
Chapter 1
Basic Building Blocks

Digital circuits are no longer defined by logical schemes but by Hardware
Description Language programs [1]. The translation of this kind of definition to an
actual implementation is realized by Electronic Automation Design tools (Chap. 5).
All along this book the chosen language is VHDL. In this chapter the most useful
constructions are presented. For all of the proposed examples, the complete source
code is available at the Authors’ web page.

1.1 Combinational Components

1.1.1 Boolean Equations

Among the predefined operations of any Hardware Description Language are the
basic Boolean operations. Boolean functions can easily be defined. Obviously, all
the classical logic gates can be defined. Some of them are considered in the
following example.

Example 1.1
The following VHDL instructions define the logic gates NOT, AND2, OR2,
NAND2, NOR2, XOR2, XNOR2, NAND3, NOR3, XOR3, XNOR3 (Fig. 1.1).

J.-P. Deschamps et al., Guide to FPGA Implementation of Arithmetic Functions,
Lecture Notes in Electrical Engineering 149, DOI: 10.1007/978-94-007-2987-2_1,
� Springer Science+Business Media Dordrecht 2012

1

http://dx.doi.org/10.1007/978-94-007-2987-2_5


The same basic Boolean operations can be used to define sets of logic gates
working in parallel. As an example, assume that signals a = (an-1, an-2,…, a0) and
b = (bn-1, bn-2,…, b0) are n-bit vectors. The following assignation defines a set of
n AND2 gates that compute c = (an-1�bn-1, an-2�bn-2,…, a0�b0):

More complex Boolean functions can also be defined. It is worthwhile to indicate
that within most Field Programmable Gate Arrays (FPGA) the basic combinational
components are not 2-input logic gates but Look Up Tables (LUT) allowing the
implementation of any Boolean function of a few numbers (4, 5, 6) of variables
(Chap. 5). Hence, it makes sense to consider the possibility of defining small
combinational components by the set of Boolean functions they implement.

Example 1.2
The following VHDL instruction defines an ANDORI gate (a 4-input 1-output
component implementing the complement of a�b v c�d, Fig. 1.2)

and the two following instructions define a 1-bit full adder (a 3-input 2-output
component implementing a+b+cin mod 2 and a�b v a�cin v b�cin, Fig. 1.3).

XNOR2

NOT

AND2 OR2 NAND2 NOR2 XOR2

NAND3 NOR3 XOR3 XNOR3

Fig. 1.1 Logic gates

2 1 Basic Building Blocks

http://dx.doi.org/10.1007/978-94-007-2987-2_5


1.1.2 Tables

Combinational components can also be defined by their truth tables, without the
necessity to translate their definition to Boolean equations. As a first example,
consider a 1-digit to 7-segment decoder, that is a 4-input 7-output combinational
circuit.

Example 1.3
The behavior of a 4-to-7 decoder (Fig. 1.4) can be described by a conditional
assignment instruction

The last choice of a WITH… SELECT construction must be WHEN OTHERS in
order to avoid the inference of an additional latch, and it is the same for other
multiple choice instructions such as CASE.

As mentioned above, small Look Up Tables are basic components of most
FPGA families. The following example is a generic 4-input 1-output LUT.

FA

a b

s

cincout

Fig. 1.3 One-bit full adder

Fig. 1.2 ANDORI gate

1.1 Combinational Components 3



Example 1.4
The following entity defines a 4-input Boolean function whose truth vector is
stored within a generic parameter (Fig. 1.5). Library declarations are omitted.

Then the following component instantiation defines a 4-input XOR function.

a3,a2,a1,a0

4
16-bit ROM

stored data: 
truth vector of f

b = f(a3,a2,a1,a0)

Fig. 1.5 Four-input Look Up
Table

segment5

segment2

segment 6

segment 3

segment 0

segment 4

segment 1

4 7
decoder

digit segments

Fig. 1.4 Four-digit to seven-segment decoder

4 1 Basic Building Blocks



Comment 1.1
The VHDL model of the preceding Example 1.4 can be used for simulation
purposes, independently of the chosen FPGA vendor. Nevertheless, in order to
implement an actual circuit, the corresponding vendor’s primitive component
should be used instead (Chap. 5).

1.1.3 Controllable Connections

Multiplexers are the basic components for implementing controllable connections.
Conditional assignments are used for defining them. Some of them are considered
in the following example.

Example 1.5
The following conditional assignments define a 2-to-1 and a 4-to-1 multiplexer
(Fig. 1.6). The signal types must be compatible with the conditional assignments:
a, b, c, d and e are assumed to be n-bit vectors for some constant value n.

Demultiplexers, address decoders and tri-state buffers are other components fre-
quently used for implementing controllable connections such as buses.

Example 1.6
The following equations define a 1-bit 1-to-2 demultiplexer (Fig. 1.7a)

and the following conditional assignments a 1-to-4 demultiplexer (Fig. 1.7b)

a
n

b
n

n
c

sel

0

1

a
n

b n
e

sel

00

c

d

01

10

11

n

n

n

2

MUX2-1

MUX4-1

Fig. 1.6 Multiplexers

1.1 Combinational Components 5

http://dx.doi.org/10.1007/978-94-007-2987-2_5


In the second case the signal types must be compatible with the conditional
assignments: a, b, c, d and e are assumed to be n-bit vectors for some constant
value n.

An address decoder is a particular case of 1-bit demultiplexer whose input is 1.

Example 1.7
The following equations define a 3-input address decoder (Fig. 1.8).

Three-state buffers implement controllable switches.

b

c

DEMUX1-2

0

1

a

sel
n

b

sel

n

n

n

2

DEMUX1-4

00

01

10

11

n
a

c

c

d

(a) (b)Fig. 1.7 Demultiplexers

6 1 Basic Building Blocks



Example 1.8
The following conditional assignment defines a tri-state buffer (Fig. 1.9): when the
enable signal is equal to 1, output b is equal to input a, and when the enable signal
is equal to 0, output b is disconnected (high impedance state). The signal types
must be compatible with the conditional assignments: a and b are assumed to be n-
bit vectors for some constant value n.

An example of the use of demultiplexers and tri-state buffers, namely a data bus, is
shown in Fig. 1.10.

Example 1.9
The circuit of Fig. 1.10, made up of demultiplexers and three-state buffers, can be
described by Boolean equations (the multiplexers) and conditional assignments
(the three-sate buffers).

row(0)000
row(1)

row(2)
row(3)
row(4)

row(5)
row(6)

row(7)

001

010
011
100
101

110
111

3address

Fig. 1.8 Address decoder

n na b

enable

Fig. 1.9 Three-state buffer

y2y1

2

11

10

01

00

1

1

0

y0

8

a

8

b

8

c

8

d

8

e

88 8 8 8

enable_a

enable_e

enable_d

enable_c

enable_b

data_bus

Fig. 1.10 Example of a data
bus

1.1 Combinational Components 7



Nevertheless, the same functionality can be implemented by an 8-bit 5-to-1
multiplexer (Fig. 1.11).

Generally, this second implementation is considered safer than the first one. In
fact, tri-state buffers should not be used within the circuit core. They should only
be used within I/O-port components (Sect. 1.4).

1.1.4 Arithmetic Circuits

Among the predefined operations of any Hardware Description Language there are
also the basic arithmetic operations. The translation of this kind of description to

n

e

n

d

n

c

n

b

n

a

n

000 001 01- 10- 11-

data bus

y2y1y0

Fig. 1.11 Data bus, second
version

8 1 Basic Building Blocks



actual implementations, using special purpose FPGA resources (carry logic,
multiplier blocks), is realized by Electronic Automation Design tools (Chap. 5).

Example 1.10
The following arithmetic equation defines an adder mod 2n, being a, b and s n-bit
vectors and cIN an input carry (Fig. 1.12a).

By adding a most significant bit 0 to one (or both) of the n-bit operands a and b, an
n-bit adder with output carry cOUT can be defined (Fig. 1.12b). The internal signal
sum is an (n+1)-bit vector.

The following arithmetic equation defines an n-bit by m-bit multiplier where a is
an n-bit vector, b an m-bit vector and product an (n+m)-bit vector (Fig. 1.13).

Comment 1.2
In most VHDL models available at the Authors’ web page, the type unsigned has
been used, so that bit-vectors can be treated as natural numbers. In some cases, it
could be better to use the signed type, for example when bit-vectors are interpreted
as 2’s complement integers, and when magnitude comparisons or sign-bit exten-
sions are performed.

n

a(a) (b)
n

b

n

s

cinmod 2n adder

n

a

n

b

n

s

cinmod 2n+1 adder

0 0

cout

Fig. 1.12 n-bit adders

a n

b m
productn+mn-bit by m-bit 

multiplier

Fig. 1.13 n-bit by m-bit
multiplier

1.1 Combinational Components 9

http://dx.doi.org/10.1007/978-94-007-2987-2_5


1.2 Sequential Components

1.2.1 Flip-Flops

The basic sequential component is the D-flip-flop. In fact, several types of D-flip-
flop can be considered: positive edge triggered, negative edge triggered, with
asynchronous input(s) and with complemented output.

Example 1.11
The following component is a D-flip-flop triggered by the positive edge of clk
(Fig. 1.14a),

while the following, which is controlled by the negative edge of clkb, has two
asynchronous inputs clearb (active at low level) and preset (active at high
level), having clearb priority, and has two complementary outputs q and qb
(Fig. 1.14b).

Comment 1.3
The use of level-controlled, instead of edge-controlled, components is not rec-
ommendable. Nevertheless, if it were necessary, a D-latch could be modeled as
follows:

where en is the enable signal and d the data input.

D
(a) (b)

Q

(clk)

D Q

(clkb)

PRESET

CLEARb
Qb

Fig. 1.14 D flip-flops

10 1 Basic Building Blocks



1.2.2 Registers

Registers are sets of D-flip-flops controlled by the same synchronization and
control signals, and connected according to some regular scheme (parallel, left or
right shift, bidirectional shift).

Example 1.12
The following component is a parallel register with ce (clock enable) input,
triggered by the positive edge of clk (Fig. 1.15).

As a second example (Fig. 1.16), the next component is a right shift register with
parallel input (controlled by load) and serial input (controlled by shift).

1.2.3 Counters

A combination of registers and arithmetic operations permits the definition of
counters.

CE

(clk)

register

n

n

d

q

Fig. 1.15 Parallel register

1.2 Sequential Components 11



Example 1.13
This defines an up/down counter (Fig. 1.17) with control signals load (input
parallel_in), count (update the state of the counter) and upb_down (0: count up, 1:
count down).

The following component is a down counter (Fig. 1.18) with control signals load
(input parallel_in) and count (update the state of the counter). An additional binary
output equal_zero is raised when the state of the counter is zero (all 0’s vector).

shift

(clk)

right shift register

n

n

parallel_in

q

load
serial_in

Fig. 1.16 Right shift register

upb_down

(clk)

up/down counter

n

n

parallel_in

q

count
load

Fig. 1.17 Up/down counter

12 1 Basic Building Blocks



1.2.4 Finite State Machines

Hardware Description Languages allow us to define finite state machines at an
input/output behavioral level. The translation to an actual implementation
including registers and combinational circuits—a classical problem of traditional
switching theory—is realized by Electronic Automation Design tools (Chap. 5).

In a Moore machine, the output state only depends on the current internal state
(Fig. 1.19) while in a Mealy machine the output state depends on both the input
state and the current internal state (Fig. 1.20). Let tSUinput be the maximum set up
time of the input state with respect to the positive clock edge, t1 the maximum
delay of the combinational block that computes the next internal state, and t2 the
maximum delay of the combinational block that computes the output state. Then,
in the case of a Moore machine, the following conditions must hold

tSUinput þ t1\TCLK and t2\TCLK; ð1:1Þ

and in the case of a Mealy machine

tSUinput þ t1\TCLK and tSUinput þ t2\TCLK : ð1:2Þ

count

(clk)

down counter

n

n

parallel_in

q

load
equal_zero

Fig. 1.18 Down counter

clk

internal state

input state

output state

next state

tSUinput t1

t2

combinational
circuit 1

(t1)

next state

(clk)

internal state

combinational
circuit 2

(t2)

input state output state

(tSUinput)

Fig. 1.19 Moore machine

1.2 Sequential Components 13

http://dx.doi.org/10.1007/978-94-007-2987-2_5


The set up and hold times of the register (Chap. 6) have not been taken into
account.

Example 1.14
A Moore machine is shown in Fig. 1.21. It is the control unit of a programmable
timer (Exercise 2.6.2). It has seven internal states, three binary input signals start,
zero and reference, and two output signals operation (2 bits) and done. It can be
described by the following processes.

clk

internal state

input state

output state

next state

tSUinput

t1

t2

combinational
circuit 1

(t1)

next state

(clk)

internal state

combinational
circuit 2

(t2)
output state

input state
(tSUinput )

Fig. 1.20 Mealy machine

14 1 Basic Building Blocks

http://dx.doi.org/10.1007/978-94-007-2987-2_6


Example 1.15
Consider the Mealy machine of Table 1.1. It has four internal states, two
binary inputs x1 and x0, and one binary output z. Assume that x0 and x1 are

0 1

reference = 1

2

3 4 5 6

start = 1

start = 0

start = 0

start = 1

zero = 0 reference = 0

reference = 0

reference = 1

zero = 1

reset

state operation done

0 00 1
1 00 1
2 11 0
3 00 0
4 00 0
5 00 0
6 01 0

Fig. 1.21 An example of a Moore machine

1.2 Sequential Components 15



periodic, but out of phase, signals. Then the machine detects if x0 changes
before x1 or if x1 changes before x0. In the first case the sequence of internal
states is A B C D A B… and z = 0. In the second case the sequence is D C B
A D C… and z = 1.

It can be described by the following processes.

Table 1.1 A Mealy
machine: next state/z

X1 x0 : 00 01 10 11

A A/0 B/0 A/1 D/1
B B/1 B/0 A/1 C/0
C B/1 C/1 D/0 C/0
D A/0 C/1 D/0 D/1

16 1 Basic Building Blocks



1.3 Memory Blocks

With regards to memory blocks, a previous comment similar to Comment 1.1 must
be outlined: VHDL models can be generated for simulation purposes; nevertheless,
in order to implement an actual circuit, the corresponding vendor’s primitive
component should be used instead (Chap. 5).

Example 1.16
The following entity defines a Read Only Memory storing 2n m-bit words. The
stored data is defined by a generic parameter (Fig. 1.22). Library declarations are
omitted.

1.2 Sequential Components 17

http://dx.doi.org/10.1007/978-94-007-2987-2_5


Then the following component instantiation defines a ROM storing 16 4-bit words,
namely

Example 1.17
The following entity defines a synchronous Random Access Memory storing 2n

m-bit words (Fig. 1.23). A write input enables the writing operation. Functionally,
it is equivalent to a Register File made up of 2n m-bit registers whose clock enable
inputs are connected to write, plus an address decoder. Library declarations are
omitted.

address
n

m

word

ROM

stored data : 
generic parameter

Fig. 1.22 Read only
memory

address
n

m

data_out

RAM

m

data_in

write

clk

Fig. 1.23 Random access
memory

18 1 Basic Building Blocks



The following component instantiation defines a synchronous RAM storing 16
4-bit words.

1.4 IO-Port Components

Once again, a previous comment similar to Comment 1.1 must be outlined: VHDL
models can be generated for simulating input and output amplifiers; nevertheless,
in order to implement an actual circuit, the corresponding vendor’s I/O component
should be used instead (Chap. 5).

1.3 Memory Blocks 19

http://dx.doi.org/10.1007/978-94-007-2987-2_5


In order to generate VHDL models of I/O amplifiers, it is convenient to
understand the meaning of the STD_LOGIC type elements, that is

‘X’: forcing unknown, ‘0’ : forcing 0, ‘1’ : forcing 1,
‘W’: weak unknown, ‘L’ : weak 0, ‘H’ : weak 1,
‘Z’: high impedance

(‘‘uninitialized’’ and ‘‘don’t care’’ states have no sense in the case of I/O
amplifiers).

An amplifier generates low-impedance (forcing) signals when enabled and high
impedance signals when disabled. Thus the possible outputs generated by an
amplifier are ‘X’, ‘0’, ‘1’ and ‘Z’. In the following example several types of input,
output and bidirectional amplifiers are defined.

Example 1.18

The following conditional assignment defines an input buffer (Fig. 1.24a):

An input buffer with a pull-up resistor can be defined as follows (Fig. 1.24b).

a

(a) (d)

(e)

(b)

(c)

b

a b

a b

en

b

a

en

c

b

a

Fig. 1.24 I/O ports

20 1 Basic Building Blocks



The definition of a tri-state output buffer (Fig. 1.24c) is the same as in example 1.8,
that is

An open-drain output can be defined as follows (Fig. 1.24d).

As an example of hierarchical description, a bidirectional I/O buffer can be defined
by instantiating an input buffer and a tri-state output buffer (Fig. 1.24e).

1.5 VHDL Models

The following complete VHDL models are available at the Authors’ web page
www.arithmetic-circuits.org:

logic_gates.vhd (Sects. 1.1.1, 1.1.2 and 1.1.3),
arithmetic_blocks.vhd (Sects. 1.1.4, 1.2.1 and 1.2.2),
sequential_components.vhd (Sects. 1.2.1, 1.2.2 and 1.2.3),
fnite_state_machines.vhd (Sect. 1.2.4),
memories.vhd (Sect. 1.3),
input_output.vhd (Sect. 1.4).

1.6 Exercises

1. Generate the VHDL model of a circuit that computes y = a�x where a is a bit,
and x and y are n-bit vectors, so that y = (a�xn-1, a�xn-2,…, a�x0).

2. Generate several models of a 1-bit full subtractor (Boolean equations, table,
LUT instantiation).

3. Generate a generic model of an n-bit 8-to-1 multiplexer.

1.4 IO-Port Components 21

http://www.arithmetic-circuits.org


4. Generate a generic model of an n-input address decoder.
5. Design an n-bit magnitude comparator: given two n-bit naturals a and b, it

generates a 1-bit output gt equal to 1 if a C b and equal to 0 if a \ b.
6. Design a 60-state up counter with reset and count control inputs.
7. Design a finite state machine with two binary inputs x and y and a binary output

z defined as follows: if the input sequence is (x, t) = 00 01 11 10 00 01 11… then
z = 0, and if the input sequence is (x, y) = 00 10 11 01 00 10 11… then z = 1.

Reference

1. Hamblen JO, Hall TS, Furman MD (2008) Rapid prototyping of digital systems. Springer,
New York

22 1 Basic Building Blocks


	1 Basic Building Blocks
	1.1…Combinational Components
	1.1.1 Boolean EquationsBoolean equations
	1.1.2 TablesTables
	1.1.3 Controllable Connections
	1.1.4 Arithmetic Circuits

	1.2…Sequential Components
	1.2.1 Flip-FlopsFlip-flops
	1.2.2 RegistersRegisters
	1.2.3 CountersCounters
	1.2.4 Finite State MachinesFinite State Machines

	1.3…Memory Blocks1.3…Memory Blocks
	1.4…IO-Port ComponentsIO-Port Components
	1.5…VHDL Models
	1.6…Exercises
	Reference


