
Chapter 10
Other Operations

This chapter is devoted to arithmetic functions and operations other than the four
basic ones. The conversion of binary numbers to radix-B ones, and conversely, is
dealt with in Sects. 10.1 and 10.2. An important particular case is B = 10 as human
interfaces generally use decimal representations while internal computations are
performed with binary circuits. In Sect. 10.3, several square rooting circuits are
presented, based on digit-recurrence or convergence algorithms. Logarithms and
exponentials are the topics of Sects. 10.4 and 10.5. Finally, the computation of
trigonometric functions, based on the CORDIC algorithm [2, 3], is described in
Sect. 10.6.

10.1 Binary to Radix-B Conversion (B even)

Assume that B is even and greater than 2. Consider the binary representation
of x:

x ¼ xn�1 � 2n�1 þ xn�2 � 2n�2 þ � � � þ x1 � 2þ x0: ð10:1Þ

Taking into account that B[2, the bits xi can be considered as radix-B digits,
and a simple conversion method consists of computing (10.1) in radix-B.

Algorithm 10.1: Binary to radix-B conversion

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_10,
� Springer Science+Business Media Dordrecht 2012

251

In order to compute z�2 + xn–i the circuit of Fig. 9.14, with cin ¼ xn�i instead of 0,
can be used. A sequential binary to radix-B converter is shown in Fig. 10.1. It is
described by the following VHDL model.

The complete circuit also includes an n-state counter and a control unit.
A complete model BinaryToDecimal2.vhd is available at the Authors’ web page
(B = 10).

The computation time of the circuit of Fig. 10.1 is equal to n�Tclk where Tclk

must be greater than TLUT-k (Sect. 9.3). Thus

Tbinary�radix�B ffi n � TLUT�k: ð10:2Þ

10.2 Radix-B to Binary Conversion (B even)

Given a natural z, smaller than 2n, its binary representation is deduced from the
following set of integer divisions

z ¼ q1 � 2þ r0;

q1 ¼ q2 � 2þ r1;

. . .

qn�1 ¼ qn � 2þ rn�1;

zm-1..0

wm-1..0

xn-1..0 (binary)

xn-i load
update

load
update

Fig.9.14

register (radix B)
initially: 0

shift register (binary)

ym-1..0 (base B)

cin

Fig. 10.1 Binary to
radix-B converter

252 10 Other Operations

http://dx.doi.org/10.1007/978-94-007-2987-2_9
http://dx.doi.org/10.1007/978-94-007-2987-2_9

so

z ¼ qn � 2n þ rn�1 � 2n�1 þ rn�2 � 2n�2 þ � � � þ r1 � 2þ r0:

As z is smaller than 2n, then qn = 0, and the binary representation of z is
constituted by the set of remainders rn�1 rn�2 . . . r1 r0:

Algorithm 10.2: Radix-B to binary conversion

Observe that if qi = qi+1�2 + ri, then qi�(B/2) = qi+1�B + ri�(B/2) where ri�(B/2)\
2�(B/2) = B.

Algorithm 10.3: Radix-B to binary conversion, version 2

In order to compute (B/2)�qi the circuit of Fig. 9.15 can be used. A sequential
radix-B to binary converter is shown in Fig. 10.2. It is described by the following
VHDL model.

ym-1..0

wm..1

xn-1..0 (binary)

load
update

load
update

Fig.9.15

register (radix -B)
initially: z

shift register (binary)
w0

Fig. 10.2 Decimal to binary
converter

10.2 Radix-B to Binary Conversion (B even) 253

http://dx.doi.org/10.1007/978-94-007-2987-2_9

The complete circuit also includes an n-state counter and a control unit.
A complete model DecimalToBinary2.vhd is available at the Authors’ web page
(B = 10).

The computation time of the circuit of Fig. 10.2 is equal to n�Tclk where Tclk

must be greater than TLUT-k (Sect. 9.3). Thus

Tradix�B�binary ffi n � TLUT�k: ð10:3Þ

10.3 Square Rooters

Consider a 2n-bit natural X ¼ x2n�1 � 22n�1 þ x2n�2 � 22n�2 þ � � � þ x1 � 2þ x0;

and compute Q ¼ X1=2
� �

: Thus, Q2 B X\ (Q+1)2, and the difference R = X - Q2

belongs to the range
0 �R� 2Q: ð10:4Þ

10.3.1 Restoring Algorithm

A digit recurrence algorithm consisting of n steps is defined. At each step two
numbers are generated:

Qi ¼ qn�1 � 2i�1 þ qn�2 � 2i�2 þ � � � þ qn�iþ1 � 2þ qn�i and Ri

¼ X � Qi � 2n�i
� �2

;

254 10 Other Operations

http://dx.doi.org/10.1007/978-94-007-2987-2_9

such that

0 �Ri\ 1þ 2Qið Þ22ðn�iÞ: ð10:5Þ

After n steps, 0 B Rn \ 1 + 2Qn, that is (10.4) with Q = Qn and R = Rn.
Initially define Q0 = 0 and R0 = X, so condition (10.5) amounts to 0 B X\22n.

Then, at step i, compute Qi and Ri in function of Qi-1 and Ri-1:

Qi ¼ 2Qi�1 þ qn�i where qn�i 2 0; 1f g;

Ri ¼ X � Qi � 2n�i
� �2¼ X � 2Qi�1 þ qn�ið Þ2n�i

� �2

¼ X � Qi�1 � 2n�iþ1
� �2� qn�i þ 4Qi�1ð Þqn�i � 22ðn�iÞ ¼ Ri�1 � qn�i þ 4Qi�1ð Þqn�i2

2ðn�iÞ:

The value of qn-i is chosen in such a way that condition (10.5) holds. Consider
two cases:

• If Ri�1\ 1þ 4Qi�1ð Þ22ðn�iÞ; then qn�i ¼ 0; Qi ¼ 2Qi�1;Ri ¼ Ri�1:

As Ri ¼ Ri�1\ 1þ 4Qi�1ð Þ22ðn�iÞ ¼ 1þ 2Qið Þ22ðn�iÞ and Ri ¼ Ri�1� 0;
condition (10.5) holds.

• If Ri�1� 1þ 4Qi�1ð Þ22ðn�iÞ; then qn�i ¼ 1; Qi ¼ 2Qi�1 þ 1; Ri ¼ Ri�1�
1þ 4Qi�1ð Þ22ðn�iÞ; so that Ri� 0 and Ri\ 1þ 2Qi�1ð Þ22ðn�iþ1Þ � 1þ 4Qi�1ð Þ

22ðn�iÞ ¼ 3þ 4Qi�1ð Þ22ðn�iÞ ¼ 1þ 2Qið Þ22ðn�iÞ:

Algorithm 10.4: Square root, restoring algorithm

Qi is an i-bit number, Ri\ 1þ 2Qið Þ22ðn�iÞ ¼ Qi & 1& 0 0 � � � 0 is a (2n-i+1)-
bit number, and Pi�1 ¼ 1þ 4Qi�1ð Þ22ðn�iÞ ¼ Qi & 01& 00 � � � 0 a 2nþ 2� ið Þ-
bit number.

10.3 Square Rooters 255

An equivalent algorithm is obtained if Pi and Ri are replaced by pi�1 ¼
Pi�1=22ðn�iÞ and ri ¼ Ri=22ðn�iÞ:

Algorithm 10.5: Square root, restoring algorithm, version 2

As before, Qi is an i-bit number, ri is a (2n-i+1)-bit fixed-point number
with 2(n-i) fractional bits and an (i+1)-bit integer part, and pi-1 a (2n-

i+2)-bit fixed-point number with 2(n-i) fractional bits and an (i+2)-bit integer
part.

A sequential implementation is shown in Fig. 10.3. It can be described by the
following VHDL model.

r3n..2n-2 Q&01

(n+3)-bit
subtractor

r3n..2n-2
difn..0

r2n-3..0&00

sign

r

1 0

(3n+1)-bit register
initially: 00··0.x2n-1··x0

n-bit shift register
initially: 0

Q

Fig. 10.3 Square root computation: data path

256 10 Other Operations

The only computational resource is an (n+3)-bit subtractor so that the com-
putation time is approximately equal to n�Tadder(n). The complete circuit includes
an n-bit counter and a control unit. A generic VHDL model SquareRoot.vhd is
available at the Authors’ web page.

Another equivalent algorithm is obtained if Pi, Qi and Ri are replaced by
pi ¼ Pi=22n�i�1; qi ¼ Qi=2i; ri ¼ Ri=22n�i:

Algorithm 10.6: Square root, restoring algorithm, version 3

Algorithm 10.6 is similar to the restoring algorithm defined in Chap. 21 of [1].
Its implementation is left as an exercise.

10.3 Square Rooters 257

10.3.2 Non-Restoring Algorithm

Instead of computing Ri and Qi as in Algorithm 10.4, an alternative option is the
following. Define Ri ¼ Ri�1 � 1þ 4Qi�1ð Þ22ðn�iÞ; whatever the sign of Ri. If Ri is
non-negative, then its value is the same as before. If Ri is negative then it is equal
to Ri restoring � 1þ 4Qi�1ð Þ22ðn�iÞ where Ri restoring is the value that would have
been computed with Algorithm 10.4. Then, at the next step, Qi and Ri+1 are
computed as follows:

• if Ri is non-negative, then Qi ¼ 2Qi�1 þ 1 and Riþ1 ¼ Ri � 1þ 4Qið Þ 22ðn�i�1Þ;

• if Ri is negative, then Qi ¼ 2Qi�1 and Riþ1 ¼ Ri restorig � 1þ 4Qið Þ22ðn�i�1Þ ¼
Ri þ 1þ 4Qi�1ð Þ22ðn�iÞ � 1þ 4Qið Þ22ðn�i�1Þ ¼ Ri þ 1þ 2Qið Þ22ðn�iÞ

� 1þ 4Qið Þ22ðn�i�1Þ ¼ Ri þ 3þ 4Qið Þ22ðn�i�1Þ:

Algorithm 10.7: Square root, non-restoring algorithm

Qi is an i-bit number and Ri is an (i+2)-bit signed number.
An equivalent algorithm is obtained if Pi and Ri are replaced by

pi�1 ¼ Pi�1=22ðn�iÞ; ri ¼ Ri=22ðn�iÞ:

Algorithm 10.8: Square root, non-restoring algorithm, version 2

As before, Qi is an i-bit number and ri a (2n+1)-bit fixed-point number a2n �
a2n�1 a2n�2 . . . a0 initially equal to 0:x2n�1 x2n�2 . . . x0:

258 10 Other Operations

In this case rn2n is the remainder only if rn is non-negative. In fact, the
remainder is equal to (rn-i�4i)�2n where rn-i is the last non-negative remainder.

A sequential implementation is shown in Fig. 10.4. It can be described by the
following VHDL model.

The only computation resource is an (n+2)-bit adder/subtractor so that the
computation time is again approximately equal to n�Tadder(n). The complete circuit
includes an n-bit counter and a control unit. A generic VHDL model Square-
Root3.vhd is available at the Authors’ web page.

r3n+1..2n-2 Q&r3n+11

(n+2)-bit
adder/subtractor

sumdifn+1..0

r2n-3..0&00
sign

r

(3n+2)-bit register
initially: 00··0.x2n-1··x0

n-bit shift register
initially: 0

Q

r3n+1

Fig. 10.4 Square root computation: non-restoring algorithm

10.3 Square Rooters 259

10.3.3 Fractional Numbers

Assume that X is a 2(n+p)-bit fractional number x2n-1 x2n-2 ��� x1 x0. x-1 x-2 ��� x-2p.
The square root Q of X, with an accuracy of p fractional bits, is defined as follows:

Q ¼ qn�12n�1 þ qn�222n�2 þ . . .þ q0 þ q�12�1 þ q�22�2 þ . . .þ q�p2�p;

Q2�X and Qþ 2�pð Þ2 [X;

so that the remainder R = X - Q2 belongs to the range 0 B R\21-pQ + 2-2p, that
is to say

0 �R�Q � 21�p:

In order to compute Q, first substitute X by X0 = X�22p, which is a natural, and
then compute the square root Q0 ¼ qnþp�1 qnþp�2 . . . q1 q0 of X0, and the corre-
sponding remainder R0 ¼ rnþp rnþp�1 . . . r1 r0; using for that one of the previously

defined algorithms. Thus, X0 = (Q0)2 + R0, with 0 B R0 B 2Q0, so that X ¼
Q0 � 2�pð Þ2þR0 � 2�2p; with 0 B R0�2-2p B 2Q0�2-2p. Finally, define Q = Q0�2-p

and R = R0�2-2p. Thus

X = Q2 + R, with 0 B R B Q�21-p,

where Q ¼ qnþp�1 qnþp�2 . . . qp � qp�1 . . . q1 q0 and R ¼ rnþp rnþp�1 . . . r2p �
r2p�1 . . . r1 r0 is smaller than or equal to Q�21-p.

Comment 10.1
The previous method can also be used for computing the square root of a natural
X ¼ x2n�1 x2n�2 . . . x1 x0 with an accuracy of p bits: represent X as an (n+p)-bit
fractional number x2n�1 x2n�2 . . . x1 x0 � 00 . . . 0 and use the preceding method.

10.3.4 Convergence Methods (Newton–Raphson)

Instead of a digit-recurrence algorithm, an alternative option is the Newton–Raphson
convergence method. The following iteration can be used for computing X1/2

xiþ1 ¼ 1=2ð Þ � xi þ X=xið Þ:

It corresponds to the graphical construction of Fig. 10.5.
First check that (1/2)�(x + X/x) is a function whose minimum value, within the

half plane x [0, is equal to X1/2, and is obtained when xi = X1/2. Thus, whatever
the initial value x0, xi is greater than or equal to X1/2 for all i[0. Furthermore, if xi[X1/2

then xiþ1\ 1=2ð Þ � xi þ X=X1=2
� �

¼ 1=2ð Þ � xi þ X1=2
� �

\ 1=2ð Þ � xi þ xið Þ ¼ xi:

Thus, either X1=2\xiþ1\xi or X1=2 ¼ xiþ1 ¼ xi: For x0 choose a first rough
approximation of X1/2. As regards the computation of X/xi, observe that if xi C X1/2

and X\22n, then xi � 2n [X1=2 � X1=2 ¼ X: So, compute q % X/(xi�2n), with an

260 10 Other Operations

accuracy of p+n fractional bits, using any division algorithm, so that X � 2nþp ¼
q � xi � 2n þ r; with r\xi�2n, and X ¼ Q � xi þ R; where Q = q�2-p and R = (r/xi)�
2-(n+p)\2-p.

An example of implementation SquareRootNR4.vhd is available at the Authors’
web page. The corresponding data path is shown in Fig. 10.6. The initial value x0

must be defined in such a way that x0�2n[X. In the preceding example, initial_y =
x0 is defined so that initial_y(n+p �� n+p-4)�2-2 is an approximation of the square
root of X2n-1 �� 2n-4 and that initial_y�2n is greater than X.

table_x0 is a constant array defined within a user package:

The end of computation is detected when xi+1 = xi.

f (x) = x2-X

xxixi+1
X

1/2
-X

Fig. 10.5 Newton–Raphson
method:
computation of X1/2

10.3 Square Rooters 261

Comment 10.2
Every iteration step includes a division, an operation whose complexity is similar
to that of a complete square root computation using a digit recurrence algorithm.
Thus, this type of circuit is generally not time effective.

Another method is to first compute X-1/2. A final multiplication computes
X1/2 = X-1/2 � X. The following iteration can be used for computing X-1/2

xiþ1 ¼ xi=2ð Þ � 3� x2
i � X

� �
;

where the initial value x0 belongs to the range 0\x0 B X-1/2. The corresponding
graphical construction is shown in Fig. 10.7.

The corresponding circuit does not include dividers, only multipliers and an adder.
The implementation of this second convergence algorithm is left as an exercise.

10.4 Logarithm

Given an n-bit normalized fractional number x = 1�x-1 x-2 ��� x-n, compute y =
log2x with an accuracy of p fractional bits. As x belongs to the interval 1 B x\2, its
base-2 logarithm is a non-negative number smaller than 1, so y = 0.y-1 y-2 ��� y-p.

If y = log2x, then x ¼ 20 � y�1 y�2...y�p ...; so that x2 ¼ 2y�1 � y�2 ... y�p ...: Thus

• if x2� 2 : y�1 ¼ 1 and x2=2 ¼ 20:y�2 ��� y�p ���;

• if x2\2 : y�1 ¼ 0 and x2 ¼ 20:y�2 ��� y�p ���:

X

start_div

div_done
dividertable

(n+p+1)-bit register
initially:x0

load

update

xi

x0

adder

xi+1

Fig. 10.6 Newton–Raphson method: data path

262 10 Other Operations

The following algorithm computes y:

Algorithm 10.9: Base-2 logarithm

The preceding algorithm can be executed by the data path of Fig. 10.8 to which
corresponds the following VHDL model.

f(x) = 1/x2-X

xxi xi+1

X -1/2

-X

Fig. 10.7 Newton–Raphson
method: computation of X-1/2

(n+1)-bit register
initially:x

load

update
z

squaring

z 2

z2/2

m.s.b.

0 1
p-bit shift register

load

update

log

Fig. 10.8 Logarithm: data path

10.4 Logarithm 263

A complete VHDL model Logarithm.vhd is available at the Authors’ web page.

Comments 10.3

1. If x belongs to the interval 2n�1� x\2n; then it can be expressed under the
form x ¼ 2n�1 � y where 1 B y \ 2, so that log2x = n -1 + log2y.

2. If the logarithm in another base, say b, must be computed, then the following
relation can be used: logbx ¼ log2x=log2b:

10.5 Exponential

Given an n-bit fractional number x ¼ 0:x�1 x�2 . . . x�n; compute y = 2x with an
accuracy of p fractional bits. As x ¼ x�12�1 þ x�22�2 þ . . . þ x�n2�n; then

2x ¼ 22�1
� �x�1

22�2
� �x�2

. . . 22�n� �x�n
:

If all the constant values ai ¼ 22�i
are computed in advance, then the following

algorithm computes 2x.

Algorithm 10.10: Exponential 2x

The preceding algorithm can be executed by the data path of Fig. 10.9.
The problem is accuracy. Assume that all ai’s are computed with m fractional

bits so that the actual operand ai’ is equal to ai - ei, where ei belongs to the range

0� ei\2�m: ð10:6Þ

Consider the worst case, that is y = 20.11 ��� 1. Then the obtained value is
y0 ¼ a1 � e1ð Þ a2 � e2ð Þ . . . an � enð Þ: If second or higher order products ei ej ��� ek

are not taken into account, then y0 % y - (e1 a2 ��� an + a1 e2 ��� an + a1 ��� an-1 en).
As all products p1 = a2 ��� an, p2 = a1 a3 ��� an, etc., belong to the range 1\pi\2,
and ei to (10.6), then

y� y0\2 � n � 2�m�: ð10:7Þ

264 10 Other Operations

Relation (10.7) would define the maximum error if all products were computed
exactly, but it is not the case. At each step the obtained product is rounded. Thus
Algorithm 10.8 successively computes

z2 [a
0

1 � a
0

2 � 2m;

z3 [a
0

1 � a
0

2 � 2m
� �

� a
0

3 � 2m ¼ a
0

1 � a
0

2 � a
0

3 � 2�m 1þ a
0

3

� �
;

z4 [a
0

1 � a
0

2 � a
0

3 � 2�m 1þ a
0

3

� �� �
� a

0

4 � 2m ¼ a
0

1 � a
0

2 � a
0

3 � a
0

4 � 2�m 1þ a
0

4 þ a
0

3 � a
0

4

� �
;

and so on. Finally

zn [y
0 � 2�m 1þ a

0

n þ a
0

n�1 � a
0

n þ � � � þ a
0

3 � a
0

4 � � � a
0

n

� �

[y
0 � 2�m 1þ 2 n� 2ð Þð Þ[y

0 � 2 � n � 2�m:
ð10:8Þ

Thus, from (10.7) and (10.8), the maximum error y - zn is smaller than 4�n�2-m.
In order to obtain the result y with p fractional bits, the following relation must hold
true: 4�n�2-m- B 2-p, and thus

m� pþ log2nþ 2: ð10:9Þ

As an example, with n = 8 and p = 12, the internal data must be computed with
m = 17 fractional bits.

The following VHDL model describes the circuit of Fig. 10.9.

itable
ai

multiplier

10
shift-register

load

update

x-i

parallel register
initially:1.00···0

load

update

z

x

y

Fig. 10.9 Exponential: data path

10.5 Exponential 265

powers is a constant array defined within a user package; it stores the fractional
part of ai with 24 bits:

A complete VHDL model Exponential.vhd is available at the Authors’ web
page.

Instead of storing the constants ai, an alternative solution is to store an, and to
compute the other values on the fly:

ai�1 ¼ 22�iþ1 ¼ 22�i
� �2

¼ a2
i .

Algorithm 10.11: Exponential 2 x, version 2

The preceding algorithm can be executed by the data path of Fig. 10.9 in which
the table is substituted by the circuit of Fig. 10.10.

Once again, the problem is accuracy. In this case there is an additional problem:
in order to get all coefficients ai with an accuracy of m fractional bits, they must be
computed with an accuracy of k[m bits. Algorithm 10.11 successively computes

266 10 Other Operations

a
0

n [an � 2�k; a
0

n�1 [an � 2�k
� �2�2�k ffi a2

n � 2an2�k � 2�k ¼ an�1 � 2�k

1þ 2anð Þ; a0n�2 [an�1 � 2�k 1þ 2anð Þ
� �2�2�k ffi a2

n�1 � 2an�1 2�k 1þ 2anð Þ
�2�k ¼ an�2 � 2�k 1þ 2an�1 þ 4an�1 anð Þ; a0n�3 [an�2 � 2�k

�

1þ 2an�1 þ 4an�1anð ÞÞ2 �2�k ffi a2
n�2 � 2an�22�k 1þ 2an�1 þ 4an�1anð Þ � 2�k

¼ an�3 �2�k 1þ 2an�2 þ 4an�2 an�1 þ 8an�2 an�1 anð Þ;

and so on. Finally

a
0

1 [a1 � 2�k 1þ 2a2 þ 4a2a3 þ � � � þ 2n�2a2 a3 . . . an

� �

[a1 � 2�k 1þ 4þ 8þ � � � þ 2n�1
� �

¼ a1 � 2�k 2n � 3ð Þ:

In conclusion, a1 - a1
0\ 2-k(2n - 3) \ 2n-k. The maximum error is smaller

than 2-m if n-k B -m, that is k C n + m. Thus, according to (10.9)

k� nþ pþ log2nþ 2:

As an example, with n = 8 and p = 8, the coefficients ai (Fig. 10.10) are
computed with k = 21 fractional bits and z (Fig. 10.9) with 13 fractional bits.

A complete VHDL model Exponential2.vhd, in which an, expressed with
k fractional bits, is a generic parameter, is available at the Authors’ web page.

Comment 10.3
Given an n-bit fractional number x and a number b[2, the computation of y = bx,
with an accuracy of p fractional bits, can be performed with Algorithm 10.10 if the
constants ai are defined as follows:

ai ¼ b2�i
:

So, the circuit is the same, but for the definition of the table which stores the
constants ai. In particular, it can be used for computing ex or 10x.

multiplier

parallel register
initially:an

load

update

ai

ai
2

Fig. 10.10 Computation of
ai on the fly

10.5 Exponential 267

10.6 Trigonometric Functions

A digit-recurrence algorithm for computing ejz = cos z + j�sin z, with 0 B z B p/2,
similar to Algorithm 10.10 can be defined. In the modified version, the operations
are performed over the complex field.

Algorithm 10.12: Exponential ejz; z ¼ z0 � z�1 z�2 . . . z�n

The constants aRi and aIi are equal to cos 2-i and sin 2-i, respectively. The
synthesis of the corresponding circuit is left as an exercise.

A more efficient algorithm, which does not include multiplications, is CORDIC
[2, 3]. It is a convergence method based on the graphical construction of
Fig. 10.11. Given a vector (xi, yi), then a pseudo-rotation by ai radians defines a
rotated vector (xi+1, yi+1) where

xiþ1 ¼ xi � yi � tan ai ¼ ðxi � cos ai � yi � sin aiÞ � ð1þ tan2 aiÞ0:5;
yiþ1 ¼ yi þ xi � tan ai ¼ ðyi � cos ai þ xi � sin aiÞ � ð1þ tan2 aiÞ0:5:

In the previous relations, xi�cos ai - yi�sin ai and yi�cos ai + xi�sin ai define the
vector obtained after a (true) rotation by ai radians. Therefore, if an initial vec-
tor (x0, y0) is rotated by successive angles a0, a1, ���, an-1, then the final vector is
(xn, yn) where

i

xixi+1

yi

yi+1

/2

Fig. 10.11 Pseudo-rotation

268 10 Other Operations

xn ¼ ðx0 � cosa� y0 � sinaÞð1þ tan2a0Þ0:5ð1þ tan2a1Þ0:5 . . . ð1þ tan2an�1Þ0:5;
yn ¼ ðy0 � cosaþ x0 � sinaÞð1þ tan2a0Þ0:5ð1þ tan2a1Þ0:5. . .ð1þ tan2an�1Þ0:5;

with a = a0 + a1 + ��� + an-1. The CORDIC method consists in choosing angles ai

such that

• xi - yi�tan ai and yi + xi�tan ai are easy to calculate,
• a0 + a1 + a2 + ��� tends toward z.

As regards the first condition, ai is chosen as follows: ai = tan-12-i or -tan-12-i, so
that tan ai = 2-i or -2-i. In order to satisfy the second condition, ai is chosen in
function of the difference di = z - (a0 + a1 + ��� + ai-1): if di\0, then ai = tan-12-i;
else ai = -tan-12-i. The initial values are

x0 ¼ 1=k; where k ¼ 1þ 1ð Þ0:5ð1þ 2�2Þ0:5 . . . ð1þ 2�2ðn�1ÞÞ0:5; y0 ¼ 0; d0 ¼ z:

Thus, if z ffi a0 þ a1 þ . . . þ an�1; then xn % cos z and yn % sin z. It can be
shown that the error is less than 2-n. In the following algorithm, x0 has been
computed with n = 16 and 32 fractional bits.

itable
tan-1(2-i)

+/-

d

dm

register
init.: z

d

ishifter

+/-

x

dm

register
init.: x0

x

ishifter

+/-

y

dm

register
init.: 0

y

xy

Fig. 10.12 Data path executing CORDIC

10.6 Trigonometric Functions 269

Algorithm 10.13: CORDIC, x = cos z, y = sin z

A circuit for executing Algorithm 10.13 is shown in Fig. 10.12. It can be
described by the following VDL model.

angles is a constant array defined within a user package; it stores tan-12-i, for i up
to 15, with 32 bits:

270 10 Other Operations

shifter is a previously defined component that computes b = a�2-shift. A complete
VHDL model cordic2.vhd is available at the Authors’ web page. It includes an n-
state counter, which generates the index i of Algorithm 10.13, and a control unit.

CORDIC can be used for computing other functions. In fact, Algorithm 10.13 is
based on circular CORDIC rotations, defined in such a way that the difference
di ¼ z� ða0 þ a1 þ . . . þ ai�1Þ tends to 0. Another CORDIC mode, called cir-
cular vectoring, can be used. As an example, assume that at each step the value of
ai is chosen in such a way that yi tends toward 0: if sign(xi) = sign(yi), then ai = -
tan-12-i; else, ai = tan-12-i. Thus, if yn % 0, then xn is the length of the initial
vector multiplied by k. The following algorithm computes (x2 + y2)0.5.

Algorithm 10.14: CORDIC, z = (x2 + y2)0.5

10.6 Trigonometric Functions 271

A complete VHDL model norm_cordic.vhd corresponding to the previous
aslgorithm is available at the Authors’ web page.

10.7 FPGA Implementations

Several circuits have been implemented within a Virtex 5-2 device. The times are
expressed in ns and the costs in numbers of Look Up Tables (LUTs) and flip-flops
(FFs). All VHDL models are available at the Authors’ web page.

10.7.1 Converters

Table 10.1 gives implementation results of several binary-to-decimal converters.
They convert n-bit numbers to m-digit numbers.

In the case of decimal-to-binary converters, the implementation results are
given in Table 10.2.

Table 10.1 Binary to
decimal converters

n m FFs LUTs Period Total time

8 3 27 29 1.73 15.6
16 5 43 45 1.91 32.5
24 8 54 56 1.91 47.8
32 10 82 82 1.83 60.4
48 15 119 119 1.83 89.7
64 20 155 155 1.83 119.0

Table 10.2 Decimal-to-binary converters n m FFs LUTs Period Total time

8 3 26 22 1.80 16.2
16 5 43 30 1.84 31.3
24 8 65 43 1.87 46.8
32 10 81 51 1.87 61.7
48 15 118 72 1.87 91.6
64 20 154 92 1.87 121.6

272 10 Other Operations

10.7.2 Square Rooters

Three types of square rooters have been considered, based on the restoring
algorithm (Fig. 10.3), the non-restoring algorithm (Fig. 10.4) and the Newton–
Raphson method (Fig. 10.6). The implementation results are given in Tables
10.3, 10.4.

In the case of the Newton–Raphson method, the total time is data dependent. In
fact, as was already indicated above, this type of circuit is generally not time
effective (Table 10.5).

Table 10.3 Square rooters:
restoring algorithm

n FFs LUTs Period Total time

8 38 45 2.57 20.6
16 71 79 2.79 44.6
24 104 113 3.00 72.0
32 136 144 3.18 101.8

Table 10.4 Square rooters:
non-restoring algorithm

n FFs LUTs Period Total time

8 39 39 2.61 20.9
16 72 62 2.80 44.8
24 105 88 2.98 71.5
32 137 111 3.16 101.1

Table 10.5 Square rooter:
Newton–Raphson method

n p FFs LUTs Period

8 0 42 67 2.94
8 4 51 78 3.50
8 8 59 90 3.57
16 8 92 135 3.78
16 16 108 160 3.92
32 16 173 249 4.35
32 32 205 301 4.67

Table 10.6 Base-2
logarithm

n p FFs LUTs DSPs Period Total time

8 10 16 20 1 4.59 45.9
16 18 25 29 1 4.59 82.6
24 27 59 109 2 7.80 210.5
32 36 44 46 4 9.60 345.6

10.7 FPGA Implementations 273

10.7.3 Logarithm and Exponential

Table 10.6 gives implementation results of the circuit of Fig. 10.8. DSP slices
have been used.

The circuit of Fig. 10.9 and the alternative circuit using a multiplier instead of a
table (Fig. 10.10) have been implemented. In both cases DSP slices have been
used (Tables 10.7, 10.8)

10.7.4 Trigonometric Functions

Circuits corresponding to algorithms 10.13 and 10.14 have been implemented. The
results are summarized in Tables 10.9, 10.10.

10.8 Exercises

1. Generate VHDL models of combinational binary-to-decimal and decimal-to-
binary converters.

2. Synthesize binary-to-radix-60 and radix-60-to-binary converters using LUT-6.

Table 10.7 Exponential 2x
n p m FFs LUTs DSPs Period Total time

8 8 13 27 29 1 4.79 38.3
16 16 23 46 48 2 6.42 102.7

Table 10.8 Exponential 2x,
version 2

n p m k FFs LUTs DSPs Period Total time

8 8 13 21 49 17 3 5.64 45.1
16 16 23 39 86 71 10 10.64 170.2

Table 10.9 CORDIC: sine
and cosine

n p m FFs LUTs Period Total time

16 8 16 57 134 3.58 57,28
32 16 32 106 299 4.21 134.72
32 24 32 106 309 4.21 134.72

Table 10.10 CORDIC:

z ¼ x2 þ y2ð Þ0:5
n p m FFs LUTs DSPs Period Total time

8 8 16 43 136 1 3.39 27.12
16 16 32 76 297 2 4.44 71.04
48 24 48 210 664 5 4.68 224.64

274 10 Other Operations

3. Implement Algorithm 10.6.
4. Implement the second square rooting convergence algorithm (based on

Fig. 10.7).
5. Synthesize circuits for computing ln, log10, ex and10x.
6. Generate a circuit which computes ejx ¼ cos xþ j � sin x:

References

1. Parhami B (2000) Computer arithmetic: algorithms and hardware design. Oxford University
Press, New York

2. Volder JE (1959) The CORDIC trigonometric computing technique. IRE Trans Electron
Comput EC8:330–334

3. Volder JE (2000) The birth of CORDIC. J VLSI Signal Process Sys 25:101–105

10.8 Exercises 275

	10 Other Operations
	10.1…Binary to Radix-B Conversion (B even)
	10.2…Radix-B to Binary Conversion (B even)
	10.3…Square Rooters
	10.3.1 Restoring Algorithm
	10.3.2 Non-Restoring Algorithm
	10.3.3 Fractional Numbers
	10.3.4 Convergence Methods (Newton--Raphson)

	10.4…Logarithm
	10.5…Exponential
	10.6…Trigonometric Functions
	10.7…FPGA ImplementationsImplementationsother operations
	10.7.1 Converters
	10.7.2 Square Rooters
	10.7.3 Logarithm and Exponential
	10.7.4 Trigonometric Functions

	10.8…Exercises
	References

