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  Abstract   The spatiotemporal distribution of cytosolic Ca 2+  ions is a key determinant 
of neuronal behavior and survival. Distinct sources of Ca 2+  ions including ligand- 
and voltage-gated Ca 2+  channels contribute to intracellular Ca 2+  homeostasis. Many 
normal physiological and therapeutic neuronal functions are Ca 2+ -dependent, how-
ever an excess of cytosolic Ca 2+  or a lack of the appropriate balance between Ca 2+  
entry and clearance may destroy cellular integrity and cause cellular death. Therefore, 
the existence of optimal spatiotemporal patterns of cytosolic Ca 2+  elevations and 
thus, optimal activation of ligand- and voltage-gated Ca 2+  ion channels are postu-
lated to benefi t neuronal function and survival. Alpha7 nicotinic  acetylcholine 
receptors (nAChRs) are highly permeable to Ca 2+  ions and play an important role in 
modulation of neurotransmitter release, gene expression and neuroprotection in a 
variety of neuronal and non-neuronal cells. In this review, the focus is placed on  a 7 
nAChR-mediated currents and Ca 2+  infl ux and how this source of Ca 2+  entry com-
pares to NMDA receptors in supporting cytosolic Ca 2+  homeostasis, neuronal func-
tion and survival.  
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   Ligand- and Voltage-Gated Sources of Ca 2+  Ions 

   Background 

 Changes in cytosolic Ca 2+  levels act as a messenger relaying information from the 
cellular membrane to the cellular cytoplasm and the nucleus. In neurons and other 
excitable cells, this message encodes the amplitude and duration of activation of 
voltage- and/or ligand-gated ion channels. The cellular response then includes a 
sequence of intracellular biochemical reactions that alter the expression and func-
tion of genes and proteins. In healthy neurons, the expression of different Ca 2+  
sources and the spatiotemporal patterns of Ca 2+  entry are well-balanced and an ade-
quate match between Ca 2+  demand and supply is usually observed. However, when 
Ca 2+  sources become dysfunctional due to age, disease, or trauma, persistent imbal-
ance in Ca 2+  entry and clearance destroys cellular integrity, leading to cellular 
 damage, dysfunction, and excessive proliferation or death depending on the type of 
cells and the strength of the insult. Neuronal damage or loss may result in severe 
chronic neurodegenerative conditions including sensorimotor defi cits and dementia. 
Therefore, a tight but subtle control of cytosolic Ca 2+  levels is required for neuronal 
health, development and function. Understanding the pharmacology and mecha-
nisms of cytosolic Ca 2+  messaging is essential for developing successful preventa-
tive strategies and treatments for neurodegenerative conditions associated with 
aging, dementia and brain trauma.  

   Inadequate vs. Optimal Ca 2+  Entries and Neuronal Fate 

 An important common motif in the livelihood of central neurons is the existence of 
an optimum in the cytosolic Ca 2+  concentration ([Ca 2+ ] 

i
 ) and the spatiotemporal pat-

terns of cytosolic Ca 2+  elevations. This optimum promotes neuronal survival and 
delivers functional benefi ts to neurons. The farther [Ca 2+ ] 

i
  is from its optimum, the 

greater is the likelihood of neuronal damage and death. Accordingly, excessive ele-
vations in [Ca 2+ ] 

i
  mediated by excessive activation of ligand- and/or voltage-gated 

Ca 2+  ion channels have been associated with a loss of neuronal function and neu-
ronal death (see, for instance,  [  1–  11  ] ). Moreover, in a number of  in vivo  and  in vitro  
experimental models of normal aging and Alzheimer’s disease (AD), elevated levels 
of cytosolic Ca 2+  have been linked to age- and disease-related dysregulations in the 
function of voltage-gated Ca 2+  ion channels (VGCCs) and N-Methyl-D-Aspartate 
(NMDA) receptor-mediated ion channels  [  2,   3,   6,   7,   10–  17  ] . Conversely, moderate 
elevations in [Ca 2+ ] 

i
 , for example, via a K + -induced depolarization or weak persis-

tent activation of highly Ca 2+ -permeable  a 7 nicotinic acetylcholine receptors 
(nAChRs) have been shown to protect neurons from death in a variety of toxicity 
models  [  18–  28  ] . In addition, some biologically active  compounds (e.g., estrogen, 
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insulin-related growth factor 1 and positive allosteric modulators of  a 7 nAChRs) 
potentiate Ca 2+  permeable voltage- or ligand-gated ion channels and increase Ca 2+  
infl ux  [  29–  37  ]  which can be neuroprotective and cognitively benefi cial. 

 Originally, the concept of excitotoxicity linked neuronal injury to excessive ele-
vations in [Ca 2+ ] 

i
  which resulted from activation of a variety of Ca 2+  sources includ-

ing ligand- and voltage-gated Ca 2+  ion channels  [  38  ] . As such, the “Ca 2+  set-point” 
hypothesis was introduced, proposing four stages of neuronal responsiveness to 
elevation in [Ca 2+ ] 

i
  elicited by K + -dependent depolarization or electrical stimulation 

 [  1,   22,   39  ] : (1) a lack of neuroprotection in the near absence of cytosolic Ca 2+  regard-
less of neurotrophic support (stage 1); (2) neuronal survival in the presence of nor-
mal cytosolic Ca 2+  (~100 nM) with neurotrophic support (stage 2); (3) neuronal 
survival in the presence of moderate elevation in cytosolic Ca 2+  (~200 nM) regard-
less of neurotrophic support (stage 3) and (4) an excess (>1  m M) of Ca 2+  and neu-
ronal death (stage 4). Although the Ca 2+  set-point hypothesis supported the concept 
of Ca 2+  optimum for neuronal survival and function, it did not explain the role of 
specifi c pathways of Ca 2+  entry leaving a key question unanswered: can an elevation 
in [Ca 2+ ] 

i
  be optimal regardless of the pathway of Ca 2+  entry?  

   Role of NMDARs 

 Further studies revealed that elevations in [Ca 2+ ] 
i
  are derivatives of a more ele-

mentary chain of events consisting of Ca 2+  entry and intracellular Ca 2+  processing. 
According to this concept, neuronal fate (i.e., survival or death) is predominantly 
determined by the source of Ca 2+  entry rather than [Ca 2+ ] 

i
   [  40  ] : i.e., Ca 2+  ions 

entering the cell via NMDARs are much more likely to cause damage to the cell 
than similar amounts of Ca 2+  ions entering the cell via VGCCs. In fact, VGCC-
mediated elevations in [Ca 2+ ] 

i
  are more likely to be neuroprotective than neuro-

toxic (see above and  [  1,   20,   22,   24,   39,   41  ] ). However, moderate activation of 
NMDARs during preconditioning in low concentrations of glutamate (<50  m M) 
as well as activation of nAChRs by nicotine have also been found to promote 
neuronal survival (see below and  [  41–  44  ] ). In general, a proper investigation of 
neuroprotective and neurotoxic effects of individual Ca 2+  sources requires selec-
tive pharmacological tools because multiple Ca 2+  sources often act in conjunction 
resulting in a cumulative elevation in [Ca 2+ ] 

i
  and emergent response properties 

 [  45–  48  ] . 
 The NMDAR-dependent pathways of cytosolic Ca 2+  regulation are complex as 

both excessive activation and blockade of NMDARs promote neuronal death 
 [  5,   49–  51  ] , while moderate activation of NMDARs is absolutely required for normal 
neuronal development and function. As a result, a key challenge in development of 
NMDAR-based therapies is introduced by a possibility that the same agent (e.g., 
NMDAR antagonist) or process (e.g., NMDAR activation) can be both neuroprotec-
tive and neurotoxic depending on the neuronal status and the phase, intensity and 
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duration of ongoing neuronal damage. Therefore, the therapeutic index (i.e., the 
ratio of the lethal dose to the therapeutic dose) of many NMDAR agents would be 
expected to be variable, case-dependent and  £ 1 on average. 

 A pool of functional NMDARs can be subdivided into synaptic and extrasynaptic 
based on their location relative to the synaptic cleft. Recent studies have started to 
explore an intriguing possibility that activity of synaptic and extrasynaptic NMDARs 
defi nes neuronal fate  [  50,   51  ] : activation of synaptic NMDARs leads to neuropro-
tection, while activation of extrasynaptic NMDARs is neurotoxic. Therefore, the 
overall intensity of NMDAR activation may not be as defi ning for the fate of neu-
rons as the fraction of synaptic vs. extrasynaptic NMDAR activation. According to 
this hypothesis, Ca 2+  ions entering neurons through extrasynaptic NMDARs are the 
most harmful. The basis for differences between the effects of synaptic and extra-
synaptic NMDARs is not well-understood, but may include at least three factors, as 
discussed by  [  50  ] : (1) differences in the intracellular signaling pathways; (2) differ-
ences in the NMDAR subunit composition; and (3) differences in the activation 
profi les (e.g., synaptic NMDARs are typically activated by high transient concentra-
tions of synaptic glutamate (~1 mM); while extrasynaptic NMDARs are activated 
by persistent, but relatively low concentrations ( £ 1  m M) of ambient glutamate). 
However, the division of NMDARs into synaptic and extrasynaptic may be rather 
provisional because NMDARs can move laterally between synaptic and extrasynap-
tic sites  [  52  ] . This behavior is not unique to NMDARs and has also been observed 
in  a -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) 
 [  53  ]  and  a 3-/ a 7-containing nAChRs  [  54  ] . 

 Moreover, direct measurements of extracellular glutamate levels  [  55  ]  as well as 
experimental and computer modeling of glutamatergic synaptic transmission and 
spillover  [  56–  58  ]  suggest that even after relocation to extrasynaptic sites (i.e., up to 
several micrometers away from presynaptic release site), NMDARs do not become 
independent of synaptic stimulation as they can still be activated by synchronous 
glutamate spillovers originating from multiple active glutamatergic synapses 
 [  59,   60  ] . The effectiveness of glutamate spillover in activation of extrasynaptic 
NMDARs and cross-talk between adjacent synapses directly results from morpho-
logical and release properties of central punctate glutamatergic synapses  [  56,   61  ]  
and kinetic properties of NMDARs: i.e., high potency (EC 

50
  ~ 3  m M,  [  62  ] ) and 

incomplete desensitization  [  63,   64  ] . Consistent with these views, the otherwise low 
levels of extracellular glutamate in hippocampal slices (e.g., ~25 nM;  [  65  ] ) can be 
substantially enhanced in the vicinity of active glutamatergic synapses  [  55  ]  or dur-
ing the reversal of neuronal/glial glutamate transporters that may take place under 
ischemia and other pathological conditions  [  66,   67  ] . However, what happens to 
intracellular pathways linked to an individual receptor as it switches teams (i.e., 
from synaptic to extrasynaptic) remains unknown (see more discussions on this 
topic in  [  50,   68,   69  ] ). 

 This apparent ambiguity in the role of NMDARs in neuronal death and survival 
should not derail the ongoing search for a therapeutic optimum in the level of 
NMDAR activation and Ca 2+  entry while the fact that, to date, clinical trials have 
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been mostly unsuccessful in identifying effective NMDAR-based therapies against 
ischemia and other neurodegenerative conditions invites discoveries of new 
approaches and nontrivial solutions like never before. One of these promising emer-
gent approaches termed “pathologically activated therapeutics”  [  70  ]  makes use of 
low-potency open-channel NMDAR blockers, such as memantine  [  71  ] . These com-
pounds may have neuroprotective properties as their inhibitory effects do not 
 preclude the physiologically benefi cial low-intensity activation of NMDARs, but 
substantially reduce the excessive activation of NMDARs which is neurotoxic. 
However, memantine has been also shown to inhibit  a 7 nAChRs with a similar or 
even greater potency (IC 

50
  ~ 0.3–5  m M) than NMDARs (IC 

50
  ~ 1–10  m M)  [  72–  74  ] . In 

some cases, inhibition of  a 7 nAChRs by memantine may be counterproductive 
because moderate activation of  a 7 nAChRs is usually neuroprotective and cogni-
tively benefi cial (see below). Despite numerous reports of positive effects of meman-
tine on patients with AD, non-AD dementias and other neurodegenerative disorders 
 [  75–  81  ] , the effectiveness, consistency and safety of memantine-based therapies 
have been questioned on multiple occasions  [  72,   82–  85  ]  and neurotoxic effects of 
therapeutic doses of memantine (~20 mg/kg) have been reported, for example, due 
to a drug interaction between memantine and common acetylcholine esterase inhib-
itors, such as donepezil  [  82,   86  ] . Accordingly, targeting intracellular sites down-
stream of NMDAR activation may present an alternative and possibly, more promising 
therapeutic approach  [  87  ] .   

    a 7 nAChRs 

   Background 

 Neuronal nicotinic AChRs are cation-selective and Ca 2+  permeable ion channel 
complexes. Twelve genes encoding for neuronal nAChR subunits have been identi-
fi ed to date  [  88  ] . Four of these genes encode for  a 7,  a 8,  a 9, and  a 10 subunits that 
may form functional homomeric nAChRs when expressed alone. The family of 
functional heteromeric nAChRs is more diverse: these functional receptors are 
required to have two principal  a  subunits (i.e.,  a 2,  a 3,  a 4 or  a 6) and two or three 
complementary  b  subunits (i.e.,  b 2 or  b 4). In addition, one structural subunit (i.e., 
 a 5 or  b 3) may also be present  [  89  ] . Among nAChRs, the  a 7 nAChR exhibits the 
highest permeability ratio of Ca 2+  over Na +  ions (P 

Ca
 /P 

Na
 )  [  90–  97  ] . The high Ca 2+  

permeability of  a 7 nAChRs suggests important roles for this receptor in modulation 
of neurotransmitter release, gene expression, neuroprotection and neurotoxicity 
 [  98–  101  ] . The existing evidence indicates that  a 7 nAChRs maintain a high degree 
of functional homology, including Ca 2+  permeability, across species and prepara-
tions  [  102,   103  ] . Therefore, the properties of  a 7 nAChRs expressed in heterologous 
systems are expected to be comparable to native  a 7 nAChRs expressed in various 
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brain regions. However, although  a 7 nAChRs can form functional homomeric 
nAChRs, there is a growing pool of evidence for the existence of functional hetero-
meric  a 7-containing nAChRs resulting from co-expression of  a 7 and non- a 7 subunits 
(e.g.,  a 5,  b 2 and  b 3 subunits). These native  a 7-containing heteromeric receptor ion 
channel complexes exhibit pharmacological, kinetic and desensitization properties 
somewhat different from those of homomeric  a 7 nAChRs expressed in heterologous 
systems  [  104–  112  ] . 

 The early studies of Ca 2+  permeability of  a 7 nAChRs used primarily heterologous 
systems expressing homomeric  a 7 nAChRs and reported the permeability ratios for 
Ca 2+  over Na +  ions substantially greater than those for NMDARs: P 

Ca
 /P 

Na
  ( a 7R) ~ 15–20 

vs. P 
Ca

 /P 
Na

  (NMDAR) ~ 8–10  [  93–  95,   113  ] . However, more recent studies used hip-
pocampal cultured neurons and acutely dissociated hippocampal and hypothalamic 
neurons to report more modest values: P 

Ca
 /P 

Na
 ( a 7R) ~ 6 vs. P 

Ca
 /P 

Na
  (NMDAR) ~ 8–10 

 [  90,   97  ] . Moreover, in these experiments the Ca 2+  permeability of NMDARs was 
found to be signifi cantly greater than that of  a 7 nAChRs  [  97  ] . The observed 
 discrepancies between the early and more recent studies may have resulted from dif-
ferences in agonist application techniques, data analysis and estimates of ionic activi-
ties and liquid junction potentials. Alternatively, it is possible that native, possibly 
heteromeric,  a 7-containing nAChRs exhibit a lower Ca 2+  permeability than homo-
meric  a 7 nAChRs. However, a direct comparison of Ca 2+  permeabilities of native 
and heterologous  a 7 nAChRs using identical experimental techniques and data anal-
ysis has not been conducted. 

 Because of their high permeability to Ca 2+  ions, NMDARs and  a 7 nAChRs 
form excellent examples of ligand-gated Ca 2+  ion channels. As discussed, moder-
ate activation of these receptors and thus, moderate elevation in [Ca 2+ ] 

i
  have been 

found to be neuroprotective in a number of  in vitro  and  ex vivo  toxicity models as 
well as  in vivo  settings  [  18,   21,   23,   25–  27,   41–  44,   114–  116  ] . Moreover, both types 
of receptors appear to employ Ca 2+ -PI3K-Akt-dependent pathways for mediation 
of neuroprotective effects  [  41–  43,   49,   101,   117  ] . However, despite these important 
similarities, NMDARs and  a 7 nAChRs belong to different families of ligand-gated 
receptors  [  62,   118  ]  and their kinetic and pharmacological properties are quite 
 different. For instance, the mean open time of  a 7 nAChR-mediated channels 
(~100–400  m s,  [  119–  121  ] ) is at least tenfold shorter than that of NMDAR channels 
 [  63,   122  ] . In addition, in the continuous presence of agonist,  a 7 nAChR-mediated 
currents (but not NMDAR-mediated currents) can be completely inhibited by 
desensitization and/or agonist-mediated open channel block  [  123,   124  ] . The short 
open time and rapid desensitization act as mechanisms that protect  a 7 nAChR-
expressing cells from excessive and thus, damaging Ca 2+  infl ux. The open channel 
Mg 2+  block plays an analogous role for NMDAR-mediated ion channels. By con-
trast, Mg 2+  ions do not signifi cantly alter the function of  a 7 nAChRs at negative 
membrane potentials, although they induce rectifi cation at depolarized membrane 
potentials  [  125  ] .  
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   Ca 2+  Permeability of  a  7 nAChRs and NMDARs 

 The sensitivity of  a 7 nAChR- and NMDAR-mediated whole-cell responses to 
external Ca 2+  ions (i.e., [Ca 2+ ] 

o
 ) have also been found to be different (Fig.  27.1 ,  [  97  ] ). 

The whole-cell conductance of  a 7 nAChR-mediated responses in tuberomamm-
millary (TM)  neurons was signifi cantly greater at low [Ca 2+ ] 

o
  (i.e., 2 mM) than at high 

[Ca 2+ ] 
o
  (i.e., 20 mM)  [  97  ] . This difference was not due to a current rundown because 

experiments in low [Ca 2+ ] 
o
  that gave larger currents were conducted after experi-

ments in high [Ca 2+ ] 
o
  that gave smaller currents  [  97  ] . By contrast, a tenfold increase 

in [Ca 2+ ] 
o
  from 2 to 20 mM did not signifi cantly reduce the whole-cell conductance 

of NMDAR-mediated responses near their reversal potential in acutely dissociated 
hippocampal CA1 neurons  [  97  ] . Similar observations have been made in single-
channel  [  126  ]  and whole-cell  [  90,   127  ]  experiments in cultured hippocampal neurons. 
However, a 67-fold increase in [Ca 2+ ] 

o
  from 0.3 to 20 mM has been reported to 

reduce the whole-cell conductance of NMDAR-mediated currents by 32% in 
cultured spinal cord and hippocampal neurons  [  128  ] . These differences in Ca 2+  
sensitivity of  a 7 nAChR- and NMDAR-mediated ion channels may refl ect different 
affi nities with which Ca 2+  ions block monovalent permeation  [  129  ] , and/or a poten-
tial Ca 2+ -dependent modulation of  a 7 nAChR-channel kinetics and/or binding. All 
of these effects would be expected to make excessive activation of  a 7 nAChRs 
somewhat less damaging than equivalent activation of NMDARs. These views are 
consistent with recent experimental results  [  41,   43  ] : in these experiments, pre-
conditioning of retinal ganglion cells in very high concentrations of nicotine 
(i.e., <500  m M), but not glutamate, was neuroprotective against glutamate toxicity.  

 In addition to Ca 2+  permeability, the impact of activation of ligand-gated Ca 2+  
channels on cellular behavior and survival is affected by the channel distribution 
within the cell and the cell surface  [  50,   54,   130–  132  ] . As mentioned, synaptic 
NMDARs promote neuroprotection, while extrasynaptic NMDARs may be neuro-
toxic  [  133  ] . By contrast, functional neuronal  a 7 nAChRs are predominantly pre- or 
extrasynaptic with only a handful of known exceptions  [  134–  137  ]  and yet, moder-
ate activation of  a 7 nAChRs is usually neuroprotective. The reason for this impor-
tant difference between NMDARs and  a 7 nAChRs is unknown and it is likely that 
other receptor properties (e.g., kinetic and desensitization properties) in addition to 
receptor location and ion channel Ca 2+  permeability contribute to determining the 
receptor role in neuronal survival.  

   Desensitization vs. Open-Channel Block of  a  7 nAChRs 

 In the continuous presence of nicotinic agonists, activation of  a 7 nAChRs is reduced 
naturally by two independent processes: desensitization and open channel block by 
agonist molecules. It is important to distinguish between these processes, especially 
if high concentrations of agonists are used (e.g., >2 mM ACh). At negative  membrane 
voltages, positively charged agonists (e.g., ACh, choline) elicit both desensitization 
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and open channel block of  a 7 nAChR ion channels  [  123  ] . The desensitization 
 component of  a 7 nAChR-mediated responses elicited by ACh or choline can be iso-
lated by conducting electrophysiological experiments at positive membrane voltages 
 [  123  ] . At negative membrane voltages, when high agonists concentrations are used 
(e.g., >2 mM ACh), open channel block is nearly complete although fully reversible. 
To minimize open channel block at negative membrane voltages, lower agonist con-
centrations should be used (e.g., <200  m M ACh) because the block is low-potency. 
By contrast, if weakly charged agonists are used (e.g., [3-(2,4-dimethoxybenzylidene)-
anabaseine, i.e., DMXBA, the code name GTS-21], pK 

a
  ~ 7.4,  [  138  ] ), the separation 

of desensitization from open channel block is more challenging as open channel 
block is less dependent on the membrane voltage. In these cases, low agonist concen-
trations (e.g., <30  m M DMXBA) need to be used to reduce the contribution of open 
channel block to current decay  [  123  ] .  

   Effects of Activation and Inactivation of  a  7 nAChRs 

 While in some models of neurotoxicity high concentrations of  a 7 nAChR agonists 
caused cellular death  [  25  ] ; in other models, even very high concentrations of nico-
tine (e.g., 500  m M) promoted neuronal survival  [  41  ] . These discrepancies in results 

  Fig. 27.1     The whole-cell conductances of  a 7 nAChR- and NMDAR-mediated responses near the 
reversal potential . The mean and standard deviation of the slope conductance near V 

rev
  built for TM 

 a 7 nAChR- ( a ) and hippocampal CA1 pyramidal NMDAR-mediated responses ( b ). 
A signifi cant [Ca 2+ ] 

o
 –dependent decrease in the whole-cell conductance of TM  a 7 nAChR-, but 

not CA1 NMDAR-mediated responses was observed  [  97  ] . This decrease was not due to a current 
rundown because it persisted in experiments where high (i.e., 20 mM) [Ca 2+ ] 

o
  was used before low 

(i.e., 2 mM) [Ca 2+ ] 
o
   [  97  ] . Examples of TM  a 7 nAChR-mediated currents obtained by applications 

of choline at various positive and negative membrane voltages in voltage-clamp in 2 mM [Ca 2+ ] 
o
  

( c ) and 20 mM [Ca 2+ ] 
o
  ( d ). The whole-cell conductance of TM  a 7 nAChR channels in high [Ca 2+ ] 

o
  

was always lower than that in low [Ca 2+ ] 
o
 , presumably due to a Ca 2+ -dependent block of monova-

lent ion permeation. ( e ) The current–voltage relationship for responses illustrated in ( c ) and ( d ). 
No considerable current rectifi cation was observed owing to Mg 2+ -free external and internal solu-
tions and the presence of F −  ions in the internal solution. The I-V curves were fi tted with second-
order polynomial equations. Panels ( c – e ) illustrate data obtained from the same acutely dissociated 
TM neuron. Examples of CA1 NMDAR-mediated currents obtained by applications of NMDA 
plus glycine at various positive and negative membrane voltages in voltage-clamp in 2 mM [Ca 2+ ] 

o
  

( f ) and 20 mM [Ca 2+ ] 
o
  ( g ). ( h ) The current–voltage relationship for responses illustrated in ( f ) and 

( g ). The whole-cell conductance of NMDAR channels in 20 mM [Ca 2+ ] 
o
  was similar to that in 

2 mM [Ca 2+ ] 
o
 , indicating a lack of signifi cant Ca 2+ -dependent block of monovalent ion permeation. 

The I-V curves were fi tted with second-order polynomial equations. Panels ( f – h ) illustrate data 
obtained from the same acutely dissociated hippocampal CA1 neuron. Note that although the 
application pipettes were fi lled with 40 mM choline or 200  m M NMDA + 20  m M glycine, the effec-
tive concentrations of choline or NMDA+glycine near the recorded neurons were unknown and 
considerably lower than the concentrations of agonists in application pipettes. However, in each 
given experiment these concentrations were very stable evidenced by stable responses  [  97  ]  
(Reprinted from Uteshev  [  97  ]  with permission from Blackwell Publishing in the format Journal 
via Copyright Clearance Center)       
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may be linked to differences in the agonist concentration and time course of agonist 
application, as well as inactivation, desensitization and other kinetic properties of 
 a 7 nAChRs, e.g., open channel block by nicotinic agonists  [  123,   124,   139,   140  ] . 
Notably, low concentrations of nicotinic agonists such as those observed in the cere-
brospinal fl uid (CSF)  in vivo  (e.g., <1  m M nicotine or <100  m M choline) are more 
likely to cause desensitization than activation of  a 7 nAChRs  [  124,   140  ] . Accordingly, 
it has been hypothesized that it is desensitization or inhibition and not activation of 
 a 7 nAChRs that may trigger intracellular events responsible for neuroprotection 
and cognitive benefi ts  [  141–  143  ] . This hypothesis, however, cannot explain a num-
ber of recent experimental fi ndings. For instance, systemic administration of PNU-
120596, a nicotinic agent that considerably reduces  a 7 nAChR desensitization (see 
below), produced positive behavioral effects restoring auditory gating defi cit in a 
mouse model of schizophrenia  [  32  ] . Moreover, a direct testing of this hypothesis 
using structurally similar high-effi cacy (i.e., full) and low-effi cacy (i.e., partial)  a 7 
nAChR agonists clearly demonstrated that activation of  a 7 nAChRs is essential for 
cognitive enhancement in a rat model of inhibitory avoidance  [  144  ] . Similarly, the 
eye-blink conditioning response is improved by  a 7 nAChR agonists, but impaired 
by antagonists  [  145–  147  ]  and in  a 7 knock-out animals  [  148  ] . Finally, cell death 
induced by excessive, but not moderate activity of  a 7 nAChRs in the NGF/serum-
withdrawal toxicity model in pheochromocytoma-12 (PC-12) cells expressing func-
tional  a 7 nAChRs supports the need for activation rather than desensitization of  a 7 
nAChRs for survival of PC-12 cells  [  25  ] . 

 By contrast, the role of  a 7 nAChRs in the pathophysiology of AD is less defi ned, 
primarily because of the limited understanding of how  a 7 nAChRs interact with 
A b  

1-42
 . For example, both activation and blockade of  a 7 nAChRs inhibits A b  

1-42
 -

induced phosphorylation of tau proteins in PC-12 cells  [  143  ] . One hypothesis is 
that although activation of  a 7 nAChRs is neuroprotective and cognitively benefi -
cial in some experimental models  [  23,   149–  153  ] , in mouse models of late stages of 
AD, which correlate with an excessive accumulation of A b  

1-42
 , the role of  a 7 

nAChRs reverses. The mechanism of this role reversal may include continuing 
high-affi nity binding of A b  

1-42
  to  a 7 nAChRs and formation of  a 7-A b  

1-42
  com-

plexes which inhibit and even reverse the physiological function of  a 7 nAChRs 
and thus, the neuroprotective binding of nicotinic agonists to  a 7 nAChRs becomes 
impaired  [  150,   154–  161  ] . This hypothesis received additional support from a num-
ber of recent studies that demonstrated that blocking or eliminating  a 7 nAChRs 
could alleviate some symptoms of AD. Specifi cally, (1) deletion of the  a 7 nAChR 
gene ameliorates certain behavioral defi cits in a transgenic mouse model of AD 
 [  162  ] ; (2) intracellular accumulation of A b  

1–42
  that occurs predominantly in  a 7 

nAChR-expressing neurons is blocked by  a -bungarotoxin, a selective  a 7 nAChRs 
antagonist and by phenylarsine, an inhibitor of endocytosis  [  163  ] ; and (3)  a 7 
nAChRs mediate A b  

1-42
 -induced phosphorylation of tau proteins  [  154,   155  ] . These 

experiments supported the idea of high-affi nity binding of A b  
1–42

  to  a 7 nAChRs on 
neuronal cell surfaces  [  164  ] , subsequent endocytosis of the resulting  a 7-A b  

1-42
  

complex and its accumulation within the lysosomal compartment provoking intra-
cellular toxicity  [  163,   165  ] .  
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  Fig. 27.2     Therapeutic approaches aimed at rescuing the brain  a 7 nAChR activation . The left most 
pathway: ACh esterase inhibitors (e.g., donepezil) increase the CSF level of ACh and promote 
activation of both nAChRs and mAChRs. Despite cognitive benefi ts ( dashed line ), the lack of 
selectivity may cause considerable side effects (e.g., autonomic). The right most pathway:  a 7 
nAChR agonists. A moderate activation of  a 7 nAChRs by selective agonists (e.g., DMXBA) pro-
tects neurons, benefi ts cognition and appears to be clinically safe. The middle pathway: positive 
allosteric modulators (PAMs) of  a 7 nAChRs. Choline is a low-potency endogenous selective ago-
nist of  a 7 nAChRs, but its potency can be considerably increased by Type-II  a 7-PAMs, such as 
PNU-120596.  a 7-PAMs do not activate  a 7 nAChRs in the absence of nicotinic agonists. Instead, 
 a 7-PAMs lower the energy barrier, allowing lower concentrations of nicotinic agonists to activate 
the receptor. In the presence of Type-II  a 7-PAMs, endogenous choline may become effective in 
producing moderate persistent activation of native  a 7 nAChRs. This type of activation of  a 7 
nAChRs may promote neuroprotection and benefi t cognition       

    a  7 nAChRs as a Therapeutic Tool 

 There is a substantial body of supportive evidence linking age-, disease- and trauma-
related alterations in the expression and function of  a 7 nAChRs to neurodegenerative, 
sensorimotor and psychiatric disorders associated with cognitive decline and attention 
defi cits  [  101,   166–  180  ] . By contrast, activation of  a 7 nAChRs by nicotine and selective 
 a 7 nAChR agents has been shown to produce neuroprotection  in vivo   [  26,   150,   181  ] , 
 ex vivo  and  in vitro   [  18,   21,   23,   25–  27,   182–  189  ]  and enhance cognitive performance 
in patients and animal models of neurodegenerative disorders including AD, schizo-
phrenia, brain trauma and aging  [  32,   101,   148,   181,   183,   189–  209  ] . 

 Defi cits in hippocampal  a 7 nAChR activation are a key accompanying factor in 
certain cognitive disorders and enhancing this activation by nicotinic agonists has 
been shown to produce neuroprotection and cognitive benefi ts. Currently available 
therapeutic approaches aimed at rescuing the brain  a 7 nAChR activation include 
(Fig.  27.2 ): (1) ACh esterase inhibitors (AChE; e.g., donepezil) – the left most 
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 pathway; (2)  a 7 nAChR agonists – the right most pathway; and (3) positive allosteric 
modulators (PAMs) of  a 7 nAChRs – the middle pathway. The rationale for thera-
peutic use of  a 7 nAChR agonists and modulators arrives from observations that in 
neurological disorders such as dementia and schizophrenia as well as after brain 
trauma, functional  a 7 nAChRs expressed in central neurons do not vanish but their 
number may decline in a region-specifi c manner  [  167,   168,   171,   173,   177,   178,   180, 
  210  ] . Therefore, a moderately enhanced activation of  a 7 nAChRs can be achieved 
by pharmacological tools and this enhancement may benefi t patients with neurode-
generation and cognitive decline (see Sects.  3.1 ,  3.2 ,  3.3 ,  3.4 ,  3.5 ).  

 Positive cognitive effects of inhibitors of AChE result from inhibition of the 
hydrolysis of ACh and thus, enhanced activation of both muscarinic AChRs (i.e., 
mAChRs) and nAChRs, including  a 7 subtype (Fig.  27.2 , the left most pathway). 
Similar to  a 7 nAChRs, activation of mAChRs and non- a 7 nAChRs has been 
reported to be cognitively benefi cial (horizontal dashed path, Fig.  27.2 )  [  211–  217  ] . 
However, the lack of specifi city may cause autonomic adverse effects. For exam-
ple, donepezil and other AChE inhibitors have been reported to cause centrally-
mediated nausea, vomiting and diarrhea  [  218,   219  ] . 

 As discussed earlier, a moderate activation of  a 7 nAChRs by selective agonists 
(e.g., DMXBA, the right most pathway, Fig.  27.2 ) protects neurons, benefi ts cogni-
tion and appears to be clinically safe. For example, no major central side effects have 
been linked to oral administration of large doses of DMXBA (e.g., <450 mg/day, 
 [  138,   192  ] ). In hippocampal slices, activation of  a 7 nAChRs by therapeutic nicotinic 
agonists, such as DMXBA, can be potentiated by PAMs  [  220  ] . PAMs would also be 
expected to enhance activation of  a 7 nAChRs by physiological levels of endogenous 
nicotinic agonists (i.e., ACh and choline)  [  34,   35  ]  released naturally as needed.   

   Effects of PAMs on  a 7 nAChR Activation and Ca 2+  Infl ux 

   PAM Hypothesis 

 Choline is an endogenous selective agonist of  a 7 nAChRs  [  221,   222  ] . The cerebro-
spinal fl uid (CSF) contains choline at concentrations much lower (~5–10  m M,  [  169, 
  223–  227  ] ) than its EC 

50
  (~0.5–1.5 mM;  [  222,   228  ] ). Moreover, choline exhibits a 

much greater potency for desensitization (IC 
50

  ~ 40  m M,  [  124  ] ) than activation of 
 a 7 nAChRs. Therefore, the endogenous concentration of choline in the CSF 
appears to be too low to activate  a 7 nAChRs  [  34,   35,   124  ]  and in the past, endog-
enous choline has not been seriously considered as a therapeutic candidate  [  186  ] . 
However, the ambient levels of choline can be elevated 3–4-fold under conditions 
associated with ischemia, stroke, and substantial plasma membrane damage  [  223, 
  224,   226,   227,   229  ] . Cell death also creates a large source of choline causing a 
breakdown of phosphatidylcholine, the principle plasma membrane phospholipid, 
into choline and  diacylglycerol. Given the low ambient concentrations of choline 
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in the CSF under physiological conditions  [  169,   225  ] , it is unlikely that in the 
absence of cholinergic synaptic inputs or exogenous nicotinic agents, native  a 7 
nAChRs are persistently activated by endogenous choline  [  124  ] . However, the 
effects of endogenous choline may be notably different in the presence of Type-II 
 a 7-PAMs, such as PNU-120596, which signifi cantly enhances the responsiveness 
of  a 7 nAChRs to nicotinic agents (see Sects.  3.2 ,  3.3 ,  3.4 ). PNU-120596 is a posi-
tive allosteric modulator of  a 7 nAChRs that reduces desensitization of  a 7 nAChRs 
and thus, increases the potency of nicotinic agonists enhancing the responsiveness 
of functional  a 7 nAChRs  [  32,   34,   220,   230,   231  ]  and producing behavioral 
improvements in animal models  [  32  ] . PNU-120596 has been shown to increase the 
mean open time of  a 7 nAChR channels without producing signifi cant changes in 
ion channel selectivity, single channel conductance and Ca 2+  permeability  [  32  ] . 
PNU-120596 does not activate  a 7 nAChRs in the absence of nicotinic agonists. 
Instead, it lowers the energy barrier, allowing lower concentrations of nicotinic 
agonists to activate the receptor  [  232  ] . Intravenous administration of 1 mg/kg PNU-
120596 elevates the concentration of PNU-120596 in the brains of rats to ~1.5  m M 
 [  32  ] . This value falls near the EC 

50
  for potentiating effects of PNU-120596 

(EC 
50

  ~ 1.5  m M)  [  233,   234  ] . Concentrations slightly lower than the EC 
50

  (i.e., 1  m M 
PNU-120596) have been shown to enhance the effects of sub-threshold concentra-
tions of choline allowing physiological levels of choline to become effective in 
activation of native  a 7 nAChRs in the absence of exogenous nicotinic agents  [  34,   35  ] . 
Therefore, in the presence of PNU-120596, endogenous choline may become 
effective in producing moderate persistent activation of  a 7 nAChRs and the cor-
responding elevation in the Ca 2+  infl ux and neuronal excitability (see Sects.  3.3  and 
 3.4 ) supporting neuroprotection and cognition (see Sect.  2.5 ). 

 There are two types of PAMs  [  235  ] : Type I – these compounds enhance the 
amplitude of  a 7 nAChR-mediated currents without affecting the current duration; 
and Type II – these compounds dramatically reduce desensitization and thus, pro-
long the duration of activation of  a 7 nAChRs in the constant presence of agonists 
(Fig.  27.3 ). The Type-II PAMs (e.g., PNU-120596) are most interesting because 
these compounds not only reduce desensitization of  a 7 nAChRs but also allow 
nicotinic agonists to activate already desensitized  a 7 nAChRs  [  32  ] . Therefore, in 
the presence of Type-II  a 7-PAMs, desensitization does not contribute to  a 7 nAChR 
activation defi cits and previously desensitized  a 7 nAChRs can be successfully 
recruited for activation. Recent studies have also demonstrated that PNU-120596 is 
able to increase the activation potency of choline, allowing low sub-threshold (for 
activation) physiological concentrations of choline (~10  m M) to become effective in 
activation of  a 7 nAChRs  [  34,   35  ] . This fi nding suggests an intriguing possibility of 
using endogenous choline (in the presence of Type-II  a 7-PAMs) as a therapeutic 
agent for enhancing activation of  a 7 nAChRs and thus, Ca 2+  infl ux in neuronal sys-
tems characterized by cholinergic defi ciency.  

 A reduced version of this hypothesis has been tested in  ex vivo  electrophysiologi-
cal experiments using hypothalamic and hippocampal brain slices  [  34,   35  ] . Under 
this scenario, endogenous levels of choline were modeled by the addition of physi-
ological concentrations of choline (5–10  m M) to artifi cial cerebrospinal solution 
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  Fig. 27.3     Examples and illustrative effects of Type-I and Type-II  a 7-PAMs.  ( a ) NS-1738, 5-HI, 
Invermectin and Genistein represent the family of Type-I  a 7-PAMs. Schematic current traces 
illustrate the effects of Type-I  a 7-PAMs on  a 7 nAChRs: Type-I  a 7-PAMs increase the peak of  a 7 
nAChR-mediated responses but do not alter the rate of desensitization of  a 7 nAChRs. ( b ) PNU-
120596, TQS, A867744, JNJ-1930942 represent the family of Type-II  a 7-PAMs. Schematic 
 current traces illustrate the effects of Type-II  a 7-PAMs on  a 7 nAChRs: Type-II  a 7-PAMs increase 
the peak of  a 7 nAChR-mediated responses and considerably reduce the desensitization of  a 7 
nAChRs       

(ACSF) and whole-cell voltage- and current-clamp recordings were conducted in 
the presence and absence of 1–5  m M PNU-120596 to determine the effects of 
enhanced activation of native  a 7 nAChRs by choline on the electrical activity of 
hypothalamic and hippocampal neurons in brain slices (Figs.  27.4  and  27.5 ).    

  Fig. 27.4     Step-like current and voltage deviations in the presence of 10  m M choline and 1  m M 
PNU-120596 in ACSF . ( a – c ) Current deviations were completely and reversibly blocked by 20 nM 
MLA, confi rming the involvement  a 7 nAChRs. All current traces in ( a – c ) were obtained from the 
same TM neuron. ( d, e ) Step-like responses were observed in both voltage- ( d ) and current-clamp 
( e ) recordings. Traces in ( d ) and ( e ) were obtained from the same TM neuron 1 min apart. In these 
experiments, the frequency of step-like current events appeared to be sensitive and rapidly respon-
sive to changes in the ACSF concentrations of choline and PNU-120596  [  34,   35  ] . Activation of  a 7 
nAChRs in current-clamp elicited transient repetitive step-like depolarizations: ~4 mV for indi-
vidual events and ~25 mV for simultaneous multiple events ( e ). The bottom trace in ( d ) and the top 
trace in ( e ) share the same time scale shown between these traces. The vertical scale bar indicates 
either 20 pA (for traces in  d ) or 20 mV (for traces in  e ). In experiments shown in ( d, e ), 0.3  m M 
TTX was continuously present in ACSF and the internal pipette solution contained CsMeSO 

3
 . In 

voltage-clamp experiments, the membrane voltage was held at −60 mV. ( f ) To visualize individual 
step-like depolarizations, a small continuous hyperpolarizing current (−5 pA) was injected into the 
recorded neuron resulting in cessation of spontaneous fi ring. Under these silent conditions, tran-
sient step-like depolarizations triggered short trains of action potentials ( open arrows ). However, 
occasionally, depolarizations did not trigger action potentials or triggered only a single action 
potential per depolarization ( fi lled arrows ). Step-like voltage and current deviations were resistant 
to 20  m M gabazine, 15  m M DNQX, 50  m M AP-5, 40  m M picrotoxin, and 0.3  m M TTX applied to 
ACSF (Reprinted from Gusev and Uteshev  [  34  ]  with permission from ASPET)       
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   Synergistic Action of Physiological Choline and PNU-120596 

 Intriguingly, current and voltage deviations recorded in voltage- and current-clamp, 
respectively, resulting from a synergistic action of 10  m M choline plus 1–2  m M 
PNU-120596 were step-like and thus, reminiscent of and postulated to be single  a 7 
nAChR ion channel openings detectable in whole-cell patch-clamp confi guration 
(Fig.  27.4a–e ). These experiments revealed that in the presence of PNU-120596 and 
5–10  m M choline, even very low densities of  a 7 nAChRs such as the expression 
found in hippocampal CA1 pyramidal neurons (only ~5% of that found in hip-
pocampal CA1 interneurons  [  35  ] ) generate persistent step-like currents which cause 
transient step-like depolarizations and occasionally, trigger bursts of action poten-
tials. This persistent current would be expected to generate a persistent Ca 2+  infl ux 
(see Sects.  3.4  and  3.5 ). A similar activity was detected under slightly hyperpolar-
ized conditions in hypothalamic TM neurons (Fig.  27.4f ). Moreover, activation of 
TM  a 7 nAChRs by 10  m M choline plus 1  m M PNU-120596 enhances spontaneous 
fi ring of TM neurons (Fig.  27.5a–d ). In current-clamp, when a hyperpolarizing cur-
rent (~ −40 pA) was injected in the recorded TM neuron (the injection time is 
marked by * (Fig.  27.5e )) during a prolonged interval of increased frequency (the 
interval between open and fi lled triangles), it resulted in cessation of spontaneous 
fi ring, allowing detection of the fi nal portion of an underlying step-like depolariza-
tion. Therefore, a prolonged step-like depolarization was observed as an increase in 

  Fig. 27.5     Activation of TM  a 7 nAChRs by 10  m M choline plus 1  m M PNU-120596 enhances 
spontaneous fi ring of TM neurons in current-clamp . The spontaneous fi ring of TM neurons was 
native as current injections were not applied (i.e., 0 pA). Horizontal bars indicate −65 mV. In cur-
rent-clamp, in the absence of PNU-120596 and choline, TM neurons exhibited regular patterns of 
spontaneous fi ring ( a ). In these control experiments, when the membrane voltage was hyperpolar-
ized to −65 mV by injections of a small current, step-like depolarizations were not observed ( b ). 
Recordings in ( a ) and ( b ) were obtained from the same TM neuron 1 min apart. After the sustained 
repetitive activation of TM nAChRs was observed in voltage-clamp upon administration of 10  m M 
choline plus 1  m M PNU-120596 ( c ), current-clamp recordings were conducted using the same TM 
neuron ( d ). In current clamp, activation of TM  a 7 nAChRs resulted in transient repetitive increases 
in the frequency of spontaneous fi ring of TM neurons ( d ,  fi lled arrows ). Traces shown in ( c ) and 
( d ) were obtained from the same TM neuron 1 min apart. The framed insert in ( d ) illustrates at a 
higher time resolution a portion of recording containing one transient excitation. ( e ) The effects of 
individual step-like depolarizations in current clamp. When a hyperpolarizing current (~ −40 pA) 
was injected in the recorded TM neuron (the injection time is marked by *) during a prolonged 
interval of increased frequency (the interval between  open  and  fi lled triangles ), it resulted in ces-
sation of spontaneous fi ring, allowing detection of the fi nal portion of an underlying step-like 
depolarization. Therefore, a prolonged depolarization was observed as both an increase in sponta-
neous fi ring in the beginning of depolarization ( open triangle ) and a depolarizing step at the end of 
depolarization ( fi lled triangle ). Subsequent step-like depolarizations are also seen between the two 
dashed lines in insert. The insert illustrates this transition process at a higher resolution. In these 
experiments, ACSF contained 20  m M, gabazine, 15  m M DNQX, 50  m M AP-5 and 40  m M picro-
toxin. The internal solution was K-gluconate-based (Reprinted from Gusev and Uteshev  [  34  ] . With 
permission from ASPET)       
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spontaneous fi ring in the beginning of depolarization (Fig.  27.5e , open triangle) and 
a depolarizing step at the end of depolarization (Fig.  27.5e , fi lled triangle). 

 In these experiments, the frequency of step-like current events appeared to be 
sensitive and rapidly responsive to changes in the ACSF concentrations of choline 
and PNU-120596  [  34,   35  ] . Therefore, the synergistic action of endogenous choline 
and Type-II  a 7-PAMs may cause a sustained activation of  a 7 nAChRs and the cor-
responding persistent Ca 2+  infl ux (see Sects.  3.4  and  3.5 ). These observations 
 suggest that the net depolarization, excitation and Ca 2+  infl ux could be modulated 
and optimized by tuning the administration doses of dietary choline  [  189  ]  and 
Type-II  a 7-PAMs  [  34,   35  ] .  

   Detection of Activity of Individual  a  7 nAChRs in Whole-Cell 

 It is this capability of as few as only one individual functional  a 7 nAChR to depolar-
ize and excite the entire neuron that makes it possible for a low density expression 
of functional  a 7 nAChRs to be effective in enhancing the excitability of hippocam-
pal CA1 pyramidal neurons in the presence of PNU-120596  [  35  ] . Therefore, high 
levels of expression of  a 7 nAChRs and synchronization of their activity may not be 
required for signifi cant depolarizing and excitatory effects of physiological concen-
trations of choline in the presence of PNU-120596. The excitability of hippocampal 
CA1 pyramidal neurons positively correlate with cognitive performance and has 
been shown to decline with age likely due to an age-dependent enhancement of 
inhibitory effects of the Ca 2+ -dependent potassium conductance  [  236,   237  ] . 
Therefore, therapeutic approaches that provide neuroprotection and restore excit-
ability of hippocampal CA1 pyramidal neurons may benefi t patients with various 
forms of dementia and brain trauma. 

 Detecting activity of individual  a 7 nAChR ion channels in whole-cell patch-
clamp experiments appears to be possible if the probability of ion channel openings 
is suffi ciently low and the channels remain open for a prolonged period of time 
during which the ionic gradient across the membrane and thus, the ionic current, 
remain relatively constant. These requirements appear to be fulfi lled for  a 7 nAChRs 
activated by physiological concentrations of choline in the presence of 1–5  m M 
PNU-120596 in hippocampal CA1 pyramidal neurons  [  35  ] , hippocampal CA1 
interneurons (Kalappa and Uteshev, unpublished observations) and hypothalamic 
TM  a 7 nAChRs  [  34  ] . 

 In current-clamp patch-clamp experiments using hippocampal CA1 pyramidal 
neurons that express a very low density of functional  a 7 nAChRs  [  35  ] , individual 
step-like voltage deviations triggered action potentials in 7 out of 13 cells tested 
(Fig.  27.4b ,  c ). When these deviations failed to cause action potentials, they gener-
ated small step-like depolarizations whose amplitudes (~3–5 mV) could be pre-
dicted from the neuronal input resistance (~500 M W ), the amplitude of step-like 
currents (~8 pA) and the Ohm’s law (500 M W  × 8 pA ~4 mV). These estimates sup-
port the hypothesis that the observed single channel openings were most likely 



62127 α7 nAChRs and Ca2+ Optimum

 generated by  a 7 nAChRs expressed in both proximal and distal regions of the 
 neuronal membrane and not generated only by  a 7 nAChRs located in the immediate 
vicinity of the recording patch electrode. An additional support to this hypothesis 
comes from the observation that in current-clamp experiments with hippocampal 
CA1 pyramidal neurons, recorded action potentials were triggered by  a 7 nAChR-
mediated step-like depolarizations, while action potentials in between step-like 
depolarizations were not detected  [  35  ] . Therefore, it is unlikely that step-like depo-
larizations generated by distal  a 7 nAChRs (e.g., located far away from the record-
ing pipette) have been routinely undetected (due to, for example, electrotonic 
fi ltering) because action potentials generated by distal  a 7 nAChRs would have 
occurred randomly including in between detected step-like depolarizations and this 
has not been observed. 

 These fi ndings support the hypothesis that in the presence of PNU-120596, 
whole-cell patch-clamp recordings are able to detect  a 7 nAChR-mediated single ion 
channel openings from the entire cell surface. This conclusion justifi es use of this 
approach for estimation of the total whole-cell infl ux of Ca 2+  ions (see Sect.  3.4 ).  

   Current Net Charge and Ca 2+  Infl ux 

 The mean net charge per min generated by hippocampal CA1 pyramidal  a 7 nAChR 
ion channels in response to 10  m M choline plus 2  m M PNU-120596 was estimated 
to be ~9.3 pC/min = 0.16 pA  [  35  ] . This value is nearly tenfold smaller than the mean 
net charge of TM  a 7 nAChR-mediated responses elicited by 10  m M choline plus 
1  m M PNU-120596 which was estimated to be ~84 pC/min = 1.4 pA  [  34  ] . Therefore, 
given the 10% fractional Ca 2+  current, Ca 2+  ions would be expected to enter hip-
pocampal and TM neurons at a rate of ~0.93 pC/min and ~8.4 pC/min, respectively, 
which translates into a sustained Ca 2+  current ~0.016 pA and ~0.14 pA, respectively. 
These Ca 2+  currents were elicited by physiological concentrations of choline and 
concentrations of PNU-120596 that restored the auditory gating defi cit in mice  [  32  ] . 
Therefore, it is reasonable to expect that in  in vivo  settings, similar rates of Ca 2+  
entry in neurons expressing very low (such as hippocampal CA1 pyramidal neu-
rons) and very high (such as hypothalamic TM neurons) densities of functional  a 7 
nAChRs would contribute to behavioral improvements. However, a prolonged expo-
sure of neurons to nicotinic agonists in the presence of Type-II  a 7-PAMs may be 
cytotoxic because of excessive accumulation of Ca 2+  in the cytosol and possible 
activation of Ca 2+ -dependent apoptotic pathways (see Sects.  1.1  and  1.2 ). 

 The mean number of  a 7 nAChR ion channels opened in hippocampal CA1 pyra-
midal and hypothalamic TM neurons at any given time were estimated to be 
N 

pyr
 P 

open
  ~ 0.029 (i.e., 0.16 pA/5.5 pA) and N 

TM
 P 

open
  ~ 0.27 (i.e., 1.4 pA/5.1 pA), 

respectively, where N 
pyr

  and N 
TM

  are the total number of detectable functional  a 7 
nAChRs in a pyramidal and TM neuron, respectively. Note that in experiments with 
TM neurons, 10  m M choline plus 1  m M PNU-120596 were used  [  34  ] , whereas in the 
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hippocampal study, the concentration of PNU-120596 was increased to 2  m M 
because of the substantially lower levels of expression of functional  a 7 nAChRs in 
hippocampal CA1 pyramidal neurons compared to TM neurons  [  35  ] .  

   Direct Measurements of  a  7 nAChR-Mediated Ca 2+  Infl ux 
in the Presence of PNU-120596 

 Openings of individual  a 7 nAChR-mediated ion channels recorded in whole-cell 
confi guration would be expected to produce transient focal entries of Ca 2+  ions. 
These near-membrane Ca 2+  blinks have indeed been observed in fl uorescent Ca 2+  
imaging experiments conducted in fi lopodia of human neuroblastoma SH-SY5Y 
cells and in chick retinal ganglion cells expressing  a 7-nAChR  [  238  ] . In the pres-
ence of PNU-120596, activation of individual and/or clusters of  a 7 nAChRs by 
nicotine resulted in transient and very focal elevations of [Ca 2+ ] 

i
  (Fig.  27.6 ). These 

Ca 2+  blinks lasted for a few seconds and were clearly observed in the presence and 
absence of PNU-120596, but in the presence of PNU-120596, the frequency and the 
duration of Ca 2+  blinks were considerably increased  [  238  ] . The Ca 2+  blinks were 
resistant to hyperpolarization induced by valinomycin (a K +  ionophore), but van-
ished upon removal of external Ca 2+   [  238  ] . Ryanodine (1  m M) failed to inhibit the 
Ca 2+  blinks indicating that Ca 2+  ions do not enter cells from ryanodine-sensitive 
cytosolic Ca 2+  stores  [  238  ] . Figure  27.6  illustrates that, although the location and 
amplitudes of the Ca 2+  blinks were variable in the presence of PNU-120596, spa-
tiotemporally discrete Ca 2+  blinks could be clearly resolved in the same fi lopodia 
during nicotine application. While certain distinct regions (#2 and #4) produced 
repetitive Ca 2+  blinks, neighboring regions (#1, #3, and #5) did not display any Ca 2+  
events (Fig.  27.6a , b). The regions of brief Ca 2+  elevations were localized to a sub-
micron dimension (Fig.  27.6c ). These observations further support the novel con-
cept (see Sects.  3.1 – 3.4 ) that in the presence of Type-II  a 7-PAMs, individual 
functional  a 7 nAChRs generate distinct current events that may affect the behavior 
of the entire neuron  [  34,   35,   238  ] .    

  Fig. 27.6     The spatiotemporal profi le of the unitary Ca   2+    events (“blinks”) . ( a ) Sequential images 
from a time series showing two Ca 2+  blinks separated by 1.1  m m in a single fi lopodia. Top left 
image shows the regions used for measurements overlaid on the fl uorescence image, subsequent F/
F0 images were captured every second during application of nicotine + PNU-120596. ( b ) Time-
course of the F/F0 in two regions (#2 and #4) that exhibit repetitive Ca 2+  elevations lasting ~3 s and 
in contiguous regions (#1, #3, and #5) that did not display considerable Ca 2+  activity. ( c ) Intensity 
profi le of the F/F0 signal at  t  = 1 s in regions #2 and #4, showing the spatial spread of the Ca 2+  
elevations. The cross-section at >20% of the peak fl uorescence averaged 0.67  m m and 0.64  m m for 
regions #1 and #2, respectively. Cell calcium by CHURCHILL LIVINGSTONE (Reproduced 
from (Gilbert et al., 2009) [ 238 ] with permission of CHURCHILL LIVINGSTONE in the format 
Journal via Copyright Clearance Center)       
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   Non-neuronal NMDARs and  a 7 nAChRs 

 In addition to being broadly expressed in the central and peripheral nervous systems 
of mammals, functional NMDARs and  a 7 nAChRs are expressed in the immune 
system  [  186,   239–  250  ] , cancer cells  [  251–  257  ]  and other non-neuronal cells that 
promote angiogenesis and proliferation of cancer. Activation of  a 7 nAChRs in non-
neuronal systems inhibits infl ammation and promotes development of cancer. 
Although the exact role of NMDARs and  a 7 nAChRs in immune and cancer cells 
is not well understood, the high permeability of these receptor ion channels to Ca 2+  
ions suggest important implications for cellular function, survival and proliferation. 
Therefore, activation, inhibition and modulation of NMDARs and  a 7 nAChRs in 
immune and cancer cells can be used for therapeutic purposes to regulate immune 
defense mechanisms, reduce infl ammation, inhibit proliferation or induce apoptosis 
of cancer cells.  

   Conclusions and Future Directions 

 In central neurons, there appear to be multiple ways of achieving optimal levels of 
Ca 2+  entrance and [Ca 2+ ] 

i
  to support neuronal function and survival. Among these 

are inhibition of excessive Ca 2+  infl ux through NMDAR channels by low-potency 
use-dependent blockers, such as memantine, and enhancement of defi cient Ca 2+  
infl ux through  a 7 nAChR channels by partial agonists of  a 7 nAChRs, such as 
DMXBA. Moderate activation of highly Ca 2+ -permeable NMDAR- and  a 7 nAChR-
mediated ion channels has been shown to support neuronal function and is crucial 
for neuronal survival. Recently, positive allosteric modulators (PAMs) of  a 7 
nAChRs have been identifi ed as a promising pharmacological tool that can be used 
to enhance defi cient activation of  a 7 nAChRs associated with certain neurodegen-
erative disorders.  a 7-PAMs do not activate  a 7 nAChRs and thus,  a 7 nAChRs are 
activated by endogenous cholinergic agonists released naturally as needed. 
Activation of functional  a 7 nAChRs is neuroprotective and thus, benefi cial to neu-
rons that express these receptors. Although some neurons that experience age- or 
trauma-related defi cits in excitability (e.g., hippocampal CA1 pyramidal neurons 
 [  236,   237,   258  ] ) express only very low densities of functional  a 7 nAChRs  [  35  ] , in 
the presence of Type-II  a 7-PAMs, these neurons may also become eligible for ben-
efi ts from expression and activation of functional  a 7 nAChRs  [  35  ] . 

 Recent experimental results indicated that Type-II  a 7-PAMs may convert endog-
enous choline and ACh into effi cacious therapeutic agents by enhancing their 
potency for activation of  a 7 nAChRs. Therefore, in the presence of Type-II PAMs, 
such as 1 mg/kg PNU-120596, endogenous choline may produce moderate persis-
tent activation of  a 7 nAChRs and thus, moderately enhance Ca 2+  infl ux and neu-
ronal excitability in the absence of exogenous nicotinic agonists – effects that in 
 in vivo  settings may produce neuroprotection and cognitive benefi ts. Treatments 
involving endogenous choline may be safer than those involving synthetic  a 7 
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nAChR agonists. Hypothetically, activation of  a 7 nAChRs by endogenous nicotinic 
agonists can be moderately enhanced by optimal doses of  a 7-PAMs and a balanced 
choline diet  [  189  ] . Ideally,  a 7-PAM-based therapeutic interventions should be able 
to deliver neuroprotective and cognitive benefi ts by optimizing activation of  a 7 
nAChRs and  a 7 nAChR-mediated Ca 2+  infl ux in neuronal systems characterized by 
defi cient activation of  a 7 nAChRs. In addition, an intriguing possibility exists for 
 a 7-PAMs to join a cohort of projected drug candidates for enhancement of cogni-
tion in healthy individuals  [  259  ] . 

 Interestingly, only ~10% of hippocampal  a 7 proteins are surface-expressed  [  132  ]  
and therefore, the CA1 hippocampal region may contain a large pool of unused  a 7 
proteins. It is intriguing to speculate that under certain physiological conditions, this 
pool of dormant  a 7 proteins could be recruited to become functional and cell 
 surface-expressed. It is also reasonable to expect that certain endogenous compounds 
could enhance  a 7 nAChR activity in a manner similar to  a 7-PAMs. Finding these 
conditions and mechanisms of regulation of  a 7 nAChR surface expression and func-
tion may have a very positive impact on the future of cholinergic therapies aimed at 
restoring and boosting cognition in dementia patients and healthy individuals.      
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