
Chapter 8
Phagosomal and Lysosomal NO Synthesis

8.1 NO in Multivesicular Bodies, Phagosomes
and Secondary Lysosomes

Engulfment of particles by endocytosis is one of the most ancient and evolutionarily
conserved cellular processes in the eukaryotic cell (Chang 2009). Endocytosis starts
with the recognition and binding of particles by cell-surface receptors; followed by
budding of the cell membrane and the formation of an endosome which internal-
izes the bounded particles. Finally, the endosome undergoes fusion with lysosomes
containing hydrolytic enzymes to degrade the engulfed cargo (Fang 2004).

Late endosomes often enclose intraluminal vesicles that are formed by the en-
dosomal membrane growing inward (Fig. 8.1). These structures are also called
multivesicular bodies (Loesch et al. 1997; O’Neill and Quah 2008). They may fuse
with the plasma membrane and release their intraluminal vesicle content to the extra-
cellular environment. The secreted vesicles contain bacterial antigen motifs and may
function as signals for immune cells (Record et al. 2011). For instance, exosomes
derived from bacterially infected macrophages carry bacterial coat components and
stimulate bystander macrophages and neutrophils to secrete proinflammatory me-
diators and increase NO production (O’Neill and Quah 2008). Interestingly, the
circulating exosomes of platelets also generate NO in septic shock, which evokes
myocardial nitrosative injury (Azevedo et al. 2007). Platelet exosomes are also capa-
ble of inducing endothelial NO and peroxynitrite (ONOO−) generation, thus evoking
apoptosis and vascular damage (Gambim et al. 2007).

Phagocytosis is a special type of endocytosis: it is required for the engulfment of
solid particles such as pathogens, xenobiotics, protein complexes and cell debris of
necrotic or apoptotic cells (Fig. 8.1). The endosome formed in the phagocytosis pro-
cess is termed a phagosome (Weissmann 1964; Hirsch 1965). In vertebrate-type
phagocytosing cells such as macrophages, the association of NOS with phago-
somes has been shown (Winberg et al. 2007). These cells employ NO synthesis as a
pathogen killing mechanism, to evoke nitrosative damage of the engulfed microbes
(Malawista et al. 1992). Accordingly, microbial antigens increase NOS-activity,
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Fig. 8.1 Synthesis of NO in phagosomes. Example of phagocytosis: Dictyostelium discoideum
amoeba engulfs a rhodamine-labelled yeast cell a The arrow shows a newly formed phagocytic
cup. The phagosome membrane (pm) surrounds the particle. Green fluorescent protein is used
to tag actin filaments. Phase contrast (on the left) and confocal image (on the right), scale bar
5 μm. Reprinted with permission (Schleicher and Jockusch 2008). Late endosomes may form
multivesicular bodies: the endosome membrane (em) surrounds several intraluminal vesicles (ilv)
which may be released from the cell and activate immune cells b Author’s TEM image, scale bar
200 nm. The pathogen-containing phagosomes synthesize NO which forms RNS to kill pathogens
or facilitate lysosome-phagosome fusion by affecting actin organization around the phagosome.
The vesicular ATPase (V-ATPase) which generates an acidic environment in the phagosome, and
the phagocyte oxidase (NOX2) which generates ROS, also ensures pathogen killing c

which is then involved in phagocytosis (Zagryazhskaya et al. 2010), pathogen killing
and inflammation (Franchini et al. 1995; Nath and Powledge 1997; Sethi et al. 2001).

The activation of macrophages by bacterial components (e.g. lipopolysaccharide,
LPS) or inflammatory cytokines (e.g. interferon-γ , IFNγ ) evokes an inflammatory
or M1 phenotype acquisition (Benoit et al. 2008). This M1-type polarization of
macrophages increases the expression of iNOS, leads to the enrichment of iNOS in
the phagosome membrane and evokes a NO-burst (Winston et al. 1999). Vesicular
iNOS is derived from a cytosolic iNOS isoform, by a post-translational protein
modification, which increases the membrane association of the molecule (Vodovotz
et al. 1995). In resting macrophages iNOS is associated with non-lysosomal vesicles,
which undergo fusion with phagosomes thus translocate iNOS to the phagosomal
membrane upon activation and phagocytosis (Vodovotz et al. 1995).

Phagosomes of M1 macrophages also contain NADPH-dependent phagocyte oxi-
dase which produces superoxide (O2

−) and hydrogen peroxide (H2O2) thus increases
ROS generation within the phagosome (Fig. 8.1) (Winberg et al. 2007). With the
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activation of phagosomal NO synthesis the phagocyte oxidase activity can also be in-
creased (Brennan et al. 2004) and the generated O2

− forms ONOO− with NO. Under
the acidotic pH of the phagosome NO also gives nitrous acid (HNO) and other reactive
nitrogen species (RNS), which evoke nitrosative damage of the engulfed pathogens
(Jordao et al. 2008; Ehrt and Schnappinger 2009). Phagosome NO synthesis also
restricts the iron-availability of the engulfed cells thus limiting their survival (von Bar-
gen et al. 2011). Phagosomal NO synthesis not only ensures the elimination of the
pathogenic cells, but also helps F-actin assembly around the phagosomes, which
facilitates phagosome-lysosome fusion (Winberg et al. 2007) (Fig. 8.1).

Certain intracellular pathogens, such as Mycobacterium tuberculosis, Leishma-
nia donovani and Rhodococcus equi, have evolved defensive mechanisms, by which
they arrest the fusion of lysosomes with the phagosome and thus avoid degradation
by lysosomal enzymes (Winberg et al. 2007; von Bargen et al. 2011). Various cell
surface molecules of the engulfed pathogens mediate the inhibition of the lysosome-
phagosome fusion: e.g. lipophosphoglycans or trehalose dimycolate (Jordao et al.
2008; Ehrt and Schnappinger 2009). However, when macrophages are being acti-
vated by IFNγ or LPS, their NO burst overshadows these defense mechanisms and
lysosomes fuse properly with the phagosomes (Winberg et al. 2007).

Phagocytosing immune cells of invertebrates also synthesize NO, and they may
respond with increased NO synthesis to various microbial products (Nieto-Fernandez
et al. 1999; Beck et al. 2001). Rhizopoda, the most ancient phagocytosing eukaryotes
show NOS-like activity (Rojas-Hernandez et al. 2007) and also display reductive NO
synthesis (Risgaard-Petersen et al. 2006). These eukaryotes utilize phagocytosis to
engulf unicellular organisms, thus they may be considered the archetypes of phago-
cytosing immune cells. To date, whether a NO burst occurs during their phagocytosis
however, has not been established. Destruction of engulfed pathogens by cytotoxic
effects of NO is therefore an attribute of multicellular eukaryotes, and this mecha-
nism is conserved in the evolution of the innate immune system (Tauber 2003; Fang
2004).

8.2 Lysosomes of Granulocytes are Sources of NO

Granulocytes constitutively express iNOS, eNOS, and nNOS and display
calmodulin-dependent L-arginine/L-citrulline conversion (Maruo et al. 1999;
Cedergren et al. 2003; Heijnen et al. 2006; Saini et al. 2006; Saluja et al. 2010;
Saluja et al. 2011). Although NOS is also distributed in the cytoplasm and associated
with the nucleus (Heijnen et al. 2006; Saluja et al. 2010; Saluja et al. 2011),
electron microscopic analysis has revealed that granulocyte-specific lysosomes, the
so-called eosinophil and neutrophil granules are the most important NOS-containing
organelles in granulocytes (Fig. 8.2).

A subset of neutrophil granules (the so-called azurophilic granules) and the
eosinophil granules also contain heme-peroxidases (EC 1.11.1.7): myeloperoxidase
(MPO) and eosinophil peroxidase (EPO), respectively. A product of MPO is
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Fig. 8.2 Leukocyte granules contain NOS. Leukocyte granules are lysosome-like vesicles con-
taining various proteins implicated in host defense, hydrolytic enzymes, and plasma membrane
components, receptors of complements, chemoattractants and NOS. Some of the granules undergo
fusion with the phagosomes and they are involved in the killing and degradation of microorganisms.
Granule contents may also be released into the extracellular space, where they play distinct roles
in inflammation. TEM images showing a neutrophil granulocyte of mouse a neutrophil granules
b and eosinophil granules c form mouse granulocytes. nuc – nucleus, white arrow points to granules;
scale bar 650 nm (a), 300 nm (b, c); Author’s images. TEM images showing colloidal gold-labeling
of NOS (white arrows) in the granules of a human eosinophil granulocyte d (Saluja et al. 2010).
cp – cytoplasm, gr – eosinophil granule, nuc – nucleus, arrows label NOS signal (colloidal gold);
scale bar 200 nm, in insert 500 nm. (Source: With courtesy of Dr. Madhu Dikshit)

hypochlorous acid (HOCl), which is an effective pathogen killing substance, while
EPO generates hypobromite, another oxidizing agent which ensures defense against
helminths and bacteria (Fang 2004). Both MPO and EPO are responsible for gener-
ating RNS from degradation products of NO, such as NO2

− and peroxynitrous acid
(HONOO). In activated granulocytes, NO degrades to NO2

− or combines with O2
−

to ONOO−, which then forms HOONO (Pryor and Squadrito 1995) (Fig. 8.3). MPO
can convert NO2

− and HOONO to other RNS, such as nitryl chloride (NO2Cl) and
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Fig. 8.3 Synthesis of NO in
leukocyte granules. In the
leukocyte granules, NOS
synthesizes NO from
L-arginine. In neutrophil
granules, arginase-1
competes for the substrate
with NOS, and may thereby
limit NO levels. Peroxidases
(MPO, EPO) produce
reactive nitrogen species
(RNS) from derivatives of NO
(NO2

−, ONOO−, ONOOH ).
Antioxidant enzymes, e.g.
SOD, may limit the
generation of RNS. The RNS
evoke tyrosine nitration in the
cell (1a, 1b) or in the
extracellular space (2)

nitrogen dioxide (NO2) (Floris et al. 1993; Eiserich et al. 1998; But et al. 2004).
Similarly, EPO also metabolizes NO2

− to RNS in eosinophil granulocytes (Wu et al.
1999; Takemoto et al. 2007b). Activated human neutrophil granulocytes show in-
creased MPO activity along with their elevated NO production and both NO and
NO2

− are capable of increasing MPO activity (Sethi et al. 2001; But et al. 2004).
Nitrotyrosine is abundant in granules containing both iNOS and peroxidases

(Heijnen et al. 2006), suggesting that close vicinity of NO synthesis and peroxidase
activity results in tyrosine nitration. In accordance with this scenario, upregulation of
iNOS increases the level of 3-nitrotyrosine in eosinophil granulocytes (Duguet et al.
2001) and increased iNOS expression and tyrosine nitration occurs at inflammatory
sites infiltrated by neutrophil or eosinophil granulocytes (Wu et al. 1999; Iijima et al.
2001). The lack of iNOS or inhibition of NOS abolishes the generation of intracellu-
lar RNS in granulocytes (Numata et al. 1998; Iijima et al. 2001; Koarai et al. 2002).
EPO-deficiency also diminishes tyrosine nitration in eosinophil granulocytes in re-
sponse to allergen challenge in mice, showing that peroxidase activity is required for
protein nitration (Duguet et al. 2001). Although ONOO− evokes tyrosine nitration
by itself, MPO and EPO generated RNS play the leading role in nitration of tyrosine
residues in granulocytes (Eiserich et al. 1998; But et al. 2004).
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8.3 Effects of Protein Nitration Evoked by Granulocytes

The generation of RNS and consequent protein nitration may provide an additional
microbial killing mechanism in granulocytes (Malawista et al. 1992; Malawista
et al. 1996; Gutierrez-Correa et al. 2000). For instance, tyrosine nitration by resident
eosinophil granulocytes of the gastric mucosa (Takemoto et al. 2007b) is involved
in defense against pathogens, such as Helicobacter pylori (Kuwahara et al. 2000).
However, tyrosine nitration by tumor-infiltrating neutrophil granulocytes may also
evoke genotoxic damage and contribute to the burden of genetic abnormalities associ-
ated with tumor progression (Sandhu et al. 2000). In various inflammatory disorders
such as asthma, atopic dermatitis and allergic reactions, granulocyte-evoked tyrosine
nitration also accounts for tissue damage and remodeling (Maruo et al. 1999; Kubo
et al. 2005; Prado et al. 2006). Production of NO in granulocytes and consequent pro-
tein nitration is therefore considered as a cytotoxic, often harmful and inflammation
provoking mechanism.

However, tyrosine nitration of chemoattractant molecules, such as interleukin-8
and monocyte chemotactic protein-1 impairs their ability to increase granulocyte
chemotactic activity (Sato et al. 2000c; Sato et al. 2000b). Eosinophil granulo-
cytes also display diminished chemotaxis in response to tyrosine nitrated eotaxin,
interleukin-5 and RANTES (normal T cell expressed and secreted) (Sato et al. 1999;
Sato et al. 2000a). Tyrosine nitration of immunoglobulin-G impairs its ability to
induce inflammatory granulocyte activation (Uesugi et al. 2000). Tyrosine nitration
of chemotactic factors therefore diminishes granulocyte recruitment to inflammatory
sites. Moreover, tyrosine nitration also inhibits granulocyte adherence to endothelial
cells, therefore NO may limit the endothelial injury evoked by activated granulocytes
(Banick et al. 1997; Su et al. 1998). The activation of the nuclear receptor perox-
isome proliferator-activated receptor gamma (PPARγ) also decreases granulocyte
rolling and adhesion by a mechanism dependent on NO production (Napimoga et al.
2008). Apart from tyrosine-nitrated proteins, other nitrated organic compounds, such
as unsaturated fatty acids also exert an anti-inflammatory profile by attenuation of
neutrophil degranulation, O2

− generation and integrin expression (Coles et al. 2002).
Various immunomodulatory factors are capable of inducing iNOS gene tran-

scription in granulocytes and increased iNOS activity is proportional with tyrosine
nitration under certain pathological conditions (Pautz et al. 2010). However, studies
with iNOS deficient mice have pointed out that tyrosine nitration is not completely
abolished by the lack of iNOS (Kenyon et al. 2002), since other NOS isoforms may
also be sources of NO and cell types other than granulocytes also contribute to tyro-
sine nitration in inflamed tissues (Maarsingh et al. 2009). Collectively, inflammatory
activation of granulocytes evokes NO production, and NO is converted to RNS by
peroxidases, leading to tyrosine nitration. Protein nitration evokes nitrosative dam-
age in the inflammatory environment; however, nitration of various biomolecules
inhibits granulocyte-mediated inflammation.

Apart from the effects of NO-derived RNS, NO also acts through the cGMP/PKG
pathway in granulocytes (Wyatt et al. 1993). The NO/cGMP/PKG signaling induces
degranulation, the release of inflammation-modulating substances (Wyatt et al.
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1993). Moreover, NO is also required for granulocyte chemotaxis and metallopro-
teinase secretion (Iijima et al. 2001; DiScipio et al. 2006). Under oxidative stress, NO
generation also helps the survival of neutrophil granulocytes and contributes to sus-
tained inflammation (Riazantseva et al. 2010). However, it has not been established
whether the lysosomal NOS-pool would be the source of NO in these events.

8.4 Arginase-1 Reduces NO Synthesis in Neutrophil
Granulocytes

Availability of L-arginine is a key determinant of NO biosynthesis. Neutrophil granu-
locytes constitutively express arginase-1, which hydrolyzes L-arginine to L-ornithine
and urea (Munder et al. 2005; Munder et al. 2006). In neutrophil granulocytes,
arginase-1 is confined to gelatinase containing granules, which are also sites of NO
synthesis. Within the granules, arginase-1 consumes L-arginine, and thus reduces NO
generation by NOS (Jacobsen et al. 2007) (Fig. 8.3). Competition of the two enzymes
for the same substrate therefore, determines the level of NO production in the neu-
trophil granules. It has also been shown that L-ornithine and Nω-hydroxy-L-arginine,
an intermediate product of NO biosynthesis inhibit arginase-1, and L-ornithine also
reduces uptake of L-arginine in NOS-containing cells (Maarsingh et al. 2009). Inter-
play between arginase-1 and NOS therefore, may ensure balanced NO production in
the neutrophil granules. However, increased consumption of L-arginine by arginase-
1 also increases tyrosine nitration (Takemoto et al. 2007a) since reduced availability
of L-arginine increases O2

− generation by the iNOS reductase domain (Xia et al.
1998), leading to production of ONOO− in the leukocytes (Maarsingh et al. 2009).

Because eosinophil granulocytes do not express arginase-1, the regulation of NOS
activity through L-arginine levels is specific to neutrophil granulocytes (Luckner-
Minden et al. 2010). Why eosinophil granulocytes are able to evoke higher levels of
tyrosine nitration than neutrophil granulocytes (Takemoto et al. 2007b) may be due
to the lack of regulation of NOS catalytic activity. In eosinophil granulocytes, cata-
lase and superoxide dismutase (SOD) may counteract the RNS generation, without
affecting NO synthesis (Takemoto et al. 2007b).

8.5 Chapter Summary

NO in the endosomes • Endosome-derived multivesicular bodies may emit exosomes, which
contain RNS and cause nitrosative damage in tissues; or activate NO
synthesis in immune cells

• In phagosomes NO and RNS are pathogen killing agents. Inflam-
matory stimuli increase iNOS transcription and the iNOS protein is
targeted from the cytosol to the phagosome membrane

NO in the lysosomes • Lysosomes of granulocytes produce NO which leads to protein
nitrosylation, affects pathogen killing and inflammation. Substrate
restriction may limit NO synthesis within the lysosomes
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