Chapter 20

Tracking Holocene Climatic Change

with Aquatic Biota from Lake Sediments:
Case Studies of Commonly used Numerical
Techniques

Brian F. Cumming, Kathleen R. Laird, Sherylyn C. Fritz,
and Dirk Verschuren

Abstract It is now widely recognised that reliable long-term climatic data are
required to evaluate the impact of human activities on climate. Lake-sediment
records are an important source of such palaeoclimatic information, on time-
scales from years to millennia. However, unequivocal interpretation of biological
climate-proxy data preserved in lake sediments can be very challenging. Here we
review the different numerical approaches that are used to evaluate the sensitivity
and reliability of species assemblages of aquatic biota (algae and invertebrates)
extracted from lake-sediment records as proxies of past climatic conditions. The
most common techniques used to assess this relationship between these proxies and
climate include calibration functions that model the relationship across modern lake
environments between species composition in the indicator group and particular
climate-influenced aspects of their aquatic habitat, and assessments of the main
directions of variation in species composition in relation to independent climatic
data. Other statistical techniques, such as variation partitioning analysis, are used
to assess the relative importance of climate versus other factors in influencing
limnological changes seen in the sedimentary record. These techniques show that
in climate-sensitive lake systems, the sedimentary remains of aquatic biota can be
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sensitive and trustworthy proxies, permitting quantitative reconstructions of past
climatic conditions with high temporal resolution.

Keywords Calibration functions ¢ Chironomids ¢ Climatic change ° Diatoms
e Invertebrates ¢ Modern analogues ¢ Ordination ¢ Palaeoclimate
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Introduction

With recent concerns about global change, the need for reliable long-term palaeo-
climatic data is now universally recognised by governments and international
organisations. Such records are necessary to provide information on the magnitude
and patterns of past climatic change against which recent changes can be assessed.
Furthermore, prognoses of future climatic conditions will be enhanced when we
better understand the temporal and spatial patterns of natural climatic variability.

Historically, a great amount of information on long-term climatic variability has
been provided by reconstructions of past vegetation changes from pollen and plant
macrofossils preserved in lake sediments (e.g., Webb 1986; Prentice et al. 1991) and
from studies applying geomorphological, sedimentological, and biostratigraphical
methods to transects of sediment cores to reconstruct changes in water level (e.g.,
Harrison and Digerfeldt 1993). However, as noted by many authors (e.g., Ritchie
1987), pollen-based studies have certain limitations, which include the inability to
identify many pollen taxa below the family level; the broad dispersal of many wind-
blown pollen grains; the differential response of various tree species to climatic
change associated with variation in topography, soils, life-cycle characteristics,
and anthropogenic factors; and the general scarcity of pollen and macrofossils in
some environments (e.g., regions at high altitudes and/or latitudes). None-the-less,
contributions from palynological and lake-level studies have elucidated the broad-
scale temporal and spatial template of climatic change in many regions, and in
some regions have the potential to provide records of climatically-driven vegetation
change with high temporal resolution (e.g., Clark et al. 2002; Lamb et al. 2003;
Gajewski 2008; Kropelin et al. 2008; St. Jacques et al. 2008a, b).

Many lakes exhibit physical, chemical, and/or biological responses to changes
in climatic conditions, and evidence of these changes are often preserved in
their sediment record (Battarbee 2000; Smol and Cumming 2000; Fritz 2008).
Analyses of the remains of aquatic algae (e.g., diatoms, chrysophytes, pigments)
and invertebrates (e.g., chironomids, cladocerans, ostracods) in sediment cores from
such climatically-sensitive lakes can potentially provide records of climatic and
environmental change at a higher resolution than most palynological and many
lake-level studies. Enhanced sensitivity of aquatic biological indicators (proxies)
to environmental change is due to our ability to identify many of these organisms
to species level, their short life-span, and their fast dispersal, which guarantees
rapid colonisation of newly available habitat and thus avoids significant lags in
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their response to climatic change. Thus, examination of changes in the species
composition of aquatic biota in sediment cores can provide valuable insights into
how climatic conditions have varied in the past that may not be readily apparent
from terrestrial indicators. However, the relative importance of climatic change can
be complex, even in apparently simple aquatic systems (e.g., Anderson et al. 2008;
Fritz 2008).

In this chapter, we provide an overview of the different numerical techniques
that have been used to study the linkages between changes in biotic assemblages
preserved in lake sediments and climatic change during the Holocene. It is important
to note that these approaches are simply tools that are useful to assess, simplify,
and visualise past environmental changes in a repeatable and somewhat objective
manner. Many studies make limited use of numerical approaches but still yield
valuable insights into past climatic conditions (e.g., Baker et al. 2001; Bennett et al.
2001; Dean 2002; Dean et al. 2002; Spooner et al. 2002). Finally, although the focus
of this chapter is on approaches that have been used to interpret climatic signals in
fossil assemblages of lake biota, equally important palaeoclimatic information is
derived from physical (e.g., Lamoureux 2000; Noon et al. 2001; Dean et al. 2002;
Pienitz et al. 2009) and geochemical proxies (e.g., Dean 2002; Tierney et al. 2008;
Pienitz et al. 2009; Toney et al. 2010). The latter increasingly include stable-isotope
signatures extracted from lake biota, such as ostracods (e.g., von Grafenstein et al.
1999), chironomids (e.g., Verbruggen et al. 2010), and diatoms (e.g., Hernandez
et al. 2010).

Biological Proxies of Past Climatic Conditions

Proxy data based on biotic assemblages preserved in lake sediments have long been
known to be sensitive and reliable indicators of past climatic change, because of the
strong influence of temperature and rainfall variations on the structure and function
of their aquatic habitats. Lake characteristics that are sensitive to climatic changes
can be both physical (e.g., temperature, ice cover, lake depth, river discharge,
mixing regime, light transparency) and chemical (e.g., changes in alkalinity, pH,
nutrients, salinity) (e.g., Walker et al. 1991; Walker 1995; Vinebrooke et al. 1998;
Korhola 1999; Battarbee 2000; Smol and Cumming 2000; Korhola and Rautio
2001; Brodersen and Anderson 2002; Fritz 2008; Lotter et al. 2010; Wolin and
Stone 2010). However, establishing an unequivocal connection of these limnological
changes to climate is often difficult. The challenge is to demonstrate that the biotic
proxy indicators are connected to climate in a systematic, predictable fashion. In
some systems, this is exceedingly difficult because of the non-linear responses
of the limnological system to climatic change and subsequent sedimentological
complications, such as variable sedimentation rates and/or mixing (Verschuren
1999a, b). Such complexities are related to basin hydrology, as well as to the
physical, chemical, and biological characteristics of individual lake basins (Smol
and Cumming 2000; Schwalb and Dean 2002; Fritz 2008). Additionally, because
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different groups of biological proxies have different life-history strategies, changes
in climate that influence aquatic systems can impact various proxies in different
ways (Battarbee et al. 2002a; Heegaard et al. 2006). Therefore, it is not surprising
that the response of different lakes, and of different proxies within a single lake, to
climatic change can vary tremendously (Smol and Cumming 2000; Fritz 2008).

Successful palaeoclimatic interpretation of in-lake biological proxies depends
on a good understanding of the climatic response of a lake to changes in climate.
Not surprisingly, selecting and then demonstrating the climatic sensitivity of a
site is not a simple procedure. Smol and Cumming (2000) identified lakes that
are thought to be especially sensitive. These include lakes from high latitudes,
lakes that are close to ecotonal boundaries (e.g., near tree-line, near the forest-
prairie boundary), and lakes in arid to semi-arid regions with limited groundwater
inputs and, ideally, large catchments (i.e., amplifier lakes: Olaka et al. 2010).
In addition to geographical position, sites sensitive to climatic changes can be
identified from measurements of limnological change (e.g., changes in lake-water
chemistry, transparency, declines in water levels, and/or changes in salinity) and
from instrumental and/or historical records (Fritz 1990; Schindler et al. 1996;
Verschuren 1996, 2003; Webster et al. 2000; Doran et al. 2002). However, data
of sufficient duration and frequency are relatively rare, even in populated regions.
Additional information on the hydrological responsiveness to changes in climatic
conditions can be obtained by careful examination of temporal sequences of aerial
photographs and satellite images (Donovan et al. 2002; Smith et al. 2005).

Once climate-sensitive lakes have been identified, it is becoming increasingly
common to assess the strength of the climatic impact on biological proxies or
inferred limnological variables in the sediment record by comparison of the proxy
records with instrumental meteorological data (temperature, precipitation, drought
indices), historical data of lake response to climate (e.g., lake-level changes,
chemical constituents), or with independent evidence of climatic change (e.g.,
documentary, other palaeoclimatic proxies). These comparisons may involve simple
visual matching of pattern similarities in the palaeolimnological and meteorological
records, calculation of correlation coefficients between lake and climatic variables,
or using multivariate numerical methods (e.g., variation partitioning: Borcard et al.
1992; Legendre and Birks 2012: Chap. 8).

Comparison of Inferred Limnological Variables
and Instrumental Climate Data

In arid to sub-humid regions, long-term (decade-scale and longer) variations in the
balance of rainfall and evaporation can drive significant changes in lake level, which
in turn may influence the physical, chemical, and biological environment of lakes to
the extent that their signatures are recorded in the sedimentary record (Fritz 1996).
In other regions, the influence of temperature is evident in the sedimentary record,



20 Holocene Climatic Change 619

Fig. 20.1 Diatom-inferred Bhalme Mooley Drought Index
salinity estimates from Moon
Lake (North Dakota, USA) 3 2 ! o -1 2
(solid line) compared to a e psd cesee®
smoothed Bhalme-Mooley 1980 A AN
Drought Index (dotted line) NPT
based on nearby instrumental PXXE A S ceeeen.
precipitation records over the 1960 CRh At
last 100 years; r = 0.49, 5 evesensesees
p <0.01 (Modified from 0 1940 4
Laird et al. 1998a) E
©
A 1020 eescerzpiie
o EXTAAAAN
“ 1900 -
1880 1
1860 T
3 5 7 9 20 30

Diatom-inferred salinity (g/L)

either directly or indirectly, via changes in catchment hydrology, vegetation, ice
cover, or mixing regimes. One way to validate proxy-based climatic inferences
is to compare quantitatively or qualitatively the proxy-based reconstructions of
environmental change (e.g., lake-water salinity, lake level, temperature) in the recent
past with historical time-series of instrumental meteorological data. To date, the
majority of such direct, quantitative comparisons have used approaches based on
calibration functions (see Juggins and Birks 2012: Chap. 14).

To evaluate the climatic sensitivity of Moon Lake (Northern Great Plains,
USA), Laird et al. (1996a) assessed the correlation between diatom-inferred (DI)
salinity through time in a 2!°Pb-dated sediment core and instrumental time-series of
effective moisture (precipitation minus evapotranspiration or ET). Diatom-inferred
salinity showed major increases coincident with the major droughts of the 1930s
and the 1890s, with a statistically significant relationship between DI salinity and
effective moisture (Laird et al. 1996a). Because ET can be difficult to estimate,
Laird et al. (1998a) replaced estimates of effective moisture with the Bhalme
and Mooley drought index (BMDI), derived from nearby precipitation records
(Fig. 20.1). The BMDI was chosen as a measure of drought, because it is based
on precipitation records from local stations, as opposed to regional precipitation
averages used in some other indices, such as the Palmer Drought Severity Index.
In this analysis, the BMDI was smoothed using a four-point Fourier transform
filter to achieve approximately equal time resolution between the sediment record
and the instrumental data. A modest correlation between diatom-inferred salinity
and BMDI (Fig. 20.1) can be attributed to several factors, including the low time
resolution in core data from before 1940, the further distance of the meteorological
station from the lake for the early instrumental period, and limnological changes
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Fig. 20.2 Diatom-inferred lake-water pH from Schwarzsee ob Sé6lden in the Austrian Alps since
~1780 compared with smoothed annual mean air temperature from 20 regional weather stations;
r=0.68, p <0.001 (From Sommaruga-Wograth et al. 1997. With permission)

that are potentially attributable to settlement and agricultural practices that may have
impacted lake chemistry independent of climate since the early 1900s. Comparison
of the Moon Lake record with regionally recognised climatic anomalies prior to
the instrumental record (e.g., a tree-ring inferred wet period from 1825 to 1838
and the extreme 1890s drought) suggest, however, that the diatom-inferred salinity
record does capture the general drought trends characteristic for the Northern
Great Plains (Laird et al. 1996a, 1998a, b). Consequently, this site was chosen to
reconstruct drought intensity, duration, and frequency throughout the Holocene at
both centennial and sub-decadal scales (Laird et al. 1996a, b, 1998a, b).

In a study from a mountain lake in the Austrian Alps, comparison between
diatom-inferred pH and instrumental air temperature between 1778 and 1991
revealed a significant positive correlation (r=0.68, p<0.001) (Fig. 20.2)
(Sommaruga-Wograth et al. 1997), suggesting that diatoms may be an important
proxy of past temperatures. In two other alpine lakes, diatom-inferred pH and
temperature were correlated during the entire 19" century, but the relationship
weakened during the 20" century with the onset of acidic deposition (Psenner and
Schmidt 1992). The mechanism that produced the pH increases during warming
events and declines during cooler periods is likely to be related to changes in the
duration and extent of ice-cover because these would alter light, temperature, and
nutrient regimes, all of which affect diatom production and could influence in-lake
production of alkalinity, as well as lake-water pH (Sommaruga-Wograth et al.
1997). Periods of prolonged ice-cover would also reduce CO, exchange with the
atmosphere and temporarily eliminate atmospheric inputs of base cations into the
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lake (Psenner and Schmidt 1992), both of which would affect the acid-base status
in poorly-buffered lakes.

Bigler and Hall (2003) and Larocque and Hall (2003) compared chironomid
and diatom-inferred mean-July air temperatures from northern Swedish sediment
cores over the last century to measured values from nearby meteorological stations.
In all four lakes studied, chironomid-inferred July temperatures were significantly
but weakly correlated to the instrumental record (» = 0.35-0.39). The relationship
between diatom-inferred and instrumental July temperatures was weaker, and no
correlation coefficients or levels of significance were reported.

Many studies have validated climate proxies through a qualitative comparison
of reconstructed environmental change to historically documented changes in
climatically-sensitive limnological variables, an approach first used in comparisons
of diatom-inferred salinity and ostracod trace-metal content with documented
changes in the depth and salinity of Devils Lake (Northern Great Plains, USA) (Fritz
1990; Engstrom and Nelson 1991). One particular series of studies (Verschuren
1999a, b, 2001; Verschuren et al. 1999a, b, 2000a) investigated the sedimentologi-
cal, geochemical, and biological signatures of climatically driven lake-level changes
in a system of four contrasting lakes in the Eastern Rift Valley of Kenya, which
because of their hydrological inter-connectedness have a common recorded lake-
level history spanning the last 120 years (Verschuren 1996). Together these studies
illustrate the complexity of chemical and biological responses to climatically-driven
changes in water balance at sub-decadal time scales (Verschuren et al. 1999a, b,
2000a), and how the signatures of this response in the sediment record are affected
by sedimentation dynamics and taphonomy (Verschuren 1999a; Verschuren et al.
1999a). For example, although reconstructed salinity and lake-level changes in Lake
Oloidien displayed the expected inverse relationship, this was modulated by delayed
dilution of residual salts following a modest lake-level rise in the late 1950s and
early 1960s (Fig. 20.3) (Verschuren et al. 2000a). In nearby Lake Sonachi, diatoms
quickly responded to a major 1890s lake-level rise which created stable density
stratification of the water column. In the sediment record, however, their response
is delayed by almost a decade because previously buried shallow-water diatoms
are re-deposited in deep-water sediments during the transgression (Verschuren
et al. 1999b). In the three main groups of aquatic invertebrates present (ostracods,
cladocerans, chironomids), only some species responded directly to salinity change
(via the physiological impact of osmotic stress). Most species responded more
strongly to substrate changes associated with the lake-level change itself or to
changes in the distribution of aquatic vegetation (Verschuren et al. 2000a). While
lake depth, salinity, and substrate quality are all important factors in structuring
aquatic invertebrate communities, it is sobering to realise that at the time-resolution
of many modern palaeoclimatic studies, the intuitive co-variation between these
factors can be strongly modulated by transient system dynamics. None-the-less,
invertebrate communities do remain useful proxies of past hydrological change,
particularly in combination with diatoms and non-biological climatic proxies.
Other qualitative studies (e.g., Legesse et al. 2002) have used both biological and
sedimentological proxies to reveal fluctuations in water depth and salinity that are
broadly consistent with available instrumental and historical records.
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Although direct comparison of palaeoclimatic reconstructions with meteorolog-
ical data has yielded many valuable insights into the response of specific lakes
to climatic variation, other approaches may be used. These include comparisons
between the main directions of variation in fossil assemblages and instrumental
climatic records (Sorvari et al. 2002), the use of variation partitioning to assess
the role of climate in proxy records over the instrumental period (Lotter and Birks
1997; Hall et al. 1999; Quinlan et al. 2002), and comparisons of within-lake proxy
records with independent estimates of climatic change (Anderson et al. 1996, 2008;
Stager et al. 1997; Cumming et al. 2002; Wolfe 2003; Enache and Cumming 2009;
Stone et al. 2011).

Direct Comparison of Biological Data to Instrumental
Climatic Data

Ordination techniques (see Legendre and Birks 2012: Chap. 8) are now widely used
to quantify and summarise the main directions of variation in biological assemblages
(Cumming and Moser 2007), which can then be correlated directly to instrumental
climatic records. For example, Sorvari et al. (2002) examined the relationship
between species-composition changes in the diatom communities of five lakes
with varying characteristics in Finnish Lapland over the last 200 years using
principal component analysis (PCA), a common ordination technique (Fig. 20.4).
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The PCA sample scores from each lake record were highly correlated to each other
(r=0.74-0.95), as well as being significantly correlated to instrumental records
of yearly temperature (» = 0.39-0.62 in three of the five lakes investigated). Inter-
estingly, the highest correlations (r = 0.52-0.70) were between the main direction
of variation in the diatom assemblages and spring temperatures. Sorvari et al.
(2002) suggested that the strong coherence of sedimentary signatures in these
five lakes, and their significant correlation with temperature change over the last
~200 years, indicate that diatom floras did indeed respond to regional temperature
rise, possibly through decreased ice-cover, a longer growing-season, or enhanced
thermal stratification. This example illustrates that arctic as well as alpine lakes are
sensitive locations to search for ecosystem changes in response to recent climatic
change (Battarbee et al. 2002a; Heiri and Lotter 2005; Smol et al. 2005: Lotter et al.
2010). The response of these systems to climate is not limited to direct temperature
influences, but may also include responses to changes in physical and chemical
aspects of the aquatic environment, which themselves are affected by changes in
temperature or precipitation. For example, such changes may include the duration of
ice-cover, microhabitat availability, and changes in dissolved organic carbon (DOC)
or acid-base status (Smol and Cumming 2000; Smol and Douglas 2007; Lotter et al.
2010).

In a large interdisciplinary study involving seven European high-elevation lakes,
the Mountain Lake Research (MOLAR) project, researchers sought to establish
links between various biotic and abiotic proxies in lake sediments and instrumen-
tal temperature records (summarised by Battarbee et al. 2002a). The biological
proxy indicators included assemblages of diatoms, chrysophytes, chironomids, and
cladocerans. Potential explanatory variables included: mean summer temperature
(June to August and July to September), mean winter temperature (December
to February), an index of continentality (difference between June to August and
December to February), and mean annual temperature (average of all 12 months).
Because instrumental data series directly linked to these remote high-elevation
sites were not long enough for comparison with core data, homogenised lowland
air-temperature records were transformed to values appropriate for each high-
elevation site using the contemporary relationship between lowland temperatures
and recently established on-site automatic weather stations (Agusti-Panareda and
Thompson 2002). Prior to regression analysis, the variation in each of the biotic
proxy data-sets was numerically reduced to its main direction of variation by
calculating sample scores along PCA axes, following a square-root transformation
of the species percent-abundance data. Correlations between the main direction of
variation in the biological data and the instrumental records were very low, with
few clear or consistent patterns. The highest correlations were found using the
greatest smoothing of the instrumental data, suggesting that the biological proxy
data may capture only the broadest, long-term changes in these records. Planktonic
diatom assemblages (at most sites) and chrysophytes and chironomids (at a few
sites) showed the highest correlation with the instrumental data (Battarbee et al.
2002b; Koinig et al. 2002). The generally weak correlations were mainly attributed
to inaccurate dating and/or the limited sensitivity of some proxies to modest recent
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climatic forcing, as well as confounding forcing factors, such as air pollution
and earthquakes, at some sites. These results are perhaps not surprising, because
different species thrive at different locations within the lake as well as at different
times in the season (e.g., Interlandi et al. 1999; Bradbury et al. 2002; Catalan et al.
2002). Consequently, the use of yearly averages or average temperature in any given
season will likely fail to represent accurately the ecological characteristics of some
of the species to temperature. The low correlations found in this study in comparison
to the five sites in Finnish Lapland may also suggest that the lakes in the MOLAR
project were not as sensitive to recent climatic changes or that the degree of climatic
change has been less in the MOLAR lakes in comparison to those in Lapland.
Continued investigation of the response of varied proxies and European lakes to
climate is ongoing in the large interdisciplinary European Millennium Project (e.g.,
von Gunten et al. 2008), which is focused on reconstructing regional climates of the
last 1000 years.

Assessing the Influence of Climate on Lake History Using
Variation Partitioning and Linear Mixed-Effects Models

Variation partitioning analysis (VPA) has been used increasingly to assess the
relative influence of climate versus other factors in driving limnological changes
reconstructed from the sedimentary record. Variation partitioning (Borcard et al.
1992; Legendre and Birks 2012: Chap. 8; Lotter and Anderson 2012: Chap. 18;
Simpson and Hall 2012: Chap. 19) uses direct gradient analysis or canonical ordi-
nation to estimate which fraction of the total variation in assemblage composition
can be explained by specific categories of measured environmental variables, and
which fraction is shared between different categories of variables. For example,
Lotter (1998) used VPA to estimate the amount of variance in diatom data from a
1004--year varved sediment record from Baldeggersee (Switzerland) that could be
explained independently by trophic state and climate (also see Lotter and Anderson
2012: Chap. 18). The variation in the diatom data was partitioned into: (i) variation
due to changes in lake trophic state only (modelled by measured and extrapolated
total phosphorus, lake restoration, and their interaction); (ii) variation due to climatic
change only (modelled by mean spring air temperatures); (iii) covariation between
(i) and (ii); and (iv) variation unexplained by the model. Because of strong temporal
autocorrelation in the data, the effect of time was removed prior to the statistical
analyses. Trophic state and climate together accounted for only 14.2% of the total
variation in the diatom data (p = 0.01), with 12.6% being explained by trophic state
(p =0.06), and only 1.1% by climate (p = 0.08). Hence, Lotter (1998) concluded
that changes in climatic variables were relatively unimportant in comparison with
trophic-state variables in explaining changes in the diatom assemblages. Lotter
and Birks (1997) used a similar approach to disentangle the relative importance
of trophic state and climate on varve thickness in the same lake. Heiri and Lotter
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(2005) used variance partitioning to examine the influence of co-variation between
summer temperature and trophic state on calibration-function development in the
Swiss Alps. Their analyses suggest that independent calibration functions can be
developed for diatoms and benthic cladocerans but caution should be used in
interpreting total phosphorus (TP) reconstructions from chironomids.

Hall et al. (1999) used VPA to determine how much of the down-core variation
in diatom, pigment, and chironomid assemblages from Pasqua Lake (Saskatchewan,
Canada) could be accounted for solely by climate (C), resource-use (R), urbanisa-
tion (U), and by covariations between them (i.e., CR, CU, RU, and CRU). Hall et al.
(1999) performed separate VPAs on the percent abundances of diatoms and chirono-
mids and a 3-year running mean of pigment concentrations for periods beginning in
1890, 1920, 1950, and 1970, so that the relative importance of climate, resource-
use, and urbanisation on the biological records could be evaluated through time. All
categories, both independently and in combination, explained significant amounts
of variation in the biological data, although their relative importance depended on
the fossil group and the period considered. Changes in urban population, sewage
characteristics, livestock biomass, crop area, and temperature and precipitation
proved to be consistently important explanatory variables in the history of this lake
(Hall et al. 1999). However, the most consistently important explanatory variable
was resource-use, accounting for between 14% and 25% of the variation in the
fossil assemblages according to the VPAs. Variation attributable solely to climate
was consistently low (between 4% and 10%), but the covariation between climate
and resource-use and urbanisation (CR, CU, or CRU) were typically quite large, at
times accounting for more than 50% of the total variation. In a similar study from
the Canadian prairies involving eight lakes, Quinlan et al. (2002) found that VPA
identified climate (specifically winter temperature) as the category that accounted
for the largest amount of variation in past chironomid assemblages (on average
~25%), whereas changes in resource-use and urbanisation only accounted for ~7%
and ~4% of variation, respectively. In summary, one of the benefits of VPA is that
it potentially allows the relative importance of competing influences to be evaluated
and quantified (Birks 1998).

Eggermont et al. (2010a) assessed whether the Rwenzori mountain lakes
(Uganda/DR Congo) are sensitive to climate-driven environmental change of
the same order of magnitude as that expected to result from current and
future anthropogenic global warming. This was done by comparing the species
assemblages of larval chironomid remains deposited recently in lake sediments
with those deposited at the base of the short cores (dated to within or shortly after
the Little Ice Age) in 16 lakes. Chironomid-based temperature reconstructions
were made using temperature-inference models (Eggermont et al. 2010b) with
calibration functions based on weighted averaging, weighted-averaging partial
least squares, or a weighted modern analogue technique (see Juggins and Birks
2012: Chap. 14; Simpson 2012: Chap. 15). Excluding one atypical mid-elevation
lake, Eggermont et al. (2010a) found a three-to-one ratio of sites with inferred
warming against inferred cooling. The chironomid-inferred temperature changes
mostly fell within the error range of the inference models, but a generalised linear
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mixed-effects analysis (SAS Inc. 2004; Birks 2012: Chap. 11) of the combined
result nevertheless indicated significantly warmer mean annual air temperature (on
average +0.38 £0.11°C) at present compared to between ~85 and ~645 years
ago. This result was independent of whether lakes were located in glaciated or
non-glaciated Rwenzori catchments, and of basal core age, suggesting that at least
part of the signal is due to relatively recent, anthropogenic warming.

Qualitative Validation of Biological Proxies
Using Independent Evidence of Climatic Change

Support for the climatic sensitivity of lake systems is not limited to comparisons
with instrumental and other historical data. Lake response to climate also can
be assessed by comparisons (qualitative or quantitative) of in-lake climate-proxy
indicators with other known climatic proxies. For example, Pienitz et al. (1999)
assessed changes in diatom species composition in a sediment core from Queen’s
Lake (Northwest Territories, Canada), located north of the tree-line. Sharp increases
in the abundances of black spruce (Picea mariana) pollen and sediment organic
matter between ~5000 and 3000 years ago (Fig. 20.5), in conjunction with
isotopic changes, strongly suggested regional climatic warming during this interval
(MacDonald et al. 1993; Wolfe et al. 1996). Coincident with these changes were
abrupt changes in both the concentration and species composition of diatoms in
the sediment profiles (Fig. 20.5). By using a diatom-based calibration function
for dissolved organic carbon (DOC), developed from a regional surface-sediment
calibration-set (Pienitz et al. 1995), Pienitz et al. (1999) showed that the diatom
changes were consistent with changes in lake-water transparency caused by changes
in soils as trees moved into the watershed during climatic warming.

Another example of palynological data being used to support inferences of past
changes in diatom species composition comes from Lake Victoria, East Africa
(Stager et al. 1997). In this study, changes in diatom species composition over the
last ~14,000 years were summarised into two main directions of variation by corre-
spondence analysis (CA) (see Legendre and Birks 2012) (Fig. 20.6). The two main
directions of variation were interpreted to represent relative water column stability
(or conversely mixing, an index of wind strength) and the ratio of precipitation to
evaporation (or effective moisture, assumed to be reflected in lake depth) based on
the known habitat requirements of the dominant diatom species found in the fossil
record. In conjunction with pollen records of past changes in terrestrial vegetation
within the Lake Victoria catchment from an earlier study from a nearby location
(Kendall 1969), the diatom data permitted the delimitation of four major periods
of limnological/climatic change over the past 14,000 years: (1) a period of aridity,
from ~13,400 to 11,400 cal year. BP, represented by extremely high abundances
of Fragilaria and other benthic diatoms coincident with the abundant occurrence
of grass pollen and phytoliths; (2) an early-Holocene humid phase characterised
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Fig. 20.6 Trends in correspondence analysis (CA) axis-1 and -2 sample scores of fossil diatom
assemblages from Lake Victoria’s Damba Channel (East Africa) over the past 11,000 years, in
relation to changes in the regional abundance of Celtis (reflecting seasonally dry forest) and
Moraceae (reflecting moist forest) as reconstructed at a nearby location in Lake Victoria from
fossil pollen (From Stager et al. 1997. With permission)

by high abundances of Aulacoseira species, that prefer well-mixed deep water,
coincident with high abundances of pollen from humid forest trees (e.g., Moraceae);
(3) a period of increased seasonality beginning ~7900 cal year BP characterised
by high abundances of taxa that thrive under enhanced thermal stratification,
including A. nyassensis and Nitzschia taxa, coincident with evidence of seasonally
dry forests (e.g., Celtis); and (4) a late-Holocene period (from ~2300 cal year BP) of
increasing aridity characterised by a return to higher abundances of Fragilaria taxa,
benthic diatoms, and grasses and phytoliths (Stager et al. 1997). Virtually identical
interpretations have been presented for two other cores from Lake Victoria, one from
the centre of the lake (Stager and Johnson 2000) and one from a shallow peripheral
basin (Stager et al. 2003).
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Fig. 20.7 Relationship between (a) diatom-inferred changes in lake depth at Big Lake (British
Columbia, Canada) over the past 5500 years and (b) a summary of world-wide glacier fluctuations
(Denton and Karlen 1973), and (c¢) a composite record of ice-rafted-debris (IRD) in the North
Atlantic Ocean (Bond et al. 2001) (Modified from Cumming et al. 2002)

In a study of multi-decadal to millennium-scale climate dynamics in British
Columbia (Canada) since the renewal of glacial activity ~5500 years ago, Cumming
et al. (2002) recorded major shifts in diatom assemblages and diatom-inferred
depth and salinity, corresponding well with millennial-scale variations in the
expansion/recession of continental glaciers in the region, as well as with ice-rafting
events in the North Atlantic Ocean (Fig. 20.7). This result provides supporting
evidence for the sensitivity of such lake systems to broad-scale climatic forcing.
However, it has been suggested that reconstructions of lake depth from biological
assemblages based on regional calibration-sets, as was done in this study (Fig. 20.7),
may need to be interpreted with caution because the specific morphometric features
of the study lake may not be adequately represented by a regional reference data-set.
Birks (1998) suggested that calibration models for lake depth may be best developed
on the basis of surface-sediment samples from different depth transects within the
lake under investigation. Laird et al. (2011) provide a summary of how quantitative
techniques and selection of sensitive near-shore coring locations can be exploited
to produce high-resolution palaeoclimatic reconstructions. This approach can yield
valuable insights, but has an increased risk of non-analogue situations, in which the
dominant species in certain sections of the core profile are not represented in the
local surface-sediments today. Consequently, in many instances the reconstruction
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of a limnologically important variable, such as lake depth, can benefit from modern
calibration-sets that include both surface-sediment samples from within the lake
under study (i.e., a transect across depth) as well as in many lakes across the modern
landscape. In some cases, quantitative reconstructions of lake-level change using
biotic indicators can be constrained by geophysical or geomorphic data that provide
clear physical evidence of lake stage at given points in time. This approach has
been used in studies of Quaternary lake-level variation in Lake Malawi in Africa
(Stone et al. 2011), where a multi-proxy reconstruction of lake level was compared
with seismic data; and in a comparison of diatom-inferred conductivity as a proxy
for precipitation minus evapotranspiration in West Greenland with dated Holocene
palaeoshorelines (Aebly and Fritz 2009).

Finally, several studies from Europe have compared quantitative reconstructions
of temperature with other regional reconstructions of temperature change. Korhola
et al. (2002) used both a Bayesian multinomial model and a weighted-averaging
partial least squares model (see Juggins and Birks 2012: Chap. 14) to reconstruct
temperature based on chironomid assemblages over the Holocene. The results gen-
erally agreed with inferences from the Greenland ice-cores and marine sediments,
as well as with previous reconstructions from diatoms and pollen (Korhola et al.
2002). Ampel et al. (2010) used a diatom calibration-function at a site in eastern
France to quantify the magnitude of summer temperature change associated with
millennial events during the late Pleistocene and compared it with other proxy data
from the same site, other regional records, and the patterns of variation manifested
in the Greenland ice core.

Quantitative Validation of Biological Proxies
Using Independent Evidence of Climatic Change

A number of studies have attempted a quantitative assessment of how much of
the variation in biological climate-proxy assemblages can be attributed to climatic
forcing, using ordination and partial ordination techniques including VPA. For
example, in an 1100-year lake record from northern Sweden, Anderson et al. (1996)
(see also Lotter and Anderson 2012: Chap. 18) found a weak relationship between
changes in diatom species assemblages and tree-ring inferred estimates of summer
temperature. However, this relationship could only explain 5.2% of the variation
in the diatom assemblages, and only after the temperature data were lagged by
20 years. Interestingly, a stronger relationship (~10% of the observed variation)
was found between species richness and temperature. Other investigators have used
VPA to compare the relative importance of climate and other factors contributing to
changes in biological assemblages. For example, Birks and Lotter (1994) and Lotter
et al. (1995) attempted to disentangle the impacts of volcanic tephra and climatic
change on terrestrial and aquatic ecosystems (see Lotter and Anderson 2012: Chap.
18). Similarly, Barker et al. (2000) used VPA to investigate the relative importance
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of climate (represented by the ratio between tree and grass pollen), catchment
disturbance (represented by magnetic properties of the sediments), and tephra depo-
sition on a 4100-year diatom record from Lake Massoko (southern Tanzania). The
effects of time-dependent ecological and environmental processes were removed by
using sample age as a covariable in partial constrained ordination (see Legendre
and Birks 2012: Chap. 8). Anderson et al. (2008) used independent climatic data
(e.g., Greenland ice-core data) to assess the degree to which climate versus in-lake
processes explained the community structure of chironomids and other proxies. In
this study, catchment changes or biotic relationships explained more variation than
Holocene climate, with the exception of the early lake development. VPA also has
been used to demonstrate that changes in land-use have been more important than
climate in driving changes in the diatom flora of Seebergsee (Switzerland) over
the last 2600 years (Hausmann et al. 2002). A recurring theme in many of these
studies is that, although climatic forcing has accounted for a significant fraction of
the reconstructed biological variation, the amount of variation explained by climate
alone, over the time scales examined, has been relatively small.

Other Numerical Techniques Used in Lake-Based Studies
of Climatic Change

As is clear from the material discussed above, calibration functions, ordination, and
regression techniques are the methods most commonly used to track palaeoclimatic
signals in biological and other proxies extracted from lake sediments. Calibration
functions are continually being tested and refined (e.g., Koster et al. 2004; Eg-
germont et al. 2006; Battarbee et al. 2008; Birks et al. 2010), and new numerical
approaches continue to be developed (e.g., Racca et al. 2003; Hiibener et al. 2008).
Many examples of these techniques are presented above, and/or are covered in
detail in Parts II-IV of this book. Methods based on aquatic algae have also been
summarised in Smol and Cumming (2000), as well as in more detailed accounts of
palaeoclimatic techniques for semi-arid regions (Bradbury 1999; Fritz 2008; Fritz et
al. 2010) and arctic and alpine regions (Smol and Douglas 2007; Douglas and Smol
2010; Lotter et al. 2010). Additionally, there have been substantial developments
in the application of chironomids and cladocerans as quantitative indicators of past
climatic conditions (e.g., Lotter et al. 1997; Larocque et al. 2001; Korhola et al.
2002; Palmer et al. 2002; Heiri et al. 2004; von Gunten et al. 2008; Eggermont
et al. 2008; Kropelin et al. 2008). For example, Palmer et al. (2002) provided a
midge-based consensus reconstruction of Holocene mean July air temperatures for
southern British Columbia (Canada) based on sediment cores from four lake sites.
Although the number of lake-based quantitative palaecoenvironmental reconstruc-
tions has increased rapidly in the past decade, for some time relatively little attention
was given to a thorough evaluation and validation of these reconstructions (Birks
1998). This has now improved with the availability of a number of simple ap-
proaches to assess the basic reliability of environmental reconstructions (Telford and
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Birks 2011). For example, Laird et al. (1998a) assessed the reliability of the Moon
Lake salinity inferences over the past 2300 years (Laird et al. 1996a) (Fig. 20.8) by
(1) calculating how well a ‘fossil’ sample is represented by modern assemblages
(Fig. 20.8b), and (2) assessing the overall ‘goodness-of fit’ of the environmental
reconstruction (Fig. 20.8c). The lower the dissimilarity coefficient or the less often
a sample is in the extreme of the distribution of the ‘goodness-of-fit’, the more con-
fidence one can place in a reconstructed value, because the ‘fossil’ assemblages are
well represented in the modern data-set (Birks et al. 1990). For their palaeosalinity
reconstructions based on African chironomid assemblages, Verschuren et al. (2004)
and Eggermont et al. (2006) additionally assessed to what extent numerical differ-
ences between calibration functions affected reconstructed salinity trends through
time. Initially this was deemed necessary because, lacking a traditional calibration
data-set of faunal composition based on surface-sediment assemblages, Verschuren
et al. (2000b) had performed a hybrid procedure in which a weighted-averaging
(WA) inference model calibrated with presence/absence distributional records from
the literature was applied to abundance-weighted fossil data. This helped ensure
that changes in the relative abundance between taxa, not just their new appearance
or complete disappearance, would generate a proxy climatic signal. Verschuren
et al. (2004) justified this hybrid procedure by proposing that calibration based
on presence/absence data is not dissimilar to an abundance-weighted calibration
with down-weighting of rare taxa. Using (semi-) independent palaecohydrological
reconstructions based on sediment stratigraphy and fossil diatom assemblages
(Verschuren et al. 2000b) as a reference framework, coupled with a consideration
of modern-day benthic community dynamics in shallow closed-basin African
lakes, Eggermont et al. (2006) documented significant variation among calibration
functions in reconstructed salinity trends, mainly reflecting their different sensitivity
to the presence or relative abundance of certain key taxa. Specifically, WAPLS and
maximum likelihood (ML) techniques statistically ‘camouflage’ the step change
in chironomid faunal composition near the freshwater-saline boundary, resulting
in less robust reconstructions. These authors concluded that selection of the most
appropriate calibration function for environmental reconstruction should not solely
optimise the statistical performance of the resulting inference model, but carefully
consider whether it produces ecologically meaningful reconstruction results with
high signal content (see Juggins and Birks 2012: Chap. 14).

Confidence in palaeoclimatic inferences will also further increase as broad-scale
patterns are replicated in space and time. Examples of coherence are starting to
emerge at a number of sites, over different temporal and spatial scales, for example,
the studies by Sorvari et al. (2002) and Palmer et al. (2002) discussed above.
Similarly, several studies (Fritz et al. 2000; Yu et al. 2002; Laird et al. 2003;
Schmieder et al. 2011) have presented strong evidence of synchronous changes at
various sites in the Great Plains of North America over the last 1500-2000 years.

A number of studies of climatic change have begun to address ecologically
interesting questions that attempt to assess changes in stability and diversity (e.g.,
Anderson et al. 1996; Laird et al. 1998a, b; Wolfe 2003; Stone and Fritz 2006; Hobbs
etal. 2010). For example, Laird et al. (1996a, 1998a) found a large switch in inferred
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Fig. 20.8 (a) Diatom-inferred salinity changes at Moon Lake (North Dakota, USA) over the
last 2200 years. (b) Analogue analysis and (c¢) ‘goodness-of-fit’ analyses based on comparisons
between dissimilarities between core and modern diatom assemblages, and diagnostics from a
constrained ordination, respectively (see text for details). (d) The results of a rate-of-change
analysis used to assess changes in community stability (Modified from Laird et al. 1998a)

climatic conditions in the record from Moon Lake (North Dakota, USA) indicated
by a distinct change in inferred salinity before and after AD 1200 (Fig. 20.8a). The
differences in the environmental stability of Moon Lake before and after ~AD 1200
were assessed by estimating the rate-of-change in the diatom assemblages, based
on a dissimilarity coefficient between adjacent samples over a fixed time interval
(see Birks 2012: Chap. 11). The results of this analysis suggested that the diatom
assemblages in Moon Lake were significantly more stable prior to AD 1200 (during
a period of inferred prolonged aridity) than for the last ~800 years, which were
relatively wet (Fig. 20.8d). This approach has also been employed to assess changes
in limnological stability between the early- and late-Holocene (Laird et al. 1998b;
Clark et al. 2002), and through periods of Holocene cooling and warming (Anderson
et al. 1996; Palmer et al. 2002; Wolfe 2003). Heegaard et al. (2006) used cumulative
rate-of-change and cumulative relative rate-of-change to assess the detection of
aquatic ecotones along an altitudinal gradient in the Swiss Alps for cladocera,
chironomids, and diatoms. Assessing changes in biological richness and diversity
has become a topic of renewed interest in palaeolimnological studies. For example,
Sorvari et al. (2002) noticed a decline in richness (estimated as Hill’s (1973) N2,
a measure of richness of common species) coincident with the recent inferred
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warming of lakes in Finnish Lapland. A significant negative correlation between
diatom richness and temperature was also found in northern Sweden (Anderson
et al. 1996). Conversely, Wolfe (2003) showed that richness increased following
climatic deterioration from the climatic optimum, which started ~2000 years BP.

In the complex system of the Mackenzie River and Slave River delta systems,
species richness and ‘indicator’ taxa were used to distinguish between three hydro-
logically distinct lake types (Hay et al. 2000; Sokal et al. 2008). Ordination methods
were first used to assess the distribution of diatom assemblages in the three lake
categories. Sokal et al. (2008) then used analysis of similarities (ANOSIM: Clarke
and Warwick 2001) to test whether the diatom assemblages differed significantly
among the three lake categories in the Slave River Delta. Finally, similarity
percentage tests (SIMPER: Clarke and Gorley 2006) were performed to identify
specific diatom taxa that accounted for these differences and canonical variates
analysis was used to assess whether ‘indicator’ taxa significantly discriminate
the hydrological lake categories (Sokal et al. 2008). These studies indicate that
numerical methods can be used to assess the hydrological and climatic variability
within complex delta systems.

Finally, it is becoming increasingly evident that the temporal structure of
many palaeolimnological records is composed of periodic components. Correct
identification of these periodicities and how they vary over time is becoming
increasingly important in palacolimnological studies. Aspects of this critical topic
are covered in Dutilleul et al. (2012: Chap. 16).
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