
Chapter 8
From Classical to Canonical Ordination

Pierre Legendre and H. John B. Birks

Abstract The simple or classical ordination methods mostly used by palaeo-
ecologists and palaeolimnologists are principal component analysis (PCA) and
correspondence analysis (CA), and, more rarely, principal coordinate analysis
(PCoA) and non-metric multidimensional scaling (NMDS). These methods are
reviewed in a geometric framework. They mostly differ by the types of distances
among objects that they allow users to preserve during ordination. Canonical
ordination methods are generalisations of the simple ordination techniques; the
ordination is constrained to represent the part of the variation of a table of response
variables (e.g., species abundances) that is maximally related to a set of explanatory
variables (e.g., environmental variables). Canonical redundancy analysis (RDA) is
the constrained form of PCA whereas canonical correspondence analysis (CCA) is
the constrained form of CA. Canonical ordination methods have also been proposed
that look for polynomial relationships between the dependent and explanatory
variables. Tests of statistical significance using permutation tests can be obtained
in canonical ordination, just as in multiple regression. Canonical ordination serves
as the basis for variation partitioning, an analytical procedure widely used by
palaeolimnologists.
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Introduction

To ordinate is to arrange objects in some order (Goodall 1954). Ordination
procedures are well-known to ecologists who wish to represent and summarise
their observations along one, two, or a few axes. The most simple case is the
ordination of sites along a single variable representing an environmental gradient
(e.g., lake-water pH), or a sampling variable such as depth along a sediment core
or along the estimated ages of levels in a sediment core. Ordination diagrams are
simply scatter-plots of the objects (e.g., core levels) on two or sometimes three axes
according to the values taken by the objects along the variables comprising the axes.

When the data are multivariate, the problem is either to choose two pertinent
variables for plotting the observations, or to construct synthetic variables that
represent, in some optimal mathematical way, the set of variables under study; these
synthetic variables may then be used as the major axes for the ordination. The data
matrix subjected to analysis may contain a set of environmental variables, or the
multi-species composition of the assemblage under study. In such cases, we will
say that we are performing an ordination in a space of reduced dimensionality, or an
ordination in reduced space, since the original data-set has many more dimensions
(variables) than the ordination graph we want to produce.

This chapter describes the choices that have to be made in order to obtain a
meaningful and useful ordination diagram. It will also show how the methods of
canonical ordination, which are widely used to relate species to environmental data
in palaeolimnology, are extensions within the framework of regression modelling
of two classical ordination methods. Some forms of ordination analysis, classical or
canonical, are widely used by palaeolimnologists as tools in the handling, summari-
sation, and interpretation of palaeolimnological data, either modern assemblages or
core fossil assemblages (Smol 2008). The various types of use of ordination analysis
in palaeolimnology are summarised in Table 8.1. No attempt is made here to provide
a comprehensive review of palaeolimnological applications of ordination methods.
Emphasis is placed instead on basic concepts and the critical methodological
questions that arise in the use of ordination methods in palaeolimnology. Birks
(2008, 2010) provides a short overview of the range of ordination methods currently
available and of the general use and value of ordination techniques in ecology and
palaeoecology. Borcard et al. (2011) discuss classical (unconstrained) and canonical
(constrained) ordinations and their implementation with R.
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Table 8.1 Palaeolimnological uses of ordination analysis

Modern biological assemblages (e.g., diatoms, chironomids)
Estimate the amount of compositional change or turnover – DCA
Summarise graphically the major patterns of variation – PCA, tb-PCA, CA, DCA, more rarely

PCoA or NMDS
Display results of clustering or partitioning of data in a few dimensions – PCA, tb-PCA, CA,

DCA, more rarely PCoA or NMDS
Modern environmental data (e.g., lake-water chemistry)

Summarise graphically the major patterns of variation – PCA, more rarely PCoA or NMDS
Display results of clustering or partitioning of data in a few dimensions – PCA, more rarely

PCoA or NMDS
Fossil biological assemblages (e.g., diatoms, chironomids)

Estimate the amount of compositional change or turnover – DCA or its canonical relative
DCCA with object age or depth as the sole constraining variable

Summarise graphically the major patterns of variation – PCA, tb-PCA, CA, DCA, more rarely
PCoA or NMDS

Summarise stratigraphically the major patterns of variation – plot PCA, tb-PCA, CA, or DCA
ordination axis object scores (e.g., axes 1–3) stratigraphically

Modelling temporal structure – RDA, tb-RDA, db-RDA, or CCA with PCNM temporal
constraints

Down-core non-biological data (e.g., geochemistry, magnetics)
Summarise graphically the major patterns of variation – PCA
Summarise stratigraphically the major patterns of variation – plot PCA ordination axis object

scores stratigraphically
Modelling temporal structure – RDA with PCNM temporal constraints

Modern and fossil biological assemblages (e.g., diatoms, chironomids)
Display similarities and dissimilarities between modern and fossil assemblages – PCA,

tb-PCA, CA, DCA, more rarely PCoA or NMDS with either modern or fossil analysed
passively or analysed together

Modern biological assemblages and modern environmental data (e.g., diatoms and
lake-water chemistry)

Estimate the amount of compositional change or turnover along individual environmental
gradients – DCCA

Summarise graphically the major patterns of biological variation explained by the
environmental variables – RDA, tb-RDA, db-RDA, or CCA

Summarise graphically the major patterns of biological variation remaining after the partialling
of other environmental variables – partial RDA, partial tb-RDA, partial db-RDA, or partial
CCA

Assessment of statistical significance of single or combined environmental variables as
predictors of the biological variation – RDA, tb-RDA, db-RDA, or CCA with Monte Carlo
permutation tests

Development of ‘minimal adequate model’ of environmental variables that explain statistically
the biological variation almost as well as the full set of environmental variables – RDA,
tb-RDA, db-RDA, or CCA with variable selection (e.g., forward selection)

Partitioning biological variation among two or more sets of explanatory variables – RDA and
partial RDA, tb-RDA and partial tb-RDA, db-RDA and partial db-RDA, CCA and partial
CCA

Modelling spatial structure – RDA, tb-RDA, db-RDA, or CCA with PCNM spatial constraints
(continued)
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Table 8.1 (continued)

Modern biological assemblages, modern environmental data, and fossil biological
assemblages (e.g., diatoms and lake-water chemistry)

Display similarities and dissimilarities between modern and fossil assemblages in relation to
modern environmental gradients – RDA, tb-RDA, db-RDA, or CCA with the fossil
assemblages analysed passively

Fossil biological assemblages and palaeoenvironmental variables (e.g., diatoms, occurrences
of volcanic tephras)

Test hypotheses of biological responses to particular environmental variables – RDA and
partial RDA, tb-RDA and partial tb-RDA, db-RDA and partial db-RDA, CCA and partial
CCA with Monte Carlo permutation tests

Modelling temporal structure – PCNM
Fossil biological assemblages from many sites

Summarise graphically the major patterns of variation – PCA, tb-PCA, CA, DCA, more rarely
PCoA or NMDS

Modelling spatial structure – RDA, tb-RDA, db-RDA, or CCA with PCNM spatial constraints

CA correspondence analysis, CCA canonical correspondence analysis, db-RDA distance-based
canonical redundancy analysis, DCA detrended correspondence analysis, DCCA detrended canon-
ical correspondence analysis, NMDS non-metric multidimensional scaling, PCA principal com-
ponent analysis, PCNM principal coordinates of a neighbour matrix, PCoA principal coordinate
analysis, tb-PCA transformation-based principal component analysis, tb-RDA transformation-
based canonical redundancy analysis

Basic Concepts in Simple Ordination

The simple ordination methods mostly used by (palaeo)ecologists and (palaeo)
limnologists are principal component analysis (PCA), correspondence analysis
(CA) and its relative, detrended correspondence analysis (DCA), principal coordi-
nate analysis (PCoA), and non-metric multidimensional scaling (NMDS) (Prentice
1980, 1986). These methods will be reviewed here in a geometric framework. They
mostly differ in the types of distances among objects that they attempt to preserve
in the ordination.

Simple ordination is used in palaeolimnology to address two main types of
questions. (1) In a study of sediment cores, ordination is used to identify the main
gradients in the species assemblage data, which are multivariate by nature, and to
interpret these gradients using species loadings on the ordination axes (see Birks
2012b: Chap. 11). Ordinations are also used as graphical templates to draw groups
of sampling units obtained by clustering, as well as trajectories of the multivariate
species data through time to estimate the magnitude and rates of change in species
assemblage composition (Birks and Gordon 1985; Jacobson and Grimm 1986; Birks
1992, 2012b: Chap. 11). (2) Ordination of modern objects from various locations is
also used as a basis on which fossil objects can be projected as passive objects for
comparison between modern and fossil assemblages (Lamb 1984; Birks and Gordon
1985; Birks 1992, 2012b: Chap. 11).

Starting with a data-set, several choices have to be made before obtaining an
ordination (Table 8.2). These choices will be described in some detail because a
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Table 8.2 Questions that must be addressed prior to ordination analysis

Transform physical data
Univariate distributions are not symmetrical ) Apply skewness-reduction transformation
Variables are not in the same physical units ) Apply standardisation or ranging
Multistate qualitative variables ) In some cases, transform them to dummy variables

Transform biological composition data (species presence-absence or abundance)
Reduce asymmetry of distributions ) Apply square root or log(y C c) transformation
Make biological composition data suitable for Euclidean-based ordination methods ) Use the

chord, chi-square, or Hellinger transformation
Choose an appropriate distance function
Popular similarity or distance functions are:

Physical binary data: simple matching coefficient
Species presence-absence data: Jaccard, Sørensen, and Ochiai coefficients. The transformation

D D p
1 � S ensures a fully Euclidean representation in principal coordinate analysis

Quantitative physical data: Euclidean distance on standardised or ranged variables
Physical data of mixed precision levels (quantitative, qualitative, binary): Gower similarity
Species abundance data: the chord, chi-square, Hellinger coefficients, as well as Clark’s

coefficient of divergence, are Euclidean. The Steinhaus similarity (equivalent to the
Odum/Bray-Curtis distance) and Whittaker’s index of association may not be Euclidean

good understanding of their implications is likely to produce more informative and
useful ordination diagrams. Users of ordination methods should not let themselves
be guided blindly by the implicit choices that are inherent to some methods or
computer programs. The critical decisions to be made are the following:

• Do the data (environmental or assemblage data) need to be transformed prior to
ordination analysis?

• Which distance measure should be preserved by the ordination method?
• Should a metric or non-metric ordination method be used?
• How many axes are required?

These decisions will now be discussed in some detail.

Transformation of Physical Data

Physical, chemical, or geological variables are often used as explanatory variables in
palaeolimnological studies. They may also be used directly to obtain ordinations of
the objects or sites on the basis of these variables (Table 8.1). Three problems may
require pre-processing of the data before ordination: (a) if the distributions of the
data along the variables are not symmetrical, skewness may need to be reduced;
(b) if the variables are not all expressed in the same physical units, they need to
be transformed to eliminate their physical units; (c) multistate qualitative variables
(e.g., rare, common, abundant) may require, in some cases, transformation into
dummy variables prior to ordination. Possible solutions to these three problems are
as follows.
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1. An ordination in which some of the points are clumped in a big mass while
other points are stretched across the diagram is not very useful or informative.
It is better to have the points scattered in a fairly homogeneous fashion across
the diagram, with perhaps some clumping in the centre of the diagram, or in
some areas of higher density if the data are clumped; the latter case may suggest
that a cluster analysis might produce a more interesting and useful multivariate
description of the data (see Legendre and Birks 2012: Chap. 7).

The data should be initially examined using univariate methods, such as
computing skewness statistics, or drawing frequency histograms (see Juggins and
Telford 2012: Chap. 5). Depending on the type of asymmetry found, various
transformations can be applied, such as square root, double square root, or
log transformation. General methods, such as the Box-Cox transformations, are
available to find automatically the most efficient normalising transformation;
see Sokal and Rohlf (1995), Legendre and Legendre (1998, 2012), and Jug-
gins and Telford 2012: Chap. 5. These are often referred to as normalising
transformations because removing the asymmetry is an important step towards
obtaining normally-distributed data. We emphasise, however, that the objective
prior to ordination is not to obtain a multinormal distribution of the data, but
simply to reduce the asymmetry of the distributions. Tests of normality may be
useful to screen the data and identify the variables whose distributions should
be examined more closely in order to find, if possible, a skewness-reducing
transformation (see Juggins and Telford 2012: Chap. 5).

Scientists often worry about transforming variables. Is it permissible? The
original physical unit in which an environmental variable is measured imposes
a scale to the data that is as unlikely to be related to the response of the species
to this variable as any other scale that we may impose by applying a nonlinear
transformation to the data. In order to relate a physical variable to the response of
the species, physiological studies would be required to determine what the most
appropriate transformation is. So, short of having such information available
to them, users of ordination methods are left with statistical criteria only, such
as skewness of the distributions, to decide on the transformation of physical
variables.

2. In most cases, physical variables are not expressed in the same physical units;
some may be in cm, others in �g L�1, in ıC, or in pH units. Such variables need to
be transformed to eliminate the physical dimensions before being used together
to produce an ordination. Note that log-transformed data are dimensionless
because logarithms are exponents of a base and exponents are dimensionless.
There are two main methods for eliminating physical dimensions: standardisation
and ranging. They both eliminate the physical units by dividing the original data
by a value possessing the same physical units.

• Standardise variable y to z:

zi D yi � Ny
sy

(8.1)
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where yi is the original value of variable y for object i, Ny is the mean value
of y, and sy is the estimated standard deviation of y. zi is the standardised
value of variable y for object i. Variable standardisation is available in
the decostand() function of the veganR-language package (method D
'standardize').

• Relative-scale variables: range variable y to y’ using equation

y0
i D yi =ymax (8.2)

where y0
i is the ranged value of y for object i and ymax is the maximum value

of y in the whole data table. This form of ranging is used for relative-scale
variables, where ‘zero’ means the absence of the characteristic of interest.
This transformation is available in the decostand() function of the vegan
R-language package (method D 'max').

• Interval-scale variables: range variable y to y’ using equation

y
0

i D yi =ymin

ymax � ymin
(8.3)

where y
0

i is the ranged value of y for object i, whereas ymin and ymax are,
respectively, the minimum and maximum values of y in the whole data
table. This form of ranging is used for interval-scale variables, in which
the value ‘zero’ is chosen arbitrarily and whose range may include negative
values. Temperatures in ıC are an example of an interval-scale variable. This
transformation is available in the decostand() function of the vegan
R-language package (method D 'range').

Variables may also be standardised in order to bring their variances to unity.
It is preferable to apply skewness-reducing transformations before standardising
the data. If the opposite is done, standardisation would produce negative values
which are incompatible with square root, log, or Box-Cox transformations.
Ranging, which brings all values of a variable into the interval [0,1], may be
used before or after applying a skewness-reducing transformation.

3. Multistate qualitative variables may be handled in different ways. If the ordi-
nation is to be obtained through a method requiring the prior calculation of
a distance matrix (PCoA, NMDS), resemblance coefficients are available that
are capable of handling mixtures of quantitative and qualitative variables, as
discussed in the section below on Choice of an Appropriate Distance Function
and in Simpson (2012: Chap. 15). If, on the other hand, the ordination is to be
obtained through a method that will implicitly preserve the Euclidean distance
among objects (PCA, redundancy analysis (RDA)), the qualitative data must
be transformed in some way prior to being subjected to the ordination method
because a qualitative variable is not a metric or measurement variable; in other
words, the distance between states 1 and 3 of a qualitative variable is not twice
as large as the distance between states 1 and 2. Variables from which Euclidean
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distances are calculated must be metric (or quantitative). The transformation can
be done in one of two ways:

• A qualitative variable possessing p states can be recoded into p binary (0–1)
variables, called dummy variables, using one dummy variable for each state
of the qualitative variable. The coding method is described in Legendre and
Legendre (1998, 2012: Sect. 1.5.7). Dummy variables can be used in PCA or
RDA only if the program provides a possibility for weighting the variables.
Indeed, if the variables are standardised or ranged prior to the ordination, a
qualitative variable recoded into p dummy variables occupies p dimensions in
the full-dimensional representation of the data. Each dummy variable should
be downweighted to have a weight of 1/p in the analysis while the other
quantitative variables have a weight of 1. The program CANOCO (ter Braak
1988a; ter Braak and Šmilauer 2002) offers the possibility of specifying
weights for variables in PCA or RDA.

• Redundancy analysis (RDA) or canonical correspondence analysis (CCA) can
be used to find a transformation of a qualitative multistate variable into a
quantitative variable which is optimal with respect to a table of assemblage
composition data (Legendre and Legendre 1998: p. 597). This is done as
follows. Recode the qualitative variable into dummy variables as in the
previous paragraph. Remove one of the dummy variables because, with all
p dummy variables, the variance-covariance matrix of the dummy variables
is singular and cannot be inverted; this is an obligatory step for explanatory
variables in multiple regression and canonical analysis. For RDA or CCA, use
the table of species composition data as the response matrix and the table of
dummy variables as the explanatory matrix. If the first canonical ordination
axis explains most of the canonical variance, it can be used in further analyses
as a quantitative representation of the original qualitative variable. [Note: in
the program CANOCO, the last of a set of dummy variables is automatically
removed from the calculations. In the same way, the last state of a ‘factor’
variable is removed from the calculations in the rda() and cca() functions
of the vegan R-language package, but the centroids of all states are drawn in
the biplot.]

Transformation of Assemblage Composition Data

Assemblage composition data (species abundances) for short gradients, which
contain relatively few zeros, can be ordinated by PCA or RDA: in that case
the Euclidean distance is a meaningful measure of the ecological distance among the
observations. These variables may, however, have asymmetric distributions because
species tend to have exponential growth when conditions are favourable. This well-
known fact has been embedded in the theory of species-abundance models; see
He and Legendre (1996, 2002) for a synthetic view of these models. To reduce
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the asymmetry of the distributions, the species abundance variable y may be
transformed to y’ by taking the square root or the fourth root (which is equivalent to
taking the square root twice), or by using a log transformation:

y0 D y0:5 or y0 D y0:25 or y0 D log.y C c/ (8.4)

where y is the species abundance and c is a constant. Usually, c D 1 in species log
transformations, so that an abundance y D 0 is transformed into y’ D log(0 C 1) D 0
for any logarithmic base. Michael Palmer (http://www.okstate.edu/artsci/botany/
ordinate/) does not recommend this transformation for absolute biomass data
because it gives different values depending on the mass units (e.g., g or kg)
used to record biomass. Another transformation that reduces the asymmetry of
heavily skewed abundance data is the one proposed by Anderson et al. (2006). The
abundance data yij are transformed to an exponential scale that makes allowance for
zeros: y0

ij D log10

�
yij

�C1 when yij > 0 or y0
ij D 0 when yij D 0. Hence, for yij D f0,

1, 10, 100, 1000g, the transformed values are f0, 1, 2, 3, 4g. This transformation is
available in the decostand() function of the vegan package (method D 'log').

Community composition data sampled along long ecological gradients typically
contain many zero values because species are known to have generally unimodal
responses along environmental gradients (ter Braak and Prentice 1988). The
proportion of zeros is greater when the sampling has crossed a long environmental
gradient. This is because species have optimal niche conditions, where they are
found in greater abundances along environmental variables (see Juggins and Birks
2012: Chap. 14). The optimum for a species along an environmental variable
corresponds to the centre of its theoretical Hutchinsonian niche along that factor.
These propositions are discussed in most texts of community ecology and, in
particular, in Whittaker (1967) and ter Braak (1987a). Because ordination methods
use a distance function as their metric to position the objects with respect to one
another in ordination space, it is important to make sure that the chosen distance is
meaningful for the objects under study. Choosing an appropriate distance measure
means trying to model the relationships among the sites appropriately for the
assemblage composition data at hand. The choice of a distance measure is an
ecological, not a statistical decision.

An example presented in Legendre and Legendre (1998: p. 278, 2012: Sect.
7.4.1) shows that the Euclidean distance function may produce misleading results
when applied to assemblage composition data. Alternative (dis)similarity functions
described in the next section, which were specifically designed for assemblage
composition data, do not have this drawback. In some cases, distance measures
that are appropriate for assemblage composition data can be obtained by a two-step
procedure: first, transform the species abundance data in some appropriate way, as
described below; second, compute the Euclidean distance among the sites using the
transformed data (Fig. 8.1). This also means that assemblage composition data trans-
formed in these ways can be directly used to compute ordinations by the Euclidean-
based methods of PCA or RDA; this approach is called transformation-based PCA
(tb-PCA) or transformation-based RDA (tb-RDA). The transformed data matrices

http://www.okstate.edu/artsci/botany/ordinate/
http://www.okstate.edu/artsci/botany/ordinate/
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Chord
distance
matrix

Raw data 

(sites x species)

Transformed 
data 

(sites x species)

Chord 

transformation

Chord
distance

among sites

Euclidean 
distance 
among sites

Fig. 8.1 The role of the data
transformations as a way of
obtaining a given distance
function. The example uses
the chord distance (Modified
from Legendre and Gallagher
2001)

can also be used in K-means partitioning, which is another Euclidean-based method
(see Legendre and Birks 2012: Chap. 7). Legendre and Gallagher (2001) have
shown that the following transformations can be used in that context (some of these
transformations have been in use in community ecology and palaeoecology for a
long time, e.g., by Noy-Meir et al. (1975) and by Prentice (1980)).

1. Transform the species abundances from each object (sampling unit) into a vector
of length 1, using the equation:

y0
ij D yij

,vu
u
t

pX

j D1

y2
ij (8.5)

where yij is the abundance of species j in object i. This equation, called the ‘chord
transformation’ in Legendre and Gallagher (2001), is one of the transformations
available in the program CANOCO (Centring and standardisation for ‘samples’:
Standardise by norm) and in the decostand() function of the vegan R-
language package (method D 'normalize'). If we compute the Euclidean distance

DEuclidean
�
x0

1; x0
2

� D
vu
u
t

pX

j D1

�
y0

1j � y0
2j

�2
(8.6)

between two rows (x0
1, x0

2) of the transformed data table, the resulting value is
identical to the chord distance (Eq. 8.18) that could be computed between the
rows of the original (untransformed) species abundance data table (Fig. 8.1).
The interest of this transformation is that the chord distance, proposed by
Orlóci (1967) and Cavalli-Sforza and Edwards (1967), is one of the distances
recommended for species abundance data. Its value is maximum and equal top

2 when two objects have no species in common. As a consequence, after the
chord transformation, the assemblage composition data are suitable for PCA or
RDA which are methods preserving the Euclidean distance among the objects.

2. In the same vein, if the data [yij] are subjected to the ‘chi-square distance
transformation’ as follows:
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y0
ij D p

yCC
yij

yiC
p

yCj

(8.7)

where yiC is the sum of the row (object) values, yCj is the sum of the
column (species) values, and yCC is the sum of values of the whole data
table, then Euclidean distances computed among the rows of the transformed
data table [y0

ij] are equal to chi-square distances (Eq. 8.19) among the rows
of the original, untransformed data-table. The chi-square distance, preserved in
correspondence analysis, is another distance often applied to species abundance
data. Its advantage or disadvantage, depending upon the circumstances, is that
it gives higher weight to the rare than to the common species. The chi-square
distance transformation is available in the decostand() function of the vegan
R-language package (method D 'chi.square').

3. The data can be transformed into profiles of relative species abundances through
the equation:

y0
ij D yij

yiC
(8.8)

which is a widespread method of data standardisation, prior to analysis, espe-
cially when the sampling units are not all of the same size as is commonly the
case in palaeolimnology. Data transformed in that way are called compositional
data. In palaeolimnology and community ecology, the species assemblage is con-
sidered to represent the response of the community to environmental, historical,
or other types of forcing; the variation of any single species has no clear inter-
pretation. Compositional data are used because ecologists and palaeoecologists
believe that the vectors of relative proportions of species can lead to meaningful
interpretations. Many fossil or recent assemblage data-sets are presented as
profiles of relative abundances, for example, in palynology and palaeolimnology,
or as percentages if the values y0

ij are multiplied by 100. Computing Euclidean
distances among rows (objects) of a data-table transformed in this way produces
‘distances among species profiles’ (Eq. 8.20). The transformation to profiles of
relative abundances is available in the decostand() function of the vegan
R-language package (method D 'total'). Statistical criteria investigated by Leg-
endre and Gallagher (2001) show that this is not the best transformation; the
Hellinger transformation (next paragraph) is preferable. Log-ratio analysis has
been proposed as a way of analysing compositional data (Aitchison 1986). This
method is, however, only appropriate for data that do not contain many zeros (ter
Braak and Šmilauer 2002).

4. A modification of the species profile transformation is the Hellinger
transformation:

y0
ij D

r
yij

yiC
(8.9)
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Computing Euclidean distances among rows (objects) of a data table transformed
in this way produces a matrix of Hellinger distances among sites (Eq. 8.21). The
Hellinger distance, described in more detail below, is a measure recommended for
clustering or ordination of species abundance data (Prentice 1980; Rao 1995). It has
good statistical properties as assessed by the criteria investigated by Legendre and
Gallagher (2001). The Hellinger transformation is available in the decostand()
function of the vegan R-language package (method D 'hellinger').

Before using these transformations, one may apply a square root or log transfor-
mation to the species abundances in order to reduce the asymmetry of the species
distributions (Table 8.2). The transformations described above can also be applied
to presence-absence data. The chord and Hellinger transformations appear to be
the best for general use. The chi-square distance transformation is interesting when
one wants to give more weight to the rare species; this is the case when the rare
species are considered to be good indicators of special ecological conditions. We
will come back to the use of these transformations in later sections. Prior to these
transformations, any of the standardisations investigated by Noy-Meir et al. (1975),
Prentice (1980), and Faith et al. (1987) may also be used if the study justifies it:
species adjusted to equal maximum abundances or equal standard deviations, sites
standardised to equal totals, or both.

Choice of an Appropriate Distance Function

Most statistical and numerical analyses assume some form of distance relationship
among the observations. Univariate and multivariate analyses of variance and
covariance, for instance, assume that the Euclidean distance is the appropriate way
of describing the relationships among objects; likewise for methods of multivariate
analysis such as K-means partitioning and PCA (see Legendre and Birks 2012:
Chap. 7). It is the responsibility of the scientist doing the analyses either to make
sure that this assumption is met by the data, or to model explicitly relationships of
other forms among the objects by computing particular distance functions and using
them in appropriate methods of data analysis.

Many similarity or distance functions have been used by ecologists; they are
reviewed by Legendre and Legendre (1998, 2012: Chap. 7), Borcard et al. (2011:
Chap. 3) and other authors. We will only mention here those that are most commonly
used in the ecological, palaeoecological, and palaeolimnological literature.

1. The Euclidean distance (Eq. 8.6) is certainly the most widely used coefficient
to analyse tables of physical descriptors, although it is not always the most
appropriate. This is the coefficient preserved by PCA and RDA among the rows
of the data matrix (objects), so that if the Euclidean distance is considered
appropriate to the data, these methods can be applied directly to the data matrix,
perhaps after one of the transformations described in the two previous sections,
to obtain a meaningful ordination.
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2. For physical or chemical data, an alternative to the Euclidean distance is to
compute the Gower (1971) coefficient of similarity, followed by a transformation
of the similarities to distances. The Gower coefficient is particularly important
when one is analysing a table containing a mixture of quantitative and qualitative
variables. In this coefficient, the overall similarity is the mean of the similarities
computed for each descriptor j (see Simpson 2012: Chap. 15). Each descriptor is
treated according to its own type. The partial similarity (sj) between objects x1

and x2 for a quantitative descriptor j is computed as follows:

sj .x1; x2/ D 1 �
ˇ
ˇy1j � y2j

ˇ
ˇ

Rj

(8.10)

where Rj is the range of the values of descriptor j across all objects in the
study. The partial similarity sj is a value between 0 (completely dissimilar) and 1
(completely similar). For a qualitative variable j, sj D 1 if objects x1 and x2 have
the same state of the variable and sj D 0 if they do not. The Gower similarity
between x1 and x2 is obtained from the equation:

S.x1; x2/ D
pX

j D1

sj .x1; x2/ =p (8.11)

where p is the number of variables. The variables may receive different weights
in this coefficient; see Legendre and Legendre (1998, 2012) for details. See also
the note at the end of this section about implementations in R.

For presence-absence of physical descriptors, one may use the simple match-
ing coefficient:

S.x1; x2/ D a C d

a C b C c C d
D a C d

p
(8.12)

where a is the number of descriptors for which the two objects are coded 1, d is
the number of descriptors for which the two objects are coded 0, whereas b and
c are the numbers of descriptors for which the two objects are coded differently.
p is the total number of physical descriptors in the table.

There are different ways of transforming similarities (S) into distances (D).
The most commonly used equations are:

D.x1; x2/ D 1 � S.x1; x2/ (8.13)

and

D.x1; x2/ D
p

1 � S.x1; x2/ (8.14)
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For the coefficients described in Eqs. 8.11, 8.12, 8.15, 8.16 and 8.17, Eq. 8.14
is preferable for transformation prior to principal coordinate ordination because
the distances so obtained produce a fully Euclidean representation of the objects
in the ordination space, except possibly in the presence of missing values;
Eq. 8.13 does not guarantee such a representation (Legendre and Legendre 1998,
2012: Table 7.2). The concept of Euclidean representation of a distance matrix
is explained below in the section on Euclidean or Cartesian Space, Euclidean
Representation. Equation 8.14 is used for transformation of all binary coefficients
computed by the dist.binary() function of the ade4 R-language package.

3. For species presence-absence data,

1. the Jaccard coefficient:

S.x1; x2/ D a

a C b C c
(8.15)

2. and the Sørensen coefficient of similarity:

S.x1; x2/ D 2a

2a C b C c
(8.16)

are widely used. In these coefficients, a is the number of species that the two
objects have in common, b is the number of species found at site or sample
1 but not at site or sample 2, and c is the number of species found at site or
sample 2 but not at site or sample 1.

3. The Ochiai (1957) coefficient:

S.x1; x2/ D a
p

.a C b/.a C c/
(8.17)

deserves closer attention on the part of palaeoecologists since it is mono-
tonically related to the binary form of the widely used chord and Hellinger
distances described below (Eqs. 8.18 and 8.21).

For principal coordinate ordination analysis, the three similarity coefficients
described above (Eqs. 8.15, 8.16, and 8.17) can be transformed into Euclidean-
embeddable distances using the transformation D(x1,x2) D p

.1 � S.x1; x2//

(Eq. 8.14). After these transformations, these distances will not produce negative
eigenvalues in principal coordinate analysis and will thus be entirely represented
in Euclidean space.

An interesting similarity coefficient among sites, applicable to presence-
absence data, has been proposed by the palaeontologists Raup and Crick (1979):
the coefficient is the probability of the data under the hypothesis of no association
between objects. The number of species in common in two sites, a, is tested
for significance under the null hypothesis H0 that there is no association



8 Ordination 215

between sites x1 and x2 because each site in a region (or each level in a
core) receives a random subset of species from the regional pool (or the whole
sediment core). The association between objects, estimated by a, is tested using
permutations. The probability (p) that the data conform to the null hypothesis
is used as a measure of distance, or (1 � p) as a measure of similarity. The
permutation procedure of Raup and Crick (1979) was re-described by Vellend
(2004). Legendre and Legendre (2012: coefficient S27) describe two different
permutational procedures that can be used to test the significance of the number
of species in common between two sites (i.e., the statistic a). These procedures
correspond to different null hypotheses. Birks (1985) discusses the application
of this and other probabilistic similarity measures in palaeoecology.

4. Several coefficients have been described by ecologists for the analysis of
quantitative assemblage composition data. The property that these coefficients
share is that the absence of any number of species from the two objects under
comparison does not change the value of the coefficient. This property avoids
producing high similarities, or small distances, between objects from which
many species are absent. The Euclidean distance function, in particular, is not
appropriate for assemblage composition data obtained from long environmental
gradients because the data table then contains many zeros, and the objects
that have many zeros in common have small Euclidean distance values; this is
considered to be an inappropriate answer in most ecological and palaeoecological
problems. This question is discussed at length in many texts of quantitative
community ecology. The coefficients most widely used by ecologists for species
abundance data tables are:

1. The chord distance, occasionally called the cosine-™ distance:
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(8.18)

which consists of subjecting the species data to the chord transformation
(Eq. 8.5) followed by calculation of the Euclidean distance (Eq. 8.6). The
chord distance is closely related to the Hellinger distance (Eq. 8.21).

2. The chi-square distance:

D.x1; x2/ D p
yCC

vu
u
t

pX

j D1

1

yCj

�
y1j

y1C
� y2j

y2C

�2

(8.19)
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where yiC is the sum of the frequencies in row i, yCj is the sum of the
frequencies in column j, and yCC is the sum of all frequencies in the data
table. It is equivalent to subjecting the species data to the chi-square distance
transformation (Eq. 8.7) followed by calculation of the Euclidean distance
(Eq. 8.6).

3. The distance between species profiles:

D.x1; x2/ D
vuu
t

pX

j D1

�
y1j

y1C
� y2j

y2C

�2

(8.20)

is equivalent to subjecting the species data to the transformation to profiles
of relative abundances (Eq. 8.8) followed by calculation of the Euclidean
distance (Eq. 8.6).

4. The Hellinger distance (Rao 1995):

D.x1; x2/ D
vu
u
t

pX

j D1

�r
y1j

y1C
�

r
y2j

y2C

�2

(8.21)

It is equivalent to subjecting the species data to the Hellinger transforma-
tion (Eq. 8.9) followed by calculation of the Euclidean distance (Eq. 8.6).
This equation is occasionally called the chord distance (Prentice 1980)
described in Eq. 8.18, because the Hellinger distance is the chord distance
computed on square-root transformed frequencies. In the Hellinger dis-
tance, the relative species abundances (‘compositional data’, used directly in
Eq. 8.20) are square-root transformed in order to lower the importance of the
most abundant species, which may grow exponentially when they encounter
favourable conditions. This coefficient thus increases the importance given to
the less abundant species (Prentice 1980). The chord (Eq. 8.18) and Hellinger
(Eq. 8.21) functions produce distances in the range [0,

p
2]. For presence-

absence data, they are both equal to

p
2

s

1 � a
p

.a C b/.a C c/

where

a
p

.a C b/.a C c/

is the Ochiai (1957) similarity coefficient for binary data described in Eq. 8.17.
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5. A coefficient first described by Steinhaus (in Motyka 1947) and rediscovered
by other authors, such as Odum (1950) and Bray and Curtis (1957), is called
the percentage difference (Odum 1950):

D.x1; x2/ D

pP

j D1

jy1j � y2j j
pP

j D1

.y1j C y2j /

(8.22)

This coefficient has excellent descriptive properties for community com-
position data (Hajdu 1981; Gower and Legendre 1986). Taking the square
root of this distance will avoid negative eigenvalues and complex principal
axes in principal coordinate analysis. A particular form of this coefficient,
for data transformed into percentages by sites (y0

ij of Eq. 8.8 multiplied by
100), has been described by Renkonen (1938). When presence-absence data
are used in Eq. 8.22, the resulting coefficient is the one-complement of the
Sørensen coefficient of similarity (Eq. 8.16) computed over the same data
(i.e., D(eq. 8.22) D 1 � S(eq. 8.16)).

6. Whittaker’s (1952) index of association is:

D.x1; x2/ D 1

2

pX

j D1

ˇ
ˇ
ˇ
ˇ

y1j

y1C
� y2j

y2C

ˇ
ˇ
ˇ
ˇ (8.23)

7. Clark’s (1952) coefficient of divergence:

D.x1; x2/ D
vu
u
t 1

p

pX

j D1

�
y1j � y2j

y1j C y2j

�2

(8.24)

is a form of the Canberra metric (Lance and Williams 1967) rescaled to the
[0, 1] range.

Most of the distances described in this section can be computed using
the R-language functions dist() (stats package), vegdist() (vegan),
dist.binary() (ade4), gowdis() (FD) and daisy() (cluster); see
footnote of Table 8.3 for references. This statement calls for some remarks.
(1) These packages do not all produce the same results for the binary Jac-
card coefficient: dist() and vegdist() use the transformation D D (1 � S)
(Eq. 8.13) whereas dist.binary() uses D D p

1 � S (Eq. 8.14) to
transform similarities into distances. The latter guarantees that a fully Eu-
clidean representation, without negative eigenvalues and complex eigenvectors,
will result from principal coordinate analysis. (2) The chord, chi-square and
Hellinger distances are not obtained directly but after two calculation steps:
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Table 8.3 Computer programs for ordination. The list makes no pretence at being exhaustive

Simple ordination
CANOCO: PCA, CA
PC-ORD: PCA, CA, NMDS
PrCoord: PCoA (available dissimilarity measures: 7)
WynKyst: NMDS (available dissimilarity measures: 7)
R-language functions for PCA and CA: rda(), cca() (vegan package); dudi.pca(),

dudi.coa() (ade4 package); pca() (labdsv package)
R-language dissimilarity functions: 10 binary measures in dist.binary() of ade4, 6

dissimilarity measures in dist() of stats, 13 in vegdist() of vegan, 3 in daisy()
of cluster, and gowdis() in FD

R-language functions for PCoA: dudi.pco() (ade4 package); pcoa() (ape package);
cmdscale() (stats package) and its wrappers cmds.diss() (mvpart package),
pco() (labdsv package), and capscale() (vegan package).

R-language functions for NMDS: isoMDS() (MASS package) and its wrappers nmds() and
bestnmds() of labdsv, and metaMDS() of vegan. Dissimilarity measures available in
the R language: see previous entry

SYN-TAX: PCA, CA, PCoA, NMDS (available dissimilarity measures: 39)
Canonical ordination

CANOCO: linear RDA and CCA; partial RDA and CCA
PC-ORD: linear CCA
Polynomial RDACCA: linear and polynomial RDA, linear and polynomial CCA
R-language functions: rda() and cca() (vegan package): linear RDA and CCA; partial

RDA and CCA
R-language function for variation partitioning: varpart() (vegan package) partitions the

variation of a response table Y with respect to two, three, or four explanatory tables X,
using partial RDA

SYN-TAX: linear RDA and CCA
R-language package cocorresp: co-correspondence analysis

Biplots and triplots
CanoDraw
PC-ORD
SYN-TAX
R language: plot.cca() (vegan package) produces PCA and CA biplots as well as RDA

and CCA triplots

CANOCO, CanoDraw, and PrCoord (for Windows): available as a bundle from Microcomputer
Power http://www.microcomputerpower.com. PC-ORD (for Windows): available from MjM
Software http://home.centurytel.net/�mjm/pcordwin.htm. R language (for Windows, Linux, and
MacOS X): freely downloadable from the Comprehensive R Archive Network (CRAN) http://
cran.r-project.org/. Packages ade4 (Chessel et al. 2004, Dray et al. 2007), labdsv (Roberts 2007),
cluster (Maechler et al. 2005), cocorresp (Simpson 2009), stats (R Development Core Team
2011), ape (Paradis et al. 2010), FD (Laliberté and Shipley 2010), and vegan (Oksanen et al.
2011). SYN-TAX (for Windows and Macintosh): available from Scientia Publishing http://ramet.
elte.hu/�scientia/ and Exeter Software http://www.exetersoftware.com. Polynomial RDACCA
(for Windows and Macintosh): freely downloadable from P. Legendre’s Web page http://www.
bio.umontreal.ca/legendre/indexEn.html.

transformation of the data (Eqs. 8.5, 8.7 and 8.9) followed by calculation of
the Euclidean distance (Eq. 8.6). (3) Several functions implement the Gower
distance: vegdist() (vegan), daisy() (cluster), and gowdis() (FD);

http://www.microcomputerpower.com
http://home.centurytel.net/~mjm/pcordwin.htm
http://cran.r-project.org/
http://cran.r-project.org/
http://ramet.elte.hu/~scientia/
http://ramet.elte.hu/~scientia/
http://www.exetersoftware.com
http://www.bio.umontreal.ca/legendre/indexEn.html
http://www.bio.umontreal.ca/legendre/indexEn.html
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see footnote of Table 8.3 for references. The latter is the only function that can
handle missing values and variables of all precision levels, including multistate
qualitative variables (‘factors’ in R), and allows users to give different weights
to the variables involved in a calculation.

Euclidean or Cartesian Space, Euclidean Representation

A Cartesian space, named after René Descartes (1596–1650), French mathemati-
cian and philosopher, is a space with a Cartesian system of coordinates. It is also
called a Euclidean space because the distances among points are measured by
Eq. 8.6 in that space. The multidimensional ordination spaces of PCA, CA, PCoA,
NMDS, etc., are Cartesian or Euclidean spaces; hence the distances among points
embedded in these spaces are measured by the Euclidean distance formula. A few
dimensions that represent a good deal of the variance of the data will be chosen from
these multidimensional spaces to create a reduced-space ordination.

A distance function is said to have the Euclidean property, or (in short) to be
Euclidean, if it always produces distance matrices that are fully embeddable in
a Euclidean space. The test, available in the R-language package ade4 (function
is.euclid()), is that a principal coordinate analysis (PCoA) of a Euclidean
distance matrix produces no negative eigenvalues. This is not always the case in
ordination. Some distance functions are not Euclidean, meaning that the distances
in the matrix cannot be fully represented in a Euclidean ordination space. A
principal coordinate analysis of the distance matrices produced by these coefficients
may generate negative eigenvalues; these eigenvalues indicate the non-Euclidean
nature of the distance matrix (Gower 1982). They measure the amount of vari-
ance that needs to be added to the distance matrix to obtain a full Euclidean
representation. To be a metric is a necessary but not a sufficient condition for
a distance coefficient to be Euclidean. Many of the commonly-used similarity
coefficients are not Euclidean when transformed into distances using Eq. 8.13.
The transformation described by Eq. 8.14 often solves the problem, however. For
instance, the similarity coefficients of Gower, simple matching, Jaccard, Sørensen,
Ochiai, and Steinhaus, described above, all become Euclidean when transformed
into distances using Eq. 8.14 (Gower and Legendre 1986; Legendre and Legendre
1998, 2012: Table 7.2).

If the analysis is carried out to produce a PCoA ordination in a few (usually
2 or 3) dimensions, negative eigenvalues do not matter as long as their absolute
values are not large when compared to the positive eigenvalues of the axes used
for the reduced-space ordination. If the analysis requires that all coordinates be
kept, as will be the case when testing multivariate hypotheses using the db-RDA
method (see the subsection below on Linear RDA), negative eigenvalues should
either be avoided or corrected for. They can be avoided by selecting a distance
coefficient that is known to be Euclidean. When a non-Euclidean coefficient is used
(for example, the Steinhaus/Odum/Bray-Curtis coefficient of Eq. 8.22), there are
ways of correcting for negative eigenvalues in PCoA to obtain a fully Euclidean
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solution; see Legendre and Legendre (1998, 2012) for details. These corrections
are available in some PCoA computer programs, including function pcoa() of the
ape R-language package.

Metric or Non-metric Ordination?

Metric ordinations are obtained by the methods of principal component analysis
(PCA), correspondence analysis (CA), and principal coordinate analysis (PCoA).
These methods all proceed by eigenvalue decomposition. The eigenvalues measure
the amount of variation of the observations along the ordination axes. The distances
in the full-dimensional ordination space are projected onto the space of reduced
dimensionality (usually two dimensions) chosen for ordination. Non-metric ordina-
tions are obtained by non-metric multidimensional scaling (NMDS) which is not an
eigenvalue method. This method only approximately preserves the rank-order of the
original distances in the reduced ordination space.

PCA is the method of choice to preserve Euclidean distances among objects, and
CA when the chi-square distance is to be preserved. For other forms of distance,
users have to choose between PCoA (also called metric scaling) and NMDS. PCoA
is the preferred method (1) when one wishes to preserve the original distances in
full-dimensional space, (2) when many (or all) ordination axes are sought, or (3)
when the data-set is fairly large. NMDS may be preferred when the user wants to
represent as much as possible of the distance relationships among objects in a few
dimensions, at the cost of preserving only the rank-order of the distances and not
the distances themselves.

The size of the data-sets is also of importance. PCA and CA can easily be
computed on very large data-sets (tens or hundreds of thousand objects) as long
as the number of variables is small (up to a few hundred), because the eigenvalue
decomposition is done on the covariance matrix, which is of size p, the number of
variables in the data-set.

For tables containing assemblage composition data, three paths can be followed:
(1) one can transform the data using one of the transformations described by
Eqs. 8.5, 8.7, 8.8, or 8.9, and produce the ordination by PCA (tb-PCA approach),
or (2) compute a distance matrix using Eqs. 8.15, 8.16, 8.17, 8.18, 8.19, 8.20,
8.21, 8.22, 8.23 and 8.24, followed by PCoA or NMDS. For large data-sets of
intermediate sizes (up to a few thousand objects), PCoA will produce the ordination
solution faster than NMDS. For very large data-sets, PCA should be used. (3) For
data-sets of any size, one can produce the ordination using CA if the chi-square
distance is appropriate.

An alternative and biologically useful approach to deciding between ordinations
based on PCA (Euclidean distance) of untransformed data and CA (chi-square
distance) of multivariate species assemblage data is that emphasised by ter Braak
(1987a) and ter Braak and Prentice (1988), namely the underlying species response
model that is assumed when fitting either PCA or CA and extracting synthetic
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latent variables that are then used as the major ordination axes. PCA assumes an
underlying linear response model, whereas CA assumes an underlying unimodal
response model between the variables and the unknown but to be determined
latent variables or ordination axes. The question is thus how to know whether
a linear-based or a unimodal-based ordination is appropriate for a given data-
set. The detrended relative of CA, detrended correspondence analysis (DCA: Hill
and Gauch 1980; ter Braak 1987a), is a heuristic modification of CA designed to
minimise two of the disadvantages of CA, namely the so-called arch-effect and the
so-called edge-effect (ter Braak and Prentice 1988). As a result of the non-linear
rescaling of the axes that removes the edge-effect, the object scores are scaled and
standardised in a particular way. The lengths of the resulting ordination axes are
given by the range of object scores and are expressed in ‘standard deviation units’
(SD) or units of compositional turnover. The tolerance or amplitude of the species’
curves along the rescaled DCA axes are close to 1; each curve will therefore rise
and fall over about 4 SD (ter Braak and Prentice 1988). Objects that differ by 4
SD can be expected to have no species in common. A preliminary DCA of an
assemblage data-set, with detrending by segments and non-linear rescaling, provides
an estimate of the underlying gradient length. If the gradient length is less than
about 2.5 SD, the assemblage variation is within a relatively narrow range, and the
linear approach of PCA is appropriate. If the gradient length is 3 or more SD, the
assemblage variation is over a larger range, and the unimodal-based approach of CA
is appropriate (ter Braak and Prentice 1988). Transformation-based PCA (tb-PCA)
is also appropriate in that case.

How Many Axes Are Required?

In most instances, ordination analysis is carried out to obtain an ordination in
two, sometimes three, dimensions. The ordination is then used to illustrate the
variability of the data along the ordination axes and attribute it to the variables that
are most highly correlated with those axes. Simple interpretation of the variability
in the ordination diagram can be obtained by projecting interpretative variables in
the ordination plane, or by representing other properties of the data (for instance,
the groups produced by cluster or partitioning analysis (Legendre and Birks 2012:
Chap. 7)), or some other grouping of the objects known a priori (for example, the
type of lake, or the nature of the sediment) (see Lepš and Šmilauer 2003).

There are instances where ordination analysis is carried out as a pre-treatment, or
transformation, of the original data, before carrying out some further analysis. For
example, one may wish to preserve the Steinhaus/Odum/Bray-Curtis distance in a
canonical redundancy analysis (RDA) or K-means partitioning (see Legendre and
Birks 2012: Chap. 7). To achieve that, one may compute the distance matrix using
Eq. 8.22 (or its square root) and carry out a PCoA of that matrix. One then keeps all
eigenvectors from this analysis (after perhaps a correction for negative eigenvalues)
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and uses that matrix of eigenvectors as input to redundancy analysis (RDA) or
K-means partitioning. This is an example of distance-based RDA (db-RDA)
described in more detail in the subsection on Linear RDA.

Tests of significance for individual eigenvalues are available for PCA; see the
review papers of Burt (1952) and Jackson (1993). They are not often useful because,
in most instances, ecologists do not have a strong null hypothesis to test; they rather
use PCA for an exploratory representation of their data. Also, the parametric tests of
significance assume normality of all descriptors, which is certainly a drawback for
palaeolimnological data. Users most often rely on criteria that help them determine
how many axes represent ‘important’ variation with respect to the original data table.
The two best criteria at the moment are the simple broken-stick model proposed by
Frontier (1976) as well as the bootstrapped eigenvalue method proposed by Jackson
(1993).

Simple Ordination Methods: PCA, CA, PCoA, NMDS

The simple ordination methods mostly used by palaeoecologists and palaeo-
limnologists (Table 8.1) are the following.

1. Principal component analysis (PCA) is the oldest (Hotelling 1933) and
best-known of all ordination methods. Consider a group of data points in multi-
dimensional space, placed at Euclidean distances (Eq. 8.6) of one another. Imagine
a lamp behind the cloud of points, and the shadows of the points projected onto
a white wall. The geometric problem consists of rotating the points in such a way
that the shadows have as much variance as possible on the wall. The mathematics
of eigenvalues and eigenvectors, which is part of matrix algebra, is the way to
find the rotation that maximises the variance of the projection in any number of
dimensions. The variables are first transformed if required (Table 8.2), then centred
by column, forming matrix Y. One computes the dispersion (or variance-covariance)
matrix S among the variables, followed by the eigenvalues (œj) and eigenvectors of
S. The eigenvectors are assembled in matrix U. The principal components, which
provide the coordinates of the points on the successive ordination axes, are the
columns of matrix F D YU. The eigenvalues measure the variance of the points
along the ordination axes (the columns of matrix F). The first principal component
has the highest eigenvalue œ1, hence the largest variance; and so on for the following
components, with the constraint that all components are orthogonal and uncorrelated
to one another.

A scatter diagram with respect to the first two ordination axes, using the
coordinates in the first two columns of matrix F, accounts for an amount of variance
equal to œ1 C œ2. The distances among points in two dimensions are projections
of their original, full-dimensional Euclidean distances. The contributions of the
variables to the ordination diagram can be assessed by drawing them using the
loadings found in matrix U. For two dimensions again, the first two columns of
matrix U provide the coordinates of the end-points of vectors (arrows) representing
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the successive variables. A graph presenting the variables (as arrows) on top of the
dispersion of the points, as described above, is called a distance biplot. Another type
of biplot, called a correlation biplot, can also be produced by many PCA programs;
the correlations among variables are represented by the angles of projection of
the variables, in two dimensions, after rescaling the eigenvectors to the square
root of their respective eigenvalues (ter Braak 1994; Lepš and Šmilauer 2003).
The objects projected onto these modified axes are not at Euclidean distances but
are at Mahalanobis distances to one another. Supplementary or passive objects
and variables can be projected onto a PCA ordination diagram. This option is
available in most of the programs offering a PCA procedure listed in Table 8.3.
The mathematics behind such projections is described in Legendre and Legendre
(1998, 2012: Sect. 9.1.9) and ter Braak and Šmilauer (2002).

The approach of fitting fossil objects as supplementary objects onto a PCA
ordination of modern data has been used by palaeoecologists (e.g., Lamb 1984) as an
aid in detecting similarities between modern and fossil assemblages. It is important,
however, to calculate the residual distances when adding additional supplementary
objects into any low-dimensional ordination, as new objects may appear to be
positioned close to other objects on the first few axes and yet be located some
distance from these other objects when further dimensions are considered (Birks
and Gordon 1985). Gower (1968) discusses the calculation and interpretation of the
residual distances from the true position of the added points to the fitted plane giving
the best two-dimensional representation of the objects.

Alternatively, one may perform a PCA of fossil assemblage data and add modern
objects into the ordination (e.g., Ritchie 1977), or perform a PCA of fossil and
modern assemblage data combined (MacDonald and Ritchie 1986). Prentice (1980)
and Birks and Gordon (1985) discuss the advantages and disadvantages of fitting
objects, modern or fossil, into low-dimensional PCA representations.

The most common application of PCA in palaeolimnology is to produce biplot
diagrams of the objects (sites, lakes, core subunits, etc.) with respect to physical or
chemical variables (e.g., Jones et al. 1993) or assemblage composition data (after
appropriate transformation: Table 8.2) (e.g., Birks and Peglar 1979). Another useful
representation of PCA results of core assemblages is to plot the object scores on
the first few principal components in stratigraphical order for each axis (e.g., Birks
and Berglund 1979; Birks 1987; Lotter and Birks 2003; Wall et al. 2010; Wang
et al. 2010; Birks 2012b: Chap. 11), thereby providing a summarisation of the major
patterns of variation in the stratigraphical data in two or three axes. PCA can also
be used to detect outliers in data, which may correspond to legitimate outliers, or
to erroneous data. PCA may be used to identify groups of variables that are highly
correlated and, thus, form bundles of arrows in the ordination diagram; look, in
particular, for variables that are highly but negatively correlated: their arrows are
opposite in the diagram (e.g., Gordon 1982; MacDonald and Ritchie 1986). Another
application is to simplify data-sets containing many highly collinear variables; the
PCA axes that account for, say, 95% of the total variance form a simplified set of
variables and allow discarding of the remaining 5%, which can be regarded as noise
(Gauch 1982; Lotter et al. 1992).
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2. Correspondence analysis (CA) is a form of PCA that preserves the chi-square
distance (Eq. 8.19) among the objects or variables. CA is appropriate for frequency
data, and in particular for species presence-absence or abundance data, subject to
the caveat that the chi-square distance gives high weights to rare species. There
are several ways of presenting CA (Hill 1974). We will look at it here as the
eigenanalysis of a table of components of chi-square. The assemblage composition
data matrix Y is transformed into a matrix of components of chi-square Q D [qij]
where

qij D
"

Oij � Eijp
Eij

#
ıp

yCC (8.25)

The part inside the square parentheses is easily recognised as the component of the
chi-square statistic computed in each cell of a frequency (or contingency) table;
they are obtained from the observed (Oij) and the expected values (Eij) of cell ij
of the table. These components can be added to produce the Pearson chi-square
statistic used to test the hypothesis of absence of relationship between the rows and
columns of a contingency table. Here, the components of chi-square are divided by
a constant, the square root of the sum of values in the whole table (yCC), which
turns them into the values [qij] of the transformed data table Q. From this point,
one can compute a cross-product matrix (the covariance matrix computed in PCA
is also a cross-product matrix, but it is computed here without further centring
since centring is part of Eq. 8.25), and from it the eigenvalues and eigenvectors
are extracted. An alternative approach is to carry out singular value decomposition
of the matrix Q, as explained in Legendre and Legendre (1998: Sect. 9.4, 2012:
Sect. 9.2). The eigenvalues measure the amount of inertia accounted for by each
ordination axis. Matrices are obtained that contain the positions of the objects (rows)
and species (columns) along the successive axes of the ordination space. Two types
of scaling can be used for biplots: one can (1) preserve the chi-square distances
among objects (rows), the objects being at the centroids of the species (columns);
or (2) preserve the chi-square distance among the variables (columns), the variables
being at the centroids of the objects (rows) (ter Braak and Verdonschot 1995). The
most common application of CA in palaeolimnology is to produce biplot diagrams
of species and objects or other sampling units (e.g., Jones and Birks 2004). As in
PCA, supplementary objects and variables can be projected onto a CA ordination
diagram (e.g., Jones and Birks 2004). This option is available, for instance, in the
program CANOCO. In R, functions to that effect are also available in vegan and
ade4. vegan: predict.rda() and predict.cca() for adding new points to
PCA, RDA, CA and CCA, and envfit() for adding supplementary variables to
all of the above (envfit() does weighted fitting in CCA so that it is consistent
with the original). ade4: suprow() to add supplementary objects and supcol()
to add supplementary variables to PCA and CA plots.
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Usually, ecologists who see the organisms they are sampling consider rare
species as potential indicators of rare environmental conditions, whereas those who
have to sample blindly or use traps are more wary of the interpretation of rare
species. In animal ecology, a single presence of a species at a site may be due
to a species that does not belong to the site but was travelling between two other
favourable sites. In palynology, likewise, pollen may be brought by far transport
from distant sites. In aquatic ecology, rare species may appear in spurious ways in
sampling units from sites where they are found at low abundance. Because of their
influence on the chi-square distance (Eq. 8.19), one should pay special attention to
rare species in CA. One must understand that rare species affect the ordination of
objects very little, but these species will be represented by points located far from
the origin. Users of CA who are worried about the interpretation of rare species often
decide to remove, not the species that have low abundance, but those that occur in
the data-set very rarely. One may try removing first the species that occur only once
in the data-set, then those that occur once or twice, and so on, repeating the analysis
every time. One can remove the rarest species up to the point where the first few
eigenvalues, expressed as percentages of the inertia (D variation) in the original
data-set, are little affected by the removal. This approach has been suggested by
Daniel Borcard, Université de Montréal.

Palaeolimnologists often use the detrended relative of CA, detrended corre-
spondence analysis (DCA), as a preliminary tool in establishing the extent of
compositional turnover in modern calibration data-sets as a guide as to whether
to use calibration procedures that assume linear or unimodal responses of species
to environmental gradients (Birks 1995). Detrending by segments is an arbitrary
method for which no theoretical justification has been offered, while the assump-
tions behind the nonlinear rescaling procedure have not been fully substantiated
(Wartenberg et al. 1987, but see ter Braak 1985). Jackson and Somers (1991)
showed that DCA ordinations of sites greatly varied with the number of segments
one arbitrarily decides to use, so that the ecological interpretation of the results
may vary widely. In simulation studies conducted on artificial data representing
unimodal species responses to environmental gradients in one or two dimensions,
DCA did not perform particularly well in recovering complex gradients (Kenkel and
Orlóci 1986; Minchin 1987). For these reasons, detrended correspondence analysis
(DCA) should generally be avoided for the production of ordination plots when a
detailed interpretation of the object relative positions is sought. Palaeolimnologists
(e.g., Birks et al. 2000: Birks and Birks 2001; Bradshaw et al. 2005) have plotted
the object scores on the first DCA axis in stratigraphical order for different
palaeolimnological variables (e.g., diatoms, chironomids) as a means of comparing
the major trends and compositional turnover between different proxies within the
same stratigraphical sequence (see Birks 2012b: Chap. 11).

3. In principal coordinate analysis (PCoA), the objective is to obtain an ordina-
tion, in any number of dimensions, representing as much as possible of the variation
of the data while preserving the distance that has explicitly been computed. The
algebra used to find a solution to the geometric problem proceeds directly from a
pre-computed square, symmetric distance matrix D. The first step is to transform
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the distances dhi of D into values ahi D �0:5 d 2
hi , then to centre the resulting matrix

A to produce a third matrix � D [•hi] using the equation:

ıhi D ahi � Nah � Nai C Na (8.26)

where āh and āi are the means of row h and column i corresponding to element ahi ,
whereas ā is the mean of all ahi values in the matrix. Eigenvalue decomposition is
applied to matrix �, producing eigenvalues and eigenvectors. When the eigenvec-
tors are normalised to the square root of their respective eigenvalues, they directly
provide the coordinates of the objects on the given ordination axis. The eigenvalues
give the variance (not divided by degrees of freedom) of the objects along that axis.
If some eigenvalues are negative and all ordination axes are needed for subsequent
analyses, corrections can be applied to the distance matrix; this was mentioned in
the section on Euclidean or Cartesian Space, Euclidean Representation.

A simple example may help explain PCoA. From an object-by-variable data
matrix Y, compute matrix D of Euclidean distances among the objects. Run PCA
using matrix Y and PCoA using matrix D. The eigenvalues of the PCoA of matrix D
are proportional to the PCA eigenvalues computed for matrix Y (they differ by the
factor (n � 1)), while the eigenvectors of the PCoA of D are identical to matrix F of
the PCA of Y. Normally, one would not compute PCoA on a matrix of Euclidean
distances since PCA is a faster method to obtain an ordination of the objects in Y that
preserves the Euclidean distance among the objects. This was presented here simply
as a way of understanding the relationship between PCA and PCoA in the Euclidean
distance case. The real interest of PCoA is to obtain an ordination of the objects
from some other form of distance matrix more appropriate to the data at hand—for
example, a Steinhaus/Odum/Bray-Curtis distance matrix in the case of assemblage
composition data. Surprisingly, PCoA has rarely been used in palaeoecology (e.g.,
Birks 1977; Engels and Cwynar 2011) in contrast to the extensive use of PCA, CA,
and DCA.

4. Non-metric ordinations are obtained by non-metric multidimensional scaling
(NMDS); several variants of this method have been proposed (Prentice 1977, 1980).
The distances in the low-dimensional space are not rigid projections of the original
distances in full-dimensional space. In NMDS, the user sets the dimensionality of
the space in which the ordination is to be produced; the solution sought is usually
two-dimensional. The computer program proceeds by successive iterations, trying to
preserve in the ordination the rank-order of the original distances. Different formu-
lae, called Stress (formula 8.1 or 8.2), Sstress, or Strain, may be used to measure the
goodness-of-fit of the solution in reduced space. Non-metric ordinations are rarely
used in palaeoecology. Early applications include Birks (1973), Gordon and Birks
(1974), and Prentice (1978), whereas more recent applications include Brodersen et
al. (1998, 2001), Simpson et al. (2005), Soininen and Weckström (2009), Tremblay
et al. (2010), Wiklund et al. (2010), Allen et al. (2011), and Wischnewski et al.
(2011). Overall, there seem to be few theoretical advantages in using NMDS in
palaeoecology (Prentice 1980).
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Introduction to Canonical Ordination

The methods of canonical ordination are generalisations of simple ordination meth-
ods; the ordination is forced or constrained to represent the part of the variation in a
table of response variables (e.g., species abundances) that is maximally related to a
set of explanatory variables (e.g., environmental variables). Canonical redundancy
analysis (RDA) is the constrained form of PCA whereas canonical correspondence
analysis (CCA) is the constrained form of CA. Canonical ordination is a hybrid
between regression and ordination, as will be described below. The classical forms
of RDA and CCA use multiple linear regression between the variables in the
two data tables. Canonical ordination methods have also been described that look
for polynomial relationships between the dependent (response) and explanatory
(predictor) variables. Tests of statistical significance of the relationship between the
species and environmental data can be performed in canonical ordination, just as in
multiple regression.

Canonical ordination methods are widely used in palaeolimnological studies.
The Birks et al. (1998) bibliography on the use of canonical analysis in ecology
for the period 1986–1996 contained 804 titles, 96 of which are in the fields of
palaeobotany, palaeoecology, and palaeolimnology. Applications of these methods
in palaeoecology (Table 8.1) try to establish links between species assemblages and
environmental factors, or use canonical analysis as a first step in calibration studies
to guide the selection of significant environmental variables that may be estimated
by biological assemblages (ter Braak and Juggins 1993; Birks 1995) (see Juggins
and Birks 2012: Chap. 14). Palaeolimnologists also try to estimate how much of the
assemblage variation can be attributed to different groups of environmental factors,
such as sediment types, geology, climatic factors, geography, topography, land-use,
etc. (e.g., Lotter et al. 1997; Simpson and Hall 2012: Chap. 19).

Canonical Ordination Methods

The types of canonical ordination methods that palaeoecologists are mostly inter-
ested in are redundancy analysis (RDA) and canonical correspondence analysis
(CCA). They are asymmetric forms of analysis, combining regression and ordi-
nation. These analyses focus on a clearly identified table of response variables
(containing, very often, assemblage composition data), which is related to a table
of explanatory variables (e.g., environmental variables). Other forms of canonical
analysis are available in the major statistical packages: canonical correlation
analysis (CCorA) and canonical variates analysis (CVA), also called multiple
discriminant analysis (see ter Braak 1987a). These forms will not be discussed
in this chapter because they do not treat the community composition (or other
quantitative data) as a response data table matrix; they are briefly outlined in Birks
(2012a: Chap. 2). Other more general approaches to the linking of two or more
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ecological data tables are co-inertia analysis (Dolédec and Chessel 1994; Dray et al.
2003) and multiple factor analysis (Escofier and Pagès 1994); they allow the analysis
of a wide range of different data tables (Dray et al. 2003), with no constraints on the
number of species and environmental variables in relation to the number of objects
or on the role of the different tables as response and predictor variables. All these
methods of canonical analysis are described and illustrated in Chap. 6 of Borcard
et al. (2011) and in Chap. 11 of Legendre and Legendre (2012).

In the asymmetric forms of canonical analysis, after regressing the Y variables
(responses) on X (explanatory variables), an ordination is computed on the re-
gression fitted values. The preliminary questions that have to be resolved before
ordination (Table 8.2) will also have to be answered about the data in Y prior to
canonical ordination: the choice of transformations for the physical or species data,
and of an appropriate distance measure among objects. The table of explanatory
variables, called X, contains the independent (or constraining) variables used in
the regression part of the analysis. The decisions normally made prior to or during
regression will have to be considered prior to canonical analysis: transformation
of the regressors; coding of multi-state qualitative variables into dummy (binary or
orthogonal) variables; coding the factors of experiments into (orthogonal) dummy
variables; and choice of a linear or polynomial regression model. We do not have
to worry about (multi)normality of the residuals since the tests of significance in
canonical analysis are carried out by Monte Carlo permutation tests (see Legendre
and Legendre 1998, 2012; Lepš and Šmilauer 2003; Birks 2012a: Chap. 2; Lotter
and Anderson 2012: Chap. 18).

Linear RDA

Canonical redundancy analysis (RDA) combines two steps: linear regression and
PCA. The analysis is schematically described in Fig. 8.2. (1) Each variable (column)
of Y is regressed on X, which contains the explanatory variables. The fitted values of
the multiple regressions are assembled in matrix Ŷ, whereas the residuals are placed
in the columns of matrix Yres. Ŷ thus contains that part of Y that is explained by
linear models of X, whereas Yres contains that part of Y that is linearly independent
of (or orthogonal to) X. At this point, the matrices Ŷ and Yres have the same number
of columns as Y. (2) The matrix of fitted values Ŷ usually contains (much) less
information, measured by its total variance, than Y. A PCA of Ŷ is computed to
reduce its dimensionality, producing eigenvalues (that are now called canonical
eigenvalues), a matrix of eigenvectors U (now called canonical eigenvectors, which
will be used as the matrix of response variable scores for the biplot), and a matrix
Z of principal components, obtained in the same way as matrix F of the principal
components in PCA, which contains the sampling unit scores for the ordination
biplot; for details, see the description of PCA in the previous section on Simple
Ordination Methods. In some applications, ecologists prefer to use, for biplots, the
sampling unit scores obtained by the operation F D YU (upper-right in Fig. 8.2).
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Fig. 8.2 Redundancy analysis involves two steps: regression which produces fitted values OY and
residuals Yres, followed by principal component analysis (PCA) of the matrix of fitted values. PCA
of the matrix of residuals may also be of interest (Modified from Legendre and Legendre 1998).
Var. variables

These scores are not the direct result of the PCA of the fitted values Ŷ; they are
based on the original data Y, which contain the fitted values plus the residuals
(noise). These sampling unit scores (column vectors of matrix F) are not orthogonal
to each other. They differ from the vectors of matrix Z, which are orthogonal as in
any PCA. (3) In some applications, the effect of the explanatory variables on Y is
already well documented and understood; for instance, the effect of water depth on
aquatic macroinvertebrates. RDA can be used to go beyond what is already known,
by examining the residuals of the regression, found in matrix Yres. In those cases,
one is interested in obtaining an ordination of the matrix of residual variation: a PCA
is performed on matrix Yres, as shown in the lower part of Fig. 8.2. This analysis is
called a partial PCA.
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Scalings in RDA biplots follow the same rules as in PCA: one may be primarily
interested in an ordination preserving the Euclidean distances among sampling unit
fitted values (distance biplot), or in illustrating the correlations among the columns
of Ŷ (correlation biplot) (ter Braak 1994). The explanatory environmental variables
can also be represented in the ordination diagrams, which become triplots, by using
their correlations with the canonical ordination axes. The correlation coefficients
must be slightly modified to account for the stretching of the canonical ordination
axes; the biplot scores of environmental variables are obtained by multiplying the
correlation coefficients by (œk/total variance in Y)0.5. States of binary or multistate
qualitative variables can be usefully represented in triplots by the centroids (mean
coordinates) of the sampling units that possess the given state (ter Braak 1994).

The number of canonical axes is limited by either the number of variables in Y or
the number of variables in X. Example 1: if Y contains a single variable, regressing
it on X produces a single vector of fitted values and, hence, a single canonical axis.
Example 2: if X contains a single column, regressing Y (which contains p columns)
on X will produce a matrix Ŷ with p columns, but since they are the result of
regression on the same explanatory variable, matrix Ŷ is actually one-dimensional.
So, the PCA will come up with a single non-zero eigenvalue that will contain all
the variance of Y explained by X. The analysis of a matrix Y(n x p) by a matrix
X(n x m) produces at most (n � 1), p, or m canonical axes, whichever is the smallest.

Like PCA, RDA can be tricked into preserving some distance that is appropriate
to assemblage composition data, instead of the Euclidean distance (Fig. 8.3). Fig-
ure 8.3b shows that assemblage composition data can be transformed using Eqs. 8.5
or 8.7, 8.8, 8.9 (transformation-based RDA, or tb-RDA, approach). RDA computed
on data transformed by these equations will actually preserve the chord, chi-square,
profile, or Hellinger distance among sites. One can also directly compute one of the
distance functions appropriate for assemblage composition data (Eqs. 8.15, 8.16,
8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23 and 8.24), carry out a principal coordinate
analysis of the distance matrix, and use all the PCoA eigenvectors as input to
RDA (Fig. 8.3c). This is the distance-based RDA approach (db-RDA) advocated
by Legendre and Anderson (1999).

Partial RDA offers a way of controlling for the effect of a third data-set,
called the matrix of covariables W. Computationally, the analysis first calculates
the residuals Yresjw of the response variables Y on W and the residuals Xresjw
of the explanatory variables X on W; then an RDA of Yresjw on Xresjw is
computed; see details in Legendre and Legendre (2012). This is quite different
from a PCA of Yres mentioned at the end of the introductory paragraph of
the present section. Partial RDA is a generalisation of partial linear regression
to multivariate data, for example species assemblages. It is used in many dif-
ferent situations, including the following: (1) controlling for the effect of W
(e.g., geographic positions) in tests of the relationship between Y (e.g., modern
biological assemblages) and X (e.g., modern environmental data) (Peres-Neto and
Legendre 2010); (2) determining the partial, singular effect of an explanatory vari-
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Fig. 8.3 Comparison of (a) classical redundancy analysis (RDA) and canonical correspondence
analysis (CCA) to (b, c) alternative approaches forcing canonical analyses to preserve other
distances adapted to assemblage composition data (Modified from Legendre and Gallagher 2001)

able of interest (e.g., environmental), and testing its significance, while controlling
for the effect of all the other explanatory variables in the study; (3) partial RDA
is used to test the significance of single factors and interaction terms in two-way
or multi-way experimental designs where species assemblages are the response
variable (see Testing hypotheses in (multi-)factorial experiments below); (4) partial
RDA is also used to test the significance of individual fractions in variation parti-
tioning (see Spatial or Temporal Analysis Through Variation Partitioning below).
For details of these applications, see Legendre and Legendre (2012: Sect. 11.1.10).

In terms of algorithms, RDA and CCA can be obtained either by global
regression and PCA, as described here, or by the iterative algorithm described by
ter Braak (1987a) and used in the CANOCO program. In large analyses, the global
algorithm produces more precise results when many canonical ordination axes are to
be extracted and used in further analyses; the iterative algorithm is computationally
faster when one is only interested in obtaining the first few (4–8) canonical axes.
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Linear CCA

Canonical correspondence analysis (CCA) (ter Braak 1986, 1987b) only differs
from RDA in two aspects. First, it is the matrix Q of CA (see Simple ordinations
methods above) that is used as the response data matrix, instead of the data matrix Y.
This ensures that the chi-square distance is preserved by CCA among the rows of the
response data table; the assumption of unimodal species responses is made as in CA.
Second, the regression step is carried out using weights piC, where piC is the sum
of frequencies in row i (yiC) divided by the grand total (yCC) of all frequencies in
the table. Using these weights is tantamount to repeating each row of the response
and explanatory data tables yiC times before computing the regressions. Scalings
for biplots or triplots are the same as in CA (see ter Braak and Verdonschot 1995).
Just as one can compute a partial RDA, it is possible to perform a partial CCA (ter
Braak 1988b; ter Braak and Prentice 1988). Odgaard (1994) provides an illustrative
application of partial CA in palaeoecology and Bradshaw et al. (2005) provide a
detailed application of partial CCA in palaeolimnology.

Fossil assemblages can be positioned as supplementary or passive objects
in a CCA or RDA of modern biological assemblages, in relation to modern
environmental variables, to provide a projection of fossil samples (from an unknown
past environment) into modern ‘environment–species–object’ space (e.g., Birks et
al. 1990a; Allott et al. 1992; Juggins and Birks 2012: Chap. 14; Simpson and Hall
2012: Chap. 19).

There have been many applications of RDA and CCA and their partial forms
in palaeoecology and palaeolimnology in either a descriptive mode to display
modern species–object–environment relationships (e.g., Birks et al. 1990a) or in
an analytical, hypothesis-testing mode. Illustrative examples of the latter approach
include Lotter and Birks (1993), Renberg et al. (1993), Birks and Lotter (1994),
Korsman et al. (1994), Anderson et al. (1995), Korsman and Segerström (1998),
Odgaard and Rasmussen (2000), and Bradshaw et al. (2005) (see Lotter and
Anderson 2012: Chap. 18).

Other Forms of Asymmetric Canonical Analyses

There is no special reason why nature should linearly relate changes in community
composition to changes in environmental variables. While they know that the
assumption of linearity is often unrealistic, users of RDA and CCA sometimes use
the linear forms of these methods simply because more appropriate models are not
available. Makarenkov and Legendre (2002) proposed a nonlinear form of RDA and
CCA, based on polynomial regression, to do away with the assumption of linearity
in modelling the relationships between tables of response and explanatory variables.
Their algorithm includes a step-wise procedure for selection of the best combination
of linear and quadratic terms of the explanatory variables.
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Palaeolimnologists may want to relate two types of assemblages, for example
predators and preys. For a top-down model, the predators would form the data-
set explaining the variation of the prey, and the opposite for a bottom-up model.
To relate two communities, ter Braak and Schaffers (2004) proposed a model of
co-correspondence analysis (see also Schaffers et al. 2008). An alternative method
is to transform the two community data tables using one of the transformations
described in the section above on Transformation of Assemblage Composition Data,
as proposed by Pinel-Alloul et al. (1995), and analyse the two tables using RDA. As
noted by ter Braak and Schaffers (2004), one should not use forward selection of
the species in the explanatory table during this type of analysis. The R-package
cocorresp (Simpson 2009) implements co-correspondence analysis.

Spatial or Temporal Analysis Through Variation Partitioning

Variation partitioning is an approach to the analysis of a response variable or data
table, using two or more explanatory variables or data tables. For simple response
variables, the analysis is carried out using partial linear regression; see Legendre and
Legendre (1998, 2012: Sect. 10.3.5). Partial canonical analysis, which is available in
CANOCO and vegan, allows ecologists to partition the variation of a response data
table among two explanatory tables, using RDA or CCA.

In the original proposal (Borcard et al. 1992), the proportion of variation of a
response variable or data table accounted for by a table of explanatory variables
was estimated using the ordinary coefficient of determination (R2). It has long been
known that R2 is a biased estimator of the proportion of explained variation. Ohtani
(2000, for regression) and Peres-Neto et al. (2006, for canonical analysis) have
shown that the adjusted coefficient of determination R2

a (Ezekiel 1930),

R2
a D 1 � .1 � R2/

�
n � 1

n � m � 1

�
(8.27)

is unbiased, where n is the number of observations and m is the number of
explanatory variables. Peres-Neto et al. (2006) have also shown how to compute
the fractions of variation described in the next paragraph using R2

a. The R-language
function varpart() available in the vegan package allows users to partition
the variation of a response data table Y among 2, 3, or 4 tables of explanatory
variables X1 to X4.

The variation-partitioning approach was first advocated by Borcard et al. (1992)
in the context of spatial analysis in which a species composition response table Y
is partitioned between a matrix of environmental variables and one describing the
spatial relationships among the sampling sites. The variation in Y is partitioned
into four fractions, three of which can be interpreted separately or in combinations
(Fig. 8.4): [a] is the non-spatially-structured component of the variation of Y
explained by the environmental variables, [b] is the spatially-structured component
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Fig. 8.4 Partitioning the variation of a response data table Y with respect to a table X of
environmental variables and a table W of spatial variables. The length of the thick horizontal line
represents the total variation in Y (Modified from Borcard et al. 1992 and Legendre 1993)

explained by the environmental variables, [c] is the amount of spatially-structured
variation of Y not explained by the environmental variables used in the analysis, and
[d] is the unexplained (residual) variation.

In Borcard et al. (1992) and Borcard and Legendre (1994), as well as in many
applications published since 1992, the spatial relationships were represented in
the analysis by a polynomial function of the geographical coordinates of the
sampling sites. A new form of spatial partitioning, based on principal coordinates of
neighbour matrices (PCNM), has been proposed by Borcard and Legendre (2002).
In PCNM analysis, the polynomial function of the geographic coordinates of the
sites of Borcard et al. (1992) is replaced by a set of spatial eigenfunctions, the
PCNMs, corresponding to a spectral decomposition of the spatial relationships
among the sites. PCNM analysis allows the modelling of spatial or temporal
relationships at all spatial scales that can be perceived by the sampling design.
Borcard et al. (2004) and Legendre and Borcard (2006) present several applications
to the analysis of multivariate spatial patterns. Telford and Birks (2005) have
also applied PCNM analysis to explore the spatial structures within core-tops of
foraminiferal assemblages in the Atlantic.

Dray et al. (2006) examined the link between PCNM analysis and spatial
autocorrelation structure functions, and generalised the method to different types of
spatial weightings. The generalised eigenfunctions are called Moran’s Eigenvector
Maps (MEM). In the MEM framework, PCNM is called distance-based MEM
(dbMEM) (see Legendre and Legendre 2012: Chap. 14). Griffith and Peres-Neto
(2006) unified Dray’s MEM spatial eigenfunctions with Griffith’s (2000) spatial
eigenfunctions. Blanchet et al. (2008) developed Asymmetric Eigenvector Maps
(AEM) to model species spatial distributions generated by hypothesised directional
physical processes such as migrations in river networks and currents in water bodies.

Several R-language functions are available to compute PCNM and MEM spatial
eigenfunctions: pcnm() in vegan, pcnm() in spacemakeR and PCNM() and
quickPCNM() in the PCNM package; the last two packages are available at
http://r-forge.r-project.org/R/?group id=195. Several applications of spatial eigen-
function analysis to ecological data in R are presented by Borcard et al. (2011).
A stand-alone program called SpaceMaker2 (Borcard and Legendre 2004) is also
available at http://www.bio.umontreal.ca/legendre/indexEn.html to compute PCNM
eigenfunctions.

http://r-forge.r-project.org/R/?group_id=195
http://www.bio.umontreal.ca/legendre/indexEn.html
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Modelling Temporal Structure in Sediment Cores
[and Environmental Structure in Modern Assemblages]

Variation partitioning of stratigraphical palaeolimnological data has been used in
various studies to partition variation in a biostratigraphical sequence (e.g., diatoms)
into components explained by the occurrence of volcanic ash or other potential
perturbations, by climatic changes, and by natural temporal shifts (e.g., Lotter and
Birks 1993, 1997, 2003; Birks and Lotter 1994; Lotter et al. 1995; Barker et al.
2000; Eastwood et al. 2002). It has also been used to partition variation in modern
biological assemblages (e.g., diatoms) in relation to a range of explanatory variables
such as lake-water chemistry, climate, geography, etc. (e.g., Gasse et al. 1995;
Jones and Juggins 1995; Pienitz et al. 1995; Lotter et al. 1997, 1998; Potopova and
Charles 2002; Kernan et al. 2009; Simpson and Hall 2012: Chap. 19) and in fossil
assemblages in relation to spatial and temporal variables (e.g., Ammann et al. 1993).
Variation partitioning is being increasingly applied as a hypothesis-testing approach
in palaeolimnology, to quantify the proportion of total variation in assemblage
composition over time explicable by various environmental variables. For example,
Hall et al. (1999) used high-resolution diatom core data and 100 years of historical
data to quantify the effects of climate, agriculture, and urbanisation on diatom
assemblages in lakes in the northern Great Plains (Saskatchewan). They showed that
human impact was the major determinant of biotic change. Quinlan et al. (2002)
obtained similar results for the same area using fossil chironomid assemblages.
The use of variation partitioning requires careful project design to exploit ‘natural
experiments’ (e.g., factorial designs) and to test critical hypotheses. Other detailed
palaeolimnological applications of variation partitioning to test specific hypotheses
include Vinebrooke et al. (1998) and Leavitt et al. (1999). Birks (1998) reviewed the
use of variation partitioning as a means of testing hypotheses in palaeolimnology
(see also Lotter and Anderson 2012: Chap. 18).

We now present an example to illustrate the use of canonical ordination as a
form of spatial or time-series analysis for multivariate ecological response data. The
Round Loch of Glenhead (RLGH) fossil data consist of the counts of 139 Holocene
diatom taxa observed in 101 levels of a sediment core from a small lake in Galloway,
south-western Scotland (Jones et al. 1989; see Birks and Jones 2012: Chap. 3 of this
volume). The data-series covers the past 10,000 years. Level no. 1 is the top (most
recent), no. 101 is the bottom of the core (oldest). The diatom counts were expressed
as proportions relative to the total number of cells in each section of the core. This
means that the counts had been transformed into profiles of relative abundances
following Eq. 8.8. Polynomial trend-surface and PCNM analyses will be used to
detect structures in the multivariate diatom data within the core.

RDA of the multivariate diatom data from the RLGH core against level numbers
showed that the core data contained a highly significant linear gradient (R2 D 0.190,
R2

a D 0:182, p D 0.001 after 999 random permutations; Fig. 8.5a). We then analysed
the response data against a 3rd-order polynomial of the core level numbers (1–101):
the three monomials contributed significantly to the explanation of the diatom
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Fig. 8.5 The linear gradient (a) and first three canonical axes of the principal coordinates of
neighbour matrices (PCNM) model (b–d), as a function of the core level or section numbers in
The Round Loch of Glenhead diatom stratigraphical data. P probability

data, producing a model (not shown) with high explanatory power (R2 D 0.460,
R2

a D 0:443, p D 0.001). All monomials of a 5th-order polynomial also contributed
significantly to the explanation of the diatom data, producing a model with an even
higher coefficient of determination (R2 D 0.567, R2

a D 0:545, p D 0.001). Since the
data seemed to be structured in an intricate series of scales, we turned to PCNM
analysis to extract submodels corresponding to the different temporal scales present
in the data.

The diatom data were regressed on level numbers to extract the linear gradient,
as recommended by Borcard et al. (2004). PCNM analysis was then conducted
on the detrended data, namely the residuals of these regressions. Sixty-eight
PCNM variables were created using the PCNM() function of the PCNM R-
language package (last paragraph of the previous section); these variables, which
have the form of sine waves of decreasing periods, represent variation at the
various scales that can be identified in the series of 101 core levels. The first
50 PCNM variables, which had Moran’s I coefficients larger than the expected
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value of I and thus modelled positive correlation, were retained for canonical
analysis. They were subjected to forward selection against the detrended diatom
data, using the forward.sel() function of the packfor package available
at http://r-forge.r-project.org/R/?group id=195; forward selection of explanatory
variables in RDA is also available in the program CANOCO, version 4.5. Thirty
PCNM variables were selected at the ’ D 0.05 significance level (Monte Carlo
permutation tests, 999 permutations). The selected PCNM variables were numbers
1–20, 28, 30, 32, 33, 35, 37, 38, 41, 42, and 45. Canonical redundancy analysis
of the detrended diatom data by this subset of 30 PCNM variables explained
R2

a D 70:1% of the variance in the detrended data. The RDA produced nine
significant canonical axes; three of them, which accounted for more than 5% of
the detrended species variation, are displayed in Fig. 8.5b–d. The diatom taxa
contributing in an important way to the variation along these axes vary depending
on the axis. Six species were highly positively correlated (r > 0.6) to the core
level numbers (linear trend): Tabellaria quadriseptata (TA004A), Navicula hoefleri
(NA167A), Navicula cumbrensis (NA158A), Peronia fibula (PE002A), Eunotia
denticulata (EU015A), and Eunotia naegelii (EU048A); these species are found
in the sections on the positive side of the linear trend (Fig. 8.5a). Two taxa were
highly negatively correlated (r < �0.5) to the same trend: Brachysira brebissonii
(BR006A), Cymbella [PIRLA sp. 1] (CM9995). Two species were highly positively
correlated to canonical axis 1 (r > 0.5, Fig. 8.5b): Aulacoseira perglabra (AU010A),
Eunotia incisa (EU047A); four taxa were highly negatively correlated (r < �0.5)
to the same wave form: Brachysira vitrea (BR001A), Achnanthes minutissima
(AC013A), Tabellaria flocculosa (TA001A), Cymbellla perpusilla (CM010A). And
so on (Fig. 8.5c, d). Each canonical axis displays structures representing a mixture of
stratigraphical and temporal scales. This information could also be displayed in the
form of biplots of the species together with the trend or with the PCNM variables.

Another useful way to describe the structure of the multivariate diatom data along
the core is to separate the PCNM variables into an arbitrary number of groups, made
of contiguous PCNMs, and examine the resulting submodels. We chose to divide
them into three submodels. The broad-scale submodel contains PCNMs numbers
1–10 as explanatory variables; it explains R2

a D 47:7% of the detrended diatom
variation. Canonical axes 1–3 of this fraction are significant and explain more than
5% of the detrended diatom variation (Fig. 8.6a–c, p D 0.001). The taxa that are
positively correlated with axis 1 (r > 0.6) are Navicula krasskei (NA044A) and
Aulacoseira perglabra (AU010A); these species are found in the sections on the
positive side of the wave form (Fig. 8.6a). Other species that are highly negatively
correlated with that axis (r < �0.6) are Achnanthes linearis (AC002A), Tabellaria
flocculosa (TA001A), and Eunotia iatriaensis (EU019A); they are present in the
sections found on the negative side of the wave form (Fig. 8.6a). The medium-
scale submodel uses PCNMs numbers 11–20 as explanatory variables; it explains
R2

a D 9:1% of the detrended diatom variation. Only canonical axis 1 of that
submodel is significant and explains more than 5% of the detrended diatom variation
(Fig. 8.6d). The fine-scale submodel uses PCNMs numbers 28, 30, 32, 33, 35, 37,
38, 41, 42, and 45 as explanatory variables. Taken alone, this submodel does not

http://r-forge.r-project.org/R/?group_id=195
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Canonical axis 1 of submodel 1: 24.9% of detrended diatom variance (P = 0.001, 999 perm.)
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Fig. 8.6 Significant canonical axes of the first two principal coordinates of neighbour matrices
(PCNM) submodels, as a function of the core level or section numbers in The Round Loch of
Glenhead diatom stratigraphical data. P probability

explain a significant portion of the diatom variation (p D 0.916, 999 permutations);
the PCNM variables it contains were significant in the global model of 30 PCNMs,
after the broad- and medium-scale PCNMs had been selected. None of its canonical
axes is significant. We conclude that the core is mainly structured by processes
operating at broad (5 � 103 � 104 year) and medium (5 � 102 � 103 year)
scales. This PCNM example is presented simply to illustrate the potential of PCNM
analysis in palaeolimnology. A more detailed analysis would naturally consider
the estimated age of each level (see Blaauw and Heegaard 2012: Chap. 12) in the
sediment core, rather than simply level numbers.

Testing Hypotheses in (Multi-) Factorial Experiments

RDA and CCA provide ways of testing hypotheses about multivariate data, as in
analysis of variance (ANOVA). Assemblage composition data can be used as the
response table in RDA provided that they are transformed in appropriate ways, as
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shown in Fig. 8.3b, c. Examples of the use of RDA to test ANOVA-like hypotheses
are found in Sabatier et al. (1989), ter Braak and Wiertz (1994), Verdonschot
and ter Braak (1994), Anderson and Legendre (1999), and Hooper et al. (2002).
The principle of this analysis is the following: multiple regression can be used to
calculate any ANOVA model, provided that the factors are coded in appropriate
ways in the matrix of predictors X. Since RDA and CCA are simply regression
followed by PCA, they can be used in the same way as regression to carry out
analysis of variance. The PCA portion of the procedure is only needed to illustrate
the ANOVA results using bi- or triplots, as in Hooper et al. (2002); it is not needed
nor computed for the test of significance of the canonical relationship. RDA and
CCA use Monte Carlo permutation tests to assess the significance of the relationship
between the response matrix Y (or Q) and the factor coded into matrix X.

Here are examples of such potential hypotheses in palaeolimnology. For sedi-
ment cores: in time-series, are there differences between time periods of interest?
In the comparison of cores: are there differences among cores, which can be related
to sampling regions? (In the latter example, one can control for the time pairing of
core subunits by coding them into a matrix of covariables.) In such analyses, the
factors (or ANOVA classification criteria) must be coded using dummy variables.
A set of ordinary (binary 0–1) dummy variables will do the job when analysing
a single factor. For two or more factors and their interactions, the factors must be
coded using Helmert contrasts, also called orthogonal dummy variables. A method
of coding such factors is described in Appendix C of Legendre and Anderson (1999)
and in Legendre and Legendre (2012: Sect. 1.5.7). In R, factors can be automatically
coded into Helmert contrasts by the function model.matrix() in the R package
stats using an appropriate contrast type specification.

The use of RDA and CCA to test hypotheses in palaeolimnology is discussed in
detail by Lotter and Anderson (2012: Chap. 18). Birks (1996, 1998, 2010) reviewed
hypothesis testing in palaeolimnology both directly through rigorous project design
and through site selection (e.g., Birks et al. 1990b) and indirectly through RDA or
CCA.

Software

A list of programs and packages available for simple and canonical ordination of
ecological and palaeoecological data is presented in Table 8.3. The list of functions
available, especially in the R language (R Development Core Team 2011), is rapidly
increasing.

Most general-purpose statistical programs contain procedures for principal
component analysis (PCA). Very few allow, however, the direct drawing of biplots
of species and objects, and many do not even compute the coordinates of the
species and objects necessary to construct distance or correlation biplots. PCA and
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biplots are available in CANOCO (biplots: CanoDraw), in PC-ORD, in SYN-
TAX, and in the rda() function of vegan, the dudi.pca() function of ade4,
and the pca() function of labdsv (R-language packages).

Correspondence analysis (CA) is offered in few general-purpose statistical
packages. In R, palaeoecologists will find it in the same packages as PCA. Principal
coordinate analysis (PCoA) is available in the PrCoord program distributed with
CANOCO, in functions of the R language (cmdscale() and its wrappers
capscale(), pco() and cmds.diss(), in pcoa(), and in dudi.pco();
see Table 8.3 for references), and in SYN-TAX. Non-metric multidimensional
scaling (NMDS) is found in PC-ORD, in function metaMDS() of the R language,
and in isoMDS and its wrappers nmds() and bestnmds(), and in SYN-TAX.
NMDS is also found in some general-purpose statistical packages; they offer,
however, a poor choice of dissimilarity functions.

CANOCO and the rda() and cca() functions of the vegan R-language
package are widely used for unconstrained or constrained ordination analysis. Other
programs and packages allow the computation of some forms of canonical analysis:
the PC-ORD and SYN-TAX packages, and the program Polynomial RDACCA
of Makarenkov and Legendre (2002). CANOCO contains many interesting fea-
tures for palaeoecologists, not shared by most other canonical analysis packages
(Rejmánek and Klinger 2003), such as a procedure for selecting the environmental
variables of X that contribute significantly to modelling Y; selection of explana-
tory variables is also available in the R language: functions ordistep() and
ordiR2step() (vegan), as well as forward.sel() (packfor on http://r-
forge.r-project.org/R/?group id=195). CANOCO also offers tests of significance
for individual canonical eigenvalues (also in vegan), partial canonical analysis (also
in vegan), and permutation methods especially designed for time series and blocked
experimental designs.
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