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  Abstract   Proteinase activated receptors (PARs), a small subfamily of G protein-
coupled receptors with four members, PAR 

1
 , PAR 

2
 , PAR 

3
  and PAR 

4
 , are expressed 

in various tumours from epithelial origin and can play an important role in tumour 
progression and metastasis. Within the complex intracellular PAR signaling net-
works triggered by PARs, an elevation in intracellular free calcium ion concentra-
tions represents a key second messenger system. In this review, we summarize 
current information about the mechanisms whereby PARs can signal via intracel-
lular calcium in the setting of cancer and we discuss possibilities for using the 
PAR-[Ca 2+ ] 

i
  signaling pathway as a target for the therapy of epithelial cancer.  
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   Proteinase Activated Receptors: A Specialized Subfamily 
of G Protein Coupled Receptors with Complex Intracellular 
Signal Transduction Pathways 

 Proteinase activated receptors (PARs) comprise a unique subfamily of G protein-
coupled receptors (GPCRs) with four subtypes, PAR 

1
 , PAR 

2
 , PAR 

3
  and PAR 

4
  [for 

reviews see:  [  1–  4  ] ]. Although PARs share basic structural features of all GPCRs, 
including seven putative hydrophobic transmembrane-spanning alpha helices, they 
exhibit a novel mechanism of activation that distinguishes them from all other 
GPCRs. While most GPCRs are activated reversibly by small hydrophilic molecules 
to elicit cellular responses  [  5  ] , PAR activation occurs through an irreversible prote-
olytic mechanism that involves the recognition and cleavage of the receptor by a 
proteinase at a specifi c ‘cleavage-activation’ site located at the extracellular amino-
terminus (Fig.  45.1 ).  

  This cleavage exposes a cryptic N-terminal domain that acts as a ’tethered ligand’ 
that binds to the receptor extracellular domains to trigger receptor signaling  [  3,   6–  8  ] . 
Remarkably, short synthetic peptides modelled on the sequences of the proteolyti-
cally-exposed tethered ligand sequences are capable of binding to PARs 1, 2 and 4, 
mimicking the actions of agonist proteinases [right-hand portion, Fig.  45.1 ;  [  9,   10  ] ]. 
However, the proteolytically exposed N-terminal sequence of PAR 

3
  and its corre-

sponding synthetic peptides appear to be incapable of causing PAR 
3
  signaling and 

instead are able to activate PAR 
1
  and PAR 

2
   [  11,   12  ] . As an alternative, a proteinase 

may cleave a PAR downstream of the ‘tethered ligand sequence’ (e.g. red arrow, 
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  Fig. 45.1     Model for activation and dis-arming of PAR  
 2 
  .  The scheme illustrates activation of the 

intact receptor ( left-hand panel ) by two distinct mechanisms: either (I) by proteolysis and unmask-
ing of the tethered ligand sequence ( middle Panel : green sequence, SLIGRL, also seen in the intact 
receptor) or (II) by a receptor-derived peptide (SLIGRL-NH 

2
 :  right-hand panel ) that activates 

signaling without the need for receptor proteolysis. The scheme also shows the ‘disarming’ site for 
the receptor, where cleavage removes the tethered ligand sequence and the ‘cleavage-activation’ 
site’, where a ‘blocking antibody’ can prevent proteolytic activation of the receptor (Redrawn from 
Hollenberg and Compton, Ref.  [  6  ] )       
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left-hand portion, Fig.  45.1 ), to as to ‘dis-arm’ and prevent activation of the PAR by 
an enzyme that would otherwise expose the tethered ligand. Thus, PARs have a 
variety of both endogenous ‘tethered ligand-exposing’ proteinase agonists as well 
as a number of endogenous proteolytic ‘antagonists’ that can ‘silence’ receptor acti-
vation by other proteinases. Therefore, in the setting of a tumour, both tumour-
derived and non-tumour-derived proteinases in the microenvironment can play roles 
as either PAR agonists or antagonists. 

 During the last few years it has become evident that PARs, which are triggered 
by endogenous serine proteinases, mediate hormone-like cellular responses. PAR 

1
  

 [  9,   13  ] , PAR 
3
   [  14  ]  and PAR 

4
   [  15,   16  ]  are targeted not only by the coagulation cas-

cade proteinases including thrombin, factor Xa and activated protein C, but also by 
other proteinases including cathepsin and matrix metalloproteinase-I  [  17–  19  ] . PAR 

2
  

 [  20  ]  can be activated by trypsin, mast cell tryptase, neutrophil proteinase 3, tissue 
factor/factor VIIa/factor Xa, human kallikrein-related peptidases, membrane-teth-
ered serine proteinase-1/matriptase 1 and by parasite cysteine proteinases, but not 
by thrombin  [  2,   3,   21,   22  ] . 

 The PAR family is able to stimulate a variety of intracellular signaling pathways 
which can be either overlapping or distinct for the different PARs, depending on the 
PAR subtype and the phenotype or stage of differentiation of its specifi c cellular 
‘host’ [e.g. platelets vs. hepatocytes: for reviews see:  [  4,   22–  28  ] ]. Like other 
‘GPCRs’, the PARs signal via a variety of heterotrimeric guanyl nucleotide-binding 
proteins (G proteins), including G 

q
 , G 

i
 , G 

12/13
  but not directly via G 

s
   [  7,   29  ] . In addi-

tion, PAR 
2
  and possibly the other PARs are able to signal via a non-G-protein mech-

anism that involves the beta-arrestin-mediated internalization of a PAR 
2
 -beta-arrestin 

signaling scaffold  [  30–  35  ] . The coupling of the PARs to either the G-proteins or 
arrestins is driven by ligand-triggered changes of receptor conformation that for 
other GPCRs is thought to involve the putative transmembrane helices 3 and 6 of the 
receptor  [  36,   37  ] . Of importance, different agonists are in principle capable of driv-
ing different conformational changes in the receptor to result in selective interac-
tions with different downstream ‘effectors’. This principle was outlined by the 
‘fl oating’ or ‘mobile’ receptor paradigm some time ago  [  38,   39  ] . More recently, the 
concept has evolved to encompass the concept of ‘biased receptor signaling’ or 
‘functional selectivity’ as outlined in detail elsewhere  [  40  ] . For G-protein-mediated 
signaling, the receptor acts as a ligand-triggered guanine nucleotide exchange fac-
tor (GEF), stimulating the exchange of GTP for GDP in the G 

 a 
  subunit of the het-

erotrimeric G-protein oligomer. This exchange enables the ‘release’ of the G 
 a 
  

subunit from its tight binding to the G 
 b  g 

  dimer subunit. Each of the G-protein moi-
eties (G 

 a 
 -GTP and G 

 b  g 
 ) is then independently able to interact with other select 

downstream signaling effectors like ion channels (G 
 b  g 

 ) or phospholipase C- b  (G 
q
 ). 

This ‘dual effector’ signaling resulting in principle from the same PAR-activated 
G-protein heterotrimer (e.g. G 

q
  G 

 b  g 
 ) can converge for complex downstream signal-

ing, for instance leading to NF- k B activation and ICAM-1 transcription by the 
engagement of parallel G 

q
 /PKC- and G 

i
 /PI3-kinase pathways that converge  [  41,   42  ] . 

Alternatively, via a ‘biased signaling’ process, PARs can be activated to affect selec-
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tively, MAPKinase signaling via a G 
12/13

 -triggered process, without causing a G 
q
 -

mediated calcium signaling event  [  31  ] . This kind of selective signaling can depend 
not only on the agonist per se [e.g. thrombin or activated protein-C (APC)] but also 
upon the membrane environment in which a PAR is localized. For instance, trigger-
ing of PAR 

1
  localized in the caveolae by APC can signal via a distinct set of down-

stream effectors that differ from those regulated when thrombin activates PAR 
1
  in a 

non-caveolar environment  [  29  ] . The PAR 
1
  signal pathways activated in these dis-

tinct membrane environments lead to a diametrically opposed set of responses that 
either increase or decrease endothelial barrier integrity. Thus in principle, it is pos-
sible to activate and/or inhibit selectively one or other of the downstream signaling 
pathways activated by PARs (e.g. calcium vs. MAPKinase signals).  

   PARs Are Involved in Cancer Progression 

 Local and systemic coagulation is a hallmark of cancer [review:  [  43  ] ]. In this com-
plicated scenario, tissue factor (TF) induces the formation of the complex TF-VIIa. 
Both the complex TF-VIIa-Xa and thrombin (factor IIa) can activate proteinase 
activated receptors. Thrombin can activate PAR 

1
  and PAR 

4
   [  44  ] , whereas the binary 

TF-VIIa enzyme complex is able to activate PAR 
2
  but not PAR 

1
   [  45,   46  ] . However, 

as a TF-VIIa-Xa complex, factor Xa effi ciently cleaves PAR 
2
  as well as PAR 

1
   [  47, 

  48  ] . In addition, a variety of other proteinases may also be important in the tumour 
microenvironment, where both stromal and tumour-derived cells can produce PAR-
regulating proteinases. Such enzymes can either, like tumour-derived tissue kal-
likreins  [  49–  51  ] , activate PAR 

2
 , or alternatively proteinases of tissue origin can 

‘dis-arm’ a PAR, by cleaving downstream of the ‘tethered ligand’ domain (Fig.  45.1 , 
left), thereby silencing a PAR from activation by its target proteinase (e.g. disarmed 
PAR 

1
  can no longer respond to thrombin). Moreover tumour-derived proteinases 

like matrix metalloproteinase-I can cleave the N-terminal domain of a PAR to 
unmask a ‘non-canonical’ tethered activating sequence different from the one 
revealed by serine proteinases  [  19,   52  ] . The ability of thrombin to act via PARs was 
highlighted by the demonstration of the ability of PAR 

1
  to stimulate tumour invasion 

 [  53,   54  ]  by its expression in carcinosarcoma and melanoma cells  [  55  ] . The exten-
sive work in this fi eld related to tumour tissue done over the past decade has there-
fore focused primarily on PAR 

1
  for which the expression and signaling at the 

cellular level have been characterized in tumour cells from different tumour entities 
including cancers of the larynx  [  56  ] , pancreas  [  57  ] , glioma  [  58,   59  ] , glioblastoma 
 [  60,   61  ] , meningioma  [  62  ] , prostate  [  63  ]  and colon  [  64  ] . In addition, PAR 

1
  activa-

tion has been observed to cause (I) increased tumour cell adhesion to the endothe-
lium, extracellular matrix and platelets, (II) enhanced metastatic capacity of tumour 
cells, (III) activated cell growth and (IV) increased angiogenesis  [  65–  67  ] . In breast 
and pancreatic carcinoma cells, the level of PAR 

1
  expression has been correlated 

with the degree of invasiveness  [  54,   68  ] . Furthermore, transfection of B16F10 mela-
noma cells with PAR 

1
 , compared with non-transfected cells, leads to a 2.5-fold 
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enhanced thrombin-induced tumour cell adhesion to fi bronectin and a 39-fold 
increase in pulmonary metastasis  [  69  ] . At present there is substantial evidence that 
thrombin acting via PAR 

1
  contributes to the metastatic process of certain epithelial 

tumours including breast  [  53,   54,   70  ] , colon  [  64  ] , kidney  [  71  ]  and liver  [  72  ] . 
However, PAR 

1
  is not the only functional receptor for thrombin in tumour cells 

since several reports have demonstrated that PAR 
1
  can cooperate with the other 

thrombin target, PAR 
4
 , to act as a ‘dual receptor system’ in human astrocytoma cells 

 [  73  ]  and in cells from liver cancer  [  72  ] . In addition to PAR 
1
 , PAR 

2
  is also known to 

be expressed in a variety of epithelial tumour cells from different origins  [  32,   74–
  82  ]  and to act as an upstream activator of promigratory signaling pathways  [  34,   75, 
  80,   83  ]  resulting in an enhancement of tumour progression. 

   Multiple Effects of PAR Activation on Cancer Cells 

 Studies dealing with a variety of tumour-related cells have observed important 
effects of PAR activation, several examples of which will be outlined in this para-
graph. Seminal work from the Bar-Shavit laboratory has demonstrated the key role 
that PAR 

1
  may exhibit in breast cancer cell invasion  [  53,   54,   70  ]  and recently Gonda 

et al. provided impressive data showing movements of breast cancer cells and PAR 
1
  

during metastasis  in vivo  using a highly sophisticated nano-imaging technique  [  84  ] . 
In breast carcinoma cells PAR 

1
  mediates both migratory and invasive effects  [  85  ] . 

These PAR 
1
 -mediated actions occur in cooperation with alpha-vbeta 5 integrin  [  53  ]  

and with the involvement of increases in intracellular calcium  [  86  ] . In 1321N1 
astrocytoma cells, Blum and colleagues demonstrated that PAR 

1
 -stimulated ATP 

release is Ca 2+ -dependent and that concurrent Rho signaling markedly potentiates 
this effect  [  87  ] . In keratinocyte-related HaCaT cells, PAR 

2
  activation by matriptase, 

a membrane-tethered serine proteinase released from the cell surface, has been 
shown to induce intracellular calcium mobilization and to inhibit proliferation. 
Based on this information, a role for PAR 

2
  signaling in skin cancer has been sug-

gested  [  82  ] . A substantial amount of data also exist pointing to a role for PARs in 
colon cancer. In cells from this tumour entity, PAR 

1
  and PAR 

2
  have been demon-

strated to signal via [Ca 2+ ] 
i
  and to induce migratory and proliferative effects that also 

involve both activation of p42/p44-MAPKinase and trans-activation of the receptor 
for epidermal growth factor (EGFR)  [  64,   74,   88,   89  ] . In addition, PAR 

4
  has recently 

surfaced as a new important player in the regulation of colon tumour-derived cells. 
In colon carcinoma cells activation of PAR 

4
  has been found to be involved in stimu-

lating mitogenesis. This stimulation is observed to occur in the setting of PAR 
4
 -

induced increases intracellular calcium and activation of p42/p44 MAPKinase along 
with trans-activation of ErbB-2, a member of the epidermal growth factor receptor 
B-2 receptor family, but not via trans-activation of the EGF-Erb-B1 homodimer 
receptor itself  [  90  ] . Since PAR 

4
  does not mediate an increase in cytoplasmic free 

Ca 2+  in hepatocellular carcinoma cells  [  72  ] , but does so in colon carcinoma cells, the 
ability of PAR 

4
  to stimulate increases in intracellular calcium appears to be dependent 



984 R. Kaufmann and M.D. Hollenberg

upon the cellular context in which the receptor is expressed. Thus, different tumours 
with their unique expression of GPCR-regulated effectors have the potential to 
respond to PAR activation in a unique way that may or may not depend on calcium 
signaling.  

   PARs Are Relevant in Different Cells 
from the Tumour Microenvironment 

 Relatively recently, oncologists have begun to focus on the tumour microenviron-
ment as a major contributing factor to the development of cancer. Thus, in the set-
ting of a tumour, both the resident non-tumour cells as well as the tumour cells can 
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  Fig. 45.2     PAR  
 2 
   mediates [Ca   2+   ]  

 i 
   increase in LX-2 hepatic stellate cells.  LX-2 cells grown on Lab 

Tek chambered borosilicate coverglass were loaded with fl uo-4-AM (0.5  m M). For calcium mea-
surements, an inverted confocal laser scanning microscope LSM 510 was used. Fluorescence was 
monitored at 488 nm.  Upper part:  Fluorescence images, in pseudocolor, from an individual LX-2 
cell preloaded with fl uo-4-AM dye and stimulated with the PAR 

2
 -activating peptide, 2-furoyl-

LIGRLO-NH 
2
  (10  m M). The time sequence of three panels shows a transient fl uorescence increase 

30 s after PAR 
2
 -AP addition (0 s: time of addition of PAR 

2
 -AP), with a return to baseline fl uores-

cence at 1 min.  Lower part:  Time course of calcium response induced by the PAR 
2
 -activating 

peptide, 2-furoyl-LIGRLO-NH 
2
  (10  m M). The intracellular calcium concentration was calculated 

using the equation [Ca 2+ ] 
i
  = 345 (F–F 

min
 )/(F 

max
 −F)  [  104  ] . The Ca 2+  affi nity of fl uo-4 (Kd) is 345 nM 

 [  105  ] . Fmax was obtained by addition of 10  m M ionomycin (+6 mM CaCl 
2
 ), Fmin by addition of 

10 mM ethylene glycol-bis(2-aminoethylether)-N,N,N ¢ ,N ¢ -tetraacetic acid (EGTA). Data repre-
sent the mean ± SE from calcium measurements in 20 single cells. (LX-2 cells were a gift from 
Prof. Scott L. Friedman, Division of Liver Diseases, Mount Sinai School of Medicine, New York)       
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engage in signaling cross-talk (tumour cell to stromal cell and back) that changes 
the phenotype of the stromal cells and alters the growth and metastatic potential of 
the tumour cell  [  91–  93  ] . This cross-talk communication between tumour and 
stromal cells is mediated by a variety of hormone-like regulators, including secreted 
growth factors and proteinases  [  94–  96  ] . PAR expression and function in different 
cell types found in the stromal elements of the tumour microenvironment, including 
fi broblasts, infl ammatory leukocytes, platelets, macrophages, endothelial cells and 
smooth muscle cells has been documented in other contexts [reviewed:  [  1–  4  ] ]. 
Thus, the potential function of PARs in these stromal bystander cells is directly 
relevant to the malignant process and is currently under close scrutiny  [  97–  102  ] . For 
example, in the setting of hepatocellular carcinoma (HCC), one of the leading 
malignancies worldwide, recently published data suggest that activated stromal 
hepatic stellate cells (HSCs) in the tumour microenvironment may contribute to the 
promotion of HCC tumorigenicity  [  103  ] . As illustrated in Fig.  45.2  PAR 

2
  mediates 

calcium signaling in HSCs that could readily occur in the setting of a hepatic 
tumour.    

   Intracellular Calcium – A Key Secondary Messenger in Cancer 
and a Potential Target for Therapy 

 Ca 2+  is a ubiquitous intracellular signaling molecule that is involved in the regula-
tion of almost all cellular functions including gene transcription, metabolism, pro-
liferation and apoptosis [reviewed:  [  106–  110  ] ]. Since cancer growth is based on 
increased proliferation, decreased differentiation and decreased apoptosis, all of 
which processes involve a regulation of intracellular calcium concentrations, Ca 2+ -
homeostasis has become an important topic in current cancer research. Apart from 
the ‘calcium-sensing receptor’  [  111,   112  ] , G-protein-coupled receptor mechanisms 
involving G 

q
 -stimulated phospholipase C 

 b 
  and growth factor receptor mechanisms 

that trigger phospholipase C 
 g 
  represent key receptor mechanisms that regulate intra-

cellular calcium. These mechanisms are in addition to the voltage-regulated and 
other ion channel mechanisms that regulate the entry of calcium from the extracellular 
environment. The current knowledge in this area is well documented by several 
detailed and comprehensive review articles that are cited in the following text. Here, 
only a brief overview is provided that is relevant for understanding the rationale for 
targeting PAR-mediated Ca 2+  signaling as a possible therapeutic option for the 
treatment of cancer. 

 It is well known that an elevation of cytoplasmic [Ca 2+ ] 
i
  can result either from 

Ca 2+ -infl ux from the extracellular space through a variety of plasma membrane ion 
channels or from Ca 2+ -release from intracellular stores. More specifi cally, voltage- 
and ligand-gated Ca 2+  channels in the plasma membrane, along with intracellular 
ryanodine receptors and inositol (1,4,5)-triphosphate (InsP 

3
 ) receptors in the endo-

plasmic reticulum as well as mitochondrial voltage-dependent anion channels and 
calcium ion exchangers provide fl uxes of Ca 2+  to the cytoplasm  [  106–  108  ] . 
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 It has become evident that during the multistage process of carcinogenesis, the 
transformation of a normal cell into the malignant state is associated with a major 
change in the organization and expression of Ca 2+  pumps, Na/Ca exchangers and 
Ca 2+  channels. These changes occur in a setting that leads to the enhanced prolifera-
tion and impaired ability of the cancer cell to die  [  109  ] . In addition, work in this area 
done over the past decade has shown that altered intracellular Ca 2+  signaling stimu-
lated by G-protein coupled receptors via G 

q
   [  113–  115  ]  and involving tumour-asso-

ciated changes in calcium release depots like the ryanodine receptor  [  116  ]  can play 
a role in various tumourigenic pathways  [  117–  120  ] . Thus, modulation of [Ca 2+ ] 

i
  

signaling is a potential therapeutic option in cancer. In this regard, strategies can 
include specifi c blockade of membrane-localized calcium channels and targeting 
calcium release mechanisms via the InsP 

3
  and ryanodine receptors. Since many of 

these targets are expressed in a large number of cell types and organs where they 
may have essential functions, targeting specifi c Ca 2+  channels or pumps with 
restricted tissue distribution, altered expression in cancer and/or a role in the regula-
tion of tumourigenic pathways are a potential way to specifi cally disrupt intracel-
lular Ca 2+  homeostasis in cancer cells wherein different pharmacological strategies 
are possible  [  117–  120  ] . One approach makes use of a bystander enzyme mechanism 
that results in the metabolic conversion of a pro-drug to an active moiety specifi -
cally at a site of restricted expression of that enzyme. For instance, since the human 
kallikrein-related serine peptidase-3 (KLK3, also known as ‘prostate-specifi c anti-
gen’) is highly restricted in its expression to prostate tissue, it has proved possible 
to target the conversion of a thapsigargin ‘prodrug’ for activation in prostate cancer 
tissue, where the released thapsigargin can block the sarcoplasmic/endoplasmic 
Ca 2+  pump. This ‘smart-bomb’ targeting method has the ability to induce cell death 
in prostate cancer cells  [  121  ] . A second pharmacological approach involves the 
direct targeting of specifi c isoforms of Ca 2+  channels or pumps associated with a 
specifi c cancer type. There is yet another aspect in Ca 2+  signaling that makes Ca 2+  
channels and pumps highly attractive as therapeutic targets in cancer. While the Ca 2+  
signal in differentiated non malignant cells is spatially and temporally highly regu-
lated  [  106–  110  ] , in tumour cells there is a shift to a more global elevation of intrac-
ellular calcium with a sustained elevation of intracellular calcium. Therefore, cancer 
cells and their calcium-regulated signaling pathways may be more susceptible than 
normal cells to modulation of their Ca 2+  channels and pumps  [  117–  120  ] . Taken 
together the information obtained over the past decade, including quite recent data 
 [  122–  124  ]  suggest that the intracellular calcium-regulating machinery may repre-
sent a promising target for cancer therapy.  

   [Ca 2+ ] i  Is Involved in PAR Signaling in Cancer 

 As outlined above, one of the main cell signaling pathways triggered by activation 
of distinct PARs is the G 

q/11
 –mediated activation of phospholipase C 

 b 
 . This activa-

tion, leads to the formation of inositol (1,4,5)-triphosphate and diacylglycerol that 
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in turn cause the elevation of intracellular Ca 2+  (illustrated for LX-2 hepatic stellate 
cells in Fig.  45.2 ) and activation of protein kinase C. Indeed, the ability of the PAR 

1
  

receptor for thrombin to mobilize intracellular calcium was instrumental in its clon-
ing via an oocyte expression system  [  9  ] . 

 This G 
q/11

  calcium signaling pathway activated by PARs has been observed in a 
variety of cancer cell types as seen by the activation of calcium signaling by throm-
bin in glioma cells ostensibly via PAR 

1
   [  125  ] . The documentation of PAR-mediated 

calcium signaling in cancer-derived cells was greatly facilitated by the use of PAR 
subtype selective peptide agonists based on the sequences of the revealed PAR teth-
ered ligands and PAR 

1
 -targeted antagonists (see Table  45.1  for PAR-selective ago-

nists and antagonists).  
 The presence of a specifi c PAR in a target cancer cell and its ability to increase 

intracellular calcium can be established using a receptor cross-desensitization pro-
tocol with PAR-selective agonists and appropriate PAR-inactive ‘control’ peptides 
 [  126  ] . This approach that uses fl uorimetric methods to monitor calcium transients 
with different calcium sensitive fl uorescence dyes has documented PAR-mediated 
increases in [Ca 2+ ] 

i
  in cells from various malignancies including those from brain 

 [  53,   56,   57,   109  ] , colon  [  64,   74  ] , pancreas  [  127  ] , kidney [  128  ] , breast  [  19  ] , larynx 
 [  56  ] , prostate  [  112  ]  and liver  [  72  ] . Although all of PARs 1, 2 and 4 can couple with 
G 

q
  to elevate intracellular calcium in all PAR-expressing cells so far examined, the 

precise downstream consequences of elevated calcium  per se  have not been estab-
lished in any detail. Further, as already mentioned, upon enzyme or peptide agonist 
activation the PARs can activate multiple G-proteins leading not only to elevations 
of intracellular calcium but also to (I) a G 

i
 -mediated inhibition of adenylyl cyclase, 

(II) activation of MAPKinase [both G 
i
 -dependent as well as G-protein independent 

 via  beta-arrestin interactions: review:  [  35  ] ] and (III) a G 
12/13

 -mediated activation of 
Rho and its downstream targets. Thus, singling out the PAR-triggered signal path-
ways that are uniquely calcium-mediated represents a considerable challenge. 

   Ca 2±  and PAR 
2
 -Triggered p42/p44 MAPKinase Signaling 

 Increases in intracellular calcium result in a complex signaling network that 
includes p42/p44 MAPKinases as an intracellular effector system critically related 
to cell growth and transcriptional regulation  [  129,   130  ] . For prostate cancer PC3 
cells it has been shown that kallikrein related peptidase 4 (KLK4), one of the 15 
members of the human KLK family and a trypsin-like prostate cancer-associated 
serine protease, initiates Ca 2+  signaling via PAR 

1
  and PAR 

2
 . Stimulation of PAR 

2
  by 

KLK4 also results in p42/p44 MAPKinase activation  [  131  ] . Very recently, for hepa-
tocellular carcinoma where altered Ca 2+  signaling contributes to cancer develop-
ment and progression  [  132  ] , a PAR 

2
  dependent calcium-p42/p44 MAPKinase 

signaling axis was defi ned  [  133  ] . Since p42/p44 MAPKinases are established key 
players in HCC progression and invasive growth  [  134–  137  ] , and more specifi cally, 
since they contribute to a PAR 

2
 -mediated effect on HCC cell invasion, the results 
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suggest a role for both Ca 2+  and p42/p44 MAPKinase-driven signaling as an invasive 
axis in HCC cells. What is diffi cult to sort out is the signaling route whereby 
MAPKinase is activated in the HCC cells. Activation of p42/p44 MAPKinase could 
be (I) directly downstream of Ca 2+  signaling as a consequence of the activation of 
protein kinase C, (II) independent of G 

q/11
  Ca 2+  signaling, via a G 

12/13
 -Rho kinase 

mechanism or (III) via a G-protein-independent mechanism triggered by a beta-
arrestin-internalized signal scaffold  [  35  ] . In principle, all three mechanisms could 
result in the activation of MAPKinase signaling pathways in cancer cells. However, 
it is likely that the downstream effects of MAPKinase activation by these three dis-
tinct mechanisms will be found to differ (e.g. increase in transcription vs. activation 
of cytosolic phospholipase-A2 or changes in cell motility). Thus, identifying those 
events that result uniquely from elevations in intracellular calcium will be of much 
interest in the setting of tumour cell behaviour. To sum up, although Ca 2+  plays a 
central role in regulating cancer cell behaviour, it has not yet proved possible to 
single out the impact on tumourigenesis of blocking Ca 2+  signaling selectively, 
without affecting other PAR-triggered signaling events.  

   PAR-Mediated Increases in Cytoplasmic Free Ca 2± : 
Involvement of Both Extracellular and Intracellular Calcium 

 For numerous GPCRs it has been shown, as outlined above, that receptor-triggered 
increases in free intracellular calcium ion concentration can result from both infl ux 
of Ca 2+  across the plasma membrane and the release of Ca 2+  from intracellular stores 
 [  106,   138  ] . For PAR 

2
  this dual mechanism has been suggested for hepatocellular 

carcinoma cells, where PAR 
2
 -stimulated increases in intracellular calcium can be 

reduced either by removing extracellular Ca 2+  with the use of EGTA or by depletion 
of internal Ca 2+  stores with thapsigargin  [  133  ] . This ‘dual mechanism’ for calcium 
signaling very likely also occurs for PARs 1 and 4. Thus, to block calcium signaling 
completely in cancer cells, it may be necessary to inhibit not only the G 

q
 -triggered 

calcium signal that involves intracellular stores but also the receptor-mediated 
calcium entry process that occurs via receptor-regulated channels.  

   Intracellular Calcium Oscillations in Cancer-Derived Cells 

 Most of the knowledge about the effects of receptor agonists on [Ca 2+ ] 
i
  has come 

from studies on cell suspensions. In such experiments, the estimated [Ca 2+ ] 
i
  value 

represents the average value of [Ca 2+ ] 
i
  in all cells in the sample being explored. That 

response is represented by a peak of intracellular calcium that occurs within a min-
ute of cell activation and a return to baseline calcium concentrations over a 2–5-min 
time frame, as calcium is fi rst released and then rapidly taken back up into intracel-
lular stores. However, at the single cell level, agonists can also trigger persistent 
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oscillations in intracellular calcium ion concentrations that wax and wane with time. 
Agonist-induced oscillations in intracellular calcium concentrations have been 
observed in many excitable and non-excitable cells, wherein a number of mecha-
nisms have been proposed [for reviews see e.g.: [  107,   138–  140  ] ]. As an example, 
such oscillations have been observed in response to PAR 

1
  activation in glioblastoma 

cells. The oscillatory response was observed after treatment with either thrombin or 
by the dual PAR 

1–2
  activating peptide, SFLLRN-NH 

2
   [  60  ] . The relevance of these 

oscillating intracellular calcium concentrations to tumour cell behaviour has yet to 
be determined.   

   Can PAR-Mediated Calcium Signaling Be Selectively Blocked? 

 Given that PAR-triggered calcium signaling can be of importance for the oncogenic 
process, an important question to deal with is:  Can PAR-mediated calcium signaling 
be selectively blocked?  Studies with human PAR 

2
  have identifi ed a C-terminal 

domain that is directly involved in the ability of this receptor to stimulate elevations 
in intracellular calcium  [  141  ] . Thus, when activated by trypsin, a mutant PAR 

2
  miss-

ing a key C-terminal domain was able to stimulate MAPKinase and JNK, but not an 
elevation in intracellular calcium. In principle, this region of PAR 

2
  can thus be tar-

geted as a ‘calcium regulating domain’ for the development of receptor-selective 
antagonists that will potentially affect calcium transients only in PAR 

2
 -expressing 

tumour cells. A similar situation was found for the activation of PAR 
1
 . It has been 

shown that the C-terminal part of PAR 
1
  is a critical site for receptor coupling to 

phospholipase C activation and thus for Ca 2+ -signaling, while the third intracellular 
loop of PAR 

1
  is implicated in PAR 

1
  coupling to MAPkinase activation. Therefore, a 

strategy specifi cally targeting Ca 2+  signaling might be possible not only for PAR 
2
  

but also for the other PAR subtypes  [  142  ] . 
 One may readily ask: How might such signal-selective antagonists be developed? 

The answer lies in making use of (I) the concept of ‘biased’ signaling and (II) cell-
penetrating peptides. For instance, the PAR 

2
  antagonist, K-14585 can block PAR 

2
 - 

stimulated elevations of intracellular calcium and a concurrent activation of p42/44 
MAPKinase, but cannot block increases in p38 MAPKinase activation  [  143  ] . This 
compound therefore exhibits ‘biased’ antagonism for PAR 

2
 . In principle more potent 

antagonists of this kind can be developed to block calcium signaling selectively. 
The concurrent blockade of both MAPkinase and calcium signaling may be particu-
larly attractive in terms of targeting cancer cells. 

 “Pepducins” are cell-penetrating palmitoylated peptides based on sequences of 
the intracellular loops of G protein-coupled receptors. Due to the ability of their 
lipid moiety to anchor to the lipid bilayer of the plasma membrane these lipopep-
tides are thought to act by being internalized and then targeting the receptor-G pro-
tein interface  [  144,   145  ] . “Pepducins” based on the third intracellular loop of 
proteinase activated receptors have been successfully used for inhibition of PAR-
mediated effects on signaling and cellular level  [  146–  149  ] . The ‘pepducin GPCR 
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antagonist’ approach provides an excellent platform technology for the design of a 
variety of other PAR inhibiting cell-penetrating peptide variants corresponding to 
sequences of the intracellular receptor domains that are important for G protein 
coupling of GPCRs  [  150,   151  ] . It is known that for GPCRs, the C-terminus appears 
to be only of modest relevance for interacting with some G proteins  [  152–  154  ] . 
However, as outlined above, a sequence in the C-terminus of PAR 

2
  has been shown 

to be important for calcium signaling  [  141  ] . This C-terminal domain can be a target 
for palmitoylation that results in a potential ‘8th helix’ and a ‘fourth intracellular 
loop’ in G-protein-coupled receptors. Of particular note, a synthetic pepducin, 
termed jF5, targeted to this domain of GPCRs, including PAR 

1
  and the alpha-2A 

adrenoceptor, can selectively block GPCR-triggered calcium signaling, but not sig-
naling via G 

 a 12
   [  155  ] . It can be predicted that jF5 would also affect PAR 

2
  calcium 

signaling, which is dependent on a homologous sequence that can be a target for 
palmitoylation  [  141  ] . Finally, this ‘lipopeptide concept’ could also be expanded in 
principle to target PAR sequences within the transmembrane helical domains 3 and 
6 that are also known to regulate GPCR G-protein coupling  [  36,   37  ] .  

   Possible Impact of PAR-Triggered Calcium Signaling 
in Cancer Therapy 

 Data describing the PAR-induced effects in cancer published over the last 15 years 
clearly highlight PARs as possible targets in cancer treatment  [  156  ] . Given that PAR 

1
  

is an attractive therapeutic target for thromboembolic disease, a number of receptor-
targeted antagonists have been developed. Two PAR 

1
 -targeted antagonists, SCH 

530348 and E5555 or Atopaxar are currently in Phase III clinical trials for treating 
acute coronary syndrome  [  157–  159  ] . Whether these antagonists will prove of value 
in the clinic for cardiovascular disease is yet to be determined. The compounds may, 
however be considered for use in the prevention of cancer metastasis and invasion. 
In addition, novel PAR 

2
  antagonists containing nonpeptidic moieties have been 

developed very recently  [  160  ] . Their therapeutic potential should also be tested for 
epithelial carcinoma. Since PAR stimulation does activate calcium signaling and 
because calcium signaling  per se  can affect cancer cell migration and invasion, agents 
that also target intracellular Ca 2+ -signaling like those used in cardiovascular disease 
[for reviews see e.g.:  [  161–  164  ] ] may prove of value in the setting of cancer along 
with PAR antagonists. This possibility has yet to be considered. 

 Over the past decade there has been substantial success in targeting signal trans-
duction pathways for treating cancer  [  165–  167  ] . Impressive success can be seen in 
the use of the Abl-kinase-targeted imatinib-like inhibitors and their analogues, and 
a ‘multitarget drug’ that affects a number of signal pathways, sorafenib (BAY-43-
9006), a bis-aryl urea-type inhibitor that blocks several kinases involved in tumour 
proliferation and angiogenesis. This inhibitor can affect Raf, vascular endothelial 
growth factor receptor (VEGFR) and platelet derived growth factor receptor 
(PDGFR) signaling  [  168  ] . Data from several patient studies indicate that sorafenib 
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seems to be a promising drug for the treatment of various epithelial cancers including 
those from breast, colon, kidney and liver [for review see e.g.:  [  169  ] ]. Since target-
ing multiple signal pathways rather than a single enzyme may be advantageous in 
treating cancer, it can be suggested that in combination with other therapeutic 
agents, the selective blockade of PAR-mediated calcium signaling may be worthy of 
consideration for dealing with epithelial carcinoma.      
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