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André F. Lotter
Department of Geobiology
Laboratory of Palaeobotany and Palynology
University of Utrecht
Budapestlaan 4
3584 CD Utrecht
The Netherlands

John P. Smol
Department of Biology
Paleoecological Environmental
Assessment and Research Laboratory
(PEARL)
Queen’s University
Kingston, Ontario, K7L 3N6
Canada

Additional material to this book can be downloaded from http://extras.springer.com

ISSN 1571-5299
ISBN 978-94-007-2744-1 ISBN 978-94-007-2745-8 (eBook)
DOI 10.1007/978-94-007-2745-8
Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2012933106

© Springer Science+Business Media B.V. 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://extras.springer.com
www.springer.com


This book is dedicated to Cajo ter Braak,
whose work on quantifying
species-environmental relationships
underpins many of the recent advances
in quantitative palaeolimnology described
in this book





Preface

Palaeoenvironmental research has been thriving for several decades, with innovative
methodologies being developed at a frenetic rate to help answer a myriad of
scientific and policy-related questions. This burst in activity was the impetus for the
establishment of the Developments in Paleoenvironmental Research (DPER) book
series over a decade ago. The first four DPER volumes dealt primarily with method-
ologies employed by palaeolimnologists. Subsequent volumes addressed a spectrum
of palaeoenvironmental applications, ranging from ice cores to dendrochronology to
the study of sedimentary deposits from around the globe.

This book does not deal with the collection and synthesis of primary data, but
instead it discusses the key role of data handling and numerical and statistical ap-
proaches in analysing palaeolimnological data. As summarised in our introductory
chapter, palaeoenvironmental research has steadily moved from studies based on
one or a few types of proxy data to large, data-rich, multi-disciplinary studies. In
addition, there has been a rapid shift from simply using qualitative interpretations
based on indicator species to more quantitative assessments. Although there remains
an important place in palaeoenvironmental research for qualitative analyses, the
reality is that many researchers now employ a wide range of numerical and
statistical methodologies. It is time to review critically some of these approaches
and thereby make them more accessible to the wider research community. We hope
the 21 chapters making up this volume meet these goals.

Many people helped with the planning, development, and final production of this
book. We would like to acknowledge the hard work and professionalism of our many
reviewers, who provided constructive comments on earlier drafts of the manuscripts.
We would also like to acknowledge the assistance we received from our pub-
lishers, and especially the efforts and encouragement from our main Springer
colleagues––Tamara Welschot and Judith Terpos. We are grateful to Irène Hofmann
for her work in the early stages of the book. We are particularly indebted to the
enormous amount of work that Cathy Jenks has done in the processing and editing
of the chapters, compiling and checking bibliographies and the glossary, and in the
overall production of this book. Thanks are also due to our host institutions and
our various funding sources, which helped facilitate our academic endeavours. We
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also gratefully acknowledge a variety of publishers and authors who allowed us
to reproduce previously published figures. Foremost, we would like to thank the
authors for their hard work and especially for their patience with the delays in
completing this book. We hope that the final product was worth the wait.



Structure of the Book

This book consists of 21 chapters arranged in four parts. Part I is introductory
and Chap. 1 considers the rapid development and ever-increasing application of
numerical and statistical techniques in palaeolimnology. Chapter 2 provides an
overview of the basic numerical and statistical approaches used in palaeolimnology
in the context of data collection and assessment, data summarisation, data analysis,
and data interpretation. Many of these techniques are described in more detail in
chapters in Parts II and III but some important approaches such as classification,
assignment and identification, and regression analysis and statistical modelling are
described in Chap. 2 as they are not specifically covered elsewhere in the book.
Chapter 3 describes the modern and stratigraphical data-sets that are used in some
of the later chapters.

Part II considers numerical approaches that can be usefully applied to the two
major types of palaeolimnological data, namely modern surface-sediment data-
sets and core sediment data-sets. These approaches are exploratory data analysis
and data display (Chap. 5), assessment of uncertainties associated with laboratory
methods and microfossil analysis (Chap. 6), clustering and partitioning (Chap. 7),
classical indirect and canonical direct ordination (Chap. 8), and a battery of
techniques grouped together as statistical-learning methods in Chap. 9. These
include classification and regression trees, multivariate regression trees, other types
of tree-based methods, artificial neural networks and self-organising maps, Bayesian
networks and genetic algorithms, principal curves, and shrinkage methods. Some
other numerical techniques are not covered in these five chapters (e.g., estimating
compositional turnover, richness, and species optima and tolerances, and comparing
clusterings and ordinations) because the topics are not sufficiently large to warrant
individual chapters. They are outlined in Chap. 4 as an introduction to Part II.

Part III contains seven chapters. They describe numerical techniques that are
only applicable to the quantitative analysis of stratigraphical data-sets. Chapter 11
discusses numerical techniques for zoning or partitioning stratigraphical sequences
and for detecting patterns within stratigraphical data-sets. Chapter 12 considers
the essential task of establishing age-depth relationships that provide the basis for
estimating rates of change and temporal patterns within and between stratigraphical
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x Structure of the Book

sequences. Chapter 13 discusses an important but rarely used approach to core
correlation by sequence-slotting. Chapter 14 discusses the quantitative reconstruc-
tion of environmental variables such as lake-water pH from, for example, fossil
diatom assemblages. This general topic of environmental reconstruction has been
a central focus of many palaeolimnological investigations in the last 20 years and
Chap. 14 highlights the assumptions and limitations of such reconstructions, and the
testing, evaluation, and validation of reconstructions. Chapter 15 considers modern
analogue methods in palaeolimnology as a procedure for quantitative environmental
reconstructions and for comparing fossil and modern assemblages as a tool in lake
restoration and management. Chapter 16 concludes Part III by presenting new
approaches to assessing temporal patterns in palaeolimnological temporal-series
where the major assumptions of conventional time-series analysis are not met. Other
numerical techniques such as palaeopopulation analysis, stratigraphical changes in
richness, and approaches to temporal-series analysis such as LOESS smoothing and
the SiZer (Significant Zero crossings of the derivative) approach and its relatives
BSiZer and SiNos that are not discussed in Chaps. 11, 12, 13, 14, 15 and 16 are
outlined briefly in Chap. 10, which also provides an overview and introduction to
Part III.

Part IV consists of five chapters. Chapter 17 provides an introduction and
overview to this Part. Three chapters (Chaps. 18, 19, 20) describe case studies where
some of the numerical methods presented in Parts II and III are used to answer
particular palaeolimnological research questions and to test palaeolimnological
hypotheses. Chapter 18 considers limnological responses to environmental changes
at inter-annual to decadal time-scales. Chapter 19 reviews the application of
numerical techniques to evaluate surface-water acidification and eutrophication.
Chapter 20 discusses tracking Holocene climatic change using stratigraphical
palaeolimnological data and numerical techniques. The last chapter, Chap. 21,
discusses eight areas of research that represent future challenges in the improved
numerical analysis of palaeolimnological data.

Data-sets, figures, software, and R scripts used or mentioned in this book, links
to important websites relevant to this book and its contents are available from
Springer’s Extras website (http://extras.springer.com).

http://extras.springer.com
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Chapter 1
The March Towards the Quantitative Analysis
of Palaeolimnological Data

John P. Smol, H. John B. Birks, André F. Lotter, and Steve Juggins

Abstract We outline the aims of palaeolimnology and describe the major types
of palaeolimnological data. The distinction between biological data derived
from stratigraphical studies of cores and modern surface-sediment samples with
associated environmental data is discussed. A brief history of the development
of quantitative palaeolimnology is presented, starting with early applications of
principal component analysis in 1975. Major developments occurred in the late
1980s, thanks to the work of Cajo ter Braak and others. The structure of the book in
terms of four parts is explained. Part I is introductory and presents an overview of
numerical methods and of the data-sets used. Part II presents numerical approaches
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4 J.P. Smol et al.

appropriate to the analysis of modern and stratigraphical palaeolimnological data.
Part III considers numerical techniques that are only applicable to stratigraphical
data, and Part IV presents three case-studies and concludes with a discussion of
future challenges.

Keywords Calibration • Calibration functions • Data-sets • Numerical
methods • Palaeolimnology • Temporal scales • Transfer functions

Palaeolimnology

Palaeolimnology can broadly be defined as the study of the physical, chemical, and
biological information stored in lake and river sediments. As such, palaeolimnology
is a multi-disciplinary science with many diverse applications. The questions
posed by palaeolimnologists can vary widely, ranging from applied issues, such
as tracking the effects of lake acidification, eutrophication, chemical contami-
nation, and erosion, to more fundamental scientific subjects, such as examining
hypotheses regarding biogeography, evolution, natural modes of climatic change,
and theoretical ecology. Common questions posed by palaeolimnologists include:
Have lakes changed? If so, when and by how much? What was the cause of the
change? How have species distributions and abundances changed over long time
frames? Not surprisingly, given the growing interest and concern in environmental
problems, and the general lack of reliable long-term monitoring data, a large portion
of recent palaeolimnological research has been directed to applied issues (Smol
2008).

The overall palaeolimnological approach is relatively straightforward. The raw
materials used are lake sediments1 which, under ideal circumstances, accumulate
at the bottom of a basin in an orderly and undisturbed manner. In a typical study,
sediment cores can be retrieved using a variety of sampling devices, after which
the sediment profiles can be sectioned into appropriate time slices, and the age-
depth profile can be established using geochronological techniques (Last and Smol
2001a). Incorporated in these sediments is a diverse array of indicators and other
proxy data (Last and Smol 2001b; Smol et al. 2001a, b); the palaeolimnologist’s job
is then to interpret these proxy data in a defendable and rigorous manner that is of
interest to other scientists and the public at large.

Several recent textbooks (e.g., Cohen 2003; Smol 2008) have been published
on palaeolimnology, synthesising this rapidly growing discipline. Furthermore,
many palaeolimnological approaches and methods have been standardised, at least

1In this chapter and in this book as a whole, we will refer primarily to lake sediments; however,
palaeolimnologists can also use pond, river, wetland, estuarine, and other types of sediment
profiles, assuming reliable and undisturbed stratigraphic sequences can be retrieved.
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at a general level (e.g., Last and Smol 2001a, b; Smol et al. 2001a, b). Over
the last two decades, the amount, diversity, and quality of data generated by
palaeolimnologists have been increasing steadily (Pienitz et al. 2009), with many
studies producing large and complex data-sets. Parallel with these advances in data
generation have been research and developments on quantifying these data in a
numerically or statistically robust fashion. Not surprisingly many numerical and
statistical techniques are now standard components of the palaeolimnologist’s tool-
kit. This book summarises some of these numerical approaches.

Types of Palaeolimnological Data

The quantity, quality, and diversity of palaeolimnological proxy data grow steadily.
In the 1970s most palaeolimnological studies were largely restricted to some
geochemical data, perhaps coupled with analyses of fossil diatoms and pollen
grains. Today, a typical palaeolimnological study may include ten or more different
types of proxy data. A scan of papers published in the international Journal of
Paleolimnology shows a clear trend of larger and more multi-authored papers since
the journal’s inception in 1988.

Smol (2008) provides summaries of the commonly used palaeolimnological
indicators, whilst previous volumes in this DPER book series (e.g., Last and Smol
2001a, b; Smol et al. 2001a, b; Battarbee et al. 2004; Francus 2004; Pienitz et
al. 2004; Leng 2006) contain more detailed reviews. Sediment components are
typically categorised, at least at a broad level, by their source. Allochthonous
components originate from outside the lake basin, such as soil particles and pollen
grains from terrestrial vegetation. Autochthonous components originate from the
lake itself, including algal and aquatic invertebrates or chemical precipitates. The
list of physical, chemical, and biological indicators continues to grow steadily
(Pienitz et al. 2009). Amongst the biological indicators, it is true that diatom
valves, chironomid head capsules, and pollen grains are most frequently used, but
virtually every organism living in a lake system leaves some sort of morphological
or biogeochemical (e.g., fossil pigments, lipids) indicator. These biotic indicators
are either used to reconstruct past environmental conditions (e.g., lake-water pH or
phosphorus, temperature, oxygen availability) in a qualitative or quantitative way or
their reaction to different stressors (e.g., climate change, nutrient enrichment, heavy
metal pollution) is studied using numerical methods. Similarly, a broad spectrum
of inorganic and organic chemical and physical markers (e.g., metals, isotopes,
persistent organic pollutants) can be used to interpret lake histories (e.g., Coolen and
Gibson 2009; Francus et al. 2009; Heiri et al. 2009; Weijers et al. 2009). Although
most of our examples will deal with biological indicators, numerical approaches are
often equally applicable to chemical- and physical-based studies (Birks 1985, 1987;
Rosén et al. 2000, 2010; Grosjean et al. 2009).
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Different Temporal Scales: From Surface-Sediment
Calibration Sets to Detailed Sediment-Core Studies

Palaeolimnologists use sediment cores of appropriate length (i.e., temporal range)
and sectioned into time slices to answer the research questions under study (Last
and Smol 2001a) and to track long-term changes within a specific lake or other
aquatic system (e.g., a bay of a river). Proxy indicators (e.g., diatom valves,
geochemical markers, isotopic data) contained in these sediment time-slices are
isolated, identified, and counted or analysed in various ways (Last and Smol 2001b;
Smol et al. 2001a, b). In studies conducted before the 1980s, most biological
palaeolimnologists would have little choice but to interpret the stratigraphical
changes in bio-indicators (or other types of data) qualitatively using whatever
ecological data were available in the scientific literature at that time. However,
the increased use of surface-sediment, modern calibration data-sets (also known
as modern training-sets), beginning primarily in the late 1980s, was a major step
forward in quantifying and aiding the interpretation of information preserved in
sediment cores.

The concepts and assumptions underpinning surface-sediment calibration data-
sets are fairly straightforward (Smol 2008), although the statistical treatment of
these data is not so simple (Birks 1998, 2010; Birks et al. 2010). For example,
suppose a palaeolimnologist wishes to reconstruct lake-water pH using diatoms
preserved in sediment cores for a particular region. The first question one might
have is how would the palaeolimnologist provide any palaeoenvironmental in-
terpretations based on these assemblages, which may easily encompass several
hundred diatom taxa, in a quantifiable and statistically defendable manner? Surface-
sediment calibration sets have made this possible. A suite of calibration lakes
(typically 40 or more in number) are first carefully chosen to reflect the limnological
conditions that are likely to be encountered (and therefore need to be reconstructed)
from the down-core sediment assemblages. For example, if this is an acidification
study, and past pH may have fluctuated approximately over a pH range of about
5.5–7.0, it would be prudent to choose a calibration-set that encompasses lakes
with current pH levels of about 5.0–7.5, or so. Recent limnological data for the
calibration lakes are collated, which should include the limnological variables that
may most likely influence assemblages (e.g., lake-water pH, nutrients, and other
physical, chemical, and possibly biological factors). This represents the first data
matrix: the environmental data. The second challenge is to characterise the recent
biological assemblages present in the calibration lakes (in this example, diatom
species composition and abundance). Because surface sediments (i.e., the top 1
or 0.5 cm) contain assemblages that lived in the lake’s recent past (i.e., last few
years), these data are used for the second data matrix: the species data. Numerical
and statistical techniques, as described in this book, are then used to explore,
define, and quantify the relationships between the two data matrices, and develop
calibration or transfer functions whereby the palaeolimnologist can reconstruct past
environmental conditions based on the indicators preserved in sediment profiles.
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A large portion of this book addresses various numerical or statistical approaches
that have been developed to deal with these complex data. Although almost all of
this calibration work has focused on biological indicators, similar approaches can
be used for quantifying other types of proxy data (Pienitz et al. 2009).

Palaeolimnologists, however, use a variety of temporal frameworks. Surface-
sediment calibration-sets represent only one of many types of palaeolimnological
applications that require numerical analyses. For example, a broad spectrum of
different types of data can be generated for the down-core portion of the study.
The complexity and diversity of proxy data may at times be staggering, especially
in multi-proxy studies (Lotter 2003; Birks and Birks 2006). Moreover, the data can
be collected and presented in different ways, including relative frequencies, concen-
trations, accumulation rates, and various ratios. In some cases, simple presence and
absence data can be useful (e.g., Sweetman and Smol 2006). Each approach may
provide some important palaeoenvironmental insights, but also requires a careful
assessment and evaluation of various assumptions.

The adoption and widespread use of numerical methods in palaeolimnology has
been surprisingly rapid. Early work (e.g., pre-1990s) was typically restricted to
qualitative interpretations of species distributions, or the development of simple
indices and ratios (for a historical review, see Battarbee et al. 1986). Some of
the earliest numerical work was by Pennington and Sackin (1975), who used
principal component analysis on down-core pollen and geochemical data. By the
late 1970s and early 1980s, some researchers were using, for example, simple
agglomerative cluster analyses to group fossil samples (e.g., Davis and Norton
1978; Jatkar et al. 1979; Norton et al. 1981; Carney 1982), or stratigraphically
constrained cluster analysis to derive fossil assemblage zones (Binford 1982).
Several early studies showed the value of applying numerical methods such as
ordinations or clusterings to summarise patterns in modern sediment geochemistry
(Dean and Gorham 1976a, b) and in modern assemblages of, for example, plant
macrofossils (Birks 1973), cladocerans (Beales 1976; Hofmann 1978; Synerholm
1979), diatoms (Brugam 1980; Bruno and Lowe 1980), and ostracods (Kaesler
1966; Maddocks 1966). Similarly, palaeolimnologists began to apply numerical
partitioning, clustering, or ordination techniques to sediment lithostratigraphical
(Brown 1985), biological, and geochemical data (Sergeeva 1983; Peglar et al. 1984).

In his pioneering study, Binford (1982) used the results of numerical analyses
of ostracod and cladoceran assemblages to reconstruct, in a semi-quantitative
way, changes in water-level, salinity, and substrate over the past 12,000 years at
Lake Valencia, Venezuela. Other early and creative applications of multivariate
data analysis in palaeolimnology include Whiteside (1970) who used multiple
discriminant analysis (D canonical variates analysis) to relate fossil assemblages
of cladocerans in Danish lake sediments to modern assemblages, and Elner and
Happey-Wood (1980) who used principal component and correspondence analyses
to compare diatom, pollen, and geochemical stratigraphies in Holocene sedimentary
records from two lakes in North Wales.

In the related field of Quaternary pollen analysis, Maher (1972a, b, 1980,
1981) emphasised the importance of considering the inherent errors in counting
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microfossils and showed how robust confidence intervals could be calculated for
both relative percentage and concentration and accumulation-rate data (see Maher
et al. 2012: Chap. 6). Maher’s pioneering work on analytical and counting errors
will hopefully become more used as research questions in palaeolimnology become
increasingly more refined and more demanding in terms of data precision, accuracy,
and uncertainties.

By the late 1980s, several multivariate techniques were being used to summarise
patterns in palaeolimnological data but the techniques used were often not optimal
for the research problems being addressed (e.g., unconstrained cluster analysis
applied to stratigraphical time-constrained data). Several important publications in
the late 1980s changed the way that many palaeolimnologists analysed their data
numerically. These publications included (1) ter Braak (1986) where canonical
correspondence analysis was introduced as a means of analysing species com-
positional and environmental data simultaneously, (2) Birks and Gordon (1985)
where numerical techniques developed specifically for the analysis of Quaternary
pollen-stratigraphical data were synthesised, and (3) ter Braak and Prentice (1988)
where a unified theory of gradient analysis was presented with the first explicit
distinction between gradient analytical techniques (e.g., regression, calibration,
ordination, constrained ordination) appropriate for species data with linear or
monotonic responses to the environment and for species data with unimodal
responses to the environment. The scene was then set for the seminal paper by
ter Braak and van Dam (1989) where two-way weighted-averaging regression
and calibration were shown to be an effective and robust way of inferring lake-
water pH from diatom assemblages. A year later Birks et al. (1990) demonstrated
how some of these approaches could be applied in a rigorous manner to lake
acidification studies, developed numerical methods for estimating sample-specific
errors of prediction, and presented various numerical approaches for evaluating
environmental reconstructions.

At about the same time as these publications and developments, the INQUA
Commission for the Study of the Holocene, under its President-elect Brigitta
Ammann, established a working group on data-handling methods in 1987. An
annual or 6-monthly newsletter containing details of software, relevant literature,
methodological developments, and on-going research was produced and widely
distributed amongst numerical palaeoecologists and palaeolimnologists. It was
originally edited by JC Ritchie (1988–1990) and then by LJ Maher (1990–1997).
The newsletter was then edited by KD Bennett and the last issue was in 2003.
Besides providing useful newsletters with many articles of direct interest to the
rapidly evolving cohort of quantitative palaeoecologists and palaeolimnologists,
Lou Maher created an invaluable file boutique of useful software for estimating
confidence intervals, sequence-slotting, rarefaction analysis, etc. Although these
programs were written to run under MS-DOS, they can, with care, be run under
Microsoft Windows

®
and other operating systems. They represent a rich array of

software, much of which is as relevant to the quantitative palaeolimnologist in
the twenty-first century as they were to the pioneering palaeolimnologists of the
mid 1980s. For details of all the newsletters, software, publications, etc., go to
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http://www.geology.wisc.edu/�maher/inqua.html or http://www.chrono.qub.ac.uk/
inqua/index.htm. The working group on data-handling methods made a significant
contribution to the spread of numerical ideas, literature, and software amongst the
palaeolimnological research community in the late 1980s-late 1990s.

Opportunities and Challenges

Palaeolimnologists can justifiably be proud of their accomplishments, but there also
remain many challenges and opportunities. Of course, no amount of ‘statistical
finesse’ will ever compensate for a poor data-set or a poorly designed sampling pro-
gramme. Although interpretations based on multi-proxy studies typically provide
much stronger environmental and ecological interpretations, they are not without
their problems (Lotter 2003; Birks and Birks 2006). Nonetheless, exciting opportu-
nities are available as more, high quality data-sets become available. For example,
as many palaeolimnological approaches are now standardised to a certain level, and
because a large number of studies have been completed for some regions, it is now
possible to undertake meta-analyses of large data-sets to probe various hypotheses
(e.g., Smol et al. 2005; Rühland et al. 2008). Much scope remains for these types of
syntheses. Moreover, in the quest for more robust calibration functions, much of the
hard-earned ecological and biogeographical data contained in modern calibration-
sets (e.g., Telford et al. 2006; Vyverman et al. 2007; Vanormelingen et al. 2008;
Bennett et al. 2010) often remains under-utilised. It is important to keep in mind
that, even in a book on numerical analyses, detailed statistical interpretations are
not always needed in palaeoecological studies, and in fact elegant ecological work
can often be done at a qualitative level. For example, as certain Chaoborus species
cannot co-exist with fish, the simple presence of mandibles from one species of this
taxon in a lake’s profile may indicate fishless conditions (e.g., Uutala 1990).

Outline of the Book

This book focuses on numerical and statistical methods that have been widely
applied in palaeolimnology (e.g., ordination methods, weighted averaging) or that
have considerable potential in palaeolimnology (e.g., classification and regression
trees). All the methods presented are robust and can often take account of the
numerical properties of many palaeolimnological data-sets (e.g., closed percentage
data, many variables, many zero values). They can all be used to answer specific
research questions in palaeolimnology that can contribute to our understanding of
lake history, development, and responses to a range of environmental factors. The
emphasis throughout is on numerical thinking (ideas, reasons, and potentialities
of numerical techniques), rather than numerical arithmetic (the actual numerical
manipulations involved).

http://www.geology.wisc.edu/~maher/inqua.html
http://www.chrono.qub.ac.uk/inqua/index.htm
http://www.chrono.qub.ac.uk/inqua/index.htm
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The book aims to provide an understanding of the most appropriate numerical
methods for the quantitative analysis of complex multivariate palaeolimnological
data. There has in the last 15–20 years been a maturation of many methods.
The book provides information to what these methods can and cannot do and some
guidance as to when and when not to use particular methods. It attempts to outline
the major assumptions, limitations, strengths, and weaknesses of different methods.

The book is divided into four parts and contains 21 chapters. Part I is introductory
and contains this chapter, an overview (Chap. 2) of the basic numerical and
statistical methods (e.g., regression analysis and statistical modelling) used in
palaeolimnology, and Chap. 3 that describes the data-sets used in some of the
chapters. Part II includes chapters on numerical methods that can usefully be applied
to the analysis of modern surface-sediment data and of core sediment data. Chapter
4 gives an introduction and overview of the methods in this part. Chapter 5 explores
the essential first step of exploratory data analysis and graphical display and the
important questions of identifying potential outlying data-points in large complex
data-sets. Chapter 6 considers a topic that is surprisingly rarely considered in
palaeolimnology, namely the assessment of uncertainties associated with laboratory
methods and microfossil analysis. Chapter 7 outlines the basic techniques available
for the clustering and partitioning of multivariate palaeolimnological data to detect
groups or clusters and to establish the relationships of biologically defined clusters
and environmental variables. Chapter 8 discusses the range of ordination techniques
currently available to palaeolimnologists to detect and summarise patterns in
both modern and core data. These include classical techniques such as principal
component analysis and correspondence analysis and canonical or constrained
techniques such as canonical correspondence analysis and redundancy analysis. The
chapter also presents new and improved techniques for partitioning variation in data-
sets and in detecting spatial or temporal structures at a range of scales. Chapter 9
outlines statistical-learning techniques such as the various types of classification
and regression trees and artificial neural networks as useful tools in the exploration
and mining of very large, heterogeneous data-sets and in developing robust, simple
predictive models. It also considers powerful techniques such as principal curves
and surfaces as a means of summarising patterns in complex multivariate data and
shrinkage techniques such as ridge regression, the lasso, and the elastic net to help
develop robust regression models based on large data-sets.

Part III is devoted to numerical techniques that are only applicable to stratigraph-
ical data-sets and an overview of these techniques is given in Chap. 10. Chapter 11
describes basic techniques for summarising patterns in stratigraphical data by
partitioning, clustering, or ordination methods, and for estimating rates of change
within stratigraphical sequences. Chapter 12 discusses the critical problem of estab-
lishing age-depth relationships. It outlines procedures for calibrating radiocarbon
dates first because age-depth models based on uncalibrated dates are meaningless.
It reviews various age-depth modelling procedures and discusses the difficult
problem of deciding which model to accept and to use. Age-depth modelling is
an area where considerable advances are being made, in particular by adopting a
Bayesian approach to age calibration and age-depth modelling. Chapter 13 outlines
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robust numerical procedures for correlating two or more cores on the basis of
some measured properties (e.g., loss-on-ignition, magnetic susceptibility). These
procedures can be very useful in correlating multiple undated cores with a master
dated core from a lake. Chapter 14 discusses the quantitative reconstruction of
past environmental variables from fossil assemblages using calibration or transfer
functions. A range of such calibration-function methods is discussed, the question
of which model(s) to select is explored, and the ecological problems and pitfalls of
interpreting palaeoenvironmental reconstructions derived from calibration functions
are considered. Chapter 15 outlines the modern analogue technique, a useful
technique not only in environmental reconstruction but also in identifying potential
‘reference lakes’ in restoration programmes. Chapter 16 provides an introduction to
robust techniques for analysing patterns in temporally ordered palaeolimnological
data. The chapter cautions against the use of several conventional time-series
analysis techniques (e.g., spectral analysis) that are designed for evenly spaced
samples in the time-series, a property that is very rarely realised in palaeolimnology.

Part IV begins with an introduction (Chap. 17) and considers three different
case studies where many of the numerical methods described in Parts II and
III are used to answer particular research questions in palaeolimnology such as
limnological responses to environmental changes (Chap. 18), human impacts of
acidification and eutrophication (Chap. 19), and tracking climatic change using
palaeolimnological techniques (Chap. 20). These three chapters highlight that the
numerical methods discussed in Parts II and III are not ends in themselves but
are a means to an end. In the case of palaeolimnology, the end is to improve
our understanding of the timing, rates, magnitudes, and causes of limnological
changes over a range of time scales. Part IV concludes with some views on
where quantitative palaeolimnology has reached, what the future challenges are,
and what are the limitations of our current data-sets and our numerical methods
(Chap. 21).

This book makes no attempt to review the now vast literature on the application
of numerical methods in palaeolimnology. Almost every paper in palaeolimnology
involves at least one numerical analysis. This book similarly makes no attempt to be
a complete textbook on numerical methods in ecology, environmental sciences, or
palaeontology. Instead it concentrates on numerical techniques of primary interest
and relevance to palaeolimnologists. For palaeolimnologists interested in textbooks
on numerical ecology, environmental sciences, or palaeontology, we recommend the
following:

1. Numerical ecology

Jongman RHG, ter Braak CJF, van Tongeren OFR (1987) Data analysis in
community and landscape ecology. Pudoc, Wageningen, 299 pp

Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier,
Amsterdam, 853 pp

Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO.
Cambridge University Press, Cambridge, 269 pp
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McCune B, Grace, JB, Urban DL (2002) Analysis of ecological communities. MjM
Software Design, Gleneden Beach, Oregon, 300 pp

Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New
York, 672 pp

2. Environmental sciences

Fielding AH (2007) Cluster and classification techniques for the biosciences.
Cambridge University Press, Cambridge, 246 pp

Hanrahan G (2009) Environmental chemometrics. CRC, Boca Raton, 292 pp
Manly BFJ (2009) Statistics for environmental science and management, 2nd edn.

CRC, Boca Raton, 295 pp
Qian SS (2010) Environmental and ecological statistics with R. CRC Press, Boca

Raton, 421 pp
Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists.

Cambridge University Press, Cambridge, 537 pp
Shaw PJA (2003) Multivariate statistics for the environmental sciences. Arnold,

London, 233 pp
Sparks T (ed) (2000) Statistics in ecotoxicology. Wiley, Chichester, 320 pp
Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in

chemometrics. CRC Press, Boca Raton, 321 pp

3. Palaeontology

Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York,
646 pp

Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, Oxford,
351 pp

Haslett SK (ed) (2002) Quaternary environmental micropalaeontology. Arnold,
London, 340 pp

Reyment RA, Savazzi E (1999) Aspects of multivariate statistical analysis in
geology. Elsevier, Amsterdam, 285 pp

Because the development of user-friendly Windows
®

type software for im-
plementing specialised numerical and statistical analyses lags far behind the
development of the actual numerical techniques, we give limited references in the
chapters to available software for particular analyses. We believe that there will
inevitably be future developments in numerical palaeolimnology but that these
developments will only be available to researchers as scripts and packages in the R
programming language and its vast libraries for statistical and numerical procedures.
Useful introductions to R as well as to basic statistics and statistical modelling
include:

Aitkin M, Francis B, Hinde J, Darnell R (2009) Statistical modelling with R. Oxford
University Press, Oxford, 576 pp

Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer,
New York, 206 pp
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Cohen Y, Cohen JY (2008) Statistics and data with R. An applied approach through
examples. Wiley, Chichester, 599 pp

Crawley MJ (2005) Statistics. An introduction using R. Wiley, Chichester, 327 pp
Crawley MJ (2007) The R book. Wiley, Chichester, 942 pp
Dalgaard P (2008) Introductory statistics with R, 2nd edn. Springer, New York,

364 pp
Everitt BS (2005) An R and S-PLUS companion to multivariate analysis. Springer,

London, 222 pp
Everitt BS, Hothorn T (2009) A handbook of statistical analyses using R. Chapman

& Hall/CRC, London, 376 pp
Everitt BS, Hothorn T (2011) An introduction to applied multivariate analysis with

R. Springer, New York, 283 pp
Fox J (2002) An R and S-PLUS companion to applied regression. Sage, Thousand

Oaks, 312 pp
Good PI (2005) Introduction to statistics through resampling methods and R/S-

PLUS. Wiley, Hoboken, 229 pp
Logan M (2010) Biostatistical design and analysis using R. A practical guide.

Wiley-Blackwell, Chichester, 546 pp
Reiman C, Filzmoser P, Garrett R, Dutter R (2008) Statistical data analysis

explained – applied environmental statistics with R. Wiley, Chichester, 343 pp
Torgo L (2011) Data mining with R. CRC Press, Boca Raton, 289 pp
Verzani J (2005) Using R for introductory statistics. Chapman & Hall/CRC, Boca

Raton, 414 pp
Wehrens R (2011) Chemometrics with R. Springer, New York, 285 pp
Wright DB, London K (2009) Modern regression techniques using R. A practical

guide for students and researchers. Sage, London, 204 pp
Zuur AF, Ieno EN, Meesters EHWG (2009) A beginner’s guide to R. Springer,

New York, 218 pp

This book, by necessity, assumes a basic knowledge of statistics and modern
data-analytical procedures. There are many excellent and clearly written books on
basic statistics and multivariate analysis relevant to ecology (and hence palaeoecol-
ogy and palaeolimnology). These include, in addition to those mentioned above, the
following:

Crawley MJ (2002) Statistical computing. An introduction to data analysis using
S-PLUS. Wiley, Chichester, 761 pp

Everitt BS, Dunn G (2001) Applied multivariate data analysis, 2nd edn. Arnold,
London, 342 pp

Fox J (1997) Applied regression analysis, linear models, and related methods. Sage,
Thousand Oaks, 597 pp

Fox J (2008) Applied regression analysis and generalized linear models, 2nd edn.
Sage, Thousand Oaks, 665 pp

Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates,
Sunderland, MA, 510 pp
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Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution
Press, Washington, 368 pp

Manly BFJ (2005) Multivariate statistical methods. A primer, 3rd edn. Chapman &
Hall/CRC, Boca Raton, 214 pp

Manly BFJ (2007) Randomization, bootstrap, and Monte Carlo methods in biology,
3rd edn. Chapman & Hall/CRC, Boca Raton, 326 pp

Roff DA (2006) Introduction to computer-intensive methods of data analysis in
biology. Cambridge University Press, Cambridge, 368 pp

Scheiner SM, Gurevitch J (eds) (2001) Design and analysis of ecological experi-
ments. Oxford University Press, Oxford, 415 pp

Sokal RR, Rohlf FJ (1995) Biometry, 2nd edn. WH Freeman, New York, 887 pp
van Belle G (2008) Statistical rules of thumb. Wiley, Hoboken, 272 pp
Waite S (2000) Statistical ecology in practice. Prentice Hall, London, 414 pp
Whitlock M, Schluter D (2009) The analysis of biological data. Roberts &

Company, Greenwood Village, Colorado, 700 pp

In addition, the reader may find BS Everitt’s (2002) The Cambridge Dictionary
of Statistics (2nd edition, Cambridge University Press, Cambridge, 410 pp) a
useful reference work for clear, simple definitions of particular statistical terms and
concepts used in this book. Nomenclature of numerical terms and methods follows,
wherever possible, Everitt (2002).
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Chapter 2
Overview of Numerical Methods
in Palaeolimnology

H. John B. Birks

Abstract This chapter presents a general introduction and overview of the
numerical and statistical techniques that are most commonly used in quantitative
palaeolimnology. After discussing the different types of palaeolimnological data
(modern surface-samples and stratigraphical data) and the role of quantification
in palaeolimnology, it presents a brief overview of the numerical techniques used
in data collection, data assessment, data summarisation, data analysis, and data
interpretation. In addition, the chapter describes important numerical and statistical
procedures that are not covered elsewhere in the book such as numerical tools in
identification, classification, and assignment, and statistical techniques of regression
analysis and statistical modelling.

The major techniques discussed are linear discriminant and multiple discriminant
analyses for identification, classification, and assignment (data collection);
exploratory data analysis, primarily graphical techniques (data assessment and sum-
marisation); error estimation (data assessment); regression analysis and statistical
modelling involving general linear models, generalised linear models, mixed-
effects models, non-parametric regression models, generalised additive models,
classification and regression trees, artificial neural networks and self-organising
maps, multivariate reduced-rank regression, and model selection and shrinkage
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(data assessment, data summarisation, data analysis); quantitative environmental
reconstructions involving calibration and inverse regression (data analysis);
temporal-series analysis (data analysis); and confirmatory data analysis involving
permutation tests (data interpretation).

Keywords Accumulation rates • Artificial neural networks • Auto-correlograms
• Bootstrap cross-validation • Calibration • Calibration data-sets • Canonical
correlation analysis • Canonical correspondence analysis • Classical regression
• Classification and regression tress • Closed compositional data • Confirmatory
data analysis • Constrained Gaussian ordination • Correlation coefficient
• Exploratory data analysis • Gaussian logit regression • General linear
models • Generalised additive models • Generalised linear models • Genetic
algorithms • Hypothesis testing • Inverse regression • LOESS • Monte Carlo
permutation tests • Multivariate regression • Non-linear canonical analysis of
principal coordinates • Palaeolimnological data • Partial constrained ordination
• Periodograms • Piece-wise regression • Randomisation tests • Reduced-rank
regression • Redundancy analysis • Regression analysis • Self-organising maps
• Shrinkage • Smoothers • Splines • Stratigraphical data • Surface samples
• Temporal autocorrelation • Temporal-series analysis • Time-series analysis
• Training-sets • Type I error • Type II error • Variation partitioning • Weighted
averaging

Introduction

This chapter presents a general introduction and overview of the numerical and
statistical approaches and techniques that are most commonly used in quantitative
palaeolimnology. After discussing the different types of palaeolimnological data
and the role of quantification in palaeolimnology, it presents a brief overview of the
numerical approaches relevant in the various stages of a palaeolimnological study,
namely data collection, data assessment, data summarisation, data analysis, and data
interpretation.

The major numerical approaches and techniques used in these stages are then
outlined to provide a basic background and overview for the more detailed chapters
in this book that consider specific approaches (e.g., exploratory data analysis,
environmental reconstructions) or particular methods (e.g., canonical correspon-
dence analysis, modern analogue technique), In addition, two important numerical
approaches, namely techniques to aid identification, classification, and assignment
of biological remains in lakes sediments, and regression analysis and statistical
modelling of palaeolimnological data are presented in more detail because they are
not covered specifically elsewhere in this book. Both approaches are essential in
many palaeolimnological studies.
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Types of Palaeolimnological Data

Palaeolimnological data are counts or measurements of a wide range of biological,
chemical, and physical elements preserved in lake sediments. The biotic com-
ponents include the presence or absence, the estimated abundance (e.g., rare,
occasional, frequent, abundant), or counts of remains of organisms (fossils or
‘sub-fossils’) preserved in sediments deposited in lakes, embayments, deltas, and
reservoirs (see Smol 2008). The commonest groups of organisms studied by
palaeolimnologists are diatoms, chrysophytes (cysts and scales), chironomids,
cladocerans, ostracods, plant macrofossils (seeds, fruits, leaves, etc.), pollen and
spores, and mollusca, although other groups are more rarely studied such as beetles,
oribatid mites, testate amoebae, and biochemical markers such as photosynthetic
pigments, lipids, and DNA (see Smol et al. 2001a, b for detailed accounts of the
different types of biological remains studied in lake sediment). The sediments are
themselves valuable sources of abiotic palaeolimnological data, such as inorganic
and organic geochemistry, magnetic properties, sediment composition and grain-
size information, stable isotopes of H, C, N, and O, etc. (see Last and Smol
2001a, b; Pienitz et al. 2009 for further details). The sediments and, in the case
of radiocarbon-dating using accelerator mass spectrometry (AMS), their contained
fossils provide the basic material for radiometric age determinations on which so
much of palaeolimnology depends (see Last and Smol 2001b; Walker 2005).

The sediment samples can be from one sediment core collected from the lake
under investigation (temporal, stratigraphical data) or from one age or depth at sev-
eral sites (spatial, geographical data). The most common type of spatial data consists
of fossil counts or physical or chemical measurements from the uppermost, surficial
(0–1 cm) sediments, so-called modern surface-samples. Stratigraphical and spatial
data often contain counts of many (50–500) different fossil taxa or measurements of
many geochemical or geophysical properties (20–75) in a large number of samples
(�50–500). Such data are highly multivariate, containing many variables (biological
taxa, chemical elements, magnetic properties) and many objects (sediment samples).
Counts of different fossils are usually expressed as percentages of individual taxa
relative to some calculation sum (e.g., total diatom valves counted in the sample).
The sample sum itself is relatively uninformative in many numerical analyses. It is
largely determined by the initial research and sampling design, namely the number
of individual fossils to be counted per sample. The actual number counted can
also be a function of fossil concentrations, preservation, and amount of analytical
time. More rarely, the concentrations or accumulation rates of different fossils may
be estimated as number of objects per unit volume of sediment or unit weight of
sediment (concentrations) or as net number of objects per unit of sediment area or
unit weight of sediment per unit time (accumulation rates or flux density) (Birks
and Birks 1980; Birks and Gordon 1985). To convert concentrations to estimates
of accumulation rates, it is necessary to estimate sediment deposition-times, the
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Table 2.1 Types of palaeolimnological data, their relative commonness, and their units

Biotic variables Abiotic variables

Data type Percentages Accumulation rates Percentages Accumulation rates

Stratigraphical data Common Occasional Common Frequent
Spatial data (modern Common Very rare Common Rare

surface-samples)
Units % Objects cm�2 % Variable cm�2

year�1 or year�1 or
objects g�1 variable g�1

year�1 year�1

amount of time per unit thickness in years cm�1 or unit weight of sediment in
years g�1 or its reciprocal, sediment matrix accumulation rate, the net thickness
or weight of sediment accumulated per unit time after compaction and diagenesis in
cm year�1 or g year�1 (Birks and Birks 1980; Birks and Gordon 1985). Deposition
times are derived most commonly by obtaining a series of radiometric dates at
different depths through the sediment sequence and estimating the deposition times
from the age-depth relationship (see Blaauw and Heegaard 2012: Chap. 12). Counts
of the number of annual laminations between samples from laminated sediments
can be used to provide estimates of sediment deposition-times and hence fossil
accumulation rates (see Lotter and Anderson 2012: Chap. 18). The various types of
palaeolimnological data, their relative commonness, and their units are summarised
in Table 2.1.

Many biotic palaeolimnological data contain many zero values (taxa absent or
not found in many samples). Because of the percentage calculation, the data are
‘closed’ compositional data and thus there are in-built interrelationships between
the variables (Birks and Gordon 1985; Aitchison 1986; Reyment and Savazzi
1999). Closed data require special numerical methods for correct statistical analysis.
Reyment and Savazzi (1999) discuss statistical approaches for analysing closed data
involving log ratios (cf. O’Hara and Kotze 2010) (see also Baxter 1989, 1991,
1992; Elston et al. 1996; Jackson 1997; Kucera and Malmgren 1998; Reyment
1999; Aitchison and Greenacre 2002). The large numbers of zero values in many
palaeolimnological data-sets cause problems in the use of log ratios. Ter Braak and
Šmilauer (2002) discuss the statistical properties of correspondence analysis (CA)
and its canonical or constrained relative canonical correspondence analysis (CCA)
(see Legendre and Birks 2012b: Chap. 8) in relation to generalised linear models
and show how CA is appropriate and robust with percentage data containing many
zero values (see also ter Braak and Verdonschot 1995).

Palaeolimnological samples are usually in known stratigraphical or temporal
order (stratigraphical data) or in a known geographical context (modern surface-
samples, spatial data). Modern surface-sample data often have associated con-
temporary environmental data (e.g., lake-water chemistry, catchment vegetation,
climate) and together the modern biological and environmental data-sets comprise
‘training-sets’ or ‘calibration data-sets’ that are now so important in many aspects
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of quantitative palaeolimnology (Smol 2008; Juggins and Birks 2012: Chap. 14;
Simpson 2012: Chap. 15; Smol et al. 2012: Chap. 1).

Some palaeolimnological data-sets have many more objects (samples) than
variables (e.g., cladoceran, pollen, ostracod, geochemical, magnetic data) whereas
other data-sets have many more variables than objects (e.g., diatom data). With
the rapid development of palaeolimnology, national and international data-bases
of modern and stratigraphical palaeolimnological data are now being assembled
(e.g., European Diatom Database Initiative (EDDI) http://craticula.ncl.ac.uk/Eddi/
jsp/). Palaeolimnological data can thus also consist of fossil counts or geochemical
determinations from many different cores from a large number of sites over a broad
geographical area, thereby combining both temporal and spatial data.

The Role of Quantification in Palaeolimnology

In nearly 40 years of research in quantitative palaeoecology and palaeolimnology,
some of the most commonly asked questions, at least in the first 10–15 years of this
research, were ‘why attempt quantification in palaeolimnology?’ and ‘do we really
need numerical methods in palaeolimnology?’ There was a feeling that ‘statistics is
the scientific equivalent of a trip to the dentist’ and should be kept to an absolute
minimum or be avoided altogether!

There are several answers to these and related questions. First, palaeolimnolog-
ical data are very time consuming and expensive to collect and they are highly
quantitative. It is a waste of time and money to collect such quantitative data and
then ignore the quantitative aspects of the data. Second, palaeolimnological data are
complex, multivariate, and often stratigraphically ordered and numerical methods
can help to summarise, describe, characterise, and interpret such data. Numerical
methods can help to identify ‘signal’ from ‘noise’ in complex data, detect features
that may otherwise escape attention, generate hypotheses, aid in further data collec-
tion by identifying previously unsuspected features in the data, and assist in the com-
munication and display of complex data. Third, numerical methods force the inves-
tigator to be explicit. Walker (1972) elegantly summarised this “The more orthodox
amongst us should at least reflect that many of the same imperfections are implicit
in our own cerebrations and welcome the exposure which numbers brings to the
muddle which words may obscure”. Fourth, numerical methods allow palaeolimnol-
ogists to tackle research problems that are not otherwise solvable because the prob-
lems require the testing of competing hypotheses. It is often easier to test hypotheses
using numerical methods, particularly statistical methods. Numerical techniques
can thus hopefully lead to a more rigorous science involving not only hypothesis
generation but also hypothesis testing. Fifth, deriving quantitative environmental
reconstructions of, for example, lake-water pH or total phosphorus, is important
in many branches of environmental science and applied limnology (see Smol
2008), for example in validating hindcasts or back-predictions from ecosystem- or
catchment-scale models (e.g., Jenkins et al. 1990; Battarbee et al. 2005).

http://craticula.ncl.ac.uk/ Eddi/jsp/
http://craticula.ncl.ac.uk/ Eddi/jsp/
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Overview of Numerical Methods

Numerical methods are useful tools at the many stages in a palaeolimnological
investigation (Fig. 2.1). During data collection, they can be invaluable in the
identification of certain fossil types. Computer-based techniques can also be useful
in data capture, data compilation, and data storage. In data assessment, statistical
techniques are essential in estimating the inherent errors associated with different
palaeolimnological analyses (biological, magnetic, geochemical, etc.). Exploratory
data analysis is also an essential step in data assessment. For data summarisation,
there is a range of robust numerical techniques that can be used to detect and
summarise the major underlying patterns in palaeolimnological data, both modern
and stratigraphical. For single stratigraphical sequences or modern calibration data-
sets, the numerical delimitation of sample groups or zones (for stratigraphical data)
can be a useful first step in data summarisation. Other numerical techniques such as
ordination procedures, can summarise temporal or spatial trends in stratigraphical
or modern data-sets. In data analysis, numerical methods are essential for detecting
temporal patterns such as trends and periodicities and for quantitatively recon-
structing past environmental variables from biotic assemblages. The final stage in
a palaeolimnological study, data interpretation, can be greatly aided by numerical
techniques for the reconstruction of past biotic assemblages and lake types and in the
testing of competing hypotheses about underlying causative factors such as climate
change, human activity, or internal lake dynamics in determining lake development
and limnological changes. As broader and increasingly more complex questions are

Fig. 2.1 Major stages in a palaeolimnological investigation
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being asked of palaeolimnological data, numerical methods are constantly being
updated and modified in an attempt to help answer new, challenging, and critical
research questions.

The major numerical approaches used in these five main stages of a
palaeolimnological study are listed in Table 2.2. They are then briefly described
in this chapter so as to provide a basic background and overview for the more
detailed chapters about specific approaches and methods in this book. In addition,
important numerical approaches that are not covered specifically in this book (e.g.,
identification, classification, and assignment; regression analysis) are discussed
in this chapter. Just as in everyday life, common-sense is an essential attribute,
common-sense in statistics is equally important. van Belle (2008) provides an
invaluable set of ‘statistical rules of thumb’ all based on common-sense.

Identification, Classification, and Assignment

Reliable and detailed identification of the biological remains of research interest
(e.g., diatoms, chironomids, pollen) preserved in surface or core sediment samples
is the first essential step of data collection (Fig. 2.1, Table 2.2) in any biologically
based palaeolimnological study. Identification of palaeolimnological microfossils
most commonly proceeds by comparison of the fossils either with descriptions and
illustrations in taxonomic monographs or floras for specific geographical areas or
particular ecological systems, as in the case of diatoms and chrysophyte cysts, or
with modern reference material prepared and mounted in the same way as the fossil
material, as in the case of chironomids, pollen, and plant macrofossils. In critical
cases in diatom analysis, comparisons may be made with taxonomic type material.
Identification involves assigning fossils to pre-existing categories of modern taxa.
With experience, many fossils can be assigned by memory to modern taxonomic
categories. However, some numerically dominant and/or ecologically important
fossil types may be so similar in overall morphology and appearance that the
investigator cannot consistently assign a particular fossil to a modern taxon. In such
cases, numerical techniques of classification or assignment can be of value.

It is important to note here the essential distinction between two types of
numerical classification: unsupervised classification and supervised classification
(Næs et al. 2002; Simpson and Birks 2012: Chap. 9). The first type is termed in
this book clustering or partitioning and involves some form of cluster analysis. It is
used in situations when there is little or no a priori information about group structure
within the data. The goal is to identify clusters and to partition the data into groups of
samples on the basis of the data themselves without using any a priori information
(see Fielding 2007; Birks 2012b: Chap. 11; Legendre and Birks 2012a: Chap. 7).
Clustering can also be performed visually in an informal way using ordination or
scaling techniques (see Legendre and Birks 2012b: Chap. 8).

The other type of classification, supervised classification, is also known as
discriminant analysis. This is a powerful class of methods for the analysis of
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multivariate data similar in some ways to ordination procedures (Prentice 1980),
that are primarily used to discriminate between pre-defined groups and build
classification rules for a number of a priori groups (Hand 1981; Fielding 2007).
These rules can later be used for assigning or allocating new and unknown objects
to the most probable group (Lachenbruch 1975; James 1985; Webb 1999). Another
important application of discriminant analysis is to help in interpreting differences
between a priori groups of samples (Reyment et al. 1984). Discriminant analysis
can be viewed in several different ways – as a form of canonical ordination (Borcard
et al. 2011; Legendre and Birks 2012b: Chap. 8) where linear combinations of
variables are found to maximise the separation of two or more groups or as a form
of qualitative calibration where the quantity to be calibrated is not a continuous
quantitative variable like pH (see Juggins and Birks 2012: Chap. 14; Simpson 2012:
Chap. 15) but is a categorical group variable (Næs et al. 2002). The overall aim is to
assess whether or not a set of variables distinguish or discriminate between two (or
more) a priori groups of objects.

In the two-group case the most commonly used method is Fisher’s linear dis-
criminant function (Davis 2002; Everitt 2005; Hammer and Harper 2006; Fielding
2007; Wehrens 2011) in which a linear combination or transformation (z) of the m
variables (x) that gives the maximum separation between the two a priori groups is
determined

z D a1x1 C a2x2 C a3x3 C � � � C amxm

The ratio of the between-group variance of z to the within-group variance is
maximised. The solution for the discriminant coefficient a D (a1, : : : , am) is

a D S�1 .x1 � x2/

where S�1 is the inverse of the pooled within-groups variance-covariance matrix
of the two groups and x1 and x2 are the group mean vectors. For palaeoecological
examples, see Birks and Peglar (1980), Brubaker et al. (1987), Rose et al. (1996),
and Weng and Jackson (2000).

The linear discriminant function provides a classification or allocation rule that
can be used to assign or identify unknown objects to one of the two groups
(Fielding 2007). The derivation of this linear discriminant function assumes,
amongst many assumptions (see Birks and Peglar 1980) that the variance-covariance
matrices of the two groups are the same. If they are not, a quadratic discrim-
inant function may be necessary to distinguish between the two groups (Ham-
mer and Harper 2006; Wehrens 2011). Such a function contains powers and
cross-products of the variables. In the pattern recognition literature, the sample
of objects from which the discriminant function is derived is often called a
‘training-set’. This usage of the term ‘training-set’ is very different from its
common usage in palaeolimnology where it is a set of modern biological assem-
blages and related environmental data used for deriving transfer or calibration
functions for palaeoenvironmental reconstructions (see Juggins and Birks 2012:
Chap. 14; Simpson 2012: Chap. 15).
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There are statistical problems with allocation rules based on a discriminant
function that seeks to estimate the proportions of different fossil types by identifying
each individual fossil in the sediment sample (Gordon and Prentice 1977; Gordon
1982; Birks and Gordon 1985). The statistical method of maximum likelihood
mixtures (Mood et al. 1974; Webb 1999) can be used to model the counts for the
fossil types of interest as a mixture of multinomial (Gordon and Prentice 1977)
or normal distributions (Gordon 1982). Classification and regression trees and
other tree-based methods such as random forests (‘decision trees’) (Webb 1999;
Lindbladh et al. 2002; Fielding 2007; Simpson and Birks 2012: Chap. 9) can
also provide robust estimates of the likely proportions of different taxa in fossil
assemblages (e.g., Lindbladh et al. 2003, 2007).

Rose et al. (1996) illustrate the use of linear discriminant analysis to characterise
the surface chemical differences between modern carbonaceous fly-ash particles
formed by the high temperature combustion of oil or coal and preserved in lake
sediments. They developed a discriminant function based on modern particles from
eight power stations and then used a discrimination rule to identify carbonaceous
particles in a lake-sediment core as either being oil- or coal-derived. Their procedure
assumes that the carbonaceous particles in the lake sediment have either an oil or
coal origin, whereas there are other potential sources for carbonaceous particles
such as peat-fired power stations. To avoid potential misclassification of such
non-coal or non-oil derived particles, they standardised the discriminant function,
calculated simple 95% confidence intervals for the two groups, and defined any
sediment particles lying outside the 95% confidence interval for either fuel type as
unclassified. They then applied the discriminant function to carbonaceous particles
in sediment cores to identify those from oil and from coal.

When there are more than two groups, all with the same variance-covariance
matrix, it is possible to determine several linear combinations or functions of the
variables for separating the groups. The number of such functions that can be
derived is the smaller of m and g � 1 where m is the number of variables and g
is the number of groups. This procedure is called multiple discriminant analysis
or canonical variates analysis (CVA) and the linear functions are termed canonical
discriminant functions or simply canonical functions (Reyment et al. 1984). Ter
Braak (1987a), ter Braak and Verdonschot (1995), and Borcard et al. (2011) discuss
the relationship between CVA and canonical correspondence analysis (CCA) and
ter Braak and Šmilauer (2002) show how CVA can be implemented using the
program CANOCO. CVA has rarely been used in palaeolimnology but has been
more commonly used in palaeoecology, in particular pollen analysis. Examples
include Whiteside (1970), Birks et al. (1975), Birks (1976, 1977, 1980), Lamb
(1984), Liu and Lam (1985), MacDonald (1987), Sugden and Meadows (1989),
Liu (1990), Meadows and Sugden (1991), Horrocks and Ogden (1994), Liu
et al. (2001), Shen et al. (2008a, b), Catalan et al. (2009), and Mackay et al.
(2011).

Canonical variates analysis can be viewed as multiple discriminant analysis, as
a dimension-reduction technique where multivariate data consisting of g groups
with m variables can be represented in m or g � 1 dimensions, whichever is the



2 Numerical Overview 29

smaller, or as an ordination technique for comparing groups in which the implicit
dissimilarity coefficient or distance measure is the square root of Mahalanobis’
D2 between groups of objects (Gower 1966a; Prentice 1980). Canonical variates
are linear combinations of variables that maximise the ratio of the between-group
variance to the within-group variance. In contrast, principal component analysis
(PCA, see Legendre and Birks 2012b: Chap. 8) partitions the total variance in a
data-set into successive components with the maximal concentration of variance in
the first few components (Prentice 1980). The first canonical variate is the linear
combination of variables that provides the most effective discrimination between
the groups, the second contributes the greatest additional discriminating power,
and so on (Prentice 1980). The canonical variates are discriminant axes, and their
loadings, suitably scaled, are discriminant coefficients. These can be used to derive a
series of classification functions or allocation rules for groups with similar variance-
covariance matrices (Fielding 2007).

The performance of one or more discriminant functions for two or more groups
can be assessed by the misclassification or ‘error’ rate. This can be estimated
by a simple ‘plug-in’ allocation procedure based on the discriminant index (two
groups) or indices (three or more groups). However, this is likely to under-estimate
the true error rate as the same data are used to both generate the discriminant
functions and to test them (Rose et al. 1996). A more realistic estimate of the error
rate can be obtained by some form of cross-validation (Hand 1986; Kohavi 1995;
Fielding 2007) such as leave-one-out or the so-called 0.632 bootstrap estimator,
which gives superior performance in simulation experiments (McLachlan 1992;
Efron and Tibshirani 1993; Kohavi 1995; Molinaro et al. 2005). It is often useful
to use a step-wise variable-selection procedure to produce a reduced set of variables
with maximum prediction power by eliminating variables that do not contribute
significantly to the discrimination. Such variables with little or no discriminating
power, either alone or in combination with other variables, add noise to the
discrimination model and their inclusion can decrease the predictive ability by
increasing the error rate (Hand 1981; Catalan et al. 2009). Step-wise selection in
linear discriminant function analysis or CVA can easily be implemented using the
program CANOCO (ter Braak and Šmilauer 2002) where the statistical significance
of the F-ratio for each variable and of the overall discriminant function model can
be assessed using Monte Carlo permutation tests. This test has the advantage over
standard tests in linear discriminant analysis and CVA in that it does not require the
assumption of normality in the variables (ter Braak and Šmilauer 2002).

Mathematical details of CVA are presented in Klecka (1980), Prentice (1980),
Hand (1981), Reyment et al. (1984), ter Braak (1987a), Reyment (1991), Everitt
and Dunn (2001), Everitt (2005), Varmuza and Filzmoser (2009), and Wehrens
(2011). Campbell and Atchley (1981) provide a simple geometrical presentation
of the mathematics behind CVA. Examples of its use in many areas of geology and
biology are discussed by Cacoullos (1973) and Reyment et al. (1984).

Linear discriminant analysis and CVA of closed compositional data require a
special log-ratio transformation prior to analysis (Aitchison 1986; Reyment and
Savazzi 1999; Hammer and Harper 2006).
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There are many extensions of the two-group linear discriminant analysis and
CVA (Fielding 2007; Wehrens 2011) that are of potential use in palaeolimnology.
These include flexible discriminant analysis (Hastie et al. 1994) that uses a non-
parametric regression that creates non-linear decision boundaries used in allocation
rules. Mixture discriminant analysis (Hastie and Tibshirani 1996) creates a classifier
by fitting a Gaussian mixture model to each group. A penalised discriminant
analysis (Hastie et al. 1995) attempts to overcome the problems of collinearity
created when many variables are correlated by using a penalised regression. Robust
quadratic discriminant analysis allows the boundaries between the groups to be
curved quadratic surfaces in contrast to the flat boundaries in linear discriminant
analysis (Fielding 2007). In addition, in the quadratic method, there is no as-
sumption that the within-group covariance matrices are equal. While this can be
an advantage with some data, it comes at a cost by increasing the numbers of
parameters fitted in the model, potentially leading to a greater chance of over-fitting
the training-set data (Fielding 2007). Because of this risk and the surprisingly robust
nature of linear discriminant analysis (e.g., Gilbert 1969; Birks and Peglar 1980),
quadratic discriminants are often only useful when the differences between the
group covariance matrices are very large (Marks and Dunn 1974). Fielding (2007)
and Wehrens (2011) discuss other approaches to supervised classification such as
naive Bayes classifiers, logistic (D logit) regression, generalised additive models,
and decision trees (e.g., random forests, artificial neural networks – see below and
Simpson and Birks 2012: Chap. 9), all of which have potential applications in
certain palaeolimnological problems in which a priori group structure is an essential
property of the data.

Fossil morphological characteristics are often of different data-types (e.g.,
quantitative size measurements, ordinal or nominal multistate (e.g., smooth, rough,
very rough), binary or dichotomous (e.g., presence or absence of setae)). Numerical
techniques such as Goodall’s (1969) deviant index for mixed morphological data
can be useful in assigning fossils to modern taxonomic categories. The index
assesses how different a particular fossil is to the mean, median, or mode of
reference material of the likely modern taxon, depending on the data-type. Hansen
and Cushing (1973) illustrated the use of the deviant index in identifying different
species of fossil Pinus pollen in New Mexico. Classification and regression trees
(CART: see below) (Fielding 2007; Simpson and Birks 2012: Chap. 9) have been
shown to provide powerful and robust techniques for identifying different species
of Picea (Lindbladh et al. 2002) and Pinus pollen (Barton et al. 2011) using
mixed morphological data. CART provides a simple, non-parametric approach for
recursively classifying levels of a dependent variable (e.g., species) using a set
of independent variables (e.g., morphology) (Barton et al. 2011). Modern species
represented by, for example, pollen are classified based on morphological attributes.
In the first step of a CART analysis each morphological variable is tested to find the
combination of a variable and a split threshold that separates the entire sample into
two sub-sets that are internally as homogenous as possible with respect to species
identity. Each of the two sub-sets is then partitioned in turn. The process is repeated
recursively through the descending nodes so that a classification tree is ‘grown’
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until a specified level of complexity and certain stopping rules are reached. At this
point the resulting tree is ‘pruned back’ to an optimally fitting version based on
n-fold cross-validation (usually n D 10) (Molinaro et al. 2005). The end result is a
classification or decision tree (Fielding 2007; Simpson and Birks 2012: Chap. 9)
much like a standard taxonomic key, allowing the identification of unknown fossils
using a small set of morphological variables.

The classification success of the tree constructed in this way can be assessed
as the proportion of the sample of known identity that is correctly assigned by
the tree. However, this proportion is likely to be biased and over-optimistic and
inflated because the tree is constructed via the exhaustive search procedure so as
to minimise the classification error. This bias can be controlled via cross-validation
pruning but this involves a trade-off coefficient that weights classification accuracy
against tree complexity (Breiman et al. 1984; Simpson and Birks 2012: Chap. 9).
An independent and reliable assessment of the reliability of the pruned tree can be
obtained by making predictions from the model against a reserved independent test-
set of objects not used in the construction of the CART model (e.g., a test-set of
100 independent objects to evaluate the prediction accuracy of the tree trained on
1,000 objects) (Kohavi 1995; Lindbladh et al. 2002; Molinaro et al. 2005; Barton
et al. 2011).

There is a range of specialised techniques for morphometric analysis, the study
of phenotypic variation, and for cladistic and phylogenetic analysis of taxa found
in palaeolimnological studies (see Birks 2010 for a brief discussion of these
techniques in the context of diatom research, Zuur et al. 2007 for examples of
numerical analysis of morphometric data, and van der Meeren et al. 2010 for a
palaeolimnological application).

Identification and counting of fossils are very time consuming and much progress
has been made in the last 10 years in the automation of pollen identification
and counting using texture measures, artificial neural networks, Gabor transforms,
digital moments, and other pattern description and recognition techniques (Flenley
2003; Li et al. 2004; Treloar et al. 2004; Zhang et al. 2004; Allen 2006; O’Gorman
et al. 2008). It is a rapidly developing research area. With ever-increasing computing
power and improved and faster image-capture and image-analytical techniques,
major advances can be expected in the coming years that may revolutionise micro-
fossil analysis in palaeolimnology (e.g., Allen 2006; Holt et al. 2011).

Exploratory Data Analysis

Exploratory data analysis (EDA) and data display, and the estimation of laboratory
and analytical errors are essential parts of data collection, data assessment, and
data summarisation and are important preliminary steps in data analysis (Fig. 2.1,
Table 2.2). EDA is described by Everitt (2002, p. 136) as “an approach to data
analysis that emphasizes the use of informal graphical procedures not based on prior
assumptions about the structure of the data or on formal models for the data. The
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essence of this approach is that, broadly speaking, data are assumed to possess the
following structure

Data D Smooth C Rough

where the ‘Smooth’ is the underlying regularity or pattern in the data. The objective
of the exploratory approach is to separate the Smooth from the Rough with minimal
use of formal mathematics or statistical methods.”

A first step in EDA is what Everitt (2002: p. 189) calls initial data analysis (IDA)
which he describes as “The first place in the examination of a data-set which consists
of a number of informal steps including

• checking the quality of the data,
• calculating simple summary statistics and constructing appropriate graphs

The general aim is to clarify the structure of the data, obtain a simple descriptive
summary, and perhaps get ideas for a more sophisticated analysis (see Chatfield
1988).”

In palaeolimnology the main purposes of EDA and IDA are to provide simple
summary statistics of location, dispersion, and skewness and kurtosis for individual
variables, to guide the investigator to appropriate transformations, to generate
graphical displays of the data for single (univariate), two (bivariate), and many
(multivariate) variables, to identify potential outliers in a given data-set, and to
separate the smooth (sensu Everitt 2002) (‘signal’) from the rough (sensu Everitt
2002) (‘noise’) in a data-set. Juggins and Telford (2012: Chap. 5) discuss EDA and
data display in detail. The standard texts on EDA are Tukey (1977) and Velleman
and Hoaglin (1981). There are several wide-ranging and thought-provoking reviews
and texts on graphical data display in EDA, including Chambers et al. (1983),
Tufte (1983, 1990), Cleveland (1993, 1994), Jacoby (1997, 1998), and Gelman
et al. (2002). Zuur et al. (2010) provide a valuable protocol for data exploration
that avoids many common statistical problems, in particular avoiding Type I (the
null hypothesis is erroneously rejected, representing a false positive) and Type II
(the null hypothesis is erroneously accepted, representing a false negative) errors,
thereby reducing the chance of making wrong conclusions.

The commonest tools in EDA and IDA that are of considerable practical value for
palaeolimnologists are simple graphical displays such as histograms and frequency
or cumulative frequency graphs, and summary statistics for individual variables of
location (e.g., mean, weighted mean, median), dispersion (e.g., range, percentiles,
variance, standard deviation, standard error of mean), and skewness (a measure of
how one tail of a frequency curve is drawn out), and kurtosis (a measure of the
peakedness of a frequency curve). Sokal and Rohlf (1995) and Zuur et al. (2010)
are excellent references for details of these and related summary statistics. These
summary statistics and basic graphical displays are essential tools in deciding if
data transformations are required (see O’Hara and Kotze 2010; Juggins and Telford
2012: Chap. 5; Legendre and Birks 2012b: Chap. 8). There are two main reasons for
transforming palaeolimnological data – to achieve comparability between variables
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measured in different units (e.g., lake-water pH, specific conductivity, alkalinity,
Ca2C, NaC) by standardising each variable to zero mean and unit variance, and
to make particular variables have a better fit to a particular underlying statistical
model (e.g., normal, log-normal models) (O’Hara and Kotze 2010) by applying
transformations such as square roots, cubic roots, fourth roots, logarithmic power
functions (to various bases such as base 10 or base 2), and the Box-Cox trans-
formation (see Sokal and Rohlf 1995 for details of these transformations). Other
reasons for transforming palaeolimnological data, especially biological counts, are
to stabilise variances and to dampen the effects of very abundant taxa (see Prentice
1980; Birks and Gordon 1985 for discussions of appropriate transformations). Other
useful graphical approaches in EDA and IDA include quantile-quantile (Q-Q) plots,
box-and-whisker plots, and density estimation procedures applied to histograms (see
Hartwig and Dearing 1979; Fox and Long 1990; Crawley 2002, 2007; Fox 2002,
2008; Venables and Ripley 2002; Warton 2008; Juggins and Telford 2012: Chap. 5
for further details of these and other EDA tools).

An important aspect of EDA and IDA is to explore relationships between
variables. Scatter-plots of pairs of variables and scatter-plot matrices where scatter-
plots of all pair-wise scatter-plots of variables are arranged together and aligned into
a matrix with shared scales are invaluable graphical tools (see Fox 2002; Zuur et al.
2010; Juggins and Telford 2012: Chap. 5). Scatter-plots can be enhanced by adding
box-plots for each variable, by coding and using colours, by jittering where a small
random quantity is added to each value to separate over-plotted points, by applying
bivariate kernel-density estimates, and by fitting regression lines or locally weighted
scatter-plot smoothers (LOESS or LOWESS) to the scatter-plots (see Fox 2002 and
Zuur et al. 2010 for examples). Regression and smoothers are discussed in detail
below.

Graphical display of multivariate data, which are the commonest data type in
palaeolimnology, involves dimension-reduction techniques such as ordination or
scaling (see Legendre and Birks 2012b: Chap. 8) or clustering or partitioning (see
Legendre and Birks 2012a: Chap. 7). Clustering or partitioning of data into groups
is a useful first step in exploring large, multivariate data-sets and yet retaining
the multivariate character of the data (Everitt et al. 2011; Wehrens 2011). The
groupings of samples can be constrained in one dimension (e.g., depth or time
in stratigraphical data) or two dimensions (e.g., locations in modern spatial data)
(see Birks 2012b: Chap. 11; Legendre and Birks 2012a: Chap. 7) and indicator
variables can be identified and statistically evaluated for particular groupings (see
Legendre and Birks 2012a: Chap. 7 for details and Catalan et al. 2009 for examples
in palaeolimnology).

Ordination techniques used in the context of EDA primarily fall in the general
category of classical or indirect gradient analysis (ter Braak 1987a; ter Braak and
Prentice 1988; Wehrens 2011; Legendre and Birks 2012b: Chap. 8). Techniques
such as principal component analysis (PCA) (Jolliffe 2002), correspondence
analysis (CA) (Greenacre 1984, 2007; Greenacre and Blasius 2006), detrended
correspondence analysis (DCA) (Hill and Gauch 1980), principal coordinate
analysis (Gower 1966b), or non-metric multidimensional scaling (NMDS) (Kruskal
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1964) provide a convenient low-dimensional (usually two or three) geometric
representation of multivariate data in such a way that the configuration of the objects
in the resulting low-dimensional ordination plot reflects, as closely as possible, the
similarities between the objects in the original multi-dimensional space of the data
(ter Braak 1987a; Husson et al. 2011). The full dimensions of the data are either
the number of objects or the number of variables, whichever is smaller. Ordination
plots, appropriately scaled (see ter Braak 1994; ter Braak and Verdonschot 1995
for details of scalings) can provide very effective summaries of the major patterns
or signal within a data-set (a major function of EDA) and can suggest potential
outlying objects.

Principal curves (Hastie and Stuetzle 1989; Simpson and Birks 2012: Chap. 9)
are generalisations of the first principal component line, being a smooth, one-
dimensional curve fitted through the data in m dimensions such that the curve fits the
data best in a statistical sense (De’ath 1999; Hastie et al. 2011). Principal curves are
a very powerful technique for summarising patterns in complex palaeoecological
data, especially stratigraphical data.

The identification of outliers in a data-set is an important aim of EDA. Everitt
(2002) defines an outlier as “an observation that appears to deviate markedly from
the other members of the sample in which it occurs : : : More formally the term
refers to an observation which appears to be inconsistent with the rest of the data,
relative to an assumed model.” EDA provides a means of identifying such outliers
in terms of their leverage (the potential for influence resulting from unusual values)
and influence (an observation is influential if its deletion substantially changes the
results). Outliers may result from some abnormality in the measured feature of an
object or they may result from an error in measurement, recording, or data entry.
It is important to realise that the concept of an outlier is model dependent, so an
object may appear to be an outlier in one context but may appear to conform to the
rest of the data in another context (Juggins and Birks 2012: Chap. 14; Juggins and
Telford 2012: Chap. 5). There are several well-established statistical techniques for
assessing leverage and influence, particularly in the context of a regression model
(see Rawlings 1988; Hamilton 1992; Crawley 2002, 2007; Fox 2002, 2008). Barnett
and Lewis (1978) and Hawkins (1980) provide detailed accounts of detecting
outliers in data-sets.

Problems can arise with missing data, for example in environmental data-
sets (Allison 2002). The most common approach in dealing with missing data
is to delete objects containing missing observations (Nakagawa and Freckleton
2008). This approach reduces statistical power, discards valuable information,
and increases model bias. Nakagawa and Freckleton (2008) discuss the power-
ful but largely underused approach of multiple imputation to allow for missing
data.

An important aspect of EDA is graphical representations of the individual
variables and their relationships and of the objects in a data-set. Although there
is a temptation for the palaeolimnologist, after s/he has completed all the diatom or
chironomid analyses, to rush to do constrained ordinations or develop environmental
reconstruction models, it cannot be emphasised too much that time spent on EDA is
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time well spent and that in EDA one should never forget the graphs (Warton 2008;
Zuur et al. 2010; Juggins and Telford 2012: Chap. 5).

Another aspect of exploratory data analysis that is often ignored in quantitative
palaeolimnology is data assessment (Fig. 2.1, Table 2.2), in particular the estimation
of analytical errors (Maher et al. 2012: Chap. 6). In the context of biostratigraphical
data, a count of, for example, diatom valves in a given sediment sample is hopefully
an unbiased sample count of the diatoms preserved in that sediment sample. As in
all sampling, there are statistical uncertainties associated with any sample count.
The larger the count, the smaller the uncertainties become. As larger counts require
more time to complete, there is a trade-off between time and level of uncertainty. It is
therefore important to estimate the uncertainty associated with all fossil counts (see
Maher et al. 2012: Chap. 6). Methods for estimating counting errors and confidence
intervals associated with relative percentage data (see Table 2.1) are well developed
(Maher 1972a; Maher et al. 2012: Chap. 6). The errors depend on the size of the
count and on the proportion in the count sum of the taxon of interest. Methods for
estimating errors and confidence intervals associated with concentrations are also
available. Deriving the total error requires careful propagation of errors associated
with the various steps involved in estimating concentration values. The total error
depends not only on estimating and combining these various errors but also on the
number of fossils counted (Maher 1981). Estimating the errors for accumulation
rates (Table 2.1) is similar to estimating concentration errors (Maher 1972b;
Bennett 1994), but with the additional complexity of incorporating the uncertainties
associated with estimating sediment accumulation rates based on radiometric age
estimates and, in the case of radiocarbon dates, calibrating radiocarbon ages into
calibrated years (Blaauw and Heegaard 2012: Chap. 12). The total error associated
with accumulation rates may be 25–40% or more of the estimated values. It is
therefore essential to derive and display reliable estimates of the total errors before
attempting interpretation of any observed changes in accumulation rates (Maher
1972b; Bennett 1994; Bennett and Willis 2001). Hughes and Hase (2010) provide a
thorough account of measurements, uncertainties, and error analysis in the natural
sciences.

Regression Analysis and Statistical Modelling

Regression analysis and statistical modelling are important in the data assessment,
data summarisation, data analysis, and data interpretation stages in a palaeolimno-
logical study (Table 2.2) and they can also be valuable in data collection (see above
and Table 2.2). Regression analysis is implicit in many widely used approaches
and techniques in quantitative palaeolimnology, including palaeoenvironmental
reconstructions using calibration functions (Juggins and Birks 2012: Chap. 14),
ordination techniques, both classical and canonical (Legendre and Birks 2012b:
Chap. 8), classification, regression, and other decision trees, networks, and other
statistical-learning techniques (Simpson and Birks 2012: Chap. 9), data assessment
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and error estimation (Maher et al. 2012: Chap. 6), age-depth modelling (Blaauw
and Heegaard 2012: Chap. 12), temporal-series analysis (Dutilleul et al. 2012:
Chap. 16), and confirmatory data analysis and hypothesis testing (Cumming et al.
2012: Chap. 20; Lotter and Anderson 2012: Chap. 18; Simpson and Hall 2012:
Chap. 19). Because regression analysis is a vast (and complex) topic with very
many textbooks devoted to different aspects of modern regression analysis and
statistical modelling, the account here is rather general and is designed to give
the reader a background of what regression analysis is, what it can be used for,
what are the different major types of regression analysis, and in what circumstances
should a particular regression approach be used. For detailed, in-depth accounts,
the very readable books by Mosteller and Tukey (1977), Kleinbaum et al. (1988),
Rawlings (1988), Hamilton (1992), Montgomery and Peck (1992), Crawley (1993,
2002, 2005, 2007), Fox (1997, 2002, 2008), Ramsey and Schafer (1997), Draper
and Smith (1998), Zuur et al. (2007), Dalgaard (2008), and the chapter by ter
Braak and Looman (1987) are particularly recommended. There are several very
useful handbooks in the SAGE Series on Quantitative Applications in the Social
Sciences on specific topics in regression analysis, including Achen (1982), Berry
and Feldman (1985), Schroeder et al. (1986) and Berry (1993). More detailed
reference texts include Harrell (2001), Venables and Ripley (2002), Crawley (2002,
2007), Aitken et al. (2009), Wright and Landon (2009), and Hastie et al. (2011).

Regression modelling is defined by Everitt (2002: pp. 319–320) as “a frequently
used applied statistical technique that serves as a basis for studying and character-
ising a system of interest, by formulating a reasonable mathematical model of the
relationship between a response variable, y, and a set of q explanatory variables, x1,
x2, : : : , xq. The choice of the explicit form of the model may be based on previous
knowledge of the system or on considerations such as ‘smoothness’ and continuity
of y as a function of the x variables. In very general terms all such models can be
considered to be of the form

y D f
�
x1; : : : ; xq

�C ©

where the function f reflects the true but unknown relationship between y and
the explanatory variables. The random additive error © which is assumed to have
mean zero and variance ¢©

2 reflects the dependence of y on quantities other than
x1, : : : , xq. The goal is to formulate a function f (x1, x2, : : : , xp) that is a
reasonable approximation of f. If the correct parametric form of f is known, then
methods such as least squares estimation or maximum likelihood estimation can be
used to estimate the set of unknown coefficients. If f is linear in the parameters,
for example, then the model is that of multiple regression. If the experimenter
is unwilling to assume a particular parametric form for f, then non-parametric
regression modelling can be used, for example, kernel regression, smoothing,
recursive partitioning regression, or multivariate adaptive regression splines.”

Regression analysis is thus a set of statistical methods that can be used to
explore or model statistically the relationships between a response variables (e.g.,
diatom taxon, geochemical element, isotope value) and one or a set of predictor or
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explanatory variables on the basis of observations about the response variables and
the predictor variable(s) at a series of sites or in a set of samples. The response
variable, here assumed to be a biological taxon, may be recorded as abundances
(relative or absolute values – see Table 2.1) or as present or absent (dichotomous
or binary variable). In contrast to clustering, partitioning, and ordination techniques
(Legendre and Birks 2012a, b: Chaps. 7 and 8), it is not possible to analyse all taxa
simultaneously in regression techniques except with multivariate and reduced-rank
regression (see below). In conventional regression, each taxon must be analysed
and modelled separately (ter Braak and Looman 1987). Each regression focuses
on a particular taxon and on how this taxon is related to the particular predictor
variable(s) (e.g., environmental variables such as lake-water pH, alkalinity). The
term ‘response variable’ comes from the idea that a taxon reacts or responds to
the environmental or predictor variable(s) in a causal way; however, as ter Braak
and Looman (1987) emphasise, causality cannot be proved from the results of a
regression analysis.

The aim of regression analysis is thus more modest (ter Braak and Looman
1987), namely to describe the response variable as a quantitative function of one
or more predictor variables. This is also called direct gradient analysis (ter Braak
and Prentice 1988) and contrasts with multivariate gradient analysis (e.g., canonical
correspondence analysis) where the responses of more than one response variable
are described as a function of the predictor variables (ter Braak 1987a; ter Braak and
Prentice 1988; Legendre and Birks 2012b: Chap. 8). This function, f, is termed the
response function and it usually cannot be estimated so that the function can predict
the response without some error. Regression analysis attempts to make the errors as
small as possible and to average them to zero. The value predicted by the response
function is thus the expected response (Ey), namely the response with the error term
averaged out (ter Braak and Looman 1987).

In palaeolimnology, regression analysis is used mainly to

1. estimate parameters of palaeolimnological interest, for example the optimum
and ecological amplitude or tolerance of a taxon in relation to an environmental
predictor variable (Fig. 2.2), namely estimation and description

2. assess which predictor variables contribute most to a taxon’s response and which
predictor variables appear to be unimportant statistically. Such assessments
require tests of statistical significance and thus involve statistical modelling

3. predict the taxon’s responses (presence/absence or abundance) at sites with only
observed values of one or more predictor variables, namely statistical prediction

4. predict or infer the values of predictor variables (e.g., environmental values) from
observed values of one or more taxa. This is called calibration or environmental
reconstruction and is discussed in detail by Juggins and Birks (2012: Chap. 14).

The vast topic of regression analysis and associated statistical modelling is
simplified here and discussed as a general introduction to regression modelling;
general linear models; generalised linear models; smoothers; generalised additive
models; classification and regression trees; artificial neural networks; multivariate
regression; and model selection and shrinkage. These accounts draw heavily on
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Fig. 2.2 A Gaussian unimodal relationship between the abundance (y) of a taxon and an
environmental variable (x). The three important ecological parameters of the model are shown – u
optimum of the taxon’s response curve, t tolerance of the taxon’s response curve, and c maximum
of the response curve’s height

ter Braak and Looman (1987), Manly (1992, 2007, 2009), Crawley (1993, 2002,
2005, 2007), Fox (1997, 2002, 2008), Ramsey and Schafer (1997), Everitt (2002),
Lepš and Šmilauer (2003, especially Chap. 8), Zuur et al. (2007), and Hastie et al.
(2011).

Introduction to Regression Analysis and Statistical Modelling

The simplest way to describe any regression model is (Lepš and Šmilauer 2003)

y D Ey C ©

where y is the value of the response variable of interest, Ey is the expected values of
the response variable for particular values of the predictor variable(s), and © is the
variability of the observed true values of y around the expected values Ey, namely
the random additive error (Lepš and Šmilauer 2003).

The expected values of the response variable are described as a function, f, of the
predictor variables x1, : : : , xq

Ey D f
�
x1; : : : ; xq

�

The Ey part is called the systematic part or systematic component and © is the
stochastic or error part or error component of the regression model. The general
properties and different roles of these parts of regression models are summarised in
Table 2.3 (based on Lepš and Šmilauer 2003).

When a particular regression is fitted to a data-set, assumptions about the error
part are fixed, such as the distributional properties, independence of individual
observations, and cross-dependence between individual observations, but the



2 Numerical Overview 39

Table 2.3 Summary of the differences between the systematic and error parts of a regression
model

Systematic part Error part

Determined by the research question of interest
or the hypothesis to be tested (ter Braak and
Looman 1987)

Reflects a priori assumptions of the
regression model (e.g., Crawley 1993,
2002)

Parameters (regression coefficients) are
estimated by fitting the regression model
(e.g., Crawley 1993, 2002)

Parameter(s) are estimated during or after
model fitting the variance of the response
variable (e.g., Crawley 1993, 2002)

Interpreted and tested as a working hypothesis or
model. Individual parameters can be tested by
further modelling (e.g., Crawley 1993, 2002)

Used to estimate model robustness and
goodness-of-fit through regression
diagnostics (e.g., ter Braak and Looman
1987; Crawley 1993, 2002)

Modified from Lepš and Šmilauer (2003), Table 8.1

systematic part can be varied depending on the nature of the data and the research
questions (Lepš and Šmilauer 2003).

In the simplest case of the simple classical linear regression model with one
response variable, y, and one predictor variable, x, the systematic part can be
specified as

Ey D f .x/ D “0 C “1x

where “0 and “1 are fixed but unknown regression coefficients, “0 is the intercept of
the fitted line, and “1 is the slope of the fitted line (ter Braak and Looman 1987).

It is, of course, possible to have a more complex model by modelling the
dependence of y on x through a polynomial model. We thus have three possible
types of model (Lepš and Šmilauer 2003; see also Blaauw and Heegaard 2012:
Chap. 12).

1. Ey D “0 The so-called null model
2. Ey D “0 C “1x Linear model of y linearly dependent on x
3. Ey D “0 C “1x C “2x2 Polynomial model of y having a non-linear dependency on x

that can be expanded to be a polynomial to the nth degree
where n is the number of observations � 1.

The most complex polynomial model, the so-called full model, passes exactly
through all the observations but it provides no simplification of the data (which
is one of the basic aims of any statistical model) and is thus of no practical use
(Crawley 1993, 2002, 2007). In contrast, the null model simplifies reality so much
that nothing new is gained from such a model. It too is of no practical use in gaining
new insights from the data-set of interest via statistical modelling as gaining insights
is also a basic aim of such modelling (Lepš and Šmilauer 2003).

Clearly some balance has to be found between the simple null model that
provides no new insights and the complex full model that provides no data
simplification (Crawley 1993, 2002, 2007; Lepš and Šmilauer 2003). Besides being
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complex and providing little or no simplifications of the data, complex models are
frequently too well fitted to the data-set (so-called over-fitting where the model
contains more unknown parameters than can be justified by the data – Everitt
2002), and may produce biased predictions for the part of the underlying statistical
population that has not been or cannot be sampled. Thus the aim of modern
regression analysis and associated statistical modelling is to try to find a robust
compromise between a model that is as simple as possible for it to be useful in
modelling and prediction and a model that is too complex (or too simple) to be useful
(Lepš and Šmilauer 2003). Such a model is often called a parsimonious model or a
minimal adequate model (Crawley 1993, 2002, 2007). Such a model accords with
the principle of parsimony in statistical modelling, namely the general principle that
among competing models, all of which provide an adequate fit for a particular data-
set, the model with the fewest parameters is to be preferred (Everitt 2002). This
principle is the statistical implementation of Occam’s razor proposed by William of
Occam (also spelt Ockham) (1280–1349) that “entia non sumt multiplicanda praetor
mecessitatem”, namely that “a plurality (of reasons) should not be posited without
necessity” (Everitt 2002). Curtis et al. (2009) and Kernan et al. (2009) illustrate the
derivation of minimal adequate models with multivariate palaeolimnological data.

Crawley (1993, 2002, 2007), Venables and Ripley (2002), Aitken et al. (2009),
and Wright and Landon (2009) provide detailed insights into the scientific
philosophy and the underlying techniques for statistical modelling using regression
analysis.

General Linear Models

The regression techniques included in the class of general linear models (not to be
confused with generalised linear models, discussed below) can all be represented as
(Lepš and Šmilauer 2003)

Yi D “0 C
mX

j D1

“j � Xj i C © (2.1)

This general linear model differs from the traditional linear regression model
discussed above in that both quantitative variables and qualitative variables or
factors can be used as predictors. (A factor is a categorical variable with a small
number of levels under investigation used as a possible source of variation – Everitt
2002.) Thus analysis of variance (ANOVA) is part of general linear models as the
predictor variables are factors. A factor (e.g., soil moisture: dry, medium, wet) can
be replaced by k � 1 dummy presence/absence variables if the factor has k different
levels. In Eq. 2.1 above, a factor is usually represented by more than one predictor
Xj and therefore by more than one regression coefficient “j (ter Braak and Looman
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1987; Lepš and Šmilauer 2003). The symbol © represents the random error part of
the regression model. In general linear models, this is usually assumed to be zero
and to have a constant variance (Lepš and Šmilauer 2003).

It is important to note that the general linear model is not the same as a
generalised linear model (GLM) (Faraway 2005). As Lepš and Šmilauer (2003)
emphasise, GLMs are based on the general linear model but represent a major
generalisation of the general linear model, as discussed in the next sub-section
on GLM.

An important property of a general linear model is that it is additive (Lepš
and Šmilauer 2003). The effects of individual predictor variables are mutually
independent but this does not mean that the predictors are not correlated (ter Braak
and Looman 1987; Lepš and Šmilauer 2003). If the value of a predictor variable is
increased by one unit, this has a constant effect, as expressed by the value of the
regression coefficient for that predictor, independent of the values that the other
predictor variables have and are even independent of the original values of the
predictor variable that is increased (Lepš and Šmilauer 2003).

Equation 2.1 considers the theoretical underlying population of all possible
observations of Y and X. In practice, we have a sample of this population which
provides the observed data-set for analysis. Based on this finite and hopefully
unbiased sample, the ‘true’ values of the regression coefficients “j are estimated
according to some numerical criteria (e.g., least-squares minimisation) and the re-
sulting estimates are usually represented as bj (Lepš and Šmilauer 2003). Estimating
the values of bj is known as model fitting (Lepš and Šmilauer 2003). Given the
observed values of the predictor variables, the fitted or predicted values of the
response variable are

EY D OY D b0 C
mX

j D1

bj � Xj

Given the fitted values of the response variable, it is now possible to estimate the
random variable representing the stochastic or error part of the model in Eq. 2.1 as
(Lepš and Šmilauer 2003)

ei D Yi � OYi

This random variable, the regression residual, is the difference between the observed
values of the response variable and the corresponding values predicted by the
regression model (Lepš and Šmilauer 2003).

As a result of fitting a general linear model to the data, it is now possible to
partition the total variation in the data into the model or regression variation and the
residual variation (ter Braak and Looman 1987). The steps are as follows (Lepš and
Šmilauer 2003).
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1. Estimate the total variation in the values of the response variable as the total
sum-of-squares (TSS), as

TSS D
nX

iD1

�
Yi � NY �2

where NY is the mean of response variable Y (Lepš and Šmilauer 2003).
2. Partition TSS into two components on the basis of the fitted regression model;

the variation explained by the fitted model (regression or model sum-of-squares)
and the residual variation represented by the residual sum-of-squares (Lepš and
Šmilauer 2003).

The regression or model sum-of-squares (MSS) is estimated as

MSS D
nX

iD1

� OYi � NY
�2

and the residual sum-of-squares (RSS) is estimated as

RSS D
nX

iD1

�
Yi � OY

�2 D
nX

iD1

ei
2

Clearly TSS D MSS C RSS. These statistics can now be used to test the
statistical significance of the regression model. Under the null hypothesis that
the response variable is independent of the predictor variable(s), MSS will not
be different from RSS if both are divided by their respective degrees of freedom
(MSS: number of parameters fitted � 1; RSS: number of objects minus number
of parameters) to form the model mean square and the residual mean square that
can be used in an F-test to evaluate the significance of the overall regression
model. Total mean square is TSS divided by its degrees of freedom which are the
number of objects � 1. See ter Braak and Looman (1987), Crawley (1993, 2002,
2007), Sokal and Rohlf (1995), Lepš and Šmilauer (2003), and Faraway (2005)
for further details of statistical testing of general linear regression models.

An important topic that frequently arises in general linear models (and in other
regression modelling) is the question of selecting predictor variables in a multiple
linear regression. There are several methods for variable selection (Miller 1990;
Ramsey and Schafer 1997; Faraway 2005; Murtaugh 2009; Dahlgren 2010; Simpson
and Birks 2012: Chap. 9). These include backward elimination where all predictors
are entered and variables are removed, starting with the least important and not
statistically significant variables, and continuing until all the remaining variables
are statistically significant. Forward selection involves starting with no variables
and then adding in the ‘best’ predictor variable (explaining the largest part of
the variation in the response variable). The process is continued as long as the
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new variables added are all statistically significant in the presence of the other
included variables, namely have a statistically significant ‘conditional’ effect. The
best-subset approach tries all possible combinations and the best set of predictors,
in a statistical sense of high regression or model sum-of-squares and small number
of statistically significant predictors and hence few model parameters, is selected.
Olden and Jackson (2000) and Mundry and Nunn (2009) provide detailed analyses
of the pros and cons of different procedures for selecting predictor variables in
regression modelling and warn against step-wise procedures in hypothesis-testing
analyses. Rawlings (1988), Miller (1990), Montgomery and Peck (1992), Sokal and
Rohlf (1995), Ramsey and Schafer (1997), Faraway (2005), Murtaugh (2009), and
Dahlgren (2010) discuss in detail the intricacies and problems in variable selection.
Schielzeth (2010) discusses simple means to help improve the interpretability of
regression coefficients in multiple linear regression models. Murray and Conner
(2009) present six methods to try to quantify the relative importance of predictor
variables in regression models. They show that zero-order correlations performed
best at eliminating superfluous variables and that independent effects provided the
most reliable ranking of the importance of different predictor variables. The topic
of shrinkage of coefficients in regression models aimed at improving the predictive
performance of such models is discussed briefly below and is reviewed in detail by
Simpson and Birks (2012: Chap. 9).

The Akaike Information Criterion (AIC) is a widely used tool in selecting
between competing regression and other statistical models. It takes into account
both the statistical goodness-of-fit and the number of parameters that have been
estimated to achieve this degree of fit (Crawley 2002, 2007). It imposes a penalty for
increasing the number of parameters. The more parameters are used in a regression
model, the better the fit and a perfect fit is obtained if there is a parameter for
every object, but the model then has no explanatory or predictive power (Crawley
1993). AIC attempts to assess model ‘parsimony’ by penalising models for their
complexity, as measured by the number of model degrees of freedom (Lepš and
Šmilauer 2003). There is thus a trade-off between model goodness-of-fit and the
number of parameters as required by the principle of parsimony. Low values of
AIC indicate the preferred model, that is the one with the fewest parameters that
still provides an adequate fit to the data. In multiple regression, AIC is the RSS
plus twice the number of regression coefficients including the intercept. AIC can
thus be used to compare the fit of alternative models with different numbers of
parameters and hence degrees of freedom (model complexity). AIC is an invaluable
guide to model selection. A sound general rule is that given alternative competing
models, all with approximately the same explanatory power and goodness-of-fit but
involving different numbers of regression parameters, the model with the lowest
AIC should be selected. Hastie and Tibshirani (1990), Chambers and Hastie (1992),
Venables and Ripley (2002), Murtaugh (2009), and Hastie et al. (2011) provide
further details of AIC and its relative Bayes (Schwarz) Information Criterion (BIC)
(see also Ramsey and Schafer 1997).

General linear models include linear and polynomial regression with one or
more quantitative predictor variables, analysis of variance (ANOVA) and analysis
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of covariance (ANCOVA) with one or more qualitative nominal factors as predictor
variables and, in the case of ANCOVA, a quantitative variable as a covariable
or concomitant variable. These covariables are predictor variables that are not of
primary interest in a study but are measured because it is likely that they may
influence the response variable of interest and consequently need to be included
in the regression analysis and model building. Multiple regression can also be used
to assess the simultaneous effect of both quantitative and nominal predictors (ter
Braak and Looman 1987; Hardy 1993). All these techniques involve least-squares
estimation and thus they make various assumptions of the data and the model errors.
As a result, many things can go wrong in seemingly straightforward regression
analysis (Manly 1992; Ramsey and Schafer 1997). Regression diagnostics are a
powerful set of techniques to detect such problems (see Belsey et al. 1980; Cook
and Weisberg 1982; Hocking and Pendleton 1983; Bollen and Jackman 1990). The
critical assumptions in least-squares estimation in regression are that (1) the variance
of the random error part is constant for all observations, (2) the errors are normally
distributed, and (3) the errors for all observations are independent. Assumption (1)
is required to justify choosing estimates of the b parameter so as to minimise the
residual sum-of-squares and is needed in significance tests of t and F values. Clearly,
in minimising the RSS, it is essential that no residuals should be markedly larger
than others. Assumption (2) is needed to justify tests of statistical significance and
estimation of confidence intervals.

The first step in regression diagnostics (Bollen and Jackman 1990; Manly 1992)
is to plot the residuals of the regression model against the fitted values or against
each of the predictor variables and to look for outliers and systematic trends in
these plots. Plots of residuals against the fitted values can highlight non-constancy
of variances whereas plots against the predictors may detect evidence of curvature
within the model. In addition, residuals can be plotted against the sequence of
data collection to detect any temporal correlation and normal probability plots
constructed where the ordered standardised residuals are plotted against expected
values assuming a standard normal distribution to detect non-normality of errors.

Two final topics in general linear models are so-called Model II regression
(Legendre and Legendre 1998) and piece-wise regression (Toms and Lesperance
2003). Model II regression is important when both the response and the predictor
variables are random and are not controlled by the researcher and thus there is
error associated with measures of both sets of variables, as commonly occurs in
morphometrics and water chemistry. When there is a need to estimate the parameters
of the equation that describes the relationship between pairs of random variables, it
is essential to use Model II regression for parameter estimation because the slope
parameter estimated by least-squares linear regression (Model I regression) may
be biased by the presence of measurement error in the predictor variable. There
are various Model II regression methods such as major-axis regression, standard
major-axis regression, and ranged major-axis regression (Legendre and Legendre
1998). The strengths and weaknesses of these Model II regression procedures and
the problems of statistical testing for Model II models are discussed by McArdle
(1988) and Legendre and Legendre (1998).
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Piece-wise regression models are ‘broken-stick’ models where two or more
lines are joined at unknown point(s), called ‘break-point(s)’ representing abrupt
changes in the data-set under analysis (Toms and Lesperance 2003). The segments
are usually straight lines but the technique can be generalised to segments of
other shapes (e.g., polynomial segments) (Seber and Wild 1989). Piece-wise
regression models can be difficult to fit because of the number of possible break-
points. Palaeolimnological examples of piece-wise regression include Heegaard
et al. (2006) and Engels and Cwynar (2011). These examples involve detecting
ecotones or thresholds in biological data-sets along altitudinal or depth gradients,
respectively.

All the general linear models discussed so far have assumed normally distributed
variables and the error part is assumed to be normally distributed. How can data
with response variables that are presences or absences or proportions be analysed
by regression analysis? We now turn to generalised linear models (GLM) that are
more generalised than the restrictive general linear models.

Extending the General Linear Model

Introduction

The general linear model is central to modern regression analysis and statistical
modelling. The model takes the form

y D “0 C “1x1 C � � � C “mxm C ©

where y is the response variable, x1, : : : , xm are the predictor variables, and © is the
normally distributed error part.

In this section we present four extensions to this general linear model. the first
generalises the y part, the second the © part, the third the x part of the general
linear model, and the fourth part extends the response variable, y, to many response
variables, so-called multivariate regression.

The general linear model cannot handle non-normal responses in y such as
counts, proportions, or presence-absence data. This has led to the development of
generalised linear models (GLM) that can represent binary, categorical, and other
response types (McCullagh and Nelder 1989; Faraway 2006).

Mixed-effects models (MEM) allow the modelling of data that have a grouped,
nested, or hierarchical structure (Pinheiro and Bates 2000). Repeated measures and
longitudinal and multi-level data consist of several observations taken on the same
individual or group. This includes a correlation structure in the error part, © (Faraway
2006).

In the general linear model, the predictors, x, are combined in a linear way
to model their effect on the response. Sometimes this linearity is not adequate
to capture the structure of the data and more flexibility is required. Methods
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such as generalised additive models (GAMs), classification and regression trees
(CARTs), and artificial neural networks (ANNs) allow a more flexible regression
modelling of the responses that combine the predictors in a non-parametric manner
(Faraway 2006).

All the approaches discussed (general linear model, GLM, MEM, GAM, CART,
ANN) most commonly consider one response variable in relation to one or more
predictor variables. Regression techniques are required that allow the modelling
of the responses of many variables (e.g., biotic assemblages) in relation to one
or many predictors. These approaches are grouped here as multivariate regression
techniques. These overlap with canonical or constrained ordination techniques
discussed by Legendre and Birks (2012b: Chap. 8) and multivariate regression trees
discussed by Simpson and Birks (2012: Chap. 9) and Legendre and Birks (2012a:
Chap. 7).

Generalised Linear Models

Generalised linear models (GLM) (McCullagh and Nelder 1989) extend and gener-
alise the general linear model in two critically important ways. Before considering
these extensions, it is useful to clarify what GLMs are. They are not models that only
show a straight-line relationship between the response variable and the predictor
variable(s). A linear model is an equation that contains mathematical variables,
parameters, and random variables that is linear in the parameters and the random
variables (Crawley 1993), such as

y D a C bx

y D a C bx C cx2 D a C bx C cz; where z D x2

y D a C bcx D a C bz; where z D exponential .x/

Some non-linear models can be expressed in a linear form by suitable
transformations

y D exp .a C bx/ ! logey D a C bx

There are some models that are intrinsically non-linear such as the hyper-
bolic function or the asymptotic exponential. Nothing can linearise them for all
parameters.

Excellent introductions to GLM include ter Braak and Looman (1987), O’Brian
(1992), Crawley (1993, 2002, 2005, 2007), Gill (2001), Fox (2002, 2008), Lepš and
Šmilauer (2003), and Dunteman and Ho (2006). The underlying theory is presented
by McCullagh and Nelder (1989), Dobson (2001), Myers et al. (2002), and Faraway
(2006).

The first way that GLMs extend and generalise the general linear model is that
the expected values of the response variable (Ey) are not supposed to be always
directly equal to a linear combination of the predictor variables. Rather, the scale
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Table 2.4 Summary of useful combinations of GLM link functions and types of response-variable
reference statistical distributions

Type of response
variable

Typical link
function

Reference statistical
distribution

Variance function
(mean-variance relation)

Counts Log Poisson v / Ey
Proportions Logit or probit Binomial v / Ey � (1 � Ey)
Ratios Inverse or log Gamma v / (Ey)2

Measurements Identity Gaussian (normal) v D constant

Based on O’Brian (1992), Crawley (1993), and Lepš and Šmilauer (2003)
The assumed relation between the variance (v) and the expected values of the response variable
(Ey) is also given

of the response depends on the scale of the predictors through a simple parametric
function, the so-called link function g (Lepš and Šmilauer 2003),

g .Ey/ D ˜

where ˜ is the linear predictor and is defined in exactly the same way as the entire
systematic part of a general linear model (Lepš and Šmilauer 2003) as

� D ˇ0 C
mX

j D1

ˇj xj

The aim of the link function is to allow mapping of values from the whole scale of
real values of the linear predictor (ranging from �1 to C1) into a specific interval
that makes more sense for the response variable such as non-negative counts or
values bounded between 0 and 1 for proportions (ter Braak and Looman 1987; Lepš
and Šmilauer 2003).

The second way that GLMs generalise and extend the general linear model is
that GLMs have less specific assumptions about the error or stochastic part of the
regression model compared to general linear models. The variance does not need to
be constant and can depend on the expected values of the response variable Ey (Lepš
and Šmilauer 2003). The relationship between the mean and variance is usually
specified through the statistical distribution assumed for the error part and, therefore,
for the response variable (Lepš and Šmilauer 2003). It is important to note that the
mean-variance relationship described by the variance function (Table 2.4) is the
essential part of a GLM specification, not the specific statistical distribution (Lepš
and Šmilauer 2003).

A GLM consists of three main parts – the error part, the linear predictor, and
the link function. The choices available for the link functions and for the assumed
type of distribution of the response variable cannot be combined independently
(Table 2.4) (Lepš and Šmilauer 2003). The logit link function (Table 2.4), for
example, maps the real scale onto a range from 0 to C1 (ter Braak and Looman
1987) so it is not an appropriate link function for count data with an assumed
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Poisson distribution (Lepš and Šmilauer 2003). The logit function is useful mainly
for modelling probability as a parameter of the binomial distribution (ter Braak and
Looman 1987; Pampel 2000; Menard 2002; Lepš and Šmilauer 2003). Table 2.4
lists the commonest combinations of the assumed link function and the expected
distribution of the response variable together with a summary of the types of
response variables (e.g., counts, ratios) that match these assumptions. As in classical
linear regression and ANOVA within general linear models, it is not assumed that
the response variable has a particular distribution (Lepš and Šmilauer 2003).

The commonly used error parts in GLMs within palaeolimnology are

• Gaussian or normal;
• Poisson for count data that are non-negative integers whose variance increases

with the mean;
• binomial for observed proportions from a total consisting of non-negative values

with a maximum value of 1.0 and variance is largest at p D q D 0.5 where p is
the proportion of individuals that responded in a given way (‘successes’), and q
(‘failures’) is (1 � p) (Pampel 2000; Menard 2002);

• gamma for concentration data with non-negative real values, standard deviation
increases with the mean, and the data often have many near-zero values and some
high values;

• exponential for data on time-to-death in, for example, survival analysis (Crawley
1993).

Clearly the choice of error function depends on the nature of the response
variable and on the proportional relationship between the variance and the expected
values of the response variable (Table 2.4).

The linear predictor ˜ (eta) is defined as

� D
mX

j D1

xij ˇj

where xij is the value of the predictor variable j in object i, “j are the model
coefficients, and there are m predictor variables. The right-hand side is called the
linear structure. To determine the fit of a given model, a linear predictor is needed
for each value of the response variable, and then the predicted value is compared
with a transformed value of y, the transformation applied is specified by the link
function. The fitted value is computed by the inverse of the link function to get back
to the original scale of measurement of the response.

The third part of a GLM is the link function. This relates the mean value of y to
its linear predictor ˜ by

˜ D g.y/

where g (.) is the link function. The linear predictor emerges from the linear model
as a sum of the terms for each of the m predictor variables. This is not a value of



2 Numerical Overview 49

y (except in the case of the identity link (Table 2.4) where ˜ D �). The value of ˜

is obtained by transforming the values of y by the link function, and the predicted
value of y is obtained by applying the inverse link function to ˜. So

� D g�1.˜/

and we can combine the link function and linear predictor to form the basic or core
GLM equation

y D g�1.˜/ C © or g.y/ D ˜ C ©

where © is the error part, ˜ is the linear predictor, and g is the link function (Lepš
and Šmilauer 2003).

The most frequently used link functions are given in Table 2.4. The most
important criterion in selecting a link function is to ensure that the fitted values stay
within reasonable bounds (ter Braak and Looman 1987). We need to ensure that all
counts are integer values greater than or equal to zero or the responses expressed
as proportions have fitted values that lie between 0 and 1. In the first case, a log
link is appropriate because the fitted values are antilogs of the linear predictor and
all antilogs are greater than or equal to zero. In the second case, the logit link is
appropriate because the estimated proportions are calculated from the antilogs of
the logs-odd ratio, log (p/q), and must lie between 0 and 1. Crawley (1993, 2002,
2005, 2007) summarises the main types of GLM used in ecology and these include
those most appropriate in palaeolimnology. Note that linear (simple or multiple),
ANOVA, and ANCOVA within general linear models, are, in fact, members of the
GLM family with identity link functions and an assumed normal or Gaussian error
reference distribution.

GLMs thus include many types of regression models (Lepš and Šmilauer 2003).
These include:

1. ‘classical’ general linear models including (multiple) linear regression and most
types of ANOVA and ANCOVA (Neter et al. 1996);

2. extensions of these classical linear models to include response variables with
non-constant variance (counts, relative frequencies, proportions) (Fleiss 1981;
Aitchison 1986);

3. analysis of contingency table using log-linear models (Fienberg 1980;
Christensen 1990; Everitt 1992; Harrell 2001);

4. models of survival probabilities (probit analysis) used in, for example, ecotoxi-
cology (Piegorsch and Bailer 1997; Barnett 2004).

To summarise GLMs so far, they are mathematical extensions or generalisa-
tions of general linear models (Faraway 2006) that do not force real-life data
into unnatural, unrealistic, or inappropriate scales. They therefore allow for non-
linearities and non-constant variance structures in data. They are based on an
assumed relationship (link function) between the mean of the response variable
and the linear combination of the predictor variables (linear predictor). The data
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can be assumed to be several families of reference statistical distributions such
as continuous probability distributions (Gaussian (D normal), gamma, exponential,
chi-square) or discrete probability distributions (binomial, Poisson, multinomial,
hypergeometric) which may approximate the assumed error structure of most real-
life data-sets (O’Brian 1992). GLMs are thus more flexible and better suited for
analysing many real-life data-sets than ‘conventional’ regression techniques within
general linear models (Lepš and Šmilauer 2003).

GLMs extend the concept of residual sum-of-squares in general linear models.
The extent of discrepancy between the observed ‘true’ values of the response
variable and those predicted by the regression model is expressed as the GLM’s
deviance. Therefore to assess the quality of a model, statistical tests are used that
are based on the analysis of deviance which is quite similar in concept to an analysis
of variance of a regression model in general linear modelling (ter Braak and Looman
1987).

An important property of the general linear model, namely its linearity, is
retained in GLM on the scale of the linear predictor (Lepš and Šmilauer 2003).
The effect of a particular predictor is expressed by a single parameter, the linear
transformation coefficient or regression coefficient. Similarly the model additivity
is kept on the linear predictor scale. In terms of the scale of the predictor variable,
there can be major differences (Lepš and Šmilauer 2003). For example, with a log
link-function, the additivity on the scale of the linear predictor corresponds to a
multiplicative effect on the scale of the response variable (Lepš and Šmilauer 2003).

There are five major stages in the fitting of GLM.

1. Identify the response (y) and the predictor (x) variables
2. Identify and define the model equation
3. Choose an appropriate assumed error function for the response variable under

study
4. Use appropriate model parameter estimation procedures
5. Use appropriate model evaluation and criticism procedures.

There are many books that discuss GLMs and the stages in fitting them – Crawley
(1993, 2002, 2005, 2007), Ramsey and Schafer (1997), Harrell (2001), Myers
et al. (2002), Faraway (2006), Fox (2008), and Wright and Landon (2009) and the
interested reader is referred to these books for details.

I will concentrate here on the question of parameter estimation, model develop-
ment, and model criticism from a practical viewpoint in palaeolimnology.

Given the error function and the link function, it is necessary to formulate the
linear predictor term. It is essential to be able to estimate its parameters and to
find the linear predictor that minimises the total residual deviance in the model. If
a normal error function and an identity link function are used, then least-squares
estimation of general linear models is appropriate. Other error functions and link
functions require maximum-likelihood estimation.

In maximum-likelihood estimation (Eliason 1993), the aim is to find parameter
values that give the ‘best fit’ to the data. Best in the context of maximum likelihood
involves consideration of (1) the data for the response variable, (2) specification
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of the model, and (3) estimation of the model parameters. The aim is to find the
minimal adequate model to describe the data. The ‘best’ model is the model that
produces the minimal total residual deviance subject to the constraint that all the
parameters in the model are statistically significant. The model should be minimal
because of the principle of parsimony in statistical modelling and adequate because
there is no point in retaining an inadequate model that does not describe a significant
part of the variation in the response variable data. There may be no one minimal
adequate model or there may be several adequate models. Statistical modelling
involving GLM is designed to find the minimal adequate model but in real-life cases
there may be more than one plausible and acceptable model. In the context of GLM,
the principle of parsimony (Occam’s Razor) (Crawley 1993) proposes that

1. models should have as few parameters as possible
2. linear models are to be preferred to non-linear models
3. models relying on few assumptions are to be preferred to models with many

assumptions
4. models should be simplified until they are minimal adequate models
5. simple explanations are to be preferred to complex explanations.

Maximum-likelihood estimation, given the data, model, link function, and error
part, provides values for the model parameters by finding iteratively the parameter
values in the specified model that would make the observed data most likely, namely
to find model parameters that maximise the likelihood of the data being observed. It
involves maximising the likelihood or log-likelihood with respect to the parameters
and depends not only on the data but also on the model specification. It is here
that the concept of deviance is important as a measure of goodness-of-fit. Fitted or
expected values (Ey) are most unlikely to match the observed values perfectly. The
magnitude of the discrepancy between fitted and observed values is a measure of
the inadequacy of the model and deviance is a measure of this discrepancy.

The aim of statistical modelling within the framework of GLM is to determine
the minimal adequate model in which all the parameters are significantly different
from zero. This is achieved by a step-wise process of model simplification (Crawley
1993, 2002, 2007) beginning with the saturated model with one parameter for
every observation. This model has a perfect fit (deviance is zero), no degrees of
freedom, and no explanatory power. The next step is to develop the maximal model
with one parameter for all (p) factors, interactions, and variables and covariables
that might be of any interest, and to note its residual deviance and the degrees of
freedom (n � p � 1). This model may have some explanatory power but many of the
model parameters may not be statistically significant. Model simplification begins
by inspecting the parameter estimates and by removing the least significant terms
starting with the highest order interactions. If the deletion causes an insignificant
increase in deviance, the term is left out of the model, the parameter estimates are
inspected, and the least significant terms remaining in the model are removed. If
the deletion causes a significant increase in deviance, the term is put back into the
model. These are potentially statistically significant and important terms as assessed
by their effects on the deviance when deleted from the maximal model. Removal of
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terms from the model is continued by repeating the previous two steps until the
model contains nothing but significant terms. The resulting model is the minimal
adequate model. If none of the parameters is significant, then the null model with
only one parameter (the overall mean of the response variable y) is the minimal
adequate model but with no fit, the residual or error sum-of-squares equals the total
sum-of-squares, and thus the model has no explanatory power.

Hopefully there will be at least one minimal adequate model with at least one
significant parameter. It will have 0 � p0 � p significant parameters, n � p0 � 1
degrees of freedom, a model fit less than the maximal model but not significantly
so, and an explanatory power r2 of residual sum-of-squares/total sum-of-squares (or
low residual deviance).

It is not uncommon to find two or more equally plausible or acceptable minimal
adequate models. Additional tools for selecting the minimal adequate model are
the Akaike Information Criterion (AIC) and the Bayes Information Criterion (BIC)
(Crawley 2002, 2005, 2007). The more parameters there are in a model, the better
the fit is but the explanatory or predictive power is low. There is thus a trade-
off between the goodness-of-fit and the number of model parameters. AIC and
BIC penalise any superfluous parameters by adding penalties to the deviance.
AIC supplies a relatively light penalty for any lack of parsimony, whereas BIC
applies a heavier penalty for lack of parsimony. One should select as the minimal
adequate model(s), the model(s) that gives the lowest AIC and/or BIC. Burnham and
Anderson (2002) discuss in detail the various approaches and problems in model
selection (see also Birks 2012c: Chap. 21; Simpson and Birks 2012: Chap. 9).

The most effective approach to model selection and evaluation involves external
cross-validation (Juggins and Birks 2012: Chap. 14) where one data-set is used
to develop a statistical model based on GLMs. The regression model is then
applied to an independent test data-set to evaluate the predictive power of the GLM
statistical model (e.g., Oberdorff et al. 2001). Shao (1993) discusses linear model
selection by internal cross-validation, illustrating the limitations of leave-one-out
cross-validation, and recommends data-spitting or k-fold cross-validation.

The most widespread use of GLM in palaeolimnology is probably the fitting
of response curves or surfaces to the present-day occurrence or abundance of
individual taxa (e.g., diatom taxa) to an environmental variable such as lake-water
pH (e.g., ter Braak and van Dam 1989; Birks et al. 1990). There are many types
of ecological response curves and a compromise is necessary between ecological
realism and numerical simplicity (ter Braak and Prentice 1988; ter Braak and
van Dam 1989; ter Braak 1996). The Gaussian unimodal response model with
a symmetric unimodal curve is a suitable compromise (Fig. 2.2) (ter Braak and
Prentice 1988). The Gaussian logit or logistic model within the GLM framework is
usually applied to presence-absence data (see e.g., ter Braak and Looman 1986,
1987; Vanderpoorten and Durwael 1999; Oberdorff et al. 2001; Ysebaert et al.
2002; Coudun and Gégout 2006). However, it can be used, as in palaeolimnology,
as a quasi-likelihood model for proportions and as an approximation to the more
complex multinomial logit model (ter Braak and van Dam 1989; Birks 1995). The
multinomial logit (D logistic) model can be difficult to fit and its parameters difficult
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to interpret because of indeterminacies. Here a Gaussian logit model is used as
a quasi-likelihood model because the mean-variance relationship described by the
variance function (see Table 2.4) is the essential property of the model specification
and not the specific reference distribution (Lepš and Šmilauer 2003).

If the aim is to establish how many taxa in a modern calibration organism-
environment data-set (see Juggins and Birks 2012: Chap. 14) have a statistically
significant fit to a Gaussian logit model or to the simpler linear or sigmoidal logit
model, a Gaussian logit model can be fitted to all those taxa expressed as proportions
with at least ten occurrences in the data-set with binomial error structure. From the
Gaussian logit regression coefficients, b0, b1, and b2, the optimum (ûk), tolerance
(Otk), and the height of the curve’s peak (ck) of the fitted Gaussian response curve
(Fig. 2.2) can be estimated (ter Braak and Looman 1986, 1987), along with the
approximate 95% confidence intervals for the estimated ûk and the standard error of
the estimated Otk (ter Braak and Looman 1986, 1987).

For each taxon, the significance (’ D 0.05) of the Gaussian logit model (three
parameters) can be tested against the simpler linear logit (sigmoidal) model (two
parameters) by a residual deviance test. The significance of the Gaussian logit
regression coefficient b2 against the null hypothesis (b2 � 0) can be assessed by
a one-sided t-test (ter Braak and Looman 1986, 1987). If the null hypothesis is re-
jected in favour of b2 < 0, the taxon’s optimum is considered statistically significant.
If either the Gaussian unimodal model or the optimum are not significant, the linear
logit model and its regression coefficient b1 can be tested against the null model
that the taxon shows no significant relationship with the environmental variable of
interest by using deviance and two-sided t-tests (Birks et al. 1990).

This simple hierarchical set of statistical models has been extended by Huisman
et al. (1993) and Oksanen and Minchin (2002) in their HOF modelling procedures
and software. Here a set of five response models are fitted (skewed, symmetric,
plateau, monotonic, null) with either a Poisson or binomial error function. The most
complex model (skewed) is fitted first using maximum-likelihood estimation, and
the simpler models are then fitted by backward elimination. Deviance for each
model is calculated and if the drop in deviance is greater than 3.84, the extra
model parameter is significant at ’ D 0.05 (chi-square distribution). If the data are
over-dispersed with the deviance greater than the degrees of freedom, an F-test is
used to assess the drops in deviance as model simplification continues. This model
simplification procedure provides a means of selecting the most parsimonious or
minimal adequate response model for a taxon using statistical criteria. The number
of taxa in the data-set showing a statistically significant response to the environmen-
tal variable of interest can be established and the most frequent type of response
curve can be determined. Palaeolimnological data-sets invariably have symmetric
Gaussian responses as the commonest response curve (e.g., Lotter et al. 1997, 1998).
Skewed responses and null responses are rare, plateau responses are very rare, and
monotonic responses are frequent (Birks et al. 1990; Bjune et al. 2010).

There are simpler heuristic methods based on simple weighted averaging (WA)
regression to estimate the optimum and tolerance of a single response vari-
able (e.g., chironomid species) in relation to a predictor environmental variable
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(e.g., mean July air temperature) (ter Braak and Prentice 1988). When a species
shows a unimodal relationship with a predictor variable (Fig. 2.2), the presences
of the species will be concentrated around the peak of the occurrence function.
A simple estimate of the species’ optimum is thus the average of the values of
the predictor variable at those sites where the species is present. With quantitative
abundance data, WA applies weights proportional to the species’ abundances.
Absences have zero weight (ter Braak and Prentice 1988). WA estimates the
optimum of a Gaussian logit curve as efficiently as the GLM technique of Gaussian
logit regression if the site values are equally spaced over the whole range of
occurrences of the species along the gradient of the predictor variable and the site
values are closely spaced in comparison with the species tolerance (ter Braak and
Barendregt 1986; ter Braak and Looman 1986; ter Braak and Prentice 1988). WA is
an important part of several techniques used in palaeolimnology for reconstructing
environmental variables from fossil assemblages, so-called calibration (see Juggins
and Birks 2012: Chap. 14).

Mixed-Effects Models

Mixed-effects models are mentioned only briefly here because they have hardly
been used in palaeolimnology (see Heegaard et al. 2005, 2006; Adler et al. 2010;
Eggermont et al. 2010 for examples). They are of considerable potential value with
certain types of data (Pinheiro and Bates 2000; Zuur et al. 2009).

They are a class of regression and analysis of variance models that allow the
usual assumptions that the residual or error terms are independent and identically
distributed to be relaxed and generalised. They thus allow generalisations of the
error part, ©, in the general linear model (Faraway 2006).

Mixed-effects models can take into account more complicated data structures in a
flexible way, for example if the data have a grouped, nested, or hierarchical structure.
Repeated measures, longitudinal, spatial, and multilevel data consist of several
observations taken on the same individual or group, thereby inducing a correlation
structure in the error. Analyses that assume independence of the observations would
be inappropriate. Mixed-effects models allow the modelling of such data by either
modelling interdependence directly or by introducing random effect terms which
induce observations on the same object to be correlated. The major advantages of
these types of models include an increase in the precision of estimates and the ability
to make wider inferences (Everitt 2002).

Mixed-effects models commonly involve random effects to model grouping
structure. A fixed effect is an unknown constant that we attempt to estimate from the
data. Fixed effect parameters are commonly used in general and generalised linear
models. In contrast, a random effect is a random variable. It does not make sense
to estimate a random effect; instead what is done is to estimate the parameters that
describe the distribution of this random effect (Faraway 2006).

Consider an experiment to investigate the effect of a pollutant on a sample of
aquatic invertebrates. Typically, interest is on specific pollutant treatments and we
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would treat the pollutant effects as fixed. However, it makes more sense to treat
the invertebrate effects as random. It is often reasonable to treat the invertebrate
samples as being random samples from a larger collection of invertebrates whose
characteristics we wish to emulate. Furthermore, we are not particularly interested
in these specific invertebrates but in the whole population of invertebrates. A random
effects approach to modelling effects is more ambitious in that it is attempting to
infer something about the wider population beyond the available samples. Blocking
factors can often be viewed as random effects, because these often arise as a random
sample of those blocks potentially available (Faraway 2006).

A mixed-effects model has both fixed and random effects. A simple example of
such a model would be a two-way ANOVA

yijk D � C Ti C vj C "ijk

where � and Ti are fixed objects and the error, ©ijk, and the random effects vj are
independent and identically distributed N (0, ¢2) and N (0, ¢v

2), respectively, where
¢2 and ¢v

2 are variances. We wish to estimate Ti and test the hypothesis H0 : Ti D 0
while we estimate ¢v

2 and test H0 : ¢v
2 D 0. Note that we are estimating and testing

several fixed-effect parameters but only estimating and testing a single random
effect parameter (Faraway 2006). Pinheiro and Bates (2000), Zuur et al. (2007,
2009), Allison (2009), and Bolker et al. (2009) provide excellent introductions to
mixed-effects modelling in ecology.

Non-parametric Regression Models

In general and generalised linear models, the predictor variables, x, are combined
in a linear way to model their effect on the response variable. In some instances
this linearity is inadequate and too restrictive to capture the structure of the
data and more flexibility in modelling is required. In this section we consider
smoothers, generalised additive models (GAM), classification and regression trees
(CART) and related decision trees, and artificial neural networks (ANN) and related
techniques. These can result in a more flexible regression modelling of the response
by combining the predictors in a non-parametric manner (Faraway 2006). Non-
parametric methods are statistical techniques of estimation and inference that are
based on a function of the sample observations, the probability distribution of which
does not depend on a complete specification of the reference probability distribution
of the population from which the sample observations were drawn. Consequently
the techniques are valid under relatively general assumptions about the underlying
populations.

Smoothers: We first consider smoothers, a term that can be applied to almost all
techniques in statistics that involve fitting some model to a set of observations
(Goodall 1990; Everitt 2002). Smoothers generally refer to those methods that
use computing techniques to highlight structure within a data-set very effec-
tively by taking advantage of the investigator’s ability to draw conclusions from
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well-designed graphs (Everitt 2002). We will consider locally weighted regression
(LOESS) (Goodall 1990; Jacoby 1997) and smoothing spline functions (Marsh and
Cormier 2002). Many other smoothing techniques exist, including non-parametric
regressions such as kernel regression smoothers and multivariate adaptive regression
splines (Venables and Ripley 2002; Faraway 2006; Simpson and Birks 2012:
Chap. 9).

The basic aim of all smoothers is to derive a non-parametric function from a set
of observations. The fitted values are produced by the application of smoothers and
are thus less variable than the actual observations, hence the term ‘smoother’ (Lepš
and Šmilauer 2003).

As Lepš and Šmilauer (2003) emphasise, there are very many different types of
smoothers, some are not very good but are simple to understand and others are very
good but not simple to understand. An example of the former type is the simple
moving-average or running-mean smoother. This is used primarily to smooth time-
series in which a target observation is replaced by a weighted average of the target
observation and its near neighbours with weights being a function of distance or time
from the target observation. It is only really appropriate with time-series and less so
with temporal-series (Juggins and Telford 2012: Chap. 5). An example of the second
type of smoother that is versatile and robust is the LOESS smoother. LOESS is an
acronym for locally weighted regression and is a generalisation of the technique
known as LOWESS derived from locally weighted scatterplot smoother (Cleveland
1979). Crawley (2002, 2005, 2007) describes LOWESS as a non-parametric curve
fitter and LOESS as a modelling tool. Venables and Ripley (2002) describe LOESS
as an extension of the ideas of LOWESS which will work in one, two, or more
dimensions in a similar way. For consistency with Lepš and Šmilauer (2003) we
use the term LOESS for smoothers based on locally weighted linear regression
(Cleveland and Devlin 1988; Hastie and Tibshirani 1990).

LOESS does not attempt, in contrast to general or generalised linear modelling,
to fit a simple model (e.g., a quadratic model) between Y and X throughout the
entire range of X (Efron and Tibshirani 1991; Trexler and Travis 1993). Instead it
fits a series of local regressions for values of the predictor, in each case using only
data points near the selected values (Jacoby 1997; Fox 2000; Lepš and Šmilauer
2003). Essentially, LOESS performs a series of robust weighted regressions at each
of t different locations or target values (vj with j from 1 to t) along the predictor
variable’s range. Each regression uses only a subset of observations that fall close
to the target value on the horizontal predictor axis. The coefficients from each local
regression are used to generate a predicted or fitted value g (vj). The t different points
(vj, g [vj]) are plotted, and adjacent points are connected by line segments to produce
the final smooth curve (Jacoby 1997). The area (band for a single predictor) around
the target value or estimation point which is used to select the data points to be fitted
in the local regression model is called the band-width or span and is specified as a
proportion of the total available data-set (usually 0.45 or 0.33). Thus a span value ’

of 0.33 specifies that at each estimation point a third of all the available observations
is used in the local regression and this third consists of all the observations closest to
the estimation point. The complexity of the local linear regression model is specified
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by the second parameter of the smoother, the degree (œ). Normally only two degrees
are available: 1 for a linear regression model and 2 for a second-order polynomial
model (Fox 2000; Lepš and Šmilauer 2003).

The observations used in fitting the local regression model do not all carry the
same weight. The weights depend on their distance from the target value in the
predictor’s space. If a data point has exactly the same values as the predictor, its
weight is equal to 1.0. The weight decreases smoothly as a tricubic function to 0.0
at the edge of the smoother’s band-width. The procedure (Jacoby 1997) is thus

1. Describe how ‘smooth’ the fitted relationship should be by selecting the value of
band-width or span (’) to use.

2. Each observation is given a weight depending on its proximity to the target value
or estimation point. All points within the span are considered and the weights
applied are derived from a tricubic distance-decay function.

3. A simple linear regression (œ D 1) or second-order polynomial regression (œ D 2)
is fitted for all adjacent points using weighted least-squares regression where the
weights are defined in step 2.

4. Repeat for all observations in the predictor variable.
5. Calculate the residuals between the observed and fitted values of the response

variable.
6. Derive robustness weights based on the residuals so that well-fitted points carry

high weight.
7. Repeat steps 3 and 4 but with new weights based on the robustness weights and

the distance weights.

The fitted curve is a non-parametric regression estimate because it does not assume
a global parametric form (e.g., quadratic) for the regression.

An important feature of a LOESS regression model is that its complexity can be
expressed using the same kind of units used in general or generalised linear models,
namely the degrees of freedom taken from the data by the fitted model (Lepš and
Šmilauer 2003). These are alternatively called the equivalent number of parameters.
As a LOESS model produces, as in other regression models, fitted values of the
response variable, it is possible to estimate the variability in the values of the
response variable accounted for by the fitted model and compare it with the residual
sum-of-squares (Lepš and Šmilauer 2003). As the number of degrees of freedom of
the model is estimated, the residual degrees of freedom can be calculated along with
the sum-of-squares per one degree of freedom, corresponding to the mean square of
a general linear regression model (Lepš and Šmilauer 2003). Consequently, LOESS
models can be compared using an analysis of variance in the same way as is done
for general linear models (Lepš and Šmilauer 2003). It is possible to use generalised
cross-validation to find the ‘optimal’ LOESS model (Jacoby 1997; Venables and
Ripley 2002). It is important, however, to remember what Cleveland (1993) wrote
about LOESS, namely “in any specific application of LOESS, the choice of the two
parameters ’ and œ must be based on a combination of judgement and trial and
error. There is no substitute for the latter”.
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Smoothing splines (Goodall 1990) have similar aims to locally weighted
smoothers and are also used in some other forms of non-parametric regression
such as generalised additive models. Given data of x and y variables on the same
set of objects, it is possible to connect these points with a smooth continuous
line, a so-called spline function. The term spline comes from the flexible drafting
spline made from a narrow piece of wood or plastic that can be bent to conform
to an irregular shape. Splines are not analytical functions and they do not provide
statistical models in contrast to general or generalised linear regression. They
are arbitrary functions and have no real theoretical basis except for the theory
that defines the characteristics of the lines themselves. Splines are piece-wise
polynomials of degree m that are constrained to have continuous derivatives as the
joints or knots between the pieces or objects. For example, if t1, t2, : : : , tm are a set
of m values lying in the interval a�b such that a < t1 � t2 � : : : < tm � b, then a
cubic spline is a function q such that on each of the intervals (a, t1), (t1, t2), : : : ,
(tm, b), q is a cubic polynomial and the polynomial pieces fit together at the points t
in such a way that q itself and its first and second derivatives are continuous at each
t, and hence on the whole of a, b (Everitt 2002). The points t are called knots. The
most common type is a cubic spline for the smoother estimation of the function f in
modelling the dependence of response variable y on a predictor variable x

y D f .x/ C ©

where © represents the error term with an expected value of zero. For further details
of smoothing splines and how they are calculated, see Eubank (1988), Marsh and
Cormier (2002), Crawley (2002, 2005, 2007), Venables and Ripley (2002), and
Faraway (2006).

In palaeolimnology, LOESS smoothers are mainly used to highlight the major
trends or ‘signal’ in scatter-plots (e.g., of predicted versus observed values in
organism-environment calibration models (see Juggins and Birks 2012: Chap. 14))
or in stratigraphical plots (e.g., Hammarlund et al. 2002; Helmens et al. 2007;
Herzschuh et al. 2010). They can also be used directly in organism-environment
modelling (e.g., Correa-Metrio et al. 2011). Splines are less rarely used except in
age-depth modelling (see Blaauw and Heegaard 2012: Chap. 12) and as the major
smoother in generalised additive models.

Generalised additive models: Generalised additive models (GAMs) are semi-
parametric extensions of GLM which use smoothing techniques such as splines
to identify and represent possible non-linear relationships between the predictor
and the response variables (Efron and Tibshirani 1991; Yee and Mitchell 1991).
They are an alternative to considering polynomial terms in GLM or for searching
for appropriate transformations of both predictor and response variables (Everitt
2002). GLM require an a priori statistical model such as the Gaussian logit model
and are thus model-driven. With real-life data, GLM may not be flexible enough
to approximate the response adequately as the response may be bimodal, badly
skewed, or more complex than the a priori model.
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GAMs are thus a useful exploratory alternative to GLM (Yee and Mitchell 1991).
In GAMs, the link function of the expected values of the response variable is
modelled as the sum of a number of smooth functions of the predictor variables
rather than in terms of the predictor variables themselves (Everitt 2002).

The similarities and differences between GLM and GAM can be summarised in
their general equations (Yee and Mitchell 1991)

GLM g.Ey/ D ’ C “x D “0 C
mX

j D1

“j xj

where g is the link function, Ey is the modelled abundance of the response variable
y, “0 is the intercept or constant, “j are the regression coefficients or model
parameters, and xj, : : : , xm are predictor variables.

GAM g.Ey/ D ’ C f x D “0 C
mX

j D1

fj .xj /

where fj are unspecified smoothing functions estimated from the data using
smoothers such as cubic splines or LOESS to give maximum explanatory power. In
GAMs, the data determine the shape of the response curve rather than being limited
by the shapes available in parametric GLM. GAMs can thus detect bimodality and
extreme skewness (Efron and Tibshirani 1991; Yee and Mitchell 1991; Acharya
et al. 2011).

The additive predictor fj (xj) (˜A) in GAM contrasts with the linear predictor (˜)
in GLM as ˜A is represented as a sum of independent contributions of the individual
predictors. However, the effect of a particular predictor variable is not summarised
using a simple regression coefficient “ but as a smooth function fj for predictor
variable j. This describes the transformation from the predictor values to the additive
effect of that predictor on the expected values of the response variable

˜A D “0 C
mX

j D1

fj .xj /

The additive predictor replaces the linear predictor of a GLM but is related to the
scale of the response variable via the link function (Lepš and Šmilauer 2003) as

fj .xj / D “j � xj

In the more general case, smooth transformation functions (so-called ‘smooth
terms’) are fitted using a LOESS smoother or, more commonly, a cubic spline
smoother (Yee and Mitchell 1991; Lepš and Šmilauer 2003).

When fitting a GAM, it is not possible to prescribe the shape of the smooth func-
tions of the individual predictors. Instead it is necessary to specify the complexity
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of the individual curves in terms of their degrees of freedom. It is also necessary to
select the type of smoother to use to find the shape of the smooth transformation
functions for the individual predictors (Lepš and Šmilauer 2003).

The best practice is to fit GAMs of different complexity and select the ‘best’
one. The performance of individual GAMs can be assessed by the AIC, as in GLM.
AIC penalises an individual model for its complexity and the number of degrees
of freedom used in the model (see Hastie and Tibshirani 1990; Lepš and Šmilauer
2003). The model with the lowest AIC value (highest parsimony) should be selected.
It is often important to compare GLM and GAM fits in which the same reference
distribution (e.g., Poisson) and associated link function are assumed for the response
variables and with the comparable amount of complexity (Heegaard 1997; Acharya
et al. 2011). To compare a second-order polynomial GLM with a comparable GAM,
the smooth term in the GAM must be set at 2 degrees of freedom (Lepš and Šmilauer
2003). The GLM and GAM results can be compared visually or the fitted values
of one can be plotted against the fitted values for the other model. Alternatively,
the residuals from the two models can be plotted. These two alternatives provide
complementary information because the residuals are the values of the observed
response variable minus the fitted values and the GLM and GAM models share the
same observed values for the response variable (Lepš and Šmilauer 2003). With
GAM it is possible, as in GLM, to do a step-wise model selection including not
only a selection of the predictors used in the systematic part of the model but also a
selection of complexity in their smooth terms (Lepš and Šmilauer 2003).

GAMs are primarily graphical tools and cannot be easily summarised numer-
ically in contrast to GLMs where their parameters, the regression coefficients,
summarise the shape of the response curve and regression model. The fitted GAM
is best summarised by plotting the estimated smooth terms representing the relation
between the predictor values and their effects on the modelled response variable.

Just as in GLM, interactions between two or more predictor variables can be
included in the additive predictor to assess if the effect of one variable depends on
the values of the other. An interaction term is thus

fq

�
xj � xk

�

just as in a linear predictor in GLM where the interaction term is

“q

�
xj � xk

�

GAMs can thus be viewed as semi-parametric extensions of GLMs. The main
underlying assumptions are that the functions are additive and that the components
are smooth. Like GLMs, GAMs use a link function to establish the relationship
between the mean of the response variable and a ‘smoothed’ function of the
predictor variable(s). The strength of GAMs is their ability to cope with non-
linear and non-monotonic relationships between the response variable and the set
of predictor variables. They are very much more data-driven than model-driven as
in GLMs. The data determine the nature of the relationship between the response
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and the predictor variables. GAMs are a very useful exploratory tool as they can
handle complex non-linear data structures.

GAMs have an enormous potential in palaeolimnology, for example in modelling
species responses in relation to environmental variables – see Šmilauer and Birks
(1995), Heegaard (2002), Yuan (2004), Hájkova et al. (2008), and Mackay et al.
(2011) for examples. Excellent introductions to GAM are given by Yee and Mitchell
(1991), Guisan et al. (2002), and Zuur et al. (2007). Mathematical details are
presented in Hastie and Tibshirani (1986, 1990), Faraway (2006), and Wood (2006),
and a range of illustrative examples is discussed by Hastie and Tibshirani (1987) and
Leathwick (1995).

There is a continuum of regression models from general linear models (including
simple linear and multiple linear regression) which are the most restrictive in terms
of underlying assumptions (but are the most used and misused!) to generalised linear
models that are fairly general but are strictly model-based, to generalised additive
models that are the most general as they are strongly data-driven.

Together these three main types of regression analysis and statistical modelling
provide the palaeolimnologist with a powerful set of techniques for detecting and
modelling relationships between a response variable and one or more predictor
variables. We now turn to two very different approaches to regression modelling,
namely classification and regression trees and artificial neural networks.

Classification and Regression Trees (CARTs)

These tree-based methods and artificial neural networks (Simpson and Birks 2012:
Chap. 9) discussed below are probably the most non-parametric types of regression
models that can be used to describe the dependence of the response variable values
on the values of the predictor variables (Lepš and Šmilauer 2003).

CARTs are defined by a recursive binary partitioning of a data-set into subgroups
that are successively more and more homogeneous in the values of the response
variable. The partitioning is very similar to the recursive binary splitting in
TWINSPAN (Legendre and Birks 2012a: Chap. 7) and in the binary partitioning of
stratigraphical data (Birks 2012b: Chap. 11) but in these methods the multivariate
data-set is partitioned and, in the case of TWINSPAN, the criterion for splitting is
different (Lepš and Šmilauer 2003). At each partitioning step in a CART, exactly
one of the predictors is used to define the binary split. The split that maximises
the homogeneity of the two resulting subgroups and the difference between the
subgroups is selected (Lepš and Šmilauer 2003). Each split uses only one of the
predictor variables and these may be qualitative (as in a classification tree) or
quantitative (as in a regression tree) (Lepš and Šmilauer 2003).

The results of the fitting are presented as a ‘tree’ showing the successive splits.
Each branch is described by a specific splitting rule. This rule can take the form of
an inequality for a quantitative predictor (e.g., pH < 7) or a set of possible values for
a qualitative factor (e.g., moisture has value 1 or 2) (Efron and Tibshirani 1991;
Lepš and Šmilauer 2003; Molinaro et al. 2005). The two subgroups defined by
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such a splitting rule are further subdivided until they are too small or sufficiently
homogeneous in the values of the response variable (Lepš and Šmilauer 2003).
The terminal groups (‘leaves’) are identified by a predicted value of the response
variable if this is a quantitative variable or by a predicted object membership group
if the response variable is a qualitative factor, a categorical variable with a small
number of classes (Lepš and Šmilauer 2003).

As a tree-based method is fitted to a data-set, the resulting tree is usually over-
complicated (over-fitted) based on the data-set used. It is therefore necessary to
follow the principle of parsimony in regression modelling and to try to find an
‘optimum’ size for the tree for the prediction of the response values (Efron and
Tibshirani 1991; Lepš and Šmilauer 2003; Hastie et al. 2011). A cross-validation
procedure is used to determine the ‘optimal’ size of the tree by creating a series
of progressively reduced ‘pruned’ trees using only a subset of the total data-set
and then using the remaining part as a test-set to assess the performance of the
‘pruned’ tree. The test-set is run through the hierarchical set of splitting rules and the
predicted value of the response variable is then compared with its known value. For
each size and complexity of the tree model, this n-fold cross-validation is repeated
several times (Venables and Ripley 2002; Lepš and Šmilauer 2003; Hastie et al.
2011). The data-set is usually split into ten parts of roughly the same size and for
each of these parts a tree model of given size is fitted using nine parts and the
remaining part or test-set is used to assess the tree’s performance (Venables and
Ripley 2002; Lepš and Šmilauer 2003). A graph of the tree ‘quality’ against its
complexity or size typically shows a minimum corresponding to the optimal tree
size (Venables and Ripley 2002; Lepš and Šmilauer 2003). If a larger tree is used, the
model is over-fitted – it provides a close approximation of the data-set but a biased
description of the underlying population from which the data-set was sampled (Lepš
and Šmilauer 2003; Simpson and Birks 2012: Chap. 9).

Excellent introductions to CARTs are given by Efron and Tibshirani (1991),
Michaelsen et al. (1994), De’ath and Fabricius (2000), Fielding (2007), Zuur et al.
(2007), and Olden et al. (2008). Breiman et al. (1984) is the standard text on CART
(see also Venables and Ripley 2002; Faraway 2006; Hastie et al. 2011).

De’ath (2002) has extended univariate regression trees with a single response
variable to consider multivariate responses. In multivariate regression trees (MRTs),
the univariate response is replaced by a multivariate assemblage response (see
Borcard et al. 2011; Legendre and Birks 2012a: Chap. 7; Simpson and Birks 2012:
Chap. 9).

There are other types of related CART techniques such as bagging, boosted trees,
random forests, and multivariate adaptive regression splines (Prasad et al. 2006).
These are outlined in Simpson and Birks (2012: Chap. 9).

What is the role of CARTs and related techniques in regression modelling?
ANOVA and regression are powerful techniques but as the number of predictor
variables and the complexity of the data increases with interactions, unbalanced
designs, and empty cells, general and generalised linear modelling become less
effective. CARTs are simpler and less sensitive to unbalanced designs and zero
values (De’ath and Fabricius 2000). The binary splits represent an optimum set of
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one-degree-of-freedom contrasts. The advantages of CARTs increase as the number
of predictor variables and data complexity increase. They are, in many ways, ‘data-
mining’ tools that are most useful with huge heterogeneous and highly variable
data-sets (Witten and Frank 2005). De’ath’s (2002) multivariate regression tree
approach similarly has some advantages over canonical ordination techniques such
as canonical correspondence analysis (CCA) and redundancy analysis (RDA) (see
Borcard et al. 2011; Legendre and Birks 2012b: Chap. 8 for details of CCA and
RDA). MRTs make no assumptions about organism-environment response models,
in contrast to CCA and RDA, resulting in considerable robustness of MRTs. They
are invariant to monotonic transformation of the predictor variables, they emphasise
the local data-structure and interactions whereas canonical ordinations generally
consider the global data-structure, and they can be used to predict response variables
from the values of predictor variables. MRT is one tree, whereas m univariate
CARTs are needed for m response variables. MRTs can match or outperform
RDA or CCA in analysing and predicting assemblage composition (De’ath 2002),
particularly with large heterogeneous data-sets. MRTs are, as discussed by Legendre
and Birks (2012a: Chap. 7), more regression-based than TWINSPAN supplemented
by simple discriminant functions.

Although widely used in ecology, biogeography, and environmental science
(e.g., Thuiller et al. 2003; Pyšek et al. 2010; Aho et al. 2011), CARTs have
rarely been used in palaeoecology and palaeolimnology. Examples of the use of
CARTs include Pelánková et al. (2008) and of MRTs include Bjerring et al. (2009),
Davidson et al. (2010a, b), and Herzschuh and Birks (2010).

Artificial Neural Networks (ANNs) and Self-Organising Maps (SOMs)

Everitt (2002) describes artificial neural networks (ANNs) as “a mathematical
structure modelled on the human neural network and designed to attack many
statistical problems, particularly in the areas of pattern recognition, multivariate
analysis, learning and memory”. The general idea is to use a network to learn
some target values or vectors from a set of associated input signals through a set
of iterative adjustments of a set of parameters and to minimise the error between
the network and the desired output following some learning rule. ANNs have been
used in, for example, regression and statistical modelling, supervised classification
and assignment, unsupervised classification, and calibration (D inverse regression)
(Warner and Misra 1996; Simpson and Birks 2012: Chap. 9).

The essential feature of an ANN structure is a network of simple processing
elements (artificial neurons) linked together so that they can co-operate. From a set
of ‘inputs’ and an associated set of parameters, the artificial neurons produce an
‘output’ that provides a possible solution to the problem under study, for example
regression modelling. In many ANNs, the relationship between the input received by
a neuron and its output is determined by a simple GLM. Training of ANNs involves
two main processes – forward-propagation and back-propagation.
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A forward-propagation or feed-forward network is essentially an extension of the
idea of the perceptron, a simple classifier, which computes a linear combination of
the variables and returns the sign of the result – observations with positive values
are classified into one group and those with negative values into another group
(Everitt 2002). In a forward-propagation network, the vertices are numbered so that
all connections go from a vertex to one with a higher number, and the vertices are
arranged in layers with connections only to higher layers (Everitt 2002). The layers
are the input layer, one or more hidden layers, and an output layer. The input vector
and the output vector are linked directly to the input layer and the output layer,
respectively. Each neuron in the hidden layer and output layer receives weighted
signals from each neuron in the previous layer. Each neuron sums its inputs to form
a total input xj and applies a function fj to xj to give an output yj. The links have
weights wij which multiply the signals travelling along them by that factor. Forward
propagation is performed alone, without the following back-propagation step when
running an already trained network (Malmgren and Nordlund 1997; Simpson and
Birks 2012: Chap. 9).

In back-propagation the difference or ‘error’ between the actual output vector
resulting from the forward-propagation process and the desired target vector is
used to adjust incrementally the weights between the output layer and the last of
the hidden layers according to a learning algorithm based on the gradient-descent
method (Malmgren and Nordlund 1997). For each layer, going backwards through
the network, the values used for adjusting the weights are the error terms, or
their derivatives, from the immediately succeeding layer. As the process is going
backwards through the network, these terms have already been computed. The size
of the incremental adjustments of the weights is determined by the learning rate,
which is set between 0 and 1. If the learning rate is too high, the result may be a
network that never converges, while too low a learning rate may result in excessively
long learning (Malmgren and Nordlund 1997).

Introductions to ANNs and their various types are given by Eberhart and Dobbins
(1990), Bishop (1995, 2007), Warner and Misra (1996), Malmgren and Nordlund
(1997), Abdi et al. (1999), Venables and Ripley (2002), Faraway (2006), Fielding
(2007), Olden et al. (2008), Ripley (2008), and Franklin (2010). ANNs have
been widely used in limnology, freshwater biology, earth sciences, ecology, and
conservation biology – see Lek and Guégan (2000) for a review. Warner and
Misra (1996) discuss ANNs in the context of GLM and conclude that ANNs
are only useful when the investigator has no idea of the functional relationship
between the response and the predictor variables. If one has some idea of the
functional relationship, they advise using GLM. They have rarely been used in
palaeolimnology, mainly for the purposes of environmental reconstructions from
fossil assemblages (e.g., Racca et al. 2001, 2003, 2004). Their use in palaeoecology
and palaeoclimatology are outlined by Birks et al. (2010).

Olden and Jackson (2002) compared the performance of ANNs with GLM,
CARTs, and linear discriminant analysis to predict the presence or absence of
different fish species in lakes as a function of 13 habitat features. They showed that
CARTs and ANNs generally outperformed the other methods and they suggested
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that this was because these approaches can model both linear and non-linear
species responses.

Telford et al. (2004) and Telford and Birks (2005) urge caution in assessing ANN
performance by showing the importance of having not only an independent test-set
(as in CARTs), but also an independent optimisation set in ANN. ANNs learn by
iteratively adjusting a large number of parameters (originally set as random values)
to minimise the error between the predicted output and the actual input. If ANNs
are trained for too long, they can over-fit the data by learning specific features of
the data rather than learning the general rules. It is therefore necessary to have an
independent optimisation data-set to optimise the network after training and only
when training and optimisation are done should the independent test-set be used
to assess the ANN’s performance. When this is done, ANNs rarely out-perform
more classical regression and statistical modelling procedures, including CARTs
and their variants. A further disadvantage of ANN is that it is difficult to interpret
network coefficients in any biologically or ecologically meaningful way as ANNs
are essentially black boxes.

ANNs can, if used carefully and critically, provide a flexible class of linear and
non-linear regression models (Warner and Misra 1996; Ripley 2008). By adding
more hidden layers, the complexity of the ANN model can be controlled from
relatively simple models with a single hidden layer to models with complex structure
and many hidden layers. This specification of the architecture of ANNs in terms
of hidden layers is equivalent to specifying a suitable model, particularly the
systematic part, in GLM. Training ANNs is equivalent to estimating the parameters
of a GLM given a data-set. ANNs seem attractive to use because they require
less experience and statistical understanding and insight compared with GLMs or
GAMs. However, users of ANNs need to pay careful attention to basic questions
of transformations, outliers, and influential observations and the need to develop
minimal adequate models (see Racca et al. 2003 for one approach with ANNs).
ANNs may be useful for prediction but they are poor for understanding data and
model structure as the ANN weights and coefficients are usually un-interpretable.
ANNs can introduce complex interactions that may not reflect reality. As Telford et
al. (2004) show, ANNs are easy to over-fit and give over-optimistic performance-
statistics and unreliable estimates of values of additional independent data. There is
no statistical theory for inference, diagnostics, or model selection. ANNs are at best
a heuristic tool (Warner and Misra 1996). They do not provide a rigorous approach
to regression analysis and statistical modelling as they lack the underlying theory of
general linear models, generalised linear models, and generalised additive models.

Self-organising maps (SOMs) (Kohonen 2001) are superficially similar to ANNs,
as they were both developed for applications in artificial-intelligence research
(Simpson and Birks 2012: Chap. 9). In reality SOMs can be regarded as a
constrained version of the �-means clustering or partitioning method (Legendre
and Birks 2012a: Chap. 7). The goal of a basic SOM is to preserve the similarities
between samples so that similar samples are mapped onto the same or neighbouring
units on a rectangular or hexagonal grid of units with pre-defined dimensions in
terms of the numbers of rows and columns. A SOM can be implemented in an
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unsupervised mode, where it learns features from the data themselves. SOMs can
also be constructed in a supervised mode when both dependent and independent
predictor variables are available. Such a supervised SOM allows for predictions of
the response variable to be made at sites with new values of the predictor variables
(see Simpson and Birks 2012: Chap. 9 for further details and a palaeolimnological
example).

In the general category of network-based techniques, Simpson and Birks (2012:
Chap. 9) discuss two additional techniques – Bayesian networks (also known as
belief or Bayesian belief networks) and genetic algorithms, in particular the Genetic
Algorithm for Rule-set Prediction (GARP). Bayesian networks can be viewed
as a graphical summarisation of the system under study where key features are
represented by nodes that are linked together in some way so that the cause-and-
effect relationships between nodes are discovered. They are a powerful technique for
describing a means by which reasoning in the face of uncertainties can be performed
(Jensen and Nielsen 2007; Simpson and Birks 2012: Chap. 9).

Genetic algorithms are one of a number of stochastic optimisation techniques
that fall under the general heading of evolutionary computing (Fielding 2007; Olden
et al. 2008; Simpson and Birks 2012: Chap. 9). Although they are very flexible
optimisation tools, they are not well suited to all problems and CARTs and related
methods generally perform as well or better than genetic algorithms for general
regression or classification problems. Despite the popularity of GARP in, for exam-
ple, developing species distribution models (e.g., Elith et al. 2006; Franklin 2010),
genetic algorithms do not appear to have any particular advantages over CARTs and
related techniques in palaeolimnology (Simpson and Birks 2012: Chap. 9).

Multivariate Regression

Almost all the regression procedures discussed so far consider only one response
variable in relation to one or more predictor variables. In palaeolimnology interest
is often centred on the relationship between assemblages comprising many species
(e.g., diatoms, chironomids) and one or more environmental predictor variables.
Here the general techniques of canonical ordination (Legendre and Birks 2012b:
Chap. 8) (also known as constrained ordination or multivariate direct gradient
analysis – ter Braak and Prentice 1988) are particularly useful.

The basic idea is to search for a weighted sum of predictor variables that fit the
data of all response variables as well as possible, i.e., that gives the maximum total
regression sum-of-squares under the assumption of a linear response model of the
response variables to the predictor variables. The resulting technique, redundancy
analysis (RDA) (ter Braak and Prentice 1988; ter Braak 1994; Borcard et al. 2011) is
an ordination of the response variables in which the axes are constrained to be linear
combinations of the predictor variables. Canonical correspondence analysis (CCA)
(ter Braak 1986; ter Braak and Prentice 1988; Borcard et al. 2011) is the comparable
technique under the assumption of a unimodal species-environment response model.



2 Numerical Overview 67

When many response variables are of interest, each response variable can be
analysed either in a separate multiple regression (ter Braak and Looman 1994) or
jointly in a multivariate regression. The former approach is justified by the Gauss-
Markoff set-up of regression theory, where estimation in multivariate regression
reduces to a series of multiple regressions (Finn 1974; ter Braak and Looman 1994;
Neter et al. 1996). If a restriction is imposed on the rank (dimensionality) of the
matrix of regression coefficients, this restriction can result in a more parsimonious
model in which the response variables react to the regressors or predictor variables
only through a restricted number of ‘latent variables’ estimated as canonical variates
(ter Braak and Looman 1994). Izenman (1975) introduced the appropriate name of
reduced-rank regression for this approach.

RDA is a form of reduced-rank regression (Davies and Tso 1982) and is
intermediate between principal component analysis and separate multiple regres-
sions for each of the response variables. It is a constrained ordination and a
constrained form of multivariate multiple regression (Davies and Tso 1982; Israëls
1984; ter Braak and Prentice 1988). With two axes, RDA uses 2(q C m) C m
parameters to describe the response data, whereas multiple regression uses m(q C 1)
parameters where m is the number of response variables and q is the number of
predictor variables (ter Braak and Prentice 1988). RDA results can be displayed in
2- or 3-dimensional ordination plots or biplots (Gabriel 1982) that simultaneously
display (1) the main patterns of assemblage variation as far as this variation can be
explained statistically by the available predictor variables and (2) the main patterns
in the correlation coefficients between the response variables and each of the pre-
dictor variables (van der Meer 1991; ter Braak 1994; ter Braak and Looman 1994).

Canonical correlation analysis (CCoA) (Tso 1981; Thompson 1984; Gittins
1985; ter Braak 1990; Borcard et al. 2011) is related to RDA and is the standard
linear multivariate technique for relating two sets of variables (responses and
predictors). It differs from RDA in its assumptions about the error part – correlated
normal errors in canonical correlation analysis and uncorrelated errors with equal
variance in RDA (Tso 1981; ter Braak and Prentice 1988; van der Meer 1991).
From a practical viewpoint, the most important difference is that RDA can analyse
any number of response variables whereas in CCoA the number of responses (m)
must be less that n � q where n is the number of objects and q is the number of
predictor variables (ter Braak and Prentice 1988). This is particularly restrictive in
regressions of diatom assemblages containing 150–200 taxa in 50–100 samples.

Canonical variates analysis (CVA) (D multiple discriminant analysis) (see above)
is a special case of canonical correlation analysis in which the predictor variables are
a set of dummy variables reflecting a single-factor a priori classification of the ob-
jects. There is thus a similar restriction on the number of response variables that can
be analysed by CVA. RDA with dummy 1/0 variables for class membership provides
an attractive alternative to CVA as it avoids this restriction (e.g., Catalan et al. 2009).

Like RDA, CCA results can be displayed as an ordination diagram that displays
the main patterns of the response assemblage variation, as far as these reflect
variations in the predictor variables. A CCA plot also shows the main patterns in
the weighted averages (WA) (not correlations as in RDA) of each of the response
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variables with respect to the predictor variables (ter Braak 1986, 1987b). CCA
is intermediate between correspondence analysis and separate WA calculations
for each response variable in relation to each predictor variable. CCA is thus a
constrained form of WA regression in which the weighted averages are restricted
to lie in a low-dimensional sub-space (ter Braak and Prentice 1988).

RDA and CCA provide the easiest ways of implementing multivariate reduced-
rank regression involving two or more response variables and one or more predictor
variables. CCA assumes a symmetric Gaussian species response to environmental
variables (Fig. 2.2) that can be approximated by simple weighted averaging regres-
sion. With the great increase in computing power in the last 20 years, Yee (2004)
has followed up ter Braak’s (1986) idea of constrained Gaussian ordination (CGO)
with estimation by maximum likelihood rather than by the simple WA algorithm
used in CCA (ter Braak and Prentice 1988). Quadratic reduced-rank vector-
based GLMs (Yee 2004) implement CGO but they assume symmetric unimodal
species responses. Yee (2006) has extended this approach further to reduced-
rank vector-based GAMs where no response model is assumed (see also Yee and
Mackenzie 2002). Instead the data determine the response model as in GAMs. These
techniques are still under development, but when mature these methods will give
palaeolimnologists powerful ordination and constrained ordination (D multivariate
regression) techniques within the GLM/GAM theoretical framework incorporating
a mixture of linear, quadratic, and smooth responses.

A related development in constrained ordination and multivariate regression
is non-linear canonical analysis of principal coordinates (NCAP) (Millar et al.
2005). It builds on canonical analysis of principal coordinates (CAP) (Anderson
and Willis 2003; Hewitt et al. 2005; Anderson 2008b; Oksanen et al. 2011) but it
considers intrinsically non-linear relationships between assemblages and non-linear
environmental variables. It involves extending the traditional univariate linear model
implicit in RDA and CAP to a GLM through the use of a link function and non-linear
optimisation procedures as in GLM. The smallest number of axes to retain is deter-
mined using the Bayes Information Criterion in the context of NCAP. By means of
permutation tests (see below) it is possible to test if the non-linear model fitted is
preferable to the linear model. This method is of considerable potential in analysing
multivariate non-linear biological systems and non-linear environmental gradients
within the framework of multivariate regression (e.g., Anderson et al. 2005a).

Finally, it is important to consider the critical question in all regression analysis,
namely when to use constrained ordination (reduced-rank regression) with all
response variables considered simultaneously and when to use a series of separate
regressions of each response variable? As ter Braak and Prentice (1988) discuss,
the answer depends on whether there is an advantage biologically in analysing all
the responses simultaneously. In constrained ordination, the responses are assumed
to react to the same composite gradients of the predictor variables, whereas in
standard multiple regression, a separate composite gradient is constructed for each
response variable (ter Braak and Prentice 1988). Regressions can result in more
detailed descriptions and more robust predictions and calibrations if the regression
modelling is done with regard to the statistical assumptions of the model used
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(as in GLM) and if sufficient data are available (ter Braak and Prentice 1988).
Palaeolimnological data are often collected over a wide range of environmental
variation and their analysis necessitates the use of non-linear models. Building
robust non-linear models by regression can be difficult and demanding. In CCA
the composite gradients are linear combinations of the predictor variables and
non-linearity enters through the unimodal response model with respect to a few
composite gradients (ter Braak and Prentice 1988). Constrained ordinations are
easier to apply and require less data than conventional regression analysis involving
GLM, and they provide a graphical summary of the response-predictor variable
relationship. Constrained ordinations are thus very useful for the exploratory
analysis of large and heterogeneous data-sets and for simple multivariate reduced-
rank regression of all the response variables in relation to the predictor variables,
whereas regression analysis involving GLM is most useful in analysing specific
taxa in relation to particular environmental gradients (e.g., Guisan et al. 1999).

Model Selection and Shrinkage

Selection of alternative statistical regression models has conventionally been based
on p-values as the criterion for model selection. However, there is an increasing shift
to a greater emphasis on AIC and multi-model inference (Burnham and Anderson
2002; Anderson 2008a). This shift is important in reducing the reliance of the
‘truth’ of model selected by step-wise procedures such as forward selection and
in understanding the error tendencies of conventional variable-selection approaches
(Whittingham et al. 2006). However, though this type of multi-model inference is
useful for understanding model-based uncertainty, whether it is the best way to
predict reliably an outcome remains unclear (Elith and Leathwick 2009). Other
model-averaging techniques from computer sciences use a range of approaches
to develop concurrently a set of models that together predict well (Hastie et al.
2011). Critical research comparing the conceptual bases and performance of various
model averaging or consensus approaches including regression and AIC, Bayesian
approaches, and statistical-learning model ensembles (e.g., bagged or boosted trees,
random forests; Simpson and Birks 2012: Chap. 9) is needed in quantitative
palaeolimnology.

There are several alternative approaches to selecting a single final regression
model. The different information criteria (AIC, BIC) provide a range of trade-offs
between model complexity and predictive performance and can be used within
cross-validation to select a model (Hastie et al. 2011). Some methods focus on
simultaneous selection of variables and parameter estimation, for example, by
shrinkage of coefficient estimates (e.g., Reineking and Schröder 2006; Simpson and
Birks 2012: Chap. 9), using ridge regression, the lasso, or the elastic net (Hastie et
al. 2011). These provide alternative methods for selecting a final regression model
that are generally more reliable than step-wise methods (Elith and Leathwick 2009).
In statistical- and machine-learning methods, these ideas of model selection and
tuning are called ‘regularisation’, as they make the fitted line or surface more regular
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or smooth by controlling over-fitting (Phillips et al. 2006). Use of these alternative
methods in palaeolimnology is still relatively rare but it is likely to increase as
research questions become more demanding in terms of model selection. The
general topic of model selection is considered more fully in Chap. 9 on statistical
learning and in Chap. 21 as a future challenge in quantitative palaeolimnology.

Shrinkage is a common phenomenon in regression analysis (Simpson and Birks
2012: Chap. 9). It is noticed when an equation from, say, a multiple regression
model is applied to a new data-set and the model predicts much less well than in the
original sample (Everitt 2002). In particular, the value of the multiple correlation
coefficient (R) is less, namely it has ‘shrunk’. Palaeolimnologists may be most
familiar with the concept of shrinkage when two-way weighted averaging regression
and calibration (Juggins and Birks 2012: Chap. 14) are used to reconstruct an
environmental variable from palaeolimnological data. As averages are taken twice,
the resulting estimates are ‘shrunk’, hence the need for a deshrinking equation by
either classical or inverse linear regression (Birks et al. 1990; Juggins and Birks
2012: Chap. 14).

Shrinkage of the coefficients in regression models aims at improving the predic-
tive performance of such models. The best known shrinkage methods (e.g., Brown
et al. 2002; Dahlgren 2010; Hastie et al. 2011) are proportional shrinkage (Copas
1983; Breiman and Friedman 1997), and methods based on ridge regression (Hoerl
and Kennard 1970), the lasso (Tibshirani 1996), and the elastic net (Zou and Hastie
2005; Hastie et al. 2011) (see Simpson and Birks 2012: Chap. 9). These methods
generally share the feature that all coefficients are shrunken regardless of whether
the coefficients are small or large in a statistical sense (ter Braak 2006). This form
of shrinkage is not necessarily a prerequisite for good predictive power. Alternative
shrinkage methods based on Bayesian approaches shrink the small coefficients but
shrink the large coefficients only slightly. Such models can have excellent predictive
power, and they are based on the prior belief that only a few coefficients contain the
major signal in the regression model.

The major approaches to shrinkage of regression models (ridge regression, the
lasso, and the elastic net) are discussed more fully by Simpson and Birks (2012:
Chap. 9).

Quantitative Environmental Reconstruction, Calibration,
and Inverse Regression

The commonest approach to environmental reconstruction from palaeolimnological
data is to quantify the observed patterns of occurrence, abundance, and covariance of
all p taxa in n modern surface samples (Ym) in relation to the environmental variable
(Xm) of interest and to derive Ûm, a set of modern empirical calibration functions
(also known as transfer functions) (Birks et al. 2010). The underlying model is thus

Ym D OUm � Xm
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Given Ûm, they can be used to infer the past environment, X0, from the fossil
assemblage (Y0)

OX0 D OU�1
m .Y0/

Although Ûm and OX0 can be estimated or inferred in several different ways (see
Juggins and Birks 2012: Chap. 14), in practice nearly all quantitative environmental
reconstructions involve two stages. First, the responses of the modern taxa to
the contemporary environmental variable of interest are modelled by some form
of regression (ter Braak and Prentice 1988). This involves a modern training-set
of taxon assemblages (response variables) from surface-sediment samples with
associated environmental data (predictor variables). Second, the modelled modern
responses are used to infer values of the environment variable in the past from the
composition of the fossil assemblages. This is a calibration problem (ter Braak and
Prentice 1988).

There are two conceptually different approaches to quantitative environmental
reconstruction, as discussed in detail by ter Braak (1995). These are the classical
and the inverse approaches (Osborne 1991). In chemometrics, Martens and Næs
(1989) call the classical approach an indirect or reverse approach and the inverse
approach a forward or direct approach.

In the classical approach, the empirical calibration functions, Ûm, are estimated
from the modern training-set by regressing Ym on Xm. This can be a linear or a non-
linear regression and a univariate or a multivariate regression. The estimated Ûm

is then ‘inverted’ to estimate the unknown environmental variable X0 from a fossil
sample Y0. The steps are

Ym D OUm.Xm/ C error classical regression
OX0 D OU�1

m .Y0/ calibration

With the exception of simple linear calibration, the inverse of Ûm does not exist
and what is attempted instead is to find values of OX0 so that the two sides of the
calibration equation are as similar as possible in some statistical sense (ter Braak
1995). In practice, values of OX0 are sought that have the highest probability of
producing the observed fossil assemblages Y0 if the estimated value of OX0 is the
true value.

In the inverse approach, the empirical calibration functions Ûm are estimated
directly from the training-set by the ecologically curious inverse regression of Xm

on Ym in contrast to the classical approach where Ym is regressed on Xm. In the
inverse approach, the past environmental variable X0, given a fossil assemblage Y0,
is estimated directly from the modern calibration functions. The steps are

Xm D OUm.Ym/ C error inverse regression
OX0 D OUm.Y0/ calibration
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There is a substantial statistical literature on the relative merits of the classical
and inverse approaches (ter Braak 1995). In practice, inverse models appear to
perform best if the fossil assemblages are similar in composition to samples in the
central part of the modern training data-set, whereas classical methods may perform
better at the extremes and with some slight extrapolation.

Of the numerical techniques widely used in palaeolimnological environmental
reconstructions, Gaussian logit regression (GLR) and maximum-likelihood (ML)
calibration fall within the general classical approach, whereas weighted averaging
(WA) (regression and calibration) and weighted-averaging partial least squares
(WAPLS) lie within the inverse approach (ter Braak 1995).

The conditions under which WA regression approaches GLR were discussed
above. In calibration, WA estimates the value of an environmental variable at
a site as well as the corresponding ML estimate if the species shows Gaussian
curves and has Poisson-distributed abundance values. Further conditions are that
the species optima are equally spaced along the environmental gradient over an
interval that extends for a sufficient distance in both directions from the true value
of the environmental variable of interest; the species have equal tolerances (Fig. 2.2);
the species have equal maximum values in their response curves (Fig. 2.2); and the
species optima are closely spaced in comparison to their tolerances (ter Braak and
Prentice 1988). These conditions mirror a species packing model where the species
have equal response breadths and spacing (ter Braak and Prentice 1988).

The numerical methods commonly used in palaeolimnology for environmental
reconstructions are discussed by ter Braak (1995), Birks (1995, 1998), Birks et al.
(2010), and Juggins and Birks (2012: Chap. 14).

Temporal-Series Analysis

Stratigraphical palaeolimnological data are the values of one or more variables
counted or measured in a series of samples in stratigraphical order and hence
recorded over the time interval represented by the stratigraphical sequence. They
form palaeolimnological temporal-series (Dutilleul et al. 2012: Chap. 16). Recon-
structed environmental variables inferred from the fossil assemblages preserved
in the stratigraphical sequence by calibration functions (Juggins and Birks 2012:
Chap. 14) are also palaeolimnological temporal-series. These values usually vary
with depth and hence with time, and this variation may be long-term trends, short-
terms fluctuations, cyclical, irregular, or seemingly random.

In many time-series analytical techniques (see, for example, Shumway and
Stoffer 2006; Cryer and Chan 2008), the term time-series is reserved for partial
realisation of a discrete-time stochastic process, namely that the observations are
made repeatedly on the same random variable at equal time intervals (Dutilleul
et al. 2012: Chap. 16). There are clear difficulties in meeting this requirement
in many palaeolimnological studies unless the observations are from annually
laminated sediments (e.g., Tian et al. 2011). Dutilleul et al. (2012: Chap. 16) propose
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that the vast majority of palaeolimnological stratigraphical data-sets comprise
‘temporal-series’ rather than time-series in the strict statistical sense.

Numerical analysis of temporal-series can involve looking at the correlation
structure within a variable in relation to time, between variables in relation to time,
temporal trends within a variable and between variables, and other patterns within
and between variables.

Prior to any numerical analysis, it is useful to perform exploratory data analyses
on the individual variables or reconstructions within the temporal-series, such as
simple graphical displays (Juggins and Telford 2012: Chap. 5) and testing for
trend within each variable and assessing the statistical significance of the trends
by randomisation tests (Manly 2007). LOESS smoothers (see above) are useful
graphical tools for highlighting the ‘signal’ or major patterns in individual temporal-
series (Juggins and Telford 2012: Chap. 5). An alternative to LOESS that combines
graphical display, hypothesis testing, and temporal-series analysis is provided by
SiZer (Significance of Zero crossings of the derivatives) (Chaudhuri and Marron
1999; Holmström and Erästö 2002; Sonderegger et al. 2009). Korhola et al. (2000)
introduced the SiZer approach into palaeolimnology (for details, see Birks 2012a:
Chap. 10).

There are two main approaches to time-series analysis when the inter-sample
time intervals are constant (Dutilleul et al. 2012: Chap. 16). There is the time-
domain approach based on the concept of temporal correlation, namely the cor-
relation between objects in the same sequence that are k time intervals apart.
The autocorrelation coefficients are measures of the correlation between objects
separated by different time intervals and can be plotted as a correlogram to assess the
autocorrelation structure, behaviour, and patterns of the palaeolimnological variable
of interest over time. Time-series of two different variables can be compared by
cross-correlations to detect patterns of temporal variation and temporal relationships
between variables (Legendre and Legendre 1998; Davis 2002).

The second general approach involves the frequency domain and focuses on
bands of frequency or wavelength over which the variance of a time-series is
concentrated (Dutilleul 1995). It estimates the proportion of the variance that can
be attributed to each of a continuous series of frequencies. The power spectrum of
a time-series can help to detect periodicities within the data and the main tools are
spectral density functions, cross-spectral analysis, and the periodogram (see Birks
1998 for palaeolimnological applications).

In the absence of equally spaced samples in time, a common procedure is
to interpolate samples to equal time intervals. This is equivalent to a low-pass
filter and may result in an under-estimation of the high-frequency components
in the spectrum. Although techniques have been developed for spectral, cross-
spectral, and wavelet analysis for unevenly sampled temporal series (Schulz and
Stattegger 1997; Schulz and Mudelsee 2002; Witt and Schumann 2005), they
do not appear to have been applied to palaeolimnological stratigraphical data.
Dutilleul et al. (2012: Chap. 16) provide a balanced critique of these techniques.
As more robust alternatives, Dutilleul et al. (2012: Chap. 16) present the method-
ology and application of auto-correlograms using distance classes and a novel
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frequency-domain technique, so-called multifrequential periodogram analysis, to
analyse four different palaeolimnological temporal-series, all of which consist of
unequally spaced observations.

Confirmatory Data Analysis

Many factors can influence lakes, their sediments, their hydrology, and their biota,
and hence the modern and fossil assemblages of organisms. The living assemblages
can be influenced by many factors such as biotic interactions, water-level changes,
habitat availability, light, turbulence, resources, water chemistry, growing-season
duration, and, in the case of fossil assemblages, transportation, resuspension, and
preservation. These and other factors can themselves be influenced by, for example,
human activity, climate change, volcanic activity, catchment-soil development
and erosion, catchment vegetation, atmospheric contamination, etc. (Smol 2008).
Interpretation of palaeolimnological data involves testing hypotheses about possible
drivers or ‘forcing factors’ that may have influenced changes in palaeolimnological
assemblages and sediment character and composition.

Birks (1998) discusses the importance of confirmatory data analysis or
hypothesis testing in palaeolimnology, where falsifiable working hypotheses are
proposed to explain the observed patterns. He proposes that there are two main
approaches to testing hypotheses in palaeolimnology – the direct and the indirect
approaches.

In the direct approach, palaeolimnological data are collected from lakes in
contrasting settings today (e.g., geology, land-use, climate, vegetation) to test a
specific hypothesis. This is what Deevey (1969) suggested as “coaxing history to
perform experiments”. Birks (1998, 2010) outlines examples of this direct approach.
This approach is not dependent on statistical data-analysis, although quantitative
environmental reconstructions, and quantitative summarisation and comparison of
conditions before and after an environmental perturbation are often relevant.

In the indirect approach (Birks 1998) statistical techniques are central, as results
from statistical modelling involving regression analysis are used to test alternative
hypotheses. Crawley (2002) discusses in general terms the meaning of significance,
good and bad hypotheses, p values, and interpretation of the results of statistical
models. He emphasises that two kinds of mistakes can be made in interpreting
results from statistical models – the null hypothesis is rejected when it is true
(Type I error) and the null hypothesis is accepted when it is false (Type II error).
Interpretation of model results should carefully consider these two kinds of error.

The basic statistical tests all involve some form of regression analysis (Birks
1997) based on an underlying linear or unimodal response model (ter Braak and
Prentice 1988). The appropriate technique depends on the number of response
variables and the number of predictor or explanatory variables. With one response
variable and one predictor variable, simple linear regression or Gaussian logit
or Poisson regression are relevant. With one response variable and two or more
predictor variables, multiple linear regression or multiple Gaussian logit or Poisson
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regression may be appropriate (ter Braak and Looman 1987). With more than one
response variable and one or more predictor variables, the appropriate techniques
are canonical ordination or reduced-rank regression such as RDA and CCA (see
above; Borcard et al. 2011; Legendre and Birks 2012b: Chap. 8). There are partial
versions of all these techniques where the effects of covariables or concomitant
variables or ‘nuisance’ predictor variables can be adjusted for and partialled out
statistically (ter Braak 1988; ter Braak and Prentice 1988; Borcard et al. 2011).
Partial techniques provide a powerful means of testing competing hypotheses as
the effects of particular predictor variable can be partialled out and the relative
importance of other predictors can be assessed statistically (ter Braak and Prentice
1988; Lotter and Birks 1993; Lotter and Anderson 2012: Chap. 18).

From a numerical viewpoint, the critical question is how to evaluate the statistical
significance of the fitted regression model, possibly with covariables, given the com-
plex numerical properties of much palaeolimnological data (closed percentage data,
many zero values, many variables, temporally ordered samples). It is not possible to
evaluate the statistical significance of regression models based on such data using
conventional F-tests. Instead distribution-free Monte Carlo permutation tests (e.g.,
Legendre and Legendre 1998; ter Braak and Šmilauer 2002; Lepš and Šmilauer
2003; Manly 2007; Legendre et al. 2011) can be used. In these, an empirical
distribution of the test statistic of relevance is derived by repeated permutations
of the predictor variables or the regression residuals if covariables are present in
the regression model (Legendre and Legendre 1998; ter Braak and Šmilauer 2002;
Legendre et al. 2011) and a comparison made between the observed test statistics
and, say, 999 values of the same statistic based on permuted data to permit a Monte
Carlo test of significance and an exact probability for the observed test statistic.
Such Monte Carlo tests are distribution-free as they do not assume normality of
the error distribution. They do, however, require independence or exchangeability
of the samples. The validity of the results from any permutation test rests on how
appropriate the type of permutation test used is (ter Braak and Šmilauer 2002;
Churchill and Doerge 2008). Temporally ordered stratigraphical data require a spe-
cial permutation test where the samples are retained in stratigraphical order but the
match of the response and predictor variables is permuted (ter Braak and Šmilauer
2002). Such restricted permutation tests provide a powerful non-parametric means
of overcoming the problem of performing statistical tests in the presence of temporal
autocorrelation in palaeolimnological data. Similar restricted permutation tests are
available for spatially autocorrelated data (ter Braak and Šmilauer 2002). Manly
(2007) provides a very readable introduction to randomisation and permutation tests
as tools for testing hypotheses. More specialised texts include Edgington (1995),
Legendre and Legendre (1998), Sprent (1998), Lunneborg (2000), Good (2001,
2005), and Roff (2006). Lotter and Anderson (2012: Chap. 18) review the use of
permutation tests in evaluating competing hypotheses about the role of different
drivers in influencing palaeolimnological changes.

CCA, RDA, and their partial relatives are increasingly used in palaeolimnology
to assess the statistical significance of environmental variables in determining the
composition and abundance of biotic assemblages in modern calibration data-sets
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and in testing specific hypotheses relating to calibration data-sets. Partitioning the
variation (see Borcard et al. 1992, 2011; Legendre and Birks 2012b: Chap. 8) in
the response variables can help in assessing the relative importance of different
predictor variables in explaining the variation in modern assemblages (see Juggins
and Birks 2012: Chap. 14). Variation partitioning can also be used with stratigraph-
ical data to try to partition the variation in the response variables into different
unique components, their covariation terms, and the unexplained variation. As the
statistical significance of some of these components can be assessed by Monte Carlo
permutation tests, the relative importance of competing hypotheses can be evaluated
and quantified (see Lotter and Anderson 2012: Chap. 18; Simpson and Hall 2012:
Chap. 19 for examples).

Other types of permutation-based statistical analyses are being used increasingly
by palaeolimnologists and they are outlined here to provide a background for the
reader who will encounter them in later chapters (e.g., Cumming et al. 2012: Chap.
20) and in the palaeolimnological literature (e.g., Werner and Smol 2005; Tremblay
et al. 2010; Wiklund et al. 2010). These include analysis of similarities (ANOSIM),
similarity percentage tests (SIMPER), and permutational multivariate analysis of
variance using distance matrices (ADONIS). The vegan package in R (Oksanen
et al. 2011) has functions for anosim() and adonis(), and SIMPER is part of the
PRIMER package (Clarke and Gorley 2006).

Analysis of similarities (Clarke 1993; Clarke and Warwick 1994, 2001) uses any
distance or dissimilarity measure (Legendre and Birks 2012b: Chap. 8) to assess
statistically significant differences in species assemblages between two or more
groups of samples from different habitats or from a priori partitionings or clusters.
It is analogous to a standard analysis of variance (ANOVA – see above) but it allows
the use of any distance measure. ANOSIM calculates an R statistic (analogous to
the F-ratio test in ANOVA) based on the difference of mean ranks between groups
and within groups for testing if assemblage composition varies across groups, but
it is based on the differences of mean ranks between groups and within groups (cf.
ANOVA). R scales from �1 to C1. A value of 1 indicates that all the most similar
samples are within the same groups. When R is near zero, this indicates that there
are no differences between groups, whereas an R value of less than zero is unlikely
as it implies that similarities between different sites are greater than within sites.
The statistical significance of the observed value of R is assessed by permuting the
vector representing the sample groupings to obtain an empirical distribution of R
under the null model. A global test is calculated first to test the null hypothesis that
there are no differences between groups of samples specified a priori. If the null
hypothesis is rejected, specific pairs of groups of samples can be compared through
pair-wise R values that give a measure of how distinct the groups are.

Related to ANOSIM is SIMPER, a similarity percentage test (Clarke and Gorley
2006) that identifies specific taxa that account for the differences between groups
assessed by ANOSIM (Sokal et al. 2008). By looking at the overall percentage
contribution each species makes to the average dissimilarity between two groups
(an average of all possible pairs of dissimilarity coefficients, taking one sample from



2 Numerical Overview 77

each group), it is possible to list the species in decreasing order of their importance
in distinguishing between the two sets of samples (Clarke and Gorley 2006).

Commenting on anosim() in vegan, Oksanen (in Oksanen et al. 2011) com-
ments “I don’t quite trust this method. Somebody should study its performance
critically : : : Most ANOSIM models could be analysed with adonis() which seems
to be a more robust alternative”. The adonis() function within vegan is for the
analysis and partitioning of sums-of-squares using a range of distance matrices. As
it partitions sums-of-squares of a multivariate data-set, it is directly analogous to a
multivariate analysis of variance (MANOVA). Anderson (2001) and McArdle and
Anderson (2001) call it non-parametric MANOVA or permutational MANOVA. It
uses permutation tests to derive pseudo-F ratios and it is a robust alternative to
parametric MANOVA and to redundancy analysis (Legendre and Anderson 1999).
Typical uses of adonis() include the analysis of ecological assemblage data (e.g.,
Anderson et al. 2005b, c; Langlois et al. 2005) or genetic data where there might
be a limited number of samples or individuals but thousands of columns of gene
expression data (e.g., Zapala and Schork 2006). ADONIS is a robust method for
performing non-parametric analysis of variance but with multivariate response data.
It has wide potential in the analysis of palaeolimnological data and it should be used
in preference to ANOSIM.

There are many other permutation tests relevant for hypothesis-testing using
palaeolimnological data (see Legendre and Legendre 1998; Roff 2006; Manly
2007). For example, Tian et al. (2011) test the statistical significance of the
correlations (r) between sedimentary and climatic variables for the last 100 years
at Steel Lake, a lake with annually laminated sediments in Minnesota (USA).
Tian et al. (2011) used a block bootstrap (cf. h-block cross-validation: Burman
et al. 1994; Telford and Birks 2009) to account for temporal autocorrelation in
their time-series. This involved resampling with replacement of the time-series
in blocks of three consecutive samples (9 years). A two-tailed significance test
was performed on the bootstrap distribution of the correlation coefficient based
on 10,000 resamplings of the time-series to test for significance of the observed r
values. Many palaeolimnologists calculate r between temporal-series (e.g., inferred
summer temperature and observed summer temperature) but do not consider the
strong autocorrelation in these series. Tian et al. (2011) is a welcome study that
considers the problem of temporal autocorrelation present in stratigraphical data.

Conclusions

This chapter provides an overview of the major types of numerical approaches
and methods currently used in the analysis of modern and stratigraphical palaeo-
limnological data-sets. These approaches and methods are presented in terms of
their roles in data collection, data assessment, data summarisation, data analysis,
and data interpretation (Table 2.2). Some of the approaches and methods such
as exploratory data analysis, clustering and partitioning, classical and canonical
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ordination, weighted-averaging partial least squares, classification and regression
trees, age-depth modelling, modern analogue techniques, and temporal-series ana-
lysis are only discussed briefly as they are covered more fully in subsequent chapters
in this book. Basic numerical techniques that are not covered elsewhere in the
book are discussed in more detail here, for example, discriminant analysis and
regression analysis and statistical modelling. Regression analysis and statistical
modelling are discussed in some detail as they are essential parts of, for example,
age-depth modelling, classical and constrained ordinations, and environmental
reconstructions.

The numerical approaches and the specific numerical or statistical techniques
used within these approaches that are discussed in this chapter and elsewhere
in the book represent the great majority of the numerical tools used by palaeo-
limnologists in the analysis of their data today. New established techniques in
applied statistics such as additive modelling (Simpson and Anderson 2009) or
newly developed techniques such as significance testing of palaeoenvironmental
reconstructions (Telford and Birks 2011) are constantly being added to the ever-
expanding palaeolimnologist’s numerical tool-kit. Future challenges and the need
for new numerical methods for particular research questions are outlined in the last
chapter of this book (Birks 2012c: Chap. 21).
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Israëls AZ (1984) Redundancy analysis for qualitative variables. Psychometrika 49:331–346
Izenman AJ (1975) Reduced-rank regression for the multivariate linear model. J Multivar Anal

5:248–264
Jackson DA (1997) Compositional data in community ecology: the paradigm or peril of propor-

tions? Ecology 78:929–940
Jacoby WG (1997) Statistical graphics for univariate and bivariate data. Sage Publications,

Thousand Oaks
Jacoby WG (1998) Statistical graphics for visualizing multivariate data. Sage Publications,

Thousand Oaks
James M (1985) Classification algorithms. Collins, London
Jenkins A, Whitehead PG, Cosby BJ, Birks HJB (1990) Modelling long-term acidification

– a comparison with diatom reconstructions and the implications for reversibility. Philos Trans
R Soc Lond B 327:435–440

Jensen FV, Nielsen TD (2007) Bayesian networks and decision graphs, 2nd edn. Springer, New
York

Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York
Juggins S, Birks HJB (2012) Chapter 14: Quantitative environmental reconstructions from

biological data. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental
change using lake sediments. Volume 5: Data handling and numerical techniques. Springer,
Dordrecht

Juggins S, Telford RJ (2012) Chapter 5: Exploratory data analysis and data display. In: Birks HJB,
Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments.
Volume 5: Data handling and numerical techniques. Springer, Dordrecht
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ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s

guide: software for canonical community ordination (version 4.5). Microcomputer Power,
Ithaca

ter Braak CJF, van Dam H (1989) Inferring pH from diatoms – a comparison of old and new
calibration methods. Hydrobiologia 178:209–223

ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivari-
ate methods in aquatic ecology. Aq Sci 57:255–289

Thompson B (1984) Canonical correlation analysis. Sage, Beverly Hills



2 Numerical Overview 91
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Chapter 3
Data-Sets

H. John B. Birks and Vivienne J. Jones

Abstract The main data-sets used to illustrate particular numerical methods in
this book are described. They are a Holocene diatom-stratigraphy from The Round
Loch of Glenhead and a modern diatom-pH calibration-set from north-west Europe
developed as part of the Surface Waters Acidification Programme.

Keywords Data-sets • Diatoms • Palaeolimnology • pH • SWAP • The Round
Loch of Glenhead

Introduction

In various chapters of this book, two standard sets of representative palaeolimno-
logical data are used to assist in illustrating the use of particular numerical methods
and to demonstrate the application of these techniques to real data rather than to
artificial data.

As many palaeolimnological data are generally of two main types – down-core
stratigraphical data and modern surface-sediment data (Smol et al. 2012: Chap. 1;
Birks 2012: Chap. 2) – the data-sets used are of these two types. The data-sets
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are The Round Loch of Glenhead diatom core data-set, called here the RLGH or
RLGH3 data-set, and the Surface Waters Acidification Programme (SWAP) modern
diatom-pH calibration data-set, called here the SWAP data-set.

The Round Loch of Glenhead Data-Set

The Round Loch of Glenhead (RLGH) data-set consists of fossil diatom relative
abundances in 101 samples from 0.3 to 256.5 cm depth in core RLGH3. The core
covers the last 10,000 years or more (Jones et al. 1989). All taxa identified to species
level or below using the SWAP diatom taxonomic guidelines (Stevenson et al. 1991)
and attaining a value of 1% or more in at least two fossil samples are included, giving
a total of 139 taxa. Some taxa found in the RLGH core are absent from the modern
SWAP diatom data-set, and vice versa. Abundances are expressed as percentages of
the total diatom count (c. 500 valves) at RLGH.

The Round Loch of Glenhead is a small (12.5 ha), 13.5 m deep lake situated at
300 m on granite bedrock in Galloway, south-west Scotland (55.095ıN; 4.429ıW).
Its catchment is almost entirely Molinia caerulea-dominated blanket mire on deep
peat and peaty podsols, open Calluna vulgaris-Erica cinerea heath on shallow
podsols or skeletal soils, or bare rock (Jones et al. 1989). Average lake-water pH
at the time of the palaeolimnological investigations of the RLGH3 core and of
SWAP (1984–1990) was 4.7 (based on measurements from 1979 to 1990) with an
annual range of 4.6–5.0 (1981–1982) (Battarbee et al. 1989; Jones et al. 1989). The
lake’s pH has recently been measured to be about 5.2 (April 2003-March 2006)
(Battarbee et al. 2008). Details of the ecological setting and the sediment, pollen,
and diatom stratigraphies of the site, of the field and laboratory methods used, and
of the palaeolimnological interpretation of the core are presented in full by Jones
et al. (1986, 1989).

In addition to the diatom data from the RLGH3 core, there is a series of 20
radiocarbon dates based on dating lake-sediment samples from the core (Jones
et al. 1989; Stevenson et al. 1990) and a 210Pb chronology based on 11 dates for
the uppermost 20 cm of the core (Stevenson et al. 1990). These radiocarbon dates
are used to estimate age-depth relationships for the core by Blaauw and Heegaard
(2012: Chap. 12).

The RLGH diatom data-set covers the entire Holocene (post-glacial) and it was
collected to test the hypothesis of land-use and associated catchment vegetation
and soil changes as a cause of recent lake acidification (Jones et al. 1986, 1989).
The data were also used to illustrate the application of two-way weighted averaging
and Gaussian logit regression and maximum likelihood calibration to reconstruct
lake-water pH from fossil diatom assemblages (Birks et al. 1990a), to reconstruct
using weighted averaging total aluminium and dissolved organic carbon from fossil
diatom assemblages (Birks et al. 1990b), and to illustrate the use of modern
analogue techniques in palaeolimnology (Simpson 2007). The palaeolimnology
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of RLGH has also been intensively studied in connection with understanding
the causes of blanket-peat erosion (Stevenson et al. 1990), in the comparison of
diatom-inferred pH with hindcast simulations from catchment-based models of lake
acidification (Jenkins et al. 1990; Battarbee et al. 2005), in studying early signs of
reversibility of recent lake acidification (Allott et al. 1992), in deriving and defining
lake restoration goals and reference conditions (Flower et al. 1997; Simpson et al.
2005; Battarbee et al. 2011a), and in assessing the reliability of different diatom-
based transfer functions for defining reference pH conditions (Battarbee et al. 2008).
In addition, RLGH’s water chemistry, epilithic diatoms, aquatic macrophytes,
macroinvertebrates, and salmonids have been regularly monitored since 1988
(Monteith and Evans 2005; Monteith et al. 2005; Battarbee 2010; Battarbee et al.
2011b).

The SWAP Data-Set

The SWAP data-set consists of diatoms counts for 167 surface-sediment (0.5 cm)
samples from lakes in England (five lakes), Norway (49), Scotland (55), Sweden
(28), and Wales (30). It includes all diatom taxa (277) that are present in at least
two samples with an abundance of 1% or more in at least one sample and that are
identified to species level or below. Abundances are expressed as percentages of the
total diatom count (c. 500 valves). In addition the data contain pH determinations for
all 167 lakes measured after the water samples had equilibrated to room temperature
(20ıC). The pH values for each lake are based on the arithmetic mean of [HC]
(Barth 1975), after initial data screening. Many lakes have pH data based on three
or more readings (131), though some only have one (24) or two (13) readings. The
pH range is 4.33–7.25 (mean D 5.56, median D 5.27, standard deviation D 0.77).
Further details of the data-set and the methods used are given by Birks et al. (1990a),
Munro et al. (1990), Stevenson et al. (1991), and Simpson (2007). For some of the
numerical analyses illustrated in this book (e.g., Legendre and Birks 2012: Chap. 7;
Simpson and Hall 2012: Chap. 19), a subset of this data-set is used consisting of the
90 samples from Scotland, Wales, and England. This subset contains 234 taxa and
is called the SWAP-UK data-set.

The SWAP diatom-chemistry data-set was compiled as part of the palaeolimno-
logical programme within SWAP to provide a large modern calibration or training
data-set that could be used for the quantitative reconstruction of lake-water pH,
dissolved organic carbon, and total aluminium from fossil diatom assemblages
(Birks et al. 1990a, b). The modern data-set attempted to represent the full range
of lake types in the acid-sensitive or recently acidified regions in Sweden, Norway,
and the United Kingdom. For details of the palaeolimnology programme within
SWAP, see Battarbee et al. (1990), Renberg and Battarbee (1990), and Battarbee
(1994).
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Data Availability

The data-sets are available from http://extra.springer.com. They are also included
in the analogue (Simpson and Oksanen 2009) and rioja (Juggins 2009) packages
for R.
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Introduction

Part II consists of five chapters, in addition to this introductory chapter, that
describe statistical and numerical methods that are equally useful in the quantitative
analysis of modern ‘surface-sample’ palaeolimnological data (counts of organisms
in surface-sediments and associated environmental data) and of down-core strati-
graphical data (counts of organisms at different depths in a sediment-sequence). As
explained by Smol et al. (2012: Chap. 1), palaeolimnologists today devote almost as
much time in collecting and analysing modern surface-sample data so as to develop
modern organism-environment calibration or ‘training’ data-sets (see Smol 2008) as
they do in analysing lake sediments and their contained fossils, geochemistry, and
physical properties.

All the numerical procedures presented in this Part can be applied to the
quantitative analysis of both modern and stratigraphical data, whereas the tech-
niques discussed in Part III (e.g., age-depth modelling, rate-of-change analysis,
quantitative environmental reconstructions, modern analogue analysis) are only
applicable to stratigraphical data. It should, however, be emphasised that approaches
such as modern analogue techniques and calibration functions for environmental
reconstruction require both modern and stratigraphical palaeolimnological data.

Numerical analyses are useful tools at many stages in a palaeolimnological
investigation (Birks 2010, 2012a: Chap. 2 Table 4.1). During data collection they
can help in the identification of critical fossil remains. In data assessment, statistical
techniques are essential in estimating the inherent errors associated with different
laboratory procedures and with the resulting different counts of palaeolimnological
variables such as diatoms, chironomids, and cladocerans. As palaeolimnological
data-sets increase in both number and size, the efficient storage of these data-sets
requires the establishment of relational data-bases. Prior to any multivariate analysis
of palaeolimnological data, exploratory data analysis (EDA) and graphical display
of data are essential to summarise the data, to identify potential unusual observations
or outliers, and to consider the need for data transformations. The next stage is
data summarisation and there is a range of numerical techniques that are useful in
detecting and summarising major patterns of variation in modern and stratigraphical
data and in generating hypotheses about the underlying processes that may have
influenced the observed patterns. The third general stage is data analysis where par-
ticular numerical characteristics are estimated from palaeolimnological data such as
taxonomic diversity, the amount of compositional change along particular gradients,
and the responses of species to environmental variables. The last stage in numerical
analysis is data interpretation where attempts are made to test competing hypothe-
ses about underlying causative factors such as water-depth, water-chemistry, sub-
strate type, etc. in determining the composition of modern assemblages of diatoms,
chironomids, etc. and the relative abundance of taxa within these assemblages.

The aim of this introductory overview chapter is to put the following five chapters
into the context of data collection and data assessment, data summarisation, data
analysis, and data interpretation (Table 4.1) and to outline the sorts of research
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Table 4.1 Overview of numerical methods that are widely used in the analysis of both modern
and stratigraphical palaeolimnological data

Aim Numerical methods Relevant chapters

Data collection; Discriminant analysis 2
fossil identification; Classification and regression trees (CARTs) 2, 9
data storage Relational data-bases 4

Data assessment; Exploratory data analysis 5
error estimation Laboratory and analytical uncertainties 6

Data summarisation Clustering, partitioning 7
Ordination, classical and canonical 8
CARTs and related decision trees 2, 9
Self-organising maps 9
Principal curves and surfaces 9

Data analysis Estimation of compositional turnover 4, 8
Changes in taxonomic richness 4
Estimation of species optima and tolerances 2, 14
Comparison of clusterings and ordinations 4, 7, 8
Species-environment relationships 2, 8, 9, 14, 15

Data interpretation Interpretation of modern assemblages in
relation to external causative variables
using canonical ordination, variance
partitioning, simple discriminants, or
CARTs and related techniques

2, 7, 8, 9, 14, 15, 19

Hypothesis testing about modern assem-
blages and possible causative factors using
canonical ordination and variance parti-
tioning

8, 14, 19

questions that palaeolimnologists try to answer using appropriate numerical meth-
ods. In addition, brief accounts are given of important numerical approaches or
techniques in the analysis of modern and stratigraphical palaeolimnological data
that are not covered as separate chapters because the approaches or methods are not
sufficiently large to warrant individual chapters.

Data Collection and Data Assessment

Numerical techniques can help in the identification of biological remains in surface
sediments and in sediment cores and hence in basic data collection (Table 4.1).
Statistical techniques are essential in the assessment of the uncertainties in many
laboratory procedures and in the counting of biological remains in surface and
core sediment samples, namely assessment of analytical errors (Table 4.1). Well-
designed data-bases are essential tools not only for the researchers who have
collected and assembled the data, but also for the archiving of palaeolimnological
data for future generations of scientists. Data-sets from the real world are inevitably
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noisy and highly variable and may contain seemingly unusual observations or
outliers. Such outliers may be a result of analytical or coding errors or they may
result from unusual limnological characteristics or taphonomic processes. Numeri-
cal techniques of exploratory data analysis can help summarise large data-sets and
identify potential outliers (Table 4.1). They can also guide the researcher about the
need for appropriate data transformations prior to further numerical analyses.

Identification

Careful and reliable identification of all the biological remains of interest preserved
in surface or core sediment samples is the first essential step in any biologically
based palaeolimnological study (see the various chapters in Smol et al. 2001a, b
about the range of different organisms studied in palaeolimnology).

Different approaches to the identification of fossil remains preserved in lake
sediments are outlined in Chap. 2 of this volume. Some of these involve numer-
ical procedures to help with identification, classification, and assignment (e.g.,
classification and regression trees (Simpson and Birks 2012: Chap. 9) and linear
two-group discriminant analysis and multiple discriminant analysis (D canonical
variates analysis) (Birks 2012a: Chap. 2; Legendre and Birks 2012b: Chap. 8)).

Error Estimation

All counts of biological remains present in a surface or core sediment sample are,
hopefully, unbiased sample counts of the total numbers of the remains preserved
in the sample of interest (Birks and Gordon 1985). As in all sampling, there
are statistical uncertainties associated with any sample count (Maher et al. 2012:
Chap. 6). The larger the count, the smaller the uncertainties become. As larger
counts require more time to obtain, there is a trade-off between time and level of
uncertainty. It is therefore important to estimate the uncertainty associated with all
counts, determinations, and measurements. Maher et al. (2012: Chap. 6) provide a
comprehensive guide to error estimation for palaeolimnological variables, including
loss-on-ignition, varve counts, chemical determinands, age estimates, etc. (see Last
and Smol 2001a, b for accounts of the main physical and chemical variables studied
in palaeolimnology).

Data Storage and Data-Bases

Palaeolimnological data are multivariate and often contain many samples and
many variables. Data from one or two fossil cores or from one or two modern
calibration-sets can be stored in a spreadsheet form, such as EXCEL

®
or TILIA.
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However, as more variables are studied on these cores or as data from different sites
or different calibration-sets are assembled together, the investigator quickly reaches
the maximum size and effectiveness of spreadsheets, and other approaches to data
storage are essential. Rather than waiting for the stage when spreadsheets cease
to be useful, it is good research design to develop a relational data-base (e.g., in
ACCESS

®
) from the outset, thereby ensuring effective storage and manipulation

of the basic data. A multi-proxy relational data-base (e.g., Juggins 1996) ensures
compatibility and consistency between different data types and provides a rapid
and effective means of bringing together, comparing, and cross-correlating different
palaeolimnological records within cores, between cores, and between sites. A
relational data-base provides archival and research tables of, for example, basic
site, core, and surface-sample data, physical and chemical variables, biological data,
chronological information, age-depth model results, correlations, environmental
reconstructions, etc. A well-designed data-base allows rapid retrieval of data and
provides the basis for subsequent data manipulations and output for further analysis,
such as meta-analyses of large data-sets to explore competing hypotheses (e.g.,
Smol et al. 2005; Rühland et al. 2008; Battarbee et al. 2011; Mitchell 2011; Rose
et al. 2011; Stomp et al. 2011).

A data-base consists of tables and fields and makes the distinction between
primary data and meta-data and between archival and research data. Meta-data
are associated data such as site location and description, dates of coring, coring
device(s), investigators, sample depths, thicknesses, and dates, geochronological
data, age-depth models, lithology, and publications (Michener et al. 1997), whereas
the primary archival data are the actual counts of different organisms, and the deter-
minations of physical or chemical variables. It is essential to maintain the distinction
between archival data and research data (Grimm et al. 2007). Archival primary data
will never change except for the correction of any errors. These data include the
basic counts and measurements and associated meta-data. Research data are derived
data which may change but which are essential for the use of the data-base (e.g.,
age-depth models, environmental reconstructions). Maintaining a relational data-
base that incorporates data from different investigators and laboratories requires
much effort to ensure quality control, consistent taxonomy and nomenclature, and
data accuracy (Grimm et al. 2007). Besides being a major scientific resource to the
palaeolimnological community, such data-bases (e.g., European Diatom Database
Initiative (EDDI) – http://craticula.ncl.ac.uk/Eddi/jsp/) fulfil the need to “make the
most of palaeodata” (Anon 2001) and “make sure that the world’s palaeodata do
no get buried” (Alverson and Eakin 2001; Dittert et al. 2001). Zuur et al. (2007)
discuss various aspects of data preparation prior to numerical analysis and Moe et al.
(2008) discuss their experiences in compiling and analysing monitoring data from
5000 lakes in 20 European countries including phytoplankton, aquatic macrophyte,
macroinvertebrate, fish, chemical, and site data. Hernández (2003) and Whitehorn
and Marklyn (2001) provide excellent introductions to developing a relational data-
base, whereas Michener and Brunt (2000) discuss in detail the various aspects in
the storage and management of ecological data. Jones et al. (2001) discuss tools in
managing a wide range of meta-data, and McPhillips et al. (2009) outline the wide

http://craticula.ncl.ac.uk/Eddi/jsp/
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range of tools now available for handling large and diverse data-sets including tools
for analysis and for workflow. For those who persist in using spreadsheets for data
storage and management, O’Beirne (2005) is essential reading.

Exploratory Data Analysis

Exploratory data analysis (EDA) (Juggins and Telford 2012: Chap. 5) is curiously
given little or no attention in the quantitative analysis of palaeolimnological data.
EDA involves summarising data-sets in terms of measures of location or ‘typical
value’ such as means, medians, trimmed means, and geometric means, measures
of dispersion such as range, quartiles, variance, standard deviation, coefficient of
variation, and standard error of the mean, and measures of skewness and kurtosis.
Such measures can guide the data analyst about questions of data transformations.
Simple graphical tools like histograms, kernel density estimation plots, quantile-
quantile, and box-whisker plots (also called box-plots) can all help in decisions
about data transformation (Fox 2002, 2008; Borcard et al. 2011). For data consisting
of two or three variables only, simple scatter plots and matrices of scatter plots
are useful. For multivariate data, there are several graphical tools (Everitt 1978,
2005; Everitt and Dunn 2001; Everitt and Hothorn 2011) but with data-sets of 50–
100 variables these graphical tools have limited value and methods of clustering,
partitioning, and ordination (Borcard et al. 2011; Legendre and Birks 2012a; b:
Chaps. 7 and 8) are generally more useful. EDA provides a means of identifying
potential outlying or ‘rogue’ observations – observations that are, in some sense,
inconsistent with the rest of the observations in the data-set. An observation can
be an outlier for various numerical reasons such as one or more of the biological
or environmental variables lie well outside their expected range. EDA provides
powerful means of detecting outliers using measures of leverage (the potential for
influence resulting from unusual values) and of influence (an observation or variable
is influential if its deletion substantially changes the results) (Fox 2002, 2008). After
detecting potential outliers, the palaeolimnologist then has the challenge of trying
to ascertain why the observations or variables are outliers (Birks et al. 1990) –
do the unusual values result from incorrect measurements, incorrect data entry,
transcription or recording errors, or unusual site features? Graphical techniques
and effective data display are key aspects of modern EDA (see Chambers et al.
1983; Tufte 1983; Hewitt 1992; Cleveland 1993, 1994; Borcard et al. 2011; Juggins
and Telford 2012: Chap. 5). As Cleveland (1994) says “graphs allow us to explore
data to see overall patterns and to see detailed behaviour; no other approach can
compete in revealing the structure of data so thoroughly”. Warton (2008) provides
a detailed graphical analysis of a standard ecological data-set widely used in
ordination analyses to show how this data-set has been misinterpreted in several
influential methodological papers because the data were interpreted from ordination
plots alone, with no consideration of EDA plots of the basic raw data.
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Data Summarisation

The data summarisation stage (Table 4.1) overlaps with EDA (Juggins and Telford
2012: Chap. 5) but in data summarisation an attempt is made to detect clusters,
groups, gradients, and patterns of variation when the data-sets are considered as
multivariate data rather than as univariate or bivariate data-sets as discussed above.
Data summarisation is a useful stage in that it can provide useful low-dimensional
representations or groupings of observations that can provide an easy basis for
description, discussion, hypothesis generation, and interpretation.

For some purposes it is useful to cluster or partition multivariate data-sets into
a small number of groups of samples with similar biological or environmental
characteristics (see Borcard et al. 2011; Legendre and Birks 2012a: Chap. 7). These
purposes are outlined in Table 7.2 in Legendre and Birks (2012a: Chap. 7) and
include detecting groups of samples with similar biological composition or with
similar environmental variables, detecting indicator species for the groups, relating
biologically based groups to environmental variables, and assessing similarities
between fossil samples and groups of modern samples from known environmental
variables (see Catalan et al. 2009 for a detailed palaeolimnological example).
Clustering and partitioning procedures can impose one-dimensional (single environ-
mental gradient or time) or two-dimensional (geographic co-ordinates) constraints
(see Birks 2012c: Chap. 11; Legendre and Birks 2012a: Chap. 7) to detect spatially
or temporally contiguous groups of samples with similar biological and/or environ-
mental characteristics. Clustering and partitioning techniques are surprisingly little
used in palaeolimnology, except in the partitioning of stratigraphical sequences into
assemblage zones (see Birks 2012c: Chap. 11).

In contrast, ordination techniques, both classical or indirect gradient analysis
and canonical, constrained, or direct gradient analysis (ter Braak and Prentice
1988; Borcard et al. 2011) are widely used in palaeolimnology (Birks 1998;
Legendre and Birks 2012b: Chap. 8) to summarise patterns of variation in complex
multivariate data, to provide convenient low-dimensional graphical representations
of such data, and to detect relationships between modern biological assemblages
and contemporary environmental variables (see Table 8.1 in Legendre and Birks
2012b: Chap. 8). The development of canonical correspondence analysis (CCA)
(ter Braak 1986) provided palaeolimnologists with a powerful tool for explor-
ing organism-environment relationships within modern calibration-sets, under the
assumption that the organisms have unimodal responses to the underlying en-
vironmental gradients. Redundancy analysis (RDA) (D constrained or canonical
principal component analysis) is the analogous technique when the responses
can be assumed to be monotonic (see Birks 1995; Legendre and Birks 2012b:
Chap. 8). In some research problems it may be useful to partial out, as ‘covari-
ables’, the effects of ‘nuisance’ variables that are not of primary interest (e.g.,
sampling date, collecting situation) (ter Braak and Prentice 1988; Borcard et
al. 2011; Legendre and Birks 2012b: Chap. 8). Spatial or temporal structuring
within modern or fossil palaeolimnological data can be explored and quantified
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with newly developed ordination procedures such as principal coordinates of
neighbour matrices (Borcard et al. 2011; Legendre and Birks 2012b: Chap. 8).
Principal curves and surfaces (De’ath 1999; Simpson and Birks 2012: Chap. 9)
provide additional powerful data-exploratory and summarisation tools based on
ordination.

With ever-increasing computer power becoming available, a set of techniques
generally known as classification and regression trees (CART – Breiman et al. 1984;
Efron and Tibshirani 1991; Fielding 2007; Olden et al. 2008; Borcard et al. 2011;
Birks 2012a: Chap. 2; Legendre and Birks 2012a: Chap. 7; Simpson and Birks 2012:
Chap. 9) has been developed that combine data exploration and data interpretation.
These techniques (De’ath and Fabricius 2000; De’ath 2002, 2007; Prasad et al.
2006; Cutler et al. 2007) have not yet been widely used in palaeolimnology, but
judging from their applications in ecology, biogeography, marine and freshwater
biology, palynology, and remote sensing, CARTs and their relatives such as bagging,
boosted trees, random forests, and multivariate adaptive regression splines (Simpson
and Birks 2012: Chap. 9) are likely to be powerful and robust means of summarising
large heterogeneous palaeolimnological data-sets (e.g., Olden and Jackson 2002;
D’heygere et al. 2003; Raymond et al. 2005; Pelánkova et al. 2008). De’ath’s
(2002) multivariate regression tree (MRT) approach is particularly attractive as it
produces a clustering of multivariate biological data using a monothetic (single
environmental variable) divisive approach (see Bjerring et al. 2009 and Davidson
et al. 2010a, b for palaeolimnological applications). MRT is related to regression
in that the explanation of the biological data involves explanatory or predictor
variables. MRT is thus an alternative to RDA or CCA and provides a robust approach
for the prediction of biological assemblages in samples where environmental data
only are available (De’ath 2002; Borcard et al. 2011).

Artificial neural networks (Lek and Guégan 2000; Olden et al. 2008; Birks
2012a: Chap. 2: Simpson and Birks 2012: Chap. 9) and self-organising maps
(Kohonen 2001; Simpson and Birks 2012: Chap. 9) provide alternative approaches
to analyse large and heterogeneous data-sets for the purposes of data exploration
and interpretation and statistical modelling. Examples involving palaeolimnology
or related topics include Racca et al. (2001, 2003), Olden and Jackson (2002), and
Weller et al. (2006).

CARTs and their relatives, artificial neural networks, and self-organising maps
are part of what is called by Hastie et al. (2011) ‘statistical learning’. Statistical-
learning techniques permit the exploration and summary of huge data-sets and
allow statistical inferences to be made without the usual concerns for mathematical
tractability because traditional analytical approaches are replaced by specially
designed algorithms. Other statistical-learning techniques discussed by Simpson
and Birks (2012: Chap. 9) include Bayesian networks (D belief networks or
Bayesian belief networks), genetic algorithms, principal curves and surfaces, and
shrinkage methods and variable selection in statistical modelling involving ridge
regression, the lasso, and the elastic net (Hastie et al. 2011).
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Data Analysis

The term data analysis is used here to include specialised techniques that estimate
particular numerical characteristics of palaeolimnological data. Examples include
gradient lengths, richness and diversity, and species optima and tolerances for
particular environmental variables.

Gradient Lengths and Compositional Turnover
in Palaeolimnological Data

Ter Braak and Prentice (1988) suggested that the length of the first major gradient of
variation in multivariate biological data, as estimated by detrended correspondence
analysis (DCA) (Hill and Gauch 1980) (estimated as units of compositional turnover
in standard deviation (SD) units of turnover) is a useful guide as to whether
species responses are primarily monotonic (gradient length <2 SD) or primarily
unimodal (gradient length >2 SD). Despite the potential limitations of DCA as
a general purpose ordination method (see Borcard et al. 2011; Legendre and
Birks 2012b: Chap. 8), it is a valuable means of estimating gradients lengths
in biological data-sets. Ter Braak and Juggins (1993) and Birks (1995, 1998,
2007) extended this approach to estimate the amount of compositional turnover
along specific environmental gradients (e.g., lake-water pH) or through time. Such
estimates of turnover along an environmental gradient are a guide to the type of
regression procedure that should be used in the development of calibration functions
from modern calibration-sets for quantitative environmental reconstructions (Birks
1995, 1998; Birks et al. 2010; Juggins and Birks 2012: Chap. 14). Estimating
compositional turnover over a specific time period at many sites (e.g., Smol et al.
2005; Hobbs et al. 2010) or in different groups of organisms over a specific time
period at one site (e.g., Birks and Birks 2008) provides a means of quantifying and
summarising the amount of biological change recorded in palaeolimnological data.

Estimating Richness from Palaeolimnological Data

There are increasing concerns about the conservation of biodiversity now and in
the future. The palaeolimnological record can provide unique information about
how species richness, an important component of biodiversity, has changed with
time or how it changes with space today (Gregory-Eaves and Beisner 2011). As
the number of taxa recorded from a sediment sample is a function not only of
the richness but also of the sample size, it is necessary to standardise sample size.
Rarefaction analysis (Birks and Line 1992) estimates how many taxa (e.g., diatom
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valves, chironomid head-capsules) would have been found if all the counts had been
the same size.
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where E(Tn) is the expected number of taxa in a sample of n individual remains
selected at random without replacement from a count of N remains containing T
taxa, namely the estimated number of taxa that would have been found if only n
remains had been counted. T is the number of taxa in the original count; Ni is the
number of individual remains assigned to taxon i in the original count; and N is the
total number of individual remains counted in the sample, where

N D
TX

lD1

Ni

and n is the number of individual remains (count size) chosen for standardisation
(n � N) in the rarefied sample, usually the smallest total count in the samples to be
compared. The term
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is the number of combinations of n remains that can be drawn from a count of N
remains and equals N!/n!(N � n)! where N! is N factorial or N(N � 1)(N � 2), : : : ,
1; and

�
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is the number of combinations of n remains that can be drawn randomly from the
count of N remains without drawing any remains of taxon i.

The right-hand term of Eq. 4.1 is the probability that a count of n remains will
not include taxon i. The expected number of taxa in a random sample of n remains
is therefore the sum of probabilities that each taxon will be included in the rarefied
sample. If (N � Ni � n) is negative in Eq. 4.2, this term is set to zero.

The variance (var(Tn)) of the expected number of taxa in a random sample of
n individuals, when n is large, can also be estimated (Heck et al. 1975), and 95%
confidence intervals for E(Tn) can be calculated as E(Tn) ˙ 1.96 times the square
root of var (Tn).
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There are several underlying assumptions about using rarefaction analysis in
palaeolimnology. These are presented and discussed in detail by Tipper (1979)
and Birks and Line (1992). Although the interpretation of rarefaction estimates
of palynological richness as records of past diversity is complex and currently
unresolved (Odgaard 1999, 2001, 2007; Peros and Gajewski 2008; Meltsov et al.
2011), the interpretation of rarefaction estimates of diatom richness as a record of
past biodiversity may appear more straightforward (but see Smol 1981). Palaeolim-
nological examples of studying the response of diatom richness to productivity or
climate include Rusak et al. (2004) and Anderson et al. (1996), respectively (see
also Laird et al. 2010).

Rarefaction analysis can be implemented in PSIMPOLL, available from http://
chrono.qub.ac.uk/psimpoll/psimpoll.html/. In addition there are old user-unfriendly
MS-DOS programs that run under Windows

®
(RAREPOLL, RAREFORM,

RARECEP) developed by H. John B. Birks and John Line available from http://
chrono.qub.ac.uk/inqua/boutique.htm.

Besides simple taxon richness, there are several other richness and evenness
indices and a plethora of diversity indices. Diversity indices incorporate both species
richness and evenness into a single value (Peet 1974). The units of these indices
differ greatly, making comparisons difficult, confusing, and even impossible. The
series of diversity numbers presented by Hill (1973) are the easiest to interpret
ecologically.

Hill’s (1973) family of diversity numbers are
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where pi is the proportion of the individual belonging to taxon i, T is the total
number of taxa, A may be any real number, and
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NA is an intrinsic diversity number for A � 0. Hill shows that the 0th, 1st, and 2nd

order of these diversity numbers (i.e., A D 0, 1, 2 in Eq. 4.3) are three widely used
measures of diversity, namely

A D 0 N0 D T where T is the total number of taxa
A D 1 N1 D eH 0

where H´ is the Shannon index (Shannon and Weaver 1949)
A D 2 N2 D 1=� where � is Simpson’s (1949) index.

Simpson’s (1949) index is
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http://chrono.qub.ac.uk/inqua/boutique.htm
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where pi is the proportional abundance of the ith taxon given by

pi D ni

N
i D 1; 2; 3; :::; T

where ni is the number of individuals of the ith taxon and N is the known total
number of individuals for all T taxa in the population. Equation 4.4 applies only to
finite assemblages where all the fossils have been counted, i.e., n D N where n is the
total number of individuals in the sample and N is the total number of individuals
in the underlying population. As all palaeolimnological work deals with samples
with infinite underlying populations where it is impossible to count all members,
Simpson (1949) developed an unbiased estimator ( O�) for sampling from an infinite
population. It is

O� D
TX

lD1

ni .nl � 1/

n.n � 1/

These diversity numbers, N0, N1, and N2, which are all in units of number of
taxa, measure what Hill (1973) calls the effective number of taxa present in a sample
(often also referred to as the effective number of occurrences). This effective number
of taxa is a measure of the degree to which proportional abundances are distributed
among the taxa. N0 is the number of all taxa in the sample regardless of their relative
abundance; N2 is the number of very abundant taxa in the sample; and N1 is the
number of abundant taxa in the sample. In other words, the effective number of
taxa is a measure of the number of taxa in the sample where each taxon is weighted
by its abundance. van Dam et al. (1981), van Dam (1982), and ter Braak (1983)
pioneered the use of Hill’s (1973) effective number of taxa to detect changes in
diversity as a result of recent acidification from diatom assemblages. More recently,
palaeolimnologists have begun to examine diversity in modern assemblages of
diatoms or chironomids (Weckström and Korhola 2001; Nyman et al. 2005; Telford
et al. 2006; Engels and Cwynar 2011) in relation to environmental gradients,
population processes, or biogeographical factors. N2 is also used in weighted
averaging (Juggins and Birks 2012: Chap. 14) and in canonical correspondence
analysis to derive unbiased estimates of taxon tolerances (ter Braak and Verdonschot
1995) where N2 is now the effective number of occurrences of taxon k

N2 D
(

nX

iD1

�
yik

yCk

�2
) �1

and n is the number of samples, yik is the abundance of taxon k in sample i, and yCk

is the abundance total across all samples for taxon k. N2 is also being used as an
index of species evenness (e.g., Laird et al. 2010), even though Hill (1973) derives
only one evenness measure (the ratio of N2 to N1) and Smith and Wilson (1996) do
not consider N2 as an evenness index.
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A potentially important development will be partitioning diversity within modern
and fossil palaeolimnological data into independent alpha, beta, and gamma compo-
nents of diversity (e.g., Veech et al. 2002; Crist and Veech 2006; Jost 2007; Pélissier
and Couteron 2007).

Estimating Species Optima and Tolerances
Using Palaeolimnological Data

Estimating the optima and the tolerances of different taxa (see Fig. 2.1 in Birks
2012a: Chap. 2) for selected environmental variables from modern calibration data-
sets is often the first stage in quantitative reconstructions of past environments
from biological assemblages (see Juggins and Birks 2012: Chap. 14). Optima
and tolerances can be estimated in various ways (ter Braak 1996). Gaussian logit
regression (GLR) (ter Braak and Looman 1986; Birks 1995, 2012a: Chap. 2;
Juggins and Birks 2012: Chap. 14) provides unbiased estimates of species optima
and tolerances because these estimates from GLR are not heavily influenced by
the distribution of samples along the environmental gradient of interest (ter Braak
1996; cf. Coudon and Gégout 2006). Because GLR involves maximum-likelihood
estimation (Birks 2012a: Chap. 2), occasionally a taxon’s response cannot be fitted
(e.g., it has a minimum rather than an optimum). Not all responses can be modelled
completely because the environmental gradient is of finite length, in which case
sigmoidal linear increasing or decreasing responses are modelled (ter Braak and
van Dam 1989; Birks et al. 1990). Occasionally a taxon may have no statistically
significant relationship to the environmental variable. A major advantage of GLR
is that a palaeolimnologist can discover which taxa have statistically significant
unimodal or sigmoidal responses, or no significant responses to the environmental
variable of interest, and the estimates of optima and tolerances obtained are
useful parameters of the taxon’s realised niche. The fitting of a hierarchical set of
response models from the most complex asymmetric unimodal response, through
a symmetric unimodal response and sigmoidal linear response, to a null response
(Huisman et al. 1993; Oksanen and Minchin 2002) is a useful way of analysing and
categorising the multitude of taxon responses within taxon-rich modern calibration
data-sets (Birks 2012a: Chap. 2). GLR-estimated optima and tolerances provide a
strong basis for deriving ‘indicator values’ for taxa for particular environmental
variables that can be used in monitoring and ecological assessment studies (e.g.,
Peeters and Gardeniers 2002; Yuan 2004, 2007a, b).

Comparison of Clusterings and Ordinations
of Palaeolimnological Data

When palaeolimnologists have both modern biological assemblage and modern
environmental data-sets, or several modern biological data-sets for the same lakes
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but based on different organisms (e.g., diatoms, chironomids), it can be useful
to compare groupings of the lakes based on the different sets of variables (e.g.,
Birks et al. 2004). Legendre and Birks (2012a: Chap. 7) discuss ways of comparing
different groupings.

Similarly, when ordinations have been performed on different data-sets (e.g.,
lake-water chemistry, diatom assemblages, chironomid assemblages) from the same
set of lakes, it is useful to compare the different ordinations. The questions are
how similar are the ordinations and hence are the major underlying gradients the
same in all the data-sets? Procrustes analysis (Gower 1975; Digby and Kempton
1987; Gower and Dijksterhuis 2004) is the standard way of comparing the results
of two different ordinations applied to the same set of objects. It holds one set of
sample coordinates fixed and finds the best fit of the second set of points to this using
rotations, re-scalings, and translations (lateral movements). The effectiveness of the
rotation is assessed by the m2 statistic which is the residual sum-of-squares after the
Procrustes operation has been applied. The approach has been generalised (Gower
1975) to allow the comparison of three or more ordinations. The basic idea is to
find a consensus or centroid configuration so that the fit of an ordinary Procrustes
rotation to this centroid over all ordination configurations is optimal. The idea is to
minimise m2 where m2 is †mi

2 and where mi
2 is the Procrustes statistic for each

pair-wise comparison of ordinations. The statistical significance of m2 values can
be assessed by means of PROTEST, a Procrustes randomisation test (Peres-Nato
and Jackson 2001). Palaeolimnological examples include Chen et al. (2010), Wang
et al. (2010), and Wischnewski et al. (2011).

The curious name is derived from an inn-keeper of Greek mythology whom
ensured that all his customers fitted perfectly into his bed by stretching them or
chopping off their feet.

Procrustes rotations and associated PROTEST tests can be implemented in
the vegan package (http://cran.r-project.org/and http://vegan.r-forge.r-project.org/)
(Oksanen et al. 2011).

Data Interpretation

In this chapter, discussion of data interpretation is restricted to the interpretation
of possible causative factors in determining the composition and abundance of
biological assemblages in modern calibration data-sets and in testing specific
hypotheses relating to modern calibration data-sets. In the introduction to Part III
(Birks 2012b: Chap. 10) various approaches to the quantitative interpretation of
stratigraphical data are outlined.

Canonical or constrained ordination techniques (RDA, CCA, and their partial
relatives: Borcard et al. 2011; Legendre and Birks 2012b: Chap. 8) with associated
Monte Carlo permutation tests (Lepš and Šmilauer 2003) are the most used
(and useful) tools for identifying and statistically testing important explanatory
environmental variables (see ter Braak and Verdonschot 1995). Various aids such as

http://cran.r-project.org/
http://vegan.r-forge.r-project.org/
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variance inflation factors and forward selection and associated permutation tests (ter
Braak and Šmilauer 2002) help the investigator to derive a minimal adequate model
(Birks 2012a: Chap. 2) with the smallest number of significant predictor variables
that explains, in a statistical sense, the biological data about as well as the full set
of explanatory predictor variables. Oksanen et al. (2011) have developed what they
describe as experimental ‘unfounded and untested’ statistics that resemble deviance
and the Akaike Information Criterion (Godı́nez-Domı́nguez and Freire 2003) used
in the fitting of regression models to help in model building and selection in CCA
and RDA. This approach has proved useful in developing minimal adequate models
for modern palaeolimnological data-sets (unpublished results).

Variation partitioning analysis (Borcard et al. 2011; Legendre and Birks 2012b:
Chap. 8) can help in assessing the relative importance of different sets of en-
vironmental or other explanatory variables in explaining the variation in modern
biological assemblages. Specific hypotheses about, for example, the importance of
lake-water pH or total phosphorus in determining modern biological assemblages
can be tested using CCA or RDA and associated Monte Carlo permutation tests (ter
Braak and Šmilauer 2002; Lepš and Šmilauer 2003; Borcard et al. 2011).

Conclusions

The chapters in this Part explore many of the techniques outlined above in detail.
These techniques plus the additional methods summarised briefly in this intro-
duction and overview provide palaeolimnologists with powerful and robust tools
for assessing, summarising, analysing, and interpreting modern palaeolimnological
calibration data-sets. Some of these techniques are equally useful in the numerical
analysis of stratigraphical data, as discussed in Part III.

Acknowledgements I am indebted to John Smol for useful comments on this chapter and to Cathy
Jenks for her invaluable help in its preparation. This is publication A347 from the Bjerknes Centre
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Chapter 5
Exploratory Data Analysis and Data Display

Steve Juggins and Richard J. Telford

Abstract Exploratory data analysis (EDA) is an essential first step in numerical
or statistical analysis of palaeolimnological data. The main functions of EDA are
exploration, analysis and model diagnosis, and presentation and communication.
The main tools of EDA are graphical tools such as histograms, box-plots, scatter-
plots, pie-charts, smoothers, co-plots, and scatter-plot matrices. EDA also considers
questions of data transformation, outlier detection and treatment, and missing
values. Quality of graphical presentation is also discussed and appropriate computer
software is outlined. Careful and creative graphical EDA can be a great aid in data-
exploration and in hypothesis-generation.

Keywords Bivariate data • Categorical data • Computer software • Data
distribution • Graph drawing • Graphical display • Graphical tools
• Hypothesis generation • LOESS smoother • Missing values • Model
diagnostics • Multivariate data • Outliers • Time-series • Transformations
• Univariate data

Introduction

Familiar statistical tests, such as the t-test, test a null hypothesis by taking some
data, making assumptions about the properties of the data, and typically returning
one number with an associated probability value. This is the so-called classical
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approach to statistical inference. Exploratory data analysis (EDA) has a different
philosophical approach, being concerned with hypothesis generation rather than
with hypothesis testing. It is an essential first stage of any data-analytical or
statistical work, even when there is already a hypothesis to test. Tukey (1977)
advocated its widespread use, and since this work, increases in computer power
and availability have permitted the development of many new techniques.

The primary goal of EDA is to maximise insight into a data-set and its underlying
structure (NIST/SEMATECH 2006). It is based predominantly on graphical tools,
relying on the brain’s pattern-recognition ability to identify trends, relationships,
and unusual features in the data. Specifically, EDA and graphical data display
have three main functions in data analysis (Snee and Pfeifer 1983; Quinn and
Keough 2002): (1) exploration, including checking the data for unusual values
(outliers), identifying relationships, assessing the need for transformation prior to
other analyses, and suggesting the form and type of model to fit, (2) analysis
and model diagnosis, including checking that the data meet the assumptions of
formal statistical tests and that the chosen model is a realistic fit to the data, and
(3) presentation and communication of results using graphics to display complex
numerical data.

Palaeolimnological data are often complex: they can contain many variables
(i.e., highly multivariate) of mixed data types (e.g., continuous, counts, categorical,
percentages, presence-absence), that frequently follow non-normal distributions,
exhibit non-linear relationships between variables, and often contain missing values
and outliers (see Birks 2012a: Chap. 2). Many of the techniques considered
elsewhere in this volume can be considered as exploratory tools (e.g., clustering and
partitioning (Legendre and Birks 2012a: Chap. 7), classical ordination (Legendre
and Birks 2012b: Chap. 8), and constrained partitioning (Birks 2012b: Chap. 11)).
Here we focus on some of the simpler graphical tools for exploring these properties,
looking first at methods for visualising individual samples and the distribution of
single variables, and then techniques for exploring relationships between variables.
We illustrate these methods using limnological survey data containing physical,
locational, and annual mean chemical data for 124 lakes in the UK (Bennion
et al. 1996). The data-set was originally constructed by merging several smaller
regional data-sets and combined with diatom data to develop a diatom-based
calibration function for reconstructing epilimnetic phosphorus and contains a mix
of continuous, categorical, and ordinal variables.

Exploring Univariate Distributions

Graphical Tools

A fundamental property of our sample data, and, by inference, of the population
from which it came, is the shape of the distribution. For continuous variables a
histogram provides a convenient graphical display of tabulated frequencies and
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a b c

d e f

g h i

Fig. 5.1 Univariate plots, showing, (a–c) histograms of lake altitude in the UK lakes data-set, with
the number of bins chosen by (a) Sturges’ formula (log2 (n) C 1), the default in most packages,
(b) Freedman and Diaconis’s rule based on the inter-quartile range, and (c) manual choice of
30 bins (see Freedman and Diaconis 1981 for further discussion); (d) histogram of altitude with
superimposed normal (dotted) and smoothed kernel-density distributions (solid) and rugs; (e and f)
histograms and box-plots of pH and total phosphorus; (g–i) box-plots of pH by geographic region,
with box width varied according to number of observation in each group (h) and notches added
around the 95% confidence interval of the median (i)

allows an easy assessment of the distribution of a variable: the location, dispersion,
and shape including possible bimodality. The number of classes or bins used in
a histogram needs some consideration, especially for more complex distributions.
If the bins are too few and broad, relevant details are obscured; conversely, too
numerous and narrow bins start to capture random fluctuations in the data. Various
rules for selecting the number of bins have been proposed and implemented
(Fig. 5.1a–c).
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Further insight into the shape of the distribution may be gained by superimposing
a probability density function on the histogram (Silverman 1986). This may be
derived from a formal distribution, for example a normal distribution based on the
sample mean and variance, or determined by the data itself via non-parametric
estimation. As with the choice of histogram bins, the choice of window width,
or smoothing parameter, is important: too narrow and it will produce numerous
artificial modes, too wide and it will miss important features (Fig. 5.1d). For
lake altitude, the normal probability density curve is clearly a poor fit to the
underlying data: in this case the non-parametric smoothing curve is a more faithful
representation. A final enhancement to the basic histogram is to add a rug-plot to
the x-axis in which ticks are drawn to represent the original data points. For large
data-sets the rugs may be jittered to avoid overlap (see below).

Box-plots are an alternative and efficient way to examine the overall data
distribution (Fig. 5.1e, f). The central box encloses the inter-quartile range, with
the median marked by a horizontal line. Whiskers extend out to the extremes of the
data, or 1.5 times the inter-quartile range, whichever is shorter. Data beyond this,
which may be outliers, are marked individually by points. If the data distribution is
symmetrical about the median, the median will be in the centre of the box, and the
whiskers about the same length. Because box-plots are based on robust measures of
central tendency and dispersion, they are resistant to extreme values. The box-plot
for pH (Fig. 5.1e) reflects the essentially symmetrical nature of distribution with
just a few unusually low values. The corresponding plot for total phosphorus clearly
reflects the skewness observed in the histogram (Fig. 5.1f).

Box-plots are particularly useful for displaying a comparison of a single variable
under different values of a categorical variable (Fig. 5.1g). A range of options can
be used to enhance box-plots, for example the width of each box can be related to
the size in each class and the number of observations in each class added to the plot
(Fig. 5.1h), and the 95% confidence interval of the median can be represented by
notches (Fig. 5.1g): if the notches do not overlap there is strong evidence that the
medians are different.

Data Transformation

Most parametric statistical tests assume that the data have a normal distribution, and
can give misleading or even invalid results if this assumption is violated. Unfortu-
nately, palaeolimnological data often have a non-normal distribution, revealed using
the methods described above and even if parametric testing is not the aim, highly
skewed, non-normal distributions will often distort further exploratory analyses, and
mask underlying patterns and trends. In such cases it may be necessary to transform
the data to approximate a normal distribution. The choice of transformation is
often difficult and may depend on the subsequent analysis. If regression is the
aim and non-normal data are the response variables (e.g., species abundances),
the data can be analysed without transformation using methods appropriate for
the distribution, for example generalised linear models can be applied to species
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count data (which are Poisson distributed) (see Birks 2012a: Chap. 2). However, if
the data are explanatory variables or the aim is further exploratory analysis using
multivariate methods (Legendre and Birks 2012a, b: Chaps. 7 and 8), then some
form of transformation will usually be required.

Log-normal distributions are common in palaeolimnology, for example in geo-
chemical and biological analyses (Limpert et al. 2001). These highly right-skewed
distributions can be normalised by taking logs. The log of zero is undefined so where
there are zeros in the data use log(x C a), where a is an appropriate constant: 1.0 for
count data or half the smallest value or half the detection limit for geochemical data.
Less skewed data can be normalised with a square-root transformation. Cube roots
and fourth roots are increasingly effective for biological count data containing many
zeros and a few large values (Quinn and Keough 2002; Legendre and Birks 2012b:
Chap. 8). Percentage and proportional data do not have a normal distribution but
can be normalised with an arcsine transformation (but see Warton and Hui 2011 for
a discussion of the limitations of this transformation).

Many of the above transformations are part of the Box-Cox family of transfor-
mations:

Y � �1

�
when � ¤ 0 and log.Y / when � D 0

When œ D 1 we have no change to the distribution, œ D 0.5 gives a square-
root transformation, œ D 1.0 gives a log transformation, and œ D �1.0 gives a
reciprocal transformation. An automated procedure based on the Box-Cox family
of transformations can be used to find the optimal transformation to normality by
choosing fractional values of œ (Sokal and Rohlf 1995).

Figure 5.2 shows histograms and normal-probability plots for raw and variously
transformed total phosphorus data from the UK lakes data-set. These plot ordered
data against the corresponding quantiles of a normal distribution and provide
a convenient graphical assessment of normality. If the sample has a normal
distribution the points should fall on a straight line through the first and third
quartile. Kinks and other departures from a straight line indicate skewness and/or
multimodality, with long tails of the distribution shown by the relationship becoming
steeper towards the ends, and short tails shown by the converse. The right-hand
plots show the optimal Box-Cox transformation using œ D 0.042. This value is very
close to 0 (i.e., log transformation) so in this example we would choose the latter
for simplicity. The graphical methods shown in Fig. 5.2 are usually sufficient to
suggest the most appropriate transformation: the optimal Box-Cox transformation
may suggest fractional powers that have no direct environmental meaning, although
it can help to confirm choice or clarify the transformation for difficult data. Different
transformations can be chosen for each variable in a multivariate data-set, although
unless there is strong evidence otherwise, we suggest using the same transformation
for groups of variables derived from similar processes (e.g., groups of nutrient
variables, or groups of anion and cation variables). This is especially important
if the data are used as predictors in forward-selection regression-type analyses.
Finally, data transformations discussed here should not be confused with data
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standardisation to unit variance and zero mean, employed, for example, prior to
a principal component analysis of environmental data (Legendre and Birks 2012b:
Chap. 8). Standardisation changes the location and dispersion of the data, but not
the shape of its distribution.

Graphical Techniques for Categorical
(Nominal and Ordinal) Data

Categorical data contain observations that may be sorted into one of (usually)
a small number of groups. For example, in the UK lakes data-set, region is a
categorical variable, indicating which of the four regional data-sets a lake belongs
to. Ordinal data are categorical but with an implied ordering between the categories.
For example, in the UK lakes data-set, precise values of maximum depth are not
available but each lake is classified into one of four depth classes.

Pie-charts are a familiar and popular way to present categorical data. However,
they may not be optimal as it is difficult to judge differences in angles, and
information about the sample size is lost (Fig. 5.3a). Pie-charts may be suitable
if there are few categories, with values of a similar magnitude, and if the emphasis
is on representing proportional, rather than absolute differences between categories.
Pie-charts may be particularly useful in representing geographical differences in a
categorical variable, especially if the diameter of the pies is scaled proportional to
the count (Fig. 5.3b). Where information about the absolute differences between
categories is to be displayed, bar-charts are generally more appropriate (Fig. 5.3c).
Cross-classified data may be displayed using multiple bar-charts. Figure 5.3d shows
the distribution of lake-depth classes by geographic region. Adjacent bars help
visualise between-group differences in maximum depth, while stacked bars (not
shown) make it easier to visualise differences in the total number of observations
per category. Figure 5.3e shows the depth and geographical data displayed using a
dot-plot (after Cleveland 1994): this contains the same information as Fig. 5.3d but
is quite different visually.

Exploring Bivariate Relationships

Bivariate statistics are used when two variables have been measured on the same ob-
servations, and to quantify the relationship between these variables. The covariance
is a numerical estimator of this relationship, calculated as the sum of the products of
each centred variable divided by n � 1, where n is the number of observations. Often
the covariance is standardised by the variance of each variable to give Pearson’s
product-moment correlation coefficient (r). This unitless statistic varies between
�1 and C1, for a perfect negative and positive relationship, respectively. Pearson’s
correlation coefficient is sensitive to outliers and non-linearity, and can be replaced,
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Fig. 5.3 Descriptive graphics for categorical and ordinal data, showing (a and b) pie-chart of
maximum depth categories, (b) pie-charts showing maximum depth categories by region, (c) bar-
chart of maximum depth categories, (d) bar-chart of maximum depth categories by region, and
(e) dot-chart of maximum depth categories by region for the UK lakes data-set

with some loss of efficiency, with the non-parametric Kendall’s rank coefficient tau
or Spearman’s rank coefficient rho. None of these statistics can identify curvilinear
relationships, so it is vital to plot and examine the data first.

Scatter-plots are the main graphical method for exploring relationships between
two variables (Tufte 1990, 2001). The independent variable is plotted on the x-axis
or abscissa, and the dependent variable plotted on the y-axis or ordinate. Often there
is no functional dependency between the two variables, and either can be plotted on
the x-axis. If the data points are ordered by space or time they can be joined by lines.
Figure 5.4a shows the relationships between chlorophyll-a and total phosphorus for
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Fig. 5.4 Scatter-plot variants showing (a) relationship between chlorophyll-a and total
phosphorus, (b) as (a) with linear regression (dotted) and LOESS smoother (solid) lines added,
(c) as (a) with points coded by region, (d) as (a) with symbol size varied by lake altitude,
(e) co-plot showing the relationship between chlorophyll-a and total phosphorus by region, and
(f) as (e) co-plot showing the relationship between chlorophyll-a and total phosphorus by altitude
(Data from the UK lakes data-set)
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the UK lakes data-set. Both variables are plotted on log scales: initial inspection
using histograms, box-plots, and normal probability plots show both variables to be
strongly right-skewed. A log-transformation brings them to approximate normality
and linearises the relationship between the two variables.

If the data are integers, or are heavily rounded, the same position on the graph
may host multiple data points. This can obscure the relationship between the two
variables. This can be solved by adding a small amount of random noise, known as
jitter, to each point so they no longer overlap. Hexagonal binning is useful for very
large data-sets where overplotting obscures patterns (Carr et al. 1987).

Sometimes it is useful to enhance scatter-plots by highlighting the general trends
in the data. LOESS (locally weighted scatter-plot smoother: Cleveland 1979) is
a non-parametric regression method that can be used to model the relationship
between two variables, without having to specify the form of a global function
(Birks 2012a: Chap. 2). At each point in the data-set, LOESS fits a low-order
polynomial (typically linear or quadratic) to data in the neighbourhood, weighted by
their distance from the point. The size of the neighbourhood is determined by setting
the span. Large spans produce smooth curves, but may miss important features;
small spans start to capture noise. Figure 5.4b shows a LOESS smoother added
to the chlorophyll-a/total phosphorus plot, using the default span of 0.67, along
with the fit from a least-squares linear regression. Notice how the smoother tracks
the regression line for most of the data span but departs above 200 �g L�1 total
phosphorus, suggesting that total phosphorus ceases to become limiting above this
value.

Information about a third variable influencing the relationship between the two
variables of interest can be visualised in a number of ways. If the variable is
categorical and there are not too many categories, the data points can be coded
to represent the class of the third variable (Fig. 5.4c). Colour-coded plots are easiest
to decode visually, but if colour is not available for publication, different symbols
can be used, with categories coded using filled and open symbols being easiest to
perceive (Cleveland 1994). Convex hulls, drawn around the outmost observations in
each category, are an effective way to highlight distinct groups and a comparison of
the original hull and a peeled hull, which includes all but the most extreme data is
useful for identifying outliers (Ellison 1993). If the third variable is quantitative
it can be displayed using a bubble-plot, where the size of the symbol is scaled
according to the third variable (Fig. 5.4d).

Another way to visualise the influence of a third variable on a bivariate
relationship is via a conditional scatter-plot, or co-plot (Cleveland 1993). These are
a set of scatter-plots of the two variables, each drawn under a given range of values
for the third (or even fourth) variable. Where the conditioning variable is categorical,
a co-plot displays the relationship for each category (Fig. 5.4e). If the conditioning
variable is quantitative, the co-plot displays the relationship for overlapping slices,
or shingles, of the conditioning variable, with the shingle widths chosen to give
equal spacing along the third variable or equal numbers of observations in each
slice (Fig. 5.4f).
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Multivariate Techniques

It is difficult to visualise data in more than two dimensions: static three-dimensional
scatter plots displayed in two dimensions are difficult to interpret and rarely useful.
Interactive, dynamic graphics can be useful for exploration, especially for large
data-sets (Cook and Swayne 2007), but for most analyses and for presentation,
multivariate exploratory data analysis relies on simple extensions to bivariate meth-
ods (Everitt and Dunn 2001; Everitt and Hothorn 2011), and dimension-reduction
techniques of ordination (Legendre and Birks 2012b: Chap. 8) and clustering
and partitioning (Legendre and Birks 2012a: Chap. 7). The graphical techniques
described here should be undertaken before subsequent numerical analysis, to check
that the assumptions of these methods are met.

The simplest multivariate technique is to draw a matrix of scatter-plots to show
the pair-wise relationship between all the variables. If there are more than a dozen or
so variables, these pair-plots become too small and crowded to be useful. Provided
the normality of individual variables has already been assessed, and outliers dealt
with, a correlation matrix, annotated with significance levels, can be a useful
summary of the main patterns in the data. The basic scatter-plot matrix can be
enhanced in a number of ways, for example by including histograms of each variable
on the diagonal, and Pearson’s product-moment correlation in the upper panel
(Fig. 5.5). See Husson et al. (2010) and Everitt and Hothorn (2011) for additional
graphical tools for multivariate data.

Stratigraphical diagrams are essentially a specific form of scatter-plot matrix, in
which the variables of interest are plotted on the x-axis against depth or time on the
y-axis. Such plots are extremely widely used in palaeoecology and many variants
exist (Grimm 1988). They may be drawn as bars, lines, or filled silhouettes. Bars are
recommended for short sequences with a small number of samples, and if used, the
bar width may be varied to represent the depth or time interval sampled. If lines or
filled silhouettes are used then the position of sample points should be indicated in
at least one curve on the diagram.

Time-Series Data

Many palaeolimnological data are time- or temporal-series (Dutilleul et al. 2012:
Chap. 16) and are best described and communicated using a line graph with time
on the x-axis and the variable of interest on the y-axis (e.g., Fig. 5.6). Inspection
of a simple time-series plot should reveal the presence of outliers and the need for
data transformation, and if the series is non-stationary, that is if there are systematic
changes in the mean value (step changes or trends) or in the variance.

Palaeolimnological time-series are inherently noisy and underlying trends or
other patterns can often be obscured by short-term or high-frequency variation. It
is very often useful to smooth the series to help visualise the underlying structure
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Fig. 5.5 Scatter-plot matrix showing scatter-plots of variable pairs (bottom triangle), histograms
and Pearson product-moment correlations (upper triangle) (Data from the UK lakes data-set)

or broader-scale variation. The simplest form of smoothing is the centred moving
average or running mean, in which the smoothed value is the average of a specified
number (k) of values around each point in the original series. The degree of
smoothing is controlled by varying k and because the running mean is centred,
k is always an odd number, and the first and last few values of the smoothed series
are indeterminate (Fig. 5.6a, b). A robust alternative to the running mean is the
running median, which tends to give less smooth curves than the running mean but
is less susceptible to any outliers in the series (Fig. 5.6c).

Smoothing a time-series is a form of filtering in which the high-frequency
component of variation is reduced or filtered out. The moving average is the simplest
form of low-pass filter and although intuitive and easily interpreted it is has a major
disadvantage in that it does not damp all frequencies of the high-frequency variation
equally and can, in some cases, actually accentuate noise in the filtered series. An



5 Exploratory Data Analysis 135

a

b

c

d

e

Fig. 5.6 Varve thickness for the last 1000 years measured in sediments from Lower Murray Lake,
Canadian high arctic showing (a) varve thickness (grey) with 9-year and 99-year running averages
(black), (b) as plot (a) but on log10 scale to stabilise variance and accentuate detail in short and
long-term trends, (c) as plot (b) but showing 9- and 99-year running medians, (d) as plot (b) but
showing 9- and 99-year Gaussian filtered data, and (e) as plot (b) but showing LOESS smoothers
with 10 and 100 years spans (Redrawn in part from Besonen et al. 2008)

alternative that does not suffer from this problem is the Gaussian filter, in which the
smoothed value is taken as the average of k points around the central value but with
each point weighted according to the value of the appropriate Gaussian or normal
density function (Janacek 2001). This filter tends to produce smoother curves than
either the running mean or median (Fig. 5.6d). Finally, LOESS (see above) is often
used to smooth time-series (Fig. 5.6e). LOESS tends to produce smoother results
than the running mean or median and is also relatively robust to outliers. As with all
smoothing the choice of span will be important: the two smoothers in Fig. 5.6 have
been chosen to highlight approximate decadal and century-long patterns. However,
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Fig. 5.7 Major element composition measured in the Holocene varved sediments of Elk Lake,
Minnesota (From Dean 1993), showing (a) time-series line graphs of Si and K, (b) cave-plot of Si
and K, (c) multivariate time-series plot (Peng 2008) of eight major elements (see text for details),
and (d) pair-wise plots of eight major elements showing pair-wise time-series plots (bottom left;
black D horizontal variable, grey D vertical variable) and moving window correlation coefficient
(y-axis scaled from �1 to 1, grey line D 0). x-axis in all plots is scaled from 0 to 9,000 years BP

as we smooth to explore the data, the choice of an appropriate span is inevitably
subjective (Birks 1998).

Another common aim of exploratory time-series analysis is the comparison of
data from two or more series. Two series can be plotted on the same line graph
and the y-axis scaled appropriately for each variable (Fig. 5.7a). The eye is drawn
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to common trends and peaks and troughs that are shared by the two series but it
is sometimes difficult to get an overall impression of the correlation (or lack of
correlation) between the two series. Figure 5.7b shows a cave-plot in which the two
series in Fig. 5.7a are plotted to resemble the inside of a cave – with one series
plotted as stalagmites from the bottom up and the other as stalactites from the top
down (Becker et al. 1994). This plot takes no more space that the simple line graphs
but depicts the trends, fluctuations, and individual values in each series and gives a
better visualisation of the correlation between the series.

Comparison of multiple time-series is more challenging. Figure 5.7c shows an
image plot of the variation in sedimentary major element composition with age. The
values in each series have been converted into a small number of discrete classes (in
this case 7) and each class plotted in a grey-scale, with lowest values of the series in
white, mid values in grey, and high values in black (Peng 2008). Common patterns
among the eight series plotted in Fig. 5.7c are clearly visualised (e.g., Si, Ti, Al, and
K; Fe, Mn, and P; Ca) and can be further investigated using separate more detailed
line graphs.

The correlation between two series can be quantified using Pearson’s product-
moment correlation coefficient, but with EDA we are often more interested in
the pattern of correlation between two series and how this changes with time.
Figure 5.7d shows a matrix of plots of the major element data with traditional time-
series plots of pairs of variables shown in the lower left triangle and the value of the
correlation coefficient calculated between the series along a moving window of 20
observations plotted in the upper right triangle (cf. Dean and Anderson 1974). This
relatively simple plot shows a pair-wise comparison of the raw data-series together
with a visualisation of the changing pattern of correlation between each series with
time.

Outlier Detection and Treatment

An outlier is a value that is surprising given the rest of the data, being far away
from the main cluster of values. They can have a large influence on many statistical
techniques, and so need to be investigated. Outliers can be univariate, an extreme
value on a single variable, or bivariate, having an unexpected value for one variable
given its value for a second. A bivariate outlier need not be a univariate outlier.
Multivariate outliers also occur, but are generally harder to identify.

There is no predetermined level at which a value should be considered an outlier,
but values more than about two standard deviations away from the expected value
should be investigated. There are a number of possible causes of outliers, and they
should not be automatically deleted. They may be incorrect values, either as a result
of analytical or transcription errors: these can be verified by re-checking notes, and,
if possible, re-analysis. Alternatively, outliers may be correct values. If data have
a normal distribution, more than 1 in a 100 values is expected to be more than
2.5 standard deviations away from the mean: deleting these values will artificially
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deflate the standard deviation. Other distributions, such as log-normal, have more
extreme values: these apparent outliers are cured if an appropriate transformation is
made. Outliers may also indicate that a second process is operating that produces
values in a different range.

Outliers, and the reasons for deletion, should be clearly reported in any accom-
panying text. In general, only justifiably erroneous points should be removed:
deleting outliers to improve a correlation or the r2 value or the root mean squared
error in a predictive model is bad practice and should be avoided.

Missing Values

Missing values are inevitable in any large sampling exercise, either because a
variable was not possible to measure in some instances, or because outliers have
been deleted. Most numerical techniques cannot handle missing values so they need
to be removed. If data are missing for a large portion of the observations then one has
little choice but to delete that variable. Similarly, if an observation is missing data
for many variables you should delete that observation. However, deleting data is
wasteful, and if only a few values are missing an alternative strategy is to substitute
the missing value with either the variable’s mean, or a value estimated using the
correlation with other variables. Such imputed values are only estimates: this is
not a problem if the aim is further data-exploration using ordination or clustering
techniques but they are not real data and should be used with caution in statistical
tests, as the number of degrees of freedom may be over-estimated, and in calibration-
function development.

Values that are missing because they are less than the detection limit are known
as censored. If the aim is further exploration and only a few values are censored
they can be replaced by half the detection limit (McBride 2005). If many values
are censored, more sophisticated methods based on statistical distribution fitting are
available (Helsel 2005).

Graph Drawing

Production of publication quality figures always takes far longer than anticipated,
and although a picture ‘is worth a thousand words’, they also take up almost as
much space. Consideration should therefore first be given as to whether a figure is
the most appropriate medium to display the data. If the data-set is small, it may be
better to present it in a table or the text.

Figures should be as simple as is compatible with their purpose: everything
on the figure should aid interpretation (Webb 2009). Anything that does not is
‘chart junk’, and acts to obscure the figure’s message by swamping the reader with
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unnecessary information. For example, excessive use of grid-lines on a graph, or
unnecessary shading patterns can be distracting. Particular ire is reserved for the use
of three-dimensional graphs. At best, the extra complexity of these graphs requires
more concentration from the reader, as the effect is distracting and makes it more
difficult to compare values and relate them to the axes. At worst the perspective can
be misleading.

Axis scales should be selected to present the data clearly. If data with different
magnitudes are plotted on the same scale, variability in the smaller values may be
obscured. This can be prevented by using a second y-axis, or perhaps by showing
the data on a logarithmic scale. Changes in scale on an axis are potentially very
misleading, and should be avoided, or marked clearly. Cumulative graphs are
difficult to read, as the categories do not start from a common base. They should
only be used if there are a few categories.

Complex figures may be easier to understand if they use colour to differentiate
components of the graph. Fortunately, many journals now allow colour figures,
though usually at some cost. If colour is used, care should be given to ensure that the
figure will be understandable to people affected by colour blindness, or who print
and photocopy in black and white. This can be achieved by avoiding pairs of easily
confusable colours, especially red and green, using colours with a different tone,
and, where possible, using redundant information, such as line or marker style.

Software

There are a number of statistical packages suitable for EDA, including SPSS
(2006), Minitab (2008), S-PLUS® (2008), and R (R Development Core Team
2011). R is a powerful and flexible software for statistical computing and graphics,
similar to S-PLUS® and available free of charge on a General Public License from
http://www.r-project.org (see Murrel 2006; Petchey et al. 2009). Spreadsheets, such
as Microsoft EXCEL®, have limited functionality, and are best reserved for data-
entry. Stratigraphical plots can be drawn with C2 (Juggins 2007), TILIA (Grimm
1990), PSIMPOLL (Bennett 1994), and the rioja package in R (Juggins 2009).

Conclusions

Exploratory data analysis is an iterative process. It is essential at every step of
the data-analysis cycle, from initial data-screening and data-exploration, through
model diagnosis, to the presentation of complex data. Much of palaeolimnology is
characterised by observational, or quasi-experimental data collection, rather than
controlled experimentation. We therefore also stress graphical EDA as an important
tool in hypothesis generation: as Everitt (2005) puts it, “Plotting data is a first step
in trying to understand their message”.

http://www.r-project.org
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Chapter 6
Assessment of Uncertainties Associated
with Palaeolimnological Laboratory Methods
and Microfossil Analysis

Louis J. Maher, Oliver Heiri, and André F. Lotter

Abstract Assessment of uncertainties associated with laboratory analytical
methods and biostratigraphic analyses is an important but much neglected
aspect of palaeolimnological research. Error assessment, method validation, and
inter-laboratory or inter-method comparisons should play an important role in
palaeolimnology, as they do in other natural sciences and in medical sciences.
The chapter summarises the statistics in error-assessment trials developed in
analytical chemistry to derive uncertainties associated with estimates of a single
parameter such as loss-on-ignition. The statistical techniques for estimating errors
for microfossil counts (e.g., pollen, diatoms) are presented for taxa expressed as
percentages of an overall sum, for taxa expressed as ratios of selected types, and for
taxa estimated as influx or accumulation rates. Assessments of counting errors in
varve chronologies and of errors derived from multi-core palaeolimnological studies
are also discussed. Availability of relevant computer software is summarised.
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Introduction

When interpreting sediment records the uncertainty associated with laboratory
methods and analyses is an important consideration and will significantly affect the
strength and validity of the conclusions that can be drawn from the data. As in other
fields in the natural sciences, measurements should ideally be accompanied by an
error estimate and analyses should be reproducible, whether re-assessed by the same
analyst and equipment or by another team of researchers using identical method-
ology. Error assessment, method validation, and inter-laboratory or inter-method
comparisons should therefore play an important role in all palaeolimnological
research. These issues are of special importance in research projects involving
a number of different laboratories and where conclusions are based on data-sets
produced by different analysts and institutions.

Ideally, palaeolimnological measurements should be both accurate and precise.
Precision and accuracy are treated as synonyms in most dictionaries, but they
have distinct meanings in the natural sciences. Precise means a measurement is
repeatable and reproducible. Accurate means a measurement is capable of correctly
reflecting the size of the entity being measured. The distinction between the terms is
often illustrated using the analogy of throwing darts at a target. The darts may miss
the bull’s eye. However, if they are scattered randomly around the bull’s eye the
throws may still be considered more accurate than darts clustering tightly together
in, say, the lower right quadrant. In the first case we might consider the throws fairly
accurate, but not very precise; in the second case the thrower is very precise but the
throws are not very accurate. If all darts cluster in the bull’s eye the pattern is both
accurate and precise. In the field of analytical chemistry trueness is furthermore
differentiated from accuracy (Fleming et al. 1996a). Trueness reflects whether the
average of replicate measurements accurately reflects the true value of a measurand,
whereas accuracy reflects whether an individual measurement is close to the true
value of the measurand. It follows that for measurements to be accurate the applied
method should be optimised with respect to both trueness and precision.

For error-assessment and method-evaluation trials, the error associated with a
given methodology is commonly partitioned into two components to reflect the
difference between trueness and precision. The systematic error (or bias) includes
error components which in the course of repeated measurements remain constant
or vary in a predictable way (Ellison et al. 2000). A method with a small or
negligible systematic error will provide measurements which, on average, are an
approximation of the true value of the measurand. The systematic error is commonly
expressed as the difference between the mean of replicate measurements of the
parameter of interest and an independent estimate of the ‘true’ value of this
parameter based on a different methodology or measured by a different laboratory.
The random error reflects the precision or scatter of a given analytical method
(Walker and Lumley 1999; Ellison et al. 2000) and is usually expressed as a variance
or standard deviation (see Birks 2012: Chap. 2). Conceptually, any analytical error
associated with a given methodology, institution, or analyst can be partitioned into
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these two error components. It is useful to keep this partitioning in mind when
designing and interpreting error assessment trials in order to delimit clearly which
error component has been assessed within a given experiment.

A number of discrete steps is usually necessary to obtain a palaeolimnological
record, including coring the lake sediments in the field, sediment subsampling,
sample storage, sample preparation, sample measurement, and possibly statistical
or numerical analysis of the results (Smol 2008). Error-assessment trials can
consequently be designed to assess errors associated with these individual steps,
errors associated with a sequence of steps, or errors associated with the full process
from sediment coring to data interpretation. Error estimates can be based either on
replicate single-method measurements of the same homogenised natural or artificial
substance, replicate multi-method measurements, inter-laboratory comparisons, or
multi-core assays. Alternatively, error estimates can be based on the statistical and
numerical properties of the obtained data themselves. The latter approach has been
widely used to produce error estimates for microfossil counts as the time-consuming
nature of these analyses hampers extensive replicate counting experiments.

Error assessment, method validation, inter-laboratory comparisons, and quality
control are of high relevance in analytical chemistry. A large number of peer-
reviewed articles and textbooks dealing with these issues exist in the scientific
literature (e.g., Williams 1996; Ellison 1998; Walker and Lumley 1999; Ellison et al.
2000) and most of the described methods are directly applicable to the geochemical
methods used in palaeolimnology. We therefore restrict ourselves to providing a
short summary of these error-assessment trials and a brief overview of the basic
statistical methods commonly in use. Producing error estimates for microfossil
counts is a problem more specific to palaeolimnology and the second part of this
chapter provides a detailed review of this topic. The third and fourth parts of the
chapter deal with assessing counting errors in varve chronologies and the use of
multi-core palaeolimnological studies for error assessment, respectively.

Single Parameter Estimates

Experiments assessing the uncertainty of single parameter measurements (e.g.,
sediment chemistry, physical properties of sediments) can be designed to assess the
trueness of a given analytical method, the precision, or both (Ellison 1998; Walker
and Lumley 1999; Ellison et al. 2000). The precision of a given laboratory method
is usually calculated as the variability of replicate or repeated measurements of a
substance of high homogeneity with respect to the parameter being measured. The
standard deviation of these replicate measurements will then be an estimate of the
random error associated with the results and will provide information about the
precision of the method. In this context, repeatability and reproducibility are usually
separated. Repeatability is an estimate of the precision of replicate measurements
performed on independent samples of the substance of interest by the same analyst,
the same equipment, using the same conditions of use, at the same location, and
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over a short period of time (Fleming et al. 1996b). The repeatability standard
deviation is commonly abbreviated as sr and is considered equivalent to the within-
laboratory standard deviation (sw) (Walker and Lumley 1999; Ellison et al. 2000).
Reproducibility reflects the precision of measurements performed on subsamples of
the substance of interest by the same method but under changing conditions such as
with different analysts and equipment, at a different location, or at a different time
(Fleming et al. 1996b). The reproducibility standard deviation is usually abbreviated
as sR and can only be measured directly by inter-laboratory comparisons (Ellison
et al. 2000).

The major complication in assessing the systematic error of a series of measure-
ments is in obtaining a realistic estimate of the ‘true’ value of the measurand in the
analysed substance. In analytical chemistry a given method is commonly evaluated
against certified reference material (CRM) or against spiked samples (Walker and
Lumley 1999). A chain of calibrations and inter-laboratory comparisons ensure
the traceability of the measurements of a given laboratory or the properties of a
given reference material back to primary national or international standards (see
e.g., Walker and Lumley 1999 or Ellison et al. 2000 for more information on
traceability, primary standards and CRMs). Namiesnik and Zygmunt (1999) and
Boyle (2000, 2001) list a number of certified reference materials appropriate for
lake-sediment studies and discuss some of the basic assumptions and problems as-
sociated with quality control in the chemical analysis of lake sediments. In practice
it will often be difficult to find CRMs with properties similar to the sediments of
interest. Alternatively, a given methodology can be assessed by comparing it with
independent measurements of the parameter of interest using a different method
considered to be more precise or which has been calibrated more rigorously (Ellison
et al. 2000). For example, Beaudoin (2003) and Santisteban et al. (2004) compared
loss-on-ignition (LOI) measurements with more sophisticated techniques of organic
and inorganic carbon content determination to assess the trueness of the method.
The silent assumption in these trials is that the wet oxidation/titration and carbon
analyser methods used to evaluate LOI provide an accurate measurement of the
organic and inorganic carbon content of the sediments. Spiked samples or samples
of a pure substance with known chemical properties provide a further method
of assessing the systematic error of a geochemical method. For example, Heiri
et al. (2001) used samples of pure calcium carbonate to assess whether LOI is
able to measure accurately carbonate content. Similarly, spiked samples where a
known quantity of the measurand is added to a matrix substance can be used. Dean
(1974) used this approach to evaluate the performance of LOI in estimating the
carbonate content of sediments by mixing known quantities of calcium carbonate
with anhydrite. However, considering the chemical complexity of most sediments,
error trials with pure substances or spiked samples will only provide limited
information about the suitability of a given methodology for palaeolimnological
analyses. Finally, inter-laboratory comparisons provide a way of estimating the
true value of a measurand (Walker and Lumley 1999). If a homogenised sediment
sample is distributed to a range of laboratories which evaluate the accuracy of
their chemical analyses on a regular basis (e.g., using CRMs), then the mean of
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the measurements of all involved laboratories can provide an estimate of the true
value of the measurand in the substance of interest. It is important to define clearly
which steps of analysis are being evaluated in error-assessment trials using inter-
laboratory comparisons. For example, Heiri et al. (2001) distributed homogenised
and freeze-dried sediments to a number of laboratories for LOI measurements. The
results provided an assessment of the reproducibility of LOI performed on freeze-
dried sediments. However, uncertainties associated with sample drying and sample
storage were not taken into account in this study, even though sample preparation
techniques and storage may be a significant source of variability in geochemical
measurements (e.g., Tanner and Leong 1995; Lasorsa and Casas 1996; Dixon et al.
1997). The major drawback of inter-laboratory comparisons is that they are very
time-intensive and sensitive to outliers (Walker and Lumley 1999).

Usually an experiment designed to detect a systematic error in a measurement
method will involve replicate measurements of a material for which an estimate
of the true value of the measurand exists. The apparent bias of the results is then
defined as

� D NX � � (6.1)

where � indicates the apparent bias, NX the mean of n measurements, and � the
estimate of the true value of the measurand (Walker and Lumley 1999). Any
estimate of NXwill be associated with a random error and this will have to be
taken into account when testing for the presence of a systematic error. Walker and
Lumley (1999) suggest testing whether the apparent bias is within a laboratory’s
measurement precision to assess whether evidence exists for a systematic error. In
order to calculate the laboratory’s expected precision (¢), the between-laboratory
component (sb) of sR needs to be known. This can be estimated as

sb D
q

s2
R � s2

r (6.2)

if estimates of sR based on inter-laboratory comparisons are available. Walker and
Lumley (1999) discuss other ways of estimating the between-laboratory standard
deviation of a method if this is not the case. The expected precision of a laboratory’s
measurement based on n replicates can then be estimated as

� D
q

s2
b C s2

w=n (6.3)

where sw is the standard deviation of the n replicate analyses. The apparent bias in
a measurement can then be tested versus

�2� < NX � � < 2� (6.4)

If this requirement is met, it can be concluded at an approximately 95% level of
confidence that no evidence exists for the presence of bias (Walker and Lumley
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1999). To provide reliable results, the estimate of both sw and sb should be based on
a large number of replicate measurements (Walker and Lumley 1999).

Alternatively, a t-test can be used to assess whether the mean of a laboratory’s
replicate measurements is significantly different than the expected value of the
measurand (Walker and Lumley 1999; Ellison et al. 2000) following the equation

t D
NX � �

s NX
(6.5)

where s Nx refers to the standard deviation of the mean (equivalent to
p

s2
w=n).

Critical values of t (t’,	) for different significance values (’) and degrees of freedom
(v D n -1) can be found in most textbooks on statistics (e.g., Zar 1999). If the
absolute value of t exceeds the critical value of t’,	 it can be concluded that evidence
for a systematic error exists at the significance level of ’.

Obviously the statistical tests described above are highly dependent on an
accurate estimate of the true value of the measurand (�) in the analysed samples
and they assume that any random error associated with � is negligible. If the random
error of the estimate of � is of the same order of magnitude as the measurement error
associated with a given method this will have to be taken into account when applying
a statistical test. For comparing a laboratory’s measurements with the expected
value of a reference material, Walker and Lumley (1999) recommend expanding
Eq. 6.3 to

� D
q

.s2
b C s2

w=n C U 2
RM (6.6)

where URM is an estimate of the standard uncertainty of the reference material and
then to apply the test outlined in Eq. 6.4.

The t-test can also be adapted to test whether a difference exists between two
means (Zar 1999). The test then assumes that the two means have equal variances
and t can be estimated as

t D
NX1 � NX2q

s2
p=n1 C s2

p=n2

(6.7)

where NX1 and NX2 refer to the two means, and n1 and n2 to the number of replicates
used to calculate the means. s2

p is calculated as (SS1 C SS2)/(v1 C v2), where SS1 and
SS2 refer to the sum-of-squares of the deviations of the means, and v1 and v2 to
the degrees of freedom of the two samples. The critical value of t will have to be
looked up for v D v1 C v2 D n1 C n2 � 2 degrees of freedom. The reader is referred
to introductory textbooks on statistics (e.g., Zar 1999; Davis 2002; Blæsild and
Granfeldt 2003; Borradaile 2003) for more information on the basic assumptions
of t-tests and on the robustness of the test if these assumptions are violated.
Examples of t-tests being used to test for a systematic error between different
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sediment chemistry measurements or between measurements and the certified value
of reference materials include King et al. (1998), Tung and Tanner (2003), and
Brunori et al. (2004).

The t-test is not suitable if more than three means are compared (Zar 1999),
as will be the case in most inter-laboratory comparisons. In this case, analysis of
variance (ANOVA) (see Birks 2012: Chap. 2) can be used to test the null hypothesis
that mean values measured by a number of different laboratories, analysts, or
methods are based on samples from statistical populations with the same unimodal
distribution (i.e., with identical means and variances). Single-factor ANOVA (Sokal
and Rohlf 1995) involves the calculation of the sum-of-squares and the degrees of
freedom both within the groups forming the different means and among the groups.
If the different samples are from identical statistical populations, the within-groups
(or error) mean square (MS) and the among-groups (or simply groups) MS should
both be an estimate of the variance of the populations and therefore approximately
equal. This can be tested by calculating

F D groups MS

error MS
(6.8)

and comparing this value with the critical value of F for a given significance
value, with the groups degrees of freedom and error degrees of freedom (available
in statistical tables). If F is equal to or exceeds the critical value then the null
hypothesis is rejected and it can be concluded that evidence exists that the different
population means are not equal. Again, the reader is referred to textbooks on
basic statistics (e.g., Zar 1999; Davis 2002; Blæsild and Granfeldt 2003; Borradaile
2003) for more information on the underlying assumptions associated with ANOVA
and for more details about how F is calculated. ANOVA is widely used in inter-
laboratory experiments to test for significant differences between the results of
different laboratories. Examples of studies using single-factor ANOVA to test
laboratory methods applied to sediments include Lasorsa and Casas (1996), Conley
(1998), King et al. (1998), Sahuquillo et al. (1999), and Tung and Tanner (2003). In
experiments which have been designed accordingly, ANOVA can also be expanded
to test for the effects of two or more factors on population means simultaneously
(Zar 1999). Somogyi et al. (1997) provide an example of this approach being used
within an inter-method comparison for measuring the elemental composition of
marsh sediments.

The null hypothesis in single-factor ANOVA is that all tested means are equal
within the uncertainty of the measurement method. If the alternate hypothesis is
accepted it can only be concluded that evidence exists that not all the means are
equal. Single-factor ANOVA or multiple t-tests should not be used to assess whether
all the means are different from each other or how many statistical differences there
are (Zar 1999). Most introductory texts on statistics and commercially available
statistical software packages present alternative tests such as the Tukey test or the
Newman-Keuls test for this purpose (e.g., Zar 1999). Examples of these sorts of
tests being applied to sediment samples include Tanner and Leong (1995: Tukey
and Newman-Keuls tests) and King et al. (1998: Bonferroni-comparisons).
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The tests described here are useful for comparisons of multiple measurements
of a reference material with its certified value or for assessing whether significant
differences exist in the measurements of multiple laboratories. For more compre-
hensive error-assessment trials, the trueness, precision, and sensitivity of a method
will have to be assessed over a range of values of the measurand, as the bias and
random error of chemical measurements will often vary with analyte concentrations
(Ellison et al. 2000). This will commonly involve regression techniques, which are
outlined in Birks (2012: Chap. 2).

Microfossil Counts

Microfossil counting tends to be time-consuming, and therefore the number of
counts per sample will be one of the constraining parameters for the achievable
sampling resolution. Ideally, enough microfossils should be counted to obtain
stable percentage values. Commonly, a counting sum of between 300 and 500
microfossils provides stable percentage values in pollen and diatom analyses (Birks
and Birks 1980; Battarbee et al. 2001), whereas concentration estimates stabilise
at counts greater than 800 (Wolfe 1997). Assessing the uncertainty associated
with the microfossil counting sum is of particular concern for proxies which can
potentially occur at low abundances in sediments such as chironomids (Heiri and
Lotter 2001; Larocque 2001; Quinlan and Smol 2001), testate ameobae (Payne
and Mitchell 2009; Wall et al. 2010), cladocerans (Kurek et al. 2010), and mites
(Solhøy 2001). Microfossil counts will usually be presented as percentages, ratios,
concentrations, or accumulation rates. For the first three possibilities, estimates of
the random error in the results attributable to count size can be calculated based on
theoretical considerations as described in detail below. For accumulation rates, error
estimates are more difficult to derive due to uncertainties associated with dating of
the sediment sequence (Bennett 1994).

Percentages (Taxa as Proportions of an Overall Sum)

Mosimann (1965) provides a useful source of statistical methods for anyone
working with microfossils. He presents clear descriptions of the relevant statistical
tests, and solves example problems. While there were mainframe computers in
1965, programmable calculators and microcomputers still lay in the future, and
some of Mosimann’s most useful statistics seemed too cumbersome for general use.
However, computer programs for solving these problems are nowadays available
over the Internet and a number of these programs is discussed in the following
pages. A separate paragraph describing the availability of these programs is given
at the end of this section on microfossil counts.
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In principle, the quantitative analysis of a microfossil taxon, say pine pollen in
a pollen sample, can be considered to be a sequence of trials with two possible
outcomes: the fossil belongs to pine or not (Mosimann 1965: p. 637). If in such
a series of trials the outcome of any trial is independent of the outcome of any
other, and if the probability, p, of pine occurring in any trial is constant, then the
trials can be considered to be Bernoulli trials. Mosimann points out that even if the
assumptions of Bernoulli trials are met, analysts cannot predict the distribution of
their counts until they choose one of two possible sampling plans. If they choose to
count inside the sum (e.g., for percentages or proportions), the counts will follow
a binomial distribution. If they choose to count outside the sum (e.g., for ratios
between different taxa or between a taxon and a marker taxon), the counts will
follow a negative binomial distribution.

In the usual practice of counting inside the sum, analysts estimate the proportion
(p) of a given taxon in their samples by calculating Op, a ‘point estimate’ of p, by
dividing the number of fossils of the taxon of interest counted (x) by the sum of all
the examined microfossils (np); that is, Op D x=np . For inside counts then, Op and
p may range from 0 to 1.0 (or to 100 if the analyst thinks in percentages) and the
counts will follow a binomial distribution.

Tables for confidence limits of p based on Op for counts inside the sum were
developed by Mainland et al. (1956), and abridged versions appear in several
statistics texts (e.g., Rohlf and Sokal 1969: Table W). Although these tables should
be used when np is small, Mosimann (1965: p. 643) provides an equation that
predicts approximate confidence limits of p when np is fairly large – say, 50 or
more:

p.c limit/ D
Op C Z2=.2np/ ˙ Z

q
Op.1 � Op/=np C Z2=.4n2

p/

1 C Z2=np

(6.9)

where p(c limit) indicates the confidence limits for the proportion/percentage and Z
represents the specified area under the normal curve to include in the confidence
intervals (in standard deviation units). For 0.95 confidence limits, Z D 1.960; for
0.99 confidence limits, Z D 2.576; and if 0.995 limits are desired, Z D 2.810.
Equation 6.9 relies on the fact that for high degrees of freedom (np - counts of
several hundred microfossils) the binomial, normal, and Student’s t distributions
are essentially identical.

Using a computer to explore the relationship of x and np allows us to visualise the
problem. For example, Fig. 6.1 shows how the confidence interval gets smaller as the
total microfossil count increases. The limits are asymmetrically distributed around
Op for all values except Op D 0:5, and the asymmetry is most pronounced for extreme

values of Op and for low values of np. The confidence limits are skewed toward the
upper limit for values of Op < 0:5 and toward the lower limit for Op > 0:5. The
complement of p for a taxon X is, by definition, equal to q for the non-X category;
that is to say, q D 1 � p. Figure 6.1 makes it clear that the lower limit of p is equal to
one minus the upper limit of q, and the upper limit of p equals one minus the lower
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(q D 1 � p, Oq D Op � 1)

limit of q. This relationship allows tables of binomial confidence limits to cover the
whole range of p by listing only the values 0 to 0.5. Even for microfossil counts
as low as 100 fossils, the maximum difference between Mosimann’s Eq. 6.9 and
binomial tables is 0.0068 scale unit, and the usual error is much less. Although the
confidence interval appears to be widest at the Op value of 0.5, its relative uncertainty
(confidence interval divided by Op) is really at its lowest; the size of the integers in x
and np are simultaneously at their maximum values.

Equation 6.9 can be used to predict how confidence intervals become narrower
as np gets larger. It can be shown that as np increases, the confidence interval of Op
decreases as the reciprocal of the square root of np; to halve the confidence interval,
np must be increased fourfold. As the confidence interval improves with higher
counts (but at a continually decreasing rate) analysts must decide for themselves
where the gain in precision is worth the extra effort in counting.

Treating Taxa as Ratios of Types (Counting Outside the Sum)

There are also cases where analysts need to estimate the true ratio (u) of one type
of pollen (e.g., pine) to another type of pollen (e.g., non-pine) in a sample by
calculating û, a point estimate of u; that is, û D x/nu, where nu indicates the number
of microfossil counts not belonging to the taxon of interest (in our example the sum
of non-pine pollen). For these counts outside the sum, u and û can range from 0 to
arbitrarily large values, and the counts will follow a negative binomial distribution.
Proportions (p) can be converted to ratios (u) by the relationship u D p/(1 � p), and
ratios can be converted to proportions by p D u/(1 C u). Mosimann (1965) adapted
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his equation for inside counts (binomial distribution) to the following equation for
outside counts (negative binomial distribution):

u .c limit/ D Ou C Z2=.2nu/ ˙ Z
pOu.1 C Ou/=nu C Z2=.4n2

u/

1 � .Z2=nu/
(6.10)

where u(c limit) indicates the confidence limits for the ratio.
Figure 6.2 shows the negative binomial distributions for nu D 200 and nu D 1,000,

for values of û from 0 to 5; this probably covers the size range for practical counts.
Note that ratio confidence limits are always asymmetrically distributed around û
with the upper limit further from û than is the lower limit. Equation 6.10 can also
be used to demonstrate that as nu increases, the confidence interval of û decreases
as the reciprocal of the square root of nu.

MOSLIMIT is a program for calculating confidence limits (0.95, 0.99, or 0.995)
for counts both inside and outside the sum. The answers can be expressed either
as decimal fractions or as percentages rounded to a specified number of places.
The user enters the count for x and n and the upper limit, Op (or û), and the lower
limit are displayed immediately. The executable program runs in a DOS window on
computers operating under Microsoft Windows®.

Mosimann (1965: pp. 645–649, 662–666) provides examples of binomial and
multinomial homogeneity tests based on the chi-square (¦2) criterion for microfossil
data expressed either as proportions or as ratios. These tests provide an objective
means of judging whether microfossil counts for one or more taxa (k) from two
or more samples (N) are sufficiently alike to have come from the same population.
One generates the null hypothesis that the samples are from the same statistical
population and then compares the computed ¦2 with critical values of ¦2 at
(k � 1)(N � 1) degrees of freedom. If the calculated ¦2 is greater than the critical
value of ’ at the 0.05 or 0.01 level, then the null hypothesis is rejected; evidence
exists that the samples do not come from the same population. The program
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Fig. 6.3 Simulated pollen percentage diagram suggesting phases of settlement and land clearance
plotted both without (a) and with 0.95 confidence limits (b)

MOSITEST allows one to make this test. Given the number of taxa and the number
of samples, the program asks for the data in the required order, calculates the
value of ¦2 and degrees of freedom, and states whether to accept or reject the null
hypothesis. As with all such ¦2 tests, most of the taxon counts should be greater
than, say, five microfossils. Taxa with low counts should be combined with others
to exceed that limit.

MOSITEST offers a standard way for new researchers to check their microfossil
counts against those of experienced colleagues. The apprentice counts several slides
from different depths and zones in a core that the expert has previously studied. The
results are run through MOSITEST to see if the null hypothesis can be accepted,
and the training continues until it can. MOSITEST is also ideally suited for quality
control among different laboratories, for example in diatom analysis (e.g., Munro
et al. 1990).

A simple example may serve to illustrate how confidence intervals and ¦2 tests
calculated by MOSITEST can be used to assess whether down-core changes in
microfossil assemblages are significant beyond the variability that could be due
to the total count sum of the sample. For example, assume palaeolimnologists are
studying the Holocene history of settlement and land clearance. They take a core
and the pollen analyst in the research group decides to amalgamate the pollen of
plants that benefit from open-field conditions into a category labelled ‘Disturbance
Indicators’. Figure 6.3a shows that, in the 30 samples from the core, these taxa
comprise a background abundance of from 5% to 10% of the 300 pollen grains in the
counts from each level. The analyst notes that there are four levels (85, 110, 130, and
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�150 cm) with peaks of disturbance indicators over 10%. Do these maxima reflect
a real signal or are we simply dealing with noise in the data? Figure 6.3b shows
the same data but with 0.95 confidence limits calculated with MOSLIMIT. Most of
the 0.95 confidence intervals overlap. When we run the counts from the 30 levels
through MOSITEST, the computed ¦2 is 24.91 with 29 degrees of freedom. The
critical value of ¦2 for ’ D 0.05 is 42.56; the null hypothesis that the 30 samples
come from the same statistical population is clearly not rejected, and there is no
reason to believe that any of the fluctuations are statistically significant. Analysts
often report evidence of environmental change in their data. But apparent change
is difficult to assess if we do not know the uncertainty inherent in the counts. To
establish that the disturbance taxa really are more abundant in the four levels chosen,
the pollen analyst would have to count far more than 300 pollen grains.

Treating Taxa as Numbers of Individuals Per Volume or Weight
(Microfossil Concentrations)

Sediments that are well-suited for so-called ‘absolute’ techniques, such as wet lake
muds, are homogeneous at the scale of the sample. It makes little sense to talk about
how many microfossils reside in 1 cm3 of gravel if a quartz pebble makes up most of
the sample’s volume, and it is difficult to measure accurately the volume of a fibrous
peat. In the latter case using dry sediment weight might help solve the problem.

Percentage data are easy to calculate, but a taxon’s percentage depends not
only on itself, but on all the other taxa in the sample. Davis (1965) measured the
number of pollen grains in a given volume or weight of sediment by suspending the
processed material in a known volume of a volatile fluid (benzene; later, tertiary
butyl alcohol). A similar method was described by Battarbee (1973) where a
processed diatom suspension is left to settle on cover slips that are placed in an
evaporation tray. These techniques allow one to estimate the number of microfossils
in the original sediment.

In pollen and diatom analyses, as well as in the analysis of spherical car-
bonaceous particles (see e.g., Rose 1990), microfossil concentration is commonly
estimated by ‘spiking’ each sample; that is, adding known numbers of an exotic
marker to a measured volume or weight of sediment. The spike may be composed of
a known quantity of tiny glass or polystyrene microspheres (Craig 1972), an aliquot
drawn from a fluid with a measured concentration of microspheres or exotic pollen
(Maher 1972; Battarbee and Kneen 1982), or of small tablets compressed from a
mixture of exotic spores or pollen and dry powder (Stockmarr 1971, 1973). When
markers are suspended in a fluid, one must make a number of assumptions: (1) the
bulk material is always thoroughly mixed, (2) the carrier fluid neither evaporates
over time nor affects the markers, and (3) the suspension parameters in the bulk
container are the same as those pipetted into the sample. Tablets have the advantage
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that the overall mean and standard deviation of the tablets is set at the time of their
fabrication, and will last as long as the tablets exist.

Stockmarr (1973) produced a large number of tablets of darkly stained
Lycopodium spores, and determined the mean ( NY ) and standard deviation (s) (e.g.,
12,489 ˙ 491) of Lycopodium spores in the tablets. By adding multiple tablets, the
standard deviation relative to the mean decreases. The expected number of spores
in a combined group of N tablets is N NY and the standard deviation is s

p
N . If a

single tablet is added to a sample in our example then the spike mean is 12,489 with
standard deviation 491 and coefficient of variation 3.9%. If ten tablets are added the
spike mean is 124,890 with a standard deviation 1553, and the group coefficient of
variation falls to 1.25%. It can be shown that an analyst gets the best precision for
the least amount of work if the indigenous microfossils in a sample are about twice
as abundant as the markers (Maher 1981). A list of sources for marker tablets and
for plastic microspheres can be found at the Indiana University Diatom Home Page
(http://www.indiana.edu/�diatom/exopol.ann). Both of these marker types can be
added to the raw sediment and processed along with its indigenous fossils.

The estimated concentration of microfossil X in a sample is generally based on
the proportion:

Markers in sample

Markers counted
D Fossil X in sample

Fossil X counted
(6.11)

Let M be the number of markers added to a vial containing the sediment sample,
and let x be the number of microfossils of a taxon X counted while tallying nm

markers in a slide made from the material in the vial. Taxon X can be any taxon
in the sample or groups of taxa (e.g., arboreal pollen, periphytic diatoms). Finally,
let R D x/nm be the ratio of microfossils to markers in the count. An estimate of the
number of microfossils of taxon X in the sample is then RM. If V is the volume of
the sediment sample, the concentration of taxon X is RM /V (commonly expressed
in microfossils cm�3). The markers added to the sample will have a mean NM and
a standard deviation of Sm. Our methods of measuring the sediment volume will
involve a mean and standard deviation ( NV ˙ Sv). Knowing the size of x and nm,
we can use Eq. 6.10 to obtain information about the distribution of the variable
R (with nu being equivalent to nm). Maher (1981: Table 1, p. 179) developed the
statistical basis for combining all these variables to estimate 0.95 or 0.99 confidence
limits for concentration data. The procedure is involved, but the confidence limits
are quickly solved with the computer program CONCENTR. The method makes
certain assumptions about the variables’ distribution. To meet these assumptions,
the quotients NM =sm and NV =sv should both be greater than 11. Further, x should be
greater than three, and the marker sum n should be greater than 99. These restrictions
are not limiting for careful workers.

NULCONC, PAIRS, and COMBINE are three further programs useful for
dealing with concentration data. Given a taxon’s concentration confidence limits in
two samples, NULCONC computes a null test for whether the data could have come
from the same population. Given the raw data on the two samples’ NM=sm and NV =sv,

http://www.indiana.edu/~diatom/exopol.ann
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and the size of their counts, PAIRS calculates the confidence limits for the two
samples, a null test, and the confidence limits for the combined data. COMBINE
takes a group of samples and calculates the group’s mean and confidence limits,
given either their raw data or their individual confidence limits.

As an example of how these programs might be used, assume that a series
of samples were taken in contiguous 0.5 cm intervals and analysed for pollen
or diatoms. Environmental factors (e.g., pollen-trap results, temperature, water
chemistry) are available as annual means. After getting the sediment dating results
(137Cs, 210Pb), the sediment accumulation is found to be 2 cm per year. To compare
the two data-sets it will be necessary to combine the fossil samples in the sediment
record; four samples being equivalent to a year. Calculating the new percentages is
easy. The counts made on each of the year’s four slides are analogous to counting
four slides made from a single sample vial; we add all the grains together and
compute the new percentages. The combined counts are larger, and the confidence
intervals will thus get smaller. Because the spikes and sediment volumes may differ
among the four samples, the microfossil counts for the concentration data should
not simply be pooled. COMBINE makes it easy to combine the four concentration
samples in each year, and the confidence intervals will also improve because of the
larger counts (see also Maher 1981).

Treating Taxa as Numbers of Individuals Per Unit Surface
Per Year (Accumulation Rates, Influx)

If a taxon’s concentration as microfossils cm�3 was multiplied by the sedimentation
rate S (in cm year�1) the result would be an estimate of the taxon’s accumulation rate
or influx (in microfossils cm�2 year�1) and, as with concentrations, we could chart
the behaviour of a single taxon through time. Estimating the sedimentation rate S is
relatively easy if the core is varved, but may otherwise be difficult (see Blaauw and
Heegaard 2012: Chap. 12). In cases where the samples come from varved sediment,
one need only count the number of varves per cm at the depth of the sample; its
reciprocal would be the sedimentation rate in cm year�1. Multiplying that rate by
the sample’s concentration limits would approximate the influx confidence limits
for the sample.

It is harder to set confidence limits on samples whose sedimentation rates are
estimated from a series of, say, 14C dates from a few levels in a core. Maher (1981:
pp. 188–190) concluded that an average sedimentation rate between two core depths
does not provide hard evidence about the sedimentation rate in a sample taken
somewhere in between. He suggested the term ‘influx index’ be used when the mean
and limits of microfossil concentration are multiplied by the average sedimentation
rate. Influx index limits would consider the uncertainties in sediment volume and
count size, but not the uncertainties in the resolution of time – which may be large.
Bennett (1994) and Blaauw and Heegaard (2012: Chap. 12) discuss possible ways
of reducing this uncertainty (see also Telford et al. 2005).
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Artificial Count Data to Assess the Errors Associated
with Low Microfossil Counts

Instead of calculating confidence intervals for percentage abundances, proportions,
or concentrations of individual microfossils in the manner described above, it may
sometimes be more relevant for the interpretation of a sediment record to obtain
information about the error associated with a parameter inferred from the entire
fossil assemblage. Examples include environmental parameters reconstructed on
the basis of fossil assemblages (e.g., temperature, lake nutrient concentrations,
pH) or summary parameters describing the assemblage composition (e.g., richness,
evenness, diversity, ratios between taxa with different ecological functions). For
simple indices (e.g., the ratio between benthic and planktonic diatoms or clado-
cerans) the approach described above for ratios of different microfossil types may
be appropriate. An alternative approach has been described by Heiri and Lotter
(2001) and Quinlan and Smol (2001). Based on samples with a large number of
analysed specimens these authors simulated low-count samples using sampling
without replacement or sampling with replacement, respectively. Replicate low-
count simulations then provided an estimate of the effects of low count sums on
chironomid-inferred hypolimnetic oxygen (Quinlan and Smol 2001) or July air
temperature (Heiri and Lotter 2001).

Inter-laboratory Comparisons

Inter-laboratory or inter-analyst comparisons have only rarely been conducted for
microfossil analyses of lacustrine sediments. Munro et al. (1990) describe an inter-
laboratory comparison involving four different diatom analysts. They emphasise
the importance of harmonising nomenclature and establishing clear criteria for the
identification of a taxon. Kreiser and Battarbee (1988) provide a more comprehen-
sive discussion of this study and recommend ordination methods (see Legendre
and Birks 2012: Chap. 8) for comparing the results of inter-analyst comparisons
of fossil diatom samples. Wolfe (1997) presents the results of an inter-laboratory
comparison where 15 different laboratories estimated the total diatom concentration
in a uniform lake-sediment sample. He concludes that there is a clear need for
additional efforts towards harmonisation of the techniques used for estimating
total diatom concentrations (see also Mertens et al. 2009). Besse-Lototskaya et al.
(2006) describe an attempt to assess the uncertainty in the use of periphytic diatom
assemblages in river characterisation. By means of an extensive test involving ten
researchers, it was concluded that the choice of site and substrate for sampling,
inter-analyst differences in diatom taxonomy, and counting techniques were the
primary sources of uncertainty. As a result of this quality control, clear protocols
were developed for further sampling and analysis. Kelly et al. (2009) investigated
questions of uncertainty in assessing the ecological status of lakes and rivers today
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using diatoms and developed a measure for estimating the confidence of a class and
the risk of misclassification when samples are available from a site over a period of
time.

Quantitative inference models using remains of aquatic organisms such as
diatoms, cladocerans, or chironomids to reconstruct quantitatively climatological
or limnological parameters play an increasingly important role in palaeolimnology
(Smol 2008; Birks et al. 2010; Juggins and Birks 2012: Chap. 14). These models,
usually based on microfossil counts by a single analyst, are commonly applied
to records analysed by other investigators. An increasing effort to harmonise and
evaluate the microfossil counts and identifications of different laboratories and ana-
lysts is therefore highly desirable. Heiri and Lotter (2010) assessed how taxonomic
resolution affects chironomid-based temperature reconstructions. Inferences based
on four different levels of taxonomic detail were compared and offsets between
the reconstructions based on these taxonomic schemes were quantified. Since the
chironomid assemblage data presented in this study had all been produced by
the same analyst, the results presented by Heiri and Lotter (2010) only take into
account the variability in inferred values due to using different levels of taxonomic
detail. Uncertainties associated with variable identification skills and experience of
analysts are not taken into account. Nevertheless, the approach described by Heiri
and Lotter (2010) provides a means of estimating the expected variability between
inferences produced by different laboratories if they are using different taxonomic
frameworks and levels of taxonomic resolution when enumerating microfossil
counts.

Software Availability

PALYHELP, a Microsoft Quickbasic® software package containing L.J. Maher’s
programs COMBINE, CONCENTR, MOSITEST, MOSLIMIT, NULCONC, and
PAIRS is downloadable from the INQUA File Boutique mirror site (http://www.
geology.wisc.edu/�maher/inqua.html) and the World Data Center for Palaeocli-
matology (http://www.ngdc.noaa.gov/paleo/softlib/palyhelp.html). KD Bennett’s
PSIMPOLL, a program able to calculate confidence limits for fossil count data,
is available at http://chrono.qub.ac.uk/psimpoll/psimpoll.html/.

Estimating Varve-Counting Errors

Few lakes are varved throughout their sedimentary record, whereas isolated annually
laminated sediment sequences are often encountered and allow the construction
of floating chronologies. In both cases, proof of the seasonal nature of deposition
of the layers is essential. The layers should be carefully photographed when
the cores are fresh and each picture must include labels tying them to the core

http://www.geology.wisc.edu/~maher/inqua.html
http://www.geology.wisc.edu/~maher/inqua.html
http://www.ngdc.noaa.gov/paleo/softlib/palyhelp.html
http://chrono.qub.ac.uk/psimpoll/psimpoll.html/
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logs. High-contrast prints and/or petrographic thin sections of epoxy-impregnated
sediment can be optically scanned and/or separately counted by several individuals.
The results may be used to assess counting errors which may differ markedly
in various parts of the core. Lotter (1989), Zolitschka (1990, 2003), Bradbury
and Dean (1993), Sprowl (1993), Lotter and Lemcke (1999), and Lamoureux
(2001) discuss the possibilities and problems in counting varves. Hiatuses, coring
artefacts, or problems with core correlation are often sources of errors in varve
chronologies. Moreover, errors may also arise where low sediment-accumulation
rates hamper the distinction of individual seasonal layers or make their identification
ambiguous. Other sources of error result from sediment disturbances through chance
events such as slumps, turbidites, tephras, or methane ebullition. To minimise
these errors we strongly recommend that replicate varve counts be done in two
or more cores from the same lake basin. The counts should be done by several
analysts or by image analysis (e.g., Francus 2004). This would allow a simple
root mean squared error of the multiple counts to be calculated. However, as this
error statistic is rather optimistic, Lotter and Lemcke (1999) suggest calculating
the range (i.e., maximum and minimum deviation from the mean varve counts).
Root mean squared errors, standard deviations, 95% confidence limits, or ranges
of replicate varve counts, if examined downcore, will allow an assessment of the
quality of the varves. These statistics will remain more or less constant in well-
developed varved sequences and increase disproportionally in critical parts of a
varve chronology (e.g., Lamoureux 2001). Varve chronologies need to be cross-
validated by independent dating methods (e.g., tephras of known age, 14C, 137Cs,
210Pb).

Multi-core Studies

Multi-core studies provide the only way of quantifying the errors in palaeolim-
nological records associated with sediment coring and sediment heterogeneity.
In principle, multi-core studies can be separated into two categories. Multi-core
surface-sediment studies are commonly used to assess the within-lake variability of
the measured parameter(s) and provide a snapshot of the quantitative distribution of
the proxy of interest within the lake basin. Multiple down-core studies additionally
incorporate variability associated with spatial differences in sedimentation rates,
and provide information about changes in within-lake variability with time. Both
approaches will also incorporate variability associated with the applied coring
methods. In down-core studies correlation between the records and sediment dating
will be an additional potential source of error. The studies can be designed to
assess the variability of replicate cores taken in a specific location of the study
lake (e.g., the deepest part of the lake basin), the comparability of littoral versus
deep-water records, or to compare different sub-basins of a lake (e.g., Charles et al.
1991). Multi-core studies are of exceptional importance for determining whether
quantitative inferences based on a single sediment record are representative for
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the whole lake basin (e.g., Charles et al. 1991; Anderson 1998; Heiri et al. 2003).
Multi-core surface-sediment studies are available for a range of proxies including
chironomids (e.g., Heiri et al. 2003; Heiri 2004; Eggermont et al. 2007; Holmes
et al. 2009; Kurek and Cwynar 2009a, b; Engels and Cwynar 2011), diatoms and
chrysophyte cysts (e.g., Charles et al. 1991; Lotter and Bigler 2000; Laird et al.
2011), pollen (e.g., Davis et al. 1971; Davis and Brubaker 1973), ostracods and
molluscs (e.g., Stark 1976), cladocerans (e.g., Mueller 1964 in Frey 1988; Kattel
et al. 2007), and a range of geochemical parameters (e.g., Kaushal and Binford
1999; Korsman et al. 1999; Shuman 2003). Examples of multiple down-core studies
include Anderson (1990, 1998), Charles et al. (1991), Rose et al. (1999), and
Shuman (2003). Replicate coring using different coring equipment can also be used
to assess the reliability of different coring techniques (e.g., Lotter et al. 1997).

Conclusions

Palaeolimnological studies consist of a number of discrete steps ranging from the
formulation of the hypothesis to be tested or the research question to be solved to
obtaining the sediment cores in the field, analysing the samples in the laboratory, and
interpreting the final results. The accuracy of the applied analytical methods and the
uncertainty associated with a given experimental approach are clearly of paramount
importance for solving the originally formulated research question during the final
stages of a project. However, these issues are often neglected in palaeolimnological
research, even though a broad palette of methods and approaches is available to
quantify the uncertainties associated with the applied analytical techniques. For geo-
chemical analyses, statistical procedures and quality control measures developed in
the field of analytical chemistry can be adapted for assessing errors associated with
a given method. For microfossil count data, statistical procedures and software have
been developed which allow the calculation of confidence intervals for percentages,
proportions, ratios, concentrations, and assemblage summary parameters, and which
can be used to test for significant differences between individual samples. A number
of detailed studies is available which address issues such as the assessment of
counting errors in varve chronologies and the representativeness of analyses based
on a single sediment core for reconstructing past lacustrine environments.

For some parameters commonly analysed in palaeolimnology, it remains difficult
to assign uncertainty estimates and a number of sources of uncertainty remain
difficult to quantify, either because appropriate statistical methods have not yet
been developed or because the necessary error-assessment trials are extremely time-
consuming. Examples are the calculation of uncertainty estimates for microfossil
influx data in radiometrically dated sediment sequences and the assessment of
the influence of different analysts on microfossil counts, respectively. Given the
importance of uncertainty estimates for the interpretation of palaeolimnological
records it is therefore highly desirable to (1) further develop statistical methods
for quantifying error sources in palaeolimnological research, (2) produce additional
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case-studies quantifying these error sources, even if this necessitates extensive and
labour-intensive inter-analyst and inter-laboratory comparisons, and (3) regularly
report error estimates for palaeolimnological records irrespective of whether these
are based on geochemical or microfossil analyses.
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Chapter 7
Clustering and Partitioning
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Abstract Hierarchical clustering methods and partitioning techniques such as
K-means partitioning and two-way indicator species analysis are useful tools for
summarising group structure within large, complex, multivariate data-sets that
are increasingly common in palaeolimnology. The incorporation of one- or two-
dimensional constraints in the clustering algorithms provides means of exploring
group structure in temporal, stratigraphical data and in geographical modern data,
respectively. Indicator species analysis with its associated permutation tests is a
simple and effective means of detecting statistically significant indicator species
for any grouping of a set of objects. The newly developed approach of multivariate
regression trees combines partitioning and data exploration with regression and data
interpretation and modelling.
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Introduction

Hierarchical clustering methods were developed as heuristic (empirical) tools to
produce tree-like arrangements of large numbers of observations. The original in-
tention of the biologists who developed them was to obtain a tree-like representation
of the data, in the hope that it would reflect the underlying pattern of evolution.
Hierarchical clustering starts with the calculation of a similarity or dissimilarity
(D distance) matrix using a coefficient which is appropriate to the data and research
problem. The choice of an appropriate distance coefficient is discussed in Legendre
and Birks (2012: Chap. 8). Here we will briefly describe the algorithms most
commonly used for hierarchical clustering.

Partitioning methods were developed within a more rigorous statistical frame.
K-means partitioning, in particular, attempts to find partitions that optimise the least-
squares criterion, which is widely and successfully used in statistical modelling.
Least-squares modelling methods include regression, analysis of variance, and
canonical analysis (Birks 2012a: Chap. 2). Data may need to be transformed prior
to K-means partitioning. This is the case, in particular, for assemblage data. Please
refer to Table 8.2 of Legendre and Birks (2012: Chap. 8) for details of such
transformations.

Palaeoecologists have long been interested in segmenting time series of
data, such as sediment cores that represent depositional temporal-series. Several
approaches have been proposed in the literature. They can all be seen as special
cases of clustering or partitioning with constraints.

Artificial Example

Table 7.1 shows an artificial data dissimilarity and similarity matrix among five
objects that will be used to illustrate various agglomerative clustering methods
throughout this chapter. Clustering can be computed from either similarity (S) or
dissimilarity (or distance) matrices (D); most software has preferences for either S
or D matrices. Figure 7.1 shows the relationships among the five objects in the form
of a two-dimensional principal coordinate analysis (PCoA) ordination diagram (see
Legendre and Birks 2012: Chap. 8 for details of PCoA). PCoA axis 1 accounts for
65.9% of the variation of the data while axis 2 accounts for 27.6%, leaving a mere
6.5% for axis 3. So the five data points are very well represented in 2 dimensions.
We will cluster these five objects using various methods. Two of the interpoint
distances are especially distorted in the two-dimensional ordination: D(1,2) D 1.389
in the ordination instead of 1 in the original distance matrix (Table 7.1), and
D(4,5) D 1.159 instead of 2. The other pair-wise distances in two dimensions are
close to their original values (Table 7.1). We will see how the various clustering
methods deal with these similarities or dissimilarities.
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Table 7.1 Matrices showing the dissimilarity (or distance, D, on the left)
and similarity (S, on the right, with Sij D 1 � Dij/Dmax) relationships among
five objects, numbered 1–5 (artificial data)

D 1 2 3 4 5 S 1 2 3 4 5

1 0 1 1
2 1 0 2 0.8 1
3 5 5 0 3 0.0 0.0 1
4 5 4 3 0 4 0.0 0.2 0.4 1
5 5 4 4 2 0 5 0.0 0.2 0.2 0.6 1

In each matrix, the upper-triangular portion (not shown) is symmetric to
the lower-triangular. In the distance matrix (D), the main diagonal (italics)
contains 0’s, whereas it contains 1’s in the similarity matrix (S)

0 1 2 3 4

0

1

2

1

2

3

4

5

Fig. 7.1 Principal coordinate analysis (PCoA) ordination computed from the distance matrix of
the artificial data (Table 7.1) showing the relationships among the five objects

Basic Concepts in Clustering

A cluster is a group of objects (observations, sites, samples, etc.) that are sufficiently
similar to be recognised as members of the same group. Clustering results from
an analysis of the similarities or dissimilarities among objects, calculated from the
data of interest. The similarity and dissimilarity measures most commonly used
by ecologists and palaeolimnologists are described in Legendre and Birks (2012:
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Chap. 8). A partition, such as produced by the K-means partitioning method, is
a set of non-overlapping clusters covering the whole collection of objects in the
study; some clusters may be of size 1 (singletons). Hierarchical clustering produces
a hierarchy of nested partitions of objects. Numerical clustering algorithms will
always produce a partition or a hierarchical clustering, whatever the data. So,
obtaining a partition or a hierarchical set of partitions does not demonstrate that
there are real discontinuities in the data. Most hierarchical clustering methods are
heuristic techniques, producing a solution to the problem but otherwise without any
statistical justification. A few methods are based on statistical concepts such as sum-
of-squares.

Clustering methods summarise data with an emphasis on pair-wise relationships.
The most similar objects are placed in the same group, but the resulting dendrogram
provides little information about among-group relationships. Ordination methods
do the opposite: ordination diagrams depict the main trends in data but pair-wise
distances may be distorted. For many descriptive purposes, it is often valuable to
conduct both forms of analysis (e.g., Birks et al. 1975; Birks and Gordon 1985;
Prentice 1986; Battarbee et al. 2011; Bennion and Simpson 2011).

The various potential uses of clustering and partitioning in palaeolimnology are
summarised in Table 7.2. No attempt is made here to give a comprehensive review
of palaeolimnological applications of clustering or partitioning. Emphasis is placed
instead on basic concepts and on methods that have rarely been used but that have
considerable potential in palaeolimnology.

Clustering with the constraint of spatial contiguity involves imposing that all
members of a cluster be contiguous on the spatial map of the objects. Clustering with
a one-dimensional contiguity constraint is often used on sediment cores to delineate
sectors or zones where the core sections are fairly homogeneous in terms of their
sediment texture, fossil composition, etc., and to identify transition zones (Birks
and Gordon 1985; Birks 2012b: Chap. 11). Cores can be seen as one-dimensional
geographic (or temporal) data series, so the concept of clustering with a contiguity
constraint can be applied to them. Other forms of constraint can be applied to the
data to be clustered through the use of canonical analysis (see Birks 2012a: Chap. 2
and Legendre and Birks 2012: Chap. 8) or multivariate regression trees (see Simpson
and Birks 2012: Chap. 9).

The most simple form of clustering for multivariate data is to compute an
ordination (principal component analysis (PCA), principal coordinate analysis
(PCoA), correspondence analysis (CA) – see Legendre and Birks 2012: Chap. 8),
draw the points in the space of ordination axes 1 and 2, and divide the points into
boxes of equal sizes. This will produce a perfectly valid partition of the objects
and it may be all one needs for some purposes, such as the basic summarisation
of the data. In other cases, one prefers to delineate groups that are separated
from other groups by gaps in multivariate space. The clustering methods briefly
described in this chapter should then be used. For further details of clustering
methods, see Legendre and Legendre (1998: Chap. 8), Borcard et al. (2011:
Chap. 4), Everitt and Hothorn (2011: Chap. 6), Everitt et al. (2011), and Wehrens
(2011).
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Table 7.2 Palaeolimnological uses of clustering and partitioning techniques

Modern biological assemblages (e.g., diatoms, chironomids)
Detect groups of samples with similar biological composition – AHC, TWINSPAN, K-means
Detect groups of samples with similar biological composition along a single environmental

gradient (e.g., altitude, pH) – CC1
Detect groups of geographically contiguous samples with similar biological composition – CC2
Detect indicator species for groups of samples – ISA, TWINSPAN
Comparison of groupings based on different groups of organisms – AHC, TWINSPAN, or

K-means followed by CC
Detect groups of samples that can be overlain on an ordination of the same samples – AHC,

TWINSPAN, K-means
Modern environmental data (e.g., lake-water chemistry)

Detect groups of lakes with similar environmental variables – AHC, K-means
Detect groups of geographically contiguous lakes with similar environmental variables – CC2
Comparison of groupings based on different types of environmental variables – AHC or

K-means followed by CC
Detect groups of samples that can be overlain on an ordination of the same samples – AHC,

K-means
Fossil biological assemblages (e.g., diatoms, chironomids)

Detect groups of samples (zones) with similar fossil composition – CC1, MRT
Detect indicator species for groups of samples (zones) with similar fossil composition – ISA
Comparison of groups of samples (zones) based on different fossil groups – CC1, MRT, CC
Detect groups of samples (zones) with similar fossil composition that can be overlain on an

ordination of the same samples – CC1, MRT
Detect recurring groups of samples with similar fossil and/or sediment composition – AHC

Down-core non-biological data (e.g., geochemistry, magnetics)
Detect groups of samples with similar geochemical composition, magnetic properties, etc. –

CC1, MRT
Comparison of clusterings of samples based on different set of variables – CC1, MRT followed

by CC
Detect groups of samples (zones) with similar chemical composition or magnetic properties

that can be overlain on an ordination of the same samples – CC1, MRT
Detect recurring groups of samples with similar sediment geochemical composition or

magnetic properties – AHC
Modern and fossil biological assemblages (e.g., diatoms, chironomids)

Detect similarities between modern and fossil samples (‘analogues’) as an aid to interpreting
fossil samples – AHC, TWINSPAN, K-means

Modern biological assemblages and modern environmental data (e.g., diatoms and
lake-water chemistry)

Detect environmental variables that characterise clusters or partitions of modern samples –
MRT, DA

Integrated clustering of sites on the basis of both biological and environmental data – CCC
followed by K-means

Comparison of groups of samples of similar biological composition with groups of lakes based
on environmental variables – AHC, TWINSPAN, or K-means followed by CC

Modern biological assemblages, modern environmental data, and fossil biological
assemblages (e.g., diatoms and lake-water chemistry)

Detect groups of similar modern and fossil samples on basis of similar composition and then
relate the groups of modern samples to modern environmental variables – TWINSPAN with
fossil samples declared passive in WinTWINS, followed by DA using modern
environmental data of TWINSPAN modern groups

(continued)
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Table 7.2 (continued)

Fossil biological assemblages and palaeoenvironmental variables (e.g., diatoms, occurrences
of volcanic tephras, stable-isotope data)

Relate fossil assemblage changes to palaeoenvironmental variables – MRT or CC1 of biological
data followed by DA

Detect groups of samples with similar fossil composition (‘zones’) and palaeoenvironmental
variables – CCC followed by CC1

Fossil biological assemblages from many sites
Detect groups of sites with similar fossil biological assemblages at a particular time – AHC,

K-means, TWINSPAN
Detect groups of geographically contiguous sites with similar fossil biological assemblages at a

particular time – CC2

AHC agglomerative hierarchical clustering, TWINSPAN two-way indicator species analysis, K-
means K-means partitioning, CC1 constrained clustering in one dimension, MRT multivariate
regression tree, CC2 constrained clustering in two dimensions, ISA indicator species analysis,
DA simple discriminant analysis, CC clustering (or partitioning) comparison (Rand’s index, etc.),
CCC clustering constrained by canonical ordination results

Unconstrained Agglomerative Clustering Methods

Only the hierarchical clustering methods commonly found in statistical software
will be described in this section. The most commonly used method is unweighted
arithmetic average clustering (Rohlf 1963), also called UPGMA (for ‘Unweighted
Pair-Group Method using Arithmetic averages’: Sneath and Sokal 1973) or ‘group-
average sorting’ (Lance and Williams 1966, 1967). The algorithm proceeds by
step-wise condensation of the similarity or dissimilarity matrix. Each step starts
by the identification of the next pair that will cluster; this is the pair having the
largest similarity or the smallest dissimilarity. This is followed by condensation of
all the other measures of resemblance involving that pair, by the calculation of the
arithmetic means of the similarities or dissimilarities.

The procedure is illustrated for similarities for the artificial data (Table 7.3).
Objects 1 and 2 should cluster first because their similarity (0.8) is the highest. The
similarity matrix is condensed by averaging the similarities of these two objects
with all other objects in turn. Objects 4 and 5 should cluster during the second
step because their similarity (0.6) is the highest in the condensed table. Again, the
similarities of these two objects are averaged. During step 3, object 3 should cluster
at S D 0.3 with the group (4,5) previously formed. In UPGMA, one has to weight
the similarities by the number of objects involved when calculating the average
similarity: ((1 � 0.0) C (2 � 0.1))/3 D 0.067. This weighted average is actually
equivalent to calculating the simple (unweighted) mean of the 6 similarities between
objects 1 and 2 on the one hand and 3, 4, and 5 on the other, in the first panel of
the table: (0.0 C 0.0 C 0.0 C 0.0 C 0.2 C 0.2)/6 D 0.067. In that sense, the method
is ‘unweighted’. The dendrogram representing the hierarchical clustering results is
shown in Fig. 7.2.
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Table 7.3 Step-wise condensation of the similarity matrix from Table 7.1 during unweighted
pair-group method using arithmetic averages (UPGMA) agglomerative clustering

Objects 1 2 3 4 5

1 —
2 0.8 —
3 0.0 0.0 —
4 0.0 0.2 0.4 —
5 0.0 0.2 0.2 0.6 —
Cluster objects 1 and 2 at S D 0.8

1–2 —
3 0.0 —
4 (0 C 0.2)/2 D 0.1 0.4 —
5 (0 C 0.2)/2 D 0.1 0.2 0.6 —
Cluster objects 4 and 5 at S D 0.6

1-2 —
3 0.0 —
4-5 (0.1 C 0.1)/2 D 0.1 (0.4 C 0.2)/2 D 0.3 —
Cluster object 3 with group (4,5) at S D 0.3

1–2 —
3–4–5 (1�0.0) C (2�0.1)/3 D 0.067 —
Cluster group (1,2) with group (3,4,5) at S D 0.067

At each step, the highest similarity value is identified (italic boldface value in the previous step);
then the values corresponding to the similarities of these two objects or groups, with all other
objects or groups, are averaged in turn

Similarity 0.8 0.5 0.4 0.3 0.2 0.1 0.0
0.067

0.7 0.6

1
2
3
4
5

Fig. 7.2 Unweighted pair-group method using arithmetic averages (UPGMA) agglomerative
clustering of the objects of the artificial example

Weighted arithmetic average clustering (Sokal and Michener 1958), also called
WPGMA (for ‘Weighted Pair-Group Method using Arithmetic averages’: Sneath
and Sokal 1973), only differs from UPGMA in the fact that a simple, unweighted
mean is computed at each step of the similarity matrix condensation. This is
equivalent to giving different weights to the original similarities (first panel of
Table 7.3) when condensing the similarities, hence the name ‘weighted’. For the data
in our example, only the last fusion is affected; the similarity level of the last fusion
is: (0.0 C 0.1)/2 D 0.05. Otherwise, the dendrogram is similar to that of Fig. 7.2.
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Fig. 7.3 (a) In principal coordinate space, each unweighted centroid (UPGMC) clustering step
leads to the replacement of objects (circles) by their centroid (squares), computed as the centre of
mass of all the objects members of a group. (b) The UPGMC dendrogram

Unweighted centroid clustering (Lance and Williams 1967; UPGMC in Sneath
and Sokal 1973) proceeds from a different conceptual paradigm. Imagine the objects
in multidimensional space: as in UPGMA, the first two objects to cluster are
chosen as the pair having the largest similarity or smallest dissimilarity or distance.
Instead of averaging their similarities to all other objects, the two clustered objects
are replaced by their centroid, or centre of mass, in multivariate space. This is
illustrated in Fig. 7.3a, a representation which is two- instead of three-dimensional.
An UPGMC centroid is located at the centre of mass of all the objects that are
members of a cluster.
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Table 7.4 Matrices of normalised distances [Dij/Dmax] and squared normalised
distances [(Dij/Dmax)2] used in Ward’s agglomerative clustering

Dij/Dmax 1 2 3 4 5 (Dij/Dmax)2 1 2 3 4 5

1 0 1 0
2 0.2 0 2 0.04 0
3 1.0 1.0 0 3 1.00 1.00 0
4 1.0 0.8 0.6 0 4 1.00 0.64 0.36 0
5 1.0 0.8 0.8 0.4 0 5 1.00 0.64 0.64 0.16 0

Clustering
step k New cluster formed Fusion D2

k Fusion Dk ESSk TESSk R2
k

0 Five separate objects 0 0 0 0 1
1 (1,2) 0.04 0.2 0.02 0.02 0.985
2 (4,5) 0.16 0.4 0.08 0.10 0.923
3 (3,4,5) 0.613 0.783 0.387 0.407 0.686
4 (1,2,3,4,5) 1.779 1.334 1.296 1.296 0

ESS error sum-of-squares, TESS total error sum-of-squares

In the weighted form of centroid clustering, called WPGMC (weighted centroid
clustering: Gower 1967), a centroid is placed at the mid-point between the two
objects of previously created centroids without regard for the number of objects
in the cluster. Figure 7.3b shows the dendrogram corresponding to UPGMC of the
five objects. The dendrogram for WPGMC only differs from that of Fig. 7.3b by
the position of the last fusion level, which is at S D 0.3 instead of S D 0.317. The
two forms of centroid clustering can lead to reversals. A reversal occurs when a
later fusion occurs at a similarity value larger than that of the previous fusion. This
phenomenon, which results from the geometric properties of centroid clustering, is
explained in greater detail in Legendre and Legendre (1998: Sect. 8.6). Reversals
are never large and can, most of the time, be interpreted as tri- or multi-furcations
of the dendrogram represented by successive bifurcations.

Ward’s (1963) minimum-variance clustering minimises, at each agglomerative
step, the sum of squared distances to the group centroids. This criterion, called
‘total error sum-of-squares’ or TESS, is the same as used in analysis of variance
and K-means partitioning. The example was calculated from a new distance matrix
derived from Table 7.1 using the equation D D [Dij/Dmax]. It is shown in Table 7.4
together with the matrix of squared distances [(Dij/Dmax)2] which will be used in the
calculations. Ward’s agglomerative clustering can be understood and computed in
two different ways.

First, it can be computed in the same way as UPGMA clustering, by successive
fusions of values in the matrix of squared distances [(Dij/Dmax)2]. This is usually
the strategy used in computer programs. The equation for the fusion of squared
distances is given in textbooks describing cluster analysis, including Legendre and
Legendre (1998: Eq. 8.10). Even though the cluster-fusion calculations are done
using squared distances, it is useful to use the square roots of these fusion distances,
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as the scale for the dendrogram is then in the same units as the original distances
(Table 7.1).

The second way of computing Ward’s agglomerative clustering reflects the least-
squares roots of the method. It is easier to understand but harder to compute; see
Fig. 7.3. The first two objects forming the first cluster are objects 1 and 2. The
fusion of objects 1 and 2 produces a cluster containing unexplained variation; its
value is calculated as the sum of the squared distances of objects 1 and 2 to their
centroid. It turns out that this value can be computed directly from the matrix of
squared distances (Table 7.4, top right), using the equation for error sum-of-squares
(ESS):

ESSk D .1=nk/
X

D2
hi (7.1)

where the values D2
hi are the squared distances among the objects belonging to

cluster k and nk is the number of objects in that cluster. So for the first cluster,
ESS1 D 0.04/2 D 0.02. Since this is the only cluster formed so far, the total sum-of-
squares is also equal to that value: TESS1 D 0.02. To find the second cluster, the
program has to search all possible fusions in turn and find the one that minimises
TESS. As in UPGMA, the second cluster formed contains objects 4 and 5. The error
sum-of-squares for that cluster is found using Eq. 7.1: ESS2 D 0.16/2 D 0.08. Since
there are now two clusters, TESS2 D 0.02 C 0.08 D 0.10. The next cluster contains
objects 3, 4, and 5. From Eq. 7.1, ESS3 D (0.36 C 0.64 C 0.16)/3 D 0.38667. There
are still only two clusters and TESS3 D 0.02 C 0.38667D 0.40667. The last fusion
creates a cluster encompassing all five objects. ESS is found using Eq. 7.1:
ESS4 D 1.296. This is also the total sum-of-squares for all objects in the study,
TESSmax D TESS4 D 1.296.

Depending on the computer program used, the results of Ward’s agglomerative
clustering may be presented using different scales (Fig. 7.4): different programs
may use the fusion distance, the squared fusion distance, the total sum-of-squares
error statistic TESS, the fraction of the variance (R2) accounted for by the clusters
formed at each partition level, etc. (see Grimm 1987). R2 is computed as (TESSmax –
TESSk)/TESSmax.1

Linkage clustering is a family of methods in which objects are assigned to
clusters when a user-determined proportion (connectedness, Co) of the similarity
links has been realised (Borcard et al. 2011). The similarities (Table 7.1 right) are
first rewritten in order of decreasing values (or the distances, Table 7.1 left, in

1Using R software, Ward’s agglomerative clustering is implemented by two functions,
agnes() of package cluster and hclust() of package stats. Function agnes()
with method D ‘ward’ implements Ward’s (1963) minimum-variance criterion as described here.
Function hclust() with method D ‘ward’ does all calculations on distances instead of squared
distances, so the results differ. Users can obtain correct Ward clustering results by providing a
matrix of squared distances to the hclust() function; then one has to modify the $height element
of the output list to make it contain the square roots of the height values before calling the plot()
function.
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Fig. 7.4 Ward’s agglomerative clustering of the objects of the artificial example. The dendrogram
is drawn along a scale of distances (fusion D in Table 7.3). Alternative drawing scales are given
underneath: distance2, total error sum-of-squares (TESS), and R2

order of increasing values). Clusters are formed as the program reads the list of
ordered similarities. In single linkage agglomerative clustering, objects are placed
in groups as soon as they have formed a single similarity link with at least one
member of the group. For the example data, the highest similarity value is 0.8;
it creates a link between objects 1 and 2 at level S D 0.8. The next pair, (4,5), is
formed at S D 0.6. The next similarity value in the ordered list is 0.4; it attaches
object 3 to the (4,5) cluster at S D 0.4. Finally, there are two similarity links, (2,4)
and (2,5), formed at level S D 0.2. These links connect the previously-formed cluster
(1,2) to the group (3,4,5) (Fig. 7.5a). In complete linkage agglomerative clustering,
all possible similarity links must be formed before an object is admitted into a
previously-formed cluster or two clusters can be fused. For the example (Fig. 7.5b),
the pairs (1,2) and (4,5) are formed at the same levels as in single linkage since these
clusters involve a single link. Incorporation of object 3 into cluster (4,5) must wait
until the two possible similarity links (3,4) and (3,5) can be formed; this happens
when the similarity level drops to S D 0.2 (Table 7.1 right). Likewise, fusion of
the clusters (1,2) and (3,4,5) has to wait until the six similarity links (1,3), (1,4),
(1,5), (2,3), (2,4), and (2,5) are formed; this only happens at S D 0. In proportional-
link linkage agglomerative clustering, the connectedness level is set at any value
between Co D 0 (single linkage) and Co D 1 (complete linkage). Figure 7.5c shows
the dendrogram obtained with Co D 0.5. The pairs (1,2) and (4,5) are formed again
at the same levels as in single linkage clustering since these clusters involve a single
link. Incorporation of object 3 into cluster (4,5) must wait until 50% of the two
possible similarity links (3,4) and (3,5) are formed; in other words, the cluster (3,4,5)
is formed as soon as one of the two links is formed. Link (3,4) is formed at S D 0.4,
so object 3 can cluster with objects 4 and 5 at that level. The fusion of cluster (1,2)
with cluster (3,4,5) must wait until 50% of the six similarity links between the two
clusters, or 3 links, are formed; this only happens at S D 0 (Table 7.1 right).

All the previously-described agglomerative clustering methods, including single
and complete linkage but not proportional-link linkage with 0 < Co < 1, can be
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Fig. 7.5 Linkage agglomerative clustering of the objects of the artificial example. (a) Single
linkage (Co D 0). (b) Complete linkage (Co D 1). (c) Proportional-link linkage (Co D 0.5).
Co D connectedness

computed using an algorithm described by Lance and Williams (1966, 1967).
Different methods are obtained by specifying different combinations of four
parameters called ’i, ’j, “, and ” by these authors. The algorithm of Lance and
Williams, which is described in more detail in textbooks on data analysis (including
Legendre and Legendre 1998: Sect. 8.5 and Borcard et al. 2011: Chap. 4), is used
in many computer packages that offer agglomerative clustering. The algorithm led
Lance and Williams (1966, 1967) to propose a new family of methods called flexible
clustering. In flexible clustering, ’i D ’j D (1 – “)/2 and ” D 0. Varying “ in the
range �1 � “ < 1 produces solutions with dense groups separated by long branches
(when “ is near �1), as in complete linkage, to loosely-chained objects as in single
linkage clustering (when “ is near C1). No reversals can occur in flexible clustering.

It is often useful to compare dendrograms to the original similarity or dis-
tance matrix in order to determine which, among several clustering methods, has
preserved the original information best. To accomplish that, we need to turn the
dendrograms into numbers. A cophenetic matrix is a similarity (or dissimilarity)
matrix representing a dendrogram (Table 7.5). To construct it, one simply has to
read, on the dendrogram, the S- or D-level where two objects become members
of the same cluster and write that value into a blank matrix. Different measures
of goodness-of-fit can be used to compare the original matrix to the cophenetic
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Table 7.5 Cophenetic matrices for the unweighted pair-group method using arithmetic averages
(UPGMA) (left) and Ward’s dendrograms (right) representing the dendrograms shown in Figs. 7.2
and 7.4, respectively

UPGMA
S 1 2 3 4 5

Ward’s
D 1 2 3 4 5

1 1 1 0
2 0.800 1 2 0.200 0
3 0.067 0.067 1 3 1.334 1.334 0
4 0.067 0.067 0.300 1 4 1.334 1.334 0.783 0
5 0.067 0.067 0.300 0.600 1 5 1.334 1.334 0.783 0.400 0

similarities or dissimilarities. The most popular indices are the matrix correlation
(also called cophenetic correlation), which is Pearson’s linear correlation coefficient
r computed between the values in the two half-matrices of similarities or dissimilar-
ites, and the Gower distance which is the sum of the squared differences between
the original and cophenetic values:

DGower D
X�

original Sij �cophenetic Sij

�2
(7.2)

For the example data, the clustering method that best represents the original
information, by these criteria, is UPGMA: the matrix correlation r is 0.946 (high
values are better) while the Gower distance is 0.073 (small values are better).

A different problem is that of comparing classifications to one another. One
can compute a consensus index for two classifications (reviewed in Rohlf 1982;
Mickevich and Platnick 1989; Swofford 1991). Alternatively, one can compute
a consensus tree using a choice of rules (strict consensus, majority rule, Adams
consensus, etc.) summarised in Swofford (1991); another rule, called ‘average
consensus’, was described by Lapointe and Cucumel (1997). Legendre and Lapointe
(2004) also described a way of testing the congruence among dissimilarity matrices
derived from data-sets containing different variables about the same objects. If
they are congruent, the data-sets can be used jointly in statistical analysis. Borcard
et al. (2011) discuss several useful graphical tools for displaying and evaluating the
results from cluster analysis. They also outline methods for comparing clustering
results with external environmental data and specific methods for identifying species
associations in large biological data-sets.

K-Means Partitioning

The K-means problem was defined by MacQueen (1967) as that of partitioning a
multivariate data-set (containing n objects and p variables) in Euclidean space into
K non-overlapping groups in such a way as to minimise the sum (across the groups)
of the within-group sums of squared Euclidean distances to the respective group
centroids. The function to be minimised is TESS, the same function that is used
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in Ward’s agglomerative clustering. K-means will produce a single partition of the
objects, not a hierarchy. The number of groups, K, to be found is determined by the
user of the method. If one asks for several values of K, the K partitions produced
may not be nested.

The search for the partition that minimises TESS is done by an iterative
algorithm, which begins with a starting configuration and tries to optimise it by
modifying the group membership.

• A starting configuration is a preliminary partition of the objects into K groups
given to the program. Depending on the program being used, one may have to
provide the group membership for all objects, or the positions of the K cluster
centroids in p-dimensional space. If a configuration is given as a hypothesis, one
can use it as the starting point; the K-means algorithm will try to optimise this
configuration, in the least-squares sense, by modifying the group membership
if this results in a lower value for TESS. A second method is to restart the
procedure several times, e.g., 50, 100, or 1000 times, using different random
assignments of the objects to the K groups or random centroids as starting
configurations. There are different ways of choosing random assignments of
the objects or random centroids. A third method is to conduct agglomerative
clustering, cut the dendrogram into K groups, find the positions of the group
centroids in p-dimensional space, and use these as the starting configuration.
Hand and Krzanowski (2005) advise against the use of this method, which has
proved less efficient in simulations compared with random starts.

• Many different algorithms have been proposed to solve the K-means problem.
K-means can even be computed from distance matrices. A simple alternating
least-squares algorithm, used for instance in the SAS package, iterates between
two steps: (1) compute the group centroids; they become the new group seeds,
and (2) assign each object to the nearest seed. One may start with either step 1 or
step 2, depending on whether the initial configuration is given as an assignment
of objects to groups or a list of group centroids. Such an algorithm can easily
cluster tens of thousands of objects.

• Note that K-means partitioning minimises the sum of squared Euclidean dis-
tances to the group centroids (TESS). The important expression is Euclidean
distance. Many of the data tables studied by ecologists should not be directly
analysed using Euclidean distances. The data need to be transformed first.
This topic is discussed in detail in Legendre and Birks (2012: Chap. 8, refer
to Table 8.2 of that chapter for a summary). Physical variables may need
to be standardised or ranged to make them dimensionless, while assemblage
composition data may need to be subjected to the chord, chi-square, or Hellinger
transformation, prior to PCA, redundancy analysis (RDA), or K-means analysis.

• If one computed K-means partitioning for different values of K, how does one
decide on the optimal number of groups? A large number of criteria have been
proposed in the statistical literature to decide on the correct number of groups
in cluster analysis. Fifteen or so of these criteria, including Calinski-Harabasz
(see below), are available in the cclust package of the R computer language.
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A simulation study by Milligan and Cooper (1985) compared 30 of these criteria.
The best one turned out to be the Calinski and Harabasz (1974) criterion (C-H),
which we will describe here. C-H is simply the F-statistic of multivariate analysis
of variance and canonical analysis:

C�HK D 

R2

K= .K � 1/
�
=

�

1 � R2
K

�
= .n � K/

�
(7.3)

where R2
K D (TESSmax – TESS(K))/TESSmax. TESSmax is the total sum of

squared distances of all n objects to the overall centroid and TESS(K) is the
sum of squared distances of the objects, divided into K groups, to their groups’
own centroids. One is interested to find the number of groups, K, for which the
Calinski-Harabasz criterion is maximum; this corresponds to the most compact
set of groups in the least-squares sense. Even though C-H is constructed like an
F-statistic, it cannot be tested for significance since there are no independent
data, besides those that were used to obtain the partition, to test it. Another
useful criterion, also found in the cclust package of the R language, is the Simple
Structure Index (SSI: Dolnicar et al. 1999). It multiplicatively combines several
elements which influence the interpretability of a partitioning solution. The best
partition is indicated by the highest SSI value (see Borcard et al. 2011: Sect. 4.8
for further details).

The artificial example is too small for K-means partitioning. Notwithstanding, if
we look for the best partition in two groups (K D 2), a distance K-means algorithm2

finds a first group with objects (1,2) and a second group with (3,4,5). R2
KD2 D 0.686

(Table 7.4, step k D 3) so that C-HKD2 D 6.561.
Indices are available to compare different partitions of a set of objects. They can

be used to compare partitions obtained with a given method, for example K-means
partitions into 2–7 groups, or partitions across methods, for example a seven-group
partition obtained by K-means to the partition obtained by UPGMA at the level
where seven groups are found in the dendrogram. They can also be used to compare
partitions obtained for different groups of organisms at the same sampling sites, for
example fossil diatoms and pollen analysed at identical levels in sediment cores.

Consider all pairs of objects in turn. For each pair, determine if they are (or
not) in the same group for partition 1, and likewise for partition 2. Create a 2 � 2
contingency table and place the results for that pair in one of the four cells of the
table (Fig. 7.6). When all pairs have been analysed in turn, the frequencies a, b, c,
and d can be assembled to compute the Rand index (1971), which is identical to the
simple matching coefficient for binary data:

Rand D .a C d/ = .a C b C c C d/ (7.4)

2A distance K-means algorithm had to be used here because the original data was a D matrix
(Table 7.1). Turning D into a rectangular data matrix by PCoA, followed by K-means partitioning,
would not have yielded the same exact value for C-H because PCoA of D produces negative
eigenvalues (see Legendre and Birks 2012: Chap. 8 this volume for a discussion of negative
eigenvalues).
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Fig. 7.6 Contingency table
comparing two partitions of a
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are frequencies

The Rand index produces values between 0 (completely dissimilar) and 1 (com-
pletely similar partitions). Hubert and Arabie (1985) suggested a modified form
of this coefficient. If the relationship between two partitions is comparable to that
of partitions chosen at random, the corrected Rand index returns a value near 0,
which can be slightly negative or positive; similar partitions have indices near 1.
The modified Rand index is the most widely used coefficient to compare partitions.
Birks and Gordon (1985) used the original Rand index to compare classifications
of modern pollen assemblages from central Canada with the modern vegetation-
landform types from which the pollen assemblages were collected in an attempt
to establish how well modern pollen assemblages reflected modern vegetation
types. Birks et al. (2004) compared independent classifications of modern diatom,
chrysophyte cyst, and chironomid assemblages and of modern lake chemistry on
Svalbard using Hill’s information similarity statistic between classifications (Moss
1985). This index is related to Rand’s index.

Example: The SWAP-UK Data

The UK Surface Waters Acidification Programme (SWAP-UK) data represent
diatom assemblages comprising 234 taxa, from present-day surface samples from
90 lakes in England, Scotland, and Wales (Stevenson et al. 1991; Birks and Jones
2012: Chap. 3). The diatom counts were expressed as percentages relative to the
total number of diatom valves in each surface sample. This means that the counts
have been transformed into relative abundances, following Eq. 8.8 of Legendre and
Birks (2012: Chap. 8), then multiplied by 100. They are thus ready for analysis
using a method based on Euclidean distances. K-means partitioning was applied to
the objects, with K values from two to ten groups. The partition that had the highest
value of the Calinski-Harabasz criterion was K D 5 (C-H D 16.140); that partition is
the best one in the least-squares sense. The five groups comprised 20, 38, 20, 8, and
4 lakes, respectively. The 90 diatom assemblages are represented in a scatter plot
of pH and latitude of the lakes; the groups are represented by symbols as well as
ellipses covering most of the points of each group (Fig. 7.7). The graph shows that
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Fig. 7.7 K-means partitioning of the UK Surface Waters Acidification Programme (SWAP-UK)
data (see Birks and Jones 2012: Chap. 3) into K D 5 groups. The diatom assemblages are
represented in a scatter diagram of pH and latitude. The ellipses summarise the extent of the five
groups in the graph

the five groups of lakes are closely linked to lake-water pH but not to latitude. They
are not related to longitude either. This strong pH relationship reflects the overriding
influence of lake-water pH on modern diatom assemblages in temperate areas
(Smol 2008; Battarbee et al. 2010). Palaeolimnological applications of K-means
partitioning are surprisingly few. Catalan et al. (2009b) provide a detailed analysis
of ecological thresholds in European alpine lakes based on K-means partitioning and
indicator species analysis. Battarbee et al. (2011) and Bennion and Simpson (2011)
provide examples involving recent changes in low alkalinity lakes and eutrophic
lakes, respectively.
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Constrained Clustering in One Dimension

Palaeolimnologists have always been interested in detecting discontinuities and
segmenting stratigraphical data (sediment cores), an operation called zonation in
Birks (2012b: Chap. 11). For univariate data, the operation can be conducted by eye
on simple graphs, but for multivariate data like fossil assemblages, multivariate data
analysis can be of help. One can, for instance, produce ordination diagrams from
the multivariate data, using PCA or CA (see Legendre and Birks 2012: Chap. 8),
and detect by eye the jumps in the positions of the data points. Palaeolimnologists
more often use constrained clustering, a family of methods that was first proposed
by Gordon and Birks (1972, 1974) who introduced a constraint of temporal or
stratigraphical contiguity into a variety of clustering algorithms to analyse pollen
stratigraphical data (see also Birks and Gordon 1985; Birks 1986). The constraint
of temporal contiguity simply means that, when searching for the next pair of objects
to cluster, one considers only the objects (or groups) that are adjacent to each other
along the stratigraphical or temporal series.

Several examples of zonation using this type of algorithm are given in Birks
(2012b: Chap. 11). One can use one of the stopping rules mentioned in the previous
section, and in particular the Calinski-Harabasz (Eq. 7.3) and SSI criteria, to decide
how many groups should be recognised in the stratigraphical series.

Another approach is to use multivariate regression tree (MRT) analysis, described
in the last section of this chapter, to partition a multivariate data table representing
a sediment core, for example, into homogeneous sections in the least-squares sense.
A variable representing level numbers or ages in the core is used as the constraint.
MRT finds groups of core levels with the minimum total error sum-of-squares
(Borcard et al. 2011: Sect. 4.11.5; Simpson and Birks 2012: Chap. 9).

Example: The Round Loch of Glenhead (RLGH) Fossil Data

Another approach is the chronological clustering procedure of Legendre et al.
(1985) who introduced a constraint of temporal contiguity into a proportional-link
linkage agglomerative algorithm and used a permutation test as a stopping criterion
to decide when the agglomeration of objects into clusters should be stopped. This
method was applied to the RLGH3 fossil data, which consists of the counts of 139
diatom taxa observed in 101 levels of a Holocene sediment core from a small lake,
The Round Loch of Glenhead, in Galloway, south-western Scotland (Jones et al.
1989; Birks and Jones 2012: Chap. 3). The data series covers the past 10,000 years.
Level no. 1 is the top one (most recent) while no. 101 is at the bottom of the core
(oldest). The diatom counts were expressed relative to the total number of diatom
valves in each level of the core. This means that the counts have been transformed
into relative abundances, following Eq. 8.8 in Legendre and Birks (2012: Chap. 8),
where these data have also been analysed. There, principal coordinates of neighbour
matrices (PCNM) analysis (Legendre and Birks 2012: Chap. 8) show that their
temporal structure is complex.
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Table 7.6 Results of indicator species analysis for the partition of The Round Loch of Glenhead
(RLGH) core data into 12 groups by chronological clustering

Group no.
Membership
(level no.) Significant indicator diatoms (taxon names)

1 1–5 Eunotia bactriana (69), Navicula pupula (52), Tabellaria
quadriseptata (46), Suirella delicatissima (44), Cymbella
aequalis (39), Navicula hoefleri (37), Tabellaria binalis (34),
Eunotia exigua (25), Eunotia pectinalis var. minor (16)

2 6–14 Navicula cumbriensis (42), Eunotia tenella (19)
3 15–17 Neidium bisulcatum (38), Eunotia naegelii (36), Eunotia

denticulata (33), Pinnularia microstauron (26), Peronia fibula
(26), Suirella biseriata (25), Navicula leptostriata (25),
Eunotia incisa (16)

4 18–36 Eunotia pectinalis var. minor form impressa (26), Achnanthes
pseudoswazi (25), Tabellaria flocculosa (19), Achnanthes
austriaca (17), Navicula mediocris (16)

5 37–44 Achnanthes umara (56), Navicula minima (48), Cymbella
microcephala (47), Cyclotella kuetzingiana agg. (38), Navicula
pupula (38), Nitzchia perminuta (32), Navicula arvensis (30),
Nitzchia fonticola (28), Achnanthes flexella (27), Navicula
minuscula var. muralis (27), Achnanthes minutissima (25),
Navicula radiosa var. tenella (22)

6 45–53 Aulacoseira lirata var. lacustris (48), Eunotia diodon (24)
7 54–62 Navicula indifferens (32)
8 63–65 Eunotia vanheurckii (32), Frustulia rhomboides var. saxonica (14),

Fragilaria elliptica (43)
9 66–78 Semiorbis hemicyclus (38), Brachysira [sp.1] (28), Aulacoseira

perglabra var. floriniae (24), Fragilaria vaucheriae (24)
10 79–90 Navicula tenuicephala (56), Cymbella [PIRLA sp.1] (37), Eunotia

iatriaensis (31), Navicula bremensis (24)
11 91–94 Navicula seminuloides (57), Aulacoseira distans var. tenella (47),

Navicula seminulum (42), Navicula impexa (35), Aulacoseira
[cf. distans distans] (35), Aulacoseira perglabra (23),
Aulacoseira lirata (26)

12 95–101 Navicula hassiaca (56), Cymbella perpusilla (50), Stauroneis
anceps form gracilis (38), Pinnularia subcapitata var. hilseana
(28), Navicula angusta (26), Gomphonema acuminatum var.
coronatum (25), Brachysira vitrea (20), Fragilaria virescens
var. exigua (19), Achnanthes marginulata (15)

The diatom taxa j with significant IndValj values (significance level: 0.05) are listed for each group
of the partition. Indicator values are given in parentheses. Group 1 is the most recent, group 12 the
oldest of the 10,000-year fossil data series. Diatom nomenclature follows Stevenson et al. (1991)

For the present example, Euclidean distances were computed among the levels,
then turned into similarities using the equation S D 1 – D/Dmax. Chronological
clustering (module Chrono of The R Package: Casgrain and Legendre 2004)
produced 12 groups of contiguous sections, using Co D 0.5 in proportional-link
linkage agglomeration and the significance level ’ D 0.01 as the permutation
clustering criterion (Table 7.6): levels 1–5, 6–14, 15–17, 18–36, 37–44, 45–53,
54–62, 63–65, 66–78, 79–90, 91–94, and 95–101. Clustering was repeated on the
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diatom data detrended against level numbers to remove the linear trend present
in the data, as described in Legendre and Birks (2012: Chap. 8); the clustering
results were identical. These 12 groups are almost entirely compatible with the two
dendrograms shown in Fig. 11.1 in Birks (2012b: Chap. 11); the position of a single
object (level no. 90) differs. The difference is due to the use of proportional-link
linkage clustering with Co D 0.5 in this example, instead of CONISS (constrained
incremental sum-of-squares (D Ward’s) agglomerative clustering: Grimm 1987)
or CONIIC (constrained incremental information clustering) in Birks (2012b:
Chap. 11). This partition in Table 7.6 will serve as the basis for indicator species
analysis (see below).

MRT analysis was also applied to the RLGH fossil core data. The constraint in
the analysis was a single variable containing the sample numbers 1–101. Cross-
validation results suggest that the best division of the core was into 12 groups, but
the groups differed in part from those produced by chronological clustering: levels
1–12, 13–17, 18–36, 37–44, 45–53, 54–62, 63–66, 67–81, 82–90, 91–95, 96–99,
and 100–101. Only five division points between groups were identical in the results
of MRT and chronological clustering.

Constrained Clustering in Two Dimensions

Caseldine and Gordon (1978) extended the concept of temporal contiguity con-
straints to that of spatial contiguity constraints to analyse surface pollen spectra from
three transects across a bog (see also Engels and Cwynar 2011). They showed that
constraints can be applied to any data-set for which the graph-theory representation
as a minimum spanning tree is such that removing any line joining pairs of adjacent
samples divides the data into two connected groups (Gordon 1973). After this, time
was ripe for the development of clustering procedures with the constraint of spatial
contiguity, an idea that had been proposed by several other authors all at about the
same time (e.g., Lebart 1978; Lefkovitch 1978, 1980; Monestiez 1978; Roche 1978;
Perruchet 1981; Legendre and Legendre 1984).

The constraint generally consists of a set of geographical contiguity links
describing the points that are close to each other on the map. Several types of
planar connection networks can be used to connect neighbouring points: for regular
grids, one can choose from among different types of connections named after the
movements of chess pieces (rook, bishop, king); for irregularly-spaced points, a
Delaunay triangulation (Fig. 7.9a shows an example), Gabriel graph, or relative
neighbourhood graph can be used. These connection schemes are described in
books on geographical statistics as well as in Legendre and Legendre (1998:
Sect. 13.3). The connections between neighbouring objects are written as 1s in a
spatial contiguity matrix (Fig. 7.8); 0s indicate non-neighbours.

In constrained clustering, the similarity (or dissimilarity) matrix is combined
with the matrix of spatial contiguity by a Hadamard product which is the cell-by-cell
product of two matrices. The cells corresponding to contiguous objects keep their
similarity values whereas the cells that contain 0s in the contiguity matrix contribute
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Fig. 7.8 The constrained similarity matrix used in constrained clustering is the Hadamard product
(cell-by-cell product) of the similarity with the matrix of spatial contiguity. Only the upper
triangular portion of each matrix is shown. Nine objects are used in this illustration

0s to the constrained similarity matrix. From that point on, a regular clustering
algorithm is applied: the highest value found in the constrained similarity matrix
designates the next pair to cluster and the values of similarity of these two objects
with all the other objects in the study are condensed in the similarity matrix (left in
Fig. 7.8), as in Table 7.3. The spatial contiguity matrix also has to be condensed:
an object which is a neighbour of either of the two objects being clustered receives
a 1 in the condensed spatial contiguity matrix. Figure 7.8 is a generalisation of
constrained clustering in one dimension and applies to that case as well. The R
package const.clust for constrained clustering in one (core data, time series) or two
dimensions (maps), following the algorithm described in this paragraph, is available
from http://www.bio.umontreal.ca/legendre/.

Example: The SWAP-UK Data

The SWAP-UK data used to illustrate K-means partitioning will now be clustered
with the constraint of spatial contiguity. A Delaunay triangulation (Fig. 7.9a) was
used to describe the neighbourhood relationships among lakes; the list of links
was written to a file and passed to the constrained clustering program (module
Biogeo in The R Package, Casgrain and Legendre 2004). Figure 7.9b is a map
showing ten groups of lakes resulting from clustering with the constraint of spatial
contiguity at level S D 0.648. Among the 90 lakes, 27 are not clustered at that
level and do not appear in Fig. 7.9b. Contrary to the unconstrained clustering
results (Fig. 7.7), the partition is now clearly related to latitude, with most of the
Scottish lakes forming a single group (empty circles). The interpretation of these
constrained clustering results is unclear ecologically. The potential influence of
geography and associated components of bedrock geology, climate, and land-use
at the scale of the UK on modern diatom assemblages has not, to date, been
explored. The idea of regionalisation or groupings of lakes with similar biological,
chemical, and ecosystem properties within and between geographical regions is a

http://www.bio.umontreal.ca/legendre/
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Fig. 7.9 The UK Surface Waters Acidification Programme (SWAP-UK) data set (see Birks and
Jones 2012: Chap. 3). (a) Delaunay triangulation. The edges of the graph served as constraints in
constrained clustering. (b) Results of spatially-constrained clustering for 63 lakes among 90: 10-
group partition of the lakes (symbols). All members of a group are connected through adjacency
links in the triangulation

topic of current research in applied freshwater science (e.g., Camero et al. 2009;
Catalan et al. 2009a; Kernan et al. 2009) and is a research area where unconstrained
and constrained clustering methods and a comparison of the resulting partitions
could usefully be applied. An analysis, not of fresh waters but of Single Malt
Scotch whiskies, showed that the organoleptic properties of these whiskies could
be interpreted as reflecting the different geographical regions of Scotland (Lapointe
and Legendre 1994). From an ecological viewpoint, there are strong theoretical
reasons to hypothesise that broad-scale geographically-structured processes may be
important in controlling the structure of ecological assemblages (Legendre 1993).
Much work remains to be done on the analysis of modern assemblages of diatoms
and other organisms widely studied in palaeolimnology in relation to the range of
possible processes that may determine their composition and structure (e.g., Jones
et al. 1993; Weckström and Korhola 2001).
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Clustering Constrained by Canonical Analysis

A more general form of constraint can be provided by canonical analysis (redun-
dancy analysis (RDA) or canonical correspondence analysis (CCA): see Legendre
and Birks 2012: Chap. 8). The idea is to extract the portion of the information of the
response or biological data matrix Y that can be explained by a table of explanatory
or predictor variables X and apply clustering or partitioning analysis to that part of
the information.

Typically, Y is a (fossil, recent) assemblage composition data table whereas X
may contain environmental, spatial, or historical variables. Figure 8.2 in Legendre
and Birks (2012: Chap. 8) shows that the first step of RDA is a series of multiple
regressions. At the end of that step, which is also called multivariate linear
regression (Finn 1974) and is available in some statistical packages under that name,
the fitted values of the regressions are assembled in a table of fitted values Ŷ. RDA
is obtained by applying PCA to that table, producing a matrix Z of ordination scores
in the space of the explanatory variables X, called “Sample scores which are linear
combinations of environmental variables” in the output of the CANOCO program
(ter Braak and Šmilauer 2002). Computing Euclidean distances on either of these
matrices, Ŷ or Z, will produce the same matrix D. One can then apply cluster
analysis to D or S D [1 – Dij/Dmax]. An example of combining cluster analysis
with canonical correspondence analysis in plant geography and ecology to derive
an integrated biogeographical zonation is given by Carey et al. (1995).

Indicator Species Analysis

Indicator species represent a classical problem in ecology (Hill et al. 1975; Hill
1979). One may be interested to find indicator species for groups known a priori, for
example pH classes or geographical regions, or for groups obtained by clustering.
Dufrêne and Legendre (1997) developed an operational index to estimate the
indicator value of each species. The indicator value of a species j in a group of
sites k, IndValkj, is the product of the specificity Akj and fidelity Bkj of the species
to that group, multiplied by 100 to give percentages. Specificity estimates to what
extent species j is found only in group k. Fidelity measures what proportion of
the sites of group k species j is found in. The indicator value of species j is the
largest value found for that species among all groups k of the partition under
study:

IndValj D max


IndValkj

�
(7.5)

The index is maximum (100%) when individuals of species j are found at all
sites belonging to a group k of the partition and in no other group. A per-
mutation test, based on the random reallocation of sites to the various groups,
is used to assess the statistical significance of IndValj. A significant IndValj
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is attributed to the group j that has generated this value. The index can be
calculated for a single partition or for all partitions of a hierarchical classifi-
cation of sites. The IndVal program is distributed by M. Dufrêne on the site
http://old.biodiversite.wallonie.be/outils/indval/. The method is also available in
the package PC-ORD (MjM Software, P.O. Box 129, Gleneden Beach, Ore-
gon 97388, USA: http://home.centurytel.net/�mjm/pcordwin.htm) and the R pack-
age labdsv (Borcard et al. 2011: Sect. 4.10.4). Catalan et al. (2009b) illustrate
its use in their work on ecological thresholds in European alpine lakes and
Penczak (2009) applied the INDVAL measure to clusterings derived from a self-
organising map (see Simpson and Birks 2012: Chap. 9) based on an artificial
neural network of fish assemblages. Other palaeolimnological examples include
Battarbee et al. (2011) and Bennion and Simpson (2011). The INDVAL mea-
sure and approach have been extended (e.g. De Cáceres and Legendre 2009;
De Cáceres et al. 2010; Podani and Csányi 2010). The new indices, devel-
oped by De Cáceres and Legendre (2009) and De Cáceres et al. (2010), are
found in the R package indicspecies, available from http://sites.google.com/site/
miqueldecaceres/software. Indicator species analysis is an extremely useful and
robust procedure.

Example: The Round Loch of Glenhead (RLGH) Fossil Data

Indicator species analysis was conducted on the 12-group partition of the RLGH3
fossil data obtained by chronological clustering (see above), to identify the diatom
taxa that were significantly related to the groups or zones. The diatom species with
significant IndValj values are listed in Table 7.6 for each group of the partition.
The number of statistically significant indicator species varies from 1 (group 7) to
12 (group 5); there were 139 taxa in the study. These indicator species highlight
and summarise the differences in diatom composition between the groups or zones.
This approach deserves wide use in palaeolimnology because it provides a simple
and effective means of identifying the biological features of each group or zone of
levels (Birks 1993). It provides a more rigorous approach to detecting groups of
species that characterise or are indicative of particular sediment sections than the
early attempts by Janssen and Birks (1994a).

Two-Way Indicator Species Analysis

Two-way indicator species analysis (TWINSPAN) (Hill et al. 1975; Hill 1979)
is a partitioning method that was specifically developed for the simultaneous
grouping of objects and their attributes in large, heterogeneous ecological data-sets.

http://old.biodiversite.wallonie.be/outils/indval/
http://home.centurytel.net/~mjm/pcordwin.htm
http://sites.google.com/site/miqueldecaceres/software
http://sites.google.com/site/miqueldecaceres/software
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It has been widely used by plant community ecologists but, rather surprisingly,
little used in palaeolimnology or palaeoecology (Grimm 1988). It is a polythetic
divisive procedure. The division of the objects is constructed on the basis of a
correspondence analysis (CA) of the data (see Legendre and Birks 2012: Chap. 8).
Objects are divided into those on the negative (left) side and those on the positive
(right) side on the basis of the object scores on the first CA axis. The division is
at the centroid of the axis. This initial division into two groups is refined by a
second CA ordination that gives greater weight to those attributes that are most
associated with one side of the dichotomy. The algorithm used is complicated but
the overall aim is to achieve a partitioning of the objects based on the attributes
(usually species) typical of one part of the dichotomy, and hence a potential indicator
of the group and its underlying ecological conditions. The process is continued for
4, 8, 16, etc. groups. The classification of the objects is followed by a classification
of the attributes and the final structured table based on this two-way classification
is constructed. Details of TWINSPAN, the underlying algorithm, and questions of
data transformation are given by Hill (1979), Kent and Coker (1992), Lepš and
Šmilauer (2003), and Fielding (2007). The computer program TWINSPAN has
been modified, converted, and updated with a user-friendly interface to run under
Microsoft Windows® (WinTWINS ) by Petr Šmilauer and can be downloaded from
http://www.canodraw.com. Despite its age and complex algorithm, TWINSPAN
remains a very useful and robust technique for classifying very large heterogeneous
data-sets containing may zero values (‘absences’), keeping in mind that the method
assumes the existence of a single, strong gradient dominating the data and that the
divisions between neighbouring groups may not always be optimal (Belbin and
McDonald 1993). A classification resulting from TWINSPAN can provide a useful
starting configuration for K-means partitioning, particularly for large heterogeneous
data-sets. Palaeolimnological applications of TWINSPAN include Brodersen and
Lindegaard (1997), Brodersen and Anderson (2002), Bennion et al. (2004), Kernan
et al. (2009), Engels and Cwynar (2011), and Mackay et al. (2011) (see Simpson
and Hall 2012: Chap. 19).

Example: The SWAP-UK Data

A two-way indicator species analysis of the SWAP-UK data (90 objects by 234
taxa) was implemented using WinTWINS 2.3. Eight pseudospecies were used with
cut-levels of 0%, 1%, 2%, 4%, 8%, 16%, 32%, and 64% (see Kent and Coker
1992 or Lepš and Šmilauer 2003 for an explanation of pseudospecies or conjoint
coding). The classification into four groups and the associated indicator species are
summarised in Fig. 7.10. The four groups of lakes differ in their pH values, just as
the five groups in the K-means partitioning do, with group medians of pH 5.0, 5.3,
6.3, and 6.8.

http://www.canodraw.com
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Fig. 7.10 Two-way indicator species analysis (TWINSPAN) of the UK Surface Waters Acidi-
fication Programme (SWAP-UK) data-set (90 lakes, 234 diatom species – see Birks and Jones
2012: Chap. 3). The numbers of lakes in the total data-set, the second-level (two groups), and the
third-level (four groups) divisions are shown in squares. The indicator species for each division
are shown, with their pseudospecies values in parentheses (1 D <1%, 2 D 1–2%, 3 D 2–4%,
4 D 4–8%, 5 D 8–16%). The median pH and range of pH values for the lakes in the four groups
are also shown

Multivariate Regression Trees

Multivariate regression trees (MRT) produce a clustering of multivariate biological
or ‘response’ data using a monothetic divisive approach, as explained below. The
method combines data exploration and data interpretation (forecasting). MRT is
related to regression in the sense that the explanation of the response data involves
explanatory variables. It thus represents an alternative to multivariate explanatory
methods such as RDA and CCA and belongs to the family of classification and
regression trees discussed by Simpson and Birks (2012: Chap. 9). MRT is a least-
squares method, but it does not use simple or multiple regression.

Monothetic divisive classification methods base each split on a single variable.
For each branching point of the tree, MRT chooses one of the explanatory variables,
and a splitting point along it, that maximises the separation of two daughter groups
in the multivariate space of the response variables (e.g., species assemblages).
Group separation, or homogeneity, is maximum when the total sum-of-squares error
statistic, called TESS in Ward’s clustering and K-means partitioning (see above), is
minimised. MRT can be seen as a form of constrained clustering, the constraint
being given by the environmental variables characterising each division step. The
method was proposed by De’ath (2002) and Larsen and Speckman (2004) as an ex-
tension of univariate regression trees (Breiman et al. 1984; Simpson and Birks 2012:
Chap. 9). De’ath also provided an R-language package, mvpart (De’ath 2007),



7 Clustering and Partitioning 193

implementing the method. Borcard et al. (2011: Sect. 4.11) discuss MRT and
combine MRT with indicator species analysis (e.g. Amsinck et al. 2006). Besides its
emphasis on interpretation and forecasting, MRT is well-suited for the analysis of
unbalanced ecological data (groups of different sizes), data containing missing val-
ues, or explanatory variables that are not necessarily related to the species in a linear
or unimodal way. Davidson et al. (2010a, b) present palaeolimnological examples of
the use of MRT to relate cladoceran assemblage relationships to zooplanktivorous
fish density and to submerged macrophyte abundance in shallow lakes in England
and Denmark. Bjerring et al. (2009) use MRT to relate modern assemblages of
cladocerans in 54 lakes along a latitudinal gradient (36–48ıN) in Europe to a range
of environmental variables. Other palaeolimnological examples include Amsinck et
al. (2006), Pelánková et al. (2008), and Herzschuh and Birks (2010).

The result of MRT analysis is a hierarchical classification of the data represented
by a tree, plus information about the explanatory (environmental) variables that best
explain each split and the distribution of the response variables, which are often
species in ecological applications, in each terminal group.

A somewhat similar approach is that of ter Braak (1986) implemented in the
DOS program DISCRIM. This method starts with a hierarchical classification
based on the species composition of the objects (in his case derived by two-way
indicator species analysis, TWINSPAN: Hill 1979). It finds the environmental or
other external predictor variables (expressed as presence/absence, qualitative or
nominal variables, ranks, quantitative, etc.) that optimally predict the classification
of the objects into two groups, four groups, etc. Simple discriminant functions
are constructed in a very simple way (Hill 1977, 1979). A presence/absence
environmental variable is a possible group indicator if its frequency of occurrence
is higher in the group than in the alternative group. The n variables with the
highest absolute difference in frequency of occurrence are included in the dis-
criminant function, where n is the smallest integer that minimises the number of
misclassifications. The great advantage of Hill’s (1977, 1979) simple discriminant
functions is their simplicity: the sign of a variable is given the same sign as that
of the frequency difference, and the number of possible sets of indicator variables
is restricted by ordering the variables on the basis of the absolute frequency
difference. These restrictions avoid the need for optimisation by linear programming
and facilitate ease of interpretation of the simple discriminants constructed (ter
Braak 1986). Hill’s simple discriminants make no assumptions about species–
environmental relationships or about the underlying nature of the data. They simply
consider if environmental variables differ in their frequencies between groups. They
are close in concept to Gower’s (1974) maximal predictive classification as the
emphasis is on classification prediction. With quantitative environmental variables,
linear discriminant analysis or multiple discriminant analysis (D canonical variates
analysis) can be used a posteriori to discriminate between groups (Birks 2012a:
Chap. 2). For nominal environmental variables, correspondence analysis could be
applied to a 2 � c table where the rows correspond to the two branches of the
node and c is the total number of categories of the nominal variables. Linear
discriminant functions may, however, be difficult to interpret and as one moves
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down the classification hierarchy the groups may contain so few objects that the
coefficients of the discriminant functions cannot be reliably estimated, if at all.
Using presence/absence data throughout for his simple discriminant functions, Hill
(1977) circumvented these problems by proposing simple discriminant functions
in which the coefficients can only take three values; �1 and C1 for variables that
are characteristic of one group or another, and 0 for non-discriminating variables.
Such functions are easy to interpret and both quantitative and nominal variables
can easily be incorporated into this approach after careful recoding using disjoint or
conjoint coding (ter Braak 1986). Janssen and Birks (1994b) applied this approach
to stratigraphical pollen and plant macrofossil assemblages to detect predictor or
indicator variables for constrained classifications of stratigraphical samples.

Example: The SWAP-UK Data

A MRT was computed for the SWAP-UK data (90 sites, 234 diatom taxa) using the
mvpart() function (mvpart package) written by G. De’ath in the R computer
language. Only three explanatory variables were available for these data: pH,
latitude, and longitude of the lakes. Cross-validation is available in De’ath’s
function; it can be used to select the tree having the smallest predicted mean
squared error, or some other tree slightly longer or shorter than that. The cross-
validated relative error criterion indicated that the partition in two groups (57 and
33 lakes, respectively) explained by pH was statistically the best; the Calinski-
Harabasz criterion led to the same conclusion. For illustrative purposes only, we
present a more developed tree containing nine binary partitions and ten terminal
groups (Fig. 7.11) along a scale representing the proportion of the species variation
explained by each partition (R2, as in Fig. 7.4). The most important explanatory
variable is clearly pH; this was also the case in the unconstrained partitions shown
in Figs. 7.7 and 7.10. The mean value of each taxon in each group is available
in De’ath’s function output; it is not presented for this example because the taxa
are too numerous. This example is presented here simply to illustrate the potential
value of MRT in analysing modern sets of biological and associated environmental
data, which are now such an important part of palaeolimnological research (Smol
2008). Multivariate regression trees provide a very powerful means of exploring
complex biological-environmental relationships (De’ath 2002) and are of obvious
wide application in a range of palaeolimnological problems. Simpson and Birks
(2012: Chap. 9) discuss the range of classification and regression trees and other
decision trees of potential value in palaeolimnology.

Simple discriminants based on pH, latitude, and longitude coded as ranks and
converted into C/� variables based on quartiles (ter Braak 1986) applied to the
two-way indicator species analysis of the SWAP-UK data (Fig. 7.10) similarly show
the over-riding importance of pH in discriminating between the four TWINSPAN
groups, but with some influence of latitude apparent at the four-group level, in
particular between the two left-hand groups in Fig. 7.10.
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Fig. 7.11 Multivariate regression tree (MRT) for the UK Surface Waters Acidification Programme
(SWAP-UK) data-set (90 lakes, 234 diatom taxa – see Birks and Jones 2012: Chap. 3) using three
explanatory variables: pH, longitude (Lon W) and latitude (Lat N) of the lakes. The best partition
is two groups. nk: number of lakes in group k

Conclusions

Hierarchical clustering methods and partitioning techniques such as K-means
partitioning and two-way indicator species analysis are useful tools for summarising
group structure within large, complex, multivariate data-sets that are increasingly
common in palaeolimnology. The incorporation of one- or two-dimensional con-
straints in the clustering algorithms provides means of exploring group structure in
temporal, stratigraphical data and in geographical modern data, respectively. Indi-
cator species analysis with its associated permutation tests is a simple and effective
means of detecting statistically significant indicator species for any grouping of
a set of objects. The newly developed approach of multivariate regression trees
combines partitioning and data exploration with regression and data interpretation
and modelling. Agglomerative clustering and K-means partitioning are available in
most statistical software packages, as well as in the R statistical language (functions
hclust() and kmeans()). Multivariate regression trees and indicator species
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analysis can be computed using functions of the mvpart, labdsv, and indicspecies
packages in R (see Borcard et al. 2011).

Palaeolimnologists have largely concentrated on the use of classical ordination
and canonical ordination methods to explore patterns in their data. Modern classifi-
cation and partitioning techniques along with indicator species analysis and multi-
variate regression trees are attractive and useful complementary tools for exploring
and summarising large, complex, palaeolimnological data-sets (see Table 7.2). They
deserve wider use than they currently receive within the palaeolimnological research
community.
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De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and
statistical inference. Ecology 90:3566–3574
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Chapter 8
From Classical to Canonical Ordination

Pierre Legendre and H. John B. Birks

Abstract The simple or classical ordination methods mostly used by palaeo-
ecologists and palaeolimnologists are principal component analysis (PCA) and
correspondence analysis (CA), and, more rarely, principal coordinate analysis
(PCoA) and non-metric multidimensional scaling (NMDS). These methods are
reviewed in a geometric framework. They mostly differ by the types of distances
among objects that they allow users to preserve during ordination. Canonical
ordination methods are generalisations of the simple ordination techniques; the
ordination is constrained to represent the part of the variation of a table of response
variables (e.g., species abundances) that is maximally related to a set of explanatory
variables (e.g., environmental variables). Canonical redundancy analysis (RDA) is
the constrained form of PCA whereas canonical correspondence analysis (CCA) is
the constrained form of CA. Canonical ordination methods have also been proposed
that look for polynomial relationships between the dependent and explanatory
variables. Tests of statistical significance using permutation tests can be obtained
in canonical ordination, just as in multiple regression. Canonical ordination serves
as the basis for variation partitioning, an analytical procedure widely used by
palaeolimnologists.
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Département de sciences biologiques, Université de Montréal, C.P. 6128,
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Introduction

To ordinate is to arrange objects in some order (Goodall 1954). Ordination
procedures are well-known to ecologists who wish to represent and summarise
their observations along one, two, or a few axes. The most simple case is the
ordination of sites along a single variable representing an environmental gradient
(e.g., lake-water pH), or a sampling variable such as depth along a sediment core
or along the estimated ages of levels in a sediment core. Ordination diagrams are
simply scatter-plots of the objects (e.g., core levels) on two or sometimes three axes
according to the values taken by the objects along the variables comprising the axes.

When the data are multivariate, the problem is either to choose two pertinent
variables for plotting the observations, or to construct synthetic variables that
represent, in some optimal mathematical way, the set of variables under study; these
synthetic variables may then be used as the major axes for the ordination. The data
matrix subjected to analysis may contain a set of environmental variables, or the
multi-species composition of the assemblage under study. In such cases, we will
say that we are performing an ordination in a space of reduced dimensionality, or an
ordination in reduced space, since the original data-set has many more dimensions
(variables) than the ordination graph we want to produce.

This chapter describes the choices that have to be made in order to obtain a
meaningful and useful ordination diagram. It will also show how the methods of
canonical ordination, which are widely used to relate species to environmental data
in palaeolimnology, are extensions within the framework of regression modelling
of two classical ordination methods. Some forms of ordination analysis, classical or
canonical, are widely used by palaeolimnologists as tools in the handling, summari-
sation, and interpretation of palaeolimnological data, either modern assemblages or
core fossil assemblages (Smol 2008). The various types of use of ordination analysis
in palaeolimnology are summarised in Table 8.1. No attempt is made here to provide
a comprehensive review of palaeolimnological applications of ordination methods.
Emphasis is placed instead on basic concepts and the critical methodological
questions that arise in the use of ordination methods in palaeolimnology. Birks
(2008, 2010) provides a short overview of the range of ordination methods currently
available and of the general use and value of ordination techniques in ecology and
palaeoecology. Borcard et al. (2011) discuss classical (unconstrained) and canonical
(constrained) ordinations and their implementation with R.
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Table 8.1 Palaeolimnological uses of ordination analysis

Modern biological assemblages (e.g., diatoms, chironomids)
Estimate the amount of compositional change or turnover – DCA
Summarise graphically the major patterns of variation – PCA, tb-PCA, CA, DCA, more rarely

PCoA or NMDS
Display results of clustering or partitioning of data in a few dimensions – PCA, tb-PCA, CA,

DCA, more rarely PCoA or NMDS
Modern environmental data (e.g., lake-water chemistry)

Summarise graphically the major patterns of variation – PCA, more rarely PCoA or NMDS
Display results of clustering or partitioning of data in a few dimensions – PCA, more rarely

PCoA or NMDS
Fossil biological assemblages (e.g., diatoms, chironomids)

Estimate the amount of compositional change or turnover – DCA or its canonical relative
DCCA with object age or depth as the sole constraining variable

Summarise graphically the major patterns of variation – PCA, tb-PCA, CA, DCA, more rarely
PCoA or NMDS

Summarise stratigraphically the major patterns of variation – plot PCA, tb-PCA, CA, or DCA
ordination axis object scores (e.g., axes 1–3) stratigraphically

Modelling temporal structure – RDA, tb-RDA, db-RDA, or CCA with PCNM temporal
constraints

Down-core non-biological data (e.g., geochemistry, magnetics)
Summarise graphically the major patterns of variation – PCA
Summarise stratigraphically the major patterns of variation – plot PCA ordination axis object

scores stratigraphically
Modelling temporal structure – RDA with PCNM temporal constraints

Modern and fossil biological assemblages (e.g., diatoms, chironomids)
Display similarities and dissimilarities between modern and fossil assemblages – PCA,

tb-PCA, CA, DCA, more rarely PCoA or NMDS with either modern or fossil analysed
passively or analysed together

Modern biological assemblages and modern environmental data (e.g., diatoms and
lake-water chemistry)

Estimate the amount of compositional change or turnover along individual environmental
gradients – DCCA

Summarise graphically the major patterns of biological variation explained by the
environmental variables – RDA, tb-RDA, db-RDA, or CCA

Summarise graphically the major patterns of biological variation remaining after the partialling
of other environmental variables – partial RDA, partial tb-RDA, partial db-RDA, or partial
CCA

Assessment of statistical significance of single or combined environmental variables as
predictors of the biological variation – RDA, tb-RDA, db-RDA, or CCA with Monte Carlo
permutation tests

Development of ‘minimal adequate model’ of environmental variables that explain statistically
the biological variation almost as well as the full set of environmental variables – RDA,
tb-RDA, db-RDA, or CCA with variable selection (e.g., forward selection)

Partitioning biological variation among two or more sets of explanatory variables – RDA and
partial RDA, tb-RDA and partial tb-RDA, db-RDA and partial db-RDA, CCA and partial
CCA

Modelling spatial structure – RDA, tb-RDA, db-RDA, or CCA with PCNM spatial constraints
(continued)



204 P. Legendre and H.J.B. Birks

Table 8.1 (continued)

Modern biological assemblages, modern environmental data, and fossil biological
assemblages (e.g., diatoms and lake-water chemistry)

Display similarities and dissimilarities between modern and fossil assemblages in relation to
modern environmental gradients – RDA, tb-RDA, db-RDA, or CCA with the fossil
assemblages analysed passively

Fossil biological assemblages and palaeoenvironmental variables (e.g., diatoms, occurrences
of volcanic tephras)

Test hypotheses of biological responses to particular environmental variables – RDA and
partial RDA, tb-RDA and partial tb-RDA, db-RDA and partial db-RDA, CCA and partial
CCA with Monte Carlo permutation tests

Modelling temporal structure – PCNM
Fossil biological assemblages from many sites

Summarise graphically the major patterns of variation – PCA, tb-PCA, CA, DCA, more rarely
PCoA or NMDS

Modelling spatial structure – RDA, tb-RDA, db-RDA, or CCA with PCNM spatial constraints

CA correspondence analysis, CCA canonical correspondence analysis, db-RDA distance-based
canonical redundancy analysis, DCA detrended correspondence analysis, DCCA detrended canon-
ical correspondence analysis, NMDS non-metric multidimensional scaling, PCA principal com-
ponent analysis, PCNM principal coordinates of a neighbour matrix, PCoA principal coordinate
analysis, tb-PCA transformation-based principal component analysis, tb-RDA transformation-
based canonical redundancy analysis

Basic Concepts in Simple Ordination

The simple ordination methods mostly used by (palaeo)ecologists and (palaeo)
limnologists are principal component analysis (PCA), correspondence analysis
(CA) and its relative, detrended correspondence analysis (DCA), principal coordi-
nate analysis (PCoA), and non-metric multidimensional scaling (NMDS) (Prentice
1980, 1986). These methods will be reviewed here in a geometric framework. They
mostly differ in the types of distances among objects that they attempt to preserve
in the ordination.

Simple ordination is used in palaeolimnology to address two main types of
questions. (1) In a study of sediment cores, ordination is used to identify the main
gradients in the species assemblage data, which are multivariate by nature, and to
interpret these gradients using species loadings on the ordination axes (see Birks
2012b: Chap. 11). Ordinations are also used as graphical templates to draw groups
of sampling units obtained by clustering, as well as trajectories of the multivariate
species data through time to estimate the magnitude and rates of change in species
assemblage composition (Birks and Gordon 1985; Jacobson and Grimm 1986; Birks
1992, 2012b: Chap. 11). (2) Ordination of modern objects from various locations is
also used as a basis on which fossil objects can be projected as passive objects for
comparison between modern and fossil assemblages (Lamb 1984; Birks and Gordon
1985; Birks 1992, 2012b: Chap. 11).

Starting with a data-set, several choices have to be made before obtaining an
ordination (Table 8.2). These choices will be described in some detail because a
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Table 8.2 Questions that must be addressed prior to ordination analysis

Transform physical data
Univariate distributions are not symmetrical ) Apply skewness-reduction transformation
Variables are not in the same physical units ) Apply standardisation or ranging
Multistate qualitative variables ) In some cases, transform them to dummy variables

Transform biological composition data (species presence-absence or abundance)
Reduce asymmetry of distributions ) Apply square root or log(y C c) transformation
Make biological composition data suitable for Euclidean-based ordination methods ) Use the

chord, chi-square, or Hellinger transformation
Choose an appropriate distance function
Popular similarity or distance functions are:

Physical binary data: simple matching coefficient
Species presence-absence data: Jaccard, Sørensen, and Ochiai coefficients. The transformation

D D p
1 � S ensures a fully Euclidean representation in principal coordinate analysis

Quantitative physical data: Euclidean distance on standardised or ranged variables
Physical data of mixed precision levels (quantitative, qualitative, binary): Gower similarity
Species abundance data: the chord, chi-square, Hellinger coefficients, as well as Clark’s

coefficient of divergence, are Euclidean. The Steinhaus similarity (equivalent to the
Odum/Bray-Curtis distance) and Whittaker’s index of association may not be Euclidean

good understanding of their implications is likely to produce more informative and
useful ordination diagrams. Users of ordination methods should not let themselves
be guided blindly by the implicit choices that are inherent to some methods or
computer programs. The critical decisions to be made are the following:

• Do the data (environmental or assemblage data) need to be transformed prior to
ordination analysis?

• Which distance measure should be preserved by the ordination method?
• Should a metric or non-metric ordination method be used?
• How many axes are required?

These decisions will now be discussed in some detail.

Transformation of Physical Data

Physical, chemical, or geological variables are often used as explanatory variables in
palaeolimnological studies. They may also be used directly to obtain ordinations of
the objects or sites on the basis of these variables (Table 8.1). Three problems may
require pre-processing of the data before ordination: (a) if the distributions of the
data along the variables are not symmetrical, skewness may need to be reduced;
(b) if the variables are not all expressed in the same physical units, they need to
be transformed to eliminate their physical units; (c) multistate qualitative variables
(e.g., rare, common, abundant) may require, in some cases, transformation into
dummy variables prior to ordination. Possible solutions to these three problems are
as follows.
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1. An ordination in which some of the points are clumped in a big mass while
other points are stretched across the diagram is not very useful or informative.
It is better to have the points scattered in a fairly homogeneous fashion across
the diagram, with perhaps some clumping in the centre of the diagram, or in
some areas of higher density if the data are clumped; the latter case may suggest
that a cluster analysis might produce a more interesting and useful multivariate
description of the data (see Legendre and Birks 2012: Chap. 7).

The data should be initially examined using univariate methods, such as
computing skewness statistics, or drawing frequency histograms (see Juggins and
Telford 2012: Chap. 5). Depending on the type of asymmetry found, various
transformations can be applied, such as square root, double square root, or
log transformation. General methods, such as the Box-Cox transformations, are
available to find automatically the most efficient normalising transformation;
see Sokal and Rohlf (1995), Legendre and Legendre (1998, 2012), and Jug-
gins and Telford 2012: Chap. 5. These are often referred to as normalising
transformations because removing the asymmetry is an important step towards
obtaining normally-distributed data. We emphasise, however, that the objective
prior to ordination is not to obtain a multinormal distribution of the data, but
simply to reduce the asymmetry of the distributions. Tests of normality may be
useful to screen the data and identify the variables whose distributions should
be examined more closely in order to find, if possible, a skewness-reducing
transformation (see Juggins and Telford 2012: Chap. 5).

Scientists often worry about transforming variables. Is it permissible? The
original physical unit in which an environmental variable is measured imposes
a scale to the data that is as unlikely to be related to the response of the species
to this variable as any other scale that we may impose by applying a nonlinear
transformation to the data. In order to relate a physical variable to the response of
the species, physiological studies would be required to determine what the most
appropriate transformation is. So, short of having such information available
to them, users of ordination methods are left with statistical criteria only, such
as skewness of the distributions, to decide on the transformation of physical
variables.

2. In most cases, physical variables are not expressed in the same physical units;
some may be in cm, others in �g L�1, in ıC, or in pH units. Such variables need to
be transformed to eliminate the physical dimensions before being used together
to produce an ordination. Note that log-transformed data are dimensionless
because logarithms are exponents of a base and exponents are dimensionless.
There are two main methods for eliminating physical dimensions: standardisation
and ranging. They both eliminate the physical units by dividing the original data
by a value possessing the same physical units.

• Standardise variable y to z:

zi D yi � Ny
sy

(8.1)
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where yi is the original value of variable y for object i, Ny is the mean value
of y, and sy is the estimated standard deviation of y. zi is the standardised
value of variable y for object i. Variable standardisation is available in
the decostand() function of the veganR-language package (method D
'standardize').

• Relative-scale variables: range variable y to y’ using equation

y0
i D yi =ymax (8.2)

where y0
i is the ranged value of y for object i and ymax is the maximum value

of y in the whole data table. This form of ranging is used for relative-scale
variables, where ‘zero’ means the absence of the characteristic of interest.
This transformation is available in the decostand() function of the vegan
R-language package (method D 'max').

• Interval-scale variables: range variable y to y’ using equation

y
0

i D yi =ymin

ymax � ymin
(8.3)

where y
0

i is the ranged value of y for object i, whereas ymin and ymax are,
respectively, the minimum and maximum values of y in the whole data
table. This form of ranging is used for interval-scale variables, in which
the value ‘zero’ is chosen arbitrarily and whose range may include negative
values. Temperatures in ıC are an example of an interval-scale variable. This
transformation is available in the decostand() function of the vegan
R-language package (method D 'range').

Variables may also be standardised in order to bring their variances to unity.
It is preferable to apply skewness-reducing transformations before standardising
the data. If the opposite is done, standardisation would produce negative values
which are incompatible with square root, log, or Box-Cox transformations.
Ranging, which brings all values of a variable into the interval [0,1], may be
used before or after applying a skewness-reducing transformation.

3. Multistate qualitative variables may be handled in different ways. If the ordi-
nation is to be obtained through a method requiring the prior calculation of
a distance matrix (PCoA, NMDS), resemblance coefficients are available that
are capable of handling mixtures of quantitative and qualitative variables, as
discussed in the section below on Choice of an Appropriate Distance Function
and in Simpson (2012: Chap. 15). If, on the other hand, the ordination is to be
obtained through a method that will implicitly preserve the Euclidean distance
among objects (PCA, redundancy analysis (RDA)), the qualitative data must
be transformed in some way prior to being subjected to the ordination method
because a qualitative variable is not a metric or measurement variable; in other
words, the distance between states 1 and 3 of a qualitative variable is not twice
as large as the distance between states 1 and 2. Variables from which Euclidean
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distances are calculated must be metric (or quantitative). The transformation can
be done in one of two ways:

• A qualitative variable possessing p states can be recoded into p binary (0–1)
variables, called dummy variables, using one dummy variable for each state
of the qualitative variable. The coding method is described in Legendre and
Legendre (1998, 2012: Sect. 1.5.7). Dummy variables can be used in PCA or
RDA only if the program provides a possibility for weighting the variables.
Indeed, if the variables are standardised or ranged prior to the ordination, a
qualitative variable recoded into p dummy variables occupies p dimensions in
the full-dimensional representation of the data. Each dummy variable should
be downweighted to have a weight of 1/p in the analysis while the other
quantitative variables have a weight of 1. The program CANOCO (ter Braak
1988a; ter Braak and Šmilauer 2002) offers the possibility of specifying
weights for variables in PCA or RDA.

• Redundancy analysis (RDA) or canonical correspondence analysis (CCA) can
be used to find a transformation of a qualitative multistate variable into a
quantitative variable which is optimal with respect to a table of assemblage
composition data (Legendre and Legendre 1998: p. 597). This is done as
follows. Recode the qualitative variable into dummy variables as in the
previous paragraph. Remove one of the dummy variables because, with all
p dummy variables, the variance-covariance matrix of the dummy variables
is singular and cannot be inverted; this is an obligatory step for explanatory
variables in multiple regression and canonical analysis. For RDA or CCA, use
the table of species composition data as the response matrix and the table of
dummy variables as the explanatory matrix. If the first canonical ordination
axis explains most of the canonical variance, it can be used in further analyses
as a quantitative representation of the original qualitative variable. [Note: in
the program CANOCO, the last of a set of dummy variables is automatically
removed from the calculations. In the same way, the last state of a ‘factor’
variable is removed from the calculations in the rda() and cca() functions
of the vegan R-language package, but the centroids of all states are drawn in
the biplot.]

Transformation of Assemblage Composition Data

Assemblage composition data (species abundances) for short gradients, which
contain relatively few zeros, can be ordinated by PCA or RDA: in that case
the Euclidean distance is a meaningful measure of the ecological distance among the
observations. These variables may, however, have asymmetric distributions because
species tend to have exponential growth when conditions are favourable. This well-
known fact has been embedded in the theory of species-abundance models; see
He and Legendre (1996, 2002) for a synthetic view of these models. To reduce
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the asymmetry of the distributions, the species abundance variable y may be
transformed to y’ by taking the square root or the fourth root (which is equivalent to
taking the square root twice), or by using a log transformation:

y0 D y0:5 or y0 D y0:25 or y0 D log.y C c/ (8.4)

where y is the species abundance and c is a constant. Usually, c D 1 in species log
transformations, so that an abundance y D 0 is transformed into y’ D log(0 C 1) D 0
for any logarithmic base. Michael Palmer (http://www.okstate.edu/artsci/botany/
ordinate/) does not recommend this transformation for absolute biomass data
because it gives different values depending on the mass units (e.g., g or kg)
used to record biomass. Another transformation that reduces the asymmetry of
heavily skewed abundance data is the one proposed by Anderson et al. (2006). The
abundance data yij are transformed to an exponential scale that makes allowance for
zeros: y0

ij D log10

�
yij

�C1 when yij > 0 or y0
ij D 0 when yij D 0. Hence, for yij D f0,

1, 10, 100, 1000g, the transformed values are f0, 1, 2, 3, 4g. This transformation is
available in the decostand() function of the vegan package (method D 'log').

Community composition data sampled along long ecological gradients typically
contain many zero values because species are known to have generally unimodal
responses along environmental gradients (ter Braak and Prentice 1988). The
proportion of zeros is greater when the sampling has crossed a long environmental
gradient. This is because species have optimal niche conditions, where they are
found in greater abundances along environmental variables (see Juggins and Birks
2012: Chap. 14). The optimum for a species along an environmental variable
corresponds to the centre of its theoretical Hutchinsonian niche along that factor.
These propositions are discussed in most texts of community ecology and, in
particular, in Whittaker (1967) and ter Braak (1987a). Because ordination methods
use a distance function as their metric to position the objects with respect to one
another in ordination space, it is important to make sure that the chosen distance is
meaningful for the objects under study. Choosing an appropriate distance measure
means trying to model the relationships among the sites appropriately for the
assemblage composition data at hand. The choice of a distance measure is an
ecological, not a statistical decision.

An example presented in Legendre and Legendre (1998: p. 278, 2012: Sect.
7.4.1) shows that the Euclidean distance function may produce misleading results
when applied to assemblage composition data. Alternative (dis)similarity functions
described in the next section, which were specifically designed for assemblage
composition data, do not have this drawback. In some cases, distance measures
that are appropriate for assemblage composition data can be obtained by a two-step
procedure: first, transform the species abundance data in some appropriate way, as
described below; second, compute the Euclidean distance among the sites using the
transformed data (Fig. 8.1). This also means that assemblage composition data trans-
formed in these ways can be directly used to compute ordinations by the Euclidean-
based methods of PCA or RDA; this approach is called transformation-based PCA
(tb-PCA) or transformation-based RDA (tb-RDA). The transformed data matrices

http://www.okstate.edu/artsci/botany/ordinate/
http://www.okstate.edu/artsci/botany/ordinate/
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Fig. 8.1 The role of the data
transformations as a way of
obtaining a given distance
function. The example uses
the chord distance (Modified
from Legendre and Gallagher
2001)

can also be used in K-means partitioning, which is another Euclidean-based method
(see Legendre and Birks 2012: Chap. 7). Legendre and Gallagher (2001) have
shown that the following transformations can be used in that context (some of these
transformations have been in use in community ecology and palaeoecology for a
long time, e.g., by Noy-Meir et al. (1975) and by Prentice (1980)).

1. Transform the species abundances from each object (sampling unit) into a vector
of length 1, using the equation:

y0
ij D yij

,vu
u
t

pX

j D1

y2
ij (8.5)

where yij is the abundance of species j in object i. This equation, called the ‘chord
transformation’ in Legendre and Gallagher (2001), is one of the transformations
available in the program CANOCO (Centring and standardisation for ‘samples’:
Standardise by norm) and in the decostand() function of the vegan R-
language package (method D 'normalize'). If we compute the Euclidean distance

DEuclidean
�
x0

1; x0
2

� D
vu
u
t

pX

j D1

�
y0

1j � y0
2j

�2
(8.6)

between two rows (x0
1, x0

2) of the transformed data table, the resulting value is
identical to the chord distance (Eq. 8.18) that could be computed between the
rows of the original (untransformed) species abundance data table (Fig. 8.1).
The interest of this transformation is that the chord distance, proposed by
Orlóci (1967) and Cavalli-Sforza and Edwards (1967), is one of the distances
recommended for species abundance data. Its value is maximum and equal top

2 when two objects have no species in common. As a consequence, after the
chord transformation, the assemblage composition data are suitable for PCA or
RDA which are methods preserving the Euclidean distance among the objects.

2. In the same vein, if the data [yij] are subjected to the ‘chi-square distance
transformation’ as follows:
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y0
ij D p

yCC
yij

yiC
p

yCj

(8.7)

where yiC is the sum of the row (object) values, yCj is the sum of the
column (species) values, and yCC is the sum of values of the whole data
table, then Euclidean distances computed among the rows of the transformed
data table [y0

ij] are equal to chi-square distances (Eq. 8.19) among the rows
of the original, untransformed data-table. The chi-square distance, preserved in
correspondence analysis, is another distance often applied to species abundance
data. Its advantage or disadvantage, depending upon the circumstances, is that
it gives higher weight to the rare than to the common species. The chi-square
distance transformation is available in the decostand() function of the vegan
R-language package (method D 'chi.square').

3. The data can be transformed into profiles of relative species abundances through
the equation:

y0
ij D yij

yiC
(8.8)

which is a widespread method of data standardisation, prior to analysis, espe-
cially when the sampling units are not all of the same size as is commonly the
case in palaeolimnology. Data transformed in that way are called compositional
data. In palaeolimnology and community ecology, the species assemblage is con-
sidered to represent the response of the community to environmental, historical,
or other types of forcing; the variation of any single species has no clear inter-
pretation. Compositional data are used because ecologists and palaeoecologists
believe that the vectors of relative proportions of species can lead to meaningful
interpretations. Many fossil or recent assemblage data-sets are presented as
profiles of relative abundances, for example, in palynology and palaeolimnology,
or as percentages if the values y0

ij are multiplied by 100. Computing Euclidean
distances among rows (objects) of a data-table transformed in this way produces
‘distances among species profiles’ (Eq. 8.20). The transformation to profiles of
relative abundances is available in the decostand() function of the vegan
R-language package (method D 'total'). Statistical criteria investigated by Leg-
endre and Gallagher (2001) show that this is not the best transformation; the
Hellinger transformation (next paragraph) is preferable. Log-ratio analysis has
been proposed as a way of analysing compositional data (Aitchison 1986). This
method is, however, only appropriate for data that do not contain many zeros (ter
Braak and Šmilauer 2002).

4. A modification of the species profile transformation is the Hellinger
transformation:

y0
ij D

r
yij

yiC
(8.9)
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Computing Euclidean distances among rows (objects) of a data table transformed
in this way produces a matrix of Hellinger distances among sites (Eq. 8.21). The
Hellinger distance, described in more detail below, is a measure recommended for
clustering or ordination of species abundance data (Prentice 1980; Rao 1995). It has
good statistical properties as assessed by the criteria investigated by Legendre and
Gallagher (2001). The Hellinger transformation is available in the decostand()
function of the vegan R-language package (method D 'hellinger').

Before using these transformations, one may apply a square root or log transfor-
mation to the species abundances in order to reduce the asymmetry of the species
distributions (Table 8.2). The transformations described above can also be applied
to presence-absence data. The chord and Hellinger transformations appear to be
the best for general use. The chi-square distance transformation is interesting when
one wants to give more weight to the rare species; this is the case when the rare
species are considered to be good indicators of special ecological conditions. We
will come back to the use of these transformations in later sections. Prior to these
transformations, any of the standardisations investigated by Noy-Meir et al. (1975),
Prentice (1980), and Faith et al. (1987) may also be used if the study justifies it:
species adjusted to equal maximum abundances or equal standard deviations, sites
standardised to equal totals, or both.

Choice of an Appropriate Distance Function

Most statistical and numerical analyses assume some form of distance relationship
among the observations. Univariate and multivariate analyses of variance and
covariance, for instance, assume that the Euclidean distance is the appropriate way
of describing the relationships among objects; likewise for methods of multivariate
analysis such as K-means partitioning and PCA (see Legendre and Birks 2012:
Chap. 7). It is the responsibility of the scientist doing the analyses either to make
sure that this assumption is met by the data, or to model explicitly relationships of
other forms among the objects by computing particular distance functions and using
them in appropriate methods of data analysis.

Many similarity or distance functions have been used by ecologists; they are
reviewed by Legendre and Legendre (1998, 2012: Chap. 7), Borcard et al. (2011:
Chap. 3) and other authors. We will only mention here those that are most commonly
used in the ecological, palaeoecological, and palaeolimnological literature.

1. The Euclidean distance (Eq. 8.6) is certainly the most widely used coefficient
to analyse tables of physical descriptors, although it is not always the most
appropriate. This is the coefficient preserved by PCA and RDA among the rows
of the data matrix (objects), so that if the Euclidean distance is considered
appropriate to the data, these methods can be applied directly to the data matrix,
perhaps after one of the transformations described in the two previous sections,
to obtain a meaningful ordination.
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2. For physical or chemical data, an alternative to the Euclidean distance is to
compute the Gower (1971) coefficient of similarity, followed by a transformation
of the similarities to distances. The Gower coefficient is particularly important
when one is analysing a table containing a mixture of quantitative and qualitative
variables. In this coefficient, the overall similarity is the mean of the similarities
computed for each descriptor j (see Simpson 2012: Chap. 15). Each descriptor is
treated according to its own type. The partial similarity (sj) between objects x1

and x2 for a quantitative descriptor j is computed as follows:

sj .x1; x2/ D 1 �
ˇ
ˇy1j � y2j

ˇ
ˇ

Rj

(8.10)

where Rj is the range of the values of descriptor j across all objects in the
study. The partial similarity sj is a value between 0 (completely dissimilar) and 1
(completely similar). For a qualitative variable j, sj D 1 if objects x1 and x2 have
the same state of the variable and sj D 0 if they do not. The Gower similarity
between x1 and x2 is obtained from the equation:

S.x1; x2/ D
pX

j D1

sj .x1; x2/ =p (8.11)

where p is the number of variables. The variables may receive different weights
in this coefficient; see Legendre and Legendre (1998, 2012) for details. See also
the note at the end of this section about implementations in R.

For presence-absence of physical descriptors, one may use the simple match-
ing coefficient:

S.x1; x2/ D a C d

a C b C c C d
D a C d

p
(8.12)

where a is the number of descriptors for which the two objects are coded 1, d is
the number of descriptors for which the two objects are coded 0, whereas b and
c are the numbers of descriptors for which the two objects are coded differently.
p is the total number of physical descriptors in the table.

There are different ways of transforming similarities (S) into distances (D).
The most commonly used equations are:

D.x1; x2/ D 1 � S.x1; x2/ (8.13)

and

D.x1; x2/ D
p

1 � S.x1; x2/ (8.14)
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For the coefficients described in Eqs. 8.11, 8.12, 8.15, 8.16 and 8.17, Eq. 8.14
is preferable for transformation prior to principal coordinate ordination because
the distances so obtained produce a fully Euclidean representation of the objects
in the ordination space, except possibly in the presence of missing values;
Eq. 8.13 does not guarantee such a representation (Legendre and Legendre 1998,
2012: Table 7.2). The concept of Euclidean representation of a distance matrix
is explained below in the section on Euclidean or Cartesian Space, Euclidean
Representation. Equation 8.14 is used for transformation of all binary coefficients
computed by the dist.binary() function of the ade4 R-language package.

3. For species presence-absence data,

1. the Jaccard coefficient:

S.x1; x2/ D a

a C b C c
(8.15)

2. and the Sørensen coefficient of similarity:

S.x1; x2/ D 2a

2a C b C c
(8.16)

are widely used. In these coefficients, a is the number of species that the two
objects have in common, b is the number of species found at site or sample
1 but not at site or sample 2, and c is the number of species found at site or
sample 2 but not at site or sample 1.

3. The Ochiai (1957) coefficient:

S.x1; x2/ D a
p

.a C b/.a C c/
(8.17)

deserves closer attention on the part of palaeoecologists since it is mono-
tonically related to the binary form of the widely used chord and Hellinger
distances described below (Eqs. 8.18 and 8.21).

For principal coordinate ordination analysis, the three similarity coefficients
described above (Eqs. 8.15, 8.16, and 8.17) can be transformed into Euclidean-
embeddable distances using the transformation D(x1,x2) Dp

.1 � S.x1; x2//

(Eq. 8.14). After these transformations, these distances will not produce negative
eigenvalues in principal coordinate analysis and will thus be entirely represented
in Euclidean space.

An interesting similarity coefficient among sites, applicable to presence-
absence data, has been proposed by the palaeontologists Raup and Crick (1979):
the coefficient is the probability of the data under the hypothesis of no association
between objects. The number of species in common in two sites, a, is tested
for significance under the null hypothesis H0 that there is no association



8 Ordination 215

between sites x1 and x2 because each site in a region (or each level in a
core) receives a random subset of species from the regional pool (or the whole
sediment core). The association between objects, estimated by a, is tested using
permutations. The probability (p) that the data conform to the null hypothesis
is used as a measure of distance, or (1 � p) as a measure of similarity. The
permutation procedure of Raup and Crick (1979) was re-described by Vellend
(2004). Legendre and Legendre (2012: coefficient S27) describe two different
permutational procedures that can be used to test the significance of the number
of species in common between two sites (i.e., the statistic a). These procedures
correspond to different null hypotheses. Birks (1985) discusses the application
of this and other probabilistic similarity measures in palaeoecology.

4. Several coefficients have been described by ecologists for the analysis of
quantitative assemblage composition data. The property that these coefficients
share is that the absence of any number of species from the two objects under
comparison does not change the value of the coefficient. This property avoids
producing high similarities, or small distances, between objects from which
many species are absent. The Euclidean distance function, in particular, is not
appropriate for assemblage composition data obtained from long environmental
gradients because the data table then contains many zeros, and the objects
that have many zeros in common have small Euclidean distance values; this is
considered to be an inappropriate answer in most ecological and palaeoecological
problems. This question is discussed at length in many texts of quantitative
community ecology. The coefficients most widely used by ecologists for species
abundance data tables are:

1. The chord distance, occasionally called the cosine-™ distance:
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(8.18)

which consists of subjecting the species data to the chord transformation
(Eq. 8.5) followed by calculation of the Euclidean distance (Eq. 8.6). The
chord distance is closely related to the Hellinger distance (Eq. 8.21).

2. The chi-square distance:

D.x1; x2/ D p
yCC
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�2

(8.19)
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where yiC is the sum of the frequencies in row i, yCj is the sum of the
frequencies in column j, and yCC is the sum of all frequencies in the data
table. It is equivalent to subjecting the species data to the chi-square distance
transformation (Eq. 8.7) followed by calculation of the Euclidean distance
(Eq. 8.6).

3. The distance between species profiles:

D.x1; x2/ D
vuu
t

pX
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�
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y1C
� y2j

y2C

�2

(8.20)

is equivalent to subjecting the species data to the transformation to profiles
of relative abundances (Eq. 8.8) followed by calculation of the Euclidean
distance (Eq. 8.6).

4. The Hellinger distance (Rao 1995):
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(8.21)

It is equivalent to subjecting the species data to the Hellinger transforma-
tion (Eq. 8.9) followed by calculation of the Euclidean distance (Eq. 8.6).
This equation is occasionally called the chord distance (Prentice 1980)
described in Eq. 8.18, because the Hellinger distance is the chord distance
computed on square-root transformed frequencies. In the Hellinger dis-
tance, the relative species abundances (‘compositional data’, used directly in
Eq. 8.20) are square-root transformed in order to lower the importance of the
most abundant species, which may grow exponentially when they encounter
favourable conditions. This coefficient thus increases the importance given to
the less abundant species (Prentice 1980). The chord (Eq. 8.18) and Hellinger
(Eq. 8.21) functions produce distances in the range [0,

p
2]. For presence-

absence data, they are both equal to

p
2

s

1 � a
p

.a C b/.a C c/

where

a
p

.a C b/.a C c/

is the Ochiai (1957) similarity coefficient for binary data described in Eq. 8.17.
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5. A coefficient first described by Steinhaus (in Motyka 1947) and rediscovered
by other authors, such as Odum (1950) and Bray and Curtis (1957), is called
the percentage difference (Odum 1950):

D.x1; x2/ D

pP

j D1

jy1j � y2j j
pP

j D1

.y1j C y2j /

(8.22)

This coefficient has excellent descriptive properties for community com-
position data (Hajdu 1981; Gower and Legendre 1986). Taking the square
root of this distance will avoid negative eigenvalues and complex principal
axes in principal coordinate analysis. A particular form of this coefficient,
for data transformed into percentages by sites (y0

ij of Eq. 8.8 multiplied by
100), has been described by Renkonen (1938). When presence-absence data
are used in Eq. 8.22, the resulting coefficient is the one-complement of the
Sørensen coefficient of similarity (Eq. 8.16) computed over the same data
(i.e., D(eq. 8.22) D 1 � S(eq. 8.16)).

6. Whittaker’s (1952) index of association is:
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7. Clark’s (1952) coefficient of divergence:

D.x1; x2/ D
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(8.24)

is a form of the Canberra metric (Lance and Williams 1967) rescaled to the
[0, 1] range.

Most of the distances described in this section can be computed using
the R-language functions dist() (stats package), vegdist() (vegan),
dist.binary() (ade4), gowdis() (FD) and daisy() (cluster); see
footnote of Table 8.3 for references. This statement calls for some remarks.
(1) These packages do not all produce the same results for the binary Jac-
card coefficient: dist() and vegdist() use the transformation D D (1 � S)
(Eq. 8.13) whereas dist.binary() uses D D p

1 � S (Eq. 8.14) to
transform similarities into distances. The latter guarantees that a fully Eu-
clidean representation, without negative eigenvalues and complex eigenvectors,
will result from principal coordinate analysis. (2) The chord, chi-square and
Hellinger distances are not obtained directly but after two calculation steps:
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Table 8.3 Computer programs for ordination. The list makes no pretence at being exhaustive

Simple ordination
CANOCO: PCA, CA
PC-ORD: PCA, CA, NMDS
PrCoord: PCoA (available dissimilarity measures: 7)
WynKyst: NMDS (available dissimilarity measures: 7)
R-language functions for PCA and CA: rda(), cca() (vegan package); dudi.pca(),

dudi.coa() (ade4 package); pca() (labdsv package)
R-language dissimilarity functions: 10 binary measures in dist.binary() of ade4, 6

dissimilarity measures in dist() of stats, 13 in vegdist() of vegan, 3 in daisy()
of cluster, and gowdis() in FD

R-language functions for PCoA: dudi.pco() (ade4 package); pcoa() (ape package);
cmdscale() (stats package) and its wrappers cmds.diss() (mvpart package),
pco() (labdsv package), and capscale() (vegan package).

R-language functions for NMDS: isoMDS() (MASS package) and its wrappers nmds() and
bestnmds() of labdsv, and metaMDS() of vegan. Dissimilarity measures available in
the R language: see previous entry

SYN-TAX: PCA, CA, PCoA, NMDS (available dissimilarity measures: 39)
Canonical ordination

CANOCO: linear RDA and CCA; partial RDA and CCA
PC-ORD: linear CCA
Polynomial RDACCA: linear and polynomial RDA, linear and polynomial CCA
R-language functions: rda() and cca() (vegan package): linear RDA and CCA; partial

RDA and CCA
R-language function for variation partitioning: varpart() (vegan package) partitions the

variation of a response table Y with respect to two, three, or four explanatory tables X,
using partial RDA

SYN-TAX: linear RDA and CCA
R-language package cocorresp: co-correspondence analysis

Biplots and triplots
CanoDraw
PC-ORD
SYN-TAX
R language: plot.cca() (vegan package) produces PCA and CA biplots as well as RDA

and CCA triplots

CANOCO, CanoDraw, and PrCoord (for Windows): available as a bundle from Microcomputer
Power http://www.microcomputerpower.com. PC-ORD (for Windows): available from MjM
Software http://home.centurytel.net/�mjm/pcordwin.htm. R language (for Windows, Linux, and
MacOS X): freely downloadable from the Comprehensive R Archive Network (CRAN) http://
cran.r-project.org/. Packages ade4 (Chessel et al. 2004, Dray et al. 2007), labdsv (Roberts 2007),
cluster (Maechler et al. 2005), cocorresp (Simpson 2009), stats (R Development Core Team
2011), ape (Paradis et al. 2010), FD (Laliberté and Shipley 2010), and vegan (Oksanen et al.
2011). SYN-TAX (for Windows and Macintosh): available from Scientia Publishing http://ramet.
elte.hu/�scientia/ and Exeter Software http://www.exetersoftware.com. Polynomial RDACCA
(for Windows and Macintosh): freely downloadable from P. Legendre’s Web page http://www.
bio.umontreal.ca/legendre/indexEn.html.

transformation of the data (Eqs. 8.5, 8.7 and 8.9) followed by calculation of
the Euclidean distance (Eq. 8.6). (3) Several functions implement the Gower
distance: vegdist() (vegan), daisy() (cluster), and gowdis() (FD);

http://www.microcomputerpower.com
http://home.centurytel.net/~mjm/pcordwin.htm
http://cran.r-project.org/
http://cran.r-project.org/
http://ramet.elte.hu/~scientia/
http://ramet.elte.hu/~scientia/
http://www.exetersoftware.com
http://www.bio.umontreal.ca/legendre/indexEn.html
http://www.bio.umontreal.ca/legendre/indexEn.html
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see footnote of Table 8.3 for references. The latter is the only function that can
handle missing values and variables of all precision levels, including multistate
qualitative variables (‘factors’ in R), and allows users to give different weights
to the variables involved in a calculation.

Euclidean or Cartesian Space, Euclidean Representation

A Cartesian space, named after René Descartes (1596–1650), French mathemati-
cian and philosopher, is a space with a Cartesian system of coordinates. It is also
called a Euclidean space because the distances among points are measured by
Eq. 8.6 in that space. The multidimensional ordination spaces of PCA, CA, PCoA,
NMDS, etc., are Cartesian or Euclidean spaces; hence the distances among points
embedded in these spaces are measured by the Euclidean distance formula. A few
dimensions that represent a good deal of the variance of the data will be chosen from
these multidimensional spaces to create a reduced-space ordination.

A distance function is said to have the Euclidean property, or (in short) to be
Euclidean, if it always produces distance matrices that are fully embeddable in
a Euclidean space. The test, available in the R-language package ade4 (function
is.euclid()), is that a principal coordinate analysis (PCoA) of a Euclidean
distance matrix produces no negative eigenvalues. This is not always the case in
ordination. Some distance functions are not Euclidean, meaning that the distances
in the matrix cannot be fully represented in a Euclidean ordination space. A
principal coordinate analysis of the distance matrices produced by these coefficients
may generate negative eigenvalues; these eigenvalues indicate the non-Euclidean
nature of the distance matrix (Gower 1982). They measure the amount of vari-
ance that needs to be added to the distance matrix to obtain a full Euclidean
representation. To be a metric is a necessary but not a sufficient condition for
a distance coefficient to be Euclidean. Many of the commonly-used similarity
coefficients are not Euclidean when transformed into distances using Eq. 8.13.
The transformation described by Eq. 8.14 often solves the problem, however. For
instance, the similarity coefficients of Gower, simple matching, Jaccard, Sørensen,
Ochiai, and Steinhaus, described above, all become Euclidean when transformed
into distances using Eq. 8.14 (Gower and Legendre 1986; Legendre and Legendre
1998, 2012: Table 7.2).

If the analysis is carried out to produce a PCoA ordination in a few (usually
2 or 3) dimensions, negative eigenvalues do not matter as long as their absolute
values are not large when compared to the positive eigenvalues of the axes used
for the reduced-space ordination. If the analysis requires that all coordinates be
kept, as will be the case when testing multivariate hypotheses using the db-RDA
method (see the subsection below on Linear RDA), negative eigenvalues should
either be avoided or corrected for. They can be avoided by selecting a distance
coefficient that is known to be Euclidean. When a non-Euclidean coefficient is used
(for example, the Steinhaus/Odum/Bray-Curtis coefficient of Eq. 8.22), there are
ways of correcting for negative eigenvalues in PCoA to obtain a fully Euclidean



220 P. Legendre and H.J.B. Birks

solution; see Legendre and Legendre (1998, 2012) for details. These corrections
are available in some PCoA computer programs, including function pcoa() of the
ape R-language package.

Metric or Non-metric Ordination?

Metric ordinations are obtained by the methods of principal component analysis
(PCA), correspondence analysis (CA), and principal coordinate analysis (PCoA).
These methods all proceed by eigenvalue decomposition. The eigenvalues measure
the amount of variation of the observations along the ordination axes. The distances
in the full-dimensional ordination space are projected onto the space of reduced
dimensionality (usually two dimensions) chosen for ordination. Non-metric ordina-
tions are obtained by non-metric multidimensional scaling (NMDS) which is not an
eigenvalue method. This method only approximately preserves the rank-order of the
original distances in the reduced ordination space.

PCA is the method of choice to preserve Euclidean distances among objects, and
CA when the chi-square distance is to be preserved. For other forms of distance,
users have to choose between PCoA (also called metric scaling) and NMDS. PCoA
is the preferred method (1) when one wishes to preserve the original distances in
full-dimensional space, (2) when many (or all) ordination axes are sought, or (3)
when the data-set is fairly large. NMDS may be preferred when the user wants to
represent as much as possible of the distance relationships among objects in a few
dimensions, at the cost of preserving only the rank-order of the distances and not
the distances themselves.

The size of the data-sets is also of importance. PCA and CA can easily be
computed on very large data-sets (tens or hundreds of thousand objects) as long
as the number of variables is small (up to a few hundred), because the eigenvalue
decomposition is done on the covariance matrix, which is of size p, the number of
variables in the data-set.

For tables containing assemblage composition data, three paths can be followed:
(1) one can transform the data using one of the transformations described by
Eqs. 8.5, 8.7, 8.8, or 8.9, and produce the ordination by PCA (tb-PCA approach),
or (2) compute a distance matrix using Eqs. 8.15, 8.16, 8.17, 8.18, 8.19, 8.20,
8.21, 8.22, 8.23 and 8.24, followed by PCoA or NMDS. For large data-sets of
intermediate sizes (up to a few thousand objects), PCoA will produce the ordination
solution faster than NMDS. For very large data-sets, PCA should be used. (3) For
data-sets of any size, one can produce the ordination using CA if the chi-square
distance is appropriate.

An alternative and biologically useful approach to deciding between ordinations
based on PCA (Euclidean distance) of untransformed data and CA (chi-square
distance) of multivariate species assemblage data is that emphasised by ter Braak
(1987a) and ter Braak and Prentice (1988), namely the underlying species response
model that is assumed when fitting either PCA or CA and extracting synthetic
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latent variables that are then used as the major ordination axes. PCA assumes an
underlying linear response model, whereas CA assumes an underlying unimodal
response model between the variables and the unknown but to be determined
latent variables or ordination axes. The question is thus how to know whether
a linear-based or a unimodal-based ordination is appropriate for a given data-
set. The detrended relative of CA, detrended correspondence analysis (DCA: Hill
and Gauch 1980; ter Braak 1987a), is a heuristic modification of CA designed to
minimise two of the disadvantages of CA, namely the so-called arch-effect and the
so-called edge-effect (ter Braak and Prentice 1988). As a result of the non-linear
rescaling of the axes that removes the edge-effect, the object scores are scaled and
standardised in a particular way. The lengths of the resulting ordination axes are
given by the range of object scores and are expressed in ‘standard deviation units’
(SD) or units of compositional turnover. The tolerance or amplitude of the species’
curves along the rescaled DCA axes are close to 1; each curve will therefore rise
and fall over about 4 SD (ter Braak and Prentice 1988). Objects that differ by 4
SD can be expected to have no species in common. A preliminary DCA of an
assemblage data-set, with detrending by segments and non-linear rescaling, provides
an estimate of the underlying gradient length. If the gradient length is less than
about 2.5 SD, the assemblage variation is within a relatively narrow range, and the
linear approach of PCA is appropriate. If the gradient length is 3 or more SD, the
assemblage variation is over a larger range, and the unimodal-based approach of CA
is appropriate (ter Braak and Prentice 1988). Transformation-based PCA (tb-PCA)
is also appropriate in that case.

How Many Axes Are Required?

In most instances, ordination analysis is carried out to obtain an ordination in
two, sometimes three, dimensions. The ordination is then used to illustrate the
variability of the data along the ordination axes and attribute it to the variables that
are most highly correlated with those axes. Simple interpretation of the variability
in the ordination diagram can be obtained by projecting interpretative variables in
the ordination plane, or by representing other properties of the data (for instance,
the groups produced by cluster or partitioning analysis (Legendre and Birks 2012:
Chap. 7)), or some other grouping of the objects known a priori (for example, the
type of lake, or the nature of the sediment) (see Lepš and Šmilauer 2003).

There are instances where ordination analysis is carried out as a pre-treatment, or
transformation, of the original data, before carrying out some further analysis. For
example, one may wish to preserve the Steinhaus/Odum/Bray-Curtis distance in a
canonical redundancy analysis (RDA) or K-means partitioning (see Legendre and
Birks 2012: Chap. 7). To achieve that, one may compute the distance matrix using
Eq. 8.22 (or its square root) and carry out a PCoA of that matrix. One then keeps all
eigenvectors from this analysis (after perhaps a correction for negative eigenvalues)
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and uses that matrix of eigenvectors as input to redundancy analysis (RDA) or
K-means partitioning. This is an example of distance-based RDA (db-RDA)
described in more detail in the subsection on Linear RDA.

Tests of significance for individual eigenvalues are available for PCA; see the
review papers of Burt (1952) and Jackson (1993). They are not often useful because,
in most instances, ecologists do not have a strong null hypothesis to test; they rather
use PCA for an exploratory representation of their data. Also, the parametric tests of
significance assume normality of all descriptors, which is certainly a drawback for
palaeolimnological data. Users most often rely on criteria that help them determine
how many axes represent ‘important’ variation with respect to the original data table.
The two best criteria at the moment are the simple broken-stick model proposed by
Frontier (1976) as well as the bootstrapped eigenvalue method proposed by Jackson
(1993).

Simple Ordination Methods: PCA, CA, PCoA, NMDS

The simple ordination methods mostly used by palaeoecologists and palaeo-
limnologists (Table 8.1) are the following.

1. Principal component analysis (PCA) is the oldest (Hotelling 1933) and
best-known of all ordination methods. Consider a group of data points in multi-
dimensional space, placed at Euclidean distances (Eq. 8.6) of one another. Imagine
a lamp behind the cloud of points, and the shadows of the points projected onto
a white wall. The geometric problem consists of rotating the points in such a way
that the shadows have as much variance as possible on the wall. The mathematics
of eigenvalues and eigenvectors, which is part of matrix algebra, is the way to
find the rotation that maximises the variance of the projection in any number of
dimensions. The variables are first transformed if required (Table 8.2), then centred
by column, forming matrix Y. One computes the dispersion (or variance-covariance)
matrix S among the variables, followed by the eigenvalues (œj) and eigenvectors of
S. The eigenvectors are assembled in matrix U. The principal components, which
provide the coordinates of the points on the successive ordination axes, are the
columns of matrix F D YU. The eigenvalues measure the variance of the points
along the ordination axes (the columns of matrix F). The first principal component
has the highest eigenvalue œ1, hence the largest variance; and so on for the following
components, with the constraint that all components are orthogonal and uncorrelated
to one another.

A scatter diagram with respect to the first two ordination axes, using the
coordinates in the first two columns of matrix F, accounts for an amount of variance
equal to œ1 C œ2. The distances among points in two dimensions are projections
of their original, full-dimensional Euclidean distances. The contributions of the
variables to the ordination diagram can be assessed by drawing them using the
loadings found in matrix U. For two dimensions again, the first two columns of
matrix U provide the coordinates of the end-points of vectors (arrows) representing
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the successive variables. A graph presenting the variables (as arrows) on top of the
dispersion of the points, as described above, is called a distance biplot. Another type
of biplot, called a correlation biplot, can also be produced by many PCA programs;
the correlations among variables are represented by the angles of projection of
the variables, in two dimensions, after rescaling the eigenvectors to the square
root of their respective eigenvalues (ter Braak 1994; Lepš and Šmilauer 2003).
The objects projected onto these modified axes are not at Euclidean distances but
are at Mahalanobis distances to one another. Supplementary or passive objects
and variables can be projected onto a PCA ordination diagram. This option is
available in most of the programs offering a PCA procedure listed in Table 8.3.
The mathematics behind such projections is described in Legendre and Legendre
(1998, 2012: Sect. 9.1.9) and ter Braak and Šmilauer (2002).

The approach of fitting fossil objects as supplementary objects onto a PCA
ordination of modern data has been used by palaeoecologists (e.g., Lamb 1984) as an
aid in detecting similarities between modern and fossil assemblages. It is important,
however, to calculate the residual distances when adding additional supplementary
objects into any low-dimensional ordination, as new objects may appear to be
positioned close to other objects on the first few axes and yet be located some
distance from these other objects when further dimensions are considered (Birks
and Gordon 1985). Gower (1968) discusses the calculation and interpretation of the
residual distances from the true position of the added points to the fitted plane giving
the best two-dimensional representation of the objects.

Alternatively, one may perform a PCA of fossil assemblage data and add modern
objects into the ordination (e.g., Ritchie 1977), or perform a PCA of fossil and
modern assemblage data combined (MacDonald and Ritchie 1986). Prentice (1980)
and Birks and Gordon (1985) discuss the advantages and disadvantages of fitting
objects, modern or fossil, into low-dimensional PCA representations.

The most common application of PCA in palaeolimnology is to produce biplot
diagrams of the objects (sites, lakes, core subunits, etc.) with respect to physical or
chemical variables (e.g., Jones et al. 1993) or assemblage composition data (after
appropriate transformation: Table 8.2) (e.g., Birks and Peglar 1979). Another useful
representation of PCA results of core assemblages is to plot the object scores on
the first few principal components in stratigraphical order for each axis (e.g., Birks
and Berglund 1979; Birks 1987; Lotter and Birks 2003; Wall et al. 2010; Wang
et al. 2010; Birks 2012b: Chap. 11), thereby providing a summarisation of the major
patterns of variation in the stratigraphical data in two or three axes. PCA can also
be used to detect outliers in data, which may correspond to legitimate outliers, or
to erroneous data. PCA may be used to identify groups of variables that are highly
correlated and, thus, form bundles of arrows in the ordination diagram; look, in
particular, for variables that are highly but negatively correlated: their arrows are
opposite in the diagram (e.g., Gordon 1982; MacDonald and Ritchie 1986). Another
application is to simplify data-sets containing many highly collinear variables; the
PCA axes that account for, say, 95% of the total variance form a simplified set of
variables and allow discarding of the remaining 5%, which can be regarded as noise
(Gauch 1982; Lotter et al. 1992).
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2. Correspondence analysis (CA) is a form of PCA that preserves the chi-square
distance (Eq. 8.19) among the objects or variables. CA is appropriate for frequency
data, and in particular for species presence-absence or abundance data, subject to
the caveat that the chi-square distance gives high weights to rare species. There
are several ways of presenting CA (Hill 1974). We will look at it here as the
eigenanalysis of a table of components of chi-square. The assemblage composition
data matrix Y is transformed into a matrix of components of chi-square Q D [qij]
where

qij D
"

Oij � Eijp
Eij

#
ıp

yCC (8.25)

The part inside the square parentheses is easily recognised as the component of the
chi-square statistic computed in each cell of a frequency (or contingency) table;
they are obtained from the observed (Oij) and the expected values (Eij) of cell ij
of the table. These components can be added to produce the Pearson chi-square
statistic used to test the hypothesis of absence of relationship between the rows and
columns of a contingency table. Here, the components of chi-square are divided by
a constant, the square root of the sum of values in the whole table (yCC), which
turns them into the values [qij] of the transformed data table Q. From this point,
one can compute a cross-product matrix (the covariance matrix computed in PCA
is also a cross-product matrix, but it is computed here without further centring
since centring is part of Eq. 8.25), and from it the eigenvalues and eigenvectors
are extracted. An alternative approach is to carry out singular value decomposition
of the matrix Q, as explained in Legendre and Legendre (1998: Sect. 9.4, 2012:
Sect. 9.2). The eigenvalues measure the amount of inertia accounted for by each
ordination axis. Matrices are obtained that contain the positions of the objects (rows)
and species (columns) along the successive axes of the ordination space. Two types
of scaling can be used for biplots: one can (1) preserve the chi-square distances
among objects (rows), the objects being at the centroids of the species (columns);
or (2) preserve the chi-square distance among the variables (columns), the variables
being at the centroids of the objects (rows) (ter Braak and Verdonschot 1995). The
most common application of CA in palaeolimnology is to produce biplot diagrams
of species and objects or other sampling units (e.g., Jones and Birks 2004). As in
PCA, supplementary objects and variables can be projected onto a CA ordination
diagram (e.g., Jones and Birks 2004). This option is available, for instance, in the
program CANOCO. In R, functions to that effect are also available in vegan and
ade4. vegan: predict.rda() and predict.cca() for adding new points to
PCA, RDA, CA and CCA, and envfit() for adding supplementary variables to
all of the above (envfit() does weighted fitting in CCA so that it is consistent
with the original). ade4: suprow() to add supplementary objects and supcol()
to add supplementary variables to PCA and CA plots.
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Usually, ecologists who see the organisms they are sampling consider rare
species as potential indicators of rare environmental conditions, whereas those who
have to sample blindly or use traps are more wary of the interpretation of rare
species. In animal ecology, a single presence of a species at a site may be due
to a species that does not belong to the site but was travelling between two other
favourable sites. In palynology, likewise, pollen may be brought by far transport
from distant sites. In aquatic ecology, rare species may appear in spurious ways in
sampling units from sites where they are found at low abundance. Because of their
influence on the chi-square distance (Eq. 8.19), one should pay special attention to
rare species in CA. One must understand that rare species affect the ordination of
objects very little, but these species will be represented by points located far from
the origin. Users of CA who are worried about the interpretation of rare species often
decide to remove, not the species that have low abundance, but those that occur in
the data-set very rarely. One may try removing first the species that occur only once
in the data-set, then those that occur once or twice, and so on, repeating the analysis
every time. One can remove the rarest species up to the point where the first few
eigenvalues, expressed as percentages of the inertia (D variation) in the original
data-set, are little affected by the removal. This approach has been suggested by
Daniel Borcard, Université de Montréal.

Palaeolimnologists often use the detrended relative of CA, detrended corre-
spondence analysis (DCA), as a preliminary tool in establishing the extent of
compositional turnover in modern calibration data-sets as a guide as to whether
to use calibration procedures that assume linear or unimodal responses of species
to environmental gradients (Birks 1995). Detrending by segments is an arbitrary
method for which no theoretical justification has been offered, while the assump-
tions behind the nonlinear rescaling procedure have not been fully substantiated
(Wartenberg et al. 1987, but see ter Braak 1985). Jackson and Somers (1991)
showed that DCA ordinations of sites greatly varied with the number of segments
one arbitrarily decides to use, so that the ecological interpretation of the results
may vary widely. In simulation studies conducted on artificial data representing
unimodal species responses to environmental gradients in one or two dimensions,
DCA did not perform particularly well in recovering complex gradients (Kenkel and
Orlóci 1986; Minchin 1987). For these reasons, detrended correspondence analysis
(DCA) should generally be avoided for the production of ordination plots when a
detailed interpretation of the object relative positions is sought. Palaeolimnologists
(e.g., Birks et al. 2000: Birks and Birks 2001; Bradshaw et al. 2005) have plotted
the object scores on the first DCA axis in stratigraphical order for different
palaeolimnological variables (e.g., diatoms, chironomids) as a means of comparing
the major trends and compositional turnover between different proxies within the
same stratigraphical sequence (see Birks 2012b: Chap. 11).

3. In principal coordinate analysis (PCoA), the objective is to obtain an ordina-
tion, in any number of dimensions, representing as much as possible of the variation
of the data while preserving the distance that has explicitly been computed. The
algebra used to find a solution to the geometric problem proceeds directly from a
pre-computed square, symmetric distance matrix D. The first step is to transform
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the distances dhi of D into values ahi D �0:5 d 2
hi , then to centre the resulting matrix

A to produce a third matrix � D [•hi] using the equation:

ıhi D ahi � Nah � Nai C Na (8.26)

where āh and āi are the means of row h and column i corresponding to element ahi ,
whereas ā is the mean of all ahi values in the matrix. Eigenvalue decomposition is
applied to matrix �, producing eigenvalues and eigenvectors. When the eigenvec-
tors are normalised to the square root of their respective eigenvalues, they directly
provide the coordinates of the objects on the given ordination axis. The eigenvalues
give the variance (not divided by degrees of freedom) of the objects along that axis.
If some eigenvalues are negative and all ordination axes are needed for subsequent
analyses, corrections can be applied to the distance matrix; this was mentioned in
the section on Euclidean or Cartesian Space, Euclidean Representation.

A simple example may help explain PCoA. From an object-by-variable data
matrix Y, compute matrix D of Euclidean distances among the objects. Run PCA
using matrix Y and PCoA using matrix D. The eigenvalues of the PCoA of matrix D
are proportional to the PCA eigenvalues computed for matrix Y (they differ by the
factor (n � 1)), while the eigenvectors of the PCoA of D are identical to matrix F of
the PCA of Y. Normally, one would not compute PCoA on a matrix of Euclidean
distances since PCA is a faster method to obtain an ordination of the objects in Y that
preserves the Euclidean distance among the objects. This was presented here simply
as a way of understanding the relationship between PCA and PCoA in the Euclidean
distance case. The real interest of PCoA is to obtain an ordination of the objects
from some other form of distance matrix more appropriate to the data at hand—for
example, a Steinhaus/Odum/Bray-Curtis distance matrix in the case of assemblage
composition data. Surprisingly, PCoA has rarely been used in palaeoecology (e.g.,
Birks 1977; Engels and Cwynar 2011) in contrast to the extensive use of PCA, CA,
and DCA.

4. Non-metric ordinations are obtained by non-metric multidimensional scaling
(NMDS); several variants of this method have been proposed (Prentice 1977, 1980).
The distances in the low-dimensional space are not rigid projections of the original
distances in full-dimensional space. In NMDS, the user sets the dimensionality of
the space in which the ordination is to be produced; the solution sought is usually
two-dimensional. The computer program proceeds by successive iterations, trying to
preserve in the ordination the rank-order of the original distances. Different formu-
lae, called Stress (formula 8.1 or 8.2), Sstress, or Strain, may be used to measure the
goodness-of-fit of the solution in reduced space. Non-metric ordinations are rarely
used in palaeoecology. Early applications include Birks (1973), Gordon and Birks
(1974), and Prentice (1978), whereas more recent applications include Brodersen et
al. (1998, 2001), Simpson et al. (2005), Soininen and Weckström (2009), Tremblay
et al. (2010), Wiklund et al. (2010), Allen et al. (2011), and Wischnewski et al.
(2011). Overall, there seem to be few theoretical advantages in using NMDS in
palaeoecology (Prentice 1980).
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Introduction to Canonical Ordination

The methods of canonical ordination are generalisations of simple ordination meth-
ods; the ordination is forced or constrained to represent the part of the variation in a
table of response variables (e.g., species abundances) that is maximally related to a
set of explanatory variables (e.g., environmental variables). Canonical redundancy
analysis (RDA) is the constrained form of PCA whereas canonical correspondence
analysis (CCA) is the constrained form of CA. Canonical ordination is a hybrid
between regression and ordination, as will be described below. The classical forms
of RDA and CCA use multiple linear regression between the variables in the
two data tables. Canonical ordination methods have also been described that look
for polynomial relationships between the dependent (response) and explanatory
(predictor) variables. Tests of statistical significance of the relationship between the
species and environmental data can be performed in canonical ordination, just as in
multiple regression.

Canonical ordination methods are widely used in palaeolimnological studies.
The Birks et al. (1998) bibliography on the use of canonical analysis in ecology
for the period 1986–1996 contained 804 titles, 96 of which are in the fields of
palaeobotany, palaeoecology, and palaeolimnology. Applications of these methods
in palaeoecology (Table 8.1) try to establish links between species assemblages and
environmental factors, or use canonical analysis as a first step in calibration studies
to guide the selection of significant environmental variables that may be estimated
by biological assemblages (ter Braak and Juggins 1993; Birks 1995) (see Juggins
and Birks 2012: Chap. 14). Palaeolimnologists also try to estimate how much of the
assemblage variation can be attributed to different groups of environmental factors,
such as sediment types, geology, climatic factors, geography, topography, land-use,
etc. (e.g., Lotter et al. 1997; Simpson and Hall 2012: Chap. 19).

Canonical Ordination Methods

The types of canonical ordination methods that palaeoecologists are mostly inter-
ested in are redundancy analysis (RDA) and canonical correspondence analysis
(CCA). They are asymmetric forms of analysis, combining regression and ordi-
nation. These analyses focus on a clearly identified table of response variables
(containing, very often, assemblage composition data), which is related to a table
of explanatory variables (e.g., environmental variables). Other forms of canonical
analysis are available in the major statistical packages: canonical correlation
analysis (CCorA) and canonical variates analysis (CVA), also called multiple
discriminant analysis (see ter Braak 1987a). These forms will not be discussed
in this chapter because they do not treat the community composition (or other
quantitative data) as a response data table matrix; they are briefly outlined in Birks
(2012a: Chap. 2). Other more general approaches to the linking of two or more
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ecological data tables are co-inertia analysis (Dolédec and Chessel 1994; Dray et al.
2003) and multiple factor analysis (Escofier and Pagès 1994); they allow the analysis
of a wide range of different data tables (Dray et al. 2003), with no constraints on the
number of species and environmental variables in relation to the number of objects
or on the role of the different tables as response and predictor variables. All these
methods of canonical analysis are described and illustrated in Chap. 6 of Borcard
et al. (2011) and in Chap. 11 of Legendre and Legendre (2012).

In the asymmetric forms of canonical analysis, after regressing the Y variables
(responses) on X (explanatory variables), an ordination is computed on the re-
gression fitted values. The preliminary questions that have to be resolved before
ordination (Table 8.2) will also have to be answered about the data in Y prior to
canonical ordination: the choice of transformations for the physical or species data,
and of an appropriate distance measure among objects. The table of explanatory
variables, called X, contains the independent (or constraining) variables used in
the regression part of the analysis. The decisions normally made prior to or during
regression will have to be considered prior to canonical analysis: transformation
of the regressors; coding of multi-state qualitative variables into dummy (binary or
orthogonal) variables; coding the factors of experiments into (orthogonal) dummy
variables; and choice of a linear or polynomial regression model. We do not have
to worry about (multi)normality of the residuals since the tests of significance in
canonical analysis are carried out by Monte Carlo permutation tests (see Legendre
and Legendre 1998, 2012; Lepš and Šmilauer 2003; Birks 2012a: Chap. 2; Lotter
and Anderson 2012: Chap. 18).

Linear RDA

Canonical redundancy analysis (RDA) combines two steps: linear regression and
PCA. The analysis is schematically described in Fig. 8.2. (1) Each variable (column)
of Y is regressed on X, which contains the explanatory variables. The fitted values of
the multiple regressions are assembled in matrix Ŷ, whereas the residuals are placed
in the columns of matrix Yres. Ŷ thus contains that part of Y that is explained by
linear models of X, whereas Yres contains that part of Y that is linearly independent
of (or orthogonal to) X. At this point, the matrices Ŷ and Yres have the same number
of columns as Y. (2) The matrix of fitted values Ŷ usually contains (much) less
information, measured by its total variance, than Y. A PCA of Ŷ is computed to
reduce its dimensionality, producing eigenvalues (that are now called canonical
eigenvalues), a matrix of eigenvectors U (now called canonical eigenvectors, which
will be used as the matrix of response variable scores for the biplot), and a matrix
Z of principal components, obtained in the same way as matrix F of the principal
components in PCA, which contains the sampling unit scores for the ordination
biplot; for details, see the description of PCA in the previous section on Simple
Ordination Methods. In some applications, ecologists prefer to use, for biplots, the
sampling unit scores obtained by the operation F D YU (upper-right in Fig. 8.2).
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Fig. 8.2 Redundancy analysis involves two steps: regression which produces fitted values OY and
residuals Yres, followed by principal component analysis (PCA) of the matrix of fitted values. PCA
of the matrix of residuals may also be of interest (Modified from Legendre and Legendre 1998).
Var. variables

These scores are not the direct result of the PCA of the fitted values Ŷ; they are
based on the original data Y, which contain the fitted values plus the residuals
(noise). These sampling unit scores (column vectors of matrix F) are not orthogonal
to each other. They differ from the vectors of matrix Z, which are orthogonal as in
any PCA. (3) In some applications, the effect of the explanatory variables on Y is
already well documented and understood; for instance, the effect of water depth on
aquatic macroinvertebrates. RDA can be used to go beyond what is already known,
by examining the residuals of the regression, found in matrix Yres. In those cases,
one is interested in obtaining an ordination of the matrix of residual variation: a PCA
is performed on matrix Yres, as shown in the lower part of Fig. 8.2. This analysis is
called a partial PCA.
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Scalings in RDA biplots follow the same rules as in PCA: one may be primarily
interested in an ordination preserving the Euclidean distances among sampling unit
fitted values (distance biplot), or in illustrating the correlations among the columns
of Ŷ (correlation biplot) (ter Braak 1994). The explanatory environmental variables
can also be represented in the ordination diagrams, which become triplots, by using
their correlations with the canonical ordination axes. The correlation coefficients
must be slightly modified to account for the stretching of the canonical ordination
axes; the biplot scores of environmental variables are obtained by multiplying the
correlation coefficients by (œk/total variance in Y)0.5. States of binary or multistate
qualitative variables can be usefully represented in triplots by the centroids (mean
coordinates) of the sampling units that possess the given state (ter Braak 1994).

The number of canonical axes is limited by either the number of variables in Y or
the number of variables in X. Example 1: if Y contains a single variable, regressing
it on X produces a single vector of fitted values and, hence, a single canonical axis.
Example 2: if X contains a single column, regressing Y (which contains p columns)
on X will produce a matrix Ŷ with p columns, but since they are the result of
regression on the same explanatory variable, matrix Ŷ is actually one-dimensional.
So, the PCA will come up with a single non-zero eigenvalue that will contain all
the variance of Y explained by X. The analysis of a matrix Y(n x p) by a matrix
X(n x m) produces at most (n � 1), p, or m canonical axes, whichever is the smallest.

Like PCA, RDA can be tricked into preserving some distance that is appropriate
to assemblage composition data, instead of the Euclidean distance (Fig. 8.3). Fig-
ure 8.3b shows that assemblage composition data can be transformed using Eqs. 8.5
or 8.7, 8.8, 8.9 (transformation-based RDA, or tb-RDA, approach). RDA computed
on data transformed by these equations will actually preserve the chord, chi-square,
profile, or Hellinger distance among sites. One can also directly compute one of the
distance functions appropriate for assemblage composition data (Eqs. 8.15, 8.16,
8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23 and 8.24), carry out a principal coordinate
analysis of the distance matrix, and use all the PCoA eigenvectors as input to
RDA (Fig. 8.3c). This is the distance-based RDA approach (db-RDA) advocated
by Legendre and Anderson (1999).

Partial RDA offers a way of controlling for the effect of a third data-set,
called the matrix of covariables W. Computationally, the analysis first calculates
the residuals Yresjw of the response variables Y on W and the residuals Xresjw
of the explanatory variables X on W; then an RDA of Yresjw on Xresjw is
computed; see details in Legendre and Legendre (2012). This is quite different
from a PCA of Yres mentioned at the end of the introductory paragraph of
the present section. Partial RDA is a generalisation of partial linear regression
to multivariate data, for example species assemblages. It is used in many dif-
ferent situations, including the following: (1) controlling for the effect of W
(e.g., geographic positions) in tests of the relationship between Y (e.g., modern
biological assemblages) and X (e.g., modern environmental data) (Peres-Neto and
Legendre 2010); (2) determining the partial, singular effect of an explanatory vari-
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Fig. 8.3 Comparison of (a) classical redundancy analysis (RDA) and canonical correspondence
analysis (CCA) to (b, c) alternative approaches forcing canonical analyses to preserve other
distances adapted to assemblage composition data (Modified from Legendre and Gallagher 2001)

able of interest (e.g., environmental), and testing its significance, while controlling
for the effect of all the other explanatory variables in the study; (3) partial RDA
is used to test the significance of single factors and interaction terms in two-way
or multi-way experimental designs where species assemblages are the response
variable (see Testing hypotheses in (multi-)factorial experiments below); (4) partial
RDA is also used to test the significance of individual fractions in variation parti-
tioning (see Spatial or Temporal Analysis Through Variation Partitioning below).
For details of these applications, see Legendre and Legendre (2012: Sect. 11.1.10).

In terms of algorithms, RDA and CCA can be obtained either by global
regression and PCA, as described here, or by the iterative algorithm described by
ter Braak (1987a) and used in the CANOCO program. In large analyses, the global
algorithm produces more precise results when many canonical ordination axes are to
be extracted and used in further analyses; the iterative algorithm is computationally
faster when one is only interested in obtaining the first few (4–8) canonical axes.
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Linear CCA

Canonical correspondence analysis (CCA) (ter Braak 1986, 1987b) only differs
from RDA in two aspects. First, it is the matrix Q of CA (see Simple ordinations
methods above) that is used as the response data matrix, instead of the data matrix Y.
This ensures that the chi-square distance is preserved by CCA among the rows of the
response data table; the assumption of unimodal species responses is made as in CA.
Second, the regression step is carried out using weights piC, where piC is the sum
of frequencies in row i (yiC) divided by the grand total (yCC) of all frequencies in
the table. Using these weights is tantamount to repeating each row of the response
and explanatory data tables yiC times before computing the regressions. Scalings
for biplots or triplots are the same as in CA (see ter Braak and Verdonschot 1995).
Just as one can compute a partial RDA, it is possible to perform a partial CCA (ter
Braak 1988b; ter Braak and Prentice 1988). Odgaard (1994) provides an illustrative
application of partial CA in palaeoecology and Bradshaw et al. (2005) provide a
detailed application of partial CCA in palaeolimnology.

Fossil assemblages can be positioned as supplementary or passive objects
in a CCA or RDA of modern biological assemblages, in relation to modern
environmental variables, to provide a projection of fossil samples (from an unknown
past environment) into modern ‘environment–species–object’ space (e.g., Birks et
al. 1990a; Allott et al. 1992; Juggins and Birks 2012: Chap. 14; Simpson and Hall
2012: Chap. 19).

There have been many applications of RDA and CCA and their partial forms
in palaeoecology and palaeolimnology in either a descriptive mode to display
modern species–object–environment relationships (e.g., Birks et al. 1990a) or in
an analytical, hypothesis-testing mode. Illustrative examples of the latter approach
include Lotter and Birks (1993), Renberg et al. (1993), Birks and Lotter (1994),
Korsman et al. (1994), Anderson et al. (1995), Korsman and Segerström (1998),
Odgaard and Rasmussen (2000), and Bradshaw et al. (2005) (see Lotter and
Anderson 2012: Chap. 18).

Other Forms of Asymmetric Canonical Analyses

There is no special reason why nature should linearly relate changes in community
composition to changes in environmental variables. While they know that the
assumption of linearity is often unrealistic, users of RDA and CCA sometimes use
the linear forms of these methods simply because more appropriate models are not
available. Makarenkov and Legendre (2002) proposed a nonlinear form of RDA and
CCA, based on polynomial regression, to do away with the assumption of linearity
in modelling the relationships between tables of response and explanatory variables.
Their algorithm includes a step-wise procedure for selection of the best combination
of linear and quadratic terms of the explanatory variables.
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Palaeolimnologists may want to relate two types of assemblages, for example
predators and preys. For a top-down model, the predators would form the data-
set explaining the variation of the prey, and the opposite for a bottom-up model.
To relate two communities, ter Braak and Schaffers (2004) proposed a model of
co-correspondence analysis (see also Schaffers et al. 2008). An alternative method
is to transform the two community data tables using one of the transformations
described in the section above on Transformation of Assemblage Composition Data,
as proposed by Pinel-Alloul et al. (1995), and analyse the two tables using RDA. As
noted by ter Braak and Schaffers (2004), one should not use forward selection of
the species in the explanatory table during this type of analysis. The R-package
cocorresp (Simpson 2009) implements co-correspondence analysis.

Spatial or Temporal Analysis Through Variation Partitioning

Variation partitioning is an approach to the analysis of a response variable or data
table, using two or more explanatory variables or data tables. For simple response
variables, the analysis is carried out using partial linear regression; see Legendre and
Legendre (1998, 2012: Sect. 10.3.5). Partial canonical analysis, which is available in
CANOCO and vegan, allows ecologists to partition the variation of a response data
table among two explanatory tables, using RDA or CCA.

In the original proposal (Borcard et al. 1992), the proportion of variation of a
response variable or data table accounted for by a table of explanatory variables
was estimated using the ordinary coefficient of determination (R2). It has long been
known that R2 is a biased estimator of the proportion of explained variation. Ohtani
(2000, for regression) and Peres-Neto et al. (2006, for canonical analysis) have
shown that the adjusted coefficient of determination R2

a (Ezekiel 1930),

R2
a D 1 � .1 � R2/

�
n � 1

n � m � 1

�
(8.27)

is unbiased, where n is the number of observations and m is the number of
explanatory variables. Peres-Neto et al. (2006) have also shown how to compute
the fractions of variation described in the next paragraph using R2

a. The R-language
function varpart() available in the vegan package allows users to partition
the variation of a response data table Y among 2, 3, or 4 tables of explanatory
variables X1 to X4.

The variation-partitioning approach was first advocated by Borcard et al. (1992)
in the context of spatial analysis in which a species composition response table Y
is partitioned between a matrix of environmental variables and one describing the
spatial relationships among the sampling sites. The variation in Y is partitioned
into four fractions, three of which can be interpreted separately or in combinations
(Fig. 8.4): [a] is the non-spatially-structured component of the variation of Y
explained by the environmental variables, [b] is the spatially-structured component
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Fig. 8.4 Partitioning the variation of a response data table Y with respect to a table X of
environmental variables and a table W of spatial variables. The length of the thick horizontal line
represents the total variation in Y (Modified from Borcard et al. 1992 and Legendre 1993)

explained by the environmental variables, [c] is the amount of spatially-structured
variation of Y not explained by the environmental variables used in the analysis, and
[d] is the unexplained (residual) variation.

In Borcard et al. (1992) and Borcard and Legendre (1994), as well as in many
applications published since 1992, the spatial relationships were represented in
the analysis by a polynomial function of the geographical coordinates of the
sampling sites. A new form of spatial partitioning, based on principal coordinates of
neighbour matrices (PCNM), has been proposed by Borcard and Legendre (2002).
In PCNM analysis, the polynomial function of the geographic coordinates of the
sites of Borcard et al. (1992) is replaced by a set of spatial eigenfunctions, the
PCNMs, corresponding to a spectral decomposition of the spatial relationships
among the sites. PCNM analysis allows the modelling of spatial or temporal
relationships at all spatial scales that can be perceived by the sampling design.
Borcard et al. (2004) and Legendre and Borcard (2006) present several applications
to the analysis of multivariate spatial patterns. Telford and Birks (2005) have
also applied PCNM analysis to explore the spatial structures within core-tops of
foraminiferal assemblages in the Atlantic.

Dray et al. (2006) examined the link between PCNM analysis and spatial
autocorrelation structure functions, and generalised the method to different types of
spatial weightings. The generalised eigenfunctions are called Moran’s Eigenvector
Maps (MEM). In the MEM framework, PCNM is called distance-based MEM
(dbMEM) (see Legendre and Legendre 2012: Chap. 14). Griffith and Peres-Neto
(2006) unified Dray’s MEM spatial eigenfunctions with Griffith’s (2000) spatial
eigenfunctions. Blanchet et al. (2008) developed Asymmetric Eigenvector Maps
(AEM) to model species spatial distributions generated by hypothesised directional
physical processes such as migrations in river networks and currents in water bodies.

Several R-language functions are available to compute PCNM and MEM spatial
eigenfunctions: pcnm() in vegan, pcnm() in spacemakeR and PCNM() and
quickPCNM() in the PCNM package; the last two packages are available at
http://r-forge.r-project.org/R/?group id=195. Several applications of spatial eigen-
function analysis to ecological data in R are presented by Borcard et al. (2011).
A stand-alone program called SpaceMaker2 (Borcard and Legendre 2004) is also
available at http://www.bio.umontreal.ca/legendre/indexEn.html to compute PCNM
eigenfunctions.

http://r-forge.r-project.org/R/?group_id=195
http://www.bio.umontreal.ca/legendre/indexEn.html
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Modelling Temporal Structure in Sediment Cores
[and Environmental Structure in Modern Assemblages]

Variation partitioning of stratigraphical palaeolimnological data has been used in
various studies to partition variation in a biostratigraphical sequence (e.g., diatoms)
into components explained by the occurrence of volcanic ash or other potential
perturbations, by climatic changes, and by natural temporal shifts (e.g., Lotter and
Birks 1993, 1997, 2003; Birks and Lotter 1994; Lotter et al. 1995; Barker et al.
2000; Eastwood et al. 2002). It has also been used to partition variation in modern
biological assemblages (e.g., diatoms) in relation to a range of explanatory variables
such as lake-water chemistry, climate, geography, etc. (e.g., Gasse et al. 1995;
Jones and Juggins 1995; Pienitz et al. 1995; Lotter et al. 1997, 1998; Potopova and
Charles 2002; Kernan et al. 2009; Simpson and Hall 2012: Chap. 19) and in fossil
assemblages in relation to spatial and temporal variables (e.g., Ammann et al. 1993).
Variation partitioning is being increasingly applied as a hypothesis-testing approach
in palaeolimnology, to quantify the proportion of total variation in assemblage
composition over time explicable by various environmental variables. For example,
Hall et al. (1999) used high-resolution diatom core data and 100 years of historical
data to quantify the effects of climate, agriculture, and urbanisation on diatom
assemblages in lakes in the northern Great Plains (Saskatchewan). They showed that
human impact was the major determinant of biotic change. Quinlan et al. (2002)
obtained similar results for the same area using fossil chironomid assemblages.
The use of variation partitioning requires careful project design to exploit ‘natural
experiments’ (e.g., factorial designs) and to test critical hypotheses. Other detailed
palaeolimnological applications of variation partitioning to test specific hypotheses
include Vinebrooke et al. (1998) and Leavitt et al. (1999). Birks (1998) reviewed the
use of variation partitioning as a means of testing hypotheses in palaeolimnology
(see also Lotter and Anderson 2012: Chap. 18).

We now present an example to illustrate the use of canonical ordination as a
form of spatial or time-series analysis for multivariate ecological response data. The
Round Loch of Glenhead (RLGH) fossil data consist of the counts of 139 Holocene
diatom taxa observed in 101 levels of a sediment core from a small lake in Galloway,
south-western Scotland (Jones et al. 1989; see Birks and Jones 2012: Chap. 3 of this
volume). The data-series covers the past 10,000 years. Level no. 1 is the top (most
recent), no. 101 is the bottom of the core (oldest). The diatom counts were expressed
as proportions relative to the total number of cells in each section of the core. This
means that the counts had been transformed into profiles of relative abundances
following Eq. 8.8. Polynomial trend-surface and PCNM analyses will be used to
detect structures in the multivariate diatom data within the core.

RDA of the multivariate diatom data from the RLGH core against level numbers
showed that the core data contained a highly significant linear gradient (R2 D 0.190,
R2

a D 0:182, p D 0.001 after 999 random permutations; Fig. 8.5a). We then analysed
the response data against a 3rd-order polynomial of the core level numbers (1–101):
the three monomials contributed significantly to the explanation of the diatom
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Fig. 8.5 The linear gradient (a) and first three canonical axes of the principal coordinates of
neighbour matrices (PCNM) model (b–d), as a function of the core level or section numbers in
The Round Loch of Glenhead diatom stratigraphical data. P probability

data, producing a model (not shown) with high explanatory power (R2 D 0.460,
R2

a D 0:443, p D 0.001). All monomials of a 5th-order polynomial also contributed
significantly to the explanation of the diatom data, producing a model with an even
higher coefficient of determination (R2 D 0.567, R2

a D 0:545, p D 0.001). Since the
data seemed to be structured in an intricate series of scales, we turned to PCNM
analysis to extract submodels corresponding to the different temporal scales present
in the data.

The diatom data were regressed on level numbers to extract the linear gradient,
as recommended by Borcard et al. (2004). PCNM analysis was then conducted
on the detrended data, namely the residuals of these regressions. Sixty-eight
PCNM variables were created using the PCNM() function of the PCNM R-
language package (last paragraph of the previous section); these variables, which
have the form of sine waves of decreasing periods, represent variation at the
various scales that can be identified in the series of 101 core levels. The first
50 PCNM variables, which had Moran’s I coefficients larger than the expected
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value of I and thus modelled positive correlation, were retained for canonical
analysis. They were subjected to forward selection against the detrended diatom
data, using the forward.sel() function of the packfor package available
at http://r-forge.r-project.org/R/?group id=195; forward selection of explanatory
variables in RDA is also available in the program CANOCO, version 4.5. Thirty
PCNM variables were selected at the ’ D 0.05 significance level (Monte Carlo
permutation tests, 999 permutations). The selected PCNM variables were numbers
1–20, 28, 30, 32, 33, 35, 37, 38, 41, 42, and 45. Canonical redundancy analysis
of the detrended diatom data by this subset of 30 PCNM variables explained
R2

a D 70:1% of the variance in the detrended data. The RDA produced nine
significant canonical axes; three of them, which accounted for more than 5% of
the detrended species variation, are displayed in Fig. 8.5b–d. The diatom taxa
contributing in an important way to the variation along these axes vary depending
on the axis. Six species were highly positively correlated (r > 0.6) to the core
level numbers (linear trend): Tabellaria quadriseptata (TA004A), Navicula hoefleri
(NA167A), Navicula cumbrensis (NA158A), Peronia fibula (PE002A), Eunotia
denticulata (EU015A), and Eunotia naegelii (EU048A); these species are found
in the sections on the positive side of the linear trend (Fig. 8.5a). Two taxa were
highly negatively correlated (r < �0.5) to the same trend: Brachysira brebissonii
(BR006A), Cymbella [PIRLA sp. 1] (CM9995). Two species were highly positively
correlated to canonical axis 1 (r > 0.5, Fig. 8.5b): Aulacoseira perglabra (AU010A),
Eunotia incisa (EU047A); four taxa were highly negatively correlated (r < �0.5)
to the same wave form: Brachysira vitrea (BR001A), Achnanthes minutissima
(AC013A), Tabellaria flocculosa (TA001A), Cymbellla perpusilla (CM010A). And
so on (Fig. 8.5c, d). Each canonical axis displays structures representing a mixture of
stratigraphical and temporal scales. This information could also be displayed in the
form of biplots of the species together with the trend or with the PCNM variables.

Another useful way to describe the structure of the multivariate diatom data along
the core is to separate the PCNM variables into an arbitrary number of groups, made
of contiguous PCNMs, and examine the resulting submodels. We chose to divide
them into three submodels. The broad-scale submodel contains PCNMs numbers
1–10 as explanatory variables; it explains R2

a D 47:7% of the detrended diatom
variation. Canonical axes 1–3 of this fraction are significant and explain more than
5% of the detrended diatom variation (Fig. 8.6a–c, p D 0.001). The taxa that are
positively correlated with axis 1 (r > 0.6) are Navicula krasskei (NA044A) and
Aulacoseira perglabra (AU010A); these species are found in the sections on the
positive side of the wave form (Fig. 8.6a). Other species that are highly negatively
correlated with that axis (r < �0.6) are Achnanthes linearis (AC002A), Tabellaria
flocculosa (TA001A), and Eunotia iatriaensis (EU019A); they are present in the
sections found on the negative side of the wave form (Fig. 8.6a). The medium-
scale submodel uses PCNMs numbers 11–20 as explanatory variables; it explains
R2

a D 9:1% of the detrended diatom variation. Only canonical axis 1 of that
submodel is significant and explains more than 5% of the detrended diatom variation
(Fig. 8.6d). The fine-scale submodel uses PCNMs numbers 28, 30, 32, 33, 35, 37,
38, 41, 42, and 45 as explanatory variables. Taken alone, this submodel does not

http://r-forge.r-project.org/R/?group_id=195
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Canonical axis 1 of submodel 1: 24.9% of detrended diatom variance (P = 0.001, 999 perm.)
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Fig. 8.6 Significant canonical axes of the first two principal coordinates of neighbour matrices
(PCNM) submodels, as a function of the core level or section numbers in The Round Loch of
Glenhead diatom stratigraphical data. P probability

explain a significant portion of the diatom variation (p D 0.916, 999 permutations);
the PCNM variables it contains were significant in the global model of 30 PCNMs,
after the broad- and medium-scale PCNMs had been selected. None of its canonical
axes is significant. We conclude that the core is mainly structured by processes
operating at broad (5 � 103 � 104 year) and medium (5 � 102 � 103 year)
scales. This PCNM example is presented simply to illustrate the potential of PCNM
analysis in palaeolimnology. A more detailed analysis would naturally consider
the estimated age of each level (see Blaauw and Heegaard 2012: Chap. 12) in the
sediment core, rather than simply level numbers.

Testing Hypotheses in (Multi-) Factorial Experiments

RDA and CCA provide ways of testing hypotheses about multivariate data, as in
analysis of variance (ANOVA). Assemblage composition data can be used as the
response table in RDA provided that they are transformed in appropriate ways, as
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shown in Fig. 8.3b, c. Examples of the use of RDA to test ANOVA-like hypotheses
are found in Sabatier et al. (1989), ter Braak and Wiertz (1994), Verdonschot
and ter Braak (1994), Anderson and Legendre (1999), and Hooper et al. (2002).
The principle of this analysis is the following: multiple regression can be used to
calculate any ANOVA model, provided that the factors are coded in appropriate
ways in the matrix of predictors X. Since RDA and CCA are simply regression
followed by PCA, they can be used in the same way as regression to carry out
analysis of variance. The PCA portion of the procedure is only needed to illustrate
the ANOVA results using bi- or triplots, as in Hooper et al. (2002); it is not needed
nor computed for the test of significance of the canonical relationship. RDA and
CCA use Monte Carlo permutation tests to assess the significance of the relationship
between the response matrix Y (or Q) and the factor coded into matrix X.

Here are examples of such potential hypotheses in palaeolimnology. For sedi-
ment cores: in time-series, are there differences between time periods of interest?
In the comparison of cores: are there differences among cores, which can be related
to sampling regions? (In the latter example, one can control for the time pairing of
core subunits by coding them into a matrix of covariables.) In such analyses, the
factors (or ANOVA classification criteria) must be coded using dummy variables.
A set of ordinary (binary 0–1) dummy variables will do the job when analysing
a single factor. For two or more factors and their interactions, the factors must be
coded using Helmert contrasts, also called orthogonal dummy variables. A method
of coding such factors is described in Appendix C of Legendre and Anderson (1999)
and in Legendre and Legendre (2012: Sect. 1.5.7). In R, factors can be automatically
coded into Helmert contrasts by the function model.matrix() in the R package
stats using an appropriate contrast type specification.

The use of RDA and CCA to test hypotheses in palaeolimnology is discussed in
detail by Lotter and Anderson (2012: Chap. 18). Birks (1996, 1998, 2010) reviewed
hypothesis testing in palaeolimnology both directly through rigorous project design
and through site selection (e.g., Birks et al. 1990b) and indirectly through RDA or
CCA.

Software

A list of programs and packages available for simple and canonical ordination of
ecological and palaeoecological data is presented in Table 8.3. The list of functions
available, especially in the R language (R Development Core Team 2011), is rapidly
increasing.

Most general-purpose statistical programs contain procedures for principal
component analysis (PCA). Very few allow, however, the direct drawing of biplots
of species and objects, and many do not even compute the coordinates of the
species and objects necessary to construct distance or correlation biplots. PCA and
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biplots are available in CANOCO (biplots: CanoDraw), in PC-ORD, in SYN-
TAX, and in the rda() function of vegan, the dudi.pca() function of ade4,
and the pca() function of labdsv (R-language packages).

Correspondence analysis (CA) is offered in few general-purpose statistical
packages. In R, palaeoecologists will find it in the same packages as PCA. Principal
coordinate analysis (PCoA) is available in the PrCoord program distributed with
CANOCO, in functions of the R language (cmdscale() and its wrappers
capscale(), pco() and cmds.diss(), in pcoa(), and in dudi.pco();
see Table 8.3 for references), and in SYN-TAX. Non-metric multidimensional
scaling (NMDS) is found in PC-ORD, in function metaMDS() of the R language,
and in isoMDS and its wrappers nmds() and bestnmds(), and in SYN-TAX.
NMDS is also found in some general-purpose statistical packages; they offer,
however, a poor choice of dissimilarity functions.

CANOCO and the rda() and cca() functions of the vegan R-language
package are widely used for unconstrained or constrained ordination analysis. Other
programs and packages allow the computation of some forms of canonical analysis:
the PC-ORD and SYN-TAX packages, and the program Polynomial RDACCA
of Makarenkov and Legendre (2002). CANOCO contains many interesting fea-
tures for palaeoecologists, not shared by most other canonical analysis packages
(Rejmánek and Klinger 2003), such as a procedure for selecting the environmental
variables of X that contribute significantly to modelling Y; selection of explana-
tory variables is also available in the R language: functions ordistep() and
ordiR2step() (vegan), as well as forward.sel() (packfor on http://r-
forge.r-project.org/R/?group id=195). CANOCO also offers tests of significance
for individual canonical eigenvalues (also in vegan), partial canonical analysis (also
in vegan), and permutation methods especially designed for time series and blocked
experimental designs.
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Chapter 9
Statistical Learning in Palaeolimnology

Gavin L. Simpson and H. John B. Birks

Abstract This chapter considers a range of numerical techniques that lie outside
the familiar statistical methods of linear regression, analysis of variance, and
generalised linear models or data-analytical techniques such as ordination, clus-
tering, and partitioning. The techniques outlined have developed as a result of the
spectacular increase in computing power since the 1980s. The methods make fewer
distributional assumptions than classical statistical methods and can be applied
to more complicated estimators and to huge data-sets. They are part of the ever-
increasing array of ‘statistical learning’ techniques (sensu Hastie et al. (2011). The
elements of statistical learning, 2nd edn. Springer, New York) that try to make sense
of the data at hand, to detect major patterns and trends, to understand ‘what the data
say’, and thus to learn from the data.

A range of tree-based and network-based techniques are presented. These are
classification and regression trees, multivariate regression trees, bagged trees,
random forests, boosted trees, multivariate adaptive regression splines, artificial
neural networks, self-organising maps, Bayesian networks, and genetic algorithms.
Principal curves and surfaces are also discussed as they relate to unsupervised self-
organising maps. The chapter concludes with a discussion of current developments
in shrinkage methods and variable selection in statistical modelling that can help
in model selection and can minimise collinearity problems. These include principal
components regression, ridge regression, the lasso, and the elastic net.
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Introduction

This chapter considers a range of numerical techniques that lie outside the famil-
iar statistical methods of linear regression, analysis of variance, and maximum-
likelihood estimation or data-analytical techniques such as ordination or clustering.
The techniques outlined here have developed as a result of the spectacular increase
in computational power since the 1980s. They make fewer distributional assump-
tions than classical statistical methods and can be applied to more complicated
estimators and to huge data-sets (Efron and Tibshirani 1991; Raymond et al.
2005; Witten and Frank 2005; Hastie et al. 2011). They allow the exploration
and summary of vast data-sets and permit valid statistical inferences to be made
without the usual concerns for mathematical tractability (Efron and Tibshirani
1991) because traditional analytical approaches are replaced by specially designed
computer algorithms (Hastie et al. 2011).

Many of the techniques discussed in this chapter are part of the ever-increasing
battery of techniques that are available for what Hastie et al. (2011) call ‘statistical
learning’. In this, the aim of the numerical analysis is to make sense of the
relevant data, to detect major patterns and trends, to understand ‘what the data
say’, and thus to learn from the data (Hastie et al. 2011). Statistical learning
includes prediction, inference, and data-mining (Hastie et al. 2011). Data-mining
(Ramakrishnan and Grama 2001; Witten and Frank 2005) usually involves very
large data-sets with many objects and many variables. In conventional statistical
analyses, the formulation of the hypotheses to be tested usually follows the
observation of the phenomena of interest and associated data collection. In statistical
learning and data-mining, observations on the numerical properties of previously
collected data can also stimulate hypothesis generation (Raymond et al. 2005).
Hypotheses generated in this manner can be tested using existing independent
data (so-called test-data) or where these are inadequate, by further observations
and data-collection. Data-mining within statistical learning is, like exploratory data
analysis (Juggins and Telford 2012: Chap. 5), clustering and partitioning (Legendre
and Birks 2012a: Chap. 7), and classical ordination (Legendre and Birks 2012b:
Chap. 8), a data-driven hypothesis-generation tool as well as a data-summarisation
technique. Classical statistical techniques such as regression (Birks 2012a: Chap.
2; Blaauw and Heegaard 2012: Chap. 12), temporal-series analysis (Dutilleul
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et al. 2012: Chap. 16), and canonical ordination (Legendre and Birks 2012b:
Chap. 8; Lotter and Anderson 2012: Chap. 18) are model-based hypothesis-testing
techniques. Statistical learning and data-mining can thus play a critical role, not only
in data-analysis but also in the design of future data-collection and research projects.

Statistical learning from large data-sets has provided major theoretical and
computational challenges and has led to a major revolution in the statistical
sciences (Efron and Tibshirani 1991; Hastie et al. 2011). As a result of this
revolution, statistical learning tends now to use the language of machine learning
of inputs which are measured or preset (Hastie et al. 2011). These have some
influence on one of more outputs. In conventional statistical terminology, inputs
are usually called predictors or independent exploratory variables, whereas outputs
are called responses or dependent variables. In palaeolimnology, the outputs are
usually quantitative variables (e.g., lake-water pH), qualitative (categorical 1/0)
variables, (e.g., lake type), or ordered categorical variables (e.g., low, medium,
high water-depth). The inputs can also vary in measurement type and are usually
quantitative variables. In a typical palaeolimnological study, we have an outcome
measurement, usually quantitative (e.g., lake-water pH) or categorical (e.g., fish
present/absent) that we want to predict on a set of features (e.g., modern diatom
assemblages). We have a training-set of data in which we observe the outcome and
feature measurements for a set of objects (e.g., lakes). Using this training-set, we
construct a prediction model or learner that will enable us to predict or infer the
outcome for new unseen objects with their feature measurements (e.g., fossil diatom
assemblages). A good learner is one that accurately predicts such an outcome. The
distinction in output type has resulted in the prediction tasks being called regression
when predicting quantitative outputs and classification when predicting qualitative
outputs (Hastie et al. 2011).

Statistical learning can be roughly grouped into supervised or unsupervised
learning. In supervised learning, the aim is to predict the value of an output measure
based on a number of input measures. It is called supervised because the presence
of the outcome measure(s) can guide the learning process. In unsupervised learning,
there is no outcome measure, only input features. The aim is not to predict but to
describe how the data are organised or clustered and to discern the associations
and patterns among a set of input measures. Table 9.1 summarises the major data-
analytical techniques used in palaeolimnology that are discussed by Birks (2012a:
Chap. 2), Legendre and Birks (2012a, b: Chaps. 7 and 8), Blaauw and Heegaard
(2012: Chap. 12), Juggins and Birks (2012: Chap. 14), Simpson (2012: Chap. 15),
and Lotter and Anderson (2012: Chap. 18) in terms of supervised and unsupervised
statistical learning.

This chapter outlines several tree-based and network-based data-analytical tech-
niques that permit data-mining and statistical learning from large data-sets (over
500–1000 samples and variables) so as to detect the major patterns of variation
within such data-sets, to predict responses to future environmental change, and
to summarise the data as simple groups. These techniques are listed in Table 9.2
in relation to whether they are supervised or unsupervised statistical-learning
techniques.
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Table 9.1 Summary of the major analytical techniques used in palaeolimnology in terms of
supervised and unsupervised statistical learning

Type of statistical learning

Numerical technique Unsupervised Supervised

Clustering (Chap. 7) C
K-means partitioning (Chap. 7) C
Ordination (e.g. PCA) (Chap. 8) C
Canonical ordination (Chaps. 8 and 18) C
Weighted averaging regression and

calibration (Chap. 14)
C

Weighted averaging partial least squares
(Chap. 14)

C
Modern analogue technique (Chap. 15) C
Discriminant analysis (Chap. 2) C
Regression analysis (Chaps. 2 and 12) C

Table 9.2 Summary of statistical machine-learning techniques in terms of supervised and
unsupervised learning

Type of statistical learning

Machine-learning technique Unsupervised Supervised

Classification trees C
Regression trees C
Multivariate regression trees C
Bagging trees C
Boosted trees C
Random forests C C
Multivariate adaptive regression splines C
Artificial neural networks C
Self-organising maps (SOMs) C
X-Y-fused SOMs, Bi-directional Kohonen

networks, and super-organised maps
C

Bayesian belief networks C
Bayesian decision networks C
Genetic algorithms C
Principal curves and surfaces C C
Shrinkage methods (ridge regression, the

lasso, the elastic net)
C

Classification and Regression Trees

Dichotomous identification keys are common in fields such as biology, medicine,
and ecology, where decisions as to the identification of individual specimens or the
presence of disease are reduced to a set of simple, hierarchical rules that lead the
user through the decision-making process. An example that will be familiar to many
readers is the numerous plant identification keys used by field botanists. Computer-
generated versions of these keys were first discussed in the social sciences arising
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from the need to cope with complex data and scientific questions resulting from
questionnaire responses leading to the Automatic Interaction Detection programme
of Morgan and Sonquist (1963). Around the same time, similar tree-based method-
ologies were being developed independently in the machine-learning field (e.g.,
Quinlan 1993). The seminal work of Breiman et al. (1984) brought the main
ideas and concepts behind tree-based models into the statistical arena. De’ath
and Fabricius (2000) and Vayssieres et al. (2000) introduced classification and
regression trees to the ecological literature. Fielding (2007) provides a simple
introduction to tree-based modelling procedures in biology. Witten and Frank (2005)
discuss classification and regression trees in the context of data-mining large,
heterogeneous data-sets.

The general idea behind tree-based modelling is to identify a set of decision
rules that best predicts (i) the ‘identities’ of a categorical response variable
(a classification tree), or (ii) a continuous response variable (a regression tree). By
‘best predicts’, we mean minimises a loss function such as least-squares errors

DN D
nX

iD1

.yi � OyN / (9.1)

where DN is the deviance (impurity) of node N, yi refers to the ith observation in
node N and ŷN is the mean of yi in node N. The total deviance (impurity) of a tree
(D) consisting of N nodes is the sum of the deviances of the individual N nodes

D D
NX

iD1

Di (9.2)

Building trees using the recursive binary partitioning method is by far the most
commonly used technique. At each stage of fitting a tree, the algorithm identifies a
split that best separates the observations in the current node into two groups; hence
the binary part of the algorithm’s name. The recursive partitioning aspect refers to
the fact that each node is in turn split into two child nodes, and those child nodes are
subsequently split, and so on in a recursive fashion (see Legendre and Birks 2012a:
Chap. 7). We have glossed over many of the details of model fitting in the above
description of recursive partitioning. We now expand on the detail of how trees are
fitted to data.

The recursive partitioning algorithm starts with all the available data arranged
in a single group or node (see also Legendre and Birks (2012a: Chap. 7) and
Birks (2012b: Chap. 11) for other partitioning techniques that use this type of
recursive algorithm (TWINSPAN, binary partitioning)). The data are a single matrix
of n observations on m variables. The response variable y is also known; if y is a
categorical variable (e.g., species presence/absence, or different species of pollen
or diatom) then a classification tree will be fitted, whereas, if y is a continuous
variable (e.g., lake-water pH or temperature) a regression tree is fitted. Each of the



254 G.L. Simpson and H.J.B. Birks

m predictor variables is taken in turn and all possible locations for a split within
the variable are assessed in terms of its ability to predict the response. For binary
predictor variables, there is a single possible split (0 or 1). Categorical variables
present a greater number of potential splits. An unordered categorical variable (e.g.,
red, green, blue) with number of levels (categories) L has 2(L – 1) – 1 potential
splits, whilst an ordered categorical variable (e.g., dry < moist < wet < very wet)
conveys L – 1 potential splits. For continuous variables, imagine the observations
lain out on a scale in ascending order of values of the variable. A split may be
located between any pair of adjacent values. If there are U unique values, then each
continuous variable conveys U – 1 potential splits. At each stage in the algorithm all
of these potential split locations need to be evaluated to determine how well making
each split predicts the response. Once the variable and split location that best predict
the response have been identified, the data are separated into two groups on the
basis of the split and the algorithm proceeds to split each of the two child groups
(or nodes) in turn, using the same procedure as outlined above. Splitting continues
until no nodes can be further subdivided or until some stopping criteria have been
met, usually the latter. At this point fitting is complete and a full tree has been fitted
to the data.

An important question remains; how do we quantify which split location best
predicts the response? Splits are chosen on the basis of how much they reduce
node impurity. For regression trees, the residual sums-of-squares (RSS, Eq. 9.1)
about the child-node means or residual sums of absolute deviations (RSAD) from
the child-node medians are used to measure node impurity, although the latter
(RSAD) is of lesser utility with ecological data (De’ath and Fabricius 2000). Several
alternative measures of node impurity (DN) are commonly used in classification
trees, including

(i) deviance

DN D �2
X

k

nN k log.pN k/ (9.3.1)

(ii) entropy

DN D �2
X

k

pN k log.pN k/ (9.3.2)

and
(iii) the Gini index

DN D 1 �
X

k

p2
N k (9.3.3)
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where DN is the node impurity, nNk is the number of observations of class k in the Nth

node, and pNk is the proportion of observations in the Nth node that are of type k. The
overall node impurity evaluated for all possible splits is the sum of the impurities of
the two groups formed by the split.

A final problem we face is how big a tree to grow? Above, we mentioned
that the algorithm will continue until either it cannot split any node further (i.e.,
all nodes have zero impurity) or some stopping criteria are reached (e.g., fewer
than five observations in a node). Such an approach will produce a large, complex
tree that will tend to over-fit the observed data. Such a tree is unlikely to generalise
well and will tend to produce poor out-of-sample predictions. A small tree, on the
other hand, will be unlikely to capture important features in the response. Tree-
size is a tuning parameter that controls the complexity of the fitted tree-model.
The optimal tree-size can be determined from the data using a procedure known
as cost-complexity pruning. The cost-complexity of a tree, CC, is computed as
CC D Timpurity C ’(Tcomplexity), where Timpurity is the impurity of the current tree over
all terminal nodes, Tcomplexity is the number of terminal leaves, and ’ a real number
>0. ’ is the tuning parameter we aim to minimise in cost-complexity pruning, and
represents the trade-off between tree-size and goodness-of-fit. Small values of ’

result in larger trees, whilst large values of ’ lead to smaller trees. Starting with the
full tree, a search is made to identify the terminal node that results in the lowest
CC for a given value of ’. As the penalty ’ on tree complexity is increased, the
tree that minimises CC will become smaller and smaller until the penalty is so great
that a tree with a single node (i.e., the original data) has the lowest CC. This search
produces a sequence of progressively smaller trees with associated CC. The solution
now is to choose a value of ’ that is optimal in some sense. �-fold cross-validation
(Birks 2012a: Chap. 2; Juggins and Birks 2012: Chap. 14) is used to choose the
value of ’ that has the minimal root mean squared error (RMSE). An alternative
strategy is to select the smallest tree that lies within 1 standard error of the RMSE
of the best tree.

Once the final tree is fitted, identified, and pruned, the data used to train the
tree are passed down the branches to produce the fitted values for the response.
In a regression tree, the predicted value is the mean of the observed values of the
response in the terminal node that an observation ends up in. All the observations
that are in the same terminal node therefore get the same fitted value. We say that
regression trees fit a piece-wise constant model in the terminal nodes of the tree.
The fitted values for classification trees are determined using a different procedure;
the majority vote. The classes of all the observations in the same terminal node
provide votes as to the fitted class for that node. The class that receives the highest
number of votes is then the predicted class for all observations in that node.

Palaeolimnological data often contain missing data where, for one reason or
another, a particular measurement on one or more samples is not available (Birks
2012a: Chap. 2; Juggins and Birks 2012: Chap. 14; Juggins and Telford 2012:
Chap. 5). Deleting missing data reduces the number of samples available for analysis
and may also introduce bias into the model if there is a systematic reason for the
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‘missingness’ (Nakagawa and Freckleton 2008). Trees can handle missing data in
the predictor variables in a number of ways. The first is to propagate a sample as far
down the tree as possible until the variable used to split a node is one for which the
data are missing. At that point we assign a fitted value as the average or majority vote
of all the samples that pass through that particular node in the tree. The rationale for
this is that we have sufficient information to make a partial prediction for a sample
with missing data, but we are unable to provide a final prediction because of the
missing data.

An alternative strategy is to use surrogate splits to decide how to propagate a
sample with missing data further down a fitted tree. During the exhaustive search for
split locations, a record is made of which alternative split locations provide a similar
binary split of the data in the current node to that of the best split. Surrogate splits
are those splits that provide the division of the samples in a node that most closely
resembles the division made by using the best split location. When a sample with
missing data is passed down a tree during prediction, the sample proceeds until it
reaches a node where data on the splitting variable is missing. At this point, the best
surrogate split is used to attempt to assign the sample to one of the two child nodes.
If the variable used in the best surrogate split is also missing, the next best surrogate
split is used, and so on until all available surrogate splits have been examined. If it
is not possible to assign the sample to one of the two child nodes, then the sample
is left in the current node and its predicted value is taken as the average or majority
vote of samples passing through the node as previously described.

Surrogate splits are those that produce a similar binary division of a set of
samples to that of the best split for a given node. There may also be split variables
that reduce node impurity almost as much as the best split but do so using a different
predictor variable and result in a different binary partition of a node. Such splits are
known as alternative splits. Replacing the best split with an alternative split might
lead to the fitting of a very different tree simply because of the legacy of having
chosen one predictor over another early on in the tree-building process. Examination
of the alternative splits can help provide a fuller description of the system under
study by highlighting alternative models that explain the training data to a similar
degree as the fitted tree.

High temperature combustion of coal and oil produces, amongst other pollutants
and emissions, spheroidal carbonaceous particles (SCPs) (Rose 2001). Rose et al.
(1994) studied the surface chemistry of a range of SCPs produced by burning
coal, oil, and oil-shale fuels, and used linear discriminant analysis to identify
linear combinations of surface chemistry variables that best distinguished between
particles of the different fuel sources (see Birks 2012a: Chap. 2). To illustrate tree-
based models, we re-analyse these data using a classification tree. The data consist
of 6000 particles (3000 coal, 1000 oil, and 2000 oil-shale). A full classification
tree was fitted using the rpart package (Therneau and Atkinson 2011) for the R
statistical language and environment (R Core Development Team 2011). Apparent
and ten-fold cross-validation (CV) relative error rates for trees of various size up
to the full tree are shown in Fig. 9.1. The tendency for trees to over-fit the training
data is illustrated nicely as the apparent relative error rate continues decreasing as
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Fig. 9.1 Cost complexity and relative error for various sizes of classification trees fitted to the
three-fuel spheroidal carbonaceous particle (SCP) example data. Apparent (open circles) and ten-
fold cross-validated (CV; filled circles) relative error to the simplest tree (size one) are shown. The
tree with the smallest CV relative error has 31 leaves, whilst the smallest tree within one standard
error of the best tree has 18 leaves

the tree is grown and becomes more complex, whilst the ten-fold CV error rate
stabilises after the tree contains 18 nodes or leaves and increases once the size of
the tree exceeds 31 nodes. The values on the x-axis of Fig. 9.1 are the values of the
cost-complexity parameter to which one must prune in order to achieve a tree of the
indicated size. The best sized tree is one consisting of 31 nodes, with a CV relative
error of 0.172 (CV standard error 0.007), and is indicated by the right-most vertical
line. The smallest tree within one standard error of this best tree, is a model with 18
nodes and a CV relative error of 0.177 (CV standard error 0.007), and is indicated
by the left-most vertical line.

Trees between sizes 18 and 48 all do a similar job, but we must guard against
over-fitting the training data and producing a model that does not generalise well,
so we select a tree size using the one standard-error rule and retain the tree with 18
nodes. This tree is shown in Fig. 9.2. The first split is based on Ca, with SCPs having
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Fig. 9.2 Pruned classification tree fitted to the three-fuel spheroidal carbonaceous particle (SCP)
example data. The predicted fuel types for each terminal node are shown, as are the split variables
and thresholds that define the prediction rules

low amounts of Ca passing into the right-hand branch of the tree and those particles
with Ca � 4.385 passing into the left-hand branch. The right-hand branch is further
split on the basis of S, with particles having �35.84 (and Ca < 4.385) classified as
being produced by oil-fired power stations. By convention, the tree is plotted in such
a way that the heights of the stems between nodes indicate the degree of importance
attached to a split in terms of decreased node impurity. The first split on Ca and the
split on S in the right-hand branch of the tree are clearly the most important rules
for predicting SCP fuel type. The remaining splits are largely a fine tuning of these
two main rules. The tree correctly classifies 5680 of the particles in the training
data, giving an apparent error rate of 0.0533. Table 9.3 contains a summary of the
predictions from the classification tree in the form of a confusion matrix. Individual
error rates for the three fuel-types are also shown. Using ten-fold cross-validation
to provide a more reliable estimate of model performance yields an error rate of 0.1
for the classification tree.

Of the machine-learning techniques described in this chapter, with the exception
of artificial neural networks, trees are the most widely used method in palaeoecology
and palaeolimnology, being employed in a variety of ways. Lindblah et al. (2002)
used a classification tree to classify Picea pollen grains from three different species;
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Table 9.3 Confusion matrix
of predicted fuel type for the
three-fuel classification tree

Coal Oil Oil-shale Error rate

Coal 2871 49 118 0.055
Oil 16 938 11 0.028
Oil-shale 113 13 1817 0.063

The rows in the table are the predicted fuel types for
the 6000 spheroidal carbonaceous particles (SCPs)
based on the majority vote rule. The columns are
the known fuel-types. The individual fuel-type er-
ror rates of the classification tree are also shown.
The overall error rate is 0.053

P. glauca, P. mariana, and P. rubens in eastern North America. Seven morpho-
logical measurements were made on approximately 170 grains of each species’
pollen, and were used as predictor variables in the classification tree. An overall
classification tree was fitted to assign grains to one of the three species, as well as
individual species-specific binary classifications which aimed to predict whether a
grain belonged to one of the three pollen taxa or not. Lindblah et al. (2003) used
this approach to assign Picea pollen grains from a sediment core to one of the three
species in late-glacial and Holocene sediments at a number of sites in New England,
USA. Barton et al. (2011) employed a similar approach, using a classification tree
to differentiate between pollen of red pine (Pinus resinosa) and jack pine (Pinus
banksiana) in eastern North America. The habitat characteristics of sites where
terrestrial snails, typical of full-glacial conditions in southern Siberia, are found have
been described using a classification tree (Horsak et al. 2010). Other palaeoecolog-
ical examples include Pelánková et al. (2008). CARTs are widely used in forestry
(e.g., Baker 1993; Iverson and Prasad 1998, 2001; Iverson et al. 1999), ecology
(e.g., Olden and Jackson 2002; Caley and Kuhnert 2006; Spadavecchia et al. 2008;
Keith et al. 2010), biogeography (e.g., Franklin 1998, 2010), species-environment
modelling (e.g., Iverson et al. 1999; Cairns 2001; Miller and Franklin 2002; Thuiller
et al. 2003; Bourg et al. 2005; Kallimanis et al. 2007; Aho et al. 2011), limnology
(e.g., Rejwan et al. 1999; Pyšek et al. 2010), hydrology (e.g., Carlisle et al. 2011),
conservation biology (e.g., Ploner and Brandenburg 2003; Chytrý et al. 2008; Pake-
man and Torvell 2008; Hejda et al. 2009), analysis of satellite data (e.g., Michaelson
et al. 1994; DeFries et al. 2010), and landscape ecology (Scull et al. 2005).

Trees, whilst being inherently simple and interpretable, have a major drawback:
the fitted model has high variance. A small change in the data can often lead to
large changes in the form of the fitted tree, where a very different series of splits is
identified. This makes trees somewhat difficult to interpret reliably; you might get
a very different answer if you collected a different sample of data to fit the model.
This is the downside of such a simple model structure. Solutions to this problem
exist, and they all involve fitting many different trees to the data and averaging the
predictions from each tree in some way. Collectively, these approaches are ensemble
methods and include bagging, boosting, and random forests. We will discuss each
of these techniques in later sections of this chapter.
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Multivariate Regression Trees

The trees described in the previous section are univariate, dealing with a single
response variable. Their extension to the multivariate response case is reasonably
trivial (De’ath 2002; Larsen and Speckman 2004) yet the resulting technique is sur-
prisingly versatile and is a useful counterpart to constrained ordination techniques
such as redundancy analysis (RDA) and canonical correspondence analysis (CCA)
(De’ath 2002; Legendre and Birks 2012a, b: Chaps. 7 and 8). Typically we have a
response matrix of observations on m species for n sites. In addition, observations
on p predictor variables (e.g., lake-water chemistry, climate-related variables) for
the same n sites are available. In multivariate regression trees (MRT), the aim
is to find a set of simple rules from the p predictor variables that best explains
variation in the multivariate species-response matrix. Whilst MRT is closely related
to constrained ordination, it can also be instructive to view MRT as a constrained
clustering technique, where we partition the n observations in k groups or clusters
on the basis of similar species composition and environment (Legendre and Birks
2012a: Chap. 7).

Regression trees use the concept of sum of squared errors as their measure of
node impurity. This is inherently univariate, but can be extended to the multivariate
case by considering sum of squared errors about the multivariate mean (centroid)
of the observations in each node (De’ath 2002). In geometric terms, this amounts
to being simply the sum of squared Euclidean distances of sites about the node
centroid. In all other respects, the fitting and pruning of multivariate trees is the same
as for univariate regression trees. However, the interpretation of multivariate trees
requires additional techniques owing to the more complex nature of the response
variable being modelled.

The Euclidean distance is often not suitable for use with ecological data as
it focuses on absolute values, does not ignore or downweight double zeros, and
imposes a linear framework on the analysis (Legendre and Birks 2012b: Chap. 8).
MRTs can be adapted to work with any dissimilarity coefficient via direct decom-
position of a supplied dissimilarity matrix to derive within-node sum of squared
distances between node members. De’ath (2002) calls this method distance-based
MRTs (db-MRTs). Note that in db-MRTs the within-node sum-of-squares are not
computed with respect to the node centroid but instead with respect to pairs of
samples. Minimising the sum of all pair-wise squared distances between samples
within nodes is equivalent to computing the within-node sum-of-squares where
the response data are species abundances. The response data in a db-MRT are a
dissimilarity matrix computed using a chosen dissimilarity or distance coefficient
(see Legendre and Birks 2012b: Chap. 8). As such, the raw data are not available
during fitting to enable computation of the node centroids. Therefore, db-MRT uses
the sum of pair-wise within-node distances as the measure of node impurity.

Univariate trees describe the mean response and a single tree-diagram can be
used to convey in a simple fashion a large amount of information about the fitted
model and the mean response. In MRTs, the mean response is multivariate, being
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the mean abundance of each species for the set of samples defined by the tree nodes.
A biplot is a natural means for displaying the mean response. De’ath (2002) suggests
that principal component analysis (PCA) (Legendre and Birks 2012b: Chap. 8)
be used as the base plot, with PCA being performed on the fitted values of the
response (the mean abundance for each species in each of the MRT terminal nodes).
The observed data are also shown on the biplot. The samples themselves can thus
be located in the biplot about their node centroid. Species loadings can be added
to the biplot either as simple PCA loadings (species scores), in which case they are
represented as biplot arrows, or as a weighted mean of the node means, in which
case the species are represented as points in ordination space. The branching tree
structure can also be drawn on the biplot to aid visualisation.

Earlier, we mentioned that MRTs can be viewed as a constrained form of cluster
analysis. From the description of the technique we have provided, it should be clear
that MRTs find k groups of samples that have the lowest within-group dispersion
for the kth partition. If the constraints or predictor variables were not involved in
the analysis then MRTs would be a way of fitting a minimum variance-cluster
analysis (Legendre and Birks 2012a: Chap. 7). However, because the constraints
are included in a MRT analysis, the identification of the group structure in the data
is supervised, with groups being formed by partitioning the response variables on
the basis of thresholds in the constraints. Chronological or constrained clustering
and partitioning have a long tradition in palaeoecology and several numerical
approaches to the problem of zoning stratigraphical data have been suggested (e.g.,
Gordon and Birks 1972, 1974; Gordon 1973; Birks 2012b: Chap. 11; Legendre and
Birks 2012a: Chap. 7). One proposed solution to the problem is the binary divisive
procedure using the sum-of-squares criterion (SPLITLSQ) method of Gordon and
Birks (1972) which fits a sequence of b boundaries to the stratigraphical diagram,
where b 2 f1, 2, : : : , n � 1g. The boundaries are placed to minimise the within-
group sums-of-squares of the groups formed by the boundaries. The process is
sequential or hierarchical; first the entire stratigraphical sequence is split into two
groups by the placement of a boundary that most reduces within-group sums of
squares. Subsequently, one of the groups formed by positioning the first boundary is
split by the placement of a second boundary, and so on until b boundaries have been
positioned. The SPLITLSQ approach is exactly equivalent to the MRT when the
Euclidean distance is used (see Legendre and Birks 2012b: Chap. 8). The utility of
the MRT as a means of zoning stratigraphical diagrams is that the cross-validation
procedure provides a simple way to assess the number of groups into which the
sequence should be split.

To illustrate MRTs and to emphasise the constrained clustering nature of the
technique, we turn to the classic Abernethy Forest pollen data of Birks and
Mathewes (1978) (see Birks and Gordon 1985 for details). We fit a MRT to the
pollen percentage data without transformation. A plot of the apparent and cross-
validated relative error as a function of the cost-complexity parameter (or tree-size)
for the MRT-fit to the Abernethy Forest data is shown in Fig. 9.3. Of the tree-sizes
considered, the minimum cross-validated relative error is achieved by a tree with
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Fig. 9.3 Cost complexity and relative error for various sizes of multivariate regression trees fitted
to the late-glacial and early-Holocene Abernethy Forest pollen sequence. Apparent (open circles)
and ten-fold cross-validated (CV; filled circles) relative error to the simplest tree (size one) are
shown. The tree with the smallest CV relative error has 8 leaves, whilst the smallest tree within
one standard error of the best tree has 6 leaves

eight terminal nodes (seven splits), whilst the one standard-error rule would select
the six-node sized tree. We select the latter and show the pruned, fitted MRT in
Fig. 9.4. The first split is located at 7226 radiocarbon years BP and the second
at 9540 BP. These two splits account for much larger proportions of the variance
in the pollen data than the subsequent splits, as shown by the heights of the bars
below the splits. The bar charts located at the terminal nodes in Fig. 9.4 provide a
representation of the mean abundance for each pollen type over the set of samples
located in each terminal node. A better representation of the mean response is given
by the tree biplot (Fig. 9.5). The first split separates the samples dominated by Pinus,
Quercus, and Ulmus pollen from the other samples, and is aligned with the first
principal component (PC) axis. The second PC axis separates a group of samples
characterised by Juniperus, Corylus, and Betula pollen.

MRTs have proved a relatively popular machine-learning technique in the
palaeoenvironmental sciences. Davidson et al. (2010a) employed MRT to infer
simultaneously the densities of zooplanktivorous fish and aquatic macrophytes from
cladoceran species composition. The MRT was applied to a training-set of 39 lakes,
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Fig. 9.4 Pruned multivariate regression tree (MRT) fitted to the late-glacial and early-Holocene
Abernethy Forest pollen sequence. The major stratigraphic zones in the pollen stratigraphy are
identified by the MRT. The bar charts in the terminal nodes describe the abundance of the individual
species in each zone. The numbers beneath the bar charts are the within-zone sums of squares

using the cladoceran taxa as response variables and 14 environmental variables as
predictors. The resulting pruned MRT had six clusters of samples resulting from
splits on zooplanktivorous fish density (ZF) and plant volume infestation (PVI)
and explained 67% of the variance in the species data. Davidson et al. (2010b)
then applied their MRT model in conjunction with redundancy analysis (Legendre
and Birks 2012b: Chap. 8) to cladoceran assemblages from a sediment core from
Felbrigg Lake to investigate past changes in fish abundance and macrophyte
abundance. Herzschuh and Birks (2010) used MRT in their investigation of the
indicator value of Tibetan pollen and spore taxa in relation to modern vegetation
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Fig. 9.5 Principal component analysis (PCA) display of the multivariate regression tree (MRT)
fitted to the late-glacial and early-Holocene Abernethy Forest pollen sequence (left). The terminal
nodes of the MRT are shown by large open circles, joined by line segments that represent the
hierarchy. The samples within each node are differentiated by symbol shape and colour. Species
scores (right) for the most common taxa in the Abernethy data-set are positioned using weighted
averages instead of weighted sums

and climate. Their analysis showed that annual precipitation was the most important
climatic variable in grouping the pollen counts in modern assemblages, with a
value of �390 mm precipitation identified as a critical threshold. Temperature was
identified as then playing a role in separating the two groups of pollen assemblages
resulting from the ‘low’ and ‘high’ precipitation split. The resulting MRT produced
four pollen groupings associated with four climate types: dry and warm, dry and
cool, wet and warm, and wet and cool. Other palaeolimnological examples include
Amsinck et al. (2006) and Bjerring et al. (2009). Surprisingly, MRTs do not
appear to have been widely used in ecology or biogeography except in a recent
biogeographical study by Chapman and Purse (2011).

Other Types of Tree-Based Machine-Learning Methods
(Bagging, Boosted Trees, Random Forests, Multivariate
Adaptive Regression Splines)

Earlier, we mentioned the instability problem of single-tree based models, which
can be viewed as sampling uncertainty in the model outputs. If we were to take
a new sample of observations and fit a model to those and use it to predict for a
test-set of observations, we would get a different set of predictions for the test-set
samples. If this process were repeated many times for each observation in the test-
set, a posterior distribution of predicted values would be produced. The mean of
each of these posterior distributions can be used as the predictions for the test-set
samples, and in addition, the standard error of the mean or the upper and lower 2.5th
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quantiles can be used to form uncertainty estimates on the predictions. In general,
however, taking multiple samples of a population is not feasible. Instead, we can use
the training-set observations themselves to derive the posterior distributions using
bootstrap re-sampling (see Birks 2012a: Chap. 2; Juggins and Birks 2012: Chap. 14;
Simpson 2012: Chap. 15). Such approaches are often termed ensemble or committee
methods.

This general description applies neatly to bagging and random forests, but less
so to the technique of boosting and not at all to multivariate adaptive regression
splines (MARS: Friedman 1991). Boosting employs many trees in a manner similar
to bagging and random forests, but each additional tree focuses on the hard-to-
predict observations in the training-set, thereby learning different features in the
data (Schapire 1990; Freund 1995; Friedman et al. 2000; Friedman 2001; Hastie
et al. 2011). MARS, on the other hand, relaxes the piece-wise constant models fitted
in the nodes of regression trees to allow piece-wise linear functions and in doing
so discards the hierarchical nature of the simple tree structure (Friedman 1991).
Whilst the switch to piece-wise linear functions is not that dramatic in itself, MARS
employs these piece-wise linear functions in a flexible way combining several
such functions to fit regression models capable of identifying complex, non-linear
relationships between predictor variables and the response (Friedman 1991). Prasad
et al. (2006) provide a comprehensive comparison of these newer tree techniques.

Bagging

Bagging, short for bootstrap aggregating, is a general method, proposed by Breiman
(1996), for producing ensembles for any type of model, though it has typically been
applied to tree-based models. In palaeolimnology, when we perform bootstrapping
(Efron and Tibshirani 1993) to estimate calibration-function errors and provide
sample-specific errors (Birks et al. 1990; Juggins and Birks 2012: Chap. 14;
Simpson 2012: Chap. 15), we are using bagging. The idea is quite simple and draws
upon the power of Efron’s (1979) bootstrap to produce a set or ensemble of models
that replicate the uncertainty in the model arising from sampling variation.

In bagging, a large number of models, b, is produced from a single training-set
by drawing a bootstrap sample from the training-set with which to fit each model.
Recall that a bootstrap sample is drawn from the training-set with replacement,
and that, on average, approximately two thirds of the training-set samples will
be included in the bootstrap sample. The remaining samples not selected for the
bootstrap sample are set to one side and are known as the out-of-bag (OOB) samples.
A tree model without pruning (or any other model) is fitted to this bootstrap sample.
The fitted tree is used to generate predictions for the OOB samples, which are
recorded, as are the fitted values for the in-bag samples. This procedure is repeated
b times to produce a set of b trees. The sets of fitted values for each training-set
sample are averaged to give the bagged estimates of the fitted values. In the case of
a regression tree the mean is used to average the fitted values, whilst the majority
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Table 9.4 Confusion matrix
of predicted fuel type for the
bagged three-fuel
classification tree (number of
trees D 500)

Coal Oil Oil-shale Error rate

Coal 2794 50 116 0.056
Oil 18 930 6 0.025
Oil-shale 188 13 1878 0.100

The rows in the table are the predicted fuel types for
the 6000 spheroidal carbonaceous particles (SCPs)
based on the majority vote rule over the ensemble
of trees. The columns are the known fuel-types.
The individual fuel-type error rates of the bagged
classification tree are also shown. The overall error
rate is 0.066

vote rule is used for classification trees, where each of the b bagged trees supplies a
vote as to the fitted class for each observation, and the class with the largest number
of votes is selected as the fitted class for that observation. Alternatively, posterior
class probabilities can be produced for each observation from the set of bagged
classification trees (though not using the relative proportions of votes for each class)
and the class with the highest posterior probability is taken as the predicted class.
The same procedures are used to provide bagged predictions for new observations
not included in the training-set.

Table 9.4 shows the confusion matrix for a bagged classification tree model
applied to the three fuel-type SCP data analysed earlier. Error rates for the three
fuel-types are also shown. These statistics were computed using the OOB samples
and are honest, reliable estimates of the true error rates as opposed to those for the
single classification tree we produced earlier. The overall error rate for the bagged
model is 0.066 (6.6%), a modest improvement over the single classification tree (k-
fold cross-validation error D 0.1). Table 9.4 contains a summary of the predictions
from the bagged classification tree. The predictions for the Coal and Oil classes
are very similar to the apparent predictions from the classification tree (Table 9.3).
The main difference between the bagged tree and the single tree is in their abilities
to discriminate between coal- and oil-shale-derived particles, with the single tree
being somewhat over-optimistic in its ability to discriminate these two fuel-types.
The bagged tree gives a more honest appraisal of its ability to discriminate; the
error rate for the oil-shale class is similar to the overall k-fold CV error rate of the
classification tree.

Model error for bagged regression trees can be expressed as RMSE

RMSE D
vu
ut

nX

iD1

. Oyi � yi / =n (9.4)

using the fitted values, but this is an apparent error statistic and is not reflective of the
real expected error. Instead, we can compute the equation above for each observation
using only the OOB predictions. The OOB predictions are for the samples not used
to fit a given tree. As such they provide an independent estimate of the model
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error when faced with new observations. A similar quantity can be computed for
classification trees and is known as the error rate (number of misclassifications /
number of OOB observations). Again, only the OOB samples should be used in
generating the error rate of the model to achieve an honest error estimate.

How does bagging help with the tree instability problem? Individual trees are
unstable and hence have high variance. Model uncertainty is a combination of bias
(model error or mean squared error: MSE) and variance (the variation of model
estimates about the mean). Bagging improves over single tree models because
averaging over b trees reduces the variance whilst leaving the bias component
unchanged, hence the overall model uncertainty is reduced. This does not hold for
classification trees, however, where squared loss is not appropriate and 0–1 loss is
used instead, as bias and variance are not additive in such cases (Hastie et al. 2011).
Bagging a good classification model can make that model better but bagging a bad
classification model can make the model worse (Hastie et al. 2011).

The improved performance of bagged trees comes at a cost; the bagged model
loses the simple interpretation that is a key feature of a single regression tree or
classification tree. There are now b trees to interpret and it is difficult, though not
impossible, to interrogate the set of trees to determine the relative importance of
predictors. We discuss this in the following section on the related technique of
random forests.

Random Forests

With bagged trees, we noted that reduction in model uncertainty is achieved through
variance reduction because averaging over many trees retains the same bias as that
of a single tree. Each of the b trees is statistically identically distributed, but not
necessarily independent because the trees have been fitted to similar data-sets. The
degree of pair-wise correlation between the b trees influences the variance of the
trees and hence the uncertainty in the model; the larger the pair-wise correlation, the
larger the variance. One way to improve upon bagging is to reduce the correlation
between the b trees. Random forests (Breiman 2001) is a technique that aims
to do just that. Prasad et al. (2006) and Cutler et al. (2007) provide accessible
introductions to random forests from an ecological view-point, whilst Chap. 15 of
Hastie et al. (2011) provides an authoritative discussion of the method.

The key difference between bagging as described above and random forests is
that random forests introduces an additional source of stochasticity into the model-
building process (Breiman 2001), which has the effect of de-correlating the set of
trees in the ensemble of trees or the forest (Hastie et al. 2011). The tree-growing
algorithm, as we saw earlier, employs an exhaustive search over the set of available
explanatory variables to find the optimal split criterion to partition a tree node into
two new child nodes. In standard trees and bagging, the entire set of explanatory
variables is included in this search for splits. In random forests, however, the set
of explanatory variables made available to determine each split is a randomly
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determined, usually small, subset of the available variables. As a result, each tree
in the forest is grown using a bootstrap sample, just as with bagging, and each split
in each and every tree is chosen from a random subset of the available predictors.

The number of explanatory variables chosen at random for each split search is
one of two tuning parameters in random forests that needs to be chosen by the user.
The number of explanatory variables used is referred to as m and is usually small.
For classification forests, the recommended value is bp

pc, and bp=3c is suggested
for regression forests, where the brackets represent the floor (rounding down to the
nearest integer value), and p is the number of explanatory variables (Hastie et al.
2011). The recommended minimum node size, the size in number of observations
beyond which the tree growing algorithm will stop splitting a node, is one and five
for classification and regression forests, respectively (Hastie et al. 2011). This has
the effect of growing large trees to each bootstrap sample with the result that each
individual tree has low bias.

The trees are not pruned as part of the random-forest algorithm; the intention
is to grow trees until the stopping criteria are met so that each tree in the forest
has a low bias. Each of the individual trees is therefore over-fitted to the bootstrap
sample used to create it, but averaging over the forest of trees effectively nullifies
this over-fitting. It is often claimed that random forests do not over-fit. This is not
true, however, and, whilst the details of why this is the case are beyond the scope
of this chapter, it is worth noting that as the number of fully grown trees in the forest
becomes large, the average of the set of trees can result in too complex a model and
consequently suffer from increased variance. Section 15.3.4 of Hastie et al. (2011)
explains this phenomenon, but goes on to state that using fully grown trees tends not
to increase the variance too much and as such we can simplify our model building
by not having to select an appropriate tree depth via cross-validation.

Random forests suffer from the same problem of interpretation as bagged trees
owing to the large number of trees grown in the forest. Several mechanisms have
been developed to allow a greater level of interpretation for random forests. We will
discuss two main techniques: (i) variable importance measures and (ii) proximity
measurements.

The importance of individual predictors is easy to identify with a single tree as
the relative heights of the branches between nodes represent this, and alternative
and surrogate splits can be used to form an idea of which variables are important
at predicting the response and which are not. With the many trees of the bagged
or random forest ensemble this is not easy to do by hand, but is something that
the computer can easily do as it is performing the exhaustive search to identify
splits. Two measures of variable importance are commonly used: (i) the total
decrease in node impurity averaged over all trees and (ii) a measure of the mean
decrease in the model’s ability to predict the OOB samples before and after
permuting the values of each predictor variable in turn (Prasad et al. 2006). Recall
that node impurity can be measured using several different functions. In random
forests, the first variable importance measure is computed by summing the total
decrease in node impurity for each tree achieved by splitting on a variable and
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averaging by the number of trees. Variables that are important will be those that
make the largest reductions in node impurity. The accuracy importance measure is
generated by recording the prediction error for the OOB samples for each tree, and
then repeating the exercise after randomly permuting the values of each predictor
variable. The difference between the recorded prediction error and that achieved
after permutation is averaged over the set of trees. Important variables are those
that lead to a large increase in prediction error when randomly permuted. The mean
decrease in node impurity measure tends to be the most useful of the two approaches
because there is often a stronger demarcation between important and non-important
variables compared with the decrease in accuracy measure, which tends to decline
steadily from important to non-important predictors.

A novel feature of random forests is that the technique can produce a proximity
matrix that records the dissimilarity between observations in the training-set. The
dissimilarity between a pair of observations is based on the proportion of times
the pair is found in the same terminal node over the set of trees in the model.
Samples that are always found in the same terminal node will have zero dissimilarity
and likewise those that are never found in the same node will have dissimilarity
of 1. This matrix can be treated as any other dissimilarity matrix and ordinated
using principal coordinate analysis (see Legendre and Birks 2012b: Chap. 8) or
non-metric multidimensional scaling (see Legendre and Birks 2012b: Chap. 8) or
clustered using hierarchical clustering or K-means partitioning (see Legendre and
Birks 2012a: Chap. 7).

We continue the three-fuel SCP example by analysing the data using random
forests. Five hundred trees were grown using the recommended settings for
classification forests; minimum node size of five, m D bp

21c D 4. Figure 9.6
shows the error rate for the OOB samples of the random-forest model as additional
trees are added to the forest. The overall OOB error rate and that of each of the
three fuel-types is shown. Error rates drop quickly as additional trees are added to
the model, and stabilise after 100–200 trees have been grown. Table 9.5 shows the
confusion matrix and error rates for the individual fuel-types for the random-forest
model. The overall error rate is 6.6%. Figure 9.7 shows the variable importance
measures for the overall model, with Ca and S, and, to a lesser extent, Si, having
the largest decrease in node impurity as measured by the Gini coefficient. A similar
result is indicated by the decrease in the accuracy measure, although it is more
difficult to identify clear winners using this index. These same variables are also
important for predicting the individual fuel-types, where Fe and Mg also appear as
important indicators for the Oil and Oil-shale fuel-types (Fig. 9.8).

Random forests, whilst having recently been used in ecology as a method for
broad-scale prediction of species presence/absence or ecological niche modelling
(Iverson and Prasad 2001; Benito Garzón et al. 2006, 2008; Lawler et al. 2006;
Rehfeldt et al. 2006; Cutler et al. 2007; Peters et al. 2007; Brunelle et al. 2008;
Iverson et al. 2008; Williams et al. 2009; Chapman 2010; Chapman et al. 2010;
Franklin 2010; Dobrowski et al. 2011; Vincenzi et al. 2011), have been little used
in palaeoecology, which is surprising given the accuracy, simplicity, and speed of
the method relative to other machine-learning techniques. Brunelle et al. (2008) use
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Fig. 9.6 Error rate for the classification random forest fitted to the three-fuel spheroidal carbona-
ceous particle (SCP) example data as trees are added to the ensemble. The black line is the overall
error rate for the random forest model. The remaining lines are the error rates for the individual
fuel types. The error rates are determined from the out-of-bag (OOB) samples for each tree

Table 9.5 Confusion matrix
of predicted fuel type for the
three-fuel random forest
model (number of
trees D 500)

Coal Oil Oil-shale Error rate

Coal 2809 8 183 0.064
Oil 56 925 19 0.075
Oil-shale 128 0 1872 0.064

The rows in the table are the predicted fuel types for
the 6000 spheroidal carbonaceous particles (SCPs)
based on the majority vote rule over the ensemble
of trees. The columns are the known fuel-types.
The individual fuel-type error rates of the random
forest classifier are also shown. The overall error
rate is 0.066

random forests to investigate the climatic variables associated with the presence,
absence, or co-occurrence of lodgepole and whitebark pine in the Holocene,
whilst Benito Garzón et al. (2007) employ random forests to predict tree species
distribution on the Iberian Peninsula using climate data for the last glacial maximum
and for the mid-Holocene. Other palaeoecological examples include Goring et al.
(2010) and Roberts and Hamann (2012). Random forests are widely used in
genomic and bioinformatical data-analysis (e.g., Cutler and Stevens 2006; van Dijk
et al. 2008) and epidemiology (e.g., Furlanello et al. 2003).
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Boosting

In the discussion of bagging and random forests, we saw that modelling involves
a trade-off between the bias and the variance of the fitted model. Bagging and
random forests attempt to reduce the variance of a fitted model through the use of an
ensemble of trees in place of the single best tree. These techniques do not reduce the
bias of the fitted model. Boosting, a loosely related technique, uses an ensemble of
models (in our case trees) to reduce both the bias and the variance of a fitted model.
Boosting is an incredibly powerful technique that today relates to a whole family of
approaches. Here we restrict our discussion to gradient boosting, which also goes
by the name multiple additive regression trees (MART), and its variant stochastic
gradient boosting. Hastie et al. (2011) contains a lengthy discussion of boosting
and is essential reading for anyone attempting to use the technique for modelling
data. Elith et al. (2008) is a user friendly, ecologically-related introduction to both
the theory and practice of fitting boosting models (see also Witten and Frank 2005;
De’ath 2007).

As with bagging and random forests, boosting begins from the realisation that
it is easier to identify and average many rough predictors than it is to find one, all
encompassing, accurate, single model. The key difference with boosting is that it
is sequential; additional models are added to the ensemble with the explicit aim
of trying to improve the fit to those observations that are poorly modelled by the
previous trees already included in the model. With bagging and random forests each
new tree is fitted to a bootstrap sample of the training data with no recourse to
how well any of the previous trees did in fitting observations. As such, bagging
and random forests do not improve the bias in the fitted model: they just attempt to
reduce the variance. Boosting, in contrast, aims to reduce the bias in the fitted model
by focussing on the observations in the training data that are difficult to model, or
are poorly modelled, by the preceding set of trees. In the terminology of Hastie et al.
(2011), boosting is a forward, stage-wise procedure.

Our discussion proceeds from the point of view of regression; this includes
models for discrete responses such as logistic or multinomial regression thus encom-
passing classification models (Birks 2012a: Chap. 2). We have already mentioned
loss functions, a function or measure, such as the deviance, that represents the
loss in predictive power due to a sub-optimal model (Elith et al. 2008). Boosting
is an iterative computational technique for minimising a loss function by adding
a new tree to the model that at each stage in the iteration provides the largest
reduction in loss. Such a technique is said to descend the gradient of the loss
function, something known as functional gradient descent. For boosted regression
trees, the algorithm starts by fitting a tree of a known size to the training data.
This model, by definition, provides the largest reduction in the loss function. In
subsequent iterations, a tree is fitted to the residuals of the previously fitted trees,
which maximally reduces the loss function. As such, subsequent trees are fitted to
the variation that remains unexplained after considering the previous set of trees.
Each subsequent tree added to the ensemble has as its focus those poorly modelled
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observations that are not well fitted by the combination of previous trees, and as
such can have quite different structures incorporating different variables and splits
into the tree. Boosting is a stage-wise procedure because the preceding trees in the
ensemble are not altered during the current iteration, which contrasts with step-wise
procedures where the entire model is updated at each iteration (step-wise regression
procedures, for example). Elith et al. (2008) summarise the boosted ensemble as a
“linear combination of many trees::: that can be thought of as a regression model
where each term is a tree.”

A further important aspect of boosting is the concept of regularisation. The
logical conclusion of the boosting algorithm if no restriction on the learning rate was
imposed is that the sequence of trees could be added until the training-set samples
were perfectly explained and the model was hopelessly over-fitted to the data. In the
standard regression setting, the number of terms in the model is often constrained
by dropping out covariates (variables) or functions thereof, via a set of step-wise
selection and elimination steps. A better, alternative approach is to fit a model with
many terms and then down-weight the contributions of each term using shrinkage,
as is done in ridge regression (Hoerl and Kennard 1970) or the lasso (Tibshirani
1996) (see below). With ridge regression or the lasso, the shrinkage that is applied
is global, acting on the full model. In boosting, shrinkage is applied incrementally to
each new tree as it is added to the ensemble and is controlled via the learning rate, lr,
which, together with the number of trees in the ensemble, tr, and tree complexity,
tc (the size of the individual trees), form the set of parameters optimised over by
boosted trees.

Stochasticity was introduced into bagging and random forests through the use of
bootstrap samples, where it introduces randomness that can improve the accuracy
and speed of model fitting and help to reduce over-fitting (Friedman 2002) at the
expense of increasing the variance of the fitted values. In boosting, stochasticity is
introduced through randomly sampling a fraction, f, of the training samples at each
iteration. This fraction is used to fit each tree. f lies between 0 and 1 and is usually
set to 0.5 indicating that 50% of the training observations are randomly selected to
fit each tree. In contrast to bagging and random forests, the sampling is done without
replacement.

Recent work (Elith et al. 2008) on boosting has shown that it works best when
learning is slow and the resulting model includes a large (>1,000) number of trees.
This requires a low learning rate, say lr D 0.001. We still need a way of being alerted
to over-fitting the model so as to guide how many trees should be retained in the
ensemble. If using stochastic boosting, each tree has available a set of OOB samples
with which we can evaluate the out-of-sample predictive performance for the set of
trees up to and including the current tree. A plot of this predictive performance as
new trees are added to the ensemble can be used to guide as to when to stop adding
new trees to the ensemble. If stochastic boosting is not being used, other methods
are required to guide selection of the number of trees. An independent test-set can
also be employed, if available, in place of the OOB samples. Alternatively, k-fold
cross-validation (CV) can be used if computational time and storage are not issues,
and there is evidence that this procedure performs best for a wide range of test data-
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sets (Ridgeway 2007). In k-fold cross-validation, the training data are divided into k
subsets of (approximately) equal size. A boosting model is fitted to the k-l subsets
and the subset left out is used as an independent test-set. A large boosting model
is fitted and the prediction error for the left-out subset is recorded as the number of
trees in the model increases. This process is repeated until each of the k subsets has
been left out of the model-building process, and the average CV error is computed
for a give number of trees. We take as the number of trees to retain in the model as
that number of trees with lowest CV error.

Tree complexity, tc, is a tuning parameter in boosting; it affects the learning
rate required to yield a large ensemble of trees, and also determines the types of
interactions that can be fitted by the final model. Earlier, we saw how trees were
able to account flexibly for interactions between predictor variables by allowing
additional splits within the separate nodes of the tree, namely the interaction
that only affects the predicted values for the set of samples in the node that is
subsequently split by a further predictor. The more complex the individual trees in
the boosted model are, the more quickly the model will learn to predict the response
and hence will require fewer trees to be grown before over-fitting, for a fixed
learning rate. The complexity of the individual trees should ideally be chosen to
reflect the true interaction order in the training data. However, this is often unknown
and selection via an independent test-set or optimisation-set will be required.

To illustrate the fitting of boosted regression trees we demonstrate their use in a
calibration setting using the European Diatom Database Initiative (EDDI) combined
pH-diatom training-set. The combined pH data-set contains diatom counts and
associated lake-water pH measurements for 622 lakes throughout Europe with
a pH gradient of 4.32–8.40. As an independent test-set, we applied a stratified
random sampling strategy to select a set of 100 samples from across the entire
pH gradient by breaking the pH gradient into ten sections of equal pH interval
and subsequently choosing ten samples at random from within each section of the
gradient. The remaining 522 samples formed the training-set to which a boosted
regression-tree model is fitted using the gbm package (Ridgeway 2010) for the R
statistical software. The squared error loss-function was employed during fitting
and we explored various learning rates of 0.1, 0.01, 0.001, and 0.0001 and tree
complexities of 2, 5, 10, and 20 to identify the best set of learning parameters
to predict lake-water pH from the diatom percentage abundance data. Preliminary
exploration suggested that a large number of trees was required before error rates
stabilised at their minimum and that a modest degree of tree complexity is required
to optimise model fit, so we fitted models containing 20,000 trees. Throughout, we
assessed model fit using five-fold cross-validation on-line during model fitting.

Figure 9.9a shows the value of the loss-function as trees are added to the model
for a variety of learning rates. A tree complexity of 10 was used to build the models.
The two fastest learning rates (0.1 and 0.01) converge quickly to their respective
minima and then slowly start to over-fit, as shown by the increasing CV squared
error loss. Conversely, the model fitted using the smallest learning rate is slow to fit
the features of the training data-set and has still to converge to a minimum squared
error loss when 20,000 trees had been fitted. The best fitting of all the models shown



9 Statistical Learning 275

0 5000 10000 15000 20000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of trees

S
qu

ar
ed

 e
rr

or
 lo

ss

lr = 0.0001
lr = 0.001
lr = 0.01
lr = 0.1

0 5000 10000 15000 20000

0.0

0.2

0.4

0.6

0.8

Number of trees
S

qu
ar

ed
 e

rr
or

 lo
ss

Training Set
k − fold CV

a b

Fig. 9.9 Relationship between squared error loss, number of boosted trees, and learning rate (lr)
for a boosted regression tree fitted to the European Diatom Database Initiative (EDDI) calibration
set predicting lake-water pH from diatom species composition. (a) k-fold cross-validated and
apparent squared error loss for the tuned boosted regression tree fitted to the EDDI data (b). The
apparent squared error loss is derived using the training data to test the model and continues to
decline as additional trees are added to the ensemble, indicating over-fitting. The thick tick mark
on the x-axis of panel (b) is drawn at the optimal number of trees (14,255)

is the one with a learning rate of 0.001, which reaches a minimum squared error loss
after approximately 14,000 trees. Figure 9.9b shows the CV squared error loss for
this model alongside the training-set based estimate or error. We can clearly see that
the boosted-tree model over-fits the training data converging towards an error of 0
given sufficient trees. This illustrates the need to evaluate model fit using a cross-
validation technique, such as k-fold CV, or via a hold-out test-set that has not taken
part in any of the model building.

The learning rate is only one of the parameters of a boosted regression tree
for which optimal values must be sought. Tree complexity, tc, controls the size of
the individual trees: the more complex the trees, the higher the degree of flexible
interactions that can be represented in the model. Models that employ more complex
trees also learn more quickly than models using simpler trees. This is illustrated in
Fig. 9.10, which shows the effect of tree complexity on the squared error loss as trees
are fitted for several values of complexity and for two learning rates (lr D 0.001 and
0.0001). The effect of tree complexity on the speed of learning is easier to see in
the plot for the slowest learning rate (right hand panel of Fig. 9.10). The simplest
trees, using tree complexities of 2 and 5, respectively, converge relatively slowly
compared to the boosted trees using trees of complexity 10 or 20. Of the latter two,
there is little to choose between the loss functions once tree complexity reaches a
value of 10. Figure 9.10 combines the three parameters that users of boosted trees
need to set to control the fitting of the model, and illustrates the key feature of
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requiring a sufficiently slow learning rate to allow averaging over a large number of
trees, whilst using trees of sufficient complexity to capture the degree of interaction
between predictors in the training data.

We can assess the quality of the boosted-tree calibration model by using the best
fitting model (lr D 0.001, tc D 10, nt D 13,000). This model was chosen as the one
giving the lowest five-fold CV error over a grid of tuning parameters. The RMSEP
of the boosted tree for the test-set is 0.463 pH units. On the basis of Fig. 9.9a, one
might consider using the model with lr D 0.01, tc D 10, and nt D 2500 instead of
the best model as it has a similar, though slightly higher, squared error loss than the
best model identified. Using this model gives a RMSEP for the test-set samples of
0.533, which is substantially higher than the best model. For comparison, we fitted
weighted averaging (WA) calibration models (Juggins and Birks 2012: Chap. 14)
to the EDDI training data using inverse and classical deshrinking and then applied
each of these models to the held-out test-set. RMSEP for the WA models was 0.467
and 0.439 using inverse and classical deshrinking, respectively. There is little to
choose between these models, with WA with classical deshrinking having the lowest
hold-out sample RMSEP. It is always surprising how well the simple heuristic WA
performs on such a complex problem of predicting lake-water pH from hundreds
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of diatom species. In this example, one of the state-of-the-art machine-learning
methods is unable to beat WA in a real-world problem!

Weighted averaging, whilst being very simplistic and powerful, is not a very
transparent modelling technique as we do not have any useful variable importance
measures that we can use to interrogate a WA calibration model. Bagged trees and
random forests employ various variable importance measures to indicate to the
user which predictors are important in modelling the response. In boosted trees,
Friedman (2001) proposed to use the relative improvement in the model by splitting
on a particular variable, as used in single tree models, as a variable importance
measure in a boosted tree model but to average this relative importance over all
trees produced by the boosting procedure. Figure 9.11 shows a needle plot of the 20
most important predictor variables (diatom species) for the boosted pH calibration
model fitted to the EDDI data-set. The most important taxon is Eunotia incisa
(EU047A), an acid-tolerant diatom, whilst Achnanthes minutissima agg. (AC048A)
is a diatom that tends to be found in circum-neutral waters. The suite of taxa shown
in Fig. 9.11 are often identified as indicator species for waters of different pH, so it is
encouraging that the boosted model has identified these taxa as the most important
in predicting lake-water pH (see Legendre and Birks 2012a: Chap. 7). Ecological
examples of boosted regression trees are given by Elith et al. (2008), De’ath and
Fabricius (2010), and Dobrowski et al. (2011).

Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS) (Friedman 1991; Friedman and
Meulman 2003; Leathwick et al. 2005) are an attempt to overcome two perceived
problems of the single regression tree. The hierarchical nature of the tree imposes
a severe restriction on the types of model that can be handled by such models.
A change made early on in growing the tree is very difficult to undo with later
splits, even if it would make sense to change the earlier split criteria in light of
subsequent splits. Furthermore, as regression trees (as described above) fit piece-
wise constant models in the leaves of the tree, they have difficulties fitting smooth
functions; instead, the response is approximated via a combination of step functions
determined by the split criteria. MARS does away with the hierarchical nature of
the tree and uses piece-wise linear basis functions, combined in an elegant and
flexible manner, to approximate smooth relationships between the responses and
the predictors.

MARS proceeds by forming sets of reflected pairs of simple, piece-wise linear
basis functions. These functions are defined by a single knot location, and take the
value 0 on one side of the knot, and a linear function on the opposite side. Each
such basis function has a reflected partner, where the 0-value region and the linear-
function region are reversed. Figure 9.12 shows an example of a reflected pair of
basis functions for variable or covariate x, with a single knot located at t D 0.5.
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The solid line is denoted (x � t)C, with the subscript C indicating that we take the
positive part of the function only, with the negative part set to 0. As a result, the
basis function illustrated by the solid line in Fig. 9.12 is zero until the knot location
(x D 0.5) is exceeded. The reflected partner has the form (t � x)C, and is illustrated
by the dashed line in Fig. 9.12. For each quantitative covariate in the training data,
a reflected pair of basis functions is formed by setting each t to be a unique value
taken by that covariate. Qualitative covariates are handled by forming all possible
binary partitions of the levels of a categorical covariate to form two groups. A pair
of piece-wise constant functions are formed for each binary partition, which act as
indicator functions for the two groups formed by the binary partition, and are treated
like any other reflected pair of basis functions during fitting.

Model building in MARS is similar to step-wise linear regression except the en-
tire set of basis functions is used as input variables and not the covariates themselves.
The algorithm begins with a constant term, the intercept, and performs an exhaustive
search over the set of basis functions to identify the pair that minimises the model
residual sum-of-squares. That pair and their least-squares coefficients are added
to the model-set of basis functions and the algorithm continues. Technically the
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Fig. 9.12 Examples of a reflected pair of basis functions used in multivariate adaptive regression
splines. The basis functions are shown for the interval (0,1) with a knot located at t D 0.5. See main
text for details

algorithm finds the pair that, when multiplied by a term already included in the
model, results in the lowest residual sum-of-squares, but as the only term in the
model at the first iteration is the constant term, this amounts to finding the pair
of basis functions that affords the largest improvement in fit. At the second and
subsequent steps of the algorithm, the products of each existing model-term with
the set of paired basis functions are considered and the basis function that results
in the largest decrease in residual sum-of-squares is added to the model along with
its partner basis function and their least-squares coefficients. The process continues
until some stopping criteria are met; for example, the improvement in residual sum-
of-squares falls below a threshold or a pre-specified number of model terms is
reached. An additional constraint is that a single basis function pair may only be
involved in a single product term in the model. Because products of basis functions
are considered, interactions between covariates are handled naturally by the MARS
model. The degree of interactions allowed is controlled by the user; if the degree is
set to 1, an additive model in the basis functions is fitted.

At the end of this forward stage of model building a large model of basis
functions has been produced that will tend to strongly over-fit the training data.
A backwards elimination process is used to remove sequentially from the model the
term that causes the smallest increase in the residual sum-of-squares. At each stage
of the forward model-building phase, we added a basis function and its partner
to the model during each iteration. The backwards elimination stage will tend to
remove one of the pair of basis functions unless both contribute substantially to
the model-fit (Hastie et al. 2011). A generalised cross-validation (GCV) procedure
is used to determine the optimal model-size as ordinary cross-validation is too
computationally expensive to apply to MARS for model-building purposes. The size
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of a MARS model is not simply the number of model terms included within it; a
penalty must be paid for selecting the knots for each term. The effective degrees of
freedom (EDF) used by a MARS model is given by EDF D œ C c((œ � 1)/2), where
œ is the number of terms in the model, and c is a penalty term on the number of knots
((œ � 1)/2) and is usually equal to 3, or 2 in the case of an additive MARS model
where no interactions are allowed. The EDF term is part of the GCV criterion that
is minimised during the backwards elimination phase.

MARS was originally derived using least squares to estimate the coefficients for
each basis function included in the model. The technique is not restricted to fitting
models via least squares, however. The scope of MARS can be expanded by esti-
mating the basis function coefficients via a generalised linear model (GLM), which
allows the error distribution to be one of the exponential family of distributions (see
Birks 2012a: Chap. 2).

We illustrate MARS via a data-set of ozone measurements from the Los Angeles
Basin, USA, collected in 1976. A number of predictor variables are available;
inter alia, air temperature, humidity, wind speed, and inversion base height and
temperature. The aim is to predict the ozone concentration as a function of the
available predictor variables. The variance in ozone concentrations increases with
the mean concentration and as negative concentrations are not possible, a sensible
fitting procedure for MARS is to estimate the coefficients of the model terms via a
gamma GLM and the inverse link function (Birks 2012a: Chap. 2). Only first-order
interaction terms were considered during fitting. The MARS model was fitted using
the R package earth (Milbarrow 2011). A MARS model comprising ten terms,
including the intercept and seven predictor variables, was selected using the GCV
procedure. Four model terms involve the main effects of air temperature (two terms),
pressure gradient1 (DPG), and visibility. The remaining terms involve interactions
between variables. A summary of the model terms and the estimated coefficients is
shown in Table 9.6, whilst Fig. 9.13 displays the model terms graphically. The upper
row of Fig. 9.13 shows the main effect terms. A single knot location was selected
for air temperature at 58ıF, with terms in the model for observations above and
below this knot. Both air-temperature terms have different coefficients as illustrated
by the differences in slopes of the fitted piece-wise functions. Note that the terms
are non-linear on the scale of the response due to fitting the model via a gamma
GLM.

Variable importance measures are also available to aid in interpreting the model
fit, and are shown in Fig. 9.14 for the ozone example. The ‘number of subsets’
measurement indicates how many models, during the backward elimination stage,
included the indicated term. The residual sum-of-squares (RSS) measure indicates
the reduction in RSS when a term is included in one of the model subsets considered.
The decrease in RSS is summed over all the model subsets in which a term is
involved and is expressed relative to the largest summed decrease in RSS (which
is notionally given the value 100) to aid interpretation. The GCV measure is

1Pressure gradient between Los Angeles airport (LAX) and Daggert in mm Hg.
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Table 9.6 MARS model
terms and their coefficients Term Ǒ

Intercept 0.0802293
h(temp-58) �0.0007115
h(58-temp) 0.0058480
h(2-dpg) 0.0018528
h(200-vis) �0.0002000
h(wind-7) � h(1069-ibh) 0.0000681
h(55-humidity) � h(temp-58) 0.0000196
h(humidity-44) � h(ibh-1069) 0.0000005
h(temp-58) � h(dpg-54) 0.0000435
h(258-ibt) � h(200-vis) 0.0000010

The h() terms refer to basis functions, the numeric value inside
the parentheses is the knot location for the piece-wise linear
function, and the name inside the parentheses is the variable
associated with the basis function temp Air Temperature (ıF),
dpg pressure gradient (mm Hg) from LAX airport to Daggert,
vis visibility in miles, wind wind speed in MPH, ibh tempera-
ture inversion base height (feet), humidity percent humidity at
LAX airport, ibt inversion base temperature (ıF)

computed in the same manner as the RSS measure but involves summing the GCV
criterion instead of RSS. A variable might increase the GCV score during fitting,
indicating that it makes the model worse. As such, it is possible for the GCV
importance measure to become negative. For the ozone model, air temperature is
clearly the most influential variable, with the remaining variables included in the
model all being of similar importance. The model explains approximately 79% of
the variance in the response (76% by the comparable GCV measure). Ecological
and biogeographical applications of MARS are relatively few and include Moisen
and Frescino (2002), Leathwick et al. (2005, 2006), Prasad et al. (2006), Elith and
Leathwick (2007), Balshi et al. (2009), and Franklin (2010).

Artificial Neural Networks and Self-organising Maps

Artificial neural networks (ANNs) and self-organising maps (SOMs) were devel-
oped for applications in artificial-intelligence research and are often conflated into a
general machine-learning technique that is based on the way biological nervous sys-
tems process information or generate self-organising behaviour. However, despite
these similarities, ANN and SOM are best considered from very different vantage
points. There are also a large number of variations that fall under the ANN or
SOM banner – too many to consider here. Instead we focus on the techniques most
frequently used in ecological and limnological research (Lek and Guégan 1999).
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Fig. 9.13 Partial response plots for the multivariate adaptive regression spline (MARS) model
fitted to the ozone concentration data from the Los Angeles basin

Artificial Neural Networks

An artificial neural network is a particularly flexible, non-linear modelling technique
that is based on the way neurons in human brains are thought to be organised
(Chatfield 1993; Warner and Misra 1996; Witten and Frank 2005; Ripley 2008).
The term ANN today encompasses a large number of different yet related modelling
techniques (Haykin 1999). The most widely used form of ANN is the forward-feed
neural network, which is sometimes known as a back-propagation network or multi-
layer perceptron. The general form of a forward-feed ANN is shown in Fig. 9.15.
Configurations for both regression and classification settings are shown. The main
feature of a forward-feed ANN is the arrangement of ‘neurons’ or units into a
series of layers. The input layer contains m units, one per predictor variable in the
training data-set, whilst the output layer contains units for the response variable or
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variables. In the univariate regression setting, there is a single unit in the output layer
(Fig. 9.15a). In a classification setting, where the response takes one of k possible
classes, there are k units in the output layer, one per class. The predicted class in
a classification ANN is the largest value taken by Yk for each input. Between the
input and output layers a hidden layer of one or more units is positioned. Units in
the input layer each have a connection to each unit in the hidden layer, which in
turn have a connection to every unit in the output layer. The number of units in the
hidden layer is a tuning parameter to be determined by the user. Additional hidden
layers may be accommodated in the model, though these do not necessarily improve
model fit. In addition, bias units may be connected to each unit in the hidden and
output layers, and play the same role as the constant term in regression analysis.

Each unit in the network receives an input signal, which in the case of the input
layer is an observation on m predictor variables, and outputs a transformation of
the input signal. Where a unit receives multiple inputs, a transformed sum of these
inputs is outputted. Bias units output a value of C1. The connections between units
are represented as lines in Fig. 9.15 and each is associated with a weight. The output
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Fig. 9.15 Structure of a forward-feed, back-propagation neural network in a regression (a) and a
classification (b) setting. A single hidden layer (Zc) is shown. The lines connecting the layers of
the network carry weights that are estimated from the data during fitting to minimise the loss of the
final model. It is clear that the response is modelled as a function of a series of linear combinations
(Zc) of the input data

signal from an individual unit is multiplied by the connection weight and passed on
to the next layer in the network along the connection. The weights are the model
coefficients and optimal values for these are sought that best fit the response data
provided to the network during training.

We said that the inputs to a unit are transformed. The identity function (Birks
2012a: Chap. 2) is generally used for the input layer, as a result the input data for
the ith sample are passed on to the hidden layer units untransformed. The hidden
layer generally employs a non-linear transformation, typically a sigmoid function
of the form

¢ .sv/ D 1 =.1 C e�v/ (9.5)

where v is the sum of the inputs to the unit and s is a parameter that controls the
activation rate. Figure 9.16 shows the sigmoid function for various activation rates.
As s becomes large, the function takes the form of a hard activation or threshold
once a particular value of the inputs is reached. The origin can be shifted from 0 to
	0 by replacing the terms in the parentheses on the left hand side of Eq. 9.5 with
s(	 � 	0). If an identity function is used in place of the sigmoid, the entire model
becomes a simple linear regression. For the output layer, an identity function is used
for regression models, whilst the softmax function, which produces positive outputs
that sum to one, is used for classification.

The connection weights are estimated using gradient descent, known as back-
propagation in the ANN field. For regression ANNs, sum-of-squares error is used
to estimate the lack-of-fit for the current set of weights, whilst cross-entropy is
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generally used in classification. The weights are sequentially updated to improve the
fit of the model and each pass over the data is termed a training epoch. Generally,
a large number of training epochs is performed to optimise the weights and thus
improve the accuracy of the model. The set of weights that provides the global
minimum of the model error is likely over-fitted to the training data. To alleviate
over-fitting, training is often stopped early, before the global minimum is reached
(Hastie et al. 2011). A validation data-set is useful in determining the appropriate
stopping point, where the prediction error for the validation samples begins to
increase. An alternative procedure, called weight-decay, provides a more explicit
regularisation of the model weights, and is analogous to that used in ridge regression
(see below). Details of the weight-decay procedure are given in Sect. 11.5.2 of
Hastie et al. (2011).

It is instructive to consider what the units in the hidden layer represent; they are
linear combinations of the input variables with the loading (or weighting) of each
input variable in each unit Zc given by the connection weight of the relevant unit in
the input layer. We can then think of the forward-feed ANN as a general linear model
in the linear combinations Zc of the inputs (Hastie et al. 2011). A key feature of the
forward-feed ANN is that the connection weights that define the linear combinations
Zc are learnt from the data during training. In other words, a set of optimal linear
combinations of the inputs are sought to best predict the response.

ANNs are often considered black-box prediction tools (Olden and Jackson 2002)
owing to how ANNs learn patterns from the data and encode this information
in the connection weights, which makes it more difficult to extract and interpret
than more simple, parametric techniques. To some extent this is a valid criticism;
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however the connection weights are available for inspection along with the linear
combinations of the inputs reconstructed (Zc) from these. Several methods for
inspecting ANN model structure have been proposed, including the connection
weighting approach of Olden et al. (2004) to derive a measure of variable im-
portance, sensitivity analyses (Lek et al. 1996a), and various pruning algorithms
(Bishop 1995, 2007; Despagne and Massart 1998; Gevrey et al. 2003). An example
of a pruning algorithm applied in a palaeoecological context is the skeletonisation
procedure of Racca et al. (2003), which for the Surface Waters Acidification
Programme (SWAP) diatom-pH training-set allowed the removal of 85% of the
taxa from the training data without drastically affecting model performance. This
pruning also improved the robustness of the resulting calibration (Racca et al. 2003)
(see Juggins and Birks 2012: Chap. 14).

Several factors can affect optimisation in ANNs which ultimately can determine
the quality of the resulting model. We have already mentioned the potential for over-
fitting the training data. In addition, the number of hidden layers and units within
those layers needs to be decided. In general a single hidden layer will be sufficient,
but additional layers can speed up model fitting. The number of units in the hidden
layer controls the flexibility of functions of the input data that can be described
by the model. Too many hidden units and the model may over-fit the data quickly,
whilst too few units will unnecessarily restrict the very flexibility that ANNs afford.
The optimal number of units in the hidden layer can be determined analytically
(Bishop 1995, 2007; Ripley 2008) but in practice, treating the number of units as
a tuning parameter to be optimised using k-fold cross-validation is generally used.
Özesmi et al. (2006) reviewed other aspects of ANN assessment.

ANNs, when compared to the majority of the machine-learning tools described
in this chapter, have been used relatively frequently to model palaeoecological
data, particularly as a means of implementing calibration models (Borggaard and
Thodberg 1992; Næs et al. 1993; Wehrens 2011). At one time ANNs were becoming
a popular means of producing palaeoenvironmental reconstructions as they were
seen as highly competitive when compared to modern analogue technique (MAT),
weighted averaging (WA), and weighted-averaging partial least squares (WAPLS)
because the calibration functions produced using ANNs had comparatively low
root mean squared errors of prediction (RMSEP). Malmgren and Nordlund (1997)
compared ANNs with Imbrie and Kipp factor analysis (IKFA), MAT, and soft
independent modelling of class analogy (SIMCA) on a data-set of planktonic
foraminifera and achieved substantially lower RMSEP than the other techniques.
Racca et al. (2001) compared ANN, WA, and WAPLS calibration models for a
data-set of diatom counts from 76 lakes in the Quebec region of Ontario, Canada.
In this study, ANNs gave modest improvements in RMSEP over WA and WAPLS.
Other palaeoecological applications of ANNs include Peyron et al. (1998, 2000,
2005), Tarasov et al. (1999a, b), Malmgren et al. (2001), Grieger (2002), Nyberg
et al. (2002), Racca et al. (2004), Barrows and Juggins (2005), and Kucera et al.
(2005). Limnological, environmental, biogeographical, and ecological examples are
numerous, as reviewed by Lek and Guégan (2000). Illustrative examples include
Lek et al. (1996a, b), Recknagel et al. (1997), Guégan et al. (1998), Lindstrom et al.
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(1998), Brosse et al. (1999), Manel et al. (1999a, b), Spitz and Lek (1999), Olden
(2000), Belgrano et al. (2001), Cairns (2001), Černá and Chytrý (2005), Steiner
et al. (2008), and Chapman and Purse (2011).

The popularity of ANNs in palaeoecology has waned recently following the
discovery that many published ANN-derived calibration functions may have greatly
under-estimated model RMSEP by failing to account for spatial autocorrelation
in the training data (Birks 2012a: Chap. 2). The autocorrelation problem can be
accounted for using appropriate cross-validation techniques, such as the h-block
approach of Burman et al. (1994) as used by Telford and Birks (2009). Typically,
when one accounts for the dependence structure in the input data, the performance of
ANNs is comparable to or worse than the best fits produced using WA and WAPLS.

Self-organising Maps

The self-organising map (SOM; also known as a self-organising feature map)
is a relatively popular machine-learning tool for mapping and clustering high-
dimensional data (Wehrens 2011), which has been used in a wide variety of
ecological, environmental, and biological contexts (see e.g., Chon 2011 for a recent
overview, and Giraudel and Lek 2001 for a comparison of SOMs and standard
ordination techniques used in palaeoecology). The SOM is superficially similar to
an artificial neural network, but this analogy only gets one so far and it is simpler to
consider SOMs as a constrained version of the K-means clustering or partitioning
method (Legendre and Birks 2012a: Chap. 7). As we will see, SOMs are also similar
to principal curves and surfaces (see below and Hastie et al. 2011) and can be likened
to a non-linear form of principal component analysis (PCA).

In a SOM, p prototypes are arranged in a rectangular or hexagonal grid of units of
pre-defined dimension (number of rows and columns). The number of prototypes,
p, is usually small relative to the dimensionality (number of variables or species)
of the input data. A prototype is assigned to each grid unit. The SOM algorithm
forces each of the samples in the input data to map onto one of the grid units during
an iterative learning process. The goal of the SOM is to preserve the similarities
between samples such that similar samples map on to the same or neighbouring units
in the grid, whilst dissimilar samples are mapped on to non-neighbouring units.

At the start of the algorithm, the p prototypes are initialised via a random
sample of p observations from the input data. Alternatively, the first two principal
components of the input data can be taken and a regular grid of points on the
principal component plane used as the prototypes (Hastie et al. 2011). Regardless
of how the prototypes are initialised, each is characterised by a codebook vector
that describes the typical pattern for the unit to which it has been assigned. If
the prototypes are initialised using a random sample from the input data, then
the codebook vector for an individual prototype will be the values of the species
abundances, for example, in the sample assigned to that prototype. The aim of the
SOM algorithm is to update these codebook vectors so that the input data are best
described by the small number of prototypes.
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During training, samples from the input data are presented to the grid of units
in random order. The distance between the species abundances in the presented
sample and the codebook vectors for each of the units is determined, usually via
the Euclidean distance, but other distance measures can be used. The unit whose
codebook vector is closest, i.e., most similar, to the presented sample is identified as
the winning unit. The winning unit is then made more similar to the presented
sample by updating its codebook vector. Geometrically, we can visualise this update
as moving the unit in the m-dimensional space towards the location of the presented
sample. By how much the codebook vector of the winning unit is updated (moved
towards the presented sample) is governed by the learning rate, ˛, which is typically
a small value of the order of 0.05. The learning rate is gradually decreased to 0
during learning to allow the SOM to converge.

Earlier, we noted that the SOM can be considered a constrained form of K-means
clustering or partitioning: the constraint is spatial and arises because neighbouring
units in the grid are required to have similar codebook vectors. To achieve this, not
only is the winning unit updated to become more similar to the presented sample,
but those units that neighbour the winning unit are also updated in the same way.
Which units are considered neighbours of the winning unit is determined via another
tuning parameter, r, which can be thought of as the distance within which a grid
unit is said to be a neighbour of the winning unit. This distance, r, is topological,
i.e., it is the distance between units on the grid, not the distance between the units
in the m-dimensional space defined by the input data. The value of r, and hence
the size of the neighbourhood around the winning unit, is also decreased during
training; the implication is that as learning progresses, eventually only the winning
units are updated. The SOM algorithm proceeds until an a priori-defined number of
learning iterations, known as epochs, has been performed. The standard reference
work for SOM is Kohonen (2001) where further details of the learning algorithm
can be found.

As described above, SOM is an unsupervised technique, learning features of the
data from the data themselves. However, the simplicity of the SOM algorithm allows
scope for significant adaptation. One such adaptation allows SOMs to be used in a
supervised fashion. If additional, dependent variables are available then these can be
modelled alongside the independent or predictor variables. Such a supervised SOM
then allows for predictions of the dependent variable to be made at new values of
the predictor variables. One simple means of achieving this is to take an indirect
approach and fit the SOM without regard to the dependent (response) variable(s)
of interest and then take as the predicted value for each sample in the input the
mean of the values of the response for all the samples that end up in the same grid
unit as the sample of interest. This approach is very much in the spirit of the indirect
ordination approach (Legendre and Birks 2012b: Chap. 8), but cannot be considered
truly supervised.

Kohonen (2001) considered a supervised form of SOM and suggested building
the map on the concatenation of the response variables (Y) and the predictor
variables (X). In practice however, it may be difficult to find a scaling of X and Y
such that both contribute similarly in the analysis. Indeed, if one of X or Y contains
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many more variables than the other, it will dominate the distance computations
when identifying the winning unit. Melssen et al. (2006) introduce two variations of
supervised SOMs that have wide applicability as general techniques for analysing
palaeoenvironmental data: (i) the X-Y Fused Kohonen Network (XYF) and (ii) the
Bi-directional Kohonen Network (BDK). Both approaches make use of two grids
of prototypes, the first providing a mapping of X, the second a mapping of Y, into
low dimensions. The networks are trained in the same manner as described for the
unsupervised SOM, but differ in how the two mappings are combined to identify
the winning unit during each learning epoch.

XYF networks operate on a fused distance, where the total distance between each
observation and the prototypes is a weighted sum of the scaled distance between
each observation and the prototypes on the individual maps. The winning unit is
the one that has the lowest weighted sum distance to the observation. The relative
weighting is given by ˛, taking values between 0 and 1, with the distances on the
X map weighted by ˛(t) and the distances on the Y map weighted by 1 � ˛(t).
The distances between observations and prototypes on the individual maps are
normalised by the maximum distance on each map so that the maximal distance on
each map is 1. This scaling allows for very different magnitudes of distances on the
maps, such as might arise when computing distances where X and Y are measured in
different units or where different dissimilarity coefficients are used for the different
maps. This latter point is particularly useful when applying the supervised SOM in
a classification setting where the distance used for the response Y should consider
group membership (0, 1). In such cases, the Jaccard distance (Legendre and Birks
2012b: Chap. 8; often called the Tanimoto distance in the chemometrics literature
where the XYF and BDK methods were developed) is generally used. The t in ˛(t)
indexes the learning epoch, allowing ˛ to be decreased linearly during learning.
Initially, this results in the determination of the winning unit being dominated by
distances to prototypes on the X map. As learning proceeds, ˛ is slowly decreased
such that at the end of learning, distances to prototypes on both the X and Y maps
contribute equally. It should be noted that a single epoch entails presenting, at
random, each observation in the training-set to the maps.

The BDK network is similar to that described for the XYF network, but differs in
that the two maps are considered individually during separate passes over the data.
First, in the forward pass, the winning unit on the X map is identified as a weighted
sum of distances on the two maps, as described above, and updated in the usual
SOM manner. A reverse pass over the data is then performed, where the winning
unit in the Y map is determined, again via a weighted sum of distances on the two
maps, but this time using the X map updated in the forward pass. Learning proceeds
in this alternating manner until convergence or an upper limit of epochs is reached.
In practice there is generally little difference between the networks learned via the
XFY or BDK methods (Melssen et al. 2006).

The XYF supervised SOM can be generalised to any number of maps, where
the winning unit is identified as a weighted sum of distances over i maps, each
map weighted by ˛i, where †˛i D 1, and the distances on each map scaled so
the maximal distance is 1. Such a network is known as a super-organised SOM.
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One problem with supervised SOMs as presented above is that in a regression
setting, the number of possible fitted (or predicted) values of the response Y is
limited by the number of units in the grid used. The fitted values for each observation
are the mean of the response over the set of observations that map to the same unit.
The predicted value for new observations is likewise the mean of the response for
the training samples mapped to the same unit as each new observation. This is the
same problem as identified for regression trees; in the terminology introduced there,
a piece-wise constant model is fitted in the units of the trained supervised SOM.
Melssen et al. (2007) combine the BDK or XYF networks with partial least squares
regression (PLS) (Martens and Næes 1989; Wehrens 2011: Juggins and Birks 2012:
Chap. 14) to overcome this deficiency in supervised SOMs.

We illustrate the utility and applicability of SOMs for palaeoecological data anal-
ysis using the SWAP-138 diatom calibration data-set, using the R package kohonen
(Wehrens and Buydens 2007). Figure 9.17 shows output from a SOM fitted to the
standardised, log-transformed (except pH, and conductivity was excluded from this
analysis) water-chemistry for the 138-lake training-set. Figure 9.17a shows how the
mean distance to the winning unit (per epoch) improves as the network is trained.
The SOM appears to have converged after approximately 60 iterations. There is a
clear conductivity signal in the data that is captured by the SOM (Fig. 9.17b), with
units to the left of the map identified by high values of various ions and high pH
and alkalinity. The upper right section of the map is characterised by dilute, low pH
waters, whilst very low pH waters with high aluminium concentrations are located in
the lower right area of the map. High total organic carbon (TOC) concentrations are
found towards the lower left. The average distance of observations to the unit onto
which they map is a measure of the quality of the mapping achieved by the SOM,
and is shown in Fig. 9.17c for the SWAP water-chemistry SOM. There are few
units with high mean distances, which suggests that the low-dimensional mapping
closely fits the data. Figure 9.17d shows which unit each of the 138 SWAP sites
maps onto and the number of samples within each unit. Given the small numbers of
observations within some of the map units, it might be prudent to sequentially refit
the SOM with reduced grid sizes until the degree of fit drops appreciably.

A supervised SOM can be fitted to the SWAP-138 diatom and lake-water
chemistry data to investigate relationships between chemistry and diatom species
composition. Here we use the square-root transformed species data as the response
data, Y, and the standardised water chemistry data in the predictor role, X. Only
diatom taxa that were present in at least 5 samples at 2% abundance or greater
were included in the analysis. Both maps converged after approximately 60 epochs
(Fig. 9.18a) and achieved similar levels of fit. The codebook vectors for the X map
(chemistry: Fig. 9.18b) are very similar to those produced by the unsupervised SOM
(Fig. 9.17b), indicating the strong influence on diatom species composition exerted
by the water chemistry. In general, the supervised SOM X map is a reflected, about
the vertical, version of the unsupervised SOM; higher ionic strength waters are
found to the right and the more acid sites to the left. The high aluminium, low pH
units are now located to the upper left, with the low pH and low aluminium units to
the lower left.
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Fig. 9.17 Graphical summary of the self-organising map (SOM) fitted to the Surface Waters
Acidification Programme (SWAP) water chemistry data-set: (a) shows how the mean distance
to the closest map unit falls steadily as the SOM is trained and learns the features of the data,
stabilising after 60 iterations or training epochs. The codebook vectors for the trained SOM map
units are shown in (b) where each segment represents one of the nine water chemistry determinands
and the radius of each segment represents the ‘abundance’ of the determinand (large radii indicate
large values and small radii indicate small values). The degree of heterogeneity in the water
chemistry of samples within each map unit is shown in panel (c) with higher values indicating units
with samples of more heterogeneous chemistry. The number of samples in the SWAP training-set
mapped to each unit in the SOM grid is shown in (d); the background shading refers to the number
of samples and each map unit on the panel contains that number of samples (circles) plotted using
a small amount of jitter

Due to the large number of taxa, the codebook vectors for the Y map are best
visualised on a per taxon basis. Figure 9.19 shows the XYF SOM-predicted abun-
dances (back-transformed) for four taxa with differing water chemistry responses.
Achnanthes minutissima is restricted to the high pH, high alkalinity units to the right
of the map. Predicted abundances for Brachysira brebissonii are positive for many
units indicating the wide tolerance of this taxon, however it is most abundant in the
slightly more-acidic units on the map. Tabellaria binalis, an acid-loving species, is
found most abundantly in the very acid, high aluminium map units towards the upper
left of the map, whilst Eunotia incisa, an acid-tolerant species common in nutrient-
poor, acid waters, is most abundant in a range of the low pH units but particularly in
those with lower aluminium concentrations.
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Fig. 9.18 Graphical summary of the X-Y fused Kohonen network self-organising map (XYF-
SOM) fitted to the Surface Waters Acidification Programme (SWAP) diatom training-set. The
square-root transformed diatom data were used as the response map Y with the water chemistry
data used as predictor map X. (a) Shows how the mean distance to the closest unit for both X and
Y maps decreases steadily as the XYF-SOM is trained, apparently converging after 50 iterations.
The codebook vectors for the X map (water chemistry) are shown in (b). See Fig. 9.17 for details
on interpretation
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Fig. 9.19 Predicted percentage abundance for four diatom taxa using a X-Y fused Kohonen
network self-organising map (XYF-SOM) fitted to the Surface Waters Acidification Programme
(SWAP) training-set data
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A supervised SOM can also be used as a multivariate calibration tool; here the
species data play the role of the predictor variables (X map), whilst the variable(s)
of interest to be predicted are now used in the response role (Y map). Here we
build a supervised SOM to predict lake-water pH from the diatom data, using
the same data as for the previous example except in reverse roles. We also only
include pH as the sole Y map variable, although, where appropriate, two or more
response variables may be included in a calibration SOM. The fitted model has an
apparent root mean squared error (RMSE) of 0.215 pH units when assessed using
the training-set data. Further analysis of the fitted codebook vectors of the species
(X map) can be performed, to identify those taxa most influential for predicting
pH and also the species composition of the SOM map unit. We use the fitted XYF
SOM to predict lake-water pH values for the Holocene core from The Round Loch
of Glenhead (Birks and Jones 2012: Chap. 3). Only those taxa used to fit the XYF
SOM were selected from the fossil data. The pH reconstruction is shown in the upper
panel of Fig. 9.20, whilst the pH codebook vector is shown for each map unit in the
lower panel with the fossil samples projected on to the map. Whilst the general form
of the reconstruction is similar to previously published reconstructions (e.g., Birks
et al. 1990) and the recent acidification period is captured by the reconstruction, a
major deficiency in the reconstruction is immediately apparent; the predicted values
for the core samples only take on one of nine possible values. This is due to the
predicted pH for each fossil sample being the fitted pH value from the map unit
onto which each fossil sample is projected. As the fossil samples project onto only
nine map units, only nine possible values can be predicted for the reconstruction.
This deficiency is addressed by Melssen et al. (2007) by combining supervised
SOMs with PLS. Although we will not consider this technique further here, the
general idea is that a BDK SOM is trained on the input data and the similarities
between the objects and the codebook vectors of the trained SOM are computed
to form a similarity matrix. The elements of this matrix are weighted by a kernel
function to form a so-called kernel matrix. The columns of this kernel matrix are
then used as predictor variables in a PLS model to predict the response (Melssen
et al. 2007). In this way, the information contained in the trained SOM is used to
predict the response, but continuous predictions can now be produced because of
the use of PLS. Examples of the use of SOMs in limnology and palaeoecology
include Malmgren and Winter (1999), Céréghino et al. (2001), Holmqvist (2005),
and Weller et al. (2006).

Bayesian Networks

Bayesian networks (also known as belief networks or Bayesian belief networks)
are a powerful modelling technique that describes a means by which reasoning in
the face of uncertainty about a particular outcome can be performed (Witten and
Frank 2005; Bishop 2007; Jensen and Nielsen 2007; Ripley 2008). A Bayesian
network can be viewed as a graphical description of the system under study, where
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Fig. 9.20 Graphical summary of a X-Y fused Kohonen network self-organising map (XYF-SOM)
fitted to the Surface Waters Acidification Programme (SWAP) training-set in calibration mode,
with lake-water pH used as the response data Y and square-root transformed diatom abundance
data used as prediction data X, and applied to a Holocene diatom sequence from The Round Loch
of Glenhead, Scotland, UK. (a) Reconstructed lake-water pH history for the loch. The predicted
pH for each map unit is shown in (b) with The Round Loch of Glenhead sediment core samples
mapped on it

key features of the system are represented by nodes that are linked together in
some fashion so that the cause-and-effect relationships between the nodes are
described. Bayesian networks are more formally known as directed acyclic graphs
(DAGs), where the nodes represent random variables and the linkages between
nodes represent the conditional dependencies between the joined nodes. The graph
is acyclic, meaning that there are no loops or feedbacks in the network structure,
and is directed because the relationships between nodes have stated directions; A
causes B (Ripley 2008).

Consider a simple system with two nodes, A and B, which are the nodes in the
network. A and B are linked by a directional arrow from A to B indicating that A
influences B. In this network, A is the parent of B, and B is the child of A. A has no
parents and thus is also known as a root node, and plays the role of an input variable
in the network. A node that does not have any children is known as a leaf node and
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plays the role of an output variable. Each node in the network is associated with a
set of states, that may be discrete or continuous, which represent the set of possible
conditions that the node may take. A conditional probability table is produced for
each node, which states the probability with which a node will take each of its
states conditional upon the states (or values) of the parent nodes. As such, root
nodes are not initialised with conditional probability tables and instead are provided
unconditional probabilities: the probability that the input variable (root node) is in a
particular state. Conditional independence is a key property of Bayesian networks:
two events X and Y given a third event Z are said to be conditionally independent
if, given knowledge about the state of Z, knowledge of X conveys no information
about the state of Y or vice versa. Independent and interactive (conditional) effects
of variables on the modelled response (output nodes) can be examined. Bayesian
networks also assume the Markov property, namely that the conditional probability
tables can be completed only by considering the immediate parents of a particular
node. If we know the probabilities of the states for the parents of a particular node,
given the conditional probability table for that node, the probabilities for the child
nodes can be computed using Bayes Theorem

P .yjx/ D P .xjy/ P.y/

P.x/
(9.6)

where P(y) is the prior probability of the child node, P(x j y) is the likelihood or the
conditional probability of x given y, P(x) is the probability of the parent node and
is a normalising constant in the equation, and P(y j x) is the posterior probability of
the child node given the state of the parent x. The posterior probability P(y j x) is the
probability of a particular state of the child node conditional upon the probabilities
of the states of the parent. The prior probabilities and the conditional probability
tables for the nodes may be specified using expert judgement and knowledge of the
system under study or learned from the training data via one of several Bayesian
learning algorithms.

Bayesian networks can be operated bottom-up or top-down. Consider again our
system with two nodes, A and B. In bottom-up mode, we might observe a particular
state for B, thus setting the probability for that state to 1, and then propagate this
information back up the network to A to determine the most likely state of A,
given that we have observed the state of B. Conversely, we might be interested in
determining the effect on B of altering the state of A, therefore we set the probability
for one of the A states to 1 and then propagate this information down the network
to see the most likely response of B to the state of A.

As an example, consider a study relating nutrient loadings, through trophic
levels, to provide an estimate of water quality (Castelletti and Soncini-Sessa 2007a).
Nitrogen and phosphorus loadings influence the trophic level of a water body,
stimulating primary production when nutrient levels are elevated, and thus the
trophic level is an influence on the perceived water quality. The network associated
with this hypothetical system/problem is shown in Fig. 9.21. In this simplified
illustration, each of the nodes is characterised by two states; low and high. Table 9.7
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Fig. 9.21 Example of a
Bayesian Network discussed
in the text, showing the
directional relationship of the
effects of nutrient loadings on
trophic level and
consequently upon water
quality. Input/root nodes are
shown in dark grey, whilst
leaf/output nodes are shown
in light grey (Modified from
Castelletti and Soncini-Sessa
2007a)

Table 9.7 Conditional
probability tables for the
Trophic Level (a) and Water
Quality (b) nodes in Fig. 9.21

(a)
Nitrogen loading L H
Phosphorus loading L H L H

Trophic level L 1.0 0.3 0.5 0.0
H 0.0 0.7 0.5 1.0

(b)

Trophic level L H
Water quality L 0.0 0.8

H 1.0 0.2

L Low, H High

shows the conditional probability tables for the trophic level and water quality nodes
for this illustrative example. If the prior beliefs of the states for the phosphorus
and nitrogen loading nodes are set to the values shown in the left-hand section of
Table 9.8, the posterior probabilities computed using the conditional probability
tables (Table 9.7) of the trophic level and water quality states would be those shown
in the right-hand section of Table 9.8. If our prior beliefs about the probabilities
of the nutrient-loading states were to change or be updated, then the conditional
probabilities of the states for trophic levels and water quality would likewise be
updated in light of the new prior beliefs.

Bayesian networks can be used to inform the decision-making process via the
inclusion of a decision node into the network (Korb and Nicholson 2004; Bishop
2007). Returning to our simple two-node network example (A and B), we could
turn this network into a Bayesian decision network (BDN) by assigning a decision
parent node to A. This decision node might also be associated with a cost function
describing the cost of enacting the decision. The decision node describes the states
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Table 9.8 Prior beliefs for the states of nitrogen and phosphorus loading, which when combined
with the conditional probability tables in Table 9.7, yield the posterior probabilities for the states
of trophic level and water quality. Arrows show the directional relationships of the effects of the
nutrient loadings on trophic level and hence water quality (see Fig. 9.21)

Nitrogen loading Phosphorus loading Trophic level Water quality

L 0.1 0.3 ! 0.1 ! 0.7
H 0.9 0.7 0.9 0.3

L Low, H High

of possible management actions, for example restoration strategies or water-quality
limits or standards, whilst the cost function describes the cost of enacting a particular
restoration strategy or setting a particular water-quality standard. The output node
in our example, B, is linked to a utility node, which describes the desirability
(utility) of particular states of the outcome node. Node A now needs to be assigned
a conditional probability table to describe the probabilities of the states of A
conditional upon the different states of the decision node. The utility output from the
network is the sum of the individual utilities of the output state in node B, weighted
by the probabilities of each of the output states. Management decisions can then be
based on selecting the intervention that maximises the output utility of the network
relative to the cost of intervention. As with the simpler Bayesian networks, the prior
and conditional probabilities of the BDN nodes can be set a priori using expert
judgement or learned from available training data or a combination of the above;
probabilities for decision nodes and utility values for outcome states are set by the
user.

Bayesian networks have seen little use in palaeoecology, but have had some
limited use in conservation management in freshwater ecology. Stewart-Koster et al.
(2010), for example, use Bayesian networks to investigate the cost effectiveness of
flow and catchment restoration for impacted river ecosystem, the output of which
would be used to guide investments in different types of restoration. Other examples
include the use of Bayesian networks in water-resource management (Castelletti and
Soncini-Sessa 2007b; Allan et al. 2011), the evaluation of management alternatives
on fish and wildlife population viability (Marcot et al. 2001), and the effects of
land-management practices on salmonids in the Columbia River basin (Rieman
et al. 2001), whilst Newton et al. (2006, 2007), Aalders (2008), Kragt et al. (2009),
Murphy et al. (2010), and Ticehurst et al. (2011) employ Bayesian networks in
vegetation conservation and management. Pourret et al. (2008) present a wide range
of case studies from many disciplines that have found Bayesian networks useful.

Genetic Algorithms

Genetic algorithms are one of a number of stochastic optimisation tools that fall
under the heading of evolutionary computing. Numerical optimisation is a general
catch-all term for algorithms that given a cost (or loss) function aim to find a globally
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optimal solution to a modelling problem, for example a set of model coefficients
that minimises the lack of fit of a model to a set of training samples. Numerical
optimisation techniques that use derivatives of the loss function proceed towards an
optimal solution in an iterative fashion but which may not, however, converge to a
globally optimal solution, instead they find a locally optimal solution. This is akin
to always walking downhill to find the lowest point in a landscape; eventually you
will not be able to proceed further because to do so would involve moving uphill. A
much lower valley just over a small rise from the one you are currently in would be
out of reach if you could only walk downhill. Evolutionary computing introduces
ideas from natural selection and evolution to add elements of stochasticity to the
optimisation search in an attempt to avoid becoming trapped in sub-optimal local
solutions.

Of the various evolutionary computing techniques, genetic algorithms have been
most frequently used in ecology, especially the Genetic Algorithm for Rule-set
Prediction (GARP) procedure, which has seen extensive use in modelling spatial
distributions of species (Anderson et al. 2003; Jeschke and Strayer 2008; Franklin
2010). Here we describe genetic algorithms in a general sense, and then we briefly
discuss genetic programmes and GARP.

Genetic algorithms consider a population of solutions to a modelling problem
rather than a single solution (D’heygere et al. 2003). Each of the solutions is
described by a string of numbers, each number representing a gene and the set
of numbers an individual chromosome in the terminology of genetic algorithms.
The strings represent terms in the model. If we consider a simple least-squares
regression, then we could use a string of length m zeroes and ones indicating which
of the m predictor variables is in the model (Wehrens 2011). Alternatively, we could
just record the index of the variables included in the model, where the string of
values would be of length M (the number of variables in the model, its complexity)
and the individual values in the string would be in the set (1, 2, : : : , m) (Wehrens
2011). The size of the population of chromosomes (the number of solutions)
considered by the genetic algorithm needs to be set by the user; with too small a
population the algorithm will take a long time to reach a solution, whilst too large
a population entails fitting many models to evaluate each of the chromosomes in
every generation. The initial population of chromosomes is generally seeded by
assigning a small random selection of the available predictor variables to each of
the C chromosomes.

Offspring solutions (chromosomes) are produced via a sexual reproduction
procedure whereby genes from two parent solutions are mixed. The fitness of the
offspring determines which of them persist to produce offspring of their own, with
fitness being defined using a loss function, such as least-squares error. Offspring
with low fitness have a low probability of reproducing, whilst the fittest offspring
have the highest chance of reproducing. This process of sexual selection is repeated
a large number of times with the result that subsequent generations will tend to
consist of better solutions to the modelling problem. The sexual reproduction step
consists of two random processes termed crossover or sharing of parents’ genes, and
mutation. These processes are random and as such are not influenced by the fitness
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of individual parents. Sexual reproduction mixes the genes from two parents in a
random fashion to produce an offspring that contains a combination of the genes
from the two parents. Mutation introduces a stochastic component to the genetic
algorithm, and allows predictor variables not selected in the initialisation of the
population of chromosomes a chance to enter the genetic code of the population.
Mutation is a low-probability event; say 0.01 indicating that one time in a hundred
a mutation will take place during reproduction. Mutations can involve the addition
of a new variable to the chromosome, the removal of an existing variable, or both
addition and removal of variables. Mutation allows the genetic diversity of the
population to be maintained.

Each iteration of a genetic algorithm produces a new generation of offspring by
sexual reproduction of the fittest members of the current population. The candidates
for reproduction are chosen at random from those models that reach a minimum
fitness threshold. The selection of two candidates for reproduction may be done at
random from within this set of fittest chromosomes or at random with the probability
of selection weighted by the fitness of each chromosome. The latter gives greater
weight to the best of the best solutions in the current population.

The genetic algorithm is run for a large number of iterations (generations) and
the fittest solution at the end of the evolutionary sequence is taken as the solution to
the modelling problem. It is possible that the population of solutions will converge
to the same, identical solution before the stated number of generations has been
produced. Likewise, there is no guarantee of convergence to the best solution in the
stated number of iterations. As such, it is important that the evolutionary process is
monitored during iteration, say by recording the fitness of the best solution and the
median fitness over the population of solutions for each generation (Wehrens 2011).
If the fitness of the best solution is still rising and not reached an asymptote by the
end of the generations then it is unlikely that the algorithm has converged.

Genetic algorithms are a general purpose optimisation tool, and as such they
require far more user interaction than many of the other statistical machine-learning
methods described in this chapter. The size of the population of solutions, the
minimum and maximum number of variables included in a single solution, the
number of iterations or generations to evolve, the mutation rate, the fitness threshold
required to select candidates for sexual reproduction, and the loss function all need
to be specified by the user. The flexibility of the genetic algorithm thus comes
with a price. However, the algorithm can be applied to a wide range of problems,
simply by introducing a new loss function that is most appropriate to the modelling
problem to hand. The loss function can be any statistical modelling function, such
as least-squares, linear discriminants, principal components regression, or partial
least squares, for example, and as such a wide range of problems can be tackled.
Genetic algorithms can also be slow to converge to an optimal solution, especially
when faced with a complex modelling problem consisting of many observations and
predictor variables.

Genetic programmes are related to genetic algorithms, but now each chromo-
some in the population is a computer program that uses combinations of simple
arithmetic rules (using C, �, �, etc.) and mathematical functions or operators. The
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various rules and functions are combined into a syntax tree to combine numeric
values with mathematical operators and functions that form a solution to a problem.
Reproduction now takes the form of randomly swapping sub-trees in the syntax
trees of two parents to produce new offspring that include aspects of both parents’
genetic programme. Mutation is performed by randomly selecting a sub-tree in the
syntax tree of an individual and replacing that sub-tree with a randomly generated
sub-tree. Which programmes are allowed to reproduce is controlled by a fitness
criterion in the same way as described for genetic algorithms. The key difference
between a genetic algorithm and a genetic programme is that genetic algorithms
optimise an a priori specified model by evolving solutions to the modelling problem
(regression coefficients for example) that give the best fit of the model to the training
data, whereas genetic programmes aim to find an optimal solution to an unspecified
modelling problem by combining simple mathematical steps to best fit or explain
the training data.

GARP (Stockwell and Noble 1992; Stockwell and Peters 1999) is a genetic
algorithm where the genes do not represent inclusion or exclusion of particular
predictor variables, but instead are simple rules that are very much akin to the
rules produced by the tree models we described earlier. In GARP, each of the rules
follows a similar form: if ‘something’ is true, then ‘this’ follows, where ‘something’
is a simple rule and ‘this’ is a predicted value say. For example, a rule might be
if pH is less than Y and aluminium is greater than X, then the abundance of the
diatom Tabellaria binalis is Z%. The set of possible rules using combinations of
predictor variables is impossibly large for most problems for an exhaustive search
to be made. Instead, genetic algorithms are used to evolve the rules into a set
of optimal combinations that best predict the response. The algorithm starts by
identifying all rules consisting of a single predictor; at this point, the algorithm
is very much similar to the exhaustive search used in tree models to identify the
first split. A predefined number, r, of these rules is then chosen as the initial set of
rules upon which the genetic algorithm will operate. The r best rules are chosen
as the initial set. Each of several predefined operators is then applied to the initial
set of rules to evolve a new generation of rules. These operators include a random
operator which creates a rule with a random number of conditions (if ‘something’s)
and values (then ‘this’s), a mutation operation which randomly changes the values
used in a condition, and a concatenation operation which combines two randomly
chosen rules from the existing set. Having applied these operators to the current set
of rules, the rules are ordered in terms of fitness, and the least fit rules are discarded.
The remaining set of rules then undergo another round of operator application to
evolve a new generation of rules and the least fit rules again are discarded. This
process is repeated a large number of times in order to evolve a set of rules that
best predicts the response. GARP is most useful in situations where the user has
little reliable background knowledge to guide model choice and in situations where
rules are sought in noisy, high dimensional, discontinuous data with many local
optima. However, GARP is considered computer intensive relative to the many of
the statistical machine-learning tools described here.
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Genetic algorithms and programmes and GARP are very flexible, general
optimisation tools. However, they are not well suited to all problems. More-
specific statistical machine-learning tools, such as regression or classification trees
and related methods will tend to perform as well or better than the evolutionary
computing approaches for general regression or classification problems (D’heygere
et al. 2003; Olden et al. 2008), and as we have seen, bagging, random forests, and
boosting can all improve upon single tree models by combining information from
several weak learners. In addition, Elith et al. (2006) and Lawler et al. (2006) both
observed that GARP tended to over-fit species distributions compared with other
modelling techniques. As such, and given the availability of powerful alternative
techniques plus the additional effort required by the user to use evolutionary
computing techniques, we cannot recommend their use over the other statistical
machine-learning techniques described earlier. GARP is, however, widely used in
species-climate modelling in biogeography and climate-change predictive biology
(e.g., Elith and Burgman 2002; Stockwell and Peterson 2002; Pearson et al. 2006;
Tsaor et al. 2007; Jeshcke and Strayer 2008).

Principal Curves and Surfaces

Principal component analysis (PCA) (Jolliffe 2002; Legendre and Birks 2012b:
Chap. 8) is used in a large number of fields as a means of dimension reduction by
expressing on the first few principal components orthogonal linear combinations of
the input data that explain the data best in a statistical sense. These first few principal
component axes are often used as synthesisers of the patterns of change found in
stratigraphical data for example (Birks 2012b: Chap. 11). PCA is also the basis
of the linear, multivariate calibration technique principal components regression
(Juggins and Birks 2012: Chap. 14), where the input data are reduced to p � m
components, which are then used in a multiple regression to predict the known
response variable. In the high-dimensional space of the input data, the principal
components represent lines, planes, or manifolds (where manifold is the generic
term for these surfaces in m dimensions). These principal components are inherently
linear, and where data do not follow linear patterns, PCA may be sub-optimal at
capturing this non-linear variation. This is why correspondence analysis, principal
coordinates, and non-metric multidimensional scaling (Legendre and Birks 2012b:
Chap. 8) are popular in ecology where the input data are assumed to be inherently
non-linear.

SOMs can be viewed as a non-linear two-dimensional manifold, one that is best
fitted to the data in m dimensions. One of the options for choosing the starting points
of a SOM grid is to select points on the two-dimensional principal component plane,
which are then bent towards the data to improve the quality of fit. A number of other
techniques have been developed in the last 20 years or so that generalise the problem
of fitting non-linear manifolds in high dimensions. Here we discuss one particular
technique – that of principal curves and surfaces.
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Fig. 9.22 Fitted relationship between x and y (solid black line) and the minimised errors (grey
line segments) for least-squares regression (a), principal component analysis (b), cubic smoothing
spline (c), and a principal curve (d). Where relevant, y is treated as the response variable and x as
the predictor variable

Principal curves (PCs: Hastie and Stuetzle 1989) are a generalisation of the first
principal component line, being a smooth, one-dimensional curve fitted through the
input data in m dimensions such that the curve fits the data best, i.e., the distances
of the samples to the PC are in some sense minimised (Hastie et al. 2011). In least-
squares regression, the model lack-of-fit is computed as the sum of squared distances
between the fitted values and the observations for the response variable. These errors
are shown as vertical lines in Fig. 9.22a for the function

y D �0:9x C 2x2 C �1:4x3 C " " � N .� D 0; � D 0:05/ (9.7)
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In PCA, the first principal component is fitted such that it minimises the lack-
of-fit in terms of both the ‘response’ variable and the ‘predictor’ variable. These
errors are shown in Fig. 9.22b for the function in Eq. 9.7 and are the orthogonal
distances of the observations to the principal component line. We can generalise the
simple least-squares regression to a smooth function of the covariates (D variables)
using smoothing splines (or, for example, in a generalised additive model; Birks
2012a: Chap. 2). A smoothing spline fit to the data generated from Eq. 9.7 is shown
in Fig. 9.22c. As with the least-squares regression, the lack-of-fit is measured in
terms of the sum of squared distances in the response between the fitted values
and the observations. Principal curves generalise the first principal component line
by combining the orthogonal errors aspect of PCA with the concept of a smooth
function of the covariates. A PC fitted to the data generated from Eq. 9.7 is shown in
Fig. 9.22d with the errors shown as orthogonal distances between the observations
and the points on the PC onto which they project. The degree of smoothness of
the fitted PC is constrained by a penalty term, just as with smoothing splines
(Birks 2012a: Chap. 2), and the optimal degree of smoothing is identified using
a generalised cross-validation (GCV) procedure. The point on the PC to which an
observation projects is the point on the curve that is closest to the observation in m
dimensions.

Principal curves are fitted to data using a two-stage iterative algorithm. Initially, a
starting point for each observation is determined, usually from the sample scores on
the first principal component or correspondence analysis axis. These starting points
define a smooth curve in the data. The first stage of the algorithm then proceeds
by projecting each point in m dimensions onto a point on the initial curve to which
they are closest. The distances of the projection points along the curve from one
arbitrarily selected end are determined. This is known as the projection step. In the
second stage of the algorithm, the local averaging step, the curve is bent towards
the data such that the sum of orthogonal distances between the projection points
and the observed data are reduced. This local averaging is achieved by fitting a
smoothing spline to each species’ abundance using distance along the curve as the
single predictor variable. The fitted values of these individual smoothing splines
combine to describe a new smooth curve that more closely fits the data. At this
point, a self-consistency check is performed such that if the new curve is sufficiently
close to the previous curve, convergence is declared to have been reached and the
algorithm terminates. If the new curve is not sufficiently similar to the previous
curve, the projection and local averaging steps are iterated until convergence, each
time bending the curve closer to the data.

The algorithm used to fit a PC is remarkably simple, yet several choices need
to be made by the user that can affect the quality of the fitted curve and ultimately
the interpretation of the fitted curve. The first choice is the selection of suitable
starting points for the algorithm. A logical starting point is the first principal
component line, however De’ath (1999) found that better results were achieved
using the first correspondence analysis (CA) axis. The second choice involves the
fitting of smooth functions to the individual species during the local averaging step.
Above we used the general term smoothing splines to describe the functions used.
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Here we use a cubic smoothing spline (Birks 2012a: Chap. 2) for the example, but
LOESS or kernel smoothers may also be used, as could generalised additive models
(GAMs). GAMs (Birks 2012a: Chap. 2) are particularly useful when the individual
species responses are not thought to be normally distributed; for example, for count
abundances, a Poisson GAM may provide a better fit to each species. Whichever
type of smoother is used, it is effectively a plug-in component used by the algorithm
to perform the local averaging.

Having chosen a type of smoother, the degree of smoothness for the fitted
PC needs to be determined. De’ath (1999) suggests that an initial smoother is
fitted to each species in the data using GCV to determine, separately for each
species, the degree of smoothness required for each curve. The median degree of
smoothness (span or degrees of freedom) over the set of fitted smoothers is then
chosen for the degree of smoothness used to fit the PC. Alternatively, the complexity
of the individual smoothers fitted during the local averaging step can be allowed
to vary between the different species, with GCV used to select an appropriate
degree of smoothness for each species during each of the averaging steps (GL
Simpson unpublished). This allows the individual smoothers to adapt to the varying
degrees of response along the PC exhibited by each species; some species will
respond linearly along the curve whilst others will show unimodal or skew-unimodal
responses, and it seems overly restrictive to impose the same degree of smoothing
to each species in such situations.

It is essential that the algorithm is monitored during fitting and that the resulting
PC is explored to identify lack-of-fit. Choosing good starting locations can help
with over-fitting, but overly complex, over-fitted PCs are most easily identified via
examination of the final smoothers for each species, which tend to show complex
fitted responses along the curve. The PC can be visualised by projecting it into a
PCA of the input data. De’ath (1999) contains further advice on fitting, evaluating,
and interpreting PCs.

One use of PCs is in summarising patterns of species compositional change in
a stratigraphical sequence. PCA, CA, and DCA axes one and two scores are often
used in palaeoecological studies to illustrate where the major changes in species
composition occur (Birks 2012b: Chap. 11). Given the additional flexibility of a PC,
it is likely to explain similar, or even greater, amounts of temporal compositional
change in a single variable (distance along the PC) than that explained by two or
more ordination axes. We illustrate the use of PCs in this setting by describing
temporal compositional change in a sequence of pollen counts from Abernethy
Forest for the period 12,150–5515 radiocarbon years BP (Birks and Mathewes
1978).

As the starting curve we used sample scores on the first CA axis, and fitted
the PC to the data using cubic smoothing splines allowing the complexity of the
individual smoothers used in the local averaging step to vary between pollen taxa,
using GCV to choose the optimal degree of smoothing for each taxon. A penalty
term of 1.4 was used to increase the cost of degrees of freedom in the GCV
calculations. The PC converged after six iterations and is shown in Fig. 9.23, as
projected onto a PCA of the pollen data. The configuration of the samples in PCA
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Fig. 9.23 Principal component analysis (PCA) plot of the Abernethy Forest late-glacial and early-
Holocene pollen data with the fitted principal curve superimposed (thick line). The thin, grey lines
join each observation with the point on the principal curve on to which they project, and are the
distances minimised during fitting. PC principal component

space shows a marked horseshoe-like shape that is commonly encountered when a
single, dominant gradient is projected onto 2 dimensions. The fitted PC is shown
by the thick curved line in Fig. 9.21 with the orthogonal errors represented by
thin segments drawn between the sample points and the curve. The PC explains
95.8% of the variation in the Abernethy Forest pollen sequence, compared with
46.5% and 30.9% for the first principal component axis and the first correspondence
analysis axis, respectively. The PC accounts for substantially more of the variation
in species composition than two PCA or CA axes (80.2% and 52.3%, respectively),
which might conventionally be used. Figure 9.24a shows the distance along the
PC between adjacent samples in the sequence expressed as a rate of change per
1000 years, clearly illustrating four periods of substantial compositional change
in the pollen taxa. The actual distances along the PC are shown in Fig. 9.22b,
alongside similar measures for the first PCA and CA axis scores. The total gradient
described by each method has been normalised to the range (0,1) to allow a direct
comparison between the three methods. Although the changes in PCA and CA axis
1 scores appear more marked, exhibiting apparently greater variation during periods
of change, the PC adequately captures these periods of change but also places them
within the context of overall compositional change as �96% of the variation in the
pollen taxa is described by the PC.
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Fig. 9.24 (left) Distance along the principal curve expressed as a rate of change per kyr between
samples for the Abernethy Forest pollen data-set. Several periods of rapid compositional change
are detected. (right) Distance along the gradient expressed as a proportion of the total gradient
for the fitted principal curve and the first ordination axes respectively of a principal component
analysis (PCA) and a correspondence analysis (CA) fitted to the Abernethy Forest data

Figure 9.25 shows cubic smoothing splines fitted to the nine most abundant
pollen taxa in the Abernethy Forest sequence. Each smoothing spline models
the proportional abundance of the taxon as a function of the distance along the
PC (expressed in temporal units). The degrees of freedom associated with each
smoothing spline was taken from the smoother fitted to each taxon during the final
local averaging step at convergence. As expected, given the amount of variation
explained, the PC clearly captures the dynamics present in the pollen data and
further illustrates that the data represent a single gradient of successive temporal
change in pollen composition.
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Fig. 9.25 Fitted response curves for the nine most abundant pollen taxa in the Abernethy Forest
data as estimated using a principal curve. Open circles are the observed proportional abundance
and the solid line is the optimised smoother from the final iteration of the principal curve. The
distance along the principal curve is expressed here in radiocarbon years BP

When combined with the rate-of-change along the curve, the PC approach is
far better at describing compositional change than either PCA or CA. This is
particularly apparent when the stratigraphical data are best described by a single
dominant, though not necessarily long, gradient. The PC degrades to the first
principal component solution when all taxa are described by 1 degree-of-freedom
linear functions; as a result the method can perform no worse than PCA and can, in
the right circumstances, perform substantially better.

Principal curves can be generalised to principal surfaces, analogous to a plane
described by the first two principal components. The algorithm described above is
adapted in this case to use two-dimensional smoothers for the individual species and
the projection points on the curve now become projection points on the principal
surface. Higher dimensional principal surfaces can, in theory, be fitted but their
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use is infrequent owing not least to problems in visualising such curves and in
performing the smoothing in multiple dimensions. An unsupervised SOM is very
similar to a two-dimensional principal surface, although motivated from a very
different view point. Both principal surfaces and SOMs fit a manifold that is
progressively warped towards the response data in order to achieve a closer fit to
the data points. Geological examples of PCs include Banfield and Raftery (1992)
and medical examples include Jacob et al. (1997).

Shrinkage Methods and Variable Selection

A fundamental problem in the statistical analysis of a data-set is in finding a minimal
set of model terms or parameters that fit the data well (Murtaugh 2009; Birks 2012a:
Chap. 2). By removing terms or parameters from the model that do not improve the
fit of the model to the data we aim to produce a more easily interpretable model that
is not over-fitted to the training data. The assumption that there is a single ‘best’
model is, in general, wrong. A more likely situation is that there will be a number
of candidate models that all do a similar job in terms of explaining the training
data without being over-fitted to them. Without further external criteria it may be
wrong to assume that the ‘best’ of the candidate models is the one that describes
the relationship between predictors and response for the population from which the
sample of data used to fit the model was collected.

The information theoretic approach advocated by a number of authors (Burnham
and Anderson 2002; Whittingham et al. 2006) proceeds by ranking candidate
models in terms of the Akaike Information Criterion (AIC) and combining the terms
in the various models by averaging over the set of models, and weighting each model
in proportion to a likelihood function that describes the probability that each model
is the best model in terms of AIC if the training data were collected again under the
same circumstances (Whittingham et al. 2006). Often, AIC is used to select between
nested models and the model averaging step skipped, to identify the ‘best’ model.
In such cases, selection via AIC (or Bayesian Information Criterion (BIC), etc.)
suffers from the same problems as forward-selection or backward-elimination and
step-wise selection procedures, in particular, selection bias in the estimates of the
model parameters. Anderson (2008) provides a gentle introduction to model-based
inference.

Forward-selection and backward-elimination techniques are routinely used in
ecology and palaeolimnology to prune models of unimportant terms. Starting
from a model containing only an intercept term, forward selection proceeds by
adding to the model that predictor variable that affords the largest reduction in
model residual sum-of-squares (RSS). The procedure continues by identifying the
predictor that provides the largest reduction in RSS conditional upon the previously
selected terms included in the model. When the reduction in RSS afforded by
inclusion of an additional predictor in the model is insignificant (usually assessed
using an F-ratio test between models including and excluding the predictor, or an
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information statistic such as AIC), selection stops. Backward elimination operates
in a similar manner, except in reverse, starting with a model containing all the
available predictor variables. The predictor whose removal from the current model
would result in the smallest increase in RSS is eliminated from the model if doing
so does not result in a significantly worse model. Backward elimination proceeds
until either all predictors are removed from the model or no terms can be removed
from the model without significantly affecting the fit to the response. An important
difference is that forward selection can be performed on a model fitted to any data-
set consisting of two or more predictors, whereas backward selection can only be
performed on data-sets where there are n � 1 predictors.

Step-wise selection combines both forward selection and backward elimination;
at each step in the selection procedure, all single-term additions or deletions are
considered and the change that results in the most parsimonious model is made
subject to the condition that the added term significantly improves, or the deleted
term does not significantly harm, the model fit. An alternative approach to step-wise
selection is best-subsets selection, in which models using all possible combinations
of predictor variables are generated and the best model of a given size, or the
best model over all subsets, is selected from the set of models. The feasibility of
this exhaustive search depends on the number of available predictor variables and
becomes computationally difficult when only a modest number are available. The
branch and bound algorithm (Miller 2002), however, allows an exhaustive search to
be performed in a feasible amount of time.

There are several problems with the sequential selection and best-subsets
methods, most notably (i) selection bias in the estimates of the model parameters,
(ii) increased variability of the selected model, and (iii) bias in the standard errors
of model parameters and its effect on the interpretation of p-values. Selection bias
arises because the selection techniques described above amount to the imposition of
a hard threshold on the size of the model coefficients; the estimate for a coefficient
is either zero when the term is not included in the model, or some value O“i when
included in the model. An extreme example, adapted from Whittingham et al.
(2006), is shown in Fig. 9.26, where 5000 data-sets of size 10 were drawn from
the model

yi D 1 C 0:8xi C ©i (9.8)

where xi are the values f1, 2, : : : , 10g and ©i are model errors consisting of inde-
pendent Gaussian random variables with mean 0 and ¢ i equal to 1. The subscripts
i index the 10 observations in each data-set. In the above model, the coefficient is
known (“ D 0.8). Given values for xi and yi, we can fit a linear regression to estimate
“ for each of the 5000 data-sets. The distribution of the estimates for “ is shown
in the upper panel of Fig. 9.26 with the known value superimposed. If we set the
estimates of “ to zero for models where the estimate is not statistically different
from 0 at the ’ D 0.95 level (i.e., with a p-value >0.05) and retain those estimates
that are statistically significant (i.e., those with a p-value �0.05), a process which
amounts to selecting whether to include the term in the model or not, we observe
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Fig. 9.26 An illustration of selection bias of regression coefficients. The upper panel shows the
distribution of estimates of a single regression coefficient from models fitted to random samples
from a model with known coefficient “ D 0.8. The estimates from 5000 random draws are centred
about the known value of “. If we retain the estimates of “ from the 5000 random draws that are
significant at the ’ D 0.95 (95%) level and set the insignificant coefficients to 0, equivalent to a
hard selection threshold, we observe the distribution shown in the lower panel, which contains
coefficient estimates that are very different from the known value of “

the distribution of the estimates of “ for the 5000 models shown in the lower panel
of Fig. 9.26. Note that the retained values are all substantially different from the
known population value of “; they are biased low when the term is not selected or
biased high when the term is retained. No such bias occurs in the set of unselected
parameter estimates (Fig. 9.26); it is the act of selection that introduces the bias
and arises because the term is either included in the model or not. This bias occurs
whether terms are selected using p-values or via some other statistic, such as AIC.

Models resulting from forward selection and/or backward elimination are prone
to increased variance, and hence, ultimately higher model error (Mundry and Nunn
2009). The argument behind this statement is the same as that used to explain the
instability of single tree-based models (see above). Small changes in the sample
data may lead to a different variable entering the model in the early stages of
selection, especially if there are two or more predictors that have similar predictive
ability as in the case of collinear predictors. The resultant model may be over-fitted
to the training sample and generalise poorly when making predictions for other
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observations from the population. Such models are said to have high variability;
the uncertainty in the predicted values is large.

An often overlooked issue with model selection is that the standard errors of
the estimated coefficients in a selected model are biased and too small, suggesting
apparent precision in their estimation; their construction knows nothing of the
previous, often convoluted, selection process that led to the selected model.
Consequently, test statistics and their p-values are too optimistic and the possibility
of making a Type I error is increased. It is not clear how this bias can be corrected for
in a practical sense (Hastie et al. 2011). This problem affects best-subsets selection
as well as forward selection/backward elimination.

Model selection often results in models that contain too many parameters unless
steps are taking during selection to manage the entry of variables to the model.
Consider the situation where a p-value threshold of 0.05 is used to decide whether
to include a variable in a model at each stage of a forward-selection procedure. Each
of the tests performed to decide whether to include the predictor or not is subject to a
Type I error-rate of 0.05, and as such the final model has a much larger Type I error-
rate. A correction to the p-value used in each test may be made, to guard against this
inflated Type I error-rate. For example, a Bonferroni-type correction can be made of
p/t, where p is the user-selected p-value threshold (0.05 in the above discussion) and
t is the number of tests conducted thus far. In deciding whether to include the first
predictor variable, using 0.05 as the threshold for inclusion, the variable is included
if it achieves a p-value of 0.05/1 D 0.05 or lower. For the second variable to enter
the model it must achieve a p-value of 0.05/2 D 0.025 or lower to be selected, and
so on for the subsequent rounds of selection. Using BIC instead of AIC to decide on
inclusion or elimination penalises more-complex models to a stronger degree and
thus may help to guard against selecting overly complex models.

Correlated predictors, as well as making model selection more difficult, cause
additional problems in estimating model coefficients; they are poorly determined
and have high variance (large standard errors). Consider two correlated predictors; a
large positive value as the estimate for the model coefficient for one of the predictors
can be counteracted by a large negative coefficient for the other predictor (Hastie
et al. 2011). If the interest in fitting the model is to interpret the coefficients to
shed light on ecological or environmental mechanisms, spurious inflation of effects
due to multicollinearity, if undetected, may lead to erroneous statements about the
mechanisms under study.

There are a number of approaches that can be applied to help with model
selection and collinearity problems. These approaches are known as shrinkage
methods. Two shrinkage techniques familiar to palaeolimnologists are principal
components regression (PCR) and partial least squares (PLS) (Martens and Næes
1989; Birks 1995; Næs et al. 2002; Juggins and Birks 2012: Chap. 14). In both
approaches, the aim is to identify a small number of orthogonal (uncorrelated)
components that explain maximal amounts of variance in the predictors (PCR) or
maximal amounts of the covariance between the response and predictors (PLS).
Predictors that exhibit low variance (PCR) or are unrelated to the response (PLS)
will have low weights in the components retained for modelling; in a sense, the
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coefficients for these variables have been shrunk from their least-squares estimates
(Hastie et al. 2011). PCR and PLS are also useful simplification techniques in
situations where there are many more predictor variables than observations, as in
chemometrics (Wehrens 2011). However, these techniques suffer in terms of model
interpretation; the regression coefficients no longer apply to individual predictors
but to linear combinations of the predictors. If the aim of modelling is prediction,
and not explanation, then the aim of selecting a minimal adequate model is to
achieve lower prediction error, and PCR or PLS are useful techniques.

PCR and PLS impose a size constraint on the coefficients of predictors in the
model by retaining a small number of orthogonal components as predictors in the
model. Information on those variables that are useful in predicting the response or
have high variance is retained, whilst those variables unrelated to the response or
have low variance are discarded – their coefficients are effectively, or close to, 0
(Hastie et al. 2011). A number of other techniques have been proposed that also
impose size restrictions on model coefficients, namely ridge regression (Hoerl and
Kennard 1970; Copas 1983, Hastie et al. 2011), the lasso (Tibshirani 1996; Hastie
et al. 2011), and a technique known as the elastic net which combines ridge-like and
lasso-like constraints (Zou and Hastie 2005; Hastie et al. 2011).

Ridge regression was proposed as a means to handle collinearity in the set
of available predictors. Earlier we saw that two correlated variables may have
large coefficients but of opposite sign. Imposing a constraint on the size of the model
coefficients helps to alleviate this problem. Ridge regression imposes a quadratic
constraint on the size of the coefficients, but can also be seen to shrink components
of the predictors that have low variance, in other words, that explain low amounts of
the variance in the set of predictors available (Hastie et al. 2011). Ridge regression
coefficients ˇridge are chosen to minimise a penalised RSS criterion.

ˇridge D arg min
ˇ
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The first term in the braces is the RSS and the second term is the quadratic penalty
imposed on the ridge coefficients. Equivalently, in ridge regression, the estimated

coefficients minimise the RSS subject to the constraint that
pP

j D1

ˇ2
j � twhere t is

a threshold limiting the size of the coefficients. There is a one-to-one relationship
between œ and t; as œ is increased, indicating greater penalty, t is reduced, indicating
a lower threshold on the size of the coefficients (Hastie et al. 2011). Software used to
fit ridge regression solves the penalised RSS criterion for a range of values of either
œ or t and cross-validation is used to identify the value of œ or t that has the lowest
prediction error. Note that the model intercept (ˇ0) is not included in the penalty
and that the predictor variables are standardised to zero mean and unit variance
before estimation of the ridge coefficients. Where œ D 0, the ridge coefficients are
equivalent to the usual least-squares estimates of the model coefficients.
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It is important to note that ridge regression does not perform variable selection;
all available predictor variables remain in the model, it is just their coefficients
that are shrunk away from the least-squares estimates. The lasso (Tibshirani 1996)
is related to ridge regression but can also perform variable selection because it
employs a different penalty on the coefficients to that of the ridge penalty. The lasso
(least absolute shrinkage and selection operator) imposes a restriction on the size of
the absolute values of the coefficients instead of a restriction on the squared values
of the coefficients used in ridge regression. The lasso finds coefficients ˇlasso that
minimise the following penalised RSS criterion

ˇlasso D arg min
ˇ
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which is equivalent to minimising the RSS subject to the constraint that
pP

j D1

jˇj j � t

(Hastie et al. 2011). This penalty allows variables whose coefficients are shrunk
to zero to be removed from the model. As before, cross-validation is used to
identify the value of œ or t with the lowest prediction error. It can be shown that
ridge regression shrinks all coefficients proportionally, and the lasso shrinks each
coefficient by a constant factor œ and truncates at zero (e.g., a positive coefficient
that would otherwise go negative when shrunk by the factor œ is removed from
the model). The lasso is a general technique and has been successfully applied to
generalised linear models (Tibshirani 1996) and is used as a form of shrinkage
in boosted trees (De’ath 2007). A fast computer algorithm, least angle regression
(LARS) was developed by Efron et al. (2004) that can compute the entire lasso
path from no predictors in the model to the full least-squares solution for the
same computational cost as the least-squares solution. Park and Hastie (2007) have
developed similar path algorithms for the lasso in a GLM setting.

Ridge regression shrinks the coefficients of correlated predictors and the lasso
selects predictors via shrinkage. Ideally, these two characteristics would be com-
bined into a single technique that handles correlated predictors and could perform
model selection. This is exactly what the elastic-net penalty does, via a weighted
combination of ridge-like and lasso-like penalties to form the elastic-net penalty
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where ’ controls the relative weighting of ridge-like and lasso-like penalties (Zou
and Hastie 2005). Where there are correlated predictors, the elastic net will tend to
shrink the coefficients for those predictors rather than necessarily dropping one of
the predictors giving full weight in the model to the other predictor, which is how
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the lasso operates with collinear variables. Friedman et al. (2010) demonstrate an
efficient path algorithm for fitting the elastic net regularisation path for GLMs.

Figure 9.27 shows ridge regression (Fig. 9.27a), lasso (Fig. 9.27b), and elastic
net (Fig. 9.27c) regularisation paths for the ozone data considered in the MARS
example earlier. The models were fitted to the log-transformed ozone concentration
because gamma GLMs are not supported in the glmnet R package (version 1.6:
Friedman et al. 2010) used here. We consider only the main effects of the nine
predictor variables, and for the elastic net we use ’ D 0.5, indicating equal amounts
of ridge-like and lasso-like penalties. The left-hand panels of each figure show the
regularisation path with the full least-squares solutions on the right of these plots; the
y-axis represents the values of the coefficients for each predictor, whilst the lines on
the plots describe how the values of the coefficients vary from total shrinkage to the
their least-squares values. The right-hand panels show k-fold cross-validated mean
squared error (MSE) for each regularisation path, here expressed on the log(œ) scale.
The numbers on the top of each plot indicate the complexity of the models along the
regularisation path or as a function of log(œ). For ridge regression, we note that all
nine predictor variables remain in the model throughout the path, whereas for the
lasso and elastic-net paths predictors are selected out of the model as an increasing
amount of regularisation is applied.

An interesting feature of the ridge-regression path is the coefficient value for
wind speed, which is negative in the least-squares solution but becomes positive
after a small amount of shrinkage, before being shrunk back to zero as a stronger
penalty is applied to the size of the coefficients. The coefficient value for wind speed
does not show this pattern in either the lasso or the elastic-net regularisation paths
because of the property that both these penalties share, whereby coefficients are
truncated at zero and not allowed to change their sign. The elastic-net regularisation
path is intermediate between those of the ridge and lasso, although it is most
similar to the lasso path. The effect of the lower lasso-like penalty in the elastic-
net path for the ozone model is for predictor variables to persist in the model until a
higher overall penalty is applied than under the lasso path. However, whilst the nine
predictors persist in the path for longer, the ridge part of the penalty is shrinking the
size of the coefficients.

The right-hand panels in Fig. 9.27 indicate the optimal degree of shrinkage by
identifying the value of œ that affords the lowest CV MSE (the left vertical line) or
that is within one standard error of the minimum (the right vertical line). On these
plots, model complexity increases from left to right. The optimal amount of shrink-
age indicates that nine, five, and seven predictors should be included in the model
for the ridge regression, lasso, and elastic-net penalties, respectively. Temperature
is the most important variable in predicting the log ozone concentration, followed
by humidity. At larger penalties in the lasso and elastic-net paths, pressure gradient
replaces humidity as the second predictor, after temperature, to be selected in the
model. We do not interpret these models further here.

This is an area of considerable research activity, much of which is of direct
relevance to ecologists and palaeolimnologists but whose importance is poorly
known (e.g., Dahlgren 2010). For example, ter Braak (2009) has developed a new
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Fig. 9.27 Illustration of three shrinkage methods fitted to the ozone concentration data; (a) ridge
regression, (b) the lasso, (c) the elastic net with ’ D 0.5. The left-hand panels show the estimates
of the regression coefficients for the entire regularisation path estimated, with the least complex
model to the left. Estimates of the degrees of freedom associated with various values of the penalty
are show on the upper axis of each panel. The right-hand panels show k-fold cross-validated model
error for increasing (left to right) penalty. Error bars show the range of model errors across the k
folds for each value of the penalty. The best model, with lowest mean squared error is highlighted
by the left-most dashed vertical line in each panel, whilst the simplest model within one standard
error of the best model is shown by the right-most vertical line. The values on the upper axis of
each panel indicate the number of covariates included in the model for the value of the penalty
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regression method, regularisation of smart contrasts and sums (ROSCAS), that
outperforms the lasso, elastic net, ridge regression, and PLS when there are groups
of predictors with each group representing an independent feature that influences
the response and when the groups differ in size.

Discussion and Conclusions

This chapter has described several statistical machine-learning techniques, which
can be loosely categorised into supervised and unsupervised learning techniques.
The discussion for individual methods was intentionally brief, with the aim of
introducing palaeolimnologists to the key features of the main machine-learning
methods and illustrating their use. The references cited in each section should
provide access to additional sources of information on each technique, and wherever
possible we have referred to relevant palaeoecological or ecological papers.

A recurring theme in this chapter has been the reduction of bias, variance, or both
in order to identify a model that has low prediction error. Given a model, y D f (x)
C ©, that relates a response y to covariate x, we define the prediction error of a model
as the expected difference between the true, unknown value of the response (y0) and
the predicted value for the response from the model, Of .x/. This prediction error
can be decomposed into three components; (i) bias2, (ii) variance, and (iii) ©, the
irreducible error present even if we knew the true f (x). We are unable to do anything
about ©, so we must concern ourselves with trying to reduce bias, variance, or both
in order to reduce prediction error. The bias2 and variance together yield the mean
squared error of the model (MSE).

To understand what each of these components is, consider a simple regression
model fitted to a response y and covariate x. The relationship is quadratic and we
have five observations. A simple least-squares model using one degree of freedom
fitted to the data will yield predictions that follow a straight line. This model is very
simple, but the straight line does not fit the data well; the model under-fits the data.
Such a model will have high bias; over large parts of the observed data, the model
systematically fails to capture the true relationship between x and y. Alternatively,
we could fit a high degree polynomial that interpolates the training data perfectly,
thus having zero bias. This is a more complex model but it over-fits the training data
and is unlikely to generalise well to new observations for which we want to predict y.
Such a model has high variance; each coefficient in the model has a high degree of
uncertainty because we have used all the data to fit a large number of coefficients.
In between these extremes is a model that has higher bias than the over-fitted model
and lower bias than the simple model and the opposite features for model variance.
Figure 9.28 illustrates this bias–variance tradeoff.

Several methods that we have introduced focus on reducing the variance part of
MSE, such as bagged trees, random forests, and model averaging in an information
theoretic framework. Shrinkage methods, introduced towards the end of the chapter,
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variance component dominates prediction error. Often the aim in statistical machine-learning is
to fit a model that has minimal prediction error. Identifying such a model will require trading off
bias against variance to achieve an overall lower prediction error. Bias2 C Variance D MSE (mean
squared error). © is the irreducible error that is present in the model even if one knew the true
relationship between the response and the predictors rather than having to estimate it

sacrifice a small increase in model bias (the estimates of regression coefficients
using the methods are biased) for a larger reduction in model variance by shrinking
coefficient estimates to zero. Of the methods discussed, only boosting has the
potential to reduce both the bias and the variance of the fitted model. Bias is reduced
by focussing on those observations that are poorly fitted by previous trees in the
ensemble, whilst variance is reduced by averaging predictions over a large ensemble
of trees.

Understanding the bias–variance trade-off is key to the successful use of
statistical machine-learning where the focus is on producing a model for prediction
that has the lowest possible prediction error given the available training data.

One feature of all of the techniques discussed is that they use the power of
modern computers to learn aspects of the training data that allows the model to
make accurate predictions. How well one of these algorithms or methods performs
tends to be evaluated on the basis of its ability to predict the response variable
on an independent test-set of samples. However, many, if not the majority of the
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techniques we describe do now have a thorough statistical underpinning (Hastie
et al. 2011). This is especially so for the tree-based methods and boosting in
particular.

What we have not been able to do here is illustrate how to go about fitting these
sorts of models to data. Clearly, the availability of suitable software environments
and code that implements these modern machine-learning methods is a prerequisite.
All of the detailed examples have been performed by the authors with the R
statistical software (version 2.13.1 patched r56332: R Core Development Team
2011) using a variety of add-on packages available on the Comprehensive R Archive
Network (CRAN). A series of R scripts are available from the book website which
replicate the examples used in this chapter and demonstrate how to use R and the
add-on packages to fit the various models. We have used R because it is free and
open source, and because of the availability of high-quality packages that implement
all the machine-learning methods we have discussed. Other computational statistical
software packages, such as MATLAB®, should also be able to fit most if not all the
methods described here.

The technical and practical learning curves are far steeper for software such
as R and the statistical approaches we discuss than the usual suspects of ordina-
tion, clustering, and calibration most commonly employed by palaeolimnologists.
Machine-learning methods tend to place far higher demands on the user to get the
best out of the techniques. One might reasonably ask if this additional effort is
worthwhile? Ecological and palaeoecological data are inevitably noisy, complex,
and high-dimensional. The sorts of machine-learning tools we have introduced here
were specifically designed to handle such data and are likely to perform as well if not
better than the traditional techniques most commonly used in the palaeolimnological
realm. Furthermore, if all one knows is how to use CANOCO or C2 there will be
a tendency to view all problems as ordination, calibration, or something else that
cannot be handled. This situation is succinctly described as Maslow’s Hammer; “it
is tempting, if the only tool you have is a hammer, to treat every problem as if it
were a nail” (Maslow 1966: p.15).

This chapter aims to provide an introduction to the statistical machine-learning
techniques that have been shown to perform well in a variety of settings. We
hope that it will suitably arm palaeolimnologists with the rudimentary knowledge
required to know when to put down the hammer and view a particular problem as
something other than a nail.
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Abstract This chapter attempts to put the other six chapters in Part III into the
context of the four main phases of a palaeolimnological investigation. These are
data collection and data assessment, data summarisation, data analysis, and data
interpretation. The relevant numerical techniques described in the chapters in this
Part and in Part II are mentioned along with other techniques such as difference
diagrams, population modelling, changes in taxonomic richness through time, basic
time-series analysis, and the use of SiZer and its relatives that are not discussed
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Introduction

Stratigraphical palaeolimnological data are counts or measurements of differ-
ent biological (e.g., diatoms, chironomids, ostracods), chemical (e.g., inorganic
chemistry, organic compounds), physical (e.g., stable-isotope records, magnetic
properties, loss-on-ignition, bulk density), lithostratigraphical (e.g., grain size, sedi-
ment type, volcanic tephras), or chronological (e.g., 210Pb dates, 14C dates) variables
in several sediment samples at known depths in one or more sedimentary sequences
(see Last and Smol 2001a, b; Smol et al. 2001a, b; Smol 2008; Pienitz et al. 2009
for reviews of the range of palaeolimnological variables currently studied). The
most common data type in biologically-based palaeolimnology consists of counts
of many (typically 50–500) different types of diatoms, chrysophytes, chironomids,
etc. in a large number of samples (�50–500) from a sedimentary sequence. Such
data are highly multivariate containing many variables (e.g., diatom taxa) and many
objects (e.g., sediment samples) (see Birks 2012a: Chap. 2). In diatom analysis,
the number of variables (diatom taxa) is usually much larger than the number of
samples, whereas in chironomid, cladoceran, and ostracod analysis, the number of
variables is usually less than the number of samples, as in pollen analysis (Birks
2007a). Stratigraphical palaeolimnological data can thus be ‘fat and short’ (diatom
data) or ‘thin and long’ (chironomid, pollen, ostracod data). In contrast to the
majority of Quaternary pollen-stratigraphical studies, palaeolimnological studies
are often of a fine-resolution nature with a temporal resolution of 1–10 years. Data
from such studies are often inherently noisy, highly variable, large, as well as being
taxonomically diverse (Birks 1998). Usually the samples are not equally spaced in
time, with the exception of samples from well-studied annual varved deposits (see
Lotter and Anderson 2012: Chap. 18). Stratigraphical data often become noisier
and noisier as the temporal resolution becomes finer and finer (e.g., Green 1983;
Green and Dolman 1988; Peglar 1993), with the result that the inherent year-to-
year variation may mask any underlying long-term trends. Such fine-resolution data
provide a major challenge for numerical analysis (Birks 1998).

Numerical methods are useful tools at many stages in stratigraphical studies
in palaeolimnology (Birks 2010; Table 10.1). During data collection they can
be potentially useful in assisting in the identification of certain fossil types. In
data assessment, statistical techniques are essential in estimating the inherent
errors associated with the resulting counts or measurements. A range of numerical
techniques are available to detect and summarise major underlying patterns in
stratigraphical data. For single stratigraphical sequences, the numerical delimitation
of assemblage zones can be a useful first step in data summarisation. Other
numerical techniques such as ordination procedures can summarise temporal trends
in one or several data-sets. Numerical methods are essential for quantitative data
analysis in terms of quantifying rates of changes, estimating taxonomic richness,
modelling population changes, detecting temporal patterns such as trends and
periodicities, and quantitatively reconstructing past environmental conditions. The
final stage of data interpretation can be greatly aided by numerical techniques in
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Table 10.1 Overview of widely used numerical methods for the analysis of stratigraphical
palaeolimnological data

Aim Numerical methods Relevant chapters

Data assessment
and error
estimation

Exploratory data analysis 5
Laboratory and analytical uncertainties 6
Age-depth model uncertainties 12

Data summarisation
Single
stratigraphical
sequence

Clustering, partitioning, zonation 7, 9, 11, 16
Ordination 8, 11

Two or more
sequences

Core correlation by sequence-slotting 13
Combined ordinations 8, 11
Canonical ordination statistical modelling 8, 10, 11, 14, 18

Data analysis
One or more
sequences

Rate-of-change analysis 11
Population modelling 10, 21
Quantifying recent biotic change 7, 8, 11, 14, 15
Changes in taxonomic richness 4
Variation partitioning 8, 14, 18, 19, 20
Detection of ‘signal’ at the expense of ‘noise’ –

LOESS smoothers
2, 5, 11, 19

Detection of ‘significant’ trends – SiZer, SiNos,
BSiZer

10

Temporal-domain temporal-series analysis 16
Frequency-domain temporal-series analysis 16
Quantitative palaeoenvironmental reconstructions 14, 15, 19, 20

Data interpretation Community and assemblage reconstructions 7, 8, 15, 19
Hypothesis testing about causative factor using

canonical ordination and/or variation partitioning
8, 18, 19, 20

the reconstruction of past communities and in the testing of competing hypotheses
about underlying causative factors such as climate change, pollution, and other
human activities in determining patterns in stratigraphical palaeolimnological data.

Many of the numerical methods discussed here and in Part II are also widely used
in Quaternary pollen analysis (see Birks and Gordon 1985; Birks 1987, 1992, 1998,
2007a; Bennett 2001; Bennett and Willis 2001; Birks and Seppä 2004).

The aim of this introductory overview chapter is to place the chapters in this
Part and in other Parts of this volume in the context of stratigraphical data analysis
and of the phases of data collection and data assessment, data summarisation,
data analysis, and data interpretation (Table 10.1). In addition, brief accounts are
given, where appropriate, of other quantitative techniques that can be useful in
the numerical analysis of stratigraphical palaeolimnological data but that are not
sufficiently important as to justify chapters in their own right.
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Data Collection and Data Assessment

Numerical and statistical methods can assist in the identification of fossil taxa
and hence in the basic collection of stratigraphical data (Birks 2012a: Chap. 2).
Statistical techniques are essential in the assessment of the statistical uncertainties
associated with microfossil counting and with establishing age-depth relationships,
namely error estimation (Table 10.1).

Identification

Identification of fossil remains in stratigraphical sequences follows the procedures
outlined by Birks (Birks 2012a: Chap. 2). Sometimes problems of differential
preservation of fossils can arise and numerical procedures cannot really help with
these problems – there is simply no substitute for careful microscopy and the
experience of the analyst. Brodersen (2008) discusses the effects of misidentification
of fossil chironomid head capsules in terms of Type-I (to see differences that
in fact do not exist) and Type-II (not recognise differences that actually exist)
errors on resulting palaeolimnological interpretations. The decline of taxonomic
expertise world-wide is causing what Bortolus (2008) calls “error cascades in
the biological sciences”. This decline has serious impacts on palaeolimnology
as reliable identifications are the basis of sound palaeolimnology and reliable
identifications depend on sound taxonomy and meticulous documentation (Dolan
2011). The development of easy-to-use electronic iconographs and monographs
(e.g., Kelly and Telford 2007) is an important contribution in this time of declining
basic taxonomy. Heiri and Lotter (2010) (see also Maher et al. 2012: Chap. 6)
illustrate the influence of different taxonomic resolutions on the robustness of
chironomid-based temperature reconstructions.

Data Assessment and Error Estimation

All counts of fossil remains in sediment samples are, hopefully, an unbiased sample
count of the total amount of fossils preserved in the sediment sample of interest.
Several of the statistical approaches presented by Maher et al. (2012: Chap. 6) for
error estimation are specifically designed for estimating the uncertainty associated
with microfossil counts. Similarly the range of techniques within exploratory data
analysis (Juggins and Telford 2012: Chap. 5) involves graphical summaries such
as box-and-whisker plots, scatter-plots, stratigraphical-plots, and cave-plots are
essential tools in data assessment (Table 10.1).

An important pre-requisite for almost all palaeolimnological studies is a reliable
and robust chronology for the sequence(s) under study. Chronologies are usually



10 Overview to Part III 335

based on 210Pb or 14C age determinations or, more rarely, are based on annual varves
or volcanic ash layers. Blaauw and Heegaard (2012: Chap. 12) discuss the steps
required in establishing age-depth relationships for sediment sequences, including
the calibration of radiocarbon ages into calendar ages, the estimation of age-depth
models and their associated uncertainties, and the selection of which model to
use. Age-depth modelling is an area of active research at present and important
advances can be expected in the future, particularly within a Bayesian framework
(e.g., Blockley et al. 2004, 2007, 2008; Blaauw and Christen 2005; Wohlfarth et al.
2006; Bronk Ramsey 2007, 2009; Buck and Bard 2007; Haslett and Parnell 2008).

Data Summarisation

Data summarisation involves detecting the major patterns of variation within a
single stratigraphical data-set and the patterns of similarity and difference between
two or more stratigraphical sequences (Table 10.1).

Single Stratigraphical Data-Sets

A useful first step in the numerical analysis of a multivariate palaeolimnological
data-set is to summarise the data as a few groups (zones) or in a few dimensions
(Birks 2012c: Chap. 11). These are selected to fulfil predefined mathematical criteria
such that the groups maximise the between-group variation relative to the within-
group variation or the selected dimensions and ordination axes capture as much
of the total variation in the data with the constraint that all the ordination axes
are uncorrelated to each other. However, standard techniques for clustering and
partitioning (e.g., agglomerative hierarchical clustering, K-means partitioning, two-
way indicator species analysis – see Borcard et al. 2011; Legendre and Birks
2012a: Chap. 7) and ordination or dimension-reduction techniques (e.g., principal
component analysis, correspondence analysis – see Borcard et al. 2011; Legendre
and Birks 2012b: Chap. 8) do not take account of the stratigraphical nature of
the data. One may lose important information when these methods are applied
to stratigraphical data, with the result that objects with similar assemblages may
be clustered together even though the objects are far apart stratigraphically, hence
the need for clustering, partitioning, and ordination methods that can take specific
account of the stratigraphical ordering of the data (see Legendre and Birks 2012a, b:
Chaps. 7 and 8; Birks 2012c: Chap. 11). In certain specific studies, cluster analysis
without stratigraphical constraints can be useful when the groupings within the
clusters are plotted stratigraphically to detect patterns of recurrence in fossil and/or
sedimentary variables (e.g., Grimm et al. 2006, 2011).
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Stratigraphical sequences are most commonly summarised as a series of
assemblage zones. Numerical zonation is implemented by stratigraphically
constrained clustering or partitioning algorithms (Birks and Gordon 1985; Legendre
and Birks 2012a: Chap. 7; Birks 2012c: Chap. 11) followed by a comparison
of the variation of the zones with the variation expected under the broken-stick
model (Bennett 1996; Birks 2012c: Chap. 11) to provide a basis for deciding how
many zones should be selected and defined. Of the several constrained zonation
techniques currently available, optimal partitioning using a sum-of-squares criterion
is consistently the most robust and hence most useful numerical zonation procedure.

Ordination of stratigraphical data, without constraints of sample depth or age,
by, for example, principal component analysis or correspondence analysis (Borcard
et al. 2011; Legendre and Birks 2012b: Chap. 8) can be valuable in identifying the
major patterns of variation, the nature of change, and any trends in the sequence
(Birks 1987). Plotting the ordination results (sample scores) in a stratigraphical
context can provide a useful summary of the major patterns and trends and allows
the detection of abrupt changes within the sequence which may be obscured in
zonation with its primary concern on partitioning the stratigraphical sequence into
‘homogeneous’ units or zones. Careful examination of the taxon (variable) scores
or loadings on the ordination axes can also reveal which taxa are most influential
to the sample scores for a given ordination axis, thereby providing an ecological
interpretation of the observed patterns of stratigraphical variation.

With fossil assemblages that contain many taxa (�50 or more), it is important to
plot their relative frequencies in simple stratigraphical-plots in a way that displays
the major patterns of variation within the data as a whole. A very simple but effective
way is to calculate the weighted average or ‘optimum’ of each taxon for age or
depth, and to reorder the taxa in order of the optima, with taxa having high optima
for age or depth being plotted first at the bottom left of the stratigraphical-plot
and with taxa having low optima being plotted last at the top right of the plot
(Janssen and Birks 1994). Alternatively taxa can be ordered on the basis of their
modern weighted average optima for a particular environmental variable (e.g., total
phosphorus – see Juggins and Birks 2012: Chap. 14).

Two or More Stratigraphical Sequences

When two or more palaeolimnological variables (e.g., diatoms, chironomids) have
been studied in the same stratigraphical sequence, numerical zonations based on
each set of variables (Birks 2012c: Chap. 11) and a comparison of the resulting
partitions can help to identify common and unique changes in the different variables
(Birks and Gordon 1985). Separate ordinations of the different data-sets (Legendre
and Birks 2012b: Chap. 8) can help to summarise the major patterns within
each data-set, and these patterns can be compared using, for example, oscillation
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logs (Birks 1987). In cases where one data-set can be regarded as representing
‘response’ variables (e.g., diatoms) and another data-set can be regarded as re-
flecting potential ‘predictor’ or explanatory variables (e.g., stable-isotope ratios,
sediment geochemistry), constrained ordinations (e.g., redundancy analysis) and
associated Monte Carlo permutation tests (see Borcard et al. 2011; Birks 2012a:
Chap. 2; Legendre and Birks 2012b: Chap. 8; Lotter and Anderson 2012: Chap. 18)
can be used to assess the statistical relationship between the two data-sets. This
approach involves specific statistical testing of hypotheses and is strictly part of
data interpretation discussed below (Table 10.1).

Correlating two or more stratigraphical sequences is often necessary for a variety
of reasons (see Thompson et al. 2012: Chap. 13). It may be necessary to correlate
several cores taken within the same area of a lake with a master dated core, to
correlate cores taken within different parts of a lake, or to correlate stratigraphical
sequences from different sites. Core correlation can be made on the basis of
variables such as loss-on-ignition, or biostratigraphy and can incorporate external
constraints (e.g., volcanic tephra layers) in the core correlation using a sequence-
slotting algorithm (see Thompson et al. 2012: Chap. 13).

For detailed within-lake studies with multiple cores from shallow and deep
water, a palaeolimnologist might be interested in the spatial variations in different
taxa within the lake through time. After the various cores have been correlated by
sequence-slotting (Thompson et al. 2012: Chap. 13), difference diagrams (Birks and
Gordon 1985) can be constructed. The differences in fossil composition (
 yik) at
the same time between two cores are calculated as


1yik 	 y1ik � y2ik

where y1ik and y2ik denote the accumulation rates or relative percentages of taxon k
in the sample corresponding to time i at cores 1 and 2, respectively. Alternatively
the difference can be calculated (Jacobson 1979) as


2yik 	 log .y1ik =y2ik /

Both 
1yik and 
2yik can be plotted stratigraphically (for varying i) for each
taxon k.

Difference diagrams are useful in highlighting differences between cores within
a lake or between sequences from different sites. They require a reliable and inde-
pendent time control to ensure that similar times are being compared. An important
point is that the observed data are subject to statistical counting errors, as discussed
by Maher et al. (2012: Chap. 6). As one is examining the differences between pairs
of counts, each of which is subject to counting errors, the observed difference may
have a relatively large standard error. A useful precaution would therefore be to plot
not only the observed difference but also its associated standard error.
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Data Analysis

Data analysis is used here to include specialised techniques that estimate
particular numerical characteristics from stratigraphical data. Examples include
rates-of-change, population changes and expansion and contraction rates, taxonomic
richness, temporal-series analysis, quantification of recent change, and inferred past
environment (Table 10.1).

Rate-of-Change Analysis

Rate-of-change analysis (Grimm and Jacobson 1992; Birks 2012c: Chap. 11)
estimates the amount of compositional change per unit time in stratigraphical
data. It is estimated by calculating a multivariate dissimilarity (e.g., chord distance
(DHellinger distance)) (Legendre and Birks 2012b: Chap. 8) between stratigraph-
ically adjacent samples and by dividing the dissimilarity by the estimated age
interval between the sample pairs. An alternative approach is to interpolate the
stratigraphical data to constant time intervals and calculate the dissimilarity. They
can, if required, be smoothed prior to interpolation. Rate-of-change analysis is
critically dependent on a reliable chronology for the sequence (Birks 1998).
As radiocarbon years do not equal calendar years (Blaauw and Heegaard 2012:
Chap. 12), a carefully calibrated timescale or an independent absolute chronology
(e.g., from annually laminated sediments: Lotter et al. 1992) is essential for reliable
rate-of-change estimation (Birks 2012c: Chap. 11).

Population Analysis

Biostratigraphical data, when expressed as accumulation rates (individuals per unit
area per unit time), can be viewed as temporal records of past populations within the
lake under study. Splitting of individual taxon sequences (Birks 2012c: Chap. 11)
(Dsequence splitting of Birks and Gordon 1985) divides the accumulation rates of
individual taxa into units of presence or absence, and when the taxon is present, into
units of uniform mean and variance. It focuses on the individualistic behaviour of
taxa and on similarities and differences in the patterns of change of taxa within one
or more sequences (Birks and Gordon 1985).

Patterns in accumulation rates of individual taxa can be modelled using logistic
or exponential population-growth models and population doubling-times can be
estimated for individual taxa as a means of comparing population rates of change
between taxa, sites, or geographical regions (e.g., Bennett 1983, 1986, 1988; Walker
and Chen 1987; Magri 1989; MacDonald 1993; Fuller 1998).
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If y denotes the population size (estimated as numbers cm�2 year�1), the
exponential and logistic models can be derived from simple assumptions about the
rate of increase of y with time dy/dt. In the exponential model, it is assumed that
dy/dt is proportional to y, namely

dy

dt
D ry

where r is the intrinsic rate of population growth per unit time. This can be integrated
to give

log y D rt C a or y D exp .rt C a/ (10.1)

where a is a constant of integration. Bennett (1983) plotted log y against t (in
radiocarbon years) for several taxa, estimating r from the slope of the best-fitting
least-squares regression line. Population doubling-times can be estimated as log 2/r
where r is estimated from Eq. 10.1.

We would not expect y to be able to increase exponentially without limit; an
upper carrying capacity K for the environment can be incorporated into the logistic
model, in which

dy

dt
D by .K � y/ (10.2)

where b is a constant. This can be integrated, to give

log Œ.K � y/ =y � D c � bKt (10.3)

where c is a constant of integration. If an estimate of K is available, we can obtain
estimates of b and c by plotting log[(K � y)y] against t. However, we are assuming
that K and b remain constant through time.

The same approach of fitting exponential or logistic models to phases of
declining taxon accumulation rates can be used to estimate rates of decline and
population halving-times (e.g., Peglar 1993).

Population modelling (Birks 2012d: Chap. 21) has considerable potential in
palaeolimnology, especially in fine-resolution studies and in assessing rates of
population change of alien, invasive species in lakes (Smol 2008).

Stratigraphical Changes in Taxonomic Richness

Changes in taxonomic richness and diversity with time can be explored using
rarefaction analysis to estimate the number of taxa (N0: Hill 1973) that would
have been found if all the fossil counts had been the same size and by estimating
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Hill’s (1973) N1 and N2 diversity measures. Details are given in Birks (2012b:
Chap. 4). Palaeolimnological examples include Solovieva et al. (2005), Velle et al.
(2005, 2010), Birks and Birks (2008), Bjerring et al. (2008), and Wall et al. (2010).

Differences in compositional turnover (D “-diversity: Whittaker 1972; or dif-
ferentiation diversity: Jurasinski et al. 2009) at different sites for a given time
period can be estimated by means of detrended canonical correspondence analysis
(ter Braak 1986; Birks 2007b). The different amounts of turnover can be mapped
or plotted in relation to location or present-day climate or other environmental
variables (e.g., Smol et al. 2005; Hobbs et al. 2010). Alternatively, differences in
compositional turnover at different times or between different types of organisms
within one sequence can be estimated using the same approach (Birks and Birks
2008).

Temporal-Series Analysis

Palaeolimnological stratigraphical data represent temporal series of the changing
relative frequencies or accumulation rates of different fossils (e.g., diatoms), chem-
ical variables, or inferred environmental variables (e.g., lake-water pH) at selected
times in the past (see Dutilleul et al. 2012: Chap. 16). In the great majority of
standard time-series analytical methods, the term ‘time-series’ is reserved for partial
realisations of a discrete-time stochastic process, namely that the observations are
made repeatedly on the same random variable at equal spacings in time (Diggle
1990; Dutilleul et al. 2012: Chap. 16). There are clearly difficulties in meeting this
requirement in many palaeolimnological studies unless the observations are from
annually varved sediments (e.g., Anderson 1992; Young 1997; Young et al. 1998,
2000; Bradbury et al. 2002; Dean 2002; Dean et al. 2002; Fagel et al. 2008; Brauer
et al. 2009). Palaeolimnological temporal-series may show long-term trends, short-
term variations, cyclical variations, phases of values well above or well below the
long-term means or trends, or irregular or random variation (cf. Blaauw et al. 2010).

Prior to any statistical analysis, it can be useful to perform exploratory data
analysis (EDA) (Juggins and Telford 2012: Chap. 5) on the individual variables
(e.g., individual taxa) within the temporal series, such as simple tests for trends
within each variable that estimate the statistical significance of any trends by
randomisation tests (e.g., Manly 2007). Simple tests for trend include ‘runs’ tests
and regression models. If the abundances of a chironomid taxon in a stratigraphical
sequence are seemingly randomly distributed with time, then the length of ‘runs’
(series of samples all successively larger (or less) than the previous sample) may
still show a pattern. The lengths of observed runs (how many runs of a single
sample, runs of two samples, runs of three samples, etc.) can be counted and
the resulting distribution compared with the runs null-distribution for the same
samples repeatedly randomised (e.g., 999 times). The significance of the observed
‘runs’ statistic can then be compared with the randomisation distribution to decide
if the sequence of runs for the taxon is significantly different from random
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expectation (Manly 2007). Parametric or non-parametric correlation coefficients
(Pearson’s product–moment coefficient, Spearman’s non-parametric rank correla-
tion coefficient rho, and Kendall’s non-parametric correlation coefficient tau) can
be calculated to detect if there are trends in the values for an individual taxon (e.g.,
Gaulthier 2001). The observed values can be compared with the randomisation
distribution based on the repeated randomisation of the taxon values (Manly
2007). There are also randomisation tests for autocorrelation (serial correlation) and
periodicity but the results from such tests when applied to irregularly spaced series
can be problematic (see Manly 2007).

Other useful EDA approaches for temporal-series include non-parametric re-
gression techniques such as locally weighted regression scatter plot smoothing
(LOESS – see Efron and Tibshirani 1991; Birks 1998, 2012a: Chap. 2; Juggins
and Telford 2012: Chap. 5). These are useful graphical tools for highlighting the
‘signal’ or major patterns in individual temporal-series. A LOESS curve is a non-
parametric regression estimate because it does not assume a particular parametric
form (e.g., quadratic) for the entire regression (Cleveland 1979). It is conceptually
similar to ‘running means’ except that it takes into account the uneven spacing of the
independent time variable. In LOESS fitting, the degree of smoothing or span (’)
can be varied and lies between 0 and 1. As ’ increases, the fitted curve becomes
smoother. Choosing ’ requires careful judgement for each temporal-series. The
goal is generally to make ’ as large as possible and thus to make the fitted curve
as smooth as possible without distorting the underlying pattern in the data (Birks
2012a: Chap. 2; Juggins and Telford 2012: Chap. 5). Residual plots can help identify
appropriate values of ’ (see Birks 1998 for further discussion of the use of LOESS
smoothers and related techniques in palaeolimnology and Seppä et al. 2009a for the
use of LOESS smoothers with stratigraphical data).

An alternative approach to LOESS smoothing that combines graphical dis-
play, hypothesis-testing, and temporal-series analysis is provided by the SiZer
(Significance of Zero crossing of the derivative) (Chaudhuri and Marron 1999;
Holmström and Erästö 2002; Sonderegger et al. 2009) and the BSiZer (Erästö and
Holmström 2005) and related SiNos (Significant Non-stationarities: Godtliebsen
et al. 2003) procedures. The SiZer approach was introduced to palaeolimnology
by Korhola et al. (2000). The SiZer approach asks which features in the smoothers
are real and which may be sampling artefacts. It finds trends and curves within a
temporal-series that are statistically significant. It uses a whole family of smooth
curves fitted to the temporal-series, each based on various smoothing window sizes,
and provides information about the underlying curve at different levels of detail.
The features detected typically depend on the level of detail for which the temporal-
series is considered.

At each point in state space (time and bandwidth), confidence intervals for the
derivatives of the smoothers are calculated, thereby allowing an assessment of which
observed features are statistically significant, i.e., what may be ‘signal’ and what
may be ‘noise’. The results are presented as coloured SiZer maps that are a function
of location and scale. The amount of smoothing is controlled by parameter h and for
each value of log(h), the effective smoothing window is described by a horizontal
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space between two dash-dotted curves. The optimal smoother, based on numerical
criteria (Ruppert et al. 1995), is conventionally drawn as a white line. Red on a
SiZer map indicates that the curve is significantly increasing, blue that the curve is
significantly decreasing, purple that no conclusions can be made about the slope, and
grey areas indicate that the available data are too sparse at that smoothing level for
any conclusions to be drawn about statistical significance. SiZer is a very robust and
useful technique and it warrants further use in palaeolimnology (e.g., Weckström
et al. 2006).

There is also BSiZer (Erästö and Holmström 2006), a Bayesian extension of
SiZer (Erästö and Holmström 2005). This allows the inclusion in the model of
the errors in the dependent variable (e.g., sample-specific errors of prediction in
an environmental reconstruction – see Juggins and Birks 2012: Chap. 14) and
sample dating uncertainties (see Blaauw and Heegaard 2012: Chap. 12). Erästö and
Holmström (2005, 2006) present palaeolimnological applications of BSiZer.

SiNos (Godtliebsen et al. 2003) handles temporal-series where there is stochastic
dependence between data points whereas SiZer assumes that the data are indepen-
dent, or at least it can suggest spurious details to be significant at small sizes. SiNos
looks simultaneously for significant changes in the mean, variance, and first-lag
autocorrelation of the observed temporal-series when the null hypothesis suggests
that the process is stationary. In general, SiZer typically detects too many features
for dependent temporal data, but is superior to SiNos with independent data. SiNos
can detect other types of stationarities (e.g., changes in the first-lag autocorrelation)
in a temporal-series that SiZer cannot do. Both SiZer and SiNos are useful tools
that can help to detect ‘signal’ in palaeolimnological temporal-series and to test if
particular changes are statistically significant or not.

Dutilleul et al. (2012: Chap. 16) discuss the two main approaches to time-
series analysis with constant inter-sample time intervals. There is the time-domain
approach that is based on the concept of autocorrelation, namely the correlation
between samples in the same sequence that are k time intervals apart. The
autocorrelation coefficient is a measure of the similarity between samples separated
by different time intervals and it is usually plotted as a correlogram to assess the
autocorrelation structure and the behaviour (e.g., periodicities) in the values of
the fossil type of interest over time. Temporal-series of two different variables
can be compared by the cross-correlation coefficient to detect patterns of temporal
variation and relationships between variables (e.g., Legendre and Legendre 1998;
Tinner et al. 1999; Davis 2002; Seppä et al. 2009b). Comparison of two temporal-
series is complicated by the inherent autocorrelation within the series. In such cases
regression models between temporal-series require specialised approaches such as
generalised least squares (Venables and Ripley 2002; Shumway and Stoffer 2006;
Cryer and Chan 2008). Willis et al. (2007) present an example of such modelling in
a palaeoecological context based on annually laminated sediments.

The second approach involves the frequency domain. It focuses on bands of
frequency or wave-length over which the variance of a time-series is concentrated
(Dutilleul 1995). It estimates the proportion of the variance attributable to each
of a continuous range of frequencies. The power spectrum of a time-series can
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help detect periodicities within the data. The main tools are spectral density
functions, cross-spectral functions, and periodograms. See Birks (1998) for various
palaeolimnological examples of Fourier (amplitude) and power (variance) spectral
analysis and Willis et al. (1999) for an example of spectral density and cross-spectral
functions applied to a palaeoecological example involving annually laminated
sediments.

As Dutilleul et al. (2012: Chap. 16) emphasise, conventional time-series analysis
makes stringent assumptions of the data, namely that the inter-sample intervals are
consistent throughout the time-series and that the data are stationary and thus there
are no trends in mean or variance in the time-series. In the absence of equally-spaced
samples in time, the usual procedure is to interpolate samples to equal time intervals
using one of several interpolation procedures. This is equivalent to low-pass filtering
and may result in an under-estimation of the high-frequency components in the
spectrum. Thus the estimated spectrum of an interpolated time-series becomes too
‘red’ compared to the time spectrum (Schulz and Mudelsee 2002). Stationarity is
usually achieved by some detrending or differencing procedure (Diggle 1990).

Techniques for spectral analysis and cross-spectral analysis for unevenly-spaced
time-series involve the fitting of sine- and cosine-functions by a least-squares
criterion (Schulz and Stattegger 1997) (see Dutilleul et al. 2012: Chap. 16 for a
critique of this approach). Spectra of palaeolimnological and palaeoclimatic time-
series frequently show a continuous decrease of spectral amplitude with increasing
frequency, so-called ‘red noise’ (Schulz and Mudelsee 2002). The conventional
technique for assessing whether the variability recorded in a time-series is consistent
with red noise is to estimate the first-order autoregressive (AR1) parameter for the
time-series of interest. An autoregressive model postulates that observation xi at
time ti is a linear function of previous values in the series, and an AR1 model is of
the form

xi D Øxt�1 C at

where ai is a random disturbance and Ø is a parameter of the model. For evenly
spaced time-series, estimation of AR1 is relatively straightforward. Schulz and
Mudelsee (2002) have developed the program REDFIT to perform spectral analysis
directly on temporally unevenly spaced temporal data. It uses a Monte Carlo
simulation approach to test if peaks in the time-series spectrum are significant with
respect to the red-noise background from a theoretical AR1 process. Nyberg et al.
(2001), Brown et al. (2005), and Allen et al. (2007) present applications of REDFIT
to Holocene palaeoecological data.

A limitation of conventional power-spectral analysis is that it provides an
integrated estimate of variance for the entire time-series. This can be overcome
by wavelet power-spectral analysis (Torrence and Compo 1999) that identifies
the dominant frequencies in different variables and displays how these frequencies
have varied through the time-series. Palaeoecological examples include Bradbury
et al. (2002), Dean (2002), Dean et al. (2002), Brown et al. (2005), and Fagel et al.
(2008). Witt and Schumann (2005) have developed Foster’s (1996) approach for



344 H.J.B. Birks

deriving wavelets for unevenly sampled time-series to explore Holocene climate
variability at millennial scales recorded in Greenland ice-cores (see also Prasad et al.
2009).

Dutilleul et al. (2012: Chap. 16) demonstrate the use of two robust procedures,
namely auto-correlograms using distance classes and a novel frequency-domain
technique, multi-frequential periodogram analysis, to analyse four different palaeo-
limnological time-series, all of which consist of unequally spaced observations.
These methods have considerable potential in palaeolimnology. Hammer (2007)
presents a related approach based on the Mantel correlogram, the Mantel peri-
odogram, to conduct spectral analysis of Plio-Pleistocene fossil data.

Quantifying Recent Change

Many palaeolimnological studies address questions relating to ‘before and after’
changes or reference conditions at, for example, AD 1850. A range of numerical
techniques such as classical ordination (Legendre and Birks 2012b: Chap. 8),
dissimilarity analysis between ‘top’ and ‘bottom’ samples (Legendre and Birks
2012b: Chap. 8; Simpson 2012: Chap. 15; Simpson and Hall 2012: Chap. 19),
indicator-species analysis (Dufrêne and Legendre 1997; Legendre and Birks 2012a:
Chap. 7), and quantitative reconstructions of changes in lake-water chemistry such
as total phosphorus (Juggins and Birks 2012: Chap. 14) provide robust means for
quantifying recent change in, for example, diatom, chrysophyte cyst, or cladoceran
assemblages in the last 100–150 years.

Quantitative Palaeoenvironmental Reconstructions

Since the pioneering work by Imbrie and Kipp (1971) on the quantitative recon-
struction of past sea-surface temperatures and salinity from planktonic foraminiferal
assemblages preserved in deep-ocean sediment cores, several numerical approaches
have been developed in palaeolimnology to derive so-called modern calibration
or ‘transfer’ functions that model the relationship between modern biological
assemblages (e.g., diatoms, chironomids) and modern environment (e.g., lake-
water pH). These modern calibration functions are then used to transform fossil
assemblages into quantitative estimates of the past environmental variable. The
various approaches are reviewed by Juggins and Birks (2012: Chap. 14) (see also
Birks 1995, 1998, 2010; Smol 2008; Birks et al. 2010). The commonest approaches
in palaeolimnology involve two-way weighted averaging or its relative weighted-
averaging partial least squares, or the more formal classical approach of Gaussian
logit regression and maximum likelihood calibration (see Juggins and Birks 2012:
Chap. 14). When several calibration functions appear equally appropriate (e.g.,
Simpson and Hall 2012: Chap. 19), a consensus reconstruction can be derived by
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fitting a robust smoother (e.g., LOESS smoother) (Birks 2012a: Chap. 2; Juggins
and Telford 2012: Chap. 5) through the reconstructed values derived from the
different calibration-function models. Similar regression and calibration techniques,
especially partial least squares (PLS), can be used to infer total organic carbon, total
inorganic carbon, lake-water pH, nitrogen, phosphorus, and biogenic silica of lake
sediments from the results of Fourier transformed infrared spectroscopy (e.g., Rosén
and Persson 2006; Rosén et al. 2010) or of near-infrared spectroscopy (e.g., Rosén
et al. 2000, 2001; Rosén 2005; Rosén and Hammarlund 2007; Kokfelt et al. 2009;
Reuss et al. 2010; Cunningham et al. 2011).

Data Interpretation

Stratigraphical palaeolimnological data are a complex reflection of the biota living
within the lake and its immediate surroundings. Interpretation of these data can be
in terms of past communities or assemblages or in terms of possible factors that
have influenced changes in the lake biota and the lake environment and hence in the
biostratigraphy (Table 10.1).

Community and Assemblage Reconstruction

The reconstruction of past aquatic communities can be attempted by finding
fossil remains of ‘indicator species’ characteristic of particular communities today,
or by comparing quantitatively fossil assemblages with modern assemblages in
surface-sediments from lakes of known biota and environment today, so-called
analogue matching (AM) (Simpson 2007; Simpson 2012: Chap. 15; Simpson and
Hall 2012: Chap. 19). The basic idea of AM is simple – compare the fossil
assemblage with all modern assemblages using an appropriate dissimilarity measure
(e.g., chord distance (D Hellinger coefficient) – see Simpson 2007; Legendre and
Birks 2012b: Chap. 8), find the modern assemblage(s) most similar to the fossil
assemblage, assign the modern lake or assemblage type to the closest analogue(s)
to the fossil assemblage, and repeat for all fossil assemblages. Problems arise in
defining a critical threshold to decide whether the modern and fossil assemblages
are sufficiently similar to indicate that they could be derived from the same lake type
(Simpson 2007, 2012: Chap. 15). Fossil assemblages may, for a variety of reasons,
have no close modern analogues (Jackson and Williams 2004). In such cases, AM
will fail as a tool for interpreting fossil assemblages in terms of past limnological
assemblages or lake type. Attempts have been made to put AM on a more rigorous
numerical basis using receiver operating characteristic analysis (Gavin et al. 2003;
Simpson 2007, 2012: Chap. 15), Monte Carlo simulation (Lytle and Wahl 2005),
and logistic regression (Simpson 2012: Chap. 15).
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A less formal approach to analogue analysis is to ordinate or cluster together
modern samples and the fossil stratigraphical data (Birks and Gordon 1985) and
to examine which modern and fossil samples are positioned near each other in
ordinations or are grouped together in clusterings or partitionings (see Legendre
and Birks 2012a, b: Chaps. 7 and 8). Alternatively the modern data can be ordinated
(e.g., principal component analysis, principal coordinates analysis – see Legendre
and Birks 2012b: Chap. 8) and the modern lake types displayed on the first few
ordination axes. The fossil samples can be positioned as ‘passive’ or ‘supplemen-
tary’ objects onto the plane formed by the modern ordination axes (see Legendre
and Birks 2012b: Chap. 8). Alternatively, fossil samples can be the basis of the
primary ordination and modern samples added as ‘supplementary’ samples. In either
approach the similarities between the modern and fossil samples can be assessed
visually as an aid in interpreting the fossil samples in relation to modern lake type
or limnological conditions. Simpson and Hall (2012: Chap. 19) illustrate a more
complex approach of relating fossil samples to modern environmental conditions.
This involves positioning fossil samples onto the plane formed by the first two
axes of a canonical correspondence analysis (CCA) of modern assemblages and
environmental variables (e.g., lake-water pH) from a set of lakes (see Legendre and
Birks 2012b: Chap. 8). The fossil samples are positioned on the basis of similarities
in their composition with the modern assemblages. Their position on the plane of
CCA axes 1 and 2 illustrates not only their similarities in composition with the
modern samples but also the passive relationship with the modern environmental
variables (see also Birks et al. 1990; Allott et al. 1992).

Causative Factors

Many factors can influence lakes and their biota, and hence fossil assemblages –
climatic changes, soil development, lake-water chemistry, human impact, pollution,
disturbance, species interactions, and complex interactions between these factors.
It is a major challenge in palaeolimnology to test competing hypotheses about
underlying causative factors (see Lotter and Anderson 2012: Chap. 18; Simpson
and Hall 2012: Chap. 19). Statistical techniques such as constrained ordination
(e.g., reduced rank multivariate regression (D redundancy analysis), canonical cor-
respondence analysis), variation partitioning analysis, and Monte Carlo permutation
tests (see Birks 2012a: Chap. 2; Legendre and Birks 2012b: Chap. 8) can be used
to assess the statistical relationships between biostratigraphical data (‘response’
variables) and external forcing factors (‘predictor’ variables), in an attempt to
assess the relative impacts of, for example, climatic change and volcanic tephra
deposition on diatom assemblages (Lotter and Birks 1993; Birks 2010). Although
statistical techniques exist with appropriate permutation tests that can take account
of the time-ordered nature of palaeolimnological stratigraphical data (ter Braak and
Šmilauer 2002), the major problem is deriving, for meaningful statistical analysis,
independent data that reflect potential forcing factors (Lotter and Birks 2003).
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This remains a major challenge in the quantitative and statistical interpretation of
palaeolimnological data (Birks 2012d: Chap. 21).

Conclusions

This introductory and overview chapter and the chapters in Parts II and III
discuss the wide range of numerical and statistical techniques currently available
to palaeolimnologists. These techniques can help in the collection and assessment,
summarisation, analysis, and interpretation of stratigraphical palaeolimnological
data. Some of the techniques are more robust than others and some techniques
make stronger assumptions than others, especially in the general area of time-series
analysis. Techniques for analysing temporal data are rapidly developing and within
a few years palaeolimnologists may have a set of robust and well-tried techniques
to detect trends, periodicities, and correlations within their stratigraphical data-sets.
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A monographic study part 1. Szafer Institute of Botany, Krakow, pp 232–239

Young R, Walanus A, Goslar T (2000) Autocorrelation analysis in search of short-term patterns in
varve data from sediments of Lake Gościąź, Poland. Boreas 29:251–260



Chapter 11
Analysis of Stratigraphical Data

H. John B. Birks

Abstract This chapter discusses numerical methods that can aid in the summari-
sation and analysis of patterns in complex multivariate stratigraphical palaeolim-
nological data. These methods are constrained cluster analysis and constrained
partitioning for zonation, partitioning of individual stratigraphical sequences for
exploring patterns within and between taxa, ordination techniques for summarising
trends within stratigraphical data, rate-of-change analysis for estimating rates of
biotic change through time, and dissimilarity analysis and ordination techniques for
quantifying the magnitude of recent change. Availability of appropriate computer
software is outlined and possible future developments are discussed.

Keywords Broken-stick model • Canonical ordination • Cluster analysis • Con-
strained clustering • Ordination • Partial ordination • Partitioning • Quantify-
ing recent change • Rate-of-change analysis • Splitting of individual sequences
• Statistical modelling • Zonation

Introduction

Palaeolimnological data are most commonly multivariate and quantitative. Typ-
ically, they consist of estimates of the abundance of variables (e.g., diatoms,
chironomids, pollen), expressed in various ways, in a large number of samples.
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Samples may have various relationships to each other, notably spatial (‘surface
samples’) or temporal (stratigraphical) relationships (see Birks 2012a: Chap. 2).
This chapter is concerned with the analysis of temporally-related stratigraphical
samples. Such samples have a known order of deposition which is used to constrain
the numerical analyses, providing the basis for presenting data in stratigraphical di-
agrams, dividing the data into zones (whether numerical or not), and for interpreting
the data as reflecting temporal changes in past systems (Birks 1986, 1998, 2007a,
2010).

Analysis of samples in a stratigraphical sequence has traditionally been carried
out subjectively (‘by eye’). The use of numerical techniques has been dependent
on the availability of computers, and the development of numerical techniques has
closely paralleled computer development, beginning with their initial use for zona-
tion (Gordon and Birks 1972). Some of the techniques can be applied by hand or
with simple calculating aids (such as spreadsheets), but the quantity of data present
in typical palaeolimnological data-sets precludes much numerical analysis without
access to a computer. The most important advantages of numerical techniques are
that the results are repeatable and are less subjective than traditional approaches
(Birks and Gordon 1985). Different workers can obtain the same results from the
same data by techniques that are clear and explicit. They enable the recognition
of patterns and trends in data separately from the interpretation of the data (Birks
2007a) (something that is difficult to do in a repeatable way ‘by hand’ or ‘by
eye’). Nevertheless, the adoption of numerical techniques for the basic analysis
of stratigraphical data in palaeolimnology has been slow and patchy (Birks 1986,
1998).

The aim of this chapter is to describe the main numerical techniques in use
for the analysis of stratigraphical data for the purposes of data summarisation and
description (as distinct from the reconstruction of past environments, ecosystems,
or climates): zonation, independent splitting, summarising stratigraphical patterns,
quantifying recent changes, and rate-of-change analysis. Additional techniques
for the analysis of stratigraphical data are described elsewhere in this volume
(e.g., canonical ordination, Legendre and Birks 2012b: Chap. 8; core correlation,
Thompson et al. 2012: Chap. 13; environmental reconstructions, Juggins and Birks
2012: Chap. 14; analogue analysis, Simpson 2012: Chap. 15; temporal-series
analysis, Dutilleul et al. 2012: Chap. 16). The techniques described are illustrated
with the Holocene diatom data from The Round Loch of Glenhead (RLGH) (core
RLGH3) (Jones et al. 1989; Birks and Jones 2012: Chap. 3), using series 1
radiocarbon-age data from Harkness et al. (1997). The age-depth model used here
is a 3-term polynomial, based on the radiocarbon dates SRR 2811–SRR 2821,
excluding SRR 2814, and including a value of 0 ˙ 50 for the surface. Development
of this and other models, including radiocarbon-date calibration, is discussed further
by Blaauw and Heegaard (2012: Chap. 12). It differs from the age-depth model used
by Jones et al. (1989), especially in the basal portion of the sequence. It is used
here solely for illustration, and should not be taken as a replacement for the earlier
published age-depth model.
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All the numerical analyses in this chapter were carried out by Keith Bennett
using PSIMPOLL v. 4.00 (or above). The program runs on all operating systems
with an ANSI C compiler (which includes DOS, Windows®, Apple®, and all Unix
systems), and is available at URL http://chrono.qub.ac.uk/psimpoll/psimpoll.html/.
Other relevant programs available on the internet are listed in the appropriate
sections.

Zonation

In order to facilitate the description and correlation of microfossil data, it is useful
to divide stratigraphical data (e.g., chironomids, pollen, diatoms, cladocerans) into
‘zones’. There are many different types of zones (see Hedberg 1976), of which
the most useful for Quaternary palaeolimnology is the ‘assemblage zone’. These
may be defined as bodies of sediment that are characterised by distinctive natural
assemblages of pollen, diatoms, etc. In Quaternary palynology, this approach was
pioneered by Cushing (1967), and formed the background to the development of
numerical zonation schemes by Gordon and Birks (1972). Traditionally, sequences
have been split into zones ‘by eye’, but the process can now be done easily by
numerical procedures, which are not only fast and repeatable, but also reduce
considerably the element of subjectivity. Zonation of biostratigraphical data may
be carried out by divisive splitting or partitioning techniques, or by agglomerative
techniques of stratigraphically constrained cluster analysis (see Legendre and Birks
2012a: Chap. 7). The basic principles were established by Gordon and Birks (1972)
and Birks and Gordon (1985), and remain largely unchanged. Bennett (1996)
discusses methods for establishing how many zones should be defined.

Techniques

Splitting or divisive techniques successively divide a stratigraphical sequence into
smaller and smaller segments. They divide the data-set in such a way that the sum of
the variation of the resulting portions is minimised. Variation may be measured in a
number of ways. Two in common use are sums-of-squares and information content.
The way that the data-set is split may be either ‘binary’ or ‘optimal’. The binary
approach splits the data-set into successively smaller groups by splitting existing
zones. Results for any given number of zones are thus an extension of results for all
results with fewer zones. As Legendre and Birks (2012a: Chap. 7) and Simpson and
Birks (2012: Chap. 9) discuss, these binary splitting procedures of Gordon and Birks
(1972) are an early implementation of De’ath’s (2002) multivariate regression trees
where a vector of sample depths or ages is used as the sole explanatory predictor
variable (Borcard et al. 2011: Sect. 4.11.5).

http://chrono.qub.ac.uk/psimpoll/psimpoll.html/
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The optimal partitioning approach starts afresh for each successive number of
splits, and thus there will not necessarily be any correspondence between the results
for division into different numbers of zones. The principles are discussed fully in
Gordon (1982) and Birks and Gordon (1985). Optimal splitting can be demanding of
computer time, but this is rapidly becoming irrelevant as computer processor speeds
improve. In principle and in practice the optimal approach is more satisfactory than
binary splitting, and it is now used routinely (e.g., Bennett et al. 1992; Birks and
Birks 2008).

Agglomerative techniques cluster samples into successively larger groups. They
are based on cluster analysis (Gordon 1999; Legendre and Birks 2012a: Chap. 7),
with the constraint that clusters must be based on agglomeration of stratigraphically
adjacent samples (Gordon and Birks 1972; Birks and Gordon 1985). Two techniques
have been employed. Both begin with a dissimilarity matrix of all pairwise
combinations of samples, and search for the most similar, stratigraphically adjacent
pair of samples. This pair is then combined to form a cluster. The two methods differ
in how the new cluster is then treated. With the first, termed constrained single-link
analysis (or CONSLINK), the dissimilarity between the cluster and a sample outside
the cluster is considered to be the smallest of the dissimilarities between the sample
and any of the samples within the cluster (see Legendre and Birks 2012a: Chap. 7).
With the second technique, termed constrained incremental sum-of-squares cluster
analysis (or CONISS) and described in detail by Grimm (1987), a statistic termed
‘dispersion’, or ‘sum-of-squares’ is calculated for each cluster, and recalculated as
clusters are merged (see Legendre and Birks 2012a: Chap. 7). The matrix is searched
for the two stratigraphically adjacent clusters whose merger gives the least increase
in total dispersion. In both cases, agglomeration proceeds until the whole data-set
is combined into a single cluster. The measure of dissimilarity used by Grimm
(1987) in his program CONISS is squared Euclidian distances (see Legendre and
Birks 2012b: Chap. 8), calculated from untransformed or transformed (standardised,
square-root, or normalised – see Prentice 1980 for details) data but other distances
are possible. Padmore (1987) described a program called SHEFFPOLL that
carries out agglomerative zonation using either total within group sum-of-squares
(equivalent to squared Euclidian distance, but using a less-efficient algorithm) or
information content. There seems to be no reason, in principle, for preferring one
method over the other. In PSIMPOLL 4.00, CONISS is available, based on the
program by Grimm (1987), and a second method, called CONIIC (constrained
incremental information clustering), based on information content as a dissimilarity
measure, is also available.

An additional agglomerative method is the variable-barriers approach (Gordon
and Birks 1974; Birks and Gordon 1985; Birks 1986). This approach attempts
to distinguish groups of samples with transitional assemblage composition from
groups of samples with broadly similar composition. It thus tries to delimit two
types of zones; phases of relatively ‘stable’ composition and phases of abrupt or
systematic changes in composition (Birks and Gordon 1985).

Instead of placing boundaries between pairs of adjacent levels as in the divisive
procedures, barriers of any height between 0 and 1 are positioned, subject to
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the constraint that the sum of the barrier heights equals h, a value pre-set by
the investigator. The local mean for sample i is influenced by all levels that can
be reached from i by ‘jumping over’ barriers of total height less than 1. A measure
of the total variation in the fossil values from the local mean is then minimised
by means of a computational iterative procedure, thereby ensuring that levels with
dissimilar fossil composition are separated by high barriers. Levels belonging to
phases of rapid transition will appear between adjacent high barriers. Transitional
levels appear as late additions to the clusters formed early in the analysis. The
variable-barriers approach is particularly useful in the analysis of high-resolution
data where stratigraphical changes may be gradual. It has proved particularly useful
in partitioning late-glacial biostratigraphies (e.g., Birks and Mathewes 1978; Birks
1981).

Determining the Number of Zones

A key difficulty in all numerical zonations is the determination of the number of
zones that can be reasonably recognised in a sequence. Birks (1986) suggested that
binary divisive analyses should proceed ‘until little further reduction in variance
occurs’, leaving the judgement entirely to the analyst. Two methods, randomised
data-sets and the ‘broken-stick model’, can be used to help determine how many
zones should be recognised numerically in a sequence (Bennett 1996).

Randomised data-sets. If data-sets consisted of samples that were drawn from
the same, perfectly uniform, body of sediment, any differences would be due to
stochastic (random) variation. One way of assessing the success of a zonation
analysis is to examine the change in residual variation as new zones are established
and to compare this with the way that the residual variation would change if samples
in the data-set were distributed along the stratigraphical sequence at random. A
successful zone is then one which produces a greater fall in total variation than
would be obtained from a zone in the randomised data-set. Randomised data-sets
are generated by shuffling the samples of the existing data-set. Two random integers
(i, j) are obtained, and the ith and jth samples in the data-set swapped. This should
be repeated many times (at least 10 � number of samples) to achieve a thorough
shuffling.

This approach is similar to that of Legendre et al. (1985), who clustered samples
along a chronological sequence until the samples within each cluster behaved as if
they resulted from random sampling (see Legendre and Birks 2012a: Chap. 7). The
aim in both cases is to separate variation that results from structure in the data-set
from variation which results from stochastic processes. The approach demonstrates
that much of the variation in biostratigraphical data-sets is essentially stochastic and
that there is a point beyond which further subdivision of the variation is worthless.
It also gives some information on the number of potentially useful zones.

Broken-stick model. The total variation in a data-set can be considered as a
stick of unit length with n � 1 markers positioned on it at random. The lengths
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of the n resulting segments are the proportion of total variation that would be
due to each level of zonation if the sequence consisted of samples with no
stratigraphical structure. Thus, if the reduction in variation for a particular zone
exceeds the proportion expected from this model, the zone concerned accounts for
more variation than would have been expected if the data-set consisted of samples
arranged at random and consequently may be considered ‘significant’. The idea is
that each successive ‘split’ accounts for part of the total variation in the data-set
and this part is tested against the portion expected from the model. The equation for
calculating the values is:

Pr D 1

n

nX

iDk

1

i
(11.1)

where Pr is the expected proportion for the kth component out of n. It can be readily
obtained on a calculator (for small n) or a spreadsheet, and results compared with the
appropriate measure of variation from the output of a numerical zonation method.
A similar application of this model (termed ‘broken-stick’ by MacArthur 1957) has
been adopted to interpret the eigenvalues of principal component analysis (Legendre
and Legendre 1983; Jackson 1993; see Legendre and Birks 2012b: Chap. 8).

This procedure is readily applied to binary divisive analyses. Each successive
split accounts for a portion of residual variation, until the data-set is split completely,
and the residual variation is nil. However, there is no hierarchy of successive splits
with optimal divisive procedures, since each level of zonation is begun anew. If an
optimal splitting procedure into n zones (n � 1 divisions) happened to be the same as
a binary split into the same number of zones, then there would be the same residual
variation. An optimal splitting will always result in a drop in variation that is at least
as great as would be obtained from binary splitting. Therefore, if the reduction in
variation after an optimal split into n zones is compared with the broken-stick model
for n � 1 divisions, it is less likely to exceed the broken-stick proportions than the
binary split into the same number of zones. Comparison of an optimal-split result
with a broken-stick model can therefore help recognise levels of splitting that are
significant (those that have reductions in variation greater than those expected from
the broken-stick model) but cannot show that a level of splitting is not significant.

CONISS and CONIIC are agglomerative procedures. Combination of samples
into clusters increases a measure of variation termed ‘dispersion’ (Grimm 1987).
Each increase corresponds to the variation associated with each cluster (potentially a
zone). The analysis thus generates a total dispersion (after all clusters are combined),
and the values associated with each stage which sum to give the total dispersion.
This is all that is needed to apply the broken-stick model: the increase of dispersion
associated with the final stage as a proportion of the total dispersion is equivalent to
the first break of the ‘stick’, the increase due to the penultimate stage is equivalent
to the second break, and so on.

The broken-stick model provides a precise recommendation for the number of
potentially significant and useful zones. For a data-set with structure, division into n



11 Stratigraphical Data Analysis 361

zones accounts for a higher proportion of the total variation than expected from
the model until all the variation that is due to the structure has been accounted for.
The number of significant zones is simply the last value for n that accounts for a
portion of the variation greater than the model. Birks (1998) discusses the use of
the broken-stick model in palaeolimnology and Lotter (1998) provides an elegant
example applied to high-resolution diatom-stratigraphical data.

Software

There are many implementations of the different numerical zonation techniques.

1. PSIMPOLL provides six methods: binary splitting by least-squares and infor-
mation content, optimal splitting by least-squares and information content, and
constrained agglomeration by CONISS and CONIIC. PSIMPOLL also fully
implements the procedures described by Bennett (1996) to determine the number
of zones that can be considered significant and useful. It is available from http://
chrono.qub.ac.uk/psimpoll/psimpoll.html/

2. The R package rioja (Juggins 2009) provides constrained hierarchical clustering
by CONISS and CONSLINK and comparison of the clustering results with the
broken-stick model (Bennett 1996). It is available from http://www.staff.ncl.ac.
uk/staff/stephen.juggins/

3. TILIA provides CONISS. This can be used as a stratigraphically-constrained
cluster analysis for numerical zonation or, as an unconstrained analysis, for
clustering surface-samples. For availability of TILIA and TGView, see http://
www.ncdc.noaa.gov/paleo/tiliafaq.html

4. PolPal provides constrained single-link cluster analysis as a procedure called
CONSLINK. A square-root transformation is used to enhance the representation
of taxa with low percentages. See Walanus and Nalepka (1997) for details.

5. Zone is an MS-DOS program that also runs under Windows® developed by
Steve Juggins that combines CONSLINK, CONISS, binary splitting by least-
squares and information content, optimal splitting by least-squares, and the
variable barriers approach (see Birks and Gordon 1985). Zone is available
from Steve Juggins’ home-page http://www.staff.ncl.ac.uk/staff/stephen.juggins/
software/ZoneHome.htm.

Example of Use

To illustrate use and results, the main zonation techniques have been applied to
the RLGH diatom data-set, and summary results are shown in Fig. 11.1. In each
case, the number of zones has been determined using the broken-stick criterion.

http://chrono.qub.ac.uk/psimpoll/psimpoll.html/
http://chrono.qub.ac.uk/psimpoll/psimpoll.html/
http://www.staff.ncl.ac.uk/staff/stephen.juggins/
http://www.staff.ncl.ac.uk/staff/stephen.juggins/
http://www.ncdc.noaa.gov/paleo/tiliafaq.html
http://www.ncdc.noaa.gov/paleo/tiliafaq.html
http://www.staff.ncl.ac.uk/staff/stephen.juggins/software/ZoneHome.htm
http://www.staff.ncl.ac.uk/staff/stephen.juggins/software/ZoneHome.htm
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Fig. 11.1 Results of numerical zonation of The Round Loch of Glenhead (RLGH) diatom data,
compared with the original zonation of Jones et al. (1989). The ‘binary’ and ‘optimal’ methods
are splitting or divisive techniques, shown as columns. CONISS and CONIIC are agglomerative
techniques, shown as columns and dendrograms illustrating the relationships between adjacent
samples

Results from the six numerical techniques are similar to those defined subjectively
by Jones et al. (1989), but differ in detail. Among the results from the numerical
methods, the greatest similarity is found amongst the sums-of-squares techniques
versus the information-content procedures. It appears that the choice of dissimilarity
measure may be more important than the choice of agglomerative or splitting
technique. The dendrograms from both CONISS and CONIIC show clearly the
distinctiveness of the uppermost part of the sequence. The sums-of-squares methods
identify more zones (8 versus 6). Of these, the lowest is based on only one sample,
and should perhaps not be used in a final zonation scheme. The third zone (R-3) is
not recognised by the information-content methods, but a similar zone was defined
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by Jones et al. (1989). It is probably questionable whether this zone can be justified
in terms of the overall distribution of variation in the data-set: it might be best treated
as a subzone within a larger zone (R-3 plus R-4).

Splitting of Individual Stratigraphical Sequences

Walker and Wilson (1978) argued that individual curves for pollen types should
be considered independently of each other, especially when the data are expressed
as pollen accumulation rates, and are therefore statistically independent. They
presented an approach, with FORTRAN programs written by Y Pittelkow (Walker
and Pittelkow 1981), for making independent splits of the records for individual taxa
in a sequence, so-called sequence splitting (Birks and Gordon 1985). The approach
involves first identifying portions of the stratigraphical record that are effectively
non-zero sequences, distinguishing them from other portions of effectively zero
sequences. This may be termed presence-absence splitting. The approach then
looks at the non-zero sequences of each individual taxon and splits them quantita-
tively with a maximum-likelihood estimation method (Walker and Wilson 1978).
Pittelkow’s programs implemented the approach in two stages. In PSIMPOLL,
these are combined, making presence-absence splits first, and then looking for
quantitative splits within non-zero sequences. The detection of either sort of split
is a statistical matter, depending on a level of significance that is a function of the
number of samples (Table 2 in Walker and Wilson 1978) and there may be no splits
of either sort for any given taxon. Splits are ignored if they would create ‘zones’ of
less than 4 samples. Walker and Pittelkow (1981) present results using the method
from three late-Quaternary palynological sequences. Walker and Wilson (1978)
statistically fitted curves by regression to portions of the record of particular taxa,
identified from presence-absence and quantitative splitting. However, this was not
included in Pittelkow’s programs, and has not been implemented in PSIMPOLL.
Instead, means and standard deviations are given for each identified segment of the
record for each taxon.

This method is analysed in more detail by Birks and Gordon (1985), using an
example pollen data-set from Abernethy Forest, Scotland (Birks and Mathewes
1978), and comparing this with analyses from other sites. Splits may be concentrated
at certain periods of time, suggesting linked behaviour of the taxa concerned, or
may be spread more diffusely along a sequence. Periods of linked splits suggest
periods when strong environmental control (such as climate change) brought about
changes in the abundances of many taxa within the same interval. One such linked
phase occurs at the beginning of the Holocene in the Abernethy Forest data-set.
Birks and Line (1994) developed the method further with an analysis of pollen
accumulation rates from three late-glacial sequences and ten Holocene sequences
(including Abernethy Forest), all from Scotland, by independent splitting. They
applied a statistical test that was able to show that most of the splits identified
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are clumped, mainly as a result of changes in sediment accumulation rates (caused
partly by what may be artefacts in pollen accumulation rate data), and partly from
clustering of responses to individual environmental changes.

Green (1982) applied independent splitting in conjunction with time-series
procedures such as cross-correlograms to fine-resolution pollen-stratigraphical and
charcoal data from a lake in Nova Scotia. The results provided insights into the
temporal frequency of tree population change and into questions of long-term
stability and dynamics and rapid change following forest fires.

Independent splitting was developed for so-called ‘absolute’ data, namely con-
centrations or accumulation rates (Birks 2012a: Chap. 2). One of the biggest
limitations of sequence splitting may be the large uncertainties associated with
accumulation rates of, first, sediments, and then of the fossils themselves (Bennett
1994). The log-ratio transformation of Aitchison (1986) should, in theory, make it
possible to use the technique with percentage or proportional data (Birks and Line
1994), but so far there have been no applications of that. No uses of independent
splitting of palaeolimnological data (e.g., diatom or chironomid accumulation rates)
have been published, as far as I know, so a preliminary application using the RLGH
diatom data is presented below. I believe that the approach has considerable potential
in analysing fine-resolution palaeolimnological data, especially from annually
laminated sediments (e.g., Lotter 1998).

Independent splitting of stratigraphical sequences (Walker and Wilson 1978) is
a precursor to regression trees (Gavin Simpson, personal communication) where a
quantitative response variable (in this case a stratigraphical sequence for taxon A)
is repeatedly split so that at each partition the sequence is divided into two mutually
exclusive groups, each of which is as homogenous as possible. A vector of sample
depths or ages is used as the sole explanatory predictor variable. The splitting is
then applied to each group separately until some stopping rule is applied (De’ath
and Fabricus 2000; Simpson and Birks 2012: Chap. 9).

Example of Use

Selected results using independent splitting on the RLGH diatom concentration data
are shown in Fig. 11.2. Presence-absence splits delimit sections of the curves where
the taxon’s status changes from continuously present to (more-or-less) absent and
quantitative splits separate sections of the curves where abundance and variances
change. One of the most striking features is that boundaries are very variable
between taxa, indicating independent behaviour in response to forcing factors for
change (or independent timing of such responses). Independent splitting is most
useful for purposes that involve interpreting individualistic behaviour of different
taxa in palaeoecological data-sets (Birks and Gordon 1985; Birks 1986, 1992,
2007a).
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Fig. 11.2 Selected results of independent splitting of The Round Loch of Glenhead (RLGH)
diatom concentration data (8 taxa only), using the methods of Walker and Wilson (1978). Dashed
lines define ‘presence—absence’ splits, and solid lines define ‘quantitative’ splits

Summarising Stratigraphical Patterns
Using Ordination Results

An additional useful step in the numerical analysis of a multivariate palaeo-
limnological data-set is to summarise the data in a few dimensions, gradients of
variation, or ordination axes (Prentice 1980, 1986; Birks 1992, 1998, 2007a). Such
axes are selected to fulfil predefined mathematical criteria so that the selected
dimensions and axes capture as much of the total variation in the total data as
possible under stated mathematical assumptions with the constraint that all the
axes are uncorrelated to each other. The results of ordination procedures, such
as principal component analysis (PCA), correspondence analysis (CA), detrended
correspondence analysis (DCA), principal coordinate analysis (PCoA), and non-
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metric multidimensional scaling (NMDS) (see Legendre and Birks 2012b: Chap. 8),
can be presented as low-dimensional plots of sample points on, for example, PCA
axes 1 and 2. The results can also be presented as stratigraphical plots of sample
scores on each of the first few major ordination axes (those with eigenvalues greater
than expected under the broken-stick model – see Jackson 1993; Legendre and Birks
2012b: Chap. 8). Such stratigraphical plots are ‘composite curves’ based on many
taxa that contribute to the major axes of variation or underlying latent structure
in the total data. They provide a useful visual summary of the major patterns of
variation within the data (see Lotter and Birks 2003; Haberle and Bennett 2004 for
examples). Changes in the sample scores on the first few ordination axes can be used
to delimit zones or the results of numerical zonations can be superimposed onto a
two- or three-dimensional ordination plot (Birks 1986, 1998). This is particularly
useful when there are gradual and often complex transitions from one assemblage
to another and in assessing and interpreting results of different zonation techniques
(e.g., Birks and Berglund 1979; Gordon 1982). With very large data-sets, it may
be useful rather than plotting the scores for all samples on scatter plots of the first
ordination axes, to plot the mean or median sample scores and the range of the
sample scores for the samples within each zone (Birks and Berglund 1979) to avoid
over-crowded ordination scatter plots.

Summarising palaeolimnological data-sets as the first few ordination axes pro-
vides a useful way of comparing and detecting common trends and identifying
differences in two or more stratigraphical sequences from different sites (e.g.,
Haberle and Bennett 2004) or of comparing two or more stratigraphical sequences
(e.g., diatoms, chironomids, geochemistry) from the same site (e.g., Birks 1987;
Ammann et al. 2000; Birks et al. 2000; Lotter and Birks 2003; Massaferro et al.
2005; Haberle et al. 2006; Wall et al. 2010).

One important feature of ordination techniques like PCA, CA, DCA, and PCoA
is their ability to concentrate ‘signal’ within the total data into the first few
significant axes and to relegate ‘noise’ within the data to later non-significant
axes (Gauch 1982). This is a useful feature when trying to test statistically using
regression modelling the relationship between, for example, diatom assemblages
containing several hundred taxa as response variables and stable-isotope data (e.g.,
18O, 13C, 15N) consisting of only a few variables acting as predictor variables.
Reducing the diatom data to a few major axes of variation allows the use of these
axes only as ‘composite response variables’ in regression modelling with isotope
data as predictors. Lotter et al. (1992a) adopted this approach to test statistically
the relationships between late-glacial pollen stratigraphies (reduced to the first few
DCA axes) as responses and stable oxygen-isotope stratigraphies as predictors using
canonical ordination (see Lotter and Anderson 2012: Chap. 18 for further details of
statistical testing of hypotheses involving palaeolimnological data).

When using classical ordination methods (Legendre and Birks 2012b: Chap. 8),
such as PCA, CA, or DCA, potentially important information is lost as these meth-
ods do not take account of the stratigraphical ordering of the samples. Canonical
techniques such as redundancy analysis (RDA (D constrained PCA)), canonical
correspondence analysis (CCA (D constrained CA)), and detrended CCA (DCCA
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(D constrained DCA)) (see Legendre and Birks 2012b: Chap. 8) can incorporate the
external constraint of sample age or depth to detect the major patterns of variation,
the nature of any stratigraphical changes, and any trends in the sequence when the
stratigraphical data are constrained by order, depth, or age (Birks 1992, 1998).

For some research questions, it may be useful not to impose the stratigraphical
constraint and to use PCA, CA, DCA, etc., and simply detect the major patterns
of variation irrespective of the ordering of the samples (e.g., Ammann et al. 2000;
Birks et al. 2000; Birks and Birks 2001; Lotter and Birks 2003). In other research
problems, it may be important to partial out, as covariables, the effects of ‘nuisance’
variables that are not of primary interest (ter Braak and Prentice 1988). Partialling
out depth or age in partial PCA, CA, DCA, RDA, CCA, or DCCA can help to reduce
temporal autocorrelation and to allow the analysis of ecological features within the
stratigraphical sequences when the effects of stratigraphy have been allowed for
statistically. See Odgaard (1994) for the use of partial CA to interpret stratigraphical
patterns in terms of differences in the shade tolerances of taxa in Holocene pollen
sequences and Bradshaw et al. (2005) for the use of partial CCA to model the role
of external catchment factors on Holocene diatom assemblages in a shallow lake in
Denmark.

One specialised use of DCCA is to estimate the amount of compositional
change or ‘turnover’ in stratigraphical sequences (Birks 2007b). The idea is to
constrain the data by sample age, depth, or order as the sole external variable
and to do a DCCA with detrending-by-segments, non-linear rescaling, and Hill’s
scaling in standard-deviation units of turnover. The amount of turnover within a
sequence in different time periods can be estimated and compared (e.g., Birks
2007b; Birks and Birks 2008). Turnover within several sequences for the same time
period can also be estimated and compared (e.g., Smol et al. 2005; Birks 2007b;
Hobbs et al. 2010). Turnover in different ecological systems but for the same time
duration (e.g., biostratigraphical sequences and in primary ecological successions
on chronosequences such as glacial forefields) can be estimated and compared (e.g.,
Birks and Birks 2008).

PCA and CA are implemented in PSIMPOLL (http://chrono.qub.ac.uk/psimpoll/
psimpoll.html). PCA, CA, DCA, RDA, CCA, and DCA are implemented in
CANOCO version 4.5 (ter Braak and Šmilauer 2002), along with additional
software for PCoA and NMDS (see www.microcomputerpower.com, www.canoco.
com, and www.canodraw.com for details). Other software for ordination methods is
discussed by Legendre and Birks (2012b: Chap. 8) and Borcard et al. (2011).

Summarising Palaeoecological Patterns
Using Cluster Analysis

In certain situations, it can be useful to use cluster analysis (e.g., incremental
sum-of-squares (CONISS: Grimm 1987) or Ward’s (1963) method) without any
stratigraphical constraints to derive clusters or samples with similar biotic or

http://chrono.qub.ac.uk/psimpoll/psimpoll.html
http://chrono.qub.ac.uk/psimpoll/psimpoll.html
www.microcomputerpower.com
www.canoco.com
www.canoco.com
www.canodraw.com
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geochemical composition, and/or magnetic properties. The sample composition
of the individual clusters can then be plotted stratigraphically to detect temporal
patterns of recurrence in the composition of the samples. Grimm et al. (2006)
adopted this procedure to detect recurrence of fossil assemblages in a 60,000 year
lake-sediment record from Florida. Grimm et al. (2011) have used the same
approach to detect recurring clusters of samples with similar mineralogical and
pollen composition in a 600C sample sediment-sequence from Kettle Lake (North
Dakota) covering the last 13,000 years.

Quantifying Recent Change

Answering broad-scale research questions such as ‘how many lakes in eastern
North America show evidence for recent surface-water acidification?’ or ‘what were
the reference conditions of low alkalinity lakes in the UK at AD 1850?’ is too
labour-intensive to be addressed by detailed centimetre-by-centimetre stratigraph-
ical analysis (Smol 2008). Instead a simpler sampling design is often used, the
so-called ‘top-bottom’ or ‘before-after’ sampling strategy (Smol 2008), where the
‘top’ surface-sediment sample reflects current biota and environmental conditions
(‘after’) whereas the ‘bottom’ sample at �25–30 cm depth is assumed to represent
pre-impact or ‘before’ conditions (e.g., Cumming et al. 1992; Dixit et al. 1992;
Enache et al. 2011).

This ‘before-after’ approach was used in eastern and central North America
to compare contemporary pollen assemblages in lakes with pollen assemblages
deposited just before or at European settlement marked by the recent rise of
Ambrosia-type pollen (e.g., McAndrews 1966; Webb 1973). Spatial patterns in
the modern and pre-settlement pollen assemblages were compared by principal
component analysis (see Legendre and Birks 2012b: Chap. 8) and the mapping of
the sample scores on the first two PCA axes for the two time periods (Webb 1973)
St. Jacques et al. (2008a) developed a pollen-climate calibration-function (Juggins
and Birks 2012: Chap. 14) for Minnesota (USA) using a data-set of pre-settlement
AD 1870 pollen assemblages from 133 lakes in Minnesota and adjacent States. This
calibration function was then used to reconstruct temperature and effective moisture
for the last 900 years from pollen assemblages in varved sediments at Lake Mina,
west-central Minnesota (St. Jacques et al. 2008b). This study showed significant
bias in the climatic reconstructions based on modern pollen assemblages and less
bias when the pre-settlement assemblages are used (St. Jacques et al. 2008a, b).

In defining reference conditions at AD 1850 as part of the European Union Water
Framework Directive (Bennion et al. 2004), diatom analyses have been performed
on 210Pb-dated sediment cores and ordination methods and dissimilarity measures
(e.g., squared chord (Hellinger) distance – see Legendre and Birks 2012b: Chap. 8)
have been used to quantify the magnitude of diatom-assemblage change since AD
1850. This general approach has been extensively used to define reference condi-
tions in north-west European lakes. In some studies, the ordination methods used
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are principal component analysis (e.g., Battarbee et al. 2011; Bennion et al. 2011a),
detrended correspondence analysis (e.g., Bennion et al. 2004), correspondence
analysis (e.g., Bjerring et al. 2008), or non-metric multidimensional scaling (e.g.,
Bennion and Simpson 2011). Problems of defining critical thresholds to identify
biotic change using squared chord distance (Simpson 2012: Chap. 15) as a measure
of recent assemblage change arise (e.g., Simpson et al. 2005; Bjerring et al. 2008;
Bennion et al. 2011a, b). Indicator species analysis and associated permutation
tests (Dufrêne and Legendre 1997; Legendre and Birks 2012a: Chap. 7) have been
shown to be useful tools in identifying taxa indicative of recent biotic change
(e.g., Bjerring et al. 2008; Battarbee et al. 2011; Bennion and Simpson 2011).
In addition, quantitative reconstructions of recent changes in lake-water chemistry
using calibration functions (Juggins and Birks 2012: Chap. 14) provide a measure
of the magnitude of change in, for example, lake-water pH or total phosphorus (e.g.,
Bennion et al. 2004, 2011b; Battarbee et al. 2011).

Rate-of-Change Analysis

Biostratigraphical sequences record changes with time: how rapidly do these
changes take place? Chronologies give a measure of the passage of time: a measure
of change or difference is also required.

Rate-of-change analysis was introduced by Jacobson et al. (1987) and Jacobson
and Grimm (1988), and further explored by Lotter et al. (1992b) and Bennett and
Humphry (1995). Two approaches have been used with pollen data, based on change
in ordination units and on change measured by a dissimilarity coefficient.

Measuring change by ordination units is described by Jacobson and Grimm
(1986). Their method involves:

1. Smooth the data
2. Interpolate to constant time intervals
3. Carry out an ordination (e.g., detrended correspondence analysis (DCA); see

Legendre and Birks (2012b: Chap. 8))
4. Calculate the change in DCA units of compositional change or turnover between

the scores for adjacent samples.

The effect of doing this is seen in Fig. 11.3. The RLGH diatom percentage
data were smoothed with a 5-term smoothing function (fitted as a cubic spline (see
Birks 2012a: Chap. 2) on the values for a particular sample, and its age) and then
interpolated to 250-year time intervals. A DCA was then carried out. The first three
axes were all significant according to a comparison with the broken-stick model,
and so the difference between values for samples scores in three dimensions was
calculated. These are the values plotted in Fig. 11.3. The main features of this
diagram are a peak in values at about 8500 BP, and then higher values from about
4500 BP to the top of the sequence.
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It is also possible to use the dissimilarity measure approach. There are many
ways of calculating dissimilarity (see e.g., Prentice 1980; Legendre and Birks
2012b: Chap. 8), and the measure chosen can be applied directly to the data, or
after a transformation. One approach is to smooth the sequence first, interpolate to
constant time intervals, and then to calculate the dissimilarity measures and divide
by the time interval (Jacobson et al. 1987; Jacobson and Grimm 1988; Birks 1997).
The effect of this is shown in Fig. 11.3. The general pattern of change is almost
identical to the results from the DCA ordination approach also shown in Fig. 11.3.
Laird et al. (1998) obtained rates of change by interpolating first, then smoothing
the data, before finally calculating the dissimilarity. Interpolation before smoothing
should help remove bias that might result from uneven sampling over time.

Another approach is to estimate the chord distance dissimilarity (Prentice 1980)
(D Hellinger distance in Legendre and Birks 2012b: Chap. 8) directly between any
pair of samples (Lotter et al. 1992b; Bennett and Humphry 1995), and then divide
by the age interval between the pair of samples. This is simpler, with much
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less tinkering with the data. However, dissimilarity measures are non-linear (in a
sequence of three samples, the dissimilarity between samples 1 and 3 will not be
the same as the sum of the dissimilarities between 1 and 2 and between 2 and 3).
This should not be a serious problem where the time difference between samples is
approximately constant, or changing smoothly and slowly.

Most attempts to calculate rates of change hitherto have used radiocarbon years
for the time scale (Birks 1998). It would clearly be vastly more satisfactory to base
rate-of-change calculations on calendar years, obtained from varves (Lotter et al.
1992b) or from calibration of radiocarbon ages determinations (e.g., Birks et al.
2000; Birks and Birks 2008), in order to avoid inconsistencies arising from the
uneven length of the radiocarbon ‘year’ (see Blaauw and Heegaard 2012: Chap. 12).

Data transformations before analysis may be appropriate in order to stabilise
the variance in each data-set. Birks et al. (2000) analysed a data-set of several
palaeolimnological variables after first transforming concentration data (macrofos-
sils, mites, Trichoptera) to log(y C 1), and all percentage data to their square roots.
They then interpolated the data-sets to constant time intervals without smoothing
and carried out the analysis using a chi-square distance measure (Prentice 1980).
Time-ordered Monte Carlo permutation tests (ter Braak and Šmilauer 2002) were
used to identify rates of change greater than would be expected by chance.

The method of rate-of-change analysis involves more choices in terms of ap-
proach and technique (e.g., choice of dissimilarity measure, interpolation, smooth-
ing) than any of the other types of analysis discussed in this chapter. It is important
to experiment with the range of possibilities in order to discern which features of the
results are due to structure in the data-set and which may be artefacts of a particular
numerical approach (Birks 1998). However, it is desirable to use constant methods
across all variables of interest, even if these are not optimal for any particular
variable in order to facilitate comparability (Birks et al. 2000).

Example of Use

Results from the RLGH data-set are shown in Fig. 11.4. Regardless of dissimilarity
measure, there is a clear rise in rate-of-change values from about 600 BP (31 cm
depth), and these changes dominate the figure. These changes are absent from the
diagrams in Fig. 11.3 as a consequence of the smoothing and interpolation. Other
perceptible changes occur, however, notably at around 8400 BP and an increase to
generally higher values after about 6000 BP.

This particular data-set has clear changes within the last few centuries that are not
detected by the smoothed and interpolated data-set, regardless of whether this is then
analysed by a dissimilarity measure or by ordination. The changes in the last few
centuries are at too fine scale for the particular interpolation used. On the other hand,
longer term changes are well displayed. Calculating rates of change directly from
the percentage values emphasises the rapidity of change in the last few centuries and
displays it well in the context of changes over the whole Holocene (see Birks 1997).
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Fig. 11.4 Comparison of rate-of-change results using eight dissimilarity measures (units of
dissimilarity per century) with The Round Loch of Glenhead (RLGH) diatom data, following the
method of Bennett and Humphry (1995)

Future Developments

The analysis of stratigraphical data has developed surprisingly little over recent
decades (Birks 1998). Most of the principles of zonation, for example, were
established in the 1970s (see above). What has changed, dramatically, is the
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improvement in computer performance. Gordon and Birks (1972) wrote “The search
for the best positions for three markers would be beyond the computing facilities
available to most scientists” (p. 969). Today, optimal zonation can be performed
on any desktop, for any number of markers. Unfortunately, the availability of more
computer power has had relatively little impact on the choice of zonation methods
routinely used. CONISS is probably the commonest used by a considerable margin,
chiefly because it is included with TILIA, the most commonly used software for
drawing microfossil diagrams. That is not to say that there is anything wrong with
CONISS, but one feels that it may be used uncritically too often, without any
examination of alternatives or the assumptions behind incremental sum-of-squares
clustering (Prentice 1986; Kovach 1989; Baxter 1994; Gordon 1999).

The lesson from CONISS/TILIA is probably that new developments in the
analysis of stratigraphical data are only going to come from the availability of
software that makes it easy to run the analyses on the types of data that are
being collected in palaeolimnology, probably in combination with other analyses.
Researchers are generally not receptive to using multiple analytical tools on data,
but they will use the tools available simply and easily along with other, more
conventional, tools (such as the ability to plot diagrams). The statistical techniques
for the analysis of stratigraphical data available are already some way ahead of those
in common use in palaeolimnology (see Birks 1998, 2012b: Chap. 21 for a review
of additional numerical tools for stratigraphical data-analysis in palaeolimnology
and Juggins 2009 for details of his R package for the analysis of palaeolimnological
data).

Conclusions

Palaeolimnologists have been analysing their stratigraphical data for many decades
and using computer-based numerical techniques for the last 35 years or so. A range
of techniques are available for zonation of whole data-sets or of individual taxa, for
summarising patterns within and between sequences, and analysing rates of change
along sequences. The use of these techniques in practice is limited, and varies
between research areas depending upon tradition and software availability. There is
considerable scope for expanding the use of numerical techniques for stratigraphical
data analysis. The main limiting factor is probably now the availability of convenient
software to facilitate this. The availability of useful numerical and statistical
methods is far ahead of their practical use in palaeolimnology.
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Estimation of Age-Depth Relationships
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Abstract An accurate and precise chronology is an essential pre-requisite for any
palaeolimnological study. Chronologies give time-scales for events, and hence for
rates for patterns and processes, and make it possible to compare and correlate
events in different stratigraphical sequences. Palaeolimnology without chronology
is history without dates.

As radiocarbon dating is so widely used in palaeolimnology, this chapter
focuses on 14C dating, and its associated errors and the calibration of 14C ages to
calibrated 14C ages. Calibration is an essential step before constructing age-depth
models. There are several approaches to establishing age-depth relationships – linear
interpolation, polynomial regression, splines, mixed-effect models, and Bayesian
age-depth modelling involving chronological ordering or wiggle-matching. The
critical question of model selection is discussed and future developments are
outlined, along with details of available software.
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Introduction

An accurate and precise chronology is an essential pre-requisite for any palaeo-
limnological or other palaeoecological investigation. Chronologies give time-scales
for events, and hence rates for patterns and processes. They make it possible to
compare the temporal course of events in different sequences. Palaeolimnology
without chronology is history without dates.

Chronologies of deposits are generally obtained by drawing a curve through
a number of dated depths. This curve is then used to estimate the ages of the
dated as well as the undated depths (Fig. 12.1). However, producing a reliable
chronology can prove challenging for several reasons. First, dates come with errors
or uncertainties, and sometimes with a systematic yet imprecisely known offset.
Further, constraints in research budget or dateable material (e.g., availability of
suitable organic material for radiocarbon dating) can limit the number of dates to,
typically, a handful for an entire Holocene sequence. Last but not least, age-depth
curves need to be chosen so that they provide us with a likely reconstruction of the
unknown true sedimentation history (e.g., gaps and abrupt or gradual changes in
accumulation rate: Telford et al. 2004a).

Ages may be expressed in a number of forms, and it is important to be sure
which is being used in any investigation. For most palaeolimnological and other
palaeoecological applications, the units of time are years (yr, a), thousands of years
(kyr, ka), etc. Different units are sometimes used to indicate absolute ages (e.g., 5 ka:
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Fig. 12.1 Schematic representation of age-depth modelling. A simulated accumulation of sedi-
ment over four millennia (left panel) results in a ‘true’ age-depth curve (grey line). Ten depths of
this sequence are 14C dated (thin grey lines, with true calendar ages indicated) and calibrated (black
1 standard deviation ranges in right panel), after which a fourth-order polynomial is chosen as the
age-depth model (black curve). Whereas this age-model generally resembles the true sedimentation
history, at times it deviates by several centuries (especially in sections with few dates)
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5000 years ago) or durations (e.g., 5 kyr: an interval lasting 5000 years). Care should
be taken when comparing ages from different sources. Raw radiocarbon ages are
usually expressed as ‘14C BP’ or ‘years BP’, where ‘BP’, ‘before present’, is defined
as AD 1950 (chosen because it was a round number near the time when Willard
Libby obtained the first 14C dates). Calibrated 14C ages are given in ‘cal BP’ or ‘cal
BC/AD’ (sometimes one sees ‘cal yr. BP’, ‘kcal BP’, or variations thereof). Ice-core
ages are usually given as years before AD 2000 (b2k), luminescence dates are often
reported as years before sampling (e.g., Madsen et al. 2007), and 210Pb dates are
given as ages AD.

Radiocarbon Dating

The age of a particular depth can be estimated by submitting material from the
defined layer to a laboratory for 14C (Boaretto et al. 2002), 210Pb (Appleby 2001), or
other dating procedure. As radiocarbon dating is so widely used in palaeolimnology,
we will focus here on this method. For in-depth reviews of radiocarbon dating,
see Bowman (1990), Pilcher (1991), Walker (2005), and several chapters in the
Encyclopedia of Quaternary Science (Elias 2007). A general overview of methods in
preparing and obtaining 14C dates, as well as several material-related problems such
as contamination and lake reservoir effects, can be found in Björck and Wohlfarth
(2001).

Carbon in atmospheric CO2 is present as several isotopes, with 12C being the
most abundant (c. 98.9%), 13C less abundant (c. 1.1%), and 14C very rare (1 in
every million million carbon atoms, comparable to a single grain in a cubic metre
of sand). Atmospheric CO2 is taken up by plants through photosynthesis, and then
further distributed through the food chain in more or less unchanged isotope ratios.

While 12C and 13C are stable isotopes, radiocarbon is radioactive or unstable.
14C atoms disintegrate gradually over time, thus resulting in ever-decreasing 14C/12C
ratios within dead organic matter as time passes. Although 14C is a very rare isotope,
there are still about 50 million 14C atoms among the c. 5 � 1019 atoms in 1 mg
of recent carbon. As the internationally agreed half-life of 14C is 5568 yr (Mook
1986), after 5568 yr this 1 mg of carbon will have about 25 million remaining
14C atoms, while after 2 � 5568 D 11,136 yr it will have 12.5 million surviving 14C
atoms, and so forth until only several tens of thousands are left over after about
11 half-lives (60,000 yr, the current limit of radiocarbon dating). The age of a
fossil can thus be inferred from its 14C/12C ratio. We express fossil 14C/12C ratios
(‘activity’ A D14C/12C, after correction for the machine background) against the
14C/12C activity A0 from a standard relative to AD 1950, and calculate the 14C ages
using the Libby half life: �5568/ln(2) ln(A/A0), which becomes �8033 ln(A/A0).

We mentioned earlier that the isotope ratios remain largely unchanged while
passing through the carbon cycle from atmospheric CO2 to fossil organic material.
In fact, most chemical processes cause some isotopic fractionation, favouring either
the heavier or the lighter isotopes. From theoretical reasoning we know that the



382 M. Blaauw and E. Heegaard

fractionation of 14C/12C should be twice that of 13C/12C. Therefore most 14C
laboratories also measure the ratio of the stable carbon isotopes, 13C/12C (expressed
as per mille deviations from zero, •13C), followed by correcting the 14C/12C ratios
to the oxalic acid standard of �26‰.

There are several ways to measure the 14C/12C content. The oldest one (conven-
tional dating) consists of counting the radioactive decay events of the 14C atoms.
In order to obtain sufficient 14C decay events, typically several tens to hundreds of
grams of carbon are needed, as well as days to months of counting time. The most
recent dating method is accelerator mass spectrometry (AMS) radiocarbon dating,
which works by counting the number of 12C, 13C, and 14C atoms directly in a large-
scale, high-voltage mass spectrometer. As the method counts all atoms, the amount
of material needed is much less (c. 0.1–10 mg carbon), as is the required counting
time (minutes).

Errors

By the term ‘error’ we can mean ‘uncertainty’ as well as ‘mistake’, and we
can distinguish between random and systematic errors (see Maher et al. 2012:
Chap. 6). Random errors refer to the problem that, owing to random processes,
machine measurements of, for example, a 14C/12C ratio will merely provide inexact
approximations of the ‘true’ value (Fig. 12.2). Multiple measurements of the same
sample will result in different estimates (precise measurements obtaining little
scatter and thus small standard deviations). Even more, these measurements can be
offset from the true value by a systematic amount (accuracy or bias: Fig. 12.2). Last
but not least, measurements can differ from the true value owing to other mistakes,
such as submission of the wrong material, contamination, or faults in the sample
preparation.

There is no difference, from a data-handling point of view, in the random errors
obtained by AMS and conventional methods. Standard deviations quoted with
radiocarbon ages are obtained by methods that vary between dating laboratories.
With decay counting (conventional dating), some laboratories assume that the
decays are distributed as Poisson processes. In this case, the standard deviation
sd(N) D �8,033 � (

p
N)/N where N is the number of observed decays. Thus, the

standard deviation is smaller for larger and younger samples, and longer counting
times. Other laboratories count the sample in a series of short time periods (e.g.,
100 min), and calculate a standard error of the mean from this series. Radiocarbon
ages obtained by AMS depend upon counts of 14C atoms arriving at a detector,
which may be assumed to be a Poisson process, as for the detection of decaying
14C atoms in the conventional dating procedure. For large numbers as is the case
here, the Poisson distribution can be approximated by the normal distribution.
However, the quoted errors on AMS ages depend also upon complex laboratory
factors (including the expected errors attributable to chemical preparation of specific
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Fig. 12.2 A wood sample 14C dated more than 100 times at a range of AMS and conventional
laboratories. The distribution of ages appears Gaussian. Note the large range of reported 2 sd error
sizes. Several error bars are too large to fit on the graph. Redrawn from Scott (2007)

types of organic material such as bulk sediment or macrofossils). Therefore, the use
of a laboratory-specific error amplification factor is advocated (Scott 2007). In this
chapter, we assume that the quoted standard deviation (abbreviated to sd or ¢) for
any radiocarbon age can be treated as a sample standard deviation, although it is
probably often an over-optimistic estimate (Christen and Pérez 2009).

The Need for Radiocarbon Calibration

Radiocarbon dating of materials of known-age, notably tree-rings (dated indepen-
dently to yearly precision through dendrochronology), has shown that past changes
in the atmospheric 14C/12C ratio have resulted in radiocarbon years not being
the same as calendar years (Fig. 12.3). Radiocarbon years generally are slightly
longer than calendar years, but by a variable amount, causing periods with large
fluctuations (‘wiggles’) or constant radiocarbon ages (radiocarbon ‘plateaux’). This
requires translation, or calibration, of 14C ages into calendar years.

For the current 14C calibration curve IntCal09 (Reimer et al. 2009), ages younger
than 12.55 kcal BP are based on large numbers of 14C dates from dendro-dated
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Fig. 12.3 Calendar versus radiocarbon ages over the past 50,000 years. The black diagonal lines
indicate the 1 standard deviation (sd) envelope of the IntCal09 calibration curve for the Northern
Hemisphere (Reimer et al. 2009). A 1:1 line (‘Libby line’, dashed) is shown for comparison. From
the slope of the calibration curve, past changes in atmospheric radiocarbon concentrations can be
reconstructed (grey shades show the 1 sd envelope of •14C; per mille values shown on the secondary
y axis)

tree rings. The older glacial section, until 50 kcal BP, is based on fewer dates
derived from marine archives dated with less precision/accuracy (e.g., owing to
uncertainties in tuning and U/Th dating and an imprecisely known marine reservoir
effect), and this is reflected in wider confidence intervals. The curve through all
these 14C dates with independent calendar-age estimates is assumed to be currently
the best approximation of the ‘true’ radiocarbon age for each calendar year over the
period considered. Separate curves are available for Northern Hemisphere (Reimer
et al. 2009), Southern Hemisphere (McCormac et al. 2004), and marine 14C dates
(Reimer et al. 2009), and regional post-bomb curves have also been published (e.g.,
Hua and Barbetti 2004).

Atmospheric radiocarbon concentrations varied through time because of changes
in both the production of 14C as well as its utilisation in the carbon cycle (Burr
2007). Radiocarbon is a so-called cosmogenic isotope: high-energy cosmic rays
entering the Earth’s atmosphere cause neutrons to collide with atmospheric 14N,
transforming it into 14C by displacing a proton out of its nucleus. The 14C atoms are
then oxidised to form 14CO2.

The Earth and solar magnetic fields form a shield against cosmic rays entering the
Earth’s atmosphere. Decreases in solar activity or in the strength of Earth’s magnetic
field will weaken this shield, enabling more cosmic rays to enter and thus causing an
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increased production of cosmogenic isotopes (and vice versa). The Earth’s magnetic
field varies mostly on millennial time-scales, although some more abrupt changes
have been identified (King and Peck 2001; Twyman 2007). Solar activity varies
over time-scales from minutes to centuries, with periodicities of approximately 11,
22, 80–90, and 200 years being the most relevant for our discussion. Atomic bomb
explosions in the 1950s and 1960s caused an enormous pulse in atmospheric 14C
concentration, followed by a gradual decline towards pre-bomb levels over the last
few decades.

Besides the mechanisms acting as varying sources of 14C, sinks of 14C tend
to vary as well. Atmospheric carbon forms only a very small part of the total
carbon reservoir (600 Gt or 1% according to the latest IPCC report: see Denman
et al. 2007) compared to that of plants, soils, sediments, and peat (2450 Gt, 5%),
fossil fuels (3700 Gt, 8%), the surface ocean (900 Gt, 2%), and, especially, the
deep ocean (37,100 Gt, 83%). Changes in fluxes of carbon between the atmosphere
and these reservoirs will cause changes in atmospheric 14C concentration. Uptake
of atmospheric 14CO2 by the ocean can increase or decrease with changes in
ocean circulation/ventilation. Owing to radiocarbon decay, oceanic deep-water kept
isolated from atmospheric CO2 will contain ever declining 14C ratios as time
passes. Millennia-old ocean-water will thus be depleted in 14C, and this water will
cause dilution of atmospheric 14CO2 levels when surfacing and exchanging carbon.
Additionally, the burning of 14C-free fossil fuel has caused a dilution of recent
atmospheric 14CO2 ratios (the so-called Suess effect).

Calibration Methods

Owing to past variations in atmospheric 14C concentrations, 14C dates need to be
calibrated into calendar years in order to be interpreted. At first sight, the most
obvious way to calibrate a 14C date would be to find its intercept in the calibration
curve, and look up its corresponding calendar age (similarly for its 1 or 2 sd range).
However, this ‘intercept’ calibration method is prone to problems (Telford et al.
2004b). Wiggles and plateaux in the calibration often cause multiple calendar ages
for a single 14C age. For the date of 5380 ˙ 50 14C BP in Fig. 12.4, the result
seems straightforward with only one corresponding calendar age around 6200 cal
BP. However, if by chance the radiocarbon measurement would have resulted in
a slightly different age (Fig. 12.2), we would probably have to deal with several
intercepts on the calendar age. The same holds for the translation of the error bars
from 14C into calendar years. Moreover, using the intercept method it is hard to take
into account the errors of the calibration curve. Therefore, the intercept method is
not to be recommended for calibrating 14C dates (Telford et al. 2004b), and is not
now in use in modern 14C calibration software.

Current calibration methods do not start by looking up the calendar age(s) of a
14C age; instead the process is reversed. For a given calendar year (usually depicted
with the theta symbol, ™), the corresponding radiocarbon age of the calibration
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Fig. 12.4 The effect of calibrating the radiocarbon date 5380 ˙ 50 14C BP (white circle and
vertical bar). Dashed lines illustrate the intercept method. With probabilistic calibration, for every
calendar year the corresponding radiocarbon age of the 14C calibration curve (grey wiggly curve,
IntCal09, 2 standard deviation envelope) is looked up. This age is compared with that of the sample,
and the corresponding probability is plotted on the vertical and horizontal axes (histograms). Then
the highest posterior density ranges are calculated (dark grey, here 95%). The left-most calibrated
range encompasses c. 55% of the probability range, the other two ranges cover 20% and 21%,
respectively

curve � is looked up, and compared with the measurement (here written as mean
yj with uncertainty ¢ j for date j). The trick here is that whereas for every 14C
year there could be several calendar years in the calibration curve, there is always
only one unique 14C year � (with uncertainty ¢) for every calendar year ™. The
calibration curve can thus be seen as a list of known calendar years ™, each with its
corresponding radiocarbon year �(™) and uncertainty ¢(™). A 14C measurement yj

provides an estimate of the true �(™) belonging to the calendar year when its organic
material was deposited. The comparison of the measurement with the calibration
curve is performed assuming a Gaussian/normal distribution of the measurement,
N(yj, ¢ j):

yj j™ � N.�.™//; ¢2 (12.1)

where ¢2 is a combination of the error in both the measurement and the calibration
curve, ¢2

j C ¢.™/2. The vertical bar between y and ™ means the probability of the
14C age given the calendar year. A calendar year ™ with a 14C year �(™) close to the
measurement yj will be very likely. The further away from yj, the less likely �(™) and
thus ™ will become. In other words, the above formula means that from the distance
between yj and �(™), the height of the normal probability distribution is calculated,
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and this height is transferred to the corresponding ™ on the horizontal or cal BP axis.
This process is done for each calendar year ™ (within wide limits), which results
in the often asymmetrical and multi-peaked calibrated distribution on the calendar
axis (the histogram on the vertical axis in Fig. 12.4). The entire distribution is then
normalised to 100%. Compared with the intercept method, probabilistic calibration
is much less likely to behave problematically during periods with radiocarbon
wiggles and plateaux. It also helps us choose likely point estimates for age-depth
modelling, as we discuss later.

The calibrated distribution can be divided into one or more calibrated ranges;
for example, at 1 or 2 standard deviation (sd) (Fig. 12.4). This is done by ranking
the calendar ages ™ according to their probabilities (heights of the calibrated
distribution), starting with the most likely calendar ages. After normalising their
cumulative sum of probabilities to 100%, those ages ™ that fall within say the 68%
or 95% range (1 or 2 sd, respectively) are retained. These calendar ages define
the highest posterior density (hpd) ranges. Some of these ranges will encompass
a higher proportion of the total range than others (see Fig. 12.4), but this does not
necessarily allow us to neglect calibrated ranges with lower probabilities.

The above calibration method has been implemented in the most popular 14C
calibration software packages, e.g., CALIB (Stuiver and Reimer 1993: http://www.
calib.org), BCal (Buck et al. 1999: http://bcal.shef.ac.uk), and OxCal (Bronk
Ramsey 2007: https://c14.arch.ox.ac.uk/oxcal). Age-depth modelling with raw 14C
ages is not valid at all because of the non-linear relationship between radiocarbon
years and calendar years. Modelling must therefore always be carried out with
calibrated ages. If an age-offset is expected (e.g., owing to a hard-water effect:
Björck and Wohlfarth 2001), the 14C ages should be corrected before calibration (it
is also advisable to increase the error ¢ to reflect uncertainties in the offset estimate)
(see Blaauw et al. 2012 for a detailed case study).

Reduction to Single Point Estimates

Calibrated 14C ranges often span several centuries, owing to both the non-linear
relation between 14C and calendar ages and to the uncertainties in the measurements.
Calibration of even a high-precision 14C measurement could result in a multi-peaked
asymmetric distribution spanning several centuries (e.g., c. 330 calendar years for
a date of 2450 ˙ 10 14C BP). Additionally, 14C dates from lakes are often obtained
from slices of sediment which must have accumulated over decades. Nevertheless,
it is common practice to reduce 14C ages to single calibrated year point-estimates,
for example as input for age-depth models. There are several approaches to obtain
such point estimates:

1. Take the mid-point between the pair of calendar ages that enclose the 68%
(1 sd) or 95% (2 sd) range of the distribution for an interval as an estimate
of the calendar age of the sample, and half the distance between this age and

http://www.calib.org
http://www.calib.org
http://bcal.shef.ac.uk
https://c14.arch.ox.ac.uk/oxcal
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either of the ages marking the confidence interval as the standard deviation of
that estimate. This is probably the commonest approach, but the complexity of
calibrated age distributions may mean that the chosen ‘date’ does not necessarily
fall within a region of high probability.

2. Take the modal (maximum) value of the probability distribution of the calibrated
age. This has the advantage of being the age that is most likely, but it can
concentrate emphasis on one peak that happens to be fractionally higher than
another in a distribution that is bimodal or even multi-modal. For a description
of the spread/uncertainty we can use the tolerances, either as a fraction of the
optimum (Pawitan 2001; Heegaard 2002) or as percentiles of the probability
distribution (see point 5).

3. Use the weighted average of the probability distribution of the calibrated
radiocarbon age, as recommended by Telford et al. (2004a, b). This provides
a calibrated age estimate and an uncertainty measurement for the dated object.
The uncertainty can be calculated as the weighted variance with a corresponding
weighted standard deviation. The weights are obtained from the probability
distribution.

4. Choose the calibrated range containing the highest proportion of the entire
calibrated range (e.g., the leftmost range in Fig. 12.4), and choose the mid-point,
the mode, or the weighted average of this range as the point-estimate. However,
although less likely, the possibility that the ‘true’ calendar age of the 14C date
lies outside this range cannot be neglected.

5. Use the entire distribution to model errors by simulation. This shifts the emphasis
away from a single-value calibration of a single radiocarbon date (which is
often not possible) towards the reality of an irregular spread of probabilities.
Values are generally simulated by sampling randomly from all calendar ages in
a calibrated distribution, where the probability of a calendar age being sampled
is proportional to its height in the probability distribution (see Eq. 12.1; also
known as Monte Carlo sampling). Calendar ages closer to maxima will thus be
more likely to be sampled, but even calendar ages outside the calibrated ranges
can be sampled by chance.

6. Use additional information about the sequence such as tephra-layers,
assumptions about the sedimentation history, or historical events recorded in
proxies (e.g., the start of tree plantations reflected in pollen assemblages).
Such approaches are discussed later in this chapter under Bayesian age-depth
modelling.

Age-Depth Models

Critical numerical consideration of the problem of estimating age-depth relation-
ships appears to have begun with Maher (1972). He rejected a simple linear
interpolation approach because “small errors in the age of any or all the samples
markedly affect the slopes of the intervening lines” and applied two-term poly-
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nomial, exponential, and power functions to his data. The power curve provided
the best fit. He then obtained the upper and lower limits at the location of each
radiocarbon date by multiplying the error on the radiocarbon-age determination by
the error of the regression of the power function. Two new power functions were
then obtained for the sets of upper and lower limits.

Throughout, we proceed with depth as the independent, predictor variable (x),
and age as the dependent, response variable (y or ™) in the statistical model, because
depth is ‘controlled’ and age is ‘measured’, and thus we obtain relationships that
enable us to calculate ages as functions of depth. Although the statistical modelling
has depth as the independent variable and age as the dependent variable, it is
common to plot the resulting age-depth model with depth on the vertical axis
(ordinate) and age on the horizontal axis (abscissa) so that the plot can be compared
with palaeolimnological diagrams with depth on the vertical axis.

Analytical vs. Monte Carlo Age-Depth Models

In ‘classical’ statistics, exact solutions to problems can generally be found through
applying analytical methods. For example, the slope of a straight line through
a cloud of points can be found by least-squares linear regression (Birks 2012:
Chap. 2), which consists of deriving the exact parameters by solving a set of
closed equations. These analytical methods work very well when the data points
follow normal distributions (e.g., uncalibrated 14C dates), but they break down in
more complex cases such as the multi-modal asymmetrical distributions of most
calibrated 14C dates. For such cases we should either assume that we can reduce
the calibrated distributions to normal distributions, or work with approximations
obtained by numerical simulations.

If we assume that calibrated 14C dates can safely be approximated by a normal
distribution (which in most cases is not true), then producing an age-depth model
can be an easy task using dedicated software (e.g., PSIMPOLL Bennett 1994b
or TILIA Grimm 1990) or spreadsheet programs such as EXCEL®. Even if the
assumption of normally distributed calibrated 14C ages is not met, this will probably
cause errors on the order of decades to centuries. These errors could be considered
acceptable for low-resolution chronological questions such as whether the sediment
is of mid- or late-Holocene age. However, in many cases our research questions
require a higher precision. Therefore we recommend working with calibrated
distributions if possible.

Multi-modal calibrated distributions can be dealt with using numerical sim-
ulations (Fig. 12.5). For each radiocarbon date (and/or other dates with their
quoted uncertainties), a point calendar age estimate is sampled from its calibrated
distribution (with more likely calendar ages more likely to be sampled, see Eq. 12.1).
These cal BP points and their known depths are then used to produce an age-depth
model (see later), after which the sampling process and derivation of an age-depth
model is repeated/iterated many times (e.g., 10,000). From all iterations together,
inferences can be made about, for example, the most likely age-depth model
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or its uncertainty (e.g., through calculating a highest posterior density interval:
Fig. 12.5c).

This is an application of the ‘Monte Carlo’ simulation method, also known as
distribution sampling (Kleijnen 1974), and it enables us to obtain estimates of sam-
ple standard deviations for age estimates and accumulation rates. Such an approach
has certain advantages and disadvantages compared to analytical calculations of
confidence intervals. The solution is not exact, but bears a probabilistic relationship
to the (unknown) exact solution in relation to the number of times the sampling
was repeated. Random numbers are needed for drawing from the distribution of the
input variables, so the solution will usually be slightly different with each run on the
same data. The need for repeated sampling makes the technique slow relative to an
analytical solution, but this is becoming less important with the widespread use of
fast desk-top computers.

On the other hand, a solution will always be obtained with any data, through
any age model. As Press et al. (1992) comment: “Offered the choice between
mastery of a five-foot shelf of analytical statistics books and middling ability at
performing statistical Monte Carlo simulations, we would surely choose to have the
latter skill” (p. 691). Given the crudeness of the basic data (e.g., single estimates of
the pollen concentration at a particular depth, single estimates of radiocarbon ages
for a sample) it might be unwise to rely on statistically exact results.

Basic Age-Depth Models

We consider here three general approaches to age-depth modelling. The first
approach, here called ‘basic’ age-depth modelling, considers only the errors on the
individual age-determinations, and assumes that these are completely independent
of each other and that there are no systematic errors affecting the whole sequence
in a similar way. The second approach, ‘mixed-effect models’, incorporates a
consideration of a wider range of possible errors, including the possibility of sys-
tematic errors. The third approach, Bayesian age-depth modelling, uses additional
information from the sequences to derive an age-depth model with measures of its
uncertainties.

We illustrate here the application of age-depth models to a radiocarbon-dated
sequence of Holocene lake sediments from The Round Loch of Glenhead (Jones
et al. 1989; Stevenson et al. 1990; Harkness et al. 1997; Birks and Jones 2012:
Chap 3). The age-depth models used here are based on 20 radiocarbon dates
(Table 12.1), and include a value of �35 ˙ 10 cal BP for the surface sediment
(the core was sampled around AD 1985). They are developed here solely for
simplicity and illustration, and should not be taken as a replacement of the earlier
model (Jones et al. 1989), especially in the basal portion of the sequence (see also
Birks 2012b: Chap 11).
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Table 12.1 Radiocarbon
dates from The Round Loch
of Glenhead

Sample identified Depth (cm) 14C age Errora

Surface 0 �35b 10
SRR-2810 39:5 2020 80
SRR-3258 44:5 1440 60
SRR-3259 50:5 1420 60
SRR-2811 55:5 1350 70
SRR-3260 63:5 730 60
SRR-3261 70:5 1690 60
SRR-2812 77:5 1910 70
SRR-3262 84:5 2010 70
SRR-3263 91:5 1570 60
SRR-2813 98:5 2550 70
SRR-3264 105:5 1810 60
SRR-3265 112:5 2720 60
SRR-2814 122:5 2250 70
SRR-2815 141:5 3970 70
SRR-2816 155:5 4660 70
SRR-2817 170:5 5180 80
SRR-2818 185:5 6390 80
SRR-2819 200:5 6890 70
SRR-2820 210:5 7250 70
SRR-2821 225:0 9280 80

Jones et al. (1989), Stevenson et al. (1990), Harkness et al.
(1997), and Birks and Jones (2012): Chap. 3
aError expressed as 1 standard deviation
bSurface age expressed in calendar years (cal BP)

Linear Interpolation

This is probably the most frequently used age-depth model, and the most obvious
and basic way to start (Fig. 12.6a). Reported radiocarbon ages or, more sensibly,
derived calibrated ages are plotted against depth with the neighbouring points
connected by straight lines (often necessitating extrapolation to the base of the
sequence). Estimates of accumulation rate are found from the gradients between
adjacent pairs of points, and interpolated ages are read off (or calculated) for
intermediate depths (see Bennett 1994a for an example).

This is a superficially crude approach, but does provide reasonable estimates
for both ages and gradients. However, it takes no account of the errors on the
radiocarbon or calibrated ages (although this can be dealt with using Monte Carlo
simulation), and it turns out to be inadequate when confidence intervals on ages
and slopes are obtained. Note also that the gradient will normally change at every
radiocarbon age, which is far from necessarily being a reasonable reflection of what
really happens as basins infill. However, it often turns out that the fit produced by
linear interpolation is rarely badly wrong in comparison with other, more complex
models (e.g., Bennett and Fuller 2002).
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Polynomials

Polynomials with the following general form are fitted to the data: y D a C bx C
cx2 C dx3 etc., where x D depth (independent variable), y D age (dependent vari-
able), and a, b, c, and d are regression coefficients (curve parameters) to be
estimated. Polynomials may be considered by the number of terms they include:

y D a C bx is a straight line (first-order or linear regression)
y D a C bx C cx2 is a quadratic curve (second-order polynomial regression)
y D a C bx C cx2 C dx3 is a cubic curve (third-order polynomial regression)
etc.

The gradients of these curves for any depth x can be differentiated to obtain dy/dx,
the rate of change of y at x (sediment accumulation rate (cm yr�1) or deposition time
(yrs cm�1)).

If y D a C bx, then dy=dx D b (constant gradient for all x values)
If y D a C bx C cx2, then dy=dx D b C 2cx

If y D a C bx C cx2 C dx3 then dy=dx D b C 2cx C 3dx2

etc.

The idea of fitting a curve is to find a line that is a reasonable model of the
actual data points. The curve does not necessarily have to pass through all the points
because the points are only statistical estimates of the ‘true’ (unknown) age of
the sample. For y D a C bx, we need to find values for a and b such that values
of y calculated from the line at each x are as close as possible to the observed
values of y. ‘As close as possible’ can be defined in many ways, of which the most
usual is the ‘least-squares’ criterion (Birks 2012: Chap 2). This means minimising
the sum of the squared distances for the dependent variable. The errors on the
radiocarbon ages are incorporated as weightings on the dependent variable. It will
normally be appropriate to include an age and error estimate for the top sample
of a sequence (e.g., �35 ˙ 10 cal BP). The procedure for polynomials with more
terms is conceptually identical, but the arithmetic for finding a, b, c, etc. is more
complex.

The coefficients obtained enable a curve to be plotted and gradients to be
calculated by differentiation. Curves become more ‘flexible’ with more terms. We
want to use a polynomial that is as simple as possible (few terms), but is still
a ‘reasonable’ fit, for example a model without age reversals, namely a minimal
adequate model (Birks 2012: Chap 2) (e.g., Fig. 12.1).

Goodness-of-fit may be assessed from a t-test to determine if the individual
terms are significant, an F-test of term improvement by model comparison, or by
chi-square (¦2) tests. The latter comprises the squared distances from the dependent
variable to the fitted curve weighted by the squared errors on each age, and summed
(Bennett 1994a). This approach assumes that the quoted errors on the radiocarbon
ages are the population values. In practice, they are sample values from a single
measurement exercise, and will tend to be slightly too small as estimators of the
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population value. The ¦2 obtained is zero for a perfect fit (i.e., the fitted curve passes
through all the given data points), and this will always occur when the number of
terms is equal to the number of data points. The ¦2 value may be assessed from
standard tables or derived analytically, for its size is a function of the number of
ages, the standard deviations of the ages, and the number of terms in the polynomial,
to provide a measure of ‘goodness-of-fit’. This measure is the probability that the
observed difference between the fitted curve and the data points could have been
obtained by chance if the fitted curve was the ‘correct’ solution. Thus, ideally, the
goodness-of-fit should exceed 0.05, but values as low as 0.001 may, with caution,
be acceptable. The ‘goodness-of-fit’ measure cannot make any judgement about the
course of the fitted curve between or beyond the given points: assessment of this
remains a matter for the palaeolimnologist to explore. The goodness-of-fit will be
unacceptably low if one or more of the following conditions holds:

1. The model is wrong (the polynomial is a poor expression of the way that sediment
has accumulated over time);

2. The errors on the radiocarbon ages are too small;
3. The errors on the radiocarbon ages are not normally distributed.

Condition (1) will often hold for polynomials where the number of terms is much
less than the number of radiocarbon ages. Condition (2) could hold to at least some
extent if sample values are used for the errors rather than population values, and it
may be substantial depending on the extent to which laboratory errors have been
exhaustively assessed in measuring radiocarbon ages. Where the goodness-of-fit is
low for all numbers of terms, it may be worth increasing the quoted errors by a
laboratory multiplier, as in the calibration of radiocarbon ages. An International
Study Group (1982) found that the quoted errors on radiocarbon ages needed to
be multiplied by a factor of between 2 and 3 if these errors are to cover the
true variability of radiocarbon-age measurements when compared with material of
known-age. However, most 14C laboratories have since enhanced their methods for
deriving age uncertainties (Blaauw et al. 2005; Scott 2007). Condition (3) is a major
problem for using the approach described here with calibrated radiocarbon ages
(although as explained above, Monte Carlo sampling can solve this problem).

Results using The Round Loch of Glenhead (RLGH) data are shown in Fig. 12.6,
and the full table of goodness-of-fit values in Table 12.2. As the number of terms
increases, the ¦2 value decreases, and the goodness-of-fit increases. However, there
is little improvement after about 9-terms, and results start to become unpredictable
with more terms (e.g., 17). The plotted results show similarly improving fit to the
general trend of the dates as the number of terms increases, but the increasing
flexibility of the curves introduces problems, especially with extrapolated portions.
With this particular data-set, it is not possible to obtain lower values of goodness-
of-fit because of the scatter of the data points in the upper part of the sequence.
Given this, the ‘best’ model is probably one with a low number of terms, even if the
goodness-of-fit is, statistically, rather poor.
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Table 12.2 Goodness-of-fit
of polynomial age-depth
models with different number
of terms for The Round Loch
of Glenhead radiocarbon data

Terms ¦2 Goodness-of-fit

2 2670.3 0.00
3 992.6 0.00
4 808.3 0.00
5 700.6 0.00
6 537.7 5.77 � 10�105

7 534.1 5.36 � 10�105

8 424.1 1.80 � 10�82

9 391.0 3.01 � 10�76

10 364.8 1.74 � 10�71

11 350.1 3.73 � 10�69

12 384.6 2.66 � 10�77

13 341.1 7.29 � 10�69

14 338.3 3.89 � 10�69

15 337.5 7.56 � 10�70

16 336.7 1.25 � 10�70

17 336.0 1.05 � 10�71

18 335.1 0.55 � 10�72

19 334.0 3.02 � 10�73

20 329.6 1.20 � 10�73

The RLGH data are atypical in the sense of having a large number of radiocarbon
dates by the general standards of Holocene palaeolimnological sequences. Results
from Dallican Water, Shetland, with a more typical number of dates (6) are presented
by Bennett (1994a). The sequence at Hockham Mere (eastern England) has a similar
number of radiocarbon dates (23) to RLGH, but without any age-reversals (Bennett
1983). The goodness-of-fit results for polynomials with increasing numbers of terms
are shown in Table 12.3. Here, there is a decline to low values, with a minimum
reached at about 10-terms, and erratic values beyond that. Inspection of the plots
for these polynomials (not shown) shows that 10-terms provide a good fit for all the
sequence except for the interval between the uppermost pair of dates: the apparent
sharp increase in accumulation rate at this site due to a change in the sediment type
is hard to model with any number of terms.

Splines

A spline is a polynomial curve (see above) fitted between each pair of points,
but whose coefficients are determined slightly non-locally: some information is
used from other points than just the pair under immediate consideration (Birks
2012: Chap. 2). This non-locality is intended to make the fitted curve smooth
overall, and not change gradient abruptly at each data point. The usual polynomial
fitted between pairs of points is a cubic (four-term) polynomial, producing a cubic
spline (Fig. 12.7a). This method also takes no account of the multi-modal errors
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Table 12.3 Goodness-of-fit
of polynomial age-depth
models for the Hockham
Mere radiocarbon data

Terms ¦2 Goodness-of-fit

2 3770.7 0.00
3 2640.6 0.00
4 2491.2 0.00
5 393.4 2.20 � 10�72

6 365.2 3.34 � 10�67

7 41.7 4.42 � 10�04

8 39.3 5.80 � 10�04

9 37.8 5.50 � 10�04

10 28.4 7.86 � 10�03

11 26.7 8.45 � 10�03

12 26.7 5.08 � 10�03

13 48.2 5.73 � 10�07

14 29.6 5.08 � 10�04

15 32.6 7.40 � 10�05

16 23.4 1.45 � 10�03

17 24.8 3.74 � 10�04

18 23.9 2.25 � 10�05

19 26.1 2.97 � 10�05

20 21.9 6.74 � 10�05

21 22.6 1.22 � 10�05

22 20.8 5.13 � 10�06

on the radiocarbon ages (although this can be dealt with by using Monte Carlo
simulations), and can produce ‘ruffle-like’ bends that include sections with negative
deposition times. The RLGH data show this clearly in the upper part of the record,
where there are many dates and age-reversals, but the curve in the lower part with
more widely-spaced dates and no reversals is more acceptable. Note the ‘wild’
behaviour in the extrapolated portion at the base.

An alternative to regression splines are smooth splines (Fig. 12.7b, c) or locally
weighted splines (Fig. 12.7d–f; often called LOESS or LOWESS splines (Birks
2012: Chap. 2)), where penalisation or smoothing terms are adjusted to constrain the
degree of bending of the curves (Wood 2006). The data points can also be weighted
according to their uncertainties. LOESS splines cannot be used to extrapolate
beyond the dated range of a core (which is a dangerous practice anyway and should
be avoided if at all possible).

Other Models

There is a wide variety of other age-depth models that can be used. Maher (1972)
and Campbell (1996) advocated the use of a power function, which takes the general
form y D a C bxc. Campbell points out the potential utility of this function for loose
top sediments where compaction increases with depth. The parameter a is the age at
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Fig. 12.7 Results of using cubic spline (a), smooth spline (smoothing parameter, (b) 0.1, (c)
0.5) and LOESS spline (smoothing parameter, (d) 0.1, (e) 0.5, (f) 1.5) age-depth models with
The Round Loch of Glenhead data. The 14C dates were calibrated using the IntCal09 calibration
curve (Reimer et al. 2009). Calendar ages are on the horizontal axis, depths on the vertical
axis. Thin black lines show the 2 standard deviation error envelope estimated using Monte Carlo
simulations from the calibrated distributions. Extrapolation was not possible with the LOESS age-
depth modelling (d–f )

the sediment-water interface (usually 0), b is the accumulation rate at the sediment-
water interface, and c is the rate of compaction. Values for these parameters can be
computed from statistical packages (see Campbell 1996).

The Bernshtein polynomial (also known as a Bézier curve) is a curve that passes
smoothly through or near all the points, and is fitted by successive approximation.
It is constrained so that it must pass through both endpoints (the highest and lowest
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ages). It will always fall within a polygon that bounds all the points. The curve uses
all points for estimating an age for any given depth, so changing any point influences
the entire curve. It tends to fit close to most points, but will effectively bypass an
outlier. The curve also tends to be rather ‘stiff’, but this has the advantage that it does
not behave wildly in extrapolated portions (cf. splines: see Bennett and Fuller 2002).
Newman and Sproull (1981) discuss the properties of these curves in more detail.

Mixed-Effects Models

The approach here involves a consideration of the errors involved in the various
components of the system (Birks 2012: Chap. 2). First, there is a variance in the
age determination of an object from a particular depth. Second, the radiocarbon-
age determination from a certain depth in a sequence is displaced from the true
(radiocarbon) age by an amount that is unknown but which can be assumed to be
random. Such displacement may occur because of contamination, incorporation of
younger or older material, movement of material up or down the sequence, etc., and
such processes can occur throughout the sequence. The calibrated age is then also
displaced by a similar, unknown but randomly distributed, amount. It is assumed
that this displacement is independent of the variance of the age determination itself.

It then follows that the variance of an age estimate at a particular depth is the sum
of the variance of the age determination (within-object variance) and the variance
of the age-depth relationship (between-object variance) (Heegaard et al. 2005). It
should be noted that this procedure approximates the calibrated distributions to
normal distributions.

The relationship between age and depth can be obtained by any regression
procedure, such as generalised linear models or by various smoothing procedures,
including splines. The variance of the resulting relationship is then the between-
object variance. In very rare cases, there may be a relationship between age and
the between-object variance, perhaps because of increasing displacements with
increasing depth (Heegaard et al. 2005). We note that these procedures require the
assumption that the calibrated distributions can be approximated by a normal or
other statistical distribution.

Output from three alternative mixed-effects models (all excluding the data point
of the surface being of recent age) is shown in Fig. 12.8. These results suggest that
the age-depth relationship of RLGH is complex, including a reversal of sedimen-
tation of the more recent deposits (Fig. 12.8a). However, there is a near-constant
sedimentation rate below 110 cm, and the sedimentation rate increases slightly at
about 60 cm. Assuming superimposed sedimentation and that contamination is a
major source of error, a fit can be achieved without reversals by reducing the number
of ‘knots’ (Fig. 12.8b). On the other hand, it is also possible to model the upper
part of the sequence separately, for example by a two-part piece-wise regression
(Fig. 12.8c). Although this piece-wise regression is actually a better fit statistically
(Hastie et al. 2001), it results in negative accumulation rates for the upper part
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(probably a redeposited sediment or inwash of peat (Stevenson et al. 1990)). This
solution suggests that the pattern of sediment accumulation in the upper part of the
sequence was quite different from the main part. This would clearly require further
investigation (see Stevenson et al. 1990).

Implementation

There are several implementations of the age-depth modelling techniques discussed
above:

1. PSIMPOLL provides most of the methods described above. Confidence intervals
are obtained by exact calculation (for linear interpolation and two-term polyno-
mials). Although the program does not calibrate 14C dates (it uses raw 14C dates),
it has the option to import calibrated dates from e.g., BCal (Buck et al. 1999).
PSIMPOLL is available from http://chrono.qub.ac.uk/psimpoll/psimpoll.html.

2. TILIA provides linear interpolation, LOESS spline interpolation, and polynomi-
als. Also here, 14C dates are not calibrated. Errors on the dates are not taken into
account. For availability of TILIA, see http://chrono.qub.ac.uk/datah/tilia.html,
http://www.ncdc.noaa.gov/paleo/tiliafaq.html and http://museum.state.il.us/pub/
grimm/tilia/.

3. Code for mixed-effect modelling is available at http://www.eecrg.uib.no/
Homepages/agedepth 1.0.zip. The code is written in R (http://www.r-project.
org/) which must be installed in order to run the procedure. It uses calibrated
dates, but assumes that the calibrated distributions can be approximated using
normal or other standard distributions. Earlier versions of the functions were
named Cagedepth.fun() (Heegaard et al. 2005).

4. Clam is R code for ‘classical age-modelling’, which calibrates 14C dates and
provides a range of age-depth models including interpolation, linear/polynomial
regression, and splines (Blaauw 2010). Also here, R needs to be installed for the
code to run. The error estimates are based on Monte Carlo sampling from the
calibrated distributions. Clam was used to produce Figs. 12.1, 12.3, 12.4, 12.5,
12.6, 12.7. For availability of Clam see http://www.chrono.qub.ac.uk/blaauw/
wiggles/.

Bayesian Age-Depth Modelling

Over the past decade or so, Bayesian approaches have become an increasingly
popular alternative to the ‘classic’ age-depth modelling methods described above.
Bayesian statistics systematically combines data with other available information,
during analysis and not afterwards. In other words, through combining prior
information with the data, we arrive at inferences of the posterior distributions.
Reviews of the techniques can be found in Christen (1994a), Buck et al. (1996),
and Buck and Millard (2004). To take an example, when using classical statistical

http://chrono.qub.ac.uk/psimpoll/psimpoll.html
http://chrono.qub.ac.uk/datah/tilia.html
http://www.ncdc.noaa.gov/paleo/tiliafaq.html
http://museum.state.il.us/pub/grimm/tilia/
http://museum.state.il.us/pub/grimm/tilia/
http://www.eecrg.uib.no/Homepages/agedepth_1.0.zip
http://www.eecrg.uib.no/Homepages/agedepth_1.0.zip
http://www.r-project.org/
http://www.r-project.org/
http://www.chrono.qub.ac.uk/blaauw/wiggles/
http://www.chrono.qub.ac.uk/blaauw/wiggles/
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age-depth modelling one would try a range of models and settings (e.g., splines
with different degrees of smoothness), and based on the outcomes of these trials
a model is chosen that does not have any ‘age-reversals’. Such decisions are often
made subjectively, ad hoc and non-transparently. Instead, with a Bayesian approach,
age-models would be constructed using the explicit prior constraint of positive
accumulation rates.

Chronological Ordering

For her PhD research, Heather Ibbetson 14C dated charcoal layers in order to find
the ages of burning events in a soil in northern England (Ibbetson 2011). The dates
were known to be ordered chronologically and stratigraphically, with date 1 the
oldest/deepest, date 2 in the middle, and date 3 the youngest. However, at first sight
the radiocarbon dates (1: 104 ˙ 15 14C BP, 2: 193 ˙ 15 14C BP, 3: 146 ˙ 15 14C BP;
the errors have been decreased from 30 yr for reasons of clarity) seem confusing,
inconclusive, and imprecise, and thus a waste of time, effort, and money (Fig. 12.9).
Moreover, atmospheric radiocarbon concentrations fluctuated considerably during
the last few centuries, resulting in wide ranges and multi-peaked distributions of the
calibrated 14C dates. However, when inspected closely using a Bayesian framework,
the results make much more sense.

The key aspect here is to use additional information while interpreting the dates,
in this case our stratigraphical knowledge of the site. As stated above, layering in
the soil tells us that date 1 should be older than date 2, and date 2 older than date 3.
Moreover, all dates are situated below, and should thus be older than, a well-defined
layer which has been dated independently to the (AD) 1840s. Using this information
together with the peculiar shape of the calibration curve, we can narrow down
considerably the uncertainties of the calibrated ages. Each date falls into several
distinct sections of the calibration curve (shown by overlaps of the calibration curve
with the hatched bars in Fig. 12.9). As we know that all dates originate from before
the 1840s, we can safely neglect the wiggles after 110 cal BP. Using the known
chronological relations between the dates (e.g., date 1 should be older than the other
dates, and should thus fall in an older section of the calibration curve than dates 2
and 3, the ‘valley’ around 220–260 cal BP being the most likely), we can manually
deduce the most likely calendar age ranges for each date (horizontal position of dark
boxes in Fig. 12.9).

We can express this more formally. We have n D 3 dates (each with a reported
14C age with mean yj, and error ¢ j). From the soil layering, without looking at
the 14C ages we already know the a priori relationship of their calendar ages (™)
™1 > ™2 > ™3, while all should be older than 110 cal BP. We thus need to calculate
the posterior calendar age probabilities of the dates given the prior information and
the 14C ages. The process basically consists of sampling calendar ages ™1–3 from the
calibrated distributions of each of the three 14C dates, with more likely calendar ages
more likely to be sampled (see Eq. 12.1), and only accepting those iterations where
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Fig. 12.9 Scheme of using stratigraphical information to constrain the calibrated ranges of three
radiocarbon dates. Stratigraphical ordering indicates that date 1 should be older than date 2, and
date 2 older than date 3, and all are older than a stratigraphical marker independently dated at
AD 1840 (black vertical bar). However, the dates appear conflicting (hatched bars show apparent
reversals, 2 > 3 > 1) and imprecise owing to recurring 14C ages in the calibration curve (grey
envelope). If we use the chronological information (see text), we can use the wiggles in the
calibration curve to reduce the likely calendar age ranges of the three dates (grey blocks). Errors
on the 14C dates are reduced for clarity. BCal posterior probabilities are shown as histograms
(Adapted from a case study by Heather Ibbetson)

™1 > ™2 > ™3 and all ™ > 110 cal BP. Any iterations with calendar-age reversals or
with calendar ages younger than 110 cal BP, are rejected. The resulting posterior
probability distribution thus takes into account the 14C dates, the calibration curve,
and the prior information. Calculations with the on-line Bayesian age-modelling
software BCal (Buck et al. 1999) largely confirm our manual age assignments,
although some additional local peaks have appeared (Fig. 12.9).
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The hypothesis of superposition (dates further down in a core should be older
than dates higher up) is easy to justify in palaeolimnology and indeed it provides the
basis of palaeolimnology as a stratigraphical technique. This use of the chronologi-
cal ordering of dates is therefore very worthwhile, leading to reduced uncertainties,
especially in sediments dated at high resolution (such that neighbouring calibrated-
age distributions are overlapping). Even so, the method does not provide calendar
ages for non-dated levels (other than that the ages of non-dated levels should fall
between the ages of their neighbouring levels). Often for age-depth modelling we
need to make additional assumptions. For example, we can estimate ages for depths
by interpolating linearly between the chronologically ordered posterior distributions
of the dated depths (e.g., Wohlfarth et al. 2006).

Wiggle-Match Dating

Another popular Bayesian approach to age-depth modelling is known as 14C wiggle-
match dating (Kilian et al. 1995, 2000; Blaauw and Christen 2005). Here a sediment
sequence is 14C dated at close intervals (down to every cm), which should be close
enough to reconstruct the decadal to centennial scale wiggles in the calibration
curve (Fig. 12.10). Then, by assuming a constant sediment accumulation rate within
sections of a sequence (piece-wise linear accumulation), the radiocarbon ‘wiggles’
of the sequence are matched to those of the calibration curve (this works best
in periods with considerable wiggles such as the ‘Little Ice Age’). With a faster
accumulation rate, the sequence of dates will be compressed on the calendar scale,
while a slower accumulation rate will expand the sequence. The best wiggle-match
can then be found by trying different values of this ‘accordion’ parameter as well
as by shifting the entire sequence on the calendar scale (or even on the 14C scale
if we want to estimate a reservoir effect; Kilian et al. 1995). Whereas the previous
Bayesian method only uses the chronological ordering of dates in a deposit, here we
also use the chronological positioning, i.e., the distances in depth and thus in time
between the dated levels.

The assumption of a linear accumulation rate suggests a model of the kind
y D ax C b. Here the accumulation rate a and horizontal placement b result in
calendar ages ™ for the depths d: ™d D a � d C b. Prior information about the
parameters a and b is available. Obviously, horizontal shifts should never result
in ‘future’ calendar ages (nor in pre-Holocene ages for deposits known otherwise
to be of Holocene age). Even more, it is often safe to assume that the accumulation
rate a can never become negative. Similarly, very low and very high accumulation
rates are very unlikely, so we can propose ranges of likely prior values for a (the
ranges may differ between sites and between researchers with different opinions).
Additional prior information can be incorporated, for example the depths of changes
in accumulation rate, the size of any hiatuses between different sections of a
core, etc. These priors can be translated into gamma distributions (Blaauw and
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Fig. 12.10 Bayesian wiggle-match dating of a high-resolution 14C dated sequence (part of peat
core Eng-XV: Blaauw et al. 2004). The 14C dates were fitted to the calibration curve (a) by
calculating an age-depth model based on piece-wise linear accumulation of eight sections (b, grey
lines show depths and assigned calendar ages of the dated levels). The prior information was set to
favour accumulation rates between 10 and 25 year cm�1 (c), while any hiatus between the sections
were assumed be of very short duration (d)

Christen 2005; Blaauw et al. 2007a). Gamma distributions are comparable to normal
distributions, having a mean and a standard deviation, but they differ in that gamma
values are always positive.

Bayesian ‘wiggle-match’ age-depth models are constructed by sampling
repeatedly from the prior distributions, each time resulting in values for a, b, and
additional parameters, and thus in an age-depth model M which translates depths d
into calendar age estimates (Fig. 12.10). A calendar age ™d will have been assigned
to each dated depth d, and the likelihood of that calendar age again depends on
the calibrated distribution of its date (see Eq. 12.1). The posterior probability of
model M is proportional to the probability of the prior values times the likelihood
of the data given the model (for details see Blaauw and Christen 2005; Blaauw
et al. 2007a). Posterior distributions are found through Markov chain Monte Carlo
simulations (MCMC, similar to general Monte Carlo iterations discussed earlier,
but here individual iterations are sampled from preceding ones). The probability
that a certain combination of prior values will be chosen depends on its combined
posterior probability. Histograms of sufficiently many iterations (usually several
million) will thus approximate the true posterior distributions (e.g., of accumulation
rates, hiatus sizes, or calendar ages for any depth or proxy score) (Fig. 12.11).
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Fig. 12.11 Grey-scale graphs showing the chronological uncertainties of core Eng-XV
(Fig. 12.10). Each of the millions of Markov Chain Monte Carlo iterations gave a slightly
different calendar age to each depth, resulting in a posterior distribution of the calendar ages
for each depth (a). Darker colours indicate more secure sections, while light shades indicate
larger chronological uncertainties. Instead of depths, the proxy scores of these depths (here those
macrofossils indicating moist conditions) can also be plotted against calendar age (b) (Blaauw
et al. 2007b)

Other Models

Although wiggle-match dating can provide statistically plausible fits, it has been
noted that the model of piece-wise linear accumulation might not always capture
subtle changes in accumulation rate (Yeloff et al. 2006; Blockley et al. 2007; Haslett
and Parnell 2008). Recently, updated models aiming to take into account such issues
have become available. In OxCal the accumulation of sediment can be simulated
by generating Poisson events akin to water dripping into a tube (Bronk Ramsey
2007). The user determines the stiffness of the age-depth model based on his/her
knowledge of the sequence and the site. Another recent approach simulates sediment
accumulation through sampling from Poisson and gamma distributions (Bchron:
Haslett and Parnell 2008). In the latter approach, age uncertainties of depths tend to
inflate considerably with increasing distances from dated levels.

Dealing with outlying 14C dates can be problematic (Blaauw et al. 2005), and
also here Bayesian statistics can help us. Usually decisions to label 14C dates as
outliers, and remove them, are based on ad hoc and subjective criteria. Bayesian
outlier analysis forces the user to express a belief in the reliability of the individual
14C dates (e.g., well-preserved identifiable leaves or corroded unrecognisable plant
remains), and takes this prior information into account when producing the age-
depth models (e.g., Christen 1994b; Blaauw and Christen 2005; Wohlfarth et al.
2008; Bronk Ramsey 2009). For every MCMC iteration, in case a date does not fit
with the other dates and the applied age-depth model, it is simply neglected and
labelled as outlier. The proportion of times a date has been labelled as outlying
provides us with its posterior outlier probability, as well as with a measure of the
age-model fit (Blaauw and Christen 2005). See Christen and Pérez (2009) for an
alternative way to deal with outlying dates.
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Software Packages

There are several programs to produce Bayesian age-depth models:

1. While BCal (Buck et al. 1999: http://bcal.shef.ac.uk/) is mainly aimed at archae-
ologists, it can be used for producing age-depth models based on chronological
ordering of dates, and it provides the option for outlier analysis as well as the
inclusion of relative or absolute dating information.

2. OxCal (Bronk Ramsey 2007: http://c14.arch.ox.ac.uk/) is a popular and versatile
environment for Bayesian 14C calibration and modelling. It includes a range of
age-depth models, and complex ones can be created by combining modules and
even sediment sequences. Outlier analysis is optional.

3. Bpeat (Blaauw and Christen 2005; Blaauw et al. 2007a) and Bacon (Blaauw and
Christen 2011) use the model of piece-wise linear accumulation. The methods
force the user to express his/her prior knowledge on accumulation rate and
variability, possible hiatus size, and outlier probabilities. Although Bpeat was
built for age-modelling of peat deposits, it has also been used for lake sediments
(e.g., Wohlfarth et al. 2008). Bpeat and Bacon work through the R interface
(http://www.r-project.org).

4. Bchron (Haslett and Parnell 2008) provides a model of monotonous sediment
accumulation with outlier analysis. It does not use information on the accumu-
lation rate, so age-models can include nearly vertical or horizontal sections. As
with Bpeat, it uses R as an interface.

Discussion

Many different models are available for age-depth modelling, of which the most
important are discussed above. Unfortunately, we do not know a priori how
sediment accumulated over time, and hence we cannot know which model is the
best one to use (Telford et al. 2004a). If the mode of sedimentation has changed, it
may even be appropriate to use different models for different parts of the sequence,
but, again, we do not know that in advance. So, how to proceed? We list below some
recommendations:

1. Use multiple models, and observe how closely they approximate the data and
your knowledge of the sedimentation conditions of the site (e.g., Blockley
et al. 2007).

2. Use goodness-of-fit statistics to help determine which model, statistically, is
closest to the data. However, this can be difficult as different models may use
different measures of fit.

3. Beware of a model that passes too close (or even through) all the data points
(‘over-fitting’). This would imply that all the dates are exactly ‘right’, which is
extremely unlikely given all the uncertainties involved (Birks 2012: Chap. 2).

http://bcal.shef.ac.uk/
http://c14.arch.ox.ac.uk/
http://www.r-project.org
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4. The most parsimonious model in a statistical sense is frequently preferred (Birks
2012: Chap. 2), although more complex models might seem more plausible
palaeoecologically (Yeloff et al. 2006; Blockley et al. 2007).

5. Always check if the dates are reasonable and check for outliers or systematic
offsets.

Choice of Model

Age-depth modelling necessarily involves many sources of uncertainties, for exam-
ple, multi-modal calibrated distributions, diverse dating sources (e.g., 14C, tephra,
210Pb, varves), outliers, qualitative stratigraphical information, and systematic
offsets. Given this multidimensional problem, classical statistical methods often fail
to provide reliable age-depth models. Fortunately, probabilistic/Bayesian statistics
can take into account many of the intricacies of age-modelling.

Several of the age-depth modelling methods described here should be applicable
where sediment stratigraphy can be assumed to have been approximately uniform,
such as may be found in Holocene sediments from formerly glaciated rock basins
in northern Europe, northern North America, or southern South America. It may
be an inappropriate strategy where there is substantial lithostratigraphical variation
along the sediment sequence. In such situations, it may be necessary to divide the
sequence into more uniform sections, and carry out age-depth modelling on the
individual sections.

The two most important aspects for providing reasonable age-depth relationships
are the amount of information and the quality of the information (Telford et al.
2004a). With more dates available, the better the relationship and the more accurate
and precise the model will be of the age-depth relationship. In this chapter we have
presented three different approaches to the determination of the errors on age-depth
models: by simulation (or exact calculation) from the dated objects themselves,
by a mixed-effect model approach, or by a Bayesian approach. The two former
procedures are reasonable in cases of minimal information (Telford et al. 2004a),
whereas for data-sets with numerous dates, and combined information, a Bayesian
approach is to be preferred.

It is important to appreciate that the different models presented here are
alternative models of a site’s unknown true sedimentation history, and it is not
always possible to distinguish between them. It is therefore very important that
a clear statement of the modelling procedure used should accompany all inter-
pretations, and that the same procedure is used when sequences from different
cores are being compared. Further, there may be slight differences in the interpre-
tation of some models compared with what the estimated uncertainty is actually
showing.
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Conclusions and Future Developments

The greatest uncertainty about age-depth modelling remains the uncertainty asso-
ciated with the choice of model. We do not have a way to determine which is the
correct model. Perhaps even worse, we do not have a way of estimating the errors
associated with these approaches. Adding the error associated with model selection
(Johnson and Omland 2004) to other errors would be a major step forward.

General principles could exist for the way sedimentation develops over time
within a site. Such models could guide us in choosing a particular type of age-depth
model, for example linear or polynomial accumulation. Clymo (1984) developed
a model for peat growth based on the combination of growth, compaction, and
decay. Townsend et al. (2002) argued that many types of sedimentation should be
regarded as basically linear over time, with the modification that compaction brings
about apparent exponentially-decreasing sedimentation rates with age. Bayesian
age-depth models such as Bpeat (Blaauw and Christen 2005), Bacon (Blaauw and
Christen 2011), OxCal (Bronk Ramsey 2007), and Bchron (Haslett and Parnell
2008) provide such process-based models of sedimentation, but more developments
(e.g., taking into account basic stratigraphical information) are needed.

As we wrote in the introduction, palaeolimnology without chronology is history
without dates. Similarly, palaeolimnology with just one core is history without
context. When multiple cores are compared for an analysis at site-wide, regional, or
even broader scales, reliable age-models are needed for each of the cores. However,
such comparisons often either neglect the age-model errors, or take advantage
of them through tuning or synchronisation (stretching individual time-scales to
fit proxy events with those in other time-scales). Compilations obtained through
tuning often seem plausible and precise. However, tuning invokes the danger of
creating a ‘coherent myth’, especially if inferences are made about leads or lags
between synchronised events (Blaauw 2012). Bayesian methods have recently been
developed to test objectively for the synchroneity of events, given the uncertainties
of the proxy archives (Blaauw et al. 2007b, 2010; Parnell et al. 2008). Such tests
warn us against tuning as well as against over-interpreting proxy records, in that
their chronological uncertainties set the limit on the precision of research questions
(e.g., proxy archives with centennial-scale uncertainties should not be used to
investigate decadal time-scale questions).

The use of age-depth models with proper assessment of errors needs to be more
widely practised. The overwhelming majority of age-depth modelling still uses
uncritically simple linear interpolation between single data points, sometimes in 14C
years. Even though the original radiocarbon dates and their calibrated equivalents
are typically quoted with their errors (and always have been), it is rare to see these
errors used in modelling or in interpretations, leading to an over-reliance on the
dates themselves. Even if we are not yet able to calculate the full extent of the error
in age-depth models, making attempts at this has been a major step forward in itself,
but there is still quite a long way to go.
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Chapter 13
Core Correlation

Roy Thompson, R. Malcolm Clark, and Geoffrey S. Boulton

Abstract The numerical procedure of sequence slotting aims to combine, in a
mathematically optimal manner, two ordered sequences of stratigraphical data
(e.g., loss-on-ignition, percentages of different biological taxa) into a single
sequence, while preserving the ordering within each sequence and satisfying any
other relevant external constraint such as volcanic tephra layers. The procedure
provides a convenient means of core correlation in palaeolimnology and is
illustrated by two examples. The first involves univariate pollen data from a
lake-sediment core being matched with isotopic ice-core data and its associated
chronology. The second involves core correlation of two to four cores with a dated
master core from eight mountain and arctic lakes in Europe using dry weight and
bulk organic matter (loss-on-ignition) data as the proxy variables to derive 3405 age
estimates for the individual core samples.

Keywords Age estimation • Core correlation • GRIP ice-core • Lago Grande di
Monticchio • Loss-on-ignition • MOLAR • Multiple cores • Sequence slotting
• Splines

Introduction

The correlation of sediment sequences is a procedure used in many fields of study
including the analyses of well-logs (e.g., Griffiths and Bakke 1990; Luthi and Bryant
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1997), marine sequences (e.g., Martinson et al. 1982; Kovach 1993; Lisiecki and
Lisiecki 2002), ice cores (this chapter), loess deposits (e.g., Maher et al. 1994),
peat bogs (e.g., Gardner 1999), and lake-sediments (e.g., Gordon and Birks 1974).
Lake-sediment core correlation is often used to match multiple cores from different
parts of a basin (e.g., littoral vs. profundal) because different cores give different
palaeosignals (shallow-water vs. deep-water biology), or because different cores
overlap in time or have different resolutions. Numerical correlation between basins
can also be made on the basis of pollen and microfossil records (Pels et al. 1996;
Gary et al. 2005). In addition, correlation methods also serve as a dating tool,
for example aligning palaeomagnetic measurements with a regional master curve
(Marwan et al. 2002; Barletta et al. 2010). Finally numerical methods can provide
a quantitative measure of the degree of reproducibility of results from one core, or
site, to another (Thompson 1991).

Numerical approaches to core correlation are becoming increasingly desirable
with the more exacting demands of high-resolution chronologies required for studies
of rapid environmental and climatic change; with the increasing need to combine
duplicate or triplicate cores in order to provide a sufficient volume of material
for multi-proxy studies (Birks and Birks 2006); with the ever greater quantities
of palaeolimnological data to be handled; and especially in studies of sediment
accumulation rate, rather than just sediment age, in investigations involving whole
basin fluxes.

A wide range of numerical methodologies have been proposed (e.g., Gordon
and Birks 1974: Gordon and Reyment 1979; Martinson et al. 1982; Ghose 1984;
Waterman and Raymond 1987; Maher 1993, 1998; Marwan et al. 2002; Lisiecki
and Lisiecki 2002; Gary et al. 2005; Hladil et al. 2010). However, core correlation
is not always straightforward and as a result visual or graphical approaches (Shaw
and Cubitt 1979; Shaw 1982; Edwards 1984) are still widely employed. Although
these graphical methods are increasingly computer-aided, they remain worryingly
subjective and often lack detail. Conversely many numerical approaches, while they
have the advantage of being less subjective, are often unable to make use of the full
range of stratigraphical information available, and so can generate inappropriate
correlations.

We describe two case studies to illustrate the use of a practical numerical
approach, named sequence slotting, to core correlation. Our first example matches
palaeobotanical data from a lake sequence with a target chronology (the GRIP ice-
core sequence). It was motivated by the EU projects PAGEPA (Palaeohydrology and
geoforecasting for performance assessment in geosphere repositories for radioactive
waste disposal) and BENCHPAR (Benchmark tests and guidance on coupled
processes for performance assessment of nuclear waste repositories), and by the
desire to study the variation of temperature with latitude, within Europe, over the last
100,000 years. Our second example takes physical data from eight remote alpine and
arctic lakes and generates within-lake correlations. The second case study was an
integral part of the multidisciplinary EU project MOLAR (Measuring and modelling
the dynamic response of remote mountain lake ecosystems to environmental change:
A mountain lake research programme). The aspirations of the MOLAR programme,
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and its study of pollution and environmental change as recorded in the sediments of
mountain lakes, are encapsulated in the following sentences taken from the RTD
Magazine for European research (2000):

Far above or beyond the tree line, remote mountain lakes are strongholds of secluded nature,
where there is virtually no direct contact with man, save perhaps for the occasional summer
hiker. In their splendid isolation, their ecosystems are subject only to the wind that blows,
the rain and snow that fall from the sky, and daily and seasonal temperature fluctuations.
: : : High altitude : : : lakes are like sentinels at the furthest outpost of environmental
and climatic change. Beneath their appearance of immutable solitude, they : : : retain a
vast ‘memory’ of onslaughts they have suffered across the centuries. Their sediments are
archives of the effects of the industrial revolution, of acid rain, and : : : the impact of climate
change.

An overall goal of the work in MOLAR was to try to validate palaeoclimatic
reconstructions, based on sediment-core measurements (Lami et al. 2000a; Bat-
tarbee et al. 2002a, b), by correlation with 200-year long instrumental records
(Agustı́-Panareda and Thompson 2002). Four organism groups that are preserved
in lake sediments were chosen for palaeoclimatic reconstructions. Diatoms and
chrysophytes were selected because they often dominate the primary production
of arctic-alpine lakes and because variations in climate can control changes in abun-
dance and species composition in these unpolluted waters. Similarly chironomid
larvae are good potential indicators of temperature (Walker et al. 1991). Finally
remains of cladocerans are common in arctic-alpine lake sediments and they too
are potential indicators of climate. Multiple cores were needed to generate adequate
quantities of sediment for the many analyses carried out at the eight MOLAR lakes.
Sequence slotting was chosen as the preferred method of constructing within lake
core-correlations and hence allowing the four palaeoclimatic proxies originating
from different cores to be compared with one another and to be dated by correlation
with a master chronology. Thus the specific objective of this case study was to
produce quantitative within-lake core correlations to the master cores. In practical
terms an age estimate was to be generated for each of the 3405 lake sediment
horizons.

Theory and Method

The aim of sequence slotting (Gordon and Birks 1974; Gordon 1982; Birks and
Gordon 1985; Thompson and Clark 1989) is to combine, in an optimal manner, two
ordered sequences A D fA1, A2, : : : ,Amg and B D fB1, B2, : : : ,Bng of observations
into a single sequence, while preserving the ordering within each sequence and
satisfying any other relevant constraints. No assumption is made about the temporal
variation of the measurements within either core. It is simply assumed that samples
with similar measurements should be close together in the combined sequence,
provided all order constraints are satisfied.
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The procedure assumes that there is a well-defined measure d of ‘local discor-
dance’, dissimilarity, or ‘distance’ between any two samples in either sequence
that depends on the nature of the measurements. These measurements could be
(i) multivariate (such as well logs), (ii) directional (palaeomagnetism), (iii) vector
(magnetic direction and intensity), or (iv) compositional data (e.g., pollen or diatom
counts). The ‘total discordance’ (Gordon and Reyment 1979) of any proposed
combined sequence is then defined as the sum of the distances between consecutive
samples in the pooled sequence, i.e., the combined path length (CPL). The optimal
slotting of sequences A and B is that for which this CPL is minimised, subject to the
stratigraphical order constraints within each sequence and any additional external
constraints. Further details about CPL and the assessment of slottings are given in
Thompson and Clark (1989) and Gordon et al. (1988).

This optimal slotting can be determined recursively by the following dynamic
programming algorithm (Delcoigne and Hansen 1975).

Let F(j, k; P) denote the minimum CPL corresponding to the optimal slotting
of the sub-sequences A D (A1, A2, : : : , Aj) and (B1, B2, : : : , Bk), subject to the
constraint that the last sample in this slotting belongs to the sequence P (j D 1, 2,
: : : , m; k D 1, 2, : : : , n; P D A, B). Then:

F .1; 1I A/ D d.A1; B1/ D F .1; 1I B/ (13.1)

F.1; kI A/ D d.A1; Bk/ C
k�1X

iD1

d.Bi ; BiC1/ .k D 2; 3; : : : ; n/ (13.2)

F.j; 1I B/ D d.Aj ; B1/ C
j �1X

iD1

d.Ai ; AiC1/ .j D 2; 3; : : : ; m/ (13.3)

F .j; kI A/ D min
˚
F .j � 1; kI A/ C d

�
Aj �1

; Aj

�
; F .j � 1; kI B/

C d
�
Aj ; Bk

� �
.j D 2; : : : ; mI k D 1; : : : ; n/ (13.4)

F .j; kI B/ D min
˚
F .j; k � 1I A/ C d

�
Aj ; Bk

�
; F .j; k � 1I B/

C d .Bk�1; Bk/
�

.j D 1; ::: ; mI k D 2; ::: ; m/ (13.5)

Given the initial values specified by steps (13.1), (13.2), and (13.3), the entire
F-array can be evaluated by recursive use of steps (13.4) and (13.5). The minimum
CPL for the entire sequences is given by

C � D min
n
F .m; nI A/ ; F .m; nI B/

o
(13.6)

The optimal slotting can be traced by noting which of the two terms in braces
on the right-hand sides of steps (13.4), (13.5), and (13.6) provide the minimum.
Equality of these two terms at any stage indicates multiple slottings with the same
optimal CPL.
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Occasionally, there is additional stratigraphical evidence indicating how the
two sequences must be slotted together. For example, there could be independent
external evidence that sample As in sequence A must precede sample Bt in sequence
B (but not necessarily immediately before it). This constraint can be achieved by
defining

F .s; kI A/ D M; k D t; t C 1; : : : ; n

where M is a sufficiently large number (‘machine infinity’), and then skipping these
terms during the recursion. The constraint that Bt precedes As can be handled in a
similar manner.

Such precedence constraints can be used, for example, when there is a distinctive
marker layer (e.g., tephra or turbidites) in each sequence. Suppose, as an example,
that A9 and B15 are the only samples in either sequence from this marker bed. Then
in any valid combined slotting, A9 and B15 must be immediately adjacent. This
condition can be achieved by imposing simultaneously the four logically equivalent
precedence constraints: (i) A8 precedes B15, (ii) A9 precedes B16, (iii) B14 precedes
A9 and (iv) B15 precedes A10.

When the sediment properties in part of either sequence do not vary much, the
optimum slotting often contains long blocks of consecutive samples from the same
sequence, so-called ‘blocking’. This common practical problem can be avoided by
imposing upper limits on these ‘block lengths’ (see Thompson and Clark 1989). The
basic recursive algorithm can still be used, provided these block-size constraints
are checked at every stage. For example, suppose that the maximum number of
consecutive samples from sequence A is set at b, and that the optimal part-slotting
corresponding to F(j�1, k; A) ends in a block of b As. According to the minimisation
step (13.4) of the usual recursive procedure, the optimal part-slotting corresponding
to F(j, k; A) could be obtained from that for F(j�1, k; A) simply by appending Aj to
the existing sequence. This, however, would produce a block of (b C 1) consecutive
As. To avoid this, the next element in the optimal part-slotting must be BkC1, the
next available sample in sequence B. If k D n, there is no available B to control the
number of consecutive A’s. The resulting ‘end-block’ of consecutive A’s is of no
consequence, but could arise when sequence A is much longer than sequence B.

As an example, suppose that j D 10, b D 3, and the optimal part-slotting for
F(9, k; A) ends with ..BkA7A8A9. Then in the next stage in the optimal part-slotting,
we must have:

: : : BkA7A8A9BkC1 not BkA7A8A9A10

This can be achieved by setting F(10,k;A)D M.
A natural measure of the degree of similarity of the two sequences is the

standardised criterion

• D 2 � .min CPL/

L1 C L2

� 1 (13.7)



420 R. Thompson et al.

where min CPL is the minimum CPL over all permissible slottings, and L1 and L2

are the path lengths through the individual sequences, given by

L1 D
m�1X

j D1

d.Aj ; Aj C1/ and L2 D
n�1X

kD1

d.Bk; BkC1/

Gordon (1982) shows that, provided the distance measure d satisfies the triangle
inequality,

0 � • � 1 C 2 � min Œd .Am; B1/ ; d .A1; Bn/� = .L1 C L2/

the lower bound is attained when either the two sequences are identical or, roughly
speaking, the m C n observations lie on a line in the appropriate metric space
corresponding to the distance measure d.

A Windows®-based program (CPLSlot) to perform sequence slotting, cor-
relation function fitting (spline or polynomials), and other methods of critical
assessment of the resulting correlations based on the principles outlined here
is available for free download from http://geography.lancs.ac.uk/cemp/resources/
software/cplslot.htm. CPLSlot has the capacity for dealing with multivariate,
directional, vector, and fossil count or proportional data.

Case Studies

Ice Chronology

The first case study involves the GRIP ice-core, a 3029 m long sequence drilled
in central Greenland (Johnsen et al. 1997). It preserves a detailed record of past
environmental changes, through the successive accumulation of annual increments
of snow, along with entrapped atmospheric gases and dust impurities. The age and
durations of past environmental events can be estimated by counting the annual
ice-increments, consequently the GRIP ice-core can be used as a master sequence
against which other records can be compared. Figure 13.1a plots the variations of
•18O when averaged at 500-year intervals. The aim of our first case study is to match
lake sediments from Lago di Grande Monticchio in southern Italy with the GRIP
•18O data and hence to align the Monticchio pollen-stratigraphical sequence with
the ice-core chronology. The percentage of pollen of woody taxa, as interpolated at
496 horizons from Monticchio, was provided as the basic lake-sediment data (Allen
et al. 1999; Guiot et al. 1993) for the correlation work.

Figure 13.1 plots the Monticchio pollen data when sequence slotted with the
GRIP ice-core chronology. It shows three correlations that are generated when using
different stratigraphical constraints. Figure 13.1d plots the Monticchio data when

http://geography.lancs.ac.uk/cemp/resources/software/cplslot.htm
http://geography.lancs.ac.uk/cemp/resources/software/cplslot.htm


13 Core Correlation 421

0 50000 100000 150000

−
44

−
38

−
32

GRIP ice core
de

lta
 O

−
18

1 34 14 16 1920 21 22 2324

0 50000 100000 150000

20
60

Monticchio − Block lengths 1 and 3

%
 W

oo
dy

 ta
xa

0 50000 100000 150000

20
60

Monticchio − Block lengths 2 and 2

%
 W

oo
dy

 ta
xa

0 50000 100000 150000

20
60

Monticchio − No constraints

%
 W

oo
dy

 ta
xa

a

b

c

d

Fig. 13.1 Lago Grande di Monticchio lake-sediment slotting with the GRIP ice-core chronology.
(a) •18O at 500-year intervals (301 data points) in the GRIP sequence. Main interstadial
(or Dansgaard/Oeschger) events, marked by numbers between 1 and 24, are identified by light
•18O layers. (b–d) Percentage woody pollen taxa (496 data horizons) in the Monticchio lake-
sediment sequence. Sequence slotting constrained with (b) maximum block lengths of 1 and 3.
i.e., a maximum hiatus duration of 500 years, and a maximum deposition rate of three Monticchio
horizons per 500 year time interval; (c) maximum block lengths of 2 and 2. i.e., maximum hiatus
of 1000 years, and a maximum deposition rate of two Monticchio horizons every 500 years. Here
the deepest Monticchio sediments are dated as much older than the basal GRIP ice and so fall
beyond the right-hand edge of the diagram; and (d) no maximum block lengths. Note how the
alternative constraints lead to very different correlations. Slotting (b) is in excellent agreement
with the Monticchio tephra chronology of Allen et al. (1999)

sequence slotted with the GRIP data of Fig. 13.1a using no external constraints.
This slotting corresponds to the global minimum for the similarity between the two
sequences as measured by expression 13.7. Although the match is visually attractive,
and is the correlation that would be generated by the original sequence-slotting
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algorithm of Gordon and Reyment (1979), it is only achieved by allowing very
variable local deposition rates and so it is unlikely to be correct. We can moderate
the deposition rates through block-size constraints, i.e., constraints on the maximum
number of consecutive samples in either sequence. A first attempt at a constrained
match, Fig. 13.1c, has constraints that are too severe, and once again a poor
match is generated. We see that the basal lake-sediment is forced to be far too
old. Figure 13.1b shows the slotting for a more sensible combination of block-
size constraints. Now the match is in good agreement with that of the Monticchio
tephra chronology (Allen et al. 1999). We use the slotting of Fig. 13.1b as the final
output from our sequence-slotting algorithm. It yields an age for each of the 496
Monticchio data horizons, two scaling parameters, and the degree of similarity (ı)
between the GRIP ice-core and Monticchio pollen sequences.

Any worthwhile numerical core-correlation procedure must somehow address
the critical issue of locating such local minima, rather than just the global minimum.
That is, the core-correlation procedure must be capable of much more than minimi-
sation alone. It must be able to handle additional stratigraphical information (e.g.,
deposition rate constraints, precedence constraints) and to incorporate formally this
additional knowledge into the correlation process.

Mountain and Arctic Lakes

Between 1996 and 1998 at least three cores were collected at each of eight
mountain and Arctic lakes in the MOLAR project. The cores were generally sliced
at contiguous 0.2–0.25 cm intervals, providing a sampling resolution of between 1
and 5 years. Following a standard protocol, dry weight and bulk organic matter, as
loss-on-ignition, were measured on all of the samples. Selected cores or samples
were measured for organic carbon and nitrogen; sulphur; plant pigments (Lami
et al. 2000b); and for the remains of diatoms, chrysophytes, cladocerans, and
chironomids (Brancelj et al. 2000; Granados and Toro 2000; Kamenik et al. 2000;
Lotter et al. 2000; Rautio et al. 2000; Ventura et al. 2000). A chronology was
constructed for a master core at each lake (Table 13.1) using 210Pb, 241Am, and
137Cs radiometric techniques (Appleby 2000). Dry weight and loss-on-ignition
measurements at remote mountain lakes can reveal remarkably high-resolution
stratigraphical fluctuations. These two parameters were measured on all 3405
samples (Table 13.1) thus providing a basis for within-lake core correlation.

The results of the sequence slotting for four of the eight lakes are illustrated in
Figs. 13.2, 13.3, 13.4, and 13.5, while Fig. 13.6 shows the final time–depth diagrams
for all eight lakes. Sequence slotting is carried out on ordered data; i.e., no depth or
chronological information is used, only sample number. Thus the results of sequence
slotting are best viewed in terms of sample order, i.e., sample position in a core. In
Figs. 13.2, 13.3, 13.4, and 13.5 dry weight and loss-on-ignition are plotted with
respect to position in the master core.
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Table 13.1 Details of the eight MOLAR lakes included in this correlation study

Lake
Latitude Longitude Elevation

Master Core
Number Number

(degrees) (degrees) (m a.s.l.)
core length

of cores of samplesacronym (cm)

Gossenköllesee 47ı 130N 11ı 010E 2417 Gks97-3 32.2 5 510
Hagelseewli 46ı 400N 08ı 020E 2339 Hag96-2 34.0 5 370
Estany Redó 42ı 390N 00ı 460E 2240 Rcm97-1 42.6 3 404
Laguna Cimera 40ı 150N 05ı 180W 2140 Cim97-1 24.4 4 334
Jezerov Ledvicah 46ı 200N 13ı 470E 1830 Ledv96-4 29.8 3 444
Nižne Terianske 49ı 100N 20ı 000E 1775 Teri96-6 28.2 3 438

Pleso
Øvre Neådalsvatn 62ı 460N 09ı 000E 728 Ovne97-5 28.6 4 636
Saanajärvi 69ı 050N 20ı 520E 679 Saan98-1 10.2 4 269

Latitude, longitude, elevation (metres above sea level), acronym for the master core and its length,
the number of additional cores, and the number of samples are given
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Fig. 13.2 Bivariate sequence slotting of four cores from Øvre Neådalsvatn (Ovne), central
Norway. Measurements on the master core are plotted in the uppermost panels as solid symbols.
Three daughter cores are plotted in the three middle rows using open symbols. The final stack of
all four cores is shown in the bottom panels. The left-hand panels show loss-on-ignition while
the right-hand panels show dry weight. Both variables have been standardised (see text). The
horizontal scale in all panels refers to sample position in the master core with the core top at the
left-hand edge of the panel. The sample positions in the master core are plotted using equal spacings
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Fig. 13.3 Bivariate sequence slotting of three cores from Jezerov Ledvici, Slovenia. Measure-
ments, symbols, and figure layout are as in Fig. 13.2
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Fig. 13.4 Bivariate sequence slotting of three cores from Nižne Terianske Pleso, Slovakia.
Measurements, symbols, and figure layout are as in Fig. 13.2
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Fig. 13.5 Bivariate sequence slotting of three cores from Estany Redó, Spain. Measurements,
symbols, and figure layout are as in Fig. 13.2

The slottings were achieved by minimising • (in expression 13.7) subject to
certain constraints. A maximum internal block length of two was imposed. This
constrains the relative deposition rates in the two cores to be within a factor of 2 of
each other. It also precludes hiatuses. The core tops were aligned using a combina-
tion of constraints of the type described above and explained in more detail in Clark
(1985). One core from Laguna Cimera (Spain) needed some additional assistance
in its alignment. This was easily achieved by using a combination of stratigraphical
constraints to guide the slotting over a somewhat difficult section in the middle of
the core. One core from Estany Redó (Spain) needed a more relaxed block-length
constraint (of four). Otherwise the block-length constraint of two (in practical terms
the most exacting possible) worked extremely well, generating visually appealing
core correlations and confirming the absence of any major hiatuses.

Linear transformation (scaling) of the observations can slightly improve slotting,
especially when cores are not of the same length. Scaling is also a simple method
of weighting. Here it serves to give equal weight to the dry weight and to the
loss-on-ignition data. For each slotting the master core was scaled using N(0,1)
(i.e., transformed to z-scores (Dstandardised scores) with zero mean and unit
standard deviation) and then the daughter core was scaled using N(�, ¢). The best
combination of � and ¢ was found for each core individually by using a simplex
optimisation that minimised delta. [The Nelder-Mead simplex algorithm (Nelder
and Mead 1965) provides a particularly simple way to minimise a fairly well-
behaved function. It requires only function evaluations and so is often a good choice
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Fig. 13.6 Time–depth diagrams for the eight MOLAR lakes. Nine chronologies dated by 210Pb
are drawn as solid lines. The 21 chronologies, of the daughter cores, as derived by sequence
slotting, are plotted as dotted lines. The lower right-hand panel plots a synthesis of the time–depth
relationships of all 30 sediment sequences in the eight lakes

for simple minimisation problems. Because it does not use any gradient evaluations,
it can take longer to find the minimum than other methods. But here, as there are
only two parameters to optimise, the time-loss is not a problem (Wright 1996)]. The
net result of all these sequence-slotting computations was that for every sample in
the daughter cores an equivalent depth in the master core was obtained.

Finally a cubic-spline interpolation (Birks 2012: Chap. 2) was used to convert all
the depths to ages. The 210Pb measurements of Appleby (2000), on the master cores,
provided the basis for the spline fitting. In addition the age of the topmost sediment
was constrained by the coring date, and where necessary the age of the lowermost
sediment, beyond the range of the radiometric ages, was found by extrapolation.
The resulting time-depth profiles of all 31 cores are plotted in Fig. 13.6.

Other Palaeolimnological Applications

Sequence slotting has also been used in palaeolimnological studies to assess how
similar different stratigraphical sequences are by computing •, the measure of
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similarity for pairs of sequences. Sequences compared include oxygen-isotope
curves from Swiss lakes and the Dye-3 Greenland ice-core (Lotter et al. 1992)
and chironomid-inferred July air temperatures at five late-glacial sites in north-west
England (Lang et al. 2010). In both cases, slottings were made without constraints
and with some mild external stratigraphical constraints. Little difference was found
in the slottings or in the values of the measure of the degree of similarity with and
without any external constraints.

Conclusions

In the two case studies presented here, the mathematical method of sequence slotting
has allowed a large number of measurements to be handled automatically and re-
peatably. The core correlations generated can be seen in Figs. 13.1, 13.2, 13.3, 13.4,
13.5, and 13.6 to be of high quality. Remarkably consistent time-depth profiles were
found at all eight of the slowly depositing arctic or alpine lakes used in the MOLAR
project. Three thousand four hundred and five age estimates were generated for
climatic variation studies. Abiotic, multivariate, within-lake signals were correlated.
In the BENCHPAR work biotic, univariate, lake-sediment data were matched to a
master, isotopic, ice-core chronology. The BENCHPAR case-study explored a key
issue for numerical core-correlation, namely that in practice the correct match is not
necessarily that associated with the global optimum. Instead a local minimum must
be identified which satisfies all the available stratigraphical constraints.
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Chapter 14
Quantitative Environmental Reconstructions
from Biological Data
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Abstract Quantitative reconstructions of past environmental conditions (e.g.,
lake-water pH) are an important part of palaeolimnology. Such reconstructions
involve three steps: (1) the development of a representative modern organism-
environment training-set, (2) the development and application of appropriate
numerical techniques to model the relationship between modern occurrences and
abundances of the organisms in the training-set and their contemporary environ-
ment, and (3) the application of this model to stratigraphical palaeolimnological
data to infer past environmental conditions, and model selection, testing, and
evaluation and assessment of the final reconstruction. These three stages are
discussed. Problems of spatial autocorrelation are outlined. The general approach
is illustrated by a case-study. The assumptions and limitations of the calibration-
function approach are presented, and violations of these assumptions are discussed
in relation to different environmental reconstructions. Appropriate computer
software is outlined, and future research areas are presented. The chapter challenges
palaeolimnologists to be more critical of their environmental-inference models and
to be alert to the problems and dangers of confounding variables, and of violating
the main assumptions of the approach.
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Introduction

Many palaeolimnological studies aim to reconstruct aspects of the past environment
from the stratigraphical record preserved in lake sediments. These records may be
lithostratigraphical (e.g., varve thickness), geochemical (e.g., chemical elements
such as Ca, Mg, K, Na, or organic geochemical biomarkers), physical (e.g.,
sediment magnetic properties, optical properties, stable-isotope ratios), or biostrati-
graphical (e.g., diatoms, chironomids, cladocerans, chrysophytes). Environmental
reconstructions in palaeolimnology and other branches of palaeoecology were, prior
to the work of Imbrie and Kipp (1971), primarily qualitative and presented as
‘acid’, ‘mildly basic’, ‘cool’, ‘temperate’, ‘moist’, ‘dry’, etc. In 1971 Imbrie and
Kipp revolutionised Quaternary palaeoecology by presenting, for the first time,
a procedure for the quantitative reconstruction of past environmental variables
from biostratigraphical fossil assemblages involving calibration or so-called transfer
functions. Since this pioneering work on marine foraminifera in relation to ocean
surface temperatures and salinity, the general approach of quantitative palaeoen-
vironmental reconstruction has been adopted in many areas of palaeoecology,
palaeolimnology, and palaeoceanography with fossils as diverse as pollen, diatoms,
chrysophytes, chironomids, cladocerans, ostracods, coleoptera, phytoliths, mosses,
radiolaria, dinoflagellates, coccolithophores, testate amoebae, and foraminifera.

Much of the impetus for the development and refinement of methods for the
quantitative environmental reconstruction in palaeolimnology came from the need
to quantify changes in lake-water pH and nutrients resulting from recent freshwater
acidification and eutrophication (Renberg and Hellberg 1982; Birks et al. 1990a;
Bennion et al. 1996; Smol 2008; Battarbee et al. 2010; Hall and Smol 2010; Simpson
and Hall 2012: Chap. 19). Quantitative palaeolimnological reconstructions now play
an increasingly important role in studies of past climate change (e.g., Battarbee
2000; Brooks 2003; Verschuren 2003: Cumming et al. 2012: Chap. 20), in issues
of lake management and reference conditions (e.g., Brenner et al. 1993; Battarbee
et al. 2005a; Simpson et al. 2005; Reavie et al. 2006; Battarbee and Bennion 2011;
Battarbee et al. 2011; Bennion and Simpson 2011; Bennion et al. 2011a, b; Simpson
and Hall 2012: Chap. 19), ecosystem sensitivity and resilience (e.g., Paterson et al.
2002b), and lake ontogeny (e.g., Renberg et al. 1993; Engstrom et al. 2000), and
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in quantifying the impact of prehistoric societies on aquatic systems (e.g., Bindler
et al. 2002; Bradshaw et al. 2005).

The quantitative interpretation of biostratigraphical records is based on the
principle of uniformitarianism (Rymer 1978; Birks et al. 2010). That is, knowledge
of an organism’s present-day ecology and environmental preferences can be used
to make inferences about past conditions. The use of quantitative methods allows
palaeolimnologists to formalise this procedure by defining a series of equations or
numerical procedures that relate a set of modern biological responses to one or more
modern environmental parameters (Birks 1995, 1998, 2003; Birks et al. 2010):

Ym D f .Xm/ C error (14.1)

where Ym is a matrix of modern biological responses (i.e. taxon abundances), Xm is
a matrix of contemporary physico-chemical environmental ‘predictors’, and f ( ) is
a set of ecological response functions.

If we understood and could quantify the various physical, chemical, and biologi-
cal processes that determine biological distributions and abundances today we could
derive the response functions f ( ) directly. Such detailed autecological information
is usually lacking so we have to solve Eq. 14.1 empirically by relating the modern
distribution and abundance of taxa to contemporary environmental measurements.
This usually involves a modern ‘training’ or ‘calibration’ data-set of biological
census counts extracted from surface sediments together with environmental mea-
surements from the same sites. The relationship between the modern biological and
environmental data-sets is then used to solve f ( ) and the resulting model applied to
fossil assemblages to derive estimates of the environmental variable of interest for
times in the past (Fig. 14.1).

Quantitative reconstruction thus involves three separate steps, (1) the develop-
ment of the modern training-set, (2) the development of the numerical model to
solve Eq. 14.1, and (3) the application of the model to the fossil biostratigraphical
record and the evaluation of the resulting reconstruction. Each of these steps in-
volves a number of decisions concerning training-set selection, data transformation
and screening, choice of numerical method, model selection, testing, and evaluation,
and assessment of the final reconstruction (Fig. 14.2). These steps are described in
more detail below and then illustrated using a case study of recent lake acidification.
We then examine the assumptions of the quantitative approach to environmental
reconstruction and discuss ways in which they can be tested and explore the
implications of their violation.

There are several recent reviews on quantitative environmental reconstructions
from fossil assemblages (e.g., ter Braak 1995; Birks 1995, 1998, 2003, 2010; Birks
and Seppä 2004; Kumke et al. 2004; Brewer et al. 2007; Guiot and de Vernal 2007;
Birks et al. 2010). Our intention here is not to duplicate these reviews but to provide
a critical discussion of the concepts, methodologies, and assumptions illustrated by
recent studies using a range of modern and fossil palaeolimnological data-sets.
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Fig. 14.1 Schematic diagram showing the steps involved in deriving a quantitative reconstruction
from biostratigraphical palaeolimnological data using a modern training or calibration data-set

Fig. 14.2 Flow diagram showing the steps involved in deriving and evaluating quantitative
reconstructions

Training-Set Development

The major requirement for developing quantitative reconstructions is the availability
of an appropriate training-set of modern samples and associated environmental
measurements. Indeed, the resulting accuracy and reliability of the reconstructions
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depends in part on the size, coverage, and quality of the training-set. Despite the
high cost of sample collection and analysis, there has been little work on the optimal
design of training-sets (Telford and Birks 2011a). The training-set will usually be
derived from the same type of sedimentary environment as the fossil material to
minimise the influence of taphonomic effects (Birks 1995) and should span the
range of environmental values likely to be represented by the fossil material (Birks
1998). Where prior environmental data are available, stratified sampling can be used
to ensure training-set lakes span the gradient(s) of interest (e.g., Bennion 1994).
There are few guidelines as to the optimal size: 30 lakes is a useful rule-of-thumb
for simple systems dominated by a single strong environmental gradient but larger
data-sets will generally be needed to estimate accurately the ecological preferences
of taxa across more complex gradients. Most calibration methods are sensitive to
the distribution of the environmental variable in the training-set (e.g., Mohler 1983;
ter Braak and Looman 1986; Telford and Birks 2011a), so samples should be evenly
spaced along the gradient. However, without prior knowledge it is very difficult to
control for Xm and Ym during data collection and there will often be some bias in
the distribution of environmental values.

Taxonomic consistency, both within the training-set, and between the modern
training-set and the fossil material is critical. Where different analysts have been
involved it is important to follow agreed taxonomic protocols and to harmonise
differences between laboratories using agreed identification guides and nomen-
clature, slide exchanges, and a programme of analytical quality control (e.g.,
Munro et al. 1990; Kingston et al. 1992). Collection of adequate environmental
data will often be the most expensive part of training-set construction because
the biological data are usually calibrated against seasonal or annual means based
on multiple measurements. Surface-sediment samples (0–1 cm) represent a time-
averaged assemblage that typically span the previous 1–20 years. Where samples
have been collected at existing monitoring sites they should be related to chemical
or other limnological variables averaged over the same period (e.g., Clarke et al.
2003). Where new chemical or other environmental data are to be collected they
should be as comprehensive as possible: at least seasonally for 1 year, but ideally
monthly to obtain an accurate estimate of the mean for highly variable parameters
(e.g., Stauffer 1988). In some cases it may be appropriate to use seasonal rather
than annual averages, motivated by an understanding of the temporal dynamics of
the species–environment relationship (e.g., Siver and Hamer 1992), or on purely
empirical grounds of lower prediction error (Lotter et al. 1997; Schmidt et al. 2004).
Environments with extremely high inter- and intra-annual variability pose special
problems and in these cases it may be more appropriate to calibrate biological
data from individual habitats to spot environmental measurements (Gasse et al.
1995, 1997).

The full range of taxa or environments cannot always be sampled in a single
region and palaeolimnologists are increasingly collaborating to merge small local
data-sets into larger regional or continental training-sets (e.g., Bennion et al. 1996;
Wilson et al. 1996; Walker et al. 1997; Battarbee et al. 2000; Ginn et al. 2007).
The benefits of merged data-sets include extended and more even sampling of
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environmental gradients and a better coverage of species distributions, both of which
increase the likelihood of finding analogous modern samples. However, merging
data-sets potentially increases noise as a result of increased genetic and ecological
variability not captured by the taxonomy in use, and the influence of ‘nuisance’
or secondary environmental gradients (cf. Kucera et al. 2005). Thus an expanded
training-set may be applicable to a wider range of fossil material but the error of any
reconstructions based on it may be larger. Numerical methods based on ‘dynamic’
training-sets (Birks 1998) may be appropriate in this situation (see the section below
on Numerical Methods).

Many environmental variables exhibit log-normal or other skewed distri-
butions (Ott 1990; Limpert et al. 2001) and require either square-root or
log10-transformation (see Juggins and Telford 2012: Chap. 5). Training-set
biological data are usually expressed as percentages and may sometimes also
be square-root or log10(x C 1) transformed to improve their ‘signal to noise’ ratio
(e.g., Prentice 1980; Lotter et al. 1997). Choice of transformation can be included as
part of the model-selection process (e.g., Köster et al. 2004) although this approach
has hidden problems discussed below. The choice of which taxa to include in
the training-set has received little attention. Almost all published examples use
the full taxon list, after deletion of rare taxa (typically those with two or fewer
occurrences and a maximum value of less than 1%). A few experiments suggest that
weighted-averaging models have lowest prediction errors when all but the very rare
taxa are included (e.g., Cumming and Smol 1993; Birks 1994; Quinlan and Smol
2001). In some situations there may be ecological grounds for excluding certain
taxa: for example Siver (1999) argues that inference models for epilimnetic water-
chemistry should be based on planktonic taxa only, although comparisons suggest
that models that also include benthic taxa have superior predictive power (Philibert
and Prairie 2002b). Finally, Racca et al. (2003, 2004) argue that current criteria to
screen taxa for inclusion are largely ad hoc and present a method for pruning taxa
in an artificial neural network model (see below) on the basis of their predictive
ability. Their procedure is analogous to backward elimination in multiple regression
(Draper and Smith 1981, see Birks 2012: Chap. 2) and is used to build species-
tailored models with enhanced performance. Although the root mean squared error
of prediction (RMSEP, see below) stays constant even when 60–80% of the taxa are
deleted, the ratio of RMSEP/RMSE (root mean squared error) declines, suggesting
that the ‘pruned’ model is more robust than the model based on all taxa (Racca
et al. 2003). More work is needed to see if their results hold for other numerical
approaches. Wehrens (2011) discusses a range of potentially useful techniques
for variable selection in the related field of chemometrics (see also Varmuza and
Filzmoser 2009).

Most biological and environmental data contain outliers or atypical observations.
In the context of calibration these are defined as observations that a have a poor
relationship with the environmental variable of interest. Such outliers can have
a strong influence on taxon coefficients and reduce the predictive ability of the
final model. Birks et al. (1990a), Jones and Juggins (1995), and Lotter et al.
(1997) describe criteria for identifying outliers, based on a comparison of observed
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and inferred environmental values, measures of the influence of each sample on
the model coefficients (e.g., Cook’s D: Cook and Weisberg 1982), and the fit
to the species–environment relationship in ordination space (see below). As we
discuss below, model performance is usually determined by comparing observed
and inferred values for the training-set. Thus the resulting apparent performance of
a model is strongly dependent on the extent and criteria of the screening procedure
(e.g., Birks et al. 1990a). For this reason we prefer to take a conservative approach to
sample deletion and initially remove only outliers that have a standardised residual
(under internal cross-validation (CV)) that is greater in absolute value than 2 or 2.5.
This corresponds to an expected distribution of about 5% and 1% of observations,
respectively. Other observations should only be removed if there is additional
justification, such as unusual values of secondary environmental variables. Finally,
the pattern of outliers may be different for different numerical methods so training-
set screening should be repeated for each method using exactly the same numerical
criteria.

Numerical Methods

Introduction

Inferring one or more environmental parameters from biological data is a problem
of multivariate calibration or inverse regression. This is a well-established area of
statistics (e.g., Martens and Næs 1989; Næs et al. 2002; Varmuza and Filzmoser
2009) but palaeolimnological data possess a number of properties (Birks 2012:
Chap. 2) that make calibration using traditional numerical methods problematical.
First, the modern training data-sets usually contain many predictors (typically
50–300 taxa in the calibration), and the number of predictors often exceeds the
number of samples. Second, the calibration predictors are often highly inter-
correlated or collinear, and exhibit non-linear relationships with the environmental
variables. Third, the predictor variables are usually expressed as percentages and
have a constant sum constraint. Fourth, the matrix of predictors is often sparse
and contains many zero values: typically between 50% and 75% of all entries
are zero in a matrix of diatom abundance values. Fifth, the predictor variables
are subject to both structured and unstructured noise: the former due to the
influence of secondary environmental gradients and the latter the result of other
unmeasured environmental factors, biotic interactions, taphonomic and stochastic
effects, analytical and counting errors (see Maher et al. 2012: Chap. 6), etc. Finally,
despite careful design, the training-set may exhibit an uneven distribution of samples
along the environmental variable(s) of interest (Coudun and Gégout 2006; Telford
and Birks 2011a), and these variables themselves may be subject to substantial
measurement error.
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Fig. 14.3 Conceptual diagram illustrating the different approaches to multivariate calibration.
Sp are biological taxa in the modern training-set and Env is the environmental variable of interest
in the modern data. C are components

Several methods for quantitative reconstructions have been proposed that attempt
to account for, either explicitly or implicitly, the particular numerical properties of
palaeolimnological data. Some have a stronger ecological or statistical basis than
others. As ter Braak (1995), Birks (1995, 2003), and Birks et al. (2010) discuss,
there is a major conceptual distinction between inverse and classical approaches,
and between methods that assume a linear response of species to an environmental
gradient and methods that can account for the non-linear, unimodal relationships
frequently observed in biological data. Figure 14.3 gives a schematic representation
of the methods most commonly used in palaeolimnology.

Classical Methods

Given the causal relationship between biology and environment the seemingly most
obvious way to solve Eq. 14.1 is to estimate the response functions f ( ) by a
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regression of Ym on Xm (Birks 2012: Chap. 2). This is the so-called classical
approach and can be solved using linear, non-linear, or multivariate regression; the
choice of the particular regression model depending on the nature of the relationship
between species and environment and the assumed error structure of the residuals.

With constant-sum biological data the appropriate regression model is the
multinomial logit (ter Braak and van Dam 1989; ter Braak et al. 1993; Birks 1995;
ter Braak 1995) in which the expected proportional abundance of each taxon is
modelled as a non-linear function of the environment. This approach fits response
curves to all species simultaneously and ensures that the sample totals sum to 1
but this has proved difficult in practice, especially with data-sets containing large
numbers of taxa (ter Braak et al. 1993; ter Braak 1995). A simple compromise that
provides an approximation to the multinomial model is to fit separate regressions for
each taxon using logistic regression and include a quadratic term in the environment
to fit Gaussian-like unimodal curves (ter Braak and van Dam 1989; Birks et al.
1990a), so-called Gaussian logit (or logistic) regression (GLR):
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(14.2)

where y(x) is the expected proportional abundance of a taxon as a function of x. The
significance of the quadratic (unimodal) vs. linear regression model can be tested
using a quasi-likelihood F-test and the simplest curve used in the calibration (ter
Braak and van Dam 1989; Birks 2012: Chap. 2).

The fitted response curves, f ( ), together with their error structure, form a
statistical model of the modern biological data in relation to the environment. This
model can then be ‘inverted’ to find the unknown environment OX0 from fossil
samples Y0. Inversion in this case means finding the value of OX0 that is most likely
given the observed biological data Y0, namely the maximum-likelihood estimate of
OX0. This is obtained by maximising the log-likelihood function summed over all m
taxa (Juggins 1992):

l D
mX

kD1

.yk log.Uk/ C .1 � yk/ log.1 � Uk// (14.3)

where Uk is the expected abundance of taxon yk. In most cases the maximum of
Eq. 14.3 lacks a direct analytical solution and OX0 is found using a grid search or
optimisation procedure (Birks 1995, 2001).

Gaussian logit regression and maximum-likelihood calibration (GLR-ML) pro-
vides a statistically rigorous approach to quantitative reconstruction but it has only
rarely been used in palaeolimnology. There are a number of reasons for this.
First, the method is computationally demanding, although with the increase in the
computing power of personal computers and the use of efficient cross-validation
procedures (C2: Juggins 2007; rioja: Juggins 2009) this is no longer a critical
constraint. Second, and most important, in early comparisons the computationally
simpler inverse methods described below often performed as well or better than
GLR-ML (Birks et al. 1990a; Cumming et al. 1992). However, recent comparisons
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by Köster et al. (2004) using C2 and by Birks (2001) using a corrected version of
the WACALIB software suggest that GLR-ML can out-perform alternative methods.
Because GLR-ML can model both unimodal and monotonic relationships it seems
particularly useful for data-sets spanning relatively short gradients (Köster et al.
2004). More comparisons are needed to evaluate fully its merits but these new results
indicate that GLR-ML can provide a useful, alternative reconstruction method
(see also Telford and Birks 2005; Yuan 2007).

Inverse Methods

The inverse approach to calibration avoids the difficult inversion step required in
classical methods by estimating the inverse of f ( ) directly from the training-set by
an inverse regression of Xm on Ym (Birks 2012: Chap. 2).

Xm D g .Ym/ C error (14.4)

The estimate of the past environment, OX0, is then simply obtained by inserting
the values of the fossil biology into Eq. 14.4: OX0 D g .Y0/. A simple approach
to inverse regression that performs a reconstruction from a single taxon is to use
linear least-squares regression (e.g., Beerling et al. 1995; Finsinger and Wagner-
Cremer 2009). In this model the environmental variable is the ‘response’ variable
and the taxon abundance is the ‘explanatory’ variable (note that we do not imply that
biology ‘causes’ environment but we simply ‘invert’ the roles of the variables for
convenience of statistical modelling). With m taxa this approach extends to multiple
least-squares linear regression (Birks 2012: Chap. 2):

x D b0 C b1y1 C b2y2 : : : bmym (14.5)

Modern training-sets usually have large numbers of taxa and the abundances of
ecologically similar taxa are often highly correlated. This causes two problems for
multiple linear regression: (1) when the number of taxa approaches or exceeds the
number of samples the regression solution is indeterminate, and (2) multicollinearity
among the explanatory variables leads to instability in the regression parameters
(Montgomery and Peck 1982). In addition, Eq. 14.5 assumes a linear relationship
between taxa and their environment that is rarely observed in nature. Practical
implementations of the inverse approach attempt to address these problems in differ-
ent ways and include multiple regression of species groups, principal components
regression (PCR), partial least squares (PLS), and weighted-averaging (WA) based
methods (Fig. 14.3). The first of these tackles the multicollinearity problem by
combining the original taxa into a small number of species groups, or ‘supertaxa’,
and uses these as predictors in a multiple regression. The groups may be derived
from an a priori classification, such as F Hustedt’s pH classification of diatoms
(Flower 1986; ter Braak and van Dam 1989), or from a cluster analysis of taxa
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in the training-set (see Charles 1985; Legendre and Birks 2012a: Chap. 7). The
second method, principal components regression, reduces the original biological
variables to a small number of principal components and uses these as predictors
in a multiple regression. PCR forms the basis of the Q-mode factor analysis
method (IKFA) developed by Imbrie and Kipp (1971). Despite its widespread use
in palaeoceanography (e.g., Gersonde et al. 2005), PCR suffers from a number of
problems (Birks 1995). First, because the components used as predictors in PCR are
linear combinations of the original variables, the method is only likely to perform
well over short compositional gradients where there is a predominantly linear
relationship between taxa and their environment. Second, the principal components
are extracted to provide a summary of the main directions of variation in the
biological data (see Legendre and Birks 2012b: Chap. 8). There is no guarantee
that they will have any predictive power for the environmental variable of interest.
Extensions to these approaches that can model non-linear species–environment
relationships and extract components in a more efficient way so as to maximise the
covariance with the environmental variable, lead to weighted averaging and partial
least squares.

Weighted-Averaging (WA) Regression and Calibration

Weighted-averaging regression and calibration are motivated by the idea that species
occupy different niches in environmental space, and that these niches can be
characterised by parameters that describe the niche centre (u) and niche breadth (t).
If species follow a unimodal distribution in relation to a particular environmental
variable then the niche centres and breadths are the optima and tolerances of
those distributions. Since species will tend to be most abundant at sites with an
environmental value close to its optimum, an estimate of the optimum is obtained
by a simple weighted average of the environmental values over the sites where the
species is found, so-called WA regression:

Ouk D
nX

iD1

yikxi

,
nX

iD1

yik (14.6)

where ûk is the optimum of taxon k, yik is the abundance of taxon k in sample i, xi

is the environmental variable in sample i, and n is the number of sites. Similarly,
a fossil sample will tend to be dominated by taxa whose optima are similar to
the environmental conditions that prevailed when that sample was deposited. An
intuitive estimate of the past environment OX0 is therefore given by a weighted
average of the species optima in the sample, so-called WA calibration:

Ox0 D
mX

kD1

yik Ouk

,
mX

kD1

yik (14.7)
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where m is the number of taxa. Equations 14.6 and 14.7 present weighted averaging
as a multivariate indicator-species approach to environmental reconstruction in
which potentially all species have the same indicative value. Observations sug-
gest, however, that some species may be better indicators than others: those
with narrow tolerances should be more faithful indicators than those found over
a wide range of environmental conditions. Equation 14.7 can be modified to
weight taxa by the inverse of their squared tolerance (ter Braak and van Dam
1989), thus effectively down-weighting taxa with broad tolerances (low indicative
values).

Ox0 D
mX

kD1

yik Ouk

t2
k

,
mX

kD1

yik

t2
k

(14.8)

A simple weighted average estimate of the tolerance t for taxon k (D weighted
standard deviation) is given by:

tk D
"

nX

iD1

yik.xi � Ouk/2

,
nX

iD1

yik

# 1
2

(14.9)

Note that for an unbiased estimate of the tolerances, tk in Eq. 14.9 should be
divided by (1�1/N2)2, where N2 is the effective number of occurrences of the taxon
(Hill 1973; Birks 1995; ter Braak and Šmilauer 2002).

Tolerance down-weighting in weighted averaging (WAT) is intuitively reasonable
but in practice it is seldom found to improve over simple WA (e.g., Birks et al.
1990a). This conclusion is due, in part, to a bug in early versions of WACALIB (3.5
or earlier). Recent comparisons by ourselves and others (e.g., Köster et al. 2004;
Reid 2005) using C2 and a debugged version of WACALIB indicates that tolerance
down-weighting can produce moderate improvements over simple WA with some
data-sets.

In WA averages are calculated twice. This means that the range of the optima, û,
and consequently the range of the estimated environmental values, OXi , is shrunken
with respect to the original gradient. To correct for this a simple linear regression
is performed to ‘deshrink’ the original OXi values using either classical regression in
which the initial estimated values ( OXi ) from Eqs. 14.7 or 14.8 are regressed on the
observed values (xi):

initial Oxi D b0 C b1x1I final Oxi D .initial Oxi � b0/=b1 (14.10)

or by inverse regression, where xi are regressed on OXi :

xi D b0 C b1 initial Oxi I final Oxi D b0 C b1initial Oxi (14.11)
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Birks et al. (1990a) discuss the relative merits of the two approaches. Inverse
regression minimises the overall root mean squared error (RMSE) in the training-
set (see below) but the mean squared error properties are not optimal for all x-values
(Næs et al. 2002): it gives more accurate predictions for samples that lie close to
the mean of the training-set but, because it pulls the inferred values closer to the
mean than in classical regression, the inferred values are often over-estimated at
low values and under-estimated at high values of xi (see also Robertson et al. 1999).
Classical regression is therefore preferable if accurate predictions are required for
samples towards the ends of the training-set gradient (Birks et al. 1990a). The
final estimates ( OXi ) from the two methods diverge with increasing distance from
the mean. The rate of the divergence is given by (1 � r2), where r is the Pearson
product–moment correlation coefficient between the observed and the inferred
values (Draper and Smith 1981). For calibrations with a squared correlation of 0.7–
0.8, commonly observed in palaeolimnological training-sets, the difference can be
appreciable, especially for samples far from the mean.

WA has gained considerable popularity in palaeolimnology in recent years (Smol
2008). Birks (1995, 2003) and Birks et al. (2010) identify three reasons for this.
First, the method is based on statistically sound theory (ter Braak and Barendregt
1986; ter Braak and Looman 1986): despite its apparent simplicity it has been
shown to provide a good approximation to the maximum-likelihood calibration
of Gaussian response curves described above (ter Braak and Barendregt 1986;
ter Braak and Looman 1986), but is computationally much simpler. Second, the
method is based on an underlying unimodal response model between species and
environment that is predicted by niche theory and the species packing model, and
that is frequently observed in real data. Finally, and most compelling, is that the
method has good empirical predictive ability and, in comparisons using real and
simulated data, performs as well or better than competing methods (e.g., ter Braak
and van Dam 1989; Juggins 1992; Juggins et al. 1994; Birks 1995). Unfortunately
WA also has three important weaknesses. First, estimates of species optima, and
consequently the final inferred values, are sensitive to an uneven distribution of xi

values in the training-set (ter Braak and Looman 1986) although with large data-sets
(>400 lakes), WA appears to be quite robust to this distributional sensitivity (Ginn
et al. 2007; Telford and Birks 2011a). Second, WA regression and calibration suffers
from ‘edge effects’ that lead to non-linear distortions at the gradient ends. This
problem is particularly acute for training-sets with a long (>3 standard deviation
units of compositional turnover; see Legendre and Birks 2012b: Chap. 8) and a
single dominant gradient, and results in an over-estimation of optima at the low
end of the gradient and an under-estimation at the high end. This in turn leads to
biases in the predicted values (ter Braak and Juggins 1993). Finally, it is likely that
there are additional variables that can influence species distribution in the training-
set. The structure that results from these variables may be useful for predicting xi,
but is ignored by WA. These limitations are addressed by an extension of WA to
weighted-averaging partial least squares regression (WAPLS).
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Partial Least Squares (PLS) and Weighted-Averaging Partial
Least Squares Regression and Calibration (WAPLS)

We saw above that one approach to the multicollinearity problem is to reduce,
or compress, the original number of predictors into a small number of principal
components and then use these in a multiple regression (PCR: Fig. 14.3). We have
also seen that this is not an efficient solution as the components are chosen to
maximise the variation within the biological data, irrespective of their predictive
value for xi. Thus the information in Y that is useful for predicting xi is likely
to be spread over several components, and these components will also likely be
‘contaminated’ by other sources of variation. This problem is addressed in PLS
by using both the biological and environmental data to extract the components
(Fig. 14.3). Whereas PCR extracts components to maximise variance in Y, PLS
effectively combines the data-reduction and regression steps and extracts compo-
nents that maximise the covariance between x and linear combinations of Y. Higher
components are extracted using the same criterion but, as with PCA, are orthogonal
to early components. PLS usually outperforms PCR, and because the components
in PLS are directly related to the variability in x, PLS usually requires fewer
components that PCR, resulting in a more parsimonious model (Næs et al. 2002).

A very important part of PLS model-building is choosing an appropriate number
of components. It is possible to calculate as many PLS components as there are
linearly independent rows or columns in the species data, but usually only a small
number are used. This is because the biological and environmental data are never
noise-free, and some of the higher components will describe this noise (Geladi
and Kowalski 1986). If too many components are used, we start to model these
intrinsic features of the training-set and the model becomes over-fitted. In such
cases the model may provide an excellent fit to the training-set data but will
generally have poor predictive power when applied to new observations (Næs et al.
2002). Conversely, with too few components the model is under-fitted and does
not adequately account for the training-set data. If our interest is in model building
for data exploration, the number of components can be estimated using an F-test
(Geladi and Kowalski 1986), but, because of the danger of over-fitting, the quality
of the fit to the training-data cannot be used to choose the number of components
that gives the best predictive model. To do this the number of components must
be chosen on the basis of how well the model predicts observations not included in
the training-set. In practice this is achieved using some form of cross-validation (see
below Model Selection and Evaluation).

By retaining just a few orthogonal components, PLS provides an elegant solution
to the multicollinearity problem but, as in PCA, the resulting components are a linear
combination of the original biological variables. Like PCR, the method is therefore
only likely to perform well over short compositional gradients where we can expect
(approximately) linear relationships between taxa and their environment (Birks
1995). In PCR this problem was addressed by Roux (1979) who exploited the ability
of correspondence analysis (CA) to model unimodal relationships (ter Braak and
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Prentice 1988) and replaced the PCA step in PCR with CA to give correspondence
analysis regression (CAR). CAR can be seen as a non-linear, unimodal version of
PCR, and, although it usually outperforms the latter (e.g., ter Braak et al. 1993;
Birks 1995), it also suffers from the same limitation as PCR in that the axes are
not guaranteed to contain information useful for predicting xi. However, just as
PLS extends PCR by selecting components that maximise covariance between x
and linear combinations of Y, we can derive a technique from CAR that extracts
components to maximise the covariance between x and the weighted averages of Y.
Because the components are weighted averages of the taxon scores, this technique
is called weighted-averaging partial least squares (WAPLS: ter Braak and Juggins
1993).

WAPLS combines the attractive features of WA (ability to model unimodal
responses) with those of PLS (efficient extraction of components). As with PLS,
in WAPLS the optimal number of components is chosen by cross-validation on the
basis of the prediction error (see below “Model Selection and Evaluation”). If only
one component is retained, WAPLS reduces to WA with an inverse deshrinking
regression, with one small difference, namely in WAPLS the deshrinking regression
is weighted by the sample total, although for percentage data with constant site
totals this weighting is immaterial (ter Braak and Juggins 1993). WA with inverse
deshrinking regression can thus also be seen as a component-based method closely
related to WAPLS but with only one component (Fig. 14.3). The first WAPLS
component is also equivalent to the first axis of a canonical correspondence
analysis (CCA) with a single constraining environmental variable. The CCA-based
reconstruction method of Stevenson et al. (1989) is therefore equivalent to WA with
inverse deshrinking or a one-component WAPLS model.

The above derivation of WAPLS focuses on its similarity with PCR, CAR, and
PLS. WAPLS also has a more heuristic description based on its similarity to WA: the
first WAPLS component is equivalent to simple WA (with the above qualification).
Subsequent components are equivalent to a WA of the residuals of xi estimated from
previous components. Each component has an accompanying set of species scores
that are combined to update the estimates of the species ‘optima’ to improve their
predictive ability. Note that although the modified coefficients may give a better
prediction of xi they should not be regarded as estimates of ecological optima as they
no longer reflect the weighted centroids of species distributions. They are regression
coefficients, not species optima.

Ter Braak and Juggins (1993) and ter Braak et al. (1993) compared the
performance of WAPLS to WA and maximum-likelihood methods using a variety of
simulated and real training-sets. Their results suggest that WAPLS offers substantial
improvements over WA and linear PLS for data-sets with long compositional gra-
dients and low noise. However, the advantage of WAPLS decreases with increasing
structured and unstructured noise and modest reductions in prediction error of
10–20% are typical for most biological data-sets. With very noisy, species-rich data,
WAPLS may fail to improve on WA. Interestingly, even over short gradients where
we might expect linear methods to do well, WAPLS usually outperforms PLS, or
can equal it with fewer components, and so provide a more parsimonious model



446 S. Juggins and H.J.B Birks

(e.g., Seppä et al. 2004). Presumably even short gradients contain some non-linear
responses and additional PLS components are required to model these adequately.

Where WAPLS provides a reduction in prediction error over WA, it usually does
so for one of three reasons. First, by adjusting the coefficients for species with the
‘optima’ at the ends of the gradient, WAPLS can help reduce or eliminate the ‘edge
effects’ described above that plague all WA-based models. Second, it is often the
case that additional environmental variables influence species distributions, and this
influence may result in a structured pattern in the residuals. WAPLS may be able
to exploit this structure to improve the estimates of the species parameters in the
final calibration function. Third, WAPLS may improve the fit of outliers, or gross
errors. These three situations are illustrated in Fig. 14.4 using different data-sets.
Characteristics of the data-sets are listed in Table 14.1.

The first example uses an unpublished diatom pH training-set of 96 lakes (Bergen
data-set: Birks et al. unpublished). Detrended canonical correspondence analysis
(DCCA) (Birks 2012: Chap. 2; Lotter and Anderson 2012: Chap. 18; Simpson
and Hall 2012: Chap. 19) indicates that species distributions and abundances are
influenced by a single strong compositional or turnover gradient related to lake-
water acidity (gradient length D 3.8 standard deviations (SD)) and that secondary
gradients have minimal effect (lambda 1/lambda 2 D 1.76, see below). Figure 14.4
shows the relationship between observed and predicted pH for the first WAPLS
component. The overall relationship between observed and predicted pH is strong
(RMSEP D 0.44, see below “Model Selection and Evaluation”) but edge effects
are clearly apparent with an over-estimation of lake-water pH in more acid lakes.
The second WAPLS component has a cross-validation RMSEP of 0.37 pH units
(Table 14.1). This represents a reduction in prediction error of 16% and is achieved
primarily by ‘straightening out’ the trend in the residuals, although this is not perfect
and there is still a slight tendency to over-estimate values at the low end of the
gradient (Fig. 14.4).

The second example is a diatom training-set developed by Clarke (2001) and
used to reconstruct total nitrogen (TN) in Danish coastal waters (Danish data-
set: Clarke et al. 2003). DCCA of these data indicate modest diatom turnover
along the TN gradient (gradient length D 1.8 SD), and that TN is not the primary
environmental variable controlling diatom composition and abundance (lambda
1/lambda 2 D 0.5). Figure 14.4 shows the relationship between observed and
predicted TN for WAPLS components 1 and 2 and reveals a clear bias in the
residuals reflecting over-estimation at low values and under-estimation at high
values. In this example the second component is not able to correct for the bias
although it does provide a modest reduction in prediction error of c. 13% from
0.15 to 0.13 log10 �gL�1 TN. A clue to how this improvement is achieved can be
found by examining the relationship between the WAPLS sample scores and other
environmental variables: WAPLS component 1 scores are negatively correlated with
water-depth (r D �0.55), reflecting the negative correlation between TN and depth
in the observed data (r D �0.43), but WAPLS component 2 scores are positively
correlated with depth (r D 0.41). It appears that the second WAPLS component has
exploited structure in the residuals related to water-depth and used this to improve
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Table 14.1 Summary
statistics of three diatom sets
used to illustrate features of
weighted-averaging partial
least squares (WAPLS)

Bergen Denmark E. Baltic

No. sites 96 67 58
No. taxa 129 180 122
Gradient length 3.8 1.8 1.8
Lambda 1 0.6 0.2 0.2
Lambda 1/lambda 2 1.76 0.5 0.6
RMSEP (WAPLS comp. 1) 0.44 0.15 0.010
RMSEP (WAPLS comp. 2) 0.37 0.13 0.093

Lambda 1 is the eigenvalue of the first and only constrained
canonical axis and Lambda 2 is the eigenvalue of the first uncon-
strained ordination axis in a detrended canonical correspondence
analysis (DCCA). RMSEP root mean squared error of prediction,
comp. component

(slightly) the TN predictions. The third example is an unpublished diatom-TN data-
set also from the Baltic (E. Baltic data-set), created by merging sites in Weckström
et al. (2004) from Finland with those in Eastern Sweden analysed by Elinor Andrén.
The features of this data-set are similar to the previous set except here the second
component only represents a small improvement in RMSEP (7%) which appears to
be related to the improved fitting of a few isolated samples rather than any overall
systematic improvement in the model (Fig. 14.4). This last example is problematic
and probably represents over-fitting, in this case, of a few outliers. Cross-validation
should guard against this but it is not always successful and it can sometimes
be difficult to differentiate over-fitting from real improvement. We return to this
problem below (Model Selection and Evaluation).

The right-hand column of Fig. 14.4 also shows plots of the species scores for
WAPLS components 1 and 2. These give a valuable insight into the modifications of
the species coefficients that yield the improved fit for component 2. For the Bergen
data-set (Fig. 14.4) there is a clear pattern in the component 2 scores that compensate
for the over-prediction at low pH with component 1. For the Denmark and East
Baltic data-sets there is also an overall trend that attempts to compensate for the
bias in the component 1 model but there is much scatter and a number of outlying
points: in these situations careful examination is needed to ensure that the scores
and the resulting taxon modifications are ecologically sensible.

WAPLS is attractive because it often offers improvements over WA in terms
of lower prediction error but, as the above examples illustrate, it does have two
disadvantages. The first is that it needs careful model selection to avoid over-fitting.
The second is that it needs careful model diagnosis to understand exactly why higher
components improve the fit to the training data. Where higher components use
residual structure due to additional environmental variables, it is important that the
joint distribution of these variables in the past should be the same as in the modern
data-set (ter Braak and Juggins 1993). This aspect of WAPLS model building has so
far received little attention and we return to its consequences below in the section
on Assumptions and Limitations.
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Artificial Neural Networks (ANN)

ANNs are a family of numerical models that learn and predict from a set of data by
mimicking the way the human neural network processes information (Birks 2012:
Chap. 2; Simpson and Birks 2012: Chap. 9). There are a number of different types
of ANNs: for calibration a feed-forward network and back-propagation learning
algorithm is usually used (Næs et al. 1993, 2002). A feed-forward network consists
of a set of interconnected processing units, or neurons, arranged in three layers.
The input layer takes data from the input variables and feeds it to one or more
intermediate or hidden layers where it is combined into the output layer to give
the output variable (Fig. 14.3). The variables represented by the hidden and output
layers are non-linear functions of their inputs, and thus the network is able to model
the output as an arbitrary non-linear function of the inputs. Basheer and Hajmeer
(2000) describe the design and training of ANNs in more detail and Næs et al. (2002)
discuss their use in calibration. ANNs have been frequently used for reconstruction
in palaeoceanography (e.g., Malmgren et al. 2001; Kucera et al. 2005) and, more
rarely, in palaeolimnology (e.g., Racca et al. 2001, 2003, 2004).

ANNs have one main advantage over existing methods: namely that no prior
assumptions about the relationship between species and environment are needed.
ANNs can model any arbitrary mix of linear and non-linear responses. However,
they also have several disadvantages. First, it is difficult to interpret network
coefficients in any ecologically meaningful way – the ANN is essentially a ‘black-
box’ predictor (Olden and Jackson 2002; Olden et al. 2004). Second, and most
important, ANNs are very flexible functions and with large numbers of taxa they
are very prone to over-fitting (Simpson and Birks 2012: Chap. 9). Careful cross-
validation is critical: Næs et al. (2002), Telford et al. (2004), and Telford and Birks
(2005) recommend the use of a separate optimisation data-set and an independent
test-set, although this is seldom available in palaeolimnology (see below “Model
Selection and Evaluation”). Despite these limitations ANNs show some promise
and may be useful in data-sets showing a variety of linear and unimodal species
responses (Köster et al. 2004).

Modern Analogue Technique (MAT)

All methods of quantitative reconstruction described in this chapter invoke the
principle of uniformitarianism, namely the use of modern organism–environment
relationships as a model for interpreting fossil assemblages (Birks et al. 2010).
Under this principle the simplest and most intuitive approach to environmental
reconstruction is a direct space-for-time substitution: if we assume that similar
biological assemblages are deposited under similar environmental conditions, it
follows that the environment of samples in the modern training-set that have similar
species composition to a fossil sample can be used as a direct estimate of the
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environment of that fossil sample (Jackson and Williams 2004; Simpson 2012:
Chap. 15). Where there is more than one close match in the training-set we can take
an average, or consensus, of the k most similar samples (Fig. 14.3). In the pattern-
recognition literature this technique is most often used to solve discrimination
problems and goes under the name of k-nearest neighbours (k-NN: ter Braak 1995;
Webb 2002). In palaeoecology it is known as the modern analogue technique (MAT:
Prell 1985; Simpson 2007, 2012: Chap. 15).

The starting point for MAT is to calculate a measure of dissimilarity between
each fossil sample and each sample in the modern training-set. For relative
abundance biological data, squared chord distance (D squared Hellinger distance
in Legendre and Birks 2012b: Chap. 8) is often used and although it has been
criticised as a measure of compositional dissimilarity (Faith et al. 1987), it possesses
good signal-to-noise properties (Prentice 1980; Overpeck et al. 1985) and generally
provides a good approximation of ecological similarity at the small distances
important in MAT (Gavin et al. 2003). The squared chord distance between samples
i and j is given by:

dij D
mX

kD1

�
p

1=2

ik � p
1=2

jk

�2

(14.12)

where pik is the proportion of taxon k in sample i. Birks et al. (1990a) use the related
squared ¦2 distance, which Bennett and Humphry (1995) argue performs better with
certain data-sets, although there is usually very little difference in practice.

The matrix of dissimilarities is then searched to find the modern sample(s) with
the smallest dissimilarities for each fossil sample. The environmental reconstruction
can be based on the single most similar modern sample but it is usual to take the
mean or weighted mean of the k closest matches. The use of a weighted mean
follows from the assumption that modern samples that are more similar in biological
composition to a fossil sample are also likely to be more similar in environment.
Thus the final estimate of OX0 is given by a weighted mean of the k nearest analogues,
using the inverse of d as weights:

Ox0 D
kX

iD1

xi

d0i

,
kX

iD1

1

d0i

(14.13)

MAT is widely used in palaeoceanography (e.g., Kucera et al. 2005) and
palynology (e.g., Davis et al. 2003) but is rarely employed by palaeolimnologists
(Birks 1998; Simpson 2007). The main reason for this is that MAT generally
requires a large training-set. The other methods considered above fit a single
species–environment model to the whole training-set and are apparently able to
generalise relationships, often with only a modest number of samples (e.g., Bennion
1994). MAT is a form of inverse non-parametric regression via smoothing (ter Braak
1995) and rather than fitting a single global model it proceeds by fitting a local
model to small subsets of the training data for each fossil sample. For MAT to



14 Environmental Reconstructions 451

be effective we thus require reasonable coverage of samples in local space, which
implies a well-populated network of samples across the environmental gradient(s)
of interest (Gonzales et al. 2009).

The choice of k, the number of samples in the local model, is somewhat arbitrary:
values of 5–10 are usual, depending on the size and diversity of the training-set. The
choice can be important as a small number of analogues will tend to produce noisy or
‘spiky’ reconstructions whereas a larger number will damp out fine-scale variation
and produce a ‘flatter’ profile. A plot of prediction error (under cross-validation) for
different values of k can provide a more objective guide for a particular training-set
(Simpson 2012: Chap. 15).

Because MAT depends on finding analogous modern samples, it can be expected
to yield unreliable reconstructions when good modern analogues do not exist. This
of course begs the question of what constitutes a ‘good analogue’ (Simpson 2012:
Chap. 15). The definition is complex and involves total taxonomic composition, the
relative abundance of dominants, the identification of specialists and generalists,
and life-form and functional types. These attributes are not easy to measure and
even more difficult to encapsulate in a single dissimilarity measure. Extreme non-
analogue situations with few taxa in common between modern and fossil samples
are easy to identify from a comparison of species lists. The identification of good
analogues is more difficult and we return to this question below when we discuss
evaluating and validating the reconstructions. MAT may also yield unreliable recon-
structions in the presence of multiple analogues, that is, similar modern biological
assemblages with different environmental values (Birks et al. 2010). This situation
is easily identified by inspecting the range or weighted standard deviation of xi

(weighted by 1/d) among the selected analogues. Indeed, high variability among the
analogues is a useful diagnostic in highlighting problematic cases (ter Braak 1995)
or in suggesting that the biology is not actually responsive to the environmental
variable, at least in the region of the gradient represented by the fossil sample.

Despite these limitations, comparisons (e.g., Juggins et al. 1994; Paterson
et al. 2002a) suggest that when large training-sets of several hundred samples
are available there is often little difference in prediction error between MAT and
WA-based methods. Even with moderately-sized training-sets MAT can provide
a useful alternative reconstruction for comparison with those from other methods
(see below). Simpson (2007, 2012: Chap. 15) discusses MAT in further detail and
explains its use in the interpretation of biostratigraphical data and in lake-restoration
applications.

Locally-Weighted Weighted-Averaging (LWWA) Regression
and Calibration

Most of the techniques described above generalise species–environment relation-
ships well from moderately sized data-sets but perform less well with large
heterogeneous training-sets, because of the effects of secondary gradients and other
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sources of noise. MAT, on the other hand, works well with larger data-sets because
it can model local relationships but can produce ‘noisy’ reconstructions because
it models too much local structure in the training-set. Locally-weighted weighted-
averaging seeks to exploit the best features of both methods and selects a local
training-set of size k for a fossil sample using the distance criteria of MAT. WA
is then used to develop a reconstruction based on this local training-set and the
process repeated for each fossil sample. The size of k, as with MAT, can be
determined by cross-validation. Our unpublished experiments suggest a value of
30–50 is appropriate. The technique is ‘locally-weighted’ because in the WA part,
training-set samples have weight 1 or 0: other non-zero weights could be applied
to differentially down-weight more distance samples (e.g., Næs and Isaksson 1992;
Næs et al. 2002). Similarly, the WA part could be replaced with other methods such
as WAPLS or GLR-ML (Hübener et al. 2008).

LWWA creates a dynamic training-set that is tailored to each fossil sample (Birks
1998). Our unpublished and published comparisons (e.g., Battarbee et al. 2005b;
Huber et al. 2010) with large merged data-sets (e.g., European Diatom Database
Initiative (EDDI): Battarbee et al. 2000) suggest that it can perform as well as
traditional methods applied to smaller regional data-sets. That is, it can exploit the
advantage of increased environmental and biological coverage given by very large
training-sets without suffering the disadvantage of increased prediction error. More
comparisons are needed to evaluate fully the method but initial results suggest that
it provides a useful way to exploit large, environmentally diverse training-sets.

Bayesian Methods

The methods described above have different statistical and ecological motivations
but they have one thing in common: they are all so-called frequentist methods
and make the assumption that the model parameters (e.g., WA optima, WAPLS
coefficients, etc.) are fixed and can be estimated from observations (the measured
data) distributed randomly about the fitted values (Holden et al. 2008). Conversely,
a Bayesian approach does not rely on an explicit model of the relationships between
species and environment but assumes that the model is unknown and to be estimated
from the measured data which are fixed. Specifically, the Bayesian approach uses
measured information to modify some prior belief about the environmental values
(Robertson et al. 1999). This additional information is derived from a training-
set and expressed as a conditional probability density function, which is combined
with the prior probability density function to give a posterior density function using
Bayes theorem.

Bayesian approaches have been applied to several palaeoecological problems:
Toivonen et al. (2001) describe a Bayesian model with a conditional probability
density function based on a unimodal model. Vasko et al. (2000) and Korhola
et al. (2002) extend this to include a more realistic multinomial Gaussian response
model and apply it to chironomid-based temperature reconstructions. Haslett et al.
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(2006) further develop these ideas to more generalised modelling of pollen-climate
response surfaces, and Holden et al. (2008) describe a computationally efficient
approach based on probability weighting of species response curves. Li et al.
(2010) develop a Bayesian hierarchical model to reconstruct past temperatures that
integrates information from different sources such as climate proxies with different
temporal resolution.

Although the prediction errors for Bayesian methods are of similar order to
conventional approaches they have a major advantage in their coherent and explicit
handling of uncertainty (Birks et al. 2010; Li et al. 2010). However, the lack of
available software and the huge computational burden of most existing models (days
to weeks for a single reconstruction) currently prevent more widespread use.

Model Selection and Evaluation

Table 14.2 summarises the advantages and disadvantages of the numerical methods
described above. One key conclusion is that there is no single ‘best’ or ‘optimal’
method that can be recommended: differences in training-set size, taxonomic
diversity, and form and complexity of the species–environment relationship make
some numerical techniques more useful than others for particular data-sets. Model
selection thus becomes a crucial step in any quantitative reconstruction (Xu et al.
2010).

The basic requirement for a reconstruction model is that it is statistically sig-
nificant, accurate and precise, reliable, and makes ecological and palaeoecological
sense. Model accuracy and precision are measured by the prediction error but
because we usually do not know the value of x in the past, we cannot directly
calculate the true error of the predictions for a particular fossil sequence. Instead we
estimate the prediction error for the modern training-set and assume that this reflects
the true prediction error. Prediction error is usually calculated as the root mean
squared error (RMSE), defined as the square root of the mean squared differences
between the observed and inferred environmental values (Wallach and Goffinet
1989; Power 1993):

RMSE D
"

1

n

nX

iD1

.xi � Oxi /
2

# 1
2

(14.14)

The RMSE provides a useful overall summary of the model’s predictive ability
and has the advantage that it is given in the same units as the original environmental
values (Næs et al. 2002). The correlation (r) and/or coefficient of determination
(r2) between xi and Oxi are also often calculated. They can be useful in comparing
models for different environmental variables but because they are dependent on both
the magnitude of the model error and the variation in xi and Oxi they should be
interpreted with care: models with the same prediction errors can have very different
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Table 14.2 Advantages and disadvantages of numerical methods described in the text

Method Advantages Disadvantages

Simple two-way
weighted
averaging (WA)

Computationally simple, good
underlying statistical theory
and ecologically plausible;
consistently performs well in
comparisons and tests and is
generally well-behaved in
non-analogue situations, zero
values ignored

Suffers from edge-effects (bias
at gradient ends); the
somewhat arbitrary choice
of classical or inverse
deshrinking can have a
large effect on the final
predictions; disregards
residual correlations in the
biological data (see text)

Tolerance
down-weighted
WA (WAT)

Giving taxa with narrow tolerances
greater weight is ecologically
realistic and can improve
predictions in some cases

Can extrapolate if fossil
assemblages contain taxa
that are rare and have
narrow tolerances in the
training-set

Gaussian logit
regression and
maximum
likelihood
calibration
(GLR-ML)

Statistically rigorous and
ecologically realistic based on
explicit species response
model; good empirical
predictive power

Curve fitting sometimes fails
with low numbers of
observations; susceptible to
outliers in species data; zero
values influential

Principal
components
regression
(PCR), including
Imbrie and Kipp
Factor Analysis
(IKFA)

Based on a linear species response
model which may be
appropriate for short
environmental gradients or
non-biological data

Extraction of components is
inefficient for prediction:
PLS or WAPLS will always
provide a better fit with
fewer components

Partial least squares
regression (PLS)

Based on a linear species response
model which may be
appropriate for short
environmental gradients or
non-biological data; efficient
extraction of components for
prediction

Cross-validation and careful
diagnosis are needed to
select appropriate model
complexity (number of
components); prone to
extrapolation under
non-analogue conditions,
and WAPLS will usually
provide a better fit with
fewer components

Weighted-averaging
partial least
squares
regression
(WAPLS)

Underlying unimodal species
response model, with
additional components
extracted to maximise
covariance with environmental
variable; good empirical
predictive power and improves
over WA with many data-sets

Cross-validation and careful
diagnosis are needed to
select appropriate model
complexity and check that
model is ecologically
plausible; can extrapolate
under non-analogue
conditions

(continued)
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Table 14.2 (continued)

Method Advantages Disadvantages

Modern analogue
technique (MAT)

Ecologically plausible; able to
model local
species–environment
relationships in large
training-sets

Needs large training-sets and
careful choice of number of
analogues. Tends to
produce spiky
reconstructions with small
number of analogues and
flat profiles with larger
number of analogues

Locally-weighted
weighted
averaging
(LWWA)

Ecologically plausible; for large
heterogeneous data-sets it can
provide a good compromise
between local modelling of
MAT and global modelling of
WA; good empirical predictive
power with large data-sets

Needs large training-sets and
careful choice of number of
samples in local
training-set; resulting model
more difficult to interpret

values of r, depending on the length of the environmental gradient spanned by the
training-set (Birks 1995).

Measures of model performance derived from the training-set are almost cer-
tainly under-estimates because they are essentially an estimate of the model error
and not the prediction error (Næs et al. 2002). A more realistic estimate of the
prediction error when the model is applied to new data is provided by some form of
cross-validation. Ideally this would involve testing the model using an independent
test data-set in a so-called external cross-validation (Birks 2012: Chap. 2). However,
we rarely have the luxury of an additional test data-set – these samples could be used
more profitably in the training-set (though see Lotter et al. 1999 for an interesting
approach). Instead we use internal cross-validation of the training-set to simulate
the likely errors when the model is applied to new data. There are three main types
of internal cross-validation available; namely k-fold leave-out, leave-one-out, and
bootstrapping. In k-fold leave-out the order of the samples is randomised and a fixed
proportion (e.g., 20%) is left out of the training-set in turn (giving, in this case, five-
fold leave-out). The calibration function based on the remaining samples is then
applied to the left-out samples, which act as the test-set, and the squared errors
accumulated to form the RMSE of prediction (RMSEP). Note that the RMSEP is
distinguished from the so-called apparent RMSE calculated solely from the training-
set. Leave-one-out is a special case of k-fold leave-out where each sample in turn
is left out to form a single sample test-set (Manly 1997). Larger training-sets
usually include some inherent replication, so as training-set size increases, leave-
one-out RMSEP becomes a less reliable estimate of true prediction error (Næs et al.
2002). K-fold leave-out provides a more rigorous test but can be overly pessimistic
because the training-sets in each step are of a correspondingly smaller size (Webb
2002). This problem is addressed in bootstrap cross-validation by selecting samples
from the original training-set (of size n) with replacement to give a new bootstrap
training-set also of size n (Stine 1990; Mooney and Duval 1993; Manly 1997).
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Since samples are selected with replacement, some will be included more than once,
and, on average, approximately one third will remain unselected. These become the
bootstrap test data-set. This procedure is repeated a large number of times (typically
1000) and the squared errors for the test samples accumulated across all bootstrap
cycles into the bootstrap RMSEP (Birks et al. 1990a; Simpson and Birks 2012:
Chap. 9).

As a measure of model performance the RMSEP incorporates both random
and systematic components of the error, represented by the standard error of the
predicted residuals (xi � Oxi ) (SEP) and the mean bias (MB) or mean of (xi � Oxi ),
respectively (Birks et al. 1990a). SEP and MB are related to the RMSEP by:

RMSEP2 D SEP2 C MB2 (14.15)

In practice the overall mean bias calculated for the training-set is usually close to
zero but models often show a tendency to over- or under-estimate along particular
parts of the gradient. This form of systematic error is quantified by the maximum
bias, calculated by subdividing the gradient into a number (usually 10) of equal-
spaced segments and calculating the mean bias for each segment (ter Braak and
Juggins 1993). The maximum bias is the largest absolute value of the mean bias
for the ten segments. These types of systematic error are also easily detected using
graphical methods and inspection of the plot of either Oxi or residuals (xi � Oxi ) versus
xi is an important tool in model validation. Observations should fall close to the 1:1
line and show no trend in the residual plot (e.g., Fig. 14.4). Racca and Prairie (2004)
(see also Piñeiro et al. 2008) have argued that instead of plotting residuals against xi

they should be plotted against Oxi so that we evaluate any bias in the residuals relative
to the model’s predictions, not the original observations. When this is done the bias
observed in many inverse regression models disappears, leading to the situation
in which a model that is clearly biased when evaluated against observed values
apparently produces unbiased predictions (e.g., Cameron et al. 1999; Simpson 2012:
Chap. 15). This paradox is explained by the fact that a plot of residuals against
observed values reveals overall, or external, model bias when the model is asked to
predict reality, whereas the plot of residuals against predictions only tells us about
potential biases within the model itself, assuming that the model is correct. Because
the analysis of prediction bias under this assumption fails to consider overall model
bias, we believe it is not a useful tool for model evaluation. Instead we prefer to plot
residuals against observed values.

Low prediction error and maximum bias are useful criteria to help discriminate
between different candidate models. In some cases there may be an obvious winner
but often the difference between models is small. In this situation the principle of
parsimony in statistical modelling (Birks 2012: Chap. 2) dictates that we choose the
‘minimal adequate model’, that is, the one with the fewest parameters (Crawley
2005). This is especially important in identifying appropriate model complexity
(i.e., number of components) in PLS or WAPLS to prevent over-fitting (see above).
In WAPLS a plot of the prediction error against component number usually shows a
reduction in error after the first few components, then stabilises around the optimal
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number before it increases as we start to over-fit. The number of components that
produces the minimum prediction error is not always well defined, and where a
model with fewer components gives a similar prediction error, it is preferable to
accept this as the most parsimonious solution. Birks (1998) suggests a reduction in
RMSEP of at least 5% is needed for a component to be considered useful.

Figure 14.5 shows the change in RMSEP and maximum bias with increasing
WAPLS components for the three data-sets described in the section Numerical
Methods. The Bergen data-set shows a clear reduction in cross-validation RMSEP
of 16% between WAPLS components 1 and 2 and a subsequent gradual rise for
higher components. Maximum bias shows a similar large reduction for component
2 and a further modest drop for component 3. The residual plot also shows an
overall systematic improvement between components 1 and 2 (Fig. 14.5). Taken
together these results indicate that a 2-component WAPLS model is appropriate.
The Danish data-set shows a similar reduction of RMSEP of 13% for component 2
and a further modest reduction of 3% for component 3. However, the improvement
for component 3 is less than the rule-of-thumb threshold of 5% so we select the
2-component WAPLS model. In the East Baltic example there is a reduction of
RMSEP of 7% for component 2, which although modest is above the rule-of-thumb
threshold. There is also a large reduction in maximum bias between components 1
and 2 so it is very tempting to select the 2-component WAPLS model. However, as
we saw above, the reduction in prediction error appears to be caused by the improved
fitting of a few individual samples rather than to an overall improvement in model
performance. In this case, model selection is difficult, and the arbitrary threshold of
5% does not guard against selecting an over-fitted model. A simple solution, and one
that has rarely been applied to the problem of model selection in palaeolimnology,
is to use a randomisation t-test to test the equality of predictions from two models
(van der Voet 1994). Using the test to compare WAPLS components 1 and 2 yields
p-values of <0.001, 0.009, and 0.091 for the Bergen, Denmark, and East Baltic data-
sets, respectively, indicating that for Bergen and Denmark a 2-component WAPLS
model has significantly different (lower) RMSEP than the 1-component WAPLS
model (999 randomisations). The 3-component Danish model is not significant
(p D 0.241). The test also indicates that the second WAPLS component for the East
Baltic data-set is not significant despite its lower RMSEP. The latter example in
particular illustrates that a simple comparison of RMSEP may lead to the selection
of an inappropriate model and lead to a correspondingly over-optimistic impression
of the prediction error. In this case the randomisation t-test provides valuable
additional information that can help to discriminate ‘hidden’ over-fitting from real
systematic model improvement. Other palaeolimnological uses of this test include
Racca et al. (2001), Adler et al. (2010), and Velle et al. (2011a).

Current practice in palaeolimnology is to use the cross-validation RMSEP in both
model optimisation, that is to determine the number of WAPLS components, MAT
analogues, or ANN hidden neurons, etc., and as a measure of model performance.
However, as Telford et al. (2004) and Telford and Birks (2005, 2009) point out,
in this situation the RMSEP is not independent of model choice. For an unbiased
estimate of RMSEP we should ideally use separate optimisation and test data-sets
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(Webb 2002). Where these are lacking, double cross-validation (CV) provides a
more robust way of calculating prediction error. In double CV the data are split
into test- and calibration-sets in an outer CV loop, and each calibration-set is then
split into a training- and test-set in an inner CV loop. The inner loop is used to
optimise the model (e.g., select number of components) and the outer loop used to
estimate the RMSEP. This strategy is particularly useful for optimising component-
based models (Varmuza and Filzmoser 2009) but has so far not been used in
palaeolimnology.

In addition to good empirical performance measured by RMSEP we also
require that our reconstruction model be reliable and robust, that is it will show a
similar performance when applied to fossil data. Where historical measurements are
available, model predictions for well-dated recent samples can be compared against
time-series of environmental measurements (Cumming et al. 2012: Chap. 20). Such
comparisons are usually qualitative, and can be used to validate a model (e.g.,
Fritz 1990; Bradshaw and Anderson 2001; Larocque and Hall 2003; Kamenik and
Schmidt 2005), to reveal problems (e.g., Fritz et al. 1993; Sayer 2001; Battarbee
et al. 2002; Bigler and Hall 2003), to guide model selection (e.g., Köster et al.
2004), or even to develop a within-site calibration-in-time model (e.g., Larocque-
Tobler et al. 2011). The problems of a within-lake calibration-in-time model are
that because of temporal autocorrelation, it is unclear how many independent n
observations there are in estimating RMSEP or r2 and how applicable the single
within-lake model is to other lakes.

Parsimony can guide choice among nested models (e.g., WAPLS models with
different numbers of components) but does not help in discriminating among
different families of models (e.g., WAPLS, MAT, GLR-ML). In this case, where
a number of models all perform well, we suggest applying them all, unless there
are good theoretical grounds for selecting only one or two (see below). Table 14.3
lists some errors that can arise (and have arisen) in developing modern calibration
data-sets in palaeolimnology and suggests possible solutions (Birks et al. 2010).
Table 14.4 summarises some problems that can arise in palaeoenvironmental
reconstruction from fossil assemblages, how the problems can be detected, and how
they can be solved (Birks et al. 2010).

Spatial Autocorrelation and Environmental Reconstruction

The estimation of the predictive power and performance of a training-set in terms
of RMSEP, r2, mean bias, maximum bias, etc. (Birks 1995) by any form of
cross-validation assumes that the test-set (one or many samples) is statistically inde-
pendent of the training-set whose performance is being evaluated. Cross-validation
in the presence of spatial autocorrelation seriously violates this assumption (Telford
and Birks 2005, 2009). Positive spatial autocorrelation is the tendency of samples
close to each other geographically to resemble one another more than randomly
selected samples (Shurin et al. 2009). Using a large foraminiferal training-set from
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Table 14.3 Some errors that can arise (and have arisen) in developing modern organism–
environment calibration data-sets and possible solutions (from Birks et al. 2010)

Errors Possible solutions

Modern data from different sedimentary
environments with contrasting
taphonomies

Data screening

Not all samples are modern samples Data screening and examination of meta-data
In very large data-sets, same samples may be

duplicated by accident
Data screening

Inconsistent taxonomy or low taxonomic
resolution

Analytical quality control and recounting

Inconsistent and/or poor environmental data Data screening, new data
Model over-fitting solely to minimise

RMSEP
van der Voet (1994) randomisation test, more

rigorous cross-validation, graphical plots
of RMSEP, etc.

Ignoring spatial autocorrelation in assessing
model performance

Telford and Birks (2009) deletion and
h-block methods

No estimates of sample-specific errors of
reconstruction

Bootstrapping

Model performance not based on
cross-validation. Apparent statistics only

Use cross-validation (leave-one-out, split
sampling, n-fold cross-validation)

No numerical evaluation of reconstruction Apply reconstruction diagnostic measures
and statistical tests of reconstruction
significance

No validation of reconstruction using
independent records

Not always possible but literature or internet
searches can be useful

Reconstructing two or more variables that
may, in reality, not be reconstructable

Careful use of partial constrained ordinations,
consider not only marginal effects but also
conditional effects, simulations,
randomisation, and significance tests

RMSEP root mean squared error of prediction

the North Atlantic and a test-set 10% of the size of the full data-set for cross-
validation, Telford and Birks (2005) compared the RMSEP in GLR-ML, WA,
WAPLS, MAT, and ANN models. They found that the lowest RMSEPs for sea-
surface temperature (SST) were in the MAT, ANN, and WALPS models. If the South
Atlantic data-set was used as a test-set, where there can be no spatial autocorrelation
with the North Atlantic training-set, the lowest RMSEPs are produced for GLR-
ML and WA. These results are interpreted as the result of spatial autocorrelation
resulting in the apparently superior performance of ANN and MAT in the North
Atlantic, both of which involve local non-parametric estimation, when applied to
a test-set within the same geographical areas as the training-set. In contrast, WA
and GLR-ML can only model the variation in the foraminiferal assemblages that
is correlated with SST. They involve global parametric estimation and are therefore
much more robust to the spatial structure in the data, and therefore perform best with
a spatially independent test-set, namely the South Atlantic. Is spatial autocorrelation
an important problem in palaeolimnology?
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Table 14.4 Some problems that can arise in environmental reconstructions from biological
assemblage data, the detection of these problems, and potential solutions (from Birks et al. 2010)

Problem Detection Potential solution

High amount of noise in
reconstruction

Visual examination of time
series; calculation of
measures of dispersion
for time series

Smoothing using locally
weighted regression (Birks
2012: Chap. 2); use simpler
model to reduce over-fitting

Systematic bias Comparison with other
quantitative
reconstructions

Express reconstructed values as
differences from mean or
modern reconstructed
values; use WA with
classical deshrinking

Non-analogue situations Reconstruction diagnostic
statistics and evaluation
methods

None; try WA or WAPLS

Variable other than the one
of interest driving the
biotic changes

Comparison with
independent physical,
chemical, or biological
proxies

None

Poor model performance
statistics

High RMSEP, bias, etc. Careful numerical and
ecological examination of
data

Large sample-specific
errors of reconstruction

Large error bars Examine reconstruction
diagnostics and test for
non-analogue assemblages

WA weighted averaging, WAPLS weighted-averaging partial least squares, RMSEP root mean
squared error of prediction

Telford and Birks (2009) examined several training-sets including a large diatom-
pH data-set from the north-eastern US (Dixit et al. 1999). They developed a simple
test to detect spatial autocorrelation by (1) deleting samples at random and deriving
a new calibration-function and estimating its performance statistics and (2) deleting
sites geographically close to the test sample and deriving a new calibration-function
and its performance statistics based on the remaining samples. If strong spatial
autocorrelation is present, deleting geographically close sites will preferentially
delete the environmentally closest sites. With autocorrelated data these will bias
the apparent ‘good’ performance statistics of the calibration-function, and their
deletion should drastically decrease the performance of the calibration-function.
In contrast, random deletion should have much less effect on the performance
of the calibration-function. This test showed no difference in calibration-function
performance between the randomly-deleted and neighbour-deleted diatom data-sets,
suggesting that spatial autocorrelation is not a problem in this diatom-pH data-
set. There is similarly little evidence for significant autocorrelation in a modern
Norwegian-Svalbard chironomid-environmental calibration-set from over 150 lakes
(RJ Telford, SJ Brooks, and HJB Birks, unpublished results) or in several small
intra-lake chironomid calibration-sets (Velle et al. 2011b).
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Telford and Birks (2009) have also developed a method for cross-validating a
calibration function in the presence of spatial autocorrelation. The method is based
on h-block cross-validation where a test sample is deleted from the training-set
along with h observations within a certain radius of the test sample. Not surprisingly,
there is no difference in the RMSEP between conventional leave-one-out cross-
validation and h-block cross-validation with the diatom-pH data-set as there is no
spatial autocorrelation in these data. On the other hand, there is a large increase in
RMSEP in h-block cross-validation for foraminifera-SST data-sets and for pollen-
climate data-sets where there is high spatial autocorrelation in the environmental
data. Palaeolimnologists should be aware of the problems of spatial autocorrelation,
especially in studies of within-lake variation (e.g., Heiri et al. 2003) and in the
derivation of within-lake calibration-functions for variables such as water-depth and
distance to littoral vegetation in medium or large lakes (e.g., Luoto 2010). They
should test for spatial autocorrelation and, if present, they should use appropriate
techniques like h-block cross-validation to establish robust calibration-function
performance statistics in the presence of autocorrelation.

Reconstruction Testing, Evaluation, and Validation

All numerical procedures will produce a quantitative reconstruction when given a
training-set and a fossil biostratigraphy that have at least some taxa in common. It
is therefore crucial to be able to evaluate the reliability of the reconstructed values.
To paraphrase the statistician GPE Box, “all reconstructions are wrong, but some
reconstructions may be useful”. The challenge is to identify the useful ones! This
is a difficult task and, as Birks (1995, 1998, 2003) points out, one that has so far
received sparse attention until recently.

Usually we require a reconstruction to be statistically significant, accurate, and
precise. That is, it should explain more of the variance in the fossil data-set than most
reconstructions derived from calibration-functions trained on random environmental
data (Telford and Birks 2011b; Birks et al. 2012), it should be an accurate reflection
of temporal trends, and it should provide an accurate and precise estimate of the
absolute values of the reconstructed variable. In some cases the identification of
major trends and change points may provide valuable information, for example in
studies of lake ontogeny (e.g., Fritz et al. 2004). In other cases the absolute values of
x may be essential, for example in data-model comparisons or identification of pre-
disturbance conditions. Thus the definition of ‘reliability’ may vary with context.

It is also useful to distinguish validation of the reconstruction from evaluation
of the reconstruction. Validation requires comparison of the reconstructed values
against historical measurements (cf. Meyer and Butler 1993). Unfortunately the
latter are rarely available – if they were, we would not need the reconstructed values
in the first place. Comparison with historical data does, of course, provide a powerful
tool for model validation and selection (see above and Cumming et al. 2012:
Chap. 20). But while good agreement between reconstructions and historical data
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may increase our confidence in the model it does not validate other reconstructions
produced by the same model.

Given that true validation of a reconstruction is rarely achievable and probably
impossible for periods beyond the recent past, we must resort to methods that
provide an indirect and more qualitative assessment of reliability. There are four ap-
proaches currently available: (1) RMSEP and sample-specific errors for each fossil
sample, (2) numerical ‘goodness-of-fit’ or ‘analogue’ measures, (3) comparison of
reconstructions produced using different numerical procedures, and (4) comparison
of reconstructions derived from different proxies. We evaluate each of these below.
However, we will consider first how to assess the overall statistical significance of a
quantitative reconstruction.

Assessing the Statistical Significance of a Quantitative
Reconstruction

As it is always possible to obtain quantitative results for a reconstruction of any
environmental variable, regardless of its ecological relevance or significance, some
global test of reconstruction utility is needed. Telford and Birks (2011b) and Birks
et al. (2011) propose that a single down-core reconstruction as a whole should
explain more of the variation in the fossil data in a constrained or canonical
ordination (see Legendre and Birks 2012b: Chap. 8) than a calibration-function
trained on random environmental data applied to the same fossil data (Telford and
Birks 2011b) or a reconstruction performed using randomised species coefficients
(Birks et al. 2012). Multiple independent reconstructions should each explain
more of the variation in the fossil data than a random variable after the other
reconstructions have been partialled out statistically as covariables (see Birks 2012:
Chap. 2) (Telford and Birks 2011b).

Telford and Birks’ (2011b) procedure, available in the R package palaeoSig
(Telford 2011), involves estimating the proportion of the variance in the fossil
data explained by the reconstruction derived from any numerical calibration pro-
cedure discussed in this chapter using redundancy analysis (RDA) (see Borcard
et al. 2011; Legendre and Birks 2012b: Chap. 8) as compositional turnover is
low in the majority of fossil palaeolimnological data-sets (<1.5–2.0 standard
deviations). Then, using the biological part of the modern training-set used for
the reconstruction, environmental reconstructions (usually 999) are generated from
calibration-functions trained on random environmental variables drawn from a
uniform distribution. The proportion of the variance explained by these random-
based distributions is estimated by RDA. If the reconstructed environmental variable
based on the training-set with the observed environmental variable explains more
of the variance than 95% of the random reconstructions, the reconstruction is
considered to be statistically significant (’ D 0.05). The proportion of the variance
explained by the first axis of a principal component analysis (see Borcard et al.
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2011; Legendre and Birks 2012b: Chap. 8) is also estimated, as this represents the
maximum proportion of the variance in the fossil data that any single reconstruction
or underlying latent variable could possibly explain (Telford and Birks 2011b).

If there are multiple reconstructions from the same fossil data, a forward selection
procedure (see Birks 2012: Chap. 2) is adopted. First, the reconstruction that
explains the most variance is accepted and entered. Then the other reconstructions
are tested to determine if they explain significantly more variance than the random
reconstructions when the first accepted reconstruction is partialled out (Telford and
Birks 2011b). This selection procedure is repeated until no significant reconstruc-
tions remain.

Telford and Birks (2011b) used 999 random environmental variables to produce
the null distribution for comparison with the observed reconstruction. Statistical
significance values are estimated as the fraction of random variables that explain as
much as or more of the variance in the fossil data than the observed environmental
variable.

This procedure indicates that diatom-based pH reconstructions and chironomid-
based late-glacial temperature reconstructions are statistically significant, but that
many chironomid-based reconstructions of within-lake variables such as water-
depth are not statistically significant (see also Velle et al. 2011b). Such reconstruc-
tions may, however, be palaeolimnologically significant and we now consider ways
of evaluating and validating reconstructions, whether they be statistically significant
or not, as they may still be useful palaeolimnologically.

Birks et al. (2012) propose a similar procedure to test the significance of diatom-
inferred climate and lake-water chemistry reconstructions in a late-glacial sequence
from northern Norway but instead of using multiple random environmental data-
sets to generate the null distribution they permute the species coefficients from
the original calibration-function and perform the reconstruction using original
but randomised coefficients. In this case, results indicate that the diatom-pH
reconstruction is statistically significant but that reconstructions of ice-free period
are not.

RMSEP and Sample-Specific Error Estimates

Estimating the uncertainty of individual reconstructed values is a useful first step:
reconstructed values with low uncertainty are usually considered to be more reliable.
An estimate of the error associated with each fossil sample is given by the RMSEP
of the training-set, derived using a separate test-set, or by internal cross-validation
(see above). Approximate 95% confidence intervals (CI) for Ox0 are given by
multiplying the RMSEP by a value from Student’s t-distribution with appropriate
degrees of freedom. This value is close to 2 for moderately large samples yielding
95% CIs of Ox0 ˙ 2 � RMSEP (Næs et al. 2002). When the modelling has been
carried out on transformed environmental data, the RMSEP (or CIs) around Ox0 must
be appropriately back-transformed. For log10-transformed data the upper and lower
RMSEP are given by antilog ( Ox0 ˙ RMSEP) (Sokal and Rohlf 1981).
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When we use the training-set RMSEP as a measure of the reconstruction error
we assume that there are no sources of additional ‘hidden error’ as a result of
non-analogue problems and that the environmental responses of fossil taxa are well-
described by the modern training-set. Sample-specific error estimation provides a
relatively simple way to simulate the additional likely reconstruction error if this is
not the case. The method is based on the decomposition of the RMSEP for fossil
samples into two components. The first, s1, represents errors in the reconstructed
values due to uncertainty in the estimates of model parameters, and the second,
s2, is due to errors in the observed xi and model mis-specification (Birks et al.
1990a). Both of these parameters are estimated by bootstrap resampling: s1 is the
standard deviation of the reconstructed values obtained at each bootstrap cycle. It
can vary from sample to sample and will be larger for fossil samples consisting of
taxa that have few occurrences in the training-set. The second component represents
the difference between the model predictions and observed values and is calculated
as the RMSEP for the training-set samples. In practice the sample-specific error is
usually dominated by s2 with s1 often comprising only 10–20% of the overall error.
In extreme non-analogue situations where abundant fossil taxa are very infrequent
and have low abundance in the training-set s1 may reach the same magnitude as
s2. A separate stratigraphic plot of s1 is a useful diagnostic in highlighting such
problematic samples.

Sample-specific errors are currently the best quantitative estimate we have of
the uncertainty in the reconstructed values for fossil samples. They may, however,
be overly optimistic or overly pessimistic for the following reasons. First, fossil
samples almost always reflect climatic, hydrochemical, and limnological conditions
that are in some way different from those sampled by the modern training-set.
The sample-specific RMSEP is therefore likely to be an underestimate of the true
RMSEP because it does not quantify all the sources of error that result from a
lack of environmental and biological analogy between training and fossil samples.
Second, s2, which usually dominates the sample-specific error, is comprised of
components related to error due to model mis-specification, within-lake, and other
biological sampling variability, and variability in the modern environmental data.
Reconstructions based on replicate cores suggest that biological variability may
represent a maximum of 15% of total RMSEP (e.g., Heiri et al. 2003; Battarbee et al.
2005a). There is, however, often substantial error in modern environmental data and
this can account for 30–40%, and sometimes up to 70%, of the total RMSEP (e.g.,
Nilsson et al. 1996; Birks 1998; Dabakk et al. 1999; Brooks and Birks 2001). This
finding, and our unpublished simulations, suggests that with noisy environmental
data the true reconstruction error may be substantially smaller than the training-set
RMSEP would suggest (cf. McCune 1997).

Sample-specific errors are relatively easy to estimate for most quantitative
reconstructions. Interpretation of these errors is far more difficult. For many
training-sets the RMSEP represents 10–20% of the sampled gradient and is often
of the same magnitude as the down-core changes being reconstructed. If the errors
are expressed as 95% confidence intervals, they will almost certainly encompass
all but the most profound environmental changes or impacts. The consequence
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of this is that reconstructions that are statistically significant and show consistent
temporal trends, and which have a clear palaeoenvironmental and biostratigraphical
interpretation, may often have continuously overlapping error bars. This paradox
arises because the RMSEP or sample-specific error is an estimate of the likely
error when the model is applied to new, independent, samples. Interpretation of
the down-core errors is problematic because fossil samples in a time-series are
temporally autocorrelated and consequently are not statistically independent. The
use of sample-specific errors as a criterion for evaluating either the trends or absolute
values of a reconstruction is therefore surprisingly difficult and full of problems for
the unwary.

Goodness-of-Fit and Analogue Measures

A reconstructed environmental value is likely to be more reliable if the fossil
sample has a close modern analogue in the modern training-set (ter Braak 1995).
The similarity or fit between fossil and modern samples should therefore provide
a simple heuristic for evaluating the reconstruction. Birks (1998) discusses three
numerical criteria. The first is the ‘goodness-of-fit’ statistic assessed by fitting the
fossil samples passively onto an ordination axis constrained by the environmental
variable being reconstructed (see Simpson and Hall 2012: Chap. 19). The goodness-
of-fit is then quantified as the squared residual distance of the fossil sample to the
constrained axis. The second criterion is a simple analogue statistic that measures
the dissimilarity between each fossil sample and its closest analogue in the modern
training-set (see above “Modern Analogue Technique (MAT)” and Simpson 2012:
Chap. 15). Although both these measures make palaeoecological sense, there is a
major problem in applying them in practice, namely the definition of a cut-off value
to define a ‘good fit’ or ‘good’ analogue, beyond which we deem the reconstruction
unreliable (Simpson 2012: Chap. 15). For the squared residual distance goodness-
of-fit measure, Birks et al. (1990a) regarded fossil samples with a residual distance
greater or equal to the residual distance of the extreme 5% of the training-set to have
a ‘very poor’ fit, and those greater or larger than the extreme 10% to have a ‘poor’
fit. Similarly, Jones and Juggins (1995) used the 5th percentile of the distribution
of dissimilarities between all modern training samples to define the cut-off for a
good analogue (Bartlein and Whitlock 1993; Simpson et al. 2005). Unfortunately, in
both cases the rules used to define the cut-off are rather arbitrary, primarily because
strict statistical criteria are lacking (although see Gavin et al. 2003 for a more robust
approach in palynology and Simpson 2012: Chap. 15). Furthermore, there is actually
little empirical evidence of a relationship between ‘fit’ or ‘distance’ between fossil
and training-set samples and increased error or unreliability, provided fossil taxa
are well-represented in the training-set. Indeed, experiments with simulated data
suggest that many methods, with the exception of MAT, perform surprisingly well
under mild non-analogue situations (ter Braak et al. 1993; ter Braak 1995).
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Given the difficultly of interpreting the above statistics we recommend using
the following three simple measures to represent aspects of the similarity between
modern and fossil samples that directly affect reconstruction error (Birks 1998).
These are the percentages of the total fossil assemblage that consists of taxa (1)
absent from the modern training-set, (2) that are poorly represented in the modern
training-set, for example, by less than ten occurrences, and (3) that have fossil
abundances greater than their maximum value in the training-set. The first two
measures will highlight samples containing taxa that are poorly represented in
the training-set. The last will highlight non-analogue situations where WAPLS, in
particular, may be prone to extrapolation.

Comparison of Reconstructions Using Different
Numerical Methods

The numerical methods described above are different mathematically and model
(either implicitly or explicitly) species responses in different ways. They should
been seen as complementary, not competitive (Racca et al. 2001), especially when
there is no clear ‘winner’ in terms of lower RMSEP or statistical significance. In
these cases it is useful to compare reconstructions from a range of techniques.
If down-core biological changes are primarily driven by changes in the recon-
structed environmental variable, we would expect reconstructions from different
models to follow similar trajectories, even if they differ in their absolute values.
If different methods produce widely divergent reconstructions, it would suggest
that fluctuations in the dominant taxa are not primarily related to changes in the
reconstructed variable, the statistical significance of the reconstructions must be
tested, and the reconstructions treated with caution. Similarity in reconstructions
based on different methods does not imply validation but it does tell us that they
are free from technique-specific bias. Walker et al. (1997), Birks (2003), Köster
et al. (2004), and Xu et al. (2010) provide examples of such comparisons. Where
different models produce consistent, rather than conflicting reconstructions, these
may be combined into a single, consensus reconstruction (e.g., Racca et al. 2001;
Birks 2003; Barrows and Juggins 2005).

Kucera et al. (2005) outline a useful conceptual model for assessing the reliability
of palaeoenvironmental reconstructions based on a scatter-plot of dissimilarity d,
against method divergence �, represented by the standard deviation of the different
estimates for each fossil sample. Samples with low d and � have convergent
estimates and good analogues and are deemed reliable. Samples with low d but high
� also have good analogues but suffer from technique-specific bias. Interpretation
of samples in other parts of the diagrams follows similarly. Although one is still
faced with the problem of defining critical values of d and �, this simple method
provides a tool that focuses attention on the interpretation of the differences between
reconstructions from different techniques. A method for examining the temporal
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change in the correlation between two reconstructions is described by Aykroyd et al.
(2001) with a palaeolimnological example in Korhola et al. (2002).

Comparison of Reconstructions Using Different Proxies

In the absence of historical measurements the most powerful method of evaluation is
to compare reconstructions derived independently from different proxies. Although
they can be extremely time-consuming, such comparisons are becoming increas-
ingly important (e.g., Lotter 2003; Birks and Birks 2006). Examples of comparison
among reconstructions using a range of proxies including diatoms, chrysophytes,
chironomids, cladocerans, pollen, plant macrofossils, stable isotopes, and sediment
optical properties are given by Battarbee (2000), Birks and Ammann (2000), Birks
et al. (2000), Rosén et al. (2001, 2003), Bigler et al. (2002), Dixit et al. (2002),
Larocque and Bigler (2004), Verschuren et al. (2004), Heiri and Lotter (2005),
Peyron et al. (2005), Smol (2008), and Hausmann et al. (2011).

One observation of many published multi-proxy studies is that, while the
different reconstructions usually agree in terms of highlighting major trends and
change-points, there can be substantial disagreement in the absolute values of the
reconstructions between proxies (e.g., Birks and Ammann 2000; Birks et al. 2000).
This is in some ways inevitable, especially in climate reconstructions, as different
proxies have different sensitivity to the environmental variable of interest and to any
confounding variables. In this way a partial validation of the records follows from
an attempt to understand and explain the biases inherent in each proxy (Birks and
Birks 2006).

When multi-proxy reconstructions are lacking we are forced to resort to the above
numerical criteria for evaluating the reconstruction. However, while these criteria
can help in identifying non-analogue situations, their interpretation is often prob-
lematic. Numerical evaluation should therefore be seen not as an end in itself but as a
source of information to supplement an interpretation based on an understanding of
the ecological mechanisms underlying the observed changes. Korhola et al. (2002)
provide an example of the use of both numerical and ecological criteria to evaluate
a chironomid-based climate reconstruction for northern Fennoscandia.

Case Study

In this section we illustrate the issues of model selection and reconstruction
evaluation by reconstructing the recent acidification history of The Round Loch of
Glenhead (RLGH), a small soft-water lake in Galloway, south-west Scotland (see
Birks and Jones 2012: Chap. 3). A number of diatom-based reconstructions have
been published for this site (Flower and Battarbee 1983; Jones et al. 1986; Birks
et al. 1990a, b; Allott et al. 1992). The summary diatom biostratigraphy for the most
recent, core KO5 collected in 1989, is illustrated in Fig. 14.6 and shows clearly
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the replacement of a flora dominated by Brachysira vitrea by one dominated by
Tabellaria quadriseptata as a result of acidification from the late nineteenth century
onwards. Previous pH reconstructions for this site differ slightly in detail but all
show a gradual decline from around pH 5.6 in the mid nineteenth century to the
1989 value of c. pH 4.7. Much of the earlier work at this and other acidified lakes
focused on identifying the magnitude and timing of chemical changes in an effort
to identify causal mechanisms and the spatial extent of freshwater acidification
(e.g., Battarbee et al. 2010). More recently the emphasis has shifted to quantifying
baseline, or pre-impact, chemistry for use in setting targets for lake recovery and
restoration (Battarbee et al. 2010; Simpson and Hall 2012: Chap. 19). In the case
of RLGH, the diatom-based estimate of pre-acidification pH is substantially lower
than that derived from dynamic hydrochemical modelling using the modelling
of acidification of groundwater in catchments (MAGIC) model (Jenkins et al.
1990). This discrepancy, and the renewed need for accurate hindcasts of baseline
conditions, prompted Battarbee et al. (2005b) to re-analyse the RLGH data using
a range of different methods and to re-evaluate the reconstructions for the pre-
acidification levels (see also Battarbee et al. 2008).

In addition to the core data, Battarbee et al. (2005b) used three separate training-
sets: Surface Waters Acidification Programme (SWAP), consisting of 178 lakes
from the UK, Sweden, and Norway (Stevenson et al. 1991), an unpublished set of
163 UK lakes, and a combined European data-set of 693 lakes from the European
Diatom Database Initiative (EDDI: Battarbee et al. 2000). WA, WAPLS, MAT, and
GLR-ML were applied to each data-set-method combination and evaluated using the
following criteria: (1) bootstrap cross-validation RMSEP and maximum bias (1000
bootstrap cycles), (2) RMSEP and maximum bias calculated from an independent
test-set of 20 UK lakes, and (3) comparison of monitored pH with that inferred
from sediment-trap diatom assemblages for the period 1991–2002. LWWA was
also applied to the larger and more heterogeneous EDDI modern data-set. Each
training-set was screened for outliers and samples deleted if they had a standardised
cross-validation residual from a WA model (with inverse deshrinking) greater than
2.5 in absolute value (see above). This is a fairly conservative screening and only
removes gross outliers: for the WA model it resulted in the deletion of 4, 3, and
13 samples from the SWAP, UK, and EDDI training-sets, respectively. The data-
sets were also screened to remove rare taxa, defined as those with less than two
occurrences and with a maximum relative abundance of less than 1%.

The distribution of training-set samples along the pH gradient is illustrated
in Fig. 14.7. They have a good coverage from pH 4.5 to 7.0 although very
acid waters are poorly represented in all three, as are waters above pH 7 in the
SWAP and UK data-sets, and above pH 7.5 in the EDDI data-set. The test-set
spans pH 4.5–7.0 with some bias towards waters below pH 5.0. Figure 14.7 also
shows performance measures for WAPLS plotted against component number, and
for MAT and LWWA plotted against number of analogues used in the ‘local’
model (see above). The second WAPLS component yields the lowest RMSEP for
all three data-sets although the reduction is small for SWAP and UK. For the
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Table 14.5 Root mean squared error of prediction (RMSEP) and maximum bias performance
statistics for the three diatom-pH training-sets used in the Case Study (SWAP, UK, EDDI)

SWAP UK EDDI

No. sites 174 161 680
No. taxa 272 237 477

Internal cross-validation
WA (inverse DS) 0.335 (0.388) 0.338 (0.350) 0.438 (0.483)
WA (classical DS) 0.345 (0.206) 0.348 (0.304) 0.473 (0.409)
WAPLS (2 component) Not significant 0.331 (0.284) 0.406 (0.530)
GLR-ML 0.358 (0.381) 0.353 (0.294) 0.427 (0.299)
MAT (5) 0.374 (0.506) 0.349 (0.293) 0.420 (0.531)
MAT (10) 0.355 (0.491) 0.342 (0.351) 0.392 (0.660)
LWWA (30) N/A N/A 0.370 (0.504)

Independent test-set (external cross-validation)
WA (inverse DS) 0.294 (0.366) 0.234 (0.257) 0.390 (0.320)
WA (classical DS) 0.373 (0.369) 0.294 (0.279) 0.520 (0.476)
WAPLS (2 component) N/A 0.287 (0.252) 0.439 (0.287)
GLR-ML 0.347 (0.284) 0.279 (0.250) 0.427 (0.273)
MAT (5) 0.242 (0.401) 0.171 (0.106) 0.204 (0.205)
MAT (10) 0.239 (0.406) 0.171 (0.224) 0.186 (0.083)
LWWA (30) N/A N/A 0.246 (0.160)

Maximum bias shown in parentheses. DS deshrinking, N/A not available. WA weighted-averaging
regression and calibration, WAPLS weighted-averaging partial least squares regression and cali-
bration, GLR-ML Guassian logit regression and maximum likelihood calibration, MAT modern
analogue technique, LWWA locally-weighted weighted-averaging regression and calibration,
SWAP Surface Waters Acidification Programme, EDDI European Diatom Database Initiative

SWAP data, the randomisation t-test suggests this is not statistically significant
(p D 0.112, 999 permutations). For the UK data, the second WAPLS component
is also associated with a substantial reduction in maximum bias and is marginally
significant (p D 0.023). The second WAPLS component is highly significant for
EDDI (p < 0.001). Plots of performance measures against the number of analogues
for MAT show a gradual decrease in RMSEP with increasing number although
there is little change after five analogues. Maximum bias increases with increasing
number of analogues, primarily as a result of poor prediction at the gradient ends.
Finally, for LWWA a compromise between low RMSEP and low maximum bias
is given by a local model size of 30 samples for both the EDDI and the test
data-set. These results therefore indicate the following models are appropriate: a 2-
component WAPLS model for UK and EDDI, and a 30-sample LWWA model. The
picture is less clear for MAT so we apply both 5 and 10-analogue models (MAT5
and MAT10, respectively).

Performance statistics of the various models are listed in Table 14.5. There
are three important features. First, for the SWAP and UK data-sets, the internal
cross-validation RMSEPs fall between 0.33 and 0.36 for all methods except MAT5.
Maximum bias is also surprisingly similar for most methods, and apart from MAT
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using SWAP, there is very little to choose between methods. Second, RMSEPs
for all methods are higher for the EDDI data-set. This is not surprising given the
more heterogeneous nature of this training-set. In this case, LWWA outperforms
other methods, although MAT10 and WAPLS are reasonable. Third, RMSEPs are
generally lower for the test-set, and show far more variation between methods. In
this case, WA and MAT for all three training-sets perform well, as does EDDI-
LWWA. WAPLS and GLR are relatively poor performers although their RMSEP is
no higher than that estimated from the training-set.

Comparisons of the measured pH and diatom-inferred pH for the sediment-trap
data are shown in Fig. 14.8. Measured pH exhibits seasonal variability of 0.2–0.5 pH
units and there is a statistically significant trend towards increased mean annual pH
from the mid 1990s (Davies et al. 2005). The various reconstructions can be grouped
into one of three types: (1) tracking trend well but under-estimation of absolute
values by c. 0.2 pH units (SWAP, some EDDI and UK), (2) grossly under-estimating
measured pH and failing to track trend or inter-annual variability (EDDI-GLR-
ML and EDDI-WAPLS, UK-GLR-ML), and (3) tracking trend and matching
absolute values reasonably well (UK-WA, UK-MAT5, EDDI-LWWA). The poor
performance of EDDI-WAPLS and EDDI-GLR-ML is expected for the reasons
mentioned above. Similarly, the comparisons indicate that some methods are at least
able to reconstruct trends and absolute values in acid waters reasonably well. What
is less clear is which methods will yield the most accurate reconstructions for the
pre-acidification levels of The Round Loch, when the likely pH was 5.5 or higher.
Combining the results from the cross-validation, test data-set, and sediment traps
we conclude that EDDI-LWWA, UK-WA, and UK-MAT5 would appear to be the
most appropriate methods, and that SWAP-WA, UK-WAPLS, and UK-GLR-ML
will provide useful alternative reconstructions for comparison.

We now apply the selected methods to The Round Loch of Glenhead core.
Less than 5% of the individuals in each level come from taxa with less than ten
effective numbers of occurrences (N2: Hill 1973) in the training-sets and only
four levels (1918–1941) have taxa that are marginally more abundant in the core.
Squared chi-square distances between fossil samples and their closest analogue in
the training-sets are all below 0.46. This value is less than the first percentile of the
matrix of dissimilarities between all modern samples (0.54). Taken together these
measures indicate that The Round Loch samples consist of taxa that are very well
represented in the modern training-sets. Results of the six reconstructions are shown
in Fig. 14.9. Sample-specific RMSEPs for each method vary only very slightly
down-core and range from 0.310 for UK-WAPLS to 0.360 for EDDI-LWWA. We
omit them from Fig. 14.9 for clarity. Not surprisingly, given the strong down-
core species shift, all reconstructions follow the same trajectory although there are
consistent differences of up to 0.3 pH units between methods. Estimates for the
1830-level vary from 5.44 (EDDI-LWWA) to 5.69 (UK-WAPLS) with a mean of
pH 5.57. SWAP-WA, used in previous publications (e.g., Birks et al. 1990a, b), is
one of the lowest estimates (5.48). Figure 14.9 also shows the hindcast-pH derived
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Fig. 14.9 Diatom-inferred pH based on The Round Loch of Glenhead core KO5 (see Fig. 14.6)
plotted against age (Year AD). The various reconstructions are based on different training-sets
(Surface Waters Acidification Programme (SWAP), UK, European Diatom Database Initiative
(EDDI) (D ED)) or method (weighted averaging (WA), Gaussian logit regression and maximum-
likelihood calibration (GLR-ML), weighted-averaging partial least squares (WAPLS), modern
analogue technique (MAT) with five analogues) or locally-weighted weighted-averaging (LWWA).
The solid line shows the hindcast pH derived from the modelling of acidification of groundwater
in catchments (MAGIC) hydrochemical model (Jenkins et al. 1990)

from the MAGIC hydrochemical model and highlights the discrepancy between
diatom-inferred and modelled lake-water chemistry. The new reconstructions raise
the previous estimates slightly but they are still substantially lower than the MAGIC
hindcasts which suggests the pre-acidification pH of the lake was over 6.0. The
consistency of the diatom-based estimates is encouraging and they pass all the
methods of evaluation described above, but do we have enough faith in them to
question the hydrochemical model? Figure 14.10 shows the relationship between
pH and squared chi-square distance for the ten closest analogues to the AD 1830
sample. The pH of the analogues varies from c. 5.1 to c. 6.1 although all the very
close analogues (distance <0.55) come from lakes with a pH of less than 5.8. This
additional analysis does not validate the reconstructed values but it does increase our
confidence in them, and leads us to question the hydrochemical hindcasts (Battarbee
et al. 2005b).
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Fig. 14.10 Scatter-plot showing the relationship between measured pH and squared chi-square
distance for the ten closest modern analogues of The Round Loch of Glenhead AD 1830 core
sample. All but one of the analogues have a measured pH less than 5.8

Assumptions and Limitations

Quantitative palaeoenvironmental reconstructions involve a number of statistical,
ecological, and palaeoecological assumptions (Imbrie and Kipp 1971; Birks et al.
1990a, 2010). These are rarely completely fulfilled but the effect of violation on
the accuracy and precision of the reconstructed values is poorly understood. In this
section we critically analyse the assumptions and highlight situations where they
may limit the use of quantitative reconstructions in palaeolimnology.

The main assumptions are (Imbrie and Kipp 1971; Imbrie and Webb; 1981; Birks
et al. 1990a, 2010; Birks 1995):

1. The taxa in the modern training-set are systematically related to the environment
in which they live.

2. The environmental variable(s) to be reconstructed is, or is linearly, or at least
monotonically, related to, an ecologically important determinant in the system of
interest.

3. The taxa in the training-set are the same biological entities as in the fossil data
and their ecological responses to the environmental variable(s) of interest have
not changed over the time represented by the fossil assemblage.

4. The mathematical methods adequately model the biological responses to the
environmental variable(s) of interest and yield numerical models that allow
accurate and unbiased reconstructions.

5. Environmental variables other than the one of interest have negligible influence,
or their joint distribution with the environmental variable does not change with
time.
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6. In model validation and in the estimation of prediction errors by cross-validation,
the test-data are statistically independent of the training-set (Telford and Birks
2005).

Assumption 1 actually follows from an analysis of assumption 2. Assumption
3 is based on the principal of uniformitarianism and is usually assumed to be
met for most studies covering the Holocene, although it may be questionable for
earlier periods. Criteria for assessing assumption 4 have been discussed above
in the sections on “Model Selection and Evaluation” and on “Reconstruction
Testing, Evaluation, and Validation”. Criteria for assessing assumption 6 have
been outlined above in the section on “Spatial Autocorrelation and Environmental
Reconstruction”.

Assumptions 2 and 5 are critical but are not often challenged. Assumption 2 begs
the fundamental question of what variables can (or cannot) be reconstructed using
a particular training-set? Diatom-based models, for example, have been developed
to reconstruct a wide range of hydrochemical, climatic, and limnological variables
including lake-water pH (Birks et al. 1990a), alkalinity (Köster et al. 2004), salinity
(Fritz et al. 1991), specific conductivity (Gasse et al. 1995), cation concentrations
(Dixit et al. 2002), cation and anion ratios (Gasse et al. 1995), total nitrogen (Werner
and Smol 2005), total phosphorus (Bennion et al. 1996), chlorophyll-a (Jones and
Juggins 1995), nitrate (Curtis et al. 2009), dissolved organic carbon (Birks et al.
1990b; Curtis et al. 2009; Hausmann et al. 2011), total organic carbon (Rosén 2005),
dissolved inorganic carbon (Rühland and Smol 2002), dissolved CO2 (Philibert and
Prairie 2002a), aluminium (Birks et al. 1990b), nickel (Dixit et al. 2002), water
temperature (Pienitz et al. 1995; Huber et al. 2010), air temperature (Lotter et al.
1997; Bigler and Hall 2003), date of autumn mixing (Schmidt et al. 2004), water
depth (Yang et al. 2003), duration of ice cover (Thompson et al. 2005; Curtis
et al. 2009), wind activity (Hausmann et al. 2011), and duration of snow cover
(Mackay et al. 2005). Chironomid assemblages have been used to reconstruct not
only summer water or air temperature, but also hypolimnetic anoxia, chlorophyll-
a, total phosphorus, salinity, water depth (Velle et al. 2010, 2011b), distance from
littoral vegetation (Luoto 2010), and even the 1/0 binary lotic index of stream flow
(Luoto 2010)! What is the basis for these models?

The choice of environmental variable is usually made in one of two ways. First,
it may be defined a priori by wider project aims and the training-set designed
specifically to sample the gradient of interest. Second, the environmental variable
may be selected post hoc after it is found to be an important biological determinant
during an analysis of the training-set. In both cases assumption 2, namely that
the environmental variable explains, in a statistical sense, a significant portion of
the variation in the biological data, can be tested using constrained ordination
and associated Monte Carlo permutation tests (Borcard et al. 2011; Telford and
Birks 2011b; Legendre and Birks 2012b: Chap. 8), with the environmental variable
of interest as the single constraining variable. Similarly, the relative strength or
importance of the environmental variable can be estimated by comparing the
eigenvalue of the first axis of a detrended canonical correspondence analysis
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(DCCA) using a single constraining variable with that of the first unconstrained
DCA axis (e.g., Lotter et al. 1997). Environmental factors are inherently inter-
related and assumption 2 is often qualified by the additional requirement that the
variable of interest explains a significant, and independent, portion of the variation
in the biological data. This assumption is tested implicitly if variables are stepwise
forward-selected in a constrained ordination or explicitly using partial ordination
(Borcard et al. 2011; Legendre and Birks 2012b: Chap. 8; see Gasse et al. 1995
for an example). In this, both marginal and unique conditional effects of the
environmental variables of interest should be assessed and tested (ter Braak and
Verdonschot 1995) (see Curtis et al. 2009 for an example of environmental variable
selection and assessment).

There are two important consequences that lead from the above discussion. The
first is that assumption 2 only requires a correlation between environment and
biology, not a causal relationship. For some species–environment groups there may
be experimental evidence that suggests causal effects or demonstrates the physio-
logical basis for the underlying response. For others there may be a long history of
observational data that strongly suggests a direct environmental effect. Where this is
not the case it should be recognised that the model is based on correlation only and
lacks a sound ecological basis. This is not necessarily a problem – the model may
still have good predictive ability – but it does require an additional assumption that
the relationship between the measured environmental variable and the underlying
causal ecological gradient has not changed through time. This requirement is further
explored below. The second consequence is that models developed for variables
selected post hoc have an inherently weaker basis than those for variables selected a
priori as part of a hypothesis-testing approach (cf. Hallgren et al. 1999). This is be-
cause of the circularity in cross-validating a model that has already been found to be
statistically significant. Models developed for variables selected using an automated
step-wise procedure are especially problematic (Crawley 2005). Such an approach
borders on ‘data-dredging’ and models generated in this way need very careful
validation using an additional independent data-set (cf. Johnson and Omland 2004).

We illustrate the above concerns with a second example from The Round Loch
of Glenhead (Birks et al. 1990b). Analysis of the SWAP training-set (Stevenson
et al. 1991) using canonical correspondence analysis (CCA) with forward selection
and associated Monte Carlo permutation tests indicated that ten hydrochemical
variables made a significant and independent contribution to explaining the variation
in the modern diatom composition and relative abundances. The first two CCA
axes reflected pH and dissolved organic carbon (DOC) gradients, respectively. Total
aluminium (Al) was significantly correlated to both axes. On this basis Birks et al.
(1990b) concluded that pH, DOC, and Al were potentially reconstructable and used
WA-based models to hindcast changes in these variables for the last 10,000 years.
Here we re-evaluate the validity of these reconstructions.

First, we quantify the relative explanatory power of pH, DOC, and Al using CCA
and partial CCA to partition the variation in the training-set diatom data into compo-
nents related to (1) the marginal effect, or total variation explained by each variable
and (2) the conditional effect, or unique and independent contribution of each
variable (cf. Borcard et al. 1992; ter Braak and Verdonschot 1995). Results indicate
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that pH, DOC, and Al explain 6.9%, 3.7%, and 1.5% of the variation in the modern
diatom data individually, but only make unique contributions of 5.2%, 2.9%, and
1.0%. The unique contributions are highly significant for pH and DOC (p < 0.001)
but only marginally so for Al (p D 0.041). The explained variations for pH and DOC
are small but such values are typical for large, species-rich data-sets. The unique
effect of Al is very small and there is only weak evidence that it has a significant
and independent effect. The independence or otherwise of the Al reconstruction is
further explored by comparing the correlations between the three variables in the
water-chemical data of the training-set and in the core predictions. For the training-
set, the correlations between observed pH and DOC, and pH and A1, are 0.26 and
�0.44, respectively. Correlations for the corresponding diatom-inferred values are
0.60 and �0.83, and 0.35 and �0.98 for the core reconstructions. Thus while there
are only weak correlations among these variables in the training-set, the correlation
is stronger for the diatom-inferred values, especially in the case of Al. Indeed,
96% of the down-core variation in reconstructed Al concentration is explained by
reconstructed pH. We conclude therefore that there is a relatively small confounding
effect between pH and DOC but that the Al reconstructions cannot be considered
independent of pH. In this context it is interesting to note that in the Bergen diatom
training-set described above, which was specifically designed to span gradients of
pH and labile aluminium species, Al is not independently significant statistically.

The problem of the confounding effects of correlated environmental variables
pervades almost all quantitative reconstructions. In almost all lake systems, the
composition of sedimentary assemblages is a complex function of multiple chemical
and limnological variables that are intimately inter-linked through the interaction
of climate, catchment, and lake processes. The first part of assumption 5, that
environmental variables other than the one of interest have negligible influence, is
therefore almost never met. The second part, that the joint distribution of additional
variables with the one of interest does not change with time, is also violated in
many cases. Input of strong acid anions from acid precipitation and nutrients from
agricultural runoff have had profound effects on the relationships between climate,
alkalinity, nutrients, and DOC for training-set lakes in impacted areas for the
recent past. Changes in catchment vegetation and soils, and climate-driven physical
limnology, will have also modified the joint distribution of these variables on longer
timescales. The likely importance of these effects can be estimated using variation
partitioning (see Legendre and Birks 2012b: Chap. 8). If the reconstructed variable
represents a single dominant signal in the biology-environment relationship, we
can consider assumption 5 to have been met. However, in many cases the variable
of interest is not a dominant signal, and may not even be the primary gradient.
For example, in the diatom training-set described by Lotter et al. (1997) for the
Swiss Alps, summer temperature, total phosphorus, and alkalinity individually
explained 9.1%, 7.5%, and 7.8%, respectively, of the variation in the diatom data,
but had conditional effects of only 2.9%, 2.6%, and 1.6%, respectively. In this case,
approximately two thirds of the signal for each variable was confounded with other
factors. A Monte Carlo permutation test confirms that these unique components
are statistically significant (p < 0.010) demonstrating statistical independence, but
as Anderson (2000) points out, the final model used to reconstruct such variables is
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not a partial model. As a result, when assumption 5 is not met, down-core changes in
biota that are related to a confounding factor, but independent of the reconstructed
variable, may nevertheless cause corresponding spurious changes in the resulting
reconstruction.

The consequences of violating assumption 5 are illustrated in the following ex-
ample. Clarke (2001) and Clarke et al. (2003) developed a diatom-based calibration-
function to infer total nitrogen (TN) in Danish coastal waters and applied the model
to an 80 cm 210Pb-dated core from Roskilde Fjord to reconstruct changes in TN for
the last �150 years. Figure 14.11 shows the summary diatom stratigraphy and the
TN reconstruction. The record shows a recent increase in planktonic taxa starting
in the mid-1900s (35 cm depth) and a corresponding increase in reconstructed TN
at the top of the core. The core-top value of 90 �mol L�1 agrees well with the
contemporary measured TN concentration of 84 �mol L�1 and the historical values
of c. 50 �mol L�1 are consistent with hindcasts from mass-balance models, giving
us some confidence in the reconstructions.

Constrained ordination and variation partitioning in this example indicate that
the reconstructed variable, TN, is a secondary gradient and diatom distribution and
abundance are primarily related to water salinity and water depth. Individually,
depth and salinity account for 9.0% and 6.5% of the variation in the diatom data, and
TN only 4.7%. The unique effect of TN is highly significant (p < 0.001) but accounts
for only 2.5% of the total variation in the diatom data, indicating that approximately
half the total TN signal is confounded with depth and salinity. However, as water
depth and salinity have not changed significantly at the core site over the period of
interest, we can assume that floristic changes are primarily a response to changing
nutrient concentrations. The unique effects of salinity and depth are 6.6% and
5.3%, respectively, suggesting that reconstructions for these variables should not
be overly influenced by confounding effects. To test this we developed predictive
models for these variables using WA. Both models show strong correlations between
measured and inferred values for the training-set (cross-validation r2 D 0.75 and
0.67 for salinity and depth, respectively, compared to 0.70 for TN). Down-core
reconstructions for these variables are also included in Fig. 14.10 and indicate a
gradual increase in depth at the site of c. 4 m and a decrease in salinity of c. 3 g L�1.
These reconstructed changes are artefacts because recent nutrient increases have
almost certainly modified the joint distribution of TN, salinity, and depth at this
site. As a result, changes in benthic and planktonic taxa that are driven by nutrient
increases reconstruct as spurious changes in depth and salinity.

In this example salinity, depth, and TN meet all the requirements for a variable
to be reconstructed and all yield models with good predictive ability. The example
provides, however, an appropriate cautionary tale: in this case we have sufficient
prior knowledge to dismiss the depth and salinity reconstructions but usually such
information is lacking.

Since the pioneering work on quantitatively reconstructing lake-water pH from
diatom assemblages by ter Braak and van Dam (1989) and Birks et al. (1990a),
there have been many advances in the development of techniques of deriving
mathematically calibration functions (e.g., WAPLS, ANN, LWWA), and in the
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creation and application of training-sets from many parts of the Earth (e.g., Smol
2008). Despite all these activities, surprisingly little work has been done on
the underlying assumptions and limitations of transfer functions (but see Telford
and Birks 2005, 2009, 2011a, b). The examples discussed above highlight the
need to ‘return to basics’ and to understand better the limitations of quantitative
reconstructions when these assumptions are violated.

Software

There are number of specialised and more general-purpose software packages
useful for the analysis of palaeoecological training-sets. Software for analysis of
species–environment relationships using regression, ordination, and cluster analyses
is mentioned by Legendre and Birks (2012a, b: Chaps. 7 and 8). Specialised soft-
ware for developing calibration-functions and performing reconstructions includes
WACALIB (WA, WAT, bootstrap sample-specific errors: Line et al. 1994), C2 (WA,
WAT, PCAR, PLS, WAPLS, LWWA, GLR, MAT, bootstrap sample-specific errors:
Juggins 2007), paleoNet (ANN: Racca et al. 2007) and PaleoToolBox (PCAR
(IKFA), MAT: Sieger et al. 1999). Although these packages offer a convenient
way to fit and evaluate a range of models, we increasingly use the R language
for statistical computing (R Development Core Team 2010) as it provides a
single, powerful environment for all stages of analysis, including data-set compi-
lation and screening, exploratory data analysis, model fitting and evaluation, and
graphical output. The following R packages are particularly useful for developing
quantitative reconstructions: vegan (ordination and cluster analysis, dissimilarity
measures: Oksanen et al. 2011); analogue (WA, MAT: Simpson and Oksanen
2009); rioja (WA, WAT, PLS, WAPLS, MAT, GLR: Juggins 2009); paltran (WA,
WAPLS, LWWA: Adler 2010); paleoMAS (MAT: Correa-Metrio et al. 2011), and
palaeoSig (significance testing of reconstructions: Telford 2011).

Conclusions and Future Work

The last two decades has witnessed considerable progress in the development of
numerical methods and high-quality training-sets for organism-based palaeolim-
nological reconstructions. The development of user-friendly software has given
all palaeolimnologists access to a range of numerical procedures and we observe
a healthy shift from a single model to a multi-model approach that recognises
in many cases there is no single best numerical method. This shift also includes
an important move away from an obsession with the lowest RMSEP to a more
rigorous consideration of uncertainty including bias, and by using multi-model
reconstructions, the increasing recognition that model selection contributes to the
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uncertainty. The recent work described above, embedding reconstruction procedures
within a Bayesian methodology, offers an elegant solution for modelling multiple
sources of evidence and their associated uncertainty within a single, coherent
framework and is a priority for future work.

We also observe a trend over the last two decades to reconstruct a wide range
of water quality and other environmental parameters. Given the complex set of
interacting influences on taxon distribution and abundance, method robustness in the
face of confounding variables becomes crucial. Many of the early applications that
provided the impetus for method development were based on modelled responses to
very strong anthropogenic gradients over the recent past (e.g., pH decline due to lake
acidification). Applications reconstructing weaker, secondary gradients over longer
time periods are sometimes problematic: different methods may give conflicting
reconstructions, and where we do have historical monitoring data, models are
sometimes unable to reconstruct accurately absolute values, and in some cases
even trends. The problem of confounding variables has barely been addressed but
almost certainly means that reconstructions for some variables and proxies will be
problematic at best. We should not ‘throw out the baby with the bathwater’ but
our examples challenge palaeolimnologists to be more critical of their models and
associated reconstructions and to be alert to the effects of confounding variables.
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Abstract Analogue methods in palaeolimnology consist of the modern analogue
technique (MAT) as a means of reconstructing quantitatively past environments
from proxy stratigraphical biological data and analogue matching (AM) as a means
of comparing fossil assemblages with modern assemblages to inform environmental
conservation and restoration of degraded lakes. The mathematics of MAT are
presented and problems of spatial autocorrelation on MAT’s performance statistics
are reviewed.

Analogue matching using one or more proxies (e.g., diatoms, cladocerans) and
the choice of appropriate dissimilarity measures are discussed. Various approaches
to answering the question how many analogues (k) should be used for environmental
reconstructions or to set restoration targets are discussed. These include choosing
k to optimise some error function such as root mean squared error of prediction,
finding ‘jumps’ in the dissimilarity values, examining the reference distributions
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Introduction

The result, therefore, of our present enquiry is, that we find no vestige of a beginning,
— no prospect of an end. James Hutton, 1795, Theory of the Earth

A long-standing assumption in geology is that in nature there are fundamental
physical laws or rules of behaviour and that even though the rates of change
of environmental processes may vary over time, these underlying rules remain
constant. This is Huttonian Uniformitarianism and gives rise to the notion that the
present is the key to the past – that we can understand the past history of the Earth
through analogy to processes occurring today.

Reasoning by analogy is also a key assumption in the science of palaeoecology
(Rymer 1978; Birks et al. 2010). Palaeoecologists observe the past through analysis
of proxies recovered from historical archives such as sediment cores from lakes.
The interpretation of changes in these proxies over time is largely driven by our
observations of those same proxies in the present across spatial environmental
gradients of interest, such as lake-water pH or climate. In this sense, we substitute
spatial information, gleaned from observations of the modern world, for temporal
information obtained from our historical archives; a process called space-for-time
substitution.

This method of working pervades our studies in palaeoecology, including
palaeolimnology, but none more so than the techniques of analogue matching (AM)
and the modern analogue technique (MAT), which I collectively refer to here as
analogue methods. Here, I outline the theory and practice of analogue methods
in palaeolimnology and provide examples of how these methods may be applied
to palaeoenvironmental data. First, I discuss the modern analogue technique as
a method for palaeoenvironmental reconstruction. Second, analogue matching is
described with examples of how the approach is being used to inform environmental
conservation and restoration of degraded lakes. Third, I discuss several technical
issues relating to computations involved in analogue methods. Finally, I discuss how
analogue methods may be used for evaluating palaeoenvironmental reconstructions.

The Modern Analogue Technique (MAT)

A simple method of inferring past environmental conditions from fossil species
assemblages is the modern analogue technique, or MAT (Overpeck et al. 1985;
Prell 1985). In the MAT, an inference about the prevailing environmental conditions
at the time of the observed fossil assemblage is that those same environmental
conditions occur today where we find similar modern species assemblages. Sites
where modern species assemblages are observed that are similar to past assemblages
are known as modern analogues. Where more than one modern analogue can be
identified we take, as the inference of past conditions, a consensus of the present-
day environmental conditions of all the modern analogues, such as the average.
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The MAT has been used widely in palaeoceanographic (e.g., Pflaumann et al. 2003;
Kucera et al. 2005) and palynological studies (e.g., Davis et al. 2003; Gavin et al.
2003; Sawada et al. 2004; Williams and Shuman 2008), though it has, so far, been
little used in the field of palaeolimnology (Birks 1998).

Here, for completeness, I recap the basic theory and notation of calibration
or ‘transfer’ functions, with specific reference to the MAT. For a more detailed
discussion of calibration, see Birks et al. (2010) and Juggins and Birks (2012:
Chap. 14).

MAT is an inverse multivariate calibration approach, arising from the regression
of X on Y

X D g .Y/ C " (15.1)

where Y is an n � m matrix of counts on m species and X is an n � p matrix
of p environmental variables on n samples or sites. The calibration function g(�)
is determined by some function of the p environmental variables for the k closest
samples identified from the training-set. In the statistical literature, the MAT is more
commonly used for problems of classification or discrimination, where it is known
as k-nearest neighbours (k-NN) (Webb 2002; Fielding 2007). k-NN is also one of
several approaches to regression via smoothing (ter Braak 1995).

The dissimilarity between each fossil sample and the training-set samples is cal-
culated using one of many dissimilarity coefficients. Reconstructed environmental
values for the fossil samples can be obtained by taking an average or weighted
average of the k closest modern analogues. In the weighted case, it is logical to use
as the weights the dissimilarity between the fossil sample and each of the k closest
analogues, so that modern analogues that are more similar to the fossil sample have
a greater influence on the prediction for that fossil sample than modern analogues
that are less similar to the fossil sample.

As dissimilarities are used, we need to invert the measured dissimilarities
(1=djk) to give larger weights to samples with lower dissimilarity. Williams
and Shuman (2008) investigated the effect of strongly weighting predictions
by dissimilarity (1=d 2

jk) for a large North American pollen data-set, but found
that, for this data-set, strong weighting by the squared dissimilarity reduced the
predictive ability of the MAT model, whilst little difference in predictions was
observed whether an unweighted average or an average weighted by 1=djk was
used.

MAT model performance statistics, such as root mean squared error of prediction
(RMSEP), and sample-specific error estimates can be derived using cross-validation
in the same manner as other calibration functions (see Juggins and Birks 2012:
Chap. 14). It is worth noting that, unlike other calibration-function methods, MAT
does not have so-called apparent error statistics (sensu Birks 1995). Instead, the
basic model performance measures from the MAT are leave-one-out statistics,
arising from the fact that the prediction for a selected training-set sample is
determined by the training-set samples excluding the selected sample.
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An alternative measure of reconstruction uncertainty, suggested by ter Braak
(1995), is to use the standard error of the estimates calculated as the weighted
variance of the values of the environmental variable (xi) over the k analogues

s2 D

kP

iD1

wi

 
kP

iD1

wi

!2

�
kP

iD1

w2
i

kX

iD1

wi .xi � �/2 (15.2)

where wi are weights, the inverse of the dissimilarity between training-set sample i
and the fossil sample (1

ı
djk ) and � is the weighted mean of xi. This measure has

several appealing features. It is independent of the magnitude of dissimilarity to the
k closest analogues and, if the magnitude of s2 is large relative to those computed
for training-set samples, it is an indication that no close modern analogues exist.
Furthermore, the fossil sample may be similar to several training-set samples that
vary strongly in terms of their environments, leading to large values of s2 (ter Braak
1995).

A MAT reconstruction of pH at The Round Loch of Glenhead (RLGH) using
the Surface Waters Acidification Programme (SWAP) diatom-pH training-set is
illustrated in Fig. 15.1. This reconstruction uses the k D 11 closest analogues for
each fossil sample and the fitted values are based on the average of the pH values
for the 11 analogues selected at each time point. The value of k was chosen as the
model with the lowest RMSEP assessed via bootstrapping the training-set samples.
The error bars are bootstrap-derived sample-specific errors for each fossil sample
computed using 1000 bootstrap samples (Juggins and Birks 2012: Chap. 14). The
reconstructed values indicate that lake-water pH has varied considerably over the
Holocene, but that the recent anthropogenic acidification due to acid deposition has
reduced pH to values never before encountered in the history of the loch (Jones et al.
1986, 1989).

Several alternatives to the basic MAT have been developed, most notably
SIMMAX (Pflaumann et al. 1996) and the revised analogue method (RAM:
Waelbroeck et al. 1998). The SIMMAX approach implicitly uses the scalar product
of the normalised species data as a dissimilarity coefficient and weights the modern
analogue samples based on their geographical distance (Pflaumann et al. 1996).
The RAM combines the response-surface approach to environmental reconstruction
(Bartlein et al. 1986) with the MAT in which analogues are selected not from the
original data but from an interpolated response surface. The number of analogues
used in RAM reconstructions is determined by identifying dissimilarity ‘jumps’
(Waelbroeck et al. 1998).

SIMMAX and RAM appear to produce calibration functions that have lower
RMSEP than the MAT and other techniques such as weighted averaging (WA) and
weighted-averaging partial least squares (WAPLS) (see Juggins and Birks 2012:
Chap. 14). Recently, this improvement was demonstrated to be the result of biases
induced in SIMMAX and RAM through failure to ensure statistical independence
of samples during cross-validation, geographically weighting the analogues, and
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Fig. 15.1 MAT pH reconstruction for The Round Loch of Glenhead using the Surface Waters
Acidification Programme (SWAP) diatom-pH training-set and k D 11 closest analogues. The error
bars are drawn at ˙ the sample-specific bootstrap root mean squared error of prediction (RMSEP)

using the test-set to determine the number of analogues to retain in reconstructions
(Telford et al. 2004).

Spatial autocorrelation in training-set data and its influence on calibration
function performance has, until recently (Telford and Birks 2005, 2009; Telford
2006), been overlooked. Cross-validation assumes independence of samples; an
assumption that is violated in the presence of spatial autocorrelation leading to
an over-optimistic RMSEP and coefficient of determination (r2). Telford and Birks
(2005), using an Atlantic foraminifera training-set, showed that MAT utilises spatial
structure in the species data that is uncorrelated with the environmental variable
being modelled to improve model predictions. This residual spatial structure is
likely to be related to spatial structure in environmental variables other than the one
being reconstructed. When a spatially independent test-set was used to assess MAT
model performance, MAT performed no better than WA or WAPLS, suggesting pre-
viously reported model performance statistics for MAT in the palaeoceanographic
literature are over-optimistic (Telford and Birks 2005). These findings suggest that
autocorrelation is a problem for calibration functions, and MAT in particular, where
the environmental variable being modelled is spatially smooth.

The degree to which this problem affects other environments and proxies has
recently been addressed by Telford and Birks (2009). In training-sets with strong
spatial autocorrelation, MAT generally outperforms other reconstruction techniques,
whilst it underperforms where weak autocorrelation is present. The most likely
explanation for this result is that MAT finds a fit between the species and the
environment that is local rather than global and as a result the technique is not
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robust to the presence of autocorrelation (Telford and Birks 2009). As such, Telford
and Birks (2009) recommend that MAT not be used with training-sets where strong
autocorrelation is present, and propose a simple, graphical means for evaluating the
influence of autocorrelation on calibration functions and on MAT results.

Analogue Matching

In contrast to the MAT, where the ultimate aim is to produce a robust environmental
reconstruction, analogue matching (AM) has no such purpose. Instead, AM is
concerned solely with identifying sites in the present that are the closest match to the
species assemblage identified in the past for one or more target sites. At their heart,
MAT and AM are exactly the same approach, yet they emphasise fundamentally
different roles for the modern analogues.

In MAT we optimise what we consider ‘similar’ in a manner that provides a
calibration function with good predictive ability and low RMSEP. In AM the prime
concern is to discriminate accurately between similar and dissimilar sites. In many
cases the two approaches may result in the same set of close modern analogues
being retained, but this need not be the case. What makes a set of analogues good
for reconstructing pH, for example, may not be the best set of analogues when one
considers the coherency of the species assemblage.

Where AM has begun to develop a role within the palaeolimnologist’s toolbox
is in the area of ecosystem restoration (e.g., Simpson et al. 2005). AM can be used
to set ecological and biological restoration targets that complement the chemical
targets derived from the application of calibration functions, for example. For some
organism groups that preserve well in lake sediments, such as diatoms, chironomids,
and littoral cladocerans, a straight palaeolimnological evaluation of reference-period
sediments can provide a suitable biological restoration target (e.g. Ayres et al. 2008;
Bennion and Simpson 2011; Bennion et al. 2011a, b).

However, aquatic-ecosystem managers are often interested in organism groups
that do not preserve readily in lake sediments or where only incomplete assemblages
are preserved. The rationale behind AM is that those lakes from a modern
training-set that are most similar to a fossil assemblage are also likely to be
similar in terms of these other organism groups. If close modern analogues for
the pre-disturbance period of impacted lakes can be identified, aquatic-ecosystem
managers can study the modern analogues to define ecological restoration targets
that encompass organism groups that do not preserve in lake sediments (Simpson
et al. 2005).

Using a modern training-set of 194 lakes from the UK, Norway, and Sweden
where diatom counts of the surface sediments were available, Flower et al. (1997)
identified close modern analogues that were floristically most similar to the diatom
assemblages from discrete periods in the history of two acidified lakes from the acid-
sensitive region of Galloway, south-west Scotland; The Round Loch of Glenhead
(RLGH) and Loch Dee (LDEE). Three and seven analogues, respectively, were
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identified from the modern training-set for RLGH and LDEE, using the squared �2

distance coefficient. Of these, one and six analogues, respectively, were considered
‘very good’ analogues on the basis of the dissimilarity to the reference diatom
assemblage being less than 0.57. The remaining analogues were considered ‘good’
and had a dissimilarity less than 0.65. These critical values of the �2 distance
were determined from the distribution of all pair-wise dissimilarities for training-
set samples and represent the first and second percentiles, respectively, of that
distribution.

Despite being very good close modern analogues for RLGH and LDEE in
terms of diatom assemblages, the closest matches to both lakes were poor matches
for current lake-water calcium (Ca2C) concentrations in RLGH and LDEE. The
closest analogues had elevated calcium concentrations compared to present-day
values in the two lochs (Flower et al. 1997). As calcium concentration is an
important factor for other aquatic organisms such as fish and macroinvertebrates
(Jeziorski et al. 2008) this discrepancy is difficult to ignore. This issue arises
because diatoms are poor indicators of lake-water Ca2C and as such there is little
discrimination in diatom species composition between softwater lakes with differing
Ca2C concentrations. Flower et al. (1997) suggested that matching on additional
criteria could be one way to solve these problems.

One suggested improvement was to base the matching on additional biological
groups. One such group is the Cladocera, a group of crustacean zooplankton, the
littoral members of which are very well preserved in lake sediments (Korhola and
Rautio 2001). Littoral cladocerans are good indicators of a variety of limnological
conditions, such as Ca2C concentrations, habitat diversity and structure, such as
aquatic macrophyte assemblages, and substrate availability (Duigan and Kovach
1991; Korhola and Rautio 2001). Simpson et al. (2005) adopted this approach and,
using a training-set of diatom and cladoceran counts from 83 acid-sensitive lakes
in Scotland and Wales, were able to identify close modern analogues for eight out
of ten lakes from the UK Acid Waters Monitoring Network (AWMN) (Simpson
et al. 2005).

Subsequent investigation of the close modern analogues for individual AWMN
lakes showed a high degree of similarity in terms of hydrochemistry and aquatic
macrophyte and macroinvertebrate assemblages. The selected modern analogues
were much better matches for the AWMN in terms of Ca2C concentrations than
those identified using diatoms alone. Monitoring data from the RLGH also showed
that species absent from the lake at the start of monitoring in 1988, but predicted
to be present prior to acidification on the basis of their presence in the majority
of the modern analogue lakes, were starting to return to the RLGH as the lake
is now recovering from the affects of acidic deposition (Simpson et al. 2005;
Battarbee 2010; Battarbee et al. 2011). Taken together, these results illustrate the
power of the AM approach to setting ecological restoration targets in acidified
lakes.

One issue that Simpson et al. (2005) did not address adequately at the time was
how to calculate a dissimilarity that combined information from both diatom and
cladoceran species assemblages. A naı̈ve solution is to simply treat the diatom and
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cladoceran taxa as equal and join the two data-sets together prior to calculating
the dissimilarities (Simpson et al. 2005). This is not ideal because this treats
a diatom taxon and a cladoceran taxon as carrying the same information, and, as
the diatom assemblage is much more species rich than the cladoceran assemblage,
the diatom data will dominate the dissimilarity.

Two solutions to this problem suggest themselves. The first is to use a coefficient
that can deal with different species data, such as Gower’s (1971) general dissimi-
larity coefficient described below. Using weights, one could attempt to downweight
some of the rarer diatom taxa such that the sum of weights applied to diatom taxa
and those applied to cladoceran taxa were equal, thus giving both groups equal
weight in the resulting dissimilarity measure.

The second solution is to adapt the approach of Melssen et al. (2006) to
combine dissimilarities in a flexible manner. The dissimilarities for the two sets of
variables (e.g., diatoms and cladocerans) are computed separately using appropriate
dissimilarity coefficients. The resulting dissimilarities are scaled separately so that
the maximum observed dissimilarity for each is equal to 1. The overall dissimilarity
is a weighted sum of the scaled dissimilarities for the two sets

dfusedjk
D wdxjk

C .1 � w/ dyjk
(15.3)

where dfusedjk is the combined dissimilarity, and dxjk
and dyjk

the dissimilarities
for descriptor sets x and y, between samples j and k, with 0 � w � 1, the relative
weighting of the two dissimilarities. Selecting w D 0.5 ensures equal weights for
the two sets of dissimilarities. Scaling the individual dissimilarities so that the
maximum dissimilarity is equal to 1 accommodates different units of measurement
for the sets of variables. This also allows one to use a different dissimilarity
coefficient for the two sets. This procedure readily generalises to N sets of
dissimilarities

dfusedjk D
NX

iD1

wi dijk
(15.4)

under the constraint that
PN

iD1 wi D 1:

Dissimilarity and Dimensionality

A critical consideration in analogue methods is to determine how close are a
given pair of species assemblages to one another. This is achieved quantitatively
using dissimilarity or distance coefficients, which measure the floristic or faunistic
(dis)similarity between two sets of variables. A vast array of dissimilarity coeffi-
cients have been devised for various problems in ecology (Legendre and Legendre
1998), but four commonly chosen coefficients for quantitative data are the chord
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distance (Prentice 1980; Overpeck et al. 1985)
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the �2 distance (Birks et al. 1990)
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the information statistic (Overpeck et al. 1985)
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and the Bray-Curtis distance (Faith et al. 1987)

djk D
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ˇ
ˇxij � xik

ˇ
ˇ

mP

iD1

�
xij C xik

� (15.8)

where xij is the proportion of taxon i in sample j, and djk the resulting dissimilarity
between samples j and k. When proportional data are used, the chord distance is
equivalent to the Hellinger distance (Legendre and Gallagher 2001; Legendre and
Birks 2012: Chap. 8).

Prentice (1980), Overpeck et al. (1985), and Gavin et al. (2003) found the chord
distance (or its squared form) to be particularly useful for closed compositional data
of the type commonly found in palaeoecological studies as it has good signal to
noise properties, flexibly weighting individual taxa by downweighting the influence
of rare species, the noise, to emphasise the major patterns in the data, the signal
(Overpeck et al. 1985). Another useful property is that the chord distance reaches
an upper bound when the two samples have no species in common, and takes values
of 0 to

p
2, when Y are proportional compositional data.

Two further signal-to-noise measures identified by Overpeck et al. (1985), the
�2 distance and the information statistic, have similar properties to the chord
distance and for most data-sets can be used interchangeably (though see Bennett
and Humphry (1995) for a situation where this is not the case).

Faith et al. (1987) criticised the chord distance as a weak measure of com-
positional dissimilarity, recommending instead measures such as the Bray-Curtis
distance, which use Manhattan-like absolute differences of the ith variable in j and k
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rather than the squared differences of Euclidean-like measures, such as the chord
distance, which magnify between-sample differences.

It is critical to choose a dissimilarity coefficient that is suited to the type of data to
hand. The coefficients described above are all for use with quantitative community
data, whilst others, such as the Jaccard coefficient, are suited to presence–absence
data. The Jaccard coefficient, here expressed as a dissimilarity, is defined as

djk D b C c

a C b C c
(15.9)

where a is the number of species present in both j and k, b is the number of species
present in j but not k, and c the number of species present in k but not j. Notice that
the Jaccard coefficient ignores information about species that are absent from both j
and k (commonly denoted d). The simple matching coefficient does not ignore these
double absences

djk D b C c

a C b C c C d
(15.10)

but may be less well suited to assemblage data.
Where greater flexibility in weighting different taxa or where matrix Y is not

species data but environmental data with variables measured in different units, a
coefficient that treats each variable separately and allows weighting of individual
variables, such as Gower’s (1971) coefficient for mixed data, may be most suitable.
Gower’s coefficient, in its expanded form, is

djk D

mP

iD1

wi dijk

mP

iD1

wi

(15.11)

where dijk is the dissimilarity between samples j and k for variable i and wi is the
weight associated with the ith variable, also known as Kronecker’s Delta (Legendre
and Legendre 1998). For presence–absence data or semi-quantitative data such as
ordinal or nominal classes, dijk is 1 if j and k match on the ith variable (i.e., species
i is present in both samples, or both samples are in the same class) and 0 otherwise.
For quantitative data, dijk is calculated as follows

djk D 1 �
ˇ
ˇxij � xik

ˇ
ˇ

Ri

(15.12)

where Ri is the value to standardise the ith variable by, usually taken to be the
observed range of the ith variable. Podani (1999) suggests an extension to Gower’s
coefficient for ordinal variables that retains more of the encoded semi-quantitative
information of the original data.
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Fig. 15.2 Kernel density estimates of the distribution of pair-wise dissimilarities for the Surface
Waters Acidification Programme (SWAP) diatom-pH training-set, showing the effect of species
richness on dissimilarity values (left), and the choice of percentiles for selecting dcrit (right)

Regardless of which measure is used, however, the general form of these
coefficients is to calculate some summation of the differences between samples j
and k for a set of variables or taxa i D 1, : : : , m. As such, it must be remembered
that the number of taxa over which comparisons are made, m, has a bearing on the
resulting dissimilarity, with species-rich samples invariably yielding higher values
of djk than species-poor samples. This effect can be seen in Fig. 15.2, which shows
the distribution of pair-wise dissimilarities for the SWAP training-set using all 277
taxa and a subset of 57 taxa that are present in �40 samples and have a maximum
abundance �5%. In the smaller data-set the distribution of pair-wise dissimilarities
is shifted to the left, to lower values than those observed using the full SWAP
data-set. Therefore, one must be careful to not compare directly dissimilarities
between sites calculated using two or more sets of variables, such as diatoms and
pollen.

The Curse of Dimensionality

The curse of dimensionality (Bellman 1961) describes the problem of defining
localness in high dimensions; neighbourhoods with a fixed number of samples
become less local as the number of dimensions increases (Hastie and Tibshirani
1990). It is common for the dimensionality of palaeoecological data-sets to be high,
especially with diverse proxies such as diatoms. In the SWAP and RLGH example
presented here, there are 277 dimensions (species) and only 167 sites in the modern
training-set. However, MAT and AM have been applied routinely in palaeoecology
without any prior dimension-reduction.
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Despite this, MAT and AM appear to defy the curse of dimensionality. This
may be, as Härdle (1990) shows, because the relevant dimensionality is not m, the
number of species, but p, the number of environmental variables (ter Braak 1995).
Ter Braak (1995) also suggests that this defiance of the curse is due to dissimilarity
coefficients simply summing over dimensions.

How Similar Is Similar Enough?

A logical question that arises, therefore, is how many analogues should one retain
for inferences or to set restoration targets? For the MAT, various methods to derive
this have been determined, though several are ad hoc owing to a lack of available
formal statistical inference to guide the choice of k.

Choosing k should be viewed with as much importance as model selection in
regression or component-based methods of calibration, such as PLS and WAPLS
(Birks 2012: Chap. 2; Juggins and Birks 2012: Chap. 14). As k increases, so does
the complexity of the MAT model. At low values of k substantial error or bias
is likely to occur, whereas at larger values of k, MAT models will incorporate
information from samples that are potentially not good matches and consequently
overall performance will be low (Fig. 15.3). This represents a trade-off between
having too simple a model and avoiding including information from non-analogous
samples.

Choosing k to Optimise RMSEP

Plots of root mean squared error of prediction (RMSEP) against k can be used
as a guide to the choice of a suitable value for k. Figure 15.3 shows RMSEP for
values of k for the SWAP diatom-pH training-set under both leave-one-out (LOO)
and bootstrap cross-validation (see Juggins and Birks 2012: Chap. 14 for details of
these techniques). RMSEP is high when k is small and declines rapidly for values
of k up to 6. The optimal choice of k is 10 when assessed using LOO and 11
using bootstrapping, though there is little to choose between the performance of
the models in this case using 6 and 11 analogues.

Telford et al. (2004) demonstrated that choosing k post hoc by selecting the
k with lowest RMSEP for the training-set can be biased, and that in some cases
this bias can be quite large. The solution to this problem is to use an optimisation
set alongside the usual training- and test-sets (Telford et al. 2004). The model is
built on a subset of the training data retaining a small optimisation set of samples
from the training-set. Cross-validated (leave-one-out or bootstrap) predictions for
each of the samples in the optimisation set are computed, and the value of k that
produces the lowest RMSEP for the optimisation set is then used for subsequent
model predictions.
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Fig. 15.3 Scree-plot of modern analogue technique (MAT) model leave-one-out (LOO) and
bootstrap root mean squared error of prediction (RMSEP) as a function of k, the number of
analogues retained for prediction, for the Surface Waters Acidification Programme (SWAP)
diatom-pH training-set

Choosing k via Dissimilarity Jumps

An alternative approach to the choice of k is the ‘jump’ approach of Waelbroeck
et al. (1998). In the ‘jump’ approach, a small number of analogues is retained, say
the 10 or 20 closest matches, for each test sample. These analogues are ordered
in terms of increasing dissimilarity to the test sample and the dissimilarity values
for these analogues are differenced to yield the change in the dissimilarity of the
current analogue to the test sample and that of the previous analogue. Where the
proportional increase in dissimilarity is greater than a threshold, ˛, a ‘jump’ in
dissimilarity is said to occur and the preceding analogues only are retained to
provide the prediction for the test sample, retaining at a minimum the two closest
analogues (Waelbroeck et al. 1998). Values for ˛ are varied (Telford et al. (2004)
used values of ˛ ranging from 0.02 to 1, for example) and the value of ˛ that
minimises the RMSEP of the model under cross-validation is used for further
analysis. Waelbroeck et al. (1998) found that values of ˛ of between 0.1 and 0.3
are usually retained.

The two contrasting approaches to model selection above (RMSEP or dissim-
ilarity jumps) boil down to selecting either a set number of k analogues and
consequently a variable threshold ˛ or a fixed threshold and variable number of
analogues for each test sample. One deficiency of both approaches is that they are



508 G.L. Simpson

a step removed from the compositional dissimilarity between analogues and the
test sample.

It would be more intuitive to retain only those samples that were sufficiently
similar to the test sample for purposes of prediction. Despite the appeal of this,
however, a number of difficulties exist, most notably how to define sufficiently
similar? One could approach this problem by replacing ˛ in the ‘jump’ method
above with a dissimilarity critical threshold, dcrit, and vary dcrit between suitably
chosen values to determine the value of dcrit that minimises RMSEP, again under
cross-validation.

A further issue is that a prediction cannot be made for a test sample that has no
sufficiently similar analogues using this method. This may be advantageous, with
the user avoiding producing misleading reconstructions, but in practice producing
a prediction is desirable as long as the uncertainty or utility of that prediction can
be determined and presented alongside the predictions themselves. I return to this
point when I discuss using analogue methods for the evaluation of reconstructions.

Reference Distributions of Dissimilarities

In AM there is no objective function to minimise (e.g., RMSEP) and as such the
methods discussed above are not appropriate for the selection of the number of
analogues to retain or a suitable dissimilarity threshold. The approach that has
traditionally been used in AM, and also in the MAT for reconstruction evaluation,
is to take as the critical dissimilarity a low quantile (percentile) of the distribution
of pair-wise dissimilarities observed from the training-set samples (Overpeck et al.
1985; Flower et al. 1997).

The thinking behind this approach is that no two assemblages will ever be
perfectly similar or dissimilar and that for a training-set covering a reasonable
environmental space most sites will be, on average, moderately dissimilar to one
another. Samples that are very similar or very dissimilar are unlikely to be observed
in such a training-set. The observed distribution of pair-wise dissimilarities for
the training-set is used to represent this ‘likelihood’ of two samples being ‘good’
analogues for one another, and the low percentiles of this distribution reflect the low
‘likelihood’ of observing two very similar samples. Note that ‘likelihood’ carries
no statistical connotation here; at best, these percentiles are guides to selecting a
suitable value for dcrit. One or more of the 1st, 2nd, 2.5th, 5th, and 10th percentiles
have been used, depending on the absolute values of the dissimilarity (Birks et al.
1990). Often several percentiles have been used where varying grades of analogue
closeness are desired so that the 1st percentile could represent close analogues, the
2.5th very good analogues, and the 5th percentile good analogues for example (e.g.,
Jones and Juggins 1995; Simpson et al. 2005).

The shape of the above distribution also needs to be taken into account when
selecting a suitable dcrit. For the SWAP training-set, the selection of percentiles is
illustrated in the right panel of Fig. 15.2. The distribution of pair-wise dissimilarities
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is strongly left skewed, with many samples being quite dissimilar to one another.
This results in lower percentiles being observed at relatively high dissimilarities and
therefore moderate differences in species assemblages. To guard against selecting
an inappropriate percentile with too high a dissimilarity, a lower percentile than that
usually chosen should be selected. For the full SWAP data-set, for example, the 1st

percentile would be an appropriate upper limit on the choice for dcrit. Values for dcrit

chosen using empirical quantiles are data-set-dependent and should be estimated for
each study and data-set to hand.

Monte Carlo Resampling

The dissimilarity critical threshold, dcrit, could also be derived from an empirical
distribution of dissimilarities derived via resampling of the observed pair-wise
dissimilarities for the training-set (Sawada et al. 2004; Simpson 2007). The rationale
behind this approach is that a ‘good’ analogue is one that is unlikely to occur by
chance, i.e., the probability of observing a pair of samples that are very similar to one
another is low. Monte Carlo methods can be used to produce a simulated distribution
of pair-wise dissimilarities that one might expect to observe for the total population
of possible samples by sampling with replacement from the observed training-set
(Manly 1997). At random, a pair of samples is selected with replacement from the
modern training-set and the dissimilarity between this pair of samples recorded.
This is repeated a large number of times to produce the Monte Carlo distribution of
dissimilarities. A low percentile of this distribution may then be selected for dcrit.
Furthermore, the number of resampled pair-wise dissimilarities less than a given
level of dissimilarity is the Monte Carlo p-value for that level.

Figure 15.4 shows the results of applying Monte Carlo resampling to the SWAP
training-set, drawing 10,000 sample-pairs with replacement. The left panel shows
both the Monte Carlo and observed distributions, with the Monte Carlo distribution
being multi-modal and also having lower values of djk for the same percentile of the
observed distribution (Table 15.1). The right panel of Fig. 15.4 shows the cumulative
probability distribution of the Monte Carlo sample of dissimilarities. The shaded
region of this curve indicates the dissimilarity values expected to occur by chance
five times in 100, equivalent to a Monte Carlo p-value of �0.05. From Fig. 15.4, the
chord distance at p � 0.05 is �0.692.

Receiver Operating Characteristic (ROC) Curves

A recent development in analogue methods is the use of receiver operating
characteristic (ROC) curves to determine an optimal value for dcrit (Gavin et al.
2003; Wahl 2004). This value is optimal in the sense that it best discriminates
between analogue and non-analogue samples. However, the use of ROC curves is
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Fig. 15.4 Monte Carlo resampling applied to the Surface Waters Acidification Programme
(SWAP) training-set showing (i) a comparison of the observed (dashed line) and resampled (solid
line and grey bars) distribution of pair-wise dissimilarities (left), and (ii) the empirical cumulative
distribution function of resampled pair-wise dissimilarities as a function of dissimilarity (right).
The grey shaded area on the right plot is the area corresponding to a Monte Carlo p-value of �0.05

Table 15.1 Percentiles of the distribution of observed pair-wise
dissimilarities for the Surface Waters Acidification Programme
(SWAP) training-set and those derived from randomly sampling
10,000 sample pairs, with replacement, from the training-set

1% 2.5% 5% 10%

Observed 0.645 0.690 0.758 0.817
Resampled 0.633 0.663 0.690 0.734

only applicable to situations where training-set samples can be assigned a priori to
groups or types, such as vegetation types, for example, in the case of a pollen-based
training-set. A pair of samples is considered to be analogues only if they belong to
the same group.

Figure 15.5 shows some results of applying the ROC curve methodology to the
North American Modern Pollen Database (NAMPD Version 1.7; Whitmore et al.
2005), which comprises 4525 samples where the potential vegetation (in the absence
of significant anthropogenic land-use; hereafter termed biome) was determined from
global land-cover data (Whitmore et al. 2005). Here, I only consider the 2157
pollen samples collected from lacustrine environments. Two samples are considered
analogues if they are located in the same biome and non-analogues if they derive
from different biomes. For each site, both the dissimilarity to the closest sample that
occurs in the same biome and the closest sample not located within the same biome
are determined.

If dissimilarity is a good discriminator between samples in like and unlike biomes
we would expect to find more analogue pairings at low dissimilarities and a greater
number of non-analogue pairings at larger dissimilarities. The upper-right panel of
Fig. 15.5 illustrates this for a combined analysis of the NAMPD samples over all
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Fig. 15.5 Receiver operating characteristic (ROC) curve analysis applied to the North American
Modern Pollen Database (NAMPD) using the chord distance. The results shown are for an analysis
over all biomes, combined. Clockwise from top left: (i) the ROC curve and area under curve (AUC)
statistic, (ii) kernel density estimates of the distribution of pair-wise dissimilarities for analogue
and non-analogue samples, (iii) posterior probability that two samples are analogues as a function
of dissimilarity, and (iv) plot of True Positive Function (TPF) – False Positive Function (FPF) as
a function of dissimilarity. The dotted vertical in the plots is the optimal dissimilarity threshold
indicated by the ROC curve (dcrit), which for the combined analysis shown is dcrit D 0.457

biomes. Far greater numbers of true analogues are found at lower dissimilarities
than at high values.

ROC curves compare two different types of error that arise when evaluating
analogue/non-analogue samples for a given value of dcrit: (i) false positive error
and (ii) false negative error. False positive errors occur when two samples that are
not analogues (i.e., come from different groups) are said to be analogues on the basis
of dcrit. False negative error represents the converse, when two samples that are in
the same group, and are therefore analogues, are said to be non-analogues given
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dcrit. The optimal value for dcrit is the value that jointly minimises these two types
of error.

A ROC curve is drawn using two measures of performance that are related
to the two types of error described above; (i) sensitivity, the proportion of true
analogues out of all analogues for a given value of dcrit; and (ii) specificity, the
proportion of true non-analogues out of all non-analogues for the same value of
dcrit. Sensitivity is also known as the True Positive Fraction (TPF) and specificity
as the True Negative Fraction (TNF), with the False Positive Fraction (FPF) being
defined as 1 � specificity (or 1 � TNF). Sensitivity is drawn on the y-axis of the ROC
curve plot and 1 � specificity on the x-axis.

The point on the ROC curve closest to the upper left corner of the plot
corresponds to the optimal dissimilarity threshold dcrit. At this point the slope of
the ROC curve is maximal and the difference between sensitivity and 1 � specificity
is greatest (Fig. 15.5, lower-left panel). This point is also the point where the
distributions of true analogues and true non-analogues cross (Fig. 15.5, upper-right
panel).

The upper left panel of Fig. 15.5 shows the ROC curve for the NAMPD data-
set for all biomes combined. The 1:1 line represents a naı̈ve predictor of analogue
status, namely the result of predicting that all pairings are analogues regardless of
dcrit. The ROC curve in Fig. 15.5 lies close to the upper left corner of the plot,
indicating strong discrimination of analogues/non-analogues by the chord distance.

The area under the ROC curve (AUC) is a measure of the degree to which the dif-
ferences in species composition discriminates between analogue and non-analogue
samples. The AUC is equivalent to the Mann–Whitney U statistic (Henderson
1993). An AUC value of 0.5 indicates that determining whether two samples
are analogues on the basis of the dissimilarity between the samples is no better
than random guessing. In the NAMPD example, the AUC is 0.996, indicating
strong discrimination between true-analogues and true non-analogues using the
dissimilarity between samples.

Table 15.2 shows the results of applying ROC curve analysis individually to
the nine biomes in the pollen data as well as to all biomes combined. Overall,
the optimal chord distance threshold is 0.476 with thresholds for the individual
biomes ranging from 0.333 (Forest-Tundra) to 0.632 (Coastal). In all cases the
AUC statistics are very high with low standard errors resulting in highly significant
differences between the distributions of dissimilarity values for analogue and
non-analogue pairings, although this is not unexpected given the large sample
sizes.

The posterior probability that any two samples are analogues can be calculated
from the ratio of TPF to FPF, LR(C) D TPF/FPF (Henderson 1993). LR(C) is a
likelihood ratio and can be converted to the posterior odds that two samples are
analogues (OC

post:) via

OC
post: D LR.C/ � OC

pri: (15.13)
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Table 15.2 Summary results from the receiver operating characteristic (ROC) curve analysis of
the North American Modern Pollen Database (NAMPD) samples

Opt. Dis. AUC SE In Out p-Value

Arctic 0.438 0.998 0.002 217 1940 <2.22e�16
Boreal forest 0.338 0.981 0.004 593 1564 <2.22e�16
Coastal 0.632 0.999 0.002 89 2068 <2.22e�16
Conifer/Hardwood 0.493 0.997 0.003 207 1950 <2.22e�16
Deciduous forest 0.451 0.986 0.004 442 1715 <2.22e�16
Desert 0.541 1.000 0.002 47 2110 <2.22e�16
Forest-Tundra 0.333 0.994 0.003 273 1884 <2.22e�16
Mountain vegetation 0.444 0.999 0.002 100 2057 <2.22e�16
Praries 0.475 0.995 0.004 189 1968 <2.22e�16
Combined 0.476 0.995 0.001 2157 17256 <2.22e�16

Opt. Dis. is the optimal dissimilarity, SE is the standard error of the Area Under the ROC Curve
(AUC), In and Out are the number of analogue and non-analogue pairings, respectively

where OC
pri:, the prior odds, is

OC
pri: D PrC

pri:

1 � PrC
pri:

(15.14)

and PrC
pri: is the prior probability of any two samples being analogous (Brown and

Davis 2006). PrC
pri: may be set at 0.5 (i.e., a 50% probability of two samples being

analogues) or may be determined from the observed probability that two samples
are analogues (i.e., in the same group) in the modern training-set.

The posterior odds of two samples being analogues conditional upon dissimilar-
ity is converted to a posterior probability that the two samples are analogues via

PrC
post: D OC

post:

1 � OC
post:

(15.15)

In analyses where the number of true analogue sample pairs is very low compared
with the number of true non-analogue pairs, such as the NAMPD example, it is
essential that the prior probability, PrC

pri:, observed from the training-set is used to
compute the posterior odds and posterior probabilities. If an equal probability of 0.5
is used, it will greatly over-estimate the posterior odds and probabilities and hence
confidence in the discrimination between analogue and non-analogue samples.

Table 15.3 shows the optimal dissimilarity and the posterior probability that two
samples are analogues for that distance for each of the biomes in the NAMPD
example plus an overall assessment across all biomes. Probabilities range from
0.303 to 0.789, with only slightly greater than 50% probability that two samples
are analogues when the optimal cut-off of 0.457 is used in the overall analysis.
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Table 15.3 Optimal dissimilarities and associated posterior probability that two samples are
analogues at this dissimilarity for receiver operating characteristic (ROC) curve (ROC) and logistic
regression model ( logit) analysis of the North American Modern Pollen Database (NAMPD)
samples

Optimal ROC djk ROC  logit djk (� D 0.9)

Arctic 0.438 0.779 0.234 0.317
Boreal forest 0.338 0.789 0.367 0.142
Coastal 0.632 0.420 0.040 0.238
Conifer/Hardwood 0.493 0.469 0.047 0.279
Deciduous forest 0.451 0.714 0.311 0.276
Desert 0.541 0.303 0.017 0.278
Forest-Tundra 0.333 0.512 0.129 0.123
Mountain vegetation 0.444 0.611 0.141 0.200
Praries 0.475 0.394 0.077 0.145
Combined 0.476 0.539 0.110 0.160

djk (� D 0.9) is the dissimilarity at which the posterior probability that two samples are analogues
is equal to 0.9

Logistic Regression Modelling

Whilst the ROC curve is a simple, graphical technique for assessing the ability
of dissimilarity to discriminate between analogue and non-analogue comparisons,
several additional computational steps must be performed to extract the meaningful
measures of interest; namely the optimal dcrit threshold and the posterior probability
that two samples are analogues at the selected threshold. Furthermore, the way ROC
curves have been presented in the palaeoecological literature does not account for
uncertainty in analysis, and hence uncertainty in future assignments in the MAT or
AM where dcrit is used.

The data used to create the ROC curve are effectively a vector of 1’s and 0’s and
a vector of associated dissimilarities between the pair of samples. A 1 indicates that
the pair of samples come from the same group and are hence true analogues, whereas
a 0 indicates that the samples are not drawn from the same group and represent true
non-analogues. The upper right panel of Fig. 15.5 shows the probability densities of
the chord distances for true analogues and true non-analogues.

An alternative way to think of these data is as binomial observations y taking
values 0 and 1 with associated dissimilarities x. Logistic regression (see Birks 2012:
Chap. 2) can be used to model the relationship between these binomial observations
and the associated pair-wise dissimilarities. In logistic regression, we attempt to
model the probability  that y D 1 conditional upon the covariate, x.

Logistic regression is a special case of the Generalized Linear Model (GLM:
McCullagh and Nelder 1989) where the response, y, has a binomial distribution
and the linear predictor is related to the response through the logit link function
(Birks 2012: Chap. 2). The logit link function implies the concept of the odds
of an event being observed. The odds that two samples are true analogues is the
ratio of the probability that two samples are true analogues () to its converse
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Fig. 15.6 Fitted logistic regression model curves for the all biomes (left) and the Desert biome
(right) describing the relationship between the posterior probability that two samples are analogues
and chord distance. The shaded grey bands on the plots are 95% point-wise confidence intervals
on the fitted curve. In the combined analysis this confidence interval is so small as to not be
visible. Rug-plots indicate the distribution of analogue and non-analogue samples as a function
of dissimilarity

(1 � ). To complete the logit transformation, the natural logarithm of the odds
is taken

logit ./ D log
h 

1 � 

i
D ˇ0 C ˇ1dcrit (15.16)

where log




1�

�
is the log odds.

Returning briefly to the NAMPD example, Fig. 15.6 shows a logistic regression
model fit to the combined analysis (over all biome types) and for the Desert
biome in particular. Rug-plots (Juggins and Telford 2012: Chap. 5) illustrate the
dissimilarity at which true analogue (y D 1) and true non-analogue (y D 0) pairings
were observed. The solid line represents the fitted function and is contained within
a 95% confidence region; on the combined plot, this confidence interval is so small
as to not be visible.

One feature that stands out immediately from the two plots is that the prob-
ability that two samples are true analogues only takes high values at very low
dissimilarities. The probabilities from the logistic regression model fit are low
when computed for the optimal dissimilarity suggested by the ROC curve analysis
( logit in Table 15.3). These results suggest that the posterior probability that two
samples are analogues at the optimal dissimilarity determined via the ROC curve
method is overly optimistic when compared to the more direct estimation via logistic
regression.

Using the fitted logistic regression model it is trivial to compute the dissimilarity
at which a user-specified probability that a sample pair are analogues is attained.
If we define � as the specified probability, the dissimilarity ( Odjk) at which the fitted
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probability is equal to � is computed using the estimates of the model coefficients
of Eq. 15.16

Odjk D � � Ǒ
0

Ǒ
1

(15.17)

The dissimilarities at which � D 0.9 for each biome in the NAMPD example are
shown in Table 15.3. These dissimilarities are considerably lower than the optimal
dissimilarities suggested by the ROC curve analysis, on the order of 50% or more
lower.

The logistic regression approach to determining a dissimilarity threshold will
be more familiar to many palaeoecologists and the values of interest (dissimilarity
threshold and ) are more easily obtained than via the ROC curve method. However,
fitting logistic regression models is not without its difficulties.

Of greatest concern for the palaeoecologist using logistic regression is the
problem of separability, a situation that arises when there is no overlap in the
dissimilarity values for analogues (1) and non-analogues (0). Paradoxically, this
problem arises when the model does too good a job and perfect predictions can be
made. In such circumstances the maximum likelihood estimates of the regression
coefficients may not exist or be subject to large uncertainties (Firth 1993). A simple
way to diagnose such problems (if software used to fit the models does not
issue appropriate warnings) is to examine the regression coefficients and their
standard errors for excessively large values. Also, it is not uncommon for the fitted
probabilities to become numerically 1 or 0, leading to infinite odds. This is, however,
often not a problem if separability is not an issue.

Evaluation of Environmental Reconstructions

Techniques used in the construction of MAT calibration functions can also play
a role in evaluating reconstructions produced using other calibration-function
methodologies, such as weighted averaging or maximum likelihood-based methods
(Juggins and Birks 2012: Chap. 14).

Intuitively, more faith can be placed in the reconstructed values for those samples
that have one or more close modern analogues in the modern training-set. Where
samples have no close modern analogues, the calibration function is potentially
extrapolating beyond the bounds of the species-environment relationships found
within the training-set.

There are several ways in which such information can be conveyed. The simplest
is to indicate in some manner those fossil samples that do have a close modern
analogue in the training-set. Additional levels of granularity (e.g., distinguishing
between close, very good, and good modern analogues) can be achieved through the
use of different markers to indicate the level of match and associated dissimilarity
thresholds. Commonly, low percentiles of the distribution of pair-wise dissimilari-
ties computed for the training-set are used.
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Fig. 15.7 Minimum dissimilarity (chord distance) between each fossil sample and samples in the
Surface Waters Acidification Programme (SWAP) training-set for The Round Loch of Glenhead
core. The dashed horizontal lines are percentiles of the pair-wise distribution of dissimilarities for
the training-set. The percentiles are indicated on the right-hand axis of the plot

Alternatively, a plot of the minimum dissimilarity between each fossil sample and
the training-set samples as a function of depth/age may be produced. Again, markers
representing dissimilarity thresholds can be drawn on the plot to aid interpretation,
and low percentiles can be used for this purpose in a similar manner to the simple
marker method above. Figure 15.7 shows the minimum dissimilarity between each
fossil sample in the RLGH core and a training-set sample. Here, the 1st, 2.5th, 5th,
and 10th percentiles derived from the SWAP training-set have been superimposed on
the plot. It is clear that, with few exceptions, samples from the RLGH core older than
�2000 yr BP have no close modern analogues in the SWAP training-set and thus
one must treat the reconstructed values from any calibration-function methodology
with a greater degree of uncertainty than reconstructed values for those samples that
do have close modern analogues in the training-set.

Software

A wide range of software has been written to analyse data using analogue methods,
in particular for MAT. Sawada (2006) lists several applications, including ANALOG
(Schweitzer 1995, 1999), MODPOL (Maher 2000), SIMMAX (Pflaumann et al.
1996), RAM98 (Waelbroeck et al. 1998), PaleoToolBox (Sieger et al. 1999), C2
(Juggins 2007), and MATTOOLS (Sawada 2006). All of these applications, except
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C2, are available free of charge from the internet. C2 is freely downloadable for
unrestricted use on data-sets with 75 samples or fewer; a licence fee is payable
for use on larger data-sets. Of the applications listed, only MATTOOLS is open
source, though technically only via a Windows binary for the R statistical language
(R Development Core Team 2009), limiting deployment on other operating systems.
For ROC curve estimation, MATTOOLS and ROCKIT (Metz et al. 1998) are
available.

An alternative to these applications is analogue (Simpson 2007; Simpson and
Oksanen 2010), a freely available, open-source package for R distributed under the
GNU General Public Licence version 2. All of the figures and example analyses
presented here were generated using analogue version 0.6-23. This or later versions
of the package can be downloaded from the Comprehensive R Archive Network
(CRAN; http://www.cran.r-project.org/package=analogue). Scripts to reproduce the
examples can be found at http://analogue.r-forge.r-project.org/dperbook/.

Conclusions and Future Work

Analogue methods, whilst remaining largely unchanged since their introduction
to the literature (Overpeck et al. 1985; Prell 1985), have seen a recent burst of
activity prompted by the novel use of ROC curves to define critical dissimilarity
thresholds (Gavin et al. 2003; Wahl 2004). MAT calibration functions remain a
valuable and powerful technique for palaeoenvironmental reconstruction, despite
recent work suggesting problems with spatially auto-correlated environmental data
(Telford and Birks 2005), and the underlying theory is increasingly being used in
applied palaeoecology to define reference conditions for use in setting recovery and
restoration targets (Bennion and Simpson 2011; Bennion et al. 2011a, b).

The one area of analogue methods that remains largely unsolved and deserving
of attention is a general approach to determining dissimilarity thresholds for
selecting analogues. As we have seen, ROC curves and logistic regression can
provide statistically-based thresholds when data can be grouped a priori, but no
satisfactory method exists for data not belonging to appropriate groups. Simulating
assemblages that have similar properties to the observed training-set (species optima
and tolerance ranges) and computing their dissimilarity is perhaps one avenue by
which realistic simulation distributions can be derived from which thresholds may
be determined.

Another avenue may be found in parametrising an appropriate multivariate
probability distribution, such as the multinomial or Dirichlet, again with suitable
optima, tolerances, and covariances/correlations between species, followed by
computing the dissimilarity between randomly sampled pairs of observations from
that distribution. Indeed, Overpeck et al. (1985), in their appendix entitled “Some
theoretical properties of dissimilarity coefficients”, point to the relationship between
certain coefficients and the multinomial distribution.

The issue of fossil assemblages that lack close modern analogues is an area
that is now starting to receive attention by ecologists and palaeoecologists (Jackson

http://www.cran.r-project.org/package=analogue
http://analogue.r-forge.r-project.org/dperbook/
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and Williams 2004). Understanding these non-analogue assemblages and how the
underlying climatic and other environmental factors led to their formation are
important questions in the fields of ecology and evolutionary biology. This is all the
more important given the unprecedented human impact upon ecosystems through
pollution and global warming observed in the past few decades (Fox 2007; Williams
and Jackson 2007; Williams et al. 2007). The Earth is rapidly heading towards
dramatic ecological changes arising from the unique environmental conditions
engineered by anthropogenic disturbance of our fragile ecosystems.
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Chapter 16
Autocorrelogram and Periodogram Analyses of
Palaeolimnological Temporal-Series from Lakes
in Central and Western North America to Assess
Shifts in Drought Conditions

Pierre Dutilleul, Brian F. Cumming, and Melinda Lontoc-Roy

Abstract The use of appropriate statistical techniques of temporal-series analysis
is becoming increasingly important for palaeolimnological studies. After a preamble
outlining the two main approaches to statistical analysis of time-series, we focus on
a classical time-domain technique using distance classes, autocorrelogram analysis,
and a novel frequency-domain technique, multi-frequential periodogram analysis
(MFPA). Both are appropriate for unequally spaced observations such as many
palaeolimnological temporal data. In previous studies, broad-scale shifts in the
mean climatic conditions over millennia have been inferred from changes in
diatom assemblages in lake sedimentary records. Here we examine if the temporal
characteristics of diatom-inferred changes in climatic conditions: (1) vary in three
Dakota or Minnesota lakes before and after AD 1000–1300; and (2) vary among
five dominant zones over the past 5500 years in a lake from southern British
Columbia. In addition, we assess if the periodic components of temporal-series
differ among lakes. Consistent with the major changes in the inferred climatic
conditions, autocorrelogram analyses of the total series from all the lakes essentially
exhibit heterogeneity in the mean due to broad-scale trends or differences in the
mean level between zones. Furthermore, the autocorrelograms of the different
portions suggest that the temporal structure varies between zones. The MFPA
refines this interpretation by detecting periodic components in all of the portions
of the palaeolimnological temporal-series. Specifically, the MFPA results support
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Québec H9X 3V9, Canada
e-mail: pierre.dutilleul@mcgill.ca

B.F. Cumming
Paleoecological Environmental Assessment and Research Laboratory (PEARL),
Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
e-mail: brian.cumming@queensu.ca

H.J.B. Birks et al. (eds.), Tracking Environmental Change Using Lake Sediments,
Developments in Paleoenvironmental Research 5, DOI 10.1007/978-94-007-2745-8 16,
© Springer ScienceCBusiness Media B.V. 2012

523



524 P. Dutilleul et al.

the assertion that the periodic components of the temporal-series from all lakes tend
to vary between the dominant zones of inferred limnological and climatic regimes.
Many of the periodicities identified by MFPA are suggestive of connections to
changes in solar activity, whereas some others may be lunar-related.

Keywords Autocorrelogram • British Columbia • Diatoms • Distance classes •
Multi-frequential periodogram • Northern Great Plains • Palaeolimnology •
Periodicities • Temporal-series analysis

Introduction

The sedimentary record of lakes offers many opportunities to study variability
in climatic conditions over millennia. The relatively long time-frame covered
by sedimentary records, in conjunction with a good spatial coverage of lakes,
make palaeolimnological techniques an attractive approach to study changes in
climatic conditions. However, there are plenty of challenges associated with using
information in the sedimentary records of lakes to discern past climatic conditions
and variability. Foremost among these challenges is demonstrating that the proxy
records preserved in the sedimentary record of a lake can adequately track modern
and past climatic conditions (see Cumming et al. 2012: Chap. 20). A number of
palaeolimnological approaches are available for tracking climate-related variables
from lake sediments (e.g., Fritz 1996, 2008; Battarbee 2000; Smol and Cumming
2000; Battarbee et al. 2002; Douglas and Smol 2010; Fritz et al. 2010; Lotter
et al. 2010). Additionally, a number of physical and geochemical techniques can
be used to extract past variations in limnologic and climatic conditions from the
sedimentary record of lakes (e.g., Dean 2002; Dean et al. 2002; Moy et al. 2002;
Pienitz et al. 2009).

Once appropriate proxies of past climatic conditions have been analysed from
lake sediments, significant challenges still exist when it comes to the analysis
of the temporal structure of these data. Although most investigators strive to
obtain equally spaced sampling intervals and a similar temporal integration in
each sample (i.e., the number of years in each interval), it often turns out that
both features vary within cores and between sites. Such potential complications
will be less problematic if the sediments from the lake under study are varved
(i.e., annually laminated) (e.g., Bradbury et al. 2002; Dean 2002; Dean et al.
2002). Unfortunately, climatically-sensitive lakes that happen to be varved are
extremely rare. Consequently, palaeolimnological data from most sites are best
described as temporal-series, since the term ‘time-series’ is normally reserved for
partial realisations of a discrete-time stochastic process (Priestley 1981), that is,
observations that are made repeatedly on the same random variable at equal spacings
in time (Ord 1988). In more formal terms, in a time-series of length n, the time index
t is equal to 1, 2, : : : , n, whereas in a temporal-series, the n values of the time index
are t1, t2, : : : , tn without the constraint that t2 � t1 D t3 � t2 etc.



16 Autocorrelogram and Periodogram Analyses 525

Analyses of temporal-series of lacustrine sediments from all over the world
have provided insights into the dynamic nature of climate. Lake records from
North America (Anderson 1993; Laird et al. 1996; Bradbury et al. 2002; Cumming
et al. 2002; Dean 2002; Dean et al. 2002), Central America (Hodell et al. 2001),
South America (Moy et al. 2002), and Africa (Halfman et al. 1994; Stager et al.
1997; Verschuren et al. 2000) have all identified periodicities that may be related
to known variations in solar activity, as reflected in records of cosmogenically
produced isotopes such as 14C or 10Be. Furthermore, many of these studies showed
that the periodic components of the series have changed over time (e.g., Bradbury
et al. 2002; Moy et al. 2002). Lastly, evidence is accumulating that millennial-scale
‘state shifts’ in limnological conditions may be an important mode of variability in
many of the records (Laird et al. 1996; Verschuren et al. 2000; Cumming et al.
2002; Moy et al. 2002; Stager et al. 2011). These changes are similar to the
oscillations that have been described in the North Atlantic (Bond et al. 2001), and
also correspond to periods of major glacial advances in the Northern Hemisphere
(Cumming et al. 2002).

Our main objective here is to present two statistical methods that should prove to
be useful in palaeolimnological research: autocorrelogram analysis and a special
form of periodogram analysis described as ‘multi-frequential’, which are both
specifically designed to deal with unequally spaced observations in time. We will
illustrate these methods using previously published palaeolimnological records from
central (Laird et al. 1996; Fritz et al. 2000; Bradbury et al. 2002) and western
(Cumming et al. 2002) North America. The presentation and the illustration of the
autocorrelogram and periodogram analyses are preceded by a general preamble.

Statistical Background

Time-Domain Approach

A natural approach to the statistical analysis of time-series data is to study them in
the domain in which they were collected, that is, time. Note that in palaeolimnology,
the value of the time index corresponds to the vertical spatial location on a sediment
core that is dated by varves or 14C dating (Blaauw and Heegaard 2012: Chap. 12).
The time-domain approach is based on an extension of the linear additive model

Xi D � C ©i for i D 1; 2; : : : ; n; (16.1)

where the random variable X for individual i, Xi, is decomposed into the population
mean � (i.e., a constant that is generally unknown) and a random ‘error’, ©i, which
has the same probability distribution as Xi except that ©i has a zero population mean.
In particular, the population variance of the error is equal to the population variance
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of X, Var[X], which is classically denoted as ¢2. The equation above extends to
discrete-time stochastic processes (of which time-series are partial realisations) as
follows:

X.t/ D �.t/ C ©.t/ for t D 1; 2; : : : ; (16.2)

where X(t) denotes the random variable X at time t, and the population mean �(t)
or the population variance ¢2(t), or both, can change with the time index t if no
assumption is made.

Thus, the structure of a time-series, or of a temporal-series if the observations
are unequally spaced, can be in the mean function or in the heterogeneity of the
variance (also called ‘heteroscedasticity’). It can also be in the autocorrelation of
the random errors ©(t). To introduce the concept of autocorrelation, we start with the
correlation Corr[X, Y] between two random variables X and Y. By definition, it is
the standardised covariance between X and Y

Cov ŒX; Y �
p

Var ŒX� Var ŒY �
(16.3)

By replacing in Eq. 16.3 above the two random variables X and Y by the same
random variable X at times t and t C k, X(t) and X(t C k) (with k, a positive integer),
one obtains the kth-order autocorrelation coefficient Corr[X(t), X(t C k)]. To estimate
it correctly, a number of assumptions are required, as shown below.

Classically, Pearson’s simple linear correlation statistic r is evaluated from n
pairs of observations (Xi, Yi) (i D 1, : : : , n) made on two random variables X and Y,
as follows:

1

n � 1

nP

iD1

�
Xi � NX� �Yi � NY �
q

S2
XS2

Y

(16.4)

where NX and NY denote the sample means for X and Y, and S2
X and S2

Y are the
corresponding sample variances. If the n pairs of observations above are replaced
by the n � 1 pairs of observations (X(t), X(t C 1)) (t D 1, : : : , n � 1), that is, the first
n � 1 observations of the time-series collected for X are paired with the n � 1 last
observations of the same time-series, the simple linear correlation statistic becomes

1

n � 1

n�1P

tD1

�
X.t/ � NX� �X.t C 1/ � NX�

S2
X

(16.5)

It is obvious that to be correct, the use of such an autocorrelation coefficient
estimate requires that the sample mean NX be a good estimator of all population
means �(t) and that the sample variance S2

X be a good estimator of all population
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Fig. 16.1 (a) Partial realisation (n D 100) of a time-discrete first-order autoregressive process
with parameter value 0.75 and the corresponding autocorrelogram (below); for such a process,
the theoretical autocorrelation function is given by (0.75)k , and in this case, the autocorrelation
coefficient estimates reflect such an exponential decrease because �(t) D 0 for all t. (b) Partial
realisation (n D 100) of the same time-discrete stochastic process, on which a linear trend defined
by �(t) D 0.025 t is now superimposed, and the corresponding autocorrelogram (below); the
autocorrelation coefficient estimates are biased upwards because of the lack of stationarity resulting
from the trend

variances ¢2(t). This is true in particular when the time-discrete stochastic process
is weakly stationary, that is, when �(t) D � for all t, ¢2(t) D ¢2 for all t, and the
value of Corr[X(t), X(t C k)] depends only on k. Figure 16.1 illustrates this with one
partial realisation of a weakly stationary first-order autoregressive process and the
corresponding autocorrelogram in which the autocorrelation coefficient estimates
are plotted against the lag k (panel a) and one partial realisation of a time-discrete
stochastic process with the same theoretical autocorrelation function but for which
�(t) D 0.025t, with the apparent effect of the lack of stationarity (i.e., trend) on
the autocorrelation coefficient estimates (panel b). Recommended readings on these
topics include the books by Priestley (1981), Diggle (1990), and Dutilleul (2011),
and the papers by Legendre and Dutilleul (1992), Dutilleul (1995), and Alpargu and
Dutilleul (2001, 2003a, b).
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Frequency-Domain Approach

The alternative to the time-domain approach in the statistical analysis of time-series
follows from the modelling of the mean function �(t) as a sum of K cosine and sine
waves, each of them being a function of a frequency ¨k (k D 1, : : : , K) and time t:

�.t/ D
KX

kD1

fak cos.$k:t/ C bk sin.$k:t/g (16.6)

At the basis of this frequency-domain approach, the Fourier series development
of the observed time-series x(1), : : : , x(n) is performed at Fourier frequencies 2 p/n
(p D 0, 1, 2, : : : , [n/2], with [.], the integer part operator), providing the following
coefficients:

a
0

0 D 1

n

nX

tD1

x.t/ for p D 0 W (16.7.1)

a0
p D 2

n

nX

tD1

x.t/ cos

�
2p

n
� t

�
for p D 1; 2; : : : ;

hn

2

i
if n is oddI (16.7.2)

b0
p D 2

n

nX

tD1

x.t/ sin

�
2p

n
� t

�
for p D 1; 2; : : : ;

hn

2

i
if n is odd: (16.7.3)

(Note: If n is even instead of odd, the calculation of the coefficient a0
[n/2] is slightly

different and the coefficient b0
[n/2] is zero; Priestley 1981.) Some of the coefficients

above are ordinary least-squares estimates of the coefficients ak and bk involved in
the modelling of the mean function �(t) only if ¨k D 2 p/n for some p D 0, 1, 2,
: : : , [n/2] and the observations are equally spaced in time (Diggle 1990).

The plot of quantities a0
p

2 C b0
p

2 (multiplied by a constant in some packages and
textbooks) against p provides the classical uni-frequential periodogram of Schuster
(1898). Periodograms are primarily designed for the analysis of discrete spectra,
that is, when the periodic components of a time-series are modelled by cosine
and sine waves in the absence of autocorrelation. Periodograms are also used to
detect periodic components in the analysis of mixed spectra, that is, when there is
autocorrelation in addition to periodic components (Dutilleul 2001, 2011). In the
case of purely continuous spectra (i.e., when there is only autocorrelation and no
periodic component), a spectral density function can be defined from the autocorre-
lation function under the assumptions of weak stationarity. As spectral estimators,
smoothed periodograms are then more appropriate. Figure 16.2 illustrates the use
of Schuster’s periodogram compared to a smoothed periodogram with a triangular
spectral window, for a discrete spectrum (panel a) and a mixed spectrum (panel b).
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Fig. 16.2 Two time-series of length 100 composed of a periodic signal and random errors, with
(below) the corresponding Schuster’s periodogram (solid line) and smoothed periodogram with a
triangular spectral window of width 7 (dashed line). In both cases, the periodic signal is made of 4
cosine and sine waves with periods 20, 10, 20/3, and 5, and coefficients 4, 3, 2, and 1. (a) Random
errors are not autocorrelated. (b) Random errors follow a time-discrete first-order autoregressive
process with parameter value 0.9. In both cases, the Schuster periodograms show the four periodic
components relatively well because they correspond to Fourier frequencies (i.e., 5, 10, 15, and 20
cycles over the series). The smoothed periodogram (dashed line) captures the continuous part of
the spectrum (left) better than Schuster’s periodogram (solid line), at the expense of the discrete
part as the peaks corresponding to periodic components with smaller coefficients almost vanish
because of the smoothing. The latter feature is observed in both cases

Autocorrelograms and Periodograms

In the following sections, we present two statistical methods that we think will prove
very useful in palaeolimnological studies for a number of reasons outlined below.
We apply them to a number of data-sets and discuss the results.

The first statistical method is the autocorrelogram analysis based on Moran’s
I statistic (Moran 1950), which was originally used in a spatial context and is
evaluated at a number of ‘distance classes’. In other words, this further extension
of Pearson’s simple linear correlation coefficient is evaluated using all pairs of
observations collected at sampling points separated by a distance not greater than
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a certain quantity (i.e., the upper bound of the class) and not smaller than another
(i.e., the lower bound of the class). Its use here means that the pairs (x(ti), x(tj))
and (x(ti0), x(tj0)) (instead of (x(t), x(t C 1)) and (x(t C 1), x(t C 2))) will be used for
the evaluation of Moran’s I statistic at a given distance class if the distances jti � tjj
and jti0 � tj0j (in years for palaeolimnological temporal-series) fall in the same class
(instead of lag 1). Note that smoothed periodograms (whose use is classically
restricted to equally spaced observations) can be calculated from autocorrelation
coefficients thus estimated because of the links existing between autocorrelogram
and periodogram statistics (Priestley 1981). The originality of this statistical method
lies in the use of distance classes for analysing temporal-series in the time-domain
approach.

The second statistical method involves the use of multi-frequential periodograms
for spectral analysis in the frequency domain. Multi-frequential periodograms are
general enough to allow the analysis of unequally spaced observations in time. Their
analysis is not restricted to Fourier frequencies, and they are particularly powerful
in detecting periodic components that are close together (Dutilleul 2001). On the
other hand, periodograms are said to be ‘inconsistent estimators’ of the spectral
density function. This is true, but what does it mean? By definition, a consistent
estimator in statistics is unbiased (i.e., its expected value is equal to the parameter
value), and has a variance that decreases to zero asymptotically (i.e., when the
sample size tends to infinity). Schuster’s periodogram and the multi-frequential
periodogram are, in fact, unbiased asymptotically (Priestley 1981; Brillinger 1983;
Dutilleul 2001). Their variance does not decrease to zero asymptotically, however,
in particular at the frequencies corresponding to periodic components. But is this
really a problem? As far as the detection of deterministic periodic components is
concerned, the answer is ‘no’ because the spectral density function does not exist
(i.e., it takes an infinite value) at the corresponding frequencies (Priestley 1981).
Accordingly, the use of multi-frequential periodograms is appropriate in the context
of discrete spectra for which they were actually designed as well as for the detection
of periodic components in mixed spectra (Dutilleul 2001, 2011).

Because of its use in palaeoceanography and palaeoecology, we should mention
the program SPECTRUM of Schulz and Stattegger (1997), whose approach in the
frequency domain is different from ours in several respects. This program has been
helpful to palaeolimnologists in the recent past because of the procedure WOSA
(i.e., Welch-Overlapping-Segment-Averaging), which is available for series of
unequally spaced observations in time. However, the spectral tools in SPECTRUM
are uni-frequential and their use is restricted to Fourier frequencies and seem to
require longer series than those available in our study, once diatom assemblage
zones were defined. SPECTRUM proposes a coherency analysis (i.e., a correlation
analysis in the frequency domain) that can be performed between two series with
arbitrary spacing of the samples, which may be practically possible but does not
meet the basic prerequisite of a correlation analysis. No interpolation is performed
in SPECTRUM, so the spectrum is not under-estimated at high frequencies.
Instead, the overlapping and averaging performed in WOSA introduces a strong
positive correlation between successive ordinates of the estimated spectrum. The
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consequences are a global flattening and a broadening of the peaks corresponding to
periodic components, with eventually a lack of precision in their estimation and the
impossibility of separating periodic components close together. This is very clear
in the examples given by Schulz and Stattegger (1997). By providing consistent
estimators of the spectral density function, the procedure WOSA in SPECTRUM
thus appears more appropriate for the analysis of continuous spectra and can be
viewed as a complement to multi-frequential periodogram analysis. Note that the
spectral density function is simply another way to look at the autocorrelation
function (Priestley 1981).

Data and Methods

Study Sites: Historical Background

All of the temporal-series analysed in our study are based on inferences of past
limnological variables from diatom assemblages in well-dated sediment cores.
Diatoms are a common component of the algal flora and have been extensively
used to infer changes in biologically important variables, such as salinity (Wilson
et al. 1996; Fritz et al. 2010), lake depth, and nutrients (Hall and Smol 2010).
In all of these records, there are major periods of dominant diatom floras (and
inferred environmental variables), suggesting that millennial-scale shifts in moisture
regimes are a common phenomenon. For example, based on floristic changes
and estimates of salinity from Moon Lake, North Dakota, extreme droughts of
greater intensity and duration than those of the 1930s were much more frequent
between 2400 and 800 calendar years BP (Before Present) in comparison to after
800 years BP (Laird et al. 1996). These changes are related to declines in the
lake water-level and concurrent increases in salinity. Similarly, abrupt changes in
the diatom species composition were found to occur in Coldwater Lake, North
Dakota (Fritz et al. 2000), and Elk Lake, Minnesota (Bradbury et al. 2002), at
approximately the same time (Laird et al. 2003). However, in Elk Lake, changes
in the diatom assemblages are likely to be related to changes in nutrients that are
driven by changes in seasonality (i.e., high nutrient levels during times of vigorous
mixing and storminess, lower nutrient levels during times of lake stratification)
(Bradbury et al. 2002). Thus, estimates of TP (total phosphorus content) from
the diatom assemblages (see Juggins and Birks 2012: Chap. 14) can provide a
simplification of the more complex changes in the multivariate diatom assemblages,
which themselves are an integration of changes in climatic conditions.

Changes in lake water-level and salinity were inferred from a diatom-based
palaeoclimatic record for Big Lake, British Columbia (Cumming et al. 2002).
Similar to the prairie-lake records, this record shows strong state shifts in diatom
assemblages, but over a longer duration. Consequently, this allowed the assessment
of persistent millennial-scale dynamics over the past 5500 years (Cumming et al.



532 P. Dutilleul et al.

2002). Over this timeframe, five distinct diatom assemblage zones were delineated.
The diatom floras were distinct and relatively stable in these zones, with the length
of a zone ranging from 1140 to 1400 years and a mean length of 1220 years.
Between zones, mean salinity and lake depth oscillated back and forth between
stable periods of higher salinity and lower water-levels and of lower salinity and
higher water-levels. It is important to note that at 3770 years BP a major increase
in diatom-inferred salinity occurred, which was driven by the disappearance of
the most recent taxa in this core. However, variations in salinity (as well as lake
depth) also occurred after this point, and are represented by strong changes between
benthic (lower water-level) and planktonic taxa (higher water-level). In most cases,
transitions were abrupt, often occurring in less than a few decades. However, within
each of the zones distinct decadal- to multi-centennial fluctuations also occurred,
with some portions exhibiting greater decadal to multi-decadal scale variability.

Data Handling

The diatom-inferred salinity series for Moon Lake extends from �354 BC to AD
1980 (�2334 years, average resolution of 5.5 years, 424 samples: Laird et al. 1996,
1998). The diatom-inferred salinity series for Coldwater Lake extends from �39
BC to AD 1940 (�1979 years, average resolution of 10.2 years, 194 samples: Fritz
et al. 2000). The diatom-inferred phosphorus series from the varved lake sediments
of Elk Lake extends from �AD 450 to AD 1982 (�1532 years, average resolution
of 5.5 years, 281 samples: Bradbury et al. 2002). The diatom-inferred salinity series
from Big Lake extends from 3583 BC to AD 1991 (�5574 years, average resolution
of 17 years, 325 samples: Cumming et al. 2002). In all the temporal-series, log-
transformed data (i.e., diatom-inferred log salinity or log TP) were used in the
autocorrelogram and periodogram analyses, since all the diatom-based inference
models were log-based.

As mentioned above, major changes in effective moisture were identified in all
of the lake sedimentary records from North Dakota (Laird et al. 2003) and British
Columbia (Cumming et al. 2002). The times of occurrence of these changes were
identified by constrained incremental sum-of-squares cluster analysis (CONISS)
performed on the diatom assemblages with chord distance (DHellinger distance)
as the measure of dissimilarity (Laird et al. 1998; Bradbury et al. 2002; Cumming
et al. 2002; Legendre and Birks 2012: Chap. 8; Birks 2012: Chap. 11), using the
program TILIA v. 1.16 (Grimm 1987). The resulting diatom assemblage zones
(i.e., portions of temporal-series) have been interpreted as relatively stable periods
of similar climatic and limnologic conditions (Laird et al. 1996, 1998; Bradbury
et al. 2002; Cumming et al. 2002). The significance and robustness of the zones
identified by constrained cluster analysis were further examined by comparison
to both binary and optimal splitting zonation methods (Bennett 1996), using the
program PSIMPOLL v. 4.10 (see Bennett 2002; Birks 2012: Chap. 11). The primary
splits detected by these techniques identified the same major changes, as did the
constrained cluster analysis (Laird et al. 2003). Major changes in the Dakota and
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Minnesota lakes (Moon, Coldwater, and Elk lakes) occurred between �AD 1000
and �AD 1300 (�950–650 BP). For the longer Big Lake record, transitions between
zones occurred at 4960, 3770, 2300 and 1140 years BP.

Hypotheses

We primarily hypothesised that the periodic components in the temporal-series
of salinity (Big, Coldwater, and Moon lakes) and total phosphorus (Elk Lake)
varied between zones. We also hypothesised that the periodic components might
differ among lakes. To assess these hypotheses, we performed autocorrelogram
and periodogram analyses on diatom-based inferences of salinity (Big, Coldwater,
and Moon lakes) and phosphorus (Elk Lake), since these variables effectively
summarised the limnological changes in these lakes. The four palaeolimnological
temporal-series and their respective portions are displayed in Fig. 16.3.

Statistical Techniques

In a preliminary step, we used autocorrelograms to assess the structure of the
temporal-series of diatom-inferred salinity (Big, Coldwater, and Moon lakes) and
phosphorus (Elk Lake). In fact, this type of analysis can be carried out with
unequally spaced observations (in space, Legendre and Fortin 1989; in time,
Dutilleul 1995). Autocorrelogram analysis was performed on the total series for
each lake and for portions of the series divided according to the diatom-assemblage
zones interpreted as representing different climatic conditions (two for each of the
Dakota and Minnesota sites and five for the longer record from British Columbia;
see above). Moran’s I autocorrelation statistic (Moran 1950) was evaluated using
The R Package (Legendre and Vaudor 1991). In an autocorrelogram, sample
autocorrelation coefficients are plotted on the ordinate against increasing distance
classes on the abscissa. Values of Moran’s I generally range from �1 to C1. If
greater than C1 or smaller than �1, the value was truncated. A value of zero
indicates the absence of autocorrelation at the corresponding distance class. Positive
or negative values indicate that two observations collected at the distance considered
are, respectively, more similar or more dissimilar than expected for uncorrelated
sample data. In this study, we used equal-width distance classes for comparison
purposes (between zones and among lakes), although equal-frequency distance
classes are known to provide a more even precision in estimation and even greater
power in the testing of significance throughout the autocorrelogram (Dutilleul and
Legendre 1993). (See Cliff and Ord (1981) and Upton and Fingleton (1985) for a
formal presentation of autocorrelogram analysis.)

Following completion of the autocorrelogram analyses, the diatom-inferred
salinity or phosphorus temporal-series were analysed in the frequency domain in
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a

b

c

d

Fig. 16.3 Data plots over
time of the log-transformed
diatom-inferred salinity
concentrations for Big Lake
(a), Coldwater Lake (b), and
Moon Lake (c), and of the
log-transformed
diatom-inferred total
phosphorus concentrations
for Elk Lake (d). A dashed
line indicates where a shift in
drought conditions has
occurred
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Table 16.1 Basic descriptive statistics of the palaeolimnological temporal-series portions

Time interval between observations

Lake Portion
Number of
observations

Length
(years)

Shortest
(years)

Mean width
(years)

SD
(years)

Big 1 49 709 11.24 14.68 10.31
2 73 997 11.24 14.75 8.43
3 46 1395 7.5 29.70 17.11
4 95 1205 7.5 12.93 3.45
5 52 1109 14.84 21.54 17.17

Coldwater 1 129 1319 7.53 10.39 5.28
2 65 639 5.04 10.02 6.28

Moon 1 234 1553 1.92 6.51 2.04
2 175 741 2.57 4.23 6.79

Elk 1 82 547 4 6.71 1.67
2 166 887 0.5 5.34 2.51

order to detect their main periodic components. We used a statistical method that
was designed for this purpose: multi-frequential periodogram analysis (MFPA,
Dutilleul 1990). Details of this spectral technique can be found in Dutilleul (1998,
2001). Extensions of MFPA include the detection of periodic components in
multivariate series, with or without replication. Here, we performed periodogram
analysis separately on the different portions of the series in accordance with our
primary hypothesis and because stationarity at first order (i.e., homogeneity in the
mean) of the underlying temporal stochastic process is a prerequisite of spectral
techniques as well as autocorrelogram analysis. The MFPA for equally spaced
observations is available in the Periodmod v. 1.2 software (available on request
with technical notes from the first author; see also Dutilleul 2011 and software
on the companion CD-ROM). Because observations were unequally spaced in the
palaeolimnological temporal-series (Table 16.1), we wrote a computer program in
SAS/IML language (SAS Institute Inc. 1999) to perform the periodogram analyses.
The main features of the MFPA are highlighted below, together with specific aspects
of its application in our study.

MFPA belongs to the frequency-domain approach to the analysis of discrete-
time stochastic processes. In MFPA, the periodic components (i.e., the discrete part
of the spectrum) of a partial realisation (i.e., a time-series or a temporal-series)
are detected through the estimation of the corresponding frequencies in a step-
wise procedure. An important feature of the statistical method is the re-estimation
of all frequencies at each step, by iterative maximisation of the multi-frequential
periodogram statistic using an appropriate initial solution. A test of significance
is performed to assess the increased explanation of the series’ total variation at
each step. By definition, the value of the multi-frequential periodogram statistic
for a given vector of frequencies is exactly equal to the sum-of-squares of the
corresponding trigonometric model fitted to the time-series or the temporal-series by
least squares, whether the frequencies in question are Fourier frequencies or not. The
multi-frequential periodogram statistic is more robust against autocorrelation (i.e.,
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the continuous part of the spectrum) than the classical uni-frequential periodogram
in the analysis of mixed spectra. MFPA is superior at detecting hidden periodicities
when frequencies are close together, is applicable to unequally spaced observations,
and can be used to determine whether a periodicity is present or absent in a portion
of the series (e.g., Tardif et al. 1998). Consequently, MFPA will likely prove to be
useful in palaeolimnology.

Results

Autocorrelogram Analyses

As it might be expected, all of the total temporal-series exhibit significant temporal
autocorrelation (Fig. 16.4), but the meaning of this autocorrelation is questionable.
One of the assumptions of autocorrelogram analysis is stationarity at the first
order (Priestley 1981: p. 106), whereas the sample autocorrelation coefficients
in Fig. 16.4 were calculated under heterogeneity in the mean of the underlying
temporal stochastic process (see the different mean levels for different portions of
the series in Fig. 16.3). This heterogeneity of the mean also affects the estimation
of the variance of sample autocorrelation coefficients in the tests of significance
(Dutilleul and Legendre 1993). In other words, the autocorrelograms in Fig. 16.4
reflect essentially the lack of stationarity of the total series. Specifically, the
autocorrelograms for Big Lake and Elk Lake (Fig. 16.4a, d) reflect the curvilinear
trends in the total series for these two lakes. For Coldwater Lake and Moon Lake
(Fig. 16.4b, c), the autocorrelograms are consistent with the differences in the mean
level between portions of the series (i.e., lower mean level for portion 2 in Coldwater
Lake, higher mean level for portion 2 in Moon Lake). These large inferred shifts
in drought conditions result in positive autocorrelation at short distances, negative
autocorrelation at distances greater than the length of the first portion, and almost-
zero autocorrelation in-between. Globally, the autocorrelograms in Fig. 16.4 show
evidence of major changes in the inferred climatic conditions for all four lakes.

The analysis of separate autocorrelograms for different zones allows the pattern
of variability in some portions of the palaeolimnological temporal-series to become
more apparent, since the ‘autocorrelation’ and lack of stationarity of the total
series no longer dwarf such autocorrelograms. In view of the autocorrelograms
in Figs. 16.5 and 16.6, the structure of the palaeolimnological temporal-series
appears to vary between portions, especially for Big Lake and Coldwater Lake.
For Big Lake, (i) peaks of positive autocorrelation and troughs of negative auto-
correlation are regularly distributed (c. every 200 years) in the autocorrelogram
of the earliest portion (Fig. 16.5a); (ii) the autocorrelogram of the latest but one
portion is characterised by only two peaks (and two troughs) separated by about
600 years – this may be due to persistent lack of stationarity in that particular portion
(Fig. 16.5d); and (iii) the autocorrelograms of other portions show no clear pattern,
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a

b

c

d

Fig. 16.4 Autocorrelograms
using Moran’s I statistic and
equal-width distance classes
for the whole
palaeolimnological
temporal-series from Big
Lake (a), Coldwater Lake (b),
Moon Lake (c), and Elk Lake
(d). Significant values of
Moran’s I statistic are
indicated by a filled symbol,
and non-significant values by
an empty symbol (significance
level: 0.05, without
Bonferroni correction)

with significant autocorrelation over various ranges of distances (Fig. 16.5b, c, e).
For Coldwater Lake, (iv) the autocorrelogram of the first portion shows no clear
pattern and (v) the autocorrelogram of the second portion resembles that of the
earliest portion of Big Lake, with a smaller distance (c. 150 years) between
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a b

c d

e

Fig. 16.5 Autocorrelograms using Moran’s I statistic and equal-width distance classes for the five
portions of the palaeolimnological temporal-series from Big Lake. Panels (a) to (e) correspond to
the five portions, with (a) representing the earliest discernible zone of drought conditions and (e)
the latest one. Significant values of Moran’s I statistic are indicated by a filled symbol, and non-
significant values by an empty symbol (significance level: 0.05, without Bonferroni correction)

peaks (and troughs) (Fig. 16.6a.1, a.2). Peaks and troughs in autocorrelograms
may correspond to periodicities, but unlike periodogram analysis (see below),
autocorrelogram analysis is not a statistical method designed for periodicity analysis
when multiple periodicities are superimposed (Dutilleul 1995). To be complete,
large distance classes were under-represented compared to intermediate distance
classes in terms of pairs of observations used to evaluate Moran’s I statistic,
resulting in a larger variability of the statistic values as the distances get closer to the
series length (i.e., fewer and fewer pairs of observations are used in the evaluation),
and distance class widths other than those in Figs. 16.4, 16.5 and 16.6 were used for
autocorrelogram analysis, with similar results (not reported here) in terms of pattern
and structure.
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a1

a2

Fig. 16.6 Autocorrelograms
using Moran’s I statistic and
equal-width distance classes
for the two portions of the
palaeolimnological
temporal-series from
Coldwater, Moon, and Elk
lakes. Panels (a.1)–(a.2),
(b.1)–(b.2), and (c.1)–(c.2)
correspond to the pre-shift
and post-shift zones of
drought conditions for
Coldwater Lake, Moon Lake,
and Elk Lake, respectively.
Significant values of Moran’s
I statistic are indicated by a
filled symbol, and
non-significant values by an
empty symbol (significance
level: 0.05, without
Bonferroni correction)

b1

b2
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c1

c2

Fig. 16.6 (continued)

Periodogram Analyses

The MFPA detected periodic components in all of the portions of the palaeolimno-
logical temporal-series analysed (Table 16.2). These MFPA results confirm those
of autocorrelogram analyses to some extent, but definitely also refine them. In
particular, the long periodicities foreseen in the autocorrelograms of Big 1, Big
4 (Fig. 16.5) and Coldwater 2 (Fig. 16.6) are the result of the superimposition
of periodicities of 133.8 and 181.8 years, 109.5, 150.6, 219.1, and 482.0 years,
and 118.3, 136.0, and 220.3 years, respectively. Moreover, as we shall see below,
the autocorrelograms with no clear pattern follow from the presence of a broad
range of periodicities (long, intermediate, and short). Frequency estimates <2 cycles
over a portion of series correspond to the continuous part of the spectrum (i.e.,
autocorrelation), and will not be discussed further.

In addition to long periodicities, a good number of intermediate periodicities
were estimated by MFPA in the range of about 30–90 years (Table 16.2). Their
number varies with the series portion. For example, only two such periodicities
were found for Big 4 against four or more for Big 1, Big 2, Big 3, and Big 5.
The number of intermediate periodicities also differs among lakes, with only one
such periodicity in Moon 1 (characterised by several long periodicities) and Elk 2
(characterised by many short periodicities) while three or more were pointed out
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in Coldwater 1, Coldwater 2, Moon 2, and Elk 1. There is some evidence for the
presence of periodicities with a length comparable to the sunspot cycle (i.e., 11 years
on average, within a range of 9–13 years), but primarily for the prairie lakes (i.e.,
Coldwater 2 and Elk 1) at this stage of our analyses. For Big Lake, only the third
portion of the series shows a periodicity of c. 22 years, which is also solar-related
(Dutilleul and Till 1992). Together with Elk 2, Moon 1 and Moon 2 showed several
periodicities of about 7 years, which might be of climatic origin (see Discussion).
Recall that the length of the shortest time interval between observations is greater
than 7 years for Big 3 and Big 4, and greater than 11 years for Big 1, Big 2, and
Big 5 (Table 16.1). In all series portions except Moon 1, MFPA estimated higher
frequencies corresponding to shorter periodicities of <3 times the actual shortest
interval of time between successive observations (e.g., 24.0 years for Big 1 for which
the shortest time interval between observations is 11.24 years: Table 16.1).

Discussion

Our discussion is in three parts. First, we address the question of the aliasing effect
in the spectral analysis of palaeolimnological temporal-series. Second, we make
concluding remarks about the biological hypotheses stated at the beginning of the
study. Third, we draw general conclusions on the appropriateness of autocorrelo-
gram and periodogram analyses and other statistical methods for the analysis of
palaeolimnological temporal-series.

The aliasing effect occurs in spectral analysis when a continuous-time stochastic
process is sampled at too coarse a scale, so that a frequency (periodic) component
appears lower (longer) than it should. Figure 4.10 in Priestley (1981: p. 224)
illustrates this effect very well. Priestley (1981: p. 507) recommends that time-series
analysts choose a sufficiently small sampling interval to reduce the aliasing effect to
negligible proportions. This recommendation inspired us to do a second MFPA, in
which we used a hypothetical 1-year interval as the shortest time interval between
observations. This drastically changed the results, with the finding of numerous
periodicities of about 11, 7, 5.5, and 3.5 years. The detection of periodicities shorter
than the actual shortest time interval between observations is questionable. To
address this question, we see two options: if possible, re-sample the sediment cores
using a finer resolution and analyse the new data thus collected (i.e., this was not
possible at the time of our study), or apply Priestley’s recommendation directly in
future studies.

We assessed if the periodic components of temporal-series from our three Dakota
or Minnesota lakes and one lake in British Columbia varied between major shifts in
limnological and climatic regimes. Our results strongly support the assertion that the
temporal pattern and periodic components are different among zones. In particular,
the periodic components are quite different in zones of differing limnological
conditions. This is likely to be the result of the interplay of different climatic forcing
mechanisms in conjunction with local characteristics of the various lakes. It must be
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noted that the record for Elk Lake was dated by varves, whereas those for the Moon,
Coldwater, and Big lakes were dated by 14C. The dates for Big Lake have been
verified by comparison with known tephra layers. Unfortunately, there are no such
independent horizons for the other records. We doubt that the dates would change
the longer periodicities detected in our study, but they could change some of the
shorter periodicities. A sensitivity analysis would be the only way to answer that
question.

Several of the periodicities that were found in the records (i.e., 5.5, 11, and
22 years) are suggestive of a connection to changes in solar activity. Among
them, the c. 11-year sunspot cycle is perhaps the best known. The link between
periodicities and solar variability is not new, and is still much debated (e.g., Haigh
2001; Rind 2002). Furthermore, centennial-scale changes in proxy drought records
have also been related to solar variability in many regions, including the Northern
Great Plains, USA (Laird et al. 1996; Dean 1997; Yu and Ito 1999), and the Yucatan
Peninsula, Mexico (Hodell et al. 2001) as well as equatorial East Africa (Verschuren
et al. 2000). The finding of a c. 36-year periodicity in all five portions of the British
Columbia lake series and in one portion of a prairie-lake series supports the ‘lunar
hypothesis’ of the Swedish oceanographer Otto Petterson at the beginning of the
twentieth century (Carson 1963). However, the total absence of the fundamental
18.6-year lunar periodicity and the disappearance of the 36-year periodicity in our
second MFPA (results not reported here) prevent us from drawing too definitive
conclusions about a lunar-related periodicity. In north-central United States, proxy
variables from lake sediments suggest that periods of aridity are cyclic, and are a
dominant feature of late-Holocene climate (Dean 1997, 2002; Yu and Ito 1999; Dean
and Schwalb 2000). The 7-year periodicity found here is similar to that found for
the precipitation series in a dendroclimatological study conducted in North Africa
(Dutilleul and Till 1992). Highly significant spectral peaks observed for the New
England varve chronology record between 17,500 and 13,500 calendar years BP
were interpreted as being within the modern El Niño Southern Oscillation (ENSO)
bandwidth of 3–7 years (Rittenour et al. 2000).

Conclusions

The use of appropriate statistical techniques of temporal-series analysis is becoming
increasingly important for palaeolimnological studies. After a preamble outlining
the two main approaches to statistical analysis of time-series, we focused on a
classical time-domain technique using distance classes, autocorrelogram analysis,
and a novel frequency-domain technique, multi-frequential periodogram analysis
(MFPA). Both are appropriate for unequally spaced observations such as many
palaeolimnological temporal data. In previous studies, broad-scale shifts in the
mean climatic conditions over millennia have been inferred from changes in
diatom assemblages in lake sedimentary records. Here we examined if the temporal
characteristics of diatom-inferred changes in climatic conditions: (1) vary in three
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Dakota or Minnesota lakes before and after �AD 1000–1300; and (2) vary among
five dominant zones over the past 5500 years in a lake from southern British
Columbia. In addition, we assessed if the periodic components of temporal-series
differ among lakes. Consistent with the major changes in the inferred climatic
conditions, autocorrelogram analyses of the total series from all the lakes essentially
exhibit heterogeneity in the mean due to broad-scale trends or differences in the
mean level between zones. Furthermore, the autocorrelograms of the different
portions suggest that the temporal structure varies between zones. The MFPA
refines this interpretation by detecting periodic components in all of the portions
of the palaeolimnological temporal-series. Specifically, the MFPA results support
the assertion that the periodic components of the temporal-series from all lakes tend
to vary between the dominant zones of inferred limnological and climatic regimes.
Many of the periodicities identified by MFPA are suggestive of connections to
changes in solar activity, whereas some others may be lunar-related.

The detection of periodicities in lake sedimentary records is in its infancy
and further investigation, preferably in the frequency domain, is needed. In fact,
our study was undertaken to provide an introduction to statistical methods that
are not commonly used by palaeolimnologists. We focused on multi-frequential
periodogram analysis and, to a lesser degree, on autocorrelogram analysis. The
value of spectral techniques is that they are multi-scale, whereas autocorrelograms
are evaluated at lags or distance classes. The frequency-domain approach followed
in MFPA is definitely superior to the time-domain approach for the detection of
single or multiple hidden periodicities (Dutilleul 1998). Other spectral techniques
are designed for the analysis of continuous spectra (e.g., maximum entropy:
Priestley 1981; WOSA in the program SPECTRUM: Schulz and Stattegger 1997),
or are generally restricted to equally spaced observations (e.g., wavelet analysis:
Abramovich et al. 2000). For its part, MFPA is available for unequally spaced
observations, which is an advantage in the field of palaeolimnology, and its
multivariate version (Dutilleul 2001, 2011) allows for spatio-temporal analysis.
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Chapter 17
Introduction and Overview of Part IV

H. John B. Birks

Abstract This introduction to Part IV emphasises how palaeolimnology and its
research focus has changed from a qualitative and rather academic subject to a
quantitative and strongly applied subject. Three of the chapters in Part IV present
contrasting palaeolimnological case-studies, all of which have used numerical
techniques as important research tools. The case studies consider responses of lakes
to external forcing factors at inter-annual to decadal time-scales; the reconstruction
and evaluation of surface-water acidification and the use of palaeolimnology in
providing information on reference conditions as a guide for lake restoration; and
the use of palaeolimnology to reconstruct climate change over the time-scale of the
Holocene (last 11,700 years). These chapters highlight that numerical techniques
are tools to help answer research questions and that they are not ends in themselves
but are means to an end. The last chapter discusses areas of research that represent
future challenges in quantitative palaeolimnology. These areas will, as in the initial
development of the subject, require active two-way interaction and collaboration
with applied statisticians.
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Overview

The pioneering studies in palaeolimnology were primarily qualitative and
considered academic questions in limnology such as lake ontogeny, changes in lake
productivity, processes and rates of lake infilling, the balance between within-lake
(autochthonous) and outside-lake (allochthonous) organic sources, and the time
and impact of catchment disturbances on lake development (e.g., Deevey 1955;
Livingstone 1957; Frey 1964, 1969; Mackereth 1966; Wright 1966; Hutchinson
1970; Pennington et al. 1972; Likens and Davis 1975; Oldfield 1977; Likens 1985).
The now very out-dated chapter in Birks and Birks (1980) on palaeolimnology
reflects the nature of palaeolimnology as it was in the late 1970s. With the
increasing realisation of major environmental problems facing society in the
late 1970s and early 1980s, such as surface-water acidification, eutrophication,
atmospheric contamination by heavy metals and persistent organic pollutants,
and in the early 1990s global warming, palaeolimnologists quickly responded
to the challenges faced by these problems and transformed their subject from
a primarily descriptive and academic discipline into a quantitative and strongly
applied subject. In a period of 20 years, palaeolimnology has become a highly
societal relevant, quantitative, and rigorous subject, as reviewed in detail by Smol
(2008) (see also Smol and Douglas 2007; Pienitz et al. 2009; Battarbee and Bennion
2011; Bennion et al. 2011a; Dearing et al. 2011; Smol et al. 2012: Chap. 1).
Palaeolimnologists now employ a huge range of analytical techniques, including
an arsenal of numerical and statistical techniques, many of which are described
and discussed in Parts II and III of this book. However, numerical methods are
not ends in themselves but are means to ends, and their role in palaeolimnology
is to help in the elucidation of lake history, the understanding and quantification
of the role of external impacts on limnic systems, the quantification of lake-water
changes in response to external stressors, and the separation of internal dynamics
and external factors on lake change and development. These, and several other
problems in palaeolimnology, require quantitative approaches for reconstructing
past environments and for testing multiple working hypotheses (Birks and Birks
2006).

The chapters in this Part IV provide three contrasting palaeolimnological case-
studies, all of which have used numerical methods as important research tools.
Lotter and Anderson (2012: Chap. 18) consider the responses of lakes and their
biota to external forcing factors at inter-annual to decadal time-scales. Their case-
studies illustrate the power of constrained ordination techniques and their partial
relatives such as partial redundancy analysis and variation partitioning analysis
(see Legendre and Birks 2012: Chap. 8) to test specific hypotheses about external
factors on lake dynamics. Simpson and Hall (2012: Chap. 19) review the use of
quantitative palaeolimnological techniques in reconstructing and evaluating surface-
water acidification and eutrophication. The numerical techniques illustrated include
constrained ordination and variation partitioning analysis (see Legendre and Birks
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2012: Chap. 8), calibration functions and quantitative environmental reconstructions
(see Juggins and Birks 2012: Chap. 15), and modern analogue matching (see
Simpson 2012: Chap. 15). Chapter 19 also shows that palaeolimnology can provide
a means not only of reconstructing past lake-water status but also of providing
guidelines in lake restoration and in assessing causes of change (see also Battarbee
and Bennion 2011; Battarbee et al. 2011a,b; Bennion and Simpson 2011; Bennion
et al. 2011a,b). Cumming and colleagues (2012: Chap. 20) discuss the use of
palaeolimnology in reconstructing Holocene (last 11,700 years) climate change
from assemblages of aquatic biota preserved in lake sediments. They show the
value of ordinations and variation partitioning (Legendre and Birks 2012: Chap. 8)
and calibration functions (Juggins and Birks 2012: Chap. 14) in reconstructing past
climatic changes and in the validation of such reconstructions and in assessing the
influence of climate on lake history.

These three case-studies illustrate the central role that numerical techniques
play in palaeolimnological research and also highlight the amazing advances that
have occurred in palaeolimnology in the last 20 years. Smol (2008) discusses
several additional environmental problems that palaeolimnologists are addressing –
persistent organic pollutants, mercury, erosion, species invasions, biomanipulations,
extirpations, ozone depletion, UV-B effects, and fish-stock declines. Many of
these problems, when studied in a palaeolimnological context, are amenable to
numerical analysis including new modelling approaches (e.g., Anderson et al.
2006; Boyle 2007, 2008; Dearing 2008). The important thing about numerical
techniques is that they are designed to be used and that they are usable. The
challenge for palaeolimnologists is to use techniques appropriate to the research
questions at hand. There is also a challenge to applied statisticians and numerical
palaeolimnologists to ensure that the methods being used are appropriate and
optimal for particular research questions and to develop new methods to contribute
solutions to the future challenges faced by palaeolimnological research (Smol
2008).

Chapter 21 discusses eight areas of research that represent future challenges
in the numerical and statistical analysis of palaeolimnological data such as model
selection, modelling of biological dynamics, and Bayesian inference. This chapter
outlines some of the challenges that palaeolimnologists will face as they explore
their data in new and potentially exciting ways and as they attempt to answer
previously unexplored research questions (Birks 2012: Chap. 21). These challenges
highlight the need for renewed collaboration between palaeolimnologists and
applied statisticians, following the valuable collaborations that resulted in the
publications by ter Braak and van Dam (1989), Birks et al. (1990), and ter Braak
and Juggins (1993), all of which involved palaeolimnologists working closely with
applied statisticians and contributed to the rapid development of palaeolimnology
as a quantitative and applied subject in the early 1990s.

Acknowledgements I am indebted to John Smol for helpful comments and to Cathy Jenks for
invaluable help in the preparation of this chapter. This is publication A349 from the Bjerknes
Centre for Climate Research.
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Chapter 18
Limnological Responses to Environmental
Changes at Inter-annual to Decadal Time-Scales

André F. Lotter and N. John Anderson

Abstract Lake responses to environmental change are complex and occur at a
variety of time-scales. Three case studies are presented and discussed to illustrate
how numerical and statistical methods can be used to answer critical palaeo-
limnological questions about lake responses to environmental change at the inter-
annual or sub-decadal time-scales. These all involve lakes with annually-laminated
sediments. They concern the comparison of annual sediment records with instru-
mental data to study the effects of nutrients and climate on the Swiss lake of
Baldeggersee; the comparison of diatom stratigraphical data and tree-ring based
climate at Kassjön, a lake in central-northern Sweden; and the assessment of
the effects of volcanic tephra deposition and climatic change on pollen and
diatom stratigraphical assemblages at Holzmaar in west-central Germany. These
case studies highlight the need for careful definition of the research question or
hypothesis to be tested, the selection of ecologically relevant response proxies, the
critical choice of predictor variables as proxies for stress and environmental change,
and the selection of appropriate numerical and statistical techniques.
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Introduction

Lake response to environmental change is complex and occurs at a variety of
time-scales. Both contemporary monitoring and whole-lake manipulations have
furthered our understanding of community and productivity effects of varying
environmental stress at intra-annual to decadal time-scales. Some disturbance
processes are subtle and insidious (e.g., acidification, eutrophication) and, because
of the strong inter-annual variability, some effects can be difficult to identify
from short-term monitoring (Anderson and Battarbee 1994; Lotter and Psenner
2004). Similarly, for ecologically-rapid changes, cause-and-effect can be difficult
to identify at remote sites because of the lack of suitable physical or chemical
background data against which ecological change can be measured.

Environmental stress can be categorised as either internal (autogenic) or external
(allogenic) and covers a range of time-scales and intensities. These range from
abrupt (i.e., a pulse disturbance or pulse experiment in manipulative ecological
studies) to chronic, long-term stress (101–102 years; analogous to a so-called
press ecological experiment with a ‘sustained alteration of species densities’ sensu
Bender et al. 1984). Pulse experiments measure the resilience of the system to the
experimental treatment, whereas press experiments measure the resistance of the
system to the experimental treatment (Gotelli and Ellison 2004). Furthermore, both
allogenic and autogenic forcing of lake ecosystems can be divided again into natural
(e.g., pedogenesis, fire, volcanic eruptions) and anthropogenic factors (e.g., cultural
eutrophication, acidification, introduction of alien species).

Long-term autogenic processes are, for example, the development of internal
nutrient loading, food-web ontogeny associated with species immigration, and
changing trophic interactions (e.g., Smol 2008). Long-term allogenic forcing
is more commonly associated with landscape development (soil, climate, and
vegetation development), (e.g., Korsman et al. 1994; Engstrom et al. 2000) and
land-management changes (i.e., cultural eutrophication associated with increased
nutrient loading). Allogenic short-term forcing tends to be catastrophic (e.g.,
volcanic eruptions, hydrological flash flooding). Short-term autogenic effects are,
for example, winter anoxia that may lead to fish kills. An example of intermediate-
term autogenic change is fish introductions where the response is more gradual and
moderated by the development and ageing of the fish population (Carpenter et al.
1987). Lake response to climate forcing covers a range of time-scales (see e.g., Fritz
2003, 2008; Cumming et al. 2012: Chap. 20).

Lake response to disturbance is complex partly because multiple stressors can
influence lake communities simultaneously (Carpenter 1988; see also Fig. 18.1)
but also because the response of one group of organisms to a given stress can be
confounded by another stress (Hall et al. 1999). Moreover, the trajectory of aquatic
systems may be influenced by hysteresis, multiple stable states (Scheffer 1998),
and in-lake processes with species interactions masking or enhancing the effect
of an external disturbance. Given the complexity of ecological response of lake
ecosystems to internal and external forcing, it is important that the interpretation of
sediment records is approached in a critical manner. There is a range of numerical
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Fig. 18.1 Schematic overview of the effects and interactions of different environmental stressors
on palaeolimnological response variables with different possibilities of numerical and statistical
data analysis

and statistical tools that can be used to assist in the interpretation of sediment
records, to separate between the signals originating from internal and external
forcing, and to test palaeolimnological hypotheses (see e.g., Birks 1998).

Palaeolimnology has provided unambiguous evidence for long-term trends in
lake development, e.g., catchment processes altering surface water and hence lake
acidity that lead to changes in lake biota (e.g., Renberg 1990). The combination
of independent predictors and response variables at sub-decadal time-scales in
sediment studies are, however, rare and represent an important challenge for the
subject. High-resolution sediment records are at the interface of ecology and
palaeoecology (Kitchell et al. 1988; Smol 1991), in that there is a direct link to and
sometimes an overlap with contemporary monitoring data. Furthermore, sediment
records can be critical in providing background data for ecosystem changes where
its onset predates lake-monitoring programmes. Sediment-trap data (Flower 1990;
Lotter and Bigler 2000) and high-resolution sediment records (e.g., Simola et al.
1990; Anderson 1995a; Lotter 1998) can resolve seasonal assemblage changes,
thereby providing information on the life-cycle of aquatic organisms (e.g., the
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pioneering work of Nipkow 1927). The selection of appropriate sampling strategies
and the selection of proxies suitable for recording particular environmental stresses
are, however, critical (Anderson 1995b).

In this chapter we use three case studies to illustrate how bi- and multivariate
numerical methods outlined earlier in this book can be used to tackle critical
palaeolimnological questions, especially when using independent proxies derived
from sediment records, documentary or instrumental data, and other sources.
Moreover, we identify and discuss some of the problems associated with this
approach. Our focus is on annually-laminated sediments because they represent
the optimal means to address the problems we are concerned with at inter-annual
to sub-decadal time-scales (Brauer et al. 2009). However, with good time control
and contiguous sampling, non-varved sediments can also be used to address similar
questions (e.g., Hall et al. 1999).

Disturbance and Response Dynamics in Lakes: Three
Case Studies

In this section we present, as three case studies, examples of how numerical methods
such as constrained canonical ordination and variation partitioning (Legendre and
Birks 2012: Chap. 8) can be used to test specific hypotheses about limnological
responses to environmental changes. We discuss environmental disturbance and the
response dynamics of lakes on time-scales that link ecology and palaeoecology.
We explicitly neglect centennial to millennial scale ontogeny of aquatic systems
commonly addressed in palaeolimnology (e.g., Deevey 1984; Anderson 1995a) and
concentrate on time-scales of annual to decadal resolution that allow a direct com-
parison with real-time observations and the results of contemporary limnological
experiments. However, the approach outlined here is also well suited for the study
of external forcing of lakes and their biota at Holocene time-scales (e.g., vegetation
and soil processes and the subsequent aquatic response; Engstrom et al. 2000; Lotter
and Birks 2003; Bradshaw et al. 2005).

Predictor and Response Variables

The quantitative analysis of the relationship between environmental stress and biotic
response in sediment sequences requires the identification of independent proxies
for the predictors (explanatory variables) that are being used in the analyses. Proxies
are required because it is very rare that an explanatory process will have a direct
analogue or variable that can be derived from the sediment record. The environ-
mental predictors can be extracted from documentary or instrumental data sources
(e.g., meteorological, land-use, limnological monitoring data), independent natural
archives (e.g., tree-rings, glaciers) or derived from sediment sources (Fig. 18.1 and
Table 18.1). It is important that the variables chosen have a temporal variability
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Table 18.1 Lake internal and external stressors, and examples of palaeolimnological proxies that
may be used as response variables and independent predictors or explanatory variables to help test
the effects of these stressors

Type of
forcing Stressor, perturbation

Dependent response
variables

Independent predictor or
explanatory variable

Autogenic Acidification Cladocerans Measured overturn pH, DI pH
(internal) Eutrophication Varve thickness Measured phosphorus, DI TP

Lake ontogeny Diatoms Sediment depth, cladoceran-inferred
(infilling) water depth

Anoxia, meromixis Biomarkers Fossil pigments, geochemistry,
benthic organisms

Allogenic Climate change Chironomids Instrumental and historical record,
(external) tree rings, •18O

Land-use change Diatoms Pollen, fungal and bacterial spores
Vegetation change Geochemistry Pollen, plant macrofossils,

biomarkers
Forest fire Pollen Charcoal particles, DI pH
Volcanic eruption Pollen, diatoms Tephra layer

DI diatom-inferred, TP total phosphorus

similar to the temporal resolution of the sediment sequence under investigation,
but also that they are conceptually, ecologically, and mechanistically relevant to
the questions being asked. While it is important that predictor selection is done
critically, imagination and lateral thinking are also vital.

Generally, increased variability in the composition of biotic assemblages may
be regarded as an indicator of environmental stress and expressed as changes in
the diversity of living and hence also subfossil assemblages. To assess limnological
response to past environmental perturbation, albeit natural or anthropogenic, differ-
ent numerical techniques may be used (Fig. 18.1). However, the most crucial point
in any such palaeolimnological study is to define carefully the hypothesis to be
tested, as this will eventually determine the numerical methods to be used. Also of
importance is the careful selection of predictor variables (proxies for perturbation or
stress, explanatory variables) and response variables (e.g., biotic or abiotic proxies,
see Fig. 18.1 and Table 18.1).

Comparison of Annual Sediment Records with Instrumental
Data: The Effects of Nutrients and Climate on Baldeggersee

Anthropogenic nutrient enrichment with its global ecological and socio-economic
impact is one of the major current issues affecting aquatic ecosystems (see Smol
2008; Simpson and Hall 2012: Chap. 19). Eutrophication of freshwater systems is
commonly a gradual process that is often only apparent in biotic assemblages when
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certain nutrient thresholds are passed. Palaeolimnological studies show that in most
regions extreme eutrophication started during the late nineteenth century and peaked
during the twentieth century (see Anderson 1997 and references therein).

The palaeolimnological study of the Swiss lake Baldeggersee (47ı100N; 8ı170E,
464 m asl), a medium-sized (5.2 km2, 66 m maximum depth), nutrient-rich hard-
water lake in central Switzerland, is a good example to illustrate the dynamics
of eutrophication and the interaction of nutrient enrichment and climate change
on lake development. Baldeggersee is located in a region of intensive agriculture
and farming. Since 1885 the 66-m deep lake has had an anoxic hypolimnion, thus
preserving annually laminated sediments. Since 1982 a lake restoration programme
with artificial oxygenation and circulation has been running (Wehrli et al. 1997).
However, as oxygen availability in the deepest part of the basin did not improve,
bioturbation is absent and annual layers are still preserved. In 1993 the annually-
laminated sediments were sampled by in situ freezing. The freeze-cores were
sampled for individual varves (Lotter et al. 1997b) and subsequently varve mea-
surements on petrographic thin-sections, and sedimentological and diatom analyses
were carried out (Lotter et al. 1997c; Lotter 1998).

Concurrent to the significant anthropogenic increase in nutrient loads over the
past 100 years, air temperatures in Switzerland rose by about 1ıC (Lister et al.
1998). Therefore, an important issue for lake development is whether the influence
of climate and trophic state on both the varve formation and the composition of
diatom assemblages can be separated, thereby permitting an estimation of the effect
of these two factors on the biotic and abiotic aquatic system independently. This
question was tackled by carrying out a series of partial constrained ordinations,
where predictors (explanatory variables) are used as covariables (see Legendre and
Birks 2012: Chap. 8). In this way the effect of each predictor on the response
variables can be allowed for in a statistical sense and thus eliminated in the analysis.
The aim is to determine the variation in the response variables that is uniquely
attributable to a particular set of predictors by partialling out the effects of other
predictors in the ordination (Borcard et al. 1992).

An initial detrended canonical correspondence analysis (DCCA) (detrending by
segments, non-linear rescaling: ter Braak 1986) with sample age as the only external
constraining variable was used to estimate the gradient length of the stratigraphical
data-sets to decide whether linear-based redundancy analysis (RDA) or unimodal-
based canonical correspondence analysis (CCA) partial ordination methods need
to be used (Birks 1995). RDA was used for the partitioning of the variation in
the varve measurements because of the linear or at least monotonic relationship
between the response and the predictor variables, whereas for the diatoms the
floristic compositional gradient was >2 standard deviations, suggesting that the
use of unimodal methods such as CCA (ter Braak and Prentice 1988) would be
appropriate.

The diatom sediment data-set consists of 91 samples and percentage values for
75 taxa (Lotter 1998), whereas the varve data-set consists of 91 matching samples
analysed for light (calcite), dark (organic), and total layer thickness (Fig. 18.2;
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Lotter et al. 1997c). The total variation in these two data-sets was partitioned into
the four following components:

1. Variation uniquely explained by lake trophic state, independent of climate. This
was modelled by total phosphorus concentration (TP) and by the presence or
absence of the lake restoration programme since 1982. The latter was modelled
as a dummy (0/1) variable, whereas for TP, spring-circulation water column
measurements back to 1958 were used. For the older samples diatom-inferred TP
concentrations (Lotter 1998) were used (see Fig. 18.2). To prevent circularity, TP
concentrations have been assumed to decrease linearly by 2 �g L–1 year–1 before
1958 (i.e., the onset of water column TP measurements) for the diatom data-set.
Furthermore, an interaction term between TP and lake restoration was introduced
for the diatom data-set because the changed mixing regime is likely to have had
an influence on water circulation and nutrient cycling.

2. Variation uniquely explained by climate, independent of trophic state. For the
diatom data-set mean spring air temperature was used to model climate as only
spring air temperature accounted for a statistically significant amount of the
total variation in CCAs with seasonal air temperatures as the sole constraining
variables. For the varve data-set the variables summer air temperature and annual
precipitation (see Fig. 18.2) explained the highest amount of variation among the
climate data and were therefore used as predictors.

3. Covariation between trophic state and climate.
4. Variation unexplained by these models.

Because of the strong temporal autocorrelation in the data the two time-series
were detrended by partialling out sample age as a covariable in all analyses. In this
way the major effects of time-dependent ecological and environmental processes
were removed. Statistical significance of the different RDAs and CCAs was assessed
using restricted Monte Carlo permutation tests for temporally structured samples
(ter Braak and Šmilauer 2002).

Disentangling the effects of climate and trophic state on the composition of
annual diatom assemblages and the formation of annual layers in Baldeggersee for
a period when both predictors changed is important for the assessment of the effects
of both. Here we are in the fortunate situation in having a well-dated sediment record
of seasonal or annual resolution that may be compared directly to instrumental
meteorological and water chemistry measurements of the same temporal resolution.

The fact that the models used in the above partial ordinations are rather simple
becomes evident by the amount of unexplained variation (85.5% for the diatoms and
63.4–66.8% for the varves, see Table 18.2). This is especially the case for the noisy
diatom data that consist of many taxa and contain many zero values. Nevertheless,
these models give some indications of the importance of the forcing mechanisms
that may have influenced the biotic and abiotic systems in Baldeggersee.

Of the 14.5% of the variation in the diatom data explained by trophic state
and climate (Table 18.2), a major but marginally non-significant part (12.4%,
p D 0.06) is explained by TP and lake restoration, whereas only a small, statistically
insignificant part of the diatom variation (1.4%, p D 0.08) can be explained by
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Table 18.2 Results of variation partitioning using climate (mean spring air temperature for
diatoms; mean summer air temperature and annual precipitation for varves, see Fig. 18.2) and
trophic state (total phosphorus lake-water concentration, restoration, and their interaction) as
predictors after sample age was fitted as a covariable

Diatoms Varves Varves
1992–1902 1992–1902 1980–1920

Unexplained variation 85:5% 63:4% 66:8%
Climate effects, independent of trophic state 1:4% 17:6% 28:1%
Effects of trophic state, independent of climate 12:4% 17:6% 5:8%
Covariation between the effect of climate and trophic 0:7% 1:3% �0:7%

state, after the effects of age have been allowed for

climate. Despite indications of an empirical relationship between diatoms and
temperature (e.g., Pienitz et al. 1995; Lotter et al. 1997a) the composition of diatom
assemblages along such a short temperature gradient (�1ıC in 100 years) seems to
be more dependent on limiting nutrients such as Si and P.

The analysis of the varve data was done for two different time-slices (Lotter
and Birks 1997): the period between 1992 and 1902 where regional instrumental
meteorological records are available and for the period between 1980 and 1920. The
difference in results between the whole time-series (1992–1902) and the one without
the restoration period (1980–1920), as well as the significance of the restoration
variable (Table 18.2), shows that lake restoration has had a substantial effect on
sediment formation. In the long time-series (1992–1902), climate and trophic state
explain the same amount of variation, whereas in the pre-restoration period climate
was more important. This implies that the formation of calcite varves depends
strongly on climate and that they may therefore potentially be used as climate
proxies (e.g., Livingstone and Hajdas 2001).

Comparison of Two Independent Proxy-Archives
with Comparable Temporal Resolution: Diatoms
and Tree-Ring Based Climate at Kassjön

The possibility of comparing the individual laminae from a varved record with both
contemporary limnological data and meteorological data represents an ideal oppor-
tunity for linking palaeolimnology and limnology. However, for many lakes and for
time periods that pre-date routine monitoring and instrumental measurements, such
an approach is not possible. An alternative approach and one that maintains the
high temporal resolution is the use of an independent natural archive with annual
resolution, e.g., tree-rings.

Varved lake sediments are common over much of central-northern Sweden
(Petterson 1996). A considerable amount of work has focused on Kassjön, (63ı
550N; 20ı 010E), a small (23 ha, 12 m maximum depth) dimictic lake situated in
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boreal forest, some 30 km from Umeå (Segerström 1990b; Anderson et al. 1995). An
isolation lake, formed by isostatic rebound about 6300 years BP, it has a continuous
record of annual laminations characterised by a minerogenic layer deposited by the
spring melt-water (Renberg 1981). At Kassjön agriculture started c. AD 1350 and
peaked in the late nineteenth century, but today only about 20% of the catchment
is used for grazing and hay production, while the abandoned fields are being re-
colonised by birch scrub (Segerström 1990b; Anderson et al. 1995).

The varved sediments at Kassjön have been used to reconstruct vegetation
history via pollen analysis (Segerström 1990a) and to estimate sediment yield at
inter-annual resolution through image analysis (Petterson 1999; Petterson et al.
1999). Anderson et al. (1995) used RDA to assess whether catchment vegetation
changes associated with the start of agriculture resulted in significant responses
in the diatom flora. Three pollen types (Salix, Juniperus, and Rumex as identified
by forward selection in RDA) explained 23% of the variation in the diatom data
over a 500-year period. Linear regression revealed a significant relationship between
quantitative estimates of diatom production (cells cm–2 year–1) and increasing field
area (derived from old maps and parish data) during the seventeenth to nineteenth
centuries (Anderson et al. 1995). Spores of the bacteria Thermoactinomyces vulgaris
were also shown to be highly and significantly correlated to anthropogenic pollen
indicators over a 1200-year period: pollen explained 83% of the variation in the
mean annual accumulation rates of these endospores (Nilsson and Renberg 1990).

Although a clear example of quantitative palaeolimnology, these studies from
Kassjön were at a rather coarse temporal resolution (2–41 years per sample, mean
18 years). The sediment sequence was sampled contiguously but had been cut to
distinctive marker varves, hence the irregular sampling interval. Such an approach
makes conventional time-series analysis problematical (see Dutilleul et al. 2012:
Chap. 16). Furthermore, no attempt was made to separate the possible confounding
effects of long-term climatic variability from catchment land-use change.

As a result of these limitations, in a subsequent study, Anderson et al. (1996) used
tree-ring based summer temperatures from northern Sweden (Briffa et al. 1990)
as an independent measure of climatic variability to assess the role of climate on
both lake (diatoms) and catchment vegetation (pollen). The same diatom data as in
Anderson et al. (1995) were used, but sediment samples were re-analysed for pollen
since the original pollen work had even coarser sampling intervals than those used
by Anderson et al. (1995). Tree-ring based temperature anomalies (expressed as a
deviation from the mean of 1950–1980; see Briffa et al. 1990) were averaged to
match the same time periods covered by the diatom and pollen samples (see below).
As detrended correspondence analysis indicated short compositional gradients in
the pollen and diatom data they were analysed using redundancy analysis. Variable
time-lags (i.e., adding a different number of years to the age of each diatom and
pollen sample) were applied to the diatom data and tree-ring based temperatures to
determine the maximum fit (as the maximum correlation coefficient obtained).

The pollen assemblages showed no significant response to climate forcing as
indicated by tree-ring inferred summer temperatures, whereas 5% of variation in
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the diatom assemblages (partial RDA; p D 0.014) were explained with a 20-year
lag (Anderson et al. 1996). A major decrease in diatom richness, as estimated by
rarefaction analysis (with a base count of 180 diatoms, see Birks and Line 1992),
was attributed to effects of the Little Ice Age cooling (Anderson et al. 1996). A
combination of summer temperature and a pollen taxon (Juniperus, as shown by
forward selection) explained over 34% of the variation in diatom richness. The
presence of juniper is indicative of cultural activity in Sweden and these results
possibly indicate a role of climate (see below) and land-use changes in structuring
diatom communities in boreal forest systems.

Anderson et al. (1996) concluded that the relationship between temperature
and diatom richness was confounded by nineteenth to twentieth century land-use
changes. In boreal-forest catchments such as Kassjön, catchment land-use is in part
a reflection of climate forcing as well as cultural activity. Separating the indirect
effects of climate on a lake, i.e., those that are mediated through forest dynamics,
from direct climate effects (lake-stratification, lake ice-cover) and anthropogenic
drivers is very difficult using proxy data. It was decided, therefore, in a more recent
study of Kassjön ( I Renberg, G Petterson, and NJ Anderson, unpublished data) to
remove the possibly complicating effects of land-use change by examining a period
(AD 540–1015) that pre-dates the start of agriculture in the area. Furthermore, given
the largely synchronous links observed between lakes and external meteorological
forcing observed in contemporary systems over recent decades (e.g., North Atlantic
Oscillation (NAO); Livingstone and Dokulil 2001), it was argued that a time-lag
was not ecologically realistic. As a result, the relationship between the two time-
series (sediment-core data and tree rings) in the latest study was analysed after
adding 20 years to the varve chronology. Previously, a 20-year adjustment was
found to maximise the fit between tree-ring temperatures and diatoms and it was
interpreted as a lag-effect (Anderson et al. 1996). Compared to varves, tree-ring
chronologies are virtually error-free (Briffa 2000). Given the errors associated with
varve counting, it was decided in the most recent analysis to treat the 20-year offset
as an error and not as a lag.

The varve sequence from AD 476–1015 analysed by Petterson et al. (1999)
was sub-sampled at contiguous 5-year intervals (540 varves in 108 samples) and
analysed for dry mass accumulation rate (DMAR), carbon content, biogenic silica,
and grey scale (Petterson et al. 1999). The sub-sampling technique was replicated
and shown to be highly repeatable: the DMAR for each 5-year section had a standard
error of 13%. Through the analysed period there is a substantial change in DMAR,
which averaged 30 mg cm–2 year–1 prior to AD 730 and reached a minimum
of �15 mg cm–2 year–1 between AD 700 and 850 (Fig. 18.3). Because of the
strong dilution effects of the minerogenic inputs to the lake on concentrations of
sediment variables, the carbon data were expressed as accumulation rates, which
vary between 2 and 4 mg C cm–2 year–1. As the central aim of the study was
to identify the response of the lake to climate forcing, tree-ring based summer
temperatures were again used as the independent, predictor variable. Lake response
was indicated by organic carbon, biogenic silica, and dry mass accumulation rates.
Prior to data analysis, the sediment sequences were detrended by fitting a running
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Fig. 18.3 Dry mass accumulation rates (DMAR; black squares) from Kassjön for the period AD
550–800 compared with tree-ring (TR) based temperature (as anomalies from present-day; grey
circles)

mean over 21 samples (105 years), which effectively removed variation with a
frequency >100 years. Observed values were subtracted from the running mean
and the final analyses were undertaken on the residuals.

There is a strong inverse relationship between the lake-sediment proxies and
tree-ring based temperatures in the Kassjön study (Fig. 18.3). The strength of the
relationship is variable over the analysed time-periods, partly due to the inherent
natural variability in lake-climate linkages (see Livingstone and Dokulil 2001;
Straile et al. 2003) but also due to the varying chronological control. The inverse
relationship between temperature and lake productivity (as indicated by organic
carbon, r D �0.56; p � 0.05) can be attributed to two possible mechanisms. First,
increased catchment-derived nutrient input to the lake associated with increased
runoff, particularly during spring meltwater input. Presumably, cooler years have
greater snow cover and hence enhanced spring meltwater flux. It has been shown
that nutrient input to aquatic systems in northern Sweden today is highest during
snowmelt, while Petterson and others (unpublished data) have argued that varve
structure (measured as grey scale) primarily reflects minerogenic inputs during the
spring meltwater flux. The strong inverse relationship between DMAR and tree-
ring based summer temperatures (Fig. 18.3) lends some credence to this hypothesis.
However, as neither pigment nor diatom data are available for this period at the same
temporal resolution as the other proxies, it is not possible to partition the variation
in the biological responses in relation to the independent predictors (as indicated in
Fig. 18.1) as was undertaken at Baldeggersee.

An equally plausible mechanism may be the hydrological control of
allochthonous carbon inputs to Kassjön from the catchment. Many lakes in northern
Sweden have been shown to be net heterotrophic in terms of their carbon budgets
(system respiration > primary production) with the imbalance being attributed to
carbon inputs from the catchment (Algesten et al. 2003). Kassjön has relatively
high dissolved organic carbon (DOC) concentrations today (�10 mg L–1) and
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a large catchment-to-lake ratio. Increased discharge has been shown to increase
DOC export from boreal-forest catchments. It is possible that the climate-lake
linkages proposed for this site do not involve productivity per se but an indirect
link where climate controls the hydrological supply of allochthonous carbon from
the catchment to the lake. Given the chronological uncertainties and the lack of
suitable predictors (e.g., phosphorus flux data), it is difficult to test these competing
hypotheses critically.

The studies at Kassjön illustrate the development of a research project over a
number of years in response to a changing research environment. The original aims
(reconstructing vegetation history and diatom productivity) were quite different to
those that are being pursued now, such as assessing the variability of aquatic systems
under natural climate forcing. However, the work at Kassjön illustrates some of
the major problems that have to be tackled when working with sediment records
and independent proxies at high resolution: uncertainties in the chronologies and
in the correlation and variable chronological control among different environmental
archives. Tree-ring chronologies are considered to be highly reliable, whereas varve
sequences may have cumulative errors approaching a decade or more for periods
covering thousands of years (see Maher et al. 2012: Chap. 6). But more importantly,
this error is not constant and it is difficult to determine the agreement between
two chronologies at any one point. It is unlikely that the uncertainty in the varve
chronology at Kassjön (corrected by adding 20 years) is actually constant over time,
even within the short period covered by the analysis shown in Fig. 18.3. Given the
problems with matching two independent proxies at high resolution, a better way
to proceed is to use palaeoecological proxies as predictors, which are derived from
the same sample level as the response variable. This approach is outlined in the next
case study.

Sediment-Derived Proxies and Hypothesis Testing: The Effects
of Tephra Deposition and Climatic Change at Holzmaar

The further back in time we go, there are fewer instrumental and documentary
records available. Furthermore, as is often the case in multi-proxy studies, the cor-
relation between independent proxy records (e.g., tree-rings, ice-core data, marine
data) and palaeolimnological time-series becomes a major problem, especially at
annual to decadal time-scales (Lotter 2003). As shown in the example of Kassjön, a
precise correlation of records is of utmost importance if the emphasis of a study
lies not only in the detection of correlations but also in explaining causalities
and mechanisms. The use of independent proxies derived from the same sediment
samples helps solve the dilemma of different chronologies and matching of time-
series. In palaeolimnological studies, independent proxies (see Table 18.1) such
as stable isotopes (e.g., 18O as a proxy for climate change: Lotter et al. 1992),
charcoal (as a proxy for forest fire: Korsman and Segerström 1998), pollen and plant
macrofossils (as a proxy for catchment vegetation: Korsman et al. 1994; Hausmann
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et al. 2002; Lotter and Birks 2003) or sedimentology (e.g., grain-size distribution
as a proxy for flooding events: Nesje et al. 2001; Parris et al. 2010) may be used as
predictors to examine the effects of environmental change on aquatic biota such as
diatoms, chironomids, cladocerans, or chrysophyte cysts.

Here, we present an example of an environmental perturbation caused by an
abrupt event, namely the eruption of the Laacher See volcano in the Eifel Mountains
of western-central Germany and the subsequent deposition of the Laacher See
Tephra (LST) 12,880 cal. year BP (Bittmann et al. 2002). Within several weeks this
highly explosive plinian eruption produced more than 6 km3 of maphic phonolite
magma, corresponding to more than 20 km3 of ejected tephra, and released at
least 2 megatons of sulphur into the atmosphere that remained as sulphuric acid
aerosols in the stratosphere for years (Schmincke et al. 1999). Different studies
have examined the effects of past volcanic eruptions on terrestrial and aquatic
systems (e.g., Lotter and Birks 1993; Birks and Lotter 1994; Barker et al. 2000).
However, as the effects of aerosols on climate as well as the effects of the tephra
deposition on ecosystems are assumed to be of short duration (i.e., several years
to one or two decades) high-resolution studies are needed to test the hypothesis
that this eruption had no significant effect on terrestrial pollen or aquatic diatom
assemblages. Lotter et al. (1995) analysed 40 contiguous sediment samples of
known volume and number of varves from Holzmaar, a well-studied crater lake
60 km to the south-west of the origin of the LST (Zolitschka et al. 2000). The
sediment sequence includes 475 varves with a 78-mm thick LST layer as well as
the transition from the Allerød (AL) to the Younger Dryas (YD) biozone (Ammann
and Lotter 1989). The sediments above the LST show an immediate increase in
grass pollen that lasted for 17 years (two samples), whereas the diatom assemblages
are characterised by 17 years of increased Asterionella formosa percentages. To test
whether the observed changes in the pollen and diatom assemblages are statistically
significantly different from random variation a set of partial-RDAs was carried out.
The following predictors were used: biozones (AL, YD) as dummy variables (1/0)
to represent broad-scale late-glacial climatic change; sample age to represent long-
term unidirectional change (e.g., succession, soil development, lake infilling); LST
impacts modelled as an exponential decay function (see Fig. 18.4). When all these
explanatory variables are used the model is statistically significant for pollen and
diatoms both for percentages and accumulation rates (Table 18.3). When the effects
of long-term temporal and climatic change are partialled out as covariables, both
pollen (% and accumulation rates) and diatoms (only accumulation rates, not %)
show a statistically significant response in relation to the LST (Table 18.3). These
results suggest that the eruption of the Laacher See volcano and/or the deposition
of its tephra had substantial effects on pollen assemblages in terms of relative
composition and absolute rates, and hence also on the composition and density
of the vegetation in the catchment of Holzmaar. The predominant birch woodland
in the catchment was affected for a period of about two decades. As the relative
diatom composition showed no significant effect, the eruption and tephra deposition
presumably did not alter the water chemistry of the lake permanently. However, the
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Table 18.3 The impact of the Laacher See Tephra (LST) (see Fig. 18.4) on pollen and diatom
assemblages at Holzmaar

Model Covariable
Pollen Pollen Diatoms Diatoms
% AR % AR

Biozone C Age C LST – 0.01* 0.01* 0.01* 0.01
LST BiozoneCAge 0.04* 0.01* 0.14 0.01*

The p-values of (partial) redundancy analysis (RDA) of percentage (%) and accumulation rates
(AR) were assessed by 99 restricted Monte Carlo permutations. A variance-covariance matrix was
used, all data were log-transformed prior to RDA and double centring was applied
*significant at p < 0.05

diatom productivity increased substantially after the LST deposition, most likely as
an effect of higher silica input by the LST (60% of the ash consists of SiO2).

Altered pollen assemblages, mainly an increase in non-arboreal pollen types
(NAP) that occurred about 216 varves after the deposition of the LST, indicate
the transition from the AL to the YD biozone, which according to Greenland ice-
core records took place within several decades. Already 205 varves after the LST
deposition, diatom assemblages show a transition from plankton- (Stephanodiscus)
to periphyton-dominated (Fragilaria) assemblages that took place within 30 varves
(Fig. 18.4). Despite the diatom assemblages reacting 11 varves (i.e., one sample)
earlier, cross-correlation analysis shows the highest correlation between the sum
of Fragilaria spp. and the sum of NAP (r D 0.74), as well as between the first
principal component analysis (PCA) axes of pollen and diatom percentages at a
lag of 0 (r D 0.79; see Lotter et al. 1995). Given this synchronous reaction between
the two biota, we might want to know how well the diatom data can be explained
by external predictors such as biozones (AL, YD), temporal effects (sample age),
LST, or regional vegetation (summarised by the first four pollen PCA axes). A RDA
of the diatom percentage data with forward selection of variables was used to
find the minimal set of statistically significant predictors (p � 0.05; 999 restricted
Monte Carlo permutations with Bonferroni correction for multiple simultaneous
tests). The YD biozone (41%, p D 0.001) and pollen PCA axis 1 (5%, p D 0.001)
explained the highest statistically significant part of the variation, suggesting a
strong response of the diatom composition to the Younger Dryas environmental
change and to the associated vegetation change (as represented by PCA axis 1).
The strong relationship between the aquatic system and the terrestrial vegetation
suggests climatic change to be the common underlying forcing factor.

Discussion

Sediment samples used in palaeolimnological and palaeoecological studies
encompass, for the most part, time-spans of several years to decades. Such studies
generally provide data-series covering time periods of a few centuries to millennia.
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Over such time-scales palaeoecological investigations may help to assess the natural
variability of biotic and abiotic systems and provide information on the long-term
reaction and recovery to different perturbations. Given good time-control, dynamics,
cyclicities, and extent of disturbances can be estimated and palaeolimnological
studies can thus improve the understanding of long-term ecological processes
(Schoonmaker and Foster 1991; Anderson et al. 2006; Willis et al. 2010).

Contemporary limnologists and ecologists are working on time-scales of weeks
to decades. Due to the higher sample density and the better temporal precision in
contemporary ecological studies, there has traditionally been little overlap with
palaeolimnological and palaeoecological data (Kitchell et al. 1988). Although
palaeolimnological investigations can provide a continuous and long-term record
of environmental change where no long-term monitoring data or experimental
results are available, only high-resolution studies can provide data of a temporal
resolution and precision comparable to contemporary limnological studies (i.e., one
or few years per sample: Anderson 1995a). To trace environmental change and
limnological response at ecologically relevant time-scales, annual to decadal time
resolution is, therefore, absolutely necessary.

In this chapter we have concentrated on biogenic varves. However, varves from
glacio-lacustrine systems have also been used to relate varve thickness and sediment
yield to air temperature (e.g., Leemann and Niessen 1994; Zolitschka 1996). Well-
dated non-laminated sediments with high accumulation rates may also be suitable
for high-resolution studies. However, if the influence of external stressors is to
be compared with sediment-derived data on annual to decadal time-scales, the
need for reliable chronological control cannot be over-emphasised. Low sediment
accumulation rates in oligotrophic lakes combined with a low temporal resolution,
even at contiguous 2-mm sediment samples, make it difficult to compare non-varved
sediment records with, for example, meteorological data (see e.g., Lotter et al. 2002;
Sorvari et al. 2002).

The study at Kassjön highlights the problem of floating chronologies without a
fixed reference point when sediment sequences are to be compared to independent
time-series. At Baldeggersee, the core surface as well as other independent dates
(137Cs, historical data: see Lotter et al. 1997c) were used as reference points. At
Holzmaar, both response variables (diatoms, pollen) and predictors (LST, biozones,
age) are derived from the same sediment samples. Therefore, they have a matching
time-resolution and thus circumvent problems of matching independent time-series.

Once the problem of matching the time-resolution of response and predictor
variables is solved, several approaches to analyse the data numerically can be taken
(Fig. 18.1). Yet, there are often several different stressors affecting the biotic or
abiotic response variable. As in the example of Baldeggersee, it might be important
to assess the importance of the different stressors through decomposition of the
signal using variation partitioning approaches. However, the choice of predictors
is crucial. The analysis can often be supported by using constrained ordination
with forward selection of predictor variables that explain a significant amount of
the variation in the response variables (ter Braak and Šmilauer 2002). Eventually,
this should enable us to choose the minimum adequate model (Birks 2012: Chap. 2)
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that will allow an assessment of the influence of stressors on biotic assemblages and,
hence, to gain further insights into those mechanisms controlling change in aquatic
systems.

An alternative approach is to formulate hypotheses that, as in the case of
Holzmaar, may be tested using sediment data. Given the problems of covariation
in inference models and the difficulties in making reliable inferences of a sin-
gle variable from a matrix of changing environmental stressors and responses
(Anderson 2000), the use of constrained ordination and carefully selected response
and predictor variables to address species-environment interactions over time
represents a promising, yet under-rated and only occasionally used approach in
palaeolimnology.

The need for independence in data analysis is an increasingly recognised
component of quantitative palaeolimnology. This need will press researchers to use
independent proxies, either ‘external’ or those derived from the sediment itself. With
the latter approach, one of the most difficult aspects is to decide which variable to
use as the predictor and which to use as the response, because there is a high level
of interdependence within the data.

Conclusions

There is a wealth of powerful numerical tools that may help us to analyse complex
palaeolimnological data-sets and detect patterns and relationships in the data.
Correlations between predictors and response variables do not necessarily imply
a cause-and-effect relationship and common sense as well as understanding of
limnological and ecological processes are thus indispensable. Of great importance
is the definition of the research question or the hypothesis to be tested, the selection
of ecologically relevant response proxies, the critical choice of predictors as proxies
for stress and change, and the selection of numerical analysis tools (e.g., partial
ordination, cross-correlation, forward selection of potentially important explanatory
variables). The results and conclusions are, as in all analyses, heavily dependent
on the quality of the data. Palaeolimnological analyses of disturbances require,
therefore, critical site selection, sub-sampling at relevant temporal scales (Anderson
1995a), the application of rigorous data analysis and statistical testing (Birks 1998),
and finally the application of ecological and limnological sense.
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Abstract In this chapter we review the contributions that numerical techniques
have made in answering key questions in applied palaeolimnology relating to studies
of lake acidification and eutrophication. Palaeoecological data and calibration
functions in particular provided some of the key observations implicating acid
emissions from industrial and power-generation sources as the major cause of the
recent acidification of lakes in northern Europe and North America. Sedimentary
records and subsequent quantitative analyses play a similar role in understanding
the eutrophication of lakes, and today are being used widely to inform management
of enriched lakes and to set restoration targets for recovery.
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Introduction

The science of palaeolimnology has advanced considerably during the last 30 years
as new questions are asked of lake-sediment records and as techniques have been
developed to help answer them. The application of palaeolimnology to questions
regarding recent environmental change and lake management are two areas of the
science that have witnessed considerable advances (e.g., Battarbee 1994, 1999;
Smol 2008; Pienitz et al. 2009). Palaeolimnology is particularly suited to tackling
questions of recent environmental change where contemporary monitoring data
are generally only available for the period following the initial identification of
the disturbance. In many cases little information concerning background, or pre-
disturbance, reference conditions, including the range of natural variation, exists in
any form.

Acid deposition and the discharge of nutrients to surface waters have had
considerable impact upon many freshwater ecosystems globally. The widespread
losses of fish from acidified lakes and streams (e.g., Beamish and Harvey 1972;
Harriman et al. 1987), as well as the loss of aquatic macrophytes, increase in
phytoplankton, and loss of biodiversity in systems receiving increased nutrient
loads are the most visible changes associated with anthropogenic acidification and
eutrophication. In many cases whole ecosystem shifts have occurred as the direct
result of acid deposition or eutrophication due to the alteration of biogeochemical
cycling and the loss of sensitive organisms (Smol 2008).

In this chapter we review the use of numerical techniques in palaeolimnological
studies and examine some methods that can be applied to palaeolimnological data
in order to answer questions central to the study of recent human-induced envi-
ronmental change. Specifically, we present case studies to illustrate how numerical
approaches are used to track the degradation and recovery of lake ecosystems, to
identify the causes of change, and to guide restoration of impacted surface waters.

Reconstructing and Evaluating Past Trends in Surface-Water
Acidity and Nutrient Status

Quantitative Reconstruction of Lake-Water Chemistry

Biologists have long recognised that species respond to changes along environ-
mental gradients (e.g., Whittaker 1956, 1967), and that groups of species can be
identified which exhibit similar patterns of occurrence along these gradients. It is
this motivation that has led to the transfer-function or calibration-function paradigm
in modern palaeolimnology (ter Braak and Prentice 1988; ter Braak and van Dam
1989; Birks et al. 1990a, 2010). Calibration functions have been referred to as
the “paleolimnologist’s Rosetta Stone” (Smol 2008) and have been widely used
to reconstruct past environmental changes from lake-sediment archives, not least
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because of the development of user-friendly computer software which implements
these methods (ter Braak and Šmilauer 2002; Juggins 2003; Lepš and Šmilauer
2003). Like all numerical techniques, calibration-function methodologies should
be applied with care, interrogated by critical analysis of the model output, and,
most importantly, interpreted in ecologically meaningful ways (see also Juggins and
Birks 2012: Chap. 14; Lotter and Anderson 2012: Chap. 18; Cumming et al. 2012:
Chap. 20).

Acidification

As an example, we apply several pH calibration-function models to a ca. 10,000 year
diatom sequence (RLGH3) from The Round Loch of Glenhead (RLGH, Jones
et al. 1989; Birks and Jones 2012: Chap. 3), an acidified loch in the Galloway
region of south-west Scotland, using 138 modern samples from the Surface Waters
Acidification Programme (SWAP) diatom-pH training-set (Stevenson et al. 1991)
and provide some evaluation of one of these models for use in reconstructing past
changes in pH.

Detrended correspondence analysis (DCA) of the SWAP data suggests that mod-
erately long compositional gradient lengths (axis 1 D 3.4 Hill’s standard deviation
(SD) units of compositional turnover, axis 2 D 2.66 SD units – see Legendre and
Birks 2012b: Chap. 8) are present in the diatom abundances, and a detrended
canonical correspondence analysis (DCCA) (ter Braak 1986; Birks 1995) with pH
as the sole constraining external variable indicates that the diatoms respond in a non-
linear way to pH (DCCA axis 1 D 2.56 SD units). A useful rule-of-thumb (ter Braak
and Prentice 1988) is that where DCCA gradient lengths are greater than 2 SD units,
several taxa in the training-set have their optima located within the gradient and
unimodal-based methods are appropriate. Where gradient lengths are less than 2 SD
units, species responses are generally monotonic along the gradient and linear-based
methods would potentially be more appropriate (ter Braak and Juggins 1993; Birks
1995, 1998). Therefore, constructing a calibration-function model for pH using non-
linear or unimodal methods of regression and calibration would be appropriate given
the properties of the training-set (Juggins and Birks 2012: Chap. 14).

Weighted-averaging partial least squares (WAPLS) and maximum likelihood
(Gaussian logistic or logit) regression and calibration (ML) are two methods for
constructing a calibration function, where parameters for m species are estimated
from the modern training-set for the environmental variable of interest and are
subsequently used to reconstruct the past environment from these same m species in
fossil samples. An alternative to these species-based techniques is to use the modern
analogue technique (MAT) (see Juggins and Birks 2012: Chap. 14; Simpson 2012:
Chap. 15), an assemblage approach where the k most similar assemblages from
the modern training-set are selected for each fossil sample and the environmental
reconstruction for each fossil sample is then simply a (weighted) average of the
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environmental variable(s) of interest over the k closest modern analogues. The
main difference between the two approaches is that in MAT it is the assemblage
of species that determines the reconstructed values, whereas in WAPLS and ML the
reconstructed values are based on individual species’ responses to the environmental
variable in question, not the assemblages in the training-set from which the species
data were derived (Birks et al. 2010). We fit all three methods to the SWAP
training-set and the RLGH3 core to permit a comparison and assessment of the
reconstructions. If all the reconstructions are similar then we can be more confident
about the inferred values for the environmental variable than if the various models
produced different reconstructions. A further advantage of fitting more than a
single model is the ability to use the results from all models to derive a consensus
reconstruction (Birks 1998).

Table 19.1 shows the results of the WAPLS model when applied to the SWAP
training-set to produce calibration-function models for estimating past lake-water
pH. Listed are the root mean squared error (RMSE), r2, and selected bias statistics
for each of the first five WAPLS components computed using the C2 software
of Juggins (2003). These provide overly optimistic assessments of the error, r2,
and bias in the calibration function because they have been derived by using the
same data to construct and then test the model (Birks 1995). A better indication
of these model-performance measures is given by cross-validation (Birks 1995).
In this example we have used 999 bootstrap re-sampling cycles to derive pseudo-
independent indicators of model performance. Table 19.2 shows the bootstrap-
derived performance statistics for the three calibration-function methods fitted to
the SWAP diatom-pH training-set. The RMSEP values indicate that the error in
predicting pH from new data is of the order ˙0.3 pH units for all three methods.

A key concept in statistics is that of the parsimonious or minimal adequate model
(Birks 2012a: Chap. 2), which states that simple models are to be preferred over
more complex models and that to accept a more complex model over a simple
model, the complex model must offer significant improvements in explanatory
power. A useful rule-of-thumb, when selecting a parsimonious WAPLS model is
to choose the model that gives the lowest RMSEP and results in a 5% or greater
reduction in the RMSEP over the previous model (ter Braak and Juggins 1993; Birks
1998; Juggins and Birks 2012: Chap. 14). In the SWAP example, the increase in
complexity from a one- to a two-component WAPLS model reduces the RMSEP by
0.00423 (0.31741 – 0.31318 D 0.00423) which is less than 5% of the RMSEP of the
one-component model (0.31741 � 0.05 D 0.01587) and as such does not represent
a sufficient improvement over the one-component model to accept the additional
complexity of a two-component model. An alternative, statistically-based, approach
to model selection is the randomisation t-test (van der Voet 1994; see Juggins and
Birks 2012: Chap. 14). It is worth noting that a one-component WAPLS model is the
equivalent of a simple weighted averaging (WA) model using an inverse deshrinking
regression (ter Braak and Juggins 1993), if untransformed percentage biological
data are used (see Juggins and Birks 2012: Chap. 14).

Table 19.2 shows the bootstrap-derived estimates of model performance for the
one-component WAPLS (WAPLS(1)), ML, and MAT models. The RMSEP for all
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Table 19.1 Weighted-averaging partial least squares (WAPLS) apparent model
performance statistics

1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp.

RMSE 0.27565 0.23212 0:19359 0.17248 0.15314
r2 0.87168 0.90901 0:93670 0.94976 0.96040
Average Bias 0.00158 0.00055 �0:00015 0.00058 0.00049
Maximum Bias 0.19303 0.15359 0:14203 0.11548 0.09889

Comp component, RMSE root mean squared error for the 138-lake Surface Waters
Acidification Programme (SWAP) diatom-pH training-set

Table 19.2 Bootstrap-derived performance statistics for the various calibration-
function methods fitted to the Surface Waters Acidification Programme (SWAP)
diatom-pH training-set

RMSEP S1 S2 Average bias Maximum bias

WAPLS(1) 0.317 0.064 0.311 0.016 0.430
ML 0.344 0.133 0.318 0.004 0.348
MAT 0.328 0.123 0.304 0.047 0.444

RMSEP root mean squared error of prediction, S1 and S2 are components of RMSEP
(see Birks et al. 1990a; Juggins and Birks 2012: Chap. 14; Simpson 2012: Chap. 15
for details)
WAPLS(1) one-component weighted-averaging partial least squares model, ML
maximum likelihood regression and calibration, MAT modern analogue technique

three models is similar, with WAPLS(1) having the lowest RMSEP and ML the
highest with MAT roughly in between these two. The ML model has the lowest
average and maximum bias (0.004 and 0.348, respectively) of the three models,
with MAT being the worst performer of the three in terms of bias.

As with many statistical methods, it is important to examine the fitted values and
the residuals from the calibration-function model to look for systematic differences
between the fitted and the observed values. Figure 19.1 shows two such views of
the model from the WAPLS(1) reconstruction for the RLGH3 core described above.
In Fig. 19.1 we follow the recommendation of Racca and Prairie (2004) and plot
the fitted or predicted pH values on the x-axis and the observed values on the y-axis.
The dashed line is a 1:1 line and if the model perfectly predicted the observed values
all the points would lie on this line. The vertical distance between the 1:1 line and
each point is the residual variance in pH not explained by the model. The solid line
is a simple linear regression of the form:

pHobserved � b0 C b1pHfitted

The difference between this fitted regression line and the 1:1 line is a measure
of the tendency for the model to over- or under-predict the response (the observed
pH), which is very low in the RLGH3 example, as also indicated by the average-
bias statistic shown in Table 19.2. Figure 19.1b shows a plot of the residuals
against the fitted values (Racca and Prairie 2004). Overlain on this plot are two
lines: (i) the solid, horizontal line shows the average bias (i.e., the mean of the
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Fig. 19.1 (a) Fitted pH values from the one-component weighted-averaging partial least squares
model (WAPLS(1)) plotted against the observed pH values for the Surface Waters Acidification
Programme (SWAP) diatom-pH training-set. The difference between the 1:1 line (solid) and the
fitted line of a regression of the fitted values on the observed values (dashed) is the tendency for the
model to over- or under-predict. (b) Fitted values from the WAPLS(1) model plotted against the
residuals. The solid horizontal line illustrates the average bias in the fitted values (i.e., the mean
of the residuals) and a LOESS smoother is fitted to the points using a span of 0.3. The LOESS
smoother highlights the presence of systematic patterns in the fitted values from the model. (c)
Observed values of lake-water pH plotted against residuals from the WAPLS(1) model, as before
showing average bias and a LOESS smoother. This presentation of model performance highlights
the presence of strong under-prediction at low pH values, a pattern that is not observed in (b) (see
text for explanation)

residuals) in the WAPLS(1) model and (ii) the solid, irregular line shows a LOESS
smoother (Cleveland 1979; see Birks 2012a: Chap. 2; Juggins and Telford 2012:
Chap. 5) that is used to highlight any pattern in the residuals which might indicate
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problems in model formulation, or locations along the environmental gradient being
reconstructed where the model is performing poorly. For the RLGH3 example, the
residuals from the WAPLS(1) model suggest that overall the model is well fitted
with no major pattern in the residuals. The LOESS smoother suggests that in the
interval pH 6–6.5 the model tends to under-estimate lake-water pH by about 0.2
pH units and that above pH 7.0 the model over-predicts by 0.2–0.3 pH units. We
should take this into account when evaluating reconstructions from this model, but
for the RLGH3 core the model is likely to perform well as the loch is naturally
acidic and the reconstructed values are lower than pH 6.0, which is where there
is little evidence of bias in the predicted values in the residual plot. Figure 19.1c
shows the residuals plotted against the observed pH values. The LOESS smoother
now shows a clear tendency to over-predict pH values at the low pH end of the
gradient. This apparent contradiction between the two forms of display is discussed
by Juggins and Birks (2012: Chap. 14). It is clear that Fig. 19.1c provides the more
informative display in this case, alerting us to the tendency to over-predict at low pH.

The WAPLS(1) reconstruction for the full Holocene history of the RLGH is
illustrated in Fig. 19.2a along with bootstrap-derived sample-specific errors. The
reconstruction highlights three main periods of change: (i) the slow acidification
of the loch between �10,000 and 4000 radiocarbon year before present (BP), as
organic soils developed in the catchment; (ii) the rapid fluctuations in pH between
4000 and 2000 radiocarbon year BP, thought to be due to the spread of blanket
mire and a decline in tree cover in the catchment (�4000 radiocarbon year BP),
and the subsequent erosion of peat (�3000 radiocarbon year BP; Jones et al. 1989);
and (iii) the rapid acidification of the RLGH that begins in the early 1800s when
pH declines to pH 4.75. When placed in the longer-term context it is clear that
the recent history of the RLGH has seen an unparalleled rate and magnitude of
change, which when linked with other proxy data (e.g., pollution indicators such
as spheroidal carbonaceous particles and heavy metals) clearly demonstrates the
deleterious effects of industrial air pollution on the water quality of the RLGH
(Battarbee et al. 1989; Renberg and Battarbee 1990).

The reconstruction described above (Fig. 19.2a) suggests a change in pH of 0.75
units from pH 5.5 to 4.75 in the RLGH since the mid nineteenth century. The average
annual pH of the loch measured when the core was taken in 1984 was 4.7 with
an annual range (1981–82) of 4.6–5.0 (Jones et al. 1989; Birks and Jones 2012:
Chap. 3), which shows good agreement with the reconstructed values of 4.8–5.0
for samples in the upper 1 cm of the core. The WAPLS(1) pH reconstruction also
demonstrates that the pH of the RLGH, far from being stable since the onset of the
Holocene, has fluctuated between 5.85 and 5.0, but we can see that at no time in the
history of the loch did the pH fall to the extremely low levels seen in the twentieth
Century.

The uppermost sample in the RLGH3 core (Fig. 19.2) suggests the beginnings of
a recovery from acidification at the site with the reconstruction indicating that pH
rose from pH 4.8 to 5.0 for this sample. Great care must be taken when interpreting
small changes in reconstructed values like these where the values fall well within the
prediction error of the model and where there is no pattern in diatom composition
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Fig. 19.2 (a) The reconstructed pH values for the samples of The Round Loch of Glenhead
(RLGH3) core (solid line) plotted with sample-specific bootstrap-derived errors (shaded area)
using the one-component weighted-averaging partial least squares model (WAPLS(1)) and the Sur-
face Waters Acidification Programme (SWAP) training-set. (b) Comparison of the reconstructed
pH for samples of the RLGH3 core from the WAPLS(1) (solid line), maximum likelihood (ML)
(dotted line), and modern analogue technique (MAT) (dashed line) models

that could be used to suggest a trend towards higher pH values even if we are
not confident about the precision of the fitted values (see Juggins and Birks 2012:
Chap. 14). The same can be said of the entire reconstruction and it is useful to know
if both the pattern in the reconstruction and the actual predicted values show some
consistency across reconstruction methods. Figure 19.2b shows the inferred values
from the three reconstructions. The reconstructions show good agreement in the pat-
terns of pH change throughout the post-glacial history of the RLGH, which imparts
a degree of confidence in the reconstructed values for a single method. There are
some departures in the reconstructed values across the three methods, particularly
in the period of the core representing >10,000–6000 radiocarbon year BP, which is
perhaps related to the ways the three methods deal with samples close to or outside
the extremes of the modern training-set. Generating a consensus reconstruction
using non-parametric smoothers, such as LOESS (Cleveland 1979; see also Birks
2012a, b: Chaps. 2 and 11; Juggins and Telford 2012: Chap. 5), from the recon-
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Fig. 19.3 Consensus reconstruction based upon the reconstructed pH values for the fossil
samples in The Round Loch of Glenhead (RLGH3) core of all three reconstruction methods
(ı D one-component weighted averaging partial least squares model (WAPLS(1)), � D maximum
likelihood (ML) and � D modern analogue technique (MAT)). The consensus reconstruction has
been generated using a LOESS smoother fitted to the inferred pH values as a function of sample
age with a span of 0.1

structed values of several reconstructions is a useful way of highlighting the signal or
pattern from noisy reconstructions (Birks 1998, 2003). However, where individual
reconstructions are strongly divergent, the consensus reconstruction may take values
that are not supported by any of the individual reconstructions and must be regarded
with scepticism. Figure 19.3 shows a consensus reconstruction for the RLGH3 core,
using a LOESS smoother to highlight the main patterns in the reconstruction.

Birks (1998) suggests four criteria for evaluating reconstructions: (i) sample-
specific RMSEPs; (ii) ‘goodness-of-fit’ statistics from a constrained or canonical
ordination; (iii) analogue measures between fossil and training-set samples; and
(iv) the percentages of taxa in fossil samples (a) not represented or (b) poorly
represented in the training-set (see also Juggins and Birks 2012: Chap. 14).
All are equally important in assessing the potential reliability of the individual
reconstructed values, but of the four criteria, the ‘goodness-of-fit’ statistics are
rarely presented in research studies. We discuss this technique here in some detail.
Goodness-of-fit is assessed by passively fitting the fossil samples into a constrained
ordination of the training-set with the sole constraint being the environmental
variable being reconstructed. The fossil samples are positioned as supplementary
samples within the ordination space by means of transition formulae (equations 6.20
and 6.21 in ter Braak and Šmilauer 2002: p. 161) which determine a score for each
fossil sample by taking an abundance weighted sum (redundancy analysis, RDA) or
a weighted average (canonical correspondence analysis, CCA) of the species scores
extracted from the ordination of the training-set samples (ter Braak and Šmilauer
2002). In this way, fossil samples are positioned within the ordination without
influencing the underlying ordination based on modern data only. The squared
residual length (SqRL) in the CANOCO solution file contains the squared residual
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distance between each sample point and its fitted position on the first constrained
axis (entries in the AX1 column).

The distribution of the squared residual distances for the training-set samples is
then calculated and the squared distances that equate to the 95th and 90th percentiles
of that distribution are calculated. Any fossil sample that has a squared residual fit
greater than the 95th percentile distance for the training-set samples is very poorly
fitted and any that lie between the 90th and 95th percentiles are poorly fitted within
the calibration-function model (Birks et al. 1990a). This is exemplified in Fig. 19.4
using the SWAP training-set and the RLGH3 core samples. The upper panel shows
the distribution of the SqRL for samples in the SWAP 138-lake training-set. The
vertical dotted lines correspond to the values of the 90th, 95th, and 99th percentiles
of this distribution. Two samples (S21 and S261) in the SWAP training-set are
extremely poorly fitted in the CCA constrained by pH, lying beyond the 99th

percentile. A further seven samples are very poorly fitted and another eight samples
are poorly fitted. The lower panel of Fig. 19.4 shows the distribution of the squared
distances for the fossil samples in the RLGH3 core, showing that only three samples
are not well fitted to pH in the modern CCA model; one sample is very poorly
fitted (224.5 cm) with a further two samples poorly fitted (254.5, 256.5 cm). The
analysis of the squared residual distance for the fossil samples to pH suggests that
the majority of samples are well fitted to pH within the unimodal response-model
framework and that we can therefore be confident of the pH reconstructed values
(see also Telford and Birks 2011).

Eutrophication

Eutrophication of surface waters has a myriad of adverse ecological effects,
including stimulation of excessive plant growth, depletion of oxygen in deep-water
habitats, alteration of biogeochemical cycles and biological communities, and loss
of biodiversity (Hutchinson 1973; Harper 1992; Scheffer et al. 1993; Smol 2008).
For most aquatic systems, however, monitoring records are too short or too sparse to
define pre-eutrophication conditions, detect trends, or provide sufficient information
about changes in specific habitats (e.g., littoral or profundal habitats), as required to
establish restoration targets, quantify the magnitude of the problem, or identify the
causes of eutrophication and factors promoting (or delaying) ecosystem recovery.
Remediation programmes have often employed reductions in nutrient loads as a
method of controlling the effects of eutrophication, but they rarely assess whether
such actions restore biotic communities or conditions in deep-water and littoral
habitats (Dillon et al. 1978; Carvalho et al. 1995). For example, oxygen availability
in deep-water habitats is rarely considered, although it plays a critical role in many
invertebrate and commercially valuable fish communities and in regulating internal
phosphorus loads (Nürnberg 1995).

Fortunately, quantitative palaeolimnological methods can provide a useful and
rigorous scientific approach to address some of the above shortcomings. For exam-
ple, a number of calibration functions are available that can quantify limnological
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Fig. 19.4 Frequency of the squared residual fit to pH for the Surface Waters Acidification
Programme (SWAP) diatom-pH training-set (upper panel) and the fossil samples from The Round
Loch of Glenhead (RLGH3) core (lower panel) derived from passively overlaying the fossil
samples on to a canonical correspondence analysis ordination of the SWAP training-set samples.
The labelled dashed lines are for the 90th, 95th, and 99th percentiles of the distributions of the two
sets of squared residual lengths. Samples lying beyond the 99th percentile are extremely poorly
fitted to pH, those between the 95th and 99th percentiles are very poorly fitted, and those samples
between the 90th and 95th percentiles are poorly fitted to pH

changes related to lake eutrophication (or trophic status). Most commonly, cali-
bration functions have been developed to estimate epilimnetic total phosphorus
concentration (TP) of surface waters (see Table 19.3) because phosphorus is the
nutrient that often limits aquatic productivity (Sas 1989) and strongly regulates
communities (Schindler 1971), although total nitrogen calibration functions also
exist (Christie and Smol 1993; Siver 1999).
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Calibration functions for reconstructing TP are developed using the same
regional training-set approach as outlined above for pH (see also Juggins and
Birks 2012: Chap. 14). Most commonly, TP calibration functions are based on
diatoms, but TP calibration-functions have also been developed using chydorid
and chironomid assemblages (Table 19.3). The majority of diatom-TP calibration
functions are based on all taxa in sedimentary assemblages, including planktonic,
epiphytic, and benthic taxa. However, a few studies (e.g., Siver 1999) have attempted
to improve calibration-function performance statistics (r2, RMSEP) by focussing on
planktonic taxa only, based on the concept that errors increase because epiphytic
and benthic taxa experience nutrient concentrations that differ from those of the
epilimnion. But, in practice they tend to provide little or no improvement (Siver
1999; Bradshaw et al. 2002; Philibert and Prairie 2002), perhaps because of errors
due to incorrect assignment of taxa to a habitat type and because many taxa may
grow in more than one habitat.

Calibration functions also exist that can quantify changes in other important
limnological conditions affected by eutrophication; including deep-water oxygen
availability from chironomid remains (e.g., hypolimnetic anoxia) as the Anoxic
Factor (Quinlan et al. 1998), end-of-summer volume-weighted hypolimnetic oxygen
concentration (Quinlan and Smol 2001), and changes in the density of planktivorous
fish from zooplankton microfossils (Jeppesen et al. 1996). As an example, Little
et al. (2000) used quantitative multi-proxy palaeolimnological methods (diatom-TP,
chironomid-anoxia factor calibration functions) to demonstrate that reduced nutrient
loads and restoration of epilimnetic TP concentration to pre-disturbance values
cannot be assumed to translate into recovery of benthic communities or greater
deep-water oxygen availability over the multi-decadal time-scales of remediation
programmes. Additionally, analysis of sedimentary pigments can quantify changes
in the standing crops of major algal groups and photosynthetic bacteria (e.g., Hall
et al. 1999).

Using a TP calibration-function developed for the Swiss Alps (Lotter et al.
1998), Lotter (1998) tracked the eutrophication of Baldeggersee during 109 years
(1885–1993) using diatoms preserved in annually laminated sediments. This study
provides an elegant example of applying a TP calibration function to quantify lake
eutrophication and recovery because Baldergersee’s varved sediments provide an
annual record of the eutrophication trends and allowed Lotter to assess the reliability
of the inferred diatom-TP by comparison with epilimnetic TP measurements
recorded between 1957 and 1993 (see also Lotter and Anderson 2012: Chap. 18).
The diatom-TP calibration function is based on a training-set of 78 lakes spanning
a surface-water spring TP gradient of 5–520 �g L–1 (median D 31 �g TP L–1) and
a two-component WAPLS model. Performance statistics of this calibration function
are stronger than other diatom-TP calibration functions currently available (jack-
knifed r2 D 0.79, RMSEP D 0.19 log10 �g TP L–1; Table 19.3), and so this example
most likely represents a ‘best-case scenario’ in TP reconstructions.

The diatom TP calibration-function estimated relatively consistent epilimnetic
spring TP during the period AD 1885–1909, with a range of 25–50 �g L–1

(Fig. 19.5). Due to the long history of human activity at Balderggersee, epilimnetic
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Fig. 19.5 Stratigraphical changes in annually-laminated sediments from Baldeggersee, Switzer-
land, between AD 1885 and 1993, obtained with freeze core BA93-C. Percent abundances of
selected diatom taxa are shown. The right-hand panel shows diatom-inferred total phosphorus (TP)
concentrations (small solid dots joined by a solid line), and compares this with measured spring
circulation TP concentrations for the uppermost 15 m of the water column (large solid dots) along
with the annual TP range measured in the uppermost 15 m (horizontal lines) (Modified from Lotter
1998)

TP of 25–50 �g L–1 is unlikely to represent the pre-impact, or pristine, state of the
lake. But, it does provide a useful benchmark to guide lake-restoration programmes
by indicating that nutrient-load reductions could achieve a marked improvement
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from the current hyper-eutrophic conditions to a meso-eutrophic state. During 1909–
1910, diatom assemblages switched suddenly from those dominated by Cyclotella
comensis Grun. and C. distinguenda var. unipunctata (Hust.) Håkansson & Carter,
to domination by Tabellaria fenestrata (Lyngb.) Kütz. and Fragilaria crotonensis
Kitton, and diatom-inferred TP (DI-TP) jumped to >100 �g L–1, indicating a
marked shift to hyper-eutrophy. Subsequent increases in Asterionella formosa
Hassall and Stephanodiscus minutulus (Kütz.) Cleve & Euler during 1910–1956
resulted in a trend of increasing DI-TP from 100 to 200 �g L–1. After 1956, DI-
TP increased further to between 200 and 300 �g L–1, and reached a maximum of
nearly 500 �g L–1 in 1977. The 1977 peak in DI-TP coincided with the highest
epilimnetic TP ever measured in the lake, and subsequent declines in DI-TP closely
track measured TP (�100 �g L–1 in 1993).

Overall, the diatom-TP calibration function appears to have performed well in
Balderggersee in that it demonstrated a transition of the lake from a meso-eutrophic
to hyper-eutrophic state at 1909 due to increased nutrient loading from expanding
agricultural activity and human sewage, as well as identifying the peak TP con-
centration in 1977 and subsequent water-quality improvements following the onset
of a lake-restoration programme (Lotter 1998). Moreover, DI-TP corresponded
reasonably closely with spring TP measurements since 1956, including rising TP
until 1977, and subsequent declines (Fig. 19.5). However, the calibration function
estimated greater inter-annual variability of TP than the measured spring values,
probably due to the greater inherent variability of diatom assemblages compared
to chemical conditions (Lotter 1998), and it consistently under-estimated measured
spring TP during the period of highest values (Fig. 19.5). Under-estimation at high
TP probably occurs, at least in part, because the modern calibration-set (with a
median TP of 31 �g L–1) is biased towards lakes with low and medium TP.

Several other studies have shown that diatom calibration functions tend to under-
estimate measured TP at high values and over-estimate it under less productive
conditions (e.g., Anderson et al. 1993; Anderson and Rippey 1994; Bennion 1994;
Bennion et al. 1995). Several factors can impair the ability of organism-based
calibration-functions to quantify surface-water nutrient concentrations under both
highly productive and oligotrophic conditions. For example, calibration functions
based on WA (and the related WAPLS) suffer from so-called ‘edge-effects’ where
the optima of eutrophic or oligotrophic taxa are poorly estimated due to truncation
of their response curves at the extreme ends of the gradient (see Oksanen et al. 1988;
Birks et al. 1990a, 2010; Birks 1995, 1998; Juggins and Birks 2012: Chap. 14). Also,
constant species composition among highly productive lakes (Anderson et al. 1993;
Bennion 1994; Reavie et al. 1995a) or across broad TP gradients (Bennion and
Appleby 1999; Bennion et al. 2001; Sayer 2001), and the absence of analogues in
modern training-sets for fossil assemblages (Bennion et al. 1995, 1996; Reavie et al.
1995a, b), can weaken inferences based on relative percentage diatom compositional
data. Fortunately, fossil assemblages which lack modern analogues or which consist
of high proportions of taxa showing poor relationship to TP (i.e., poor fit to TP)
can be identified using numerical methods (see the above section on Acidification;
Birks 1995; Juggins and Birks 2012: Chap. 14). Furthermore, high intra-annual
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variability in surface-water TP may introduce errors into the estimates of taxon
optima because the optima must be calculated from a single value that summarises
the TP concentration of a lake (e.g., annual or seasonal averages of empirical TP
measurements), rather than from the precise concentrations that existed during the
period of growth of each taxon (Anderson and Odgaard 1994; Anderson and Rippey
1994; Bennion et al. 1995; Bennion and Smith 2000; Bradshaw et al. 2002). This
problem is particularly acute in eutrophic lakes, because they exhibit the greatest
annual variability of TP (Gibson et al. 1996).

Perhaps the greatest obstacle to accurate inferences of surface-water TP is the
observation that biological communities respond to many limnological factors and
that TP is only one of many factors (e.g., light, habitat availability, dissolved
organic carbon, other nutrients (N, Si, etc.), food-web structure) which change
during eutrophication. For example, comparison of published CCA biplots suggests
that TP reconstructions based on diatoms can be confounded by changes in total
nitrogen (Christie and Smol 1993; Fritz et al. 1993; Jones and Juggins 1995), lake
depth (Dixit and Smol 1994; Hall and Smol 1992, 1996), pH (Fritz et al. 1993),
and transparency (Fritz et al. 1993; Dixit and Smol 1994; Reavie et al. 1995a).
Consequently, diatom-based reconstructions (and those based on other biota) are
potentially affected by past changes in covariates that are weakly related or even
unrelated to alterations in TP. However, despite the numerous sources of error and
noise, several validation studies show there is often good agreement between DI-TP
and measured records (Anderson and Rippey 1994; Anderson 1995; Bennion et al.
1995; Hall et al. 1997; Lotter 1998; Bradshaw and Anderson 2001) in most lakes.
Calibration functions for reconstructing TP certainly are not as precise as for pH,
but they are sufficient to distinguish between oligotrophic, mesotrophic, eutrophic,
and hyper-eutrophic states and to identify restoration targets to a higher precision
than remediation efforts can predict they will achieve. Thus, they provide a highly
useful tool for aquatic resource managers and provide quality data that cannot be
readily achieved by other means.

Detection of Long-Term Trends

Training-sets used in the generation of calibration functions can also be used in
ordination-based approaches to detect trends and patterns of change. It is possible
to add fossil samples passively to canonical correspondence analysis (CCA) or
redundancy analysis (RDA) biplots so that changes in the assemblage composition
in a sediment core can be related to the species-environment relationships described
by CCA or RDA models created using only the modern training-set data (ter Braak
and Šmilauer 2002; see also Legendre and Birks 2012b: Chap. 8).

Figure 19.6 shows a so-called time-track (trajectory) plot of the RLGH3 core
samples projected passively into the ordination space of a CCA of the SWAP 138
data-set (Birks et al. 1990b; Stevenson et al. 1991). We have used the SWAP 138
data-set as this reduced training-set has a more complete set of hydrochemical
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Fig. 19.6 Time-track plot of The Round Loch of Glenhead (RLGH3) core samples plotted
passively into the ordination space of a canonical correspondence analysis of the Surface Waters
Acidification Programme (SWAP) 138 diatom and water chemistry training-set (Stevenson et al.
1991). The start of the RLGH3 record (i.e., the oldest sediments) is indicated by the filled circle
and the surface-sample of the core is indicated by the filled triangle. The labelled points are the
interpolated 210Pb or 14 C ages in years BP. Equal equivalent alkalinity, Ca calcium, K potassium,
Mg magnesium, SO4 sulphate, Cond conductivity, TOC total organic carbon, Cl chloride, Altot
total aluminium

parameters than the full SWAP training-set (Birks and Jones 2012: Chap. 3).
The time-track plot illustrates the possible changes in hydrochemistry through
time based on the assemblage composition of the fossil samples and the modern
species scores obtained from the SWAP training-set samples. There is a lot of
noise in the diagram, just as there is in the calibration-function reconstructions
(Fig. 19.4), but the general patterns can be discerned. The time-track plot indicates
that the RLGH acidified and total organic carbon (TOC) concentrations increased
up to approximately 8000–7500 year BP, when TOC concentrations appear to
fluctuate over the next 1500–2000 years. The RLGH has experienced a number of
acidification events, illustrated in the time-track plot by the samples located at the
bottom of the diagram at �4000 and �2800–2500 radiocarbon year BP. During
these acidification periods, the diatom assemblage is somewhat different to that
found previously in the loch, denoted by the sample points being located away from
the cluster of samples on the plot. From �150 year BP the strong anthropogenic
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acidification indicated by the calibration-function models can be seen in the time-
track plot, with later samples following parallel, but in an opposite direction, to
the projected vector for pH. It is also interesting to note that this anthropogenic
acidification is associated with diatom assemblages that are very dissimilar to those
seen previously in the history of the RLGH, including the previous acidification
phases. The plot also suggests that the RLGH had higher TOC concentrations than
those indicated for the recent acidification period.

Allott et al. (1992) made extensive use of time-track plots studying recovery
from acidification at the RLGH. High-resolution diatom analyses on a number of
cores from different parts of the RLGH basin were undertaken and the results
indicated that the diatom assemblages had responded to an increase in pH of 0.2
units between AD 1978 and 1989, with time-track plots for some of the cores
analysed showing clear signs of a reversal in the diatom assemblages in the recent
sediment samples. However, the results also indicated that this floristic recovery was
only apparent in those cores with accumulation rates greater than 0.7 mm year–1

(Allott et al. 1992), a pattern that was effectively illustrated using CCA time-track
plots.

Detecting trends and identifying change in sediment records can also be under-
taken using rate-of-change analysis, in which the sediment record is amalgamated
into groups of samples, each group encompassing the same time unit; 25 or
50 years for example (see also Birks 2012: Chap. 11). The amount of assemblage
change between consecutive time units is quantified using a suitable dissimilarity
coefficient, such as chi-square distance or squared chord (DHellinger) distance
(Overpeck et al. 1985; see Legendre and Birks 2012b: Chap. 8) between the fossil
assemblages of each slice. Birks (1997) used this approach at the RLGH, and
showed significant rates of change (as assessed by restricted permutation tests) at
the onset of the Holocene (�9750 years ago) and unprecedented rates of assemblage
change in the last 150 years, brought about as a result of anthropogenic acidification.
The use of rate-of-change analysis convincingly demonstrated the difference in
the rate of change associated with natural long-term acidification processes at the
RLGH and that linked to anthropogenic acidification.

Identifying Patterns of Change

An important step in evaluating the effect of human disturbance on aquatic ecosys-
tems is the process of scaling up from site-specific palaeolimnological evidence
to regional assessments of change. An example of such an approach is that of
Cumming et al. (1994), who used cluster analysis and canonical variates analysis
(CVA) (Dmultiple discriminant analysis; ter Braak and Šmilauer 2002; Birks 2012a:
Chap. 2) to determine when acid-sensitive lakes in the Adirondack Park (New York,
USA) began to acidify.

Diatom-based pH reconstructions were performed on chysophyte profiles of
210Pb-dated sediment cores from 20 low-alkalinity lakes in the Adirondack Park
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(Cumming et al. 1994). Following this, 17 pH values per core were generated by
interpolation and extrapolation of the inferred-pH profiles to a common set of dates
(at 10-yearly intervals between 1850 and 1970, and at roughly 5-yearly intervals
between 1970 and 1988). A cluster analysis was then performed on the 20 sites
using the pH values in each of the 17 time-slices at each lake as variables in
the analysis, which identified four types of pH profile: (i) lakes with no or little
evidence of acidification; (ii) lakes with pre-industrial pH between 5 and 6 that
began acidifying ca. 1900; (iii) ‘naturally’ acidic lakes that had acidified further
since 1900; and (iv) lakes with pre-industrial pH around 6 that acidified ca. 1930–
1950 (Cumming et al. 1994). CVA of the groupings of pH profiles with measured
physical, chemical, and 1850- and present-day inferred-pH as explanatory variables
showed that 1850- and present-day inferred-pH and lake elevation were the three
variables that could be best discriminated between the four pH-profile groups.
By overlaying the remaining measured variables passively onto the CVA biplot,
Cumming et al. (1994) were able to show that lakes which had acidified by �1900
were associated with higher precipitation and hence atmospheric deposition than
lakes with little or no acidification.

Assessing Causes of Change

In many cases, palaeolimnological data provide the only long-term evidence
available to determine the extent of human disturbance on aquatic ecosystems, and
the timing and causes of these changes. Good experimental design is required for
hypothesis-testing studies and needs to be coupled with appropriate data analysis to
answer the questions at hand (Birks 1998, 2010).

The case of recent lake acidification stimulated a highly charged scientific and
political debate both in northern Europe and North America over the cause of
increased lake acidity and the loss or decline of fish stocks from sensitive lakes
on a regional scale. A number of causes were proposed, including natural long-
term acidification processes (Pennington 1984), land-use changes (Rosenqvist 1977,
1978), afforestation, and increased acid deposition (Odén 1968) resulting from the
burning of fossil fuels. In Europe, the Surface Waters Acidification Programme
(SWAP) palaeolimnology project (Renberg and Battarbee 1990) set about assessing
these various hypotheses by carefully selecting sites to study and by designing
suitably tailored experimental designs, whilst in North America, the Paleoecological
Investigation of Recent Lake Acidification (PIRLA) I (Charles and Whitehead
1986) and PIRLA II (Charles and Smol 1990) projects attempted to tackle similar
questions regarding the cause of the observed changes.

Quantitative reconstructions of pH using calibration functions can play a role in
determining the causes of change as well as being used to demonstrate that change
has taken place. At a number of sites where full Holocene sediment-records had
been analysed for diatom remains, the results of quantitative pH reconstructions
showed that lakes did acidify over long time scales as a result of the leaching
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of base cations from developing soils in the early Holocene, but never to the
extremely low pH seen in many acidic lakes today (e.g., Renberg 1990: Renberg
et al. 1993). Indeed, these longer term perspectives on acidification convincingly
illustrated that the severe acidification affecting many acid-sensitive lakes in the
Northern Hemisphere is a relatively recent phenomenon (see the earlier example for
the RLGH; Fig. 19.4).

Kreiser et al. (1990) compared two moorland lakes with two lakes in recently
(since the mid-1900s) afforested catchments. One pair of moorland/afforested sites
was located in an area of low acid deposition and the other pair in an area
receiving high levels of deposition. By carefully selecting their study sites and
applying the SWAP diatom-pH calibration function to well-dated sediment cores
from each of the lakes, Kreiser et al. (1990) showed that acidification began prior to
afforestation, that non-afforested sites in areas of high acid deposition had acidified,
and finally that, following afforestation at the high deposition site, acidification was
intensified. The lack of historical data on emissions of acid-forming compounds
from industrial sources meant that SWAP and PIRLA had to use robust experimental
designs, evidence from multiple proxy records, and quantitative pH-reconstructions
to answer questions concerning the causes of change.

Where historical data are available a wider suite of quantitative techniques
can be employed than indicated in the examples above to attempt to address
directly the causes of limnological changes. For example, with the availability of
historical records for the period 1920–1994, Hall et al. (1999) were able to use
variation partitioning analysis (VPA) on palaeolimnological indicators preserved
in sediments of eutrophic lakes of the Qu’Appelle Valley (Saskatchewan, Canada)
to determine the relative importance of climatic variability, resource-use, and
urbanisation as controls of aquatic communities. VPA is a numerical technique
based on constrained and partial canonical ordinations that was first developed by
Borcard et al. (1992), and provides an effective method to estimate the fraction
of variation in assemblage composition that can be explained by categories of
measured variables (see Legendre and Birks 2012b: Chap. 8).

Prior to using VPA, Hall et al. (1999) identified three distinct biological
assemblages since ca. 1775 from sedimentary analyses of diatoms, pigments, and
chironomids at Pasqua Lake (Saskatchewan); the first lake in a series of six lakes
situated along the Qu’Appelle River and the first to receive nutrients in sewage from
the main urban centres of Regina and Moose Jaw. Before the onset of agriculture
�1890, the lake was naturally eutrophic with abundant cyanobacterial carotenoids,
diatoms indicative of productive waters, and anoxia-tolerant chironomids. Dis-
tinct assemblages formed �1930–1960 that were characterised by elevated algal
biomass (inferred as “-carotene), nuisance cyanobacteria, eutrophic Stephanodiscus
hantzschii Grun., and a low abundance of deep-water zoobenthos. Sedimentary
assemblages deposited after �1977 were variable and indicated that water quality
had not improved despite a three-fold reduction in P loading due to tertiary sewage
treatment.

Hall et al. (1999) used constrained and partial canonical ordinations (ter Braak
1986) for a three-category VPA to determine the relative importance of climate
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Table 19.4 Results of variation partitioning analysis of diatom, pigment, and chironomid assem-
blages from sediments deposited 1920–1993 in Pasqua Lake, Saskatchewan, Canada

Diatoms (%) Pigments (%) Chironomids (%)

Climate effects, independent of
resource-use and urban factors (C)

10:4 4:2 19:2

Resource-use effects, independent of
urban and climatic factors (R)

24:7 13:9 18:7

Urban effects, independent of
resource-use and climatic factors (U)

9:4 10:8 18

Covariation between effects of climatic
and resource-use factors (independent
of urban; CR)

22:1 3:5 5:2

Covariation between effects of climatic
and urban factors (independent of
resource-use; CU)

6:8 8:3 0

Covariation between effects of
resource-use and urban effects
(independent of climate; RU)

4:1 13:6 0

Covariation among effects of climatic,
resource-use and urban factors (CRU)

13:2 33:1 16:6

Unexplained variation 9:3 12:6 22:3

Modified from Hall et al. (1999). With permission from the American Society of Limnology and
Oceanography

(C), resource-use (R), and urban activity (U) on fossil assemblages in Pasqua Lake
deposited between AD 1920 and 1997, the period for which reliable continuous
historical records of 83 potential explanatory variables were available (Table 19.4).
Redundancy analysis was used to partition the variation in the fossil assemblages
at Pasqua Lake because exploratory DCA suggested that fossil assemblages varied
along environmental gradients in a linear rather than unimodal fashion (ter Braak
1986; ter Braak and Prentice 1988). RDA was performed with percent abundance
of diatom and chironomid taxa or pigment concentrations after smoothing with
an unweighted three-point running mean. Because the research interests were
to investigate controls of long-term biological changes rather than inter-annual
variability, historical data were also smoothed using a 3-year running mean.

Variation partitioning requires similar numbers of variables within each explana-
tory category to avoid bias in the analyses (Borcard et al. 1992). Consequently,
Hall et al. (1999) developed and used objective, a priori criteria to ensure similar
numbers of statistically significant variables per category. Only explanatory vari-
ables accounting for significant amounts of variation in the fossil data (’ D 0.05)
were selected for inclusion in the VPA computations, based on a series of RDAs
constrained to a single explanatory variable at a time (ter Braak and Šmilauer 2002).
Significant variables were then assigned to one of the explanatory categories (C, R,
or U). Finally, a series of RDAs were performed on each category, sequentially
eliminating the explanatory variable with the highest variance inflation factor (VIF)
until all VIFs were less than 20. This step reduced multicollinearity among variables
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within each category (ter Braak and Šmilauer 2002) and resulted in similar numbers
of variables per category.

Five steps were required to partition variation in the fossil data among
the C, R, and U categories. First, canonical ordination with no covariables
was used to measure the total amount of variation (as the sum of canonical
eigenvalues) in the fossil assemblages attributable to all explanatory variables
(C C R C U C CR C CU C RU C CRU) and the total unexplained variation (Total
variation – [C C R C U C CR C CU C RU C CRU]). Second, a series of partial
canonical ordinations was used to calculate the variation explained by the unique
effects of each category (C, R, or U). In this step, ordinations of individual
explanatory categories were run with the remaining two categories as covariables.
Third, a series of partial canonical ordinations were used to calculate the unique
effects plus covariation between pairs of explanatory categories (C C CR, C C CU,
R C CR, R C RU, U C CU, U C RU). In each analysis, one category was used as
explanatory variables with one of the remaining categories acting as covariables.
The third category was not included in the analysis. Fourth, ‘first-order’ covariation
terms (CR, RU, CU) were calculated by subtracting appropriate terms generated
during steps 2 and 3 (e.g., CU D [C C CU]–C). Finally, the variation explained
by covariation among all three categories (CRU) was calculated as the difference
between 100% and the sum of variation captured in the first, second, and fourth
steps (CRU D 100–C–R–U–CR–CU–RU–unexplained).

At Pasqua Lake, VPA captured 78–91% of the variation in fossil assemblage
composition using only 11–13 significant environmental variables. Resource-use
(crop-land area, livestock biomass) and urbanisation (nitrogen in sewage) were
stronger determinants of algal and chironomid assemblage change than were
climatic factors (temperature, evaporation, river discharge) (Table 19.4). Covariation
among resource-use and urban activities (R, U, RU), independent of climate,
accounted for 27–38% of the total variation in the fossil assemblages since 1920.
In particular, analysis of algal assemblage change since 1920 demonstrated that the
long-term influence of resource-use on algae was mediated mainly through changes
in terrestrial practices involving livestock or crops (Hall et al. 1999). While the
effects of climatic variables on biotic assemblages were also important, climate
impacts were mediated by human activity, as demonstrated by the high proportion
of variation attributable to covariation with resource-use and urban activities (i.e.,
CU, CR, CRU), rather than to unique effects (C):

The use of VPA and information contained in century-long sediment cores
allowed Hall et al. (1999) to formulate specific recommendations for prairie-lake
managers.

1. Fossil analyses demonstrated that Pasqua Lake was naturally eutrophic, and so
should not be managed for low productivity.

2. Despite high baseline production, recent water quality in Pasqua Lake was
considerably worse than before European settlement, indicating that water-
quality improvements are possible.
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3. Management strategies should further investigate the role of sewage inputs,
agriculture, and reservoir hydrology on water quality, because variables reflecting
nutrient export from Regina’s sewage (Regina population, TP and TN fluxes,
TN:TP), crop-land area, livestock biomass, and discharge volume from the Lake
Diefenbaker reservoir consistently accounted for significant variation in the fossil
pigments, diatoms, and chironomids.

4. Nutrient abatement programmes should reduce N inputs to Qu’Appelle lakes
because palaeolimnological data showed that inferred algal abundance and water
quality had not substantially improved in Pasqua Lake since 1977 despite tertiary
sewage treatment which reduced P loading to levels of the 1930s.

VPA provides a single measure for the amount of variation in species composi-
tion explained by groups of explanatory variables. It cannot indicate where in the
sediment sequence (time) this effect is observed. Passively placing core samples
within an ordination of a training-set can address this issue to some extent, although
the inferred effect of one or more variables is global and generally linear. Simpson
and Anderson (2009) address these issues by modelling the relationship between
species composition and one or more sedimentary proxies of disturbance using
additive regression techniques enhanced to account for potential autocorrelation in
the stratigraphical observations. Using data from Loch Coire Fionnaraich, north-
west Scotland (Pla et al. 2009), additive models incorporating smooth functions of
temperature and atmospheric deposition were fitted to the first principal component
of the Hellinger transformed diatom data to investigate the relative roles of
climate (temperature) and atmospheric deposition as drivers of change in diatom
composition over the past �200 years (Simpson and Anderson 2009). Using
this approach, Simpson and Anderson (2009) were able to demonstrate (i) that
atmospheric deposition, not climatic variability, was the major driver of diatom
compositional change in Loch Coire Fionnaraich; and (ii) that temperature was able
to explain some of the inter-sample variability about the trend due to atmospheric
deposition. Their approach is computationally and data demanding but it provides a
sophisticated means of modelling the effects of explanatory variables through time
on species composition, and can address issues of non-linear and relative effects and
the timing of effects.

Quantitative Palaeolimnology and Lake Restoration

The restoration of acidified and eutrophic lakes is another area where palaeolimnol-
ogy is having an important influence on the management of freshwater systems such
as in determining targets for recovery and setting critical loads for pollutants. For
example, Battarbee et al. (1996) used palaeolimnological records from 41 UK lakes
to determine whether they had acidified or not. They then used the ratio of calcium
to sulphur (S) deposition to discriminate between the acidified and non-acidified
sites using logistic regression (Birks 2012a: Chap. 2). A ratio of 94:1 was identified
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as the optimal ratio that discriminated between the acidified and non-acidified sites.
They were then able to use this critical ratio to set critical loads for S, which have
been used to assess the potential benefits of emission reduction policies such as the
Oslo and Gothenburg protocols.

Flower et al. (1997) and Simpson et al. (2005) used an approach similar to the
MAT (see Simpson 2012: Chap. 15) to determine recovery targets for acidified
lakes. Using diatom (Flower et al. 1997) and diatom and cladoceran (Simpson
et al. 2005) remains, respectively, they identified sites from within modern training-
sets that were biologically similar to pre-acidification sediment samples from a
number of acidified lakes in the UK using dissimilarity coefficients such as the
squared chi-square or chord (DHellinger) distances (Overpeck et al. 1985; see
Legendre and Birks 2012b: Chap. 8). The identified modern analogues can be
used as reference conditions or recovery targets for the acidified lakes because
the modern analogues can be surveyed to gather information on species groups
that do not leave reliable assemblages in lake sediments. Simpson et al. (2005)
applied the technique to identify modern analogues for ten lakes that form part
of the United Kingdom Acid Waters Monitoring Network (UKAWMN; Moneteith
and Evans 2000) using a training-set of diatom and cladoceran remains enumerated
from the surface-sediment samples of 83 upland, acid-sensitive lakes in the United
Kingdom. Close modern analogues were identified for eight of the ten UKAWMN
lakes (Simpson et al. 2005). These analogue sites were then assessed in terms of
their hydrochemistry, aquatic macrophyte flora, and macro-invertebrate fauna as to
their suitability for use in defining wider hydrochemical and biological reference
conditions for the studied UKAWMN lakes. The modern analogues identified for
individual UKAWMN lakes showed a close degree of similarity in terms of their
hydrochemical characteristics and aquatic macrophyte flora, and, to a lesser extent,
in the macro-invertebrate fauna. The results of the surveys of the modern-analogue
lakes indicated that the reference conditions of the acidified UKAWMN lakes
are inferred to be less acidic than today, and to support a wider range of acid-
sensitive aquatic macrophyte and macro-invertebrate taxa than were recorded in the
UKWAMN lakes during monitoring since 1988. At two UKAWMN sites where
biological recovery from acidification is in progress, acid-sensitive species, which
were predicted from the modern analogues to have been present in the lakes before
acidification, have been recorded in the most recent monitoring surveys (Battarbee
2010; Kernan et al. 2010), further validating the technique (Simpson et al. 2005).

An alternative palaeolimnological approach for defining and assessing reference
conditions was presented by Bennion et al. (2004) where DCA and chord distances
were applied to dated sediment cores from 26 Scottish freshwater lochs to establish
the amount of diatom assemblage change at each site, demonstrating significant
nutrient enrichment in 18 of the lochs. TWINSPAN (see Legendre and Birks 2012a:
Chap. 7) was then used to classify the pre-disturbance diatom assemblages of the
26 lochs to characterise the reference-condition diatom assemblages of the different
lake types. Diatom-TP calibration functions were applied to each loch to determine
the reference-condition TP concentrations. In this way ecological and chemical
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reference conditions, as required by recent legislation, such as the US Clean Water
Act (Barbour et al. 2000) and the European Union Water Framework Directive
(European Union 2000), can be defined using biological communities for a range
of lake types. The use of quantitative palaeolimnological approaches in defining
reference conditions and assessing the ecological status of lakes is presented in
detail by Battarbee and Bennion (2011), Battarbee et al. (2011a, b), Bennion and
Simpson (2011), and Bennion et al. (2011a, b).

A different approach was developed by Rippey and Anderson (1996) and Jordan
et al. (2001) that combines information from diatom-TP calibration functions,
P sedimentation rates, and lake-flushing rates to quantify past changes in TP
loading. This approach can be used to quantify changes over time in TP loads
from diffuse sources such as agriculture, which are notoriously difficult to measure
using alternate methods (Jordan et al. 2001). Also, it can be used to quantify how
changes in external TP loads are variably directed as fluxes to the sediments, the
outflow, or lake storage (Rippey and Anderson 1996). Moreover, the approach can
identify when fertiliser applications began to exceed threshold soil P concentrations
at which point soluble P in runoff increases, and thus can substantially improve our
understanding of mechanisms promoting lake eutrophication in rural catchments
(Jordan et al. 2001). The approach is powerful because few lakes in the world have
P loading data for more than a decade or two (Rippey 1995) and it can provide a
rigorous method to establish critical P loading limits above which eutrophication
exceeded acceptable standards in individual lakes.

To reconstruct P loads, the above approach involves the application of lake-
chemistry mass-balance assumptions. TP inputs are assumed to be the sum of
TP losses via the outflow and TP losses to the sediments, and are quantified by
rearranging the Vollenweider (1975) steady-state lake P model with an extra term to
account for periods of non-steady state changes in lake storage (Jordan et al. 2001):

Li D .TPi z¡i C TPi z�i / C Œ.TPi z � TPi �1z/ =.i � .i � 1// � (19.1)

where, Li is the external TP loading on the lake (g m–2 year–1) in a time interval i,
TPiz¡i is the TP loss through the outflow (g m–2 year–1), TPiz¢ i is the accumulation
of TP in the sediments (g m–2 year–1), and [(TPiz–TPi–1z)/(i–(i�1)] is a term to
account for non-steady state periods of changing lake TP storage between adjacent
time intervals, expressed relative to the lake surface. Past TP outflow losses and
periods of changing TP storage require an estimate of lake-water TP concentration,
which can be provided by application of diatom-TP calibration functions to fossil
diatom assemblages (or TP calibration functions based on microfossils of other
biota). Mean depth (z, in metres) is estimated from basin morphometry. Changes
in flushing rates (¡, year–1) can be estimated from precipitation records, and the
whole-basin mean sedimentary TP accumulation rate (TPiz¢ i) can be determined
from dated multiple sediment cores analysed for TP concentration.

The above approach was used effectively by Rippey and Anderson (1996) to
reconstruct phosphorus loading to a small lake in Northern Ireland (Augher Lough)
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Fig. 19.7 Total phosphorus
loading to Augher Lough
from 1850 to 1980
reconstructed from the
sedimentary record (upper
panel). The phosphorus
fluxes via the outflow, into the
sediments and changes due to
lake storage are shown in the
lower panel (Modified from
Rippey and Anderson 1996.
With permission from the
Chemical Society of
America)

between �1850 and 1980 (Fig. 19.7, upper panel). External TP loading rose steadily
�1850–1945, with more rapid increases for most of the period after �1945. Inter-
estingly, the approach was able to identify an important change in lake P dynamics
during the period �1945–1950, characterised by elevated internal P loading to the
water column, due to anoxia at the sediment-water interface, which caused non-
steady-state water column P storage (Fig. 19.7, lower panel). The approach was
extended by Rippey et al. (1997) to elucidate complex interactions that can occur
among climatic variability (drought) and human stressors in eutrophic lakes.
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Conclusions

The development of palaeoecological quantitative techniques has seeded a revolu-
tion in the field, one that has allowed increasingly complex ecological problems
and a wider range of human impacts to be addressed in a rigorous manner. The
calibration-function approach in particular has had a profound impact on our ability
to identify the nature of change and to reconstruct reference conditions suitable
for restoration targets. The importance of calibration functions for palaeoecology is
hard to overestimate.

In the 25 or so years since the development of modern calibration-function
techniques the science has seen a maturation of these methods. As this maturation
has occurred the standard techniques have become commonplace in research
publications, which is, at least in part, due to the ready availability of powerful
yet user-friendly computer software implementations. Much applied palaeolimno-
logical work related to lake acidification and eutrophication is focussed on the
development or application of calibration functions to reconstruct changes in pH
or TP from a wide array of proxies. Smol’s “Rosetta Stone” (Smol 2008), which
promised much and most certainly delivered, could be in danger of becoming a
victim of its own success. Those of us in this field must guard against complacency
and not allow the standard techniques to become a hindrance to the pursuit of novel
research questions and innovation (Birks 2012c: Chap. 21).

Palaeoecologists of late have striven to reconstruct the environment from the bi-
ology, yet all too often the counterpoise question, of how has the biology responded
to the environment, remains unasked. Above, we have discussed the use of variation
partitioning and careful study design as two approaches towards addressing the
causes of change, and we briefly mentioned how modern regression methods could
also be usefully employed in such situations. We hope that wider usage of these
types of approaches will become part of the standard toolbox of techniques in the
palaeoecologist’s arsenal (see Birks 2012c: Chap. 21). Placing a greater emphasis
on the biology will allow us to ask questions of palaeoecological data that tackle key
questions in the fields of ecological restoration, aquatic biodiversity, and ecological
theory, amongst others. Just as the environmental problems posed over 25 years ago
required the development and application of new numerical techniques to answer
them, addressing these new questions will require us to adopt novel data analysis
techniques and improved study designs.
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Chapter 20
Tracking Holocene Climatic Change
with Aquatic Biota from Lake Sediments:
Case Studies of Commonly used Numerical
Techniques

Brian F. Cumming, Kathleen R. Laird, Sherylyn C. Fritz,
and Dirk Verschuren

Abstract It is now widely recognised that reliable long-term climatic data are
required to evaluate the impact of human activities on climate. Lake-sediment
records are an important source of such palaeoclimatic information, on time-
scales from years to millennia. However, unequivocal interpretation of biological
climate-proxy data preserved in lake sediments can be very challenging. Here we
review the different numerical approaches that are used to evaluate the sensitivity
and reliability of species assemblages of aquatic biota (algae and invertebrates)
extracted from lake-sediment records as proxies of past climatic conditions. The
most common techniques used to assess this relationship between these proxies and
climate include calibration functions that model the relationship across modern lake
environments between species composition in the indicator group and particular
climate-influenced aspects of their aquatic habitat, and assessments of the main
directions of variation in species composition in relation to independent climatic
data. Other statistical techniques, such as variation partitioning analysis, are used
to assess the relative importance of climate versus other factors in influencing
limnological changes seen in the sedimentary record. These techniques show that
in climate-sensitive lake systems, the sedimentary remains of aquatic biota can be
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sensitive and trustworthy proxies, permitting quantitative reconstructions of past
climatic conditions with high temporal resolution.

Keywords Calibration functions • Chironomids • Climatic change • Diatoms
• Invertebrates • Modern analogues • Ordination • Palaeoclimate
• Rate-of-change analysis • Reconstruction validation • Variation partitioning

Introduction

With recent concerns about global change, the need for reliable long-term palaeo-
climatic data is now universally recognised by governments and international
organisations. Such records are necessary to provide information on the magnitude
and patterns of past climatic change against which recent changes can be assessed.
Furthermore, prognoses of future climatic conditions will be enhanced when we
better understand the temporal and spatial patterns of natural climatic variability.

Historically, a great amount of information on long-term climatic variability has
been provided by reconstructions of past vegetation changes from pollen and plant
macrofossils preserved in lake sediments (e.g., Webb 1986; Prentice et al. 1991) and
from studies applying geomorphological, sedimentological, and biostratigraphical
methods to transects of sediment cores to reconstruct changes in water level (e.g.,
Harrison and Digerfeldt 1993). However, as noted by many authors (e.g., Ritchie
1987), pollen-based studies have certain limitations, which include the inability to
identify many pollen taxa below the family level; the broad dispersal of many wind-
blown pollen grains; the differential response of various tree species to climatic
change associated with variation in topography, soils, life-cycle characteristics,
and anthropogenic factors; and the general scarcity of pollen and macrofossils in
some environments (e.g., regions at high altitudes and/or latitudes). None-the-less,
contributions from palynological and lake-level studies have elucidated the broad-
scale temporal and spatial template of climatic change in many regions, and in
some regions have the potential to provide records of climatically-driven vegetation
change with high temporal resolution (e.g., Clark et al. 2002; Lamb et al. 2003;
Gajewski 2008; Kröpelin et al. 2008; St. Jacques et al. 2008a, b).

Many lakes exhibit physical, chemical, and/or biological responses to changes
in climatic conditions, and evidence of these changes are often preserved in
their sediment record (Battarbee 2000; Smol and Cumming 2000; Fritz 2008).
Analyses of the remains of aquatic algae (e.g., diatoms, chrysophytes, pigments)
and invertebrates (e.g., chironomids, cladocerans, ostracods) in sediment cores from
such climatically-sensitive lakes can potentially provide records of climatic and
environmental change at a higher resolution than most palynological and many
lake-level studies. Enhanced sensitivity of aquatic biological indicators (proxies)
to environmental change is due to our ability to identify many of these organisms
to species level, their short life-span, and their fast dispersal, which guarantees
rapid colonisation of newly available habitat and thus avoids significant lags in
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their response to climatic change. Thus, examination of changes in the species
composition of aquatic biota in sediment cores can provide valuable insights into
how climatic conditions have varied in the past that may not be readily apparent
from terrestrial indicators. However, the relative importance of climatic change can
be complex, even in apparently simple aquatic systems (e.g., Anderson et al. 2008;
Fritz 2008).

In this chapter, we provide an overview of the different numerical techniques
that have been used to study the linkages between changes in biotic assemblages
preserved in lake sediments and climatic change during the Holocene. It is important
to note that these approaches are simply tools that are useful to assess, simplify,
and visualise past environmental changes in a repeatable and somewhat objective
manner. Many studies make limited use of numerical approaches but still yield
valuable insights into past climatic conditions (e.g., Baker et al. 2001; Bennett et al.
2001; Dean 2002; Dean et al. 2002; Spooner et al. 2002). Finally, although the focus
of this chapter is on approaches that have been used to interpret climatic signals in
fossil assemblages of lake biota, equally important palaeoclimatic information is
derived from physical (e.g., Lamoureux 2000; Noon et al. 2001; Dean et al. 2002;
Pienitz et al. 2009) and geochemical proxies (e.g., Dean 2002; Tierney et al. 2008;
Pienitz et al. 2009; Toney et al. 2010). The latter increasingly include stable-isotope
signatures extracted from lake biota, such as ostracods (e.g., von Grafenstein et al.
1999), chironomids (e.g., Verbruggen et al. 2010), and diatoms (e.g., Hernandez
et al. 2010).

Biological Proxies of Past Climatic Conditions

Proxy data based on biotic assemblages preserved in lake sediments have long been
known to be sensitive and reliable indicators of past climatic change, because of the
strong influence of temperature and rainfall variations on the structure and function
of their aquatic habitats. Lake characteristics that are sensitive to climatic changes
can be both physical (e.g., temperature, ice cover, lake depth, river discharge,
mixing regime, light transparency) and chemical (e.g., changes in alkalinity, pH,
nutrients, salinity) (e.g., Walker et al. 1991; Walker 1995; Vinebrooke et al. 1998;
Korhola 1999; Battarbee 2000; Smol and Cumming 2000; Korhola and Rautio
2001; Brodersen and Anderson 2002; Fritz 2008; Lotter et al. 2010; Wolin and
Stone 2010). However, establishing an unequivocal connection of these limnological
changes to climate is often difficult. The challenge is to demonstrate that the biotic
proxy indicators are connected to climate in a systematic, predictable fashion. In
some systems, this is exceedingly difficult because of the non-linear responses
of the limnological system to climatic change and subsequent sedimentological
complications, such as variable sedimentation rates and/or mixing (Verschuren
1999a, b). Such complexities are related to basin hydrology, as well as to the
physical, chemical, and biological characteristics of individual lake basins (Smol
and Cumming 2000; Schwalb and Dean 2002; Fritz 2008). Additionally, because
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different groups of biological proxies have different life-history strategies, changes
in climate that influence aquatic systems can impact various proxies in different
ways (Battarbee et al. 2002a; Heegaard et al. 2006). Therefore, it is not surprising
that the response of different lakes, and of different proxies within a single lake, to
climatic change can vary tremendously (Smol and Cumming 2000; Fritz 2008).

Successful palaeoclimatic interpretation of in-lake biological proxies depends
on a good understanding of the climatic response of a lake to changes in climate.
Not surprisingly, selecting and then demonstrating the climatic sensitivity of a
site is not a simple procedure. Smol and Cumming (2000) identified lakes that
are thought to be especially sensitive. These include lakes from high latitudes,
lakes that are close to ecotonal boundaries (e.g., near tree-line, near the forest-
prairie boundary), and lakes in arid to semi-arid regions with limited groundwater
inputs and, ideally, large catchments (i.e., amplifier lakes: Olaka et al. 2010).
In addition to geographical position, sites sensitive to climatic changes can be
identified from measurements of limnological change (e.g., changes in lake-water
chemistry, transparency, declines in water levels, and/or changes in salinity) and
from instrumental and/or historical records (Fritz 1990; Schindler et al. 1996;
Verschuren 1996, 2003; Webster et al. 2000; Doran et al. 2002). However, data
of sufficient duration and frequency are relatively rare, even in populated regions.
Additional information on the hydrological responsiveness to changes in climatic
conditions can be obtained by careful examination of temporal sequences of aerial
photographs and satellite images (Donovan et al. 2002; Smith et al. 2005).

Once climate-sensitive lakes have been identified, it is becoming increasingly
common to assess the strength of the climatic impact on biological proxies or
inferred limnological variables in the sediment record by comparison of the proxy
records with instrumental meteorological data (temperature, precipitation, drought
indices), historical data of lake response to climate (e.g., lake-level changes,
chemical constituents), or with independent evidence of climatic change (e.g.,
documentary, other palaeoclimatic proxies). These comparisons may involve simple
visual matching of pattern similarities in the palaeolimnological and meteorological
records, calculation of correlation coefficients between lake and climatic variables,
or using multivariate numerical methods (e.g., variation partitioning: Borcard et al.
1992; Legendre and Birks 2012: Chap. 8).

Comparison of Inferred Limnological Variables
and Instrumental Climate Data

In arid to sub-humid regions, long-term (decade-scale and longer) variations in the
balance of rainfall and evaporation can drive significant changes in lake level, which
in turn may influence the physical, chemical, and biological environment of lakes to
the extent that their signatures are recorded in the sedimentary record (Fritz 1996).
In other regions, the influence of temperature is evident in the sedimentary record,
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Fig. 20.1 Diatom-inferred
salinity estimates from Moon
Lake (North Dakota, USA)
(solid line) compared to a
smoothed Bhalme-Mooley
Drought Index (dotted line)
based on nearby instrumental
precipitation records over the
last 100 years; r D 0.49,
p < 0.01 (Modified from
Laird et al. 1998a)

either directly or indirectly, via changes in catchment hydrology, vegetation, ice
cover, or mixing regimes. One way to validate proxy-based climatic inferences
is to compare quantitatively or qualitatively the proxy-based reconstructions of
environmental change (e.g., lake-water salinity, lake level, temperature) in the recent
past with historical time-series of instrumental meteorological data. To date, the
majority of such direct, quantitative comparisons have used approaches based on
calibration functions (see Juggins and Birks 2012: Chap. 14).

To evaluate the climatic sensitivity of Moon Lake (Northern Great Plains,
USA), Laird et al. (1996a) assessed the correlation between diatom-inferred (DI)
salinity through time in a 210Pb-dated sediment core and instrumental time-series of
effective moisture (precipitation minus evapotranspiration or ET). Diatom-inferred
salinity showed major increases coincident with the major droughts of the 1930s
and the 1890s, with a statistically significant relationship between DI salinity and
effective moisture (Laird et al. 1996a). Because ET can be difficult to estimate,
Laird et al. (1998a) replaced estimates of effective moisture with the Bhalme
and Mooley drought index (BMDI), derived from nearby precipitation records
(Fig. 20.1). The BMDI was chosen as a measure of drought, because it is based
on precipitation records from local stations, as opposed to regional precipitation
averages used in some other indices, such as the Palmer Drought Severity Index.
In this analysis, the BMDI was smoothed using a four-point Fourier transform
filter to achieve approximately equal time resolution between the sediment record
and the instrumental data. A modest correlation between diatom-inferred salinity
and BMDI (Fig. 20.1) can be attributed to several factors, including the low time
resolution in core data from before 1940, the further distance of the meteorological
station from the lake for the early instrumental period, and limnological changes



620 B.F. Cumming et al.

Fig. 20.2 Diatom-inferred lake-water pH from Schwarzsee ob Sölden in the Austrian Alps since
�1780 compared with smoothed annual mean air temperature from 20 regional weather stations;
r D 0.68, p < 0.001 (From Sommaruga-Wögrath et al. 1997. With permission)

that are potentially attributable to settlement and agricultural practices that may have
impacted lake chemistry independent of climate since the early 1900s. Comparison
of the Moon Lake record with regionally recognised climatic anomalies prior to
the instrumental record (e.g., a tree-ring inferred wet period from 1825 to 1838
and the extreme 1890s drought) suggest, however, that the diatom-inferred salinity
record does capture the general drought trends characteristic for the Northern
Great Plains (Laird et al. 1996a, 1998a, b). Consequently, this site was chosen to
reconstruct drought intensity, duration, and frequency throughout the Holocene at
both centennial and sub-decadal scales (Laird et al. 1996a, b, 1998a, b).

In a study from a mountain lake in the Austrian Alps, comparison between
diatom-inferred pH and instrumental air temperature between 1778 and 1991
revealed a significant positive correlation (r D 0.68, p < 0.001) (Fig. 20.2)
(Sommaruga-Wögrath et al. 1997), suggesting that diatoms may be an important
proxy of past temperatures. In two other alpine lakes, diatom-inferred pH and
temperature were correlated during the entire 19th century, but the relationship
weakened during the 20th century with the onset of acidic deposition (Psenner and
Schmidt 1992). The mechanism that produced the pH increases during warming
events and declines during cooler periods is likely to be related to changes in the
duration and extent of ice-cover because these would alter light, temperature, and
nutrient regimes, all of which affect diatom production and could influence in-lake
production of alkalinity, as well as lake-water pH (Sommaruga-Wögrath et al.
1997). Periods of prolonged ice-cover would also reduce CO2 exchange with the
atmosphere and temporarily eliminate atmospheric inputs of base cations into the
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lake (Psenner and Schmidt 1992), both of which would affect the acid–base status
in poorly-buffered lakes.

Bigler and Hall (2003) and Larocque and Hall (2003) compared chironomid
and diatom-inferred mean-July air temperatures from northern Swedish sediment
cores over the last century to measured values from nearby meteorological stations.
In all four lakes studied, chironomid-inferred July temperatures were significantly
but weakly correlated to the instrumental record (r D 0.35–0.39). The relationship
between diatom-inferred and instrumental July temperatures was weaker, and no
correlation coefficients or levels of significance were reported.

Many studies have validated climate proxies through a qualitative comparison
of reconstructed environmental change to historically documented changes in
climatically-sensitive limnological variables, an approach first used in comparisons
of diatom-inferred salinity and ostracod trace-metal content with documented
changes in the depth and salinity of Devils Lake (Northern Great Plains, USA) (Fritz
1990; Engstrom and Nelson 1991). One particular series of studies (Verschuren
1999a, b, 2001; Verschuren et al. 1999a, b, 2000a) investigated the sedimentologi-
cal, geochemical, and biological signatures of climatically driven lake-level changes
in a system of four contrasting lakes in the Eastern Rift Valley of Kenya, which
because of their hydrological inter-connectedness have a common recorded lake-
level history spanning the last 120 years (Verschuren 1996). Together these studies
illustrate the complexity of chemical and biological responses to climatically-driven
changes in water balance at sub-decadal time scales (Verschuren et al. 1999a, b,
2000a), and how the signatures of this response in the sediment record are affected
by sedimentation dynamics and taphonomy (Verschuren 1999a; Verschuren et al.
1999a). For example, although reconstructed salinity and lake-level changes in Lake
Oloidien displayed the expected inverse relationship, this was modulated by delayed
dilution of residual salts following a modest lake-level rise in the late 1950s and
early 1960s (Fig. 20.3) (Verschuren et al. 2000a). In nearby Lake Sonachi, diatoms
quickly responded to a major 1890s lake-level rise which created stable density
stratification of the water column. In the sediment record, however, their response
is delayed by almost a decade because previously buried shallow-water diatoms
are re-deposited in deep-water sediments during the transgression (Verschuren
et al. 1999b). In the three main groups of aquatic invertebrates present (ostracods,
cladocerans, chironomids), only some species responded directly to salinity change
(via the physiological impact of osmotic stress). Most species responded more
strongly to substrate changes associated with the lake-level change itself or to
changes in the distribution of aquatic vegetation (Verschuren et al. 2000a). While
lake depth, salinity, and substrate quality are all important factors in structuring
aquatic invertebrate communities, it is sobering to realise that at the time-resolution
of many modern palaeoclimatic studies, the intuitive co-variation between these
factors can be strongly modulated by transient system dynamics. None-the-less,
invertebrate communities do remain useful proxies of past hydrological change,
particularly in combination with diatoms and non-biological climatic proxies.
Other qualitative studies (e.g., Legesse et al. 2002) have used both biological and
sedimentological proxies to reveal fluctuations in water depth and salinity that are
broadly consistent with available instrumental and historical records.
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Although direct comparison of palaeoclimatic reconstructions with meteorolog-
ical data has yielded many valuable insights into the response of specific lakes
to climatic variation, other approaches may be used. These include comparisons
between the main directions of variation in fossil assemblages and instrumental
climatic records (Sorvari et al. 2002), the use of variation partitioning to assess
the role of climate in proxy records over the instrumental period (Lotter and Birks
1997; Hall et al. 1999; Quinlan et al. 2002), and comparisons of within-lake proxy
records with independent estimates of climatic change (Anderson et al. 1996, 2008;
Stager et al. 1997; Cumming et al. 2002; Wolfe 2003; Enache and Cumming 2009;
Stone et al. 2011).

Direct Comparison of Biological Data to Instrumental
Climatic Data

Ordination techniques (see Legendre and Birks 2012: Chap. 8) are now widely used
to quantify and summarise the main directions of variation in biological assemblages
(Cumming and Moser 2007), which can then be correlated directly to instrumental
climatic records. For example, Sorvari et al. (2002) examined the relationship
between species-composition changes in the diatom communities of five lakes
with varying characteristics in Finnish Lapland over the last 200 years using
principal component analysis (PCA), a common ordination technique (Fig. 20.4).

Fig. 20.4 (a) Trends in
principal component analysis
(PCA) axis-1 sample scores
of fossil diatom floras in five
lakes from Finnish Lapland
over the last 200 years in
relation to (b) smoothed
spring temperature anomalies
(ıC) (Modified from Sorvari
et al. 2002)
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The PCA sample scores from each lake record were highly correlated to each other
(r D 0.74–0.95), as well as being significantly correlated to instrumental records
of yearly temperature (r D 0.39–0.62 in three of the five lakes investigated). Inter-
estingly, the highest correlations (r D 0.52–0.70) were between the main direction
of variation in the diatom assemblages and spring temperatures. Sorvari et al.
(2002) suggested that the strong coherence of sedimentary signatures in these
five lakes, and their significant correlation with temperature change over the last
�200 years, indicate that diatom floras did indeed respond to regional temperature
rise, possibly through decreased ice-cover, a longer growing-season, or enhanced
thermal stratification. This example illustrates that arctic as well as alpine lakes are
sensitive locations to search for ecosystem changes in response to recent climatic
change (Battarbee et al. 2002a; Heiri and Lotter 2005; Smol et al. 2005: Lotter et al.
2010). The response of these systems to climate is not limited to direct temperature
influences, but may also include responses to changes in physical and chemical
aspects of the aquatic environment, which themselves are affected by changes in
temperature or precipitation. For example, such changes may include the duration of
ice-cover, microhabitat availability, and changes in dissolved organic carbon (DOC)
or acid–base status (Smol and Cumming 2000; Smol and Douglas 2007; Lotter et al.
2010).

In a large interdisciplinary study involving seven European high-elevation lakes,
the Mountain Lake Research (MOLAR) project, researchers sought to establish
links between various biotic and abiotic proxies in lake sediments and instrumen-
tal temperature records (summarised by Battarbee et al. 2002a). The biological
proxy indicators included assemblages of diatoms, chrysophytes, chironomids, and
cladocerans. Potential explanatory variables included: mean summer temperature
(June to August and July to September), mean winter temperature (December
to February), an index of continentality (difference between June to August and
December to February), and mean annual temperature (average of all 12 months).
Because instrumental data series directly linked to these remote high-elevation
sites were not long enough for comparison with core data, homogenised lowland
air-temperature records were transformed to values appropriate for each high-
elevation site using the contemporary relationship between lowland temperatures
and recently established on-site automatic weather stations (Agusti-Panareda and
Thompson 2002). Prior to regression analysis, the variation in each of the biotic
proxy data-sets was numerically reduced to its main direction of variation by
calculating sample scores along PCA axes, following a square-root transformation
of the species percent-abundance data. Correlations between the main direction of
variation in the biological data and the instrumental records were very low, with
few clear or consistent patterns. The highest correlations were found using the
greatest smoothing of the instrumental data, suggesting that the biological proxy
data may capture only the broadest, long-term changes in these records. Planktonic
diatom assemblages (at most sites) and chrysophytes and chironomids (at a few
sites) showed the highest correlation with the instrumental data (Battarbee et al.
2002b; Koinig et al. 2002). The generally weak correlations were mainly attributed
to inaccurate dating and/or the limited sensitivity of some proxies to modest recent
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climatic forcing, as well as confounding forcing factors, such as air pollution
and earthquakes, at some sites. These results are perhaps not surprising, because
different species thrive at different locations within the lake as well as at different
times in the season (e.g., Interlandi et al. 1999; Bradbury et al. 2002; Catalan et al.
2002). Consequently, the use of yearly averages or average temperature in any given
season will likely fail to represent accurately the ecological characteristics of some
of the species to temperature. The low correlations found in this study in comparison
to the five sites in Finnish Lapland may also suggest that the lakes in the MOLAR
project were not as sensitive to recent climatic changes or that the degree of climatic
change has been less in the MOLAR lakes in comparison to those in Lapland.
Continued investigation of the response of varied proxies and European lakes to
climate is ongoing in the large interdisciplinary European Millennium Project (e.g.,
von Gunten et al. 2008), which is focused on reconstructing regional climates of the
last 1000 years.

Assessing the Influence of Climate on Lake History Using
Variation Partitioning and Linear Mixed-Effects Models

Variation partitioning analysis (VPA) has been used increasingly to assess the
relative influence of climate versus other factors in driving limnological changes
reconstructed from the sedimentary record. Variation partitioning (Borcard et al.
1992; Legendre and Birks 2012: Chap. 8; Lotter and Anderson 2012: Chap. 18;
Simpson and Hall 2012: Chap. 19) uses direct gradient analysis or canonical ordi-
nation to estimate which fraction of the total variation in assemblage composition
can be explained by specific categories of measured environmental variables, and
which fraction is shared between different categories of variables. For example,
Lotter (1998) used VPA to estimate the amount of variance in diatom data from a
100C-year varved sediment record from Baldeggersee (Switzerland) that could be
explained independently by trophic state and climate (also see Lotter and Anderson
2012: Chap. 18). The variation in the diatom data was partitioned into: (i) variation
due to changes in lake trophic state only (modelled by measured and extrapolated
total phosphorus, lake restoration, and their interaction); (ii) variation due to climatic
change only (modelled by mean spring air temperatures); (iii) covariation between
(i) and (ii); and (iv) variation unexplained by the model. Because of strong temporal
autocorrelation in the data, the effect of time was removed prior to the statistical
analyses. Trophic state and climate together accounted for only 14.2% of the total
variation in the diatom data (p D 0.01), with 12.6% being explained by trophic state
(p D 0.06), and only 1.1% by climate (p D 0.08). Hence, Lotter (1998) concluded
that changes in climatic variables were relatively unimportant in comparison with
trophic-state variables in explaining changes in the diatom assemblages. Lotter
and Birks (1997) used a similar approach to disentangle the relative importance
of trophic state and climate on varve thickness in the same lake. Heiri and Lotter
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(2005) used variance partitioning to examine the influence of co-variation between
summer temperature and trophic state on calibration-function development in the
Swiss Alps. Their analyses suggest that independent calibration functions can be
developed for diatoms and benthic cladocerans but caution should be used in
interpreting total phosphorus (TP) reconstructions from chironomids.

Hall et al. (1999) used VPA to determine how much of the down-core variation
in diatom, pigment, and chironomid assemblages from Pasqua Lake (Saskatchewan,
Canada) could be accounted for solely by climate (C), resource-use (R), urbanisa-
tion (U), and by covariations between them (i.e., CR, CU, RU, and CRU). Hall et al.
(1999) performed separate VPAs on the percent abundances of diatoms and chirono-
mids and a 3-year running mean of pigment concentrations for periods beginning in
1890, 1920, 1950, and 1970, so that the relative importance of climate, resource-
use, and urbanisation on the biological records could be evaluated through time. All
categories, both independently and in combination, explained significant amounts
of variation in the biological data, although their relative importance depended on
the fossil group and the period considered. Changes in urban population, sewage
characteristics, livestock biomass, crop area, and temperature and precipitation
proved to be consistently important explanatory variables in the history of this lake
(Hall et al. 1999). However, the most consistently important explanatory variable
was resource-use, accounting for between 14% and 25% of the variation in the
fossil assemblages according to the VPAs. Variation attributable solely to climate
was consistently low (between 4% and 10%), but the covariation between climate
and resource-use and urbanisation (CR, CU, or CRU) were typically quite large, at
times accounting for more than 50% of the total variation. In a similar study from
the Canadian prairies involving eight lakes, Quinlan et al. (2002) found that VPA
identified climate (specifically winter temperature) as the category that accounted
for the largest amount of variation in past chironomid assemblages (on average
�25%), whereas changes in resource-use and urbanisation only accounted for �7%
and �4% of variation, respectively. In summary, one of the benefits of VPA is that
it potentially allows the relative importance of competing influences to be evaluated
and quantified (Birks 1998).

Eggermont et al. (2010a) assessed whether the Rwenzori mountain lakes
(Uganda/DR Congo) are sensitive to climate-driven environmental change of
the same order of magnitude as that expected to result from current and
future anthropogenic global warming. This was done by comparing the species
assemblages of larval chironomid remains deposited recently in lake sediments
with those deposited at the base of the short cores (dated to within or shortly after
the Little Ice Age) in 16 lakes. Chironomid-based temperature reconstructions
were made using temperature-inference models (Eggermont et al. 2010b) with
calibration functions based on weighted averaging, weighted-averaging partial
least squares, or a weighted modern analogue technique (see Juggins and Birks
2012: Chap. 14; Simpson 2012: Chap. 15). Excluding one atypical mid-elevation
lake, Eggermont et al. (2010a) found a three-to-one ratio of sites with inferred
warming against inferred cooling. The chironomid-inferred temperature changes
mostly fell within the error range of the inference models, but a generalised linear
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mixed-effects analysis (SAS Inc. 2004; Birks 2012: Chap. 11) of the combined
result nevertheless indicated significantly warmer mean annual air temperature (on
average C0.38 ˙ 0.11ıC) at present compared to between �85 and �645 years
ago. This result was independent of whether lakes were located in glaciated or
non-glaciated Rwenzori catchments, and of basal core age, suggesting that at least
part of the signal is due to relatively recent, anthropogenic warming.

Qualitative Validation of Biological Proxies
Using Independent Evidence of Climatic Change

Support for the climatic sensitivity of lake systems is not limited to comparisons
with instrumental and other historical data. Lake response to climate also can
be assessed by comparisons (qualitative or quantitative) of in-lake climate-proxy
indicators with other known climatic proxies. For example, Pienitz et al. (1999)
assessed changes in diatom species composition in a sediment core from Queen’s
Lake (Northwest Territories, Canada), located north of the tree-line. Sharp increases
in the abundances of black spruce (Picea mariana) pollen and sediment organic
matter between �5000 and 3000 years ago (Fig. 20.5), in conjunction with
isotopic changes, strongly suggested regional climatic warming during this interval
(MacDonald et al. 1993; Wolfe et al. 1996). Coincident with these changes were
abrupt changes in both the concentration and species composition of diatoms in
the sediment profiles (Fig. 20.5). By using a diatom-based calibration function
for dissolved organic carbon (DOC), developed from a regional surface-sediment
calibration-set (Pienitz et al. 1995), Pienitz et al. (1999) showed that the diatom
changes were consistent with changes in lake-water transparency caused by changes
in soils as trees moved into the watershed during climatic warming.

Another example of palynological data being used to support inferences of past
changes in diatom species composition comes from Lake Victoria, East Africa
(Stager et al. 1997). In this study, changes in diatom species composition over the
last �14,000 years were summarised into two main directions of variation by corre-
spondence analysis (CA) (see Legendre and Birks 2012) (Fig. 20.6). The two main
directions of variation were interpreted to represent relative water column stability
(or conversely mixing, an index of wind strength) and the ratio of precipitation to
evaporation (or effective moisture, assumed to be reflected in lake depth) based on
the known habitat requirements of the dominant diatom species found in the fossil
record. In conjunction with pollen records of past changes in terrestrial vegetation
within the Lake Victoria catchment from an earlier study from a nearby location
(Kendall 1969), the diatom data permitted the delimitation of four major periods
of limnological/climatic change over the past 14,000 years: (1) a period of aridity,
from �13,400 to 11,400 cal year. BP, represented by extremely high abundances
of Fragilaria and other benthic diatoms coincident with the abundant occurrence
of grass pollen and phytoliths; (2) an early-Holocene humid phase characterised
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Fig. 20.6 Trends in correspondence analysis (CA) axis-1 and -2 sample scores of fossil diatom
assemblages from Lake Victoria’s Damba Channel (East Africa) over the past 11,000 years, in
relation to changes in the regional abundance of Celtis (reflecting seasonally dry forest) and
Moraceae (reflecting moist forest) as reconstructed at a nearby location in Lake Victoria from
fossil pollen (From Stager et al. 1997. With permission)

by high abundances of Aulacoseira species, that prefer well-mixed deep water,
coincident with high abundances of pollen from humid forest trees (e.g., Moraceae);
(3) a period of increased seasonality beginning �7900 cal year BP characterised
by high abundances of taxa that thrive under enhanced thermal stratification,
including A. nyassensis and Nitzschia taxa, coincident with evidence of seasonally
dry forests (e.g., Celtis); and (4) a late-Holocene period (from �2300 cal year BP) of
increasing aridity characterised by a return to higher abundances of Fragilaria taxa,
benthic diatoms, and grasses and phytoliths (Stager et al. 1997). Virtually identical
interpretations have been presented for two other cores from Lake Victoria, one from
the centre of the lake (Stager and Johnson 2000) and one from a shallow peripheral
basin (Stager et al. 2003).
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Fig. 20.7 Relationship between (a) diatom-inferred changes in lake depth at Big Lake (British
Columbia, Canada) over the past 5500 years and (b) a summary of world-wide glacier fluctuations
(Denton and Karlen 1973), and (c) a composite record of ice-rafted-debris (IRD) in the North
Atlantic Ocean (Bond et al. 2001) (Modified from Cumming et al. 2002)

In a study of multi-decadal to millennium-scale climate dynamics in British
Columbia (Canada) since the renewal of glacial activity �5500 years ago, Cumming
et al. (2002) recorded major shifts in diatom assemblages and diatom-inferred
depth and salinity, corresponding well with millennial-scale variations in the
expansion/recession of continental glaciers in the region, as well as with ice-rafting
events in the North Atlantic Ocean (Fig. 20.7). This result provides supporting
evidence for the sensitivity of such lake systems to broad-scale climatic forcing.
However, it has been suggested that reconstructions of lake depth from biological
assemblages based on regional calibration-sets, as was done in this study (Fig. 20.7),
may need to be interpreted with caution because the specific morphometric features
of the study lake may not be adequately represented by a regional reference data-set.
Birks (1998) suggested that calibration models for lake depth may be best developed
on the basis of surface-sediment samples from different depth transects within the
lake under investigation. Laird et al. (2011) provide a summary of how quantitative
techniques and selection of sensitive near-shore coring locations can be exploited
to produce high-resolution palaeoclimatic reconstructions. This approach can yield
valuable insights, but has an increased risk of non-analogue situations, in which the
dominant species in certain sections of the core profile are not represented in the
local surface-sediments today. Consequently, in many instances the reconstruction
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of a limnologically important variable, such as lake depth, can benefit from modern
calibration-sets that include both surface-sediment samples from within the lake
under study (i.e., a transect across depth) as well as in many lakes across the modern
landscape. In some cases, quantitative reconstructions of lake-level change using
biotic indicators can be constrained by geophysical or geomorphic data that provide
clear physical evidence of lake stage at given points in time. This approach has
been used in studies of Quaternary lake-level variation in Lake Malawi in Africa
(Stone et al. 2011), where a multi-proxy reconstruction of lake level was compared
with seismic data; and in a comparison of diatom-inferred conductivity as a proxy
for precipitation minus evapotranspiration in West Greenland with dated Holocene
palaeoshorelines (Aebly and Fritz 2009).

Finally, several studies from Europe have compared quantitative reconstructions
of temperature with other regional reconstructions of temperature change. Korhola
et al. (2002) used both a Bayesian multinomial model and a weighted-averaging
partial least squares model (see Juggins and Birks 2012: Chap. 14) to reconstruct
temperature based on chironomid assemblages over the Holocene. The results gen-
erally agreed with inferences from the Greenland ice-cores and marine sediments,
as well as with previous reconstructions from diatoms and pollen (Korhola et al.
2002). Ampel et al. (2010) used a diatom calibration-function at a site in eastern
France to quantify the magnitude of summer temperature change associated with
millennial events during the late Pleistocene and compared it with other proxy data
from the same site, other regional records, and the patterns of variation manifested
in the Greenland ice core.

Quantitative Validation of Biological Proxies
Using Independent Evidence of Climatic Change

A number of studies have attempted a quantitative assessment of how much of
the variation in biological climate-proxy assemblages can be attributed to climatic
forcing, using ordination and partial ordination techniques including VPA. For
example, in an 1100-year lake record from northern Sweden, Anderson et al. (1996)
(see also Lotter and Anderson 2012: Chap. 18) found a weak relationship between
changes in diatom species assemblages and tree-ring inferred estimates of summer
temperature. However, this relationship could only explain 5.2% of the variation
in the diatom assemblages, and only after the temperature data were lagged by
20 years. Interestingly, a stronger relationship (�10% of the observed variation)
was found between species richness and temperature. Other investigators have used
VPA to compare the relative importance of climate and other factors contributing to
changes in biological assemblages. For example, Birks and Lotter (1994) and Lotter
et al. (1995) attempted to disentangle the impacts of volcanic tephra and climatic
change on terrestrial and aquatic ecosystems (see Lotter and Anderson 2012: Chap.
18). Similarly, Barker et al. (2000) used VPA to investigate the relative importance
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of climate (represented by the ratio between tree and grass pollen), catchment
disturbance (represented by magnetic properties of the sediments), and tephra depo-
sition on a 4100-year diatom record from Lake Massoko (southern Tanzania). The
effects of time-dependent ecological and environmental processes were removed by
using sample age as a covariable in partial constrained ordination (see Legendre
and Birks 2012: Chap. 8). Anderson et al. (2008) used independent climatic data
(e.g., Greenland ice-core data) to assess the degree to which climate versus in-lake
processes explained the community structure of chironomids and other proxies. In
this study, catchment changes or biotic relationships explained more variation than
Holocene climate, with the exception of the early lake development. VPA also has
been used to demonstrate that changes in land-use have been more important than
climate in driving changes in the diatom flora of Seebergsee (Switzerland) over
the last 2600 years (Hausmann et al. 2002). A recurring theme in many of these
studies is that, although climatic forcing has accounted for a significant fraction of
the reconstructed biological variation, the amount of variation explained by climate
alone, over the time scales examined, has been relatively small.

Other Numerical Techniques Used in Lake-Based Studies
of Climatic Change

As is clear from the material discussed above, calibration functions, ordination, and
regression techniques are the methods most commonly used to track palaeoclimatic
signals in biological and other proxies extracted from lake sediments. Calibration
functions are continually being tested and refined (e.g., Köster et al. 2004; Eg-
germont et al. 2006; Battarbee et al. 2008; Birks et al. 2010), and new numerical
approaches continue to be developed (e.g., Racca et al. 2003; Hübener et al. 2008).
Many examples of these techniques are presented above, and/or are covered in
detail in Parts II–IV of this book. Methods based on aquatic algae have also been
summarised in Smol and Cumming (2000), as well as in more detailed accounts of
palaeoclimatic techniques for semi-arid regions (Bradbury 1999; Fritz 2008; Fritz et
al. 2010) and arctic and alpine regions (Smol and Douglas 2007; Douglas and Smol
2010; Lotter et al. 2010). Additionally, there have been substantial developments
in the application of chironomids and cladocerans as quantitative indicators of past
climatic conditions (e.g., Lotter et al. 1997; Larocque et al. 2001; Korhola et al.
2002; Palmer et al. 2002; Heiri et al. 2004; von Gunten et al. 2008; Eggermont
et al. 2008; Kröpelin et al. 2008). For example, Palmer et al. (2002) provided a
midge-based consensus reconstruction of Holocene mean July air temperatures for
southern British Columbia (Canada) based on sediment cores from four lake sites.

Although the number of lake-based quantitative palaeoenvironmental reconstruc-
tions has increased rapidly in the past decade, for some time relatively little attention
was given to a thorough evaluation and validation of these reconstructions (Birks
1998). This has now improved with the availability of a number of simple ap-
proaches to assess the basic reliability of environmental reconstructions (Telford and
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Birks 2011). For example, Laird et al. (1998a) assessed the reliability of the Moon
Lake salinity inferences over the past 2300 years (Laird et al. 1996a) (Fig. 20.8) by
(1) calculating how well a ‘fossil’ sample is represented by modern assemblages
(Fig. 20.8b), and (2) assessing the overall ‘goodness-of fit’ of the environmental
reconstruction (Fig. 20.8c). The lower the dissimilarity coefficient or the less often
a sample is in the extreme of the distribution of the ‘goodness-of-fit’, the more con-
fidence one can place in a reconstructed value, because the ‘fossil’ assemblages are
well represented in the modern data-set (Birks et al. 1990). For their palaeosalinity
reconstructions based on African chironomid assemblages, Verschuren et al. (2004)
and Eggermont et al. (2006) additionally assessed to what extent numerical differ-
ences between calibration functions affected reconstructed salinity trends through
time. Initially this was deemed necessary because, lacking a traditional calibration
data-set of faunal composition based on surface-sediment assemblages, Verschuren
et al. (2000b) had performed a hybrid procedure in which a weighted-averaging
(WA) inference model calibrated with presence/absence distributional records from
the literature was applied to abundance-weighted fossil data. This helped ensure
that changes in the relative abundance between taxa, not just their new appearance
or complete disappearance, would generate a proxy climatic signal. Verschuren
et al. (2004) justified this hybrid procedure by proposing that calibration based
on presence/absence data is not dissimilar to an abundance-weighted calibration
with down-weighting of rare taxa. Using (semi-) independent palaeohydrological
reconstructions based on sediment stratigraphy and fossil diatom assemblages
(Verschuren et al. 2000b) as a reference framework, coupled with a consideration
of modern-day benthic community dynamics in shallow closed-basin African
lakes, Eggermont et al. (2006) documented significant variation among calibration
functions in reconstructed salinity trends, mainly reflecting their different sensitivity
to the presence or relative abundance of certain key taxa. Specifically, WAPLS and
maximum likelihood (ML) techniques statistically ‘camouflage’ the step change
in chironomid faunal composition near the freshwater-saline boundary, resulting
in less robust reconstructions. These authors concluded that selection of the most
appropriate calibration function for environmental reconstruction should not solely
optimise the statistical performance of the resulting inference model, but carefully
consider whether it produces ecologically meaningful reconstruction results with
high signal content (see Juggins and Birks 2012: Chap. 14).

Confidence in palaeoclimatic inferences will also further increase as broad-scale
patterns are replicated in space and time. Examples of coherence are starting to
emerge at a number of sites, over different temporal and spatial scales, for example,
the studies by Sorvari et al. (2002) and Palmer et al. (2002) discussed above.
Similarly, several studies (Fritz et al. 2000; Yu et al. 2002; Laird et al. 2003;
Schmieder et al. 2011) have presented strong evidence of synchronous changes at
various sites in the Great Plains of North America over the last 1500–2000 years.

A number of studies of climatic change have begun to address ecologically
interesting questions that attempt to assess changes in stability and diversity (e.g.,
Anderson et al. 1996; Laird et al. 1998a, b; Wolfe 2003; Stone and Fritz 2006; Hobbs
et al. 2010). For example, Laird et al. (1996a, 1998a) found a large switch in inferred
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Fig. 20.8 (a) Diatom-inferred salinity changes at Moon Lake (North Dakota, USA) over the
last 2200 years. (b) Analogue analysis and (c) ‘goodness-of-fit’ analyses based on comparisons
between dissimilarities between core and modern diatom assemblages, and diagnostics from a
constrained ordination, respectively (see text for details). (d) The results of a rate-of-change
analysis used to assess changes in community stability (Modified from Laird et al. 1998a)

climatic conditions in the record from Moon Lake (North Dakota, USA) indicated
by a distinct change in inferred salinity before and after AD 1200 (Fig. 20.8a). The
differences in the environmental stability of Moon Lake before and after �AD 1200
were assessed by estimating the rate-of-change in the diatom assemblages, based
on a dissimilarity coefficient between adjacent samples over a fixed time interval
(see Birks 2012: Chap. 11). The results of this analysis suggested that the diatom
assemblages in Moon Lake were significantly more stable prior to AD 1200 (during
a period of inferred prolonged aridity) than for the last �800 years, which were
relatively wet (Fig. 20.8d). This approach has also been employed to assess changes
in limnological stability between the early- and late-Holocene (Laird et al. 1998b;
Clark et al. 2002), and through periods of Holocene cooling and warming (Anderson
et al. 1996; Palmer et al. 2002; Wolfe 2003). Heegaard et al. (2006) used cumulative
rate-of-change and cumulative relative rate-of-change to assess the detection of
aquatic ecotones along an altitudinal gradient in the Swiss Alps for cladocera,
chironomids, and diatoms. Assessing changes in biological richness and diversity
has become a topic of renewed interest in palaeolimnological studies. For example,
Sorvari et al. (2002) noticed a decline in richness (estimated as Hill’s (1973) N2,
a measure of richness of common species) coincident with the recent inferred
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warming of lakes in Finnish Lapland. A significant negative correlation between
diatom richness and temperature was also found in northern Sweden (Anderson
et al. 1996). Conversely, Wolfe (2003) showed that richness increased following
climatic deterioration from the climatic optimum, which started �2000 years BP.

In the complex system of the Mackenzie River and Slave River delta systems,
species richness and ‘indicator’ taxa were used to distinguish between three hydro-
logically distinct lake types (Hay et al. 2000; Sokal et al. 2008). Ordination methods
were first used to assess the distribution of diatom assemblages in the three lake
categories. Sokal et al. (2008) then used analysis of similarities (ANOSIM: Clarke
and Warwick 2001) to test whether the diatom assemblages differed significantly
among the three lake categories in the Slave River Delta. Finally, similarity
percentage tests (SIMPER: Clarke and Gorley 2006) were performed to identify
specific diatom taxa that accounted for these differences and canonical variates
analysis was used to assess whether ‘indicator’ taxa significantly discriminate
the hydrological lake categories (Sokal et al. 2008). These studies indicate that
numerical methods can be used to assess the hydrological and climatic variability
within complex delta systems.

Finally, it is becoming increasingly evident that the temporal structure of
many palaeolimnological records is composed of periodic components. Correct
identification of these periodicities and how they vary over time is becoming
increasingly important in palaeolimnological studies. Aspects of this critical topic
are covered in Dutilleul et al. (2012: Chap. 16).
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Hübener T, Dreßler M, Schwarz A, Langner K, Adler S (2008) Dynamic adjustment of training
sets (‘moving-window’ reconstruction) by using transfer functions in paleolimnology – a new
approach. J Paleolimnol 40:79–95

Interlandi SJ, Kilham SS, Theriot EC (1999) Responses of phytoplankton to varied resource
availability in large lakes of the Greater Yellowstone Ecosystem. Limnol Oceanogr 44:
668–682

St. Jacques J-M, Cumming BF, Smol JP (2008a) A pre-European settlement pollen-climate
calibration set for Minnesota, USA: developing tools for palaeoclimatic reconstructions.
J Biogeogr 35:306–324

St. Jacques J-M, Cumming BF, Smol JP (2008b) A 900-year pollen-inferred temperature and
effective moisture record from varved Lake Mina, west-central Minnesota, USA. Quaternary
Sci Rev 27:781–796

Juggins S, Birks HJB (2012) Chapter 14: Quantitative environmental reconstructions from
biological data. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental
change using lake sediments. Volume 5: Data handling and numerical techniques. Springer,
Dordrecht

Kendall RL (1969) An ecological history of the Lake Victoria basin. Ecol Monogr 39:121–176
Koinig KA, Kamenik C, Schmidt R, Agusti-Panareda A, Appleby PG, Lami A, Prazakova M, Rose

N, Schnell OA, Tessadri R, Thompson R, Psenner R (2002) Environmental changes in an alpine
lake (Gossenkollesee, Austria) over the last two centuries the influence of air temperature on
biological parameters. J Paleolimnol 28:147–160

Korhola A (1999) Distribution patterns of Cladocera in subarctic Fennoscandian lakes and their
potential in environmental reconstruction. Ecography 22:357–373

Korhola A, Rautio M (2001) Cladocera and other small brachiopods. In: Smol JP, Birks HJB,
Last WM (eds) Tracking environmental change using lake sediments. Volume 4: Zoological
indicators. Kluwer Academic Publishers, Dordrecht, pp 5–41

Korhola A, Vasko K, Toivonen HTT, Olander H (2002) Holocene temperature change in northern
Fennoscandia reconstructed from chironomids using Bayesian modelling. Quaternary Sci Rev
21:1841–1860



20 Holocene Climatic Change 639
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hemisphere controls on tropical southeast African climate during the past 60,000 years. Science
322:252–255

Toney J, Huang Y, Fritz SC, Baker PA, Nyren P, Grimm E (2010) Climatic and environmental
controls on the occurrence and distribution of long-chain alkenones in lakes of the interior
United States. Geochim Cosmchim Acta 74:1563–1578

Verbruggen F, Heiri O, Reichart GJ, Lotter AF (2010) Chironomid •18O as a proxy for past
lake water •18O: a Late-glacial record from Rotsee (Switzerland). Quaternary Sci Rev 29:
2271–2279

Verschuren D (1996) Comparative palaeolimnology in a system of four shallow, climate-sensitive
tropical lake basins. In: Johnson TC, Odada E (eds) The limnology, climatology and palaeocli-
matology of the east African lakes. Gordon and Breach, Newark, pp 559–572

Verschuren D (1999a) Sedimentation controls on the preservation and time resolution of climate-
proxy records from shallow fluctuating lakes. Quaternary Sci Rev 18:821–837

Verschuren D (1999b) Influence of depth and mixing regime on sedimentation in a small fluctuating
tropical soda lake. Limnol Oceanogr 44:1103–1113

Verschuren D (2001) Reconstructing fluctuations of a shallow East African lake during the past
1800 yrs from sediment stratigraphy in a submerged crater basin. J Paleolimnol 25:297–311

Verschuren D (2003) Lake-based climate reconstruction in Africa: progress and challenges.
Hydrobiologia 500:315–330

Verschuren D, Tibby J, Leavitt PR, Roberts CN (1999a) The environmental history of a climate-
sensitive lake in the former ‘White Highlands’ of central Kenya. Ambio 28:494–501

Verschuren D, Cocquyt C, Tibby J, Roberts CN, Leavitt PR (1999b) Long-term dynamics of
algal and invertebrate communities in a small, fluctuating tropical soda lake. Limnol Oceanogr
44:1216–1231



642 B.F. Cumming et al.

Verschuren D, Tibby J, Sabbe K, Roberts N (2000a) Effects of depth, salinity, and substrate on the
invertebrate community of a fluctuating tropical lake. Ecology 81:164–182

Verschuren D, Laird K, Cumming BF (2000b) Rainfall and drought in equatorial East Africa during
the past 1,100 years. Nature 403:410–414

Verschuren D, Cumming BF, Laird KR (2004) Quantitative reconstruction of past salinity varia-
tions in African lakes using fossil midges (Diptera: Chironomidae): assessment of inference
models in space and time. Can J Fish Aquat Sci 61:986–998

Vinebrooke RD, Hall RI, Leavitt PR, Cumming BF (1998) Fossil pigments as indicators of
phototrophic response to salinity and climatic changes in lakes of western Canada. Can J Fish
Aquat Sci 55:668–681

von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Johnsen SJ (1999) A mid-European decadal
isotope-climate record from 15,500 to 5000 years BP. Science 284:1654–1657

von Gunten L, Heiri O, Bigler C, Casty C, Lotter AF, Sturm M (2008) Seasonal temperatures for
the past 400 years reconstructed from diatom and chironomid assemblages in a high-altitude
lake (Lej da la Tscheppa, Switzerland). J Paleolimnol 39:283–299

Walker IR (1995) Chironomids as indicators of past environmental change. In: Armitage PD,
Cranston PS, Pinder LCV (eds) The chironomidae. The biology and ecology of nonbiting
midges. Chapman & Hall, London, pp 405–422

Walker IR, Smol JP, Engstrom DR, Birks HJB (1991) An assessment of Chironomidae as
quantitative indicators of past climatic change. Can J Fish Aquat Sci 28:975–987

Webb T (1986) Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen
data. Vegetatio 67:75–91

Webster KE, Soranno PA, Baines SB, Kratz TK, Bowser CJ, Dillon PJ, Campbell P, Fee EJ, Hecky
RE (2000) Structuring features of lake districts: landscape controls on lake chemical responses
to drought. Freshw Biol 43:499–515

Wolfe AP (2003) Diatom community responses to late-Holocene climatic variability, Baffin Island,
Canada: a comparison of numerical approaches. Holocene 13:29–37

Wolfe BB, Edwards TWD, Aravena R, MacDonald GM (1996) Rapid Holocene hydrologic
changes along boreal treeline revealed by •13C and •18O in organic lake sediments, Northwest
Territories, Canada. J Paleolimnol 15:171–181

Wolin JA, Stone JR (2010) Diatoms as indicators of water-level change in freshwater lakes. In:
Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences,
2nd edn. Cambridge University Press, Cambridge, pp 174–185

Yu Z, Ito E, Engstrom DR, Fritz SC (2002) A 2100-year trace-element and stable-isotope record
at decadal resolution from Rice Lake in the northern Great Plains, USA. Holocene 12:
605–617



Chapter 21
Conclusions and Future Challenges

H. John B. Birks

Abstract Quantitative palaeolimnology has made great advances in the last
20 years. The subject is not static, however, and as more and more demanding
questions are asked of palaeolimnology in the future, there will be more and more
future numerical challenges to be addressed and subjects to be explored. These
include the problems of model selection, trait analysis, data-mining, time-warp
analysis, quantile regression, additive modelling, new techniques for temporal-
series analysis, and increasing use of Bayesian inference. The practical problems
of computing and of available software are also discussed and it is clear that
future developments in quantitative palaeolimnology will depend on researchers
becoming proficient in the use of R and its innumerable packages relevant to
palaeolimnological data-analysis.
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Introduction

Palaeolimnology has witnessed many important advances in the past 25–30 years
with the study of an increasing number of biological, chemical, and physical
proxies preserved in lake sediments (Last and Smol 2001a, b; Smol et al. 2001a, b;
Cohen 2003; Smol 2008; Pienitz et al. 2009) and with ever-increasing attention to
project design, site selection, sampling protocols, analytical procedures, and data
interpretation. Numerical and statistical analyses of palaeolimnological data have
contributed to the rapid development of palaeolimnology as a rigorous, quantitative
branch of environmental science. Considerable advances have been made in the
quantitative analysis of palaeolimnological data since the pioneering attempts in
the early 1970s and the seminal publications of ter Braak (1986), ter Braak
and Prentice (1988), and ter Braak and van Dam (1989). These advances have
contributed primarily to the descriptive and narrative phases (sensu Ball 1975) of
palaeolimnological studies. In the descriptive phase, basic patterns are detected,
assessed, described, and grouped and the relevant numerical techniques for data
collection, assessment, and summarisation such as error estimation (Maher et al.
2012: Chap. 6), exploratory data analysis (Juggins and Telford 2012: Chap. 5),
clustering and partitioning (Legendre and Birks 2012a: Chap. 7), classical and
constrained ordination (Legendre and Birks 2012b: Chap. 8), classification and
regression trees and other tree-based and statistical-learning techniques (Simpson
and Birks 2012: Chap. 9), self-organising maps (Simpson and Birks 2012: Chap. 9),
principal curves (Simpson and Birks 2012: Chap. 9), constrained clustering and
partitioning (Birks 2012b: Chap. 11), age-depth modelling (Blaauw and Heegaard
2012: Chap. 12), and core correlation by sequence-slotting (Thompson et al. 2012:
Chap. 13). In the narrative phase, inductively based explanations, reconstructions,
and generalisations are derived from the observed patterns as, for example, envi-
ronmental reconstructions based on regression and calibration (Juggins and Birks
2012: Chap. 14), modern analogues using the modern analogue technique (Simpson
2012: Chap. 15), and temporal patterns such as periodicities (Dutilleul et al. 2012:
Chap. 16). These numerical approaches all fall under the general category of data
analysis (Birks 2012a: Chap. 2) where particular numerical characteristics are
estimated from palaeolimnological stratigraphical data.

Statistical methods, such as regression analysis and statistical modelling (Birks
2012a: Chap. 2), and constrained ordination techniques, such as canonical corre-
spondence analysis, redundancy analysis, and their partial relatives, and associated
Monte Carlo permutation tests and variation partitioning (Birks 2012a: Chap. 2;
Legendre and Birks 2012b: Chap. 8) provide one approach to data interpretation and
to the analytical phase (sensu Ball 1975) in palaeolimnology (Birks 1998) where
testable and falsifiable hypotheses are proposed, evaluated, tested, and rejected
(Dutilleul et al. 2012: Chap. 16; Lotter and Anderson 2012: Chap. 18; Simpson
and Hall 2012: Chap. 19; Cumming et al. 2012: Chap. 20).

Quantitative palaeolimnologists have every reason to be proud of their achieve-
ments in the last �20 years but no vibrant science like palaeolimnology is ever static
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and more detailed and more demanding questions are being asked of palaeolim-
nology and palaeolimnological data (e.g., Dearing 2008; Leavitt et al. 2009; Saros
2009; Dearing et al. 2010, 2011; Downes 2010; Sayer et al. 2010; Smol 2010).
These and related questions present many new challenges to the numerical and
statistical analysis of palaeolimnological data. What are these future challenges?
What will be the new directions of study in quantitative palaeolimnology?

Model Selection

A recurring theme that runs through many of the chapters in this book is the question
of model selection in data analysis and statistical modelling. Model selection arises
in, for example, age-depth modelling (Blaauw and Heegaard 2012: Chap. 12),
environmental reconstructions and calibration functions (Juggins and Birks 2012:
Chap. 14), partitioning of data (Birks 2012a, b: Chaps. 2 and 11; Legendre and Birks
2012a: Chap. 7), sequence-slotting of stratigraphical sequences (Thompson et al.
2012: Chap. 13), classification and regression trees and artificial neural networks
(Birks 2012b: Chap. 11; Simpson and Birks 2012: Chap. 9), the modern analogue
technique (Simpson 2012: Chap. 15), ordinations both classical and constrained
(Legendre and Birks 2012b: Chap. 8), and temporal-series analysis (Dutilleul
et al. 2012: Chap. 16). Despite its importance in so many aspects of quantitative
palaeolimnology, model selection is a topic that has received surprisingly little
attention in palaeolimnology (Birks 1998). Exceptions include Birks et al. (1990),
ter Braak and Juggins (1993), Cottingham et al. (2000), Racca et al. (2001, 2003),
Korhola et al. (2002), Paterson et al. (2002), Köster et al. (2004), Telford et al.
(2004), Telford and Birks (2005, 2009), Ferguson et al. (2008), and Simpson and
Anderson (2009). In contrast, model selection has received comparably much more
attention in ecology and evolutionary biology (Hilborn and Mangel 1997; Johnson
and Omland 2004; Mangel 2006; Whittingham et al. 2006; DR Anderson 2008).
See Wolf and Mangel (2008) for an example of careful model selection within the
framework of multiple hypothesis testing.

The key aspects of model selection in the context of modern statistical modelling
(Burnham and Anderson 2002; DR Anderson 2008) are that the approach of testing
a null hypothesis is replaced by model selection as a means of making inferences
(Stephens et al. 2007). In the model-selection approach, several equally plausible
minimally adequate models, each representing one hypothesis, are simultaneously
evaluated in terms of support from the observed data. Models can be ranked and
assigned weights, providing a quantitative measure of relative support for each
hypothesis. When different models have similar levels of support, model averaging
can be used to make robust parameter estimates and predictions (Kass and Raftery
1995; Volinsky et al. 1997; Hoeting et al. 1999; Johnson and Omland 2004; Wang
et al. 2004; Callaghan and Ashton 2008).



646 H.J.B Birks

There are well developed numerical approaches to model selection (Burnham
and Anderson 2002). These include the adjusted coefficient of determination (radj

2

or Radj
2) (Sokal and Rohlf 1995) as a measure of fit where the number of parameters

included in the model is included in estimating R2; likelihood-ratio tests (Sokal and
Rohlf 1995); Akaike Information Criterion (AIC) (see Birks 2012: Chap. 2), and
the small sample unbiased AIC (AICc) (Burnham and Anderson 2002) that involve
measures of fit and model complexity and with a bias-correction term for small
sample-size in AICc; and Schwarz’s criterion (Schwarz 1978) (also known as the
Bayesian Information Criterion (BIC) – see Birks 2012a: Chap. 2) where model fit,
complexity, and sample size are all considered.

Shrinkage techniques, such as principal components regression, partial least
squares regression (van der Voet 1999), ridge regression, the lasso, and the elastic
net (Dahlgren 2010; Hastie et al. 2011; Simpson and Birks 2012: Chap. 9),
can help with model selection and the very real problem with biological and
environmental data of collinearity problems. In such problems, the explanatory or
predictor variables are related by a linear function, thereby making the estimation of
regression coefficients impossible or, at least, unstable. These and related techniques
(Hastie et al. 2011) are an important addition to the palaeolimnologist’s numerical
tool-kit, because as research questions in palaeolimnology become more refined and
demanding, model-selection and variable procedures will play an increasing part in
quantitative palaeolimnology involving statistical modelling, model development,
environmental inferences, and evaluating competing hypotheses.

There are currently three philosophically different paradigms used to make
statistical inferences and to select between statistical models (Alexander et al.
2011). These are the null-hypothesis approach of classical inferential statistics, the
information-theory based approach involving AIC and BIC (Ramsey and Schafer
1997), and Bayesian inference. At present there is no consensus view and palaeolim-
nologists should keep an open and critical mind in model selection (see Murtaugh
1998; Anderson and Burnham 2002; Guthery et al. 2005; Stephens et al. 2005;
Hobbs and Hilborn 2006; Hoeting et al. 2006; Lukacs et al. 2007; Sauerbrei et al.
2007; Raffalovich et al. 2008; Ward 2008 for contrasting views on model selection).

In model selection, as in all numerical data-analyses, it is important to favour
simplicity (Occam’s (or Ockham’s) razor or the principle of parsimony) and avoid
the danger that Murtaugh (2007) quotes as “I can easily test the hypothesis by simple
t-tests, but want something more ‘elegant’ that will fit well with a ‘better’ journal”.
There are several examples in the recent palaeolimnological literature where basic
biology, limnology, ecology, and statistics appear to have been sacrificed for ‘fancy’
statistical techniques in so-called ‘better’ journals (cf. Chamberlain 2008).

Modelling of Biological Dynamics

Palaeolimnology is the study of lakes in the past using the physical, chemical,
and biological information archived in lake sediments (Smol 2008; Smol et al.
2012: Chap. 1). In practice, it has mainly been concerned with the reconstruction
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of past biota, populations, communities, environments, and ecosystems. In such
reconstructions, often all the available palaeolimnological data––biotic and abiotic–
–are used. With the recent upsurge of interest and activity in multi-proxy studies
(Lotter 2003; Birks and Birks 2006) where a range of biotic and abiotic proxies
is studied on the same core or set of correlated cores, palaeolimnology can better
understand a lake’s ecology and its dynamics in the past.

There are at least two major approaches to studying the past ecology of lakes.
First, we study the responses of limnic organisms in the past preserved in sediments
to environmental change but the palaeoenvironmental record is not based on the
fossil group of interest. Instead it is based on independent palaeoenvironmental
records such as stable isotopes (e.g., Wolfe et al. 2001, 2007; Leng and Marshall
2004; Wooller et al. 2004, 2008; Leng 2006; Heiri et al. 2009; Verbruggen et al.
2010), lake-level changes (Jackson and Booth 2002; Shuman et al. 2004), sediment
geochemistry (Boyle 2001; Grosjean et al. 2009; Virah-Sawmy et al. 2009a, b;
Weijers et al. 2009; Trachsel et al. 2010; Jeffers et al. 2011a, b), or sedimentary
parameters (e.g. Francus 2004; Blass et al. 2007). This approach is very much in the
scientific philosophy and methodology of using “the geological record of ecological
dynamics” and “the geological record as an ecological laboratory” presented by
Flessa and Jackson (2005a, b).

Second, in a multi-proxy study (e.g., Lotter 2003; Birks and Birks 2006), one or
more biological proxies can be used to provide an independent palaeoenvironmental
reconstruction using calibration functions (e.g., chironomids as a temperature proxy
(Brooks and Birks 2000) or plant macrofossils as a catchment-vegetation proxy
(Wick et al. 2003)). The responses in other proxies to the inferred environmental
changes can be studied and questions of response times, lags, rates of turnover, and
ecosystem drivers can be studied and quantified (Lotter and Birks 2003; Birks and
Birks 2008; Lotter and Anderson 2012: Chap. 18).

In both approaches the end result is a temporal series of biological assemblages
(e.g., diatoms) and an independent temporal series of past environmental change
(e.g., lake-water temperature, regional climate, catchment vegetation, available
nitrogen in the catchment). Millennial-scale ecological dynamics, as reconstructed
from palaeolimnological records, often show non-linear shifts in the trajectory of
drivers of biotic change such that discrete disturbance, stress, and climate regimes
can be observed on either side of a breakpoint or threshold in the temporal-series
data (Dearing 2008; Willis et al. 2010; Jeffers et al. 2011a; Seddon et al. 2011).
Such thresholds can set off cascading changes through ecosystems including shifts
between alternative stable states in population and community dynamics (Scheffer
and Carpenter 2003) but they are often difficult to predict (Scheffer et al. 2009). Can
such palaeolimnological temporal-series be used to assess how interactions between
biota respond to abrupt environmental change: do they show gradual responses or
sharp shifts between alternative stable states (Dearing 2008; Jeffers et al. 2011a)?

Jeffers et al. (2011a, b) used model-fitting and model-selection analyses of a
series of dynamic models to generate predicted changes in biotic interactions
and abundances over time and across abrupt change in climate, fire, ungulate
herbivore density, and nitrogen availability. Relatively simple mechanistic models
of ecological dynamics were used and AIC weights were used to assess the relative



648 H.J.B Birks

amount of support for each mechanistic model, as discussed in the section on Model
Selection above. This approach has considerable potential in palaeolimnology as
it may allow the distinction between chaos or non-linear deterministic dynamics
from noise or random effects in stratigraphical data and to test the ideas of
Deevey (1984) about stress, strain, and stability in lacustrine systems. There is
increasing evidence for a wide range of complex non-linear dynamic behaviour in
ecology that can arise from simple deterministic systems (Stone and Ezrati 1996).
In some fine-resolution palaeolimnological time-series from annually laminated
sediments (Simola et al. 1990; McQuoid and Hobson 1997), there are hints of
erratic and explosive population changes and other features possibly associated with
deterministic chaos.

Mechanistic modelling using ecological dynamic models (e.g., Cottingham
et al. 2000; Clark 2007; Otto and Day 2007; Bolker 2008; Soetaert and Herman
2009; Stevens 2009) with fine-resolution palaeolimnological data (biotic responses
and environmental predictors) is an important future challenge for quantitative
palaeolimnology (Birks 1998). It has the potential to assess the relative impor-
tance of multiple ‘stressors’ (Ormerod et al. 2010) on lake systems by careful
model building, model selection, and model assessment. For example, Clark and
McLachlan (2003) use pollen-stratigraphical data to test competing ideas about
stabilising mechanisms and neutral dynamics in forest systems. The same approach
could usefully be applied and extended to palaeolimnological data-sets.

Related to possible approaches to modelling ecological dynamics in limnological
systems, there is considerable interest in detecting and interpreting ecological
community thresholds and assessing abrupt changes and regime shifts in lake
ecosystems (e.g., Smol et al. 2005; Manly and Chotkowski 2006; Rodionov 2006;
Andersen et al. 2008; Carpenter and Lathrop 2008; Dakos et al. 2008; Ficetola
and Denoël 2009; Scheffer et al. 2009; Baker and King 2010; Gal and Anderson
2010; Hastings and Wysham 2010; Seddon et al. 2011). These numerical approaches
can usefully be applied to fine-resolution palaeolimnological temporal-series to test
ideas about regime shifts, potential drivers, resilience, and thresholds in a long-term
perspective (Dearing 2008; Gil-Romera et al. 2010: Willis et al. 2010; Allen et al.
2011; Seddon et al. 2011). There is a need to integrate such models with data in
limnology, ecology, palaeolimnology, and palaeoecology, as discussed by Dearing
et al. (2010, 2011) and Peng et al. (2011).

As computing power increases and algorithms become better, ecological mod-
elling techniques can now fit models of bewildering complexity (Lavine 2010).
There is an increasing tension between accurate characterisation of ecological
patterns and processes and the need for accessible models that provide novel
inferences and robust and valid predictions (LaDeau 2010; Lele 2010) and thus
for bridging the gap between mathematical modelling and statistical modelling in
ecology (Waller 2010). Palaeolimnologists should be aware of the limitations and
assumptions of both statistical models and mathematical models in ecology and
limnology and thus in palaeoecology and palaeolimnology, so as to avoid “living
dangerously with big fancy models” (Lavine 2010).
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Trait Analysis

A potentially useful but, as far as I know, largely untried approach to the
interpretation of biological palaeolimnological data is to use life-history and other
ecological traits and to link these traits to past environmental conditions through
the stratigraphical fossil record. Trait analysis is a very active research area in
modern ecology (e.g., Weiher et al. 1999; Westoby et al. 2002; Reich et al. 2003;
Choler 2005; Violle et al. 2007; Shurin et al. 2009; Shipley 2010; Carpenter et al.
2011; Diamond et al. 2011; Keller et al. 2011; Pakeman 2011). Special numerical
techniques that can simultaneously link the three matrices of palaeoenvironmental
data (R), species traits (Q), and fossil data (L), so-called RLQ analysis (Dolédec
et al. 1996) are required for this type of trait analysis. Fourth-corner analysis
(Legendre et al. 1997; Dray and Legendre 2008) is also useful for quantifying
and testing the relationships between R and L (see Brind’Amour et al. 2011 for
a limnological example of RLQ and fourth-corner analyses). Lacourse (2009)
illustrates the use of these three-matrix numerical procedures in a palaeoecological
study in British Columbia where she demonstrates that climate is the ultimate
control on Holocene forest composition and species abundance but that long-term
community assembly is also constrained through inter-specific differences in plant
traits. Bhagwat and Willis (2008) use traits to explore biological attributes of
plants and animals that survived the last glacial maximum in refugia in southern or
northern Europe.

Trait analysis has considerable potential in palaeolimnology (e.g., Hering et al.
2010; Kernan et al. 2010; Allen et al. 2011). The relevant numerical tools exist but
appropriate trait data are lacking for very many aquatic organisms.

Data-Mining

There is increasing interest and activity in the compilation, merging, and analysis
of large paleolimnological data-sets (typically over 1000 samples) (e.g., Smol
et al. 2005; Rühland et al. 2008; Vanormelingen et al. 2008; Verleyen et al.
2009; Battarbee et al. 2010; Bennett et al. 2010; Smol and Stoermer 2010;
Stomp et al. 2011). Given such data-sets, it is important to detect the major
patterns of composition and variation within such data-sets, to study aspects of
biodiversity, especially beta diversity or compositional heterogeneity (Legendre
et al. 2005; Legendre 2008; Jurasinski et al. 2009; Tuomisto 2010a, b; Anderson
et al. 2011) and, at the same time, to summarise the data as simple groups in terms
of overall composition and the relationships of such groups to the environment and
to other biota. There are now several specialised techniques for analysing large and
heterogeneous data-sets, so-called data-mining techniques (Raymond et al. 2005;
Witten and Frank 2005; Hastie et al. 2011; Torgo 2011). These include generalised
additive models (see Birks 2012a: Chap. 2), classification, regression, and related
decision trees (see Simpson and Birks 2012: Chap. 9), artificial neural networks
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and self-organising maps (see Birks 2012a: Chap. 2; Simpson and Birks 2012:
Chap. 9), clustering and partitioning (see Legendre and Birks 2012a: Chap. 7),
and a range of kernel methods, additive trees, and support vector machines (Hastie
et al. 2011). Data-mining is defined by Everitt (2002) as “The nontrivial extraction
of implicit, previously unknown, and potentially useful information from data. It
uses expert systems, statistical and graphical techniques to discover and present
knowledge in a form which is easily comprehensible to humans”. However, this
definition is almost identical to one’s general idea of data exploration, exploratory
data analysis, and data summarisation. Data-mining refers more specifically to the
analysis of large data-sets (Hand 1998; Raymond et al. 2005; Witten and Frank
2005; Torgo 2011). Hand (1998) defines it as “the process of secondary analysis
of large databases aimed at finding unsuspected relationships which are of interest
or value to the database owners”. One of the most important issues in data-mining
is thus size. With the widespread use of computer technology and information
systems, the amount of data available for exploration (e.g., biodiversity data – see
GBIF Global Biodiversity Information Facility 2008) has increased exponentially
in the last decade. This poses major challenges to the standard numerical and
statistical techniques for data analysis. Data-mining considers issues like computing
efficiency, limited memory resources, and interfaces to data-bases. Data-mining is
thus a highly interdisciplinary subject involving not only typical data analyses such
as clusterings, partitionings, and ordinations, but also interfacing with data-bases,
providing rapid data visualisation in many dimensions using interactive graphics,
devising rigorous and rapid outlier detection, etc. (see Torgo 2011).

Within the data-mining research community, enthusiasts of data-mining propose
that with enough data, traditional data analysis and hypothesis testing will no longer
be necessary (CR Anderson 2008). It is suggested that correlations will reveal
mechanisms in comprehensive statistical models that encompass all possible data
(Gotelli 2008). Exciting developments in computer science are leading to ‘reverse-
engineering’ algorithms that can help to uncover the functional form of relationships
among correlated variables (Gotelli 2008). These new iterative methods use data
partitioning, automated probing, and snipping to modify sequentially and test
underlying dynamic non-linear functions with data-rich time-series (Gotelli 2008;
Petris et al. 2009).

Within the standard current array of data-mining techniques (Witten and Frank
2005; Hastie et al. 2011; Torgo 2011), classification and regression trees (CART)
and associated decision-tree procedures (Fielding 2007; Simpson and Birks 2012:
Chap. 9) have considerable potential in data-mining large palaeolimnological data-
sets. Use of these methods is rapidly increasing in the related fields of ecology,
biogeography, conservation biology, and applied ecology, and their wider use in
palaeolimnology in the near future can be confidently expected (see Davidson et al.
2010a, b for examples of their use in palaeolimnology). The necessary software
is available in various R packages (see e.g., Borcard et al. 2011; Wehrens 2011;
Simpson and Birks 2012: Chap. 9 for details).

The analysis of large palaeolimnological data-sets through data-mining tech-
niques will provide important links with macroecology where dynamics over
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ecological time-scales are being addressed (e.g., Gotelli 2008; Fisher et al. 2010;
Stomp et al. 2011), and with meta-community ecology (e.g., Telford et al. 2006;
Allen et al. 2011). There is great scope for linking palaeolimnology with macro-
ecology, biogeography, meta-community ecology, and population dynamics in the
future (see below).

Potentially Useful Numerical Tools in Palaeolimnology

There are several well-developed numerical tools discussed by, for example,
Venables and Ripley (2002), Fielding (2007), Zuur et al. (2007), Manly (2009),
Hastie et al. (2011), and Wehrens (2011) that are potentially useful tools in the
numerical analysis of palaeolimnological data. These include time-warp analysis,
quantile regression, additive models, and hierarchical partitioning.

Time-warp analysis (Giorgino 2009; Wehrens 2011) is a technique for comparing
ordered series of values with each other. Dynamic time-warping (Giorgino 2009) is
most used in natural sciences. The rationale is to stretch or compress two temporal
or stratigraphical series locally in order to make one resemble the other as much
as possible. Time warping optimally deforms one of the two series onto the other.
The distance between the two series is computed, after stretching, by summing
the distances of individual aligned elements. This distance is insensitive to local
compression (Giorgino 2009). Time-warp analysis has some links with sequence-
slotting (Thompson et al. 2012: Chap. 13) but it is a more flexible way of aligning
two temporal series.

Quantile regression (Scharf et al. 1998; Koenker and Hallock 2001; Cade and
Noon 2003; Hao and Naiman 2007) is a method for estimating functional relation-
ships between variables for all portions of a probability distribution. Quantiles are
divisions of a probability distribution or frequency distribution into equal, ordered
subgroups, e.g., quartiles or percentiles. Statistical distributions of ecological or
palaeolimnological data often have unequal variation due to the complex inter-
actions between the factors that influence organisms that cannot be measured or
accounted for in a statistical model. Unequal variation implies that there is more
than a single slope (rate of change) that describes the relationship between a
response variable and predictor variables measured on a subset of these factors.
Quantile regression estimates multiple slopes from the minimum to the maximum
response, thereby providing a more complex and fuller picture of the relationships
between variables than can be obtained by other regression models (Cade and Noon
2003; Yee 2004a). The ecological concept of limiting factors as constraints on
organisms often focuses on rates of change in quantiles near the maximum response
(optimum) when only a subset of limiting factors are measured (Cade et al. 1999).
Ecological applications of quantile regression include Cade and Guo (2000), Knight
and Ackerly (2002), Brown and Peet (2003), Cade et al. (2005), Schröder et al.
(2005), MJ Anderson (2008), Vaz et al. (2008), Ricotta et al. (2010), and Cade
(2011), whereas limnological examples include Lancaster and Belyea (2006) and
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Kelly et al. (2008). Quantile regression and its relative quantile splines (Koenker
and Schorfheide 1994; MJ Anderson 2008) are increasingly used in climatology for
the analysis of trends in climate data (e.g., Elsner et al. 2008). These techniques may
be important tools in quantitative palaeolimnology in the near future, in particular at
looking at complex biological responses along environmental gradients (cf. Knight
and Ackerly 2002; Schröder et al. 2005; MJ Anderson 2008).

Additive models (Fox 2000; Wood 2006) are a non-parametric form of regression
in which the predictor or explanatory variables have an additive effect on the
response variable. If, for example, predictor variable A has an effect of size a on
some response variable and variable B has an effect of size b on the same response
variable, then in an assumed additive model for A and B their combined effect is
a C b. In additive models (Fox 2000; Ferguson et al. 2008; Simpson and Anderson
2009) the sum of regression coefficients � predictor variables of a linear regression
(see Birks 2012a: Chap. 2), is replaced by a sum of arbitrary smooth functions of the
predictor variable. This allows the shape of the relationship between the response
and the predictor variables to be determined from the data themselves (Birks 2012a:
Chap. 2), rather than being assigned a prescribed functional form such as a linear or
quadratic function (Simpson and Anderson 2009). Additive models are thus able
to model local features of the relationship between the response and predictor
variables. Simpson and Anderson (2009) applied additive models (with a serial
correlation structure to model residual temporal autocorrelation) as a tool to model
statistically palaeolimnological core records in relation to possible forcing factors.
They reduced the biological assemblage data to principal component analysis
(PCA) axes that capture the major patterns in the data through time (Birks 2012a:
Chap. 2; Legendre and Birks 2012b: Chap. 8). Each set of PCA sample scores were
then modelled using an additive model where the predictor variables represented
potential forcing factors such as tree-ring inferred temperatures or proxies for
atmospheric deposition and, where necessary, periodic components. The effect of
the predictor variables on assemblage composition through time was determined
from the contribution that each predictor variable made to the fitted additive model.
These contributions were then used to separate the effects due to competing forcing
variables such as climate and atmospheric nitrogen deposition. Additive modelling
when applied to palaeolimnological temporal series is a powerful approach to tease
apart the potential importance of two or more forcing variables (Ives et al. 2003;
Hampton et al. 2006; Hobbs et al. 2010). It warrants further use in palaeolimnology.

Hierarchical partitioning (Chevan and Sutherland 1991; Olea et al. 2010) allows
the contribution of each predictor variable to the total explained variance of a
multiple regression model, both independently and in conjunction with the other
predictor variables, to be estimated for all possible candidate regression models.
The independent contribution of predictor variable xi is calculated by comparing
the fit of all models that include xi with their reduced model, namely its exact
same model but with xi omitted within each hierarchical level. The improvement
in model fit for each hierarchical level that considers xi is then averaged across
all hierarchies, giving the independent contribution of xi (Quinn and Keogh 2002).
Hierarchical partitioning does not produce a predictive model. Instead it allows
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identification of the predictor variables that explain most variance independently of
the other predictors, thereby helping to minimise the problems of multicollinearity
between predictors in regression models (MacNally 2002). It has been used
by Steve Juggins (unpublished) to assess the amount of variance explained by
different environmental variables as a guide to discovering which environmental
variables can potentially be reconstructed from fossil assemblages using modern
species-environment calibration functions (Juggins and Birks 2012: Chap. 14).

Many current techniques for data analysis and data interpretation in palaeolim-
nology assume a symmetric Gaussian unimodal species response to environmental
variables (ter Braak and Prentice 1988) that can be approximated by the simple
weighted averaging algorithm (WA) (see Birks 2012a: Chap. 2; Juggins and Birks
2012: Chap. 14). With the great increase in computing power and in sophisticated
algorithms, Yee (2004b) has returned to ter Braak’s (1986) idea of constrained
Gaussian ordination (CGO) with estimation by maximum likelihood rather than by
the simple WA algorithm used in canonical correspondence analysis (CCA) and
its close partial relative (partial CCA). Quadratic reduced-rank vector-based gen-
eralised linear models (GLMs) implement CGO but assume symmetric unimodal
species responses (cf. ter Braak and Verdonschot 1995). Yee (2006) has extended
this approach to use generalised additive models (GAMs – see Birks 2012a: Chap. 2)
where no species response model is assumed. Instead the data determine the
response model as in simple GAMs. These techniques are still under development
as they are “fragile with dirty data” (Yee 2006). Further developments will hopefully
give palaeolimnologists powerful ordination and constrained ordination techniques
within the GLM/GAM theoretical framework incorporating a mixture of linear,
quadratic, and flexible smooth responses (e.g., Zhu et al. 2005). This general
approach can, in theory, be extended to regression or prediction and to calibration
and environmental reconstructions (Yee 2006), leading to a significant extension to
ter Braak and Prentice’s (1988) theory of gradient analysis.

There are several other statistical techniques of potential value in quantitative
palaeolimnology and aquatic ecology. Additive monotone regression splines (de
Boer et al. 2002) provide a means of implementing non-linear regression to estimate
thresholds in dose-effect relations. Principal response curves (PRC) (van den Brink
and ter Braak 1998, 1999; van den Brink et al. 2003, 2009; Timmerman and ter
Braak 2008) are a very effective tool in detecting trends over time in relation to an
internal reference (e.g., overall mean, reference sample, or experimental control)
or external references (e.g., preferred water quality or reference site). Principal
response curves are a form of redundancy analysis (see ter Braak and Šmilauer
2002; Lepš and Šmilauer 2003; Legendre and Birks 2012b: Chap. 8) and are a
potentially useful tool in assessing recent changes in limnological systems, as well
as in terrestrial systems (e.g., Heegaard and Vandvik 2004; Vandvik 2004; Vandvik
et al. 2005).

It is clearly a challenge for palaeolimnologists to keep up with the many
important advances being made in applied statistics that are of potential relevance
to the analysis of palaeolimnological data. As these methods and approaches
are increasingly complex and computationally demanding, it is important that
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palaeolimnologists extend their ‘statistical fluency’ (sensu Ellison and Dennis
2010) and develop close collaborations with applied statisticians and quantitative
palaeolimnologists who understand not only the numerical methods but also the
nature of palaeolimnology and the numerical problems posed by palaeolimnological
data.

Numerical Methods to Be Developed

It would be very misleading to convey to the palaeolimnological research commu-
nity that no new numerical methods need to be developed. Despite the wide range
of techniques presented in this book, there are many questions in data analysis
to which we do not have the answers. Some of these have been mentioned in
particular chapters, such as how to interpret confidence intervals on fossil taxon
counts in stratigraphical data (Maher et al. 2012: Chap. 6) or to interpret sample-
specific errors of prediction in environmental reconstructions in the presence of the
strong temporal autocorrelation that is a basic property of all palaeolimnological
stratigraphical data and resulting environmental reconstructions (Juggins and Birks
2012: Chap. 14).

Despite considerable advances in, for example, calibration-function method-
ology and cross-validation procedures, our abilities to interpret and compare
temporal-series of palaeoenvironmental reconstructions and of palaeolimnological
data in general have hardly developed beyond visual comparison of temporal-
series (Bennett 2002). The work presented by Dutilleul et al. (2012: Chap. 16) is
particularly important in that it provides new robust procedures for analysing and
comparing palaeolimnological data-sets and environmental reconstructions. There
is a great need for applying and extending robust procedures for comparing different
types of temporal-series (e.g., Burnaby 1953; Malmgren 1978; Schuenemeyer 1978;
Malmgren et al. 1998; Hammer and Harper 2006; Manly 2007; Tian et al. 2011),
including comparisons with random-walk simulations of palaeolimnological data
(Blaauw et al. 2010).

Another area of palaeolimnological research where new statistical techniques
are needed is in the analysis of the large amounts of data from multi-proxy
palaeolimnological studies (e.g., Birks et al. 2000; Birks and Birks 2006). The
rigorous analysis of such data is still in its infancy.

Bayesian Inference

There is an increasing awareness and interest in applying the approach of Bayesian
inference in various topics within quantitative palaeolimnology, for example age-
depth modelling (Blaauw and Heegaard 2012: Chap. 12) and environmental re-
constructions (Juggins and Birks 2012: Chap. 14). It has considerable potential
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in topics such as model selection (see above) (Kass and Raftery 1995; Hoeting
et al. 1999; Johnson and Omland 2004; Wang et al. 2004), modelling of biological
dynamics (see above) (Jeffers et al. 2011a, b), trait analysis (see above), some areas
of regression analysis and statistical modelling (Birks 2012a: Chap. 2; Simpson and
Birks 2012: Chap. 9), and the assessment of uncertainties in palaeolimnological data
(Maher et al. 2012: Chap. 6).

Bayesian inference consists of four major stages (Everitt 2002; Christensen et al.
2011; Kruschke 2011; Simpson and Birks 2012: Chap. 9):

1. Obtain the likelihood or conditional probability f (Xj™) describing the process
giving rise to the data X in terms of the unknown parameters ™

2. Obtain the prior distribution f (™) expressing what is known about ™ prior to
observing the data

3. Apply Bayes’ theorem to derive the posterior distribution f (™jX) expressing
what is known about ™ after observing the data

4. Derive appropriate inference statements from the posterior distribution, such as
point estimates, interval estimates, or probabilities of hypotheses.

Bayesian inference differs from the classical form of so-called frequentist
inference in several ways, particularly in the use of a prior distribution which is
absent in classical inference. It represents the researcher’s knowledge about the
parameters before seeing the data. Classical statistics only uses the likelihood,
whereas in Bayesian inference every problem is potentially unique as it is char-
acterised by the researcher’s ideas about the parameters expressed in the prior
distribution for the specific analysis (Everitt 2002). Bayesian statistical analysis
thus combines the data likelihood with a prior distribution using Bayes’ theorem.
A key task is then to summarise the posterior distribution, for example by the mean,
the covariance, or percentiles of individual parameters. When this summarisation
cannot be implemented by analytical means or analytical approximation, simulation
methods such as Markov chain Monte Carlo techniques (Clark and Gelland 2006a;
Christensen et al. 2011; Kruschke 2011) have to be used to generate a sample from
the posterior distribution. The desired summary of the posterior distribution is then
obtained from the sample. The posterior distribution is typically multi-dimensional
(ter Braak and Vrugt 2008).

One of the attractions of the Bayesian approach to statistical modelling is that
it allows the evaluation of how well multiple working hypotheses fit data. Instead
of rejecting a null hypothesis, the result of a Bayesian analysis is an index of
confidence in each of several hypotheses. The Bayesian approach lends itself
elegantly to evaluating alternatives and has been shown to be an ideal tool for
assessing alternative ecological models and hypotheses (e.g., Hilborn and Mangel
1997; Fabricius and De’ath 2004; Gotelli and Ellison 2004; Johnson and Omland
2004; Wolf and Mangel 2008). Bayesian approaches are widely used in a range
of archaeological, environmental, and ecological problems (e.g., Buck et al. 1996;
Dennis 1996; Ellison 1996, 2004; van Hoef 1996; Fabricius and De’ath 2004; Clark
2005; McCarthy and Masters 2005; Clark and Gelland 2006b; Golicher et al. 2006).
Tjelmeland and Lund (2003) develop Bayesian modelling of spatial compositional
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(proportional) data to analyse sedimentary data (sand, silt, clay) (Coakley and Rust
1968) from 39 locations within an Arctic lake. Useful introductions to Bayesian
statistical inference include Iversen (1984), Gotelli and Ellison (2004), Clark and
Gelland (2006a), Clark (2007), McCarthy (2007), Webb and King (2009), Kéry
(2010), Christensen et al. (2011), and Kruschke (2011), whereas Albert (2007)
discusses the very real problems in Bayesian computation and Beaumont (2010)
reviews approximate Bayesian computation in evolution and ecology.

Within palaeolimnology and related disciplines, Bayesian approaches have
primarily been used in age-depth modelling and radiocarbon calibration (see Buck
and Millard 2004; Blaauw and Heegaard 2012: Chap. 12) and in environmental
reconstructions (see Juggins and Birks 2012: Chap. 14). Several age-depth studies
show the advantage of adopting a Bayesian inference in developing robust age-depth
models (Blockley et al. 2004, 2007, 2008; Wohlfarth et al. 2006; Yeloff et al. 2006;
Bronk Ramsey 2008).

In the field of environmental reconstructions, Oehlert (1988) pioneered the use
of Bayesian inference to derive uncertainty estimates for lake-water pH reconstruc-
tions based on diatoms. Robertson et al. (1999) presented a simple kernel-based
Bayesian approach to climate reconstruction from tree-rings. Toivonen et al. (2001)
presented a Bayesian model with a conditional probability based on the Gaussian
unimodal response model. This was extended by Vasko et al. (2000) and Erästö
and Holmström (2006) to include the more realistic but more complex multinomial
Gaussian response model (see ter Braak and van Dam 1989; Birks 1995; Juggins and
Birks 2012: Chap. 14). This so-called Bummer model has been applied to derive
a chironomid-based temperature reconstruction by Korhola et al. (2002). Haslett
et al. (2006) have developed further these ideas to more generalised modelling of
modern pollen-climate response surfaces (see Birks et al. 2010) and Holden et al.
(2008) provide a computationally efficient approach based on probability weighting
of diatom-pH response curves. Haslett and Challenor (2010) present a very readable
account of the current ‘state-of-the-art’ of palaeoenvironmental reconstructions
within the Bayesian inference framework.

As an approach to environmental reconstruction, Bayesian inference has several
potential advantages. It does not rely on an explicit model of the relationship
between two sets of variables (e.g., diatoms and pH) (Haslett et al. 2006) but on
the modification of some prior belief about the specific value of a variable on the
basis of some additional information (Robertson et al. 1999). This prior information
or probability can be refined with additional measured information by a modern
calibration data-set to give the likelihood of conditional probability. Once this has
been estimated, it can be combined with the prior probability function to provide the
posterior probability density function using Bayes’ theorem (Robertson et al. 1999).

Salonen et al. (2012) compare the results of using the Bayesian Bummer model
of Vasko et al. (2000) with results from weighted averaging (WA) and weighted-
averaging partial least squares (WAPLS) regression and calibration (see Juggins
and Birks 2012: Chap. 14) in developing a pollen-based temperature calibration
function in north-eastern Europe. The Bayesian model shows a significantly im-
proved performance in leave-one-out cross-validation compared to WA or WAPLS
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and it is little affected by spatial autocorrelation. However, when the down-
core reconstructions are compared with independent palaeoclimate records, there
are some clear biases in the Bayesian reconstruction. They show that the prior
parameters significantly influence not only the Bayesian model’s performance
statistics in cross-validation but also the resulting reconstruction. They conclude that
a major future challenge in Bayesian inferences is the identification of ecologically
and environmentally realistic prior parameters in relation to the time-scale and
geographical setting of each reconstruction. This is a major challenge not only
ecologically but also computationally because even with 2011 computer power,
predicting the temperature of just one lake took about 3.6 h CPU time on an Intel
Core DUOE 6750 computer and a leave-one-out cross-validation of the modern
calibration set of 113 samples required 17 days computing.

A largely unexplored area of Bayesian inference in palaeoecology is its ability
to provide an appropriate framework to integrate various types of data (Saros
2009), for example combining cosmogenic, stratigraphical, and palaeomagnetic
data in a chronological tool (Muzikar and Granger 2006). In addition, palaeo-
limnologists have always been aware that there are many sources of uncertainty
associated with their data (see Maher et al. 2012: Chap. 6; Juggins and Birks
2012: Chap. 14). Modern statistical frameworks involving Bayesian inference allow
these uncertainties to be incorporated explicitly into numerical analyses (Clark and
Bjørnstad 2004). Bayesian hierarchical models (Clark and Gelland 2006a) have
considerable potential in the integration of different types of palaeolimnological
data and estimating the uncertainties in such an integration. Li et al. (2010a) have
used Bayesian hierarchical modelling to integrate tree-ring, borehole temperature,
and pollen-stratigraphical data to provide a reconstruction of past climate along with
realistic uncertainty estimates. This pioneering approach has stimulated comment
and discussion (e.g., Cressie and Tingley 2010; Li et al. 2010b; Smith 2010; Wahl
et al. 2010).

Although the uncertainties for Bayesian environmental reconstruction models are
generally of a similar magnitude to those for non-Bayesian approaches, they have
the major advantage that they provide a coherent and explicit handling of uncertainty
(Juggins and Birks 2012: Chap. 14). Bayesian models offer an elegant solution for
modelling multiple sources of evidence and their associated uncertainties within
a single integrated framework and are thus an important priority for future work
(Haslett and Challenor 2010).

Despite its great potential, Bayesian inference and modelling have not been
widely used in palaeolimnology. One reason is that the computing demands are huge
when moderate-sized or larger data-sets are analysed. Hopefully, this situation will
change in the future. Salonen et al. (2012) argue that given the total effort in data
collection, if a Bayesian model works well and has superior model performance
to simple WA or WAPLS models, it is worth the additional heavy computational
burden. Better simulation techniques, suitable model approximations, and improved
software availability (Haslett et al. 2006; Beaumont 2010) may contribute to making
Bayesian inference and modelling more accessible to the palaeolimnological re-
search community. Its full exploitation is certainly a major challenge for the future.
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Computing

A future challenge facing palaeolimnologists wanting to apply appropriate state-
of-the-art numerical and statistical techniques to their data is implementing these
techniques. Numerical analysis of palaeolimnological data requires several essential
components – research questions to be answered or hypotheses to be tested; careful
site selection; coring; laboratory analyses; high-quality data; appropriate numerical
techniques; and computer software to implement the numerical procedures. Since
the beginning of the application of quantitative techniques in palaeolimnology in
the late 1980s (see Smol et al. 2012: Chap. 1), there has been dedicated, relatively
easy-to-use software for the major numerical methods used by palaeolimnologists
at that time. Programs like WACALIB for environmental reconstructions written by
John Line, Cajo ter Braak, and John Birks (Line and Birks 1990; Line et al. 1994),
CALIB, WAPLS, and GLR for environmental reconstructions and Gaussian logit
regression written by Steve Juggins and Cajo ter Braak (www.staff.ncl.ac.uk/staff/
stephen.juggins/software.htm), CANOCO for classical and constrained ordinations
and variation partitioning with associated Monte Carlo permutation tests written
by Cajo ter Braak (ter Braak 1987), TILIA and TILIA-GRAPH written by Eric
Grimm for data-handling and graphical display (http://www.ncdc.noaa.gov/paleo/
tiliafaq.html), ZONE for clustering or partitioning stratigraphical data written by
Steve Juggins, Allan Gordon, and John Birks (www.staff.ncl.ac.uk/staff/stephen.
juggins/software.htm), and PSIMPOLL written by Keith Bennett for handling,
analysing, and displaying palaeoecological data (http://chrono.qub.ac.uk/psimpoll/
psimpoll.html) were widely used in the 1980s–1990s, almost exclusively running
under DOS.

With the rapid widespread of the Microsoft Windows
®

operating system and
the increasing obstacles that Microsoft make in limiting or preventing the use
of DOS software as each new version of Windows is released, the choice of
software for palaeolimnologists is becoming more restricted with C2 written by
Steve Juggins for environmental reconstructions and graphical display (Juggins
2007), CANOCO 4.5 and CanoDraw for Windows written by Cajo ter Braak
and Petr Šmilauer for ordination and graphical display (ter Braak and Šmilauer
2002), TILIA and TG-View for Windows written by Eric Grimm for data-handling
and graphical display (http://www.ncdc.noaa.gov/paleo/tiliafaq.html), and PSIM-
POLL written by Keith Bennett (http://chrono.qub.ac.uk/psimpoll/psimpoll.html)
that is platform-independent. These programs do not implement the most recent
numerical developments in quantitative palaeolimnology and applied statistics such
as additive modelling, multivariate regression trees, random forests, tests for spatial
autocorrelation, statistical testing of environmental reconstructions, etc.

Today almost all new techniques are being developed as freely available, open-
source packages for R distributed under the GNU General Public Licence version
2 (R Development Core Team 2010). The R language provides a single, extremely
powerful environment for statistical computing, including data-set compilation and
screening, exploratory data analysis, regression analysis and statistical modelling,

www.staff.ncl.ac.uk/staff/stephen.juggins/software.htm
www.staff.ncl.ac.uk/staff/stephen.juggins/software.htm
http://www.ncdc.noaa.gov/paleo/tiliafaq.html
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environmental reconstructions and evaluation, ordination and many other techniques
in multivariate data analysis, time-series analysis, graphical display, interactive
graphics, and much more.

The following R packages are particularly relevant in quantitative palaeo-
limnology:

• vegan (ordination and cluster analysis, dissimilarity measures, permutation
tests, etc.) (Oksanen et al. 2011)

• analogue (weighted averaging, modern analogue technique) (Simpson and
Oksanen 2009)

• rioja (environmental reconstructions, zonation, plotting of stratigraphical data,
etc.) (Juggins 2009)

• paltran (environmental reconstructions) (Adler 2010)
• fossil (palaeoecological data analysis) (Vavrek 2010)
• palaeoSig (testing the statistical significance of environmental reconstructions)

(Telford 2011)
• paleoMAS (modern analogue technique, palaeoecological data analysis)

(Correa-Metrio et al. 2010)
• simba (dissimilarity coefficients, diversity indices, permutation tests) (Jurasin-

ski 2009)
• BiodiversityR (analysis of ecological and palaeoecological data) (Kindt 2009)

In addition there are R packages for generalised linear modelling, generalised
additive modelling, mixed-effects modelling, age-depth modelling, classification
and regression trees, random forests, boosted trees, artificial neural networks, time-
series analysis, interactive graphical display, and very much more. Fox (2002),
Venables and Ripley (2002), Faraway (2005, 2006), Murrell (2006), Wood (2006),
Crawley (2007), Zuur et al. (2007, 2009), Rizzo (2008), Sawitzki (2009), Everitt
and Hothorn (2010), Maindonald and Braun (2010), and Qian (2010) outline
part of the range of statistical, numerical, and graphical techniques freely avail-
able in R.

In addition to the books mentioned in Chap. 1 of this volume that provide
excellent introductions to the use of R in statistical data handling and computing,
there are many books in the Use R! series that cover topics of direct relevance to
quantitative palaeolimnologists now and in the future. These include numerical
ecology (Borcard et al. 2011), spatial data analysis (Bivand et al. 2008), data
manipulation (Spector 2008), time-series analysis (Cowpertwait and Metcalf 2009),
population ecology (Stevens 2009), chemometrics and multivariate data analysis
(Wehrens 2011), multivariate data analysis (Everitt and Hothorn 2011), non-linear
regression (Ritz and Streibig 2008), wavelets (Nason 2008), Monte Carlo methods
(Robert and Casella 2010), interactive graphics (Cook and Swayne 2007), Bayesian
statistics (Albert 2007), and graphics for multivariate data (Sarkar 2008), and for
univariate and bivariate data (Whickham 2009). There is inevitably a steep learning-
curve in the initial stages of using R, just as there is in any other programming
environment, but the final rewards are well worth the initial effort. Almost all
applied statisticians use R today because it is good, it is international, it is
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versatile, it has a vast library of packages and functions, and it is free. Almost all
recent advances in numerical and statistical techniques in palaeolimnology are only
available as R packages. Using R and these techniques is thus a challenge for the
palaeolimnological community now and in the immediate future.

Conclusions

The various chapters in this book show that palaeolimnologists now have an
impressive array of powerful numerical and statistical techniques to help in the
analysis of palaeolimnological data. The use of these methods has contributed
to some of the exciting developments in palaeolimnology that have occurred
in the last two decades (see Smol 2008, 2010; Pienitz et al. 2009 for details
of these developments). As the recent interest in the development of modern
calibration data-sets and the use of these data-sets to make down-core environmental
reconstructions swings to more fine-resolution stratigraphical studies and more
multi-disciplinary stratigraphical studies, there will be an increasing need for further
numerical techniques and developments to help summarise, analyse, and decipher
the extraordinary diversity of environmental and biological proxies preserved in
lake sediments. It is, however, necessary to emphasise the importance of ‘expert
knowledge’ that comes from a sound training and experience in the many disciplines
that contribute to palaeolimnology. Without such ‘expert knowledge’ it is easy
for a researcher to be misled by results from a particular numerical analysis or
statistical model. It is essential to remember that numerical methods are only tools
to help palaeolimnologists address and hopefully answer interesting and challenging
questions about lake history, biotic response, and environmental change.
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Erästö P, Holmström L (2006) Selection of prior distributions and multiscale analysis in Bayesian

temperature reconstructions based on fossil assemblages. J Paleolimnol 36:69–80
Everitt BS (2002) The Cambridge dictionary of statistics, 2nd edn. Cambridge University Press,

Cambridge
Everitt BS, Hothorn T (2010) A handbook of statistical analyses using R, 2nd edn. CRC Press,

Boca Raton
Everitt BS, Hothorn T (2011) An introduction to applied multivariate analysis with R. Springer,

New York
Fabricius KE, De’ath G (2004) Identifying ecological change and its causes: a case study on coral

reefs. Ecol Appl 14:1448–1465
Faraway JJ (2005) Linear models with R. CRC Press, Boca Raton
Faraway JJ (2006) Extending the linear model with R. Generalized linear, mixed effects and

nonparametric regression. Chapman & Hall, Boca Raton
Ferguson CA, Carvalho L, Scott EM, Bowman AW, Kirika A (2008) Assessing ecological

responses to environmental change using statistical models. J Appl Ecol 45:193–203
Ficetola GF, Denoël M (2009) Ecological thresholds: an assessment of methods to identify abrupt

changes in species-habitat relationships. Ecography 32:1075–1084
Fielding AH (2007) Cluster and classification techniques for the biosciences. Cambridge Univer-

sity Press, Cambridge



21 Future Challenges 665

Fisher JAD, Frank KT, Leggett WC (2010) Dynamic macroecology on ecological time-scales.
Glob Ecol Biogeogr 19:1–15

Flessa KW, Jackson ST (2005a) Forging a common agenda for ecology and paleoecology.
Bioscience 55:1030–1031

Flessa KW, Jackson ST (eds) (2005b) The geological record of ecological dynamics. Understand-
ing the biotic effects of future environmental change. National Research Council of the National
Academies, Washington, DC

Fox J (2000) Multiple and generalized nonparametric regression. Sage, Thousand Oaks
Fox J (2002) An R and S-PLUS® companion to applied regression. Sage, Thousand Oaks
Francus P (ed) (2004) Image analysis, sediments and paleoenvironments. Springer, Dordrecht
Gal G, Anderson W (2010) A novel approach to detecting a regime shift in a lake ecosystem.

Method Ecol Evol 1:45–52
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JA, Fernández S, Carcı́a-Antón M, Stefanova V (2010) Interpreting resilience through long-
term ecology: potential insights in western Mediterranean landscapes. Open Ecol J 3:43–53

Giorgino T (2009) Computing and visualizing dynamic time warping alignments in R: the dtw
package. J Stat Softw 31:1–23

GBIF Global Biodiversity Information Facility (2008) http://www.gbif.org/press/factsheet
Golicher DJ, O’Hara RB, Ruiz-Montoya L, Cayuela L (2006) Lifting a veil on diversity: a Bayesian

approach to fitting relative-abundance models. Ecol Appl 16:202–212
Gotelli NJ (2008) Hypothesis testing, curve fitting, and data mining in macroecology. Int Biogeogr

Soc Newsl 6:3–7
Gotelli NJ, Ellison AM (2004) A primer of ecological statistics. Sinauer Associates, Sunderland
Grosjean M, von Gunten L, Trachsel M, Kamenik C (2009) Calibration-in-time: transforming

biogeochemical lake sediment proxies into quantitative climate variable. PAGES News 17:
108–110

Guthery FS, Brennan LA, Peterson MJ, Lusk JJ (2005) Information theory in wildlife science:
critique and viewpoint. J Wildl Manage 69:457–465

Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, Oxford
Hampton SE, Scheuerell MD, Schindler DE (2006) Coalescence in the Lake Washington story:

interaction strength in a planktonic food web. Limnol Oceanogr 51:2042–2051
Hand DJ (1998) Data mining: statistics and more? Am Stat 52:112–118
Hao L, Naiman DQ (2007) Quantile regression. Sage, Thousand Oaks
Haslett J, Challenor P (2010) Palaeoclimate histories. Insights from the Institute of Advanced

Study, Durham University, Durham
Haslett J, Whiley M, Bhattacharya S, Salter-Townsend M, Wilson SP, Allen JRM, Huntley B,

Mitchell FJG (2006) Bayesian palaeoclimate reconstruction. J R Stat Soc A 169:395–438
Hastie TJ, Tibshirani RJ, Friedman J (2011) The elements of statistical learning. Data mining,

inference, and prediction, 2nd edn. Springer, New York
Hastings A, Wysham DB (2010) Regime shifts in ecological systems can occur with no warning.

Ecol Lett 13:464–472
Heegaard E, Vandvik V (2004) Climate change affects the outcome of competitive interactions––an

application of principal response curves. Oecologia 139:459–466
Heiri O, Wooller MJ, van Hardenbroek M, Wang YV (2009) Stable isotopes in chitinous fossils of

aquatic vertebrates. PAGES News 17:100–102
Hering D, Haidekker A, Schmidt-Kloiber A, Barker T, Buisson L, Graf W, Grenouillet G, Lorenz

A, Sandin L, Stendera S (2010) Monitoring the responses of freshwater ecosystems to climate
change. In: Kernan M, Battarbee RW, Moss B (eds) Climate change impacts on freshwater
ecosystems. Wiley-Blackwell, Chichester, pp 84–118

Hilborn R, Mangel M (1997) The ecological detective – confronting models with data. Princeton
University Press, Princeton

Hobbs NY, Hilborn R (2006) Alternatives to statistical hypothesis testing in ecology: a guide to
self teaching. Ecol Appl 16:5–19

http://www.gbif.org/press/factsheet


666 H.J.B Birks

Hobbs WO, Telford RJ, Birks HJB, Saros JE, Hazewinkel RRO, Perren BB, Saulnier-Talbot É,
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¦2 See chi-square test, chi-square criterion, and chi-square distance coefficient.
Abscissa The horizontal x axis on a graph.
Accelerator mass spectrometry (AMS) A method for radiocarbon dating that

involves directly counting the number of 12C, 13C, and 14C atoms in the material
being dated using a large-scale, high-voltage mass spectrometer.

Accumulation rate The rate at which sediment accumulates, estimated from an
age-depth model or a varved sediment sequence.

Accuracy The degree to which the measured value approaches the true value of
what is being measured.

Additive model A model where the combined effect of the explanatory variables
and their interactions equals the sum of their separate effects.

Additive monotone regression splines Splines that guarantee strictly monoton-
ically increasing functions by the use of regression splines and as a result
thresholds can be modelled in, for example, ecotoxicology.

ade4 Software in R for a range of ordination and graphical techniques.
Adjusted coefficient of determination (radj

2 or Radj
2 or Ra

2) A recommended
modification of R2 to adjust for the number of parameters fitted by a regression
model. For large sample sizes, Radj

2 is approximately equal to R2, the coefficient
of determination.

AEM See asymmetric eigenvector maps.
Age-depth model A numerical model of the relationship between the age of

sediment (typically determined using radiometric dating such as 210Pb or 14C)
and its stratigraphical depth. The model is usually defined by a small number of
dated points and then used to provide estimates of the age of intermediate levels
by interpolation.

Agglomerative clustering Methods of cluster analysis that begin with each indi-
vidual object in a separate group and then, in a series of steps, combine objects
and, later, clusters into new, larger clusters until all objects are members of a
single group.

AIC See Akiake information criterion.

H.J.B. Birks et al. (eds.), Tracking Environmental Change Using Lake Sediments,
Developments in Paleoenvironmental Research 5, DOI 10.1007/978-94-007-2745-8,
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Akiake information criterion (AIC) An index that aids choosing between com-
peting statistical models by opting for the model that minimises a likelihood-ratio
goodness-of-fit statistic.

Aliasing effect In signal processing, the effect that causes different signals to be
indistinguishable when sampled.

Algorithm A stated procedure consisting of a series of steps, often repetitive, for
solving a problem.

Allochthonous Derived from outside the system under study, e.g., terrestrial plant
material that is preserved in lake sediments. Often used synonymously with
allogenic.

Allogenic Sediment which originated away from the area of sedimentation and has
been transported to the site. Often used synonymously with allochthonous.

AMS See accelerator mass spectrometry.
ANALOG Software for analogue matching and modern analogue technique (MAT)

for palaeoenvironmental reconstructions.
analogue Package for R statistical software for analogue matching and palaeoen-

vironmental reconstruction.
Analogue matching A methodology and group of numerical procedures for

identifying modern analogues of fossil biological assemblages.
Analysis of covariance (ANCOVA) Analysis of variance that uses a mixture of

continuous random variables and qualitative variables. ANCOVA models can
be thought of as multiple regression with some dummy variables. It is an
extension of analysis of variance that allows for the possible effects of continuous
explanatory variables on the response variable, in addition to the effects of the
factor or treatment variables.

Analysis of similarities (ANOSIM) Numerical procedure for testing whether
there is a statistically significant difference between two or more groups of
sampling units.

Analysis of variance (ANOVA) The attribution of variation in a variable to varia-
tions in one or more explanatory variables, where each explanatory variable can
take one of a small number of values.

Analyte A substance that is the subject of chemical analysis.
ANCOVA See analysis of covariance.
ANN See artificial neural networks.
ANOSIM See analysis of similarities.
ANOVA See analysis of variance.
ape Software in R for principal coordinate analysis.
Area under the curve Means of summarising information from a series of mea-

surements. In palaeolimnology, used as a measure of the degree to which
differences in species composition discriminate between analogue and non-
analogue samples. Equivalent to the Mann-Whitney statistic U.

Artificial neural networks (ANNs) A family of numerical models that learn and
predict from a set of data by mimicking the way the human neural network
processes information.
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Asymmetric eigenvector maps A technique used in the analysis of spatial data
to model spatial distributions of biological data generated by hypothesised
directional physical processes such as migrations in river networks and currents
in water bodies.

Asymptotic Approaching a value or curve arbitrarily closely.
Authigenic A diagenetic mineral or sedimentary deposit formed in situ. Also

referred to as autochthonous or autogenic.
Autochthonous Material (e.g., plants, sediment) which originated within the

system under study. For example, algal microfossils are autochthonous, whilst
charcoal particles are not. Also referred to as autogenic or authigenic.

Autocorrelation Internal correlation of the observations in a time series, usually
expressed as a function of the time lag between observations. Also the internal
correlation of observations in space (spatial autocorrelation).

Autocorrelogram See correlogram.
Autogenic See authigenic.
Automated probing Iterative tool in data-mining to modify sequentially and test

underlying dynamic non-linear functions in complex time-series.
Autoregressive process A model used in time-series analysis in which an obser-

vation at time t is postulated to be a linear function of previous values of the
time-series. A first-order process only considers the preceding sample in the
series. The process can extend to order p where p is less than t.

Back-propagation A learning algorithm for training artificial neural networks.
Backward elimination A method for selecting a subset of explanatory variables

based on sequential removal of variables.
Bacon R software package for Bayesian age-depth modelling using the model of

piece-wise linear accumulation.
Bagging See bootstrap aggregating.
Bar-chart A graphical representation of data grouped into a series of (usually un-

ordered) categories. Equal-width rectangular bars are drawn over each category
with height equal to the observed frequencies of the categories.

Basis functions Used in multivariate adaptive regression splines (MARS), they are
defined by a single knot location and take the value of 0 on one side of the knot
and a linear function on the opposite side. Each such basis function has a reflected
partner where the 0-value region and the linear-function region are reversed.

Bayes classifier A simple probabilistic classifier based on applying Bayes theorem.
Bayes theorem A procedure for determining inverse probabilities, that is finding

the conditional probability of A given B from the conditional probability of B
given A.

Bayesian approach An approach concerned with the modifying of previous be-
liefs as a result of receiving new data.

Bayesian belief networks See Bayesian networks.
Bayesian hierarchical model A means of combining data of different types into a

single coherent model, by having different basic components at different levels
in a hierarchy. The data model occupies one level, the process model resides
below it, and a third hierarchical level contains the statistical models or priors for
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unknown parameters. The levels are formally generated by a series of conditional
steps where one level is conditioned on knowledge of the levels below it.

Bayesian inference An approach concerned with the consequences of modifying
previous beliefs as a result of receiving new data.

Bayesian information criterion (BIC) A way of choosing between competing
statistical models that usually results in a simpler model being selected. Also
known as Schwartz’s criterion.

Bayesian multinomial model An environmental inference model based on the
multinomial logistic response model of species and their environment and in-
volving Bayesian inference. It is presently very demanding computationally. The
relevant software is bummer. The multinomial logistic model for proportional
species data estimates species parameters simultaneously with the constraint that
the abundance of all species sums to 1. It is difficult to fit and its parameters are
often difficult to interpret.

Bayesian networks An expert system in which uncertainty is handled using
conditional probabilities and Bayes theorem.

BCal Online software for radiocarbon calibration using Bayesian methods.
Bchron Package for R statistical software for age-depth modelling using Bayesian

methods.
BDK See bi-directional Kohonen network.
Belief networks See Bayesian networks.
Bernoulli trial An experiment or trial that has exactly two possible results, usually

classified as ‘success’ or ‘failure’.
Bernstein polynomial A polynomial that is a linear combination of Bernstein basis

polynomials.
Bézier curve A parametric curve constructed as a sequence of cubic segments used

to model smooth curves that appear reasonably smooth at all scales.
Bhalme and Mooley drought index (BMDI) An index of drought intensity calcu-

lated from monthly precipitation measurements from individual meteorological
stations.

Bias See systematic error.
BIC See Bayesian information criterion.
Bi-directional Kohonen network (BDK) A type of supervised Kohonen network

in which the input and output maps are updated in an alternating way.
Binary divisive analysis A partitioning procedure that divides a set of observa-

tions into 2 groups, 4 groups, 8 groups, etc., until the groups are too small
for further division or their numerical properties suggest further division is not
warranted.

Binary splitting zonation method A method of sequentially dividing a strati-
graphical sequence into a desired number of zones, with each partition found
to minimise an overall sum-of-squares or information criterion.

Binomial distribution The discrete probability distribution of the number of
successes in a sequence of n independent yes/no experiments, each of which
yields success with a constant probability.

biodiversityR R package for analysing ecological and palaeoecological data.
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Bioturbation The mixing of sediment by organisms.
Biplot An ordination diagram of two kinds of entities (e.g., samples and envi-

ronmental variables) which can be interpreted by the biplot rule. Interpretation
proceeds by projecting points onto directions defined by arrows in the biplot.

Bivariate kernel-density estimate A non-parametric estimate of the joint proba-
bility density function of two variables.

Bivariate statistics Statistical procedures used to describe the relationship be-
tween two variables.

BMDI See Bhalme and Mooley drought index.
Bonferroni comparison A simultaneous test of whether the means of three or

more populations are equal.
Bonferroni correction A multiple-comparison correction used when several sta-

tistical tests are being performed simultaneously to guard against inflated Type 1
errors.

Boosting A machine-learning algorithm for iteratively improving and combining a
number of weak classifiers into a single strong classifier.

Bootstrap aggregating (bagging) A machine-learning algorithm for improving
classification and regression models by combining the output from multiple
randomly generated training-sets created by bootstrap re-sampling.

Bootstrap cross-validation A method of cross-validation in which multiple ran-
dom training-sets are generated by bootstrap re-sampling.

Bootstrap re-sampling A computer intensive statistical resampling procedure that
randomly generates ‘new’ data-sets (e.g., 1000), with replacement, that are the
same size as the original data-set. The predictive ability of a model is based
on estimates derived on samples when they do not form part of the randomly
generated data-set.

Bootstrapping A simulation method for statistical inference based on bootstrap
re-sampling.

Box-Cox transformations A way of converting a general set of n observations
into a set of n independent observations from a normal distribution with constant
variance.

Box-plot See box-whisker plot.
Box-whisker plot A graphical tool for displaying the important features of a set

of observations in terms of the median, inter-quartile range (box part) and the
‘whiskers’ extending to include the minimum and maximum but not the outside
observations which are displayed separately.

Bpeat Software for Bayesian age-depth modelling of peat cores.
Bray-Curtis (Odum or Steinhaus) distance A dissimilarity coefficient used to

quantify the biological compositional dissimilarity between two different sites.
It is equivalent to the ratio between the turnover of species between the two sites
and the total species richness over the two sites.

Broken-stick model A model based on the broken-stick distribution where a set
of objects is taken as equivalent to a stick of unit length that is broken randomly
into a number of pieces.
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BSiZer Method and software for constructing SiZer maps using Bayesian
inference.

C2 Software for palaeoecological data analysis.
CA See correspondence analysis.
CALIB Software for calibrating radiocarbon dates available as an on-line procedure

or as a computer program.
Calibration In statistics, a procedure that enables a series of easily obtainable

measurements to be used to provide an estimate of a quantity of interest. In
palaeolimnology, used to refer to the range of procedures used to express values
of an environmental variable (e.g., pH) as a function of species data (e.g.,
diatom assemblages). Calibration differs from regression because the causal
relationships between species and environment are reversed and asymmetric.

Calinski-Harabasz criterion A variance ratio criterion used to estimate the num-
ber of clusters in a set of sampling units.

CANOCO Software for canonical community ordination by [partial] [detrended]
[canonical] correspondence analysis, principal components analysis, and redun-
dancy analysis, written by CJF ter Braak.

CanoDraw Graphical software for drawing ordination plots. It directly interfaces
with CANOCO. It also implements a range of other graphical and statistical tools
(e.g., GAM, GLM, LOESS) Written by P Šmilauer.

Canonical analysis of principal coordinates (CAP) A constrained ordination
technique involving many predictor and many explanatory variables. It differs
from RDA and CCA in that any dissimilarity measure between response variables
can be used as in db-RDA.

Canonical correlation analysis (CCorA) Method of assessing the linear relation-
ship between two groups of variables.

Canonical correspondence analysis (CCA) A constrained ordination technique
that uses a weighted-average algorithm, in which ordination axes are constrained
to be linear combinations of the supplied environmental variables.

Canonical gradient analysis See direct gradient analysis.
Canonical ordination In ecology, a set of ordination methods for relating species

assemblages to their environment.
Canonical variates (analysis) (CVA) Canonical variates are linear combinations

of variables that maximise the ratio of the between-group variance to the within-
group variance. Also known as multiple discriminant analysis.

CAP See canonical analysis of principal coordinates.
CART See classification and regression trees.
Cartesian space Euclidean space defined by Cartesian coordinates in two or three

dimensions.
CCA See canonical correspondence analysis.
cclust Software package in R to implement K-means clustering.
CCorA See canonical correlation analysis.
CEM See certified reference material.
Centroid The centre of gravity of a cluster of sampling units.
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Centroid rule In ordination plots for CA, CCA, and DCA, if the scaling is chosen
that species scores are weighted mean sample scores, each species point will be
at the centre of its niche in the plot. Their interpretation is thus based on the
centroid principle.

Certified reference material (CRM) Reference standards used to check the
accuracy of analytical instruments.

CGO See constrained Gaussian ordination.
Chaos The behaviour of complex deterministic systems in which small changes

in initial conditions lead to divergent outcomes, making long-term prediction
impossible.

Chemometrics The science of extracting information from chemical systems by
data-driven means.

Chi-square (¦2) criterion A statistic having, at least approximately, a chi-square
distribution. A simple example is the test statistic used to assess the independence
of two variables forming a contingency table.

Chi-square (¦2) distance coefficient A coefficient that estimates the dissimilarity
between assemblages (presence/absence, ranks, or quantitative) in two samples
that is central to correspondence analysis. It is similar to Euclidean distance but
it compensates for different relative frequencies or probabilities of occurrence.
There is also a chi-square metric.

Chi-square (¦2) test A statistical test in which the sampling distribution of the test
statistic is a chi-square distribution.

Chord distance (dissimilarity) A coefficient that estimates the dissimilarity be-
tween quantitative assemblages in two samples. It is similar to Euclidean distance
but it uses square-root transformed percentage or proportional data.

Chronological clustering A clustering method that takes account of the temporal
sequence of sampling (see also zonation).

Cladistic Pertaining to a clade, where members of the group share closer ancestry
with one another than with taxa of other clades.

clam R software for classical age-depth modelling including calibration of radio-
carbon dates. Error estimation for the various models are based on Monte Carlo
sampling from the calibrated-age distributions.

Classical gradient analysis See indirect gradient analysis.
Classification and regression trees (CART) An alternative to regression tech-

niques for determining subsets of explanatory variables most important in the
prediction of the response variable. Rather than fitting a model to the data, a tree
structure is generated by dividing the data recursively into a number of groups,
each division being chosen so as to maximise some measure of the difference in
the response variable in the resulting two groups. If the response variables are
presence/absence, a classification tree is generated. If the response variables are
quantitative, a regression tree is generated.

cluster Software package in R for Ward’s agglomerative clustering, other cluster-
ing procedures, and calculation of dissimilarity measures.

Cluster analysis A set of methods for deriving a classification of a set of data using
variables measured on each individual.
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Co-correspondence analysis An ordination-based procedure to relate two sets of
biological data (e.g., beetles and plants) for the same samples.

Co-plot A powerful graphical tool for studying how a response depends on an
explanatory variable given the values of other explanatory variables. The plot
consists of a number of panels, one of which (the ‘given’ panel) shows the
values of a particular explanatory variable divided into a number of intervals,
while the others (the ‘dependence’ panels) show the scatter-plots of the response
variable and another explanatory variable corresponding to each interval in the
given panel.

cocorresp R software to implement co-correspondence analysis.
Codebook vector An important component in self-organising maps that map all

data to a set of discrete locations organised in a regular grid. Associated with
every location is a prototypical object, called a codebook vector, representing
part of the space of the data. The complete set of codebook vectors is a concise
summary of the original multivariate data.

Coefficient of determination (R2, r2) In regression, the square of the correlation
coefficient between two variables. It gives a measure of the proportion of
variation in one variable accounted for by the other.

Coefficient of variation A measure of spread for a data-set defined as 100 x
(standard deviation / mean).

Collinearity See multicollinearity.
COMBINE Software for the statistical analysis of concentration data.
Combined path length (CPL) In core correlation using sequence slotting, CPL is

the sum of the distance between consecutive samples in the pooled sequence and
is a measure of the total discordance between the two sequences.

Complete linkage agglomerative clustering A method for grouping multivariate
data into clusters where the distance between two clusters is defined as the
greatest distance between an item in one cluster and an item in another cluster.

Compositional data Data consisting of a set of variables, each represented by
proportions, and which sum to one.

Compositional turnover Amount of difference in assemblage composition and/or
abundance along a known environmental or temporal gradient or along the major
direction of variation in a data-set.

Comprehensive R archive network (CRAN) A network of ftp and web servers
for distributing the R language and environment for statistical computing and
graphics.

CONCENTR Software for the statistical analysis of concentration data.
Confidence intervals See confidence limits.
Confidence limits A range of values, calculated from the samples, which are

believed, with a particular probability, to contain the true but unknown parameter
value. A 95% confidence interval implies that when the estimation is repeated
many times, then 95% of the calculated intervals would be expected to contain
the true parameter value. Also referred to as confidence intervals.

CONIIC Constrained information cluster analysis – see constrained incremental
sum-of-squares cluster analysis.



Glossary 683

CONISS See constrained incremental sum-of-squares cluster analysis.
Conjoint coding A simple means of substituting a quantitative continuous vari-

able with several qualitative variables (e.g., pseudospecies). Used in two-way
indicator species analysis. An advantage of conjoint coding is that if a species’
abundance shows a unimodal response along a gradient, each qualitative variable
(pseudospecies) also shows a unimodal response curve. If the response curve for
abundance is skewed, then the pseudospecies response curves will differ in their
optimum.

CONSLINK See constrained single-link cluster analysis.
const.clust Software package in R for constrained clustering.
Constrained cluster analysis A type of cluster analysis in which an external

constraint such as temporal ordering or geographic location is used to constrain
group formation.

Constrained Gaussian ordination (CGO) A Gaussian ordination in which the
ordination axes of biological data are constrained to be linear combinations of
external environmental variables.

Constrained gradient analysis See direct gradient analysis.
Constrained incremental sum-of-squares cluster analysis (CONISS) A strati-

graphically constrained cluster analysis where groups of adjacent samples or
groups of samples are grouped together so as to minimise the within-group
sum-of-squares and thus maximise the between-group sum-of-squares. Used
for zonation of stratigraphical data. Constrained information cluster analysis
(CONIIC) is similar but uses information content rather than sum-of-squares
criterion.

Constrained ordination An ordination of assemblage data but where the ordina-
tion axes are constrained to be linear combinations of the external environmental
variables. Also known as canonical ordination.

Constrained single-link cluster analysis (CONSLINK) A variant of single-link
agglomerative clustering in which clusters are constrained to consist of adjacent
samples or group.

Contingency table A table to display the frequency of each combination of two or
more variables.

Convex hull The edges of a convex polygon that bounds a set of observations in
variable space.

Cophenetic correlation A measure of how well the results of a cluster analysis
match the original data, calculated as the correlation between observed values in
the dissimilarity (or similarity) matrix and the corresponding fusion levels in the
dendrogram. Also known as matrix correlation.

Core correlation Correlation of two or more sedimentary sequences. In
palaeolimnology, core correlation usually involves matching individual cores
from different parts of a basin (e.g., littoral vs profundal) on the basis of
palaeomagnetic, geochemical, and/or biological data.

Correlation biplot A type of ordination diagram that is optimal for displaying
correlations between variables.
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Correlation coefficient A measure of the linear dependence of one random vari-
able on another. It has a value between �1 and C1 with 0 indicating no
correlation between the variables.

Correlation matrix A square symmetric matrix with rows and columns cor-
responding to variables, in which the off-diagonal elements are correlations
between pairs of variables, and elements on the diagonal are unity. Often the
lower half below the diagonal is presented.

Correlogram A plot of the values of the autocorrelation against the time lag. Also
known as an autocorrelogram.

Correspondence analysis (CA) An ordination technique that may use a weighted
average algorithm to maximise the dispersion of species or sites in low dimen-
sional space.

Covariable Often used as an alternative name for explanatory or predictor variable,
but in the context of ordination the term refers more specifically to a variable that
is not of primary interest but whose effects need to be included and allowed for
in the analysis. Also known as a concomitant or background variable. It often
corresponds to an incidental or nuisance parameter.

Covariance The expected value of the product of the deviations of two variables,
x and y, from their respective means, �x and �y, namely cov (x, y) D E (x – �x)
(y – �y). The corresponding sample statistic is

cov.x; y/ D 1
n

nP

iD1

.xi � Nx/.yi � Ny/

where n is the number of objects and Nx and Ny are the respective means of x and y.
Covariate Often used as an alternative name for explanatory or predictor variables

but perhaps most specifically to refer to variables that are not of primary interest
but are measured because it is thought that they may affect the response variable
and consequently should be included in regression analysis and model building,
for example in analysis of covariance (ANCOVA), partial ordination, and partial
constrained (or canonical) ordination.

Covariation The difference between the expected value of the product of two
random variables and the product of their separate expected values.

CPL See combined path length.
CPLSlot Windows®-based program for sequence slotting.
CRAN See comprehensive R archive network.
CRM See certified reference material.
Cross-classified data Data in which the observations have been independently

grouped into two or more categorical variables.
Cross-correlogram A plot of the lagged correlations between two time series.
Cross-spectral analysis A technique to estimate the frequencies and periodicities

shared between two variables in time-series data. Each time series is decomposed
into an infinite number of periodic components and the contributions of these
components in the two variables in certain ranges of frequency (spectrum) are
estimated to derive a cross-spectral function.
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Cross-validation (CV) Division of data into a training-set that is used to estimate
the parameters of the model of interest and a test-set that is used to assess whether
the model with these parameters fits or predicts well. There are several ways of
implementing cross-validation including leave-one-out cross-validation.

Cubic spline A continuous smooth curve consisting of piecewise third-order
polynomials passing through a set of control points.

Curse of dimensionality The tendency for some numerical problems to become
intractable as the number of variables increases.

Curvilinear trend A relationship between variables that is not linear but appears
as a curve when the relationship is graphed.

CV See cross-validation.
CVA See canonical variates analysis.
DAGs See directed acyclic graphs.
Data-mining The processing of large amounts of data to extract new useful

information from them based on patterns and relationships.
db-RDA See distance-based redundancy analysis.
DCA See detrended correspondence analysis.
DCCA See detrended canonical correspondence analysis.
Decision tree A graphical tool to display a tree-like graph or model of decisions

and their consequences or outcomes.
Degrees of freedom A parameter in some probability distributions giving the

number of independent pieces of information concerning the variance.
Degree of smoothing See span.
Delauney triangulation A way of dividing a plane into tessellating triangles.
Dendrogram A diagram used in cluster analysis to show the steps of aggregation

that form the clusters.
Density estimation procedure A way of estimating the population probability

density function from a sample of observations.
Density function A curve described by a mathematical formula that specifies, by

way of areas under the curve, the probability that the variable of interest falls
within a particular interval, e.g., normal distribution. Also called probability
function or probability density.

Determinand That which is to be determined.
Detrended canonical correspondence analysis (DCCA) Canonical correspond-

ence analysis but where the first and later axes are detrended to remove any
curvature or ‘horseshoe’ structure that may be an artifact for a particular data-
set. If a particular scaling is used, the analysis provides a convenient estimate of
compositional change or turnover along particular environmental gradients.

Detrended correspondence analysis (DCA) The detrended form of correspon-
dence analysis. Detrending is a mathematical technique used to remove the ‘arch’
or ‘horseshoe effect’ on the second axis, which is a mathematical artifact.

Detrending by segments An algorithm used in detrended correspondence analysis
for removing the arch effect.

Deviance A measure of the extent to which a particular model differs from the
saturated or full model for a data-set.
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Deviant index A quantitative measure of how different an individual object (e.g.,
fossil) is to the mean, median, or mode of reference material. Used in identifying
fossil objects numerically.

Digital moments Morphometric measure of the shape of an individual.
Direct gradient analysis The analysis of assemblage data in which samples are

positioned not only on the basis of their assemblages but also in relation to their
position along one or more known environmental gradients. If one species is
considered, regression analysis is used; if two or more species are considered,
constrained ordination is used.

Directed acyclic graphs (DAGs) The formal name for Bayesian networks or
Bayesian belief networks where the nodes represent random variables and the
linkages between nodes represent the conditional dependencies between the
joined nodes. The graph is acyclic, meaning that there are no loops or feedbacks
in the network structure and is directed because the relationships between nodes
have a stated direction – A causes B.

Dirichlet probability distribution A family of continuous multivariate probabil-
ity distributions often used as prior distributions in Bayesian statistics.

Discordance Where members of a group do not share a particular trait.
Discrete-time stochastic process A sequence of random variables observed at

T D [0, 1, 2, : : : ].
DISCRIM Software developed by CJF ter Braak to derive simple discriminant

functions based on external predictor variables for a pre-existing classification
(e.g., from TWINSPAN) based on multivariate assemblage data of response
variables. This DOS program and its data-preparation program are available from
HJB Birks.

Discriminant analysis A form of supervised pattern recognition used to derive
rules (discriminant functions) for allocating individuals to a priori defined groups
on the basis of a set of measured attributes.

Discriminant function Linear regression model that attempts to predict group
membership based on a linear combination of predictor variables.

Disjoint coding Coding of nominal variables as a series of 1 / 0 dummy variables,
one for each category of each nominal variable. After being formed into
categories, quantitative variables can be coded in the same way. Used in two-
way species analysis and simple discriminant functions.

Dispersion The distribution or scatter of observations or values about the mean or
central value.

Dispersion matrix See variance-covariance matrix.
Dissimilarity coefficient or function or index An index for quantifying the

difference between two observations in a set of multivariate data.
Dissimilarity matrix A matrix of dissimilarity coefficients expressing pair-wise

dissimilarities between all observations in a set of data.
Distance-based redundancy analysis A form of redundancy analysis where any

dissimilarity coefficient can be used in place of the Euclidean distance coefficient
that is implicit in redundancy analysis.

Distance biplot A type of ordination plot that is optimal for displaying ecological
distances between sites.
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Distance coefficient A dissimilarity coefficient that satisfies the inequality that the
dissimilarity between two points i and j is less than or equal to the sum of their
dissimilarities from a third point.

Distance matrix A matrix of distance coefficients expressing pair-wise distances
between all observations in a set of data.

Diversity A characterisation of species composition of a habitat or sample that may
include richness (number of species) and/or evenness (their relative abundance)
of species.

Dot-plot A more effective display than, for example, pie-charts or bar-charts, for
displaying quantitative data that can be clearly labelled.

Double square-root transformation A transformation involving square roots
twice, sometimes applied to biological count data to stabilise variance.

Down-weighting In correspondence analysis, detrended correspondence analysis,
and detrended canonical correspondence analysis, an algorithm to down-weight
the influence of rare species on the analysis.

Dummy variable A variable that can take the value of either 0 or 1 to indicate the
absence or presence of some categorical effect that may be expected to alter the
outcome.

earth R software package to implement multivariate adaptive regression splines
(MARS).

Edge effect Refers to the bias introduced into estimates of species optima when
surveys do not sample the entire range of environmental conditions that a
species inhabits. Edge-effects refer to truncated species responses at the ends
of environmental gradients (e.g., at very low or high values).

Effective number of taxa A measure of the degree to which proportional
abundances are distributed among the taxa.

Effective precipitation Net precipitation after losses by evaporation and
transpiration.

Eigenanalysis The search for a coordinate system that provides a simplification of
the problem at hand.

Eigenvalue decomposition The redescription or decomposition of a square sym-
metric matrix of dissimilarities or distances into eigenvalues and their associated
eigenvectors. The eigenvalues are selected to satisfy particular mathematical
criteria.

Eigenvalues and eigenvectors If A is a square matrix, x is a column vector not
equal to 0, and œ is a scalar so that Ax D œx, then x is an eigenvector of A and
œ is the corresponding eigenvalue. In CA or PCA, the eigenvalue of each axis
reflects the proportion of the total variance accounted for by that axis and is a
measure of the importance of an ordination axis. The eigenvectors (x) define the
linear function of the variables in the above relation.

Elastic net A compromise in regression shrinkage techniques between the rather
weak lasso penalty that selects predictors via shrinkage and the ridge penalty
that tends to shrink coefficients of correlated variables towards each other. The
elastic net combines the two via a weighted combination to form the elastic-net
penalty.
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Entropy A measure of the amount of information received or outputted by a
system, usually measured in bits.

ESS Error sum-of-squares – see residual sum-of-squares.
Euclidean distance A measure of dissimilarity between pairs of samples

calculated by extending Pythagoras’ theorem from two dimensions to the full
dimensionality of multivariate data.

Euclidean space The Euclidean plane and three-dimensional space of Euclidean
geometry, and their generalisations to higher dimensions.

Evapotranspiration Water lost as vapour from both soil or open water (evapora-
tion) and from the surface of plants (transpiration).

Evenness A measure of the similarity in numbers of organisms of each species in
a habitat or sample.

Explanatory variable A variable on which the response variable is assumed to
depend. Also called the predictor variable.

Exploratory data analysis An approach to data analysis that emphasises the use
of informal data summarisation and graphical procedures not based on prior
assumptions about the data structure.

F-ratio test See F-test.
F-statistic The result of a test of equality of two or more variances.
F-test A test of equality of the variances from samples of two populations that have

normal distributions.
Factorial design A way of investigating the effects of several explanatory variables

(factors) on a single response variable.
FD R package for measuring functional diversity from multiple traits, and other

tools for functional ecology.
Feed-forward network A type of artificial neural network in which information

moves in one direction only, from the input, through one or more hidden layers
to the output.

Fidelity The degree of restriction of a taxon to a particular situation, community,
or assemblage.

Floating chronology A chronology without a fixed reference point.
Forward selection A method for selecting a ‘good’ (but not necessarily the ‘best’)

subset of explanatory or predictor variables in regression analysis, including
constrained ordinations that are, in reality, multivariate regressions. The criterion
used for assessing if a variable should be added to an existing model is the change
in the residual sum-of-squares produced by the addition of the variable.

fossil R package for analysing palaeoecological and palaeontological data.
Fourier frequencies Used in harmonic analysis that determines the period of the

cyclical term in a time-series. Fourier frequencies result from the decomposition
of the periodic function into its constituent sine and cosine terms.

Fourier spectral analysis The analysis of data subject to a fast Fourier transfor-
mation based on Fourier’s theorem that proposes that any periodic function can
be reduced to a series of sine and cosine terms, each represented by an amplitude
and a phase.

Fourier transform filter The simplest way to estimate the power spectrum of a
time-series is to find the inner products (proportional to correlation coefficients)
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between the discrete time-series and a harmonic series of sines and cosines. This
is the discrete Fourier transform. Its filter is used to achieve equal time resolution
with the series.

Fourier transformed infra-red spectroscopy (FTIRS) Similar to near infra-red
spectroscopy (NIRS) but uses longer wavelengths (4000–400 cm–1) than NIRS
(12,500–4000 cm–1) and directly monitors molecular vibrations. It thus allows
more detailed structural and compositional analysis of both organic and inorganic
compounds than is possible with NIRS.

Fourth-corner analysis Synonym for RLQ analysis
Freedman and Diaconis’s rule A rule for calculating the appropriate number of

classes or bins to use in the construction of a histogram.
Freeze-corer A device that freezes lake sediment in situ to enable retrieval of

undisturbed material.
Frequentist inference Where probability is viewed as being equal to the limiting

relative frequency as the sample size increases.
FTIRS See Fourier transformed infra-red spectroscopy.
Gabor transformation In signal processing, a special case of the short-time

Fourier transform used to determine the sinusoidal frequency and phase content
of local sections of a signal as it changes over time.

Gabriel graph A subgraph of Delaunay triangulation showing the proximity of a
set of points.

GAM See generalised additive model.
Gamma distribution A two-parameter family of continuous probability distribu-

tions.
GARP See genetic algorithm for rule-set prediction.
Gaussian distribution A normal distribution.
Gaussian filter A filter whose impulse function is a Gaussian function designed

to give no overshoot to a step function input whilst minimising the rise and fall
time. It modifies the input signal by convolution with a Gaussian function. Also
used in smoothing time-series in which the smoothed value is the average of k
points around the central value but with each point weighted according to the
value of the appropriate Gaussian or normal density function.

Gaussian logistic regression Mathematical technique that attempts to fit either a
Gaussian (bell shaped) regression curve or an increasing or decreasing monotonic
curve to species abundance data generated from a training-set.

Gaussian logit regression See Gaussian logistic regression
Gaussian ordination An ordination procedure based on Gaussian unimodal

species-response curves that aims to construct one or more latent variables
so that these curves optimally fit the species data.

gbm Package using R software for gradient boosting in boosted regression trees.
GCV See generalised cross-validation.
Generalised additive model (GAM) An extension of the generalised linear model

in which the link function of the expected value of the response is modelled as the
sum of smooth functions of the explanatory variables, rather than the variables
themselves.
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Generalised cross-validation (GCV) A computationally efficient alternative to
leave-one-out cross-validation.

Generalised linear mixed-effects analysis An analysis involved in generalised
linear modelling but extended to include random effects in the linear predictor.

Generalised linear model (GLM) A generalisation of the ordinary or general
linear model in which the response is related to the explanatory variables via a
link function and by specifying the form of the variance of the response variable.
Includes linear, logistic, and Poisson regression.

Genetic algorithm In machine learning, an optimisation procedure motivated by a
biological analogy.

Genetic algorithm for rule-set prediction (GARP) A computer program based
on a genetic algorithm for deriving rules that describe a set of ecological niches
for species.

Gini index or Gini coefficient A coefficient for measuring the inequality of a
distribution. Used as a measure or node impurity in regression trees.

glmnet R package for fitting a range of shrinkage methods (ridge regression, lasso,
elastic net, etc.).

GLR See Gaussian logistic (logit) regression. Also software for Guassian logistic
regression and for estimating optima and tolerances of taxa using maximum-
likelihood estimation.

Goodness of fit Measure of the agreement between a set of observations and the
corresponding values predicted from some model of interest.

Gower’s coefficient of similarity A similarity coefficient suitable when the vari-
ables are mixed, consisting of continuous quantitative variables and categorical
variables (including presence/absence variables).

Gower’s general dissimilarity coefficient See Gower’s coefficient of similarity.
Gradient analysis A method used in community ecology to relate the abundances

of various species in a biological community to one or more environmental
gradients, usually by ordination or weighted averaging.

Group-average sorting A method for collecting multivariate data into clusters.
h-block cross-validation A method of cross-validation that preserves the autocor-

relation structure in spatially- or temporally-ordered data.
Hellinger distance A measure of the distance between populations with multi-

variate distributions having two probability density functions. In ordination,
a Euclidean distance between two samples where the abundance values are
first divided by the sample total abundance and then square-root transformed
(Hellinger transformation). See chord distance (dissimilarity).

Helmert’s contrasts (D orthogonal dummy variables) A coding system for cat-
egorical variables in analysis of variance, in which each level of a factor is tested
against the average of the remaining levels.

Heteroscedasticity The property of a set of random variables that have different
variances.

Heuristic A general recommendation based on statistical evidence.
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Hexagonal binning A form of bivariate histogram for displaying large data-sets,
in which the original data are grouped or binned, and the binned data plotted as
a bivariate scatterplot using differently sized or shaded hexagons.

Hierarchical classification or clustering Clustering techniques that combine ob-
jects into groups which are arranged in a hierarchy, with similarities between
different groups displayed at different levels in the hierarchy.

Hierarchical partitioning A numerical technique that allows the contribution of
each predictor or explanatory variable to the total explained variance of a regres-
sion model, both independently and in conjunction with the other predictors, to
be estimated for all possible candidate regression models.

Highest posterior density Largest value of the posterior density, used in problems
of Bayesian inference.

Hill’s diversity measures N0 is the number of all taxa in the sample regardless
of their relative abundance; N1 is the number of abundant taxa in the sample;
and N2 is the number of very abundant taxa in the sample. The effective number
of taxa is a measure of the number of taxa in the sample where each taxon is
weighted by its abundance.

Hill’s index of similarity A measure based on information theory for assessing the
similarity between two clusterings or partitionings of the same sets of objects but
based on different types of variables.

Hill’s scaling Method of scaling CA, DCA, and CCA ordination axes in Hill’s
standard deviation units.

Hill’s standard deviation units of compositional turnover The length of a CA,
DCA, CCA, or DCCA ordination axis (range of sample scores) expressed in
standard deviation units of compositional turnover. The tolerance of the species’
curves along the axis is close to 1 after rescaling, and each curve therefore rises
and falls over about 4 standard deviations. A gradient of more than four standard
deviations can thus be expected to have no species in common.

Histogram A graph of a frequency distribution in the form of rectangles whose
base coincides with the class interval and whose area is proportional to the class
frequency.

HOF Software for the HOF modelling of species responses to an environmental
gradient, written by J Oksanen and PR Minchin.

HOF modelling Huismann, Olff, and Fresco modelling of species responses to
an environmental gradient using a hierarchical set of generalised linear models
(skewed, symmetric, plateau, monotonic, null).

Holocene The name of a geological epoch of the Quaternary period, covering the
last �11,700 years. It means ‘entirely recent’ (holos D whole and kainos D new
in Greek), because it represents modern times.

Homogeneity in the mean A term used in statistics to indicate the equality of
some quantity of interest (e.g., mean) in a number of different groups, etc. Very
relevant in time-series analysis.

Homogeneity test A test for the homogeneity or equality of some quantities of
interest (most often variance) in different groups.
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Hutchinsonian niche A view of the niche as n-dimensional hyper-volume which
describes the environmental conditions in which a species can survive.

Hypergeometric distribution A discrete probability distribution that describes
sampling with replacement from a finite population.

Hysteresis Delay in the adjustment of a process as a result of a change in an
associated process.

IKFA Imbrie and Kipp factor analysis – see Q-mode factor analysis.
indicspecies Software for R that extends the IndVal approach.
Indirect gradient analysis A generic term for ordination methods that only

analyse assemblage data and represent the data in a low-dimensional graphical
form where the axes are selected to capture the variation in the data as effectively
as possible according to an assumed underlying species response model.
Interpretation is often aided by a post-hoc regression on external variables.

IndVal Software for undertaking indicator species analysis.
Interactive graphic display Modern graphical analysis that is interactive and

allows rotations, colour coding, selective labelling, etc.
Internal block length In sequence slotting when the sediment properties in part of

either sequence being correlated do not vary much, the optimum slotting often
contains blocks of consecutive sediment samples. In most cases it can be useful to
impose the constraint of a maximum internal block length (e.g., 2 or 3 samples).

Internal cross-validation Cross-validation using some form of data splitting, as
opposed to external cross-validation using an independent test set.

Interpolation (interpolate) The process of determining the value of a function
between two known values.

Interquartile range A measure of spread given by the differences between the first
and third quartiles of a set of values for a variable.

Inverse regression A means of calibration for inferring environmental variables.
The environmental variable is used as the response variable and the responses of
the species are the predictor variables. The resulting regression equation is then
the calibration or transfer function used in reconstruction.

Isolation lake or isolation basin A freshwater lake that was once connected to the
sea but has become isolated as a result of relative sea-level change.

Isostatic rebound Used to refer to the state of gravitational equilibrium where
land masses that were previously depressed by an enormous weight (typically
ice sheets or rock) subsequently undergo uplifting after the weight is removed.

Iterative methods Methods that repeatedly use a series of operations until a good
fit is obtained.

Jaccard coefficient A measure of the similarity in species composition between
two communities using only presence/absence data. Can also be expressed as a
distance.

Joint plot An ordination diagram of two kinds of entities which can be interpreted
by the centroid rule.

‘Jump’ approach A heuristic method for selecting k, the number of close ana-
logues in the modern analogue technique.
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K-means partitioning Method of cluster analysis in which a group of observations
is partitioned into K groups.

k-nearest neighbours Method of discriminant analysis based on studying the
training-set subjects most similar to the subject to be classified. Classification
is based on the k nearest neighbours where k is >1.

Kendall’s non-parametric tau statistic (D Kendall’s rank correlation coefficient)
A method for determining the significance of association between two variables
whose values have been replaced by ranks within their respective samples.

Kernel density A method for the estimation of probability density functions
involving a window width or bandwidth and a kernel function. A powerful tool
in exploratory data analysis.

Kernel function See kernel density.
Kernel matrix A similarity matrix between objects and codebook vectors in a

self-organising map (SOM) weighted by kernel functions.
Kernel methods See kernel density.
Kernel regression A distribution-free method for smoothing data.
Kernel smoother A smoother produced by kernel regression smoothing, a

distribution-free method for smoothing data. In one dimension, the method
consists of estimating f (x) in the relation yi D f (x) C ©i where ©i is assumed to
be symmetric errors with zero means. There are several ways of estimating f, for
example by averaging the yi values that have xi close to x.

Knot The tie points in a spline function.
kohonen Package of R software to create self-organising maps.
Kronecker’s delta A measure to describe the presence (D1) or absence (D0) of

information relating to a variable. Used in Gower’s general similarity coefficient.
Kurtosis The departure of a frequency distribution from a normal distribution.
labdsv R software for analysis of ecological data including indicator species

analysis using the function indval().
lars R software for least angle regression used to compute the entire lasso path

from no predictors to the full least-squares solution.
Lasso See least absolute shrinkage and selection operator.
Latent variable A variable that cannot be measured directly but is assumed to be

related to a number of observed samples. It is selected to ‘best’ explain the data
according to an assumed response model and in ordinations it is the first major
ordination axis.

Least absolute shrinkage and selection operator (lasso) A technique for shrink-
age and variable selection in regression modelling. The lasso is a general
technique that has been applied to generalised linear models and is used as a
shrinkage technique in boosted trees.

Least-squares criterion The criterion of minimising the sum-of-squared residuals
in fitting a model to a set of data.

Leave-one-out cross-validation A method of cross-validation for determining the
error rate in which each observation in turn is omitted from the data, the
prediction model recalculated, and the error rate calculated from the left-out
observations.
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Likelihood-ratio test A statistical test used to compare the fit of two models.
Linear discriminant analysis See discriminant function analysis.
Linear discriminant function See discriminant function.
Linear regression A simple linear regression model involving a response variable

that is a continuous variable and a single predictor variable related by an intercept
and slope term.

Linear transformation A transformation of q variables x1, x2, : : : , xq given by
the equations y1 D a1 1 x1 C a1 2 x2 C � � � C a1 q xq to yp 1 D ap 1 x1 C ap 2 x2

C � � � C ap q xq. Such a transformation is the basis of principal component
analysis (PCA).

Linkage clustering A family of clustering methods in which objects are assigned
to clusters when a user-determined proportion of the similarity links has been
realised.

Local discordance Used in core correlation by sequence slotting. It is the dissimi-
larity or distance between any two samples in either sequence being correlated.

Locally weighted scatterplot smoothing (LO(W)ESS) A method of regression
analysis in which polynomials of degree one (linear) or two (quadratic) are
used to approximate the regression function in particular ‘neighbourhoods’ of
the space of the predictor variables. It uses weighted least squares with local
subsets of the data so as to pay less attention to distant points. It assumes no
predetermined model for the entire data-set and therefore provides no explicit
formula for the fitted curve.

LOESS See locally weighted scatterplot smoothing (also known as LOWESS).
Log-normal distribution The probability distribution of a random variable whose

logarithm is normally distributed.
Log transformation A transformation that replaces original values by their loga-

rithms. Often useful for transforming chemical concentration data which often
exhibit a log-normal distribution.

Logistic regression A model that can be used to predict the probability of an event
occurring by fitting data to a logit function.

Logit Logistic transformation or logit of a proportion; logit (p) D logep / (1 – p).
As p tends to 0, logit (p) tends to –1 and as p tends to 1, logit (p) tends to 1.
The function logit (p) is a sigmoid curve that is symmetric about p D 0.5.

Logit or logistic model A linear model in which the dependent variable is a logit
and the explanatory variables are categorical.

Logit regression See logistic regression.
LOI See loss-on-ignition.
Loss-on-ignition (LOI) Organic matter content of the sediment estimated by

measuring weight loss in sub-samples after burning at selected temperatures
(typically 550ıC for 5 h). Often used as a first-order estimate of organic carbon
content of sediments and widely used in lake sediment studies.

Low-pass filter In time-series analysis, a filter that passes low-frequency signals
but reduces the amplitude of high-frequency variation.

LOWESS See locally weighted scatterplot smoothing (also known as LOESS).
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Macroecology Biogeographical studies of populations and species interactions on
a broad rather than local scale, and which considers both geography and history
in understanding the abundance, distribution, and diversity of species.

Magma A molten fluid formed within or below the Earth’s crust which may
consolidate to form igneous rock.

Manhattan distance Also known as the city block distance. A distance or dissim-
ilarity measure that is the sum of the differences, irrespective of sign, between
values for object i and j for all k variables. It gets its name from the distance
travelled by a taxi around blocks in a city with an orthogonal plan like Manhattan.

Mann-Whitney U statistic The statistic used in a Mann-Whitney test, a distribu-
tion free, non-parametric alternative to Student’s t-test.

MANOVA See multivariate analysis of variance.
Maphic Ferromagnesian minerals (silicates containing iron and/or magnesium)
Markov chain Monte Carlo (MCMC) methods Powerful but computer-intensive

methods for indirectly simulating random observations from complex, and often
high dimensional probability functions. Used widely in application of Bayesian
inference.

Markov property A Markov chain and its equation imply that to make predictions
about the future behaviour of the system of interest, it suffices to consider only
its present state and not its history.

MARS See multivariate adaptive regression spline.
MART See multiple additive regression trees.
MASS R software for a huge range of modern applied statistical procedures.
MAT See modern analogue technique.
MATLAB Software package for statistical, graphical, and numerical analysis with

many add-on functions and libraries and programming facilities.
Matrix correlation See cophenetic correlation.
MATTOOLS R Software for the modern analogue technique (MAT).
Maximum likelihood (regression and calibration) An estimation procedure in-

volving maximisation of the likelihood or the log-likelihood with respect to the
parameters. It is commonly used in generalised linear models.

MCMC See Markov chain Monte Carlo methods.
Mean A measure of location or central value for a continuous quantitative variable

estimated as the sum of the variable of interest in all samples divided by the
number of samples.

Mean squared error The square of the differences between an estimated and true
value of a parameter.

Mean squares The ratio of the sum-of-squares to the corresponding number of
degrees of freedom in ANOVA.

Measurand A physical quantity, property, or condition which is measured.
Median The value of a variable in an ordered array that has an equal number of

observations above and below it (D second quartile).
MEMs See Moran’s eigenvector maps.
Meta-data Data concerning the collection of data and data-bases, e.g., site location

and description, date of sampling, investigator.
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Metric ordination or metric scaling Any ordination method (e.g., PCA, CA,
PCoA) that approximates a linear relationship between the configuration of
points in ordination space and the original input distances.

MFPA See multi-frequential periodogram analysis.
Minimum-variance clustering (D Ward’s method) An agglomerative clustering

algorithm that constructs clusters which have minimum within-cluster variance
and maximum between-cluster variance.

Minitab Software package for general statistical analysis.
Mixed-effect model A class of models that contain both fixed and random effects.

They are often used where repeated measures are made on the same sampling
units.

Modal Of a value that occurs most frequently in a distribution or set of data.
Model I regression Ordinary least-squares regression in which the sum of squared

errors in y are minimised, and assuming no errors in x.
Model II regression Regression when there is error in both the dependent and

independent variables. Includes techniques such as major axis (MA), standard
major axis (SMA), and ranged major axis (RMA) regression.

Model-fitting analysis A general approach in statistics that attempts to find the
simplest model for a set of observations that provides an adequate fit to the data
under the principle of parsimony.

Modern analogue matching See analogue matching.
Modern analogue technique (MAT) A technique developed in palaeoecology in

which fossil assemblages are compared, in turn, using an appropriate dissimi-
larity measure, with each sample in a modern assemblage data-set to identify
modern analogues as an aid in interpretation of the fossil assemblage in terms of
past communities or past environments.

MODPOL Software for modern analogue matching.
Monothetic divisive classification method Methods of hierarchical cluster

analysis that recursively partition the original data-set into groups using a single
variable to determine the split at each level of the hierarchy.

Monte Carlo permutation test A procedure for determining statistical signifi-
cance directly from data without reference to a particular sampling distribution.
It is similar to a randomisation test except that the permutations are restricted in
some way to take account of, or maintain, the sampling design of the observed
data (e.g., time series, line transects). For example, in a study involving the
comparison of two groups, the data are divided (permuted) repeatedly between
groups and for each division (permutation) the relevant test statistic is calculated
to estimate the proportion of the data permutations that provide as large a test
statistic as that calculated form the observed data.

Monte Carlo sampling A method of generating random samples from a probabil-
ity density function.

Moran’s eigenvector maps (MEMs) Formerly called principal coordinates of
neighbour matrices, Moran’s eigenvector maps are a more general procedure for
spatial partitioning and modelling.
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Moran’s I statistic A measure of spatial autocorrelation using information from
specified pairs of spatial observations.

MOSITEST Software that tests whether microfossil counts of taxa from two or
more samples are likely to have come from the same population.

MOSLIMIT Software for calculating confidence limits for proportional data.
MRT See multivariate regression tree.
MS See mean squares.
Multicollinearity In regression analysis, the situation in which two or more

explanatory variables are highly correlated, leading to regression coefficients
with high variance.

Multi-frequential periodogram A statistical method for detecting periodic com-
ponents in temporal series with unequally spaced samples. The periodic com-
ponents are detected through the estimation of the corresponding frequencies
in a step-wise procedure. All frequencies are re-estimated at each step and a
significance test is performed at each step. It can determine if a periodicity is
present or absent in portions of the temporal series.

Multifurcations In cluster analysis or phylogeny, a node in a tree that connects
more than three branches.

Multi-layer perceptron A feed-forward artificial neural network model that maps
a set of input data to an output.

Multi-modal A frequency distribution containing more than one mode.
Multinomial distribution A generalisation of the binomial distribution to situa-

tions where r outcomes can occur in each trial, e.g., when there are more than
two classes.

Multinomial logistic regression A generalisation of logistic regression that allows
more than two discrete outcomes.

Multinomial logit regression See multinomial logistic regression.
Multinormal distribution (D multivariate normal distribution) A generalisa-

tion of the univariate normal distribution to higher dimensions.
Multiple additive regression trees (MART) A form of boosted regression tree

involving gradient boosting.
Multiple correlation coefficient The correlation between the observed values of

the response variable in a multiple regression and the values predicted by the
estimated regression coefficient. It is often used as an indicator of how useful the
predictor variables are in predicting the response. Its square gives the proportion
of variance of the response variable that is accounted for by the predictor
variables.

Multiple discriminant analysis An alternative term for canonical variates
analysis.

Multiple regression A method to relate one dependent or response variable to
several independent explanatory or predictor variables.

Multiple simultaneous tests In regression modelling, it is possible to perform
multiple significance tests simultaneously, for example in forward selection
procedures. In such instances, it is important to guard against an increase in the
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probability of a Type I error. To maintain the probability of a Type I error at
some selected value of ’, each of the m tests to be performed is judged against a
significance level of ’/m.

Multivariate adaptive regression spline (MARS) A flexible, non-parametric
regression method.

Multivariate analysis of covariance An extension of analysis of covariance to
include more than one dependent variable.

Multivariate analysis of variance (MANOVA) A procedure for testing the equal-
ity of the mean vectors of more than two groups for a multivariate response
variable. It is directly analogous to analysis of variance of univariate data except
that the groups are compared on all response variables simultaneously.

Multivariate data Data in which an observation is characterised by more than one
independent variable.

Multivariate regression tree A regression tree in which the response is multivari-
ate (e.g., a matrix of biological abundance data).

mvpart R software for multivariate regression trees.
n-fold leave-out cross-validation Similar to leave-one-out cross-validation,

except the data-set is divided into n groups and each group is left-out in turn.
NCAP See non-linear canonical analysis of principal coordinates.
Naı̈ve Bayes classifier A probabilistic classifier that uses Bayes theorem and is the

optimal supervised statistical-learning method if the predictors are independent
(uncorrelated) given the classes. If its assumptions are met, it is guaranteed to
produce the most accurate predictions.

Near infra-red spectroscopy (NIRS) A rapid non-destructive technique for esti-
mating the concentration of chemical constituents of organic materials (e.g.,
carbon, nitrogen, phosphorus, lignin) and for obtaining proxy environmental
data (e.g., lake-water pH, nitrogen, phosphorus, total organic carbon) from lake
sediments or peat.

Negative binomial distribution A mathematical distribution used as a model of
an aggregated or contagiously distributed population in which the presence of
an individual at any given point increases the probability of another individual
occurring nearby and in which the variance is greater than the mean.

Nelder-Mead simplex algorithm A method to find the maximum or minimum of
a function.

Newman-Keuls test A multiple comparison test where the equality of three or
more population means can be simultaneously tested.

NIRS See near infra-red spectroscopy.
NMDS See non-metric multidimensional scaling.
Node impurity An important concept in classification and regression trees as

splits are chosen on the basis of how much they reduce the node impurity of
the resulting tree. For regression trees, residual sum-of-squares about the child
groups or nodes or residual sums of absolute deviations from the child-node
medians are commonly used. There are other measures of node impurity. The
overall node impurity evaluated for all possible splits is the sum of the impurities
of the two groups formed by the split.
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Non-linear canonical analysis of principal coordinates (NCAP) An extension
of CAP that considers intrinsically non-linear relationships between biotic
assemblages (responses) and non-linear environmental (predictor) variables.
It combines canonical ordination of RDA and CAP to a GLM through a link
function and non-linear optimisation procedures as in GLM.

Non-linear deterministic dynamics A mathematical non-linear model in which
all the relationships are fixed and the concept of probability is not involved, so
that a given input produces one exact prediction as an output, in contrast to a
stochastic model.

Non-linear rescaling Used in CA, DCA, and DCCA. Non-linear rescaling of an
ordination axis attempts to equalise the breadth of species response curves along
the axis by means of equalising the within-sample variances of the species scores.

Non-metric multidimensional scaling (NMDS) An ordination or indirect gradi-
ent analysis method in which only the ranks of the dissimilarity or similarity
coefficients are used to produce a low-dimensional representation of the data.

Non-parametric regression A regression in which the predictor effect is assumed
only to be ‘smooth’ rather than of some specific linear or non-linear form as in
GLM. Examples are LOESS (LOWESS) and regression splines.

Normal distribution A bell-shaped curve that is symmetrical about the mean (D
Gaussian curve) representing the distribution of results from a normal sample
population.

Normalised data Data transformed so it approximates a normal distribution.
Normalising transformations Data transformed to zero mean and unit variance

(see standardisation).
NULCONC Software for the statistical analysis of concentration data.
Null hypothesis The hypothesis that no real difference or association exists be-

tween two populations, i.e., that an observed difference is due to chance alone.
The null hypothesis is usually expressed as the converse of the expected results.

Ochiai coefficient A similarity coefficient to quantify the similarity between pairs
of samples using presence/absence data.

Odum distance See Bray-Curtis distance.
OOB See out-of-bag samples.
Optimal splitting zonation method A method of dividing a stratigraphical se-

quence into a desired number of zones (n), without regard to the pattern of splits
into n – 1 zones, based on minimising the sum-of-squares for each value of n.

Ordinate The vertical y axis on a graph.
Ordination A collective term for numerical techniques that attempts to arrange

sites in low-dimensional space based on their species composition (e.g., a data-
set consisting of many sites and species can effectively be summarised by one or
more ordination axes).

Out-of-bag samples (OOB) Samples not selected for a bootstrap sample and used
as a test-set in deriving bagged regression trees and sample-specific errors of
prediction in environmental reconstructions.

Outlier An observation that appears to deviate markedly from the other samples in
which it occurs.
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Over-fitting The fitting of statistical models that contain more unknown parame-
ters than can be justified by the data.

OxCal Software for calibrating radiocarbon dates and analysing archaeological
and palaeoenvironmental chronological information.

packfor R software for forward selection.
PAIRS Software for calculating the confidence intervals for two samples and for

the combined data.
palaeoSig R package to test the significance of environmental reconstructions.
Paleoecological Investigation of Recent Lake Acidification (PIRLA) A co-ord-

dinated study in North America to assess the extent, timing, and causes of recent
lake acidification. It consisted of two projects PIRLA I and PIRLA II and ran
from the mid 1980s to the mid 1990s.

paleoMAS R package for palaeoecological data analysis.
paleoNet R package for artificial neural networks in palaeolimnology.
PaleoToolBox R package for palaeoenvironmental reconstructions.
Palmer drought severity index A standardised drought index based on time-

series data including precipitation, air temperature, and soil moisture.
paltran R package for palaeoenvironmental reconstructions.
PALYHELP A software package including the programs COMBINE, CON-

CENTR, MOSITEST, MOSLIMIT, and PAIRS.
Parsimony A general principle in statistics that among competing models, all

of which provide an adequate fit for a set of data, the model with the fewest
parameters is to be preferred.

Partial constrained (or canonical) ordination Constrained ordination (e.g.,
CCA, RDA) in which the statistical effects of some environmental variables,
referred to as covariables, are removed or ‘partialled out’.

Partial least squares (PLS) A statistical technique related to principal compo-
nents regression (PCR), but whereas PCR finds latent variables that maximise
variance in a set of explanatory variables X, and uses these as predictors of Y in
a separate multiple regression, PLS directly maximises the covariance between
X and Y, and finds latent variables that are often more efficient in predicting Y.
It is often used in multivariate calibration where there is multicollinearity in the
predictor variables.

Partial ordination Unconstrained ordination (e.g., PCA, CA, DCA) in which the
statistical effects of some environmental variables, referred to as covariables, are
removed or ‘partialled out’.

Partialling out Performing partial ordination or partial constrained or canonical
ordination.

Partitioning Dividing a set of samples into a series of non-overlapping groups.
Starting with all samples and progressively dividing them according to some
specified mathematical criterion.

PC-ORD Software for the analysis of ecological data including ordination and
clustering techniques.

PCA See principal component analysis.
PCNM See principal coordinates of neighbour matrices.
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PCNM R software for computing principal coordinates of neighbour matrices or
Moran’s eigenvectore maps.

PCoA See principal coordinate analysis.
PCR See principal components regression.
Pearson chi-square statistic A simple goodness-of-fit test which is the sum of a

set of terms, each term being the quotient of the squared difference between an
observed frequency and the corresponding expected frequency divided by the
expected frequency.

Pearson’s product-moment coefficient or Pearson’s r linear correlation coeffi-
cient A measure of the strength of the linear relationship between two variables
which can take on the values from �1.0 to C1.0, where �1.0 is a perfect
negative (inverse) correlation, 0.0 is no correlation, and C1.0 is a perfect positive
correlation.

Peeled hull Also known as convex-hull trimming. A procedure that can be applied
to a set of bivariate data to allow robust estimation of Pearson’s product-moment
correlation coefficient. The points defining the convex hull of the observations
are deleted before calculating the correlation coefficients. It eliminates isolated
outliers without disturbing the general bivariate relationship.

Percentile A division in a cumulative frequency graph. The 50th percentile is
equivalent to the median.

PeriodMod Software available from Pierre Dutilleul for multi-frequential peri-
odogram analysis (MFPA).

Periodogram A graphical representation of the results of a harmonic or spectral
analysis that determines the period of the cyclical terms in a time series.

Permutation test A simple type of hypothesis test where the observed data values
are randomly redistributed amongst the experimental units. A test statistic is
calculated for each redistribution and its significance is determined by the
proportion of permutations that lead to values greater than or equal to it. All
possible permutations can be made or a random selection used.

Phonolite A fine-grained igneous rock containing little silica.
Phylogenetic Pertaining to evolutionary relationships within and between groups.
Pie-chart Graphical method for displaying the relative frequencies of a categorical

variable, consisting of a circle sub-divided into sectors, with each sector propor-
tional to the percentage they represent.

Piece-wise regression A regression procedure where ‘broken stick’ models with
two or more lines are fitted at unknown point(s) (so-called break-points) repre-
senting abrupt change in the data-set of interest.

PIRLA See Paleoecological Investigation of Recent Lake Acidification.
Plinian eruption A violent volcanic eruption where gas and ash extend into the

stratosphere and the ejection of large amounts of pumice.
Point estimate The value of an estimated parameter for a particular sample.
Poisson distribution A probability distribution used to model events which have

a discrete number of outcomes (i.e., counted as integers) and in which the
probability of occurrence reduces as the integer count of the event increases (e.g.,
biological count data). A model of randomly distributed populations in which
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the presence of an individual at any given point does not alter the probability of
another individual occurring nearby and in which the variance is approximately
equal to the mean.

Poisson process Description of a situation where events occur randomly in time
or space in such a way that for each small interval of time or region of space,
the probability that it contains exactly one event is proportional to the size of the
interval or region.

PolPal Software for constrained single-link cluster analysis.
Polynomial function A function of x in which x is raised to the power of one or

more non-negative integers.
Polynomial regression A form of linear regression in which the relationship

between the independent variable x and the dependent variable y is modelled
as an nth order polynomial.

Polynomial RDACCA Software package for polynomial redundancy analysis and
canonical correspondence analysis. Available from Pierre Legendre.

Polythetic divisive procedure A method of cluster analysis that begins with all
objects in a single group and sequentially divides the groups until all groups
contain a single object or a stopping criterion is reached. Polythetic methods use
a combination of attributes that are used to define the divisions at each stage,
whereas monothetic methods use a single attribute.

Power function A function of the form f (x) D cxa, where c and a are constant real
numbers and x is a variable.

Power spectral analysis Analysis of the frequencies and periodicities in time-
series data.

Power spectrum In time-series analysis, a function that defines the amount of
‘power’ or contribution to the total variance of the series made by particular
frequencies.

PRC See principal response curves.
PrCoord Software for principal coordinates analysis distributed with the

CANOCO and CanoDraw package.
Precision The closeness of repeated measurements of the same quantity.
Predictor variable A variable on which the response variable is assumed to be

dependent. Also called an explanatory or independent variable.
Press experiment An experiment that measures the resistance of a system to an

experimental treatment.
primer Software for similarity percentage tests (SIMPER) and other multivariate

techniques. Widely used in marine ecology.
Principal component analysis (PCA) An ordination method for indirect gradient

analysis that finds the best-fitting linear combination of variables (latent vari-
ables) to minimise the total residual sum-of-squares and finds subsequent linear
combinations that are uncorrelated to previous combinations. It assumes a linear
species response model to these latent variables. In the process it transforms
original variables in the multivariate data into new composite variables that are
uncorrelated and account for decreasing proportions of the variance of the data.
The main aim of the method is to reduce the dimensionality of the data and to
find the latent variables.
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Principal components regression (PCR) A statistical technique for multivariate
calibration that addresses the problem of multicollinearity among the predictor
variables by summarising these in a small number of principal components and
using these components as predictors in a multiple regression.

Principal coordinate analysis (PCoA) An ordination method for indirect gradient
analysis in which the required coordinate values for the axes are found from
the eigenvectors of a matrix of inner products of any dissimilarity or similarity
coefficient. The object points are mapped onto the resulting low-dimensional
ordination space so that the distances between the objects are as close as possible
to the original dissimilarity (D distance) or transformed similarity. Also known
as classical or metric scaling.

Principal coordinates of neighbour matrices (PCNM) An ordination method
for exploring patterns in ecological or other data at multiple spatial scales.

Principal curves A generalisation of principal component analysis that fits
smooth, one-dimension curves that pass through the middle of the data-set,
providing a non-linear summary of the data.

Principal response curves (PRC) A multivariate method for the analysis of re-
peated measurement designs that tests and displays treatment effects across
time in experimental or monitoring studies. It is based on redundancy analysis
(D reduced rank regression) that is adjusted for changes across time in the control
treatment or control site. In some instances, space can be substituted for time in
ecological and limnological studies. It focuses on the time-dependent (or space-
dependent) effects.

Probability density See density function.
Probability function See density function.
Procrustes analysis A method of comparing alternative geometrical ordination

representations or solutions of a set of multivariate data. The two solutions
are compared using a residual sum-of-squares criterion which is minimised by
allowing the co-ordinates corresponding to one solution to be rotated, reflected,
and translated relative to the other.

Proportional-link agglomerative clustering A clustering algorithm, also known
as intermediate linkage clustering, where the fusion criterion of an object or a
cluster with another cluster is considered satisfied when a given proportion of
the total possible number of similarity links is reached.

PROTEST Software for Procrustes analysis with associated permutation tests to
assess the statistical significance of the Procrustes goodness-of-fit statistic.

PSIMPOLL Software to plot and analyse pollen stratigraphical data.
Pseudospecies See conjoint coding.
Pulse experiment An experiment that measures the resilience of a system to an

experimental treatment.
Q-mode factor analysis A type of principal components analysis based on dis-

tances between observations rather than relationships between variables. Often
includes a varimax rotation of the axes to so-called ‘simple structure’.

Quadratic A function of predictor variables in a regression model where the
variable xi is combined with xi

2.
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Quadratic reduced-rank vector-based generalised linear and additive models
Vector-based generalised linear and additive models include all known
generalised linear and additive models and thus are very general and includes
as many distributions and models as possible. The introduction of reduced-rank
regression allows for dimension reduction and the use of quadratic terms extends
the approach to model Gaussian unimodal species responses.

Qualitative variable A nominal or categorical variable.
Quantile-quantile plot A plot for comparing two probability distributions, where

the coordinates are the quantiles for different values of the cumulative proba-
bilities. Quantiles are values that divide a frequency distribution or probability
distribution into equal ordered subgroups such as quartiles or percentiles.

Quantile regression A type of regression analysis in which the result estimates the
median or other quantile of the response, rather than the mean as in least-squares
regression.

Quartiles The values that divide a frequency distribution or a probability distribu-
tion into four equal parts.

R Package A software package for multivariate and spatial analysis created by
Casgrain and Legendre in 1984 that is distinct from the free software environ-
ment R and its associated packages and libraries (http://www.bio.umontreal.ca/
casgrain/en/labo/R/index.html)

R software R is a free software environment for statistical computing and graphics.
It is a collection of user-generated code that enhances R with specialised
statistical techniques and graphics, import/export capabilities, etc. (hhtp://www.
r-project.org)

R2 or r2 See coefficient of determination.
Radj

2 or radj
2 or Ra

2 See adjusted coefficient of determination.
RAM See revised analogue method.
RAM98 Software for the revised analogue method (RAM).
Rand index An index that measures the similarity between two data clusterings.
Random error A deviation for which the magnitude and direction cannot be

predicted.
Random forest In statistical learning, a classifier whose prediction is based on the

modal value of an ensemble of decision trees. The method combines the idea of
bagging and random feature selection.

Randomisation t-test A statistical test for assessing the significance of compo-
nents in PLS and related models.

Range The numerical difference between the largest and the smallest values for a
variable in a data-set.

Ranging A transformation of quantitative data where the data values for a variable
first have the minimum value of the variable subtracted from the observed values
and are then divided by the range of the values for the variable of interest (for
interval-scale variables such as temperature in ıC). For relative-scale variables
such as calcium concentrations, the transformation is simply division of the
observed values by their maximum value.

RARECEP Software for reformatting data for use in the program RAREPOLL.

http://www.bio.umontreal.ca/casgrain/en/labo/R/index.html
http://www.bio.umontreal.ca/casgrain/en/labo/R/index.html
hhtp://www.r-project.org
hhtp://www.r-project.org
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Rarefaction A means of standardising assemblage samples for estimating taxo-
nomic richness to a common sample size and for estimating the number of taxa
that would be expected in samples if all the samples had the same count size.

RAREFORM Software for reformatting data for use in the program RAREPOLL.
RAREPOLL Software for performing rarefaction analysis of ecological and

palaeoecological data.
Rate-of-change analysis A method for estimating the rate of compositional

change in stratigraphical assemblage data. Compositional dissimilarity between
adjacent pairs of samples is calculated and this is standardised to units of
dissimilarity or difference per unit time.

RDA See redundancy analysis.
Realised niche That part of the fundamental niche actually occupied by a species

in the presence of other species.
Receiver operating characteristic (ROC) curve A graphical plot of the sensitiv-

ity (true positive rate) of a test versus one minus the specificity (false positive
rate). It is often used for choosing between competing tests.

Recursive partitioning regression Synonym for classification and regression
trees (CART).

REDFIT Software for estimating red-noise spectra directly from unevenly spaced
time series.

Reduced rank multivariate regression A way of constraining the multivariate
linear regression model so that the rank of the matrix of regression coefficients is
less than full. This constraint allows such models to be applied to data-sets with
more variables than observations.

Redundancy analysis (RDA) A constrained ordination technique based on prin-
cipal component analysis in which the ordination axes are constrained to be
linear combinations of the environmental variables. Being based on principal
component analysis, it assumes a linear species-environment response model.
Also known as reduced-rank regression.

Regression (i) A statistical technique that describes the dependence of one vari-
able on another (cf. correlation, which assesses the relationship between two
variables); (ii) When used in the context of training-sets, the ‘regression’ step
refers to the estimation of species parameters (e.g., optima, tolerance) from the
species abundances in the training-set; (iii) Retreat of the sea from a land area.

Regression tree See classification and regression trees.
Relative neighbourhood graph In computational geometry, a triangulation of a

set of points in two dimensions.
Repeatability An estimate of the precision of replicate measurements performed

on independent samples of the substance of interest by the same analyst, the
same equipment, using the same conditions of use, at the same location, and over
a short period of time.

Reproducibility The precision of measurements performed on subsamples of the
substance of interest by the same method but under changing conditions such as
with different analysts and equipment, at a different location, or at a different
time.
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Resemblance coefficient In ecology, another name for similarity coefficient.
Residual The difference between the observed value and the value fitted or

predicted by some model of interest.
Residual sum-of-squares (RSS) The sum of the squared residuals, a measure of

the difference between the data and a fitted model.
Residual sums of absolute deviations (RSAD) The sum of the absolute values of

residuals in a fitted model. This value is minimised in some forms of robust
regression.

Residual variation Variation in a response not accounted for by a fitted model.
Resilience The ability of a system to recover to its original equilibrium or stable

state following a perturbation or disturbance.
Resistance The ability of a system to remain unaffected by a perturbation or

disturbance.
Response variable A variable that is presumed to be dependent on one or more

other variables (called predictor or explanatory variables). Also known as
dependent variable.

Restricted permutation tests A type of permutation test in which the range of
possible permutations is restricted to take account of any spatial, temporal,
or other structure in the data that results when observations are not sampled
randomly and independently from one another.

Reversal Reversals in the order of fusion in a dendrogram can occur in certain
clustering methods involving an unweighted centroid or weighted centroid
algorithm. A reversal may be interpreted as nearly equivalent to a trichotomy
in the hierarchical dendrogram.

Reverse-engineering algorithms Techniques in data-mining that help to uncover
the functional form of relationships among correlated variables.

Revised analogue method A variant of the modern analogue technique that uses
gridded interpolated assemblages in addition to the original training-set samples.

Ridge regression A regression method designed to overcome the problem of
multicollinearity among the explanatory variables.

rioja An R package for the analysis of Quaternary science data.
RLQ analysis A special numerical technique that can simultaneously link the three

matrices of palaeoenvironmental data (R), species traits (Q), and fossil data (L).
RMSE See root mean squared error.
RMSEP See root mean squared error of prediction.
ROC See receiver operating characteristic curve.
ROCKIT Software for receiver operating characteristic curve estimation.
Root mean squared error (RMSE) The square root of the sum of the differences

between the observed and estimated values for a variable squared and divided by
the number of objects. The square root of the mean squared error.

Root mean squared error of prediction (RMSEP) The root mean squared error
derived under cross-validation or using an independent test data-set.

rpart Package using R software for fitting classification trees.
RSAD See residual sums of absolute deviations.
RSS See residual sum-of-squares.
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Rug-plot A tool for displaying graphically a sample of values on a continuous
variable by indicating their position on a horizontal line.

Running mean A method of smoothing a time series to reduce the effects of
random variation and to reveal any underlying trend or seasonality. Weights can
be used in the averaging.

S-PLUS Software package for statistical data analysis and graphical display with
several add-on functions and libraries and programming facilities.

SAS Software package for statistical data analysis and graphical display (Statisti-
cal Analysis System).

Scaling (i) A general term for a low-dimensional geometric representation of
multivariate data (e.g., by PCA, CA, NMDS, PCoA), (ii) Scatter or ordination
plots can be drawn using different combinations of the matrix scalings used in
the computations of, for example, CA, PCA, RDA, and CCA.

Scatter-plot A graph plotting pairs of values as points with the ability to incorpo-
rate other categorical variables by changing the shape or colour of the points.

Schuster’s periodogram Uni-frequential periodogram used in time-series analy-
sis. Schuster’s test is available for assessing non-zero periodic ordinates in a
periodogram.

Schwartz’s criterion Equivalent to the Bayesian information criterion (BIC).
Self-organising map (SOM) A type of artificial neural network for unsupervised

machine learning that is trained to produce a low-dimensional representation of
the input variables.

Sensitivity A statistical measure of the performance of a binary classifier that
measures the proportion of true positives which are correctly identified.

Separability A problem that can arise in logistic regression and modern analogues
when there is no overlap in the dissimilarity for analogues (1) and non-analogues
(0). This problem arises when the regression model does too good a job and
perfect predictions can be made. In such circumstances the maximum-likelihood
estimates of the regression coefficients may not exist or be subject to large
uncertainties.

Sequence slotting A numerical procedure for correlating two or more stratigraph-
ical sequences by identifying common patterns in a set of variables that allows
sequences to be combined, or slotted together, into a single sequence.

Sequence splitting A numerical procedure for making independent splits in the
records of individual variables in a stratigraphical sequence. The approach
involves first distinguishing effectively non-zero parts of the sequences for zero
portions, and then further splitting the non-zero sequences quantitatively using a
maximum likelihood method.

Serial correlation See autocorrelation.
SHEFFPOLL Software for agglomerative zonation of stratigraphical data using

total within group sum-of-squares or information content.
Shrinkage The phenomenon that can occur when a regression from, for example,

a multiple regression, is applied to a new data-set in which the model predicts
much less well than in the original sample. In particular, the value of the multiple
correlation coefficient becomes less, i.e., it ‘shrinks’.
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Significance of zero crossing of the derivative (SiZer) A graphical tool for use
in association with smoothing methods in the analysis of temporal series that
helps to answer which observed features are ‘real’ as opposed to being spurious
sampling artefacts.

Significant non-stationarities Stationarity is a term applied to time-series or
spatial data to describe their equilibrium behaviour. The key aspect of stationarity
is the invariance of their joint to a common translation in time or space. Non-
stationarity is the absence of stationarity and significant non-stationarity is of
sufficient extent that it can be the result of stochastic processes.

simba R package for dissimilarity coefficients, diversity indices, and permutation
tests.

SIMCA See soft modelling of class analogy.
Similarity coefficient or function or index An index used to quantify the similar-

ity of two observations in terms of a number of attributes or character states.
Similarity matrix A square matrix containing similarity measures, taken pair-

wise, among a set of observations.
Similarity percentage test (SIMPER) A method for assessing which taxa are

responsible for observed differences between groups of samples.
SIMMAX A variation of the modern analogue technique that inversely weights

modern analogues according to their geographical distance from the fossil
samples.

SIMMAX Software to implement the SIMMAX variation of the modern analogue
technique.

SIMPER See similarity percentage test.
Single-factor analysis of variance This is the simplest form of analysis of vari-

ance (ANOVA). The groups of samples are classified by only a single criterion.
Also known as single classification analysis of variance.

Single-link agglomerative clustering A method to group multivariate data into
clusters where the distance between two clusters is defined as the least distance
between an item in one cluster and an item in the other cluster.

Singular value decomposition A method of matrix decomposition into eigenval-
ues and eigenvectors that underlies a number of multivariate methods (e.g., PCA,
CA).

SiNos See significant non-stationarities.
SiZer See significance of zero crossings of the derivative.
Skeletonisation procedure A pruning algorithm for artificial neural networks

where variables are progressively removed in an attempt to simplify the model
and to minimise over-fitting without drastically affecting model performance. It
is analogous to backward-elimination in regression modelling.

Skewness The lack of symmetry in a probability or frequency distribution. A
distribution is said to have positive skewness when it has a long tail to the right
and to have negative skewness when it has a long tail to the left.

Smoothing The averaging of data in time or space to compensate for random errors
or variations on a scale smaller than that presumed significant to a given problem.

Smoothing spline A curve consisting of a sequence of cubic polynomials with no
discontinuities drawn through a set of data.
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Snipping An iterative procedure in data-mining to modify and test underlying
dynamic non-linear functions in data-rich time-series.

Soft independent modelling of class analogy (SIMCA) A battery of techniques
developed in chemometrics consisting of four levels. Level 1 is devoted to
developing mathematical rules for each of a number of pre-set groups (called
classes in SIMCA) in a training-set by fitting separate PCA models to each of
them. Level 2, the prediction phase, uses these rules to assign new observations
to any of the classes. Levels 3 and 4 implement quantitative predictions of one or
several variables through PLS. In level 3 the predictions are for one variable, in
level 4 the predictions are for two or more variables.

Softmax function In artificial neural networks, a function that calculates a layer’s
output from the inputs.

SOM See self-organising map.
Sørensen coefficient of similarity (Sørensen’s index) In ecology, an index used

to quantify the similarity of two samples.
spacemakeR Software in R for computing PCNM and MEM spatial eigenfunc-

tions.
SpaceMaker2 Stand-alone package to compute PCNM eigenfunctions. Available

from Pierre Legendre.
Span The proportion of a set of observations used in LOESS (D LOWESS) in

which a locally weighted regression is fitted as part of deriving LOESS curves.
Spatial autocorrelation The correlation of a variable with itself through space.

Positive spatial autocorrelation violates the assumption that the values of obser-
vations in each sample are independent and may invalidate some statistical tests.

Spatial contiguity A constraint imposed on spatially distributed data derived
from the spatial connections between neighbouring points on a regular grid or
irregularly-spaced points.

Spatial contiguity matrix A matrix depicting the spatial contiguities of objects,
with 1 representing the spatial contiguity between two neighbouring objects and
0 representing the lack of spatial contiguity between two objects.

Spatial eigenfunctions Functions of the geographical co-ordinates of a set of
objects derived from a principal coordinates analysis of neighbour matrices.
These spatial eigenfunctions represent a spectral decomposition of the spatial
relationships among the objects.

Spearman’s (rank coefficient) rho A non-parametric correlation coefficient
based on ranks that is used to measure the association between two variables. It
is equivalent to Pearson’s product-moment correlation coefficient between the
rankings of the two variables.

Species loading Value of a taxon on a PCA or RDA ordination axis. It is an
eigenvector coefficient. The comparable entity in CA, DCA, CCA, or DCCA
is the centre of the taxon curve.

Species optimum The value of an environmental variable where a species reaches
its maximum abundance. Often calculated as the mean of environmental values
across sites where a species occurs, weighted by the species abundance at each
site.
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Species tolerance The range of a species around its optimum. Often calculated as
the standard deviation of environmental values across sites where the species
occurs, weighted by the abundance of the species at each site.

Specificitiy Used in indicator species analysis to estimate the extent that a species
is only found in a particular group or cluster.

Spectral density The population counterpart of a periodogram which is a graphical
tool in time-series analysis where the time series is decomposed into an
infinite number of periodic components. Estimates of the contributions of these
components in certain ranges of frequency are termed the spectrum of the series.

SPECTRUM Software for spectral analysis of time-series data with unequally
spaced observations in time that uses the Welch-Overlapping-Segment-Averaging
method.

Spiked samples Samples in which a known concentration of an analyte has been
added for calibration purposes.

Spline A smoothly joined piecewise polynomial.
SPLITLSQ Method for constrained binary divisive partitioning using the sum-of-

squares criterion. Also name of earlier software to implement the method.
SPSS Statistical Package for the Social Sciences.
SqRL See squared residual length.
Squared chord distance A simple measure of dissimilarity used, for example, to

assess floristic dissimilarity between diatom samples.
Squared residual length (SqRL) The distance squared between an observed

value and the predicted value of a variable or sample in a statistical model.
Least-squares estimation attempts to minimise these distances.

Stable state Remaining unaltered for an extended period of time.
Standard deviation The most commonly used measure of the spread of a set of

observations. It is equal to the square root of the variance.
Standard error The standard deviation of the sampling distribution of a statistic.

The standard error of the mean of n observations is ¢ /
p

n where ¢2 is the variance
of the original observation.

Standard scores See z-scores.
Standardisation Converting a random variable or data-set into another variable

with mean of 0 and variance of 1.
Standardised residual A residual divided by an estimate of its standard deviation.
Stationarity When the expected value at all time points in a time-series is the same

and the correlation between two values depends only on the lag.
Statistical learning A general term applied to supervised and unsupervised

machine learning for problems of data mining, inference, and prediction.
stats R package which has a function to implement Ward’s agglomerative cluster-

ing and to calculate a range of dissimilarity coefficients.
Steinhaus distance See Bray-Curtis distance.
Stochastic process In probability theory, a series of random variables, indexed, for

example, against time. More generally, a process involving chance.
Stratigraphically constrained cluster analysis A type of cluster analysis in which

groups are constrained to consist of stratigraphically adjacent observations.
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Student’s t distribution An estimation of the deviation from the mean for values
in a small data-set.

Sturges’ formula A rule for calculating the appropriate number of classes or bins
to use in the construction of a histogram.

Supervised classification The process of deriving a classification function or rule
from a training data-set in which group membership is known a priori. The
function can then be used to classify unknown objects.

Supervised learning In machine learning, the task of inferring a function or set of
rules from a training data-set.

Support vector machine In a set of supervised learning methods, related to
artificial neural networks, for solving regression and classification problems.

Surface Waters Acidification Programme (SWAP) An international research
programme in the late 1980s and early 1990s designed to establish the cause and
timing of recent lake acidification in Norway, Sweden, and Britain.

SWAP See Surface Waters Acidification Programme.
SYN-TAX A general purpose program for the analysis of ecological and taxonomic

data.
Synthetic variables See latent variables.
Systematic error A bias in the measurement of a variable such that the mean of

many separate measurements differs significantly from the actual values.
t-test A method to determine the significance of the difference between two means

when the samples are small and drawn from a normally distributed population
with an unknown standard deviation. Common versions test whether the mean
of a single population takes a specific value, or whether the means of two
populations have the same value.

Tanimoto distance See Jaccard distance.
Taphonomic process A process that affects an organism after death.
tb-PCA See transformation-based principal component analysis.
tb-RDA See transformation-based redundancy analysis.
Tephra Volcanic ash.
TESS See total error sum-of-squares.
TGView Software for plotting pollen and other biostratigraphical diagrams.
TILIA Software for manipulating and plotting pollen and other biostratigraphical

data.
TILIA-GRAPH Software for the plotting of stratigraphical diagrams. Now su-

perceded by TILIA for Windows.
Time-series A series of observations over a long period of time, usually at regular

intervals, of a random variable. The observed movement and fluctuations of
many such series consist of four components – secular trend, seasonal variation,
cyclical variation, and irregular variation.

Time-warp analysis A method for correcting for small shifts in two data-series,
for example mass chromatograms. Small shifts in peak positions may occur
because of external factors such as pH. Correction of such shifts is known
as time-warping that originated in speech processing. It is widely used in
chemometrics and biological dynamics.
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Tolerance In community ecology, the range of an environmental variable which
an organism or population can survive or one standard deviation of a Gaussian
unimodal response model estimated by Gaussian logistic regression or as a
weighted standard deviation estimated by weighted averaging regression.

Tolerance down-weighting In weighted averaging, the process of down-weighting
taxa with large tolerances, based on the assumption that those with narrow
tolerances are better environmental indicators.

Total discordance Used in core correlation by sequence slotting. It is the sum of
the distances between consecutive samples in the pooled sequence created by
sequence slotting. Synonymous with combined path length.

Total error sum-of-squares The sum of squared distances of each object to its
cluster centre. Used in cluster analysis as a measure of the tightness of the
clusters.

Training-set A data-set used to develop a predictive regression or classification
model.

Trait analysis Analysis of characters or properties of organisms (e.g., body size,
reproductive mode, fecundity).

Transformation A numerical change applied to a variable to simplify the analysis
or to meet assumptions of a statistical test.

Transformation-based principal component analysis (tb-PCA) A principal co-
mponent analysis (PCA) with prior transformation of the input-data to yield
an ordination based on e.g., chord or chi-square distance rather than Euclidean
distance.

Transformation-based redundancy analysis (tb-RDA) A redundancy analysis
(RDA) with prior transformation of the input data to yield an ordination based
on a distance e.g., chord or chi-square distance other than Euclidean distance.

Transformed data Data that have been transformed to aid analysis.
Tree complexity A tuning parameter in boosting that affects the learning rate re-

quired to yield a large ensemble of trees and determines the types of interactions
that can be fitted by the final model.

Triangle inequality A property of dissimilarity or distance measures (D) between
objects a and b, namely D (a, b) C (b, c) � D (a C c). The sum of two sides of a
triangle drawn in Euclidean space is necessarily equal to or larger than the third
side.

Triplot An ordination diagram with three kinds of entities of which all pairs
can form biplots. Examples are RDA and CCA triplots that consist of sample,
species, and environmental variables. Sometimes called erroneously biplots.

True negative fraction A measure of performance of a receiver operating charac-
teristic (ROC) curve used in modern analogue matching. Known as specificity,
it is the proportion of true non-analogues out of all non-analogues for the same
critical value of the chosen dissimilarity measure’s critical threshold.

True positive fraction Also known as sensitivity in receiver operating character-
istic (ROC) curves in modern analogue matching. It is the proportion of true
analogues out of all analogues for a given critical value of the dissimilarity
coefficient used.
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Trueness A measure of whether the average of replicate measurements accurately
reflects the true value of a measurand.

Tukey test Usually refers to Tukey’s HSD (honest significant difference) test, a
multiple comparison test usually used in conjunction with ANOVA to determine
which means are significantly different from one another.

Turbidites Sediments deposited by currents containing a slurry of sediment and
water.

Turnover The fraction of an assemblage that is exchanged or lost per unit time or
per unit of an environmental variable or gradient.

TWINSPAN See two-way indicator species analysis.
TWINSPAN MS-DOS software to implement TWINSPAN (two-way indicator

species analysis).
Two-way indicator species analysis A method for partitioning large data-sets of

assemblages into groups using the first correspondence analysis axis as a basis
for division. The algorithm continues to produce 2, 4, 8, 16, etc. groups unless a
resulting group is too small to justify further division. Species are then grouped
on the basis of their indicator value in relation to the groups of samples.

Two-way weighted averaging (regression and classification) Given a data-set of
species abundances and environmental values, the process of applying weighted
averaging twice, first in a regression step to estimate species scores, or optima,
and second, in a calibration step, to estimate sample scores or environmental
estimates from the species scores.

Type I error The rejection of a null hypothesis when it is true and should have
been accepted.

Type II error The acceptance of a null hypothesis when it is false and should have
been rejected.

UKAWMN See United Kingdom Acid Waters Monitoring Network.
Uni-frequential peridogram See Schuster’s periodogram.
Uniformitarianism principle The concept that processes that operate in the

present also operated in the past and produced the same results.
Unimodal response The expected non-linear response of a biological species to

an environmental variable along an environmental gradient. The abundance of a
species is expected to be at its maximum at the centre of its range.

United Kingdom Acid Waters Monitoring Network (UKAWMN) A monitor-
ing scheme of 23 sites in the UK involving epilithic diatoms, aquatic
macrophytes, aquatic invertebrates, and water chemistry. It has run for 20 years
and is co-ordinated by University College London.

Univariate data Data involving a single quantity measured on a set of observa-
tions.

Unsupervised classification A clustering or partitioning technique that involves
some form of cluster analysis. It is used in situations when there is little or no a
priori information about group structure within the data.

Unsupervised learning In machine or statistical learning, the problem of finding
structure or pattern in a data-set without a priori information. Approaches to
unsupervised learning include clustering and indirect ordination.
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Unweighted arithmetic average clustering See unweighted pair-group method
using arithmetic averages.

Unweighted centroid clustering (UPGMC) A clustering algorithm that fuses
groups on the basis of the distance between the centroids of each group.

Unweighted pair-group method using arithmetic averages (UPGMA) A clus-
tering algorithm that fuses groups on the basis of the mean distance between
objects in each group.

UPGMA See unweighted pair-group method using arithmetic averages.
UPGMC See unweighted centroid clustering.
Variable-barriers approach A method for zonation of stratigraphical data that

allows for the delimitation of clearly defined zones and variable transitional
periods.

Variance A measure of the variability in the values of a random variable. It is
estimated by the squared difference between the variable and its mean.

Variance inflation factor (VIF) An indicator of the effect other predictor values
have on the variance of a regression coefficient of a particular predictor. It is the
reciprocal of the square of the multiple correlation coefficient of the variable with
the other variables.

Variance-covariance matrix A square symmetrical matrix in which the elements
on the main diagonal are variances and the remaining elements are covariances.

Variation partitioning analysis The partitioning of the variation in a data-set into
the variation uniquely explained, in a statistical sense, by two or more sets
of predictor variables, into the covariance between variable sets, and into the
unexplained component. It most commonly uses (partial) CCA or (partial) RDA.

Varve A pair of contrasting sediment laminae representing accumulation during
two seasons of a single year (e.g., typically a light summer layer and a dark
winter one).

vegan An R package for the analysis of community ecology data.
VIF See variance inflation factor.
VPA See variation partitioning analysis.
WA See weighted averaging.
WACALIB Software for weighted-averaging regression and calibration, with boot-

strap sample-specific error estimation.
WAPLS See weighted-averaging partial least squares. Also DOS software for

weighted-averaging partial least squares regression and calibration and estima-
tion of sample-specific errors.

Ward’s agglomerative clustering See minimum-variance clustering.
Weighted arithmetic average clustering See weighted pair-group method using

arithmetic averages.
Weighted average An average that attaches greater importance (adds weight) to

some observations than others.
Weighted averaging (WA) A technique used to estimate either (i) the optimum of

a taxon (weighted-averaging regression) based on measured values of environ-
mental variables from the lakes in a training-set, where the weight is proportional
to the species abundance; or (ii) an environmental variable from the species
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composition of a sample, based on estimates of species parameters (optima) from
a training-set, where species are weighted relative to their abundance (weighted-
averaging calibration).

Weighted-averaging partial least squares (WAPLS) An extension of weighted-
averaging regression where partial least squares regression is used to find
components within the modern assemblage data that will maximise the covari-
ance between the species’ weighted averages and the environmental variable of
interest. It uses residual structure in the species data to improve the estimates
of the species’ parameters in the final prediction model. A WAPLS first
component is the same as a two-way weighted averaging model that uses an
inverse deshrinking regression. Prediction or reconstruction (calibration) of an
environmental variable from a fossil assemblage is done by weighted averaging
of the species’ parameters, as in weighted averaging calibration.

Weighted centroid clustering (WPGMC) A clustering algorithm that fuses
groups on the basis of the distance between the centroids of each group, weighted
by group size.

Weighted mean See weighted average.
Weighted pair-group method using arithmetic averages (WPGMA) A cluster-

ing algorithm that fuses groups on the basis of the mean distance between objects
in each group, weighted by group size.

Welch overlapping segment averaging (WOSA) (Welch’s method) A method
for estimating the power spectrum of a time-series based on averaging the
periodograms derived from overlapping segments of the original series.

Wiggle-matching A way of aligning two curves by comparing the overall shape of
each curve.

WinTWINS TWINSPAN for Windows® computer program.
WOSA See Welch overlapping segment averaging.
WPGMA See weighted pair-group method using arithmetic averages.
WPGMC See weighted centroid clustering.
WynKyst Software for non-metric multidimensional scaling distributed witht eh

CANOCO and CanoDraw package.
X-Y fused Kohonen network A type of supervised Kohonen network in which the

input and output maps are linked by a fused similarity map.
z-scores Variable values transformed to zero mean and unit variance. Also known

as standard scores.
Zonation The distribution of organisms in distinctive areas or the process of

partitioning a temporally or spatially ordered sequence of observations into
groups or zones of similar character.

Zone A geographical or stratigraphical area or subdivision that has a cohesive
character.

Zone MS-DOS zonation software developed by Steve Juggins that also runs
under Windows® that combines CONSLINK, CONISS, binary splitting by least-
squares and information content, optimal splitting by least-squares, and the
variable barriers approach. Available from Stephen Juggins.
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Analytical chemistry, 143–146, 161
Analytical errors, 437
Analytical phase, 644
Analytical quality control, 158, 435, 460
ANCOVA. See Analysis of covariance
Anhydrite, 146
ANN. See Artificial neural networks
ANOSIM. See Analysis of similarities
ANOVA. See Analysis of variance
Anoxia, 561
Anoxic hypolimnion, 562, 588, 593
Anthropogenic acidification, 598–599
Anthropogenic forcing factors, 558
Anthropogenic perturbations, 561
Apparent bias, 147
Apparent cross-validation, 256–257, 262
Apparent error rate, 258, 261, 266, 293
Apparent statistics, 460, 497
Applied ecology, 650
Aquatic ecology, 225, 653
Aquatic-ecosystem managers, 500
Aquatic ecotones, 634
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Aridity, 627, 629
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Assignment, 25–26, 63, 104, 497, 510
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response model
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Atmospheric 14C, 381, 385
Atmospheric carbon, 385
Atmospheric contamination, 552
Atmospheric deposition, 603, 652
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Autochthonous sediment components, 5, 552
Autocorrelation, 526, 528, 535–537, 603
Autocorrelation coefficient, 73, 342, 526–527,
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Autocorrelogram, 73, 75, 77, 344, 523–548
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Autogenic stress, 558, 561
Automated identification, 31
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Average bias. See Mean bias
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Back-propagation network, 63, 282, 284, 449
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values, 464
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Basin fluxes, 416
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43, 52, 68, 308, 311, 646
Bayes theorem, 295, 452, 655–656
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401–407
Bayesian approaches, 10, 68, 70, 335,

401–402, 404, 407–408, 452–453, 483
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Bayesian belief networks. See Bayesian
networks
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approximate, 656

Bayesian data integration, 657
Bayesian decision networks, 252
Bayesian hierarchical model, 453, 657
Bayesian inference, 553, 643, 646, 654–657
Bayesian inference in environmental

reconstruction, 656–657
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biases, 657
limitations, 657

Bayesian modelling, 657
Bayesian multinomial model, 631
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Bayesian networks, 66, 108, 249, 252, 293–297
Bayesian outlier analysis, 406
Bayesian radiocarbon calibration, 407
Bayesian reconstruction approaches, 452–453,

483
Bayesian statistics, 659
Bayesian wiggle-matching, 404–406
“-carotene, 600
BDK network. See Bi-directional Kohonen
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Bias. See Systematic error
Bias reduction, 316
Bias statistics, 582
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Bias-variance trade-off, 316–317
BIC. See Bayes (Schwarz) Information
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Bimodal response model, 58–59
Bimodality, 125
Binary divisive partitioning, 253, 261, 357,
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Binary partitions, 278, 357, 532
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Blocked experimental design, 240
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BMDI. See Bhalme-Mooley drought index
Bonferroni comparison, 149
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Boosted regression tree model, 274–276
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Bottom-up mode, 295
Box-Cox transformation, 33, 127, 206–207
Box-plot. See Box-whisker plot
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334, 474
BP. See Before present
Branch and bound algorithm, 309
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14C dates. See Radiocarbon dating
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Goodness-of-fit, 39, 43, 51, 226, 394, 407, 463,

466, 587, 633
Gordon, A.D., 658
Gossenköllesee, Austria, 423, 426
Gothenburg protocol, 604
Gower distance in clustering, 179
Gower’s similarity coefficient, 205, 213,

218–219, 502, 504
Gradient analysis, 8, 653
Gradient boosting, 272
Gradient descent, 284
Gradient evaluation, 426
Gradient length, 101, 109, 448
Grain-size distribution, 570
Granularity, 516
Graphical approaches to core correlation, 416
Graphical display, 10, 32–34, 60, 73, 102, 106,

123–139, 456, 460, 482, 659
Graphical distance, 498
Graphical tools, 124
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Graphics
interactive, 659
for multivariate data, 659
for univariate and bivariate data, 659

Graph theory, 186
Great Plains, Canada, 235
Greenland ice-cores, 344, 631–632
Grid unit in self-organising maps, 267, 288
GRIP ice-core sequence, 416, 420–422
Growing season, 624

H
Hadamard product, 186
Hagelseewli, Switzerland, 423, 426
Hard-water effect, 387
h-block cross-validation, 77, 287, 460, 462
Heavy metals, 552, 585
Hellinger coefficient, 205, 345
Hellinger (and squared Hellinger) distance,

211, 214–217, 230, 338, 345, 368, 370,
450, 503, 532, 598, 604

Hellinger transformation, 180, 205, 211, 603
Helmert contrasts, 239
Heterogeneity of mean, 536, 545
Heterogeneity of variance, 526
Heteroscedasticity, 526
Hexagonal binning, 132
Hidden layer, 64–65, 283–286, 449
Hidden neurons, 457
Hierarchical clustering methods, 167–168,

170, 172–179, 193, 195, 268
Hierarchical partitioning, 652–653
Hierarchical structure, 277
High frequency variation, 133–134
High-resolution stratigraphical data. See

Fine-resolution stratigraphical data
Hill’s evenness index, 112
Hill’s family of diversity measures, 111–112
Hill’s index of cluster similarity, 182
Hill’s N0, 111–112, 339
Hill’s N1, 111–112, 339
Hill’s N2, 111–112, 339, 442, 473, 634
Histogram, 32, 106, 123–126, 128, 132–133,

206, 405
Histogram bins, 125–126
Historical records, 600, 618
History of quantitative palaeolimnology, 7–11
Hockham Mere, UK, 396–397
HOF modelling, 53, 113
Holzmaar, Germany, 557, 569–575
Human impacts, 579–606
Human sewage, 595
Hustedt, F., 440

Hutchinsonian niche, 209
Hybrid reconstruction method, 633
Hydrochemistry, 604
Hydrology, 259
Hyperbolic function mode, 46
Hypergeometric distribution, 50
Hypothesis generation, 102, 107, 123–124,

250, 532
Hypothesis testing, 24, 26, 36, 74–77, 103,

124, 232, 239, 251, 333, 337, 478, 552,
557–561, 569–570, 574, 599, 624, 650

direct, 74, 114, 239, 346, 600
indirect, 74, 103, 204, 232, 235, 239, 337,

532
Hysteresis, 558

I
Ibbetson, H., 402, 403
Ice-core ages, 381, 427
Ice cores, 416, 569, 572
Ice-rafted debris, 630
IDA. See Initial data analysis
Identification, 25–26, 102, 104, 258–259, 332,

334
Identity link, 49, 284
IKFA. See Imbrie and Kipp factor analysis
Image analysis, 566
Image plot, 137–138
Imbrie and Kipp factor analysis (IKFA), 286,

441, 482
advantages, 454
disadvantages, 454

In-bag samples, 265
Incremental sum-of-squares clustering. See

Minimum-variance clustering
Independent splitting. See Sequence-splitting
Index of confidence in hypotheses, 655
Indiana University Diatom home-page, 156
Indicator species, 107, 277, 345, 635
Indicator species analysis, 167, 171–172, 183,

185–186, 189–190, 193, 195, 344, 369
Indirect approach to calibration, 71
Indirect gradient analysis, 33, 288
Individualistic behaviour, 338, 364
Inertia, 224, 235
Inference, 65, 250
Influence, 106, 436
Influx index, 157
Information content, 357–358, 361–362
Information statistic, 182, 309, 503
Information theory, 308, 316, 646
Initial data analysis (IDA), 32–33
In-lake alkalinity reduction, 620
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Inorganic carbon content determination, 146
Input layer, 282, 449
INQUA Commission for the Study of the

Holocene, 8
Instrumental records, 561, 618, 620–621, 624
IntCal09 calibration curve, 393, 398
Interactions, 51, 60, 62–63, 65, 274–276,

279–280, 295, 479, 562, 625, 651
Interactive graphics, 650, 659
Inter-analyst comparisons, 158, 161
Intercept of fitted regression line, 39, 278, 308,

312
Inter-laboratory comparisons, 144, 146–147,

149, 158–159
Intermediate periodicities, 540
Inter-method comparisons, 144
Internal cross-validation, 52, 437, 455, 464,

472
Internal nutrient loading development, 558
Internal stress. See Allogenic stress
Interpolation, 73, 343, 369–371, 379,

388, 392–393, 401, 404, 420, 530,
599

Interpretation of sample-specific errors of
prediction, 465–466

Inter-quartile range, 125–126
Interval estimates, 655
Interval-scale variables, 207
Invasive species, 339, 553, 558
Inverse approach to calibration, 71–72,

438–449, 497
Inverse deshrinking regression, 70, 276,

442–443, 445, 470, 472, 582
Inverse link, 47, 280
Inverse multivariate calibration approach, 497
Inverse non-parametric regression, 450, 460
Inverse regression, 20, 26, 63, 70–71, 437, 440,

456
Inversion, 439, 440
Isotopic fractionation, 381

J
Jaccard coefficient, 205, 214, 217, 219, 289,

504
Jerero v Ledvicah, Slovenia, 423–424, 426
Jittering, 33, 126, 132
Juggins, S., 361, 653, 658

K
Kassjön, Sweden, 557, 565–569, 573
Kendall’s non-parametric rank coefficient

(tau), 130, 341

Kernel density distribution, 125
Kernel density estimates, 22, 106, 505
Kernel matrix, 293
Kernel methods, 650
Kernel regression, 36
Kernel regression smoothers, 56, 304
Kettle Lake, USA, 368
k-fold cross-validation, 52, 255, 266, 273–275,

314–315, 455
K-means clustering, 65, 287–288
K-means partitioning, 65, 167, 170–172,

179–183, 187, 191–192, 195, 210, 212,
221–222, 252, 269, 287–288, 335

k-nearest neighbours (k-NN), 450, 497
Knots, 58, 277, 280, 400
Kronecker’s delta, 504
Kurtosis, 32, 106

L
Laacher See Tephra (LST), 570–573
Lack of statistical independence, 498
Lag effect, 567, 616, 631, 647
Lago di Grande Monticchio, Italy, 420–422
Laguna Cimera, Spain, 423, 425–426
Lake acidification. See Freshwater acidification
Lake depth, 596
Lake development, 552, 562
Lake-flushing rates, 605
Lake hydrological responsiveness, 618
Lake ice-cover, 567, 617, 620, 624
Lake infilling, 552, 570
Lake-level studies, 616, 621
Lake Malawi, Africa, 631
Lake management, 432, 579–580, 602
Lake Massoko, Tanzania, 631
Lake Mina, USA, 368
Lake Naivasha, Kenya, 622
Lake Oloidien, Kenya, 621
Lake ontogeny, 432, 462, 552, 560, 561
Lake palaeoecology, 647
Lake productivity, 552, 568–569
Lake reference conditions, 95, 368, 432, 462,

518, 605, 607
Lake restoration, 95, 297, 451, 494, 500,

551–552, 593, 603–607, 625
goals, 95, 500–501, 518, 579, 588
programmes, 11, 95, 297, 562, 564, 594
recovery, 585, 588, 598, 604

Lake salinity, 618–619, 621, 631, 634
Lake sensitivity to climate, 618, 624
Lake Sonachi, Kenya, 621
Lake stratification, 567, 621, 629
Lake Victoria, East Africa, 627, 629
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Lake water-level, 531–532, 616–619, 621–622,
627, 630–631, 647

Lambda. See Eigenvalues
Laminated sediments, 72, 77, 157, 159, 332,

338, 340, 342–343, 371, 408, 524–545,
557–574, 590–593, 648

Laminations, 22, 72, 77
Landscape development, 558
Landscape ecology, 259
Land-use changes, 561, 599
Land-use data, 560
Large data-sets, 649–650
LARS. See Least angle regression
Lasso, 10, 69–70, 108, 249, 252, 273, 312–315,

646
Last glacial maximum, 270, 648
Latent structure, 366
Latent variables, 67, 464
Leaching of base cations, 599–600
Leaf node, 294
Learning epoch, 288–289
Learning rate, 64, 273–276, 288
Least absolute shrinkage and selection

operator. See Lasso
Least angle regression (LARS), 313
Least-squares

algorithm, 180
criterion, 168, 299, 302, 343, 361, 394, 440
errors, 253, 298
estimation, 36, 41, 44, 50, 280, 298,

312–314, 339, 528, 535
Leave-one-out cross-validation, 29, 52, 455,

460, 462, 497, 506–507, 650
Leverage, 106
Libby, W.F., 381
Life-history

strategies, 617
traits, 649

Light transparency, 617–618, 627
Likelihood, 655

ratio, 512, 646
Limiting factors, 651
Limnological regime, 524
Limnological stability, 633, 634
Limnology, 64, 259, 286, 293, 646–648, 653
Linear additive model, 525
Linear canonical correspondence analysis. See

Canonical correspondence analysis
Linear discriminant analysis, 19, 27–29, 64,

104, 193, 250
Linear functions, 646, 652
Linear interpolation. See Interpolation
Linear logit model, 52
Linear predictor (˜), 47, 48, 50, 59

Linear redundancy analysis. See Redundancy
analysis

Linear regression model, 39, 57, 68, 132, 228,
284, 298, 302–303, 308, 316, 389, 394,
401, 439–440, 566, 583, 652

Linear responses, 8, 43, 48–49, 61, 66, 68, 71,
74, 193, 221, 225, 249–250, 304, 339,
438, 440–441, 444, 449, 454, 562, 601,
653

Linear structure, 48
Linear transformation in sequence-slotting,

425
Line, J.M., 658
Linkage clustering, 176–178
Link function (g), 47–48, 51, 59–60, 68
Lithostratigraphical data, 332, 408, 432
Little Ice Age, 567, 626
Livestock biomass, 626
Local averaging step, 303–304
Local calibration-sets, 435
Local discordance measure, 418
Local fit in modern analogue technique, 499
Locally weighted regression (LOWESS),

56–59, 73
Locally weighted scatterplot smoother

(LOESS, LOWESS), 33, 56, 132, 135,
304, 333, 341, 344, 397–398, 401, 447,
460, 584, 586–587

Locally weighted weighted-averaging
(LWWA) regression and calibration,
451–452, 470–475, 480, 482

advantages, 455
disadvantages, 455

Local non-parametric estimation, 460
Local regression, 56
Local weighted regression, 56, 461
Location statistics, 32, 106, 127, 129
Loch Coire Fionnaraich, UK, 603
Loch Dee, UK, 500–501
LOESS. See Locally weighted regression;

Locally weighted scatterplot smoother
Logarithmic power functions, 33
Logistic population model, 338–339
Logistic (Dlogit) regression, 30, 272, 345,

495, 514–516, 518, 603
Logistic-regression derived dissimilarity,

515–516
Logit link function, 47, 48, 514
Log-likelihood function, 51, 439
Log-linear model, 49
Log link, 47, 50
Log-normal distribution, 127, 138, 436
Log-ratio analysis, 22, 211
Log-ratio transformation, 364
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Log transformation, 127, 132, 205–208,
290, 314, 371, 436, 464, 532, 572,
590–592

LOI. See Loss-on-ignition
Longitudinal data, 54
Long periodicities, 540
Long-term trends, 596–598
Los Angeles Basin ozone data, 280–281, 283,

314
Los Angeles Basin, USA, 280, 282
Loss function, 299
Loss-on-ignition (LOI), 11, 104, 146–147,

337, 415, 422–425
Lower Murray Lake, Canada, 135
LOWESS. See Locally weighted scatterplot

smoother
Low microfossil counts, 158
Low-pass filtering, 73, 134, 343
LST. See Laacher See Tephra
Luminescence dating, 381
Lunar activity, 524, 544–545
LWWA. See Locally weighted weighted-

averaging regression and calibration
Lycopodium spore tablets, 156

M
Machine-learning techniques, 281, 316–318
Machine-learning terminology, 251
Mackenzie River delta system, Canada, 635
Macroecology, 650–651
Macro-invertebrate fauna, 64
MAGIC. See Modelling of acidification of

groundwater in catchments
Magnetic direction and intensity, 418
Magnetic fields, 384–385
Magnetic properties, 368, 432, 632
Magnetic susceptibility, 11, 24
Magnetics, 171
Mahalanobis’ distance D2, 29, 223
Maher, L.J., 8
Major-axis regression, 44
Manifold, 301, 308
Mann-Whitney U statistic, 512
MANOVA. See Multivariate analysis of

variance
Mantel correlogram, 344
Mantel periodogram, 344
Maphic phonolite magma, 570
Mapping, 287, 289, 340, 368
Marginal effects, 460, 478
Marine archives, 384, 569
Marine biology, 108
Marine radiocarbon dates, 384

Marine reservoir effect, 384
Marine sequences, 416, 420
Marker layer, 419
Markov chain Monte Carlo simulations

(MCMC), 405–406, 655
Markov property, 295
MARS. See Multivariate adaptive regression

splines
MART. See Gradient boosting
Maslow’s hammer, 318
Mass balance assumptions, 605
Mass spectrometry, 382
Master chronology, 417
Master core, 423, 426
Master curve, 416
MAT. See Modern analogue technique
Maximal model, 51–52
Maximal predictive classification, 193
Maximum bias, 456–459, 470–472, 583
Maximum-likelihood

calibration, 72, 94, 344, 438–440, 442, 452,
459–460, 470, 472–475, 482, 516, 581,
583, 586–587, 632

estimation, 36, 50–51, 53, 68, 113, 250,
363, 439, 516

mixtures, 28
MCMC. See Markov chain Monte Carlo

simulations
Mean, 655
Mean bias, 456, 459, 583
Mean square (MS), 42, 57, 149
Mean squared error (MSE), 314–317, 443
Mean-variance relationship, 47, 53
Measurement error, 437
Mechanistic models, 647, 648
Medical sciences, 143
Medicine, 253
MEM. See Mixed-effects modelling
Memory resources, 650
MEMs. See Moran’s eigenvector maps
Mercury, 553
Meromixis, 561
Meta-analysis, 9, 105
Meta-community ecology, 651
Meta-data, 105
Meteorological data, 560, 573, 618–619, 621,

623
Methane ebullition, 160
Method-evaluation trials, 144
Metric ordination, 220–221
Microfossil count size, 151–155, 161
Microfossil counting, 31, 143–145, 150–159
Microsoft Windows®, 658
Microspheres, 155
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Minimal adequate model, 40, 51–53, 65, 115,
203–204, 308, 312, 394, 456, 573, 582,
645

Minimum dissimilarity values, 517
Minimum spanning tree, 186
Minimum-variance clustering, 175–177, 180,

192, 261, 358, 367–368, 373
Missing data, 34, 123–124, 138, 193, 219,

255–256
Missing values. See Missing data
Mixed data, 124, 193, 205, 207, 213
Mixed-effects modelling (MEM), 19, 45–46,

54–55, 379, 390, 399–401, 408,
626–627, 659

Mixed spectra, 528–530, 536
Mixing regime, 617, 627, 629
Mixture discriminant analysis, 30
Model

accuracy, 453, 462
assessment, 648
averaging, 308, 316, 645
building, 648
choice, 457
coefficients, 298
complexity, 646
criticism, 44, 50
development, 43, 50
diagnosis, 123–124, 139, 448, 454
error, 310, 455
evaluation, 433, 453–459, 482
fitting, 41, 50–52, 279, 482, 646–647
optimisation, 457
parameters, 51–52, 308
performance, 455–457, 460–462
prediction, 453, 462, 499, 506, 648
reliability, 453, 459, 462–463
robustness, 459, 462
selection, 19, 37, 51–52, 65, 69–70,

308–318, 335, 379, 408, 431, 433, 436,
448, 453–459, 477, 482, 506, 553, 643,
645–657

statistical significance, 462
testing, 433
validation, 462–463

Model II regression, 44
Model residual sum-of-squares (RSS). See

Residual sum-of-squares
Model sum-of-squares. See Regression (or

model) sum-of-squares
Modelling approaches, 553
Modelling biological dynamics, 553, 646–648,

655
Modelling of acidification of groundwater in

catchments (MAGIC), 470, 475

Models of lake acidification, 95
Modern analogue technique (MAT), 11, 20,

78, 94, 102, 252, 286, 438, 449–452,
457, 459–460, 466, 470, 472–475, 482,
495–519, 553, 581, 583, 586–587, 604,
626, 633, 644–645, 658

advantages, 455
bias, 506
disadvantages, 455
error, 506
performance, 506

Modern analogues, 466, 496, 644
Modern surface-sediment data. See Surface

samples
MOLAR. See EU Measuring and modelling the

dynamic response of remote mountain
lake ecosystems to environmental
change: a mountain lake research
programme

Monitoring, 95
Monitoring data, 559–560, 573, 580, 588, 604
Monothetic, 192
Monotonic response model, 53
Monotonic responses, 107, 109, 440, 581
Monotonic transformation, 63
Monte Carlo based age-depth modelling,

390–391
Monte Carlo distribution of dissimilarities,

509–510
Monte Carlo methods, 659
Monte Carlo permutation tests, 29, 68, 75–76,

114–115, 184, 189, 195, 201, 215, 228,
235, 237, 239, 346, 369, 371, 477–479,
564, 572, 644, 658–659

assumptions, 75
Monte Carlo resampling, 495, 509–510
Monte Carlo sampling, 388–390, 401
Monte Carlo simulation, 343, 345, 389–390,

392–393, 397–398, 405
Moon Lake, USA, 531–544, 619–620,

633–634
Moose Jaw, Canada, 600
Moran’s eigenvector maps (MEMs), 234
Moran’s I coefficient, 236, 529–530, 533,

537–539
Morphology, 30
Morphometric analysis, 31
Moving-average smoother, 56, 134–137, 341,

567–568
MRT. See Multivariate regression trees
MS. See Mean square
MSE. See Mean squared error
MSS. See Regression (or model) sum-of-

squares
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Multicollinearity, 311, 440, 444, 601, 653
Multi-core studies, 160, 416–417
Multi-factorial experiments, 231, 238–239
Multifrequential periodogram analysis, 74,

344, 523
Multilayer perceptron, 282
Multilevel data, 54
Multimodality, 127, 388–389, 402, 408,

509
Multi-model approach, 482
Multi-model inference, 69
Multinomial distribution, 50, 518
Multinomial Gaussian logit (Dlogistic) model,

439, 452, 656
Multinomial homogeneity tests, 153
Multinomial logit (Dlogistic) model, 52, 439
Multinomial regression, 272
Multinormal distribution, 206
Multiple additive regression trees (MART).

See Gradient boosting
Multiple analogues, 451, 604
Multiple bar-charts, 129, 130
Multiple correlation coefficient (R), 70
Multiple discriminant analysis. See Canonical

variates analysis
Multiple factor analysis, 228
Multiple Gaussian logit regression, 74
Multiple hypothesis testing, 645
Multiple imputation, 34
Multiple linear regression, 36–37, 44, 49, 61,

67–68, 70, 74, 189, 201, 227, 239, 301,
440–441, 444

Multiple Poisson regression, 74–75
Multiple regression of species groups, 440
Multiple slope estimation, 651
Multiple stable states, 558
Multiple stressors, 648
Multiple time-series, 137
Multiple working hypotheses, 552, 655
Multi-proxy data, analysing, 654
Multi-proxy studies, 7, 9, 468, 648, 660
Multivariate adaptive regression splines

(MARS), 36, 62, 108, 249, 252,
264–265, 277–283, 314

Multivariate analysis of variance (MANOVA),
77, 181

Multivariate calibration, 457
Multivariate data, 21–22, 26, 33, 66–72, 74–77,

133, 137, 184, 195, 202, 206, 332, 335,
355, 418

Multivariate direct gradient analysis, 66
Multivariate indicator-species approach, 442
Multivariate regression, 37, 44, 66–69, 71,

439

Multivariate regression trees (MRT), 46,
62–63, 108, 167, 170–172, 184, 186,
192–195, 249, 252, 260–264, 357, 658

Mutation, 298–300

N
14N, 384
Naı̈ve Bayes classifier, 30
NAMPD. See North American Modern Pollen

Database
NAO. See North Atlantic Oscillation
Narrative phase, 644
Natural climatic variability, 616
Natural experiments, 235
Natural forcing factors, 558
Natural long-term acidification, 598–599
Natural perturbations, 561
NCAP. See Non-linear canonical analysis of

principal coordinates
Near-infrared spectroscopy, 345
Needle plot, 277–278
Negative binomial distribution, 151–153
Negative eigenvalues, 214, 217, 219, 221, 226
Nelder-Mead simplex algorithm, 425
Neurons, 282, 449
Neutral dynamics, 648
Neutrons, 384
Newman-Keuls test, 149
n-fold cross-validation, 31, 62, 286, 460
Niche breadth, 441
Niche centre, 441
Niche theory, 443
Nižne Terianske, Slovakia, 423, 424
NMDS. See Non-metric multidimensional

scaling
Node impurity, 253–255, 258, 260, 268–269
Noise

structured, 437
unstructured, 437

Non-analogous assemblages, 519
Non-analogous samples, 506, 509–512,

516–517, 519, 595
Non-analogue situations, 451, 454, 461, 465,

467–468, 630
Non-linear canonical analysis of principal

coordinates (NCAP), 68
Non-linear deterministic dynamics, 648, 650
Non-linear effects, 603
Non-linear function, 439, 449
Non-linear models, 68–69
Non-linear regression, 71, 439, 659
Non-linear relationships, 68, 265, 437
Non-linear rescaling, 562
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Non-linear responses, 449, 617
Non-linear shifts, 647
Non-metric multidimensional scaling

(NMDS), 33, 201, 203–204, 207,
218–220, 222–226, 240, 269, 301,
365–368

Non-metric ordination, 220–221
Non-normal distributions, 124, 126–127, 129
Non-parametric estimate, 57
Non-parametric function, 56
Non-parametric methods, 55, 75, 126
Non-parametric multivariate analysis of

variance, 77
Non-parametric regression, 19, 36, 55–61, 132,

341, 652
Non-stationarity, 133
Normal distribution, 44, 49–50, 126–127, 133,

137, 206, 222, 304, 382, 386, 389, 399,
401

Normalising transformations, 206, 358
Normality tests, 206
Normal probability density curve, 126
Normal probability plots, 44, 127–128, 132
North American Modern Pollen Database

(NAMPD), 510–516
North Atlantic Oscillation (NAO), 567
Nuisance environmental gradients, 436
Null distribution, 464
Null hypothesis (H0), 42, 53, 55, 74, 76, 123,

149, 153–154, 215, 222, 342, 645–646,
655

Null model, 39, 52–53, 76
Null response model, 52–53, 113
Number of analogues, 449–451, 455, 466,

471–472, 495, 499, 501, 506
Numerical ecology, 11, 659
Numerical optimisation, 297–298
Nutrient enrichment, 604
Nutrient input, 568, 600
Nutrient loads, 562, 580, 588, 593, 595, 605
Nutrient regimes, 620

O
•18O, 420, 427, 461, 509
Observed values, 456, 583–584
Occam (DOckham), W., 40
Occam’s razor, 40, 51, 646
Ochiai coefficient, 205, 214, 216, 219
Odum coefficient, 205, 217, 219, 221, 226
Oil fuels, 256, 258–259, 266, 269–271
Oil-shale fuels, 256, 259, 266, 269–271
One degree-of-freedom contrasts, 63
One degree-of-freedom linear function, 307
One standard-error rule, 255, 257, 261

OOB. See Out-of-bag samples
Operator application, 300
Optical markers, 432
Optimal combinations, 300
Optimal dissimilarity threshold, 512, 514
Optimal partitioning using sum-of-squares

criterion, 336, 357–358, 360, 362, 532
Optimal slotting, 418
Optimal tree-size, 255
Optimisation data-set, 65, 274, 449, 457, 506
Optimisation procedure, 425, 514
Optimum of taxon, 38, 53–54, 72, 101, 103,

113, 209, 336, 441, 443, 445, 518, 595
Ordination, 7–10, 24–25, 27, 29, 33, 37, 68,

103, 106–107, 133, 138, 158, 170,
201–250, 252, 287, 318, 332–333, 335,
346, 355, 365, 368–369, 482, 553, 603,
623, 631–632, 635, 650, 658–659

plots, 34, 67, 170, 202, 206, 221–223, 225,
366, 437

units, 369
Organic carbon, 422
Organic carbon content determination, 146
Organic layer, 562
Organic nitrogen, 422
Orthogonal dummy variables, 239
Oscillation logs, 336–337
Oslo protocol, 604
Osmotic stress, 621
Outcome node, 297
Outliers, 10, 34, 44, 65, 102–103, 106, 124,

126, 129, 132–133, 137–138, 147, 223,
408, 436–437, 454, 470

detection, 10, 24, 34, 123, 436–437, 650
treatment, 137–138

Outlying radiocarbon dates, 406, 408
Out-of-bag (OOB) samples, 265–270, 273
Output layer, 282–283, 449
Output node, 296–297
Output vector, 64, 449
Overall bias, 456
Over-fitting, 30, 40, 62, 65, 70, 256–257, 268,

273–275, 279, 285–286, 301, 304, 308,
310, 316–317, 407, 444, 448–449,
456–457, 460

Over-predict, 583–585, 595
Øvre Neådalsvatn, Norway, 423, 426
Oxalic acid standard, 382
Oxygenation, 562
Oxygen availability, 562, 588
Oxygen depletion, 588
Oxygen isotope stratigraphies, 366
Ozone, 280–282, 314

depletion, 553
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P
PAGEPA. See EU Palaeohydrology and

geoforecasting for performance
assessment in geosphere repositories for
radioactive waste disposal

Pair-wise dissimilarity values, 514
Palaeoceanography, 432, 441, 449, 450, 497,

499
Palaeoclimatology, 64, 270, 417, 452, 524,

615–635
Palaeolimnological data types, 5–6, 19, 21–22,

332, 355–356
Palaeolimnology

aims, 4, 9, 345, 551, 646, 654, 660
definition, 4, 660
pioneering studies, 7–9, 352, 658
quantification, 23, 171–172, 196, 203–204,

452, 551, 607, 643–645, 654, 660
research questions, 4, 6, 11, 23–25, 432,

551, 560, 580, 607, 643–646, 654
Palaeomagnetic measurements, 416, 418, 657
Palaeontology, 12
Paleoecological Investigation of Recent Lake

Acidification (PIRLA), 599–600
Palmer, M., 209
Palynology. See Pollen analysis
Parameter estimation, 50
Parsimonious model, 40, 43, 309, 408,

444–445, 457
Partial canonical correspondence analysis, 218,

367, 478, 644, 653
Partial constrained (Dcanonical) ordination,

75, 203–204, 233, 240, 460, 552, 562,
600, 602, 632, 644

Partial correspondence analysis, 367
Partial detrended canonical correspondence

analysis, 367
Partial detrended correspondence analysis, 367
Partial least squares (PLS), 293, 299, 311, 312,

316, 345, 440, 441, 444–446, 456, 482,
506, 646

advantages, 454
disadvantages, 454

Partial linear regression, 233, 290
Partial ordination, 75, 101, 478, 574, 631
Partial principal component analysis, 229, 367
Partial redundancy analysis, 218, 230–232,

367, 552, 567, 570, 644
Partitioning, 10, 25, 33, 37, 76–77, 101, 103,

106–107, 124, 133, 167–200, 221,
249–250, 333, 335, 346, 644–645, 650

Pasqua Lake, Canada, 600–603, 626
Passive objects. See Supplementary objects
Passive variables. See Supplementary variables

210Pb dating, 94, 157, 160, 332, 335, 368, 381,
408, 422, 426, 480, 598, 619

PCA. See Principal component analysis
PCNM. See Principal coordinates of neighbour

matrices
PCoA. See Principal coordination analysis
PCR. See Principal components regression
Pearson chi-square statistic, 224
Pearson’s product moment correlation

coefficient (r), 77, 129, 133, 136–138,
179, 341, 443, 453, 455, 526, 529, 566,
618–621, 624

Pedogenesis, 558
Penalised discriminant analysis, 30
Penalised residual sum-of-squares, 312–313
Percentage data, 21–22, 150–155
Percentage difference, 217
Percentile, 466, 473, 501, 508–510, 516–517,

588–589, 655
Perceptron, 64, 282
Periodic component, 543
Periodicities, 73, 332, 341–342, 347, 385,

523–525, 528, 530, 536, 538, 540–545,
635, 644

Periodogram, 73, 343, 523–548
analysis, 540–543
statistics, 530

Permutation designs, 240
Permutation tests. See Monte Carlo

permutation tests
Permutational multivariate analysis of variance

(ADONIS), 76–77
Persistent organic pollutants, 552–553
Petrographic thin-sections, 160
Phenotypic variation, 31
Phosphorus loads, 588, 600, 605–606
Phosphorus sedimentation rates, 605
Phylogenetic analysis, 31
Physical markers, 5, 21, 331, 524, 617
Physical proxies, 617
Phytoliths, 627, 629
Piece-wise constant functions, 278, 280, 290
Piece-wise linear accumulation, 407
Piece-wise linear basis functions, 277
Piece-wise linear functions, 265
Piece-wise polynomials, 58
Piece-wise regression, 44–45, 399–400, 405
Pie-charts, 123, 129–130
PIRLA. See Paleoecological Investigation of

Recent Lake Acidification
Plant macrofossils, 561, 569, 616, 648
Plant pigments, 422, 568
Plateau response model, 53
PLS. See Partial least squares
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Point estimates, 655
Poisson distribution, 47–48, 50, 53, 60, 72,

127, 304, 382, 406
Poisson events, 406
Poisson process, 382
Pollen analysis, 7–8, 28, 30, 108, 150–159,

211, 225, 258–259, 263, 333, 357,
363–364, 368, 388, 415–416, 450,
453, 462, 466, 497, 505, 510–514,
561, 566–572, 616, 627–629, 631–632,
656

Pollen-climate response surfaces, 656
Pollen identification, 30–31, 258–259
Pollen-stratigraphical data, 8, 261–264,

304–338, 364, 418, 420, 629, 648–649,
657

Polynomial canonical correspondence analysis,
218, 232

Polynomial curve, 396
Polynomial function, 234
Polynomial redundancy analysis, 218, 232
Polynomial regression, 39, 43, 57–58, 132,

201, 227–228, 316, 379–380, 389,
393–396, 401

Polynomial trend-surface analysis, 235
Polynomials, 420
Polythetic, 191
Population dynamics, 647, 651
Population ecology, 659
Population mean, 525–526
Population modelling, 331–333, 338–339

doubling-time, 338–339
halving-time, 339

Population variance, 525–527
Post-bomb radiocarbon calibration curve, 384
Posterior density error ranges, 387, 392
Posterior density function, 452
Posterior distribution, 655
Posterior odds, 512
Posterior probability, 295–297, 401, 403, 405,

512, 515
function, 656

Potential bias, 456
Power function, 389, 397
Power spectral analysis, 343
Power spectrum, 73, 342
PRC. See Principal response curves
Precedence constraints in slotting, 419, 422
Precision, 8, 144, 150
Predicted values, 41, 456, 583, 586
Prediction, 37, 65–66, 68, 70, 250, 264, 266,

274, 276–277, 285, 288, 310, 312, 317,
653

bias, 456

error, 269, 274, 313, 316–317, 445–446,
451–453, 456, 459

Prediction model, 251
Predictive power, 272–273, 441, 444
Prehistoric impacts on lakes, 433
Presence-absence splitting, 363, 365
Press ecological experiment, 558
Primary data, 105
Primary environmental gradient, 37, 479
Primary standards, 146
Principal component analysis (PCA), 7, 10, 29,

33, 67, 101, 129, 170, 180, 184, 189,
201, 203–204, 207–210, 212, 218–220,
222–226, 228–229, 239, 261–264, 287,
301–307, 335–336, 346, 360, 365–369,
445, 463, 559, 572, 603, 623–624, 652

Principal components, 440, 444, 646
Principal components regression (PCR), 249,

299, 301, 311–312, 438, 440–441,
444–445, 482

advantages, 454
disadvantages, 454

Principal coordinates of neighbour matrices
(PCNM), 108, 184, 203–204, 234–238

Principal coordination analysis (PCoA), 33, 68,
168–170, 174, 201, 203–205, 207, 214,
217–226, 230, 240, 269, 301, 365–367

Principal curves, 10, 34, 101, 103, 108, 249,
252, 287, 301–308, 644

Principal response curves (PRC), 653
Principal surfaces, 10, 103, 108, 249, 252, 287,

301–308
Principle of parsimony, 40, 51, 61, 456, 459,

646
Prior distribution, 655–657
Prior information, 401–406
Prior parameters, 657
Prior probability, 295, 297

function, 656
Probability density function, 126
Probability distribution, 55
Probability distribution of calibrated

radiocarbon ages, 387–388
Probability of hypotheses, 655
Probit analysis, 49
Probit link, 47
Procrustes analysis, 101, 114
Profile distance, 216, 230
Project design, 644
Projection step, 303–304, 397
Proportional-link linkage agglomerative

clustering, 177, 184–186
Proportional shrinkage, 70
PROTEST test, 114
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Proton, 384
Prototypes in self-organising maps, 287, 289
Proximity matrix, 269
Proximity measurements in random forests,

268
Pruning algorithm, 286, 436
Pseudo-F ratio, 77
Pseudospecies, 191
Pulse disturbance, 558
Pulse experiment, 558

Q
Q-mode factor analysis, 441
Q-Q plots. See Quantile-quantile plots
Quadratic constraint, 312
Quadratic curve, 394
Quadratic discriminant function, 27, 30
Quadratic function, 652
Quadratic penalty, 312
Quadratic reduced-rank vector-based GLM,

68, 653
Quadratic regression model, 56–57, 132, 316,

341, 394, 439
Quadratic responses, 68, 653
Quality control, 105, 146, 154, 158
Quantification, role of, 6–9, 24–25, 552
Quantile-quantile (Q-Q) plots, 33, 106
Quantile regression, 643, 651–652
Quantile splines, 652
Quantiles, 265, 508, 651
Quantitative splitting, 363
Qu’Appelle Valley, Canada, 600, 603
Quasi-likelihood test, 439
Quaternary pollen analysis. See Pollen analysis
Queen’s Lake, Canada, 627

R
R functions

adonis(), 76–77
anosim(), 76–77
bestnmds(), 218, 240
cagedepth.fun(), 400–401
capscale(), 218, 240
cca(), 208, 218, 240
cmdscale(), 218, 240
cmds.diss(), 218, 240
daisy(), 217–218
decostand(), 207, 209–212
dist(), 217–218
dist.binary(), 214, 217–218
dudi.coa(), 218
dudi.pca(), 218, 240

forward.sel(), 240
gowdis(), 217–218
hclust(), 195
is.euclid(), 219
isoMDS(), 218, 240
metaMDS(), 218, 240
model.matrix(), 239
mvpart(), 194, 196
nmds(), 218, 240
ordiR2step(), 240
ordistep(), 240
pca(), 218, 240
PCNM(), 234, 236
pco(), 218, 240
pcoa(), 218, 220
plot.cca(), 218
predict.cca(), 224
predict.rda(), 224
quickPCNM(), 234
rda(), 208, 218, 240
suprow(), 224
varpart(), 218, 240
vegdist(), 217–218

R packages and modules
ade4, 214, 217–219, 224, 240
analogue, 96, 482, 518, 659
ape, 218, 220
Bacon, 407, 409
Bchron, 406–407, 409
BiodiversityR, 659
Biogeo module, 187
Bpeat, 407, 409
cclust, 180–181
Chrono modules, 185
clam, 401
cluster, 176, 217–218
cocorresp, 218, 233
const.clust, 187
earth, 280
FD, 217–218
fossil, 659
gbm, 274
glmnet, 314
indicspecies, 190, 196
Kohonen, 290
labdsv, 190, 196, 218, 240
lars, 313
MASS, 218
MATTOOLS, 517–518
mvpart, 192, 194, 196, 218
packfor, 237, 240
palaeoSig, 463, 482, 659
paleoMAS, 482, 659
paleoNet, 482



738 Index

R packages and modules (cont.)
PaleoToolBox, 482, 517
paltran, 482, 659
PCNM, 234, 236
PROTEST, 114
rioja, 96, 139, 361, 439, 482, 659
rpart, 256
simba, 659
spacemakeR, 234
stats, 179, 217–218, 239
vegan, 76–77, 114, 207–212, 217–218,

224, 233–234, 240, 482, 659
Radiocarbon dating, 21, 34, 157, 180, 332,

335, 355, 371, 379, 381–409, 525, 544
calibration, 10, 35, 335, 338, 350, 371,

379–380, 383–388, 399, 401, 656
calibration curve, 384, 386, 402–404
calibration distribution, 399
calibration methods, 385–388
contamination, 381–382
errors, 382–385
expressing, 380–381
Northern Hemisphere calibration curve,

384
numbers, 380, 396, 408
plateaux, 383, 385, 387
single-point estimates of calibrated ages,

387–388
Southern Hemisphere calibration curve,

384
uncalibrated, 389
uncertainties, 380
wiggles, 383, 385, 387, 404
years, 383

RAM. See Revised analogue method
Rand index, 181–182

modified, 182
Random additive model, 38
Random effects, 54–55
Random environmental data, 463
Random error, 41, 144–145, 147–148, 150,

382, 456, 525–528
Random forests, 28, 30, 62, 69, 108, 249, 252,

259, 264–265, 267–273, 277, 301, 316,
658–659

Random numbers, 359, 390
Random operator, 300
Random walk simulations, 654
Randomisation tests, 75, 189, 340–341, 460
Randomisation t-test, 457, 460, 472, 582
Randomised data, 359
Randomised species coefficients, 463–464
Ranged major-axis regression, 44
Ranging, 206–208

Rarefaction analysis, 8, 109–111
Rare species, 224–225
Rare taxa, 470, 473, 505

down-weighting of, 633
Rate of change, 305–306, 332, 338, 371–372,

634, 651
cumulative, 634

Rate-of-change analysis, 10, 24, 102, 333, 338,
355–356, 368–369, 598

Raup and Crick coefficient, 214–215
RDA. See Redundancy analysis
Receiver operating characteristic (ROC)

analysis, 345, 495, 509–517
Recent biotic change, 333, 338, 344, 356,

368–369
Recent lake acidification, 599
Reciprocal transformation, 127
Reconstruction

evaluation, 8, 453–459, 462–468
statistical significance, 462–463, 467
validation, 462–463

Recovery targets, 604
Recursive binary partitioning, 61, 253–254
Recursive partitioning regression, 36
Red noise, 343
Reduced-rank regression, 19, 37, 67–68, 75,

346
Reduced-rank vector-based GAM, 68
Redundancy analysis (RDA), 10, 63, 66–68,

75, 77, 107–108, 114–115, 180, 189,
192, 201, 207–210, 212, 221–222, 224,
227–233, 235, 237–239, 260, 263, 337,
346, 366, 463, 559, 562, 564, 566, 587,
596, 601, 644, 653

Reference conditions, 580, 604
Reference distribution, 495, 501, 508
Reference probability distributions, 55
Reference sample, 653
Reference site, 653
Refugia, 648
Regime shifts, 648
Regina, Canada, 600, 603
Regional calibration-sets, 435
Regionalisation, 187
Regression analysis, 8, 10, 19–20, 26, 33,

35–71, 74, 78, 126, 150, 167–168, 227,
250, 252, 265, 272, 282–284, 316, 340,
363, 366, 439, 444, 482, 559, 607, 624,
632, 644, 653, 655, 658

Regression coefficient, 39–41, 43, 50, 59–60,
70, 300, 309–310, 394, 445, 516

Regression diagnostics, 39, 44
Regression in statistical learning, 251
Regression random forests, 268
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Regression residuals, 41, 44, 57, 229, 236
Regression splines, 396–397
Regression (or model) sum-of-squares (MSS),

42, 50, 52, 66
Regression tree, 61, 192, 252–255, 265, 267,

277, 290, 364
Regression variation, 41
Regularisation, 69, 273, 285, 314
Regularisation of smart contrasts and sums

(ROSCAS), 316
Regularisation path, 314–315
Relational databases, 103–104
Relative effects, 603
Relative neighbourhood graph, 186
Reliability, 434
Reliability of sample-specific errors of

prediction, 465
Remote sensing, 108
Repeatability, 145
Repeatability standard deviation (sr), 146
Repeated measure data, 54
Replicate coring, 161
Replication, 144–145, 147, 160, 455, 535
Reproducibility, 146
Reproducibility standard deviation (SR), 146
Research data, 105
Reservoir effect, 381
Residual degrees of freedom, 57
Residual deviance, 50, 52–53
Residual distances in ordinations, 223
Residual plots, 341, 456–457, 583
Residual spatial structure, 499
Residual sum-of-squares (RSS), 42, 50, 52–53,

57, 254, 278–280, 283, 308, 312–313
Residual sums of absolute deviations (RSAD),

254
Residual temporal autocorrelation, 652
Residual variation, 41–42, 359–360
Residuals, 40–44, 57, 60, 272, 455–456,

483–485, 568
Resilience, 648
Resource use, 600–602, 626
Response curves, 52–54, 60–61, 72, 307, 439,

453, 595, 656
Response functions and plots, 36–38, 282, 433,

438
Response surfaces, 52, 61, 498, 656
Response times, 647
Restricted permutation tests, 75, 562, 572, 598
Reverse-engineering algorithms, 650
Revised analogue method (RAM), 498
Richness. See Taxonomic richness
Ridge regression, 10, 69–70, 108, 149, 252,

273, 285, 312–315, 646

Ritchie, J.C., 8
River discharge, 617
RLQ analysis, 649
RMSE. See Root mean squared error
RMSEP. See Root mean squared error of

prediction
Robust predictions, 648
Robust quadratic discriminant analysis, 30
Robustness weights, 57
ROC. See Receiver operator characteristic

analysis
Rogue observations. See Outliers
Role of quantification, 23
Root mean squared error (RMSE), 160, 255,

266, 293, 436, 443, 453, 582–583, 592
Root mean squared error of prediction

(RMSEP), 276, 286–287, 436, 446,
448, 455–467, 470–472, 495, 497–500,
506–508, 582–583, 587, 590–593

Root node, 294–296
ROSCAS. See Regularisation of smart

contrasts and sums
Rosetta Stone, 580, 607
Roskilde Fjord, Denmark, 480–481
Round Loch of Glenhead, The (RLGH)

data-sets, 93–95, 184–185, 190,
235–238, 293–294, 356, 361, 364–365,
369–372, 390–392, 396–400, 468–476,
498–499, 505, 517, 581–589, 596–598

Round Loch of Glenhead, The, UK, 94, 184,
468–476, 478, 500–501, 581–588,
596–598

RSAD. See Residual sums of absolute
deviations

Rug-plot, 126, 515
Running-mean smoother. See Moving-average

smoother
Running median, 133, 135
Runs tests, 340
Rwenzori lakes, Uganda/DR Congo, 626–627

S
Saanajärvi, Finland, 423, 426
Sample distribution along gradients, 437, 471
Sample mean, 526
Sample size, 646
Sample-specific errors of prediction, 8, 265,

342, 460–461, 463–465, 473, 482,
497–499, 585–586, 654

Sample variance, 526
Sampling

artefacts, 341
strategy, 260
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Sampling (cont.)
with replacement, 158, 265, 456, 509
without replacement, 158, 273

SAS/IML language, 535
Satellite-data analysis, 259
Satellite images, 618
Saturated model, 51
Scalar product of normalised species data,

498
Scaling techniques. See Ordination
Scatter-plot, 33, 58, 106, 123, 130–133, 182,

222, 334
Scatter-plot matrices, 106, 123, 133–134
Schuster’s periodogram, 528–530
Schwarz’s criterion, 646
Schwarzee ob Sölden, Austria, 620
SCPs. See Carbonaceous particle data-set
Scree-plot, 507
Sea-surface temperature, 460, 462
Second-order polynomial model, 60
Secondary environmental gradient, 436–437,

446, 451, 480
Sediment deposition-time, 21–22, 157, 392
Sediment geochemistry, 647
Sediment matrix accumulation rate, 22, 157,

160, 392, 394, 398–400, 402, 404–405,
416, 421–422

Sediment sequences, 415–427
Sediment-trap data, 559

diatom assemblages, 470
Sediment yield, 566, 573
Sedimentary data, 656
Sedimentary parameters, 648
Sedimentation history, 380, 388
Seebergsee, Switzerland, 632
Seismic data, 632
Selection bias, 308–310
Selection of components in PLS and WAPLS,

444
Self-organising feature map. See Self-

organising maps
Self-organising maps (SOMs), 19, 63, 65, 101,

103, 108, 190, 249, 252, 281, 287–293,
301, 644, 650

super-organised, 252, 289
supervised, 288–293
unsupervised, 249, 288, 308

Semi-arid region lakes, 618
Sensitivity, 512
Sensitivity of method, 150
SEP. See Standard error of the predicted

residuals
Separability, 516
Sequence similarity measure, 426–427

Sequence-slotting, 8, 333, 337, 416–427,
644–645, 651

Sequence-splitting, 338, 355, 357, 363–365
Serial correlation, 341
Sexual reproduction, 298–299
Sexual selection, 298
Shannon diversity index, 111
Shingles, 132
Shrinkage, 10, 19, 37, 43, 69–70, 108, 249,

252, 273, 308–316, 646
Sigmoid function, 284–285
Sigmoidal linear response model, 113
Sigmoidal logit model, 53
Signal-to-noise properties, 450, 503
Significance level, 148, 361, 621
Significance of zero crossings of the derivatives

(SiZer), 73, 331, 333, 341–342
Significant non-stationarities (SiNos), 333,

355, 357, 363–365
SIMCA. See Soft independent modelling of

class analogy
Similarity coefficients, 168, 205, 212, 219
Similarity-distance transformation, 213–214,

217
Similarity function. See Similarity coefficients
Similarity in taxonomic composition of

modern and fossil samples, 467
Similarity matrix, 168–169, 172–173, 176,

187, 209, 293
Similarity percentage tests (SIMPER), 76, 635
SIMMAX analogue method, 498
SIMPER. See Similarity percentage tests
Simple discriminants, 103, 171–172, 193–194
Simple matching coefficient, 181, 184, 205,

213, 219, 504
Simple structure index (SSI), 181
Simpson’s diversity index, 111–112
Simulated calibration data-sets, 445, 466
Simulated distribution, 509, 518
Sine functions (waves), 343, 528
Single-factor analysis of variance, 149
Single linkage agglomerative clustering,

177–178
Single malt Scotch whiskies, 188
Single slope, 651
Singular value decomposition, 224
SiNos. See Significant non-stationarities
Site selection, 574, 599–600, 644
SiZer. See Significance of zero crossings of the

derivatives
Skeletonisation procedure, 286
Skewed response model, 53, 58, 113, 304
Skewness, 32, 59, 106, 126–127, 205–207, 436
Slave River delta system, Canada, 635
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Slope of fitted regression line, 39, 389
Slumps, 160
Šmilauer, P., 191, 658
Smooth functions, 277, 303, 603, 652
Smooth responses, 68, 102
Smoothed periodogram, 528–530
Smoothers, 33, 36–37, 55–60, 73, 123, 126,

133, 341
Smoothing, 450, 624

in rate-of-change analysis, 369–371
Smoothing splines, 56, 58, 302–303, 379,

397–399, 401–402
Smoothing terms, 397
Snipping, 650
Snow cover, 568
Soft independent modelling of class analogy

(SIMCA), 286
Softmax function, 284
Soil development, 570, 600
Solar activity, 384–385, 524–525, 543, 545
SOMs. See Self-organising maps
Sørensen coefficient, 205, 215, 217, 219
Space-for-time substitution, 449, 496
Span, 56, 132, 135, 304, 341, 420, 447
Spatial analysis, 233
Spatial autocorrelation, 75, 234, 287, 431,

459–462, 477, 499, 500, 518, 657,
658

tests, 658
Spatial compositional data, 655
Spatial constraints, 107, 167, 170–172,

186–188, 203–204
Spatial contiguity matrix, 186–187
Spatial data, 54, 167, 203–204

analysis, 659
Spatial eigenfunctions, 234
Spatial relationships, 234
Spatial scales, 234, 237, 598
Spatial variability, 160
Spatially constrained clustering, 186–188
Spearman’s non-parametric rank coefficient

(rho), 130, 341
Species-abundance models, 208
Species distribution models, 6, 298, 307
Species-environment modelling, 259
Species-environment relationships, 6, 10,

35–69, 71, 101–103, 107, 115, 201,
203–204, 232, 301, 431

Species niches, 441
Species-packing model, 72, 443
Species profiles, 211, 216
Specificity, 189, 512
Spectral analysis, 11, 343–344, 530, 543
Spectral decomposition, 234

Spectral density functions, 73, 343, 528,
530–531

Spheroidal carbonaceous particles (SCPs).
See Carbonaceous particle data-set

Spiked samples, 146, 155
Spline fitting, 426
Spline function, 58
Split-sampling, 460
Splitting rule, 61–62
Spreadsheets, 105–106, 356, 389
Spring meltwater input, 568
Square-root transformation, 33, 127, 205–207,

209, 212, 290, 292, 294, 358, 361, 371,
436, 624

Squared error loss, 274–275
Squared residual distance, 466
Squared residual fit, 588
Squared residual length, 587–588
SSI. See Simple structure index
Sstress, 226
Stability, 648
Stable isotopes, 647

ratios, 617
Stable-state shifts, 647
Standard deviation, 32, 106, 138, 144–148,

156, 160, 382–383, 387–388, 390, 398,
467

Standard deviation (SD) units of compositional
turnover, 109, 221, 443, 446, 562

Standard error of the predicted residuals (SEP),
456

Standard errors of model coefficients, 311
Standard major-axis regression, 44
Standardisation, 205–208, 212, 290–291, 312,

358, 423, 425
Standardised residuals, 437, 470
State shifts, 525, 531
Stationary process, 342–343, 527–528,

535–536
Statistical fluency, 654
Statistical independence, 490
Statistical learning

ensembles, 69
supervised, 251, 261, 288
techniques, 35, 70, 108, 249–353, 644
training-sets, 251, 256–258, 265–266, 269,

272–275, 278, 285–287, 295, 297, 300,
308, 316–317

unsupervised, 251, 288
Statistical modelling, 10, 19–20, 26, 35–70,

78, 108, 149, 167, 389, 644, 646, 655,
658

Statistical ‘rules of thumb’, 25
Statistical significance levels, 133
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Statistical significance testing, 37, 53, 73–75,
113–114, 189–190, 201, 203–204, 227,
231, 240, 341, 457, 460, 463–464, 472,
533, 535, 564, 572, 574

Statistics, 646
Steel Lake, USA, 77
Steinhaus coefficient, 205, 217, 219, 221, 226
Step functions, 277
Step-wise procedure in periodogram analysis,

535, 542
Step-wise variable selection, 29, 42–43, 60, 69,

232, 273, 278, 309, 478
Stochastic effects, 436
Stochastic gradient boosting, 272
Stochastic optimisation techniques, 66
Stochastic part (Derror part), 38–39, 41,

47–48, 51, 54, 316
Stochastic process, 524
Stochasticity, 273, 298
Stopping criteria, 259, 364
Strain, 226, 648
Stratified random sampling strategy, 274
Stratified sampling, 435
Stratigraphical constraints, 168, 170, 184, 417
Stratigraphical data, 6, 10, 21–22, 24, 33, 58,

61, 72–73, 75–77, 93, 102, 105, 167,
184–186, 190, 195, 202–205, 223, 225,
239, 261, 301, 304–308, 332–334, 345,
355–378, 415–427, 654

Stratigraphical diagrams, 133, 334, 336, 356,
366

Stratigraphical patterns, 365
Stratigraphical plots, 465
Stratigraphical splits

clumped, 363–364
dispersed, 363–364

Stratigraphically unconstrained clustering,
168, 170, 184–186, 357–363

Stress, 226, 647–648
Stressors, 574
Structure of residuals, 446
Student’s t-distribution, 464
Study design, 607
Sturges’ formula, 125
Substrate quality, 621
Sub-zone, 363
Suess effect, 385
Sulphur, 570
Sulphuric acid, 570
Sum of squared errors, 260
Sum-of-squares, 170, 175–176, 261, 284,

357–358, 362, 535
Sunspot cycle, 543–544
Supervised classification, 25, 30, 63, 66

Supplementary objects, 223–224, 232, 346,
466, 587, 596–599, 603

Supplementary variables, 223–224
Support vector machines, 650
Surface samples, 10, 21, 22, 24, 70–71, 93,

102, 105, 160, 203–204, 223, 356, 361,
435

Surface-water acidification. See Freshwater
acidification

Surface Waters Acidification Programme
(SWAP), 95, 599–600

Surface Waters Acidification Programme
(SWAP) data-sets, 93–96, 286,
470–475, 478, 499, 505–506, 508–510,
517, 581, 583, 586, 588–589, 596–598

Surface Waters Acidification Programme
UK data (SWAP-UK), 95, 182–183,
187–188, 191–192, 194–195, 290–292,
294, 498, 507

Surrogate splits, 256, 268
Survival analysis, 48
Survival probabilities, 49
SWAP. See Surface Waters Acidification

Programme
Symmetric response model, 53, 68, 113, 220
Symmetric unimodal responses, 653
Syntax tree, 300
Systematic bias, 461
Systematic error, 144, 146–148, 150, 267–268,

272, 309, 316, 382, 456
Systematic offsets, 408
Systematic part (Dstatistical component),

38–39

T
Tablets of exotic pollen/spores, 155
Tanimoto distance, 289
Taphonomic effects, 437
Target vector, 64
Taxon exclusion for calibration data-sets, 436
Taxonomic richness, 101–103, 109–111, 158,

331–333, 338–339, 634–635
Taxonomy: consistency, 159, 435

protocols, 435
resolution, 159, 334

Taxon selection for calibration data-sets, 436
tb-PCA. See Transformation-based principal

component analysis
tb-RDA. See Transformation-based redundancy

analysis
Technique-specific bias, 467
Temperature anomalies, 623
Temporal analysis, 233–234, 523
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Temporal autocorrelation, 73, 75, 77, 341, 367,
459, 466, 536, 564, 625, 654

Temporal constraints, 107, 184, 203–204
Temporal correlation, 44, 73, 347
Temporal domain, 73, 333, 342, 523
Temporal patterns, 543
Temporal precision, 573
Temporal relationships, 234
Temporal resolution, 332, 453, 616, 619, 621
Temporal scales, 6, 237, 332, 551–552,
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