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Summary

We review current progress in our understanding of chloroplast genomes (plastomes) of 
liverworts, mosses, hornworts, lycophytes and monilophytes. We briefl y cover some of the 
methods used to obtain complete nucleotide sequences of plastomes and we summarize the 
published sequences from the plant groups above. We explore some of the evolutionary 
changes that have occurred in terms of gene content, introns and position of the inverted 
repeat boundaries. We also discuss RNA editing, which is especially high in plastome genes 
of some non-seed land plants. We fi nish with a phylogenetic analysis of available plastome 
genes and we suggest some possible directions for future research.
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         I. Introduction 

 Land plants have a chloroplast (plastid) 
genome (plastome) with a basic canonical 
organization that is similar to that of their 

algal ancestors (see Chap.   3    ). This repre-
sents one of the most evolutionary con-
served genomic structures in nature. 
However, from this basic organization, sev-
eral structural changes have occurred on 
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various evolutionary branches. Here we 
review aspects of plastomes of extant land 
plants, except for seed plants (see next 
chapter). The main lineages include the 
nonvascular bryophyte lineages (hornworts, 
liverworts and mosses), the lycophytes and 
monilophytes. The latter, which include 
leptosporangiate ferns and horsetails, are 
also referred to elsewhere as ‘ferns’ (e.g., 
Pryer et al.  2004 ; Schneider et al.  2009  ) . 
Seed plants appear to be the sister to 
monilophytes (Pryer et al.  2001  ) . Our cur-
rent understanding of relationships among 
these lineages is depicted in Fig.  4.1 . We 

begin with an overview of the taxa and 
structural aspects of plastomes. We then 
summarize the major events of gene and 
intron loss in plastomes of non-seed land 
plants. Next we discuss the phenomenon of 
RNA editing, a process that occurs at much 
higher rates in non-seed land plants than in 
seed plants.   

   II. Techniques and Overall Plastome 
Organization 

 Until about the mid-1990s, restriction site 
mapping was the main approach to infer-
ring plastome organization. The technique 
involves digesting DNA with restriction 
endonucleases, separating the DNA frag-
ments on an agarose gel and then transfer-
ring them to a membrane. The fragments 
on this membrane are then probed with 
labeled plastid DNA from a well-charac-
terized species, or fragments of the same 
species cut with a different restriction 
enzyme. After careful analysis, a coarse-
scale map of the plastome can be con-
structed. The fi rst such physical map was 
that of the  Zea mays  plastome (Bedbrook 
and Kolodner  1979  ) . Mapping studies also 
indicated that, within plant cells, the plas-
tome exists in two orientations (Palmer 
 1983  ) , a pattern that is maintained by a 
form of homologous recombination (so-
called fl ip-fl op recombination; Stein et al. 
 1986  ) . Subsequently, plastomes of many 
species were mapped (reviewed by Palmer 
 1985  ) , verifying that in most (but not all) 
lineages, plastomes map to a circle with a 
large single copy region (LSC) and a small 
single copy region (SSC)  separated by two 
copies of an inverted repeat (IR), which 
include the ribosomal RNA genes (Palmer 
 1985  ) . Fine-scale mapping requires nucle-
otide sequencing, which is easier and 
cheaper with today’s techniques. The fi rst 
two plastomes to be completely sequenced 
were those of the fl owering plant tobacco 
( Nicotiana tabacum ; Shinozaki et al. 
 1986  ) , and the liverwort  Marchantia poly-
morpha  (Ohyama et al.  1986  ) . These data 
confi rmed the earlier inferences on overall 
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  Fig. 4.1.    Our current understanding of relationships 
among major land plant lineages. The extant bryo-
phytes represent a grade of three lineages with liv-
erworts shown sister to all other extant land plants 
and hornworts shown sister to extant vascular plants. 
Vascular plants include the lycophytes, monilophytes 
and seed plants. Four major monilophyte lineages 
are shown as an unresolved polytomy sister to seed 
plants.       

 Abbreviations:     IR  –   Inverted repeat;      kb  –   Kilobases; 
     LSC  –   Large single copy;      mya  –   Million years ago; 
     PCR  –   Polymerase chain reaction;      PPR  – 
  Pentatricopeptide repeat;      SSC  –   Small single copy    
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plastome organization that had been 
deduced from mapping studies. 

 Most green plant plastomes map to a circle 
of about 150 kb. However, the largest reported 
plastome, that of the green alga  Floydiella ter-
restris , is more than 500 kb (Brouard et al. 
 2010  ) . Most plant cells contain many copies 
of the plastome; even plants with a single 
plastid (e.g., the unicellular green alga 
 Chlamydomonas reinhardtii ) can contain 
many copies of the plastome. At the other 
extreme, wheat cells have more than 50 plas-
tids per cell and more than 300 plastome cop-
ies per plastid (Boffey and Leech  1982  ) . Thus, 
although the plastome is a small genome com-
pared to its nuclear counterpart, plastid DNA 
makes up a signifi cant proportion of total cel-
lular DNA, as much as 20% in some species 
(Boffey and Leech  1982  ) . 

 Plastid DNA is not assembled into chro-
mosomes and it does not reside in the plastid 
as a population of free circular molecules. 
Rather, several plastomes are organized, with 
proteins and RNA, into structures known as 
nucleoids (Sato et al.  2003  ) . Most nucleoids 
are attached to the envelope membrane, but 
mature chloroplasts can also have nucleoids 
associated with the thylakoid membrane 
(Sato et al.  2003  ) . It is likely that nucleoid 
structure plays an important role in plastome 
replication, transcription and post-transcrip-
tional modifi cation. However, the general 
relationships between plastome packaging 
and these processes remain poorly under-
stood (Bock  2007  ) . 

 Although plastomes are typically 
depicted as circles, most plastid DNA is not 
in this form in a living plant cell (Bendich 
 2004 ; Bock  2007  ) . Researchers have found 
linear plastomes, concatenated pieces rep-
resenting multiple plastomes (sometimes 
circular) (Bendich  2004  ) , and even branched 
forms (Oldenburg and Bendich  2004a  ) . 
This variety of possible conformations is 
likely a function of both phylogenetic diver-
gence and stage of plastome replication. 
The plastome replication process itself is 
also poorly understood (Bock  2007  ) , and 
several mechanisms have been proposed. 
Early models involved bidirectional repli-
cation similar to that in bacteria, resulting 

in displacement (D) loops (Kolodner and 
Tewari  1975b  ) . Rolling circle amplifi cation 
(RCA) could also be used to achieve addi-
tional replication (Kolodner and Tewari 
 1975a  ) . A double D-loop mechanism has 
also been proposed (Kunnimalaiyaan and 
Nielsen  1997  ) . However, these models have 
been challenged, based on the degree of lin-
ear DNA observed (Bendich  2004  ) , and a 
recombination-dependent mechanism was 
instead proposed (Oldenburg and Bendich 
 2004b  ) . The challenge of studying replica-
tion is making observations during the 
actual process. Alternatively, researchers 
can examine the signature of replication, 
which can be deduced from variation in 
base composition. Studies of mitochondrial 
genomes found that regions accumulate 
adenine-to-guanine transitions due to deam-
ination during the single-stranded phase of 
replication. This is because A → G transi-
tions accumulate evenly over time whereas 
the accumulation of C → T substitutions is 
complex and asymptotic (Krishnan et al. 
 2004  ) . Thus, gradients in A/G composition, 
especially for non-coding DNA, is a func-
tion of total amount of time spent in the 
single-stranded phase, and therefore can 
reveal origins and directions of replication. 
This approach was used recently to show 
that A/G composition gradients are most 
consistent with the earlier models (bidirec-
tional and RCA) across a wide range of 
published green plant plastomes (Krishnan 
and Rao  2009  ) . Direct testing of these mod-
els is now needed. Meanwhile, evidence 
continues to accumulate for a role of recom-
bination-dependent replication in 
 Arabidopsis , especially as a repair process 
for maintaining plastome integrity (Rowan 
et al.  2010  ) . Clearly, the evidence suggests 
that more than one replication process 
appears to be operating, and the result is a 
complex population of molecules repre-
senting the plastome. Regardless, most land 
plant plastomes map to a circle and have a 
fairly conserved set of protein and RNA 
encoding genes. The map of the plastome 
of the whisk fern  Psilotum nudum  is 
depicted in linear fashion in Fig.  4.2  as a 
guide to this overall structure.  
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  Fig. 4.2.     Psilotum nudum  plastid genome structure. Genes ( colored boxes ) on the  right side  of the map are tran-
scribed in the  top down  direction, whereas those on the  left side  are transcribed  bottom up . The tRNA genes are 
indicated by the three-letter amino acid code followed by the anticodon. Intron-containing genes are show with 
an  asterisk  ( * ); the trans-spliced gene  rps12  is shown with  two asterisks  ( ** ). The two horizontal  red lines  along 
the genome indicate the insertion/deletion events unique to all monilophytes and the two  grey  boxes along the 
genome indicate the inverted repeats. Note a fragment of  ycf2  is found in the inverted repeat.       
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   A. Bryophytes 

 The bryophytes represent a grade of three 
extant lineages (Fig.  4.1 , Mishler and Churchill 
 1984 ; Nickrent et al.  2000 ; Renzaglia et al. 
 2007 ; Shaw and Renzaglia  2004  ) . Several 
phylogenetic analyses lead to the hypothesis 
that liverworts are sister to all other extant 
land plants (Qiu et al.  1998  )  and hornworts 
are sister to extant vascular plants (e.g., Groth-
Malonek et al.  2005 ; Qiu et al.  2006,   2007 ; 
Qiu  2008  ) . Recent fi ndings of cryptospores 
from the early Middle Ordovician (c. 473–471 
mya Rubinstein et al.  2010  )  may represent 
 liverworts or at least their ancestors. A broad-
scale phylogenetic analysis of liverworts 
reveals several key lineages. The earliest 
branching lineage, Haplomitriopsida, is the 
sister to all remaining extant liverworts. There 
is then a major split between the complex 
thalloid liverworts (Marchantiopsida) and a 
heterogenous clade (Jungermanniopsida) 
which includes two clades (Metzgeriidae and 
Pellidae) of simple thalloid taxa (which is 
therefore a paraphyletic group) and a mono-
phyletic “leafy” clade (Jungermanniidae) 
which excludes a few taxa previously con-
sidered as leafy (Forrest et al.  2006  ) . The 
complex-thalloid liverwort  Marchantia poly-
morpha  was the fi rst plant for which the 
chloroplast genome was sequenced (Ohyama 
et al.  1986  ) . Later, the complete mitochon-
drial genome of  M. polymorpha  was also 
sequenced (Oda et al.  1992  ) , providing yet 
another important genomic resource for non-
vascular plants. A second liverwort plastome 
was recently sequenced (Wickett et al. 
 2008b  ) , that of the only known parasitic bry-
ophyte, the simple-thalloid liverwort  Aneura 
mirabilis.  Nonphotosynthetic plants often 
lose plastid genes that are associated with 
photosynthetic functions (Wickett et al. 
 2008b ; Wolfe et al.  1992  ) . Indeed,  A. mirabi-
lis  has lost some of the same genes as has the 
parasitic angiosperm  Epifagus virginiana  
(Wolfe et al.  1992  ) . However, the loss of only 
a subset of these genes in  A. mirabilis  sug-
gests that this liverwort is in an earlier stage 
of acquiring a parasitic life history stage 
(Wickett et al.  2008a,   b  ) . 

 Mosses are a diverse clade of more than 
12,000  species, representing about eight 
main extant  lineages (Cox et al.  2004 ; 
Goffi net and Buck  2004 ; Newton et al. 
 2000 ; Wahrmund et al.  2009,   2010  ) . Two 
complete moss plastomes have been 
sequenced: that of the model species for 
molecular genetic studies,  Physcomitrella 
patens  (Sugiura et al.  2003  )  and the desic-
cation-tolerant species  Syntrichia (= Tortula) 
ruralis  (Oliver et al.  2010  ) . These plastomes 
differed by a large (71 kb) inversion in the 
large single copy (LSC) region, with  S. 
ruralis  possessing the apparently ancestral 
organization. Further analysis revealed that 
the inversion is unique to the Funariidae 
(Goffi net et al.  2007  ) . This inversion is the 
largest plastome reorganization reported to 
date for land plant plastomes, and appears 
to represent a single evolutionary event 
(Goffi net et al.  2007  ) . 

 Hornworts represent the third main clade 
of nonvascular land plants, with about 400 
extant species (Bateman et al.  1998  ) . 
Hornworts are probably sister group to the 
vascular plants (Groth-Malonek et al.  2005 ; 
Qiu et al.  2007  ) . Phylogeny within the horn-
worts has been examined by Duff and 
coworkers (Duff et al.  2004 ;  2007  ) . 
Currently, there is only a single published 
complete plastome sequence of a hornwort, 
 Anthoceros formosae  (Kugita et al.  2003b  ) . 
This plastome has a very high level of RNA 
editing (Kugita et al.  2003a  ) , as do several 
mitochondrial and plastid genes in most 
hornworts studied (Duff and Moore  2005 ; 
Duff  2006  ) . More details on RNA editing 
are provided later in this chapter.  

   B. Lycophytes 

 The lycophytes include a large assemblage 
of both extant and extinct lineages. Extant 
groups include the heterosporous 
Isoetopsida with about 150 species of 
 Isoetes  (quillworts) and about 700 species of 
 Selaginella  (spikemosses). The remaining 
extant lineage is the homosporous 
Lycopodiopsida (clubmosses) of which about 
300 species are known, including 
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 Lycopodium ,  Huperzia  and related genera. 
Extinct lineages include many fossil species, 
especially from the late Silurian (about 420 
mya) through the Carboniferous (about 300 
mya, Kenrick and Crane  1997  ) . Ancient rep-
resentative of this group of plants formed 
many of the fossil coal beds. Photosynthesis 
in these plants harnessed the sun’s energy, 
which is now used as one major source of 
fossil fuels. These extinct lycophytes were 
large plants; some reached 30 m, whereas 
today’s species are less than 1 m. As a group 
the lycophytes appear to be a sister group to 
Euphyllophytes (monilophytes plus seed 
plants, see below). This early split is sup-
ported both by analysis of morphology in 
fossil taxa (Kenrick and Crane  1997  )  and 
extant taxa (Kranz and Huss  1996  ) . However, 
an additional convincing piece of evidence 
comes from analysis of plastome organiza-
tion. Monilophytes and seed plants possess a 
30 kb inversion in the LSC relative to lyco-
phytes and bryophytes (Raubeson and Jansen 
 1992  ) . Further details of the organization of 
lycophyte plastomes came from restriction 
site mapping of an  Isoetes  plastome (Duff 
and Schilling  2000  ) , which confi rmed the 
overall similarity of the lycophyte and bryo-
phyte plastomes. The fi rst complete plastome 
sequence of a lycophyte was that of  Huperzia 
lucidula  (Wolf et al.  2005  ) . Since then, addi-
tional plastomes have been sequenced from 
the  heterosporous genera,  Selaginella 
moellendorffi i, S. uncinata  and  Isoetes fl ac-
cida  (Karol et al.  2010 ; Tsuji et al.  2007  ) . 
Although lycophytes share structural simi-
larities with bryophytes, the former do have 
some unique features. For example,  ycf2  nor-
mally resides in the LSC in most plastomes, 
but has been translocated to the SSC in  I. 
fl accida , with the 5 ¢  end now incorporated 
into the IR. In addition, the  chlL/chlN  gene 
cluster has been inverted in  I. fl accida  so that 
it is now adjacent to  ycf2  rather than  ycf1  as 
in  H. lucidula . The  ycf2  translocation and the 
 chlL/chlN  inversion occur in neither of the 
 Selaginella  plastomes. Both  Selaginella  
plastomes differ considerably in gene order 
from other plastomes (Karol et al.  2010  ) . An 
approximately 14-kb region has been trans-

located from the LSC to the IR/SSC in both 
 Selaginella  plastomes. The genes included in 
this translocation differ slightly between  S. 
uncinata  and  S. moellendorffi i . In addition, 
 rps4  is in the IR in  Selaginella  and marks 
one endpoint of the translocated segment. 
The other endpoint resides in the SSC and 
is marked by  psbD  in  S. moellendorffi i . In 
 S. uncinata , the same endpoint includes 
three additional genes  (trnE-UUC, trnY-
GUA and trnD-GUC ), which remain in the 
LSC adjacent to  ycf2  in  S. moellendorffi i. 
Selaginella uncinata  also has a ~20-kb LSC 
inversion ( psbI to rpoB-trnC-GAC ), a dupli-
cation of the  psbK/trnQ-UUG  region, and 
translocation of  petN  from the LSC to the 
SSC. These features appear to be unique to 
 S. uncinata  (Karol et al.  2010  ) . Because 
complete plastome sequences are available 
from only four species of lycophytes, it is 
not yet possible to infer the phylogenetic 
extent of all plastome changes. Additional 
taxon sampling will be needed to under-
stand more fully how recent and extensive 
these changes are.  

   C. Monilophytes (Ferns) 

 Monilophytes represent another group of vas-
cular plants with an extensive fossil history. 
Here we consider four main extant lineages: 
(1) leptosporangiate ferns (about 11,000 spe-
cies), (2) a clade that includes whisk ferns 
( Psilotum and Tmesipteris ) and the 
Ophioglossales, (3) Marattioid ferns and (4) 
Horsetails ( Equisetum ). Data from plastid and 
nuclear gene sequences (Pryer et al.  2001  )  
and morphology (Kenrick and Crane  1997 ; 
Schneider et al.  2009  )  fi nd support for mono-
phyly of a clade that includes these four 
 lineages. Together the clade is called monili-
formopses (Kenrick and Crane  1997  ) , monilo-
phytes (Pryer et al.  2004  ) , or ferns  sensu   lato  
(Schneider et al.  2009  ) . Further resolution of 
relationships among these four groups has not 
yet been achieved. Although monophyly of 
monilophytes has support from analyses of 
extant taxa, analyses that include fossil taxa 
has questioned this idea (Rothwell and Nixon 
 2006  ) . 
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 The fi rst monilophyte to have a plastome 
sequenced was  Psilotum nudum  (GenBank 
accession #AP004638 from 2002, see 
Fig.  4.2 ). Several phylogenetic studies sup-
port inclusion of the ophioglossoid ferns 
with the whisk ferns (Pryer et al.  2001,   2004 ; 
Qiu et al.  2007  ) , but so far no complete plas-
tome from the ophioglossoid ferns has been 
published. Complete plastome sequences are 
available from one horsetail (Karol et al. 
 2010  ) , one marattioid fern (Roper et al.  2007  )  
and four leptosporangiate ferns (Der  2010 ; 
Gao et al.  2009 ; Wolf et al.  2003,   2011  ) . 

 An inversion in the LSC involving  trnG-
GCC  to  trnT-GGU  is found in all fern plasto-
mes and no other land plant plastomes (Karol 
et al.  2010  ) , thus providing further evidence 
for monilophyte monophyly. Within the lep-
tosporangiate ferns, a series of additional 
inversions has occurred, two of which (18 kb 
and 21 kb respectively) result in a reverse 
gene order within the IR (Wolf et al.  2010  ) . 
An additional pair of inversions occurred 
more recently in the LSC of a large clade of 
ferns (the “polypods”, Wolf et al.  2010  ) .   

   III. The Inverted Repeat Boundaries 

 Plastome IRs from most plants typically 
house a similar gene content, which includes 
primarily rRNA and tRNA genes (Jansen 
et al.  2007 ; Palmer and Stein  1986 ; Turmel 
et al.  2007  ) . This is seen also in some lep-
tosporangiate ferns where, except for a few 
early-diverging clades, the IR itself is 
inverted (Wolf et al.  2003  ) . Most of the vari-
ation in IR gene content occurs at the ends of 
the IR. This “ebb and fl ow” of the IR bound-
aries into and out of the LSC and SSC regions 
has been attributed to effects of recombina-
tion and gene conversion (Goulding et al. 
 1996  ) . Effects of these positional changes 
have been seen in related species at the nucle-
otide level in several species of  Nicotiana  
(Goulding et al.  1996  ) . Furthermore, when 
comparing distantly related lineages of land 
plants, several plastomes exhibit unique IR 
boundaries that differ from the basic theme 
(Karol et al.  2010  ) . But this is not always the 

case: other distantly related taxa have very 
similar IR boundaries. For example, 
 Marchantia polymorpha , two mosses and 
 Equisetum arvense  were identical in gene 
content at both ends of the IR. This suggests 
that whereas the ends of the IR clearly ebb 
and fl ow in some lineages, in other lineages 
they appear to be rather stable, at least at the 
scale of gene order (Karol et al.  2010  ) .  

   IV. Changes in Gene and Intron 
Content 

 Most plastomes sequenced to date contain a 
very similar repertoire of genes. The most 
signifi cant exceptions are plastomes from 
parasitic plants in which many photosyn-
thetic genes are lost or pseudogenized 
(Wickett et al.  2008b ; Wolfe et al.  1992  ) . 
Overlaid on the basic pattern are found a few 
genes that are absent in some sequenced 
plastomes. Some of these genes seem to have 
been lost multiple times based on their phy-
logenetic distribution (See Fig.  4.3 ). These 
include  infA  and  ycf1 . Other genes appear to 
be distinctly present or absent in particular 
clades. Here we briefl y list these latter pat-
terns based on what we know is a very lim-
ited sample of plastomes (especially for 
non-seed land plant clades). We ignore many 
that are specifi c to only one plastome, except 
where that plastome is the sole representa-
tive (such as the single published hornwort 
plastome).  

 The genes  ccsA  and  rpoA  are absent from 
the plastomes of two mosses ( Syntrichia 
ruralis  and  Physcomitrella patens , Oliver 
et al.  2010 ; Sugiura et al.  2003  ) ,  petN  is lack-
ing in  S. ruralis , and  cemA  is absent from 
both  Selaginella  plastomes. Mosses and liv-
erworts lack  rps16 , but the gene is present in 
hornworts and some vascular plants. The 
genes  matK  and  rps15  are pseudogenes in 
the hornwort (Kugita et al.  2003b  ) . The gene 
cluster  chlB, chlL , and  chlN  is absent from 
 Psilotum nudum  and angiosperms. The gene 
 psaM  is lacking from the three polypod ferns 
( Adiantum capillus-veneris, Cheilanthes 
lindheimeri  and  Pteridium aquilinum ), as 
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well as from the two  Selaginella  plastomes 
and the majority of seed plant plastomes. 
Seed plant plastomes lack  rpl21,  as do the 
two  Selaginella  plastomes. The parasitic liv-
erwort  A. mirabilis  has lost several genes 
(including several  ndh  genes) and many oth-
ers exist as possibly recent pseudogenes 
(Wickett et al.  2008a  ) . 

 A group II intron, along with its encoded 
maturase gene ( matK ) invaded the  trnK-UUU  
gene in charophycean algae after the diver-
gence of chlorophytes and charophytes. All 

chloropycean algae and some early diverging 
charophycean algae (Mesostigmatophyceae 
and Chlorokybophyceae) do not contain this 
intron. More derived charophycean algae 
(Charophyceae, Coleocheatophyceae and 
Zygnematophyceae) have the intron. There is 
one lineage (Klebsormidiophyceae, which is 
sister to Charophyceae, Coleocheatophyceae, 
Zygnematophyceae and land plants) where 
we do not yet fully know the condition of 
 trnK . A large clade of leptosporangiate ferns 
has subsequently lost  trnK-UUU  and its 
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  Fig. 4.3.    Phylogenetic results using nucleotide data. Phylogenetic analyses were performed using 49 plastome 
gene sequences from 45 completely sequenced plastomes, including 39 land plants and six charophycean algae. 
The nucleotide alignment from Karol et al.  (  2010  )  was used as a starting point (49 genes from 43 taxa). To this we 
incorporated into the alignment sequence data from two new leptosporangiate fern plastomes:  Cheilanthes lind-
heimeri  (Wolf et al.  2011  )  and  Pteridium aquilinum  (Der  2010  ) . Maximum likelihood analyses were performed 
on the Cyberinfrastructure for Phylogenetic Research (CIPRES) Portal (v.3.1, Miller et al.  2009  )  using RAxML-
HPC (v. 7.2.7, Stamatakis  2006,   2008  )  with 200 bootstrap replicates. Third codon positions were excluded to 
avoid problems associated with relatively rapidly evolving sites. The best tree (−ln = 195205.737395) is shown 
with bootstrap proportions drawn above branches. The relationships among major fern lineages are weakly sup-
ported, though monophyly of the ferns is strongly supported. The branch leading to  Selaginella  was drawn to 
one-half scale to accommodate this fi gure. Note that the sister relationship of the liverwort and mosses is strongly 
supported and is in contrast to the cladogram shown in Fig.  4.1 . This relationship was also recovered by Karol 
et al.  (  2010  )  when divergent taxa ( Selaginella  spp.) were excluded from phylogenetic analyses. Furthermore, 
Renzaglia and Garbary  (  2001  )  concluded that characters related to sperm cell development were compelling evi-
dence for the monophyly of liverworts plus mosses, a clade they referred to as Setaphytes. Names of lost plastid 
genes are shown with  arrows . An  asterisk  ( * ) following a gene name indicates that this gene has been lost in at 
least two lineages independently. The rare gain of a plastid gene ( matK ) is also indicated in the  green   algae .       
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intron (Wolf et al.  2010,   2011  ) , yet  matK  
remains. The introns of  clpP  are variable 
across land plants, with some plastomes hav-
ing two, and others having one intron in this 
gene, but there appears to be no distinct phy-
logenetic pattern (Karol et al.  2010  ) . 

 Thus, although plastome gene content 
tends to be well-conserved among land plant 
lineages, several clade-specifi c gene losses 
are apparent.  

   V. RNA Editing 

 The central dogma of molecular genetics 
requires conservation of information from 
genomic DNA through messenger RNA to 
the fi nal amino acid sequence of a protein. 
However, detailed studies of the various 
products of transcription and translation have 
found exceptions to this conservation. 
Considerable post-translational modifi cation 
occurs to proteins. In addition to the various 
aspects of RNA processing that occur, an 
independent post-transcriptional stage is 
RNA editing. This process alters the nucle-
otides in the primary transcript so that the 
messenger RNA differs from the genomic 
encoding sequence (See Chap.   13    ). RNA 
editing is found throughout eukaryotes, and 
is especially common in organellar genomes 
(reviewed by Tillich et al.  2006  ) . In plastome 
genes from seed plants, the process occurs at 
fewer than 40 sites and about ten times that 
number have been reported in ferns and 
hornworts. In most cases, cytosines are 
edited to uracils, but in hornworts and ferns, 
additional uracil-to-cytosine edits have been 
reported (Kugita et al.  2003a ; Wolf et al. 
 2004  ) . 

 RNA editing requires both cis- and trans-
acting factors. Cis-acting factors include the 
actual site to be edited. Other cis-acting fac-
tors include upstream and downstream rec-
ognition sequences (Kobayashi et al.  2008  ) . 
However, the latter appear to have no obvi-
ous pattern across sites. This might be 
because the trans-acting factors (nuclear-
encoded proteins) are likely to be of several 
types (Hammani et al.  2009  ) . To date, over 

20 different nuclear factors have been asso-
ciated with RNA editing in  Arabidopsis  (see 
Stern et al.  2010  ) , most of which are penta-
tricopeptide repeat (PPR) proteins (Kotera 
et al.  2005 ; Okuda and Shikanai  2008  ) . These 
proteins are characterized by tandem repeats 
of a degenerate 35 amino acid motif, and 
several PPR gene subfamilies are found 
across eukaryotic lineages. 

 The functions of RNA editing are not 
obvious. Several authors have argued that 
RNA editing repairs errors in genomic 
sequences (Jobson and Qiu  2008 ; Stern et al. 
 2010  ) . However, this seems far less effi cient 
than a simple nucleotide substitution at the 
DNA level of the genome, which would 
require no further action. An additional role 
has been implicated in gene regulation, 
whereby RNA editing varies with develop-
mental stage and could be used to restore 
correct translation when the gene product is 
needed (Hirose et al.  1999  ) . This has been 
observed in a few cases in animals, but seems 
to play a minor role in plants (Stern et al. 
 2010  ) . It seems more likely that the enzymes 
that edit RNA have evolved for other cellular 
functions and their editing ability then 
releases selective constraints for the edited 
sites in genes. In fact, some of these other 
functions of editing enzymes are known. In 
primates, the APOBEC family of RNA edit-
ing enzymes includes cytosine deaminases 
that act to restrict infection from retroviruses 
(Bransteitter et al.  2009  ) . Further research is 
needed on the RNA editing factors of 
 Arabidopsis  and other plants if we are to 
understand further the function and cellular 
signifi cance of RNA editing. 

 RNA editing can cause problems for com-
parative analyses of nucleotide sequences. 
Most  phylogenetic analyses are based on 
alignment of orthologous genomic sequences. 
However, if RNA editing occurs, these DNA 
sequences represent the unedited versions. 
Should one use the genomic sequences or 
the edited versions? The latter can only be 
inferred accurately by using mature RNA 
transcripts to generate cDNA. Until this is 
done, one does not know which sites have 
been edited. For analyses of seed plants, this 

http://dx.doi.org/10.1007/978-94-007-2920-9_13
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dilemma is trivial because RNA editing rates 
are so low. But in ferns, lycophytes and some 
bryophytes, the effect on the outcomes of 
analyses can be signifi cant. In hornworts, 
RNA editing rates are so high that the same 
site can be C to U edited in some taxa and U 
to C edited in other taxa (Duff and Moore 
 2005  ) . When phylogenetic analyses of horn-
worts use cDNA sequences, the results are 
different from those from genomic sequences 
(Duff and Moore  2005 ; Duff  2006  ) . Removal 
of edited sites does not help, because that 
reduces the amount of potentially useful phy-
logenetic signal. The solution can only be 
attained once we know the evolutionary sta-
bility of RNA editing itself. If relatively sta-
ble, then the fact that a site is edited provides 
an evolutionary marker. If sites come and go 
rapidly, then RNA editing sites are homoplas-
tic and the results of phylogenetic analysis of 
cDNA sequences will be misleading. The 
answer will depend on the relative levels of 
homoplasy in genomic sequences versus 
RNA editing sites, and this is likely to vary 
across clades of land plants.  

   VI. Phylogenetic Analyses 

 Over the last few decades single gene phylo-
genetic analyses have served as powerful 
tools for reconstructing the evolutionary his-
tory of every major lineage of life on Earth 
(Donoghue and Cracraft  2004  ) . Reduced 
costs and improvements in sequencing tech-
nologies have allowed several genes to be 
sequenced across a broad range of taxa for 
phylogenetic reconstruction (Holton and 
Pisani  2010 ; Nickrent et al.  2000 ; Qiu et al. 
 2007 ; Shalchian-Tabrizi et al.  2008  ) . Indeed, 
with new second-generation sequencing 
technologies, complete plastome sequences 
are now being generated at an ever increas-
ing rate (Cronn et al.  2008 ; Wolf et al.  2011  ) . 
We reanalyzed the plastome alignment of 
Karol et al.  (  2010  )  and included two new lep-
tosporangiate fern taxa ( Cheilanthes lind-
heimeri  and  Pteridium aquilinum ). This 
analysis included 49 plastome genes from 45 
green plant taxa and the results are shown in 

Fig.  4.3 . The overall topology is consistent 
with results presented in Karol et al.  (  2010  ) , 
with the two new fern taxa found in a mono-
phyletic leptosporangiate clade. Relationships 
among the major monilophyte lineages 
remained weakly supported. Most of the cur-
rently available land plant plastome sequences 
are from seed plants, with very few available 
from the presumed sister clade, monilo-
phytes. With additional data from other fern 
representatives, including ophioglossoid 
ferns, it will become possible to gain further 
insight into early land plant evolution as well 
as the patterns and processes that shape the 
evolution of plastomes.  

   VII. Future Directions 

 Currently, the distribution of complete plas-
tome sequence data is biased toward angio-
sperms. In general, clades more distantly 
related to angiosperms are less well sampled. 
There are especially critical clades in the 
algae for which no representative plastome 
sequence is available (e.g., 
Klebsormidiophyceae,  Coleochaete ). 
Although obtaining the actual DNA sequence 
is relatively easy, limiting steps in plastome 
sequencing mostly involve isolating plas-
tome DNA. Although this can be done 
through various centrifugation and other 
procedures (Jansen et al.  2005  ) , there are 
some alternative approaches. If the plastome 
component of total DNA is high then a total 
genomic shotgun sequence can provide suf-
fi cient data from which the plastome sequence 
can be assembled (Wolf et al.  2011  ) . A more 
cost-effective approach involves multiplex 
sequencing-by-synthesis on the Illumina 
platform (Cronn et al.  2008  ) . In this proto-
col, more than a hundred plastomes can be 
sequenced simultaneously. However, custom 
probes or PCR-primers will be needed for 
each major clade, the range of these depend-
ing on sequence divergence levels. One prob-
lem with the shotgun genome approach is 
that it may not be possible to distinguish gen-
uine reads of plastome DNA from those that 
are plastid DNA that has been transferred to 
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the nucleus (Bock and Timmis  2008  ) . To 
some extent, this is a problem for all 
approaches to plastome studies, but the prob-
lem is exacerbated by short reads and the use 
of total genomic DNA extractions. 
Regardless, the prospects seem good for fi ll-
ing many of the critical clade gaps in the next 
few years. This should ease the trend away 
from recent exemplar studies (with a few, 
though critical taxa) toward more taxon-
dense studies with broad phylogenetic 
breadth. Although such a trend may not 
always uncover much new in terms of phylo-
genetic hypotheses, it is sure to show us more 
details of the evolution of plastomes 
themselves.      
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