and can be converted to a decimal number by
computing the difference between two decimal numbers as in non-restoring
algorithm.

It remains to define a set of integer-valued functions Mk(y) satisfying (11.31). In
order to simplify their computation, they should only depend on the most signif-
icant digits of y. Actually, the same definition as in Sect. 11.3.1 can be used, that is

Mk yð Þ ¼ k � y0=10b c þ bias where y0 ¼ y=10a�1
� �

if k� 0 and

Mk yð Þ ¼ � �k � y0=10b c þ bias if k\0:

In this case the range of bias is 3 B bias B 6. With a = n - 2, y0 as a 3-digit
natural, w0 and mk(y) are 4-digit 10’s complement numbers, and w00 is a 5-digit 10’s
complement number. In the following Algorithm 2 Mk(y) is computed without
adding up bias to k � y0=10b c or � �k � y0=10b c; and w00 is substituted by w00—bias.

Algorithm 11.4: SRT like algorithm for decimal numbers
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The structure of the data path corresponding to Algorithm 11.4 is shown in
Fig. 11.4. The carry-free multiplier is a set of 1-digit by 1-digit multipliers
working in parallel. Each of them generates two digits p1, j ? 1 and p0, j such that
q� iþ1ð Þ � yj ¼ 10 � p1;jþ1 þ p0;j; and the product q� iþ1ð Þ � y is obtained under the
form p1 ? p0. The 4-to-2 counter computes 10�si ? 10�ci - (p1 ? p0), that is
10�ri - q-(i ? 1)�y, under the form si ? 1 ? ci ? 1. Two decimal shift registers
storing pos and neg and an output ripple-carry subtractor are necessary. Another
output ripple-carry adder is necessary for computing the remainder rp = sp ? cp.
Thus, all the components, but the output ripple-carry components, have compu-
tation times independent of n and p. The total computation time is O(p ? n).
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The VHDL model decimal_divider_SRT_like.vhd that describes the N by
N digits divider that produces P digits decimal result with several modules
(decimal_shift_register.vhd, mult_Nx1_BCD_carrysave.vhd, special_5digit_
adder.vhd, range_detection3.vhd, bcd_csa_addsub_4to2.vhd) and the test bench
(test_dec_div_seq.vhd) are available at the Authors’ web page.

11.4.3 Other Methods for Decimal Division

Other methods of division could be considered such as the use digit recoding in
dividend and or divisor and also use extra degree of pre-normalization for the
operands. The idea behind these methods is to ease the digit selection process.

Another idea is the use of the binary digit recurrence algorithm of describe in
Chap. 9 but using decimal operands.

Observe that the Algorithm 9.1 can be executed whatever the representation of
the numbers. If B’s complement radix-B representation is used, then the following
operations must be available: radix-B doubling, adding, subtracting and halving.
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Fig. 11.14 Binary digit-recurrence data path for decimal division
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Algorithm 11.5: Binary digit-recurrence algorithm for decimal division

In order to obtain m decimal digits results, you need to choose p so that
2-p % 10-m, that is p ffi m � log210 ffi 3:3 � m: A possible data path is shown in
Fig. 11.14. The implementation of this architecture leads to a smaller circuit, but
slower than the decimal digit recurrence due to the difference in the amount of
cycles to be executed.

11.5 FPGA Implementation Results

The circuits have been implemented on Xilinx Virtex-5 family with speed grade -2
[6]. The Synthesis and implementation have been carried out on XST (Xilinx
Synthesis Technology) [7] and Xilinx Integrated System environment (ISE) ver-
sion 13.1 [2]. The critical parts were designed using low level components
instantiation (lut6_2, muxcy, xorcy, etc.) in order to obtain the desired behavior.

11.5.1 Adder-Subtractor Implementations

The adder and adder-subtractor implementation results are presented in this sec-
tion. Performances of different N-digit BCD adders have been compared to those
of an M-bit binary carry chain adder (implemented by XST) covering the same
range, i.e. such that M ¼ N:log2 10ð Þb c ffi 3:322N:

298 11 Decimal Operations



Table 11.1 exhibits the post placement and routing delays in ns for the decimal
adder implementations Ad-I and Ad-II of Sect. 7.1; and the delays in ns
for the decimal adder-subtractor implementations AS-I and AS-II of Sect. 7.2.
Table 11.2 lists the consumed areas expressed in terms of 6-input look-up tables
(6-input LUTs). The estimated area presented in Table 11.2 was empirically
confirmed.

Comments

1. Observe that for large operands, the decimal operations are faster than the
binary ones.

2. The delay for the carry-chain adder and the adder-subtractor are similar in
theory. The small difference is due to the placement and routing algorithm.

3. The overall area with respect to binary computation is not negligible. In Xilinx
6-input LUT family an adder-subtractor is between 3 and 4 times bigger.

11.5.2 Multiplier Implementations

The decimal multipliers use the one by one digit multiplication described in
Sect. 11.2.1 and the decimal adders of Sect. 11.1. The results are for the same
Virtex 5 device speed grade -2.

Table 11.1 Delays in ns for decimal and binary adders and adder-subtractor

N (digits) RpCy add CyCh add AddSub V1 AddSub V2 M (bits) Binary add-sub

8 12.4 3.5 3.5 3.4 27 2.1
16 24.4 3.8 3.8 3.7 54 2.6
32 48.5 4.5 4.6 4.8 107 3.8
48 72.3 5.1 5.2 5.3 160 5.2
64 95.9 5.2 5.5 5.5 213 6.6
96 – 5.9 6.1 6.1 319 8.8

Table 11.2 Area in 6-input
LUTs for different decimal
adders and adders-subtractors

Circuit # LUTs

Ripple carry adder 7 9 N
Carry chain adder 9 9 N
Binary d3:32
 Ne
Adder-subtractor V2 (PG from binary addition) 9 9 N
Adder-subtractor V2 (PG direct form inputs) 13 9 N
Binary adder and adder-subtractor d3:32
 Ne
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11.5.2.1 Decimal N 3 1 Digits Implementation Results

Comparative figures of merit (minimum clock period (T) in ns, and area in LUTs
and BRAMS) of the N 3 1 multiplier are shown in Table 11.3, for several values
of N; the result are shown for circuits using LUTs, and BRAMS to implement the
digit by digit multiplication respectively.

11.5.2.2 Sequential Implementations

The sequential circuit multiplies N digits by 1 digit per clock cycle, giving the
result M ? 1 cycles later. In order to speed up the computation, the addition of
partial results is processed in parallel, but one cycle later (Fig. 11.10). Results for
sequential implementation using LUT based cells for 1 3 1 BCD digit multipli-
cation are given in Table 11.4. If the BRAM-based cell is used, similar periods (T)
can be achieved, by means of less LUTs but using BRAMs blocks.

11.5.2.3 Combinational Implementations of N by M Multipliers

For the implementation of the N 3 M-digit multiplier, the N 3 1 mux-based mul-
tiplication stage has been replicated M times: it is the best choice because BRAM-

Table 11.3 Results of BCD N 9 1 multipliers using LUTs cells and BRAM cells

N Mem in LUTs cells BRAM-based cells

T (ns) # LUT T (ns) # LUT # BRAM

4 5.0 118 5.0 41 1
8 5.1 242 5.1 81 2
16 5.3 490 5.4 169 4
32 6.1 986 6.1 345 8

Table 11.4 Results of sequential implementations of N 9 M multipliers using one by one digit
multiplication in LUTs

N M T (ns) # FF # LUT # cycles Delay (ns)

4 4 5.0 122 243 4 25.0
8 4 5.1 186 451 5 25.5
8 8 5.1 235 484 9 45.9
8 16 5.1 332 553 17 86.7
16 8 5.3 363 921 9 47.7
16 16 5.3 460 986 17 90.1
32 16 5.7 716 1,764 17 96.9
16 32 5.3 653 1,120 33 174.9
32 32 5.7 909 1,894 33 188.1
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based multipliers are synchronous. Partial products are inputs to an addition tree. For
all BCD additions the fast carry-chain adder of Sect. 11.1.4 has been used.

Input and output registers have been included in the design. Delays include FF
propagation and connections. The amount of FF’s actually used is greater than
8*(M ? N) because the ISE tools [2] replicate the input register in order to reduce
fan-outs. The most useful data for area evaluation is the number of LUT’s
(Table 11.5).

Comments

1. Observe that computation time and the required area are different for N by M
than M by N. That is due mainly by the use of carry logic in the adder tree.

11.5.3 Decimal Division Implementations

The algorithms have been implemented in the same Xilinx Virtex-5 device as
previous circuits in the chapter. The adders and multipliers used in division are the
ones described in previous sections. The non-restoring like division circuit cor-
respond to Algorithm 11.4 (Fig. 11.13), meanwhile the SRT-like to Algorithm
11.5 (Fig. 11.15). In tables the number of decimal digits of dividend and divider is
expressed as N and the number of digits of quotient as P, meanwhile the period and
latency in ns (Table 11.6, 11.7).

Comments

1. Both types of dividers have approximately the same costs and similar delay.
They are also faster than equivalent binary dividers. As an example, the
computation time of an SRT-like 48-digit divider (n = p = 48) is about
50�10.9 = 545 ns, while the computation time of an equivalent binary non-
restoring divider, that is a 160-bit one (48/log102 % 160), is more than 900 ns.

2. On the other hand, the area of the 48-digit divider (4,607 LUTs) is about five
times greater than that of the 160-bit binary divider (970 LUTs). Why so a great
difference? On the one hand it has been observed that decimal computation
resources (adders and subtractors) need about three times more slices than
binary resources (Sects. 11.4.1 and 11.4.2), mainly due to the more complex
definition of the carry propagate and carry generate functions, and to the final

Table 11.5 Results of
combinational
implementations of
N 9 M multipliers

N M Delay (ns) # LUT

4 4 10.2 719
8 4 10.7 1,368
8 8 13.4 2,911
8 16 15.7 6,020
16 8 13.6 5,924
16 16 16.3 12,165
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mod 10 reduction. On the other hand, the computation of the next quotient digit
is much more complex than in the binary case.
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Fig. 11.15 SRT-like radix-10 algorithm data path

Table 11.6 Result for non-restoring division algorithm

N, P FF LUTS Period Latency

8 106 1,082 11.0 110.0
16 203 1,589 11.3 203.4
32 396 2,543 11.6 394.4
48 589 3,552 12.1 605.0

Table 11.7 Result for SRT-like division algorithm

N, P FF LUTS Period Latency

8 233 1,445 10.9 109.0
16 345 2,203 10.9 196.2
32 571 3,475 10.9 370.6
48 795 4,627 10.9 545.0
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11.6 Exercises

1. Implement a decimal comparator. Based on the decimal adder subtractor
architecture modify it to implement a comparator.

2. Implement a decimal ‘‘greater than’’ circuit that returns ‘1’ if A C B else ‘0’.
Tip: Base your design on the decimal adder subtractor.

3. Implement a N 9 2 digits circuit. In order to speed up computation analyze the
use of a 4 to 2 decimal reducer.

4. Implement a N 9 4 digits circuit using a 8 to 2 decimal reducer and only one
carry save adder.

5. Design a N by M digit multiplier using the N 9 2 or the N 9 4 digit multiplier.
Do you improve the multiplication time? What is the area penalty with respect
to the use of a N 9 1 multiplier?

6. Implement the binary digit-recurrence algorithm for decimal division (Algo-
rithm 11.5). The key point is an efficient implementation of radix-B doubling,
adding, subtracting and halving.
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