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Overview

An acceleration wave is a singular surface prop-

agating through a material body across which

the particle acceleration experiences a finite dis-

continuity, or jump, but the particle velocity

and deformation gradient are continuous. Accel-

eration waves may propagate in 1-, 2-, or

3-dimensional material bodies. For purely elastic

materials and for heat-conducting elastic mate-

rials, and for many other materials, it is possible

to deduce an explicit expression for the squared

speed of acceleration waves. It is also possible to

deduce an explicit nonlinear equation (of

Bernoulli type) for the growth of acceleration

wave amplitude, for which exact solutions may

be written down. Acceleration wave theory is of

great interest in mechanics generally because it

furnishes some of the few exact solutions that are

available in nonlinear mechanics. Chen [1] has

given a full account of most aspects of accelera-

tion wave theory. Straughan [2, Chap. 4] also

has given an excellent account of acceleration

wave theory, concentrating largely on various
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nonclassical theories of heat conduction rather

than on the classical theory considered here.

We model acceleration wave propagation

in an inhomogeneous heat-conducting rod as a

problem in one-dimensional wave propagation

(see [1]). As a further source of inhomogeneity,

we allow the rod to have a slowly varying cross-

sectional area which requires modification of the

original model (see [3]). The speed of accelera-

tion wave propagation is found to depend on the

material inhomogeneity but to be independent of

the changing cross-sectional area. However, the

growth of wave amplitude is certainly influenced

by the changing cross-sectional area. Increasing

cross-sectional area renders the acceleration

wave less likely to build up into a shock wave

after a finite distance of propagation, while

decreasing cross-sectional area renders the accel-

eration wave more likely to build up into a shock.
Introduction

In this entry, we consider the propagation and

growth of acceleration waves in a materially

inhomogeneous, heat-conducting, nonlinearly

elastic rod. We also allow the rod to have slowly

varying cross-sectional area. The region ahead of

the wave may be prestrained and is not assumed

to be in either mechanical or thermal equilibrium.

The rod is modeled as a one-dimensional contin-

uum with modifications to allow for the slowly

varying cross section. The wave then turns out to
I 10.1007/978-94-007-2739-7,
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be a longitudinal plane wave whose speed of

propagation is unaffected by the varying cross

section but whose amplitude growth is so

affected.

In the next section, the third, we give the basic

equations and kinematic jump conditions, and in

the fourth section, we make the usual constitutive

assumptions concerning the Helmholtz free

energy and heat flux and derive some associated

jump conditions. In the fifth section, we introduce

the equations of momentum and energy balance

and are able to deduce an expression for the

squared wave speed.

In the sixth section, “The Growth Equation,”

we derive an equation for the growth of wave

amplitude which is of Bernoulli type as is com-

monly the case for acceleration waves. There

follows a detailed discussion of the precise role

of each of the eight terms appearing in the coef-

ficients (26) and (25) of the growth equation (24).

In the seventh and final section, we consider

the behavior of the solution of the growth equa-

tion as the distance of propagation increases.
Basic Equations and Kinematic Jump
Conditions

The rod occupies the material region Xr0 and

has slowly varying cross-sectional area A(X), so
that the motion is essentially one-dimensional.

An acceleration wave is a singular surface prop-

agating with positive speed U such that the

motion x(X,t) and its first derivatives, namely,

the velocity _x and the deformation gradient

F ¼ @x=@X, are continuous but some of the sec-

ond derivatives are discontinuous, for example,

the acceleration €x. The superposed dot denotes

the material time derivative. We shall assume

that the wave is initiated at the end X ¼ 0 of the

rod at time t¼ 0. The temperature yðX; tÞ is taken
to be continuous, and we shall prove that _y and

the temperature gradient G ¼ @y=@X are also

continuous. The jump in any quantity fðX; tÞ
across the wave front is defined to be

½f� ¼ f� � fþ ð1Þ
where the superscript þ signifies evaluation just

ahead of the wave and the superscript � signifies

evaluation just behind the wave. The wave front

derivative d=dX denotes the space derivative

moving with the wave front, and we have

df
dX
¼ @f

@X
þ 1

U
_f

d
dX

f½ � ¼ @f
@X

� �
þ 1

U
_f
h i ð2Þ

where we have used the fact that the wave front

derivative d=dX and the jump operator ½ �
commute:
d
dX

f½ � ¼ df
dX

� �
for any function fðX; tÞ.

Across an acceleration wave front, we have
½ _x� ¼ 0 ½F� ¼ 0 ½y� ¼ 0 ð3Þ

and we denote the nonzero jump in acceleration

by a:
½€x� ¼ a ð4Þ

Using (1)–(4), it is possible to deduce the

following kinematic jump conditions which are

independent of any constitutive assumptions and

the equations of momentum and energy balance:
_F
� �
¼ � a

U
@F

@X

� �
¼ a

U2

@ _F

@X

� �
¼ 1

U2
€_x½ � � 2

U

da
dX
þ 1

U2

dU
dX

a

ð5Þ

and
_y
h i
¼ �U G½ �

@ _y
@X

" #
¼ �U @2y

@X2

� �
þ U

d
dX

G½ �
ð6Þ
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Equation (5)1 is obtained by putting f ¼ _x in
(2)2 and using (3)1, the fact that @ _x=@X ¼ _F, and

(4). Equation (5)2 is obtained by putting f ¼ F in

(2)2 and using (3)2, (5)1, and (4). Equation (5)3 is

obtained by successively putting f ¼ €x and

f ¼ _F in (2)2 and eliminating ½ €F� between the

resulting two equations. Equation (6) is derived

similarly.
Constitutive Equations and Associated
Jump Conditions

We make the usual constitutive assumptions

concerning the specific Helmholtz free energy c
and the referential heat flux Q:
c ¼ cðF; y;XÞ Q ¼ QðF; y;G;XÞ

X ¼ X
ð7Þ

which are both taken to be continuously differen-

tiable as many times as required. In addition, Q

vanishes identically in F, y, and X if G ¼ 0:

QðF; y; 0;XÞ � 0 ð8Þ

expressing the fact that heat flux vanishes in

the absence of temperature gradient. X denotes

the explicit dependence of quantities on X,
that is, the X-dependence due to material

inhomogeneity.

The energy balance equation, see (20) below,

forces
Q½ � ¼ 0 ð9Þ

The second law of thermodynamics requires

the thermal conductivity to be nonnegative, but

we shall require it to be strictly positive, that is,

the material is a definite conductor:
k ¼ � @Q

@G
> 0 ð10Þ

This requirement, together with (9) and (6),

yields
G½ � ¼ 0 _y
h i
¼ 0

@ _y
@X

" #
¼ �U @2y

@X2

� �
ð11Þ

Thus, y and its first derivatives are continuous
across an acceleration wave front in a definite

elastic conductor (see [4]). Such a wave is said

to be isothermal.

The Piola-Kirchhoff stress T and the specific

entropy � are given by
T ¼ r0
@c
@F

� ¼ � @c
@y

ð12Þ

where r0ðXÞ is the mass per unit volume of the

rod in the reference configuration. Since c is

a continuously differentiable function of its con-

tinuous arguments, taking jumps of (12) gives
T½ � ¼ 0 �½ � ¼ 0 ð13Þ

We now take jumps of the material time deriv-

ative of (12) and use the jump conditions (5)1 and

(11)2 to obtain
_T
� �
¼ � E

U
a _�½ � ¼ � b

r0U
a ð14Þ

in which the elastic modulus E and the tempera-

ture coefficient of stress b are defined by
E ¼ @T

@F
b ¼ � @T

@y
ð15Þ

It is a universal requirement of elasticity that E

be strictly positive, and for most materials, b is

observed to be strictly positive. In the subsequent

analysis, we insist that E > 0 but b is

unrestricted.
Momentum and Energy Balance and the
Wave Speed

The integral form of the equation of momentum

balance appropriate to a one-dimensional contin-

uum with varying cross section is
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d

dt

Z X2

X1

r0 _xA dX ¼
Z X2

X1

r0bA dX

þ TðX2ÞAðX2Þ
� TðX1ÞAðX1Þ ð16Þ

in which X1 and X2 are any two positions and

b(X,t) is the body force per unit mass (acting

along the rod in the direction of X increasing).

The point form of this equation is

r0A€x ¼
@ðTAÞ
@X

þ r0Ab ð17Þ

or equivalently
r0€x ¼
@T

@X
þ r0bþ T

d

dX
lnA ð18Þ

After writing @T=@X¼E@F=@X�bGþ@T=@X;
taking jumps of (18); assuming that b is continuous;
using (4), (5)2, and (11)1; and assuming that the

acceleration wave amplitude a is not identically

zero, we finally obtain an expression for the wave

speed:
r0U
2 ¼ E ð19Þ

which has been obtained by all authors on accel-

eration waves. The condition E > 0 ensures that

U is real. Equation (19) gives the wave speed in

terms of quantities which may be assumed known

on the wave front. It has the same form as when

thermal effects are neglected (except that here E

is temperature dependent). The wave speed is

unaffected by the varying cross section.

The appropriate integral version of the

reduced energy equation is
Z X2

X1

r0y _�A dX ¼
Z X2

X1

r0rA dX � QðX2ÞAðX2Þ

þ QðX1ÞAðX1Þ
ð20Þ

with corresponding point form

r0y _� ¼ �
@Q

@X
þ r0r � Q

d

dX
lnA ð21Þ
where r(X,t) is the heat supply per unit mass of the

rod. The heat supply is assumed continuous

across the wave front. Taking jumps of (21) and

using (14)2, (5)2, (11)1, (10), (11)3, and (9)

finally yield

@ _y
@X

" #
¼ yb� U�1QF

� � a
k

ð22Þ

It can be seen from (8) that if the material is in

thermal equilibrium ahead of the wave, then

QF � @Q=@F vanishes identically in F, y, and X.
The Growth Equation

We now derive an equation governing the growth

of the wave amplitude a of a plane acceleration

wave propagating along the rod. Take the mate-

rial time derivative of (18) and use (2)1 to obtain

r0€_x ¼
@T

@F

@ _F

@X
þ @T

@y
@ _y
@X
þ d
dX

@T

@F

� 	
_Fþ d

dX
@T

@y

� 	
_y

� 1

U

@2T

@F2
_F
2 þ 2

@2T

@F@y
_F _yþ @2T

@y2
_y
2


 �
þ r0 _b

þ @T

@F
_Fþ @T

@y
_y


 �
d

dX
lnA

ð23Þ

The modulus @T=@F occurring in the first and

third terms of (23) is replaced by r0U
2 from (15)1

and (19). Jumps are then taken of (23) assuming

that _b is continuous and remembering that _y is. On
rewriting all the jumps in terms of a using (5) and

(22) and noting that ½€_x� no longer appears, on

account of (19), we eventually arrive at an ordinary

differential equation for the acceleration wave

amplitude. It is a Bernoulli equation of the form

usually encountered in acceleration wave theory:

da
dX
þ maþ ga2 ¼ 0 ð24Þ

where
mðXÞ¼1
2

d
dX

lnr0þ
1

2

d
dX

lnUþ1
2

d
dX

lnA

þ yb2

2r0Uk
� bQF

2r0U2k
� EF

r0U3
_F
þ� Ey

r0U3
_y
þ
ð25Þ
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A
gðXÞ ¼ EF

2r0U4
¼ r0EF

2E2
ð26Þ

The second-order moduli occurring are

defined by
EF ¼
@E

@F
Ey ¼

@E

@y
ð27Þ

The coefficients mðXÞ and gðXÞ may be

assumed known on the wave front.

Equation (24) is the growth equation for

acceleration waves propagating into a materi-

ally inhomogeneous nonlinearly elastic heat-

conducting rod of slowly varying cross section

which may be prestrained and need not be in

either mechanical or thermal equilibrium ahead

of the wave.

For the remainder of this section, we discuss

the coefficients gðXÞ and mðXÞ defined by (26)

and (25), respectively. The coefficient g
depends only on the material density and the

elasticities and not on the varying cross section

or on thermal effects (except that the elasticities

are temperature dependent). In the special

case of linear elasticity, the second-order mod-

ulus EF vanishes and so, therefore, does g. If g
vanishes then, of course, (24) reduces to a linear

equation.

Turning now to the coefficient m, we see that

the sixth and seventh terms are absent if either the

material is linearly elastic (since then EF and Ey

vanish) or the material ahead of the wave is

quiescent. The fifth term vanishes if the material

ahead of the wave is in a state of thermal equilib-

rium. The fourth term may be thought of as the

most important explicit effect of thermal conduc-

tivity since terms five and seven are absent if the

material ahead of the wave is in thermal equilib-

rium. The fourth term is intrinsically positive,

vanishing only if b does, since y > 0 and

0<k<1. If b vanishes identically in F at

a particular temperature, then the result

Ey ¼ �@b=@F shows that thermal effects are

entirely absent from the equation of growth at

that temperature since then the fourth, fifth, and
last terms of (25) vanish. We recall that the

vanishing of b is also the condition for the

uncoupling of mechanical and thermal effects in

the propagation of sinusoidal waves through

a prestrained thermoelastic solid [5].

We continue our discussion of the thermal

terms of (25) by considering the role of the

thermal conductivity k. For a nearly perfect con-
ductor (k large), the fourth and fifth terms are

negligible, and any spatial temperature varia-

tions may be expected to equalize out rapidly.

However, _y need not be small (though it must be

spatially uniform), and so the last term of (25)

need not be negligible. In the limit k!1, the

fourth and fifth terms of (25) vanish, and the

spatially uniform temperature yðtÞ acts merely

as a parameter. If y is constant, we are left with

the growth equation of purely mechanical elas-

ticity, which is well known to be synonymous

with isothermal elasticity. On the other hand, for

a nearly perfect insulator (k small), we may

expect the heat flux Q and all its partial deriva-

tives to be in some sense small so that, in partic-

ular, QF is small and, unless b vanishes, the

fourth term of (25) becomes large and positive,

predominating over all the others. Therefore, in

the limit k! 0, we find that mðXÞ ! 1 unless b
vanishes. The growth equation (24) retains

meaning in this limit only if we insist that

aðXÞ ! 0 as mðXÞ ! 1. We must therefore

take aðXÞ ¼ 0 in the limit, that is, there can be

no isothermal acceleration wave in a one-

dimensional elastic nonconductor (k ¼ 0) unless

b vanishes. However, in general, an acceleration

wave in a nonconductor is isentropic but not

isothermal (see [4]) (an acceleration wave is

said to be isentropic if the entropy and its first

derivatives are continuous across the wave

front). It is clear from [6, Eq. (2.4)] that a one-

dimensional isentropic acceleration wave can-

not also be isothermal unless b vanishes, as is

consistent with our conclusion above that there

can be no isothermal acceleration wave in a

one-dimensional elastic nonconductor unless

b vanishes. We return briefly to the isentropic

acceleration wave which propagates in a non-

conductor when we discuss growth estimates for

a(X) in the final section.
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The only effect of the varying cross section on

the growth equation (24) is through the third term

in (25) which we may interpret in terms of three-

dimensional acceleration wave propagation. In

his investigation of three-dimensional accelera-

tion wave propagation in elastic materials,

Wright [7, Eq. (3.12)] introduced a quantity a1=2

(in his notation) defined on the wave front and

equal to the area of a ray tube (which varies due

to geometric spreading). The coefficient of the

linear term in Wright’s equation of growth

[7, Eq. (4.13)] contains the term

1

2

d
dX

lnða1=2Þ

which we claim to be analogous to our term
1

2

d
dX

lnA

in the growth equation for one-dimensional rods

with slowly varying cross section.

It remains to interpret the first two terms of

(25). The first clearly arises from any inhomoge-

neities in density, and the second contributes only

if the wave speed varies as the wave front moves.

This could happen because of varying F and y
ahead of the wave and because of material inho-

mogeneities. To make more explicit the effects of

material inhomogeneities, we use (19) to eliminate

the second term of (25) in favor of dðlnEÞ=dX,
which is evaluated ahead of the wave using (2)1.

The resulting alternative expression for mðXÞ is
given by
mðXÞ ¼ 1

4

d
dX

lnr0 þ
1

4

@

@X
lnEþ 1

2

d
dX

lnA

þ yb2

2r0Uk
� bQF

2r0U2k
þ EF

4r0U2

@Fþ

@X
� 3

U
_F
þ

� 	
þ Ey

4r0U2

@yþ

@X
� 3

U
_y
þ

� 	
ð28Þ

the first two terms of which now exhibit explic-

itly the dependence of mðXÞ on material inhomo-

geneity. Because E does not depend explicitly

on time, we may write dðlnEÞdX in place of

@ðlnEÞ@X.
Solutions of the Growth Equation

On substituting b ¼ a�1 in the growth equation

(24), we obtain the first-order linear equation
db
dX
� mb ¼ g

which may be solved using the integrating factor

expf�
R
mðX0Þ dX0g to obtain

bðXÞ ¼
1
b0
þ
R X
0
gðX0Þexp �

R X0
0
mðX00Þ dX00

� 

dX0

exp �
R X
0
mðX0Þ dX0

� 

where b0 ¼ bð0Þ. On inverting this fraction, we

obtain the solution to the growth equation (24)

aðXÞ ¼
a0exp �

R X
0
mðX0Þ dX0

� 

1þ a0

R X
0
gðX0Þexp �

R X0
0
mðX00Þ dX00

� 

dX0

ð29Þ

in which a0 ð¼ 1=b0Þ is the initial amplitude a(0)

of the acceleration wave when it begins propa-

gating from the end X ¼ 0 of the rod.

We return briefly to our discussion of

the limiting case of low thermal conductivity

(k small) to recall that the coefficient m(X) is

dominated by the large positive thermal term

now denoted by

z ¼ yb2

2r0Uk
ð30Þ

On substituting this into (29) and assuming

gðXÞ to be integrable for small X, we find that

aðXÞ ¼ a0e
�zXf1þ Oðz�1Þg as z!1

ð31Þ

Any isothermal acceleration wave that is ini-

tiated in a nearly perfect insulator is therefore

very rapidly damped out over the very short

length scale z�1. This bears out our conclusions
in the previous section on the nonexistence

of isothermal acceleration waves in one-

dimensional nonconductors.
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If thermal effects are absent and the region

ahead of the wave is quiescent, then the coeffi-

cient mðXÞ may be integrated exactly so that (29)

reduces to

aðXÞ ¼
a0

r0ðXÞAðXÞUðXÞ
r0ð0ÞAð0ÞUð0Þ

n o�1=2
1þ a0

R X
0
gðX0Þ r0ðX0ÞAðX0ÞUðX0Þ

r0ð0ÞAð0ÞUð0Þ

n o�1=2
dX0

ð32Þ

The quantity r0AU is the rate of mass trans-

port across the wave front. If, in addition, the

quantities r0, U, and g are constant, then (32)

further simplifies to give the wave amplitude in

terms only of the varying cross section A(X):

aðXÞ ¼ a0
ffiffiffiffiffiffiffiffiffiffi
Að0Þ

p
ffiffiffiffiffiffiffiffiffiffi
AðXÞ

p
1þ a0

ffiffiffiffiffiffiffiffiffiffi
Að0Þ

p
g
R X
0

dX0ffiffiffiffiffiffiffiffi
AðX0Þ
p


 �
ð33Þ

Chen [1, Sect. 13] gives many asymptotic

results for (29) with mðXÞ and gðXÞ varying, but,
for simplicity, here we consider only m and g
constant.

We now investigate conditions under which

both m and g are constant. The acceleration wave

is assumed to be propagating into a rod of uni-

form density, but slowly varying cross section, in

a state of thermal and mechanical equilibrium, so

that the first term and last three terms of (25)

vanish. If body forces are absent, we may further

conclude, from (17), that
TðXÞAðXÞ ¼ Tð0ÞAð0Þ ð34Þ

It follows that a rod of varying cross section

cannot be in both a state of homogeneous stress

and homogeneous strain (except for the state of

zero stress and strain). In fact, (17) also yields an

explicit formula for the change in deformation

gradient at the wave front:
@Fþ

@X
¼ � Tþ

E

d

dX
lnA ð35Þ

We therefore insist that the material ahead of

the wave be unstressed and unstrained so that the
wave speed U is constant and, consequently, the

second term of (25) vanishes, while the fourth is

constant. We shall specify the cross-sectional

area of the rod in the form

A ¼ Að0Þe2eX ð36Þ

where e is a positive or negative constant, so that

m defined by (25) reduces to the constant
m ¼ eþ z ð37Þ

with z defined by (30). The conditions imposed in

this paragraph are sufficient to force g also to be

constant.

In the case of constant m and g, the solution

(29) reduces to

aðXÞ ¼

a0e
�mX

1þ a0gð1� e�mXÞ=m m 6¼ 0

a0
1þ a0gX

m ¼ 0

8>><>>: ð38Þ

The behavior of this solution has been

discussed in [8] in terms of varying the initial

wave amplitude a0 for fixed material constants

m and g. However, our present objective is to

focus attention on the effects of varying cross

section on a wave with fixed initial amplitude a0
and fixed material constants m and g. Thus, m
varies only as the parameter e in (36) varies.

From (36) and (37), we see that a rod with

a smaller value of m may be regarded as being

more rapidly narrowing (or less rapidly broaden-

ing) than a rod with a larger value of m.
We now analyze the behavior of the solution

(38) for fixed a0, g, and z > 0 with m varying.

First, we note that if g ¼ 0, then aðXÞ ¼ a0e
�mX

and if a0g ¼ �m, then aðXÞ ¼ a0. For a nearly

perfect insulator (k small), we have z large so that
m!1, and (38)1 gives aðXÞ ! 0, as before.

All other possibilities are included in the three

cases set out below. In case 1, a(X) becomes

infinite at a finite, positive value of X, and

in the remaining two cases, a(X) remains finite

for all X, and asymptotic expansions are given for

large X.

• Case 1: m > 0; a0g<� m or m< 0; a0g > �m
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The solution aðXÞ=a0 increases monotonically

in X becoming infinite at the finite, positive value

of X given by
X1ðmÞ ¼ �
1

m
ln 1þ m

a0g

� 	
ð39Þ

Wemay interpret this blowup as the formation

of a shock at X ¼ X1.
If m ¼ 0, then from (38)2 blowup occurs at

X1 ¼ �1=a0g, positive for a0g<0. This may

also be obtained by taking the limit m! 0 in (39).

• Case 2: m > 0; a0g > �m

aðXÞ � a0e
�mX

1þ a0g=m
f1þ Oðe�mXÞg as X!1

• Case 3: m<0; a0g<� m

aðXÞ � � m
g
f1þ OðemXÞg as X!1

We are now in a position to discuss the effects

of varying cross section on acceleration wave

propagation. In case 1, we can show that X1ðmÞ
is monotonically increasing so that a shock forms

quicker in the more rapidly narrowing (less rap-

idly broadening) rod. In case 2, we see that the

amplitude decay is faster in the more rapidly

broadening rod. In case 3, the wave amplitude

approaches a finite limit for large X which is

larger in magnitude for a more rapidly narrowing

rod. In summary, a broadening rod tends to

dampen out the wave, while a narrowing rod

tends to concentrate it.
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a continuous solution may exhibit jump discon-

tinuities in its first-order normal derivatives.

Such a solution is called acceleration wave

or weak discontinuity and the characteristic

hypersurface, which acts as transporter of these

discontinuities, may be interpreted as a propa-

gating wave front.

Wave propagation phenomena in solids are

interesting both theoretically and practically.

Since solid materials are currently employed in

engineering applications at high temperatures,

even near the melting temperature TM, it is

here considered the continuum model proposed

by Sugiyama [1], which incorporates explicitly

the microscopic thermal vibration of constitu-

ent atoms. In fact, this model, derived statisti-

cally mechanically from a three-dimensional

anharmonic crystal lattice by adopting the con-

tinuum approximation, is valid in a wide tem-

perature range up to TM, and it is confined

within isotropic solids. For such a model, both

linear and nonlinear wave propagations have

been investigated at high temperature even

near the phase transition point [2–4].

The propagation of an acceleration wave in

a stratified medium consisting of different isotro-

pic solids is here investigated. Such a medium is

one of the simplest examples of a composite

material and it covers a broad range of applica-

tions, including sandwich panels in aircrafts, sub-

marine coatings, electrical devices with sandwich

structure, etc.

The coefficients of the transmitted and

reflected waves through each interface are explic-

itly derived and the critical time is discussed. As

an illustrative example, a semi-infinite solid

embedded with a thin layer of another kind is

considered and two possible control methods for

the formation of a shock are presented.
Basic Methodology

Layers of Isotropic Solids: Model Assumption

We consider a half-space X � 0 which consists of

an arbitrary number of region Si defined as

Si ¼ X; tð Þ : Xi � X � Xiþ1; t � 0f g i ¼ 0; 1; 2; . . .
and we denote byDiþ1 the straight line separating
Si and Siþ1 in the X; tð Þ � plane. Each region Si is

occupied by a different isotropic solid in contact

with one another. The basic equations, describing

the three-dimensional isotropic solid at a finite

temperature in plane symmetry, are obtained

from the general system proposed in [1] by

assuming that all the field variables depend only

on the position X and time t, as follows:

rik
@vi
@t
� @

@X
Tik1ð Þ ¼ 0

rik
@

@t
fik þ

1

2
v2i

� 	
� @

@X
vi � Tik1ð Þ ¼ 0

@Fi1

@t
� @vi

@X
¼ 0

ð1Þ

where the subscript i refers to the particular iso-

tropic solid occupying the region Si. Further-

more, we also have the following:

• v is the velocity.

• rk; Tk1; fk are, respectively, the mass

density, the Piola-Kirchhoff stress tensor, and

the internal energy density in the reference

configuration.

• F1 ¼ @x
@X

� �
is the first column vector in the

deformation gradient tensor F with x the posi-

tion vector in the current configuration.

All quantities are expressed in terms of

the dimensionless velocity q; the potential

energy density s, and the deviation of the dimen-

sionless temperature r from a reference equilib-

rium state

v ¼ O
a
q; Tk1 ¼

O2

a2
rk HF1

sð Þ

fk ¼
O2

a2
3

2

kBT

D
þ r

� 	
þ s

� 	 ð2Þ

In (2), Hwf ¼ @f
@w , O and a�1 are, respectively,

the microscopic frequency and microscopic

length characteristic of the solid occupying Si,
while D is the depth of the atomic pair potential

between the constituent atoms in the solid, kB is

the Boltzmann constant and T is the absolute

temperature at a reference equilibrium state

which we assume as a reference configuration.

The model under consideration explicitly takes
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into account microscopic thermal vibrations of

the constituent atoms through a symmetric tensor

gðF; rÞ, which describes the deviation of the

atomic thermal vibration from a reference equi-

librium state, and it is related to F and r by the

following state equation:
ðl1þ gÞHgs ¼
kBT

2D
1þ D

kBT
r

� 	
1 ð3Þ

with l the dimensionless mean square displace-

ment of the thermal vibration of the constituent

atom at a reference equilibrium state, 1 is the

identity matrix.

In what follows, we adopt for s F; gð Þ the

following expansion form:
s F;gð Þ ¼ b0þb1I1þb2I
2
1þb3I2þb4I1I4þb5I7þb6I

2
4

þb7I5þb8I
3
1þb9I3þb10I6þb11I8þb12I9

þb13I1I2þb14I1I5þb15I1I7þb16I2I4þb17I
3
4

þb18I4I5þb19I4I7þb20I
2
1I4þb21I1I

2
4

ð4Þ

where the basic invariants are defined by
I1� gii; I2� gikgki; I3� gikgkjgji

I4�Bss�3; I5� Bst�dstð Þ Bst�dstð Þ
I6� Bst�dstð Þ Btp�dtp

� �
Bps�dps
� �

; I7� gst Bts�dtsð Þ
I8� gps Bst�dstð Þ Btp�dtp

� �
; I9� gtpgps Bst�dstð Þ

ð5Þ

being B ¼ FFT the left Cauchy-Green tensor.

The explicit expressions of the expansion coeffi-

cients b0s; which depend on the temperature T
and on the material under investigation, have

been estimated in terms of the Morse-type atomic

pair potential [3].

Outline of the Wave Propagation Theory

Since we are interested to study the propagation

of acceleration waves in layers of isotropic

solids, we briefly summarize the main results

concerning the one-dimensional wave propaga-

tion theory for hyperbolic system. In continuum

theory, the physical conservation laws are usually

expressed as
@G0ðUÞ
@t

þ @GðUÞ
@X

¼ 0 ð6Þ

where G0 and G are N-components column

vectors depending on the field vector U 2 RN .

We suppose the system (6) to be hyperbolic in

the time-direction, namely, the eigenvalue

problem

ðHUG� VHUG
0Þd ¼ 0; lðHUG� VHUG

0Þ ¼ 0

ð7Þ

has only N real eigenvalues (characteristic

speeds) V ¼ VðUÞ and a complete set of linearly

independent right d and left l eigenvectors. If all

the eigenvalues are distinct, then the system (6)

is said to be strictly hyperbolic, whereas if VðjÞ

has multiplicity mj, then mj linearly independent

eigenvectors dj and lj, must correspond to VðjÞ.
For such a system, it is possible to consider

a particular class of continuous solutions,

usually known as weak discontinuities or

(in continuum mechanics) acceleration waves,

having a jump in the normal derivative across

a moving front SðtÞ of Cartesian equation

’ X; tð Þ ¼ 0:
U½ �½ � ¼ U1 � U0 ¼ 0;
@U

@’

� �� �
¼ P 6¼ 0;

�½ �½ � ¼ lim
’!0þ

�ð Þ � lim
’!0�

�ð Þ

where the square brackets indicate the jump, U0

and U1 denote the known unperturbed field

ahead SðtÞ and the unknown perturbed field

behind SðtÞ, respectively. In the one-dimensional

wave propagation, the following results hold [5]:

• The normal velocity is equal to a characteristic

speed evaluated at U0; V U0ð Þ ¼ � ’t

’X
;

CðVÞ : d X
d t ¼ VðU0Þ, is the associated charac-

teristic curve.

• The jump vectorP belongs to the subspace of

the right eigenvectors corresponding to

VðU0Þ:
•

P ¼
Xmj

j¼1
pjd j U0ð Þ ð8Þ
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• The amplitude coefficients pj satisfies

a system of mj Bernoulli equations [5] which,

if mj ¼ 1, reduces to only one equation for

p1 ¼ p :
dp
dt
þ ’X HUV � dð Þ0 p2 þ bðtÞp ¼ 0

bðtÞ ¼ dT HUlð ÞT � HUlð Þ
� 


� dU
dt



þ HUV � dð Þ l � @U

@X

� 	�
0

ð9Þ

where d
dt ¼ @

@tþ V U0ð Þ @
@X stands for the time

derivative along the characteristic lines CðVÞ and
the subscript “0” indicates the quantity evaluated

in the unperturbed field U0: If the wave satisfies

the genuine nonlinearity condition, that is,

HUV � dð Þ 6¼ 0; the discontinuity becomes

unbounded in a finite time tc (critical time)

when the weak discontinuity evolves into

a shock wave.
Wave Propagation Through a Stratified
Medium

Acceleration Wave Through a Layer

In order to study the propagation of an accelera-

tion wave through the stratified medium herein

considered, firstly we focus our attention on

a fixed layer Si; which, without loss of generality,
we suppose to be the first layer S0. The model

under consideration (1), bearing in mind (2),

admits the hyperbolic conservative form (6)

with the field vector U ¼ q;F1;r
� �T

and

G0 Uð Þ¼ rka
�1Oq; rka

�2O2 1
2
q2þ 3

2
kBT
D þr
� �

þs
� �

;
�

F1
T
�

G Uð Þ¼� rka
�2O2HF1

s; rka
�3O3q �HF1

s; a�1Oq
� �T

ð10Þ

Therefore, the characteristic equation (7)

gives rise to three different kind of waves

whose dimensionless characteristic velocitieseV0 � a
OV
� �

S0
; evaluated at the thermal equilib-

rium state U ¼ 0; 0; 0; 1; 0; 0; 0ð ÞT ; are given

by [3]
eV2

0L ¼ 4 2 b6þb7ð Þ� lb4 3b4þ 2b5ð Þ
aþ 2bð Þ

�
� lb25ðaþ bÞ

a� bð Þ aþ 2bð Þ

	
S0

longitudinal waves

eV0S ¼ 0 standing waves

eV2

0T ¼ 4b7�
2lb25
a� b

� 	
S0

double transverse waves

a� 4

3
b1þ 2lb2þ 2lb3; b� 1

3
b1þ 2lb2

It turns out that

eVð�Þ0L < eVð�Þ0T < 0 < eVðþÞ0T < eVðþÞ0L ð11Þ

where ðþÞ and ð�Þ indicate that the corresponding
wave propagates in the positive and negative

X � directions, respectively. In particular, we

focus our attention on the fastest acceleration

wave, that is, a longitudinal acceleration wave

propagating with velocity eVðþÞ0L in S0: Since the

unperturbed field U is constant the coefficient

bðtÞ occurring in (9) vanishes and the amplitude

p0ðtÞ is given by [3]

p0ðtÞ ¼
p0

1� A0O0eV2

0L

p0t
ð12Þ

where p0 is the initial amplitude and

A0 � � eV2

0L HU
~V
þ
0L �dþ0L

� 

U
. From (12) it is

easy to ascertain that if HU
~V
þ
0L �dþ0L

� 

U
p0 < 0

holds, the critical time t
ð0Þ
c is
tð0Þc ¼ �
1

HU
~V
þ
0L �dþ0L

� 

U
p0 O0

ð13Þ

Associated to (13), we have the critical dis-

tance X
ð0Þ
c , namely, the distance passed by the

acceleration wave before the shock formation,
Xð0Þc ¼ a�10 O0
eVðþÞ0L tð0Þc ð14Þ

so that the interaction between the longitudinal

wave and the straight line D1 (separating S0



Acceleration Waves in
Layers of Isotropic Solids
at Finite Temperatures,
Fig. 1 Temperature

dependence up to the

melting point of: (a)

dimensionless propagation

speed ~VL in Ag, Al, Cu, Ni,

and Pb; (b) HU
~VL � dL for

Al, Cu, Pb. TM is the

melting temperature [6]
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from S1) occurs if and only if the impact time t1 is

less than t
ð0Þ
c , that is, the thickness L0 of S0 must

satisfy the following condition:

L0 < �
eVðþÞ0L

HU
~V
ðþÞ
0L �d

ðþÞ
0L

� 

U
p0 a0

From (13), (14) it follows that the behavior of

the critical time as well as the critical distance is

influenced by the term HU
~V
ðþÞ
0L �d

ðþÞ
0L

� 

U
. In

Fig. 1, the temperature dependence of both the

dimensionless propagation speed eVL and

HU
~VL �dL evaluated at U are shown, for different

metals, up to the melting point. The numerical

results are consistent with the experimental data,

although the data available are those observed

at temperatures that are much lower than TM. In

the temperature range near the melting point

the present theory predicts that, as T tends to TM
from the low-temperature side, the propagation

speeds decrease rapidly but their values are, how-

ever, finite.

Reflected and Transmitted Waves at an

Interface

Now we investigate the propagation of the fastest

longitudinal acceleration wave generated at P0

through the next layers. Therefore we suppose

that in each region Si, the field variables are

continuous while its first derivatives suffer
jumps across the characteristic of the system (1)

and we assume that the impact time of the accel-

eration wave propagating in Si with the line Diþ1
is less than the critical time in Si. This last

assumption means that the considered accelera-

tion wave does not evolve into a shock wave

before reaching the line Diþ1, separating two

adjacent regions Si and Siþ1. Such a situation

can be described by assuming that the coefficients

of the field equations are piecewise continuous

functions with discontinuities occurring across

Diþ1. A general theory of quasilinear hyperbolic

equations with discontinuous coefficients was

first developed in [7–9] and later, more system-

atically, in [10].

Since the interface line Diþ1 acts as a strong

discontinuity (shock line) for U, that is, it suffers

a jump across Diþ1, the field variables are

connected by the Rankine-Hugoniot jump rela-

tions, which, for a general conservation system

(6), are as follows:
sG0 þG
� �

D�iþ1
¼ sG0 þG
� �

Dþ
iþ1

ð15Þ

being s the shock speed.

Therefore, when the longitudinal wave propa-

gating in S0 meets the interface D1, it splits into

reflected and transmitted waves that, owing to

the hyperbolicity of the governing system, prop-

agate along the characteristics. Since the shock

velocity is equal to the characteristic velocity
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Layers of Isotropic Solids
at Finite Temperatures,
Fig. 2 Propagation of an

acceleration wave through

a stratified medium.

CiL ; CiT are the

characteristic curves

associated, respectively, to

the longitudinal and

transversal waves

propagating in the layer Si
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s ¼ eV0 ¼ eV1 ¼ 0, it follows from (11) that the

evolutionary Lax conditions [11] are satisfied so

that the solution is physically meaningful. There-

fore we have two reflected waves along the char-

acteristic propagating with the velocities eVð�Þ0L ,eVð�Þ0T and two transmitted ones propagating with

the velocities eVðþÞ1L , eVðþÞ1T (see Fig. 2).

The amplitudes of the reflected and transmit-

ted waves in terms of the incident one can be

determined by following the procedure given in

[10]. We denote by U
ðRÞ
0 and U

ðTÞ
1 the reflected

(in S0) and transmitted (in S1) field vectors,

respectively, so that we have

U
ðRÞ
0 ¼ UþP0’0 þPðRÞ0L ’0L þPðRÞ0T ’0T

U
ðTÞ
1 ¼ UþPðTÞ1L ’1L þPðTÞ1T ’1T

ð16Þ

In (16), P0, P
ðRÞ
0L , P

ðRÞ
0T are the incident and

reflected discontinuity vectors transported along

the characteristics ’0, ’0L, ’0T propagating with

velocities eVðþÞ0L , eVð�Þ0L , eVð�Þ0T , whereas PðTÞ1L , P
ðTÞ
1T

are the transmitted discontinuity vectors along

the characteristics ’1L, ’1T with velocities eVðþÞ1L ,eVðþÞ1T . According to (8), the discontinuity vectors

are expressed as follows:
P0 ¼ mdðþÞ0L ; PðRÞ0L ¼ m1Ld
ð�Þ
0L

PðRÞ0T ¼ mð1Þ1T d
ð1Þð�Þ
0T þ mð2Þ1T d

ð2Þð�Þ
0T

PðTÞ1L ¼ n1Ld
ðþÞ
1L

PðTÞ1T ¼ nð1Þ1T d
ð1ÞðþÞ
1T þ nð2Þ1T d

ð2ÞðþÞ
1T

ð17Þ

where the coefficient m ¼ p0ðt1Þ represents the

amplitude of the known incident discontinuity

and its expression is obtained from (12).

After differentiating (16) with respect to X and

taking into account (17), we obtain the

following:
a�10 U
ðRÞ
0X ¼ mdðþÞ0L þ m1Ld

ð�Þ
0L þ mð1Þ1T d

ð1ÞðþÞ
0T þ mð2Þ1T d

ð2ÞðþÞ
0T

a�11 U
ðTÞ
1X ¼ n1Ld

ðþÞ
1L þ nð1Þ1T d

ð1ÞðþÞ
1T þ nð2Þ1T d

ð2ÞðþÞ
1T

ð18Þ

provided we choose, without loss of generality,
@’0

@X ¼
@’0L

@X ¼
@’0T

@X ¼
@’1L

@X ¼
@’1T

@X ¼ 1

In order to characterize completely the trans-

mitted and reflected discontinuities, we need to

determine the amplitude coefficients involved in

(17). These, together with the acceleration of the

shock, are uniquely determined as solutions of

the algebraic system obtained by differentiating

the Rankine-Hugoniot relations (15) along the

shock line and by using (18) as follows:
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_s ¼ mð1Þ1T ¼ mð2Þ1T ¼ nð1Þ1T ¼ nð2Þ1T ¼ 0

m1L ¼ m
C0

eVðþÞ1L � F0
eVðþÞ0L

C0
eVðþÞ1L þ F0

eVðþÞ0L

n1L ¼ 2m
C0F0

eV2

0LeVðþÞ1L C0
eVðþÞ1L þ F0

eVðþÞ0L

� 

m ¼ p0ðt1Þ ¼

p0 eVðþÞ0LeVðþÞ0L þ HU
~V
ðþÞ
0L �d

ðþÞ
0L

� 

U
a0 p0 L0

F0 ¼
rka

�2O3
� �

0

rka�2O
3

� �
1

; C0 ¼
a�1O2
� �

0

a�1O2
� �

1

ð19Þ

As a consequence of (19)1; we notice that

neither transmission nor reflection is possible

along the characteristics corresponding to trans-

verse waves. Therefore, after interaction, we can

observe only one reflected as well as one trans-

mitted acceleration wave propagating with the

speed eVL so that, in what follows, we will drop

the subscript “L” in the coefficients of the

reflected and transmitted waves. The (19)1
points out also that there is no acceleration

of the shock, as it is expected, being the interface

at rest.

Now, by means of an iterative approach,

we are able to investigate the reflection and

transmission of the incident wave across each

layer.

Let us consider the region Si and we specialize

the coefficients of the reflected and transmitted

waves at Piþ1 ¼ ðXiþ1;tiþ1Þ. Actually, the ampli-

tude pi of the acceleration wave propagating in Si
and the corresponding critical time t

ðiÞ
c are as

follows:
piðtÞ ¼
piðtiÞ

1þ HU
~V
ðþÞ
iL �d

ðþÞ
iL

� 

U
Oipi tið Þ t� tið Þ

tðiÞc ¼ ti �
1

HU
~V
ðþÞ
iL �d

ðþÞ
iL

� 

U
piðtiÞOi

tiþ1 ¼ ti þ
aiLi

Oi
eV þð ÞiL

; t0 ¼ 0; Li ¼ Xiþ1 � Xi;

i ¼ 0; 1; . . .

ð20Þ
with piðtiÞ � ni the coefficient of the transmitted

wave at Di. Therefore in order to have a critical

time greater than it would be in absence of inter-

action, we must require that the weak discontinu-

ity of the incident wave velocity decreases

through each layer, that is, HU
~V
ðþÞ
iL �d

ðþÞ
iL

h i
> 0

(see [12]). The interaction between the accelera-

tion wave propagating in Si and the interfaceDiþ1
is possible if the following condition holds:
Li < �
eVðþÞiL

HU
~V
ðþÞ
iL �d

ðþÞ
iL

� 

U
pi tið Þai

ð21Þ

so that under assumption (21), the acceleration

wave never evolves into a shock wave in the

region Si.

After a simple algebra, the reflection and trans-

mission coefficients, in each layer Si, are deter-

mined in terms of the initial amplitude p0 of the

incident acceleration wave in S0 as follows [6]:
miþ1 ¼
p0 wi Ci � Fidið Þ

1� p0
Pi
k¼0

okwk

� 	
Ci þ Fidið Þ

niþ1 ¼
p0 wiþ1

1� p0
Pi
k¼0

okwk

� 	
where
Fi ¼
rka

�2O3
� �

i

rka�2O
3

� �
iþ1

; Ci ¼
a�1O2
� �

i

a�1O2
� �

iþ1
;

di ¼
eVðþÞiLeVðþÞiþ1L

;oi ¼ �
HU

~V
ðþÞ
iL �d

ðþÞ
iL

� 

U
aiLieVðþÞiL

;

wk ¼ 2kP
k�1

j¼0

d2jFjCj

Cj þ Fjdj
; w0 ¼ 1
An Illustrative Example

In order to show characteristic features of the

propagation of an acceleration wave in a stratified

medium, especially its peculiar temperature



Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 3 A thin layer “1” of thick-

ness L1 embedded at distance L0 in a semi-infinite solid

“0.” X0c and Xc are the critical distances in the solid “0”

with and without the thin layer “1,” respectively

Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 4 Temperature dependence

of the characteristic impedance rkVL for Ag, Al, Cu, Ni,

and Pb up to the melting point [6]
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dependence, we consider a semi-infinite solid

(denoted by “0”) in which a thin layer of another

kind of solid (indicated by “1”) is embedded at

a distance L0 as shown in Fig. 3. Furthermore, we

assume that the thin layer of thickness L1 is per-

pendicular to the X � axis and that the longitu-

dinal acceleration wave (excited at X ¼ 0Þ
propagates through the layered solid in the posi-

tive X � direction.

The subsequent analysis will be devoted to

investigate the effects of the embedded thin

layer on the shock formation arising at the critical

time and consequently at the critical distance.

Actually, the critical distance X0c is related to

Xc; critical distance in the absence of the thin

layer, as follows:

X0c ¼ Xc þ GðXc � L0Þ þ LL1 ð22Þ

where the dimensionless quantities G and L are

given, respectively, by the following:

G ¼
rkVLð Þ0� rkVLð Þ1

� �2
4 rkVLð Þ0 rkVLð Þ1

� 0

L ¼ 1�
a1 ~V

2

0L F0
~V0LþC0

~V1L

� �
H ~V1L � d1L
� �

2a0 ~V
3

1L H ~V0L � d0L
� �

ð23Þ

The quantity rkVL is well known as the char-

acteristic impedance of the medium, whose
temperature dependence is shown in Fig. 4 for

different metals. From (22) it is straightforward

to see that there are two dimensionless charac-

teristic quantities G and L which play an impor-

tant role in the determination of the critical

distance X0c. Therefore, we show explicitly the

temperature dependencies of G and L up to the

melting point for three representative pairs of

metals “Pb-Al,” “Pb-Ag,” and “Ag-Cu.” Fur-

thermore, we assume that the temperatures of

the two metals “0” and “1” are equal to each

other, so that from (23) it follows that tempera-

ture dependence of G, for a fixed pair of metals,

does not vary interchanging the position of the

materials.

Case Pb-Al. Temperature dependence of the

characteristic quantities G and L is shown in

Fig. 5 (solid line) up to the melting temperature

of Pb, which is lower than that of Al. We notice

the following:

1. G decreases monotonously with the increase

of the temperature and changes drastically as

the temperature approaches the melting point

of Pb (Fig. 5a).
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2. Metal Pb with thin layer of Al. L increases

monotonously with the increase of the temper-

ature, it is always positive and its value is

much larger than that of G in the whole range

of the temperature up to the melting point of

Pb (Fig. 5b).

3. Metal Al with thin layer of Pb. L is always

negative, it decreases monotonously with the

increase of the temperature and changes
drastically as the temperature approaches the

melting point of Pb. The absolute value ofL is

much larger than the value of G in the whole

range of the temperature up to the melting

point of Pb (Fig. 5c).

Case Pb-Ag. Temperature dependence of the

characteristic quantities G and L is shown in

Fig. 5 (dashed line) up to the melting temperature
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of Pb which is lower than that of Ag. We observe

the following:

1. G increases monotonously with the increase of

the temperature and it changes drastically as

the temperature approaches the melting point

of Pb (Fig. 5a).

2. Metal Pb with thin layer of Ag. L is always

positive, it increases monotonously with the

increase of the temperature and its value is

larger than that of G in the whole range of

the temperature up to the melting point of Pb

(Fig. 5b).

3. Metal Ag with thin layer of Pb. L is always

negative, it decreases monotonously with the

increase of the temperature and changes dras-

tically as the temperature approaches the melt-

ing point of Pb. The absolute value of L is

much larger than the value of G in the whole

range of the temperature up to the melting

point of Pb (Fig. 5c).

Case Ag-Cu. Temperature dependence of the

characteristic quantities G and L is shown in

Fig. 6 up to the melting temperature of Ag

which is lower than that of Cu. We notice the

following:

1. G is not a monotonous function of the temper-

ature and it vanishes at the critical temperature

Tc ¼ 1;184K, and it changes drastically as the

temperature approaches the melting point of

Ag (Fig. 6a).

2. Metal Ag with thin layer of Cu. L increases

monotonously with the increase of the temper-

ature, it is always positive and its value is

larger than that of G in the whole range of

the temperature up to the melting point of

Ag. In the temperature region near the critical

temperature Tc, if L1 	 Xc, taking into

account (22) and the behavior of G, we have

X0c 
 Xc (Fig. 6b).

3. Metal Cu with thin layer of Ag. L decreases

monotonously with the increase of the temper-

ature, it is always negative and changes dras-

tically as the temperature approaches the

melting point of Ag. The absolute value of L
is much larger than the value of G in the whole

range of the temperature up to the melting

point of Ag (Fig. 5c).
Control of Critical Distance

The position at which a shock wave emerges

from an acceleration wave may be checked by

using the relation (22). In what follows, for the

sake of simplicity, we focus our attention on

a thickness L1 negligibly small (L1 	 Xc) so

that, for finite values of L, by using the dimen-

sionless length in the unit Xc, the relation (22)

becomes
~X
0
c ¼ 1þ Gð1� ~L0Þ; ð0 < ~L0 < 1Þ

ð24Þ

where ~X
0
c � X0c=Xc and ~L0 � L0=Xc. Therefore,

even when the thickness L1 is negligibly small,

the critical distance X0c is, in general, greater

than the critical distance Xc. As seen clearly

from (24), the critical distance may be con-

trolled through the dimensionless position ~L0
(Method-a) or through the characteristic quan-

tity G (Method-b).
Method-a. The temperature of the metal “1” is

assumed to be the same as that of metal “0” and

the critical distance X0c is controlled by changing
the position L0 of the thin layer. As illustrative

cases, we consider the pair of metals Pb-Al

and Pb-Ag, for which the characteristic quantity

G is shown in Fig. 5. The linear relationship

between the critical distance ~X
0
c and the position

~L0 of the thin layer at several temperatures

is shown in Fig. 7a and b. In both cases, the

relative change of the critical distance ~X
0
c�1

by the change of the position ~L0 is at

most �15 % [6].

Method-b. The temperature of the metal “0”

is fixed at a certain temperature, say at the

room temperature T ¼ 300K and the position

L0 of the thin layer is fixed too. Therefore,

the critical distance is controlled through

G by changing the temperature of the thin

layer. The three representative pairs of metals

previously considered (Al-Pb, Ag-Pb, Ag-Cu)

are analyzed.

Metal Pb with thin layer of Al and vice versa.
When the thin layers corresponds to aluminum,

the temperature dependence of G, shown in

Fig. 8a, is weak and the relative change of the
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critical distance ~X
0
c�1 is around 10% so that X0c

cannot be changed much by the temperature

change of aluminum. In the opposite case

(Fig. 8b), the temperature dependence of G is

more strong than that in the previous case and the

relative change of the critical distance ~X
0
c�1 is

less than 14 %. However, the critical distance X0c
can be changedmore drasticallywith respect to the

previous case by the temperature change of Pb.
Metal Pb with thin layer of Ag and vice versa.

As it is to see from Fig. 9, the dependence of G on

the temperature of the metal “1” is weak if the

thin layer is Ag, whereas it is stronger in the

opposite situation. Therefore, the critical distance

X0c can be changed more drastically by the tem-

perature change of Pb rather than Ag.

Metal Ag with thin layer of Cu and vice versa.

Figure 10 shows that G increases monotonously



Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 8 Dependence of the char-

acteristic quantity G on the temperature of the thin layer

for the pair of metals Pb-Al: (a) thin layer of Al; (b) thin

layer of Pb [6]

Acceleration Waves in Layers of Isotropic Solids at Finite Temperatures, Fig. 7 Linear relationship between the

critical distance ~X
0
c and the position ~L0 of the thin layer at several temperatures for: (a) Pb-Al, (b) Pb-Ag [6]
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Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 9 Dependence of the char-

acteristic quantity G on the temperature of the thin layer

for the pair of metals Pb-Ag: (a) thin layer of Ag; (b) thin

layer of Pb [6]

Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 10 Dependence of the char-

acteristic quantity G on the temperature of the thin layer

for the pair of metals Ag-Cu: (a) thin layer of Ag; (b) thin

layer of Cu [6]
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with the increase of the temperature of Cu,

whereas, if the thin layer is Ag, then G is not

a monotonous function. In both cases, the value

of G is small, but in the second one, it vanishes

for a critical value of the temperature.

It is remarkable that, even in such a simple

situation studied here, nonlinear wave propaga-

tion phenomena exhibit the wide variety of their

interesting aspects depending on the tempera-

tures of solids as well as on the geometrical of

a stratified medium.

Acknowledgments The Figs. 1, 4, 6–10 are reprinted

from [6] with permission from Elsevier.
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Synonyms

Acceleration waves; Micropolar continuum;

Thermoelasticity
Definition

By the term “acceleration wave”, we mean an

isolated geometric surface that moves relative to

the material points, across which the acceleration

is discontinuous but the displacement and

velocity are continuous. More generally, we call

an acceleration wave a propagating surface across

which second derivatives of some fields undergo

discontinuity jump. In the theory of the nonlinear

thermoelastic micropolar continuum (called also

Cosserat continuum), acceleration waves relate

with some jumps of linear and angular accelera-

tions as well as second derivatives of tempera-

ture. Acceleration waves are similar to sound

waves in solids; they also relate with the locali-

zation of deformations in solids.
Overview

Analytic solutions in the theory of the propaga-

tion of nonlinear waves are exceptional, and

http://dx.doi.org/10.1007/978-94-007-2739-7_100004
http://dx.doi.org/10.1007/978-94-007-2739-7_100429
http://dx.doi.org/10.1007/978-94-007-2739-7_100725
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acceleration waves present one of the exceptions.

An acceleration wave (or a wave of weak

discontinuity of order 2) is a solution to the

motion equations of continuum that possesses

discontinuities in the second derivatives on

some surfaces that will be called singular. It

means that the acceleration wave is represented

by a traveling surface which is a carrier of

discontinuity jumps of the second derivatives of

a solution with respect to the spacial coordinates

and time, whereas the solution and its first

derivatives are continuous in some surface

neighborhood. From the mathematical point of

view, existence of acceleration waves closely

relates with hyperbolicity of the dynamic

equations or their ellipticity for the equilibrium

equations. Existence of acceleration waves in any

direction is equivalent to the fact that all

eigenvalues of an algebraic spectral problem for

the acoustic tensor are positive for any direction

of wave propagation.

From the physical point of view, the

hyperbolicity of the equations of motion is

a natural property of dynamics of elastic media

as well as ellipticity is a natural property of its

statics. The violation of hyperbolicity (or

elipticity) means that discontinuous solutions

may appear. Such solutions may model

shear-bands, phase transitions, interfaces, frac-

ture, defects, slip surfaces, and other phenomena.

So, the algebraic criterion for such phenomena is

important in mechanics of materials.

The investigations of acceleration waves in

nonlinear elastic and thermoelastic media are

performed in many works, see [1, 2]. Accelera-

tion waves in elastic micropolar media are con-

sidered in [3]. In a micropolar continuum, each

material particle has six degrees of freedom; they

are three translational and three rotational

degrees of freedom. Besides ordinary stresses

there are introduced couple stresses. This gives a

possibility to describe micro-inhomogeneous

media, for example, foams, cellular solids,

lattices, masonries, particle assemblies, magnetic

rheological fluids, and liquid crystals. A generali-

zation for elastic and viscoelastic micropolar

media is presented in [4]. The relation between

the existence of acceleration waves and the
condition of strong ellipticity of the equilibrium

equations was established in [5–7]. The relation of

the ellipticity to localization phenomena in

micropolar elastoplasticity is done in [8].

In what follows we use the tensor notations as

in [7, 9].
Motion and Thermoconductivity
Equations

The motion of a micropolar media is described by

two kinematic variables:

x ¼ xðX; tÞ; dK ¼ dKðX; tÞ; K ¼ 1; 2; 3

ð1Þ

The vector x describes the position of

a material point in the actual configuration at

instant t, while X describes the position of the

material point in the reference configuration. dK
are called directors; they are attached to each

material point. dK describe the orientation of the

material particles in the actual configuration. For

micropolar media, dK constitute orthonormal

frame, and so dk � dm ¼ dkm; where dkm is the

Kronecker symbol.

We introduce three orthonormal directors Di

in the reference configuration. For the sake of

simplicity, we choose DiðXÞ � diðX; 0Þ. Next,
we introduce the proper orthogonal tensor

H � dK � DK , detH ¼ 1, called microrotation

tensor, where
N

is the tensor product. H

describes relative microrotation of a particle

of the micropolar media. Kinematics of

a micropolar medium is depicted in Fig. 1.

Here N is the unit normal to the boundary of the

body in the reference configuration.

The linear velocity is given by the standard

relation v ¼ _xwhere the overdot denotes themate-

rial derivative with respect to t. The angular veloc-

ity vector, called microgyration vector, is given by

v ¼ � 1

2
HT � _H
� �

� ð2Þ

where the dot denotes the dot (inner) product and

ð. . .ÞT – transposed. Symbol ð. . .Þ� stands for the

vector invariant of a second-order tensor, [7, 9].
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In particular, for a dyad a� b we have

ða� bÞ� ¼ a� b, where � is the vector (cross)

product. Relation (2) means that v is the axial

vector associated with the skew-symmetric

tensor HT � _H, see [7, 9].

The equations of motion, which represent

the local balance of momentum and of moment

of momentum (the balance of angular momen-

tum) for an arbitrary part of the micropolar body

in the reference configurations, are [1, 7, 10],

DivTk þ rf ¼ r _v

DivMk þ ðF � TT
kÞ� þ rm ¼ rg _v

ð3Þ

Here Tk and Mk are the first Piola–Kirchhoff

stress and couple-stress tensors; F ¼ Grad x is

the deformation gradient; Grad and Div are the

gradient and divergence operators in Lagrangian

coordinates, respectively; r is the mass density in

the reference configuration; f and m are the

vectors of mass forces and mass couples,

respectively; and rg is the scalar measure of the

rotational inertia of a particle.

In heat conductive media (3) are

supplemented with the Lagrangian heat

thermoconductivity equation [10]:
ry _� ¼ �Div qþ rh ð4Þ

where y is the temperature, � the specific entropy,

q the heat flux in the reference configuration, and

h the density of external heat source.
The constitutive equations of a Cosserat

thermoelastic continuum can be derived with the

use of the specific free energy c ¼ cðE;K; yÞ as
follows:
Tk ¼ rH � c;E; Mk ¼ rH � c;K

� ¼ �c;y; q ¼ qðE;K; y;Grad yÞ
E ¼ HT � F� I

K ¼ � 1

2
« : ðHT � Grad HÞ

ð5Þ

where E and K are the strain tensor and wryness

tensor, respectively, I is the identity tensor, and

« � �I� I the permutation tensor, and the

double dot product : of two 3rd-order tensors

A, B represented in the Cartesian base ia is

defined as A : B ¼ AamnBmnbia � ib. Detailed

discussion on strain measures in the micropolar

continuum is given in [11].

In what follows we use the referential Fourier

law for q:

q ¼ �kðyÞ � Grady; h � kðyÞ � h > 0; 8h 6¼ 0

ð6Þ

where k is the positive definite thermocon-

ductivity tensor.

We assume c to be a twice continuously dif-

ferentiable function and vector function q to be

continuously differentiable. We use the follow-

ing notation:
c;E ¼
@c
@E

; c;K ¼
@c
@K

; c; y ¼
@c
@y

; . . .
Acceleration Waves

We consider motions of the continuum when

discontinuities of kinematic and dynamic quanti-

ties appear at a smooth surface SðtÞ that is called
singular (Fig. 2). For the quantities describing the

motion at SðtÞ, we suppose existence of unilateral
limit values. For the second derivatives of the

motion, the limits from each of both sides from

SðtÞ can differ, in general. A jump for a quantity
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at SðtÞ is denoted by the double square brackets,

for example, y½ �½ � ¼ yþ � y�.
On the singular surface the following balance

equations must be valid:
rV v½ �½ � ¼ � Tk½ �½ � � N
rgV v½ �½ � ¼ � Mk½ �½ � � N
ryV �½ �½ � ¼ q½ �½ � � N

ð7Þ

where V is the intrinsic speed of propagation of

SðtÞ in the direction N and N is the unit normal

to S, see [10].

An acceleration wave (or weak discontinuity
wave or singular surface of the second order) is a

traveling singular surface SðtÞ at which the sec-

ond spatial and time derivatives of the position

vector r and of the microrotation tensor H have

jumps, while r and H together with all their first

derivatives are continuous. So on SðtÞ we have
F½ �½ � ¼ 0; GradH½ �½ � ¼ 0; v½ �½ � ¼ 0; v½ �½ � ¼ 0

ð8Þ

From (7) and (8) it follows Tk½ �½ � � N ¼ 0;

Mk½ �½ � � N ¼ 0:

Regarding the thermoelastic behavior there

are two types of acceleration waves. The first

one is the homothermal acceleration wave when

the temperature field and its first derivatives are

continuous at SðtÞ:
y½ �½ � ¼ 0; Grad y½ �½ � ¼ 0; _y
h ih i
¼ 0 ð9Þ

The second type is the homentropic (or

homocaloric) acceleration wave when the entropy

field and its first derivatives are continuous at SðtÞ:

�½ �½ � ¼ 0; Grad �½ �½ � ¼ 0; _�½ �½ � ¼ 0 ð10Þ
For the homentropic acceleration wave, the

Fourier condition holds: q½ �½ � � N ¼ 0:
Homothermal Acceleration Waves

Equations (8) and (9) imply continuity of the

strain measures E and K at SðtÞ: E½ �½ � ¼ 0;

K½ �½ � ¼ 0:Hence, in view of the constitutive equa-

tions (5), it follows the continuity of the tensors

Tk andMk, of the entropy density, and of the heat

flux vector:
Tk½ �½ � ¼ 0; Mk½ �½ � ¼ 0; �½ �½ � ¼ 0; q½ �½ � ¼ 0

Obviously the balance equations (7) are valid

on SðtÞ.
In what follows we use Maxwell’s theorem

which states that, see [1, 2],

Theorem (Maxwell). For a continuously differ-

entiable field Y such that Y½ �½ � ¼ 0; the following

relations hold:

_Y
� �� �

¼ �Vf; Grad Y½ �½ � ¼ f� N ð11Þ

wheref is the tensor amplitude of the jump of the

first gradient ofY; the tensor amplitude is a tensor

of the order equal to the order of Y.

Straightforward application of Maxwell’s the-

orem to the continuous fields of v,v, Tk, andMk

results in the system of equations at SðtÞ:

_v½ �½ � ¼ �Va; Grad v½ �½ � ¼ a� N; _v½ �½ � ¼ �Vb;
Grad v½ �½ � ¼ b� N; V Div Tk½ �½ � ¼ � _Tk

� �� �
� N;

V Div Mk½ �½ � ¼ � _Mk
� �� �

� N

where a and b are the vectorial amplitudes of the

jumps in the linear and angular accelerations.

Using the motion and constitutive equations,

one can derive the following relations for a and b:
c;EE � � N�HT � a
� �� �

� N
þ c;EK � � N�HT � b

� �� �
� N ¼ V2HT � a;

c;KE � � N�HT � a
� �� �

� N
þ c;KK � � N�HT � b

� �� �
� N ¼ gV2HT � b
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With matrix notation, we rewrite these in

a more compact form:

QðNÞ � j ¼ V2B � j ð12Þ

where

j ¼ ða0; b0Þ 2 IR6; a0 ¼ HT � a; b0 ¼ HT � b; and

QðNÞ �
c;EEfNg c;EKfNg

c;KEfNg c;KKfNg

" #
; B

�
I 0

0 gI

" #

For arbitrary fourth-order tensor G and vector

N that are represented in a Cartesian basis ik
k ¼ 1; 2; 3ð Þ, we have used here the notation

GfNg � GklmnNlNnik � im:

QðNÞ is the homothermal acoustic tensor in

the micropolar continuum. From the existence of

the free energy function c, it follows that QðNÞ
is symmetric. This provides that the squared

velocity of propagation for an acceleration wave

in an elastic micropolar continuum is real-valued.

The requirement that QðNÞ has to be positive

definite is necessary for existence of an accelera-

tion wave
j �QðNÞ � j > 0; 8j 6¼ 0; 8jNj ¼ 1 ð13Þ

The inequality (13) coincides with the condi-

tion of strong ellipticity of the equilibrium equa-

tions for an elastic micropolar continuum [5]. The

condition can be represented in an equivalent form

d2

dt2
cðEþ ta0 � N;Kþ tb0 � NÞjt¼0 > 0;

8N:jNj ¼ 1; a0 6¼ 0; b0 6¼ 0

Applying Maxwell’s theorem to q and to

Grad y, we get

V Div q½ �½ � ¼ � _q½ �½ � � N; Grad Grad y½ �½ � ¼ g� N;
Grad yð Þ½ �½ � ¼ �Vg

where g¼ gN is the vector amplitude of the jump

in the second gradient of the temperature which

satisfies the equation
gN � kðyÞ � N ¼ r0y a0 � c; yE � Nþ b0 � c; yK � N
� �

ð14Þ

Now, using again the matrix notation, we can

rewrite (12) and (14):

QyðNÞ � z ¼ V2By � z ð15Þ

where z ¼ ða0; b0; gÞ 2 IR7, Qy, and By are

matrices with tensor components

QyðNÞ�

c;EEfNg c;EKfNg 0

c;KEfNg c;KKfNg 0

�r0yN �c;yE �r0yN �c;yE N �kðyÞ �N

2664
3775

By�

I 0 0

0 gI 0

0 0 0

2664
3775

Thus, an homothermal acceleration wave

exists only if (15) has nontrivial solutions and

the eigenvalues for the problem (15) are real

and positive.
Homocaloric (Homentropic)
Acceleration Waves

By the definition of an homentropic acceleration

wave, we have �½ �½ � ¼ 0. From this it follows

that y½ �½ � ¼ 0. Applying againMaxwell’s theorem,

we introduce a scalar thermal amplitude Y
such that
_y
h ih i
¼ �VY; Grad y½ �½ � ¼ YN ð16Þ

If k is a positive definite, the thermal ampli-

tude is zero. This means that for a heat conductive

media, the acceleration wave is homothermal

one. For heat nonconductors, k ¼ 0. This

assumption can be used if one neglects the heat

conductivity or considers very fast deformation

processes. In heat nonconductive media

a homocaloric acoustic tensor differs from ℚ, in

general.

In what follows, we will treat a heat conduc-

tive media only.
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Existence of Acceleration Waves

Acoustic tensorQy is not symmetric, andBy is not

positive definite, in general. However, the spectral

problem (15) has only real solutions. This statement

is analogues to Fresnel–Hadamard–Duhem theo-

rem in the nonlinear elasticity. But this theorem

does not guarantee existence of an acceleration

wave as problem (15) may have zero or negative

eigenvalues. For existence of acceleration waves,

all the eigenvalues of (15) must be positive for

any N. Thus, we should impose the additional

restriction on the constitutive equations
z �QyðNÞ � z > 0; 8z 6¼ 0; 8jNj ¼ 1 ð17Þ

Inequality (17) constitutes the strong elliptic-

ity condition for the thermoelastic micropolar

continuum.

Thus, the following theorem holds true.

Theorem. The condition for existence of a

homothermal acceleration wave for all directions

of propagations in a micropolar thermoelastic

continuum is equivalent to the condition of strong

ellipticity of the equilibrium equations of the

continuum.

Existence of acceleration waves in all the

directions and the condition of strong ellipticity

are local as they are defined at each point of the

continuum. In case of nonhomogeneous deforma-

tion, this means that the conditions can violate or

be valid in different parts of the medium.

As an example, we consider the physically

linear material which free energy has the form

of a quadratic function:

rc ¼ W1ðEÞ þW2ðKÞ
2W1ðEÞ ¼ a1 tr E � ET

� �
þ a2 trE2 þ a3 tr 2E

þ a0ðy� y0Þ trEþ cðy� y0Þ2

2W2ðKÞ ¼ b1 tr K �KT
� �

þ b2 trK
2 þ b3 tr

2K

ð18Þ

where ak, bk ðk ¼ 1; 2; 3Þ are elastic constants, a0
corresponds to the thermal expansion coefficient,

c is the specific heat capacity, and y0 is the refer-
ence temperature.
The acoustic tensor QðNÞ is given by

QðNÞ �
Q1ðNÞ 0

0 Q2ðNÞ

" #
rQ1ðNÞ ¼ W1EEfNg
rQ2ðNÞ ¼ W2;KKfNg

For constitutive equation (18), inequality (13)

implies
a1 > 0; a1 þ a2 þ a3 > 0; b1 > 0;
b1 þ b2 þ b3 > 0

ð19Þ

If (19) are valid then the system of equations

for a physically linear material defined by rela-

tion (19) is strongly elliptic for any deformations.

Then the solutions of (12) are given by
V1;2 ¼
ffiffiffiffiffi
a1
r

r
; j1;2 ¼ ðe1;2; 0Þ

V3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2 þ a3

r

r
; j3 ¼ ð0;NÞ

V4;5 ¼

ffiffiffiffiffi
b1
gr

s
; j 4;5 ¼ ðe4;5; 0Þ

V6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b2 þ b3

gr

s
; j6 ¼ ð0;NÞ

ð20Þ

where e1, e2, e4, e5 are arbitrary unit vectors in the

tangential plane to SðtÞ such that e1 � e2 ¼ e1�
N ¼ e2 � N ¼ 0; e4 � e5 ¼ e4 � N ¼ e5 � N ¼ 0.

Solutions (20)1,2 describe transverse and lon-

gitudinal acceleration waves, respectively, while

(20)4,5 describe transverse and longitudinal
acceleration waves of microrotation. Vk in (20)

coincide with the limits of the phase velocities of

plane harmonic waves (acoustic waves) in linear

micropolar elasticity when the frequency of the

waves tends to infinity, see [10, 12].
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Synonyms

Acceleration waves
Overview

The theory of voids in nonlinear elastic materials

is outlined. This is a theory capable of describing

certain classes of porous media and is particularly

suitable for dealing with the motion of nonlinear

waves. This entry concentrates on the motion of

nonlinear acceleration waves in elastic materials

containing voids. A thermodynamic description
is given of the theory of nonlinear elastic mate-

rials with voids, and then acceleration waves are

defined and it is outlined how to obtain the

wavespeeds and amplitudes. After this, more

involved theories of elastic materials with voids

are introduced which also allow propagation of

a temperature wave in addition to the usual elastic

and void waves.
Introduction

The object of this entry is to examine a class of

theory which is believed capable of describing

certain motions in porous media. This is the the-

ory of elastic materials containing voids devel-

oped by Nunziato and Cowin [1]. This theory is

particularly useful to describe nonlinear wave

motion and accounts well for the elastic behavior

of the matrix, being a generalization of nonlinear

elasticity theory. There are many studies involv-

ing the linearized theory of elastic materials

with voids; see, for example, the accounts in

Ciarletta and Iesan [2] or Iesan [3], but this

entry concentrates on wave motion in the fully

nonlinear theory.

The basic idea of including voids in

a continuous body is due to Goodman and

Cowin [4], although they developed constitutive

theory appropriate to a fluid. This they claim is

more appropriate to flow of a granular medium.

General descriptions of the theory of elastic

materials with voids and various applications

are given in the books of Ciarletta and Iesan [2]

and Iesan [3]. The topic of acceleration waves in

thermoelastic materials with voids is covered in

some detail in Chapter 7 of the book by Straughan

[5], pp. 291–330, and hence, this entry provides

an introductory account. Complete details may be

found in Straughan [5].

The potential application area for the theory of

elastic materials with voids is huge. In particular,

wave motion in elastic materials with voids has

many applications. Straughan [5], pp. 301, 302,

describes several application areas of immediate

interest including acoustic microscopy, produc-

tion of ceramics, and noise transmission through

buildings.

http://dx.doi.org/10.1007/978-94-007-2739-7_100004
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Bodies and Their Configurations

Consider a body B deformed from a reference

configuration at time t ¼ 0 to a current configu-
ration at time t.

Points in the reference configuration are

labeled by boldface notation X or indicial nota-

tion XA: In the current configuration X! x. The

mapping is thus
x ¼ xðX; tÞ ð1Þ

or
xi ¼ xiðXA; tÞ ð2Þ

The coordinates XA are material (or Lagrang-

ian) coordinates, whereas xi are spatial coordi-

nates (Eulerian coordinates).
In elasticity, one needs the displacement vec-

tor u of a typical particle from X in the reference

configuration to x at time t, so
uiðXA; tÞ ¼ xiðXA; tÞ � Xi ð3Þ

The velocity of a particle vi is
viðXA; tÞ ¼
@xi
@t
jX constant

The deformation gradient tensor FiA is

defined by
FiA ¼
@xi
@XA

From expression (3), one finds the displace-

ment gradient to be determined as
ui;A ¼
@ui
@XA
¼ @xi

@XA
� diA ¼ FiA � diA
Continuum Theory of Elastic Materials
with Voids

The balance equations for a continuous body

containing voids are given by Goodman and
Cowin [4]. In this entry, use is made of the equa-

tions as given by Nunziato and Cowin [1] since

these are appropriate for an elastic body.

The idea is to assume that there is a distribu-

tion of voids throughout the body B. If gðX; tÞ
denotes the density of the elastic matrix, then the

mass density rðX; tÞ of B has the form
r ¼ ng ð4Þ

where 0 < n � 1 is a volume distribution func-

tion with n ¼ nðX; tÞ: Since the density or void

distribution in the reference configuration can be

different, we also have
r0 ¼ n0g0

where r0; g0; n0 are the equivalent functions

to r; g; n; but defined in the reference

configuration.

The thermomechanics of a body containing

a distribution of voids is governed by a system

of conservation laws. These are now outlined.

The balance of mass equation is
rj det Fj ¼ r0

Letting pAi denote the Piola-Kirchoff stress

tensor, the balance of angular momentum equa-

tion is
pFT ¼ FpT

The balance of linear momentum equation

may be written as

r0 €xi ¼ pAi;A þ r0fi ð5Þ

where fi is an external body force. A balance law

is required for the void distribution and this is

taken to be
r0k€n ¼ hA;A þ gþ r0‘ ð6Þ

where k is a constant inertia coefficient, hA
is a stress vector, g is an intrinsic body force

(giving rise to void creation/extinction inside

the body), and ‘ is an externally supplied void
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body force. Finally, the energy balance equation

may be written as

r0 _e ¼ pAi _FiAþhA _n;A�g _n� qA;A þ r0r ð7Þ

where e; qA and r are, respectively, the internal

energy function, the heat flux vector, and the

externally supplied heat supply function.

A physical interpretation of equation (7) is

provided by Straughan [5], p. 303. One also

requires an entropy inequality. The Clausius-

Duhem inequality is employed, namely,
r0 _� � �
qA
y

� 

;A
þ r0r

y
ð8Þ

where � is the specific entropy function and y is

the adiabatic temperature in the body.

An elastic body containing voids is defined in

Straughan [5] to be one which has as constitutive

variables the set
S ¼ fn0; n;FiA; y; y;A; n;Ag ð9Þ

supplemented with _n: Thus, the constitutive the-

ory assumes
e ¼ eðS; _nÞ; pAi ¼ pAiðS; _nÞ; qA ¼ qAðS; _nÞ
� ¼ �ðS; _nÞ; hA ¼ hAðS; _nÞ; g ¼ gðS; _nÞ

ð10Þ

This is different from Nunziato and Cowin [1]

who regard � as the independent variable

rather than y, and they also assume qA ¼ 0: The

Helmholtz free energy functionc is introduced as

normal by the relation
e ¼ cþ �y ð11Þ

Straughan [5] describes how the entropy

inequality (8) may be exploited using (9)–(11)

to deduce the relations

c 6¼ cð _n; y;AÞ ð12Þ

hA ¼ r0
@c
@n;A

) hA 6¼ hAð _n; y;AÞ ð13Þ
pAi ¼ r0
@c
@FiA

) pAi 6¼ pAið _n; y;AÞ ð14Þ

� ¼ � @c
@y

) � 6¼ �ð _n; y;AÞ

and then
e 6¼ eð _n; y;AÞ

To specify a material for an elastic body

containing voids, one needs to postulate a suit-

able functional form for c ¼ cðn0; n;FiA; y; n;AÞ:
Such a form is usually constructed with the aid of

experiments. The functions g and qA still involve

_n and this can lead to almost viscoelastic-like

behavior, cf. Nunziato and Cowin [1]. Other

writers, for example, Iesan [3] and Ciarletta and

Iesan [2], omit _n from the constitutive list at

the outset. In this way, one deduces that g follows
as a derivative of the Helmholtz free energy,

Iesan [3], p. 7. However, it may be that some of

the desirable features of viscoelasticity are lost.

The wavespeeds of acceleration waves in this

case are derived in Iesan [3] and Ciarletta and

Iesan [2].

The system of equations which arises via the

above procedure results in what is effectively

a hyperbolic system for the displacement and

void fraction; however, the temperature equation

is essentially parabolic. Hyperbolic systems are

discussed in great depth in the book of Dafermos

[6]; see also the book byWhitham [7]. Therefore,

in the interests of clarity the first consideration is

of an acceleration wave in the isothermal case,

and in so doing one is able to see explicitly the

void influence.
Acceleration Waves

Assume now the temperature y ¼ constant, then

from (11) and (12)
c ¼ cðn0; n;FiA; n;AÞ ð15Þ

Furthermore, to consider the propagation of an

acceleration wave in an elastic body with voids, it
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is sufficient to consider the momentum equations

(5) and (6) with fi ¼ 0 and ‘ ¼ 0. These equations

are thus

r0 €xi ¼ pAi;A ð16Þ

r0k€n ¼ hA;A þ g ð17Þ

Definitions and properties of acceleration

waves in full generality may be found in the

books of Truesdell and Toupin [8], Truesdell

and Noll [9], Truesdell and Rajagopal [10],

Fabrizio and Morro [11], Chen [12], McCarthy

[13], and Straughan [5, 14]. A short but highly

illuminating article dealing with acceleration

waves is that of Varley and Cumberbatch [15].

This entry concentrates on an acceleration wave

in an elastic body containing voids. An accelera-

tion wave in an elastic body with voids in three

dimensions is defined as follows. The functions,

ui and v, are C1 everywhere, but the second and

higher derivatives of ui and v are allowed to have
finite discontinuities across a surface S. Thus, an
acceleration wave is a surface S across which

ui;tt; ui;tA; ui;AB; ui;ttt; ui;ttA; ui;tAB; ui;ABC suffer at

most finite discontinuities, with the functions

and first derivatives ui; ui;t; ui;A continuous every-

where. The same continuity requirements hold

for v.
For a function hðx; tÞ which may be discontin-

uous across S, the values hþ and h� are defined as
follows:

hþðx; tÞ ¼ lim
x!S

hðx; tÞ from the right

h�ðx; tÞ ¼ lim
x!S

hðx; tÞ from the left

In particular, for a right moving wave, hþ is

the value of h at S approaching from the region

which S is about to enter. The jump of h at S,
written as ½h�; is

½h� ¼ h� � hþ ð18Þ

To proceed with an acceleration wave analy-

sis, general compatibility relations for a function

cðX; tÞ are needed across S. These may be

found in detail in Truesdell and Toupin [8], or
in Chen [12]. Those required are now quoted. Ifc
is continuous in R3 but its derivative is discon-

tinuous across S, then

½c;A� ¼ NAB; where B ¼ ½NRc;R� ð19Þ

When c 2 C1ðR3Þ, then
½c;AB� ¼ NANBC; where C ¼ ½NRNSc;RS�
ð20Þ

In (19) and (20),NA refers to the unit normal to

S but referred back to the reference configura-

tion. The relation corresponding to the Hadamard

formula in three dimensions is, cf. Chen [12]

(4.15),
d
dt
½c� ¼ ½ _c� þ UNB ð21Þ

where _c ¼ @c=@tjX; UN is the speed at the point

on S with unit normal NA and B is defined in (19).

Upon expanding pAi;A and hA;A as functions of

their constitutive variables in equations (16),

(17), and taking the jumps across S, one finds

from equations (16) and (17)
r0½€xi� ¼
@pAi
@FrK

½xr;KA� þ
@pAi
@n;K

½n;KA� ð22Þ

r0k½€n� ¼
@hA
@FiK

½xi;KA� þ
@hA
@n;K
½n;KA� ð23Þ

Use of the Hadamard relation (21) leads to the

following relations between the jumps of the

second derivatives
½xr;KA� ¼
NKNA

U2
N

½€xr�; ½n;KA� ¼
NKNA

U2
N

½€n�

Using these expressions in (22) and (23) and

defining the wave amplitudes ai and b by
aiðtÞ ¼ ½€xi�; bðtÞ ¼ ½€n�

one derives from (22) and (23)
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r0U
2
Nai ¼ Qirar þ

@pAi
@n;K

NKNAb ð24Þ

r0kU
2
Nb ¼

@hA
@FiK

NKNAai þ Qcb ð25Þ

where Qir is the (elastic) acoustic tensor

given by
Qir ¼ NKNA
@pAi
@FrK

ð26Þ

and Qc is an “acoustic variable” associated with

the voids given by
Qc ¼ NKNA
@hA
@n;K

Straughan [5], p. 307, shows that if

Ji ¼ �r0NANK @
2c=@n;K @FiA, then (24) and

(25) lead to the propagation conditions:
ðr0U2
Ndij � QijÞaj ¼ Jib ð27Þ

ðr0kU2
N � QcÞb ¼ Jiai ð28Þ

As Straughan [5], p. 307, remarks, there are

various avenues to explore. For example, he

considers:

(a) ai ¼ aðtÞni; a longitudinal wave.
(b) ai ¼ âðtÞsi; si is a tangential vector to S,

a transverse wave.

(c) Body has a center of symmetry, then Ji ¼ 0:

In particular, in case (a), one deduces the

wavespeed equation as

ðr0U2
N � QijninjÞðr0kU2

N � QcÞ � ðJiniÞ2 ¼ 0

ð29Þ

This is a fourth-order equation for UN: It

shows there are two waves: a fast wave and

a slow wave, each of which moves in the positive

and negative ni directions. Thus, there is essen-

tially an elastic wave and a wave associated with

the void distribution. This is seen clearly in case

(c) where the body has a center of symmetry for

then Ji ¼ 0, and equation (29) shows there are

two waves with speeds UN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qijninj=r0

p
and
UN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qc=r0k

p
. The first of these is the elastic

wave whose speed is governed by the acoustic

tensor Qir, whereas the second is a void wave

whose speed is dictated by the void acoustic

variable Qc. In the general case, one may show

from (29) that there are two waves with

wavespeeds UN ¼ U1, UN ¼ U2, and U1 < U2,

with U1 and U2 greater than or less than those of

the purely elastic or void cases which arise when

Ji ¼ 0.

By returning to equations (16) and (17) and

differentiating these with respect to time or with

respect to the variable XA, one may now proceed

to actually derive a Bernoulli equation for the

wave amplitudes a and b and solve this explicitly.
In certain cases, one finds a(t) and b(t) blow up in

a finite time, a phenomenon associated

with shock wave formation, cf. Dafermos [6],

McCarthy [13], and Chen [12].

While one may consider the propagation of

acceleration waves in the non-isothermal case,

the above equations are not sufficiently general

to allow also propagation of a thermal wave.

Straughan [5] concentrates on three classes of

thermoelastic waves with voids, namely, those

corresponding to a Green-Laws-Lindsay theory

and those corresponding to Green-Naghdi theo-

ries of type II and type III. A general introduction

to thermoelastic bodies in these three theories and

in other situations capable of allowing the prop-

agation of a temperature wave may be found in

the book by Straughan [14]; see also the review

article by Hetnarski and Ignaczak [16].
Thermoelastic Waves with Voids

The object now is to consider a theory of voids as

developed by Nunziato and Cowin [1] but to also

allow for the possibility of propagation of a tem-

perature wave. Straughan [5] considers three such

possibilities based on thermodynamics of Green-

Laws-Lindsay and of Green-Naghdi type II and

type III. The first approach develops a thermo-

poroacoustic theory which allows for nonlinear

elastic effects and for the presence of voids, by

using the thermodynamics which utilizes a gen-

eralized temperature fðy; _yÞ rather than just the
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standard absolute temperature y, _y being the

material derivative of y.
The basic equations are those of balance of

linear momentum, void balance, and balance of

energy, and are, balance of linear momentum,
r €xi ¼ pAi;A þ rFi ð30Þ

void balance,
rk€n ¼ hA;A þ gþ r‘ ð31Þ

and balance of energy,

r_e ¼ �qA;A þ pAi _xi;Aþ hA _n;A� g _nþ rr ð32Þ

The thermodynamic development uses the

entropy inequality

r _� � rr
f
þ qA

f

� 	
;A

� 0 ð33Þ

where � is the specific entropy and

f ¼ fðy; _yÞ ð> 0Þ is a generalized temperature

function which reduces to y in the equilibrium

state. The Helmholtz free energy function c is

now defined by c ¼ e� �f.
Assuming the constitutive theory that

c;f; �; pAi; qA; hA; g ð34Þ

depend on the variables

xi;A; n; n;A; y; _y; y;A ð35Þ

the entropy inequality may be used to deduce the

relations

f ¼ fðy; _y; nÞ;pAi ¼ r
@c
@xi;A

; qA ¼ �r
@c
@y;A

= 1

f
@f

@ _y

hA ¼ r
@c
@n;A

; g ¼ �r @c
@n
þ �

@f
@n

� 	
ð36Þ

with the entropy given by

� ¼ � @c

@ _y
=@f

@ _y
ð37Þ
Let, as in definition (18), ½�� denote the jump

of a function across the singular surface S.
A void-temperature acceleration wave is defined

for equations (30)–(32) to be a singular surface

S across which xi; n and y together with

their first derivatives are continuous, but the

second and higher derivatives suffer a finite

discontinuity. If ai;B;C denote the wave

amplitudes,

ai ¼ ½€xi�; B ¼ ½€n�; C ¼ ½€y� ð38Þ

then, expanding pAi;A, hA;A, and qA;A, using the

constitutive theory (34), (35), after some calcula-

tion, one shows from (30) to (32) that the ampli-

tudes satisfy the equations
ðQij � rU2
NdijÞaj ¼ UNNA

@pAi
@ _y

C ð39Þ

rkU2
N � NANB

@hA
@n;B

� 	
B ¼ NANB

@hA
@y;B

C

ð40Þ

r
@e

@ _y
U2

N þ NANB
@qA
@y;B

� 	
C ¼ � @qA

@n;B
NANBB

þ rUNNAf
@�

@FiA
ai

ð41Þ

where Qij is the acoustic tensor, cf. (26), given by
Qij ¼ NANB
@pAi
@FjB

ð42Þ

After some calculation, cf. Straughan [5],

p. 313, it may then be deduced that there is

a plane wave whose wavespeed UN satisfies the

sixth-order equation
ðU2
N � U2

MÞðU2
N � U2

PÞðU2
N � U2

TÞ
�ðU2

N � U2
PÞU2

NK1 � ðU2
N � U2

MÞK2 ¼ 0

ð43Þ

In this equation the coefficientsU2
M;U

2
P;U

2
T ;K1

and K2 are given by
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U2
M ¼ NANBninj

@2c
@FiA@FjB

ð44Þ

U2
P ¼

NANB

k

@2c
@n;An;B

ð45Þ

U2
T ¼

NANB

f _y� _y

@2c
@y;Ay;B

ð46Þ

K1 ¼
NANKninj
f _y� _y

@2c

@ _y@FiA

@2c

@ _y@FjK

ð47Þ

K2 ¼
NANBNRNS

kf _y� _y

@2c
@n;A@y;B

@2c
@n;S@y;R

ð48Þ

Straughan [5] interprets UM;UP and UT as

follows. Firstly,UM is the wavespeed of an elastic

wave in the absence of other effects. Next, UP is

the wavespeed of a wave associated with the void

fraction, while UT is the wavespeed of a thermal

wave. One may then deduce that equation (43)

has three distinct real solutions U2
N and three

distinct waves propagate.

A complete account of the amplitude behavior

is included in Straughan [5].

Straughan [5] also describes thermoelastic

void acceleration waves when one replaces y; _y
by y and a, where a is a thermal displacement

variable

a ¼
Z t

t0

yðX; sÞdsþ a0 ð49Þ

where X is the spatial coordinate in the reference

configuration of the body with y being the abso-

lute temperature. In some ways, this is introduc-

ing the history of the temperature field into the

situation. This theory breaks down into two cate-

gories known as type II and type III depending on

whether _a;A is included in the list of constitutive

variables or not. If _a;A is not included, one

arrives at a type II theory, whereas inclusion of

_a;A leads to a type III theory. In the case of type II

theory, one finds the possibility of three waves:

one due to the elastic displacement, one due to the

voids, and also one due to a temperature wave.

One can completely determine the wavespeeds
and amplitudes. For type III theory, the situation

is more complex and in some ways resembles

classical thermoelastic voids theory where the

temperature equation is effectively parabolic.

Straughan [5] further describes a generaliza-

tion of the thermoelastic voids theory where

a microrotation vector is included, allowing for

rotation effects on the microstructure level. Here,

an acceleration wave analysis is possible, but the

analysis is surprisingly complex. Yet further

intricate features which may be necessary to

describe the intriguing effects being found in

nanomaterials are studied by Paoletti [17].

He develops a comprehensive nonlinear acceler-

ation wave analysis. Further recent articles

which are worthy of consideration dealing with

thermoelasticity and voids, and more exotic the-

ories based on these, are those of Aouadi [18],

Chirita and Ghiba [19], and Iesan and Scalia [20].

These articles deal with various aspects of

wave motion, and well posedness, including in

the now important situation where the elastic

tensor might not be positive definite. The last

mentioned area is very important in the study of

auxetic materials.

Acknowledgments This research was supported by the

Leverhulme Research grant “Tipping Points, Mathemat-

ics, Metaphors and Meanings.”
References

1. Nunziato JW, Cowin SC (1979) A nonlinear theory of

elastic materials with voids. Arch Ration Mech Anal

72:175–201

2. Ciarletta M, Iesan D (1993) Non-classical elastic

solids. Longman, New York

3. Iesan D (2004) Thermoelastic models of continua.

Kluwer, Dordrecht

4. GoodmanMA, Cowin SC (1972) A continuum theory

for granular materials. Arch Ration Mech Anal

44:249–266

5. Straughan B (2008) Stability, and wave motion in

porous media, vol 165, Applied mathematical

sciences. Springer, New York

6. Dafermos CM (2010) Hyperbolic conservation laws

in continuum physics, vol 325, 3rd edn, Grundleheren

der mathematischen Wissenschaften. Springer,

Heidelberg/New York

7. Whitham GB (1974) Linear and nonlinear waves.

Wiley, New York



A 34 Actuator
8. Truesdell C, Toupin RA (1960) The classical field

theories. In: Fl€ugge S (ed) Handbuch der physik,

vol III/1. Springer, 226–793

9. Truesdell C, Noll W (1992) The non-linear field the-

ories of mechanics, 2nd edn. Springer, Berlin

10. Truesdell C, Rajagopal KR (1999) An introduction to

the mechanics of fluids. Birkh€auser, Basel
11. Fabrizio M, Morro A (2003) Electromagnetism of

continuous media. Oxford University Press, Oxford

12. Chen PJ (1973) Growth and decay of waves in solids.

In: Fl€ugge S, Truesdell C (eds) Handbuch der physik,

VIa/3. Springer, Berlin, pp 303–402

13. McCarthy MF (1975) Singular surfaces and waves.

In: Eringen AC (ed) Continuum mechanics of

single-substance bodies, II. Academic, New York,

pp 449–521

14. Straughan B (2011) Heat waves, vol 177, Applied

mathematical sciences. Springer, New York

15. Varley E, Cumberbatch E (1965) Non-linear theory of

wave-front propagation. J Inst Math Appl 1:101–112

16. Hetnarski RB, Ignaczak J (1999) Generalized

thermoelasticity. J Therm Stress 22:451–461

17. Paoletti P (2012) Acceleration waves in complex

materials. Discret Contin Dyn Syst B 17:637–659

18. Aouadi M (2012) Uniqueness and existence theorems

in thermoelasticity with voids without energy dissi-

pation. J Frankl Inst 349:128–139

19. Chirita S, Ghiba ID (2010) Strong ellipticity and

progressive waves in elastic materials with voids.

Proc R Soc Lond A 466:439–458

20. Iesan D, Scalia A (2006) Propagation of singular

surfaces in thermo-microstretch continua with mem-

ory. Int J Eng Sci 44:845–858
Actuator

▶ Piezoelectric Smart Structures for Control of

Thermoelastic Response
Adaptive Control

▶ Piezoelectric Smart Structures for Control of

Thermoelastic Response
Advanced Composite Materials

▶ Functionally Graded Structures: Aerother-

moelastic Interactions
Advanced/Mixed Two-Dimensional
Models

▶Refined and Advanced Governing Equations

for the Thermomechanical Analysis of Shells
Aeroelasticity

▶Linear Aero-Thermo-Servo-Viscoelasticity,

Part II: Dynamic Considerations: Lifting Surface

and Panel Flutter and Aerodynamic Noise
Aerothermoelastic Behavior of Flat
and Curved Panels

Laith K. Abbas1, Rui Xiaoting1 and

Piergiovanni Marzocca2

1Institute of Launch Dynamics, Nanjing

University of Sciences and Technology, Nanjing,

People’s Republic of China
2Department of Mechanical and Aeronautical

Engineering, Clarkson University, The Wallace

H. Coulter School of Engineering, Potsdam,

NY, USA
Synonyms

Aerothermoelasticity; Edge movability; Hyper-

sonic speed; Lyapunov first quantity; Nonlinear

aerothermoelastic analysis; Piston aerodynamic

theory; Stable/unstable LCO; Thermal loading

and degradation
Definitions

Aeroelasticity (AE) is the science which studies

the mutual interactions among inertial, elastic,

and aerodynamic forces acting on structural

members exposed to an airstream, and the influ-

ence of this study on design.

Aerothermoelasticity (ATE) is the science that

studies the mutual interactions among inertial,

http://dx.doi.org/10.1007/978-94-007-2739-7_329
http://dx.doi.org/10.1007/978-94-007-2739-7_329
http://dx.doi.org/10.1007/978-94-007-2739-7_329
http://dx.doi.org/10.1007/978-94-007-2739-7_329
http://dx.doi.org/10.1007/978-94-007-2739-7_870
http://dx.doi.org/10.1007/978-94-007-2739-7_870
http://dx.doi.org/10.1007/978-94-007-2739-7_292
http://dx.doi.org/10.1007/978-94-007-2739-7_292
http://dx.doi.org/10.1007/978-94-007-2739-7_909
http://dx.doi.org/10.1007/978-94-007-2739-7_909
http://dx.doi.org/10.1007/978-94-007-2739-7_909
http://dx.doi.org/10.1007/978-94-007-2739-7_100013
http://dx.doi.org/10.1007/978-94-007-2739-7_100166
http://dx.doi.org/10.1007/978-94-007-2739-7_100334
http://dx.doi.org/10.1007/978-94-007-2739-7_100334
http://dx.doi.org/10.1007/978-94-007-2739-7_100403
http://dx.doi.org/10.1007/978-94-007-2739-7_100454
http://dx.doi.org/10.1007/978-94-007-2739-7_100454
http://dx.doi.org/10.1007/978-94-007-2739-7_100499
http://dx.doi.org/10.1007/978-94-007-2739-7_100499
http://dx.doi.org/10.1007/978-94-007-2739-7_100602
http://dx.doi.org/10.1007/978-94-007-2739-7_100670
http://dx.doi.org/10.1007/978-94-007-2739-7_100670


Aerothermoelastic Behavior of Flat and Curved Panels 35 A

A

elastic, and aerodynamic forces acting on struc-

tural members under the combined effect of aero-

dynamic heating and loading.
Overview

The panel flutter is a form of dynamic aeroelastic

instability resulting from the interaction between

the motion of a high-speed aerospace vehicle’s

skin panel, typical of spacecrafts and missiles,

and the aerodynamic loads exerted on that panel

by air flowing past one side at supersonic or hyper-

sonic speed and to still air on the other side. Often

a skin panel encounters flutter and then a limit

cycle oscillation (LCO), which is an oscillation

bounded in amplitude. There have been many

incidents reported in the literature dating back to

the V-2 rocket of World War II, the X-15, the

Saturn launch vehicle of the Apollo program, and

continuing on to the present day [1–3].

One essential limitation of the linearized panel

flutter analysis is that it gives information only up

to the point of instability. Furthermore, the linear-

ized analysis is restricted to cases where the aero-

elastic response is small. Often this assumption is

violated before the onset of instability. Thus, to

study the behavior of aeroelastic systems in the

proximity of the instability boundary including the

postinstability region, the inherent nonlinearities

of structural and aerodynamic nature must be

accounted for. By using the Von Kármán large

deflection plate theory combined with the linear

piston theory aerodynamics (PTA), one of the

most popular unsteady aerodynamic theories, it

was recognized that geometrical nonlinearities

due to moderate plate deflection, mainly creating

mid-plane stretching forces, can play an important

role in panel flutter [4]. The nonlinear panel

dynamic response, due to large deformations and

mutual interaction between the aerodynamic load-

ing and high order panel modes, despite the deter-

ministic nature of the panel equation, can be

oscillatory, quasiperiodic, limit cycle, or random-

like irregular chaotic [5]. Various nonlinearities

can influence differently the character of the

panel flutter boundary; these nonlinearities could

be of several origins, including structural or
geometric, thermodynamic, aerodynamic arising

from flow characteristics, and material nonlinear-

ities. Furthermore, in the presence of thermal

effects, aerothermoelastic considerations have to

be considered in the design of space reentry vehi-

cles and high-speed aircraft, since theses effects

may produce deformations, stresses, and changes

in material properties that can dramatically affect

their aeroelastic behavior. In this sense, the struc-

tural panels of supersonic/hypersonic flight vehi-

cles can experience, among others, the thermal

flutter instability generated by the combined influ-

ence of the thermal field, unsteady aerodynamic

loads, elasticity of structures, and the dynamic

effects.

The effect of panel heating is twofold. First,

there is reduction in stiffness due to softening of

the panel material; second, thermal stresses are

generated due to mismatch in thermal expansion

coefficients of the panel and support structure.

These effects, in turn, affect the static and dynamic

behaviors of the panel [6]. The bulk of literature

dealing with flat and curved panels flutter is based

on the stress-strain equations including shear wall

and thermal effects [6–16]. In these works, quasi-

steady first-order or nonlinear piston theories and

Euler equations for unsteady aerodynamic have

been considered. Other aerodynamic models, per-

haps less computationally efficient, are also avail-

able and have been explored. In recent years,

viscoelastic materials, such as some composite

materials, have been widely used in the aerospace

industry partly due to their inherent properties to

reduce undesired vibrations.

Stability and vibration studies of plates and

shells with initial geometric imperfections are of

a significant importance in modern solid mechan-

ics. These structures are rather sensitive to small

deviations from their design shape. Experimental

and numerical studies conducted so far have

shown unambiguously that the basic cause of the

discrepancy between theory and experiment is

the initial deflections of the structure [7, 17, 18].

This means that generally, the influence of initial

deflections has to be studied within the frame-

work of large deflection theory, meaning

primarily dynamic instability (including flutter)

where imperfections play a vital part [18].
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Small deviations of the shell’s surface from its

idealized shape were also shown to drastically

reduce its resistance to panel flutter, a dynamic

instability of the shell, even though the deviations

were only on the order of one shell thickness or

less. Even the best manufacturing methods admit

this magnitude of imperfection in the fabricated

shell geometry [19]. Previous investigations

have suggested that detailed studies are needed to

better understand and explore the complexmotions

that can be encountered in the presence of various

coupled nonlinearities. These studies are also

needed when it comes to system identification

and damage detection, since the vibration behavior

of the system needs to be clearly understood.
Aerothermoelastic Analysis
Methodology

Structural Modeling

To derive the aerothermoelastic governing equa-

tions of a curved panel, the geometrically

nonlinear theory of infinitely long two-

dimensional panels with some small initial cur-

vature is usually considered. The classical von

Kármán nonlinear strain-displacement relation

for a general plate undergoing both extension

and bending in conjunction with the Kirchhoff

plate-hypothesis is adopted. The effects of ther-

mal degradation and Kelvin’s model of structural

damping can also be considered.

Let us consider an isotropic curved panelmodel

(Fig. 1) with a width a, infinity long length b,

thickness h, maximum rise height H, and constant

radii curvature <x [20]. The thickness h is

small compared to the length a. In addition, b

is infinitely long as compared to a. The panel is

supported on the sides x ¼ 0 and x ¼ a. These
sides are fixed with respect to the longitudinal

displacements.

The displacements from the unstressed

state of the panel’s mid-plane surface in the x

and z directions are denoted by u and w, and

the total transverse displacement of a given mid-

plane surface point after deformation is given by:

wtotalðx; tÞ ¼ ŵðxÞ þ wðx; tÞ ð1Þ
Herein ŵðxÞ indicates the initial undeformed

shape (initial geometric imperfection) of the mid-

plane surface, while wðx; tÞ corresponds to the

transverse displacement of the mid-plane surface

relative to its undeformed configuration. The

strain ex of the mid-plane surface in the

x-direction and based on the von Kármán

assumption is given by [4]:
ex ¼ u;x þ
1

2
ðw;xÞ2 þ w;xŵ;x � w <x= ð2Þ

The subscript ð�Þ;x denotes the differentiation

with respect to x. The bending equation of motion

is given by [4, 21, 22]:
M;xx þ Nxðw;xx þ 1=<xÞ þ Pz ¼ 0 ð3Þ

where Nx represent the axial stress resultant,

M is the bending moment; furthermore,

M � D@ where D is the panel stiffness

� Eh3 12= ð1� u2Þ, E is the modulus of

elasticity, u is Poisson’s ratio, and @ is the curva-
ture change of the mid-plane surface ð� �w;xxÞ.
The bending moment can be recast as:
M ¼ �Dw;xx ð4Þ

In (3), Pz is the distributed load on the panel

and can be expressed as follows:

Pz ¼ �rmhw;tt þ PA
z ðx; tÞ þ Pstat

z ðxÞ þ DBT ð5aÞ

The first term in the (5a) corresponds to the

transverse inertial load, while the superscript ð�ÞA
indicates an unsteady aerodynamic load and the

superscript ð�Þstat indicates an initial static load.

BT is the thermal load defined as [8]:

BT ¼ Ea
ð1� uÞ

ðh=2
�h=2

Tðx; zÞ z dz ð5bÞ

where a is the linear thermal expansion coefficient,

Tðx; zÞ is the temperature increment from a free-

stress temperature T0, and D in (5a) is the Laplace

operator. Thematerial properties of the panel,E and

a, are influenced by the thermal field as follows [7]:
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E ¼ E0 þ E1T ¼ E0ð1þ eTTÞ;
a ¼ a0 þ a1T ¼ a0ð1þ aTTÞ

ð6aÞ

where
eT ¼ E1=E0 < 0; aT ¼ a1=a0 > 0 ð6bÞ

In (6b), eT and aT are the coefficients associ-

ated with the thermal degradation. As a result of

the temperature dependence of the thermoelastic

material properties and of the spatially distrib-

uted temperature field, the thermoelastic coeffi-

cients of the material become functions of the

space variables, for example, E) EðxÞ and

a) aðxÞ. This implies that the structural panel

presents a certain level of nonhomogeneity [4].

Typical aerospace panel, such as a fuselage sec-

tion, wing and empennage panels, is usually sol-

idly connected to structural members of the

airframe. For this reason, it has been assumed

that sx ! s, that is, the tangential stresses

act only in the x -direction. Physically, this stress
is generated by the constraint of the panel with

the members of the airframe. This condition

yields:

sx ¼ Nx h= ¼ ðEðxÞ ð= 1� u2ÞÞðex þ ueyÞ ¼ s

ð7Þ
Moreover,when theflight vehicle travels at high

flight speeds regimes, due to aerodynamic heating,

the skin panel temperature could potentially reach

the high values of several hundred degrees. This

effect can result in a lower value of the flutter

instability boundary or in larger limit cycle ampli-

tude at the same dynamic pressure. This implies

that also the effect of the temperature should be

carefully considered formore accurate results. This

can be done including an in-plane tension sTx , act-
ing in the x -direction, due to the temperature [23]:
sTx ¼ �ðEðxÞ ð= 1� uÞÞaðxÞ T ð8Þ

This implies that the total in-plane stress, in

the x -direction, can be expresses as:

sx total ¼ sx þ sTx ð9aÞ

By substituting (2) in (7), assuming ey ¼ 0,

and making use of (8) in (9a), the total in-plane

thermomechanical stress is obtained as:

sx total ¼ ðEðxÞ 1� u2
� �� "�

u;x þ
1

2
ðw;xÞ2

þw;xŵ;x �w <x=

	
� aðxÞð1þ uÞT

#
ð9bÞ
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Therefore, (3) becomes:

ðD=hÞw;xxxx � sx totalðw;xx þ 1=<xÞ � Pz=h ¼ 0

ð10Þ
To evaluate the tangential stress component

sx total, one expresses the average end-shortening

Dx as [4, 7]:

Dx ¼
1

a

ða
0

uðx; tÞ;x dx ð11Þ

Solving (9b) for u;x, one obtains:

u;x ¼ ð1� u2Þðsx total E= ðxÞÞ � 1

2
ðw;xÞ2

� w;xŵ;x þ w <x= þ aðxÞð1þ uÞT ð12Þ

In particular, the operator 1
a

Ða
0

ð�Þdx that

appears in (11) is applied to (12) for the particular

case of immovable edges x ¼ ð0; aÞ, that is,

Dx ¼ 0, then the tangential stress sx total yields:
sx total¼
1

ð1�u2Þ
Ða
0

EðxÞ�1dx

2664
3775

1

2

ða
0

ðw;xÞ2dx

þ
Ða
0

w;xŵ;xdx

�
Ða
0

w
<x
dx

�
Ða
0

aðxÞ 1þuð ÞTdx

266666666666664

377777777777775
ð13Þ
Structural Damping Independent of Time

and Temperature

Structural damping for panels consists of both

material damping and frictional damping acting

at the panel supports. Support damping has not

been considered here, and therefore, conservative

results are likely to be obtained, that is, a lower

value of the flutter speed and larger LCOs than

the one would occur if this additional damping

component would be accounted for [24]. The

most widely used material-damping models are

the linear viscous and hysteresis models. It has

been proved that these damping models can sig-

nificantly influence the flutter boundaries and it’s
extremely dependent on the type of model

employed. If only linear damping is considered,

the work by Ellen [25] provides a useful classifi-

cation of structural damping and showed which

classes are always stabilizing using spatial deriv-

atives arguments. The structural damping plays

an important role in the flutter stability with low

aerodynamic damping but would not affect sig-

nificantly the flutter boundary with high aerody-

namic damping. Fazelzadeh [22] showed that the

structural damping reduced the panel domain of

stability in linear analysis, whereas in nonlinear

simulation, damping can have a stabilizing or

destabilizing contribution.
From the mathematical point of view, struc-

tural damping independent of time and

temperature can be introduced into the system

by adding a term of the form ðgsb@jþ1w @t@xj= Þ
to the bending terms of (10) and

ðgsm@jþ1w @t@xj= Þ to the membrane terms of the

(13). Herein, gs is structural damping coefficient

and it is constant for viscous damping. gsb and gsm
are bending and membrane damping coefficients,

respectively. In the following, it will be assumed

that these three damping coefficients are time and

temperature independent. Based on the Kelvin’s

model on elastic materials, EðxÞ is replaced with

the operator EðxÞð1þ gs@ @t= Þ [26, 27]. By

substituting (13) in (10), the aerothermoelastic

bending governing equations becomes:
D 1þgsb
@

@t

� 	
w;xxxx� 1þgsm

@

@t

� 	

� h

1� u2ð Þ
Ða
0

EðxÞ�1dx

2664
3775

�
1
2

Ða
0

ðw;xÞ2dxþ
Ða
0

w;xŵ;xdx
Ða
0

w
<x
dx

�ð1þ uÞ
Ða
0

aðxÞTdx

2664
3775

�ðw;xxþ1=<xÞþ rmhw;tt�PA
z x; tð Þ¼Pstat

z ðxÞ
ð14aÞ

To improve accuracy and retain additional

physics into the model, one could consider a
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thermoviscoelastic problem. Hilton [28] described

the viscoelastic creep or relaxation functions and

how this should be used in the case of thermal

problems. Following Hilton one could recast the

thermoviscoelastic problem using the following,

general, constitutive equation:
sklðx; tÞ ¼
ðt
�1

E
klmn½x; t; t0; Tðx; t0Þ� emnðx; t0Þ dt0

�
ðt
�1

ET


kl ½x; t; t0; Tðx; t0Þ� a Tðx; t0Þ dt0

ð14bÞ

where E
 is the viscoelastic moduli, T is the

temperature function, and a is the thermal expan-

sion coefficient. The viscoelastic moduli can be

described by a Prony series [28]. The first integral

is the contribution of the stress from ordinary

strains, while the second integral is due to the

thermal stresses. Both integrals are hereditary

integrals meaning that a viscoelastic material

has memory. Following the development, one

could include this constitutive equation into the

model by re-deriving the panel stiffness, D.

Aerodynamic Modeling

The fluid-structure interaction model used here is

based on the nonlinear piston theory [29].

According to this theory, the radial aerodynamic

pressure p applied to the surface of the shell can

be obtained by analogy with the instantaneous

isentropic pressure on the face of a piston moving

with velocity vz into a perfect gas which is con-

fined in a one-dimensional channel; this pressure

is given by:

pþðx; tÞ p1= ¼ f1þ ðg� 1Þ½ðg� 1Þ=2�ðvz=c1Þg2g ðg�1Þ=

ð15Þ

In the analogy, the local transverse piston veloc-

ity (downwash velocity) vz normal to the panel and

the undisturbed speed of sound c1 may be

expressed in terms of the panel transverse displace-

ment wðx; tÞ in order to obtain the radial aerody-

namic pressure applied to the surface of the shell as

a consequence of the external supersonic flow:
vz¼w; tþU1½ŵþw�;x; c21 ¼ gp1 r1= ð16Þ

Herein p1; r1;U1,and g are the pressure, air
density, and air speed of the undisturbed flow and

the isentropic gas coefficient (g ¼ 1:4 for dry air),

respectively. To study the nonlinear panel flutter,

in addition to the inclusion of geometrical non-

linearities, a nonlinear piston theory aerodynam-

ics (PTA) model is used. PTA is a popular

modeling technique for supersonic and hyper-

sonic aeroelastic analyses [4]. Retaining, in the

binomial expansions of (15), the terms up to and

including ðvz=c1Þ3 yields the pressure formula

for the PTA in the third-order approximation [7]:
pþðx; tÞ p1= ¼1þg vz c1=ð Þ�
þ½gðgþ1Þ=4�½ðvz=c1Þ��2

þ½gðgþ1Þ=12�½ðvz=c1Þ��3
ð17Þ

The linear term of this expression corresponds

to Ackeret’s formula for the quasi-steady pressure

on a thin profile in a supersonic flow field, whereas

the quadratic term is fromBusemann’s formula for

M1 >> 1. In (17), the aerodynamic correction

factor � ¼ M1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
1 � 1

p
enables one to extend

the validity of the PTA to the entire low super-

sonic/hypersonic flight speed regime. Note that

PTA provides results in excellent agreement with

those based on the Euler solution and the CFL3D

codes and with the exact unsteady supersonic

aerodynamics theory [7]. Consider the flow only

on the upper surface of the panel Uþ1 � U1 and

M1 ¼ U1=c1, that is, consider U�1 ¼ 0 and

p� ¼ p1; from (15) and (17), the aerodynamic

pressure difference can be expressed as:

PA
z ðx:tÞ ¼ pþ � p1 ¼ dpjPTA ¼

� 2q1 M1=ð Þ�
n
ð1=U1Þw;t

þ ðŵþ wÞ;x þ ½ð1þ gÞ=4��M1
� ½ð1=U1Þw;t þ ðŵþ wÞ;x�

2

þ ½ð1þ gÞ=12��2M2
1

� ½ð1=U1Þw;t þ ðŵþ wÞ;x�
3
o
ð18Þ

where the undisturbed dynamic pressure

q1 ¼ r1U
2
1 2= .
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Thermal Loading

A linear temperature distribution T throughout

the panel thickness is considered:
Tðx; zÞ ¼ T
0

ðxÞ þ z T
1

ðxÞ ð19aÞ

Note that this temperature distribution was

obtained via an exact analysis by Bolotin [21].

Using (5b) yields the thermal moment given by

Eah3 T;xx
1

12ð1� uÞ= . A membrane temperature

distribution T
0

ðxÞ, implying T
1

ðxÞ ¼ 0, will be

considered. This temperature distribution can cor-

respond to the steady-state flight regime of a high-

speed aerospace vehicle. Such a representation of
the temperature field is adopted here to reduce the

problem to an eigenvalue one [8]. Specifically,

T
0

ðxÞ is expressed as:
T
0

ðxÞ ¼ T


cosðp x a= Þ ð19bÞ

where T


is the temperature amplitude.

Aeroelastic Governing Equations

Substitution of (18) and (19) into (14a) and using

the nondimensional parameters, which are

presented in Appendix A, one can obtain the

geometrically nonlinear aerothermoelastic

governing equations of infinitely long curved

panels in the form of QfŴ;Wðx; �t Þg ¼ 0, where
Q
n
Ŵ;Wðx;�t Þ

o
� 1þ gsbO0

@

@�t

� 	
1þ dee �T



Tcr
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ĥ
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0

1
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dx
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� 	2

þ

1þ g
12

�2M2
1 da3�t

�O
M1

W;�t þ da3xðŴ;x þW;xÞ
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aerodynamic loads ð3rd PTAÞ

¼ 0

ð20aÞ

( )

A quick look at (20a) may suggest that

only the explicit terms in ŵ have to be

included in order to obtain the equation of

motion which takes into account the effects

of imperfection [30]. Panels with sinusoidal

curvature, in nondimensional form, may also

be approximated by a sinusoidal function, in

this case:
Ŵ ¼ ŵ h= ¼ d̂
Xn
p¼1

qp sinðppxÞ ð20bÞ

Herein, qp is the amplitude of geometric

imperfection. To identify the effects of geomet-

rical imperfection, edge movability, aerodynamic

and thermal terms, various tracers have been

adopted in the (20a) and (20b). The tracers de
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and da identify the terms associated with the

thermal degradation of the elastic modulus and

the coefficient of thermal expansion, respec-

tively. dem 2 ½0; 1� identifies the degree of edge

movability, where dem ¼ 1 indicates immovable

edges. Movable edges can be simulated by

assuming the panel is supported at the edges

x ¼ 0 and x ¼ 1 by springs. In a later section of

this entry, discussion of dynamic degree of mov-

ability simulation, a progressive damage, will be

considered. The tracer d̂ 2 ½0; 1� indicates the

implication of geometrical imperfection. The

tracer dajk has three indices: The first index ðaÞ
identifies aerodynamic contribution, the second

index ðjÞ identifies the degrees of linearity,

(1 � linear, 2 � quadratic, and 3 � cubic),

while the third index ðkÞ represents the deriva-

tives of the W with respect to �t or x.

Solution Methodology

In the present work, Galerkin’s method and direct

numerical integration DNIT will be considered to

solve the integro-differential equation (18) to

evaluate the structural response and the character

of the curved panel flutter boundary with

thermoelastic-elastic properties. For the simply

supported panels on x ¼ 0; 1, it is required that

W ¼ W;xx ¼ 0. For these conditions, a solution

can be found in the form:
Wðx; �t Þ ¼
Xn
j¼1

cjð�tÞ �fjðxÞ ð21Þ

where n number of harmonic modes, n � 1;
�fjðxÞ are assumed orthogonal shape functions

and cjð�tÞ are unknown generalized coordinates

that depend on time. The assumed functions
�fjðxÞ are chosen to satisfy the boundary condi-

tions. To fulfill such conditions, the mode

shape functions �fjðxÞ ¼ sinðljxÞ and

lj ¼ jp; j ¼ 1; 2; � � � are considered. Cleary, the
assumed approximate solution is not exactly the

same as the unknown exact solution. Conse-

quently, (21) will not satisfy the partial dif-

ferential equations (PDE) (20a), that is,

Qðx; �tÞ ¼ Q Ŵ;
Pn
j¼1

cjð�tÞ �fjðxÞ
( )

¼ Reðx; �tÞ 6¼ 0,
where Reðx; �tÞ is the residual function that results
from the use of the approximate solution. Multi-

plying the residual by the basic function
�frðxÞ ¼ sinðrpxÞ with r ¼ 1; 2; . . . ; n � 1 and

integrating over the panel length, x from 0 to 1,

and imposing the result to be 0, one obtains:

ð1
0

Reðx;�tÞ �frðxÞdx ¼ 0 ð22Þ

As a result of (22), a set of nonlinear, simulta-

neous ordinary differential equations with respect

to the series in (21), and function of geometrical

imperfection (20b) can be obtained:

d2cr

d�t2
þ g

dcr

d�t
þ Frðcj;M1; �T



Þ ¼ 0; j; r ¼ 1; 2; 3; . . .

ð23Þ

The Frðcj;M1; �T


Þ functions can be

represented as:
Frðcj;M1; �T


Þ ¼ FðlÞr ðcj;M1; �T



Þ þ FðaÞr ðcj;M1Þ

þ FðthÞr ðcj;M1; �T


Þ þ FðsÞr ðcj;M1Þ

ð24Þ

where F
ðlÞ
r ðcj;M1; �T



Þ are linear functions and

F
ðaÞ
r ðcj;M1Þ, F

ðthÞ
r ðcj;M1Þ and F

ðsÞ
r ðcj;M1Þ

are functions including the aerodynamic, ther-
mal, and structural nonlinearities, respectively.
Panel Stability in the Vicinity of the
Flutter Boundary via Lyapunov First
Quantity

From the mathematical point of view, the benign

or catastrophic character of the flutter boundary

can be revealed via determination of the nature of

the supercritical or subcritical Hopf-Bifurcation,

as featured by the nonlinear aeroelastic system

[31, 32]. The system of governing equations

obtained from (22) is converted to a system of

four differential equations in state-space form

expressed generically as:
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dxj
dt
¼
Xn

m¼1 a
ð jÞ
m xm þ Pj x1; x2; x3; x4ð Þ; j ¼ 1; 4

ð25Þ

For the present case, the functions

Pj x1; x2; x3; x4ð Þ include both the structural and
Aerothermoelastic Behavior of Flat and Curved
Panels, Fig. 2 Character of the flutter boundary in the

terms of LCOs amplitudes; H-B Hopf-Bifurcation

0

100

200

300λ F

400

500

600

0 1

0.000 0.001

Present-

Present-

Dowell-4

Aerothermoelastic
Behavior of Flat and
Curved Panels,
Fig. 3 Comparison of

flutter dynamic pressure

versus the curvature ratio

(Case #1)
aerodynamic nonlinear terms as well as the ther-

mal damage terms. Equation (25) can be

presented in a form that can then be used toward

the evaluation of the Lyapunov first quantity

(LFQ), that is, L MFð Þ. Considering the solution

of the linearized counterpart of (25) under the

form xj ¼ Aje
ot, one obtains the characteristic

equation:

o4 þ po3 þ qo2 þ roþ s ¼ 0 ð26Þ

As a reminder, for steady motion, the equilib-

rium is stable in Lyapunov’s sense if the real parts

of all the roots of the characteristic equation are

negative. Such an analysis can be done by apply-

ing Routh-Hurwitz’s criterion. For sufficiently

small values of the speed, all the roots of the

characteristic equation are in the left half-plane

of the complex variable, and the zero solution of

the system is asymptotically stable. On the same

boundary, the two roots of the characteristic

equation are purely imaginary and the remaining

two are complex conjugate and remain also in the
H/h
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left half-plane of the complex variable (Hopf-

Bifurcation conditions). The nature of the LCO

that provides important information on the

behavior of the aeroelastic system in the vicinity
of the flutter boundary can be examined by the

nature of the Hopf-Bifurcation of the associated

nonlinear aeroelastic system. Figure 2 presents

several pertinent scenarios; V ¼ VF defines the
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flutter boundary that can be determined via

a linearized analysis. The nonlinear approach to

the problem enables one to determine the aero-

elastic behavior in the vicinity of the flutter

boundary. As a result of the nonlinear analysis,

one can determine the aeroelastic behavior of the

structure for a flight speed in the vicinity of the

flutter speed VF. In this sense, curve 2 corre-

sponds to a stable LCO (supercritical Hopf-

Bifurcation (H-B)) and curve 3 to an unstable

LCO (subcritical Hopf-Bifurcation). In order to

identify the benign and catastrophic portions of

the stability boundary, it is necessary to solve the

problem of stability for the system of equations in

the state-space form in the critical case of a pair

of pure imaginary roots and to determine the sign

of the LFQ [32].

The flutter critical boundary is benign (i.e.,

yields stable LCO), or is catastrophic, yielding

unstable LCO, if the following inequalities,

L MFð Þ < 0; and L MFð Þ > 0 ð27Þ
are fulfilled, respectively. The combination of

effects from the structural and aerodynamic

nonlinearities, the thermal load and thermal

damage, significantly affects the character of

the flutter boundary. In the region of the benign

flutter boundary, one can slightly exceed the

flutter critical speed MF without catastrophic

failure of the panel, and as a result, the amplitude

of the transverse deflection remains limited.

Conversely, in the region of catastrophic

flutter boundary, an explosive type of flutter

can occur.
Aerothermoelastic Behaviors of Panel

A number of numerical simulations are presented

in this section. A linear analysis is performed

first. The numerical simulation considers as

a test case study #1, an aluminum cylindrical

panel whose mechanical properties and

geometric parameters are: E ¼ 7� 1010 Pa,



1 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.52 3 4

M•

MF =6.6

dem = 0.8

dem = 0.9

q1= 0,gsb = gsm = 0

dem = 1

5 6 7 8 9 10
−4E-3

−2E-3

0

2E-3

4E-3

6E-3

Without Thermal Degradation 

W

Aerothermoelastic
Behavior of Flat and
Curved Panels,
Fig. 7 Bifurcation

diagram of the

aerothermoelastic curved

panel (Case #2) with

respect to the variation of

flight Mach number and

static edge degree

movability (without

thermal degradation and

damping)

Aerothermoelastic Behavior of Flat and Curved Panels 45 A

A

u ¼ 0:3, rm ¼ 3;000 kg=m3, a ¼ 1m, R ¼ 10m,

R h= ¼ 1;000, r1 ¼ 1:225 kg=m3, c1 ¼
340:4m=s, g ¼ 1:4, � ¼ 1, Pstat

z ¼ 0, dem ¼ 1

and q1 ¼ 0. As a result, considering four modes,

and without thermal degradation, theMach flutter

is MF ¼ 4:2, and the flutter frequency is

oF ¼ 3:7 rad=s. Figure 3 reveals the implications

of the curvature ratio on the normalized flutter

dynamic pressure of the infinitely long cylindri-

cal panel and compares it with that of its finite

length counterpart, lF � 2q1a
3=D. The results

obtained from the present analysis using four

and six modes are compared with the four mode

solution of Dowell [33, 34] and very good agree-

ments are reached.

In Fig. 4, the effects of the geometric imper-

fection on the flutter boundary are highlighted

along with the variation of curvature ratio.

The results reveal that the effect of the imperfec-

tions, represented in terms of q1, depends on the

curvature ratio and the symmetric or asymmetric

shape of the imperfection.
To have a clear and accurate view of the

complex behavior of the aerothermoelastic

system, the nonlinear dynamic behavior has

been numerically simulated as a case study

#2 for a monolithic titanium (Ti-6Al-4V) panel.

A cylindrical panel whose mechanical properties

[35] (T ¼ 294:15 K) and geometric parameters

are E0 ¼ 110:352� 109 Pa, u ¼ 0:31,

a0 ¼ 4:85 
10�5=co, rm ¼ 4; 430 kg=m3,

a¼1m, <x ¼ 10m, h ¼ 0:01m, r1 ¼
1:225 kg=m3, c1 ¼ 340:4m=s, g ¼ 1:4, � ¼ 1,

Pstat
z ¼ 0, dem ¼ 1, eT ¼ �6:5764� 10�4=K,

aT ¼ 3:07085� 10�4=K, q1 ¼ 0, gsb ¼ gsm ¼ 0

and the initial conditions are

W1 ¼ 0:1; Wr ¼ _Wr ¼ 0 has been considered.

From these data, the following parameters are

obtained: �h ¼ 0:01; ĥ ¼ 0:001;H ¼ a2 ð8<x= Þ ¼
0:0125m, H=h ¼ 1:25; O0 
 150 ð1= sÞ,
t ¼ 5 s; �r 
 3616; and Tcr ¼ 1:90 K. To inves-

tigate the effect of degree of edge movability on

the linear flutter Mach number for a system
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without thermal degradation, damping, and

geometrically perfect, Figs. 5 and 6 show the

frequency coalescence, and the flutter speed for

selected dem, respectively. It appears that the

flutter speed is obtained from the coalescence

of the two consecutive eigen-frequencies and

this speed increases when the degree of edges

movability increases, implying lower values of

dem. The edge constraint effect can induce ear-

lier flutter. This is due to the reduction in the

in-plane forces, and to the panel curvature

effect.
For the dynamic analysis, the nondimensional

time integration was carried out from �t ¼ 0 to
�t 
 750 time units and only the last 50 units

have been retained for the bifurcation represen-

tation. The analysis was performed with no

damping on the system. The linear Mach flutter

(without thermal degradation) is MF ¼ 6:6, as

shown in Fig. 7. It is also shown that for static

partial degree of edge movability, for example,

dem ¼ 1; 0:9; 0:8; and 0:75, the flutter speed

increases, meaning that the system will exhibit

LCO at higher Mach numbers.
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In the absence of structural damping and ther-

mal degradation, the nonlinear dynamic simula-

tion of the system exposed to geometrically

imperfect q1 ¼ 0:005 has been determined as

shown in Fig. 8 for different values of dem
(1; 0.9 and 0.8).

Figure 9 shows the time histories (a, b, d, e, f,

h, and i) and phase portraits (c, g, and j) of the

considered system without damping for different

flight Mach number. Imperfection can increase

the LCO amplitude of the nonlinear oscillatory

skin panel motion as shown in Fig. 9c, j, g or
damp out as shown in Fig. 9d depending on the

fluid-structure interaction behavior and on dem.
To consider the effect of heated panel, a wall

temperature has been computed as follows:

T


¼ Tw ¼ T1 þ Rf ½ð1� gÞ=2�M2

1 where

Rf ¼
ffiffiffiffiffi
Pr
p

 0:3 [16]. The maximum material

temperature was limited to T


¼ Tw 
 810 K

[35] to prevent thermal buckling. Within this

constrain, in the case of heated panels, the time

simulation was interrupted at M1 ¼ 5:4.

Figure 10 shows the bifurcation diagram when
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the thermal degradation has been considered. It

clearly appears that the thermal degradation

reduces the flutter speed. Furthermore, limit

cycles appear at speeds as low as M1 
 3:5 due

to the temperature-dependent material degrada-

tion effect, while unheated panel will exhibit

LCOs atM1 > 6:6 (linear flutter Mach number).

In addition, in the case of heated panels,

LCOs with large amplitude are present, as com-

pared to the case of unheated panel, and are

growing at faster rate with jumps in amplitudes

above M1 > 4:5. Decreasing the static partial

edge movable from immovable dem ¼ 1 toward

dem ¼ 0 has a significant effect on the shifting

of the nonlinear flutter boundaries and the

LCO behavior.

Effect of dynamic partial edge degree mov-

ability on the behavior of the nonlinear aerother-

moelastic system (Case #2) is highlighted in

Fig. 11. Herein dem has been considered for lin-

ear, quadratic, and cubic variations with the time

simulation, that its dem ¼ aþ bt; aþ bt2; and
aþ bt3, or in dimensionless form dem ¼
aþ b�t=O0; aþ bð�t=O0Þ2; and aþ bð�t=O0Þ3,
where a and b are constants. The analysis also

considers that the edge might start moving at

a predefined t0 during the time simulation of the

nonlinear dynamic system. This simulates the

dynamic change in edge movability occurring

while the system has already exhibited an LCO.

The bifurcation diagrams with respect to the var-

iation of flight Mach number, assuming q1 ¼ 0,

gsb ¼ gsm ¼ 0, t0 ¼ 0 s, are presented in the

subsequent figures. The values a ¼ 1;

b ¼ �0:04ðlinearÞ, b ¼ �0:008ðquadraticÞ,
b ¼ �0:0016ðcubicÞ have been selected to repre-
sent the edge condition from immovable,

dem ¼ 1, to partially movable, dem ¼ 0:8, in finite

time. In addition, the edge condition from partial

movable, dem ¼ 0:8, to immovable

demðlinearÞ ¼ 0:8þ 0:04t to reach dem ¼ 1 in

finite time has been considered as well, along

with the conditions t0 ¼ 2:5 and 4:5 s. All these
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Aerothermoelastic Behavior of Flat and Curved
Panels, Fig. 11 Bifurcation diagram of the

aerothermoelastic curved panel (Case #2) with respect to

the variation of flight Mach number, degrees of movabil-

ity, and its starting time
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selected conditions have been presented in

Fig. 11a–f), respectively. Comparing these

results with the one in Fig. 9 (case when

dem ¼ 0:8), no significant change has been

revealed from Fig. 11a–c in the behavior of the

system or the amplitude of LCO when different

models of dem are implemented in the simulation.

In Fig. 11d, when the condition of linear variation

is from partially movable to immovable, the

nonlinear flutter boundary decreases with time,

up toM1 
 3:6, significantly smaller in compar-

ison with M1 
 4:3 obtained for the case of

static edge movability dem ¼ 0:8. In addition,

different LCO behavior is obtained and it is evi-

dent from comparing Fig. 11a with Fig. 11d. For

the case when t0 ¼ 2:5 s (half of the simulation

time), the system exhibits an LCO behavior,

Fig. 11e, similar to the one shown in Fig. 11a.

However, as t0 increases, there are changes in the
LCO behavior. When t0 ¼ 4:5 s (near the end of

the time simulation), the nonlinear flutter bound-

ary is significantly affected, evident from com-

paring results displayed in Fig. 11a, e, f. These

simulations show that the degree of edge mobility

is an important effect to consider in the flutter and

post-flutter behavior of high-speed panels, and

the amplitude of oscillations of the panel at the

time this structural change is triggered will

promote a different post-flutter behavior.
Additional numerical simulations are presented

for a Ti-8Mn [6] infinitely long thin-flat panel (see

Fig. 12).

Figures 13 and 14 depict the LFQ and in this

context, the benign and catastrophic post-flutter

scenarios are highlighted. In these plots, the

effects of the structural and aerodynamic nonlin-

earities considered in conjunction with that of the

temperature and the thermal damage on stable/

unstable LCO are emphasized. With the increase

of the thermal field, the transition from benign

boundary (L MFð Þ < 0) toward catastrophic flut-

ter boundary (L MFð Þ > 0) occurs at lower values

of the flight speed (Fig. 13). This reveals that the

temperature exerts a detrimental effect not only

on the flutter boundary but on the character of the

flutter boundary as well. It also clearly appears

that the aerodynamic nonlinearities are, in gen-

eral, destabilizing. In addition, the effect of the

damage on the elastic modulus is prevalent

(Fig. 14), and, as a result, the occurrence of the

catastrophic flutter boundary is shifted toward

lower values of the flight speed.
Consideration About the
Aerothermoelastic Behavior of Panel

A number of results related to the dynamic sim-

ulation of infinitely long thin-walled circular

cylindrical panels featuring initial geometric

imperfections and taking into consideration the

thermal field and degradation due to its operation

at supersonic/hypersonic speed have been

presented. In this context, the implications of

structural and aerodynamic nonlinearities, on

the LCOs and on the character, benign or cata-

strophic of the panel flutter critical boundary,

have been examined. The static and dynamic

edge movability conditions simulating the prop-

agation of supports degradation have been con-

sidered to explore the effect produced on the

aerothermoelastic system responses. The

dynamic response is either suppressed or evolves

into an LCO, depending on the thermal degrada-

tion, imperfection, static or dynamic condition of

edge movability, as well as the time when the

edge constrain change is triggered. With the
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increase of the supersonic/hypersonic flight

speed, when the aerodynamic nonlinearities

become prevalent, the flutter boundary becomes

catastrophic, irrespective of the presence of struc-

tural nonlinearities. It was also shown that the

effect of temperature and thermal degradation are

invariably detrimental in the sense of reducing the

flutter speed and of rendering the flutter boundary

a catastrophic one. In addition, as a by-product of

this analysis, conclusions on the effects of the

temperature field coupledwith those of the thermal

degradation on the eigen-frequency and flutter

boundary have been outlined.
Appendix A: Dimensionless Parameters
W ¼ w=a

Ŵ ¼ ŵ=a

x ¼ x=a

�t ¼ tO0

O0 ¼ ðp=aÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=rmh

p
�O ¼ O0a=c1
�h ¼ h=a

ĥ ¼ h=<x

Pstat
z ¼ DPstat

z ðxÞa4=D0h
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Tcr ¼ D0=Eha
2a0

�r ¼ ðrm=r1Þ
H 
 a2=ð8<xÞ

t

 ¼ T



=Tcr

T


¼ t


cosðpxÞ
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Definitions

Aeroelasticity (AE) is the science which studies

the mutual interactions among inertial, elastic,

and aerodynamic forces acting on structural

members exposed to an airstream, and the influ-

ence of this study on design.

Aerothermoelasticity (ATE) is the science that

studies the mutual interactions among inertial,

elastic, and aerodynamic forces acting on struc-

tural members under the combined effect of aero-

dynamic heating and loading. The design of the

reentry space vehicles and high-speed aircraft

structures requires special attention to the

thermoelastic and aerodynamic instabilities that

might occur if the mutual interaction of these

forces is not properly accounted for. The com-

bined extreme aerodynamic heating and loading

that are present during high supersonic/

hypersonic flights, and acting on the vehicle air-

frame, produces complex interactions between

the flow, dynamics, structure, propulsion sys-

tems, and also control. Aerothermoelasticity con-

siders the effect of aerodynamic heating in the

framework of aeroelasticity. Similarly, the
science considering the coupling of aerodynamic

force, elastic deformation of the host structure,

and control force is called aeroservoelasticity.
Overview

Strong interaction can occur between the flow

about an aerospace vehicle and its structural com-

ponents, resulting in several important aeroelas-

tic phenomena. These aeroelastic phenomena can

significantly influence the performance of the

vehicle. Moreover, the tendency to reduce

weight, increase structural flexibility and operat-

ing speed certainly increase the likelihood of the

flutter occurrence within the vehicle operational

envelope [1–7]. Aerospace systems inherently

contain complex interaction of structural and

aerodynamic nonlinearities [8]. These complex

aeroelastic interactions can be hazardous and

limit the performance of the flight vehicle

because an aeroelastic system may exhibit

a variety of responses that are typically associ-

ated with nonlinear regimes of response, includ-

ing flutter, limit cycle oscillations (LCOs), and

even chaotic vibrations [9]. Aerodynamic non-

linearities such as complex nonlinear flows with

shock waves, vortices, flow separation at high

angle-of-attack, and aerodynamic heating. Struc-

tural nonlinearities are subdivided into distrib-

uted nonlinearities and concentrated ones.

Distributed nonlinearities are spread over the

entire structure-like material and geometric

nonlinearity, but concentrated nonlinearities have

a local effect in a control mechanism or an attach-

ment of external stores. Most flight vehicles

(including generic missile, space shuttle, and

high-performance combat aircraft) may have

inherently concentrated structural nonlinearities

such as freeplay, friction, hysteresis, and preload

in the hinge part of their control surfaces and

folded sections, etc. Concentrated structural non-

linearities may be generated from a worn or loose

hinge connection of control surface, joint slippage,

and manufacturing tolerance. Multipurpose mili-

tary missile fin with folded mechanism may have

two-axial nonlinearities at both the folding fin axis

and pitch control axis. Concentrated structural

http://dx.doi.org/10.1007/978-94-007-2739-7_100013
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nonlinearities are generally known to cause signif-

icant instabilities in the aeroelastic responses of

aero-surfaces. Among all these several nonlinear-

ities, the freeplay usually gives the most critical

flutter condition [10]. Aerothermoelastic loads

have a critical role in the design of the aero-

surfaces of the supersonic/hypersonic aerospace

vehicles and reentry vehicles since kinetic

heating at high Mach numbers can produce large

reduction in structural stiffness. Depending on the

temperature and initial conditions, the nonlinear-

ities can be hardening or softening spring type.

The strength of the metal is reduced after it has

been in a high-temperature environment for

a period of time.
Aerothermoelastic Analysis
Methodology

Structural Modeling

The structural model considered is of a

double-wedge two degrees-of-freedom (2-DOF)

plunging-pitching lifting surface. The model is

free to rotate in the xOz plane and free to translate

in the vertical direction as shown in Fig. 1. While

a linear model can be obtained considering linear

flexural and torsional stiffnesses, herein the

nonlinear restoring force and moment from bend-

ing and torsional springs accounting for freeplay

in both degrees-of-freedom have been consid-

ered. The nonlinear aeroelastic governing equa-

tions can be written as:

m€hþ Sa€aþ ch _hþ FðhÞ ¼ �LðtÞ ð1Þ

Sa €hþ Ia€aþ ca _aþ GðaÞ ¼ MEAðtÞ ð2Þ

where m is the airfoil mass per unit wing span, h
is the plunging displacement at the elastic axis

(EA), positive in the downward direction, Sa is

the static unbalance moment about the elastic

axis per unit wing span, a is the pitch angle,

positive rotation nose up, ch and ca are the linear

viscous damping coefficients in plunging and

pitching, respectively, L is the unsteady lift per

unit wing span, t is the physical time variable, Ia
is the cross-section mass moment of inertia about
its elastic axis per unit span, MEA is the unsteady

aerodynamic moment about the elastic axis per

unit wing span, and ðÞ
:

; ðÞ
::

are first and second

time derivatives. The cubic stiffness

functions (restoring force FðhÞ and moment

GðaÞ) [10–12] (as illustrated in Fig. 2) and can

be written as follows:

FðhÞ ¼ Fa þ Fb þ Fc; GðaÞ ¼ Ga þ Gb þ Gc

ð3Þ

FaðhÞ ¼
Khh

0

Khh

;

;

;

8><>: FbðhÞ ¼
�Khhs

0

Khhs

8><>:
;
;
;

FcðhÞ ¼
K̂hðh� hsÞ3

0

K̂hðhþ hsÞ3

;
;
;

h > hs
�hs � h � hs

h < �hs

8<:
ð4Þ

where Kh; Ka are linear stiffness coefficients in

plunging and pitching, respectively, K̂h; K̂a are

the nonlinear cubic stiffness coefficients in plunge

and pitch, respectively, and hs is the plunging

freeplay magnitude. Similar expressions for

Ga;Gb and Gc can be expressed replacing the

plunging variable h with the pitching variable a.

Aerodynamic Modeling

To study the behavior of the nonlinear aeroelastic

system in supersonic/hypersonic aeroelastic ana-

lyses, a third-order expansion form of the piston

theory aerodynamics (PTA) [3] model is used:

pðx;tÞ�p1¼p1
gðvz=c1Þ�|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Linear termsof PTA

"

þ½gðgþ1Þ=4�½ðvz=c1Þ��2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Quadratic termsof PTA

þ½gðgþ1Þ=12�½ðvz=c1Þ��3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cubic termsof PTA

35
ð5Þ

where1 is the free stream, p is the pressure, c1 is

the speed of sound, and � is the correction factor.

Equation (5) can be used for low supersonic/

hypersonic speed (Ma1 � 1:3) and for moderate

angles-of-attack (a � �20�). In (5) the local trans-
verse velocity (downwash velocity) vz normal to

the airfoil surface may be expressed for upper and

lower airfoil surface as follows [13, 14]:
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vz;u ¼ � f _hþ ðx� baÞ _ag þ u1f�aþ @fuðxÞ @xg= ;

vz;l ¼ f _hþ ðx� baÞ _ag � u1f�aþ @flðxÞ @xg=

ð6Þ

where @fuðxÞ=@x ¼ t̂ for� b < x< 0;

@fuðxÞ=@x ¼ �t̂ for 0 < x < b @flðxÞ=@x ¼�t̂
for � b < x< 0; @flðxÞ=@x ¼ t̂ for 0 < x < b

In (6) a is the dimensionless offset between the

elastic axis and the midchord, b is the airfoil

semi-chord, f ðxÞ is the function describing airfoil
surface, x being the coordinate in the chordwise

direction, x is the spatial coordinate and ðÞu; ðÞl
are the airfoil upper and lower surface, respectively.

Aerodynamic Heating

Theminimumvalue of the effective torsional rigid-

ity stiffness (loss in the torsional rigidity) of instan-

taneously accelerated, double-wedge solid wings

of constant chord and finite span subjected to axial

stresses induced by aerodynamic heating is [15]:
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Seff S=
� �

min
¼ 1� 0:0456 Eath G=ð Þ Tðf Þaw � Tð0Þaw

h i
t̂2
�n o
ð7Þ

where S and Seff are the torsional rigidity at the

room temperature and the effective (apparent)

torsional rigidity accounting also for the addi-

tional torsional rigidity due to aerodynamic

heating, respectively. In (7), E and G are the

modulus of elasticity and torsional rigidity,

respectively; t̂ is the airfoil thickness ratio,

T
ð0Þ
aw is the initial airfoil temperature at t ¼ 0

(initial flight Mach number Ma
ð0Þ
1 ), T

ðf Þ
aw is the

final temperature for t>0 (final flight Mach

number Ma
ðf Þ
1 ) and ath is the linear coefficient

of thermal expansion. In general, the adiabatic

wall temperature (the concept of adiabatic wall

temperature is used in the field of high velocity

aerodynamics) is given by:

Taw ¼ T1 1þ rðg� 1ÞMa21=2
� �� �

ð8Þ

where g is the isentropic gas coefficient, (g ¼ 1:4

for dry air), T1 is the free stream temperature

at flight altitude and r is the temperature-

recovery factor and in case of a turbulent boundary

layer on a plate, r ¼ 3
ffiffiffiffiffi
Pr
p

for Prandtl numbers Pr
close to 1. Substituting (8) into (7) with r 
 0:9

and g ¼ 1:4, the minimum torsional rigidity is:
Seff S= min

� �
¼ 1� ð0:00821Þ Eath G=ð Þ

T1 Ma2
ðf Þ
1 �Ma2

ð0Þ
1

h i
=t̂2

n o ð9Þ

implying that the maximum reduction (in per

cent) in torsional stiffness depend on: (1) mate-

rial Eath G=ð Þ; (2) geometry (t̂); (3) altitude

(T1); and (4) velocity (Ma2
ðf Þ
1 �Ma2

ð0Þ
1 ). Notice

that the minimum torsional rigidity is not depen-

dent on the magnitude of the heat-transfer coeffi-

cient. The torsional frequency oa of cantilevered

beam can be written, including the loss in the

effective torsional stiffness, as follows:

oa ¼ p=2Lbeamð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Seff =S
� �

min

 S

Ia

s
ð10Þ

where Lbeam represents the beam length.
Aeroelastic Governing Equations

Using the following dimensionless form:
x ¼ h b= ; t ¼ U1t b=

wa ¼ Sa ðmb= Þ; r2a ¼ Ia mb2
� ��

ox ¼
ffiffiffiffiffiffiffiffiffiffiffi
Kh m=

p
; oa ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ka Ia=

p
zh ¼ ch 2= Khmð Þ1 2= ; za ¼ ca 2= ðKaIaÞ1 2=

u
 ¼ u ðb= oaÞ; �o ¼ ox oa=

�̂h ¼ K̂h Kh= ; �̂a ¼ K̂a Ka= ; m ¼ m 4r1b
2

� ��
t̂ ¼ th b= ; xs ¼ hs b=

the system of governing equations of a

supersonic/hypersonic double-wedge airfoil fea-

turing plunging-pitching coupled motion can be

described as:
x00ðtÞ þ waa
00ðtÞþ2zh �o=u
ð Þx0ðtÞ

þ �o=u
ð Þ2 �FaðxÞxðtÞþ �o=u
ð Þ2 �FbðxsÞ
þ �o=U
ð Þ2 �FcðxÞ x3ðtÞþ3ð�1Þnxsx2ðtÞ

�
þ3x2sxðtÞþð�1Þ

nx3s
�
¼ �LðtÞ

ð11aÞ

wa=r
2
a

� �
x00ðtÞ þ a00ðtÞ þ 2za=u


ð Þa0ðtÞ
þ 1=u
2
� �

�GaðaÞaðtÞ þ 1=u
2
� �

�GbðasÞ
þ 1=u
2
� �

�GcðaÞ a3ðtÞ þ 3ð�1Þnasa2ðtÞ
�

þ3a2saðtÞ þ ð�1Þ
na3s
�
¼ �MEAðtÞ

ð11bÞ

where x is the dimensionless plunging displace-

ment at the elastic axis location, t is the dimen-

sionless time, xa is the dimensionless distance

between the mass center of the airfoil section

and the elastic axis, zh; za are the damping ratios

in plunging and pitching respectively, �o is

the dimensionless frequency ratio, u; u
 velocity
and its dimensionless counterpart (reduced veloc-

ity) respectively, xs is the dimensionless plunging

freeplay magnitude, ra is the dimensionless

radius of gyration about elastic axis, as is

the pitching freeplay magnitude, �̂h; �̂a are

the normalized nonlinear stiffness coefficients

in plunging and pitching, respectively, m is

the reduced mass ratio, r1 is the air stream

density, th is the airfoil half thickness, ðÞ0; ðÞ00
are the first and second time derivatives

with respect to t and
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�FaðxÞ ¼
1

0

1

8><>:
;

;

;

�FbðxÞ ¼
�xs
0

xs

8><>:
;

;

;

�FcðxÞ ¼
�̂h

0

�̂h

8><>:
;

;

;

xðtÞ > xs
�xs � xðtÞ
xðtÞ < �xs

� xs

; n ¼ 1

; n ¼ 2

ð12Þ

Similar expression for �G0s by replacing

xðtÞ , aðtÞ. The unsteady aerodynamic lift and

moment appearing in (11a and 11b) can be

expressed as:

�LðtÞ¼� �

12M1m

12ðx0�aa0þaÞ

�3ðgþ1Þt̂�M1ða0Þ

þM2
1ðgþ1Þ�2fðx

0�aa0þaÞ

�½ðx0�aa0þaÞ2þ3t̂2þða0Þ2�g

26666664

37777775
ð13aÞ
�MEAðtÞ¼
�

12mM1r2a

12 ax0� 1

3
þa2

� 	
a0þaa

� �
þ3ðgþ1Þt̂�M1ðx0�2aa0þaÞ

�M2
1ðgþ1Þ�2



1

5
ða0Þ3

�aðx0�aa0þaÞ

� ðx0�aa0þaÞ2þ3t̂2
h i
þa0

h
ðx0�aa0þaÞ2

þt̂2�aa0ðx0�aa0þaÞ
i�

2666666666666666666666664

3777777777777777777777775
ð13bÞ
Solution Methodology

To perform the nonlinear aerothermoelastic anal-

ysis in time domain, (12) are transformed into

a state-space matrix form:
_y tð Þ ¼
0 I

M�1 QL2 þ QNL2 � KL � KNLð Þ M�1 QL1 þ QNL1 � Cð Þ

� �
y tð Þ �

0 0

0 M�1

� �
R xs; asð Þ

ð14Þ
where y tð Þ ¼

x tð Þ
a tð Þ
_x tð Þ
_a tð Þ

8>>><>>>:
9>>>=>>>;; Rðxs;asÞ ¼

0

0

Qf 1; 1ð Þ
Qf 2; 1ð Þ

8>>><>>>:
9>>>=>>>;

Herein y is the state vector and M is the mass

matrix. KL and KNL in (14) represents the linear

and nonlinear stiffness matrices, while the aero-

dynamic damping and stiffness matrices QNL1

and QNL2 contain both uncoupling and coupling

nonlinear quadratic and cubic terms, respec-

tively. The matrices QNL1 and QNL2 include the

damping and stiffness aerodynamic linear terms,

respectively, R and Qf are the freeplay force/

moment vectors. Reference [16] gives the matri-

ces of (14) in detail. A numerical simulation

using the fifth to sixth Runge-Kutta Fehlberg

time integration scheme with step size control is
carried out for the system in (14). This numerical

integration technique provides both transient and

steady-state responses for prescribed initial

conditions.
Aerothermoelastic Behaviors of Lifting
Surfaces

To emphasize the importance of aerodynamic

heating on the nonlinear aerothermoelastic

behavior of the examined aeroelastic system

in the presence of an initial structural freeplay,

the influence of the loss in effective torsional

stiffness of a solid thin double-wedge wing

has been analyzed. Selected bifurcation dia-

grams are presented from the response ampli-

tude as a function of the flight Mach number,

see Fig. 3.



0 2 4 6 8 10 12 14 16
Flight Mach number

−20

−15

−10

−5

0

5

10

15

Case #2
with aerodynamic heating

Case#3
with aerodynamic heating

Case #1
no aerodynamic heating

Case 1

c

Case 2

Case 3

P
itc

h 
LC

O
 a

m
pl

itu
de

, d
eg

Flight Mach number Flight Mach number

Case #2
with aerodynamic heating

Case#3
with aerodynamic heating

Case #1
no aerodynamic heating

a
Case 1
Case 2
Case 3

0 2 4 6 8 10 12 14 160 2 4 6 8 10 12 14 16

Case #2
with aerodynamic heating

Case#3
with aerodynamic

heating

Case #1
no aerodynamic heating

b
Case 1
Case 2
Case 3

−15

−10

−5

0

5

10

15

P
itc

h 
LC

O
 a

m
pl

itu
de

, d
eg

−15

−10

−5

0

5

10

15

P
itc

h 
LC

O
 a

m
pl

itu
de

, d
eg

Aerothermoelastic Behavior of Lifting Surfaces, Fig. 3 Bifurcation pitch diagrams

Aerothermoelastic Behavior of Lifting Surfaces 59 A

A

The baseline parameters of 2DOF plunging-

pitching airfoil are presented as follows:

1. Mechanical properties: titanium (Ti-6%Al-

4%V), mass density r ¼ 4,420 kg/m3, TEC

(0–100 C0) 8.8� 10�6/K, TEC (0–300 C0) 9.2

� 10�6/K, modulus of elasticity E ¼ 114 �
109 N/m2, modulus of rigidity G ¼ 43.51 �
109 N/m2, Poisons’ ratio # ¼ 0.31.

2. Flight condition: height H ¼ 5, 10 km,

r1 ¼ 0:736, 0.4135 kg/m3, c1 ¼ 317:07,

299.53 m/s, T1 ¼ 255:7, 223.26 K, � ¼ 1:0,

g ¼ 1:4.

3. Airfoil geometry parameters: rectangular

shape, wing aspect ratio AR ¼ 4:5,

b ¼ 0:25 m, t̂ ¼ 0:05; 0:1, m ¼ 55:2 kg=m.
4. Airfoil physical parameters: wa ¼ 0:25,

ra ¼ 0:5, zh; za ¼ 0, a ¼ �0:25.
5. Cubic stiffening: �̂h; �̂a ¼ 0; 20.

6. Initial condition: xðt ¼ 0Þ ¼ _xðt ¼ 0Þ ¼
_aðt ¼ 0Þ ¼ 0, aðt ¼ 0Þ ¼ 5�.

7. Initial freeplay: as ¼ 1:0�, xs ¼ 0:01.

Three cases were performed to demonstrate

the complex nonlinear behaviors of the system.

Case #1 is for a system with no aerodynamic

heating and (�̂h ¼ �̂a ¼ 0), such that linear

flutter Mach number MaLF ¼ 15:2. Case # 2 is

for the system with aerodynamic heating and

�̂h ¼ �̂a ¼ 0 yielding MaLF ¼ 10:4. Because of

the symmetry in the pitch LCO amplitude only,

the positive side of the LCO curve is presented
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for Case #2. Case # 3 is for a system with aero-

dynamic heating and (�̂h ¼ 0; �̂a ¼ 20) and the

flutter speed is the same as Case #2. For this

case, for the sake of clarity, the negative side

of the pitch LCO is displayed. Note that the

simulations are restricted to cases where the

pitching displacement is within � 20� to remain

within the limits of validity of the proposed

model and approach. In Fig. 3a, where the alti-

tude is 10,000 m and t̂ ¼ 0:1, the aeroelastic

system exhibits a bifurcation behavior for all

three cases at Ma1 
 1:5 due to the presence

of coupling freeplays (in both plunge and pitch).

For the speed range (1:5 < Ma1 � 7), different

types of response behavior (periodic, quasiperi-

odic, or chaotic) will occur. Within the

speed ranges (7 < Ma1 � 14) for Case #1,

(7 < Ma1 � 10) for Case #2, and

(7 < Ma1 � 11) for Case #3, a stable LCO is

experienced; its amplitude increases with the

increase of the flight Mach number. From

Fig. 3a, it appears that pitch LCO amplitude for

Case #1 is less than 12 deg for speed less than the

linear flutter speed. When considering Case #2,

the pitch amplitude is about 10� at Ma1 
 10,

while if the pitching stiffness nonlinearity is

considered, Case #3, the pitch amplitude
reaches 10� at Ma1 
 11. This result reveals

that the flutter speed, as well as the LCO behav-

ior, is affected by the loss of the torsional stiff-

ness. The effect of varying the thickness ratio is

indicated in Fig. 3b. Herein, the altitude is

10,000 m and t̂ ¼ 0:05. A stable LCO is experi-

enced for all three cases. Although the system

accounts for freeplays, no chaotic behavior is

encountered. Decreasing the thickness ratio has

a significant effect on the linear flutter value.

This fact is evident in Fig. 3b where

MaLF ¼ 7:2 for the same Case #1 of Fig. 3a but

with a smaller thickness ratio. In addition, the

linear flutter for Cases #2 and #3 decreases to

MaLF ¼ 4:8. Although in Case #3 the pitching

stiffness nonlinearity is considered and contrib-

utes to decrease the amplitude of the LCO as

compared to Case # 2 (compare the value of

the pitching LCO amplitude at Ma1 
 5:5),

there is certainly a detrimental reduction in flut-

ter speed as well as the amplitude of the LCO as

compared to the corresponding Cases #2 and #3

of Fig. 3a. Results for a flight altitude of 5,000 m

and t̂ ¼ 0:1 are also presented in Fig. 3c. The

three cases present a different behavior:

1:5 < Ma1 � 3 (periodic LCO), 3 < Ma1 � 4

(stable LCO), 4 < Ma1 � 5 (chaotic behavior)



Aerothermoelastic Behavior of Lifting Surfaces 61 A

A

for all three cases. For Ma1 > 5: Case #1,

5 < Ma1 � 10 (stable LCO, MaLF ¼ 10:6);

Case #2 which accounts for the influence of

aerodynamic heating, 5 < Ma1 � 8 (stable

LCO, MaLF ¼ 8:3); Case #3 which accounts for

both aerodynamic heating and pitch stiffening

nonlinearity, 5 < Ma1 � 10 (stable LCO,

MaLF ¼ 8:3). In Fig. 4, the curves show how

susceptible this system is to loss of torsional

stiffness when aerodynamic heating is consid-

ered in conjunction with altitude, thickness

ratios. Case #1 (5,000 and 10,000 m) does not

include the aerodynamic heating; therefore,

there is no reduction in the effective torsional

stiffness. For flight Mach number Ma1 
 4,

Case #2 (10,000 m and t̂ ¼ 0:1), and #4

(5,000 m and t̂ ¼ 0:1) and Case #3 (10,000 m

and t̂ ¼ 0:05), which also included the aerody-

namic heating, present a reduction in torsional

stiffness of 5 %, 7 %, and 25 % of the original

value, respectively. Clearly, the thickness ratio

has a more detrimental role in the loss in tor-

sional stiffness and consequently in the flutter

speed and the LCO behavior of the examined

aeroelastic lifting surface.
Consideration About the
Aerothermoelastic Behavior of Lifting
Surfaces

Aerodynamic heating significantly influences

the nonlinear aerothermoelastic behavior of

lifting surfaces. A solid thin double-wedge air-

foil encountered all nonlinearities (structural-

freeplay and cubic stiffness, aerodynamic-third

order piston theory) in the supersonic/hyper-

sonic flight speed regime is considered in the

selected results reported under this section. The

results show how susceptible flutter speed,

as well as the LCO behavior, is to loss of tor-

sional stiffness when aerodynamic heating is

considered in conjunction with altitude and

thickness ratios. The thickness ratio has a more

detrimental role in the loss in torsional stiffness

and consequently in the flutter speed and the

LCO behavior of the examined aeroelastic

lifting surface.
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Synonyms

Aerothermoelasticity
Overview

The static and dynamic behavior of FGM panels

depends on their material, geometrical, and

structural properties. In this section, examples

for a wide range of nondimensional aerody-

namic pressure and panel curvature in conjunc-

tion with selected values of temperature fields

through the thickness and several panel volume

fraction indexes are presented. The transient

solutions are discarded in calculations and

steady-state data are used to distinguish panel

dynamic behavior. The variation of volume frac-

tion index makes different types of motions

including divergence, limit cycle oscillation

(LCO), and periodic and chaotic motions

possible.

Static Behavior of FGM Panels: Thermal

Divergence

The effect of the aspect ratio, the relative thick-

ness, in conjunction with the steady aerodynamic

pressure and the volume fraction index of FGMs

on thermal divergence of supersonic panels is

presented in [1]. A few characteristic results are
presented here. For such analysis, a mathematical

formulation based on the first-order shear defor-

mation theory was developed. The Galerkin

approach is used to reduce the system of PDE

into a set of ODEs which are then solved by

standard eigenvalue algorithm to determine the

critical temperature difference and divergence

boundary. The FGM used is composed of alu-

mina and aluminum. Young’s modulus,

Poisson’s ratio, and coefficient of thermal expan-

sion for aluminum are Em ¼ 70GPa; n ¼ 0:3;

am ¼ 23� 10�6 ð1=�CÞ and for alumina

Ec ¼ 380GPa; n ¼ 0:3; and am ¼ 7:4� 10�6

ð1=�CÞ; respectively. The plate is assumed to be

simply supported on all of its four edges. The

critical temperature difference for functionally

graded plates and the influence of aerodynamic

pressure and temperature distribution are

presented in Figs. 1 and 2 which demonstrate

the divergence boundaries, l� DTcr , for several
design parameters. For all of the parameters, left

and right sides of these boundaries show the

stable and divergence regions, respectively. In

particular, the effect of the aspect ratio and vol-

ume fraction index on the divergence boundaries

is investigated in Fig. 2. A lower value of a/b
reduces the critical buckling temperature. There-

fore, stable regions are extended to the right for

a higher aspect ratio at the fixed volume fraction

index. The divergence boundaries of the square

plate, for several volume fraction indexes with

uniform and linear temperature distributions, are

shown in Fig. 3. Results indicate that the stable

regions are extended for the linear temperature

model. This is because the bending moments

generated by thermal loads in the linear temper-

ature distribution model tend to cause the plate to

remain flat before buckling.

One of the interesting results obtained in the

static instability regime is some snap-through

behavior that is due to small changes in the

nondimensional aerodynamic pressure. This is

due to the fact that in some physical parameter

intervals, there are two possible steady-state

motions coexisting, which one will occur depends

on the physical parameter or the initial conditions

[2, 3]. For the considered problem, the panel can

http://dx.doi.org/10.1007/978-94-007-2739-7_100013
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buckle upward or downward and the numerical

simulation follows either one of the two,

depending on the initial conditions, as shown

in Fig. 4.

Dynamic Behavior of FGM Panels: Limit Cycle

and Chaotic Analysis of Flat Panels

A functionally graded flat panel with infinite

length in y-direction, an h a= ¼ 0:01, and with

immovable simply supported boundary along the

y-direction is investigated [4]. A few characteristic
results are presented here. Different values of vol-

ume fraction indexes are considered to investigate

the effect on panel dynamic behavior. The numer-

ical study is carried out to supply information on

the nonlinear bending of the plates with different

combinations of loading conditions. To this end,

silicon nitride and stainless steel are chosen to be

the constituent materials of the FGM plate,

referred to as Si3N4/SUS304. Their material prop-

erties such as Young’s modulus and thermal

expansion coefficient are assumed to be
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temperature dependent and listed in [5]. The mass

density is: rc ¼ 2370 kg=m3 for Si3N4; and

rm ¼ 8166 kg=m3 for SUS304. Also, Poisson’s

ratio is assumed to be equal for both materials,

n ¼ 0:28. Furthermore, in the numerical simula-

tion, the reference temperature, To, is taken as

300 K and m M1= ¼ 0:1. All the results, being

represented subsequently, are associated with the

dimensionless displacement (or velocity) of

a point located at x ¼ 0:75. This particular
location was selected because the maximum

panel displacement is approximately in this

point, Dowell [6]. Themagnitude of the maximum

plate deflection for various volume fraction

indexes with respect to nondimensional dynamic

pressure is shown in Fig. 4. Herein bifurcation

diagrams of maximum panel deflection against

the dimensionless aerodynamic pressure for

different values of the volume fraction at

DT ¼ 10 are provided. Because of plate response
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symmetry, whenever DT ¼ 0, only the positive

displacement values are presented. Increasing

the ceramic constituent of the FG plate increases

the critical dynamic pressures. In addition, limit

cycle amplitudes of maximum plate deflection

decrease. This improves the panel dynamic

behavior due to expanding the stability domain.

Under the compression caused by thermal load-

ing, and the low values of dynamic pressure, the

panel first experiences static buckling (diver-

gence). Due to stabilizing effect of aerodynamic

damping, after the divergence region, a stable

region is observed as the dynamic pressure

increases until the dynamic pressure reaches

the critical value at which LCO begins. Finally,

the system loses dynamic stability because of

high flow velocity. The size of the stable region

is wider as the ceramic constituent increases. On

the other hand, an increase in the volume faction

of the metal reduces the bending stiffness of the

whole plate. Therefore, the maximum displace-

ment of the plate increases as the metal volume

fraction increases. This results in moving

the bifurcation point to lower values of dynamic

pressure. The panel dynamic behavior in

terms of the bifurcation diagram, maximum

Lyapunov exponent, and Lyapunov dimension
of maximum panel deflection is shown in Fig. 5.

For computing the maximum Lyapunov expo-

nent and Lyapunov dimension, 200,000 data

points are taken directly from the deflection of

the plate. Both maximum Lyapunov exponents

and Lyapunov dimensions are employed to char-

acterize the onset conditions of chaotic motion

for a large deflection plate. In this sense, one can

see that for divergence and stable region, all

Lyapunov exponents are negative as shown in

these figures. When the largest Lyapunov expo-

nent is zero, the panel experiences limit cycles

and a positive Lyapunov exponent indicates

chaotic motion. It is worth remarking that the

Lyapunov dimension is equal to zero for diver-

gence and stable state, integer value for regular

motion such as LCOs and quasi-periodic oscil-

lations, and a positive noninteger value for cha-

otic flutter.

Dynamic Behavior of FGM Panels: Flutter and

Post-flutter of Curved Panels

Numerical study to supply information about the

nonlinear bending deformation of the curved

plates with different combinations of loading

and height-rise geometric conditions are pro-

vided in [7]. A few characteristic results are

presented here. Selected values of volume frac-

tion indexes of the FGM constituents are consid-

ered to investigate panel dynamic behavior. The

functionally graded materials consist of silicon

nitride and stainless steel, Si3N4/SUS304. The

mass density for Si3N4 is rc ¼ 2370 kg=m3 and

for SUS304 is rm ¼ 8166 kg=m3. Poisson’s ratio

is assumed to be equal for both materials,

n ¼ 0:28. The other material properties are

assumed temperature dependent as per Reddy

and Chin [5]. In the numerical simulation, the

reference temperature is assumed to be 300 K.

Four bending modes are considered in the solu-

tion procedure. All the results, being represented

subsequently, are also associated with the dimen-

sionless displacement (or velocity) of a point

located at x ¼ 0:75. For a fully metal case with

isotropic property (k ¼ 50), the accuracy of the

method for the nonlinear analysis is verified

against the results reported in [8] and good agree-

ment is obtained as shown in Fig. 6. Figure 7



Aerothermoelastic Behaviors of Functionally
Graded Panel Structures, Fig. 4 Bifurcation diagram

of Poincaré maps of maximum panel deflection under

increasing non-dimensional aerodynamic pressure with

DT ¼ 10: (a) k ¼ 0, (b) k ¼ 5, (c) k ¼ 50
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shows the maximum panel deflection in diver-

gence situation against panel height-rise values

and for a selected values of nondimensional aero-

dynamic pressure when a panel made only by

a ceramic constituent is considered. As expected,

by increasing the temperature value, the maxi-

mum panel deflection increases. It is also shown

that for lower values of nondimensional aerody-

namic pressure, higher displacements are

obtained for small curvature. The temperature

has certainly a dominant effect on the maximum

plate displacement with respect to the

nondimensional aerodynamic pressure especially
when the plate has low height-rise values. Panels

with higher curvature are less sensitive to the

effect of temperature. The figure also shows the

presence of a snap-through typical of flat plates

(H h= ¼ 0;R!1) which occurs for the

nondimensional aerodynamic pressure l ¼ 120

and temperature differential DT ¼ 15 K. The

effect of panel curvature as well as volume frac-

tion indexes can be seen clearly. Different types

of motion are observed through variation of cur-

vature value. It should be noted that, in contrast to

fully ceramic constituent where the panel experi-

ences only divergence situation, for other volume
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Aerothermoelastic Behaviors of Functionally
Graded Panel Structures, Fig. 5 (a) Bifurcation dia-

gram of Poincaré maps, (b) Largest Lyapunov exponent

(c) Lyapunov dimension of maximum panel deflection

under increasing temperature gradient through thickness

direction with k ¼ 1, l ¼ 150
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fraction indexes distinct behavior is observed

for different curvature values. A number of

switching occurs between divergence and peri-

odic motion. It is also evident that there are some

jumps in amplitude of limit cycle oscillation for

higher values of curvature as observed in the

figure. The effect of thermal loads due to temper-

ature changes along the curved panel thickness is

also studied in this figure. As was previously

mentioned, the influence of temperature on the

system dynamic behavior is more accentuated for

low curvature value. Results show that a dynamic

transition occurs from a divergence state to
a regular or irregular motion with increasing the

temperature. Qualitatively, different behaviors

are observed by gradual change of curvature

parameter, going from periodic motion, to

a sequence of double periodic motions, to quasi-

periodic motions, and to a divergence state.

The panel dynamic behavior in terms of the

bifurcation diagram, maximum Lyapunov expo-

nent, and Lyapunov dimension of maximum

panel deflection is shown in Fig. 8. The panel

curvature parameter is the control parameter and

varies between H h= ¼ 0 and H h= ¼ 5. The

volume fraction index, k ¼ 1, is considered.
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Two temperature values, DT ¼ 0 K and

DT ¼ 20 K, are investigated for each figure and

the aerodynamic pressure is assumed to be

l ¼ 500. There are two instances when the larg-

est exponent sign becomes positive. These inter-

vals correspond to bifurcation of transition to

chaotic motion. Before going into the chaotic
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Aerothermoelastic Behaviors of Functionally
Graded Panel Structures, Fig. 6 SUS304 curved

panel (k ¼ 50) amplitude as a function of the non-
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divergence situation under curvature gradient for k ¼ 0, (a)
region, the curved panel undergoes quasi-

periodic motions. After the first region of chaotic

motions, there is a region of quasi-periodic

motions. As H h= increases, a second chaotic

regime occurs, and then a periodic motion is

observed. Maximum Lyapunov exponent is zero

for periodic motion while for a divergence state it

becomes negative. As shown in this figure, the

Lyapunov dimensions for divergence, periodic,

and chaotic motions are zero, integer, and

noninteger positive values, respectively. The

same dynamical behaviors are observed when

thermal loadings are applied to the panel. How-

ever, the temperature load triggers a chaotic

behavior at lower curvature values. Before

going into the chaotic region, multi-periodic and

quasi-periodic motion usually occur. It may be

noticed that for volume fraction indexes other

than zero value, there are some limit cycle

switching in higher curvature values. Although

not displayed here, when considering the case of

fully ceramic constituent, no switching in dynam-

ical system behaviors takes place. The effect of

aerodynamic pressure as a control parameter for

bifurcation diagram was also investigated in [7].

From results reported in [7], the panel first expe-

riences static buckling (divergence) followed by

a dynamic instability (flutter) and either regular

or chaotic behaviors are observed. The ceramic
b
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gram of Poincaré maps, (b) Largest Lyapunov exponent,

and (c) Lyapunov dimension of maximum plate deflection

under increasing height-raise values with k ¼ 1, l ¼ 500
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constituent delays the appearance of the bifurca-

tion on the panels. The maximum deflection of

the FGM curved panel decreases when consider-

ing a case with larger ceramic phase constituent.

This is because of the stiffness of the ceramic

which is higher than the stiffness of the metal.

When the temperature value increases, the bifur-

cation point moves to lower values of dynamic

pressure andmaximum deflection value increases

in both divergence and flutter behaviors. Chaotic

regime may be detected in the dynamical behav-

ior of the curved panel due to thermal loading.
Consideration About the Static and
Dynamic Behavior of FGM Shells Under
Aerothermoelastic Loading Conditions

The critical thermal load and divergence of

panels are affected by the temperature distribu-

tion across the panel thickness. Numerical results

show that the stability regions decrease for

selected temperature distributions with the

increase in volume fraction index. The stable

region can be extended by increasing the aspect

ratio and/or the relative thickness. The influence

of nondimensional aerodynamic pressure on the

critical temperature difference is more significant

for lower aspect ratio a b= , thicker plate, and

higher volume fraction index k. The extent of

the stable region in the case of linear temperature

distribution is greater than for the case of uniform

temperature distribution, independent of other

design parameters. The stable region increases

as the FGM is richer in its ceramic constituent.

Snap-through is observed in the divergence

region by increasing thermal loading and aerody-

namic pressure. Increasing the ceramic constitu-

ent in the FG plate causes flutter to appear at

higher dynamic pressures, while decreases the

panel’s limit cycle amplitude. This is a natural

result as the metal is more ductile than the

ceramic, and the stiffness changes based on the

percent of each constituent; therefore, increasing

the % of ceramic constituent increases the panel

structural stiffness. Curved plates with different

volume fraction indexes present distinct dynam-

ical behavior. Under the same specific defined
parameters, divergence behavior is observed for

a single constituent ceramic panel, while chaotic

motion is observed in a single constituent

metallic panel. Temperature clearly affects the

plate dynamical behaviors, especially for low

height-rise panels. As the temperature increases,

chaotic dynamic phenomena might occur as the

height-rise values increase. Different dynamical

behaviors are observed by slowly changing the

aerodynamic pressure and bifurcations may

occur at specific values of the aerodynamic pres-

sure. These bifurcations can be delayed by

increasing the percentage of ceramic constituent.

Increasing the metal constituent will lead to

a chaotic motion at lower values of temperature.

Chaotic behaviors are also observed at higher

values of temperature accompanied by increasing

aerodynamic pressure. Changes from divergence

or stable state regime to periodic or aperiodic

regimes can be identified by the Lyapunov

dimension jumping from zero to an integer or to

noninteger values, respectively. Maximum

Lyapunov exponent and Lyapunov dimension

are compatible with the bifurcation diagrams.
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Overview

The interest toward the development and imple-

mentation of active control technology was

prompted by the new and sometimes contradic-

tory requirements imposed on the design of the

new generation of the flight vehicle that man-

dated increasing structural flexibilities, high

maneuverability, and at the same time, the ability

to operate safely in severe environmental condi-

tions. Designing reentry space vehicles and high-

speed aircraft requires special attention to the

nonlinear thermoelastic and aerodynamic insta-

bility of their structural components. The aerody-

namic heating effects are usually estimated from

the adiabatic wall temperature due to high-speed

airstreams. The thermal effects are important

since temperature environment critically influ-

ences the static and dynamic behaviors of flight

structures in supersonic/hypersonic regimes and

is likely to cause instability, catastrophic failure,
and oscillations, resulting in structural failure due

to fatigue.

Active aerothermoelastic control strategies

provide solutions to a large number of problems

involving aerospace flight vehicle structures. To

prevent damaging phenomena produced by ther-

mal effects on both flutter boundary and post-

flutter behavior, linear/nonlinear active control

methods should be implemented. A serious loss

of torsional stiffness may induce the dynamic

instability; consequently, in the design process,

the loss of torsional stiffness that may be incurred

by lifting surfaces subject to axial stresses induced

by aerodynamic heating should be considered.

Active control can be used to expand the flutter

boundary and convert unstable limit cycle oscil-

lations (LCO) into the stable LCO and/or to shift

the transition between these two states toward

higher flight Mach numbers. The advances of

active control technology have rendered the

applications of active flutter suppression and

active vibrations control systems feasible in the

last two decades [1, 2]. A great deal of research

activity devoted to the aeroelastic active control

and flutter suppression of flight vehicles has been

accomplished. The state-of-the-art advances in

these areas are presented in [3, 4]. The reader is

also referred to a sequence of articles [5, 6] where

a number of recent contributions related to the

active control of aircraft wing are discussed at

length. In the next sections, the nonlinear

aerothermoelastic governing equations for the

control of lifting surfaces are presented [7, 8]

along with the solution methodology adopted

and the analysis of selected example cases.
Nonlinear Aerothermoelastic Control
Equations

The structural model considered is of a

double-wedge two degrees-of-freedom (2-DOF)

plunging/pitching lifting surface. The model is

free to rotate in the xOz plane and free to translate

in the vertical direction as shown in Fig. 1. While

a linear model can be obtained considering linear

flexural and torsional stiffnesses, herein the

nonlinear restoring force and moment from

http://dx.doi.org/10.1007/978-94-007-2739-7_100013
http://dx.doi.org/10.1007/978-94-007-2739-7_100263
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http://dx.doi.org/10.1007/978-94-007-2739-7_100456
http://dx.doi.org/10.1007/978-94-007-2739-7_100501
http://dx.doi.org/10.1007/978-94-007-2739-7_100501
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bending and torsional springs accounting for

freeplay in both degrees-of-freedom have been

considered. The nonlinear aeroelastic governing

equations can be written as:

m€hþ Sa€aþ ch _hþ FðhÞ ¼ �LðtÞ ð1Þ

Sa €hþ Ia€aþ ca _aþ GðaÞ ¼ MEAðtÞ ð2Þ

Hereinm is the airfoil mass per unit wing span,

h is the plunging displacement at the elastic axis

(EA), positive in the downward direction, Sa is

the static unbalance moment about the elastic

axis per unit wing span, a is the pitch angle,

positive rotation nose up, ch and ca are the linear

viscous damping coefficients in plunging and

pitching, respectively, L is the unsteady lift per

unit wing span, t is the physical time variable, Ia
is the cross-section mass moment of inertia about

its elastic axis per unit span, MEA is the unsteady

aerodynamic moment about the elastic axis per

unit wing span, and ðÞ
�
; ðÞ
��

are first and second

time derivatives. The active nonlinear control

can be represented in terms of the moment MC

in (1) as [7, 8]:
MC ¼ f1aðtÞ þ f2a3ðtÞ ð3Þ

where f1; f2 are the linear and nonlinear control

gains, respectively. A third-order expansion form

of the PTA is used to study the behavior of the

nonlinear aerothermoelastic system in supersonic/

hypersonic aeroelastic analyses. The system of

governing equations of a supersonic/hypersonic

double-wedge controlled airfoil featuring plung-

ing/pitching coupled motion can be cast as [7]:

x00ðtÞþwaa
00ðtÞþ2zhð�o=U
Þx0ðtÞ

þð�o=U
Þ2 �FaðxÞxðtÞþð�o=U
Þ2 �FbðxsÞ
þð�o=U
Þ2 �FcðxÞ½x3ðtÞþ3ð�1Þnxsx2ðtÞ
þ3x2sxðtÞþð�1Þ

nx3s � ¼ �LðtÞ

ð4aÞ

ðwa=r2aÞx00ðtÞ þ a00ðtÞ þ ð2za=U
Þa0ðtÞ
þ ð1=U
2Þ �GaðaÞaðtÞ þ ð1=U
2Þ �GbðasÞ
þ ð1=U
2Þ �GcðaÞ½a3ðtÞ þ 3ð�1Þnasa2ðtÞ
þ 3a2saðtÞ þ ð�1Þ

na3s � ¼ �MEAðtÞ
� ð1=U
2Þð’1aðtÞ þ ’2a

3ðtÞÞ
ð4bÞ

where x is the dimensionless plunging displace-

ment at the elastic axis location, t is the
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dimensionless time, xa is the dimensionless dis-

tance between the mass center of the airfoil sec-

tion and the elastic axis, zh; za are the damping

ratios in plunging and pitching, respectively, �o is

the dimensionless frequency ratio, u; u
 velocity
and its dimensionless counterpart (reduced veloc-

ity), respectively, xs is the dimensionless plung-

ing freeplay magnitude, ra is the dimensionless

radius of gyration about elastic axis, as is the

pitching freeplay magnitude, �̂h; �̂a are the nor-

malized nonlinear stiffness coefficients in plung-

ing and pitching, respectively, m is the reduced

mass ratio, r1 is the air stream density, th is the
airfoil half thickness, ðÞ0; ðÞ00 are the first and

second time derivatives with respect to t and

�FaðxÞ¼
1

0

1

8><>:
;

;

;

�FbðxÞ¼
�xs
0

xs

8><>:
;

;

;

�FcðxÞ¼
�̂h

0

�̂h

8><>:
;

;

;

xðtÞ> xs
�xs� xðtÞ
xðtÞ<�xs

� xs

;n¼ 1

;n¼ 2

ð5Þ

Similar expression for �G0s by replacing xðtÞ ,
aðtÞ. The unsteady aerodynamic lift and moment

appearing in (4a and 4b) can be expressed as:
�LðtÞ ¼ � �

12M1m

"
12ðx0 � aa0 þ aÞ � 3ðgþ 1Þt̂�M1ða0Þ

þM2
1ðgþ 1Þ�2



ðx0 � aa0 þ aÞ

h
ðx0 � aa0 þ aÞ2 þ 3t̂2 þ ða0Þ2

i�# ð6aÞ
" � 	

�MEAðtÞ ¼

�

12mM1r2a
12½ax0 � 1

3
þ a2 a0 þ aa� þ 3ðgþ 1Þt̂�M1ðx0 � 2aa0 þ aÞ:

� M2
1ðgþ 1Þ�2 1

5
ða0Þ3 � aðx0 � aa0 þ aÞ ðx0 � aa0 þ aÞ2 þ 3t̂2

h i

þ a0 ðx0 � aa0 þ aÞ2 þ t̂2 � aa0ðx0 � aa0 þ aÞ

h i�#
ð6bÞ
The two normalized linear and nonlinear con-

trol gain parameters ’1; ’2 are defined as

’1 ¼ f1=Ka; ’2 ¼ f2=Ka, respectively.
Solution Methodology

To perform the nonlinear aerothermoelastic anal-

ysis in the time domain, (4a, 4b) is transformed

into state-space matrix form:
"

_y tð Þ ¼

0 I

M�1 QL2ext þQNL2ext �KL�KNL�Mcontrolð Þ M�1 QL1ext þQNL1ext � Cð Þ

#
y tð Þ

�
0 0

0 M�1

" #
R xs; asð Þ

where y tð Þ ¼

x tð Þ
a tð Þ
_x tð Þ
_a tð Þ

8>>><>>>:
9>>>=>>>;;R xs; asð Þ ¼

0

0

Qf 1; 1ð Þ
Qf 2; 1ð Þ

8>>><>>>:
9>>>=>>>;;Mcontrol ¼

0 0

0 ð1=U
2Þð’1 þ ’2a
2ðtÞÞ

� �

ð7Þ



Aerothermoelastic Control of Lifting Surfaces, Table 1 Baseline parameters of 2-DOF plunging/pitching airfoil

Material used: Titanium (Ti-6%Al-4%V)

Mechanical properties r ¼ 4,420 kg=m3; TEC (0–100 C0) 8.8*10�6/K; TEC (0–300 C0) 9.2*10�6/K;
E ¼ 114*109 N/m2; G ¼ 43.51*109 N/m2; # ¼ 0:31

Flight condition: h ¼ 10,000 m; r1 ¼ 0:4135 kg=m3; c1 ¼ 299:53 m=s; T1 ¼ 223:26 K; � ¼ 1; g ¼ 1:4

Airfoil geometry parameters: Section of rectangular wing, aspect ratio ¼ 3; b ¼ 0:5 m; t̂ ¼ 0:15; m ¼ 331:5 kg=m

Airfoil physical parameters: wa ¼ 0:25; ra ¼ 0:5; zh; za ¼ 0; a ¼ �0:25; �o ¼ 0:2135

Cubic stiffness nonlinearities

�̂h ¼ 0; �̂a ¼ 10

Initial condition xðt ¼ 0Þ ¼ _xðt ¼ 0Þ ¼ _aðt ¼ 0Þ ¼ 0;

aðt ¼ 0Þ ¼ 5�
Initial freeplay as ¼ 1�;
xs ¼ 0
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where y is the state vector and M is the mass

matrix. KL and KNL in (7) represents the linear

and nonlinear stiffness matrices, while the

aerodynamic damping and stiffness matrices

QNL1ext and QNL2ext contain both uncoupling

and coupling nonlinear quadratic and cubic

terms, respectively. The matrices QL1 and QL2

include the damping and stiffness aerodynamic

linear terms, respectively, R and Qf are the

freeplay force/moment vectors. Mcontrol repre-

sents the active linear and nonlinear control

moment matrix. A numerical simulation using

the fifth to sixth Runge-Kutta Fehlberg time inte-

gration scheme with step size control is carried

out for the system in (7).
Aerothermoelastic Control of Lifting
Surfaces: Analysis

Before we apply any control and to emphasize

the importance of aerodynamic heating on the

nonlinear aerothermoelastic behavior of the

examined aerothermoelastic system, the influ-

ence of the loss in effective torsional stiffness of

a solid thin double-wedge wing under various

parameters such as flight condition, thickness

ratio, pitch freeplay, and pitching stiffness

nonlinearity has been analyzed. Unless otherwise

stated, the numerical simulations consider the

baseline parameters which are listed in Table 1.

A number of bifurcation diagrams were

constructed from the amplitude of the pitch

LCO as a function of the flight Mach number

for a plunging/pitching airfoil with a freeplay

structural nonlinearity in pitch, cubic pitch
structural nonlinearities subjected to supersonic/

hypersonic flow which induced also aerodynamic

heating are presented in Fig. 2. Because of sym-

metric pitch LCO amplitude and to have a better

graphical representation, some of the plots in

Fig. 2 have been presented in positive or in neg-

ative side of the LCO curve as shown later. In

Fig. 2a case #1 (positive side of LCO curve) is for

the system with no aerodynamic heating and

�̂h ¼ �̂a ¼ 0, such that MLF ¼ 17:4. Case #2

(negative side) is for the system with no aerody-

namic heating also, but �̂h ¼ 0; �̂a ¼ 10 (hard

structural nonlinearities) and the flutter speed is

the same as case #1. Note that the simulations

are restricted to cases where the pitching dis-

placement is within � 20� to remain within the

limits of validity of the proposed model and

approach. The aerothermoelastic system exhibits

a bifurcation behavior for these two cases at

M1 
 1:7 due to the presence of freeplay in

pitch direction. For the speed range

(1:7 < M1 � 7), different types of response

behavior (periodic, quasiperiodic, or chaotic)

will occur. Within the speed ranges

(7 < M1 � 17) for case #1, (7 < M1 � 21) for

case #2, a stable LCO is experienced; its ampli-

tude increases with the increase of the flight Mach

number. AtM1 
 16, the case #1 exhibits a pitch

LCO with amplitude of about 9:9�, while the

case #2, the LCO has a pitching amplitude about

6:6�. It appears that cubic structural nonlinearities
significantly decrease the LCO amplitude, while

the linear flutter speed remains constant, besides

case #1 has maximum amplitude of (
13�) at

M1 
 16:2 compared with (
17�) at M1 
 21

for case #2. Figure 2b shows the effect of aerody-

namic heating. Case #1 in Fig. 2b is the same as
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case #1

j1 = 0.0, j2 = 0.0; ĥh = 0.0, ĥa = 0.0;

xs = 0.0, as = 1.0 deg ; No aerodynamic heating ;

MLF = 17.40 

case #1

j1 = 0.0, j2 = 0.0; ĥh = 0.0, ĥa = 10.0;

xs = 0.0, as = 1.0 deg ; No aerodynamic heating ;

MLF = 17.40 

case #2

j1 = 0.0, j2 = 0.0; ĥh = 0.0, ĥa = 10.0;

xs = 0.0, as = 1.0 deg ; With aerodynamic heating ;

MLF = 13.65

case #2

j1 = 0.0, j2 = 0.0; ĥh = 0.0, ĥa = 10.0;

xs = 0.0, as = 1.0 deg ; No aerodynamic heating ;

MLF = 17.40 

Aerothermoelastic Control of Lifting Surfaces, Fig. 2 Bifurcation pitch diagrams for the double-wedge airfoil with

nonlinearities

Aerothermoelastic Control of Lifting Surfaces 75 A

A



−2 0 2
−0.1

0.0

0.1
ȧ
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ĥh = 0.0 , ha = 10.0 ; xs = 0.0 as = 1.0 deg ;

With aerodynamic heating ; MLF = 13.65

case #1

j1 = 0.0 , j2 = 0.0

case #2

j1 = 0.10 , j2 = 10.0 j1

case #3

j1 = 0.30 , j2 = 0.0 j1

case #4

j1 = 0.80 , j2 = 10.0 j1

case #5

j1 = 1.0 , j2 = 10.0 j1

Aerothermoelastic Control of Lifting Surfaces,
Fig. 3 Pitch LCO amplitude versus flight Mach number

for a 2-DOF system with all nonlinearities. Time histories

and phase portraits represent the uncontrolled and

controlled system, respectively
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case #2 in Fig. 2a but in positive side. The result of

case #2 reveals that the flutter speed

(MLF ¼ 13:65), as well as the LCO behavior, is

affected by the loss of the torsional stiffness. In

both cases, the pitching structural nonlinearities

are considered (�̂h ¼ 0; �̂a ¼ 10). Under pitch

active control, a considerable change in the ampli-

tude of the LCO is significantly observed in Fig. 3.

Case #1 is the same as case #2 in Fig. 2b but in

positive side and does not include any active con-

trol (’1 ¼ ’2 ¼ 0). Case #2 (’1 ¼ 0:1;

’2 ¼ 10’1), #3 (’1 ¼ 0:3; ’2 ¼ 10’1), #4

(’1 ¼ 0:8; ’2 ¼ 10’1), and #5 (’1 ¼ 1;

’2 ¼ 10’1) present a shift of the bifurcation

behavior to M1 
 3:8; 8:0; 12:5; and 13:5,

respectively. The unstable LCO including the cha-

otic region in case #1 (until M1 
 7) has been

suppressed as shown in case #3. Figure 3 also

shows the phase portraits and time histories for

various flight Mach numbers which represent the

uncontrolled (case #1) and controlled system (such

as case #4 and #5), respectively. Clearly, increas-

ing the linear pitch gain can extend the flutter

boundary and convert the unstable LCO into stable

LCO and/or shift the transition between these two

states toward higher flight Mach numbers with

suppression of LCO.
Figure 4 shows the effect of nonlinear active

control gain with zero linear gain

(’1 ¼ 0; ’2 6¼ 0). It shows that increasing ’2

alone (for case #2, ’2 ¼ 50 and for case #3,

’2 ¼ 100) is less effective in stabilizing the

aerothermoelastic system than for the linear

one. This leads to a practical application of the

control mechanism on actual and future genera-

tion aerospace vehicle lifting surfaces.
Consideration About the
Aerothermoelastic Control Behavior of
Lifting Surfaces

The influence of aerodynamic heating on the

nonlinear aerothermoelastic behavior of a solid

thin double-wedge airfoil encountered all nonlin-

earities (structural freeplay and cubic stiffness,

aerodynamic third-order piston theory) in

supersonic/hypersonic flight speed regime is

highlighted in the preceding sections. The

nonlinear aerothermoelastic analysis of aero-

surfaces is an important aspect of design. Linear

and nonlinear active control can extend the flutter

boundary and convert the unstable aerother-

moelastic behavior into stable one and/or shift
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the transition between these two states toward

higher flight Mach numbers with suppression of

LCO. Moreover, the analysis presented can

serve as a guideline for selecting appropriate

control gains to maximize performance. Active

control can be produced via a device behaving

similarly to a linear/nonlinear spring. The issue

of the design of the controller is not addressed

here. Only a theoretical analysis of the nonlinear

active control of aerothermoelastic phenomena

of a lifting surface at supersonic/hypersonic

flight speed regimes is presented. The applica-

tion of various controllers using different

linear/nonlinear control theories such as

optimal control (LQR and others) for more

robust control strategy is an active area of cur-

rent research.
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Overview

This entry covers four distinct areas, namely, the

interaction in a closed loop system of designer

aerodynamics, of viscoelastic materials and

structures, and of controls. The presence of
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varying temperatures not only induces thermal

stresses but also strongly affects material proper-

ties. The effects of temperature on viscoelastic

material properties as well as on flutter velocities

and times to reach flutter conditions are

discussed. It is shown that optimized FGM distri-

bution can increase flutter velocities and lengthen

the time to when flutter will occur.
Introduction

The confluence of designer aerodynamics, of vis-

coelastic materials and structures, and of controls

in a closed loop dynamical system introduces

several distinct problems in each of the four con-

tributing areas as well as in their ensemble.

All functionally graded materials, or FGMs

for short, are from a fundamental mechanics

point of view nonhomogeneous materials where

the property distributions are prescribed during

the manufacturing phase. Such distributions may

follow continuous and/or piecewise continuous

functions. Other possible sources of inhomoge-

neities are dissimilar materials, composites, and

temperature distributions. A striking example of

artificially created dissimilar material FGMs

is illustrated in Fig. 1 where thin layers of

distinct materials are deposited in a prescribed

fashion on a plate [1]. A comprehensive formu-

lation (space limitations necessitate citing publi-

cations where expanded bibliographies can be

found) of viscoelastic FGMs may be found in

[2] and of aero-thermo-servo-elasticity with

FGMs in [3]. A treatment of the differences

and similarities between thermo-elasticity and

thermo-viscoelasticity is given in [4].

Linear viscoelasticity has become a mature

though not closed field [5]. However, much

research remains to be undertaken in nonlinear

viscoelasticity [6]. For a list of additional refer-

ences, see [7].

Tailored aerodynamics have been introduced

in publications on airfoil design such as [8–10],

where airfoil surfaces are analytically generated

to deliver prescribed performance characteristics

of low drag, high L/D ratios, etc. Modern airfoil

morphing reminiscent of the Wright brothers’
original plane also offers control possibilities as

seen in [11–14].

Aeroelasticity is a mature field and is covered

by a significant number of textbook starting with

the everlasting classic [15] and including but not

limited to [16–25]. Aero-viscoelasticity on the

other hand is still an emerging field starting with

[26] and [27] and at this time with no text books.

A comprehensive bibliography of the subject as

well as an analytical treatment of aero-servo-

viscoelasticity may be found in [28].

Elastic designer materials are first described in

[29] and viscoelastic ones in [30]. The formal

analytical formulation based on calculus of vari-

ations is presented in [31].
Analysis

Consider a Cartesian coordinate system

x ¼ x1; x2; x3f g ¼ xif g, an FGM function FðxÞ,
and a temperature distribution Tðx; tÞ. The linear
anisotropic viscoelastic constitutive relations can

be expressed as [4–6, 32]
sijðx; tÞ¼
Z t

�1

Eijkl x; t; t
0; FðxÞ;Tðx; t0Þ½ � @Eklðx; t

0Þ
@t0

dt0

�
Z t

�1

ET
ij x; t; t

0; FðxÞ;Tðx; t0Þ½ � @ aTðx; t0Þ½ �
@t0

dt0

ð1Þ

or

Eijðx; tÞ¼
Z t

�1

Cijkl x; t; t
0; FðxÞ;Tðx; t0Þ½ � @sklðx; t

0Þ
@t0

dt0

þ
Z t

�1

CT
ij x; t; t

0; FðxÞ;Tðx; t0Þ½ � @ aTðx; t0Þ½ �
@t0

dt0

ð2Þ

The fundamental difference between elastic

and viscoelastic constitutive relations is the fact

that the elastic ones are algebraic, while the vis-

coelastic relations belong to the integral-

differential species. Additionally, there remains

the most significant matter of the temperature
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dependence of relaxation moduli Eijkl and creep

compliances Cijkl. When one eliminates all relaxa-

tion/creep influences at elevated temperatures from

Young’smodulus experimental measurements, the

remainder shows little variations of elastic moduli

with temperature [33–35]. Viscoelastic metal and

polymer matrix relaxation moduli, on the other

hand, show extreme sensitivity to temperature

due to real material variations in viscosity coeffi-

cients of approximately one order ofmagnitude per

20 �C – see Fig. 2. The additional most significant

effect of this temperature dependence is to change

the kernel functions in the hereditary integrals from

Eðx; t� t0Þ to Eðx; t; t0Þ ¼ E x; t; t0;FðxÞ; Tðx; t0Þ½ �
thus destroying the convenient properties of the

convolution integrals.

A large class of viscoelastic materials, known

as thermo-rheologically simple materials (TSMs),

has behavioral responses that admit the presence

of the WLF (also known as the Williams-Landel-

Ferry shift factor/function) material property shift

function aT [36] empirically defined as
loge aTðtÞ½ � ¼ C1ðT � T0Þ
C2 þ T � T0

ð3Þ

with T0 a conveniently chosen constant reference

temperature. It may, but need not, be equated to

the rest temperature at which the thermal expan-

sions T vanish. In this entry, the same T0 is used.
An empirical well-working model for TSMs

defines an associated reduced time xðx; tÞ as [37]F
xðx; tÞ ¼
Z t

0

aT Tðx; sÞ½ �ds

¼
Z t

0

exp
C1 Tðx; sÞ � T0½ �
C2 þ Tðx; sÞ � T0

� 	
ds

x 2 ½0;1�

ð4Þ

and reduces all relaxation moduli curves at

many diverse temperatures to a single master

relaxation curve for each TSM with

Êðx; xÞ ¼ E x; t; t0; FðxÞ; Tðx; t0Þ½ � versus x. By

the above definition, it follows that at T ¼ T0,

aT ¼ 1 and xðT0Þ � t.

Further, examinations reveal that

Z t

�1

Eijkl x; t; t
0; FðxÞ;Tðx; t0Þ½ �@sklðx; t

0Þ
@t0

dt0

�
Zxðx;tÞ
�1

bEijkl x;xðx; tÞ� x0½ �@ ŝkl ðx;x
0Þ

@x0
dx0 ð5Þ

and thus the convolution integrals are restored in

the x-space. However, any success at recapturing
an elastic-viscoelastic correspondence principle
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in the x-space is thwarted by the fact that the xi
derivatives acquire variable coefficients due to

the x transformations, to whit

@

@xi
¼ @xðx; tÞ

@xi|fflfflffl{zfflfflffl}
¼ Ziðx;tÞ
¼bZiðx;xÞ

@

@x ð6Þ

The transformation into the x-space mandates

that

Eijklðx; tÞ � Êijklðx; xÞ

¼ E1ijklðxÞ þ
XNijkl

n¼1
EijklnðxÞ

� exp � xðx; tÞ
t0ijklnðxÞ

 !
ð7Þ

Equation (5) should be preferentially used in

the governing relations as they simplify the “book-

keeping” and numerical solutions when used.

While the convolution integrals are restored in

the x-space, the variable coefficients generated

by the x derivatives negate any possibility of
applying the elastic-viscoelastic correspondence

principle (EVCP) in either real time t or in

reduced time x. Table 1 summarizes these

phenomena.

The FGM function can be expressed as a series

in the finite x domain, such as for instance
FðxÞ ¼
XM
m¼0

XN
n¼0

XK
k¼0

Amnk x
m
1 xn2 x

k
3 ð8Þ

Then let

S ¼ S1;S2; � � � ;SSsf g ¼ S‘f g
‘ ¼ 1; 2; � � � ;Ss

ð9Þ

be the set of parameters (constants) representing

Eijkln; t0ijkln;Amnk, geometry, sizing, weight, cost,

etc., and in the case of composites fiber orienta-

tion, number of plies, volume ratios, stacking

sequences, etc., to be optimized.

Further, let uðx; tÞ be generalized displace-

ments representing rigid body motion, spanwise

and chordwise bending, torsion, etc., which leads

to sets of governing relations of motion in the

generating form
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Table 1 Elastic and viscoelastic thermal coupling

Material Temperature Modulus Convolution in t/x-spaces EVCP

Elastic T(x) E0 x; FðxÞ½ � no/no n/a

Elastic T(x, t) E0 x; FðxÞ½ � no/no n/a

Viscoelastic T(x) E x; t� t0; FðxÞ; TðxÞ½ � yes/yes yes

Viscoelastic T(x, t) E x; t; t0; FðxÞ;Tðx; t0Þ½ � no/yes no
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Luðx; t; SÞ ¼ m
@2uðx; tÞ

@t2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼ inertia ðT1Þ

þ c
@uðx; tÞ

@t|fflfflfflfflffl{zfflfflfflfflffl}
¼ external mechanical damping ðT2Þ

þ
Z t

�1

D̂kl x; xðx; tÞ � x0; FðxÞ½ � @êklðx; x
0Þ

@x0
dx0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ internal viscoelastic restoring force ðT3Þ

�
Z t

�1

D̂
T
x; xðx; tÞ � x0; FðxÞ½ �

@ caTðx; x0Þh i
@x0

dx0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ internal thermal expansion force ðT4Þ

¼ FVðx; tÞ|fflfflfflffl{zfflfflfflffl}
¼ vibratory force ðT5Þ

þ

FSC x; t; u x; tð Þ; @ u x; tð Þð �
@t

;

�
@2 u x; tð Þð �

@t2
;

Z t

u x; t0ð Þdt0
1A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼differential and integral servo control force ðT6Þ

þ FA x; t; uðx; tÞ; @ uðx; tÞð �
@t

;
@2 uðx; tÞ½ �

@t2

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ aerodynamic forces ðT7Þ

ð10Þ

where the D̂kl and D̂
T
are differential spatial

operators specific to the appropriate u component

for beam and plate bending, torsion, etc. For

instance, for Euler-Bernoulli beam bending, it is
D1111ðxÞ ¼
@2

@x21
E x; t;FðxÞ; Tðx; tÞ½ � @

2

@x21


 �
ð11Þ
In order to examine the stability behavior of

(10), it is advantageous to proceed in the follow-

ing manner:

• Express the solution functions in terms of series

u x; tð Þ ¼
XMu

m¼1
AmðtÞf umðxÞ ð12Þ

where each term f umðxÞ satisfies the BCs.
• Apply Galerkin’s method and eliminate the x

dependence resulting in integral ordinary dif-

ferential equations of the type

C3

d3UðtÞ
dt3

þ S2 þ A2 þ C2ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼ B2

d2UðtÞ
dt2

þ S1 þ A1 þ C1ð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼ B1

dUðtÞ
dt

þ S0|{z}
elastic

þA0 þ C0

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼B0

UðtÞ

þ
Z t

�1

ŜI xðtÞ � x0½ � dÛ x0ð Þ
dx0

dx0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
viscoelastic including temperature dependence

þ CI

Z t

U t0ð Þdt0 ¼ 0|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
integral controller

ð13Þ

where

Sn; SI ¼ structural coefficients;

S2 ¼ mass coefficient

AnðVÞ ¼ aerodynamic coefficients

Cn ¼ servo� control coefficients for

differential controllers

CI ¼ integral controller coefficient
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The presence of temperature functions Tðx; tÞ
or T(t), but not T(x), in the ŜI xðtÞ½ � functions
precludes the possibility of solutions

UðtÞ � exp ðd þ {oÞt½ �. Consequently, the cus-

tomary flutter criterion of simple harmonic motion

(SHM) when dðVF;oFÞ ¼ 0 no longer represents

an attainable flutter criterion. Instead an alternate

viscoelastic one must be enforced, such that

viscoelastic)
lim
t!tF
V!VF

u x; t;Vð Þf g ! 1

or

lim
t!tF
V!VF

@u x; t;V½ �
@t


 �
!1

8>>>>>>>><>>>>>>>>:
ð14Þ

These instability conditions can be determined

from the solution’s non-converging series or from

a single unbounded amplitude in the solution

series or through limit cycle analyses when appli-

cable. In any case, (14) points to the fact that

under variable temperatures viscoelastic flutter

conditions are dictated by a combination of velo-

city (VF) and critical time or time to flutter (tF).

Figure 3 describes typical conditions according

to the stability prescription (14). The ultimate
viscoelastic velocity that can be reached is in this

case the viscoelastic flutter velocity, and the graph

depicts its reduced value compared to the equiva-

lent elastic one. For a given lifting surface, both of

these values will, of course, vary with altitude,

trim angle, T(t), etc. The time tF is the time at

which the viscoelastic flutter velocity occurs, and

it is pairedwith a flutter velocityVF, which in these

cases are not eigenvalues. For a constant T, Fig. 3
would have roughly the same shape but different

values. In general an increase in temperature

decreases both VF and tF shifting the curve toward
the origin. Conversely, a decrease in temperature

has an opposite delaying effect.

The designer material formulation is basically

that of an inverse problem solved through the cal-

culus of variations [31].Theoptimization is subject

to prescribed constraints based on cost, weight, tF,
VF, and some of the parameters S enumerated after

(9). Formally the constraints can be stated as
C Sð Þ ¼ 0 ð15Þ

where S is a subset of the entire ensemble S. After
(13) are solved for the U(t), the temporal influ-

ence is eliminated by specifying tF and hence

U(tF), or any other convenient time, or an average

Uave value, such as



Governing Eqs.
Ln (S, x, t ) = 0

Constraints
Cn (S, x, t ) = 0

Galerkin  
eliminates  x 

LSQ, time averaging,
evaluation at design
times eliminates  t

Solve for 
parameters Sm
(algebraic eqs.)

Solve for
um(t )

∂
∂S m

{un(S ) + lnC (S* )} = 0

Lagrangian Multipliers

Aeroviscoelasticity
Designer FGMs: Passive
Control Through
Tailored Functionally
Graded Materials,
Fig. 4 Designer flow chart
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UaveðSÞ ¼
ZtF
0

UðtÞ
tF

dt ð16Þ

The next step is to solve the now remaining

algebraic relations for each Sm from
@

@Sm
LuðSÞ þ l C Sð Þf g ¼ 0 ð17Þ

where l is a Lagrangian multiplier [38]. The

protocol is summarized in the flow chart of Fig. 4.
Discussion and Conclusions

Figure 5 depicts in a normalized fashion the

effects of constant temperatures on VF and tF.
As can be expected, an increase in temperature

brings with it higher relaxation and creep rates

and, therefore, both decrease in value as the tem-

perature is elevated. The converse is seen as

cooling effects take place.

The control that can be exercised on flutter and

times to flutter at one constant temperature can be

seen in Fig. 6. From left to right, the first curve

representing a lifting surface with optimized

homogeneous viscoelastic properties yields the

shortest tF and the lowest flutter velocities.
When designer FGMs are applied to the same

geometric surface, VF s and tF s are increased

and flutter conditions are improved.

The use of FGM passive control principles is

extremely attractive for UAVs and MAVs, where

the lifting surfaces are light weight and more

importantly highly flexible. Their limited mission

scope compared to a more complex fighter or

transport flight vehicle makes them ideally suited

for a priori built in FGM distributions.

Of course these designer material studies cre-

ate materials with hypothetical elastic or visco-

elastic optimize properties. The next step, not

part of these studies, is to develop manufacturing

techniques to produce such materials to designer/

tailored properties specifications. In [39], ana-

lyses are presented which relate material chemi-

cal structure to polymer properties. It offers

a partial path to the inverse manufacturing

quandary.

Finally, in [7], case analyses are developed to

extend the designer material concepts to the

entire vehicle. The possibility of carrying out

the solution of possibly some 800,000,000 simul-

taneous algebraic equations for an estimated set

of necessary parameters will materialize when the

University of Illinois at Urbana-Champaign NSF/

NCSA Blue WatersTM sustained petascale super-

computer comes online in late 2012 [40, 41].
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Overview

The process of converting chemical energy,

contained in fuel, into thermal energy takes

place as a result of fuel combustion in power

boilers, which ensures the production of steam

of given parameters, mainly pressure and temper-

ature, with the required large expense. Despite

the relatively simple manufacturing process
technology (Clausius-Rankine cycle) carried out

in steam power plants, the equipment used in this

process is of a highly complex, sophisticated

design, with complex functional relationships

between elements [1, 2]. The high temperature

can contribute to premature failures of power

units and, as a consequence, exclusion from the

operation. The analysis of power units’ operation

[3] reveals that most loaded power unit elements

are the boiler and turbine. The share of boiler

failures requiring power block shutdown is

caused, in most cases, by damage to the boiler

pressure parts, that is, the evaporator and

superheater.

During operation of the boiler, the high flame

temperature in the combustion chamber, and the

exhaust gas boiler superheater, can cause an

overheating condition of steel, of which tube

exchangers are made.

In contrast to steady-state boiler operation,

completely different thermal and flow conditions

prevail in transient conditions, that is, during start-

up, shutdown, and rapid changes in boiler load.

In transient conditions, there are large fluctuations

in temperature, pressure, and mass flow rate of

coolant. This affects the rate of heating and

cooling criteria of thick boiler pressure parts.

Uneven and too rapid changes in temperature of

the wall give rise to thermal stresses, large enough

to cause damage in the form of cracks. These

cracks are visible, for example, in cylindrical pres-

sure vessel boiler tubes in areas of precipitation.

Therefore, boiler manufacturers put temperature

rate limits, defining the acceptable rate of heating

and cooling of boiler components. These elements

are called “critical” and determine the duration of

the start-up and shutdown processes.

Therefore, the correct start-up [2, 4–6], and the

stable ability of the boiler to produce steam for

a rating, is an essential element of operating

boilers. The optimization of start-up allows the

reduction in operation time of oil burners, so that

they only work for the necessary period to

achieve stable operation of the boiler at the begin-

ning of the boiler start-up. The rate of the initial

stages of boiler start-up is to provide a uniform

process of heating the boiler, because of the pos-

sibility of deformation of the structure, from

http://www.ncsa.illinois.edu/News/Stories/Kramer/
http://www.ncsa.illinois.edu/News/Stories/Kramer/
http://www.ncsa.uiuc.edu/BlueWaters/
http://www.ncsa.uiuc.edu/BlueWaters/
http://dx.doi.org/10.1007/978-94-007-2739-7_690
http://dx.doi.org/10.1007/978-94-007-2739-7_690
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uneven elongation under the influence of changes

in temperature. Starting procedures also depend

on the technical condition of the power boiler.

Owing to pressure and temperature, there are five

basic states of the boiler:

1. Cold state: (low-pressure boiler) the lack of

steam pressure in the drum, temperature of

below 80 �C, the open vent and drain valves

in the boiler superheater.

2. Hot boiler state: steam drum pressure about

0.5 MPa, the temperature above 80 �C, closed
drainage and venting.

3. Hot boiler margin: a state of the boiler equip-

ment at the ready movement by allowing

a planned power unit and the parameters of

saturated steam in the drum, with a value of

temperature 200 �C, pressure of 1.5 MPa.

4. Cold boiler margin: a state of the boiler equip-

ment at the ready movement for reaching the

planned power plant unit when starting from

cold.

5. Emergency shutdown of the boiler: it is

switched off owing to damage to the boiler,

or it is impossible to maintain the boiler equip-

ment in service in accordance with the instruc-

tions and rules of operation. This also includes

unscheduled boiler shutdowns.

Commissioning of the boiler being on and off

are processes that significantly determine the

consumption of boiler pressure parts and their

residual life [6–9]. During start-up and shutdown,

parts with complex shapes are subjected to exces-

sive stresses.

Proper design of the boiler pressure parts,

material selection, and properly carried out cal-

culations provide a low failure rate of the boiler.

This is important in the period in which improv-

ing the performance of power units is associated

with the construction of large units with super-

critical parameters, owing to the use of new

grades of steel with high strength, at high

temperatures.

The proper design of boiler components

subjected to thermomechanical loads is

possible by using the European standard EN

12952-3:2001. This standard was adopted

July 25, 2001, by CEN (Comité Européen

de Normalisation/European Committee for
Standardization) and was introduced, without

any changes, in all member countries of CEN,

as a national standard.
Fatigue Loads and Their Evaluation
According to EN 12952-3

It is assumed that the boiler components are

subjected to cyclic loads, when the boiler is

designed for more than 500 starts from a cold

state.

If you are given the size of the load, to which

boiler pressure parts are subjected – that is, the

number and types of transients, such as during

start-up or shutdown, and the load changes

adopted during the life of the calculation – the

calculation of fatigue damage is determined by

the hypothesis of linear accumulation Palmgren-

Miner damage. This summation can be

represented by the formula

Xk
1

nK
Nk
¼ n1

N1

þ n2
N2

þ ::: þ nk
Nk

� 	
ð1Þ

where n1 is the number of cycles with the same

alternating stress 2fvak, medium stress variable
�fvak; and the reference temperature t
k and Nk is

the number of allowable cycles of load changes

for given load conditions. This sum, which is

a degree of exhaustion of the material, must not

exceed 1.0.

In the case of pressure elements working in

creep conditions, that is, at temperatures above

400 �C, calculating the total damage should also

consider the contribution coming from the creep

damage.

When they are not known to the boiler load,

then the calculations shall be 2,000 starts from

cold, with an increased margin of damage. Then,

the degree of exhaustion of the material shall be

less than, or equal to, 0.4:
Xk
1

nK
Nk
�

1; 0 for known load

0; 4 for the adopted

2000 stats form cold

8>>><>>>: ð2Þ
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The determination of the number of load

cycles and stresses is necessary to calculate the

total damage from the low cycle load, according

to (1). For this purpose, a stress analysis is

performed to calculate the damage derived from

thermal fatigue.
Allowable Temperature Rates for Pressure Compo-
nents Using European Standards, Fig. 1 Schematic

course of changes in stress during the uniaxial stress

state [1]
Stress Analysis

During operation, stresses arise on the thick-

walled pressure parts of boilers, as a result of

local changes in temperature and pressure. The

greatest stresses occur at the edges of the inner

surface, between the intersecting surfaces.

Usually, these are the edges of the holes created

by the surfaces of two cylinders, or a sphere and

a cylinder. Owing to the dynamic operation of the

boiler – that is, variations in temperature and

pressure – the stresses occurring in thick-walled

boiler components change over time.

Analyzing the simplest case of uniaxial load

(Fig. 1), the range of stresses in the cycle (3) can

be defined as the difference between the maxi-

mum and minimum value of the stress, and the

mean stress as the arithmetic mean (4):

2fva ¼
_

f � ^

f ð3Þ

fv ¼
1

2

_

f � ^

fð Þ ð4Þ

In fact, for complex shapes in place of the

highest stress concentration – for example, on

the edge of the hole – there is a multiaxial stress

state described by equations

f1 ¼ ftang ¼ ftang,p þ ftang,t ð5Þ

f2 ¼ frad ¼ �p ð6Þ

f3 ¼ fax ¼ �p ð7Þ

where

f1 is shear stress on the base body and

tangential to the hole, caused by pressure

(ftang:p – component of the pressure, N/mm2)

and the temperature difference in the wall

(ftang:t – component temperature, N/mm2),

N/mm2;
f2 is radial stress on the body of basic compensa-

tion of fluid pressure (p) on the inner surface of
the hole in the main body, N/mm2;

f3 is axial stress to compensate for the fluid pres-

sure (p) on the outer surface of the hole or

branching, N/mm2.

Using the hypothesis of maximum shear stress

can save time differences of principal stresses:
Df12 ¼ f1 � f2 ¼ ftang þ p ð8Þ

Df23 ¼ f2 � f3 ¼ 0 ð9Þ

Df31 ¼ f3 � f1 ¼ �ðftang þ pÞ ð10Þ

In this case, the extent of the stress cycle is

determined by the largest value from the strain

differences (11),

2fva ¼ max

D
_

f 12 � D
^

f 12

D
_

f 23 � D
^

f 23

D
_

f 31 � D
^

f 31

8><>:
9>=>; ð11Þ

while the corresponding average stress range is

the average of the differences of principal stresses

(12):
�fv ¼
1

2
D

_

f � D
^

fð Þ ð12Þ

This means that during boiler cycling (temper-

ature and pressure change over time), the stresses

in the weakened hole pressure elements can be

defined as maximum stressD
_

f 12 minus minimum
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stress D
^

f 12. If D
_

f 12 and D
^

f 12 are above stresses,

the range of stress variation is
2fv ¼ Dfv ¼ D
_

f 12 � D
^

f 12 ð13Þ

For the calculation of minimum andmaximum

stress, the finite element method can be used, or

a simplified calculation with the relevant coeffi-

cients of stress concentration factors or notch.

For purposes of computing, the considered

load cycle was introduced in the reference tem-

perature cycle
t
 ¼ 0; 75 � _tþ 0; 25 � ^t ð14Þ

where
_

t ¼ max t_s; t^sf g is the maximum temperature

at which the greatest stress occurs in the cycle,
^
t ¼ min t_s; t^sf g is the minimum temperature

at which there is least stress in the cycle.

The reference temperature t* is also the tem-

perature at which all known temperature-

dependent material properties are determined.
Calculation of Minimum and Maximum
Stress

To determine the allowable range of stresses for

all the pressure components, fatigue diagrams of

steel are used.

By knowing the number of cycles at which

there is destruction of the item, or the projected

number of cycles, the difference between the

maximum and minimum stress 2fa during one

cycle can be determined from the graph of

fatigue. An example of the fatigue curve

described by (15), for different ferritic steels

(Rm), is shown in Fig. 2:
2fa ¼ 0:8 � Rm þ 173150� 0:8 � Rmð Þ � N�0:547A

ð15Þ

In the case of calculations for an infinite num-

ber of cycles, (15) takes a simpler form:

2fa ¼ 0:8 � Rm ð16Þ
Since the fatigue curves described by (15) have

been developed, based on experimental data, they

do not include safety factors. These should be

taken into account by applying a safety factor to

determine the acceptable range of strain SS ¼ 1.5,

and the load cycles SL ¼ 10. After taking safety

factors into account, and the adoption of the

design number of cycles NA ¼ N in (15),
2fas ¼ 0:8 � Rm þ 173150� 0:8 � Rmð Þ � N�0:547

ð17Þ

2fal¼ 0:8 �Rmþ 173150�0:8 �Rmð Þ � N �SLð Þ�0:547A

ð18Þ

can calculate the allowable range of stress (19):

2f 
at
 ¼ min

2fas
SS

2fal

8<:
9=; ð19Þ

The thick-walled pressure parts of boilers are

designed to work in fixed thermal conditions and

under specified pressure. The work of the same

elements in transient states, which occur during

the start-up and shutdown of the boiler, charac-

terizes variable pressure and temperature on the

large differences in wall thickness. There are also

large differences in temperature at the periphery

of the pressurized parts, especially where there is

a two-phase factor. This is not only the boiler

drum, where, by definition, there is a gas phase

and liquid, but this situation can also occur in the

elements, in which liquid is derived from the

condensation of steam during the boiler shut-

down or start-up. The steam condenses on

the inner walls of the cooler parts of the boiler

[10–12]. Therefore, further calculations, relating

to the proper determination of the range of

permissible stresses, are related to the properties

of the material of which the pressure elements

are made of. On the basis of the yield Ret* at the

reference temperature, (14) works whereby the

fatigue work pressure and an element of the stan-

dard EN 12952-3:2001 make further calculations

by introducing the concept of an authoritative

range of stresses 2f 
a :
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Fig. 2 Fatigue diagram for

creep of ferritic steels. NA,

number of load cycles, 2fa,
the stress range of ferritic

steels, Rm, minimum tensile

strength at room

temperature [1, 2]
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f 
v
�� ��þ 2f 
va

2
� Rp0:2=t
 ð20Þ

If fatigue occurs in the spring, which is

a reliable range of stresses 2f 
a as a function of

the corrected stress range 2f 
va, the corrected aver-
age value of equivalent stress range f 
v can be

expressed by the formula
2f 
a ¼
2f 
va

1� f 
v
Rm

� 
2 ð21Þ

In terms of elastic plastic, for which the

inequalities are satisfied in (22) and (23),
f 
v
�� ��þ 2f 
va

2
> Rp0:2=t
 ð22Þ

and

2f 
va � Rp0:2=t
 ð23Þ

maximum stress f 
v is
f 
v ¼ Ck �max Df12j j; Df23j j; Df31j jð Þ ð24Þ

where Ck is the correction factor that takes into

account the effect of surface finish and welded

joints.

A meaningful range of stresses in the elastic–

plastic range is calculated as the elastic range
using formula (21), except that the reduced

value will be the average of the maximum

stress f 
vR:
f 
vR ¼ Rp0:2=t
 �
2f 
va
2

ð25Þ

The corrected range of stresses 2f 
a is
2f 
a ¼
2f 
va

1� f 
vR
Rm

� 
2 ð26Þ

In terms of art, when corrected stress range
2f 
va > 2Rp0:2t
 ð27Þ

a meaningful range of stresses 2f 
a as a function of

yield strength is
2f 
a ¼
ð2f 
vaÞ

2

2Rp0:2=t

ð28Þ

In this case, the average equivalent stress

range f 
v can be assumed to be equal to zero.

The above relationships allow the calculation

of the corrected equivalent stress range 2f 
va
depending on yield strength. They are:

For an elastic range,

2f 
va ¼ 2f 
a ð29Þ
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For an elastic–plastic range,
2f 
va ¼ 2 � Rm �
 
Rp0:2t


Rm
� Rm

2f 
a

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 � Rm

2 � f 
a
� Rp0:2t


Rm
þ Rm

2f 
a

� 	2
s !

ð30Þ

For a plastic range,

2f 
va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � Rp0:2t
 � 2f 
a

p
ð31Þ

Since all elements of the boiler, which are

essential for the conduct of unrest, and for

which we calculate operating at temperatures

above 100 �C, can then be calculated according

to formulas (29), (30), or (31), and adjusted for

equivalent 2f 
va, stress takes into account the

reduction in fatigue stress at temperatures above

100 �C, using a correction coefficient Ct*.

Depending on the steel used for the element,

a pressure correction factor Ct* is calculated from

formulas (31) or (33):
For ferritic steel;Ct
 ¼1:03� 1:5 � t


� 1:5 � 10�6 � t
2
ð32Þ

For austenitic steels;Ct
 ¼ 1:043� 4:3 � 10�4 � t


ð33Þ

The dependence of Ct* computes the temper-

ature t* in the temperature range 100–600 �C, as
presented in Fig. 3.
Stress Concentration Factors and Notch

The simplification, by using the hypothesis of

maximum shear stress in the stress analysis,

which leads to the multi-axis stress state of the

main courses, requires the use of stress concen-

tration factors am for cylindrical surfaces and asp
for spherical shells. In the case of the boiler drum,

it will be a factor am for the cylindrical shells. If

the maximum stress in the cycle fmax is known,
then the operating pressure can be calculated

from formula (34),

am ¼
fmax

p0�dms
2�ems

ð34Þ

where dms is the mean diameter of the drum and

ems the average thickness of the nozzle wall

(Fig. 4). If the load element is unknown, am can

be seen from the graph (Fig. 4), depending on the

concentration ratio am of the geometrical

parameters.

The stress concentration factor am, shown in

Fig. 6, is a function of the geometrical parameter

x for various wall thickness ratios, of the average
branching emb to the average thickness of the

main body ems, and is described by equation

am ¼ 2; 2þ eA � xB ð35Þ

where

x ¼ dmb
dms

ffiffiffiffiffiffiffiffiffiffiffiffi
dms

2 � ems

r
;

A ¼ �1:14 emb
ems

� 	2

� 0:89 � emb
ems
þ 1:43

B ¼ 0; 326
emb
ems

� 	2

� 0:59 � emb
ems
þ 1:08 ð36Þ

Similarly, the stress concentration factor for

spherical shells asp is used in the calculation of

steam piping components, such as tees and ball

valves for steam valve body. Stress concentration

factors am and asp allow for proper calculation of

circumferential stress components, owing to

pressure. It should be noted, however, that

they relate to the equivalent stress in the middle

of the wall.

The values Df12 in (13) can be calculated using
the finite volume method (FEM). In both cases,

one can assume that the corrected stress extent

2f 
va is
2f 
va ¼ 2fva ð37Þ

In case that the values of Df12 are calculated

taking account the stress concentration factors am
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Fig. 3 Correction factor

Ct* for taking account of the

temperature influence [1]

Allowable Temperature
Rates for Pressure
Components Using
European Standards,
Fig. 4 Stress

concentration factor am for

cylindrical shells as

a function of geometrical

parameters [1]

Allowable Temperature Rates for Pressure Components Using European Standards 93 A

A

and asp, the impact of micro-notches and the

structure of the surface and welded joints should

also be considered. Then, the corrected stress

extent of 2f 
va is
2f 
va ¼ 2fva � Ck ð38Þ

EN 12952-3 shows the correction factors Ck0,

taking into account the effect of notches on the

surface, caused by the mill scale and correction
factors, as well as taking into account the effect of

notches for welded joints, which, owing to notch

effects, have been divided into three classes. Con-

sidering it can calculate the adjusted extent of

stresses (38) and corrected mean stress cycle:
�f 
v ¼ �fv � Ck ð39Þ

In the calculations of the second component

that comes from changes in temperature, the
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stress concentration factor is used and takes into

account the stresses arising in the areas of stress

concentration at for cylindrical and spherical

shells weakened by holes for pipes, the tempera-

ture change agent.

In the calculations, it is convenient to use (40),

describing the change of thermal stress concentra-

tion coefficient at, depending on the ratio of the

average diameter of the connector pipe to the aver-

age radius of the cylindrical and spherical vessel,
at¼ 2�hþ2700

hþ1700
þ h

hþ1700
� e�7z�1
� �� �2(

þ0;81 � z2
)1

2

ð40Þ

where
z ¼ dmb
dms

h – heat transfer coefficient, W/m2K.

Heat transfer coefficient h is taken depending

on the medium-pressure element:

h ¼ 1,000 W/m2K for steam

h ¼ 3,000 W/m2K for water

The temperature coefficient of stress concen-

tration at, depending on the ratio of the average

diameter of the spigot to the average radius of the

cylindrical and spherical body, for water and

steam inner surface, is shown in Fig. 5.
Permissible Stress Ranges

The range of stress Dfv changes, calculated using
(13), should be less than the allowable range of

stress in the cycle 2fva, which can be written in the
form of inequalities:
Dfv � 2fva ð41Þ

The total stress extent Dftang is calculated by

the hypothesis of the largest shear stress, the

stress intensity range as peripheral variables
from minimum pmin to maximum pmax pressure

in the cycle, and as for principal stresses,
Dftang ¼ 2fva � ðpmin � pmaxÞ ð42Þ

and for the second principal stress,
Dftang ¼ 2fva � ð�pmin þ pmaxÞ ð43Þ

The total range of stress on the peripheral edge

of the hole is a combination of stresses on the

main directions of the load from the pressure and

thermal stresses, resulting from the temperature

difference between the thickness of the weakened

wall of the pressure ring (44),

Dftang ¼ Dftang,p þ Dftang,t ð44Þ

where Dftang,p is the component of the pressure,

Dftang,t is the temperature component.

In special cases, when combined with connec-

tion, there is additional stress and influence of

stress on the inner surface, and the entire range

of admissible stress can diminish the value of

these stresses Dftang,f .
During start-up and shutdown, large tempera-

ture differences occur in the cross wall of the

pressure elements. These temperature differences

are caused by different heat transfer coefficients

in water and steam regions.

The formation of a protective layer of mag-

netite Fe3O4 is important for the operation of

pressure equipment and is a phenomenon that

occurs on the inner surface. Since the magnetite

layer is generated during operation of the boiler,

which is the period when the wall elements have

a high temperature, then during the cooling of

the boiler, stresses will occur in the layers close

to the inner surface compressive. In order to

prevent degradation of the protective magnetite

layer on the inner surface, the range of admissi-

ble stress ftang is narrowed by raising the lower

limit of 200 MPa, and the top is lowered by

600 MPa:

ftang,po � 600MPa � ftang
� ftang,po þ 200MPa ð45Þ
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concentration factor due to

thermal stresses at for
cylindrical and spherical

shells [1]
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This prevents damage to the protective inner

layer of magnetite, penetrating cracks and subse-

quent oxidation of the batch.
Circumferential Stresses on the Pressure

The pressure component Dftang,p, as part of the

allowable range of stress in the weakened periph-

eral element hole laden EU standard pressure p, is
defined (because of the large ratio of diameter to

wall thickness) as for thin-walled vessels:
Dftang, p ¼
am � dms
2 � ems

� p for cylindrical shells

ð46Þ

Dftang,p ¼
asp � dms
4 � ems

� p for spherical shells ð47Þ

Signs in (46) and (47) are as in the previous

sections.
Thermal Stresses

The second component of the stresses inside the

hole, on the surface peripheral stresses Dftang,t,
are derived from the temperature difference

between the wall thickness,
Dftang,t ¼
at � bLt
 � Et


1� n
� Dt ð48Þ

where

bLt
 is the coefficient of linear expansion at the
calculation temperature t*, K�1;

Et
 is the module of elasticity at the calculation

temperature t*, MPa;

n is the number of Poisson;

at is the coefficient of stress concentration on

the temperature difference.

The temperature difference Dt is defined as

the difference between the mean integral temper-

ature in the wall tm and inner wall surface

temperature ti:
Dt ¼ tm � ti ð49Þ

For the same range of pressure changes, for

which the stresses were calculated from pressure

Dftang,p, the extent of thermal stress can be

calculated
Dftang,t ¼
at � bLt
 � Et


1� n
� Dt2 � Dt1ð Þ ð50Þ

When the refrigerant temperature rises and

heats the inner surface of the pressure elements,

as follows from (49), the temperature difference

Dt1 in the wall is reduced by adopting a
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negative sign. When an item is cooled, then the

difference Dt2 is positive. In this way, the cal-

culated thermal stress is the second component

of the acceptable range of peripheral stress vari-

ables Dftang.
Determination of the Stress Boundary

The calculated total allowable extent of periph-

eral stress Dftang (45) takes into account the stress
from the pressure, the change of temperature and

stress condition, limiting the amount owing to the

behavior of the oxide layer on the inner surface.

The determination of the yield strength helps to

identify thermal stress, because stress from the

pressure is easy to calculate.

For components made of austenitic materials,

in contact with steam or water, and for compo-

nents made from other materials, in contact only

with water vapor, the maximum circumferential

stress on the inner surface of the hole is deter-

mined by (51), while the minimum allowable

circumferential stress on the inner surface hole,

according to (52), is

ftang,max ¼ ftang,pmax þ gs � Dftang,t ð51Þ

ftang,min ¼ ftang,pmax � gs � Dftang,t ð52Þ

In the case of components made of ferritic or

martensitic steel, in contact with water, the max-

imum allowable stress on the circumferential

inner surface of the hole is determined by formula

(53) and the minimum by (54):

ftang:max ¼ min

ftang,pmax þ gs � Dftang,t

ftang,po þ 200
N

mm2

8<:
9=; ð53Þ

ftang:min ¼ max

ftang,pmax � gs � Dftang,t

ftang,po � 600
N

mm2

8<:
9=; ð54Þ

In (53) and (54), the symbol gs is the ratio

determining the share of thermal stresses within

the allowable stress on the surface of the inner

peripheral opening, at the beginning of with-

drawal, that is, when the pressure is highest and
is pmax . gs factor can take values from 0 to 1

(0 � gs � 1). If gs ¼ 0 then it is used by the

entire range of thermal stresses ftang;t caused by

temperature changes at the pressure minimum

pmin . In practice, the majority of boiler pressure

parts shall be a factor gs ¼ 0.5. The result is that

the distribution of thermal stresses ftang;t is sym-

metrical between ftang;pmax and ftang;pmin for the

heating and cooling of the pressure element.
Permissible Heating Rate and
Temperature Differences in the Wall

The permissible rate of temperature changes in

boiler pressure parts can be calculated assuming

quasi-stationary state changes in temperature. As

defined by formulas (49) and (50), it allows the

use of the allowable temperature difference for

calculating the rate of temperature changes in the

wall (55),

vt ¼ Dt � Dth

gec � e2ms
ð55Þ

where

Dth ¼ k
rmcp

is the metal temperature compen-

sation coefficient, m2/s;

ems is the average wall thickness of the body,
m;

gec is the ratio for an element of pressure.

The form factor for the ratio of outer diameter

do to inner diameter di of uo ¼ do
di

is equal to:

For tubular forms,

gec ¼ gcyl ¼
u2o � 1
� �

� 3u2o � 1
� �

� 4u2o ln uo

8 u2o � 1
� �

� uo � 1ð Þ2

ð56Þ

For spherical shells,

gec ¼ gsp ¼
1

3
� uo þ

uo � 1ð Þ3

5 � u3o � 1
� �" #

ð57Þ

The calculation of temperature differences

in the boundary wall of the pressure elements,

during heating and cooling processes to be

carried out, assume a total not to exceed the
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permissible range of stresses. Using (51), (52),

and (50) limits for temperature differences can be

determined
ftang,min � ftang;p
W

� Dt � ftang,max � ftang;p
W

ð58Þ

where
W ¼ at � bLt
 � Et


1� n
ð59Þ

Using formulas (55) and (58), the limit values

can be calculated: the difference in temperature

and heating rate, taking the pressure p ¼ pmin for

the beginning of start-up and p ¼ pmax for the

end of start-up. In the case of shutdown, the

beginning is assumed for p ¼ pmax and the end

for p ¼ pmin.
At the beginning of the start-up (p ¼ pmin), the

limit values are:

Allowable temperature difference,
Dt1 �
ftang,min � Dftang,pmin

W
ð60Þ

Allowable heating rate,
vt1 ¼ Dt1 � vt ð61Þ

At the end of the run (p ¼ pmax), the limit

values are:

Allowable temperature difference,
Dt01 �
ftang,min � Dftang,pmax

W
ð62Þ

Allowable heating rate,

vt1 ¼ Dt01 � vt ð63Þ

Similarly, sets of limit values for cooling

(p ¼ pmax) are:

Allowable temperature difference,

Dt2 �
ftang,max � Dftang,pmax

W
ð64Þ
Allowable heating rate,
vt1 ¼ Dt2 � vt ð65Þ

At the end of shutdown (p ¼ pmin), the limit

values are:

Allowable temperature difference,
Dt02 �
ftang,max � Dftang,pmin

W
ð66Þ

Allowable heating rate,
vt1 ¼ Dt02 � vt ð67Þ

Calculated in this way, the heating rate and the

permissible limit temperature differences in

thick-walled pressure parts of boilers are allowed

to run riot and are exempt from service, so as to

not exceed the allowable stress. This contributes

to improving the life of boiler pressure parts.
The Calculation of the Temperature
Difference, Heating Rate and Maximum
Stress on the Example of Drum Boiler
OP-230

In order to illustrate the methods of determining

the basic parameters during transient operation

using EN 12952-3, calculations were made for

the drum of the steam boiler OP-230. The OP-230

boiler is a natural circulation boiler with two

passes and is fuelled by pulverized coal. The

burners are located at the corners of the combus-

tion chamber.

Basic data on the efficiency of the boiler and

pressure and temperature of superheated steam

are listed in Table 1.

To perform the calculations necessary to

determine the geometrical dimensions ade-

quately (Table 2), the parameters of the pressure

element are analyzed (Table 3), as well as the

properties of the material of which the pressure is

part (Table 4).

Properties of the material, from which boiler

OP-230’s drum is made, are given for calculating

the temperature determined from (14).
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nents Using European Standards, Table 1 Basic data

for boiler OP-230

Sn The parameter name Value Unit

1. Maximum live steam output

(feed water temperature 205 �C)
230 t/h

2. Maximum sustainable yield steam

(feed water temperature 150 �C)
212 t/h

3. Maximum live steam output

(feed water temperature 205 �C)
253 t/h

4. Minimum live steam output 115 t/h

5. Steam pressure at the outlet from

the boiler

13,5 MPa

6. Superheated steam temperature 540 �C

7. Feed water temperature 205/150 �C

Allowable Temperature Rates for Pressure Compo-
nents Using European Standards, Table 2 Geomet-

rical parameters of the drum boiler OP-230

Sn The parameter name Symbol Value Unit

1. Outer diameter of the element d0 1.884 m

2. Average wall thickness of the

element

ems 0.90 m

3. Average diameter dms 1.792 m

4. Outer diameter of the branch dob 0.415 m

5. Average wall thickness of the

branch

emb 0.064 m

6. Average diameter of the

branch

dmb 0.351 m

A 98 Allowable Temperature Rates for Pressure Components Using European Standards
The Results of Calculations Allowable
Parameters for Heating and Cooling
of the Pressure Element

For drum boiler OP-230, allowable temperature

differences were calculated, such as the rate of

heating and cooling and permissible stresses dur-

ing start-up and shutdown of the boiler of the

movement. For the calculation of the drum geo-

metric dimensions given in Table 2, and the

operating parameters and material properties for

start-ups from cold state, as well as after 2 and

8 h of stopping, respectively, from Tables 3 and 4,

the calculations assume that the degree of

exhaustion of the material of the drum should

not exceed 0.4 at 2,000 actuations from a cold

state. Safety factors were SS ¼ 1.5 for the
stresses and SL ¼ 10 for cycles. A summary of

the results is shown in Table 5.

A graphical presentation of the results given in

Table 5 is shown in Figs. 6 and 7.

The calculated limit of the drum wall temper-

ature difference for heating and cooling, as

a function of pressure (Fig. 6), shows that during

the start-up, with the increase of pressure, the

temperature difference in the wall can be

increased. The value of allowable temperature

difference is dependent on the state, which initi-

ated the process to run the boiler. For elements

with a higher initial temperature (less downtime),

the allowable temperature difference is smaller in

the wall.

Similar relationships are observed by analyz-

ing the allowable heating rate of thick, pressur-

ized boiler components (Fig. 7). With the

increasing pressure, the pressure element may

be heated at a faster rate. The rate of heating

depends on the initial wall temperature of the

pressure element, which is how long the boiler

standstill is triggered.

The calculated degree of wear of the drum (the

states of cold) forN ¼ 2,000 cycles is 0.0872, the

states after 8 h. standstill is 0.0321, and the states

after 2 h. standstill is 0.0222.
Analysis of Thermal Strength Conditions
of the Drum Boiler OP-230 During
Heating

The results of calculations of the heating rate, and

the maximum allowable temperature differences,

were compared with measurements performed on

a real drum boiler OP-230, working in one of the

Polish conventional power plants. Metal temper-

atures were measured on the outer surface of the

drum in the positions shown in Fig. 8 (points 1–7).

The transient temperature distribution, in the

cross section of the boiler drum, was calculated as

the solution of the inverse heat conduction prob-

lem, with the cross section divided into the

control volumes. The calculated temperature his-

tories on the inner surface of the boiler drum are

presented in Fig. 9 and the temperature differ-

ences over the wall thickness in Fig. 10.
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drum boiler OP-230

Sn The parameter name Symbol

Value

(from cold)

Value

(after 8 h)

Value

(after 2 h) Unit

1. Design pressure pc 14.9 14.9 14.9 MPa

2. Design temperature tc 343 343 343 oC

3. Operation pressure po 14.9 14.9 14.9 MPa

4. Minimum pressure cycle pmin 0.0 7.5 10.3 MPa

5. The maximum pressure cycle pmax 14.9 14.9 14.9 MPa

6. Minimum temperature cycle tmin 20 290 313 oC

7. Maximum temperature cycle tmax 353 353 353 oC

8. Reference temperature t* 269.7 337.2 335.5 oC

Allowable Temperature Rates for Pressure Components Using European Standards, Table 4 Material prop-

erties of the drum (15NiCuMoNb5-6-4) at room temperature t and computing t*

Sn Parameter Symbol

Value

(from cold)

Value

(after 8 h)

Value

(after 2 h) Unit

1. Tensile strength at room temperature T ¼ 20 �C Rm 627 627 627 MPa

2. Yield strength at temperature t* Re(t*) 362 346 343 MPa

3. Coefficient of linear expansion at temperature t* bL(t*) 1.47E-5 1.54E-5 1.54E-5 1
K

4. Young’s modulus at temperature t* Et 1.958E5 1.896E5 1.891E-5 MPa

5. Metal diffusivity at temperature t* Dth 1.63E-7 1.509E-7 1.498E-7 m2

s

6. Poisson’s ratio in t* n 0.291 0.294 0.294 –

Allowable Temperature Rates for Pressure Components Using European Standards, Table 5 Summary of

allowable parameters of values for the drum of the boiler OP-230

Parameter Beginning of start-up End of start-up

Beginning of

shutdown

End of

shutdown

Starting from cold

Maximum temperature difference, K �32.2 �116.5 32.2 116.5

Maximum rate of temperature change, K/s 6.3 23.0 �6.3 �23.0
Starting at 8 h standstill

Maximum temperature difference, K �47.8 �88.9 34.4 75.5

Maximum rate of temperature change, K/s 8.7 16.2 �6.3 �13.8
Starting at 2 h standstill

Maximum temperature difference, K �29.05 �127.47 34.5 60.1

Maximum rate of temperature change, K/s 10.0 14.7 �6.3 �10.9
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The temperature differences are observed

between upper and lower part of the drum. The

reason is that at the bottom of the drum there

is water, which heats up more slowly. The
non-uniform heating of the boiler drum over

its circumference during start-up is caused by

the condensation of steam on the inner surface

of the drum in its steam space. The upper part of



Allowable Temperature
Rates for Pressure
Components Using
European Standards,
Fig. 6 The allowable

temperature differences in

the wall of the boiler drum

OP-230 during start-up

(1,3,5) and shutdown

(2,4,6), from a cold state

(1,2), after 8 h standstill

(3,4), after 2 h standstill

(5,6)
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the drum is heated faster because of the high

value of the heat transfer coefficient resulting

from steam condensation. High differences in

temperatures between the upper and lower parts

of the drum leads to the high thermal stresses.

The result is not only a large temperature dif-

ference between points on the circumference of

7 and 1 but also generates large temperature

gradients in the thickness of the drum.

An analysis of temperature changes on the

drum wall thickness shows (Fig. 10) that, during

the start-up, the wall is heated ununiformly.

Periods of heating and cooling the inner wall

surface can be observed.

Calculated according to EN 12952-3 (Fig. 6),

the permissible temperature differences in the

wall were compared with values obtained during

the actual start-up of power plant (Fig. 9). This

comparison, as a percentage of the two charac-

teristic points (up and down the cross section of

the drum), is presented in Fig. 11. Stocking zT
permissible temperature difference was calcu-

lated from formula (68),

zT ¼ 100%� DtmðpÞ
DtdðpÞ

� 100% ð68Þ

where Dtm(p) is the actual wall temperature dif-

ference for the pressure p, Dtd(p) is the allowable
wall temperature difference for the pressure p,
calculated from the equation of the characteristic

points of a straight start and end of heating and

cooling.

The periods for which the wall temperature

rises, the temperature difference r(T1-T1’) and

r(T7-T7’) were negative. The values were

referenced to an acceptable temperature differ-

ence for heating (curve 2, Fig. 6), while the

wall was cooled, and the temperature difference

r(T1-T1’) and r(T7-T7’) were positive for

the heating curve (curve 1, Fig. 6). The typical

temperature difference between supply
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Fig. 7 The admissible rate

of change of temperature in

the wall of the boiler drum

OP-230 during start-up

(1,3,5) and the shutdown

(2,4,6), from a cold state

(1,2), after 8 h standstill

(3,4), after 2 h standstill

(5,6)
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disturbances in relation to permissible value is

large, usually greater than 40 %.

The heating or cooling rate of temperature

changes in pressure elements can be vT, calcu-
lated using the moving average filter [6, 13]
Allowable Temperature Rates for Pressure Compo-
nents Using European Standards, Fig. 8 Tempera-

ture measurement location: 1–7 on the outer cylindrical

surface of the pressure element, and the corresponding

points on the inner surface 1–7
vT ¼
df

dt

����
t¼ti
¼ 1

693Dt
�63fi�4 þ 42fi�3ð

þ 117fi�2 þ 162fi�1þ177f0 þ 162fiþ1

þ 117fiþ2 þ 42fiþ3 � 63fiþ4Þ
ð69Þ

where fi are medium or wall temperatures at nine

successive time points, with time step Dt.
Calculated by (69), heating rate at points

located on the inner surface of the drum (1 and 7,

Fig. 8) are shown in Fig. 12 and are in the range

from �3 to 3 K/min.

A comparison of the heating rate with the

allowable values allows the assessment of
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Rates for Pressure
Components Using
European Standards,
Fig. 9 Pressure and

calculated temperatures at

points at the inner surface

of the drum

Allowable Temperature
Rates for Pressure
Components Using
European Standards,
Fig. 10 Temperature

differences T7–T7 and

T1–T1 calculated using

inverse methods
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whether the boiler drumwas heated properly. Just

like stocks temperature difference, inventories of

heating rate can also be calculated (Fig. 13). As

shown, the supply is large, because in comparison

to the limit, the value was bigger than 60 %. It

should be noted that the manufacturers of boilers

for such thick drum parts, as presented, recom-

mend a very low heating rate of 1.5–2.5 K/min,

usually constant over the entire range of pres-

sures, for heating and cooling. In a few cases,

they permit cooling at a little more steady rate
after the pressure drops below 60 % of the nom-

inal pressure. In this case, even those measured

on the real object of heating rate would exceed

limit values.

Temperature distribution and stresses in the

boiler drum were determined based on the solu-

tion of the inverse heat conduction problem.

The calculated stresses are shown in Figs. 14,

15, and 16. Presented figures show the history of

circumferential (Fig. 14), longitudinal (Fig. 15),

and reduced (Fig. 16) stresses at the points



Allowable Temperature
Rates for Pressure
Components Using
European Standards,
Fig. 11 Temperature

difference reserve between

points at the outer and inner

surface of the drum on top

of r(T7–T7’) and a lower

r(T1–T1’) part of the drum

Allowable Temperature
Rates for Pressure
Components Using
European Standards,
Fig. 12 Rate of change of

temperature at points 1 and

7’ located at the inner

surface of the drum
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(1 and 7), on the inner surface at boiler drum,

during boiler operation. In addition, stress has

been shown in point No. 4 (Fig. 8), located in

the middle of the cross section of the drum.
Summary

High thermal stresses occur during the power

boiler operation in its thick-walled components,

especially during boiler start-up and shutdown.

The nonuniform heating of the boiler drum over
its circumference during start-up is caused by the

condensation of steam on the inner surface of the

drum in its steam space. Also filling the installa-

tion with freshwater in between the periods of

boiler operation causes the significant increase

in the thermal stress in the boiler drum, especially

over its circumference and in the region of the

boiler drum; downcomer intersection. Very high

thermal stress can occur during the injection of

cool water into the thick-walled component, as in

case of the attemperator. In some cases, the thick-

walled boiler components are subjected to the



Allowable Temperature
Rates for Pressure
Components Using
European Standards,
Fig. 13 Temperature

transient reserve at the

points 1 and 7 located at the
inner surface of the drum

Allowable Temperature
Rates for Pressure
Components Using
European Standards,
Fig. 14 The

circumferential stresses at

the points 1, 4, and 7 at the

inner surface of the boiler

drum
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thermal shock, especially when the steam con-

densation occurs on their inner surface or fresh-

water of lower temperature is filled into the

installation [14].

Processes of conducting thick-walled boiler

components, as occurs in the start-up and shut-

down of boilers, are difficult processes and

require special supervision. Because the thick-

walled boiler components are subjected to the

irregular and fast temperature changes, it is nec-

essary to monitor the operation of the thick-

walled pressure components. For this reason,
criterial boiler components, such as boiler

drums, superheater chambers, and attemperator

chambers, or steam piping fittings, ought to be

monitored continuously. For proper monitoring

operation systems, there must be acceptable rates

for safeguarding the boiler pressure parts from

large thermal loads.

EU standard EN 12952-3 Water-tube boilers

and auxiliary installation, Part 3: Design and
calculation of pressure parts, is commonly used

to determine the allowable parameters, not only

in European countries.
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Rates for Pressure
Components Using
European Standards,
Fig. 15 The longitudinal

stress in the points 1, 4, and
7 at the inner surface of the

steam boiler drum

Allowable Temperature
Rates for Pressure
Components Using
European Standards,
Fig. 16 The equivalent

stress in the points 1, 4, and
7 at the inner surface of the

steam boiler drum
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The presented calculations are based on the

cited norm, allowing the determination of per-

mitted variations in the walls of the pressure

elements: the heating and cooling rate limits,

the ranges of allowable stresses, and the degree

of wear. Usually, it is used for determining

allowable limits in on-line monitoring systems

of pressure components. However, it should be

noted that other procedures for determining

allowable temperature changes during start-up
and shutdown of the boiler, which can be used

for designing and operating large power boilers,

allow a step change in the temperature at the

beginning of the heating and cooling of the pres-

sure element, which is weakened by holes

[9, 12]. This is an advantage because it allows

the reduction of the boiler start time, without

degrading the pressure parts of boilers, enabling

faster connection of the power units to

electric systems.
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5. Osocha P, Węglowski B (2010) Optimization of

loads and geometry of thick-walled pipeline elements

operating in creep conditions. In: EngOpt 2010 -

International Conference on Engineering Optimiza-

tion, Lisbon, Portugal, 05–10 June 2010

6. Taler J (1997) Analytical solution of the overdeter-

mined inverse heat conduction problem with an appli-

cation to monitoring thermal stresses. Heat Mass

Transfer 33:209–218

7. Taler J, Zima W (1999) Solution of inverse heat

conduction problems using control volume approach.

Int J Heat Mass Transfer 42:1123–1140

8. Taler J, Duda P (1999) A space marching method for

multidimensional transient inverse heat conduction

problems. Heat Mass Transfer 34:349–356

9. Taler J, Lubecki S (2011) Optimization of steam

pipeline and T-pipe heating. J Thermal Stress

34:1021–1034

10. Węglowski B,Taler J, Zima W, Grądziel S,
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11. Taler J, Duda P, Węglowski B (2008) Thermal-

strength monitoring and remnant lifetime assessment

of pressure components of power steam boilers. In:

Diagnostics of new-generation thermal power plant.
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Overview

Wegive an alternative characterization of the solu-

tion to the mixed boundary–initial value problem

of linear thermoelasticity in which the initial con-

ditions are incorporated into the field equations. In

the classical elasticity, such characterization was

established by Ignaczak [8] (see alsoGurtin [2, 3]).

We will use the alternative formulation of the

mixed boundary–initial value problem in order to

establish some reciprocal relations within the

framework of linear theory of thermoelasticity for

anisotropic and inhomogeneous materials. The

reciprocal relation is derived for a body of volume

region B and surface @B and represents an integral

relation over B and @B between body supplies,

surface traction and surface flux, and displace-

ments and temperature variations of two solutions
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of themixed problemof the linear thermoelasticity,

namely, a solution of an actual problem and a

solution of an auxiliary or virtual problem.

The first reciprocal theorem in the classical

thermoelastodynamics is due to Ionescu–Cazimir

[9]. The proof is based on the assumption of null

initial data and systematic use of the Laplace

transform. Ieşan [5] has established a reciprocal

theorem without using the Laplace transform.

The method of proof is based on a characteriza-

tion of the boundary–initial value problem in

which the initial conditions are incorporated into

the basic equations of motion. Later, Ieşan [6, 7]

has established a new reciprocal theorem where

the proof avoids both the use of the Laplace

transform and the incorporation of the initial con-

ditions into the basic equations of motion.

Despite its long existence, the reciprocal theo-

rem was, until recently, not used extensively

to actually solve problems. A recent book by

Achenbach [1] presents, however, novel uses of

reciprocity relations for the actual determination of

elastodynamics fields. Various other applications

of the reciprocal theorems have been presented in

Ionescu–Cazimir [9] and Nowacki [10, 11].
Basic Formulation

We consider a body made by a thermoelastic

material, which at the time t ¼ 0 occupies

the region B of the three-dimensional Euclidian

space E3 whose boundary surface is @B.
The fundamental system of field equations

consists of the equation of motion
sji; j þ R0bi ¼ R0€ui ð1Þ

the energy equation

R0T0 _S ¼ �qi;i þ R0r ð2Þ

the constitutive equations
sij ¼ Cijklekl �Mijy

r0S ¼ Mijeij þ ay

qi ¼ �kijy;j
ð3Þ
and the geometrical equations
eij ¼
1

2
ðui;j þ uj;iÞ ð4Þ

We assume here that the elasticity tensor Cijkl,

the stress–temperature tensor Mij, the conductiv-

ity tensor kij, the specific heat c ¼ T0a, and the

density R0 are prescribed and thatCijkl,Mij, and kij
are smooth on B while a and R0 are continuous on
B. Moreover, we assume that Cijkl,Mij, and kij are

symmetric.

The mixed problem P of the dynamic

thermoelasticity consists to find a thermoelastic

process ½ui; eij; sij; y; S; qi� corresponding to the

body force bi and the heat supply r that satisfies
the initial conditions
ui x; 0ð Þ ¼ u0i xð Þ
_ui x; 0ð Þ ¼ _u0i xð Þ
S x; 0ð Þ ¼ S0 xð Þ

on B ð5Þ

the displacement condition
ui ¼ ûi on S1 � ½0; t0Þ ð6Þ

the traction condition
sjinj ¼ ŝi on S2 � ½0; t0Þ ð7Þ

the temperature condition
y ¼ ŷ on S3 � ½0; t0Þ ð8Þ

and the heat flux condition
qini ¼ q̂ on S4 � ½0; t0Þ ð9Þ

where S1, S2, S3, and S4 are subsets of the

boundary @B such that S1 [ S2 ¼ S3 [ S4 ¼ @B,

S1 \ S2 ¼ S3 \ S4 ¼ ;, and u0, _u0, and S0 and û,
ŝ, ŷ, and q̂ are prescribed functions. If such

a thermoelastic process exists, it is called a solution

of the mixed problem P.
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Alternative Formulations

In this section, we give another formulation of the

mixed problem P in which the initial conditions

are incorporated into the field equations. Such

alternative formulation was obtained in linear

thermoelastodynamics by Ieşan [4] and consti-

tutes a generalization of a result established

by Ignaczak [8] for the classical linear

elastodynamics.

The operation of convolution between any two

functions u and v 2 C B� ½0; t0Þð Þ is defined by
u 
 v x; tð Þ ¼
ðt
0

u x; t� tð Þv x; tð Þdt;

x; tð Þ 2 B� ½0; t0Þ
ð10Þ

For convenience, we recall the following

properties of the operation of convolution:

1. u 
 v ¼ v 
 u for all u; v 2 C B� ½0; t0Þð Þ.
2. u 
 v 
 wð Þ ¼ u 
 vð Þ 
 w for all u; v;w 2

C B� ½0; t0Þð Þ.
3. u 
 vþ wð Þ ¼ u 
 vþ u 
 w for all u; v;w 2

C B� ½0; t0Þð Þ.
4. u 
 v ¼ 0 implies u ¼ 0 or v ¼ 0.

We further introduce the functions:

‘ðtÞ ¼ 1

iðtÞ ¼ t; t 2 ½0; t0Þ
ð11Þ

and note that

‘ 
 u x; tð Þ ¼
ðt
0

u x; tð Þdt ð12Þ

and
i 
 u x; tð Þ ¼ ‘ 
 ‘ 
 uð Þ x; tð Þ

¼
ðt
0

ðs
0

u x; tð Þdtds ð13Þ

for all u 2 C B� ½0; t0Þð Þ.
Let ½ui; eij; sij; y; S; qi� be a solution of the

mixed problem P corresponding to the external

force system ½bi; si� and external thermal system

½r; q�. We introduce the pseudo-body force field fi
and the pseudo-heat supply field R defined

on B� ½0; t0Þ by
fi x; tð Þ ¼ R0 xð Þi 
 bi x; tð Þ þ R0 xð Þ t _u0i xð Þ þ u0i xð Þ½ �

R x; tð Þ ¼ R0 xð Þ
T0

‘ 
 r x; tð Þ þ R0 xð ÞS0 xð Þ

ð14Þ
Theorem 1. The thermoelastic process
½ui; eij; sij; y; S; qi� satisfies the Equations (1) and
(2) and the initial conditions (5) if and only if it

satisfies

R0ui ¼ i 
 sji; j þ fi

R0S ¼ �
1

T0
‘ 
 qi;i þ R

ð15Þ

in B� ½0; t0Þ.

Proof. First of all, we observe that
i
 €ui x; tð Þ¼
ðt
0

ðs
0

€ui x;tð Þdtds

¼ ui x; tð Þ� t _ui x;0Þþui x;0Þð �ð½
ð16Þ

and
‘ 
 _S x; tð Þ ¼
ðt
0

_S x; tð Þdt ¼ S x; tð Þ � S x; 0Þð

ð17Þ

Let us first suppose that the thermoelastic

process ½ui; eij; sij; y; S; qi� satisfies the Equations
(1) and (2) and the initial conditions (5). Then, by

using (16) and (17), we have
i 
 sji;j x; tð Þ þ R0 xð Þbi x; tð Þ
� �
¼ R0 xð Þ ui x; tð Þ � t _u0i xð Þ þ u0i xð Þð Þ½ �

ð18Þ

and

� 1

T0
‘ 
 qi;i x; tð Þ þ R0 xð Þ

T0
‘ 
 r x; tð Þ

¼ R0 xð Þ S x; tð Þ � S0 xð Þ½ �
ð19Þ
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Thus, the relation (15) follows from the

relations (18) and (19).

Let us now consider that the thermoelastic

process ½ui; eij; sij; y; S; qi� satisfies the Equation

(15). Then, by substituting (14) into (15) and by

using the relations (16) and (17), we can write
i
 sji;j x; tð ÞþR0 xð Þbi x; tð Þ
� �
þR0 xð Þ t _u0i xð Þþu0i xð Þ½ � ¼ i
R0 xð Þ€ui x; tð Þ
þR0 xð Þ t _ui x;0Þþui x;0Þð �ð½

ð20Þ

and
� 1

T0
‘ 
 qi;i x; tð Þ þ R0 xð Þ

T0
‘ 
 r x; tð Þ þ R0 xð ÞS0 xð Þ

¼ R0 xð Þ‘ 
 _S x; tð Þ þ R0 xð ÞS x; 0Þð
ð21Þ

Further, we set t ¼ 0 into relation (20) to

obtain
u0i xð Þ ¼ ui x; 0Þð ð22Þ

and then we derive (20) and we set t ¼ 0 into the

result in order to deduce
_u0i xð Þ ¼ _ui x; 0Þð ð23Þ

Herewith, we set t ¼ 0 into relation (21) to

obtain
S0 xð Þ ¼ S x; 0Þð ð24Þ

Moreover, if we use these results into relations

(20) and (21), then we obtain

i
 sji; j x; tð ÞþR0 xð Þbi x; tð Þ�R0 xð Þ€ui x; tð Þ
� �

¼ 0

1

T0
‘
 �qi;i x; tð ÞþR0 xð Þr x; tð Þ�R0 xð ÞT0 _S x; tð Þ
� �

¼ 0

ð25Þ

In view of the properties of the operation of

convolution, from (25), we see that the

thermoelastic process ½ui; eij; sij; y; S; qi� satisfies
the Equations (1) and (2) and the proof is complete.

A direct consequence of the Theorem 1 is the

following result.
Theorem 2. A thermoelastic process ½ui; eij;
sij; y; S; qi� is solution of the mixed problem P if

and only if it satisfies the Equation (15) and the

boundary conditions (6)–(9).

Remark 1. Let us denote by P0 the problem P
whenS2 ¼ @B. Then we can obtain an alternative

formulation of the problem P0 in terms of the

components of the stress tensor and the tempera-

ture variation by substituting ui from (15) into

geometrical relation (4) and then the result into

the Saint–Venant compatibility conditions:
eii;jjþ ejj;ii¼ 2eij;ij; ði 6¼ j; not summedÞ
err;ijþ eij;rr ¼ ejr;irþ eir;jr; ði 6¼ j 6¼ r 6¼ i;

not summedÞ
ð26Þ

Such a formulation can be found in [4].
Reciprocal Relations

In what follows, we use the alternative formula-

tion described in the above section in order to

establish a counterpart of Graffi’s reciprocal the-

orem in the isothermal theory (see, e.g., Gurtin

[3]). To this end, we consider two thermoelastic

processes pðaÞ ¼
h
u
ðaÞ
i ; e

ðaÞ
ij ; sðaÞij ; yðaÞ; SðaÞ; qðaÞi

i
and a ¼ 1; 2, corresponding to the two systems

of given data:

DðaÞ ¼
n
b
ðaÞ
i ; rðaÞ; û

ðaÞ
i ; ŝ

ðaÞ
i ; ŷ

ðaÞ
; q̂ðaÞ; u

ðaÞ
0i ; _u

ðaÞ
0i ; S

ðaÞ
0

o
ð27Þ

a ¼ 1; 2, and introduce the notations:

f
ðaÞ
i x; tð Þ ¼ R0 xð Þi 
 bðaÞi x; tð Þ þ R0 xð Þ t _uðaÞ0i xð Þ þ u

ðaÞ
0i xð Þ

h i
RðaÞ x; tð Þ ¼ R0 xð Þ

T0
‘ 
 rðaÞ x; tð Þ þ R0 xð ÞSðaÞ0 xð Þ

ð28Þ

and
s
ðaÞ
i x; tð Þ ¼ sðaÞji x; tð Þnj
qðaÞ x; tð Þ ¼ q

ðaÞ
i x; tð Þni

ð29Þ
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Theorem 3 (Reciprocal theorem). Suppose

that the conductivity tensor kij is sym-
metric. Let pðaÞ ¼ ½uðaÞi ; e

ðaÞ
ij ; sðaÞij ; yðaÞ; SðaÞ; qðaÞi �

be thermoelastic processes corresponding to the

given data DðaÞ ¼ b
ðaÞ
i ; rðaÞ;

n
û
ðaÞ
i ; ŝ

ðaÞ
i ; ŷ

ðaÞ
; q̂ðaÞ;

u
ðaÞ
0i ; _u

ðaÞ
0i ; S

ðaÞ
0

o
; and a ¼ 1; 2. Then
ð
B

f
ð1Þ
i 
 u

ð2Þ
i � i 
 Rð1Þ 
 yð2Þ

� 

dv

þ
ð
@B

i 
 s
ð1Þ
i 
 u

ð2Þ
i þ

1

T0
‘ 
 qð1Þ 
 yð2Þ

� 	
da

¼
ð
B

f
ð2Þ
i 
 u

ð1Þ
i � i 
 Rð2Þ 
 yð1Þ

� 

dv

þ
ð
@B

i 
 s
ð2Þ
i 
 u

ð1Þ
i þ

1

T0
‘ 
 qð2Þ 
 yð1Þ

� 	
da

ð30Þ

and
ð
B

R0 b
ð1Þ
i 
u

ð2Þ
i �

1

T0
‘
 rð1Þ 
yð2Þ

� 	
dv

þ
ð
@B

s
ð1Þ
i 
u

ð2Þ
i þ

1

T0
‘
qð1Þ 
yð2Þ

� 	
da

þ
ð
B

R0 u
ð1Þ
0i _u

ð2Þ
i þ _u

ð1Þ
0i u

ð2Þ
i �S

ð1Þ
0 yð2Þ

� 

dv

¼
ð
B

R0 b
ð2Þ
i 
u

ð1Þ
i �

1

T0
‘
 rð2Þ 
yð1Þ

� 	
dv

þ
ð
@B

s
ð2Þ
i 
u

ð1Þ
i þ

1

T0
‘
qð2Þ 
yð1Þ

� 	
da

þ
ð
B

R0 u
ð2Þ
0i _u

ð1Þ
i þ _u

ð2Þ
0i u

ð1Þ
i �S

ð2Þ
0 yð1Þ

� 

dv ð31Þ

In particular, when both thermoelastic

processes correspond to null initial data, then
ð
B

R0 b
ð1Þ
i 
 u

ð2Þ
i �

1

T0
‘ 
 rð1Þ 
 yð2Þ

� 	
dv

þ
ð
@B

s
ð1Þ
i 
 u

ð2Þ
i þ

1

T0
‘ 
 qð1Þ 
 yð2Þ

� 	
da

¼
ð
B

R0 b
ð2Þ
i 
 u

ð1Þ
i �

1

T0
‘ 
 rð2Þ 
 yð1Þ

� 	
dv

þ
ð
@B

s
ð2Þ
i 
 u

ð1Þ
i þ

1

T0
‘ 
 qð2Þ 
 yð1Þ

� 	
da ð32Þ
Proof. From the symmetry of Cijkl and by using

the definition and the properties of convolution,

we have

Cijkle
ð1Þ
ij 
 e

ð2Þ
kl ¼ Cijkle

ð2Þ
ij 
 e

ð1Þ
kl ð33Þ

and

ayð1Þ 
 yð2Þ ¼ ayð2Þ 
 yð1Þ ð34Þ

Then, by means of the constitutive equations

(3), we obtain

sð1Þij þMijy
ð1Þ

h i

eð2Þij ¼ sð2Þij þMijy

ð2Þ
h i


eð1Þij

R0S
ð1Þ �Mije

ð1Þ
ij

h i

yð2Þ ¼ R0S

ð2Þ �Mije
ð2Þ
ij

h i

yð1Þ

ð35Þ

which further give

sð1Þij 
 e
ð2Þ
ij � R0S

ð1Þ 
 yð2Þ ¼ sð2Þij 
 e
ð1Þ
ij � R0S

ð2Þ 
 yð1Þ

ð36Þ

If we set

Iab ¼
ð
B

i 
 sðaÞij 
 e
ðbÞ
ij � R0S

ðaÞ 
 yðbÞ
h i

dv ð37Þ

then (36) implies
I12 ¼ I21 ð38Þ

On the other hand, by taking into account the

constitutive equations (3), the geometric equa-

tions (4), and the Equation (15) and the symme-

tries of the thermoelastic coefficients, we obtain

Iab¼
ð
B

i
sðaÞij 
u
ðbÞ
i;j dv

�
ð
B

i
 � 1

T0
‘
qðaÞi;i þRðaÞ

� 	

yðbÞdv

¼
ð
@B

i
 s
ðaÞ
i 
u

ðbÞ
i þ

1

T0
‘
qðaÞ 
yðbÞ

� 	
da

þ
ð
B

f
ðaÞ
i 
u

ðbÞ
i � i
RðaÞ 
yðbÞ

� 

dv

þ
ð
B

1

T0
i
 ‘
 kijyðaÞ;j 
y

ðbÞ
;i dv

�
ð
B

R0u
ðaÞ
i 
u

ðbÞ
i dv ð39Þ

Finally, if we substitute (39) into (38), we are

led to the reciprocal relation (30).
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Note that the reciprocal relation (31) is a direct

consequence of the relations (30) and (15) and the

properties of the convolution and the identity:
‘ 
 _ui x; tð Þ ¼ ui x; tð Þ � ui x; 0Þð ð40Þ

Obviously, when the two thermoelastic pro-

cesses correspond the null initial data, the relation

(31) takes the form (32) and the proof is complete.

Remark 2. Suppose both thermoelastic processes

correspond the null initial data. Then the relation

(40) implies

u
ðaÞ
i x; tð Þ ¼ ‘ 
 _u

ðaÞ
i x; tð Þ ð41Þ

and the reciprocal relation (32) takes the follow-

ing form:
ð
B

b
ð1Þ
i 
 _u

ð2Þ
i �

1

T0
rð1Þ 
 yð2Þ

� �
dv

þ
ð
@B

s
ð1Þ
i 
 _u

ð2Þ
i þ

1

T0
qð1Þ 
 yð2Þ

� �
da

¼
ð
B

b
ð2Þ
i 
 _u

ð1Þ
i �

1

T0
rð2Þ 
 yð1Þ

� �
dv

þ
ð
@B

s
ð2Þ
i 
 _u

ð1Þ
i þ

1

T0
qð2Þ 
 yð1Þ

� �
da ð42Þ

The reciprocal relation (42) was established

by Ionescu–Cazimir [9] by using the method of

Laplace transform.

Remark 3. We recall that the theory of

thermoelasticity based on the hypothesis that the

term Mij _eij can be neglected in the energy equa-

tion is known as the uncoupled theory of linear

thermoelasticity. By contrast, the general linear

theory is known as the linear theory of coupled

thermoelasticity. Let us suppose that pð1Þ is

a thermoelastic process corresponding to the

mixed problem associated with the linear coupled

thermoelasticity, while the thermoelastic process

pð2Þ corresponds to the mixed problem associated

with the linear uncoupled thermoelasticity. That

means we have

R0S
ð2Þ ¼ ayð2Þ ð43Þ
Then we have the following reciprocal relation:ð
B

f
ð1Þ
i 
u

ð2Þ
i � i
Rð1Þ 
yð2Þ

� 

dv

þ
ð
@B

i
 s
ð1Þ
i 
u

ð2Þ
i þ

1

T0
‘
qð1Þ 
yð2Þ

� 	
da

¼
ð
B

f
ð2Þ
i 
u

ð1Þ
i � i
Rð2Þ 
yð1Þ

� 

dv

þ
ð
@B

i
 s
ð2Þ
i 
u

ð1Þ
i þ

1

T0
‘
qð2Þ 
yð1Þ

� 	
da

�
ð
B

Miji
yð1Þ 
 eð2Þij dv ð44Þ

In the case when the both thermoelastic pro-

cesses correspond to null initial data, the recipro-

cal relation becomesð
B

b
ð1Þ
i 
 u

ð2Þ
i �

1

T0
‘ 
 rð1Þ 
 yð2Þ

� 	
dv

þ
ð
@B

s
ð1Þ
i 
 u

ð2Þ
i þ

1

T0
‘ 
 qð1Þ 
 yð2Þ

� 	
da

¼
ð
B

b
ð2Þ
i 
 u

ð1Þ
i �

1

T0
‘ 
 rð2Þ 
 yð1Þ

� 	
dv

þ
ð
@B

s
ð2Þ
i 
 u

ð1Þ
i þ

1

T0
‘ 
 qð2Þ 
 yð1Þ

� 	
da

�
ð
B

Mijy
ð1Þ 
 eð2Þij dv ð45Þ

Further, if we use the relation (41), then we

can write (45) in the following form:ð
B

b
ð1Þ
i 
 _u

ð2Þ
i �

1

T0
rð1Þ 
 yð2Þ

� 	
dv

þ
ð
@B

s
ð1Þ
i 
 _u

ð2Þ
i þ

1

T0
qð1Þ 
 yð2Þ

� 	
da

¼
ð
B

b
ð2Þ
i 
 _u

ð1Þ
i �

1

T0
rð2Þ 
 yð1Þ

� 	
dv

þ
ð
@B

s
ð2Þ
i 
 _u

ð1Þ
i þ

1

T0
qð2Þ 
 yð1Þ

� 	
da

�
ð
B

Mijy
ð1Þ 
 _eð2Þij dv ð46Þ

a relation found by Ionescu–Cazimir [9] by using

the Laplace transform.
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▶Effect of Thermal Stresses on Crack-Tip
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▶Coupled and Generalized Thermoviscoelasticity
Analysis of a Prestressed Bi-Material
Accelerated-Life-Test (ALT)
Specimen

Ephraim Suhir

Department of Electrical Engineering, University

of California, Santa Cruz, CA, USA

Overview

Application of mechanical prestressing could

be an effective means for achieving a
failure-mode-shift-free “destructive ALT effect”

in electronic and photonic devices and micro-

electro-mechanical systems (MEMS). A simple,

physically meaningful, and easy-to-use analytical

(“mathematical”) predictive model has been

developed to assess the stresses in a bi-material

assembly subjected to the combined action of

thermal stresses and external (“mechanical”)

prestressing. The compressive prestressing is

applied to the assembly component that is

expected to experience thermal compression.

The model is an extension and a modification of

the author’s 1986 and 1989 “bi-metal thermostat”

models suggested as a generalization of the 1925

Timoshenko’s theory.
Introduction

The objective of the analysis is to indicate

the feasibility of using mechanically prestressed

test specimens, when there is a need to avoid

the “shift” in the modes and mechanisms of

failure in electronic, photonic, or MEMS assem-

blies subjected to thermal loading during ALT.

When planning and conducting ALT, there is

always a temptation to broaden (enhance) the

temperature range to achieve the maximum

“destructive ALT effect” in a shortest period

of time. There exists, however, one major

pitfall – a possible shift in the modes and

mechanisms of failure as a result of broadening

the temperature range. Enhanced ALT condi-

tions may hasten failure mechanisms that are

quite different from those that could possibly

occur in actual service. The likely pitfalls

include, but might not be limited to, the

change in material properties at high or low

temperatures; time-dependent strain due to dif-

fusion; enhanced creep at elevated tempera-

tures; brittle fracture at low temperatures;

generation and movement of dislocations

caused by an elevated thermal stress; occur-

rence of a bi-modal distribution of failures,

etc. Because of the possibility of such pitfalls,

it is necessary to establish the appropriate

narrow enough temperature limits in order to

prevent the distortion of the actual dominant

http://dx.doi.org/10.1007/978-94-007-2739-7_888
http://dx.doi.org/10.1007/978-94-007-2739-7_888
http://dx.doi.org/10.1007/978-94-007-2739-7_362
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failure mechanism(s). There is an obvious

incentive, therefore, for trying to find ways

of increasing the induced stresses without

broadening the ALT temperature range.

One way to enhance the “destructive ALT

effect” without compromising the acceptable

temperature limits is to mechanically prestress

the test specimens prior to conducting thermal

ALT. For instance, a low expansion silicon chip

attached to a high-expansion polymeric sub-

strate will experience thermally induced com-

pression, when the chip-substrate assembly

manufactured at an elevated temperature is sub-

sequently cooled down to a low (say, room)

temperature. This compression can be enhanced,

and the interfacial stresses will be increased,

if the chip is mechanically prestressed in

compression.

The objective of this entry is to present

a simple, easy-to-use, and physically meaning-

ful predictive model for the evaluation of the

thermo-mechanical stresses in a mechanically

prestressed bi-material specimen. The problem

of stress concentration and fracture in bi- and

multi-material assemblies has been addressed

for a long time and by numerous investigators.

The number of published work dealing with

this problem is enormous (see, e.g., the recent

review [1]). Let us indicate just some major

publications, which address prediction of ther-

mal stress in assemblies comprised of dissimi-

lar materials: general monographs (e.g., [2–6]);

pioneering work by Timoshenko [7] (who used

a strength-of-materials approach), and by

Aleck [8] (who used the theory-of-elasticity

concept that was later on extended in many

researchers (see, e.g., [9, 10]); numerous pub-
lications in the electronics, photonics, and

MEMS systems [11–38], including fracture

mechanics-based analyses [15–18], thermal

fatigue in ductile metals [19–24], that is par-

ticularly important when there is a need to

assess the life-time of solder joint interconnec-

tions in electronics and photonics [23–32]);

thermal stress in thin films fabricated on thick

substrates [33–38], etc.

Our model is an extension of the models

developed earlier [11, 12] as generalizations of

the classical Timoshenko’s theory of bi-metal

thermostats [7]. The model predicts the magni-

tude and the distribution of the interfacial shear-

ing and peeling stresses in a bi-material assembly

subjected to the combined action thermal and

mechanical stresses.
Basic Equations

Let an elongated bi-material adhesively bonded

or soldered assembly be manufactured at an

elevated temperature, then cooled down to

a low (say, room) temperature, and then, prior

to ALT testing, subjected to mechanical com-

pression applied to the assembly component

with the lower coefficient of thermal expansion

(contraction), as schematically shown in Fig. 1.

It is this component that will experience com-

pressive thermal stress in actual operating

conditions.

The longitudinal interfacial displacements

u1ðxÞ and u2ðxÞ in the assembly components #1

and #2 can be evaluated, in an approximate

analysis, by the formulas of the type suggested

in [14]:
u1ðxÞ ¼ �a1Dtxþ l1

ðx
0

½T̂ � TðxÞ�dxþ k1tðxÞ �
h1
2
w01ðxÞ

u2ðxÞ ¼ �a2Dtxþ l2

ðx
0

TðxÞdx� k2tðxÞ þ
h2
2
w02ðxÞ

9>>>>>>>=>>>>>>>;
ð1Þ
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Analysis of a Prestressed Bi-Material Accelerated-
Life-Test (ALT) Specimen, Fig. 1 Bi-material assembly

subjected to the combined action of thermally induced and

compressive external forces applied to one of the assem-

bly components
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where a1 and a2 are the coefficients of thermal

expansion (CTE) of the component materials, Dt
is the change in temperature,
l1 ¼
1� n1
E1h1

; l2 ¼
1� n2
E2h2

ð2Þ

are the axial compliances of the components, E1

and E2 are Young’s moduli of the materials, n1
and n2 are their Poisson’s ratios, h1 and h2 are the
thicknesses of the components, T̂ are the external

“mechanical” compressive forces (per unit

assembly width) acting on the low expansion

component #1,
TðxÞ ¼
ðx
�l

tðxÞdx ð3Þ

is the force acting in the cross-section x of the

component #2, l is half the assembly length, tðxÞ
is the interfacial shearing stress,
k1 ¼
h1
3G1

; k2 ¼
h2
3G2

ð4Þ

are the longitudinal interfacial compliances of the

assembly components in the case of a long

enough and/or stiff enough assembly [11],

G1 ¼
E1

2ð1þ n1Þ
; G2 ¼

E2

2ð1þ n2Þ
ð5Þ

are the shear moduli of the materials, and

w1ðxÞ and w2ðxÞ are the component deflections.
The origin of the coordinate x is in the

mid-cross-section of the assembly at the inter-

face. The first terms in (1) are stress-free thermal

contractions. The second terms are evaluated

based on the Hooke’s law assuming that the

longitudinal displacements are the same for all

the points of the given cross-section. The third

terms are “corrections” to this assumption and

account for the fact that the interfacial longitu-

dinal displacements are somewhat larger

than the displacements of the inner points of

the cross-section. The fourth terms are due to

bending.

The condition of the compatibility of the

displacements (1) can be written as
u1ðxÞ ¼ u2ðxÞ � k0tðxÞ ð6Þ

where
k0 ¼
h0
G0

ð7Þ

is the longitudinal interfacial compliance of the

bonding layer, h0 is its thickness,
G0 ¼
E0

2ð1þ n0Þ
ð8Þ

is the shear modulus of the bonding material, and

E0 and n0 are its elastic constants. Introducing the
formulas (1) into the condition (6) we obtain the

following integral equation for the shearing stress

function, tðxÞ:
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ktðxÞ � ðl1 þ l2Þ
ðx
0

TðxÞdx� h1
2
w01ðxÞ �

h2
2
w02ðxÞ

¼ �ðDaDtþ l1T̂Þx
ð9Þ

where Da ¼ a2 � a1 is the difference in the CTE

of the component materials, and
k ¼ k0 þ k1 þ k2 ð10Þ

is the total longitudinal interfacial compliance of

the assembly. As evident from the (9), the “exter-

nal” thermal strain DaDt can be enhanced, with-

out broadening the temperature range, by

mechanically prestressing one of the assembly

components. The (9) indicates also that such an

enhancement increases with an increase in the

axial compliance of the compressed component.

From (9) we find by differentiation:
kt0ðxÞ�ðl1 þ l2ÞTðxÞ �
h1
2
w001ðxÞ �

h2
2
w002ðxÞ

¼ �ðDaDtþ l1T̂Þ
ð11Þ

kt00ðxÞ � ðl1 þ l2ÞtðxÞ �
h1
2
w0001 ðxÞ �

h2
2
w0002 ðxÞ ¼ 0

ð12Þ

kt000ðxÞ � ðl1 þ l2Þt0ðxÞ �
h1
2
wIV
1 ðxÞ �

h2
2
wIV
2 ðxÞ ¼ 0

ð13Þ

Treating the assembly components as elon-

gated rectangular plates we proceed from the

following equations of bending (equilibrium):

ðx
�l

ðx
�l

pðxÞdxdx1 ¼ �D1w
00
1ðxÞ þ

h1
2
TðxÞ

¼ D2w
00
2ðxÞ �

h2
2
TðxÞ ð14Þ

where pðxÞ is the interfacial peeling stress (i.e.,

normal interfacial stress acting in the through-

thickness direction of the assembly), and
D1 ¼
E1h

3
1

12ð1� n21Þ
; D2 ¼

E2h
3
2

12ð1� n22Þ
ð15Þ

are the flexural rigidities of the components.

From (14) we find by differentiation:
ðx
�l

pðxÞdx ¼ �D1w
000
1 ðxÞ þ

h1
2
tðxÞ

¼ D2w
000
2 ðxÞ �

h2
2
tðxÞ ð16Þ

pðxÞ ¼ �D1w
IV
1 ðxÞ þ

h1
2
t0ðxÞ

¼ D2w
IV
2 ðxÞ �

h2
2
t0ðxÞ ð17Þ

Solving the (17) for the fourth derivatives of

the deflection functions and substituting the

obtained expressions into the (13) we obtain the

following equation
kt000ðxÞ � lt0ðxÞ ¼ �mpðxÞ ð18Þ

that couples the interfacial shearing stress tðxÞ
and the interfacial peeling stress pðxÞ: In the

obtained equation,
l ¼ l1 þ l2 þ
h21
4D1

þ h22
4D2

ð19Þ

is the total axial compliance of the assembly

(with consideration of the effect of bending), and
m ¼ h1
2D1

� h2
2D2

ð20Þ

is the factor of the peeling stress. As evident from

the formula (19), the total axial compliance of the

assembly increases with a decrease in the flexural

rigidities of its components. As to the factor (20),

it is the lowest for adherends with close flexural

rigidities and is the highest in the case of consid-

erably different rigidities.

It is assumed that the peeling stress is related

to the deflections w1ðxÞ and w2ðxÞ as

pðxÞ ¼ K½w1ðxÞ � w2ðxÞ� ð21Þ
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where K is the through-thickness stiffness of the

assembly. The formula (21) reflects an assump-

tion that no peeling stress could possibly occur in

the given cross-section, if the deflections w1ðxÞ
and w2ðxÞ are the same in this cross-section. In an

approximate analysis, by analogy with the longi-

tudinal interfacial stiffness (compliance), one

could assume:

K ¼ 1
ð1�n1Þh1

3E1
þ ð1�n2Þh2

3E2
þ ð1�n0Þh0E0

ð22Þ

This formula indicates that while the entire

bonding layer experiences stresses acting in the

through-thickness direction of the assembly, only

the inner portions of the assembly components,

that is, the regions adjacent to the interface, are in

the state of appreciable stress. From (21) follows

pIVðxÞ ¼ K½wIV
1 ðxÞ � wIV

2 ðxÞ� ð23Þ

Solving the (17) for the fourth derivatives of

the deflection functions and substituting the

obtained expressions into the (23) we obtain an

equation that couples the interfacial shearing,

tðxÞ, and the interfacial peeling, pðxÞ, stresses:
pIVðxÞ þ 4b4pðxÞ ¼ mKt0ðxÞ ð24Þ

where
b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
D1 þ D2

4D1D2

4

r
ð25Þ

is the parameter of the interfacial peeling stress.

The (24) indicates that the longitudinal gradient

of the interfacial shearing stress plays the role of

the external loading for the peeling stress. It is

noteworthy that the (24) has the form of the

equation of bending of a beam lying on

a continuous elastic foundation. In the engineer-

ing theory of such beams, this equation is being

written, however, for the deflection function, and

not for the peeling stress.

The (18) and (24) are the two basic equations

in the problem in question. These equations indi-

cate that the two types of the interfacial stresses

are coupled. Separating the functions tðxÞ and
pðxÞ in the (18) and (24), it is found that these

two functions could be determined, in effect,

from the same equation:

tVIðxÞ � k2tIVðxÞ

þ 4b4 t00ðxÞ � k2tðxÞ þ m2

k
D1D2

D1 þ D2

tðxÞ
� �

¼ 0

ð26Þ

or

pVIðxÞ � k2pIVðxÞ

þ 4b4 p00ðxÞ � k2pðxÞ þ m2

k
D1D2

D1 þ D2

pðxÞ
� �

¼ 0

ð27Þ

Here

k ¼
ffiffiffi
l
k

r
ð28Þ

is the parameter of the interfacial shearing stress.

The solution to the (26) should be sought, how-

ever, in an anti-symmetric form and should con-

tain only odd functions, while the solution to

the (27) should be symmetric with respect to the

mid-cross-section of the assembly and should

contain, therefore, only even functions. This cir-

cumstance is reflected by the appropriate bound-

ary conditions.
Boundary Conditions

Since there are no external forces acting at the

ends of the component #2, the force TðxÞmust be

zero at the end x ¼ l of this component:
TðlÞ ¼ 0 ð29Þ

Since no concentrated bending moments act at

the assembly ends, the curvatures w001ðxÞ and

w002ðxÞ must be zero at these ends:
w001ðlÞ ¼ w002ðlÞ ¼ 0 ð30Þ

As to the lateral forces, the following bound-

ary conditions have to be fulfilled:
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D1w
000
1 ðlÞ þ

_

Tw0ðlÞ ¼ 0; w0002 ðlÞ ¼ 0 ð31Þ

The first condition in (31) indicates that the

lateral projection of the external force
_

T should be

equilibrated by the elastic force. Considering,

however, that a typical electronic or photonic

assembly is stiff enough, so that the angle of

rotation w0ðlÞ is small, and, in addition, that the

external force
_

T should be sufficiently low (actu-

ally, well below its critical value), one could

assume, in an approximate analysis, that the

third derivative w0001 ðlÞ of the deflection function

for the component #1 can also be put equal to

zero. Then the conditions (31) can be substituted,

with following conditions:
w0001 ðlÞ 
 w0002 ðlÞ ¼ 0 ð32Þ

The peeling stress p(x) must be self-equili-

brated. This means that the following equilibrium

conditions are to be fulfilled:

ðl
�l

pðxÞdx ¼ 0;

ðl
�l

ðx
�l

pðxÞdxdx1 ¼ 0 ð33Þ

The (11), considering the conditions (29) and

(30), results in the following boundary condition

for the shearing stress function:
t0ðlÞ ¼ �DaDtþ l1T̂
k

ð34Þ

The (12), considering (32), yields:
kt00ðlÞ � ðl1 þ l2ÞtðlÞ ¼ 0 ð35Þ

Note that the (14), considering the boundary

conditions (30), (32) and the second condition in

(33), is always fulfilled at the assembly ends.

Equation (16), taking into account the condi-

tions (32) and the first condition in (33), yields:
tðlÞ ¼ 0 ð36Þ

Then the formula (35) results in a zero bound-

ary condition for the second derivative of the

shearing stress function as well:
t00ðlÞ ¼ 0 ð37Þ

As to the peeling stress, there follow from

(21), considering (30) and (32), the conditions:

p00ðlÞ ¼ 0; p000ðlÞ ¼ 0 ð38Þ

Solutions to the Basic Equations

The interfacial shearing stress function tðxÞ is
sought in the form:

tðxÞ ¼ C1 sinh g1x cos g2xþ C3 cosh g1x sin g2x

þ C5 sinh gx

ð39Þ

The differentiation leads to:

t0ðxÞ ¼ ðg1C1 þ g2C3Þ cosh g1x cos g2xþ
þ ð�g2C1 þ g1C3Þ sinh g1x sin g2x
þ gC5 cosh gx ð40Þ

t00ðxÞ ¼ ½ðg21 � g22ÞC1 þ 2g1g2C3� sinh g1x cos g2xþ
þ ½ðg21 � g22ÞC3 � 2g1g2C1� cosh g1x sin g2x
þ g2C5 sinh gx

ð41Þ

t000ðxÞ¼½g1ðg21�3g22ÞC1� g2ðg22�3g21ÞC3�
coshg1xcosg2xþ½g2ðg22�3g21ÞC1

þ g1ðg21�3g22ÞC3�sinhg1xsing2x
þ g3C5 coshgx ð42Þ

tIVðxÞ ¼ ½ðg41 � 6g21g
2
2 þ g42ÞC1 þ 4g1g2ðg21 � g22ÞC3�

sinh g1x cos g2xþ ½ðg41 � 6g21g
2
2 þ g42ÞC3

� 4g1g2ðg21 � g22ÞC1� cosh g1x sin g2x
þ g4C5 sinh gx

ð43Þ

tVðxÞ ¼ ½g1ðg41 � 10g21g
2
2 þ 5g42ÞC1

þ g2ðg42 � 10g21g
2
2 þ 5g41ÞC3� cosh g1x cos g2x

þ ½�g2ðg42 � 10g21g
2
2 þ 5g41ÞC1

þ g1ðg41 � 10g21g
2
2 þ 5g42ÞC3�

sinh g1x sin g2xþ g5C5 cosh gx

ð44Þ
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tVIðxÞ ¼ ½ðg61� g62þ15g21g
4
2�15g41g

2
2ÞC1

þ2g1g2ð3g41þ3g42�10g21g
2
2ÞC3�

sinhg1xcosg2xþ½2g1g2ð�3g41�3g42þ10g21g
2
2ÞC1

þðg61� g62þ15g21g
4
2�15g41g

2
2ÞC3�

coshg1xsing2xþ g6C5 sinhgx

ð45Þ

Then the (26) results in the following three

equations for the factors g1; g2 and g:
g61 � g62 þ 15g21g
4
2 � 15g41g

2
2 � k2ðg41 � 6g21g

2
2 þ g42Þþ

þ 4b4 g21 � g22 � k2ð1� dÞ
� �

¼ 0

ð46Þ

3g41 þ 3g42 � 10g21g
2
2 � 2k2ðg21 � g22Þ þ 4b4 ¼ 0

ð47Þ

g6 � k2g4 � 4b4g2 þ 4b4k2 1� dð Þ ¼ 0 ð48Þ

where

d ¼ m2

l
D1D2

D1 þ D2

ð49Þ

is the parameter of coupling of the interfacial

stresses. This parameter, as follows from the for-

mula (20), is very small if the assembly compo-

nents have close flexural rigidities.

Introducing new unknowns, x and �, as

x ¼ g21 � g22; � ¼ 2g1g2 ð50Þ

the (46) and (47) assume the form:

x3 � k2x2 � 3�2xþ 4b4xþ k2�2 � 4b4k2ð1� dÞ ¼ 0

ð51Þ
�2 ¼ 3x2 � 2k2xþ 4b4 ð52Þ

Introducing the �2 value from the (52) into the

(51), the following cubic equation is obtained for

the unknown x:
x3 � k2x2 þ 1

4
ðk4 þ 4b4Þx� 1

2
k2b4d ¼ 0

ð53Þ

After the x value is found, the � value can be

determined from the (52), and then the g1 and g2
values could be evaluated as
g1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
2
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

x2

s !vuut ð54Þ

These values are close to each other, if the x
value is small, and the � value is large. In such

a case, as one could see from the (52), � ¼ 2b2:
Note that the result (54) could be obtained, if the

(27) and the particular solution

pðxÞ¼C0 coshg1xcosg2xþC2 sinhg1xsing2x

þC4 coshgx
ð55Þ

for the peeling stress pðxÞ were considered.
Constants of Integration

The constants C1, C3, and C5 of integration in the

expression (39) for the interfacial shearing stress

can be found, based on the boundary conditions

(34), (36), and (37), from the following system of

equations:
ðsinh u1 cos u2ÞC1 þ ðcosh u1 sin u2ÞC3 þ ðsinh uÞC5 ¼ 0

ðu1 cosh u1 cos u2 � u2 sinh u1 sin u2ÞC1 þ ðu2 cosh u1 cos u2 þ u1 sinh u1 sin u2ÞC3

þ ðu cosh uÞC5 ¼ �l
DaDtþ l1T̂

k
½ðu21 � u22Þ sinh u1 cos u2 � 2u1u2 sinh u1 sin u2�C1

þ ½ðu21 � u22Þ cosh u1 sin u2 þ 2u1u2 sinh u1 cos u2�C3 þ ðu2 sinh uÞC5 ¼ 0

9>>>>>>>>=>>>>>>>>;
ð56Þ
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Here the following notation is used:
A
u1 ¼ g1l; u2 ¼ g2l; u ¼ gl ð57Þ

As to the constants C0, C2, and C4 in the

expression (55) for the interfacial peeling stress,

pðxÞ, they can be determined after substituting the

solutions (39) and (55) into the (18) or into the

(24) and comparing the expressions at the left and

the right parts of the obtained relationships. This

leads to the following formulas for the constants

C0, C2, and C4 of integration:

C0 ¼�
k
m

g1ðg21� 3g22� k2ÞC1� g2ðg22� 3g21þ k2ÞC3

� �
C2 ¼�

k
m

g1ðg21� 3g22� k2ÞC3þ g2ðg22� 3g21þ k2ÞC1

� �
C4 ¼�

k
m
gðg2� k2ÞC5

9>>>>=>>>>;
ð58Þ
Numerical Example

Input Data

Component #1: Young’s modulus: E1 ¼
12;300 kg=mm2; Poisson’s ratio: n1 ¼ 0:24;

CTE: a1 ¼ 2:2� 10�61=�C; Thickness:

h1¼0:5mm; External force: T̂ ¼ 8:0 kg=mm;

Component #2: Young’s modulus: E2 ¼
2;000 kg=mm2; Poisson’s ratio: n2 ¼ 0:30;

CTE: a2 ¼ 13:2� 10�61=�C; Thickness:

h2 ¼ 1:5 mm;

Bonding layer: Young’s modulus: E0 ¼
200 kg=mm2; Poisson’s ratio: n0 ¼ 0:40; Thick-

ness: h0 ¼ 0:05 mm;

Change in temperature: Dt ¼ 100 �C; Assem-

bly length: 2l ¼ 20 mm

Computed Data

Thermal strain: DaDt ¼ ða2 � a1ÞDt ¼ 11�
10�6 � 100 ¼ 0:0011.

Axial compliances, as predicted by the

formulae (2):

l1 ¼
1� n1
E1h1

¼ 1� 0:24

12300 � 0:5
¼ 1:2358� 10�4mm=kg

l2 ¼
1� n2
E2h2

¼ 1� 0:30

2000� 1:5
¼ 2:3333� 10�4mm=kg
Shear moduli, as predicted by the formulae (8)

and (5):

G0 ¼
E0

2ð1þ n0Þ
¼ 200

2� 1:4
¼ 71:4 kg=mm2

G1 ¼
E1

2ð1þ n1Þ
¼ 12;300

2� 1:24
¼ 4;960 kg=mm2

G2 ¼
E2

2ð1þ n2Þ
¼ 2000

2� 1:30
¼ 769 kg=mm2

Interfacial shearing compliances, as predicted

by the formulae (7), (4) and (10):
k0 ¼
h0
G0

¼ 0:05

71:4
¼ 7:00� 10�4mm3=kg

k1 ¼
h1
3G1

¼ 0:5

3� 4960
¼ 0:3360� 10�4mm3=kg

k2 ¼
h2
3G2

¼ 1:5

3� 769
¼ 6:5020� 10�4mm3=kg

k ¼ k0 þ k1 þ k2 ¼ 7:00� 10�4 þ 0:3360� 10�4

þ 6:5020� 10�4 ¼ 13:838� 10�4mm3=kg

Boundary condition for the interfacial shear-

ing stress, as given by the formula (34):

t0ðlÞ ¼ �DaDtþ l1T̂
k

¼ � 0:0011þ 0:0009886

13:838� 10�4

¼ �1:5093 kg=mm3

Note that because of the prestressing of the low

expansion component of the assembly, the inter-

facial stresses in the assembly increase by a factor

of 1.9. Flexural rigidities of the assembly compo-

nents (treated as elongated rectangular plates) are

evaluated on the basis of the formulae (15):
D1 ¼
E1h

3
1

12ð1� n21Þ
¼ 12;300� 0:53

12� 0:9424
¼ 136:0 kg=mm

D2 ¼
E2h

3
2

12ð1� n22Þ
¼ 2;000� 1:53

12� 0:9100
¼ 618:1 kg=mm

Total axial compliance of the assembly, as

predicted by the formula (19):

l ¼ l1 þ l2 þ
h21
4D1

þ h22
4D2

¼ 1:2358� 10�4 þ 2:3333

� 10�4 þ 4:5956� 10�4 þ 9:1005� 10�4

¼ 17:2652� 10�4mm=kg
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Parameter of the interfacial shearing stress, as

given by the formula (28):

k ¼
ffiffiffi
l
k

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17:2652� 10�4

13:838� 10�4

r
¼ 1:117mm�1

Factor of the peeling stress, as given by the

formula (20):
m ¼ h1
2D1

� h2
2D2

¼ 0:5

272
� 1:5

618:1

¼ 18:382� 10�4 � 24:268� 10�4

¼ �5:886� 10�4kg�1

Through-thickness stiffness, as predicted by

the formula (22):

K ¼ 1
ð1�n1Þh1

3E1
þ ð1�n2Þh2

3E2
þ ð1�n0Þh0E0

¼ 1

0:103� 10�4 þ 1:750� 10�4 þ 1:500� 10�4

¼ 2;982 kg=mm3

Parameter of the peeling stress, as predicted by

the formula (25):

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
D1 þ D2

4D1D2

4

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2982

754:1

336246:4

4

r
¼ 0:7441mm�1

Parameter of coupling of the interfacial

stresses, as predicted by the formula (49):
d ¼ m2

l
D1D2

D1 þ D2

¼ 34:6450� 10�8

17:2652� 10�4
84061:6

754:1

¼ 0:02237

Equation (53) for the unknown x value yields
x3 � 1:2477x2 þ 0:6957x� 0:004278 ¼ 0

and has the following root: x ¼ 0:00615. Then

the (52) yields: � ¼ 1:10047. From the formula

(54) follows:

g1 ¼ 0:74385mm�1; g2 ¼ 0:73970mm�1
Note that the obtained two values are very

close to each other and to the b value. This is

because the � value turned out to be, in this

example, substantially larger than the x value,

which is the case for adherends with not-very-

much-different flexural rigidities. The (48) for

the g value yields:
g6 � 1:2477g4 � 1:22627g2 þ 1:495788 ¼ 0

Its root is g ¼ 1:0165mm�1 and is not very

much different from the k value.

The parameters u1 ¼ g1l; u2 ¼ g2l; and

u ¼ gl, expressed by the formulae (57), are as

follows:

u1 ¼ g1l ¼ 0:74385� 10 ¼ 7:4385

u2 ¼ g2l ¼ 0:73970� 10 ¼ 7:3970

u ¼ gl ¼ 1:0165� 10 ¼ 10:165

These parameters are large enough, so that the

assembly can be treated as an elongated one. The

(56) for the constants C1, C3, and C5 of integra-

tion yield:
0:028876C1 þ 0:058733C3 þ C5 ¼ 0

0:021609C1 � 0:063992C3 � C5 ¼ 0:00011431

0:062380C1 � 0:03110C3 � C5 ¼ 0

These equations have the following solutions:

C1 ¼ 0:0003488 kg=mm2

C3 ¼ �0:0011520 kg=mm2

C5 ¼ 0:00005759mm2

The shearing stress in the region close to the

assembly ends can be computed by the formula:

tðxÞ ¼ e�0:7438x½0:0001744ðcos 0:7397xÞ�
0:0005770ðsin 0:7397xÞ�þ0:000028795e�1:0165x,
which can be obtained from the solution (39). The

calculated stresses are shown in Table 1. At the

bottom line the stresses calculated using the sim-

plified formula [14]

t1ðxÞ ¼ k
DaDtþ l1T̂

l
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shearing stresses

x,mm 8.0 8.4 8.5 8.75 9.0 9.5 9.7 9.9 10

tðxÞ; kg/mm2 0.0813 0.2164 0.2584 0.2518 0.2313 0.1422 0.0894 0.0297 0

t1ðxÞ, kg/mm2 0.1441 0.2262 0.2530 0.3345 0.4422 0.7730 0.9665 1.2085 1.351

Analysis of a Prestressed Bi-Material Accelerated-Life-Test (ALT) Specimen, Table 2 Calculated peeling

stresses

x, mm 4.0 5.0 6.0 6.5 7.0 7.5

pðxÞ; kg=mm2 0.0285 �0.0910 �0.1650 �0.3032 �0.4744 �0.6502
x, mm 8.0 8.25 8.5 9.0 9.5 10.0

pðxÞ; kg=mm2 �0.7670 �0.7719 �0.7179 �0.3467 0.5419 2.1439

Analysis of a Prestressed Bi-Material Accelerated-Life-Test (ALT) Specimen 121 A
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are indicated. The calculated data indicate that

this formula can be used for conservative engi-

neering assessments. The interfacial peeling

stress, on the basis of the solution (55), is

given by:
pðxÞ ¼ e�0:7438xð�0:001150 cos 0:7397x
þ 0:002221 sin 0:7397xÞ
� 0:000014750e�1:0165x

The computed peeling stress is shown in

Table 2. These data indicate that this stress is

indeed self-equilibrated.
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Synonyms

Analytical method
Overview

Functionally graded materials (FGMs) are the

composite materials to express the desired func-

tions by the continuous or discontinuous changes

in the composition of the constituent materials.

FGMs are therefore the nonhomogeneous mate-

rials. The importance for FGMs is how to design

the material so as to express the desired functions,

how to fabricate the designed FGMs, and how to

evaluate the fabricated FGMs.

Material properties of FGMs are dependent on

position and temperature, since FGMs are the

nonhomogeneous materials. The governing equa-

tions for the temperature field and the associate

thermoelastic field of FGMs become of nonlinear

form in general. Then, analytical treatment is

difficult. There are mainly five kinds of analytical

methods to solve the governing equations of

FGMs: (a) direct method, (b) stress function

method, (c) potential function method, (d) lami-

nated composite methods, and (e) Green function
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method. The direct method is that the governing

equations expressed by displacements are solved

directly. The laminated composite methods are

explained by Guo, and Green function method is

explained by Watanabe in the ETS. Then, stress

function method and potential method are

discussed in this entry.
Fundamental Equations for FGMs

The equations of motion of FGMs are
sji;j þ Fi ¼ r€ui ð1Þ

where sij are stresses, r is density, Fi are body

forces, ui are displacements, and the superscript

dot denotes the partial differentiation with

respect to the time. The density in FGMs is

defined as a function of the position, namely,

rðx1; x2; x3Þ because FGMs are nonhomogeneous

materials.

The constitutive equations for a

nonhomogeneous, isotropic body in consider-

ation of temperature change are
eij ¼
1

2G
ðsij �

n
1þ n

skkdijÞ þ aTdij ð2Þ

or
sij ¼ 2meij þ lekkdij � bTdij ð3Þ

where eij are strains, T is temperature change

from a reference temperature, G is shear modulus

of elasticity, n is Poisson ratio, a is coefficient of

linear thermal expansion, dij is Kronecker delta, m
and l are Lamé elastic constants, and b is

thermoelastic constant. The material properties

in a nonhomogeneous body are defined as func-

tions of the position, namely, Gðx1; x2; x3Þ,
nðx1; x2; x3Þ, and aðx1; x2; x3Þ. The relationship

among the material properties holds as follows:

2G¼ E

1þ n
; l¼ nE

ð1þ nÞð1� 2nÞ ¼
2nG
1� 2n

;

m¼G;b¼ aE
1� 2n

¼ að3lþ 2mÞ
ð4Þ
where E is Young’s modulus which is defined as

a function of the position Eðx1; x2; x3Þ.
The strains eij are defined by displacements ui:
eij ¼
1

2
ðui;j þ uj;iÞ ð5Þ

Substituting (3) into (1) gives the equations of

motion in terms of displacements:

mui;kk þ ðlþ mÞuk;ki � bT;i þ Fi

þ m;kðui;k þ uk;iÞ þ l;iuk;k � b;iT
� �

¼ r€ui

ð6Þ

Comparing with the equations of motion for

a homogeneous, isotropic body, it is apparent that

the terms of the partial differentiation of the

material properties with respect to the position

are added to those for a homogeneous, isotropic

one in those for FGMs.
Basic Equations of Plane Problem

Let us consider a plane strain problem in which

the deformation in the long body is given by
ux ¼ uxðx; yÞ; uy ¼ uyðx; yÞ; uz ¼ e0zþ e1 ð7Þ

and a plane stress one in which a state of stress in

a thin plate is characterized by

sxx ¼ sxxðx; yÞ; syy ¼ syyðx; yÞ
sxy ¼ sxyðx; yÞ; szz ¼ szx ¼ szy ¼ 0

ð8Þ

The constitutive equations are common to

both problems, which are defined as
exx ¼
1

E

ðsxx � n
syyÞ þ aT � e
0

eyy ¼
1

E

ðsyy � n
sxxÞ þ aT � e
0

exy ¼
1

2G
sxy

sxx ¼ ðl
 þ 2mÞexx þ l
eyy � b
T

syy ¼ ðl
 þ 2mÞeyy þ l
exx � b
T

sxy ¼ 2mexy

ð9Þ
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where

E
 ¼ E

1� n2
; n
 ¼ n

1� n
; a
 ¼ ð1þ nÞa;

l
 ¼ l; b
 ¼ b; e
0 ¼ ne0
ð10Þ

for the plane strain problem,
E
 ¼ E; n
 ¼ n; a
 ¼ a;

l
 ¼ 2ml
lþ 2m

; b
 ¼ 2mb
lþ 2m

; e
0 ¼ 0
ð11Þ

for the plane stress problem.

The equations of motion of plane problems are

given by

@sxx
@x
þ @syx

@y
þ Fx ¼ r€ux

@sxy
@x
þ @syy

@y
þ Fy ¼ r€uy

ð12Þ

The compatibility equation is

@2exx
@y2
þ @2eyy

@x2
¼ 2

@2exy
@x@y

ð13Þ

The equations of motion of plane problems

(12) can be expressed in terms of displacements.

mH2ux þ ðl
 þ mÞ @
@x

@ux
@x
þ @uy

@y

� 	
� b


@T

@x
þ Fx

þ @l


@x

@ux
@x
þ @uy

@y

� 	
þ 2

@m
@x

@ux
@x

þ @m
@y

@ux
@y
þ @uy

@x

� 	
� @b


@x
T ¼ r€ux

mH2uy þ ðl
 þ mÞ @
@y

@ux
@x
þ @uy

@y

� 	
� b


@T

@y
þ Fy

þ @l


@y

@ux
@x
þ @uy

@y

� 	
þ 2

@m
@y

@uy
@y

þ @m
@x

@uy
@x
þ @ux

@y

� 	
� @b


@y
T ¼ r€uy

ð14Þ

The plane problems for FGMs are how to

solve (14) with respect to displacements ux
and uy.
Analytical Method for Plane Problems of
FGMs

Stress Function Method

We consider quasi-static problems without body

forces. Equations (12) reduce to
@sxx
@x
þ @syx

@y
¼ 0

@sxy
@x
þ @syy

@y
¼ 0

ð15Þ

We introduce the thermal stress function w
that automatically satisfies the equilibrium

equations (15) and is related to stresses as

follows:
sxx ¼
@2w
@y2

; syy ¼
@2w
@x2

; sxy ¼ �
@2w
@x@y

ð16Þ

Substituting (16) into the compatibility (13)

yields the basic equation of stress function w for

FGMs:
H2 1

E

H2w

� 	
� @2

@y2
1þ n


E


� 	
@2w
@x2

� @2

@x2
1þ n


E


� 	
@2w
@y2

þ 2
@2

@x@y

1þ n


E


� 	
@2w
@x@y

þ H2 a
Tð Þ ¼ 0

ð17Þ

where
H4 ¼ H2H2

¼ @2

@x2
þ @2

@y2

� 	
@2

@x2
þ @2

@y2

� 	
¼ @4

@x4
þ 2

@4

@x2@y2
þ @4

@y4

For homogeneous materials, (17) reduces to

H2H2wþ a
E
H2T ¼ 0 ð18Þ
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It is difficult to solve (17) directly, since mate-

rial properties are dependent on the position.

As material properties of FGMs mainly change

in one direction, we assume material properties

are dependent on the position y:
E
 ¼ E
ðyÞ; n
 ¼ n
ðyÞ; a
 ¼ a
ðyÞ ð19Þ

The governing (17) reduces to
1

E
ðyÞH
2H2wþ @2

@y2
1

E
ðyÞ

� �
H2w

þ 2
@

@y

1

E
ðyÞ

� �
@

@y
ðH2wÞ

� @2

@y2
1þ n
ðyÞ
E
ðyÞ

� �
@2w
@x2

þ H2 a
ðyÞT½ � ¼ 0

ð20Þ

It is necessary to assume material properties as

function of the position to solve (20).

Noda and Jin [1–3] gave solutions of (20)

when material properties are expressed by expo-

nential functions of the position.

[Case 1] Young’s modulus is expressed by an

exponential function of the position.

When Young’s modulus is expressed by an

exponential function of the position, Poisson

ratio is constant and the linear thermal expansion

is arbitrary function of the position
E
 ¼ E
0 exp ðdyÞ; n
 ¼ n
0ð1þ eyÞ exp ðdyÞ;
a
 ¼ a
ðyÞ

ð21Þ

The governing equation (20) reduces to
H2H2w þ d2H2w� 2d
@

@y
H2w
� �

� ð1þ n
0Þd2
@2w
@x2

¼ �E
0 exp ðdyÞH2 a
ðyÞT½ �
ð22Þ

The general solution of (22) can be

expressed by
w ¼ wc þ wp ð23Þ

where wc and wp are complementary solution and

particular solution, respectively,
H2H2wc þ d2H2wc � 2d
@

@y
H2wc
� �

� ð1þ n
0Þd
2 @

2wc
@x2
¼ 0

ð24Þ

H2H2wp þ d2H2wp � 2d
@

H2wp
� �
@y

� ð1þ n
0Þd2
@2wp
@x2
¼ �E
0 exp ðdyÞH2 a
ðyÞT½ �

ð25Þ

By use of the separation of variables, the gen-

eral solution of (24) can be expressed by
wc ¼
cos ðsxÞ
sin ðsxÞ

� 	
exp ðpiyÞ ði ¼ 1; 2; 3; 4Þ

ð26Þ

where pi (i ¼ 1,2,3,4) are eigenvalues of an

eigenfunction:
p4 � 2dp3 þ ðd2 � 2s2Þp2 þ 2s2dp

þ s2ðs2 þ n
0d
2Þ ¼ 0

ð27Þ

[Case 2] Young’s modulus and Poisson ratio

are expressed by exponential functions of the

position.

When Young’s modulus and Poisson ratio can

be expressed by exponential functions of the

position and the linear thermal expansion is

arbitrary function of the position,

E
 ¼ E
0 exp ðdyÞ; n
 ¼ n
0ð1þ eyÞ exp ðdyÞ;
a
 ¼ a
ðyÞ

ð28Þ

The governing equation (20) reduces to
H2H2w� 2d
@

@y
H2w
� �

þ d2
@2w
@y2

¼� E
0 exp ðdyÞH2 a
ðyÞT½ �
ð29Þ
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The complementary solution wc of (29) is

wc ¼
cos ðsxÞ
sin ðsxÞ

� 	
exp ðpiyÞ ði ¼ 1; 2; 3; 4Þ

ð30Þ

where pi (i ¼ 1,2,3,4) are eigen values of an eigen

function:
p4 � 2dp3 þ ðd2 � 2s2Þp2 þ 2s2dpþ s4

¼ ðp2 � dp� s2Þ2 ¼ 0
ð31Þ

Equation (31) has double roots, and the eigen-

values are
p1 ¼
dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4s2

p
2

; p2 ¼
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4s2

p
2

ð32Þ

Then, the complementary solution wc of (29)
can be expressed by
wc ¼
cos ðsxÞ
sin ðsxÞ

� 	
exp ðpiyÞ
y exp ðpiyÞ

� 	
ði ¼ 1; 2Þ

ð33Þ
Thermal Stresses in an Infinite Plate by
Stress Function Method

Let us consider steady thermal stresses in an

infinite plate with thickness a, when material

properties are expressed by
k ¼ k0 exp ðeyÞ; E
 ¼ E
0 exp ðdyÞ
n
 ¼ n
0ð1þ oyÞ exp ðdyÞ; a
 ¼ a
0 exp ðgyÞ

ð34Þ

where k denotes thermal conductivity.

The steady heat conduction equation is

@

@x
k
@T

@x

� 	
þ @

@y
k
@T

@y

� 	
¼ 0 ð35Þ
When material properties are given by

(34), the heat conduction equation (35)

reduces to
H2T þ e
@T

@y
¼ 0 ð36Þ

The boundary conditions are
T ¼ 0 on y ¼ 0

T ¼ TagðxÞ on y ¼ a
ð37Þ

The second boundary condition in (37) is

assumed to be gð�xÞ ¼ gðxÞ for the sake of brev-
ity. Introducing Fourier cosine integral, gðxÞ can
be expressed by
gðxÞ ¼
ð1
0

CðsÞ cos ðsxÞds

CðsÞ ¼ 2

p

ð1
0

gðxÞ cos ðsxÞdx
ð38Þ

The general solution of (36) can be

expressed by
Tðx; yÞ ¼
ð1
0

AðsÞ exp ðq1yÞ þ BðsÞ exp ðq2yÞ½ �:

� cos ðsxÞds
ð39Þ

where AðsÞ and BðsÞ are unknown constants, and
q1 ¼
�eþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 4s2
p

2
; q2 ¼ �

eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 4s2
p

2

ð40Þ

The unknown constants AðsÞ and BðsÞ can be

determined by (37) as
AðsÞ ¼ �BðsÞ ¼ Ta
CðsÞ

exp ðq1aÞ � exp ðq2aÞ
ð41Þ
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Then, the temperature is determined as

Tðx; yÞ ¼ Ta

ð1
0

CðsÞ
exp ðq1aÞ � exp ðq2aÞ

� exp ðq1yÞ½ � exp ðq2yÞ� cos ðsxÞds
ð42Þ

Next, we consider thermal stresses in the plate.

Taking into consideration of (34), the governing

(29) reduces to

H2H2w� 2d
@

@y
H2w
� �

þ d2
@2w
@y2
¼

� E
0a


0 exp ½ðdþ gÞy� H2T þ 2g

@T

@y
þ g2T

� 	
ð43Þ

The boundary conditions are

syy ¼ sxy ¼ 0 on y ¼ 0

syy ¼ sxy ¼ 0 on y ¼ a
ð44Þ

The general solution of (43) can be

expressed by

w ¼
ð1
0

h
ðD1 þ yE1Þ exp ðp1yÞ

þ ðD2 þ yE2Þ exp ðp2yÞ
i
cos ðsxÞ ds

þ E
0a


0Ta

ð1
0

F1 exp ½ðdþ gþ q1Þy�f

þ F2 exp ½ðdþ gþ q2Þy�g cos ðsxÞds

ð45Þ

where D1, D2, E1, and E2 are unknown constants,

p1 and p2 are given by (32), and F1 and F2 are

F1 ¼ �
CðsÞ

exp ðq1aÞ � exp ðq2aÞ

� q21 � s2 þ 2gq1 þ g2

ðdþ gþ q1Þ2 � s2 � dðdþ gþ q1Þ
h i2

F2 ¼
CðsÞ

expðq1aÞ � expðq2aÞ

� q22 � s2 þ 2gq2 þ g2

ðdþ gþ q2Þ2 � s2 � dðdþ gþ q2Þ
h i2

ð46Þ
The thermal stresses are obtained as

sxx ¼
@2w
@y2
¼
ð1
0

n
D1p

2
1 þ E1ð2p1 þ p21yÞ

� �
exp ðp1yÞ

þ D2p
2
2 þ E2ð2p2 þ p22yÞ

� �
exp ðp2yÞ

o
cos ðsxÞds

þ E
0a


0Ta

ð1
0

n
F1ðdþ gþ q1Þ2exp ½ðdþ gþ q1Þy�

þ F2ðdþ gþ q2Þ2 exp ½ðdþ gþ q2Þy�
o
cos ðsxÞds

syy ¼
@2w
@x2
¼ �

ð1
0

h
ðD1 þ yE1Þ exp ðp1yÞ

þ ðD2 þ yE2Þ exp ðp2yÞ
i
s2 cos ðsxÞ ds

� E
0a


0Ta

ð1
0

n
F1 exp ½ðdþ gþ q1Þy�

þ F2 exp ½ðdþ gþ q2Þy�
o
s2 cos ðsxÞ ds

sxy ¼ �
@2w
@x@y

¼
ð1
0

n
½D1p1 þ E1ð1þ p1yÞ� exp ðp1yÞ

þ ½D2p2 þ E2ð1þ p2yÞ� exp ðp2yÞ
o
s sin ðsxÞds

þ E
0a


0Ta

ð1
0

n
F1ðdþ gþ q1Þexp ½ðdþ gþ q1Þy�

þ F2ðdþ gþ q2Þ exp ½ðdþ gþ q2Þy�
o
s sin ðsxÞds

ð47Þ

Substituting (47) into the boundary conditions

(44) gives

D1 þ D2 ¼� E
0a


0TaðF1 þ F2Þ

p1D1 þ E1 þ p2D2 þ E2

¼� E
0a


0Ta

h
F1ðdþ gþ q1Þ

þ F2ðdþ gþ q2Þ
i

exp ðp1aÞD1 þ a exp ðp1aÞE1

þ exp ðp2aÞD2 þ a exp ðp2aÞE2

¼� E
0a


0Ta F1 exp ½ðdþ gþ q1Þa�f

þ F2 exp ½ðdþ gþ q2Þa�g
p1 exp ðp1aÞD1 þ ð1þ p1aÞ exp ðp1aÞE1

þ p2 exp ðp2aÞD2 þ ð1þ p2aÞ
exp ðp2aÞE2

¼� E
0a


0Ta

n
F1ðdþ gþ q1Þ

exp ½ðdþ gþ q1Þa�:
þ F2ðdþ gþ q2Þ

exp ½ðdþ gþ q2Þa�
o

ð48Þ
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The unknown constants can be determined by

solving algebraic equations (48).
Potential Function Method

Tanigawa et al. [4–7] proposed new potential func-

tion method. When body forces are absent, inertia

terms are negligible, and material properties are

defined as functions of one variable, (14) reduce to
mH2ux þ ðl
 þ mÞ @
@x

@ux
@x
þ @uy

@y

� 	
þ @m

@y

@ux
@y
þ @uy

@x

� 	
� b


@T

@x
¼ 0

mH2uy þ ðl
 þ mÞ @
@y

@ux
@x
þ @uy

@y

� 	
þ @l


@y

@ux
@x
þ @uy

@y

� 	
þ 2

@m
@y

@uy
@y

� @

@y
b
Tð Þ ¼ 0

ð49Þ

We consider that shear modulus of elasticity

G, Láme constant l
, thermoelastic constant b
,
Poisson ratio n, and coefficient of linear thermal

expansion a
 are given by

mðyÞ�GðyÞ¼G0 1þ y

a

� 
m
¼ m0 1þ y

a

� 
m
l
 ¼ l
0 1þ y

a

� 
m
; b
 ¼ b
0f ðyÞ 1þ y

a

� 
m
n¼ const:; a
 ¼ a
0f ðyÞ

ð50Þ

where a is a reference value of length, m is an

arbitrary parameter representing nonhomogeneity

of material, and subscript 0 means a reference

value of material properties at y ¼ 0. The con-

stants l
0, b


0, and a



0 are defined as

l
0 ¼
2nG0

1� 2n
; b
0 ¼

2ð1þ nÞa0G0

1� 2n
a
0 ¼ ð1þ nÞa0

ð51Þ

for the plane strain problem,

l
0 ¼
2nG0

1� n
; b
0 ¼

2ð1þ nÞa0G0

1� n
; a
0 ¼ a0 ð52Þ

for the plane stress problem.
The dimensionless quantities are introduced

by using the reference length a as follows:
�x ¼ x

a
; �y ¼ 1þ y

a
; �ux ¼

ux
a
; �uy ¼

uy
a

ð53Þ

Making use of the dimensionless quantities

(53), (49) reduce to
m0�H
2
�uxþðl
0þm0Þ

@

@�x

@�ux
@�x
þ@�uy

@�y

� 	
þm0

m

�y

@�ux
@�y
þ@�uy

@�x

� 	
�b
0f ð�yÞ

@T

@�x
¼ 0

m0�H
2
�uyþðl
0þm0Þ

@

@�y

@�ux
@�x
þ@�uy

@�y

� 	
þl
0

m

�y

@�ux
@�x
þ@�uy

@�y

� 	
þ2m0

m

�y

@�uy
@�y

� �y�m
@

@�y
b
0f ð�yÞ�ymT
� �

¼ 0

ð54Þ

We introduce two new potential functions f
and c that are related to the components of dis-

placements �ux and �uy as follows:
�ux ¼
@f
@�x
þ �y

@c
@�x

�uy ¼
@f
@�y
þ �y

@c
@�y
� c

ð55Þ

Substituting (54) into (55), the fundamental

equations for f and c are obtained:
�H2fþ m

�y

@f
@�y
¼ a
0ðmþ 3Þf ð�yÞT

�H2cþ m

�y

@c
@�y
¼ m

mþ 1

1

�y2
@f
@�y

� a
0
mðmþ 3Þ
mþ 1

1

�y
f ð�yÞT

ð56Þ

where

n
 ¼ 1

1þ m
ð57Þ
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The parameter m is bounded for a range

m > 1 for the plane stress problem because of

the physical condition for Poisson ratio n of

0 � n � 0:5. And the parameter m is bounded

within a range m > 0 for the plane strain prob-

lem. Because n
 ¼ n ð1� nÞ= holds for the plane

strain problem, the relation n ¼ 1 ð2þ mÞ= is

assigned.

The components of strain and stress are

expressed by the two kinds of new potential func-

tions f and c as follows:
exx ¼
@ux
@x
¼ @�ux

@�x
¼ @2f

@�x2
þ �y

@2c
@�x2

eyy ¼
@uy
@y
¼ @�uy

@�y
¼ @2f

@�y2
þ �y

@2c
@�y2

exy ¼
1

2

@ux
@y
þ @uy

@x

� 	
¼ 1

2

@�ux
@�y
þ @�uy

@�x

� 	
¼ @2f

@�x@�y
þ �y

@2c
@�x@�y

ð58Þ

sxx ¼ 2G0�y
m @2f

@�x2
� m

mþ 1

1

�y

@f
@�y
þ �y

@2c
@�x2
� @c

@�y



� 1þ m� 1

mðmþ 1Þ

� �
a
0f ð�yÞT

�
syy ¼ 2G0�y

m @2f
@�y2
� m

mþ 1

1

�y

@f
@�y
þ �y

@2c
@�y2
� @c

@�y



� 1þ m� 1

mðmþ 1Þ

� �
a
0f ð�yÞT

�
sxy ¼ 2G0�y

m @2f
@�x@�y

þ �y
@2c
@�x@�y

� 	
ð59Þ
Thermal Stresses in an Infinite Plate by
Potential Function Method

Let us consider steady thermal stresses in an

infinite plate with thickness a, when material

properties are expressed by

kðyÞ¼ k0 1þ y

a

� 
l
; mðyÞ¼GðyÞ¼G0 1þ y

a

� 
m
;

n¼ const:; a
 ¼a
0 1þ y

a

� 
n ð60Þ

where k denotes thermal conductivity.
The steady heat conduction equation (29)

reduces to
@2T

@x2
þ l

að1þ y a= Þ
@T

@y
þ @2T

@y2
¼ 0 ð61Þ

Equation (61) has an alternative form by

use of (53)
@2T

@�x2
þ l

�y

@T

@�y
þ @2T

@�y2
¼ 0 ð62Þ

The general solution of (62) can be

expressed as
Tð�x; �yÞ ¼
1

�x

� 	
1

�y1�l

� 	
;

sin ðs�xÞ
cos ðs�xÞ

� 	
�yqIqðs�yÞ
�yqKqðs�yÞ

� 	
q ¼ 1� l

2

ð63Þ

where Iqðs�yÞ and Kqðs�yÞ denote modified Bessel

functions of the first and second kind of order q,
respectively.

The boundary conditions are
T ¼ 0 on y ¼ 0

T ¼ TagðxÞ on y ¼ a
ð64Þ

Alternative form has

T ¼ 0 on �y ¼ 1

T ¼ Tagð�xÞ on �y ¼ 2
ð65Þ

The second boundary condition in (65) is

assumed to be gð�xÞ ¼ gð��xÞ for the sake of brev-
ity. Introducing Fourier cosine integral, gð�xÞ can
be expressed by
gð�xÞ ¼
ð1
0

CðsÞ cos ðs�xÞds

CðsÞ ¼ 2

p

ð1
0

gð�xÞ cos ðs�xÞd�x
ð66Þ
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The general solution of (62) can be

expressed by
Tð�x;�yÞ¼
ð1
0

AðsÞ�yqIqðs�yÞþBðsÞ�yqKqðs�yÞ
� �

� cos ðs�xÞ ds
ð67Þ

where AðsÞ and BðsÞ are unknown constants.

The unknown constants can be determined

by (65) as
AðsÞ¼ Ta
KqðsÞCðsÞ

2q Iqð2sÞKqðsÞ� IqðsÞKqð2sÞ
� �

BðsÞ¼�Ta
IqðsÞCðsÞ

2q Iqð2sÞKqðsÞ� IqðsÞKqð2sÞ
� � ð68Þ

Then, the temperature is determined.
Tð�x; �yÞ ¼ Ta

ð1
0

KqðsÞ�yqIqðs�yÞ � IqðsÞ�yqKqðs�yÞ
2q Iqð2sÞKqðsÞ � IqðsÞKqð2sÞ
� �

� CðsÞ cos ðs�xÞds
ð69Þ

We consider thermal stresses in an infinite

plate. The fundamental equations (56) for two

potential functions reduce to taking into consid-

eration of (60):
�H2fþ m

�y

@f
@�y
¼ a
0ðmþ 3Þ�ynT

�H2cþ m

�y

@c
@�y
¼ m

mþ 1

1

�y2
@f
@�y
� a
0

mðmþ 3Þ
mþ 1

�yn�1T

ð70Þ

The displacement and thermal stresses are
�ux ¼
@f
@�x
þ �y

@c
@�x

; �uy ¼
@f
@�y
þ �y

@c
@�y
� c ð71Þ

sxx ¼ 2G0�y
m @2f

@�x2
� m

mþ 1

1

�y

@f
@�y
þ �y

@2c
@�x2
� @c

@�y



� 1þ m� 1

mðmþ 1Þ

� �
a
0�y

nT

�

syy ¼ 2G0�y
m @2f

@�y2
� m

mþ 1

1

�y

@f
@�y
þ �y

@2c
@�y2
� @c

@�y



� 1þ m� 1

mðmþ 1Þ

� �
a
0�y

nT

�
sxy ¼ 2G0�y

m @2f
@�x@�y

þ �y
@2c
@�x@�y

� 	
ð72Þ

The boundary conditions are
syy ¼ sxy ¼ 0 on y ¼ 0

syy ¼ sxy ¼ 0 on y ¼ a
ð73Þ

Alternative form has

syy ¼ sxy ¼ 0 on �y ¼ 1

syy ¼ sxy ¼ 0 on �y ¼ 2
ð74Þ

The general solutions of (70) can be

expressed by

f ¼ fc þ fp; c ¼ cc þ cp ð75Þ

where fc, cc and fp, cp are complementary

solutions and particular solutions, respectively.
�H2fcþ
m

�y

@fc

@�y
¼ 0; �H2ccþ

m

�y

@cc

@�y
¼ 0 ð76Þ

�H2fp þ
m

�y

@fp

@�y
¼ a
0ðmþ 3Þ�ynT

�H2cp þ
m

�y

@cp

@�y
¼ m

mþ 1

1

�y2
@ðfc þ fpÞ

@�y

� a
0
mðmþ 3Þ
mþ 1

�yn�1T

ð77Þ

The general solution of (76) can be expressed as

fcð�x; �yÞ;

ccð�x; �yÞ ¼
1

�x

� 	
1

�y1�m

� 	
;

sin ðs�xÞ
cos ðs�xÞ

� 	
�ypIpðs�yÞ
�ypKpðs�yÞ

� 	
p ¼ 1� m

2

ð78Þ
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According to the symmetry of the problem, the

complementary solutions fc and cc of (76) are

given by

fc ¼
ð1
0

D1�y
pIpðs�yÞ þ D2�y

pKpðs�yÞ
� �

cos ðs�xÞds

cc ¼
ð1
0

E1�y
pIpðs�yÞ þ E2�y

pKpðs�yÞ
� �

cos ðs�xÞds

ð79Þ

where D1, D2; E1 and E2 are unknown constants.

When
l ¼ 2nþ mþ 4; l 6¼ m ð80Þ

the particular solutionsfp; cp can be expressed by

fp ¼
ð1
0

Dp
1�y

pIqðs�yÞ þ Dp
2�y

pKqðs�yÞ
� �

cos ðs�xÞds

cp ¼
ð1
0

Ep1
1 �ypIp�1ðs�yÞ þ Fp2

1 �ypIq�1ðs�yÞ
h

þ Fp3
1 �ypIqþ1ðs�yÞ þ Ep1

2 �ypKp�1ðs�yÞ

þ Fp2
2 �ypKq�1ðs�yÞ þ Fp3

2 �ypKqþ1ðs�yÞ
i
cos ðs�xÞds

ð81Þ

where
Fp2
1 ¼Fp2A

1 þFp3A
1 ; Fp3

1 ¼Fp2B
1 þFp3B

1 ;

Fp2
2 ¼Fp2A

2 þFp3A
2 ; Fp3

2 ¼Fp2B
2 þFp3B

2 ;

Dp
1¼

4a
0ðmþ3Þ
ðl�mÞðlþm�2ÞAðsÞ;

Dp
2¼�

4a
0ðmþ3Þ
ðl�mÞðlþm�2ÞBðsÞ;

Ep1
1 ¼

s

mþ1
D1; Ep1

2 ¼�
s

mþ1
D2;

Fp2A
1 ¼� 8a
0smðmþ3ÞAðsÞ

ð1� lÞðmþ1ÞðlþmÞðl�mÞðl�mþ2Þ ;

Fp2B
1 ¼� 8a
0smðmþ3ÞAðsÞ

ð1� lÞðmþ1Þðlþm�4Þðl�m�2Þðlþm�2Þ ;

Fp2A
2 ¼ 8a
0smðmþ3ÞBðsÞ

ð1� lÞðmþ1ÞðlþmÞðl�mÞðl�mþ2Þ ;

Fp2B
2 ¼ 8a
0smðmþ3ÞBðsÞ

ð1� lÞðmþ1Þðlþm�4Þðl�m�2Þðlþm�2Þ ;

Fp3A
1 ¼� 4a
0smðmþ3ÞAðsÞ

ð1� lÞðmþ1Þðl�mþ2ÞðlþmÞ ;

Fp3B
1 ¼� 4a
0smðmþ3ÞAðsÞ

ð1� lÞðmþ1Þðl�m�2Þðlþm�4Þ ;
Fp3A
2 ¼ � 4a
0smðmþ 3ÞBðsÞ

ð1� lÞðmþ 1Þðl� mþ 2Þðlþ mÞ

Fp3B
2 ¼ � 4a
0smðmþ 3ÞBðsÞ

ð1� lÞðmþ 1Þðl� m� 2Þðlþ m� 4Þ
ð82Þ

Then, general solutions f and c are
f ¼
ð1
0

D1�y
pIpðs�yÞ þ D2�y

pKpðs�yÞ
�

þ Dp
1�y

pIqðs�yÞ þ Dp
2�y

pKqðs�yÞ
�
cos ðs�xÞ ds

c ¼
ð1
0

E1�y
pIpðs�yÞ þ E2�y

pKpðs�yÞ
�

þ D1

s

mþ 1
�ypIp�1ðs�yÞ � D2

s

mþ 1
�ypKp�1ðs�yÞ

þ Fp2
1 �ypIq�1ðs�yÞ þ Fp2

2 �ypKp�1ðs�yÞ

þ Fp3
2 �ypIqþ1ðs�yÞ þ Fp3

2 �ypKqþ1ðs�yÞ
i
cos ðs�xÞ ds

ð83Þ

Substituting (83) and (67) into (71) and (72)

gives displacements and thermal stresses as

follows:

�ux ¼ ��yp
ð1
0

D1

1

mþ 1
ðmþ 1ÞIpðs�yÞ þ s�yIp�1ðs�yÞ
� �


þ D2

1

mþ 1
ðmþ 1ÞKpðs�yÞ � s�yKp�1ðs�yÞ
� �

þ E1�yIpðs�yÞ þ E2�yKpðs�yÞ
þ Dp

1Iqðs�yÞ þ Dp
2Kqðs�yÞ

þ Fp2
1 �yIq�1ðs�yÞ þ Fp2

2 �yKq�1ðs�yÞ

þ Fp3
1 �yIqþ1ðs�yÞ þ Fp3

2 �yKqþ1ðs�yÞ
o
s sin ðs�xÞds

ð84Þ

�uy ¼ �yp
ð1
0

D1

s

mþ 1
s�yIpðs�yÞ þD2

s

mþ 1
s�yKpðs�yÞ



þ E1 s�yIp�1ðs�yÞ � Ipðs�yÞ

� �
� E2 s�yKp�1ðs�yÞ þKpðs�yÞ

� �
þDp

1s ðp� qÞðs�yÞ�1Iqðs�yÞ þ Iq�1ðs�yÞ
h i

þDp
2s ðp� qÞðs�yÞ�1Kqðs�yÞ �Kq�1ðs�yÞ
h i

þ Fp2
1 ðpþ q� 2ÞIq�1ðs�yÞ þ s�yIqðs�yÞ
� �

þ Fp2
2 ðpþ q� 2ÞKq�1ðs�yÞ � s�yKqðs�yÞ
� �

þ Fp3
1 ðp� q� 2ÞIqþ1ðs�yÞ þ s�yIqðs�yÞ
� �

þ Fp3
2 ðp� q� 2ÞKqþ1ðs�yÞ � s�yKqðs�yÞ
� �o

cos ðs�xÞds

ð85Þ
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sxx
ð1 "" s2 �
2G0

¼ ��y1�p
0

D1
mþ 1

ðmþ 2ÞIpðs�yÞ þ s�yIp�1ðs�yÞ
�

þ D2

s2

mþ 1
ðmþ 2ÞKpðs�yÞ � s�yKp�1ðs�yÞ
� �

þ E1s s�yIpðs�yÞ þ Ip�1ðs�yÞ
� �

þ E2s s�yKpðs�yÞ � Kp�1ðs�yÞ
� �

þ Dp
1s

2 Iqðs�yÞ þ
m

mþ 1
ðp� qÞðs�yÞ�2Iqðs�yÞ
h

þðs�yÞ�1Iq�1ðs�yÞ
i
 �

þ Dp
2s

2 Kqðs�yÞ þ
m

mþ 1
ðp� qÞðs�yÞ�2Kqðs�yÞ
h

�ðs�yÞ�1Kq�1ðs�yÞ
i
 �

þ Fp2
1 s s�yIq�1ðs�yÞ þ ðpþ q� 1Þðs�yÞ�1Iq�1ðs�yÞ þ Iqðs�yÞ

h in o
þ Fp2

2 s s�yKq�1ðs�yÞ þ ðpþ q� 1Þðs�yÞ�1Kq�1ðs�yÞ � Kqðs�yÞ
h in o

þ Fp3
1 s s�yIqþ1ðs�yÞ þ ðp� q� 1Þðs�yÞ�1Iqþ1ðs�yÞ þ Iqðs�yÞ

h in o
þ Fp3

2 s s�yKqþ1ðs�yÞ þ ðp� q� 1Þðs�yÞp�1Kqþ1ðs�yÞ � Kqðs�yÞ
h in o

þ a
0 1þ m� 1

mðmþ 1Þ

� �
� AðsÞ�yqþnIqðs�yÞ þ BðsÞ�yqþnKqðs�yÞ
� �##

cos ðs�xÞds

ð86Þ
syy
2G0

¼ �y1�p
ð1
0

""
D1

s3

mþ 1
�yIp�1ðs�yÞ � D2

s3

mþ 1
�yKp�1ðs�yÞ

þ E1s �ðmþ 1ÞIp�1ðs�yÞ þ s�yIpðs�yÞ
� �

þ E2s ðmþ 1ÞKp�1ðs�yÞ þ s�yKpðs�yÞ
� �

þ Dp
1s

2 ðp� qÞ p� q� 1� m

mþ 1

� 	
ðs�yÞ�2

�
þ 1�Iqðs�yÞ �

mðmþ 2Þ
mþ 1

ðs�yÞ�1Iq�1ðs�yÞ

 �

þ Dp
2s

2 ðp� qÞ p� q� 1� m

mþ 1

� 	
ðs�yÞ�2

�
þ 1�Kqðs�yÞ þ

mðmþ 2Þ
mþ 1

ðs�yÞ�1Kq�1ðs�yÞ

 �

þ Fp2
1 s ðpþ q� 1Þðpþ q� 3Þðs�yÞ�1

h
þ s�y�Iq�1ðs�yÞ � ðmþ 1ÞIqðs�yÞ

n o
þ Fp2

2 s ðpþ q� 1Þðpþ q� 3Þðs�yÞ�1
h

þ s�y�Kq�1ðs�yÞ þ ðmþ 1ÞKqðs�yÞ
n o

þ Fp3
1 s ðp� q� 1Þðp� q� 3Þðs�yÞ�1

h
þ s�y�Iqþ1ðs�yÞ � ðmþ 1ÞIqðs�yÞ

n o
þ Fp3

2 s ðp� q� 1Þðp� q� 3Þðs�yÞ�1
h

þ s�y�Kqþ1ðs�yÞ þ ðmþ 1ÞKqðs�yÞ
n o

� a
0 1þ m� 1

mðmþ 1Þ

� �
� AðsÞ�yqþnIqðs�yÞ þ BðsÞ�yqþnKqðs�yÞ
� �##

� cos ðs�xÞds

ð87Þ
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sxy
2G0

¼ ��y1�p
ð1
0

s D1

s

mþ 1
Ip�1ðs�yÞ þ s�yIpðs�yÞ
� �


� D2

s

mþ 1
Kp�1ðs�yÞ � s�yKpðs�yÞ
� �

þ E1s�yIp�1ðs�yÞ � E2s�yKp�1ðs�yÞ

þ Dp
1s ðp� qÞðs�yÞ�1Iqðs�yÞ þ Iq�1ðs�yÞ
h i

þ Dp
2s ðp� qÞðs�yÞ�1Kqðs�yÞ � Kq�1ðs�yÞ
h i

þ Fp2
1 ðpþ q� 1ÞIq�1ðs�yÞ þ s�yIqðs�yÞ
� �

þ Fp2
2 ðpþ q� 1ÞKq�1ðs�yÞ � s�yKqðs�yÞ
� �

þ Fp3
1 ðp� q� 1ÞIqþ1ðs�yÞ þ s�yIqðs�yÞ
� �

þFp3
2 ðp� q� 1ÞKqþ1ðs�yÞ � s�yKqðs�yÞ
� �o

sin ðs�xÞ ds

ð88Þ

The unknown constantsD1,D2, E1, and E2 can

be determined by the boundary conditions (74).
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Definition

Functionally graded materials (FGMs) are het-

erogeneous and advanced materials in which the

elastic and thermal properties vary gradually and

continuously from one surface to another. FGMs

decrease the thermal stresses and hence are very

useful in nuclear, aircraft, and space engineering

applications. The application of this issue is

seen in geophysics, seismology, plasma physics,

magnetic storage elements, magnetic structural

elements, and measurement techniques of

magnetoelasticity. This entry presents the effect

of the magnetic problem of a functionally graded

(FG) hollow sphere subjected to mechanical and

thermal loads. An analytical solution for stresses

and perturbation of the magnetic field vector

were determined using the direct method and

the power series method. All of the material

properties varied continuously across the thick-

ness direction according to the power-law func-

tions of radial directions. The aim of this work

was to understand the effect of the magnetic field

on a FG hollow sphere subjected to mechanical

and thermal loads.
Overview

Abd-Alla et al. presented an investigation of

stress, temperature, and magnetic field in an iso-

tropic, homogeneous, viscoelastic medium with
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a spherical cavity in a primary magnetic field,

when the curved surface of the spherical cavity

was subjected to periodic loading [1]. Chen and

Lee worked on magneto-thermoelasticity by

introducing two displacement and two stress

functions [2]. The governing equations of the

linear theory of magneto-electro-thermoelasticity

with transverse isotropy were simplified. The

material nonhomogeneity along the axis of sym-

metry was taken into account and an approximate

laminate model was employed to facilitate the

deriving of analytical solutions. Dai and Fu

recently considered the magneto-thermoelastic

problem of FG hollow structures subjected to

mechanical loads. The material stiffness, the

thermal expansion coefficient, and the magnetic

permeability were assumed to obey simple

power-law variations through the structures’

wall thickness. The aim of their research was to

understand the effect of composition onmagneto-

thermoelastic stresses and to design optimum FG

hollow cylinders and hollow spheres [3]. Dai and

Wang presented an analytical method to solve the

problem of the dynamic stress-focusing and cen-

tered-effect of perturbation of the magnetic field

vector in orthotropic cylinders under thermal and

mechanical shock loads. Analytical expressions

for the dynamic stresses and the perturbation of

the magnetic field vector were obtained by means

of finite Hankel transforms and Laplace trans-

forms [4]. Recently, Poultangari et al. studied

the nonaxisymmetric thermomechanical loads

on functionally graded hollow spheres [5].

Tianhu et al. reported the theory of generalized

thermoelasticity, based on the theory of Lord and

Shulman with one relaxation time, used to study

the electro-magneto-thermoelastic interactions

in a semi-infinite, perfectly conducting solid

subjected to a thermal shock on its surface when

the solid and its adjoining vacuumwere subjected

to a uniform axial magnetic field [6]. They used

Laplace transform in the analysis. Maxwell’s

equations were formulated and the general-

ized electro-magneto-thermoelastic coupled

governing equations were established. Tianhu

et al. reported a generalized electro-magneto-

thermoelastic problem for an infinitely long

solid cylinder based on the theory of Lord and
Shulman with one relaxation time [7]. Eslami

et al. presented a general solution for one-

dimensional, steady-state thermal and mechani-

cal stresses in a hollow, thick sphere made of

FGM [8]. The material properties, except

Poisson’s ratio, were assumed to vary along the

radius r according to a power-law function.

Lee recently considered the problem of 3D, axi-

symmetric, quasistatic coupled magneto-

thermoelasticity for laminated circular, conical

shells subjected to magnetic and temperature

fields [9]. Laplace transform and finite differ-

ence methods were used to analyze the problem.

He obtained solutions for the temperature and

thermal deformation distributions in a transient

and steady state. Maruszewski presented

nonlinear magneto-thermoelastic equations in

soft ferromagnetic and elastic bodies. The sym-

metry of couplings in these equations was also

investigated [10]. Wang and Dink studied the

transient responses of a magneto-electro-elastic

hollow sphere for the fully coupled spherically

symmetric problem [11]. By means of the sepa-

ration of variables technique and the electric

and magnetic boundary conditions, the dynamic

problem of a magneto-electro-elastic hollow

sphere under spherically symmetric deformation

was transformed to two Volterra integral

equations of the second kind about two functions

of time.
Heat Conduction Problem

Consider a hollow sphere of inner radius a and

outer radius bmade of FGM. The spherical coor-

dinates ðr; y;fÞ are considered. The heat conduc-
tion equation for two-dimensional transient FG

sphere is:
T;rr þ
k0ðrÞ
kðrÞ þ

2

r

� 	
T;r þ

1

r2
T;yy þ

cot y
r2

T;y ¼ 0

a � r � b; 0 � y � p ð1Þ

where k(r) is heat conduction coefficient. The

general thermal boundary conditions are consid-

ered to be:



Analytical Solution for Two-Dimensional Magnetothermomechanical Response 135 A

A

x11Tða; yÞ þ x12T;rða; yÞ ¼ F1ðyÞ
x21Tðb; yÞ þ x22T;rðb; yÞ ¼ F2ðyÞ



ð2Þ

By choosing suitable values for parameters

xijði; j ¼ 1; 2Þ, different types of thermal bound-

ary conditions including conduction, heat flux,

and convection may be considered for the sphere.

The material properties of sphere are assumed to

be graded along the thickness direction according

to the power-law function as [3]:
EðrÞ ¼ E0

r

a

� 
m1

; aðrÞ ¼ a0
r

a

� 
m2

kðrÞ ¼ k0
r

a

� 
m3

; mðrÞ ¼ m0
r

a

� 
m4
ð3Þ

where E0; a0; k0; m0 are, respectively, the modu-

lus of elasticity, thermal expansion coefficient,

heat conduction coefficient, and magnetic perme-

ability andm1;m2;m3;m4 are the power-law indi-

ces. Since, most of the literatures are working

with power-law function, for comparison pur-

poses, it is decided to consider the power-law

function for FGM. Meanwhile, the solutions

obtained are simple in engineering problems.

The solution of temperature equation can be writ-

ten in the form of power series as:
Tðr; yÞ ¼
Xþ1
n¼0
ðE1nr

d1n þ E2nr
d2nÞPnðcos yÞ ð4Þ

where Pnðcos yÞ is Legendre series. where

d1n;2n ¼ �
m3 þ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm3 þ 1Þ2

4
þ nðnþ 1Þ

s
ð5Þ

Constants E1n and E2n are evaluated as follows

by substituting (4) into the thermal boundary

conditions.
Stress Analysis

Let u and v, be the displacement components in

the radial and circumferential directions. Thus

strain–displacement relations are:
err ¼ u;r

eyy ¼
1

r
ðuþ v;yÞ

e’’ ¼
1

r
ðuþ v cot yÞ

ery ¼
1

2

u;y
r
þ v;r �

v

r

� 

ð6Þ

The Hooke’s law for two-dimensional hollow

sphere can be written as:
srr ¼
EðrÞ

ð1þ nÞð1� 2nÞ ½ð1� nÞerr þ neyy þ ne’’�

� EðrÞaðrÞ
ð1� 2nÞ Tðr; yÞ

syy ¼
EðrÞ

ð1þ nÞð1� 2nÞ ½nerr þ ð1� nÞeyy þ ne’’�

� EðrÞaðrÞ
ð1� 2nÞ Tðr; yÞ

s’’ ¼
EðrÞ

ð1þ nÞð1� 2nÞ ½nerr þ neyy þ ð1� nÞe’’�

� EðrÞaðrÞ
ð1� 2nÞ Tðr; yÞ

sry ¼
EðrÞ
ð1þ nÞ ery ð7Þ

The variation of magnetic field with time or

transient magnetic field results in electrical field

and when the magnetic field is uniform, there is

no electrical field. When the electrical field

vanishes, then the coefficient connecting the

temperature gradient and the electrical current

as well as the coefficient connecting the current

density and the heat flow density like Thomp-

son effect can be ignored. Assuming that the

magnetic permeability, m, of the FG hollow

sphere is equal to the magnetic permeability

of the medium around it, and also the medium

is non-ferromagnetic and non-ferroelectric

and ignoring the Thompson effect, the

simplified Maxwell’s equations of electrody-

namics for a perfectly conducting elastic

medium are [1, 6, 7]:
h
!
¼ H� ðU

!
�H
!
Þ; J

!
¼ H� h

!
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fi ¼ mðrÞðJ
!
�H
!
Þi; ði ¼ r; yÞ ð8Þ

J
!

is electric current density vector, h is per-

turbation of magnetic field vector and H is mag-

netic intensity vector (A/m). Cubical dilatation is

as follows:

e ¼ err þ eyy þ eff ¼ u;r þ
2

r
uþ 1

r
v;y þ

1

r
v cot y

ð9Þ

Applying an initial magnetic field vector

H
!
¼ ð0; 0;HfÞ in spherical coordinates ðr; y;fÞ

to (8) yields to:

U
!
¼ ðu; v; 0Þ; hf

!
¼ �HfðeÞ

J ¼ �Hf
1

r

@e

@y
;Hf

@e

@r
; 0

� 	

f ¼ Hf
2 @e

@r
;Hf

2 1

r

@e

@y
; 0

� 	
ð10Þ

Thus, Lorentz’s force is evaluated as follows:
f ¼ mðrÞHf
2

�
u;rr þ

2u;r
r
� 2u

r2
þ v;ry

r
� v;y

r2

þ cot yv;r
r
� cot yv

r2
;
u;ry
r
þ 2u;y

r2

þ v;yy
r2
þ cot yv;y

r2
� ð1þ cot2yÞv

r2
; 0

	
ð11Þ

The equilibrium equations of FG hollow

sphere, irrespective of the body force and the

inertia terms are:

srr;rþ
1

r
ðsry;y þ 2srr � syy

� s’’ þ sry cot yÞ þ fr ¼ 0

sry;rþ
1

r
ðsyy;y þ ðsyy � s’’Þ

cot yþ 3sryÞ þ fy ¼ 0

ð12Þ

Using (6)–(11) and (3), Navier equations in

terms of radial and circumferential displacements

are as follows:
u;rrþðm1þ2Þ1
r
u;rþ2

m1n
1� n

�1
� 
 1

r2
u

þ 1�2n
2�2n

� 	
1

r2
u;yy

þ 1�2n
2�2n

� 	
coty
r2

u;yþ
1

2�2n

� 	
1

r
v;ry

þ m1n
1� n

�3�4n
2�2n

� 	
1

r2
v;y

þ 1

2�2n

� 	
coty
r

v;rþ
m1n
1� n

�3�4n
2�2n

� 	
coty
r2

v

þHf
2m0ð1þ nÞð1�2nÞ

E0ð1� nÞ rm4�m1 u;rrþ
2

r
u;r�

2

r2
u

�
þ1
r
v;ry�

1

r2
v;yþ

coty
r

v;r�
coty
r2

v

	
¼ð1þ nÞa0a�m2

1� n
½ðm1þm2Þrm2�1Tþ rm2T;r�

ð13Þ

v;rrþðm1þ2Þ1
r
v;r� m1þ

2�2n
1�2n

� 	
ð1þ cot2yÞ

	
1

r2
v

�
þ 2�2n

1�2n

� 	
1

r2
v;yyþ

2�2n
1�2n

� 	
coty
r2

v;y

þ 1

1�2n

� 	
1

r
u;ry:

þ m1þ
4�4n
1�2n

� 	
1

r2
u;yþ

2Hf
2m0ð1þ nÞ
E0

rm4�m1

1

r
u;ryþ

2

r2
u;yþ

1

r2
v;yyþ

coty
r2

v;y�
ð1þ cot2yÞ

r2
v

� �
¼ 2þ2n

1�2n

� 	
a0a�m2rm2�1T;y

For simplifying the Navier equations, it is

assumed that the two power-law indices, m1 and

m4 are equal. Therefore, the solutions of Navier

equations are:
uðr; yÞ ¼
Xþ1
n¼0

unðrÞPnðcos yÞ

vðr; yÞ ¼
Xþ1
n¼0

vnðrÞ sin yP0nðcos yÞ
ð14Þ

where P0nðcos yÞ is differentiation of Legendre

series with respect to circumferential direction.

Using (14) and substituting into the Navier equa-

tions yields the following:
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u00nð1þAÞþðm1þ2þ2AÞ1
r
u0nþ 2

nm1

1� n
�1�A

� 
h
�nðnþ1Þ 1�2n

2�2n

� 	�
1

r2
un

þnðnþ1Þ 1

2�2n
þA

� 	
1

r
v0n

þnðnþ1Þ nm1

1� n
�3�4n
2�2n

�A

� 	
1

r2
vn

¼ð1þ nÞa0a�m2

ð1� nÞ ½ðm1þm2Þrm2�1Tnþ rm2T0n�

ð15Þ

v00n þ ðm1 þ 2Þ 1
r
v0n � nðnþ 1Þ 2� 2n

1� 2n

� 	
þ m1

�
þBnðnþ 1Þ� 1

r2
vn �

1

1� 2n
þ B

� 	
1

r
u0n

� m1 þ
4� 4n
1� 2n

þ 2B

� 	
1

r2
un

¼� ð2þ 2nÞa0a�m2

ð1� 2nÞ rm2�1Tn

where

A ¼ Hf
2m0ð1þ nÞð1� 2nÞ

E0ð1� nÞ ; B ¼ 2Hf
2m0ð1þ nÞ
E0

ð16Þ

Symbol ð0 Þ denotes differentiation with

respect to r. The general solutions of (15) are:
ugnðrÞ ¼ Crm; vgnðrÞ ¼ Drm ð17Þ
Substituting (17) into the left side of (15)

yields:
C mðm�1Þð1þAÞþðmþ2þ2AÞmf

þ 2mn
1� n

�2�2A:

�nðnþ1Þ 1�2n
1� n

� 	�
þ nðnþ1Þ 1

2�2n
þA

� 	
m



þnðnþ1Þ mn

1� n
�3�4n
2�2n

�A

� 	�
D¼ 0

D mðm�1Þþðmþ2Þm�nðnþ1Þ2�2n
1�2n

�m



�Bnðnþ1ÞgþC �m 1

1�2n
þB

� 	

� mþ4�4n

1�2n
þ2B

� 	�
¼ 0

ð18Þ

Equations (18) are a system of algebraic

equations that for obtaining their nontrivial

solution, their determinant should be equal

to zero and their four roots are evaluated as

follows:

Therefore,
ugnðrÞ ¼
X4
j¼1

Cnjr
mnj ; vgnðrÞ ¼

X4
j¼1

NnjCnjr
mnj ð19Þ

where
Nnj¼�
mðm�1Þð1þAÞþðmþ2þ2AÞmþ 2mn

1�n�2�2A�nðnþ1Þ 1�2n
2�2n
� �

nðnþ1Þ m 1
2�2nþA
� �

þ mn
1�n� 3�4n

2�2n�A
� �

j¼ð1; . . . ;4Þ n 6¼ 0

ð20Þ
Particular solutions of (15) are assumed to be as

follows:
upnðrÞ ¼ F1nr
m2þd1nþ1 þ F2nr

m2þd2nþ1

vpnðrÞ ¼ F3nr
m2þd1nþ1 þ F4nr

m2þd2nþ1
ð21Þ

Substituting (21) into (15), the coefficients of

particular solution are evaluated from the
algebraic system of equations solved by Cramer’s

method.

Combination of the decoupled case for n ¼ 0,

must be considered:

The general solution in this case is as follows:

ug0ðrÞ ¼
X2
i¼1

a
0i
r�i ð22Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�s

�1;2 ¼

1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ
ð1� 2nÞðm1 þ 2þ 2AÞ m1 þ 4�4n

1�2nþ 2B
�

ð1þ AÞð1þ Bð1� 2nÞÞ � 2
m1n

ð1þ AÞð1� nÞ � 1

� 	
ð23Þ
And also particular solution for displacement of

decoupled case is:
up0ðrÞ ¼ F10r
m2�m3 þ F20r

m2þ1 ð24Þ

That the constants F10 and F20 are evaluated

by Cramer’s method. Therefore, the solution of

Navier equations for two-dimensional hollow

sphere is obtained as follows:
uðr; yÞ ¼
Xþ1
n¼1

(X4
j¼1

Cnjr
mnjþF1nr

m2þd1nþ1

þF2nr
m2þd2nþ1

)
Pnðcos yÞ

þ
X2
i¼1

a0ir
�i þ F10r

m2�m3 þ F20r
m2þ1

vðr; yÞ ¼
Xþ1
n¼1

X4
j¼1

NnjCnjr
mnjþF3nr

m2þd1nþ1

(
þF4nr

m2þd2nþ1
�
sin yP0nðcos yÞ

ð25Þ

Substitution of (25) in (6) yields to strains and

substitution of the results into (7) yields to

stresses.

Substitution of (25) into (8), the perturbation

of the magnetic field vector is obtained.

The von Mises stress is as follows:
sv¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsrr�syyÞ2þðsyy�sffÞ2þðsff�srrÞ2þ6sry2

q ffiffiffi
2
p.
ð26Þ

To determine the displacements and stresses,

four boundary conditions are required to evaluate

the four unknown constants Cn1 to Cn4 and

a01; a02. The four boundary conditions may be

selected from the list of boundary conditions
given in (27). The procedure is continued by

expanding the given boundary conditions into

the Legendre series. These constants are calcu-

lated by solving the system of algebraic equations

formed by four boundary conditions in the fol-

lowing expressions:
uða; yÞ ¼ g1ðyÞ; uðb; yÞ ¼ g2ðyÞ
vða; yÞ ¼ g3ðyÞ; vðb; yÞ ¼ g4ðyÞ:

srrða; yÞ ¼ g5ðyÞ; srrðb; yÞ ¼ g6ðyÞ
sryða; yÞ ¼ g7ðyÞ; sryðb; yÞ ¼ g8ðyÞ

ð27Þ

where giðyÞ; ði ¼ 1; . . . ; 8Þ are known boundary

condition functions.
Results and Discussion

The first example consist of considering the mag-

neto-thermoelasticity response in an FG hollow

sphere of inner radius (metal constituent) a¼ 1 m

and outer radius (ceramic constituent) b ¼ 1.2 m

with the same material properties as given in the

first example. The evaluated power-law indices

are given in Table 1.

The temperature at the inner radius is zero

and at the outer radius is defined by

Tðb; yÞ ¼ 100 cos y2 2= and the mechanical

boundary conditions are considered to be traction

free at both sides of the sphere. Figures 1–3 show,

respectively, the effect of magnetic field on radial

displacement, radial stress, and circumferential

stress of the FG hollow sphere, considering the

thermal load defined as above and for the evalu-

ated power-law indices indicated in Table and at

various y. The left side figures correspond to the

effect without magnetic field and the right side

figures correspond to the effect with magnetic

field. It is to be noted that the radial displacement

due to thermal load with magnetic field is greater

in magnitude than the radial displacement due to
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Table 1 Material properties

Material properties Power-law index

Ein ¼ 66:2GPa Eout ¼ 117GPa m1 ¼ 3:1236

ain ¼ 10:3E� 6=�C aout ¼ 7:11E� 6=�C m2 ¼ �2:0329
Kin ¼ 18:1W=mK Kout ¼ 2:036W=mK m3 ¼ �11:9839
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thermal load without magnetic field. The varia-

tions of both cases of displacements are almost

the same. The radial stress due to thermal load

without magnetic field is smaller in magnitude

than the radial stress due to thermal load with

magnetic field. The variations of two cases are

completely different. At both inner and outer

surfaces, the radial stresses are equal in magni-

tudes. Circumferential stress due to thermal load
with magnetic field is greater in magnitude than

the circumferential stress due to thermal load

without magnetic field. The variations of the

curves for the sphere subjected to magnetic field

and the one without magnetic field are almost

the same.

In order to study the effect of power-law indi-

ces on the behavior of the second example FG

hollow sphere in Table at the presence of
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magnetic field and thermal load, the power indi-

ces of material properties are considered to be

identical as m1 ¼ m2 ¼ m3 ¼ m. For this case,

m is considered to be ranging from �1 to +3.

Figure 4 shows the temperature distribution

with various power-law indices. When the

power-law index (m) increases, the temperature

is decreased, since FG sphere gets cold faster.

Figure 5 shows the variation of radial
displacement due to thermal load and magnetic

field with various power-law indices. Since

increasing m, results in higher gravity of the

sphere, then, the radial displacement is

decreased. Figure 6 shows the variation of radial

stress due to thermal load and magnetic field

with various power-law indices. As can be

observed from the figure, the radial stress

becomes zero at the inner radius of the sphere,
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since there is no constrains at the inner radius. By

increasing the power-law index (m), the radial

stress is increased. Figure 7 shows the circumfer-

ential stress distribution due to thermal load and
magnetic field with various power-law indices.

In contrary to the effect on radial stress, the

circumferential stress is decreased by increasing

m. Figure 8 shows the shear stress distribution
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indices at y ¼ p 4=
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due to thermal load and magnetic field with

various power-law indices. Similar to the

radial stress distribution, as m is increased,

the shear stress is also increased. Figure 9
shows the perturbation magnetic field vector

due to thermal load with various power-law

indices. By increasing m, the perturbation is

decreased.
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Conclusion

In this entry, the analytical solution for magneto-

thermomechanical response for FG hollow

sphere is presented. Analytical solution for

stresses and perturbation are determined using

power series method. The material stiffness,

thermal expansion coefficient, heat conduction

coefficient, and the magnetic permeability vary

continuously across the thickness direction

according to the power-law functions of radial

direction. Magnetic field results in decreasing

the radial displacement and circumferential stress

due to mechanical load, and has a negligible

effect on mechanical radial stress. Also, the mag-

netic field results in increasing the radial dis-

placement, radial and circumferential stresses

due to thermal load. By increasing power-law

index (m), the above-mentioned quantities due

to mechanical loads are all decreased. Increasing

the power-law indices at the presence of thermal

loads, result in increasing radial stress and shear

stress values, but has a reverse effect on temper-

ature, radial displacement, circumferential stress,

and perturbation of the magnetic field vector dis-

tributions. In general, the effect of mechanical

loads with magnetic field is more significant

when compared to the effect of thermal loads

with magnetic field.
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Synonyms

Anisotropic
Definitions

Termination of pure elastic response to applied

loading to anisotropic structural materials, requires

formulation and calibration of appropriate limit

surfaces, that indicates initiation of yield or

failure. Composite materials are typical represen-

tatives of novel, anisotropic materials, constituents

of which, in general, establish temperature depen-

dent thermo-mechanical properties, both formatrix

and fiber/particles phases. The usually applied tem-

perature independent analysis may lead to errone-

ous estimations of limit surfaces. Mismatch of

thermo-mechanical properties, between the com-

posite constituents, results in high magnitude

residual stresses, which are built-in during the

cool-down from the elevated fabrication tempera-

ture, and affect initial limit surfaces. Apart from

classical limit analysis at the macro-level (compos-

ite), separate analysis of the level of constituents

(matrix/fiber), is required.
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Overview

General Case for Goldenblat and Kopnov’s

Initial Yield or Failure Criteria

In the most general case of material anisotropy,

both elastic and inelastic, plastic or damage,

extension of common isotropic initial yield

and failure criteria can be done when single

stress invariants are replaced by common invari-

ants of the stress tensor and of the structural

tensor of plastic or damage anisotropy, as pro-

posed by Hill [1], Życzkowski [2], Betten [3],

Sayir [4]
f P;Pijsij;Pijklsijskl;
�
Pijklmnsijsklsmn; . . .

�
¼ 0

ð1Þ

where P, Pij, Pijkl and Pijklmn denote structural

tensors of plastic/failure anisotropy, and

Einstein’s summation of tensors holds, whereas

f ðÞ is an arbitrary scalar function of tensor

arguments of common invariants of the stress

tensor sij and structural anisotropy tensors,

e.g., Pijsij, Pijklsijskl and Pijklmnsijsklsmn. In

such cases, initiation of plasticity or failure is

governed not only by single material constants

ki (like in the case of isotropy), but also by

structural tensors of plastic or failure anisot-

ropy of various orders, Pp=f , Pp=f
ij , Pp=f

ijkl ,

Pp=f
ijklmn; . . . , different for plasticity (p) or failure

(f) initiations. Equation (1) owns a general rep-

resentation, but practical application of it is

strongly limited by a large number of material

tests. Additionally, components of all the

above structural tensors are temperature depen-

dent, e.g., PðTÞ, PijðTÞ, PijklðTÞ, PijklmnðTÞ,
which makes identification of them much

more complicated. In a particular case, when

tensorial-polynomial representation was used,

Goldenblat and Kopnov [5], and later Sayir

[4], proposed the anisotropic plastic flow or

failure criterion in a dimensionless form
Pijsij
� �aþ Pijklsijskl

� �b
þ Pijklmnsijsklsmn
� �gþ . . .�1¼ 0 ð2Þ
where all structural anisotropy tensors Pij, Pijkl,

Pijklmn, etc., are normalized by the common

constant P, where a, b and g are arbitrary

exponents of a polynomial representation.

Assuming a ¼ 1, b ¼ 1=2, g ¼ 1=3, (2) is

reduced to a simpler form, with the homogeneity

of the left-hand side polynomial components

assured, namely, cf. Goldenblat and Kopnov [5]
Pijsij þ Pijklsijskl
� �1=2

þ Pijklmnsijsklsmn
� �1=3�1 ¼ 0

ð3Þ

Equation (3), when limited to three common

invariants of the stress tensor sij and structural

anisotropy tensors of various orders: Pij (2nd

order), Pijkl (4th order) and Pijklmn (6th order),

is not the most general one, in the sense of the so-

called representation theorems, which determine

the most general irreducible forms of the scalar

and tensor functions that satisfy the coordinate

invariance and material symmetry properties, cf.

Spencer [6], Rymarz [7], Rogers [8], etc. How-

ever, 2-nd, 4-th and 6-th order structural anisot-

ropy tensors, that appear in (3), are satisfactory to

describe basic transformation modes of the limit

surfaces due to plastic or damage hardening pro-

cesses: isotropic change of size, kinematic trans-

lation and rotation, as well as distortion (with

a curvature change), cf. Kowalsky et al. [9].

Initial Yield/Failure Criteria for Ductile Versus

Brittle Materials

Goldenblat and Kopnov’s equation (3), with

dimensional homogeneity assumed, is quite gen-

eral too, because of a large number of material

tests required for its calibration. Hence, for prac-

tical applications, further reduction is frequently

recommended. It is governed by a general obser-

vation that characterize two basic classes of

structural materials behavior, depending on

the nature of the dissipative phenomena respon-

sible for termination of pure elastic behavior:

ductile or brittle. In general, plastic yield initia-

tion refers to the majority of metallic materials

(metals, alloys, intermetallics), for which hydro-

static stress does not influence yield initiation

criterion. Additionally, strength differential
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effect, that is a different plastic/failure behavior

in uniaxial tension and compression, is usually

negligible kt 
 kc, so that initial yield surfaces

are considered as cylindrical and convex. On

the other hand, failure or damage initiation

refers mostly to brittle materials (concrete,

ceramic materials, rocks, etc.), for which hydro-

static stress has an essential effect on the initial

damage mechanism. Obviously, the strength

differential effect is essential in this case

kt 6¼ kc, but usually the initial damage surfaces

remain convex.

As a consequence, when applied to ductile

materials, in the general Goldenblat and Kopnov

equation one can neglect first terms in (2–3)

dependent on the first stress invariant. By con-

trast, when the initial failure mechanism mani-

fests itself prior to other dissipative phenomena,

what happens in a majority of brittle materials, is

that the first stress invariant plays an essential

role, such that first (linear) terms in (2–3) cannot

be omitted. Moreover, third terms in (2–3) which

are dependent on the third stress invariant, that

basically are responsible for limit surfaces distor-

tion, usually are neglected for the initiation of

dissipative phenomena. However, surface distor-

tion often accompanies consecutive hardening

phenomena when advanced plasticity and

damage response occurs, cf. Kowalsky et al. [9].

As a consequence, dimensional and dimension-

less forms of Goldenblat and Kopnov’s equa-

tions, (2–3), can often be reduced to the forms

independent of the third common invariant

Pijklmnsijsklsmn, where the stress components

are entered by quadratic and linear terms as

follows

Pijsij
� �aþ Pijklsijskl

� �b�1 ¼ 0 ð4Þ

and when a ¼ 1, b ¼ 1=2

Pijsij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pijklsijskl

p
� 1 ¼ 0 ð5Þ

When exponents a ¼ b ¼ 1 are assumed in

(4), we obtain another reduced, nonhomogeneous

form

Pijsij þPijklsijskl � 1 ¼ 0 ð6Þ
Equation (6) is known as the Tsai–Wu aniso-

tropic initial yield/failure criterion, [10].

Thermal Effects in Composites

In the case of composite materials, one deals at

the level of microstructure with an artificial mate-

rial, composed of two or more components, such

that the new improved properties of a composite

material are achieved. Usually metal based-,

ceramic based-, or polymer based-composites

are used. Conventional polycrystalline metals,

such as: carbon steels, stainless steels, alumin-

ium-, titanium-, nickel-alloys, exhibit high

ductility, high tensile strength, and high damage

and fracture resistance. Simultaneously, they

suffer from limited high temperature resistance

(up to 2;000� 3;000 K), low creep resistance,

relatively low wear surface resistance, high

thermal conductivity and thermal expansion

coefficients, low corrosion resistance, and

relatively high mass density. On the other hand,

pure ceramic materials, such as: metal oxides

(Al2O3, ZrO2, TiO2), carbides (SiC, B4C, TiC,

Ti2C), and nitrides (TiN, CrN, Cr2N, WN, MoN,

ZrN) exhibit properties such as: extremely high

hardness, high compressive strength, good sur-

face wear resistance, high temperature resistance,

low thermal conductivity, thermal expansion

coefficients, good oxidation resistance, and low

mass density. Among the disadvantages, the

following can be listed: very poor tensile strength

kt 	 kc, high brittleness, low fracture resistance

and porosity. A goal of applying a composite

material is to achieve improved properties of

a material at the macro-level by combining the

chosen most advantageous properties of compo-

nents (matrix and reinforcement properties).

Following the basic kinds of composites, with

respect to matrix material, are distinguished by

such as: metal matrix composites (MMC),

ceramic matrix composites (CMC) or polymer

matrix composites (PMC). The type and geome-

try of reinforcement determine properties and

group of symmetry of the composite at the

macro-level. With respect to reinforcement, two

classes of composites can be distinguished: par-

ticle reinforced composites (PRC) or fiber

reinforced composites (FRC). The PRCs, that
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are usually composed of isotropic component

materials (matrix and reinforcement), exhibit

the property of isotropy at the macro-level, as

well. The FRCs, and especially long fiber

reinforced composites LFRCs, show anisotropy

at the macro-level if geometry and orientation of

fibers exhibit a certain specific order. In particu-

lar, orthotropy or transverse isotropy assumptions

are frequently used for the LFRCs symmetry

group. In such cases, the Goldenblat and Kopnov

initial yield and failure equation, (3), should be

rewritten at the micro-level in a form
Pm;f
ij sm;f

ij þ Pm;f
ijkls

m;f
ij sm;f

kl

� 
1=2
þ Pm;f

ijklmns
m;f
ij sm;f

kl sm;f
mn

� 
1=3
�1 ¼ 0

ð7Þ

where all common stress and material anisotropy

invariants are defined separately for matrix (m)

and fiber (f) materials.

All material anisotropy tensors discussed in

this section are, in general, functions of

temperature, e.g., Pm;f
ij ðTÞ, P

m;f
ijkl ðTÞ, P

m;f
ijklmnðTÞ.

This temperature effect cannot be ignored in the

case of metallic materials that exhibit strong

limitations with respect to their use-temperature.

The most common metallic materials, used as

matrix materials in composites, are aluminum-

based or titanium-based alloys. Aluminum

matrix composites have a use-temperature

upwards to 300 �C, whereas titanium matrix

composites can be applied to 800 �C
(cf. Herakovich and Aboudi [11]). On the other

hand, ceramic matrix materials can resist much

higher temperatures, up to 2; 000 �C, whereas

carbon/carbon composites can withstand temper-

atures up to 2; 200 �C. Two approaches to limit

criterions are used: with temperature independent

or temperature dependent material properties.

In case of metallic materials, temperature

dependence of their properties cannot be

ignored, especially if either elevated or cryogenic

temperatures are considered.

In addition, composites are multi-component

materials, usually having essential mismatch of

thermo-mechanical properties between the
constituents at the micro-level. This mismatch

results in strong residual stresses (sometimes up

to 2 GPa compressive stress in ultra-fine ceramic

films, e.g., used as thermal barrier coatings, for

example CrN, Cr2N etc.). Residual stresses are

built-in during the cool-down from the elevated

fabrication temperature, and frozen during con-

secutive mechanical loading conditions. The

mismatch effect is typical for both the long-

fiber reinforced anisotropic composites and the

particle reinforced isotropic composites. How-

ever, it manifests itself clearly in case of exis-

tence of material anisotropy, independently of

material isotropy of constituents at the micro-

level, or structural anisotropy of a composite at

macro-level.

The above discussed two thermal effects: due

to residual stresses, and due to temperature

dependent material properties, are in fact

coupled, but they are responsible for different

transformations of limit surfaces. Temperature

dependence of material properties basically

results in change of size or shape of limit surface,

whereas residual stresses frozen after a fabrica-

tion cooling-down process is done control the

kinematic effect of the limit surface. These

remarks hold for both limit surfaces of constitu-

ents (matrix and fibers or particles) and for the

resulting common intersection of both surfaces,

usually exhibiting corner points.
Basic Methodology

The Pariseau–Tsai–Wu Anisotropic Initial

Yield and Failure Criteria: Reduction and

Calibration

Equation (6) presented in a previous section

defines an anisotropic initial yield/failure crite-

rion, in which material anisotropy is character-

ized by two anisotropy tensors, the second-order

tensor Pij and the fourth-order tensor Pijkl. This

equation may also be written in matrix notation,

when the symmetry conditions for both stress

tensors sij ¼ sji, and structural tensors

Pij ¼ Pji and Pijkl ¼ Pjikl ¼ Pijlk ¼ Pklij hold.

Hence, the number of material parameters that

define a 6� 6 matrix ½P� and a 6� 1 column
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matrix ½p� is equal to 6þ 21 ¼ 27, when the

Voigt vector–matrix notation is applied to the

Tsai–Wu equation (6)

½p� sf g þ sf gT ½P� sf g � 1 ¼ 0 ð8Þ

Although total number of material anisotropy

parameters in (8) is 27, only 24 of them are

essentially independent, since tensor Pijkl must

also obey a tensorial transformation rule, involv-

ing three Euler angles. Both anisotropy matrices

in (8), ½p� and ½P� can explicitly be written as

follows

½p� ¼ ½p1; p2; p3; p4; p5;p6�T

P½ � ¼

P11 P12 P13 P14 P15 P16

P22 P23 P24 P25 P26

P33 P34 P35 P36

P44 P45 P46

P55 P56

P66

2666666664

3777777775
ð9Þ

Further reduction of independent material

parameters in (9) is possible if the invariance of

(8) with respect to change of sign of shear stress

components is consistently assumed. This

requirement is satisfied if matrix ½p� is diagonal
and matrix ½P� is orthotropic

½p� ¼ ½p1; p2; p3; 0; 0; 0�T

P½ � ¼

P11 P12 P13 0 0 0

P22 P23 0 0 0

P33 0 0 0

P44 0 0

P55 0

P66

2666666664

3777777775
ð10Þ

If ½p� and ½P� have the form (10), then the

reduced equation Tsai–Wu (8) is sensitive to

a change of sign of normal stress, but insensitive

to change of a sign of shear stress components.

The reduced form of structural tensors (10) is

defined by 3þ 9 ¼ 12 independent material con-

stants. Hence, the complete tensorial form of the
Tsai-Wu equation (8), that contains 12 indepen-

dent material constants (9 for ½P� and 3 for ½p�), is
furnished as
P11s2x þP22s2y þP33s2z
þP12sxsy þP23sysz þP31szsx

þP44t2yz þP55t2zx þP66t2xy
þ p1sx þ p2sy þ p3sz � 1 ¼ 0

ð11Þ

or

sx
sy
sz
tyz
tzx
txy

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

P11 P12 P13 0 0 0

P22 P23 0 0 0

P33 0 0 0

P44 0 0

P55 0

P66

2666666664

3777777775

�

sx
sy
sz
tyz
tzx
txy

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
þ

sx
sy
sz
tyz
tzx
txy

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

p1
p2
p3
0

0

0

2666666664

3777777775
� 1 ¼ 0

ð12Þ

If the next reduction of the criterion (11) and

(12) is done, to the case when only the second

order term sf gT ½P� sf g is independent of hydro-
static pressure, the following 9-parameter

Pariseau–Tsai–Wu equation is obtained, in

a partly deviatoric form (quadratic terms only),

after Chen and Han [13]
a1ðsy � szÞ2 þ a2ðsz � sxÞ2

þ a3ðsx � syÞ2 þ a4t2yz þ a5t2zx þ a6t2xy
þ a7sx þ a8sy þ a9sz � 1 ¼ 0

ð13Þ

where following notation is used a1 ¼ �P23,

a2 ¼ �P13, a3 ¼ �P12, a4 ¼ P44, a5 ¼ P55,

a6 ¼ P66, and a7 ¼ p1, a8 ¼ p2, a9 ¼ p3. The
above equation can alternatively be rewritten as
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sx
sy
sz
tyz
tzx
txy

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

a2 þ a3 �a3 �a3 0 0 0

a3 þ a1 �a1 0 0 0

a1 þ a2 0 0 0

a4 0 0

a5 0

a6

2666666664

3777777775

�

sx
sy
sz
tyz
tzx
txy

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
þ

sx
sy
sz
tyz
tzx
txy

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

a7

a8

a9

0

0

0

2666666664

3777777775
� 1 ¼ 0

ð14Þ

where the matrix–vector notation (14) is used.

The above 9-parameter initial yield/failure crite-

rion (13, 14) was first suggested by Pariseau [12]

for anisotropic rocks and solids. Later, Tsai

and Wu [10] proposed an analogous criterion,

but they applied an additional condition of

full independence of hydrostatic pressure,

a9 ¼ �ða7 þ a8Þ, so that the total number of

independent parameters was finally reduced to 8.

Assume further (after Chen and Han [13]) that

the plane ðx; yÞ in (13), (14) is considered as the

transverse isotropy plane. Hence, the coefficients

in (13), (14) are not independent, but are

subjected to the constraints

a2 ¼ a1; a5 ¼ a4; a8 ¼ a7; a6 ¼ 2ða1 þ 2a3Þ
ð15Þ

Substitution of (15) into (13) and (14), leads to

the reduced 5-parameter Pariseau–Tsai–Wu

criterion.

a1½ðsy � szÞ2 þ ðsz � sxÞ2� þ a3ðsx � syÞ2

þ a4ðt2yz þ t2zxÞ þ 2ða1 þ 2a3Þt2xy
þ a7ðsx þ syÞ þ a9sz � 1 ¼ 0

ð16Þ

This equation was originaly used by Ralston

[14] for an ice crushing failure analysis. In order

to calibrate the 5-parameter Pariseau–Tsai–Wu

criterion (16), the following tests are to be

performed:
– Uniaxial tension and compression in the (x; y)

plane of transverse isotropy (e.g., x axis)

sx ¼ ktx; sy ¼ sz ¼ txy ¼ tzx ¼ tzy ¼ 0

a1k
2
tx þ a3k

2
tx þ a7ktx ¼ 1

sx ¼ �kcx; sy ¼ sz ¼ txy ¼ tzx ¼ tzy ¼ 0

a1k
2
cx þ a3k

2
cx � a7kcx ¼ 1

ð17Þ

– Uniaxial tension and compression along the

orthotropy axis (z axis)

sz ¼ ktz; sx ¼ sy ¼ txy ¼ tzx ¼ tzy ¼ 0

2a1k
2
tz þ a9ktz ¼ 1

sz ¼ �kcz; sx ¼ sy ¼ txy ¼ tzx ¼ tzy ¼ 0

2a1k
2
cz � a9kcz ¼ 1

ð18Þ

– Simple shear in the plane of orthotropy (e.g.,

zx plane)

tzx ¼ kzx; sx ¼ sy ¼ sz ¼ txy ¼ tzy ¼ 0

a4k
2
zx ¼ 1

ð19Þ

where kti and kci stand for tensile and compres-

sive strengths in corresponding directions

i ¼ x; z, and kzx is the shear strength in the

orthotropy plane. Finally, the following formulae

for ai independent constants i ¼ 1; 3; 4; 7 and 9

are achieved

a1 ¼
1

2ktzkcz
; a3 ¼

1

ktxkcx
� 1

2ktzkcz
;

a4 ¼
1

k2zx
;

a7 ¼
1

ktx
� 1

kcx
; a9 ¼

1

ktz
� 1

kcz

ð20Þ
The Hill Versus the Mises–Hu–Marin Initial

Yield Conditions: Limitation and Calibration

When only quadratic terms in the Goldenblat–

Kopnov criterion (6) are retained, the general

21-parameter Mises yield/failure criterion

(Pijkl ¼ Mijkl) is obtained



A 152 Anisotropic Initial Yield and Failure Criteria Including Temperature Effect
Mijklsijskl � 1 ¼ 0 ð21Þ

In the case when the form non-sensitive to the

change of sign of the normal stress exclusively is

saved, (21) is reduced to the 9-parameter

equation

M11s2x þM22s2y þM33s2z
þ 2ðM12sxsy þM23sysz þM31szsxÞ
þM44t2yz þM55t2zx þM66t2xy � 1 ¼ 0

ð22Þ

If, additionally, transverse isotropy in the

(xy) plane holds, M11 ¼ M22, M13 ¼ M23,

M44 ¼ M55, M66 ¼ 2M11 �M12, and the 5-

parameter transversely isotropic Mises criterion

is obtained
M11ðs2x þ s2yÞ þM33s2z þ 2½M12sxsy

þM13ðsxsz þ szsyÞ� þM44ðt2yz þ t2zxÞ
þ ð2M11 �M12Þt2xy � 1 ¼ 0

ð23Þ

where M11, M33, M12, M13, M44 are 5 indepen-

dent anisotropy parameters. The 5-parameter

Mises criterion (23) is more general than the

frequently used deviatoric Hill criterion, also

transversely isotropic in the (xy) plane, in

which the following holds: H12 ¼ H33 � 2H11

and H13 ¼ H33. Hence, the Hill criterion is

furnished as

H11ðs2x þ s2yÞ þ H33s2z
þ H33 � 2H11ð Þsxsy � H33 sxsz þ szsy

� �
þ H44 t2yz þ t2zx

� 

þ 4H11 � H33ð Þt2xy � 1 ¼ 0

ð24Þ

where only three parameters are independent,

e.g., H11;H33 and H44, similarly as in (16),

where linear terms are neglected.

In order to calibrate the 3-parameter trans-

versely isotropic Hill criterion (24), two uniaxial

tension (or compression) tests along the x and z
axes, and one simple shear test in the zx plane

have to be performed:
sx ¼ kx; sy ¼ sz ¼ tzx ¼ txy ¼ tyz ¼ 0

! H11 ¼ 1=k2x
sz ¼ kz; sx ¼ sy ¼ tzx ¼ txy ¼ tyz ¼ 0

! H33 ¼ 1=k2z
tzx ¼ kzx; sx ¼ sy ¼ sz ¼ txy ¼ tyz ¼ 0

! H44 ¼ 1=k2zx

ð25Þ

where kx, kz and kzx stand for tensile (or compres-

sion) strengths in directions x, z and shear

strength in the orthotropy plane zx. Hence,

Hill’s criterion (24), can be rewritten as
ðsy � szÞ2 þ ðsz � sxÞ2

2k2z
þ 1

k2x
� 1

2k2z

� 	
� ðsx � syÞ2 þ

tzx
kzx

� 	2

�1 ¼ 0

ð26Þ

Alternatively, in the case of the 5-parameter,

transversely isotropic Mises–Hu–Marin criterion

(23), in order to identify five anisotropy modules,

the following conditions can be used: four tests,

namely, two uniaxial tensions along orthotropy

and isotropy axes z and x, a simple shear test in

the zx orthotropy plane and one biaxial (bulge)

test in the isotropy plane xy. This schematically is

shown in Fig. 1a, b
sx ¼ kx; sy ¼ sz ¼ tzx ¼ txy ¼ tyz ¼ 0

! M11 ¼ 1=k2x
sz ¼ kz; sx ¼ sy ¼ tzx ¼ txy ¼ tyz ¼ 0

! M33 ¼ 1=k2z
tzx ¼ kzx; sx ¼ sy ¼ sz ¼ txy ¼ tyz ¼ 0

! M44 ¼ 1=k2zx

sx ¼ sy
¼ kðxyÞ

)
; sz ¼ tzx ¼ txy ¼ tyz ¼ 0

! 2M12 ¼ 1=k2ðxyÞ � 2=k2x

ð27Þ

where, additionally, the biaxial test symbol kðxyÞ
stands for strength measured in the bulge test in

the transverse isotropy plane x; y.

Bulge tests were used, e.g., by Jackson et al.

[15]. Additionally, one auxiliary condition in the

orthotropy plane Fig. 1a, b is postulated:
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biaxial bulge tests: (a) plane of transverse isotropy, (b) plane of orthotropy
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sx ¼ kx

sz ¼ kz

�
; sz ¼ tzx ¼ txy ¼ tyz ¼ 0

! 2M13 ¼ 1= kxkzð Þ

ð28Þ

Finally, the non-deviatoric Mises–Hu–Marin

criterion (23) is furnished as, cf. Ganczarski and

Skrzypek [16], which is a generalization of the

plane stress Hu–Marin concept, Hu and

Marin [17]

s2x þ s2y
k2x

þ sz
kz

� 	2

þ 1

k2ðxyÞ
� 2

k2x

 !

� sxsy �
ðsx þ syÞsz

kxkz
þ tzx

kzx

� 	2

�1 ¼ 0

ð29Þ

where four independent material parameters kx,
kz, kzx and kðxyÞ (biaxial bulge test) have to be

measured, with auxiliary condition (28) used.

Note that the Mises–Hu-Marin equation (29)

appears as a hydrostatic stress dependent one,

by contrast to the Hill equation, (26), which sat-

isfies hydrostatic stress independence. The above

alternative assumptions: applying the deviatoric

3-parameter Hill’s criterion (26), with three
classical tests (kx; kz; kzx) used, or the 5-parameter

non-deviatoric Mises–Hu–Marin criterion (29),

with an additional one biaxial bulge test in the

isotropy plane xy and one auxiliary condition pos-

tulated in the ortho � tropy plane zx, are applied.

Hill’s criterion (26) holds for orthotropic materials,

however, the degree of orthotropy cannot be arbi-

trarily large. In the case of a high degree of

orthotropy, the Hill equation (24), admits the arbi-

trarily large stress states that do not result in yield-

ing (cf. Ottosen andRistinmaa [18]). The following

inequality limits the range for Hill’s criterion

2

k2xk
2
y

þ 2

k2yk
2
z

þ 2

k2z k
2
x

>
1

k4x
þ 1

k4y
þ 1

k4z
ð30Þ

In the narrower case of transverse isotropy

(kx ¼ ky), condition (30) reduces to a simpler

form

1

k2z

4

k2x
� 1

k2z

� 	
> 0 ð31Þ

Substitution of the dimensionless parameter

R ¼ 2ðkz=kxÞ2 � 1, after Hosford and Backhofen

[19], leads to a simplified form of Hill’s criterion

restriction (31)
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R > �0:5 or alternatively
kz
kx

> 0:5 ð32Þ

However, the key point is thatwe have assumed

the quadratic expression (24) and this expression

only allows the yield surface to be a closed surface

in the deviatoric stress space when (30) is fulfilled.

If the above inequality does not hold, elliptic cross

sections degenerate to two hyperbolic branches

and the lack of convexity occurs. The yield curves

in two planes: the transverse isotropy (sx;sy) and
the orthotropy plane (sx; sz) for various R -values

are sketched in Fig. 2a, b, respectively. It is

observed that when R approaches the limit

R ¼ �0:5, the curves change from closed ellipses

to two parallel lines, whereas for R<� 0:5, con-

cave hyperbolas appear (cf. Ottosen andRistinmaa

[18]). The five parameter Mises–Hu–Marin crite-

rion is free from such restriction and can be used

for an arbitrarily large degree of orthotropy.
Effect of Thermal Residual Stresses on
the Initial Yield and Failure Surfaces in
the Unidirectional Composites

Key Herakovich and Aboudi Findings

The effect of residual stresses in unidirectional

composites on initial yield/failure surfaces was
studied by Herakovich and Aboudi [11]. The

authors considered the unidirectional MMC based

on a Ti-15Al-3V matrix reinforced by SCS-6

silicon carbide fibers. Although both constituents

behave strictly isotropically, an essential mismatch

of thermo-mechanical properties between the con-

stituents at the micro-level introduces strong

anisotropy of the composite at the macro-level

(representative unit-cell). They investigated initial

yield surfaces of unidirectional lamina, composed

of any number of layers, but all SCS fibres are in

the same direction, the effective properties of

which satisfy the transverse isotropy (cf. Table 1).

The plane x ¼ t; y ¼ t, perpendicular to the

fiber direction, is the transverse isotropy plane,

whereas the direction of fiber z ¼ a coincides

with the orthotropy axis (cf. Fig. 3). Symbols Ea,

Et,Ga,Gt, na, nt,Ya,Yt and aa, at stand for axial and
transverse: Young modulea, Kirchhoff modulae,7

Poisson ratios, yield strengths and thermal expan-

sion coefficients, respectively. Figure 4a, c repre-

sents two families of yield surfaces referring

to the fabrication temperature Ti ¼ 575 �C and

the operating temperature (after cooling-down)

Tf ¼ 20 �C. Following bi-axial states of stress:

combined axial and transverse normal (sx; sz),
combined transverse normal (sx; sy), and

combined out-of-plane orthotropic shear and



Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Table 1 Components and

composite’s properties, after Herakovich and Aboudi [11]

Property Constituents SCS-6/

Fiber Ti-15 Ti-6 Ti-15

SCS-6 Al-3V Al-4V Al-3V

Ea (GPa) 414 91 113.7 221

Et (GPa) 414 91 113.7 145

na 0.25 0.25 0.3 0.27

nt 0.25 0.25 0.3 0.40

Ga (GPa) 165.5 3.33 43.73 53.2

Gt (GPa) 165.5 3.33 43.73 51.7

Ya (MPa) 3,500 758 900 1,517

Yt (MPa) 3,500 758 900 317

aa � 10�6 (K �1) 4.86 9.44 9.44 6.15

at � 10�6 (K�1) 4.86 9.44 9.44 7.90

z = a

x = t

plane of
transvese
isotropy

Ti-15A1-3V
matrix

SCS6
fiber

y = t

Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Fig. 3 Transverse isotropy of

unidirectional long fiber composite SCS-6/Ti-15Al-3V
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transverse normal (tzx; sx), are shown in Fig. 4a, c.
At the considered temperature change, no yielding

is observed during cooling-down, however, in the

case of larger temperature change, yielding during

cooling-down may be observed. Both translation

and distortion of limit surfaces are noticed. The

initial yielding/failure surfaces at the micro-level
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Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Fig. 5 Approximation of ini-

tial failure curves (Ti ¼ 575 �C) of Herakovich and

Aboudi experiments [11] by Hill’s or Mises–Hu–Marin

criterions: (a) orthotropy plane, (b) isotropy plane, (c)

shear plane
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have to account for the effect of changing residual

stresses, which is different in the matrix and the

fibres. It is seen that subsequent limit curves are no

longer uniform ellipses but represent cross-sections

of two limit curves, referring to individual matrix

and fiber materials. The corners observed in

Fig. 4a, c result from the intersection of different

families of individual limit curves.

Modeling Unified Initial Limit Surfaces of

SiC/ Ti Composite by Hill’s Versus Mises–Hu–

Marin’s Criterions

Assuming at the beginning that the initial yield

surface which corresponds to Ti ¼ 575 �C is free

from residual stresses, the classical Hill’s

approach ((26) for transversely isotropic mate-

rial) can be tried. Taking the following cross-

sections of the limit surface (26), we arrive at:

Isotropy plane (kx ¼ Y; kz ¼ 2:3Y)

s2x � 1:811sxsy þ s2y ¼ Y2 ð33Þ

Orthotropy plane (ky ¼ Y; kz ¼ 2:3Y)

s2y � 0:189sysz þ 0:189s2z ¼ Y2 ð34Þ

Shear plane (kzx ¼ 0:5Y; kx ¼ Y)

s2x þ 4t2zx ¼ Y2 ð35Þ

Symbol Y stands for the yield point stress in

the plane of transverse isotropy kx ¼ ky ¼ Y. The

above cross-sections are shown in Fig. 5a, c.

Hill’s approximation fits well to orthotropy (a)

and shear (c) planes. However, in the isotropy

plane (b), fitting is non-satisfactory.
An assumption is made, therefore, of

another approach based on Mises–Hu–Marin

equation (29), leading to (cf. Ganczarski and

Skrzypek [15]):

Isotropy plane (kx ¼ Y; kðxyÞ ¼ 1:7Y)

s2x � 1:654sxsy þ s2y ¼ Y2 ð36Þ

Orthotropy plane (ky ¼ Y; kz ¼ 2:3Y)

s2y � 0:434sysz þ 0:189s2z ¼ Y2 ð37Þ

Shear plane (kzx ¼ 0:5Y; kx ¼ Y)
s2x þ 4t2zx ¼ Y2 ð38Þ

The Mises–Hu–Marin approach (36–38) is

compared to Hill’s approximation (33–35) in

Fig. 5a, c. The Mises–Hu–Marin approach much

better fits the Herakovich and Aboudi results in

the isotropy plane (Fig. 5a), thanks to an accept-

able mis-fitting in the orthotropy plane (Fig. 5b).

A worse fitting by Hill’s approximation in the

isotropy plane (Fig. 3a), when compared to

Mises–Hu–Marin approach, results from the

influence of the magnitude of axial strength kz
disturbing condition in the isotropy plane (cf.

previous discussion referring to applicability of

Hill’s criterion (31)).

Modeling Temperature Effect During

Fabrication on Limit Surfaces by the

Pariseau–Tsai–Wu Criterion

As it was mentioned above, temperature

change during fabrication (cooling-down)

results in both residual stresses, different in
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matrix and fiber materials, and a change of

material modules of both composite constitu-

ents. The appearance of residual stresses man-

ifests itself mainly in translation of limit

surfaces for matrix and fiber materials,

whereas temperature dependence of anisotropy

modules results in a change of size and

distortion of limit surfaces. Hence, instead of

the unified approach at the level of a

representative unit cell, cf. Herakovich and

Aboudi [11], the micro-approach should be

applied, for matrix and fiber materials sepa-

rately (7). The Pariseau–Tsai–Wu 5-parameter

criterion (16) combined with material con-

stants calibration (20), are used. This approach

allows the accurate approximation of two fam-

ilies of limit curves in considered planes,

referring to matrix and fiber materials at two

temperatures Ti ¼ 575 �C and Tf ¼ 20 �C,
where Ti stands for initial fabrication temper-

ature, and Tf for final temperature after

cooling-down. At the initial temperature

Ti ¼ 575 �C, this leads to (cf. Ganczarski and

Skrzypek [16]):

Isotropy plane Sx ¼ sx=Y;Sy ¼ sy=Y
ðAÞ 0:505S2
x � 0:445SxSy þ 0:404S2

y

þ 0:560Sx ¼ 1

ðBÞ 0:376S2
x � 0:414SxSy þ 0:376S2

y

� 0:408Sx þ 0:408Sy ¼ 1

ð39Þ

Orthotropy plane (Sy ¼ sy=Y;Sz ¼ sz=Y)
ðCÞ 0:530S2
y � 0:251SySz þ 0:184S2

z

þ 0:361Sy � 8:14 � 10�3Sz ¼ 1

ðDÞ 0:541S2
y � 0:256SySz þ 0:188S2

z

� 0:435Sy þ 3:99 � 10�3Sz ¼ 1

ð40Þ

Shear plane Sx ¼ sx=Y;Szx ¼ tzx=Y
ðIÞ 0:942S2
x þ 4:527S2

zx ¼ 1 ð41Þ
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and Failure Criteria
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Effect,
Fig. 7 Temperature

dependent matrix

properties of the Ti-6Al-4V

system, following

Herakovich and Aboudi

[11]
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And, at final temperature Tf ¼ 20 �C, we

arrive at:

Isotropy plane Sx ¼ sx=Y;Sy ¼ sy=Y
ðEÞ 0:500S2
x � 0:725SxSy þ 0:823S2

y

þ 1:000Sx � 2:130Sy ¼ 1

ðFÞ 0:912S2
x � 0:866SxSy þ 0:596S2

y

� 2:102Sx þ 0:921Sy ¼ 1

ð42Þ

Orthotropy plane (Sy ¼ sy=Y;Sz ¼ sz=Y)
ðGÞ 0:276S2
y � 0:384SySz þ 0:276S2

z

þ 0:935Sy þ 4:92Sz ¼ 1

ðHÞ 0:934S2
y � 0:445SySz þ 0:320S2

z

� 2:01Sy þ 0:65 � 10�3Sz ¼ 1

ð43Þ

Shear plane Sx ¼ sx=Y;Szx ¼ tzx=Y
ðJÞ 1:426S2
xþ6:852S2

zx�1:712Sx¼ 1

ðKÞ 1:065S2
xþ1:723S2

zxþ0:746Sx¼ 1
ð44Þ

In the above, the upper case Si stands for

dimensionless stress components. The results
are shown and compared with Herakovich and

Aboudi findings [11] in Fig. 6.

Effect of Temperature Dependent

Parameters

In the above simulation, all material properties of

composite constituents were considered as tem-

perature independent. On the contrary, in a more

accurate analysis, the residual stresses, induced

during the cooling-down fabrication process, in

constituents result from a mismatch of the tem-

perature dependent properties of both phases:

matrix and fiber. Additionally, subsequent yield/

failure surfaces have to account for temperature

dependent properties: initial yielding of the metal

matrix, governed by an actual value of the yield

point stress of titanium matrix in the Ti-6Al-4V

system, cf. Fig. 7.

This effect can essentially change the

predicted initial yield curves of the composite,

as shown in Fig. 8, after Herakovich and Aboudi.

It is clearly visible, that neglecting temperature

dependence of properties, leads to non-

acceptable overestimation of a safety region of

the system considered at an elevated temperature

of 300 �C, when compared to the more accurate

temperature-dependent analysis. This error basi-

cally results from the fact that the magnitude of

the yield point stress is twice as high at the room

temperature as at temperature 300 �C.
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Overview

There exists an extensive literature on

thermoelastic contact problems for isotropic

materials. For such materials the thermal and

elastic constants referred to a Cartesian frame

are identical for any orientation of the axes within

the material. In contrast for anisotropy the ther-

mal and elastic constants are not identical for all

orientations of a coordinate frame within the

material. As a result the mathematical equations

governing thermoelastic deformations of aniso-

tropic materials are considerably more complex

than for isotropic materials. This substantially

restricts the classes of problems for which usable

analytical solutions to contact problems can be

obtained

From the middle of the twentieth century to

the present, there has been a substantial increase

in the use of composite materials in applications.

From a macroscopic viewpoint, composites are

often satisfactorily modeled as homogeneous

anisotropic materials. Furthermore, in many

applications of composite materials thermal

effects are significant. This has led to an

increased interest in the analysis of anisotropic

thermoelastic problems. In the area of contact

problems the mathematical difficulties in

obtaining analytical solutions result in solutions

of such problems being restricted to particular

classes of anisotropic materials and/or restricted

geometries for the material and the region

of contact. Such restrictions may be relaxed

if numerical techniques such as the boundary

element and finite element methods are used

so that a more substantial class of such

problems may be solved by employing these

techniques.

Here, the linear mathematical model for

uncoupled rectilinear thermoelasticity is presented

for the wide class of problems which do not

involve inertia or coupling effects. The particular

classes of anisotropic materials and geometries for

which analytical solutions to contact problems

within this model may be obtained are identified

together with an outline of the analytical tech-

niques which facilitate these solutions. Also,

a boundary integral equation formulation of the
solution of the equations of the mathematical

model is briefly discussed as a possible method

for the numerical solution of contact problems for

general anisotropy.
Governing Equations

Consider a Cartesian frame Ox1x2x3 in a homo-

geneous rectilinear anisotropic thermoelastic

material occupying a region O with boundary

@O in R3.

We wish to determine the steady state stress

induced in the body O due to a specified distribu-

tion of temperature and displacement or stress

over the boundary @O resulting from contact

with a second body.

Here, attention is largely restricted to the sub-

stantial class of contact problems which can be

satisfactorily represented by considering the case

when the bodyO consists of a half-space bounded

by a plane surface [1].

Disregarding body forces and the coupling

of the deformation and temperature fields, the

steady state temperature distribution Tðx1; x2; x3Þ
in an anisotropic material satisfies the heat con-

duction equation [2]

lij
@2T

@xi@xj
¼ 0 ð1Þ

where lij ¼ lij are the coefficients of heat con-

duction and the repeated suffix convention (sum-

ming from 1 to 3) is used for Latin suffices only.

The flux across a boundary surface of the material

with outward pointing normal n ¼ ðn1; n2; n3Þ is
given by � P where
P ¼ lij
@T

@xj
ni ð2Þ

If P is specified over the whole of the bound-

ary @O of the material, then it is explicitly

required that ð
@ O

Pds ¼ 0 ð3Þ
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The equation relating the temperature and

elastic displacement uk to the stress sij in the

material takes the form
sij ¼ cijkl
@uk
@xl
� bijT ð4Þ

where cijkl are the elastic constants and bij are the
stress temperature coefficients. These constants

satisfy the symmetry relations

cijkl ¼ cklij ¼ cjikl ¼ cijlk; bij ¼ bji ð5Þ

The stresses sij given by (4) must satisfy the

equilibrium equations @sij=@xj ¼ 0 and hence,

cijkl
@2uk
@xj@xl

� bij
@T

@xj
¼ 0 ð6Þ

Given a temperature distribution which sat-

isfies (1), the solution to (6) can be written as

a sum

uk ¼ u
ð1Þ
k þ u

ð2Þ
k ð7Þ

where u
ð1Þ
k is a displacement which satisfies the

nonhomogeneous system (6) and u
ð2Þ
k denotes

a solution to the homogeneous system

cijkl
@2uk
@xj@xl

¼ 0 ð8Þ

The stress corresponding to the displacements

u
ð1Þ
k and u

ð2Þ
k may be written as a sum in the form
sij ¼ sð1Þij þ sð2Þij ð9Þ

where the stress sð1Þij is obtained by substituting

uk ¼ u
ð1Þ
k into (4) while sð2Þij is obtained by

substituting uk ¼ u
ð2Þ
k into sij ¼ cijkl@uk=@xl.
Three-Dimensional Problems

For general rectilinear anisotropy, (6) does not

readily yield useful analytical solutions to partic-

ular contact problems of interest. By restricting

attention to a particular class of anisotropic
materials, it is possible to obtain solutions to

a number of significant contact problems.

In particular for transversely isotropic mate-

rials, representations for the displacements uk
satisfying (6) may be obtained in terms of three

potential functions. These representations lend

themselves to the use of integral transforms to

facilitate the solution of contact problems for

layers and half-spaces for which the boundary

surface(s) are transverse planes of the material.

For a transversely isotropic half-space occu-

pying the region x3 � 0 with the Ox3 axis normal

to the transverse planes, the nonzero coefficients

of heat conduction are l11 ¼ l22 and l33, and
hence, the equation for the temperature (1) may

be written in the form

H2T þ K2 @
2T

@x23
¼ 0 where

H2 ¼ @2

@x21
þ @2

@x22

ð10Þ

and K2 ¼ l33=l11. Also, the stress temperature

coefficients are b11 ¼ b22 and b33, and the non-

zero cijkl may be expressed in terms of five con-

stants c11, c12, c13, c33, and c44 as follows:

c1111 ¼ c2222 ¼ c11; c1122 ¼ c12;

c1133 ¼ c2233 ¼ c13
ð11Þ

c1313 ¼ c2323 ¼ c44;

c1212 ¼ ðc11 � c12Þ=2; c3333 ¼ c33
ð12Þ

Use of (11) and (12) in (6) provides
c11
@2u1
@x21
þ c11� c12

2

@2u1
@x22
þ c44

@2u1
@x23

þ @

@x1

c11þ c12
2

@u2
@x2
þðc13þ c44Þ

@u3
@x3

� �
�b11

@T

@x1
¼ 0

ð13Þ

c11� c12
2

@2u2
@x21
þ c11

@2u2
@x22
þ c44

@2u2
@x23

þ @

@x2

c11þ c12
2

@u1
@x1
þðc13þ c44Þ

@u3
@x3

� �
�b11

@T

@x2
¼ 0

ð14Þ
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c44
@2u3
@x21
þ @2u3

@x22

� �
þ c33

@2u3
@x23

þ ðc13 þ c44Þ
@

@x3

@u1
@x1
þ @u2
@x2

� �
� b33

@T

@x3
¼ 0

ð15Þ

Let the displacements assume the form [3]

uk ¼ u
ð1Þ
k þ u

ð2Þ
k ð16Þ

with
u
ð1Þ
1 ¼

@c
@x1

; u
ð1Þ
2 ¼

@c
@x2

; u
ð1Þ
3 ¼ m

@c
@x3

ð17Þ

u
ð2Þ
1 ¼

@f
@x1

; u
ð2Þ
2 ¼

@f
@x2

; u
ð2Þ
3 ¼ k

@f
@x3

ð18Þ

where k and m are constants. For a given T the

displacements u
ð1Þ
k provide a solution to the inho-

mogeneous system (13)–(15) while the displace-

ments u
ð2Þ
k provide a solution to the associated

homogeneous system. Substituting (16)–(18)

into (13) and (14), it follows that these equations

will be satisfied if f and c are solutions to the

equations

c11H2fþ c44 þ kðc13 þ c44Þ½ � @
2f
@x23
¼ 0 ð19Þ

c11H2cþ c44þmðc13þc44Þ½ �@
2c
@x23
�b11T¼ 0 ð20Þ

Also, (15) will be satisfied if f and c are

solutions to the equations
ðc13 þ c44Þ þ kc44½ �H2fþ kc33
@2f
@x23
¼ 0 ð21Þ

ðc13 þ c44Þ þ mc44½ �H2cþ mc33
@2c
@x23
� b33T ¼ 0

ð22Þ

Set

c44þ kðc13þ c44Þ
c11

¼ kc33
ðc13þ c44Þþ kc44

¼ n ð23Þ
Elimination of k from (23) yields the quadratic

for n
c11c44n2 þ c13ðc13 þ 2c44Þ � c11c33½ �n
þ c33c44 ¼ 0

ð24Þ

Thus, (19)–(21) will be satisfied if f is given by
H2 þ na
@2

@x23

� �
fa ¼ 0 for a ¼ 1; 2 ð25Þ

where n1, n2 are the roots of the quadratic (24).

The corresponding values of k obtained from (23)

are k1 and k2. Equations (16)–(18) thus yield

u1 ¼
@

@x1
f1 þ f2 þ cð Þ

u2 ¼
@

@x2
f1 þ f2 þ cð Þ

ð26Þ

u3 ¼ k1
@f1

@x3
þ k2

@f2

@x3
þ m

@c
@x3

� 	
ð27Þ

and the stresses
s11 ¼ c11
@2

@x21
ðf1 þ f2 þ cÞ þ c12

@2

@x22
ðf1 þ f2 þ cÞ

�
þ c13 k1

@2f1

@x23
þ k2

@2f2

@x23
þ m

@2c
@x23

	� �
� b11T

ð28Þ

s22 ¼ c12
@2

@x21
ðf1 þ f2 þ cÞ þ c11

@2

@x22
ðf1 þ f2 þ cÞ

�
þc13 k1

@2f1

@x23
þ k2

@2f2

@x23
þ m

@2c
@x23

� 	�
� b11T

ð29Þ

s33 ¼ c13
@2

@x21
ðf1 þ f2 þ cÞ þ c13

@2

@x22
ðf1 þ f2 þ cÞ

�
þc33 k1

@2f1

@x23
þ k2

@2f2

@x23
þ m

@2c
@x23

� 	�
� b33T

ð30Þ

s12 ¼ ðc11 � c12Þ
@2

@x1@x2
ðf1 þ f2 þ cÞ ð31Þ
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s13¼ c44 ð1þ k1Þ
@2f1

@x1@x3
þð1þk2Þ

@2f2

@x1@x3

�
þ ð1þmÞ @2c

@x1@x3

� ð32Þ

s23 ¼ c44 ð1þ k1Þ
@2f1

@x2@x3
þ ð1þ k2Þ

@2f2

@x2@x3

�
þ ð1þ mÞ @2c

@x2@x3

�
ð33Þ

These representations are particularly useful

for the solution of contact problems if attention is

restricted to axially symmetric problems so that

in terms of cylindrical coordinates ðr; y; zÞ, with
the temperature, displacement, and stress inde-

pendent of y (25), (20), and (22) can be written as
@2

@r2
þ 1

r

@

@r
þ na

@2

@z2

� �
fa ¼ 0 for a ¼ 1; 2

ð34Þ

c11
@2

@r2
þ 1

r

@

@r

� �
cþ c44 þ mðc13 þ c44Þ½ �

@2c
@z2
� b11T ¼ 0

ð35Þ

ðc13 þ c44Þ þ mc44½ � @2

@r2
þ 1

r

@

@r

� �
c

þ mc33
@2c
@z2
� b33T ¼ 0

ð36Þ

and the nonzero displacements and stresses are

given by

ur ¼
@

@r
ðf1 þ f2 þ cÞ

uz ¼
@

@z
ðk1f1 þ k2f2 þ mcÞ

ð37Þ

srr ¼ c11
@2

@r2
ðf1 þ f2 þ cÞ þ c12

r

@

@r
ðf1 þ f2 þ cÞ

�
þ c13 k1

@2f1

@z2
þ k2

@2f2

@z2
þ m

@2c
@z2

� 	�
� b11T

ð38Þ
syy ¼ c12
@2

@r2
ðf1 þf2þcÞ þ c11

r

@

@r
ðf1þf2þcÞ

�
þ c13 k1

@2f1

@z2
þ k2

@2f2

@z2
þ m

@2c
@z2

� 	�
� b11T

ð39Þ

szz ¼ c13
@2

@r2
ðf1 þ f2 þ cÞ þ c13

r

@

@r
ðf1 þ f2 þ cÞ

�
þ c33 k1

@2f1

@z2
þ k2

@2f2

@z2
þ m

@2c
@z2

� 	�
� b33T

ð40Þ

srz ¼ ð1þ k1Þc44
@2f1

@r@z
þ ð1þ k2Þc44

@2f2

@r@z

�
þ ð1þ mÞc44

@2c
@r@z

�
ð41Þ

Equations (10) and (34) admit solutions in the

form [4]

Tðr; zÞ ¼
ð1
0

AðxÞe�xz=KJ0ðxrÞ dx ð42Þ

faðr; zÞ ¼
ð1
0

CaðxÞe�xzaJ0ðxrÞdx; for a¼ 1;2

ð43Þ

where za ¼ z=
ffiffiffiffiffi
na
p

and AðxÞ and CaðxÞ are

functions which are determined by the boundary

conditions for particular boundary value prob-

lems. Also, (35) and (36) admit solutions of

the form
cðr; zÞ ¼
ð1
0

AðxÞBðxÞe�xz=KJ0ðxrÞ dx ð44Þ

provided BðxÞ and m satisfy the equations
m ¼ b11K
2ðc13 þ c44Þ þ b33ðc44 � c11K

2Þ
b11ðc33 � K2c44Þ � b33ðc13 þ c44Þ

ð45Þ

x2BðxÞ ¼ K2 b11ðc33 � c44K
2Þ � b33ðc13 þ c44Þ

ðc44 � c11K2Þðc33 � c44K2Þ þ K2ðc13 þ c44Þ2

ð46Þ
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The representations (42), (43), and (44) for the

solutions to (10), (34), (35), and (36) provide,

through the use of standard results for Hankel

transforms [4], the solution to a number of axially

symmetric contact problems for a transversely

isotropic half-space occupying the region z � 0

[5]. For example, Sharma [3] determines expres-

sions forAðxÞ, C1ðxÞ, and C2ðxÞ for the case when
the boundary z ¼ 0 is subjected to a constant

temperature over the region r � a while the

remainder of the surface is at zero temperature.

Substitution of these functions in (42), (43), and

(44) then provides Tðr; zÞ, faðr; zÞ, and cðr; zÞ.
Equations (37)–(41) then give the stress and

displacement throughout the half-space. Also,

Grilitskii and Shelestovskii [6] consider the

thermoelastic effects resulting from the indenta-

tion of the boundary z ¼ 0 of a transversely isotro-

pic half-space by an axially symmetric rigid punch

at a constant temperature with both the heat flux

and stress zero on z ¼ 0 outside the contact region.
Generalized Plane Problems

For generalized plane problems, the temperature,

displacement, and stress depend only on two

Cartesian coordinates which, without loss of gen-

erality, may be taken to be x1 and x2. In this case

(1) admits a general solution in terms of an arbi-

trary analytic function wðzÞ in the form
Tðx1; x2Þ ¼ wðzÞ þ �wð�zÞ ð47Þ

where the bar denotes the complex conjugate and

z ¼ x1 þ tx2 where t is the solution with positive
imaginary part of the quadratic equation

l11 þ 2l12tþ l22t2 ¼ 0 ð48Þ

Since T is given by (47), we try for a particular

solution to (6) in the form [7]

u
ð1Þ
k ¼ CkfðzÞ þ �Ck

�fð�zÞ ð49Þ

where the Ck are constants and

f0ðzÞ ¼ wðzÞ ð50Þ
where the prime on the analytic function indi-

cates differentiation with respect to the argument

in question. The displacement (49) will be

a solution to (6) if
DikCk ¼ gi ð51Þ

where
Dik ¼ ci1k1 � ci2k2 þ tðci1k2 þ ci2k1Þ
þ t2ci2k2 and gi ¼ bi1 þ tbi2

ð52Þ

Equations (51) serve to determine the con-

stants Ck. From (4), the stress field corresponding

to the displacement field (49) may be written in

the form

sð1Þij ¼ ðEij � bijÞf0ðzÞ þ ð �Eij�bijÞ �f0ð�zÞ ð53Þ

where
Eij ¼ ðcijk1 þ tcijk2ÞCk ð54Þ

The solution to (6) consists of the particular

solution given by (49) together with any solution

of the associated homogeneous system (8) which,

for generalized plane problems, has the general

solution [8]
u
ð2Þ
k ¼ 2<

X3
a¼1

AkafaðzaÞ
" #

ð55Þ

where < denotes the real part of a complex num-

ber, faðzaÞ, a ¼ 1; 2; 3 are arbitrary analytic func-

tions of the complex variables za ¼ x1 þ tax2,
a ¼ 1; 2; 3 where ta are the three roots with pos-

itive imaginary part of the sextic in t

jci1k1 þ ci2k1tþ ci1k2tþ ci2k2t2j ¼ 0 ð56Þ

The Aia occurring in (55) are the solutions of

the system
ci1k1 þ ci2k1ta þ ci1k2ta þ ci2k2t2a
� �

Aka ¼ 0

ð57Þ
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Use of (55) in (4) provides a representation for

sð2Þij in terms of the arbitrary functions faðzaÞ in
the form
sð2Þij ¼ 2<
X3
a¼1

Lijaf
0
aðzaÞ

" #
ð58Þ

where primes denote differentiation with respect

to the argument in question and
Lija ¼ ðcijk1 þ tacijk2ÞAka ð59Þ

Thus, from (49), (53), (55), and (58) the solu-

tion to (6) may be written in the form
uk ¼ u
ð1Þ
k þ u

ð2Þ
k ¼ 2<

X3
a¼1

AkafaðzaÞ þ CkfðzÞ
" #

ð60Þ

sij ¼ sð1Þij þ sð2Þij

¼ 2<
X3
a¼1

Lija f
0
aðzaÞ þ ðEij � bijÞf0ðzÞ

" #
ð61Þ

For a half-space occupying the region x2 � 0,

the analytic functions wðzÞ, fðzÞ, and faðzaÞ in
(47), (60), and (61) may be chosen to satisfy

given boundary conditions on x2 ¼ 0. In particu-

lar, the theory of complex analytic functions can

be employed to choose these functions for the

solution of various thermoelastic contact problems

for the half-space z � 0 while integral transform

techniques can be used to choose the functions for

the solution of classes of contact problems involv-

ing the half-space and also the slab � h � x2 � 0.

For example, the integral representations

fðzÞ ¼
ð1
0

AðpÞp�1expðipzÞ dp ð62Þ

faðzÞ ¼
ð1
0

CaðpÞexpðipzÞ dp ð63Þ

may be substituted into (50), (47), (60), and (61)

and the mixed boundary conditions on x2 ¼ 0 for
the indentation of an anisotropic half-space by

a heated rigid punch applied to provide two equa-

tions for the unknown functions AðpÞ and CaðpÞ.
The inverse Fourier transform then provides

explicit expressions for the functions AðpÞ
and CaðpÞ.

In using complex function theory to solve

plane contact problems, it is often advantageous

to use an alternative form of the representations

(60) and (61).

For example, if the temperature Tðx1; 0Þ and
displacement u2ðx1; 0Þ are specified on the seg-

ment � a < x1 < a of the boundary x2 ¼ 0 of the

half-space x2 < 0 and the temperature and stresses

si2ðx1; 0Þ are zero outside this interval, then

Cauchy’s integral formula yields the function wðzÞ
wðzÞ ¼ 1

2pi

ða
�a

Tðt; 0Þ
t� z

dt ð64Þ

and integrating provides the function fðzÞ in the

form

fðzÞ ¼ � 1

2pi

ða
�a

logðt� zÞdt ð65Þ

To obtain the displacement and stress, it is

useful to define new analytic functions yiðzÞ for
i ¼ 1; 2; 3 by
faðzÞ ¼ MiayiðzÞ ð66Þ

where
dik ¼
X3
a¼1

Li2aMak ð67Þ

Substitution of (66) into (60) and (61) yields
uk ¼ 2<
X3
a¼1

AkaMajyjðzaÞ þ CkfðzÞ
" #

ð68Þ

sij ¼ 2<
X3
a¼1

LijaMary
0
rðzaÞ þ ðEij � bijÞf0ðzÞ

" #
ð69Þ
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In particular, on x2 ¼ 0 for the contact prob-

lem under consideration, (68) and (69) provide
Bkjy
0
j ðx1Þ þ Bkjy

0
j ðx1Þ ¼ g0kðx1Þ for� a < x1 < a

ð70Þ

y0i ðx1Þ þ y
0
i ðx1Þ ¼ �ðEix � bi2Þf0ðx1Þ

for x1 < �a and x1 > a
ð71Þ

where

Bkr ¼
X3
a¼1

AkaMar ð72Þ

and
gkðx1Þ ¼ ukðx1; 0Þ � 2< Ckfðx1Þ½ � ð73Þ

The problem of determining the analytic func-

tion yðzÞ thus reduces to a Hilbert problem for

which the solution is well documented [8].
Boundary Integral Equations

The analytical techniques so far outlined are only

applicable for restricted materials and/or geome-

tries. More general applicability may be obtained

by employing numerical techniques such as the

boundary element method. A number of boundary

element formulations for uncoupled thermoelastic

problems involve a thermal domain integral.

A formulationwhich removes the need to calculate

domain integrals and which may be employed for

the numerical solution of generalized plane contact

problems involves first using the standard bound-

ary integral equation [8] for the temperature field

lTðx0Þ þ ðl11Þ�1
ð
@ O
½PðxÞFðx; x0Þ

� Gðx; x0ÞTðxÞ� dsðxÞ ¼ 0

ð74Þ

where x ¼ ðx1; x2Þ, l ¼ 1 if x0 ¼ ða; bÞ 2 O;
0 < l < 1 if x0 2 @O and F and G are given by

F x1;x2;a;bð Þ¼ �1
2pi t� tð Þ

l11
l22

� 	
logðz� cÞf

þ log z� cð Þg
ð75Þ
Gðx1; x2; a; bÞ ¼ lij
@F
@xj

ni ¼
M
z� c

þ M
�z� �c

ð76Þ

where c ¼ aþ tb and

M¼ �1
2pi t� �tð Þ

l11
l22

� 	
l11n1 þ l12n2f

þ l12n1 þ l22n2ð Þtg

Equation (74) provides a means for calculat-

ing numerical values for the real part of the func-

tion wðzÞ in (47) and also for calculating values of
the function P in (2) on the boundary @O.

The second step in the boundary element for-

mulation involves using this information to

obtain the imaginary part of the function wðzÞ,
and then, in turn, equations (50) and (49) yield

the analytic function fðzÞ and the particular solu-
tion to the equilibrium equations (6). Let
wðzÞ ¼ ðT þ iVÞ=2 ð77Þ

The function T is available from (74) and V is

an unknown real function. The function V may be

determined as follows [9]. From (2), (47), and (48)

Pðx1; x2Þ ¼ lij
@T

@xj
ni

¼ 2<½ðl11 þ tl12Þn1w0ðzÞ
þ ðl21 þ tl22Þn2w0ðzÞ�

¼ 2< ð�tn1 þ n2Þðl21 þ tl22Þw0ðzÞ½ �
ð78Þ

Integrating (78) along the boundary @O yieldsðs
s0

PðqÞdq ¼ 2<
ðs
s0

ðl21 þ tl22Þð�tn1 þ n2Þw0ðzÞdq

¼ �2<½ðl21 þ tl22Þ
ðz
z0

w0ðzÞdz

¼ �2<½ðl21 þ tl22ÞðwðzÞ � wðz0ÞÞ�
ð79Þ

where s0 is a fixed and s an arbitrary point

corresponding, respectively, to the points z0
and z on @O. Let t ¼ t0 þ it00 where t0 and t00

are real. Then using (77), it follows from (79)
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that the function VðsÞ is given at all points of

the boundary by

VðsÞ ¼ ðt00l22Þ�1
"
ðl21 þ t0l22Þ TðsÞ � Tðs0Þ½ �

þ
ðs
s0

PðqÞdq
#

ð80Þ

where Vðs0Þ is taken to be zero. Then fðzÞ on the
boundary is given by

fðzÞ ¼
ðz
z0

wðtÞ dt for z 2 @O ð81Þ

where the line integral is taken along boundary

@O from z0 to z. Also, for interior points Cauchy’s

integral formula provides
wðzÞ ¼ 1

2pi

ð
@O

wðtÞ dt
t� z

for z 2 O

and integration gives fðzÞ in the form

fðzÞ ¼ �1
2pi

ð
@O

wðtÞ logðt� zÞ dt for z 2 O

ð82Þ

Substitution of the equations (81) and (82) into

(49) provides a particular solution u
ð1Þ
k to the

equilibrium (6) with the corresponding stresses

sð1Þij given by (50) and (53). A solution u
ð2Þ
k to the

associated homogeneous system (8) can be added

to this particular solution to the equilibrium equa-

tions so that the total displacement and stress

satisfies the boundary conditions on @O. The

standard boundary integral equation [8] which

may be used to numerically calculate the desired

solution to the associated homogeneous equation

takes the form

luð2Þj ðx0Þ þ
ð
@O
PiðxÞFijðx,x0Þ

�Gijðx,x0Þuð2Þj ðxÞ� dsðxÞ ¼ 0

ð83Þ

where l ¼ 1 if x0 ¼ ða; bÞ 2 O and 0 < l < 1 if

x0 2 @O;
Pi ¼ cijkl
@u
ð2Þ
k

@xl
nj ð84Þ

Fkm ¼
1

2p
<
X
a

AkaNaj logðza � caÞ
" #

djm ð85Þ

Gkm ¼ cijkl
@Fkm

@xl
nj ð86Þ

where Nak and ca (for a ¼ 1; 2; 3) are defined by
dik ¼
X3
a¼1

AiaNak and ca ¼ aþ tab ð87Þ

The procedure outlined in this section provides

a boundary element method which may be used to

numerically solve generalized plane thermoelastic

contact problems for anisotropic materials. The

method makes use of the standard boundary inte-

gral equations for anisotropic thermostatics (74)

and anisotropic elastostatics (83) with the only

additional calculation required being the simple

boundary integrals in (80), (81), and (82).
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Overview

One of the most difficult parts in solving the

annular problem with doubly connected regions

is that the single-valued condition of the displace-

ments and the stresses must be satisfied. The

problem will become more complicated if singu-

larities or point heat sources reside in the annulus.

In this work, we first determine the temperature

distributions of the annular problem subject to

a point heat source and then solve for the thermal

stresses. In the derivation of the thermal field, the

strength of a point heat source must be properly

chosen. This is because that the condition of

energy balance between a point heat source and

the given prescribed temperature distributions

along the inner and outer boundaries must be

satisfied. Having the solution of the temperature

field, the thermal stresses in the annular region is

determined by the method based on analytic con-

tinuation theorem in conjunction with Laurent

series expansions. The undetermined coefficients

appearing in the series solution are solved using

the Fourier series expansions. Both the stress-free

and displacement-free conditions are considered

either on the inner boundary or on the outer

boundary. In the present analysis, we exclude

the case of the displacement-free condition con-

sidered on the inner and outer boundaries of the
annulus. However, the method is easily extended

to solve the displacement-free boundary for

which the resultant force over an annular region

is not zero which must be determined after the

solution is obtained. The solution derived in the

present problem with a point heat source can be

used as a Green’s function which allows us to

derive the solution for the problem with distrib-

uted sources that is frequently encountered in

practical applications.
Formulation of the Annular Problem

For two-dimensional thermoelastic problems, the

resultant force and displacements can be

expressed in terms of two stress potentials fðzÞ,
cðzÞ and a single temperature potential g0ðzÞ
as [1]
� Y þ iX ¼ fðzÞ þ zf0ðzÞ þ cðzÞ ð1Þ

2m uþ ivð Þ ¼ kfðzÞ � zf0ðzÞ þ cðzÞ

þ 2mb
Z

g0ðzÞdz ð2Þ

where � Y þ iX is the resultant force over an arc

of the boundary measured from some fixed point;

u and v are the displacements in the x-y plane;

k ¼ 3� 4n, b ¼ ð1þ nÞa for plane strain and

k ¼ 3� n=1þ n, b ¼ a for plane stress with a
being thermal expansion coefficient and n the

Poisson’s ratio; m is the shear modulus; and z is

the complex coordinate: z ¼ xþ iy, and the bars

denote complex conjugation. The components of

stress in polar coordinate system are

srr þ syy ¼ 2 f0ðzÞ þ f0ðzÞ
h i

ð3Þ

srr þ itry ¼ f0ðzÞ þ f0ðzÞ

� zf00ðzÞ þ z

z
c0ðzÞ

� �
ð4Þ

Consider a circular annulus with inner radius a
and outer radius b which is subjected to a point

heat source with the strength q0 located at the

http://dx.doi.org/10.1007/978-94-007-2739-7_125
http://dx.doi.org/10.1007/978-94-007-2739-7_125
http://dx.doi.org/10.1007/978-94-007-2739-7_916
http://dx.doi.org/10.1007/978-94-007-2739-7_916
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point z ¼ z0 ¼ r0e
iy (see Fig. 1). For steady-state

heat conduction problem, the temperature poten-

tial g0ðzÞ can be written as
g0ðzÞ ¼ Q0 ln z� z0ð Þ þ
X1
n¼�1

lnzn ð5Þ

where Q0 ¼ q0=2pk with k being heat conductiv-
ity and ln are the unknown coefficients which

will be determined as the thermal boundary con-

dition is imposed. In the present analysis, the

temperatures at the inner and outer boundaries

of the annulus are denoted by T1ðyÞ and T2ðyÞ,
respectively, i.e.,

T ¼ 1

2
g0ðtÞ þ g0ðtÞ
h i

¼ T1 yð Þ

¼
X1
m¼0

Am cosmyþ Bm sinmyð Þ on t ¼ aeiy

ð6Þ

T ¼ 1

2
g0ðtÞ þ g0ðtÞ
h i

¼ T2 yð Þ

¼
X1
m¼0

A0m cosmyþ B0m sinmyð Þ on t ¼ beiy

ð7Þ
On substituting (5) into (6) and (7) and apply-

ing the techniques of Fourier series, we find
l0 ¼ A0 �
Q0

4p

�
ð2p
0

ln a2 þ r20 � 2ar0 cos y� y0ð Þ
� �

dy

ð8Þ

ln ¼
1

2p b2n� a2n
� � ð2p

0



2 bnT2� anT1ð Þ

�Q0 bn ln b2þ r20 � 2br0 cos y� y0ð Þ
� �� �

� an ln a2þ r20 � 2ar0 cos y� y0ð Þ
� ��

e�inydy ðn 6¼ 0Þ
ð9Þ

and for consistency, we require
A00 ¼ A0 �
Q0

4p

�
ð2p
0

ln a2 þ r20 � 2ar0 cos y� y0ð Þ
� �

� ln b2 þ r20 � 2br0 cos y� y0ð Þ
� �

ð10Þ

It should be emphasized that the strength of

a point heat source must be chosen to satisfy (10)

such that the condition of energy balance

between a point source and the temperatures

prescribed at the inner and outer boundaries of

the annulus is ensured within the context of

steady-state heat conduction theory [2]. Mathe-

matically, the difference between A00 and A0 in

(10), which accounts for the net heat flow from

outside to inside the annulus, must be equal to

the integral term which accounts for the heat

generation due to the presence of a point heat

source. For the problem with the absence of

a point heat source, the temperature potential in

(5) is replaced by
g0ðzÞ ¼ l
 ln zþ
X1
n¼�1

lnzn ð11Þ
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where the unknown coefficients l
 and l
ln can
be obtained from (8)–(10) by puttingQ0 ¼ l
and
r0 ¼ 0 as
l
 ¼ A00 � A0

ln b� ln a
; l0 ¼

A0 ln b� A00 ln a

ln b� ln a
ð12Þ

and
ln ¼
ðbnA0n � anAnÞ � iðbnB0n � anBnÞ

b2n � a2n
ðn 6¼ 0Þ

ð13Þ

l�n ¼
ðb�nA0n � a�nAnÞ � iðb�nB0n � a�nBnÞ

b�2n � a�2n
ðn 6¼ 0Þ

ð14Þ

Upon integration of (5) and (11), the temper-

ature functions become
gðzÞ ¼ Q0½ðz� z0Þðlnðz� z0Þ � 1Þ�
þ l�1 ln zþ g
ðzÞ ð15Þ

and
gðzÞ ¼ l
zðln z� 1Þ þ l�1 ln zþ g
ðzÞ ð16Þ

respectively, where
g
ðzÞ ¼
X1

n ¼ �1

n 6¼ �1

ln
nþ 1

znþ1

ð17Þ

is analytic and single-valued everywhere in the

annulus.
Thermal Stresses in the Annulus

For the annular problem with a point heat source,

the stress functions can be written as [3]
fðzÞ ¼ Az ln zþ B ln zþ f
ðzÞ ð18Þ

cðzÞ ¼ C ln zþ c
ðzÞ ð19Þ
where A is real constant and B, C are complex

constants which are related by the following

equations [3]:
ðkþ 1ÞAzþ kBþ C ¼ �2mb
2pi

½gðzÞ�c ð20Þ

B� C ¼ �Y þ iX½ �c
2pi

ð21Þ

where ½ f ðzÞ�c ¼ f ðr; yþ 2pÞ � f ðr; yÞ which

denotes the jump of the function f ðzÞ when

enclosing the contour c within the annulus.

Note that the singularity of the term

z ln zappearing in (18) results from the logarith-

mic singularity of thetemperature function

induced by a point heat source. The two

holomorphic functions in (18) and (19), respec-

tively, can be expressed in a series form as

f
ðzÞ ¼
X1
n¼�1

Lnz
n;c
ðzÞ ¼

X1
n¼�1

Mnz
n ð22Þ

where the constant coefficients Ln andMn may be

determined asthe stress or displacement bound-

ary condition is imposed. The boundary condi-

tion on the innerand outer boundaries of the

annulus can be expressed, respectively, as

g1fðtÞ þ tf0ðtÞ þ cðtÞ þ d1gðtÞ ¼ f 1ðtÞ

on t ¼ aeiy
ð23Þ

gfðtÞ þ tf0ðtÞ þ cðtÞ þ d2gðtÞ ¼ f 2ðtÞ

on t ¼ aei
ð24Þ

where g1 ¼ g2 ¼ 1, d1 ¼ d2 ¼ 0, f 1ðtÞ ¼ f 2ðtÞ ¼
RðtÞ for the stress boundary value problem with

RðtÞ being a known resultant force on

the inner and outerboundaries of the

annulus, while g1 ¼ g2 ¼ �k, d1 ¼ d2 ¼ �2mb,
f 1ðtÞ ¼ f 2ðtÞ ¼ � 2mbDðtÞ for the displace-

mentboundary value problem with DðtÞ being

a single-valued displacementfunction. Since the

case of the displacement-free condition on both

the inner and outerboundaries of the annulus is

excluded from our analysis, the resultant force
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over the entiresystem becomes zero, and the

unknown coefficients A, B, and C appearing in

(18) and (19) can beobtained by substituting (15)

and (16) into (20) and (21) as
A ¼ �2mbQ0

1þ k
; B ¼ C ¼ �2mb l�1 � Q0z0ð Þ

1þ k
;

for z0j j < z < b

ð25Þ

A ¼ �2mbQ0

1þ k
;B ¼ C ¼ �2mbl�1

1þ k
;

for a < z < z0j j
ð26Þ

where Q0 ¼ �q0=2pk, R0 ¼ 0 for the problem

with a point heat source and

Q0 ¼ R0 ¼ l
, z0 ¼ 0 for the problem with

theabsence of a point heat source. Substitution

of (15), (16), (18), and (19) into (23) and (24)

results in
g1f

ðtÞ þ tf
0ðtÞ þ c
ðtÞ þ d1g
ðtÞ ¼ F1ðtÞ

on t ¼ aeiy

ð27Þ

g2f

ðtÞ þ tf
0ðtÞ þ c
ðtÞ þ d2g
ðtÞ ¼ F2ðtÞ

on t ¼ aeiy

ð28Þ

where
F1ðtÞ ¼ f 1ðtÞ

þ g1
2mbR0

1þ k
t ln tþ 2mbl�1

1þ k
ln t

� 	
þ 2mbR0

1þ k
t 1þ ln tð Þ þ 2mbl�1

1þ k
t

t

þ 2mbl�1
1þ k

ln t

� d1Q0 t� z0ð Þ ln t� z0ð Þ½ �
� d1l�1 ln tþ d1Q0 t� z0ð Þ

ð29Þ
and
F2ðtÞ ¼ f 2ðtÞ

þ g2
2mbQ0

1þ k
t ln tþ 2mb l�1 � Q0z0ð Þ

1þ k
ln t

� 	
þ t

2mbQ0

1þ k
1þ ln tð Þ

þ
2mb l�1 � Q0z0

� �
1þ k

t

t

þ 2mb l�1 � Q0z0ð Þ
1þ k

ln t

� d2Q0 t� z0ð Þ ln t� z0ð Þ½ �
� d2l�1 ln tþ d2Q t� z0ð Þ

ð30Þ
Compatibility Identity

Consider the annular region a < zj j < b by S and

the annuli, a2b�1 zj j < a, b < zj j < b2a�1 by S�

and Sþ, respectively (see Fig. 2). If we use the

continuation across each boundary, f 
 ðzÞ can
be extended from S into the annuli S� and Sþ by

the definitions [4]

f
 ¼ � 1

g1

� zf
0
a2

z

� 	
þ c


a2

z

� 	
þ d1g
ðzÞ

( )
for z 2 S�

ð31Þ

f
ðzÞ ¼ � 1

g2
zf
0

b2

z

� 	
þ c


b2

z

� 	
þ d2g
ðzÞ

( )
for z 2 Sþ

ð32Þ

f
ðzÞ is thus holomorphic in the three regions

S�, S, and Sþ. Notice that g
ðzÞ is also

holomorphic and single-valued in S� and Sþ

because there is no singularity or point heat

source located in the region S�and Sþ. If we

invert these continuations, we find
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c
ðzÞ ¼ �g1f

a2

z

� 	
� a2

z
f


0 ðzÞ

� d1g

a2

z

� 	
for z 2 S

ð33Þ

c
ðzÞ ¼ �g2f

b2

z

� 	
� b2

z
f
0ðzÞ

� d2g

a2

z

� 	
for z 2 S

ð34Þ

and hence f
ðzÞ must satisfy the compatibility

identity
g2f

 b2

z

� 	
� g1f


 a2

z

� 	
þ b2 � a2

z
f
0ðzÞ

þd2g

b2

z

� 	
� d1g


a2

z

� 	
¼ 0 for z 2 S

ð35Þ

On substituting (31) and (32) into the bound-

ary conditions (27) and (28), we obtain the fol-

lowing Hilbert problems:
f
ðtÞ � f

�ðtÞ ¼ 1

g1
F1ðtÞ � d1 g
ðtÞ � g


�ðtÞð Þ½ �

on t ¼ aeiy

ð36Þ

f
ðtÞ � f

þðtÞ ¼ 1

g2
½F2ðtÞ � d2ðg
ðtÞ � g


þðtÞÞ�

on t ¼ eiy

ð37Þ

where f

þðzÞ and f


�ðzÞ or (g
þðzÞ and g

�ðzÞ)

denote the limits on zj j ¼ b and zj j ¼ a of f
ðzÞ
(or g
ðzÞ) in Sþ and S� respectively. Since f
ðzÞ
and g
ðzÞ are holomorphic and single-valued in

S�, S, and Sþ, they may be represented by the

Laurent series:
f
ðzÞ ¼

¼
X1
n¼�1

L�n z
n ðz 2 S�Þ

¼
X1
n¼�1

Lnz
n ðz 2 SÞ

¼
X1
n¼�1

Lþn z
n ðz 2 SþÞ

8>>>>>>>>><>>>>>>>>>:
ð38Þ

g
ðzÞ ¼

¼
X1

n ¼ �1

n 6¼ �1

l�n
nþ 1

znþ1 ðz 2 S�Þ

¼
X1

n ¼ �1

n 6¼ �1

ln
nþ 1

znþ1 ðz 2 SÞ

¼
X1

n ¼ �1

n 6¼ �1

lþn
nþ 1

znþ1 ðz 2 SþÞ

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
ð39Þ

Hence the boundary conditions (36) and (37)

take the form

anðLn � L�n Þ ¼
1

2pg1

ð2p
0

F1ðaeiyÞe�inydy

� d1
g1

anðln�1 � l�n�1Þ
n

ðn 6¼ 0Þ
ð40Þ
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bnðLn � Lþn Þ ¼
1

2pg2

ð2p
0

F2ðbeiyÞe�inydy

� d2
g2

bnðln�1 � lþn�1Þ
n

ðn 6¼ 0Þ
ð41Þ

and substituting in the compatibility identity (35),

we obtain
g2b
2nLþn � g1a

2nL�n þ ðb2 � a2Þð2� nÞL2�n

þ d2b2n
lþn�1
n
� d1a2n

l�n�1
n
¼ 0ðn 6¼ 0Þ

ð42Þ

On eliminating the coefficients Ln
þ and Ln

�

from (40)–(42), the constants Ln and ln�1 satisfy
the system of equations
ðg2b2n � g1a
2nÞLn þ ðb2 � a2Þð2� nÞL2�n

þ ðd2b2n � d1a2nÞ
ln�1
n

¼ 1

2p

ð2p
0

ðb2F2ðbeiyÞ

� bnF1ðaeiyÞÞe�inydy ðn 6¼ 0Þ
ð43Þ

Similar to the previous approach, the coeffi-

cientMn associated with the stress function c

 zð Þ

can be found from (33) or (34) which satisfy the

system of equations

ðg2b�ð2nþ1Þ � g1a
�ð2nþ1ÞÞL�n þ ðb�2 � a�2ÞMn

� ðd2b�ð2nþ1Þ � d1a�ð2nþ1ÞÞ
l�ðnþ1Þ

n

¼ 1

2p

ð2p
0

½b�ðnþ2ÞF2ðbeiyÞ

� a�ðnþ2ÞF1ðaeiyÞ�e�inydy ðn 6¼ 0Þ
ð44Þ

Once we obtain the coefficients Ln andMn, the

stress functions f
 zð Þ and c
 zð Þ are completely

solved and the components of stress can be deter-

mined by substituting (18) and (19) into (3) and

(4). Since no analytical solutions for annular

problem with a point heat source are available
in the literature, only special cases with the

absence of a point heat source are considered

here for demonstrating the use of the present

approach. We consider the case that the inner

and outer boundaries of the annulus are

subjected to angled temperature distributions,

i.e., T1 ¼ A1 cos y on |z| ¼ a and T2 ¼ A1
0 cos y

on |z|¼ b and from (8)–(10) and (29)–(30)we have
l
 ¼ 0; l0 ¼ 0; l1 ¼
bA01 � aA1

b2 � a2
;

l�1 ¼
a2b2

a2 � b2
A01
b
� A1

a

� 	
A ¼ �2mbl


1þ k
¼ 0

B ¼ C ¼ �2mbl�1
1þ k

¼ �2mb
1þ k

a2b2

a2 � b2
A01
b
� A1

a

� 	
F1ðtÞ ¼ F2ðtÞ ¼

2mbl�1
1þ k

ln tþ t

t
þ ln t

h i
ð45Þ

L2 ¼
�B

a2 þ b2
� � ; Ln ¼ 0 ðn 6¼ 2Þ

M�2 ¼
�a2b2B
a2 � b2

; Mn ¼ 0 ðn 6¼ �2Þ
ð46Þ

and the components of stress are
srr ¼ pr 1� a2

r2

� 	
b2

r2
� 1

� 	
cos y

syy ¼ pr
a2b2

r4
þ a2 þ b2

r2
� 3

� 	
cos y

try ¼ pr 1� a2

r2

� 	
b2

r2
� 1

� 	
sin y

ð47Þ

where
p ¼ aE
2 1� vð Þ

a2b2

b4 � a4
A1

a
� A1

0

b

� 	
which are exactly the same as those given by [5]

for a plane-strain condition.
Results and Discussion

For steady-state heat conduction problems, the

strength q0 cannot be arbitrarily chosen once
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the temperature T1 at the inner boundary and the

temperature T2 at the outer boundary are assumed

as known values. The effect of changing the

ratio T2 T1= and the wall thickness b a= on the

dimensionless strength q0a T0k= (with the case
r0 ¼ aþ bð Þ 2= , y0 ¼ 0 �C) can be evaluated

from (10) and shown graphically in Fig. 3. For

convenience of the calculation in (10), we assume

the temperature T1 and T2 are kept at constant,

i.e., A0 ¼ T1, A0
0 ¼ T1 from (6) and (7). Once A0

and y0 ¼ 0 are given, the dimensionless strength

q0a T0k= can be determined from (10) for differ-

ent wall thickness b a= . The result indicates that

the strength of a point heat source becomes

a positive (or negative) value as the temperature

at the outer boundary is lower or higher than that

at the inner boundary. It is then understood that

the condition T2 < T1 (or T1 < T2) will accom-

pany with the presence of a heat source (or sink)

such that the energy balance within the annular

system is preserved. Furthermore, the strength q0
changes dramatically with the ratio T2 T1= for the

annulus with a relatively thin wall. The dilatation

stress srr þ syy, which is mainly responsible for

the result of material failure by fracture, is found

for three different cases of boundary value prob-

lems as displayed in Figs. 4–6. The conditions

T2 T1= ¼ 3, b a= ¼ 2, r0 a= ¼ 1:5, and y0 ¼ 0�C
are considered for all three cases, and the results

shown in Figs. 4–6 are based on the series solu-

tions up to the first 20 terms in (22) which are

checked to preserve a good accuracy. It is shown

that the maximum dilatation stress always occurs
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at y0 ¼ 180 �C, which is farthest away from the

position where a heat sink resides, for all three

cases. For the traction-free boundary condition at

both inner and outer boundaries of the annulus,

the maximum dilatation stress occurs at the inner

boundary with the lower temperature as shown in

Fig. 4. For the displacement-free condition (or the

traction-free condition) at the inner boundary and

traction-free condition (or displacement-free

condition) at the outer boundary, the maximum

dilatation stress is found to take place at the inner

boundary (or outer boundary) as displayed in

Fig. 5 (or Fig. 6).
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Definition

The boundary integral equation method (BIEM) is

one of the most effective numerical methods in

engineering analysis. The great advantage of the

BIEM is the reduction of dimensions in the formu-

lation for solution of boundary value problems

since the unknowns are localized on the boundary

instead of the whole analyzed domain. It should be

stressed that the dimensional reduction is achieved

only in problems when the fundamental solutions

of the governing equations are available. Recall

that the fundamental solutions are known only in

linear theory of thermoelasticity. The temperature

and displacement fields (the primary fields) are

represented in terms of boundary integrals of rel-

evant boundary densities (temperature, heat flux,

displacements, and tractions) and domain integrals

of known body sources. The integral representa-

tions of the derivatives of the primary fields are

expressed in terms of the same boundary densities

as in the case of the primary fields.

Overview

Since the fundamental solutions of the governing

partial differential equations are the cornerstone
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of pure boundary integral formulation for solu-

tion of any boundary value problem, we shall pay

attention to the fundamental solutions for tran-

sient uncoupled thermoelastic problems. This

class of thermoelastic 3-D problems has been

selected because of their practical applicability

(coupling can be often neglected in practical

problems) and sufficient generality (it includes

all special classes of uncoupled thermoelastic

problems). In case of homogeneous media, the

governing equations are given by partial differ-

ential equations (PDE) with constant coefficients,

and the fundamental solutions are available in

rather simple closed form for isotropic media in

both the formulations for Laplace transform and

the time-dependent fields. The boundary integral

representation of field variables means that these

fields are expressed in terms of complete set of

relevant boundary quantities without having the

need to know the solution at any interior point. In

a well-posed boundary value problem, only half

of the relevant boundary quantities are prescribed

by the boundary conditions. The unknown

boundary densities can be computed by solving

the boundary integral equations (BIE). In case of

uncoupled thermoelasticity, the thermal fields are

independent of the elastic ones, though the elastic

fields are influenced by the thermal fields. The

integral representations for the primary thermal

and elastic fields, as well as for their derivatives

will be presented and supplemented with the BIE.

Owing to the space limit, the details of the BIEM

formulation as well as the numerical implemen-

tation by using the boundary elements cannot be

discussed here, and we refer the reader to several

works. The list of references is not complete and

is restricted to works which are consistently

written with the present text.
Fundamental Solutions in Uncoupled
Thermoelastodynamics

In uncoupled thermoelasticity, the temperature

field is independent of elastic fields, and the

governing equation results from the energy bal-

ance assuming the heat transfer via heat conduc-

tion in continuous media. On the other hand, the
elastic fields such as the displacements and

stresses are influenced by the temperature distri-

bution because of thermal expansion of elastic

media. The governing equations for elastic fields

result from the conservation of momentum. The

time variable is very important dimension of

transient problems as compared with the station-

ary ones. From the mathematical point of view,

the stationary problems are described by the

elliptic partial differential equations (PDE)

while the transient problems by the parabolic

and hyperbolic PDE. Applying the Laplace

transformation with respect to the time variable,

the latter are converted to the elliptic PDE

which can be solved for discrete values of the

transform parameter like the stationary problems.

Finally, the inverse Laplace transformation is

required in order to obtain time-dependent solu-

tions. The BIEM formulations will be developed

for both the time-dependent and the Laplace

transforms of the field variables in uncoupled

thermoelasticity [1].

Let us consider a homogenous, isotropic, per-

fectly elastic body. The governing equations for

uncoupled thermoelasticity are given as [2]
m ui; k k þ lþ mð Þ uk; k i � g y; i þ Fi ¼ r €ui ð1Þ

C y; k k � _y ¼ �Q ð2Þ

where “ui” is the displacement vector; “y” is the
temperature change above the uniform reference

temperature “T0” or “y ¼ T � T0,” “Fi” and “Q”

are the volume densities of external forces and

heat sources; “r” is the mass density; “C” is the
thermal diffusivity; “l” and “m” are the Lame

constants; and g ¼ ð2mþ 3lÞa with a being the

coefficient of linear thermal expansion. The con-

stitutive stress-strain equations and the linear

expression for strains in terms of displacement

gradients are given as
si j ¼ 2 m ei j þ l ek k � g yð Þ di j; ei j ¼
1

2
ui; j þ uj; i
� �

ð3Þ

Subscripts following a comma denote the

partial derivative with respect to Cartesian
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coordinates of the vector “x.” Components of the

traction vector on a surface with the normal

“ni xð Þ” take the form
si x; tð Þ¼ sj i x; tð Þnj xð Þ¼ T̂i j nx;@xð Þ uj x; tð Þ
� gni xð Þ y x; tð Þ

ð4Þ

where

T̂i j nx; @xð Þ ¼ m di j nk xð Þ @k þ m nj xð Þ @i þ l ni xð Þ @j;

@k �
@

@ xk

ð5Þ

Excluding the time variable by using the

Laplace transformation technique, we obtain
m �ui; k k þ lþ mð Þ �uk; k i � g�y; i þ ~Fi ¼ r S2 �ui
ð6Þ

C �y; k k � S �y ¼ � ~Q ð7Þ

where
�f x; Sð Þ ¼
ð1
0

f x; tð Þ e�S t dt ð8Þ

S is the Laplace transform parameter, and the

generalized body sources are given by
~Fiðx; SÞ ¼ Fiðx; SÞ þ r SuiðxÞ þ viðxÞ½ �
~Qðx; SÞ ¼ �~Qðx; SÞ þ yðxÞ

with uiðxÞ, viðxÞ, and yðxÞ being the initial values
of displacements, displacement velocity, and

temperature, respectively.

Let the body sources
~Q ¼ d x� yð Þ; ~Fi ¼ 0 ð9Þ

determine the fundamental displacements �U0i and

temperature �y0. The displacement vector can be

decomposed into the potential and solenoid parts as

�U0i ¼ �f0; i þ ei j k �c0k; j ð10Þ
Then, the governing (6) and (7) are converted

into the system
H2 �f0 � lþ 2 m
r

S2 �f0 � g
lþ 2 m

�y0 ¼ 0

H2 �y0 � S

C
�y0 ¼ � 1

C
d x� yð Þ

ð11Þ

Having solved this system, one obtains the

fundamental solutions generated by point heat

source
�U0i r; Sð Þ ¼ � r; i
C r

g1; g1 ¼
m

4 p l 1
2 � l2

2
� �

l 1 þ
1

r

� 	
e�l 1 r � l 2 þ

1

r

� 	
e�l 2 r

��
ð12Þ

and
�y0i r; Sð Þ ¼ 1

C r
g2; g2 ¼

1

4 p l1
2 � l2

2
� �

� l 1
2 � S2

c21

� 	
e�l 1 r � l 2

2 � S2

c21

� 	
e�l 2 r

� �
¼ 1

4p
e�r

ffiffiffiffiffiffi
S C=
p

ð13Þ

where
m ¼ g
r c12

; c1
2 ¼ lþ 2 m

r
; c2

2 ¼ m
r

r ¼ x� y; r ¼ rj j; r; i ¼ xi � yið Þ r= ;

l 1
2 ¼ S C= ; l 2

2 ¼ S c1=ð Þ2

ð14Þ

The Laplace transform of the fundamental

traction vector “ �T0i y� x; Sð Þ ” is given as
�T0l y� x;Sð Þ ¼ T̂l k ny; @y
� �

�U0k y� x;Sð Þ

� gnl yð Þ�y0 r;Sð Þ
¼ mnk yð Þ @k �U0l r;Sð Þþ @l �U

0
k r;Sð Þ½ �

þ nl yð Þ l@k �U0k r;Sð Þ� g�y0 r;Sð Þ
� �

ð15Þ
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with

@j �U0i r;Sð Þ ¼ 1

C

r; i r; j
r

g3 �
1

r2
di j� 3 r; i r; j
� �

g1

� �
g3 ¼

m

4p l21� l2
2

� � l21 e
�l1 r � l2

2 e�l2 r
� �

ð16Þ

The Laplace transform of the fundamental flux

is given by

@ �y0 r; Sð Þ
@ nðyÞ ¼

r; i ni ðyÞ
C r

g4;

g4 ¼
1

4 p

ffiffiffiffi
S

C

r
þ 1

r

 !
e�r

ffiffi
S
C

p ð17Þ

As to the limit behavior when r ! 0, we have

�y0 r; Sð Þ � 1

4 pC r
þ 0ð1Þ;

�U0i r; Sð Þ ¼ mr; i
4pC

þ Oð1Þ
ð18Þ

@ �y0 r; Sð Þ
@ nðyÞ �

@

@ nðyÞ
1

4 pC r
þ 0 r�1
� �

;

�T0l y� x; Sð Þ ¼ Oðr�1Þ
ð19Þ

The fundamental displacements �ui
ðjÞ r; Sð Þ �

�Ui j r; Sð Þ and tractions �Ti j y� x; Sð Þ generated by

point sources ~Fiðx;SÞ¼ dijdðx�yÞ, ~Qðx;SÞ¼ 0 in

the uncoupled theory of themoelastodynamics are

given by

�Ui j r; Sð Þ ¼ U1

r
di j þ

U2

r
r; i r; j ð20Þ

and

�Ti j h� x; Sð Þ ¼ � m nk hð Þ @k �Ui j r; Sð Þ þ @i �Uk j r; Sð Þ
� �

� ni hð Þ l @k �Uk j r; Sð Þ

ð21Þ

where

@k �Ui j r; Sð Þ ¼ di j r;k
r2

U2 þ U3ð Þ

þ di k r; j þ dj k r; i
r2

U2

þ r; i r; j
r2

U4 ð22Þ
and
U1¼
1

4pr



1

c
2

2 e
�Sr

c2 þ 1

S2 r2

��
1þSr

c2

	
e
�Sr

c2

�
�
1þSr

c1

	
e
�Sr

c1

�� ð23Þ

U2¼ �
1

4pr


�
1

c
2

2 þ
3

S2 r2

�
1þSr

c22

	�
e
�Sr

c2

�
�
1

c21
þ 3

S2 r2

�
1þSr

c21

	�
e
�Sr

c1

� ð24Þ

U3 ¼ �
1

4 pr c22
1þ S r

c2

� 	
e
�S r

c2 ð25Þ

U4 ¼
1

4 pr
1

c
2

2 6þ S r

c2

� 	
þ 15

S2 r2
1þ S r

c2

� 	
e
�S r

c2

� �
� 1

4 p r
1

c
1

2 6þ S r

c1

� 	
þ 15

S2 r2
1þ S r

c1

� 	
e
�S r

c1

� �
ð26Þ
Boundary Integral Representations
and Boundary Integral Equations

Assuming the governing equations in weak sense

with taking adequate fundamental solutions for

the weight functions and making use of the Gauss

divergence theorem, one can derive the following

integral representations [6]:

hðxÞyðx;SÞ¼
ð
V

�Qðy;SÞ�y0ðjx�yj;SÞdVy

þ C

ð
SA

�
@ �yðh;SÞ
@nðhÞ

�y0
�
jx�hj;S

�
��yðh;SÞ

@ �y0
�
jx�hj;S

�
@nðhÞ

�
dS�

ð27Þ

hðxÞujðx;SÞ

¼
ð
V

�
�Fiðy;SÞ� g�y; iðy;SÞ

�
�Uijðy�x;SÞdVy

þ
ð
SA

��
�tiðh;SÞþ gniðhÞ�yðh;SÞ

�
�Uijðh�x;SÞ

� �uiðh;SÞ �Tijðh�x;SÞ
�
dS�

ð28Þ
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Applying the inverse Laplace transformation

to the previous two equations, one obtains
A

hðxÞ yðx; tÞ ¼
ðt
0

ð
V

Qðy; tÞ y0ðjx� yj; t� tÞ dVy dt

þ C

ðt
0

ð
SA

�
@ yðh; tÞ
@ nðhÞ y0

�
jx� hj; t� t

�
� yðh; tÞ

@ y0
�
jx� hj; t� t

�
@ nðhÞ

�
dS�

dt

ð29Þ

hðxÞujðx; tÞ

¼
ðt
0

ð
V

½Fiðy;tÞ� gy; iðy;tÞ�Uijðy�x; t� tÞdVy dt

þ
ðt
0

ð
SA

��
tiðh;tÞþ gniðhÞyðh;tÞ

�
Uijðh�x; t� tÞ

�uiðh;tÞTijðh�x; t� tÞ
�
dS� dt

ð30Þ

where
h xð Þ ¼
1; x 2 V

hðzÞ; x ¼ z 2 SA

0; x =2 V [ SAð Þ

8><>: ð31Þ

hðzÞdij ¼ �
ð
SA

Tijðh� zÞdS�

and=or hðzÞ ¼ �
ð
SA

@

@nðhÞ y
0ð h� zj jÞdS�

with hðzÞ ¼ 0:5 on smooth boundary

Note that the kernels Tijðh� zÞ and

@y0ð h� zj jÞ=@nðhÞ exhibit strong singularity

r�2 ¼ h� zj j�2. Therefore, the strongly singular
boundary integrals in (27)–(30) for x ¼ z 2 SA
exist in the Cauchy principal value sense. Never-

theless, bearing in mind that the transient funda-

mental solutions exhibit the same singularity as

the stationary ones, one can easily regularize

[3–7] the integral equations by making use of

the integral representations of the coefficient
hðzÞ given in (31). According to the Gauss diver-
gence theorem, the temperature terms in (28) can

be rewritten into a volume integral as

� g
ð
V

�y; i y; Sð Þ �Ui j y� x; Sð Þ dVy

þ g
ð
SA

ni hð Þ�y h; Sð Þ �Ui j h� x; Sð Þ dS�

¼ g
ð
V

�y y; Sð Þ �Ui j; i y� x; Sð Þ dVy

ð32Þ

From (22), the term “ �Ui j; i r; Sð Þ” can be

expressed as
@i �Ui j r; Sð Þ ¼ C

g
H2 � S

C

� 	
�U0j r; Sð Þ ð33Þ

with �U0j r; Sð Þ being given in (12). Inserting (33)

into the r.h.s. of (32) and utilizing the Gauss diver-

gence theorem, one obtains finally in view of (7)

g
ð
V

�yðy; SÞ �Ui j; iðy� x; SÞ dVy

¼ �
ð
V

�Qðy; SÞ �U0jðy� x; SÞ dVy

þ C

ð
SA

�
niðhÞ�yðh; SÞ @0i �U0jðh� x; SÞ

� �qðh; SÞ �U0jðh� x; SÞ
�
dS�; @0i ¼ @=@�i

and the integral representation of the displace-

ment field given by (28) can be rewritten into an

equivalent form as

h xð Þ �uj x;Sð Þ

¼
ð
V

�Fi y;Sð Þ �Uij y� x;Sð Þ� �Q y;Sð Þ �U0j y� x;Sð Þ
� �

dVy

þ
ð
SA

�ti h;Sð Þ �Uij h� x;Sð Þ� �ui h;Sð Þ �Tij h� x;Sð Þ
� �

dS�

þC

ð
SA

�
�yðh;SÞniðhÞ@0i �U0jðh� x;SÞ

� �q h;Sð Þ �U0j h� x;Sð Þ
�
dS�

ð34Þ

where the domain integral involves only the pre-

scribed densities of body sources.
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Making use of the definition of the stress field

by (3) as well as the governing (1), after certain

lengthy derivation [6], one can obtain from (34)

the integral representation of the stress field

�slpðx; SÞ þ gdlp �yðx; SÞ

¼ cl p j r

(ð
V

�
~Fiðy; SÞ@r �Ui jðy� x; SÞ

� ~Qðy; SÞ@r �U0j ðy� x; SÞ
�
dVy

�
ð
SA

�tiðh; SÞ@0r �Ui jðh� x; SÞ dS�

þ ci s k t

ð
SA

�kr s t@
0
t
�Uk jðh� x; SÞ dS�

þ rS2
ð
SA

�uiðh; SÞ nrðhÞ �Ui jðy� x; SÞ dS�

� C

ð
SA

�
�yðh; SÞ niðhÞ @0i @0r U0j ðh� x; SÞ

� �qðh; SÞ@0r �U0j ðh� x; SÞ
�
dS�

)
ð35Þ

where �kr s i ¼ D̂0r s �ui h; Sð Þ; D̂0r s ¼ nr hð Þ @0s�
ns hð Þ @0r
@i @r �U
0
j r;Sð Þ

¼ 1

Cr2
r;kdi jþ r; idk jþ r; jdi k� 3r; ir; jr;k
� �

g3þ 3
g1
r

� 

� r; ir; jr;k

1

Cr
g7þ

3

r
g3þ 2

g1
r

� 
� �
;

g7 ¼
m

4p l21� l22
� � l31 e

�r l1 � l32 e
�rl2

� �

ð36Þ

Approaching the field point x in (35) to the

boundary point z 2 SA and multiplying this equa-

tion by the normal vector npðzÞ, one can derive

the traction BIE with strongly singular integrals

being taken in the Cauchy principal value sense.

However, a more advanced regularized form of

the traction BIE is available too (see, e.g., [6]).

Finally, performing the inverse Laplace trans-

formation in (35) and (36), one obtains
hðxÞujðx; tÞ

¼
ðt
0

f
ð
V

�
Fiðy; tÞUi jðy� x; t� tÞ

�Q ðy; tÞU0jðy� x; t� tÞ
�
dVy

þ
ð
SA

�
tiðh; tÞUi jðh� x; t� tÞ

� uiðh; tÞTi jðh� x; t� tÞ
�
dS�

þC

ð
SA

h
yðh; tÞniðhÞ@i U0jðh� x; t� tÞ

� qðh; tÞU0ðh� x; t� tÞ
i
dS�gdt

þ r
ð
V

�
uiðxÞ

@

@t
þ viðxÞ

	
Uijðx� y; tÞdVy

�
ð
V

yðxÞU0j ðx� y; tÞdVy

ð37Þ

and
slpðx; tÞ þ gdlp yðx; tÞ

¼ cl p j r

(ð
V

�
Fiðy; tÞ@r Ui jðy� x; t� tÞ

� Qðy; tÞ@r U0jðy� x; t� tÞ
�
:dVy

�
ð
SA

tiðh; tÞ@0r Ui jðh� x; t� tÞ dS�

þ ci s k t

ð
SA

kr s t@
0
t Uk jðh� x; t� tÞ dS�

þ r
ð
SA

€uiðh; tÞ nrðhÞUi jðh� x; t� tÞ dS�

� C

ð
SA

h
yðh; tÞ niðhÞ @0i @0r U0j ðh� x; t� tÞ

� �qðh; tÞ@0r U0jðh� x; t� tÞ
i
dS�

þ
ð
V

�
r
�
uiðxÞ

@

@t
þ viðxÞ

	
@r Ui jðy� x; t� tÞ

� yðxÞ@r U0jðy� x; t� tÞ
�
dVy

)
ð38Þ
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Future Directions for Research

Although the fundamental solutions are available

even for some special kinds of gradation of mate-

rial coefficients, they are not available in general

case of non-homogeneous media and/or for non-

linear problems. Nevertheless, having used the

fundamental solutions for simplified operators,

one can derive the boundary-domain integral for-

mulations in such more complex problems. The

domain integrals involving unknown fields occur

also in time-stepping techniques for solution of

transient problems. Such domain integrals, how-

ever, partially decrease the advantage of pure

boundary integral formulations. Note that there

are under development some approaches for treat-

ment of such domain integrals. Instead of

discretization of the analyzed domain with using

domain cells only, some additional interior nodes

are required [8–10]. Such sophisticated formula-

tions utilize the advantages of the BIEM for-

mulations without losing the universality of

formulation. Another extension of universality

and simplification of formulation consists in using

the integral equation formulations with mesh-free

approximations of field variables [11].
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Overview

Many problems to be solved by engineers and

researchers are dynamics or time-dependent sys-

tems. Dynamic systems mean that the solutions

of the problem change with time. In the heat

transfer, the heat conduction problems, which

describe the transfer of thermal energy between

regions of an object due to difference in temper-

ature, could become time-dependent due to an

imposed change in temperature at the object’s

boundary. This time-dependent heat conduction

may also occur when a source (or sink) of

heat is suddenly applied within the object and

subsequently causes change in the nearby

temperatures.

Solving time-dependent engineering problems

is not always simple. In practice or even in the

academic world, the engineers or researchers

often have to deal with engineering problems

whose equations involve multiple physics, and
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geometries are large scale if not complex. For

such problems, it is almost impossible to derive

analytical solutions to problems. Therefore, it has

become a common practice for engineers and

scientists to rely on numerical methods or com-

putational softwares to obtain the solutions.
Basic Concepts

Solving these problems numerically or computa-

tionally usually involves two major steps. Firstly,

the whole spatial domain of the problem,

as enclosed by the geometry, is broken into dis-

crete elements. These discrete elements are

interconnected between one another such that

their assembly represents the problem’s actual

continuous spatial domain. By doing so, one is

allowed to create elemental equations that approx-

imate the actual equation of the problem, given

enough discrete elements. This step, known as

spatial discretization, transforms the problem’s

actual equation (that is complicated due to its

nature of being partial differential) to a set of

ordinary differential equations that is easier to be

solved.A number of different spatial discretization

methods are available including finite element

method, finite difference method, finite volume

method, and boundary element method, to name

a few. When the problem is time dependent, the

resulting set of ordinary differential equations will

be time dependent. Some problems are dependent

on time to a first order, such as parabolic heat

conduction problems. Others are second order in

time such as hyperbolic heat conduction problems.

Once the problem’s equation is written as a set

of ordinary differential equations after use of any

spatial discretization method, the next step in the

numerical method is to solve such set of equa-

tions using a solver or method that can give the

solutions to the problem at each time level and

throughout the whole simulation period. Such

a method is called time integrator. To date,

there exist in the literature a variety of different

classes of time integrators for solving time-

dependent engineering problems, such as the so-

called linear multistep methods, sub-stepping

methods, Runge–Kutta type methods, and
higher-order time-accurate methods. Of particu-

lar interest is a class of time integrators charac-

terized as a single-system and a single-solve

method. A single step means that the time inte-

grator requires solutions of only one previous

time level, while a single solve implies that the

method needs to solve only one system of equa-

tions. These characteristics of such class of time

integrators make it probably the simplest of its

kind, which subsequently require the least com-

putational effort. Due to such a convenience of

this class of time integrators, we have been focus-

ing much of our previous effort on its develop-

ment and improvement.

Looking at the big picture of time integrators,

under the class of single step and single solve, a

new design concept, namely, the notion of Algo-

rithms by Design, was first introduced for applica-
tions in linear structural dynamics problems [1, 2].

This relatively new design concept describes how

to design time integrators via a unified theory

which encompasses existing and new time integra-

tors under a generalized mathematical framework.

In this design procedure, one can a priori tailor

the design of a time integrator according to

predetermined desirable attributes of the proposed

time integrator. Extensions to nonlinear structural

dynamic systems also appear in [3]. This is in

contrast to classical design approach where one

a posteriori studies the time integrator’s properties

resulting from an “idea” which could physically

base interpretation or a mathematical representa-

tion of an assumed construct.

In these earlier studies, it was shown for linear

structural dynamic problems (second-order time-

dependent systems) that the Algorithms by
Design procedure successfully leads to the design

of a framework consisting of new and existing

generalized single-step single-solve time integra-

tors. This framework, formerly termed as GSSSS

but herein referred to as GS4-2 (where “2”

stands for second-order time-dependent system),

uniquely enables most existing linear multistep

(LMS) methods in the literature (for solving sec-

ond-order time-dependent problems) to be cast

into a single modular routine regardless of the

original approach of how those time integrators

were developed. These existing time integrators
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include the midpoint rule, Newmark average

acceleration [4], velocity-based scheme [5],

HHT-a method [6, 7], and WBZ method [8].

This framework also provides new and optimal

time integrators characterized by the underlying

algorithmic overshoot behavior [1, 2]. As a result,

the framework offers a wide variety of time inte-

grator choices to the analyst.

For first-order time-dependent systems that

frequently arise in engineering problems, there

exist in the literature a number of time integrators

that are single step and single solve. The popular

and often used ones are those belonging to the so-

called y-family of time integrators including the

Crank-Nicolson [9], Forward Euler, Backward

Euler, and Galerkin methods. These time integra-

tors are to be distinguished according to the order

of accuracy in time discretization. An order of

accuracy represents the order in which conver-

gence to the exact solution of the ODE can be

obtained. Some of these time integrators are only

first-order accurate, such as the Forward Euler,

Backward Euler, and Galerkin methods. The

Crank-Nicolson method, although is second-

order accurate, is also well known to cause insta-

bilities or oscillations in the resulting solutions.

Such unrealistic behavior is due to the fact that

the Crank-Nicolson method is characterized by

a zero numerical damping property.

Numerical damping is an interesting attribute

of a time integrator that is artificially added in

order to obtain more stable solutions. The need

for numerical damping frequently arises in simu-

lation of fluid dynamics and flow transport prob-

lems especially those of turbulent flows. These

problems require robust and efficient computa-

tional methods that possess numerical damping

attribute to meet the strict needs in running simu-

lation of such problems for very long time periods.

Especially for fluid dynamics problems where the

equation is nonlinear, it has long been recognized

that the numerical damping of the time integrator

is of great interest to obtain physically meaningful

numerical solutions. However, because this

damping is artificially added into the system, it

may drain the energy out of the system leading to

physically incorrect dynamics of the systems for

long-term simulations. Therefore, while numerical
damping is needed to suppress the numerical oscil-

lation, there is a crucial need to balance between

this need and the resulting amount of artifact

added into the system to ensure that the dynamics

of the system is correctly represented. Because of

this required balancing act, it is desirable that the

time integrator can produce acceptable solutions

with minimal amount of numerical damping. For

this reason, it is desirable that the numerical

damping attribute can be selectively controlled

by the analyst.

Controllable numerical dissipative methods

including optimal algorithm designs exist for inte-

grating second-order dynamic systems such as

elastodynamics problems and to a limited extent

have also been applied to first-order systems for

integrating the transient system of equations [1, 2,

10, 11]. Recently, a generalized single-system

single-solve computational approach has been

developed that permits order preservation with

second-order time-accurate features and uncondi-

tionally stability with zero-order overshoot behav-

ior for a family of time integrators in conjunction

with possessing a new feature of selective control

of high-frequency damping for the integration of

transient first-order parabolic systems such as the

heat-conduction type, termed as GS4-1 frame-

work [10]. Such a family of methods were devel-

oped by utilizing in a consistent manner the

Algorithms by Design procedure previously intro-
duced for second-order systems via a generalized

time-weighted residual approach [1, 2]. This

approach is introduced to the discretized system

of equations with free parameters, which are then

adjusted to suit the desired algorithmic attributes,

which are (1) second-order accurate, (2) uncondi-

tionally stable, (3) zero-order overshoot, and

(4) selective and controllable numerical dissipa-

tion. Detailed derivation of this new framework

can be found elsewhere [10].

The key feature in this framework is the incor-

poration of a spurious root (rs1), in addition to the
principal root (r1), to allow for selective and

more flexible control of the high-frequency

damping (for both the primary variable and its

time derivative, respectively) for a successful

simultaneous elimination of the numerical oscil-

lation associated with these variables. Such a
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design thereby yields a two-parameter (r1 and

rs1) family of methods with a more flexible user

control of high-frequency damping for the two

variables, respectively. By allowing the two

parameters to be equal (i.e., r1 ¼ rs1), the

amount of the high-frequency damping for the

two variables is hence equal. However, the same

amount of damping may not be sufficient to sup-

press the numerical oscillation in the time-

derivative variable. This nonphysical instability

in the time-derivative variable can lead to phys-

ically incorrect dynamics of the system for long-

term simulations. This places a limitation. To

overcome this drawback, we allow a more flexi-

ble control of the high-frequency damping by

introducing different amounts of numerical dissi-

pation in the two variables which is inherent

in the present developments. Such a selective

control of the high-frequency damping would

allow simultaneous elimination of the numerical

oscillation associated with the two variables.

The GS4-1 computational framework that is

described here is designed for first-order systems

and encompasses algorithm designs with zero-

order overshoot with selective controllable

numerical dissipation in both the primary vari-

able and its time derivative and inherits features

that enable a family of second-order time-

accurate preserving algorithms and designs.
Governing Equation of Transient
Parabolic Heat Conduction

Before presenting the recently developed GS4-1

time integration solver, it would be useful to first

describe the specific physical systems to be

solved by the new solver. For this purpose, we

consider the transient heat conduction problem

defined by the following governing equation (for

materials with constant specific heat (c), density
(r), and conductivity (k)):

rc
@Tðx; tÞ

@t
¼ kH2Tðx; tÞ þQ; 8x 2 O � Rd; t > 0

ð1Þ

where Tðx; tÞ represents the temperature field at

position x and time t,Q is the source or sink of heat
introduced within the system, x¼ðx1;x2; ::::;xdÞ is
the vector position, d is the dimension of the prob-

lem, and O is a bounded domain in Rd. This

governing (1) is subject to the following condi-

tions on the boundary G:

Tðx; tÞ ¼ TGðx; tÞ 8x 2 G1 ð2Þ

kHT �~n ¼ qðxÞ 8x 2 G2 ð3Þ

G ¼ G1 þ G2 ð4Þ

and initial conditions
Tðx; t ¼ 0Þ ¼ T0ðxÞ 8x 2 O ð5Þ

where G is the boundary on O, while TGðx; tÞ,
qðxÞ, and T0 are known vectors of boundary and

initial conditions.
Spatial Discretization by Finite Element
Method

As previously mentioned, the first step in solving

the time-dependent problems numerically or

computationally is to transform the problem

continuous equation to a set of ordinary differen-

tial equations that is easier to be solved.

Employing the finite element method, the spatial

discretization can be done by applying the

method of weighted residuals to (1) asð
OðeÞ

Wi rc
@Tðx; tÞ

@t
� kH2Tðx; tÞ �Q

� 	
@O ¼ 0

ð6Þ

whereWi is the weighting function andO
ðeÞ is the

domain for an element (e). We next apply

Gauss’s theorem to the diffusive term as follows:
ð
OðeÞ

Wi H � kHTðx; tÞð Þ@O

¼
ð
GðeÞ

Wi kHTðx; tÞð Þ �~n @G

�
ð
OðeÞ

HWi � kHTðx; tÞð Þ@O

ð7Þ



Application of GS4-1 Time Integration Framework to Linear Heat Transfer 185 A

A

where ~n is the normal direction at the boundary

@OðeÞ for this element. Substituting (7) into (6)

yields

ð
OðeÞ

Wi rc
@Tðx; tÞ

@t

� 	
@Oþ

ð
OðeÞ

HWi � kHTðx; tÞð Þ@O

¼
ð
GðeÞ

Wi kHTðx; tÞð Þ �~n @G

ð8Þ

We next approximate the primary variable

Tðx; tÞ as follows:
Tðx; tÞ ¼ NðxÞiTðtÞi ð9Þ

where NðxÞi is the element shape function and

TðtÞ is the vector of nodal solutions of the ele-

ment at time t. Substituting (9) into (8) and

imposing the Neumann boundary condition

yield the following first-order time-dependent

ordinary differential equations:

M _TþKT ¼ F ð10Þ

where
M ¼
Xn
e¼1

MðeÞ ¼
Xn
e¼1

ð
OðeÞ
ðWiNjÞ @O

K ¼
Xn
e¼1

KðeÞ ¼
Xn
e¼1

ð
OðeÞ
ðHWi � kHNjÞ @O

F ¼
Xn
e¼1

FðeÞ ¼
Xn
e¼1

ð
GðeÞ
ðWiqðxÞÞ @G

ð11Þ

are the mass matrix, stiffness matrix due to dif-

fusion, and force vector due to the Neumann

boundary condition, respectively, while n is the

total number of elements used in the spatial

discretization. Equation (10) is a set of first-

order time-dependent ordinary differential

equations (after the summation over all ele-

ments). This completes the first step in the

numerical or computational procedure to solve

the problems.

As previously mentioned, the second step in

the computation procedure is to solve the
resulting set of first-order time-dependent ordi-

nary differential equations using an appropriate

time integrator to give the solutions of the pri-

mary variable (T) and its time derivative ( _T) at

each time level and throughout the simulation

period. In this work, we propose to perform this

step using the GS4-1 framework, a new family of

time integrators with optimal properties devel-

oped in this study. To show the improvement

offered by this framework via its selective control

features over the existing or current state of art,

we will solve the problems using the GS4-1

framework, with and without the selective con-

trol features, in which case the former represents

the new/present developments, whereas the latter

is representative of past developments. Results

are shown in section “Numerical Results”. It is

of great importance, however, to first present the

development of this new time integration frame-

work as described next.
Development of GS4-1 Time Integrator

We proceed in this section by introducing the

GS4-1 time integration framework for solving

the resulting set of first-order time-dependent

ordinary differential equations (such as (10))

from one time level (tn) to the next time level

(tnþ1). The GS4-1 time integration framework

can be derived by introducing a time-weighted

residual approach with arbitrary-weighted time

field W to the semi-discretized system of

Equations (10) as follows:ðDt
0

W½M _TþKT� F�dt ¼ 0 ð12Þ

The weighted time field,W, in (12) is assumed

to be a degenerated scalar polynomial function of

the form

W ¼ 1þ w1Gþ w2G2 ð13Þ

where G ¼ t
Dt and t 2 ½0;Dt�, while Dt ¼

tnþ1 � tn.

The primary variable (T) and its time deriva-

tive ( _T) in (12) are then approximated using an
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asymptotic series type expansion, whereas the

load term, F, is approximated using Taylor series

expansion
_T ¼ _TnþL6

D _T

Dt
t ð14Þ

T ¼ Tn þ L4
_Tn tþ L5

D _T

Dt
t2 ð15Þ

F ¼ Fn þ
Fnþ1 � Fn

Dt
t ð16Þ

where

D _T ¼ _Tnþ1� _Tn ð17Þ

while L6, L5, and L4 are at this point free param-

eters. Substituting the approximations, (14)–(16)

into (12), dividing the resulting equation byÐ Dt
0
W dt, and defining for convenience
Wi ¼
Ð Dt
0
W t

Dt

� �i
dtÐ Dt

0
W dt

ð18Þ

yield the GS4-1 time integration framework in

form of free parameters as follows:
M½ _TnþL6W1D _T� þK½Tn þ L4W1Dt _Tn

þ L5W2DtD _T� ¼ ð1�W1ÞFn þW1Fnþ1

ð19Þ

The above formulation can be represented as
M
e_TþKeT ¼ eF ð20Þ

where
e_T ¼ _TnþL6W1D _T ð21Þ

eT ¼ Tn þ L4W1Dt _TnþL5W2DtD _T ð22Þ

eF ¼ Fn þW1ðFnþ1 � FnÞ ð23Þ
The associated expressions for the updates are

chosen as
Tnþ1 ¼ Tn þ l4 _Tn Dtþ l5D _TDt ð24Þ

_Tnþ1 ¼ _TnþD _T ð25Þ

The above formulation is the GS4-1 time inte-

gration framework in generalized representation

(in form of free parameters). These free parame-

ters (L6W1, L5W2, L4W1, W1, l4, and l5) are

related to Wi, Li, and li that are contained in the

approximations for the primary variable, its time

derivative, and the load term in the design of the

integrator and updates. They uniquely define an

algorithm and serves as the discrete numerically

assigned (DNA) algorithmic markers which are

an algorithm’s signature. Utilizing the concept of

Algorithm by Design, a priori decide (wish list)

the desirable algorithmic properties and impose

those wish list to the generalized framework

to determine these free parameters. Such

a procedure has been presented in detail in

our previous exposition [10] and will not be

repeated here.

The desirable algorithmic attributes consid-

ered are (1) second-order accurate, (2) uncondi-

tionally stable, (3) zero-order overshoot

behavior, and (4) controllable numerical dissipa-

tion in both the primary variable and its time

derivative with selective control feature (i.e., the

numerical dissipation of these two variables can

be controlled separately). These algorithmic

properties are then imposed upon the generalized

framework to determine the free parameters.

These parameters are then expressed in terms of

the spectral radius for an infinite time step to

obtain a framework with strict control of high-

frequency damping. Because our goal is to

develop a method with a more flexible control

of the high-frequency damping in contrast to

limited control, we require that the high-

frequency damping of both the primary variable

and its time derivative to be expressed in terms of

two parameters: (1) a principal root (r1) and

(2) a spurious root (rs1). These two parameters

separately control the high-frequency damping

of the primary variable (T) and its time
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derivative ( _T), respectively. Such an approach

would allow for different amounts of numerical

dissipation in T and _T to obtain simultaneous

elimination of the numerical oscillations associ-

ated with these two variables. This is in contrast

to past developments which control the high-

frequency damping on the primary variable and

its time derivative indiscriminately, i.e., without

the selective control features.

For a small amount of dissipation that is desir-

able, the case without the selective control fea-

tures may result in a large error in _T, although it

may yield an acceptable solution for T. This

behavior can lead to physically incorrect dynam-

ics of the systems for long-term simulations.

Such a restriction hence places a limitation. On

the other hand, the selective control of the high-

frequency damping additionally featured within

the GS4-1 framework offers solutions that are not

only acceptable but also represent physically cor-

rect dynamics. Such a design thereby yields

a two-parameter (r1 and rs1) family of methods

with a more flexible user control of high-

frequency damping for the primary variable and

its time derivative, respectively. Furthermore, by

allowing the two parameters to be equal (i.e.,

r1 ¼ rs1), the amount of the high-frequency

damping for the two variables is hence equal. In

this case, the framework replicates both practices

without selective control and with limited control

of high-frequency damping.

By imposing this new feature, we can express

the algorithmic parameters (L6W1, L5W2, L4W1,

W1, l4, and l5) in terms of r1 and rs1 as follows:
L6W1 ¼
3þ r1 þ rs1 � r1r

s
1

2ð1þ r1Þð1þ rs1Þ
;

L5W2 ¼
1

ð1þ r1Þð1þ rs1Þ
;

L4W1 ¼
1

1þ r1
;W1 ¼

1

ð1þ r1Þ
; l4 ¼ 1;

l5 ¼
1

1þ rs1
ð26Þ

For convenience, we rearrange (20) and sub-

stitute (26) to represent the GS4-1 time integrator
in terms of r1 and rs1 for integrating the

resulting set of first-order time-dependent ordi-

nary differential Equations (10) as follows (i.e.,

for linear case).

Algorithm 1. GS4-1 Time Integrator for Solving
Linear Ordinary Differential Equations Describ-

ing Linear First-Order Time-Dependent Engi-

neering Problems
Consider linear first-order time-dependent

engineering problems of the following form

(after space discretization): M _TþKT ¼ F.

Given Tn and _Tn , we can find Tnþ1 and _Tnþ1
by first solving for Tnþ1 from

3þ r1 þ rs1 � r1r
s
1

2ð1þ r1Þ

� 	
M

Dt
þ 1

1þ r1

� 	
K


 �
Tnþ1

¼ 3þ r1 þ rs1 � r1r
s
1

2ð1þ r1Þ

� 	
M

Dt
þ 1

1þ r1

� 	
K


 �
Tn

þ 3þ r1 þ rs1 � r1r
s
1

2ð1þ r1Þ

� 	
� 1


 �
M _Tn�KTn

þ Fn þ
1

1þ r1

� 	
ðFnþ1 � FnÞ

and followed by updating the time-derivative

variable as follows:
_Tnþ1¼ð1þrs1Þ
Tnþ1�Tn

Dt

� 	
�rs1 _Tn ð27Þ
Numerical Results

To illustrate the selective control feature of the

GS4-1 framework, the following transient heat

conduction problem is considered. The problem

is a two-dimensional rectangular slab with initial

temperature of unity which is uniform over the

entire domain. On the left boundary (x ¼ 0), the

Dirichlet boundary condition for the temperature is

set to zero (cooled side), while all other boundaries

are insulated (zero heat flux). The physical prop-

erties of the material are r ¼ 1.0 kg=m3,

c ¼ 1.0 J=ðkgoCÞ, and k ¼ 1.0 W=ðmoCÞ. The
domain of the problem is discretized using 64 quad-

rilateral elements using the finite element method.

The problem was solved using the GS4-1 time

integration framework, with and without the
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Fig. 1 Plot of analytical solutions T and _T as a function of time for a specific node at (x ¼ 0:25, y ¼ 0:5)
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selective control features, with a time step size

(Dt) of 1 s and an end time of 20 s. While having

two parameters (r1 and rs1) in the GS4-1 frame-

work has a certain appeal, we recall that our aim

is to simultaneously suppress the nonphysical

instabilities in both T and _T to obtain solutions

that are not only acceptable but also represent the

correct dynamics of the problem. For this pur-

pose, we let rs1 in the case with the selective

control features to take a zero value regardless

of the value of r1. Not only that this will ensure

a successful elimination of the numerical oscilla-

tion associated with _T, such an approach would

also allow for widest range of r1 to be tested

(due to the restriction that 0 � r21 � r11 � 1).

Given this constraint on rs1 value, the GS4-1

framework with the selective control features

turned on has only one parameter left to be spec-

ified (i.e., r1). We also recall that the case with-

out the selective control features as in past

developments can be recovered in the GS4-1

framework by defining r1 ¼ rs1. For compari-

son purposes, we choose r1 for such case (i.e.,

the case without the selective control features) to

take the same value as the r1 for the other case

(i.e., the GS4-1 framework with the selective

control features). For r1 we choose values rang-

ing from 0 (i.e., maximal damping) to 1 (i.e., zero

damping) in increments of 0.1. For each r1
value, we solve the problem using the two
cases, i.e., the GS4-1 framework with and with-

out the selective control features as defined

above.

For analyses purposes, we compare the perfor-

mance of the GS4-1 framework, with and without

the selective control features, by first looking at

the solutions of T and _T as a function of time for

a specific node. For this purpose, we chose r1
value of 0.4 and specific node at (x ¼ 0:25,

y ¼ 0:5). The analytical solutions, as given in

[12], are shown in Fig. 1. Meanwhile, the numer-

ical solutions of T and _T as a function of time for

this node generated by the two representations,

i.e., with and without selective control features,

are illustrated in Fig. 2, which illustrates the

improvement in the numerical solutions of T
and _T made by the GS4-1 framework with the

selective control features turned on (i.e., the case

with r1 ¼ 0:4; rs1 ¼ 0), in contrast to the case

without the selective control features (i.e., the

case with r1 ¼ rs1 ¼ 0:4) for the same value

of r1 ¼ 0:4. This difference in performance

between these two cases highlights the role

played by the selective control feature, which is

the key desirable feature of the newGS4-1 frame-

work not available in past developments.

For a complete investigation, we then compute

and compare the errors in T and _T generated

by these two cases, respectively. An error is

defined as
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Application of GS4-1 Time Integration Framework
to Linear Heat Transfer: Transient Heat Conduction,
Fig. 2 Plot of T and _T as a function of time for a specific

node at (x ¼ 0:25, y ¼ 0:5) generated by (1) GS4-1

(r1 ¼ 0:4;rs1 ¼ 0) and (2) GS4-1(r1 ¼ 0:4;
rs1 ¼ 0:4), i.e., the case without selective control features
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Error ¼ jNumerical� Analyticalj ð28Þ

Tables 1 and 2 compare the maximal and total

errors in the solutions of primary variable (T) and
its time derivative ( _T), respectively, as generated

by the two cases (i.e., the GS4-1 framework with

and without the selective control features) for all

r1 values considered. By looking at Table 1, it is

obvious that the error in T generated by these two

time integrators is very small. In other words, we

can say that both cases perform well to obtain

acceptable solutions of T. On the other hand,
Table 2 shows that the errors in _T (both maximal

and total) generated by the case without the selec-

tive control features are large with exception for

large amount of damping (0 � r11 � 0:6) that is

less desirable. Interestingly, these errors are sig-

nificantly reduced by the GS4-1 time integration

framework when the selective control feature is

turned on. By looking at Table 2, therefore, we can

say that the GS4-1 time integrator with the selec-

tive control feature provides improvement over

the case without the selective control feature as

in past development in generating solutions for _T.
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Table 1 Comparison of error in T for the parabolic heat conduction problem between (1) the case without selective

control features (i.e., GS4-1 framework with rs1 ¼ r1) and (2) GS4-1 framework with selective control features with

rs1 ¼ 0 for r1 values ranging from 1 (zero damping) to 0 (maximal damping) in decrements of 0.1

r1

Max error Total error

Without selective control Selective control Without selective control Selective control

1 0.0850 0.0850 0.3275 0.3275

0.9 0.0203 0.0101 0.1062 0.0479

0.8 0.0026 8.6609 � 10�4 0.0217 0.0156

0.7 5.6841 � 10�4 6.8083 � 10�4 0.0117 0.0138

0.6 5.9327 � 10�4 7.3724 � 10�4 0.0121 0.0150

0.5 6.2957 � 10�4 8.0159 � 10�4 0.0128 0.0163

0.4 6.8459 � 10�4 8.7569 � 10�4 0.0139 0.0178

0.3 7.6622 � 10�4 9.6192 � 10�4 0.0156 0.0196

0.2 8.8666 � 10�4 0.0011 0.0180 0.0216

0.1 0.0011 0.0012 0.0217 0.0241

0 0.0013 0.0013 0.0271 0.0271
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Table 2 Comparison of error in _T for the parabolic heat conduction problem between (1) the case without selective

control features (i.e., GS4-1 framework with rs1 ¼ r1) and (2) GS4-1 framework with selective control features with

rs1 ¼ 0 for r1 values ranging from 1 (zero damping) to 0 (maximal damping) in decrements of 0.1

r1

Max error Total error

Without selective control Selective control Without selective control Selective control

1 70.2769 0.1757 226.9521 0.6587

0.9 8.5440 0.0222 24.6318 0.0843

0.8 0.8102 0.0022 48.7307 0.0091

0.7 0.0561 1.5954 � 10�4 0.1437 0.0018

0.6 0.0026 6.7106 � 10�5 0.0082 0.0014

0.5 8.2366 � 10�5 7.1950 � 10�5 0.0018 0.0015

0.4 8.5200 � 10�5 7.7475 � 10�5 0.0017 0.0016

0.3 8.8950 � 10�5 8.3826 � 10�5 0.0018 0.0017

0.2 9.4064 � 10�5 9.1198 � 10�5 0.0019 0.0019

0.1 1.0097 � 10�4 9.9841 � 10�5 0.0021 0.0020

0 1.1008 � 10�4 1.1008 � 10�4 0.0022 0.0022
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Conclusions

A two-parameter GS4-1 time integration frame-

work is presented for use in solving first-order

time-dependent engineering problems. A key

desirable feature of the new time integration

framework is that it allows for a more flexible

control of the numerical damping as compared to

existing/past developments. In this time integra-

tion framework, the two parameters separately

control the numerical damping of the primary
variable and its time derivative, allowing for dif-

ferent amount of damping for these variables.

This feature, termed as selective control feature,

is not available in the existing time integrators

for applications in first-order time-dependent

engineering problems.

The application of GS4-1 time integration

framework to a transient parabolic heat conduc-

tion problem was presented to illustrate the abil-

ity of the new solver to generate acceptable

solutions of both the primary and time-derivative
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variables using minimum numerical damping,

which is a key desirable attribute of the newly

developed GS4-1 time integration framework.
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Overview

Computational techniques, especially for proper

time integration of transient nonlinear heat trans-

fer and related applications, need to be not only

robust but also should possess controllable

numerical dissipative features to selectively con-

trol the high-frequency damping associated with

all relevant variables describing the problem

physics, should facilitate completion of the anal-

ysis, and should enable long simulation times. An

overview of existing time discretized operators

for transient first-order systems is described in

Masuri et al. (ETS entry “▶Application of

GS4-1 Time Integration Framework to Linear

Heat Transfer: Transient Heat Conduction” [1],

wherein the new GS4-1 computational frame-

work [2] is described. The new framework per-

mits order preservation with computationally

attractive numerical features and second-order

time accuracy with and without controllable

numerical dissipation. It additionally inherits

a new feature of selective control of high-

frequency damping for the relevant variables.

Such a selective control of the high-frequency

damping adequately permitted the simultaneous

elimination of the numerical oscillations associ-

ated with the variables of physical interest. In this

synopsis, we present the computational method-

ology with extensions to nonlinear first-order

transient systems from the basic linear transient

framework for application in a simple transient

nonlinear heat transfer problem, with particular

http://dx.doi.org/10.1007/978-94-007-2739-7_759
http://dx.doi.org/10.1007/978-94-007-2739-7_759
http://dx.doi.org/10.1007/978-94-007-2739-7_759
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illustration to nonlinear problem of heat conduc-

tion in a medium with temperature-dependent

velocity, to highlight the essential aspects of the

computational methodology that are needed to

correctly capture the problem physics.
The Governing Equations

From the equation of continuity in hydrodynam-

ics, one can derive for any time t and any point

(x; y; z) of a solid, through which heat is flowing

but within which no heat is supplied at the point,

the temperature as a continuous function of x; y; z,

and t satisfying [3]
rc
@T

@t
þ @fx

@x
þ @fy

@y
þ @fz

@z

� 	
¼ 0 ð1Þ

where r is the density, c is the constant specific

heat, while fx, fy, and fz are the components of the

heat flux vector at which heat crosses any plane of

the isotropic surface per unit area per unit time at

a point.We consider, for purpose of illustration of

the proposed numerical methodology, the con-

duction of heat in an isotropic solid medium

whose temperature field is governed by (1),

while the medium is moving with a velocity

whose components are (ux; uy; uz). For such

a case, the heat flux components (fx, fy, and fz)

can be expressed as
fx ¼ �k
@T

@x
þ rcTux ð2Þ

fy ¼ �k
@T

@y
þ rcTuy ð3Þ

fz ¼ �k
@T

@z
þ rcTuz ð4Þ

where k is the temperature-independent thermal

conductivity of the medium. The first term in the

expressions of the heat flux components (2)–(4)

represents the conduction part (i.e., the terms

� k@T@x, � k@T@y, and � k@T@z), while the latter term

represents the convective part (i.e., the terms

rcTux, rcTuy, and rcTuz) of the respective heat
flux components. Substituting (2)–(4) into (1),

the partial differential equation describing the

conduction of heat in the moving medium can

be expressed as

rc
@T

@t
þ ux

@T

@x
þ uy

@T

@y
þ uz

@T

@z

¼ k
@2T

@x2
þ @2T

@y2
þ @2T

@z2

� 	
ð5Þ

If the velocity is dependent on the tempera-

ture, that is,
ui ¼ uiðTÞ; i ¼ x; y; z ð6Þ

the partial differential (5) becomes nonlinear,

that is,
rc
@T

@t
þ uxðTÞ

@T

@x
þ uyðTÞ

@T

@y
þ uzðTÞ

@T

@z

¼ k
@2T

@x2
þ @2T

@y2
þ @2T

@z2

� 	
ð7Þ

To evaluate the relative performance of the

present GS4-1 framework and the existing

method and to demonstrate the ability of the

proposed numerical methodology to solve such

nonlinear heat conduction problems, we consider

a one-dimensional heat conduction problem with

temperature-dependent velocity, in which the

partial differential (7) reduces to
rc
@T

@t
þ uxðTÞ

@T

@x
¼ k

@2T

@x2
ð8Þ

Consider the case where the velocity is defined

in terms of the temperature as
ux ¼ a0 þ a1T ð9Þ

where the coefficient a0 þ a1T could be regarded

as a temperature-dependent convection coeffi-

cient (where a0 and a1 are units of m=s and

m=s=K, respectively). The physical heat transfer
system that can be represented by such

a coefficient is the cooling of a small metal cast-

ing or billet in a quenching bath after its removal
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from a hot furnace [4]. Substituting (9) into (8)

yields the governing equation of the illustrative

problem as follows:
rc
@T

@t
þ ða0 þ a1TÞ

@T

@x

� �
¼ k

@2T

@x2
;

8x 2 O � R; t > 0

ð10Þ

where O is a bounded domain in R defined by

0 < x < L and where L is the length of the

one-dimensional domain. The physical problem

may be specified on the boundary, denoted G, by
the Dirichlet and/or the Neumann boundary

conditions
T ¼ TG 8x 2 G1 ð11Þ

k
@T

@n
¼ q 8x 2 G2 ð12Þ

G ¼ G1 þ G2 ð13Þ

where @=@n denotes differentiation along the

outward-drawn normal to the surface G2, while

TG and q are the known vectors of the prescribed

temperature and flux. Furthermore, a known ini-

tial temperature must be specified to complete the

problem description
Tðt ¼ 0Þ ¼ T0 8x 2 O ð14Þ
Spatial Discretization by Finite Element
Method

We proceed in this section with the spatial

discretization of nonlinear problems of the

above type by employing the finite element

method. To discretize the described problem in

space using the standard Galerkin finite element

method, we apply the method of weighted resid-

uals to (10) (with the superscripts intentionally

dropped for convenience and simplicity of nota-

tion). The temperature field of an element with N
nodes is approximated by a linear combination

of time-independent element shape functions

cnðn ¼ 1; . . . ;NÞ
T ¼
XN
n¼1

Tncn ð15Þ

The shape function cn is used as the weighting

function in the weighted residual equation. After

use of (15), we obtain the following nonlinear

ordinary differential equations
M _Tþ PðTÞ þKT ¼ F ð16Þ

where T a vector of lengthN containing the nodal

temperatures Tnðn ¼ 1; ::::NÞ, _T is the time deriv-

ative of T, while M is the mass matrix of size

N � N and is defined as (p ¼ 1; . . . ;N and

q ¼ 1; . . . ;N)
Mðp; qÞ ¼
ð
O
cpcqd O ð17Þ

Furthermore, PðTÞ is a vector of length N

containing the nonlinear term and is defined as

(p ¼ 1; . . . ;N)
PðpÞ ¼
ð
O

XN
n¼1

Tncn

XN
l¼1

Tl
@cl

@x

 !
cpdO ð18Þ

In addition, K is the diffusion matrix of size

N � N and is defined as (p ¼ 1; . . . ;N and

q ¼ 1; . . . ;N)
Kðp; qÞ ¼
ð
O

@cp

@x

@cq

@x
dO ð19Þ

and F is the force vector of length N resulting

from integration by parts of the diffusive term

in the governing equation. It is defined as

(p ¼ 1; . . . ;N and i ¼ 1; 2)
FðpÞ ¼
ð
O
q
cpdO ð20Þ

The ordinary differential equation (16) is

consistently assembled for all elements in the

domain to yield a system of nonlinear transient

ordinary differential equations to be solved

using specially tailored time discretization tech-

niques to effectively capture the problem
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physics (in contrast to following traditional

practices which fail to capture the problem

physics). This is described next.
Time Discretization by GS4-1
Framework via Normalized
Time-Weighted Residual Approach

The system of ordinary differential equations

given by (16) is nonlinear, which requires accu-

rate treatment of the nonlinear terms in the time

integration procedure to ensure satisfactory

convergence of the nonlinear iterations during

each time step. This can be achieved by

employing the so-called and well-known nor-

malized time-weighted residual approach

which is new; it has been previously shown to

provide significant improvement and also

explain how to provide proper and accurate

extensions to nonlinear structural dynamic

type problems [5–7] in contrast to traditional

practices. The idea behind the developed

normalized time-weighted residual approach

is to provide the necessary avenue to individu-

ally weigh and normalize each term in the

nonlinear semi-discretized equation of motion.

In contrast to the classical time-weighted

residual approach and counterpart, this new

approach is a general theoretical idea that inher-

ently enables the nonlinear terms in the equa-

tion of motion to be treated specifically and

consequently leads to a more appropriate treat-

ment of the nonlinear terms. This approach can

also explain and yields all possible treatments

of the nonlinear term for implementation in

a computational framework. For the nonlinear

heat transfer problem considered here, the nor-

malized time-weighted residual approach

yields only one type of nonlinear treatment.

Here, we illustrate the use of this treatment

with the GS4-1 framework employed as the

basic primitive time integrator to march the

solutions in time. Employing such a method,

the system of ordinary differential equations

(16) becomes

M
e_Tþ PðeTÞ þKeT ¼ eF ð21Þ
where
e_T ¼ _TnþL6W1D _T ð22Þ

eT ¼ Tn þ L4W1Dt _TnþL5W2DtD _T ð23Þ

eF ¼ Fn þW1ðFnþ1 � FnÞ ð24Þ

and

D _T ¼ _Tnþ1� _Tn ð25Þ

In (21)–(25), subscripts ðÞn and ðÞnþ1 denote

the time levels tn and tnþ1 (where tnþ1 � tn ¼ Dt),
while the superposed ðÞ

~

denotes the algorithmic

time level t̂ between tn and tnþ1 (i.e.,

tn � t̂ � tnþ1).
In this framework, the expressions for the

update on the primary variable and its time deriv-

ative at the end of tnþ1 time level are chosen as

Tnþ1 ¼ Tn þ l4 _Tn Dtþ l5D _TDt ð26Þ

_Tnþ1 ¼ _TnþD _T ð27Þ

In (22)–(27), the algorithmic parameters

L6W1, L5W2, L4W1, W1, l4, and l5 can be

expressed in terms of the principal root (r1)
and the spurious root (rs1) as follows [2]:

L6W1 ¼
3þr1þrs1�r1r

s
1

2ð1þr1Þð1þrs1Þ
;

L5W2 ¼
1

ð1þr1Þð1þrs1Þ
;

L4W1 ¼
1

1þr1
;W1 ¼

1

ð1þr1Þ
;l4 ¼ 1;

l5 ¼
1

1þrs1

ð28Þ

where r1 and rs1 are the two, user-defined

parameters satisfying the following conditions [2]
0 � rs1 � r1 � 1 ð29Þ

and defining the GS4-1 algorithm (i.e. the

algorithms in GS4-1 framework are usually

represented/defined as: GS4-1(r1; r
s
1)).
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These two parameters, namely, r1 and rs1, rep-
resent the selective, controllable numerical dissi-

pative property of T and _T, respectively, due to

high-frequency damping. That is [2],

• r1 is associated with the numerical dissipa-

tive property of T.

r1 ¼ 1 means that T is numerically non-

dissipative.

• rs1 is associated with the numerical dissipa-

tive property of _T.

rs1 ¼ 1 means that _T is numerically non-

dissipative.

By introducing rs1 in addition to r1, we are

able to introduce selective control of the numer-

ical dissipation at high frequency for the two

variables (T and _T) in the developed framework,

allowing for different amount of numerical

damping for these two variables. Such a feature

is necessary for obtaining acceptable solutions of

the two variables as often the time derivative

variable ( _T) would require more numerical

damping than that of the primary variable (T).

This selective control feature is a new desirable

feature not available in any existing methods to

date. More importantly is the fact that we are able

to introduce an important feature while preserv-

ing second-order accuracy (i.e., order-preserving

feature) resulting in a two-root system. This is in

contrast to the classical Trapezoidal family of

algorithms which is only a single root system.

Upon rearrangement, (22)–(27) can also be

represented as follows:

e_T ¼ 1� l4
l5

L6W1

� 	
_Tnþ

L6W1

l5

DT
Dt

ð30Þ

eT ¼ Tn þ
L5W2

l5
DT ð31Þ

eF ¼ Fn þW1ðFnþ1 � FnÞ ð32Þ

with the update equations
Tnþ1 ¼ Tn þ DT ð33Þ

_Tnþ1 ¼
1

l5

DT
Dt
þ 1� l4

l5

� 	
_Tn ð34Þ
The two sets of equations, that is, (22)–(27)

and (30)–(34), represent two different forms of

the expressions for the algorithmic variables

(
e_T and eT) and the update expressions for the

variable at end of time step ( _Tnþ1 and Tnþ1).
The equations in the former set (i.e., (22)–(27))

represent the algorithmic variables in terms of the

increment of the time derivative variable (D _T),

whereas in the latter set (i.e., equations (30) to

(34) the equations represent the algorithmic vari-

ables in terms of the increment of the primary

variable (DT). In the numerical methodology to

be described next, we will make use of these two

forms interchangeably as deemed necessary.
Numerical Methodology Via the GS4-1
Framework

In this section, we show how to use the GS4-1

computational framework with the midpoint rule

representation for the nonlinear term, described

in sect “Time Discretization by GS4-1 Frame-

work via Normalized Time-Weighted Residual

Approach,” in a general mathematical setting,

suitable for use in solving any nonlinear heat

transfer problems. For this purpose, because the

semi-discretized equation to be solved is nonlinear

(21), we now employ the Newton–Raphson

method to iteratively solve the equation at each

time level. The computational details follow next.

Given/knowing the solutions at previous time

level tn (i.e., Tn and _Tn ), we seek the solutions of

the nodal primary variable and its time derivative

at the next time level tnþ1 (i.e., Tnþ1 and _Tnþ1 ).
At the beginning of tnþ1 time level, we initially

predict the solutions using known values at pre-

vious time level as follows:
Tk
nþ1 ¼ Tn

_T
k

nþ1 ¼ _Tn 1� l4
l5

� 	 ð35Þ

where k is the nonlinear iteration counter. We

then calculate the algorithmic variables eTk
ande_Tk

in terms of the predicted (i.e., k ¼ 1) values

Tk
nþ1 and

_T
k

nþ1 using (31) and (22), respectively,
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eTk ¼ Tn þ
L5W2

l5
ðTk

nþ1 � TnÞ ð36Þ

e_Tk

¼ _TnþL6W1ð _T
k

nþ1� _TnÞ ð37Þ

We next enter the nonlinear iteration loop.

This is done as follows:

1. In this nonlinear iteration loop, we first calcu-

late the residual resulting from using the

predicted algorithmic variables at the kth iter-

ation. From use of (21), we have the residual at

the kth iteration as

eRk ¼M
e_Tk

þPðeTkÞ þK eTk � eFk ð38Þ

2. We next linearize the residual using Taylor

expansion, truncate after the linear term and

set the residual to vanish. This step yields the

following equation
@ eRk

@ eTk
DeT ¼ � eRk ð39Þ

where

DeT ¼ eTkþ1� eTk ð40Þ

and @eR k

@eT k is the Jacobian given by

@ eRk

@ eTk
¼M

@ e_Tk

@ eTk
þ @PðeTkÞ

@ eTk
þ K

¼M
L6W1

L5W2Dt

� 	
þ @PðeTkÞ

@ eTk
þK

ð41Þ

The term
@PðeT k

Þ

@eT k in (41) is the derivative of

the nonlinear vector P ((18) in terms of the

algorithmic primary variable eTk
) with respect

to eTk
. Because the evaluation of the P is

dependent upon the choice of the element

shape function (see (18)) and the type of ele-

ment used in the finite element spatial

discretization, a closed form equation for this

term will also be dependent upon these factors

and therefore will be given in section “Numer-

ical Illustrations” where we discuss the
benchmark numerical example of the consid-

ered transient nonlinear heat transfer problem.

Equation (39) can be rearranged to the fol-

lowing form
eTkþ1 ¼ @ eRk

@ eTk

 !�1

 � eRkþ @ eRk

@ eTk
eTk

 !
ð42Þ

3. We next impose the Dirichlet boundary con-

dition (if any) to (42), and this can be done

from the use of (36) by imposing that eTk
takes

the following value
eTk ¼ Tn þ
L5W2

l5
ðTG � TnÞ ð43Þ

whereTG is the known prescribed temperature

at the boundary (see (11)).

4. We then solve for eTkþ1
from (42) after impos-

ing the boundary conditions appropriately.

5. Subsequently, we correct the time derivative

variable using (30) as follows:
e_Tkþ1
¼ 1� l4

l5
L6W1

� 	
_Tnþ

L6W1

L5W2

ðeTkþ1�TnÞ
Dt

ð44Þ

6. Upon obtaining the algorithmic variables at

the (k þ 1)-th nonlinear iteration counter for

the tnþ1 time level, we have to check if con-

vergence is met

j eTkþ1� eTk j ¼ tol ð45Þ

where tol is the user-specified tolerance value.
We repeat the nonlinear iteration (i.e., steps

1 to 6 described above) until the solution is

converged (i.e., until (45) is satisfied). Upon

convergence, we update the variables at the

end of tnþ1 time level as follows:

Tnþ1 ¼ ðeTkþ1�TnÞ
l5

L5W2

þ Tn

_Tnþ1 ¼
ðTnþ1 � TnÞ

l5Dt
þ _Tn 1� l4

l5

� 	 ð46Þ
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Numerical Illustrations

In this section, we illustrate the advantage of the

selective control features (i.e., by allowing

r1 6¼ rs1) inherent within the GS4-1 framework

as compared to traditional practices without the

selective control features (i.e., r1 ¼ rs1) by

solving a one-dimensional case of the transient

nonlinear heat transfer problem governed by

(10). In the spatial discretization by the finite

element method, use 1D linear elements whose

element shape functions are given by
c ¼ 1� x

l

x

l

h i
ð47Þ

where l is the length of each element. We

discretize the spatial domain using 30 elements

such that the Galerkin FEM can be appropriately

used. These choices of the element type and the

element shape functions (c) result in the follow-

ing elemental nonlinear vector (P, defined in

(18)) for this particular problem
P ¼ 1

6

�2T2
1 þ T1T2 þ T2

2

�T2
1 � T1T2 þ 2T2

2

( )
ð48Þ

where T1 and T2 are the values of the nodal

primary variable at node 1 and 2 of each element,

respectively. Using (48), we can find the deriva-

tive of this vector with respect to the primary

variable in a general form as follows:
@PðTÞ
@T

¼ 1

6

�4T1 þ T2 T1 þ 2T2

�2T1 � T2 �T1 þ 4T2

24 35 ð49Þ

Therefore, for the computation of the Jacobian

in the Newton–Raphson iteration method (see

(41)) we have
@PðeTkÞ
@ eTk

¼ 1

6

�4 eT k

1 þ eT k

2
eT k

1 þ2 eT k

2

�2 eT k

1 � eT k

2 � eT k

1 þ4 eT k

2

264
375
ð50Þ
where eT k

1 and eT k

2 are the values of the nodal

algorithmic primary variable at node 1 and 2 of

each element, respectively.

As mentioned earlier, we have previously seen

in our earlier studies on transient linear first-order

systems that the GS4-1 framework with the selec-

tive control features yields physically accurate and

acceptable solutions for both the primary variable

and its time derivative with only minimal numer-

ical dissipation; this is sharp contrast to the case

without employing the selective control features

for which case numerical instabilities in the time

derivative variable were observed for such tran-

sient linear situations. Our objective in this synop-

sis is to demonstrate that indeed, for extensions to

transient nonlinear cases, the analogous algorith-

mic property of the recently developed GS4-1

framework with the selective control features

holds for the transient nonlinear cases as well.
Results Illustrating the Method’s Ability Via

the Selective Control Feature

For this purpose, we solve the problem using the

approach described and outlined above with

a time step size Dt ¼ 5s and an end time of 50 s.

We let the rs1 of the GS4-1 framework with the

selective control features to take on a zero value,

while the r1 values tested range from 1 (i.e.,

non-dissipative/zero damping) to 0 (i.e., maximal

damping) in decrements of 0.1. The parameter

defining the case without the selective control

features (r1) will take the same value as the r1
for the present case (i.e., with the selective con-

trol features) to enable valid comparisons

between the two cases, from which the ability

and advantage of the selective control feature

will be made transparent.

We first compare the performance of the

GS4-1 framework (employing the numerical

methodology described in section “Numerical

Methodology Via the GS4-1 Framework”) with

and without the selective control features, by

comparing the solutions of T and _T generated

by these two cases as a function of time for

a specific node number 2 (x ¼ 0:0333) using r1
value of 1 for illustration. The numerical
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solutions generated by the two algorithms (i.e.,

the case with and without selective control fea-

ture) are illustrated in Fig. 1. This figure shows

that for the solutions of the primary variable (T)

both cases (i.e., with and without selective con-

trol feature) yield good results. However, for the

solutions of the time derivative variable ( _T), it is

clear from the figure that the case without the

selective control features (i.e., r1 ¼ rs1) results
in large oscillations (it is to be noted that due to

the automatic scale generated by the plotting

routine employed, although not representative,

this oscillation makes the analytical solution sim-

ply appear as a straight line due to the different

ranges on the _T solution values; see Fig. 1d;

alternately, the GS4-1 framework with the selec-

tive control features (i.e., r1 6¼ rs1, with

rs1 ¼ 0) indeed yields good agreement with the

analytical solution with the same r1 value

(hence is capable to capture the analytical solu-

tion curve; see Fig. 1b. This is because the GS4-1

framework with the selective control feature is

able to successfully suppress the numerical oscil-

lations associated with _T solution via such an

important and practically useful feature. That is,

by allowing the rs1 value to take on zero value,

regardless of the choice of r1, the GS4-1 frame-

work with the selective control features could

guarantee that sufficient numerical damping is

given to the time derivative variable ( _T) such

that the large oscillations are successfully elimi-

nated. Such a new feature is necessary as often

the time derivative variable requires more numer-

ical damping than the primary variable does. This

requirement, however, cannot be achievedwithout

the selective control feature as in the past practices

since the numerical damping of both T and _T is of

limited control, often indiscriminately; hence,

a r1 value of 1 means a corresponding rs1 value

of 1 as well. However, with the selective control

features, the GS4-1 framework can enable algo-

rithm designs defined by r1 value of 1 and rs1
value of 0 and subsequently could satisfy the need

for larger numerical damping for the _T variable

resulting in good agreement with the analytical

solutions for both the T and _T variables. This

clearly indicates the significance and advantage
of the GS4-1 computational framework with the

selective control features over the past practices

wherein such a feature is not inherent.

In general, for problems involving thermal

shock, the numerical solution of the primary var-

iable (T) will be oscillating, in which case numer-

ical damping for this variable is needed to obtain

physically representative solution. This type of

problem is considered in [2] where the GS4-1

framework with the selective control feature is

applied to solve linear transient parabolic heat

conduction problem. It is however, beyond the

discussion here since the problem considered in

this synopsis does not involve any thermal shock.

Our objective here is to demonstrate the ability of

the present numerical methodology via the GS4-1

framework with selective control feature to give

physically accurate and representative solutions

of primary variable and its time derivative, even

without having to impose numerical damping on

the primary variable (i.e., r1 ¼ 1). For illustra-

tion purpose only, we also show the solutions

when numerical damping is imposed. Figure 2

shows the results when r1 ¼ 0:9 with time step

size of Dt ¼ 5s. As suspected, the solutions of T

generated by the two cases (with and without

selective control feature) agree well with the ana-

lytical solution (see Fig. 2a, c). The numerical

solution of _T is acceptable for the case with the

selective control feature (see Fig. 2b) but is still

oscillating for the case without the selective con-

trol feature (see Fig. 2d) although the amount of

oscillation is reduced (as compared to Fig. 1d)

due to the effect of numerical damping into the

algorithm. When time step size is reduced to

Dt ¼ 1s, the oscillation in _T is still apparent as

seen in Fig. 3d although is less than that for the

case with Dt ¼ 5s (Fig. 2d).

Further attempt is made to investigate the per-

formance of the algorithm without selective con-

trol feature (i.e., GS4-1 with r1 ¼ rs1) when the
numerical damping is further increased to

approach the maximal value (i.e. r1 ! 0). For

this purpose, we solve the problem using

r1 ¼ 0:1 with a time step size of Dt ¼ 1s and

show results of T and _T generated by the two

cases (i.e., with and without selective control
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Application of GS4-1 Time Integration Framework
to Nonlinear Heat Transfer: Heat Conduction in
Medium with Temperature-Dependent Velocity,
Fig. 1 Plot of T and _T as a function of time for node

number 2 (x ¼ 0:0333) and Dt ¼ 5s generated by (a, b)

GS4-1(r1 ¼ 1;rs1 ¼ 0) and (c, d) GS4-1

(r1 ¼ 1;rs1 ¼ 1), that is, the case without selective con-

trol features
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feature) in Fig. 4. Consistently and as expected,

the numerical solution of the primary variable

generated by the two cases agrees well with the

analytical solution as seen in Fig. 4a, c. Focusing

on the numerical solution of the time derivative

variable, Fig. 4d shows that the algorithm without

the selective control feature (i.e. r1 ¼ rs1 ¼ 0:1

in this case) still results in numerical oscillation

in _T. This numerical oscillation could only be

eliminated in this method by strictly imposing

maximal numerical damping to both T and _T

(i.e., r1 ¼ rs1 ¼ 0) as illustrated in Fig. 5. This

shows that even for this simple, illustrative

numerical example where thermal shock is not

involved, it is only when maximal damping to
both T and _T is imposed that the existing method

without selective control feature could yield

physically representative and accurate solutions.

In this case, imposing maximal damping to T

means over-dissipating, since the numerical

solution of this variable can already/easily be

obtained with good accuracy without having to

impose any numerical dissipation even with rel-

atively larger time step size (see Fig. 1c). While

numerical damping is handy in one way if one

could control it smartly, but in another way over-

dissipation may also lead to physically incorrect

dynamics of the system due to the fact that

numerical damping is an artifact added into the

system to yield acceptable solutions; hence,
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Fig. 2 Plot of T and _T as a function of time for node

number 2 (x ¼ 0:0333) and Dt ¼ 5s generated by (a, b)

GS4-1(r1 ¼ 0:9;rs1 ¼ 0) and (c, d) GS4-

1(r1 ¼ 0:9;rs1 ¼ 0:9), that is, the case without selective
control features
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caution has to be exercised. The GS4-1 frame-

work with selective control feature, on the other

hand, is capable of giving physically accurate and

representative solutions of primary variable and

its time derivative, even without having to

impose numerical damping on the primary vari-

able (i.e., r1 ¼ 1) for this particular problem

without thermal shock, hence the clear improve-

ment and advantage of the present approach.

The next comparison between the two cases

(i.e., GS4-1 framework with and without selective

control features) is done by looking at the solutions

of both T and _T for the whole spatial domain at

a specific time of t ¼ 10s and using a time step size

of Dt ¼ 1s. For this purpose, we show the results
using r1 value of 1 to consistently demonstrate

the ability of the GS4-1 algorithm with r1 ¼ 1

and rs1 ¼ 0. The numerical solutions of these

variables as generated by the two cases (with and

without selective control features) are illustrated in

Fig. 6, from which a comparison of the perfor-

mance between these two different algorithmic

structures can be made. We can see from this

figure that the same observations seen previously

in Fig. 1 are repeated here. That is, (1) that both

algorithms yield good agreement with the analyt-

ical solution for T, (2) that the case without selec-

tive control features results in oscillations for _T,

and (3) that the GS4-1 framework with the

selective control features could suppress such
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 Ṫ
So

lu
ti

on
 Ṫ

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

Time

0 10 20 30 40 50
−4

−3

−2

−1

0

1

2

3

Time

GS4–1(r∞=0.9, r∞=0)

Analytical

s GS4–1(r∞=0.9, r∞=0)

Analytical

s

GS4–1(r∞=0.9, r∞=0.9)

Analytical

s
GS4–1(r∞=0.9, r∞=0.9)

Analytical

s

a b

c d

Application of GS4-1 Time Integration Framework
to Nonlinear Heat Transfer: Heat Conduction in
Medium with Temperature-Dependent Velocity,
Fig. 3 Plot of T and _T as a function of time for node

number 2 (x ¼ 0:0333) and DT ¼ 1s generated by (a, b)

GS4-1 (r1 ¼ 0:9; rs1 ¼ 0) and (c, d) GS4-1

(r1 ¼ 0:9;rs1 ¼ 0:9), that is, the case without selective

control features
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oscillations and subsequently yields good agree-

ment with the analytical solution even with the

same r1 value that was employed for the case

without selective control. For the _T solution, it is

to be again noted that the oscillations generated by

the case without the selective control feature, due

to the scale of the plotting routine employed, make

the analytical solution appear as a straight line due

to the different ranges on the _T solution values (see

Fig. 6d); alternately, the GS4-1 framework with

the selective control features (i.e., r1 6¼ rs1, with
rs1 ¼ 0) readily captures the proper physics as

seen in the analytical solution curve due to the

excellent agreement between the numerical results

and the analytical solutions (see Fig. 6b). These

observations consistently illustrate the importance
of and the significant role played by the new fea-

tures introduced within the GS4-1 computational

framework, which is its selective control of the

high-frequency damping for both T and _T that is

not available in the existing methods to date, for

obtaining physically representative and accurate

solutions of both the primary variable and its

time derivative constituting the transient first-

order system.

For completeness of the comparisons between

the two cases (i.e., with and without the selective

control feature), we next compute and compare

the errors in T and _T generated by these two time

integrators with time step size of Dt ¼ 1s and an

end time of t ¼ 10s, for a given set of r1 value

ranging from 0 (maximal numerical damping)
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Fig. 4 Plot of T and _T as a function of time for node

number 2 (x ¼ 0:0333) and Dt ¼ 1s generated by (a, b)

GS4-1 (r1 ¼ 0:1; rs1 ¼ 0) and (c, d) GS4-1

(r1 ¼ 0:1;rs1 ¼ 0:1), that is, the case without selective

control features
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(r1 ¼ 0;rs1 ¼ 0), that is, the case without selective con-

trol features but with maximal numerical damping
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Fig. 6 Plot of T and _T as a function of x for a specific

time of t ¼ 10s generated by (a, b) GS4-1

(r1 ¼ 1;rs1 ¼ 0) and (c, d) GS4-1 (r1 ¼ 1;rs1 ¼ 1),

that is, the case without selective control features
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to 1 (zero numerical damping) in a decrement of

0.1. The error is defined as

Error ¼ numerical� exact

exact

���� ���� ð51Þ

Table 1 shows the comparison of maximal and

total errors in the primary variable (T) within the

GS4-1 framework, with and without the selective

control features, for all r1 values considered. It

is clear from this table that the two cases yield

acceptable solutions of T. The focus is however

on the performance of the different time integra-

tors with and without selective control features in

computing the solutions of the time derivative

variables ( _T). The maximal and total errors in
this quantity are shown in Table 2. From this

table, we can easily see that the GS4-1 framework

with the selective control features outperforms

the case without such features. The former yields

satisfactory results for all r1 values considered,

whereas the latter results in large errors as

the numerical damping is minimal (i.e., r1
approaches unity). Because our aim is to obtain

physically representative and accurate solutions

at minimal damping to preserve the system

dynamics and the associated physics, the GS4-1

framework with the selective control features is

clearly at an advantage, even without having to

introduce numerical damping to the primary var-

iable (i.e., GS4-1 with r1 ¼ 1 and rs1 ¼ 0).

Meanwhile, the large errors in _T generated by
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with Temperature-Dependent Velocity, Table 1 Comparison of error in T between (a) the case without selective

control features with r1 ¼ r1 and (b) GS4-1 framework with selective control features with rs1 ¼ 0, for r1 values

ranging from 1 (zero damping) to 0 (maximal damping) in decrements of 0.1

Max error Total error

r1 Without selective control Selective control Without selective control Selective control

1 1.4140 � 10�5 1.4140 � 10�5 2.9509 � 10�4 2.9509 � 10�4

0.9 1.3079 � 10�5 1.5227 � 10�5 2.6847 � 10�4 3.0655 � 10�4

0.8 1.3782 � 10�5 1.6533 � 10�5 2.7631 � 10�4 3.2925 � 10�4

0.7 1.4687 � 10�5 1.7917 � 10�5 2.9170 � 10�4 3.5601 � 10�4

0.6 1.5407 � 10�5 1.9365 � 10�5 3.0553 � 10�4 3.8484 � 10�4

0.5 1.6224 � 10�5 2.0891 � 10�5 3.2198 � 10�4 4.1525 � 10�4

0.4 1.7381 � 10�5 2.2476 � 10�5 3.4530 � 10�4 4.4687 � 10�4

0.3 1.9009 � 10�5 2.4082 � 10�5 3.7786 � 10�4 4.7892 � 10�4

0.2 2.1218 � 10�5 2.5630 � 10�5 4.2193 � 10�4 5.0986 � 10�4

0.1 2.4128 � 10�5 2.6966 � 10�5 4.8008 � 10�4 5.3665 � 10�4

0 2.7793 � 10�5 2.7793 � 10�5 5.5342 � 10�4 5.5342 � 10�4

Application of GS4-1 Time Integration Framework to Nonlinear Heat Transfer: Heat Conduction in Medium
with Temperature-Dependent Velocity, Table 2 Comparison of error in _T between (a) the case without selective

control features with r1 ¼ r1 and (b) GS4-1 framework with selective control features with rs1 ¼ 0, for r1 values

ranging from 1 (zero damping) to 0 (maximal damping) in decrements of 0.1

Max error Total error

r1 Without selective control Selective control Without selective control Selective control

1 741.2217 0.0014 1.6459 � 103 0.0341

0.9 257.0124 0.0014 570.8179 0.0332

0.8 78.6596 0.0014 174.7673 0.0331

0.7 20.5530 0.0014 45.7032 0.0332

0.6 4.3676 0.0014 9.7434 0.0335

0.5 0.7013 0.0014 1.5961 0.0338

0.4 0.0764 0.0014 0.2068 0.0342

0.3 0.0058 0.0014 0.0460 0.0348

0.2 0.0010 0.0014 0.0231 0.0356

0.1 1.2102 � 10�4 0.0014 0.0025 0.0367

0 0.0014 0.0014 0.0382 0.0382
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the case without the selective control features

indicate that such a method is not capable of

eliminating the numerical oscillation associated

with _T for the given minimal amount of damping.

Although such error can be greatly reduced by the

method as numerical damping is approaching its

maximal value (i.e., r1 approaches zero), such

over-dissipative algorithm is unnecessary when it

can easily be achieved by using the GS4-1 frame-

work with r1 ¼ 1 (i.e., non-dissipative for T)

and rs1 ¼ 0 via the selective control feature

inherent in the GS4-1 framework.
Convergence Rate in Time of the Method

The developed GS4-1 framework is second-order

accurate in time. For completeness of the ana-

lyses, we explicitly demonstrate in this section

the rate of convergence in time of the GS4-1

framework employing the numerical methodol-

ogy described in section “Numerical Methodol-

ogy Via the GS4-1 Framework Numerical

Methodology Via the GS4-1 Framework” for

the one-dimensional transient nonlinear heat

transfer problem considered in this synopsis.

For this purpose and for consistency, we show
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Fig. 7 Convergence plot of the GS4-1 algorithm with

(a) (r1, r
s
1)¼ (1, 0) and (b) (r1, r

s
1)¼ (0.9, 0) utilizing

the standard convergence plot for T and the time level

aligned convergence plot for _T
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the convergence plots of the algorithms used in

obtaining the numerical results shown in sec-

tion Results Illustrating the Method’s Ability

Via the Selective Control Feature,” namely,

(1) GS4-1 with (r1, r
s
1) ¼ (1,0) and (2) GS4-1

with (r1, r
s
1) ¼ (0.9,0). The set for the number

of time steps used to construct the plots is

Ni ¼ ½10000; 500; 200; 100�, and the end time at

which the solutions are evaluated is 5 s. In

constructing the convergence plots, we use the

standard convergence plot for T and the time

level aligned convergence plot for _T (description

and discussion of these different ways of

constructing the convergence plot has been

discussed in [2] and will not be repeated here).

Figure 7 shows the convergence plots of T and _T
generated by (a) the GS4-1 algorithm with (r1,
rs1) ¼ (1,0) and (b) the GS4-1 algorithm with

(r1, r
s
1) ¼ (0.9, 0), respectively.
Concluding Remarks

For transient nonlinear heat transfer type appli-

cations dealing with first-order systems, a novel

computational methodology under the umbrella

of the so-called GS4-1 framework was presented.

The original transient linear algorithms and

designs under the GS4-1 framework were
properly extended to an illustrative transient

nonlinear heat transfer application to satisfacto-

rily capture the problem physics. The GS4-1

computational framework naturally inherits fea-

tures with and without selective control of high-

frequency damping for both the primary variable

and its time derivative. This is extremely note-

worthy and significant. The numerical features

with selective control enable the optimal suppres-

sion of the numerical oscillations selectively for

each of the variables and thereby enable not only

the analysis of long-term system dynamics to be

satisfactory but also readily enable the capture of

the underlying physics. The current state of the

art do not permit such features and consequently

lead to physically incorrect dynamics of the sys-

tem. The simple illustration to a one-dimensional

transient nonlinear heat transfer application

wherein an analytic solution is available was

purposely chosen to highlight the essential

aspects and to demonstrate the significance of

the present developments in capturing the prob-

lem physics.
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Overview

Dynamic thermoelasticity involves generaliza-

tion of both the fields of heat conduction in solids

and continuum elasticity. The thermoelastic

behavior of solids and engineering structures
has long been a subject of widespread research

activity and interest, and numerous publications

exist to date including a review article by Tamma

and Namburu [1], as the problem has a significant

number of general engineering applications in

mechanical, aerospace, chemical, civil, elec-

tronic, and nuclear engineering disciplines.

Therefore, an accurate understanding of the inter-

disciplinary thermal-structural interactions is of

utmost importance and concern especially in the

design and analysis stage. The complexity and

interdisciplinary nature of these structures signif-

icantly influences the response characteristics

and makes the combined modeling and analysis

a formidable and challenging task.

In this regard, numerical computational

methods play an important role for both the fields

of heat transfer and the associated structural

analysis especially due to the complex nature of

the structural components and configurations

encountered in engineering practice. Here, we

consider the classical model with particular case

of ramp-type surface heating known as the Stern-

berg-Chakravorty boundary condition [2] and

describe how the problem can be solved by the

isochronous integration (iIntegration) frame-

work. The framework is suitable for use in both

first- and second-order systems, such as the clas-

sical model of dynamic thermoelasticity problem

described in this synopsis, with optimal algo-

rithms, numerical, and order-preserving attri-

butes (in particular, second-order time accuracy)

as well. The principal contribution emanating

from such unified framework is the practicality

and convenience of using the same computational

framework and implementation when solving

first- and/or second-order systems without having

to resort to the individual framework especially

when there is a need to switch from one system to

another.
Governing Equations

For homogeneous and isotropic continuum, the

governing equations for the temperature and dis-

placement fields are the following coupled differ-

ential equations [3]:
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E

2ð1þ nÞ ui; kk þ
1

1� 2n
uk; ki

� 	
þ rfi

� r €ui�
Ea

1� 2n
T;i ¼ 0

ð1Þ

lT;kk þ r � rcv _T �
EaT0
1� 2n

_uk; k ¼ 0 ð2Þ

where E is Young’s modulus; n is Poisson’s ratio;
ui and fi are the Cartesian components of dis-

placement and body force vector, respectively;

r is the mass density; a is the coefficient of linear
thermal expansion; T is the absolute temperature;

l is the thermal conductivity; r is the heat source;

cv is the specific heat at constant strain; and T0
is the reference temperature of the natural, stress-

free state. Meanwhile, superposed dots ð_Þ and
commas ð Þ;i denote time differentiation and

partial differential with respect to Cartesian

coordinates xiði ¼ 1; 2; 3Þ, respectively.
The equation of motion for the displacement

field (1) is a hyperbolic, second-order (in time)

system. Meanwhile, the governing equation for

the temperature field (2) is parabolic, first-order

(in time) system. Since the developed i Integra-
tion framework described in here is meant to be

used to solve first- and second-order systems,

such classical thermoelasticity problems

governed by the above equations are well suited

for consideration here to truly illustrate the

method’s ability to solve first- and second-order

systems. Although nonclassical thermoelastic

models also frequently appear in technical litera-

ture, the governing equations for the displace-

ment and temperature fields in this nonclassical

category are both second order in time, hence are

not appropriate for consideration here. The dis-

cussion from here onward will therefore be

focused on the classical thermoelasticity prob-

lems involving first- and second-order systems.

In the theoretical studies as well as engineering

practice of thermoelasticity problems, simplifica-

tions to the above fully coupled equations are

usually made, from which adequate results can

be obtained relatively more easily. These simpli-

fications involve neglecting the inertia term in the

equation of motion (1) to arrive at a quasi-static

model and/or eliminating the coupling term from
the heat conduction (2) to arrive at an uncoupled

model. Only the latter model is of interest here due

to the reason cited above. Furthermore, analytical

solutions to the uncoupled classical thermoelastic

model are available in literature [4], enabling the

validation of the developed numerical method.

For the uncoupled classical thermoelastic model,

the heat conduction (2) becomes

lT;kk þ r � rcv _T ¼ 0 ð3Þ

We shall now consider particular dynamic

thermoelasticity problem described as follows:

Take a Cartesian coordinate system ðx; y; zÞ and
consider a homogeneous, isotropic, thermoelastic

solid occupying the half-space x � 0. Suppose

that the solid is initially at rest, in stress-free

state, at a uniform temperature of T ¼ T0. At

time t ¼ 0þ, however, the temperature at bound-

ary of the solid (x ¼ 0) is changed from T ¼ T0
with a ramp-type surface heating (i.e., Sternberg-

Chakravorty Problem) to T ¼ T1 according to

f ðtÞ ¼ T0 þ
ðT1 � T0Þt

t0
½HðtÞ � Hðt� t0Þ

þ ðT1 � T0ÞHðt� t0Þ
ð4Þ

where HðtÞ is the Heaviside unit step-function

and then is maintained steadily at T ¼ T1. The
boundary is let to move without any restrictions

(i.e., is maintained stress-free). The temperature,

displacement, and stress fields after the sudden

heating can be expressed as
ux ¼ uxðx; tÞ; uy ¼ 0; uz ¼ 0; T ¼ Tðx; tÞ
ð5Þ

sx¼
Eð1� nÞ

ð1þ nÞð1�2nÞ
@ux
@x
� Ea
1�2n

ðT�T0Þ ð6Þ

sy ¼ sz ¼
n

1� n
sx �

Ea
1� n

ðT � T0Þ ð7Þ

An observation of (6)–(7) indicate that the

determination of the temperature (T), x-direction

displacement (ux), and normal stress (sx) are of

interest for a complete analysis. From the value of

the temperature and normal stress, the stresses sy
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and sz can be determined from (7). For this case,

and in the absence of body forces (fi) and heat

source (r), (1) and (3) can be expressed as

@2ux
@x2
� ð1þ nÞð1� 2nÞr

ð1� nÞE
@2ux
@t2
� ð1þ nÞa

1� n
@T

@x
¼ 0

ð8Þ

@2T

@x2
� rcv

l
@T

@t
¼ 0 ð9Þ

To complete the description of the problem,

the associated initial and boundary conditions can

be expressed as follows:
uxðx;0Þ¼ 0;
@

@t
uxðx;0Þ¼ 0; Tðx;0Þ¼ 0 ð10Þ

uxðx!1; tÞ! 0;
@

@x
uxðx!1; tÞ! 0;

Tðx!1; tÞ! T0

ð11Þ

sxð0; tÞ ¼ 0; Tð0; tÞ ¼ f ðtÞ ð12Þ

The governing equation can be represented in

dimensionless form by assigning dimensionless

temperature, displacement, and normal stress as

follows:
y ¼ T � T0
T0

; u ¼ ð1� nÞc
kð1þ nÞaT0

ux;

s ¼ð1� 2nÞ
EaT0

sx

ð13Þ

where k ¼ l
rcv

, c ¼ ð1� nÞE
ð1þ nÞð1� 2nÞr

� �1=2
,

x ¼ cx

k
, t ¼ c2t

k
to yield (in concise form)

u00 � €u� y0 ¼ 0 ð14Þ

y00 � _y ¼ 0 ð15Þ

s ¼ u0 � y ð16Þ

the primes ðÞ0 and superposed dots ð_Þ denote

partial differentiations with respect to the

nondimensional variables x and t, respectively.
Likewise, the initial and boundary conditions can

be expressed in dimensionless forms as follows:
uðx; 0Þ ¼ 0; _uðx; 0Þ ¼ 0; yðx; 0Þ ¼ 0 ð17Þ

uðx!1; tÞ ! 0; u0ðx!1; tÞ ! 0;

yðx!1; tÞ ! 0
ð18Þ

sð0; tÞ ¼ 0; yð0; tÞ ¼ ’ðtÞ ð19Þ

For simplification purpose, we suppose that

T1 ¼ 2T0, in which case ’ðtÞ can be expressed

for the Sternberg-Chakravorty boundary condi-

tion as
’ðtÞ ¼ t
t0
½HðtÞ � Hðt� t0Þ� þ Hðt� t0Þ

ð20Þ

Equations (14) and (15) indicate that the equa-

tion of motion describing the displacement field

is a second-order transient system, while the heat

conduction equation describing the temperature

field is a first-order transient system. Solving such

problem would require appropriate time integra-

tion solvers for both second- and first-order sys-

tems, respectively. Therefore, this illustrative

example serves well to demonstrate the applica-

bility of the present isochronous integration

framework. The descriptions of how this example

(or any problems involving first- and/or second-

order systems) can be solved effectively and

practically using the proposed iIntegration

framework will be presented in section Time

Discretization by iIntegration Framework where

we discuss the time discretization of such prob-

lems. In the next section, we first present the

spatial discretization procedures for the problem,

employing the Finite Element Method.
Spatial Discretization by Finite Element
Method

Wenowproceed in this section to describe how the

governing equations of interest can be discretized

in space using the Galerkin Finite Element

Method. Observation of the governing equations,
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namely, (14) and (15), indicates that the equation

of motion describing the displacement field (14) is

dependent on the temperature field that is to be

solved from the heat conduction (15). Therefore, in

the computational procedures to be described here-

after, we first discuss the heat conduction model,

followed by the discussion on the equation of

motion describing the displacement field.

Heat Conduction Equation for the

Temperature Field

To discretize the heat conduction equation using

the Galerkin Finite Element Method, we apply

the method of weighted residuals to (15). The

temperature field of an element with N nodes is

approximated by a linear combination of time-

dependent nodal temperatures ynðn ¼ 1; . . . ;NÞ
and time-independent element shape functions

cnðn ¼ 1; . . . ;NÞ

y ¼
XN
n¼1

yncn ð21Þ

The shape function cn is used as the weighting

function in the weighted residual equation. After

use of (21), we obtain the following linear ordinary

differential equation that is first order in time:
M _yþKy ¼ F ð22Þ

where y is a vector of length N containing the

nodal temperatures ynðn ¼ 1; ::::NÞ, _y is the time

derivative of y, whileM is the mass matrix of size

N x N and is defined as (p ¼ 1; . . . ;N and

q ¼ 1; . . . ;N)
Mðp; qÞ ¼
ð
O
cpcqdx ð23Þ

Furthermore, K is the stiffness matrix of size

N x N and is defined as (p ¼ 1; . . . ;N and

q ¼ 1; . . . ;N)
Kðp; qÞ ¼
ð
O

dcp

dx
dcq

dx
dx ð24Þ

Meanwhile, F is zero vector of length N. The

ordinary differential equation (22) is consistently
assembled for all elements in the spatial domain

to yield a system of linear ordinary differential

equations that is first order in time, to be solved

using the specially tailored iIntegration frame-

work to effectively capture the problem physics.

Equation of Motion for the Displacement

Field

Employing the Finite Element Method to (14),

following the same procedure as done for the heat

conduction equation (section Heat Conduction

Equation for the Temperature Field), we obtain

for the displacement equation of motion the

following linear ordinary differential equation

that is second order in time:
M€uþKu ¼ F ð25Þ

where u is a vector of length N containing

the nodal displacements unðn ¼ 1; ::::NÞ, €u is

the time derivative of u, while M and K are the

mass and stiffness matrices of size N x N defined

by (23) and (24), respectively.

Meanwhile, for this model, F is the force vec-

tor of length N defined as (p ¼ 1; . . . ;N and

q ¼ 1; . . . ;N)
FðpÞ ¼
ð
O

dcp

dx
cqdx

� 	
yp ð26Þ

where yp is nodal temperature value at node p

(p ¼ 1; . . . ;N) to be obtained from solving (22)

using the present iIntegration framework as

described in section Time Discretization by

i Integration Framework. The ordinary differential

equation (25) is consistently assembled for all ele-

ments in the spatial domain to yield a system of

linear ordinary differential equations that is second

order in time, to be solved using the specially

tailored iIntegration framework to effectively cap-

ture the problem physics. This is described next.
Time Discretization by iIntegration
Framework

The iIntegration framework, in its natural form, is

a time integration solver originally developed for
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Application of Isochronous Integration Framework
to Dynamic Thermoelasticity, Fig. 1 Plot of y and _y as
a function of time for node 2 (x ¼ 0:02) employing (a, b)

GS4-1(r1 ¼ rs1 ¼ 1), that is, the case without selective

control feature, and (c, d) GS4-1(r1 ¼ 1;rs1 ¼ 0), that

is, the case with selective control feature
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second-order transient system, identical to the

V0-family of the GS4-2 framework previously

presented in [5]. It is described as follows:

Given un, _un , and €un , one can find unþ1,
_unþ1 , and _unþ1 by first solving for D€u from

ðL6W1Mþ L5W2DtCþ L3W3Dt2KÞD€u
¼�M €un�Cð _unþL4W1Dt €unÞ
�Kðun þ L1W1Dt _unþL2W2Dt2 €unÞ
þ Fn þW1ðFnþ1 � FnÞ

followed by updating the variables as follows:
unþ1¼ unþl1 _unDtþl2 €unDt2þl3D€uDt2 ð27Þ

_unþ1 ¼ _unþl4 €un Dtþ l5D€uDt2 ð28Þ

€unþ1 ¼ €unþD€u ð29Þ

where
L1W1 ¼
3þ rmin

1 þ rmax
1 � rmin

1 rmax
1

2ð1þ rmin
1 Þð1þ rmax

1 Þ
; l1 ¼ 1

L2W2 ¼
1

ð1þ rmin
1 Þð1þ rmax

1 Þ
; l2 ¼ 1=2

L3W3 ¼
1

ð1þ rmin
1 Þð1þ rmax

1 Þð1þ rs1Þ

l3 ¼
1

2ð1þ rs1Þ

L4W1 ¼
3þ rmin

1 þ rmax
1 � rmin

1 rmax
1

2ð1þ rmin
1 Þð1þ rmax

1 Þ
; l4 ¼ 1

L5W2 ¼
2

ð1þ rmin
1 Þð1þ rmax

1 Þð1þ rs1Þ

l5 ¼
1

1þ rs1

L6W1 ¼
2þ rmin

1 þ rmax
1 þ rs1 � rmin

1 rmax
1 rs1

ð1þ rmin
1 Þð1þ rmax

1 Þð1þ rs1Þ

W1 ¼
3þ rmin

1 þ rmax
1 � rmin

1 rmax
1

2ð1þ rmin
1 Þð1þ rmax

1 Þ
ð30Þ
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Application of Isochronous Integration Framework
to Dynamic Thermoelasticity, Fig. 2 Plot of y and _y as
a function of time for node 2 (x ¼ 0:02) employing (a, b)

GS4-1(r1 ¼ rs1 ¼ 0:9), that is, the case without selec-

tive control feature, and (c, d) GS4-1(r1 ¼ 0:9;rs1 ¼ 0),

that is, the case with selective control feature
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Meanwhile,M,C,K, and F are matrices of the

second-order system: M€uþ C _uþKu ¼ F. The

user-defined parameters, rmin
{nfty, rmax

1 , and rs1,
are the two principal and spurious roots at the

high-frequency limit satisfying the following

relation:

0 � rs1 � rmin
1 � rmax

1 � 1 ð31Þ

The above framework can also be used to

solve first-order transient system M _uþKu ¼ F

by carefully adapting it for such purpose as fol-

lows, hence the name isochronous integration

(iIntegration) framework.

For the matrices:

• Assign M in the iIntegration as M in the first-

order system.

• Assign C in the iIntegration as K in the first-

order system.

• Set K in the iIntegration to equal 0.

• Assign F in the iIntegration as F in the first-

order system.
For the variables:

• Treat €u in the iIntegration as _u in the first-order
system.

• Treat _u in the iIntegration as u in the first-order

system.

• Neglect u (i.e., dummy variable).

For the parameters:

• Set rs1 in the iIntegration that controls _u in the

first-order system.

• Set rmax
1 in the iIntegration to equal 1.

• Set rmin
1 in the iIntegration that controls u in

the first-order system.

and the above iIntegration framework results in the

original GS4-1 framework [6] originally devel-

oped for first-order system, whose algorithms are

defined by choice of the principal root (r1) and
the spurious root (rs1), with or without the selec-

tive control feature (r1 6¼ rs1 or r1 ¼ rs1,
respectively) satisfying 0 � rs1 � r1 � 1.

The heat conduction model results in a system

of ordinary differential equations that is first

order in time (see (22)). Therefore, we readily
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Application of Isochronous Integration Framework
to Dynamic Thermoelasticity, Fig. 3 Plot of y and _y as
a function of time for node 2 (x ¼ 0:02) employing (a, b)

GS4-1(r1 ¼ rs1 ¼ 0:8), that is, the case without selec-

tive control feature, and (c, d) GS4-1(r1 ¼ 0:8;rs1 ¼ 0),

that is, the case with selective control feature
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adapt the iIntegration framework for solving such

system as described above. This way, the original

GS4-1 framework described in [6] need not be

programmed directly, since the iIntegration

framework automatically adapts to first-/second-

order systems. Performing the assignment opera-

tions as described above, this framework is

recovered directly (from the iIntegration frame-

work). This demonstrates the practicality of the

framework, that is, it readily enables the use of

the same computational code to solve both first

and second-order systems.

We employ the iIntegration framework for

solving the heat transfer model as described

above using the nondimensional time step size

(Dt) of 0.1 and nondimensional end time of
t ¼ 2. Additionally, we demonstrate the ability

of the selective control feature inherent in the

framework. Such a feature can be turned on by

choosing rmin
1 6¼ rs1, which is equivalent to the

GS4-1 framework with r1 6¼ rs1. On the other

hand, when homin
1 ¼ rs1, the framework recovers

the GS4-1 framework without the selective con-

trol feature as in the existing/past methods. The

advantage of this feature will be made apparent

by comparing the numerical results generated by

the two cases, that is, with and without the selec-

tive control feature. For this purpose, we let the

rs1 of the GS4-1 framework with the selective

control feature to take on zero value, while the

rmin
1 values tested may range from 1 (i.e.,

nondissipative/zero damping) to 0 (i.e., maximal
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Application of Isochronous Integration Framework
to Dynamic Thermoelasticity, Fig. 4 Plot of y and _y as
a function of time for node 2 (x ¼ 0:02) employing (a, b)

GS4-1(r1 ¼ rs1 ¼ 0:7), that is, the case without selec-

tive control feature, and (c, d) GS4-1(r1 ¼ 0:7; rs1 ¼ 0),

that is, the case with selective control feature
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damping) in decrements of 0.1. The parameter

defining the case without the selective control

feature ðrmin
1 ¼ rs1Þ takes on the same value as

the rmin
1 for the other case with the selective

control feature to enable valid comparisons

between the cases.

Figures 1 to 4 show the plots of y and _y as

a function of time for node 2 (x ¼ 0:02)

employing the two cases, that is, GS4-1 frame-

work with and without selective control feature

for r1 values of 1, 0.9, 0.8, and 0.7. It can be seen

from these figures that the two cases yield good

results of y. However, for the solutions of _y, the
case without the selective control feature results

in large oscillations. These oscillations can be
easily reduced when the selective control feature

is turned on (i.e., by choosing rs1 ¼ 0). This

shows the advantage of the GS4-1 framework

with the selective control feature in contrast to

past methods without such feature.

We next solve the system of ordinary differ-

ential equations describing the displacement field

as given by (25) as follows:
M€uþKu ¼ F ð32Þ

In this case, the system is second order in

time, and therefore, we employ the i Integration

framework in its natural form, in which case the

framework recovers the original V0-family of
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Application of
Isochronous Integration
Framework to Dynamic
Thermoelasticity,
Fig. 5 Plot of u and s as

a function of the spatial

coordinate x at t ¼ 2

employing GS4-2: V0

(rmin1 ¼ 0;rmax1 ¼ 1;
rs1 ¼ 0), that is, the

U0� V0optimal with

Dt ¼ 0:1
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GS4-2 framework [5]. For this model, we

employ the U0� V0optimal defined by GS4-2:

V0 (rmin
1 ¼ 0, rmax

1 ¼ 1, rs1 ¼ 0). Since the

computational procedure to solve this system

requires the solution of the heat conduction

model (the first-order system), we use the solu-

tions of y generated by the GS4-1 framework

with the selective control feature defined by
r1 ¼ 0:7 and rs1 ¼ 0. The numerical results

on the nondimensional displacement (u) and

stress (s) as a function of the spatial coordinate

x at t ¼ 2 are shown in Figs. 5 and 6 for Dt
values of 0.1 and 0.01, respectively. From

these figures, it can be seen that the numerical

solutions of these variables employing the

U0� V0optimal is satisfactory.
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Fig. 6 Plot of u and s as

a function of the spatial

coordinate x at t ¼ 2

employing GS4-2:

V0(rmin1 ¼ 0;rmax1 ¼ 1;
rs1 ¼ 0), that is, the

U0� V0optimal with

Dt ¼ 0:01
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Conclusions

In this work, we describe the significance and

also how the iIntegration framework can be

used to solve a dynamic thermoelasticity prob-

lem, in particular with ramp-type surface heating

(Sternberg-Chakravorty Boundary Condition).

The framework is suitable for use in both first-

and second-order systems, such as the dynamic

thermoelasticity problem described in this
synopsis, with optimal algorithms, numerical,

and order-preserving attributes (in particular,

second-order time accuracy) as well. The princi-

pal contribution emanating from such unified

framework is the practicality and convenience

of using the same computational framework and

implementation when solving first- and/or sec-

ond-order systems without having to resort to

the individual framework especially when there

is a need to switch from one system to another.
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Definition

The mesh-free or meshless methods are some of

the most effective numerical methods in engi-

neering analysis. In meshless methods, it is not

required to generate any mesh on the whole ana-

lyzed domain which can be considered as

the great advantage of meshless methods. The

governing equations of coupled thermoelasticity
based on Green-Naghdi theory without energy

dissipation in thick hollow cylinder are solved

using two meshless methods including meshless

local Petrov-Galerkin (MLPG) and generalized

finite difference (GFD). In both methods, the

governing equations are discretized in matrix

forms in the temperature and displacement fields.

The boundary conditions are represented in

MLPG and GFD discretized forms of relevant

boundary densities (temperature, heat flux,

displacements, and tractions).
Overview

In many problems of thermoelasticity, the tem-

perature field is directly obtained from the first

law of thermodynamics and the temperature is

independent of displacements. Coupled problems

of thermoelasticity take into account the time rate

of the first invariant change of strain tensor in

the first law of thermodynamics. This causes

dependency between the temperature and dis-

placement fields and, thus, coupling between

elasticity and energy equations. This situation

happens when the time rate of change of thermal

boundary conditions is comparable with the time

rate of structural disturbances. When characteris-

tic times of structural and thermal disturbances

are of comparable magnitudes, the equations of

motion of an elastic body are coupled with the

energy equation. Green and Naghdi presented

a model in coupled thermoelasticity which is

called the GN theory of thermoelasticity [1].

The meshless local Petrov-Galerkin (MLPG)

method is based on local (symmetric or

unsymmetric) weak forms over intersecting

subdomains, which are distributed over an

analyzed domain of problem in both temperature

and displacement fields. Physically the consid-

ered problem is three dimensional though some

components of the physical fields are vanishing

and each physical field is dependent only on the

radial coordinate due to the axial symmetry and

independence on the axial coordinate.

In generalized finite difference (GFD)

method, the partial derivatives are linearly

approximated by Taylor series expansion on

http://dx.doi.org/10.1007/978-94-007-2739-7_100103
http://dx.doi.org/10.1007/978-94-007-2739-7_100298
http://dx.doi.org/10.1007/978-94-007-2739-7_100418
http://dx.doi.org/10.1007/978-94-007-2739-7_100759
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some nodes (center nodes) in the analyzed domain

such that each center node is surrounded by some

other nodes in both temperature and displacement

fields. Consequently, partial derivatives are

obtained at the rest of each center nodes and the

group of nodes with a center node and surrounding

other nodes is called a star in this method.
Green-Naghdi Coupled Thermoelasticity
in Thick Hollow Cylinder

Consider a thick hollow cylinder made of func-

tionally graded materials (FGMs) with inner

radius “rin” and outer radius “rout”, which is

subjected to thermal shock loading. To find the

dynamic response of displacement field, the

coupled thermoelasticity governing equations

should be considered for the problem. In coupled

thermoelasticity, the time rate of the first invari-

ant change of strain tensor is employed in the first

law of thermodynamics. Consequently, this

causes dependency between the temperature

and displacement fields and, thus, coupling

between elasticity and energy equations. To find

the dynamic behaviors of displacement field, the

temperature field and elastic field should be

solved together as a coupled system of partial

differential equations. The governing coupled

thermoelasticity equations based on GN theory

without energy dissipation are given as:

H�sþ rF ¼ r€u ð1Þ

c €T þ g T0 H�€u ¼ r _gþ H� k
HTð Þ ð2Þ

where “u” is the displacement vector, “T” is the

temperature change above the uniform reference

temperature “T0”, “F” is the external force, and

“ _g” is the external rate of supply of heat. Both the
“F” and “ _g” are assumed to be absent in this

work. Furthermore, “r” is the mass density, “c”

is the specific heat, “l” and “m” are the Lame

constants and
g ¼ 3lþ 2mð Þb
 ð3Þ

where “b
” is the coefficient of linear thermal

expansion and “k
” is a material parameter of
the GN theory. The dot over the symbol denotes

the time differentiation. The stress field can be

reached using following equation:

sij ¼ dij l uk;k � gT
� �

þ m ðui;j þ uj;iÞ ð4Þ

The axisymmetry and plane strain conditions

are assumed for the problem to find natural fre-

quencies of FG thick hollow cylinder from

dynamic response of radial displacement. Conse-

quently, the following relations are taken into

account to calculate the parameters:
uy ¼ 0; uz ¼ 0; srr ¼ 2 m ur;r þ l e� gTð Þ;
syy ¼ 2 m ur=r þ l e� gTð Þ; szz ¼ l e� gT;

sry ¼ 0 ¼ srz ¼ szy; e ¼ ur;r þ ur=r

The governing equations (1) and (2) are

reduced to the equations:
mH2uþ lþ mð ÞHdivu� gHT þ rF ¼ r€u ð5Þ

c €T þ g T0div€u ¼ r _gþ k
H2T ð6Þ

where “u” is the displacement vector, “T” is the

temperature change above the uniform reference

temperature “T0”, “F” is the external force, and

“ _g” is the external rate of supply of heat that both
“F” and “ _g” are not considered in this work. “r”
is the mass density, “c” is the specific heat, “l”
and “m” are the Lame constants, and
g ¼ 3 lþ 2 mð Þ b
 ð7Þ

where “b
” is the coefficient of volume expan-

sion and “k
” is a material constant characteristic

of the theory.

To analyze the problem, we use the

nondimensional parameters as follows:

�r ¼ r

l
; �t ¼ v

l
t; �u ¼ 1

l

lþ 2mð Þ
g T0

u

�T ¼ T

T0
; �sr ¼

sr
g T0

; �sy ¼
sy
g T0

ð8Þ

where “l” is a standard length and “v” is a standard

speed. The governing equation and heat transfer can

be rewritten by using nondimensional parameters:
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Cs
2H2�uþ C2

p � Cs
2

� 

Hdiv�u� Cp

2H �T ¼ u�€ ð9Þ

CT
2H2 �T ¼ T�€þ e
divu�€ ð10Þ

where

Cp
2 ¼ lþ 2m

r v2
; CT

2 ¼ k


c v2
;

Cs
2 ¼ m

r v2
; e
 ¼ g2 T0

c lþ 2mð Þ

ð11Þ

We consider the axisymmetry and plane strain

conditions for problem. The governing equations

for axisymmetry and plane strain conditions can

be obtained as follows:
Cp
2 @

2�u

@�r2
þ Cp

2 1

�r

@�u

@�r
� C2

p � Cs
2

� 
 �u

�r2

� Cp
2 @ �T

@�r
¼ €u

ð12Þ

CT
2 @2T�

@�r2
þ 1

�r

@ �T

@�r

� �
¼ T�€þ e


@u�€

@�r
þ u�€

�r

��
ð13Þ

To solve the aforementioned governing

coupled thermoelasticity equations (12) and

(13), there are some numerical methods such as

finite element and other similar methods that are

needed to mesh generations and also numerical

methods based on mesh reduction or meshless

techniques. In this entry, we present two efficient

mesh-free methods, which are called meshless

local Petrov-Galerkin (MLPG) and generalized

finite difference (GFD) methods.
Meshless Local Petrov-Galerkin Method

The MLPG method is based on local weak forms

over some subdomains, which are distributed over

an analyzed domain of problem. In this problem,

the analyzed domain is an abscissa along the radial

coordinate of the FG cylinder. The analyzed

domain is assumed to be covered by small

subdomains in finite size line segments forms.

Nodal points are randomly distributed in the global

domain and each interior node �rI is surrounded by
a subdomain (line segment) OI ¼ ½�rI0; �rI1� on
which a local weak formulation for the set of

Green-Naghdi coupled thermoelasticity governing

equations (12) and (13) is considered. Using hð�rÞ
and gð�rÞ as the test functions, the local weak form
of the coupled thermoelasticity governing equa-

tions can be written over subdomain OI as:ð
OI

C2
p

@2�u �r;�tð Þ
@�r2

þCp
2 1

�r

@�u �r;�tð Þ
@�r




� C2
p�Cs

2
� 
 �u �r;�tð Þ

�r2
�Cp

2@
�T �r;�tð Þ
@�r

�u�€ð�r;�t Þ
�
hð�rÞ�rd�r¼ 0 ð14Þ

ð
OI

C2
T

@2 �T �r;�tð Þ
@�r2

þ1

�r

@ �T �r;�tð Þ
@�r

� �
�T�€ �r;�tð Þ




� e

@ u�€ �r;�tð Þ

@�r
þu�€ �r;�tð Þ

�r

��
gð�rÞ�rd�r¼ 0

�
ð15Þ

for all interior nodes I ¼ 1; 2; . . . ; n. Applying

the integration by parts to equations (14) and

(15), we obtain:

C2
p

@�u �r;�tð Þ
@�r

þ �u �r;�tð Þ
�r
� �T �r;�tð Þ

� 	
�rhð�rÞ

�����rI1
�rI0

þ
ð�rI1
�rI0

C2
s

�u �r;�tð Þ
�r2
�u�€ �r;�tð Þ

� �
hð�rÞ�rd�r

�
ð�rI1
�rI0

C2
p

@�u �r;�tð Þ
@�r

þ �u �r;�tð Þ
�r
� �T �r;�tð Þ

� 	
@�rh �rð Þ
@�r

� �
d�r¼0

ð16Þ

C2
T

@ �T �r; �tð Þ
@�r

þ
�T �r;�tð Þ

�r

� 	
� e
u�€ �r; �tð Þ

� �
�rgð�rÞ

�����rI1
�rI0

þ
ð�rI1
�rI0

"
C2
T

�T �r; �tð Þ
�r2

� T�€ �r;�tð Þ � e

u�€ �r; �tð Þ

�r

#
gð�rÞ�rd�r

�
ð�rI1
�rI0

C2
T

@ �T �r;�tð Þ
@�r

þ
�T �r; �tð Þ

�r

� 	
� e
u�€ �r;�tð Þ

� �
@�rg �rð Þ
@�r

d�r ¼ 0

ð17Þ
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For the problem in this entry, we assumed the

test functions to be equal to Heaviside step unit

function:
h �rð Þ ¼ g �rð Þ ¼ 1 at �r 2 OI

0 at �r =2 OI



ð18Þ

The local integral equations (16) and (17) are

simplified as:
C2
p

@�u �r; �tð Þ
@�r

þ �u �r; �tð Þ
�r
� �T �r;�tð Þ

� 	
�r

�����rI1
�rI0

�
ð�rI1
�rI0

C2
p

@�u �r; �tð Þ
@�r

� �T �r; �tð Þ
� 	�

þ C2
p � Cs

2
� 
 �u �r; �tð Þ

�r
þ �r u�€ �r;�tð Þ�d�r ¼ 0

ð19Þ

C2
T

@ �T �r;�tð Þ
@�r

þ
�T �r;�tð Þ
�r

� 	
� e
u�€ �r;�tð Þ

� �
�r

�����rI1
�rI0

�
ð�rI1
�rI0

C2
T

@ �T �r;�tð Þ
@�r

þ �rT�€ �r;�tð Þ
� �

d�r¼ 0

ð20Þ

The radial basis functions are used to approx-

imate for the spatial distributions of functions

“�u �r; �tð Þ” and “ �T �r; �tð Þ” over a number of ran-

domly located nodes “�rI”, I ¼ 1; 2; . . . ;N. Con-
sequently, assuming the separation of the spatial

and temporal variables, the considered approxi-

mations take the form:
�u �r; �tð Þ ¼ RT �rð ÞA �tð Þ ð21Þ

�T �r; �tð Þ ¼ RT �rð ÞB �tð Þ ð22Þ

where “RT �rð Þ ¼ R1 �rð Þ; R2 �rð Þ; . . . ; Rn �rð Þ½ �” is

the value of radial basis functions around “�rI”,

and “A �tð Þ” and “B �tð Þ” are vectors containing the
coefficients of “AI” and “BI”, I ¼ 1; 2; . . . ;N.

The radial basis function studied in this entry

is [2]:
RI �rð Þ ¼ �r � �rIj j2 þ c2
� 
m

2 ð23Þ
Form the interpolation equations (21) and (22)

for the radial basis functions, the following sys-

tems of linear equations for the coefficients

“A �tð Þ” and “B �tð Þ” are obtained:
R0A �tð Þ ¼ û �tð Þ ð24Þ

R0 B �tð Þ ¼ T̂ �tð Þ ð25Þ

where
ûT �tð Þ ¼ �u1 �tð Þ; �u2 �tð Þ; . . . ; �un �tð Þ
� �

ð26Þ

T̂
T
�tð Þ ¼ �T

1 �tð Þ; �T
2 �tð Þ; . . . ; �Tn �tð Þ

h i
ð27Þ

are composed of the time variable nodal values of

displacements “�uI �tð Þ” and temperature “ �T
I �tð Þ”,

while “R0” is the matrix defined by nodal values

of the RBFs as:
R0 ¼

R1 �r1ð Þ R2 �r1ð Þ . . . Rn �r1ð Þ
R1 �r1ð Þ R2 �r2ð Þ . . . Rn �r2ð Þ

:

:

:

:

:

:

:

:
R1 �rnð Þ R2 �rnð Þ . . . Rn �rnð Þ

266664
377775 ð28Þ

To calculate the vectors “A �tð Þ” and “B �tð Þ”,
we can write from equations (24) and (25):
A �tð Þ ¼ R0
�1 û �tð Þ ð29Þ

B �tð Þ ¼ R0
�1 T̂ �tð Þ ð30Þ

The approximated functions can be expressed

in terms of the nodal values and the shape func-

tions as:
�u �r; �tð Þ ¼ RT �rð ÞR0
�1 û �tð Þ ¼ FT �rð Þ û �tð Þ

¼
Xn
a¼1

fa �rð Þ �ua �tð Þ
ð31Þ

�T �r; �tð Þ ¼ RT �rð ÞR0
�1 T̂ �tð Þ ¼ FT �rð Þ T̂ �tð Þ

¼
Xn
a¼1

fa �rð Þ �Ta �tð Þ
ð32Þ
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where “fa �rð Þ” is the shape function associated

with the node a. The nodal shape functions are

given by:

FT �rð Þ ¼ RT �rð ÞR0
�1 ð33Þ

The local boundary integral equations (19)

and (20) for all subdomains yield the following

set of coupled equations:
Xn
a¼1

�uað�t Þ C2
p �r

@fað�rÞ
@�r

þ fað�rÞ
� 	�����rI1

�rI0

(

�
ð�rI1
�rI0

C2
p

@fað�rÞ
@�r

þ C2
p � Cs

2
� 
fað�rÞ

�r

� �
d�r

)

�
Xn
a¼1

u�€að�tÞ
ð�rI1
�rI0

�rfað�rÞd�r � Cp
2
Xn
a¼1

�T
að�t Þ

�rfað�rÞj�rI1�rI0�
ð�rI1
�rI0

fað�rÞd�r

24 35 ¼ 0

ð34Þ

Xn
a¼1

�T
að�t Þ C2

T �r
@fað�rÞ
@�r

þ fað�rÞ
� 	�����rI1

�rI0

(

�
ð�rI1
�rI0

C2
T

@fað�rÞ
@�r

d�r

)
�
Xn
a¼1

T�€að�t Þ
ð�rI1
�rI0

�rfað�rÞd�r

� e

Xn
a¼1

u�€að�t Þ�rfað�rÞj�rI1�rI0 ¼ 0

ð35Þ

It should be noted that the essential boundary

conditions on “@ Os” can be imposed directly

using the interpolation approximation (31) and

(32). In view of the considered spatial interpola-

tions, the discretized boundary conditions and the

integral equations on local subdomains can be

written in the matrix form as a system of ordinary

differential equations (ODEs) for the time depen-

dent nodal values of the displacement and

temperature.
M½ � €f
n o
þ K½ � ff g ¼ f½ � ð36Þ
where
ff g ¼ û �tð Þ½ �
T̂ �tð Þ
� �
 �

ûT �tð Þ ¼ �u1 �tð Þ; �u2 �tð Þ; . . . ; �un �tð Þ
� �

ð37Þ

T̂
T �tð Þ ¼ �T

1 �tð Þ; T�
2 �tð Þ;. . . ; �Tn �tð Þ�

h
Once the coupled differential equations are

established, different numerical methods can be

employed to solve them in time domain such as

Newmark finite difference method or Laplace

transformation.
Generalized Finite Difference (GFD)
Method

In numerical methods that are needed to generate

mesh on the problem domain such as finite ele-

ment methods, the mesh generation takes a long

time during the solving process. In this section,

we develop the application of GFD method in

which there is no need for any mesh generation

for coupled thermoelasticity problem based on

Green-Naghdi theory for thick hollow cylinder.

In this method, the partial derivatives are linearly

approximated by Taylor series expansion on

some nodes (center nodes) in the analyzed

domain such that each center node is surrounded

by some other nodes. Consequently, partial deriv-

atives are obtained at the rest of each center nodes

and the group of nodes with a center node and

surrounding other nodes is called a star in this

method.

Consider the nondimensional radial displace-

ment at a center node to be “�u0” and

nondimensional temperature to be “ �T0” and the

terms “�ui” and “ �Ti” are the values of

nondimensional radial displacement and temper-

ature at the rest of surrounding nodes. The func-

tion values “�ui” and “ �Ti” can be approximated

using Taylor expansion as:

�ui ¼ �u0 þ hi
@ �u0
@ �r
þ 1

2
h2i

@2 �u0
@ �r2

� 	
þ . . . ð38Þ
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A

and

�Ti ¼ �T0 þ hi
@ �T0

@ �r
þ 1

2
h2i

@2 �T0

@ �r2

� 	
þ . . . ð39Þ

The term “i” denotes the number of surrounding

nodes. The analyzed domain in the problem is

linear through radial direction on thickness of

cylinder. Consequently, the term “hi” can be

calculated as hi ¼ �ri � �ro. The terms over second

order are ignored in equations (38) and (39) and the

linear approximation of second order can be

obtained for radial displacement and temperature.

To minimize the error in this method, the function

of norm should be minimized. The functions of

norm for radial displacement and temperature are:

NormðuÞ

¼
XN
i¼1

�u0� �uiþhi
@ �u0
@ �r
þ1

2
h2i

@2 �u0
@ �r2

� 	� 	
w hið Þ

� �2
ð40Þ

and
Normð �TÞ

¼
XN
i¼1

�T0� �Tiþhi
@ �T0

@�r
þ1
2

h2i
@2 �T0

@�r2

� 	� 	
w hið Þ

� �2
ð41Þ

where “w hið Þ” is the weight function. In this

entry, we assume that the weight function is

defined by:

w hið Þ ¼
1

distð Þ3
¼ 1

h3i
ð42Þ

If the norms (40) and (41) are minimized with

respect to the partial derivatives, a set of linear

equations system is obtained as follows:

cu
2 Qu2 ¼ xu2 ð43Þ

cT
2 QT2 ¼ xT2 ð44Þ

where the terms “cu
2 ” and “c

T
2” stand for 2� 2

matrices in displacement and temperature fields,

respectively. The components of matrices “cu
2 ”
and “cT
2” and vectors “xu2” and “xT2” are

obtained in the Appendix. The vectors “Qu2”

and “QT2” are given, respectively, by:
Qu2 ¼
@ �u0
@ �r

;
@2 �u0
@ �r2


 �T

ð45Þ

QT2 ¼
@ �T0

@ �r
;
@2 �T0

@ �r2


 �T

ð46Þ

There are somemethods to solve the system of

differential equations; one of them is Cholesky

method [3]. In Cholesky method, the symmetric

matrices “cu
2 ” and “cT

2” are decomposed to

upper and lower triangular matrices. The first

and second derivatives are calculated as:

@ �u0
@ �r
¼ A1

u
XN
i¼1
��u0 þ �uið Þhi w2 hið Þ

( )

� A2
u
XN
i¼1
��u0 þ �uið Þ hi

2

2
w2 hið Þ

( )
ð47Þ

@ 2�u0
@ �r2

¼ B1
u
XN
i¼1
��u0 þ �uið Þhi w2 hið Þ

( )

� B2
u
XN
i¼1
��u0 þ �uið Þ hi

2

2
w2 hið Þ

( )
ð48Þ

and
@ �T0

@ �r
¼ A1

T
XN
i¼1
� �T0 þ �Tið Þhi w2 hið Þ

( )

� A2
T
XN
i¼1
� �T0 þ �Tið Þ hi

2

2
w2 hið Þ

( )
ð49Þ

@ 2 �T0

@ �r2
¼ B1

T
XN
i¼1
� �T0 þ �Tið Þhi w2 hið Þ

( )

� B2
T
XN
i¼1
� �T0 þ �Tið Þ hi

2

2
w2 hið Þ

( )
ð50Þ
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where the coefficients “A1
u”, “A2

u”, “B1
u”,

“B2
u”, “A1

T”, “A2
T”, “B1

T”, and “B2
T” are

obtained in detail as follows:

A1
u ¼ A1

T

¼

PN
i¼1

hi
4

4
w2 hið Þ

� 	
PN
i¼1

hi 2w2 hið Þ
� 	 PN

i¼1

hi 4

4
w2 hið Þ

� 	
�

PN
i¼1

hi 3

2
w2 hið Þ

� 	2

ð51Þ

A2
u¼A2

T

¼

PN
i¼1

hi
3

2
w2 hið Þ

� 	
PN
i¼1

hi 2w2 hið Þ
� 	 PN

i¼1

hi 4

4
w2 hið Þ

� 	
�

PN
i¼1

hi 3

2
w2 hið Þ

� 	2

ð52Þ

B1
u¼B1

T

¼
�
PN
i¼1

hi
3

2
w2 hið Þ

� 	
PN
i¼1

h2i w
2 hið Þ

� 	 PN
i¼1

hi 4

4
w2 hið Þ

� 	
�

PN
i¼1

hi 3

2
w2 hið Þ

� 	2

ð53Þ

B2
u¼B2

T

¼
�
PN
i¼1

hi
2w2 hið Þ

� 	
PN
i¼1

hi 2w2 hið Þ
� 	 PN

i¼1

hi 4

4
w2 hið Þ

� 	
�

PN
i¼1

hi 3

2
w2 hið Þ

� 	2

ð54Þ

The derivatives of radial displacement and

temperature can be also rewritten in star forms

as follows:

@ �u0
@ �r
¼ �a0 �u0 þ

XN
i¼1

ai �ui ð55Þ

where
a0¼A1
u
XN
i¼1

hi
2w2 hið Þ�A2

u
XN
i¼1

hi
2

2
w2 hið Þ;

ai¼A1
u hi

2w2 hið Þ�A2
u hi

2

2
w2 hið Þ; a0¼

XN
i¼1

ai

ð56Þ
For second derivative of radial displacement,

we have:
@2 �u0
@ �r2

¼ �b0 �u0 þ
XN
i¼1

bi �ui ð57Þ

where
b0¼B1
u
XN
i¼1

hi
2w2 hið Þ�B2

u
XN
i¼1

hi
2

2
w2 hið Þ;

bi¼B1
u hi

2w2 hið Þ�B2
u hi

2

2
w2 hið Þ; b0¼

XN
i¼1

bi

ð58Þ

The temperature derivatives can be obtained

using the similar method:
@ �T0

@ �r
¼ �g0 �T0 þ

XN
i¼1

gi �Ti ð59Þ

where
g0¼A1
T
XN
i¼1

hi
2w2 hið Þ�A2

T
XN
i¼1

hi
2

2
w2 hið Þ;

gi¼A1
T hi

2w2 hið Þ�A2
T hi

2

2
w2 hið Þ; g0¼

XN
i¼1

gi

ð60Þ

For second derivative of temperature, we

have:
@2 �T0

@ �r2
¼ �c0 �u0 þ

XN
i¼1

ci �ui ð61Þ

where

c0¼B1
T
XN
i¼1

hi
2w2 hið Þ�B2

T
XN
i¼1

hi
2

2
w2 hið Þ;

ci¼B1
T hi

2w2 hið Þ�B2
T hi

2

2
w2 hið Þ; c0¼

XN
i¼1

ci

ð62Þ
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Also, the second derivative of radial displace-

ment with respect to time can be approximated for

first derivative with respect to radius as follows:

@ €�u0
@ �r
¼ �a0 �u0 þ

XN
i¼1

ai �ui ð63Þ

where the terms “a0” and “ai” were introduced in
equations (56). By substituting the obtained rela-

tions in star forms for first and second derivatives

in governing equations (12) and (13) at a center

node, the coupled thermoelasticity governing

equations can be obtained in new form based on

GFD method. In other words, the governing

equations should be valid at every center node

on analyzed domain.

Cp
2 @

2�u0
@�r2
þCp

2 1

�r0

@�u0
@�r
� Cp

2�Cs
2

� � �u0
�r02

�Cp
2 @ �T0

@�r
¼ u�€0

ð64Þ

Cp
2 �b0 �u0þ

XN
i¼1

bi �ui

 !
þCp

2 1

�r0
�a0 �u0þ

XN
i¼1

ai �ui

 !

� C2
p�Cs

2
� 
 �u0

�r02
�Cp

2 �g0 �u0þ
XN
i¼1

gi �ui

 !
¼u�€0

ð65Þ

�b0 Cp
2 � a0 Cp

2 1

�r0
� C2

p � Cs
2

� 
 1

�r02


 �
�u0

þ
XN
i¼1

Cp
2 b i þ Cp

2 1

�r0
ai


 �
�ui þ C2

p g0
n o

T0

þ
XN
i¼1

�Cp
2 gi

� �
�Ti ¼ u�€0

ð66Þ

and also we have:
CT
2 @2 �T0

@�r2
þ 1

�r0

@ �T0

@�r

� �
¼ T�€0þ e


@u�€0
@�r
þ u�€0
�r0

��
ð67Þ

CT
2 �c0 �u0þ

XN
i¼1

ci �ui

 !
þCT

2 1

�r0
�g0 �T0þ

XN
i¼1

gi �Ti

 !

¼ €�T0þ e
 �a0 u�€0þ
XN
i¼1

ai u�€i

( )
þ e


r
0

u�€0

ð68Þ
�c0CT
2�g0CT

2 1

�r0


 �
�T0þ

XN
i¼1

Cp
2c iþCT

2 1

�r0
gi


 �
�Ti

¼T�€0þ �e
a0þ
e


r0


 �
u�€0þ

XN
i¼1

e
aif gu�€i

ð69Þ
The following system of linear equations is

obtained for the distributed nodes on the analyzed

domain.

M½ � Nþ1ð Þ
 Nþ1ð Þ
€f
n o

Nþ1ð Þ
1
þ K½ � Nþ1ð Þ
 Nþ1ð Þ ff g Nþ1ð Þ
1

¼ f½ � Nþ1ð Þ
1

ð70Þ

where
ff gT ¼ �u0 �T0 �u1 �T1 : : : �uN �TN

� �T
ð71Þ

and
€f
n oT

¼ u�€ 0 T�€0 u�€1 T�€1 : : : u�€N T�€N

n oT

ð72Þ

Similar to the previous section, different

numerical methods can be employed to solve

the obtained differential equations in time

domain such as Newmark finite difference

(NFD) or Laplace transformation.
Future Directions for Research

Although the MLPG and GFD methods are

available to solve the governing equations

of coupled thermoelasticity even for some

cylinder, shells, and plates, they are not avail-

able in the general case of nonhomogeneous

media and/or for geometrically nonlinear

problems. Also the presented methods can be

developed for other coupled thermoelasticity

theories such as Lord-Shulman and Green-

Lindsay and for calculation of thermoelastic

damping in microscales and nanoscales of

media.
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Appendix

The components of matrices cu
2 and cT

2 and

vectors xu2 and xT2 are given as

cu
2 ¼

PN
i¼1

h2i w
2ðhiÞ

PN
i¼1

h3i
2
w2ðhiÞPN

i¼1

h3i
2
w2ðhiÞ

PN
i¼1

h4i
4
w2ðhiÞ

2664
3775 ð73Þ

xu2 ¼

PN
i¼1
ð��u0 þ��uiÞhiw2ðhiÞPN

i¼1
ð��u0 þ��uiÞ h

2
i

2
w2ðhiÞ

2664
3775 ð74Þ

cT
2 ¼

PN
i¼1

h2i w
2ðhiÞ

PN
i¼1

h3i
2
w2ðhiÞPN

i¼1

h3i
2
w2ðhiÞ

PN
i¼1

h4i
4
w2ðhiÞ

2664
3775 ð75Þ

xT2 ¼

PN
i¼1
ð� �T0 þ� �TiÞhiw2ðhiÞPN

i¼1
ð� �T0 þ� �TiÞ h

2
i

2
w2ðhiÞ

2664
3775 ð76Þ
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Synonyms

Coupled problem of thermoelasticity: Solution in

a series of functions form
Overview

We consider the piecewise-homogeneous bodies

consisting of the separate parts with dissimilar

physico-mechanical properties, which are con-

stant within each part. The accurate analysis of

thermal stresses in such structures presents a very

important problem for engineering and requires

effective approaches for its implementation.

One of such approaches (Kolyano and Popovych,

1975) is based on the use of the generalized

functions theory (the distribution technique)

for describing of such structures in a com-

prehensive whole and utilizing thermoelasticity

equations for nonhomogeneous bodies under

ideal thermomechanical contact of the interfaces.

A different method within the framework of

such approach has been suggested by Yu. M.

Kolyano, O. M. Kulyk, and R. M. Kushnir

in 1980. Its implementation involves the

mathematical formulation of the generalized cou-

pling problems for differential equations of

thermoelasticity for homogeneous bodies (simi-

lar formulation has been provided for the Cauchy

problem). For this purpose, the given and

unknown functions, and the coefficients of the

differential equations are extended by means of

the characteristic functions on the entire domain

occupied by the piecewise-homogeneous struc-

ture. Then the contact conditions on the interfaces

are satisfied (in the cases of both ideal and

nonideal contact). The partly degenerated differ-

ential equations of heat conduction and

thermoelasticity with discontinuous coefficients

arising in such problems for massive bodies and

thin-walled plates and shells of piecewise-

homogeneous structures are obtained. A proce-

dure for finding their solutions is proposed.
Modeling of the Piecewise-
Homogeneous Structures by Means
of the Generalized Functions

A characterization of a piecewise-homogeneous

body as a comprehensive whole can be performed

by making use of a characteristic domain func-

tion defined for the domain occupied by the body.

http://dx.doi.org/10.1007/978-94-007-2739-7_975
http://dx.doi.org/10.1007/978-94-007-2739-7_975
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In the case of one-dimensional nonhomogeneity,

this function can be given through the asymmet-

ric Heaviside function:
Application of the Generalized Functions Method
for Analysis of Thermal Stresses in Piecewise-
Homogeneous Solids, Fig. 1 Scheme of the multilayer

body
H� x3ð Þ ¼ 1; x3 � 0ð Þ [ 0; x3 < 0ð Þf g ð1Þ

Then, for instance, the thermostressed state of the

multilayer body (Fig. 1) can be described by

characteristic domain function in the form

p xð Þ ¼ p1 xð Þ þ
Xn�1
i¼1

piþ1 xð Þ � pi xð Þ
� �

H� x3 � dið Þ

ð2Þ

Here p xð Þ and pi xð Þ denote the unknown

(temperature, displacement-vector, and stress-

tensor components) and given (thermal and

mechanical characteristics, density of internal

heat sources, etc.) functions in the regions,

which are occupied by the multilayer body or its

ith layer, respectively; n is the number of the

layers; di, i ¼ 1; n are coordinates of interfaces;

x ¼ x1; x2; x3ð Þ.
By making use of the representation (2), the

solution of the thermoelasticity problems for the

piecewise-homogeneous bodies can be reduced

to the solution of the corresponding partly

degenerated differential equations of heat con-

duction and thermoelasticity theories with dis-

continuous coefficients.
A Technique for Deriving of
Thermoelasticity Equations by Means of
the Corresponding Equations for
Nonhomogeneous Bodies

A technique for determination and investigation

of thermal stresses in piecewise-homogeneous

bodies by making use of the distribution tech-

nique has been proposed by Kolyano and

Popovych [1, 2]. This technique is based on

application of the representation (2) and

thermoelasticity equations for nonhomogeneous

bodies for derivation of the corresponding partly

degenerated differential equations of the heat

conduction and thermoelasticity theories with

discontinuous coefficients.
Let us consider, for instance, how this tech-

nique can be applied for the above-considered

multilayer body (Fig. 1). For determination of

the nonstationary temperature field T x; tð Þ in this

body, we employ the heat conduction equation

D2T þ k�1 x3ð Þ@3 k x3ð Þ@3T½ �
¼ k�1 x3ð Þ _T � k�1 x3ð Þw x; tð Þ

ð3Þ

for a body, which is nonhomogeneous with

respect to the coordinate x3. Here k x3ð Þ and

k x3ð Þ are the coefficients of thermal conductivity

and thermal diffusivity, w x; tð Þ is the density of

internal heat sources, D2 ¼ @2
1 þ @2

2 is the

Laplacian with respect to x1 and x2, and @i ¼ @
@xi

.

For the case of the multilayer body, the func-

tions T x; tð Þ andw x; tð Þ, as well as the coefficients
k x3ð Þ and k x3ð Þ, appear in the form (2). By put-

ting them in an equation that is similar to (3) but

with generalized derivatives, followed by differ-

entiation with the following properties

f x3ð Þd� x3�dið Þ ¼ f di� 0ð Þd� x3�dið Þ
H� x3� dið Þd� x3� dið Þ ¼ 0

H� x3� dið Þd0� x3� dið Þ ¼ 0

H� x3� dj
� �

d� x3� dið Þ
¼ 0; di � dj
� �

[ d� x3� dið Þ; di > dj
� �� �

ð4Þ

of the asymmetric Heaviside and impulse func-

tions and their products [3] in view, we can obtain
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the following partly degenerated differential

equations of the heat conduction:

DT ¼ k�1ðx3Þ _T þ
Xn�1
i¼1
ð1� Kiþ1Þ@3Tiþ1

���
x3¼di

d� x3 � dið Þ

� k�1 x3ð Þw x; tð Þ

ð5Þ

Here f(x3) is an arbitrary piecewise-continuous

function, D ¼ @2
1 þ @2

2 þ @2
3 is the Laplacian,

Kiþ1 ¼ kiþ1=ki, and d� x3ð Þ is the Dirac delta

function, which can be determined, along with

its derivative, as the generalized derivatives of

the asymmetric Heaviside function:

dl� x3ð Þ ¼ dlþ13 H� x3ð Þ l ¼ 0; 1

Due to the fact that the derivatives in the heat

conduction equation (3) for a nonhomogeneous

body are used in a classical meaning and mean-

while the ones in the equation (5) for the multi-

layer body are used in generalized meaning, the

equivalence of the solutions of the mentioned

equations can be achieved under matching con-

dition for the classical and generalized deriva-

tives. This requirement yields the equivalence

conditions for the temperature and the interfacial

heat fluxes in the multilayer body. Consequently,

the partly degenerated differential equations of

the heat conduction (5) must be equivalent to the

system of equations
DTi ¼ k�1i Ti � k�1i wi i ¼ 1; n ð6Þ

Ti ¼ Tiþ1 ki@3Ti ¼ kiþ1@3Tiþ1 at x3 ¼ di

ð7Þ

which correspond to equation (3) for a homoge-

neous body within each of the parts of the multi-

layer body and to the conditions of the ideal

thermal contact on the interfaces that has been

shown in [3]. In accordance to the expression (2)

and the first contact condition, the equality

@3Tiþ1
��
x3¼di ¼ @3T

��
x3¼di holds. This condition

must be accounted in the right-hand part of

equation (5).

For obtaining of the corresponding equations

of the quasistatic thermoelasticity problem for
the multilayer body, we depart from the

thermoelastic equilibrium equations in terms of

displacements for nonhomogeneous body. By

putting the expressions for the Lamé coefficients,

l and m, and the thermal expansion coefficient, a,
written in the form (2), into the aforementioned

equations and then providing the samemathemat-

ical treatment as in the case of derivation of the

heat conduction equation, we arrive at the system

of three partly degenerated differential equations

of thermoelasticity:
Du1 þ 1þol x3ð Þ½ �@1e ¼ ob x3ð Þ@1T

�
Xn�1
i¼1

m�1i miþ1 � mi
� �

@1u
iþ1
3 þ @3u

iþ1
1

� ���
x3¼di

� d� x3 � dið Þ
u1; x1ð Þ�! � u2; x2ð Þ

Du3 þ 1þol x3ð Þ½ �@3e

¼ ob x3ð Þ@3T �
Xn�1
i¼1

m�1i liþ1 � lið Þe½

þ 2
�
miþ1 � mi

�
@3u3;iþ1 � biþ1 � bi

� �
Tiþ1�x3¼di

� d� x3 � dið Þ
ð8Þ

with discontinuous coefficients for determination

of the components of the displacement-vector

components u ¼ (u1, u2, u3) for the considered

multilayer body. Here

og x3ð Þ ¼ g1m
�1
1 þ

Xn�1
i¼1

giþ1m
�1
iþ1 � gim

�1
i

� �
H� x3 � dið Þ

g ¼ l; b e ¼ @1u1 þ @2u2 þ @3u3

b ¼ a 3lþ 2mð Þ

Note that for the case when the parts of the

multilayer body are made of the metals or

other materials with neighbor Poisson ratios n,
the coefficients of the differential operators

in the above system are constant due to

ol x3ð Þ ¼ o ¼ 1� 2nð Þ�1.
Analogously to the case of the heat conduction

equation, it is shown that the system of three

equations (8) is equivalent to n systems of

the Lamé equations consisting of the three

equations for each part of the multilayer body
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along with the conditions of ideal thermome-

chanical contact on the interfaces. In accordance

to (2), the satisfaction of the later conditions

yields the equalities @lum;iþ1
��
x3¼di ¼ @lumjx3¼di ,

l; m ¼ 1; 3, Tiþ1jx3¼di ¼ Tjx3¼di , which must be

taken into consideration in the right-hand side

parts of the equations (8).

The results of applications of this approach to

study of thermal fields and stresses caused by

them in massive and thin-walled bodies of piece-

wise-homogeneous structures are presented

in [1–6].
Generalized Coupling Problems for
Thermoelasticity Equations for
Homogeneous Bodies

In the above-considered technique for derivation

of the governing thermoelasticity equations for

piecewise-homogeneous bodies, the equations

for nonhomogeneous bodies were regarded as

the input ones, and the ideal thermomechanical

contact conditions were imposed on the inter-

faces. For simplification of the procedure for

derivation of the partly degenerated differential

equations of the heat conduction and

thermoelasticity theories with discontinuous

coefficients and application of the distribution

technique for determination of the thermal and,

consequently, the thermostressed states of the

piecewise-homogeneous bodies under more gen-

eral contact conditions, an alternative method has

been proposed by Kolyano et al. [7]. The basic

idea of this method is to obtain the governing

equations using the procedure of mathematical

statement of generalized coupling problem for

the thermoelasticity equations of homogeneous

bodies. The main stages of this method are the

following:

– According to representation (2), extend

the required and given functions to the

entire region occupied by the piecewise-

homogeneous structure.

– Take the connections between the generalized

and classical derivates into account along with

the conditions of nonideal contact at interfaces

between its homogeneous components.
Let us consider an application of this method

for derivation of the heat conduction equation for

the above-mentioned multilayer body under

nonideal thermal contact on the interfaces

between the homogeneous layers.

As a result of implementation of this proce-

dure for mathematical statement of generalized

coupling problem, we can obtain the following

partly degenerated heat conduction equation:
DT ¼ k�1 x3ð Þ _T þ
Xn�1
i¼1

@3T½ �id� x3 � dið Þ
�

þ T½ �id
0
� x3 � dið Þ

�
� k�1 x3ð Þw x; tð Þ

ð9Þ

with discontinuous coefficients for the

laminated body under consideration. Here

p½ �i ¼ piþ1 � pi
� ���

x3¼di .

If the nonideal contact with thermal resistance

Ri (the simplest condition of the nonideal thermal

contact) is assumed on the interfaces x3 ¼ di,

then the jumps of the temperature function and

its derivative, those occur in the right-hand side

of heat conduction equation, can be determined

as follows:
T½ �i ¼ Rikiþ1@3Tiþ1jx3¼di
@3T½ �i ¼ 1� Kiþ1ð Þ@3Tiþ1jx3¼di

ð10Þ

Note that T½ �i ¼ 0 in the case of the ideal

thermal contact. Then the heat conduction

equation (9) coincides with equation (5).

In a similar manner, by means of the formula-

tion of the generalized coupling problem for

the system of thermoelasticity equations in

terms of displacements for a homogeneous

body, the corresponding partially degenerated

thermoelasticity equations for piecewise-

homogeneous bodies can be obtained. In [8–11],

such equations are given for the quasistatic

thermoelasticity problems in multilayer bodies

under conditions of the nonideal thermal contact

in more general in comparison to (10) form, for

example, the conditions which account the heat

generation due the friction between moving

contacting layers or connection of the layers

through the thin intermediate layer.
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By means of this method, many quasistatic

problems for piecewise-homogeneous massive

bodies and thin-walled plates and shells and

plates with coordinate-dependent heat exchange

coefficients were solved and numerically verified

[8–19].

To construct the solutions of partly

degenerated thermoelasticity differential equa-

tions with discontinuous coefficients, a method-

based construction of a fundamental system of

solutions of the corresponding homogeneous

ordinary differential equations of arbitrary order

with discontinuous coefficients is developed

[3, 20]. The need to solve these equations arises

in the application of integral transforms to the key

equations of thermoelasticity or for construction

of the corresponding Green functions for

quasistatic thermoelasticity problems in multi-

layer bodies [16, 19]. The procedure for reducing

the above-mentioned partly degenerated differ-

ential equations for bodies with cracks and inho-

mogeneous inclusions to the boundary integral

equations is proposed in [14, 17].
Thermostressed State of a Piecewise-
Homogeneous Friction System

For example, we consider a friction system

modeled by two different elastic half-spaces

and sufficiently thick layer parallel to their

boundary surfaces with physico-mechanical

characteristics different from the characteristics

of the half-spaces. This one-dimensional

piecewise-homogeneous body is compressed

at infinity from both directions parallel to

the x3-axis by forces P0. From an initial

moment of time, the intermediate layer begins

to move with a low velocity v relative to the

half-spaces. We determine the nonstationary

temperature field that arises as a result of the

contact interaction of the three-layer structure

from the frictional forces. On the basis of the

formulated one-dimensional generalized cou-

pling problem, similarly to (9) with specified

temperature jumps and derivative of the temper-

ature, the following heat conduction equation

[9] appears as
@2
3T ¼ k�1 x3ð Þ _T

þ
X2
i¼1

1�Kiþ1ð Þ@3Tiþ1jx3¼di
n

� f iP0vk
�1
i

�
d� x3� dið Þ þ 2kiþ1h

�1
i @3Tiþ1

��
x3¼di

h
þ f iP0vh

�1
i

i
d0� x3� dið Þ

o
ð11Þ

and the initial and boundary conditions are
T x3; 0ð Þ ¼ 0 lim
x3!�1

T x3; tð Þ ¼ 0 ð12Þ

Here f i and hi are the coefficients of friction

between (i + 1)-th and ith components and the

thermal conductivity of the contact surface

x3 ¼ di, respectively. We construct a solution of

the boundary-value problems (11) and (12) by

applying the Laplace transform. To simplify the

derivation of the governing equation, we set

k x3ð Þ ¼ k, that is, ki ¼ k, i ¼ 1; 3, and d1 ¼ 0.

As a result, we obtain an expression for the trans-

form of the temperature function:
~T x3; sð Þ ¼ C exp x3�sð Þ 1� H� x3ð Þ½ �
þ CY x3ð Þ þY0

1 x3ð Þ
� �

H� x3ð Þ

þ Cd3Y x3ð Þ þ d3Y
0
1 x3ð Þ

� �
x3¼d2Y



2 x3ð Þ

n
þ Y0

2 x3ð Þ
o
H� x3 � d2ð Þ

ð13Þ

Here

~T x3; sð Þ ¼
Z1
0

T x3; tð Þ exp �stð Þdt

Y x3ð Þ ¼ exp x3�sð Þ þ �sY
1 x3ð Þ

Y0
i x3ð Þ ¼ � FiðsÞ k�1iþ1 sinh �s x3 � dið Þ

�
þ h�1i �s cosh �s x3 � dið Þ

�
Y
i x3ð Þ ¼ K�1iþ1 � 1

� �
�s�1 sinh �s x3 � dið Þ

�
þ 2kiþ1h

�1
i cosh �s x3 � dið Þ

�
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C ¼ � Y
0

1

h
exp �sd2ð Þ þY



2d3Y

0
1 x3ð Þ

��
x3¼d2 þY

0

2

i

� 2þY


1�s

� 

exp �sd2ð ÞþY
2d3Y x3ð Þ

��
x3¼d2

h i�1
FiðsÞ ¼ f iP0v s �sð Þ�1 Y

0

i ¼ �FiðsÞ k�1iþ1 þ h�1i �s
� �

Y


i ¼ �s�1 K�1iþ1 � 1

� �
þ 2kih

�1
i �s ¼

ffiffiffiffiffiffiffi
s=k

p
For determination of the thermoelastic state of

the considered piecewise-homogeneous frictional

structures on the basis of the one-dimensional

quasistatic problemof thermoelasticity, the system

of equations (8) can be simplified and takes

the form

@2
3u3 ¼ a x3ð Þ 1þ n x3ð Þ½ � 1� n x3ð Þ½ ��1@3T

þ
Xn�1
i¼1

@3u3½ �i � ai 1þ nið Þ 1� nið Þ�1 T½ �i
n o

� d� x3 � dið Þ
ð14Þ

Note that the conditions for equality of dis-

placements u3 x3; tð Þ and normal stresses

s33 x3; tð Þ at the interfaces have been already

taken into account in this equation.

By substituting the expression (13) into the

Laplace transform of the equation (14) with

n¼ 3 and integrating the result with the condition

s33jx3!�1 ¼ �P0 in view, the expression for the

transform of the thermoelastic displacement

~u3 x3; sð Þ can be found in the form [10]

~u3 x3; sð Þ ¼ Cb1�s
�1
n
exp x3�sð Þ 1�H� x3ð Þ½ � þH� x3ð Þ

o
þ b2H� x3ð Þ

Zx3
0

CY x3ð Þ þY0
1 x3ð Þ

� �
dx3

þ b3� b2ð ÞH� x3 � d2ð Þ
Zx3
d2

�
CYðx3Þ

þY0
1 x3Þð �dx3 þ b3H� x3 � d2ð Þ

�
Zx3
d2


�
Cd3Y

�
x3
�
þ d3Y

0
1

�
x3
�����

x3¼d2
Y
2
�
x3
�

þY0
2

�
x3
��

dx3þCux3

ð15Þ
Here

Cux3 ¼ Cð1Þu x3 þ Cð2Þu � Cð1Þu

h i
x3H� x3ð Þ

þ Cð3Þu � Cð2Þu

h i
x3 � d2ð ÞH� x3 � d2ð Þ

CðiÞu ¼ � mi�isð Þ�1P0 mi ¼ Ei 2 1þ nið Þ½ ��1

�i ¼ 2 1� nið Þ 1� 2nið Þ�1

bi ¼ ai 1þ nið Þ 1� nið Þ�1

Ei is Young’s modulus of ith component.

Due to the cumbersomeness of the expres-

sions (13) and (15), it makes sense to find the

originals of the unknown functions by applying

numerical inversion methods. In the considered

case, for instance, the original functions T x3; tð Þ
and u3 x3; tð Þ can be found by using the

spectral method with Jacobi orthogonal polyno-

mials [10].

To illustrate this method, we consider its

numerical implementation for a three-layer

(steel-aluminum-steel) frictional system with

the following parameters: f 1 ¼ f 2 ¼ 0:3, h1 ¼
h2 ¼ 0:5 � 104 W= m2 � oCð Þ, P0 ¼ 0:5 MPa,

d1 ¼ 0, d2 ¼ 0:2m.

In Fig. 2, the time dependences of the

contact temperature Tdi for various velocities of

motion of interlayer with respect to the half-

spaces are shown.

We can observe that the contact temperatures

increase with the velocity of motion. It can be

shown [10] that the contact displacements have

a similar behavior. The temperature has jumps at

the interfaces due to nonideal thermal contact,

while the thermoelastic displacement is continu-

ous. The comparison of the temperature distribu-

tions T x3; tð Þ versus coordinate x3 in the

considered structure to the temperature in a two-

layer (steel-aluminum) space for the same values

of t and v shows the redistribution and equaliza-

tion of temperature across the structure due to the

presence of the interlayer and the choice of the

materials of both half-spaces to be identical.

Since the contact temperature Td1 significantly

decreases, the temperature jump in the three-

layer structure at the interfaces x3 ¼ 0 is smaller

than in the case of the two-layer structure.
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Under Uniform Heat Flux
Area Array Package/Assembly Under
Thermal Stress

Reza Ghaffarian

Jet Propulsion Laboratory, California Institute of

Technology, Pasadena, CA, USA
Overview

Understanding reliability of microelectronics

under thermal cycling stresses is an integral part

of implementation of advanced area array pack-

aging technologies, especially those considered

for high reliability applications. In the past, there

was always a ceramic version of a plastic package

for high reliability use, including the plastic-ball-

grid-array (PBGA) which has the analogous

ceramic-ball-grid-array (and column-grid-array)

(CBGA & CGA). Today, there are fewer ceramic

versions with time-delay of the latest technolo-

gies. In fact, under thermal stresses, even though

ceramic packages are individually more reliable

compared to their plastic BGA versions, they

may not always be the most reliable choice

when assembled onto polymeric board due to

generation of much larger coefficient of thermal

mismatch.

This entry discusses important parameter

affecting surface mount packaging and assembly

solder joint degradation due to thermal cycling
fatigue stresses. The key parameters include

coefficient of thermal mismatches due to global,

local, and solder alloy. Specifically literature data

gathered for ceramic-ball-grid-array (CBGA)

and ceramic-column-grid-array (CCGA or

CGA) were classified into different sets to delin-

eate packaging and assembly parameters

influencing cycles to failure. It briefly discusses

various modeling approaches for predicting sol-

der joint reliability of microelectronics packag-

ing and assemblies.
Package/Assembly Under Thermal
Stresses

High Reliability Applications

Contrary to early development of microelectronic

technologies that aimed mostly at meeting high

reliability applications, however, in the past

decades, consumer electronics is driving the

trends for electronic packaging and assembly.

With that being the primary driver, materials

and processes are transitioned to Pb-free solder

alloy due to restriction of hazardous substances

(ROHS) implementation.While there is a drive to

develop new low-k dielectrics and advanced

organic substrate materials, the higher melting

temperature of these solder alloys is pushing the

limits of the reliability of these material sets.

High reliability industry now uses both specialty

electronics as well either adapted consumer elec-

tronics or their tailored versions for higher reli-

ability applications.

In the past, for high reliability applications,

there was always a ceramic version of a plastic

package, including the plastic-ball-grid-array

(PBGA) which has the analogous ceramic-ball-

grid-array (and column-grid-array) (CBGA &

CGA). Today, there are fewer ceramic versions

with time-delay of the latest technologies for

harsher environmental applications. In fact

under thermal stresses, even though ceramic

packages are individually more reliable com-

pared to their plastic BGA versions, they may

not always be the most reliable choice when

assembled onto polymeric board due to genera-

tion of much larger coefficient of thermal
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mismatch. Solder joint reliability under thermal

stress, especially thermal cycling, has become an

integral part of the microelectronic packaging

equation for overall system reliability, especially

those for high reliability applications discussed in

this entry [1–10].

Reliability for Package/Assembly

Reliability under thermal stress for package and

assembly depends on the reliability of constituent

elements and global/local interfaces (attach-

ments) [11]. Solders in surface mount are unique

since they provide both electrical interconnection

and mechanical load-bearing element for attach-

ment of package on PCB and often also function

as a critical heat conduit too. A solder joint in

isolation is neither reliable nor unreliable; reli-

ability has meaning only in the context of inter-

connections either within package or outside of

package on PCB. Solder joints are a key interface

element for BGA/CBGA/CGA package and

assembly on PCB. As schematically shown in

Fig. 1, three elements play key roles in defining

reliability for CGA, global, local, and solder

alloy. In CGA, solder columns also act as load

carrying element between package and boards

similar to metallic leads such as those for

CQFP. The characteristics of these three ele-

ments – package (e.g., die, substrate, solder

joint, underfill), PCB (e.g., polymer, Cu, plated

through hole, microvia), solder joints (e.g., via

balls, columns) – together with the use condi-

tions, the design life, and acceptance failure prob-

ability for the electronic assembly determine the

reliability of BGA/CBGA/CGA assemblies.

In other words, reliability is the ability of

a system (here microelectronics) to function as

expected under the expected operating conditions

for an expected time period without exceeding

the expected failure levels. However, reliability

is threatened by infant mortality due to workman-

ship defect and lack of sound manufacturing, and

reliability design. Designs for manufacturability,

design for assembly, design for testability, and

so on are prerequisite to assure the reliability of

the product. Only design for reliability can

assure that manufactured-to-quality product

will be reliable. The elements of the system
reliability are schematically shown in Fig. 2

which are comprised of device/package/PCB

and interconnections and also include consider-

ation of design for reliability prior to assembly

and subsequent manufacturing and quality assur-

ance implementation.

Package Reliability

Typical packaging build steps are schematically

shown in Fig. 3. After wafer processing and test-

ing, the wafer is generally sawed into die, which

are then packaged or used as chip-on-board flip

chip direct attachment. In wafer level packaging

(WLP), protection and testing are first performed

on the wafer and then dicing in preparation for

surface mount assembly (SMA). There is a great

contrast between processing at the chip and
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package levels, including the defects created and

the reliability implications involved. Materials

and process steps involved may need to be mod-

ified in order to achieve reliable package for

application in a harsher environment including

extremely cold or extremely hot environments.

Packaging materials and structures are chosen

to meet the demands of device used in conven-

tional environments. Thus, metals are selected

according to how well they conduct current into

and out of chips, and encapsulants on their ability

to encase and protect the die over commercial

temperature ranges. In addition to their electrical

conduction function, metals are used in packag-

ing as mechanical supports, to conduct heat away

(heat sinks), and to seal the contents. Ceramics

like alumina also serve as containers for chips

and often the substrates for mounting semicon-

ductor devices. Polymers are used to hermetically

encase the chips and are employed in printed

circuit boards for mounting the packages.

Silicon of chip in package degrades under

thermal stresses. Most Si device degradation

mechanisms are thermally activated and the

device reliability is a strong function of tempera-

ture and operating voltage. The higher the
temperature, the greater are degradation mecha-

nisms such as inter-diffusion through intercon-

nection, latch-up, noise, and heat. For thermally

activated failure mechanisms, the relative

improvement in mean-time-to-failure (MTTF) is

proportional to a temperature-dependent term

expressed by the Arrhenius relation:
MTTF � exp Ea K T=ð Þ ð1Þ

where Ea is the activation energy of a given ther-

mal process, T is absolute temperature, and K is

Boltzmann’s constant. Ea will typically range

between 0.3 and 1.2 eV. A lower value of Ea

implies that the temperature effect is less signif-

icant for a failure mechanism than the one with

higher Ea.

SMT Assembly Reliability

Majority of fatigue failures of solder joints in

surface mount assemblies are due to global CTE

mismatch induced damage while early premature

failure may be due to workmanship anomalies and

local interfacial integrity deficiencies [11]. The

global expansion mismatches result from differen-

tial thermal expansions of a package and the PCB
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assembly. These thermal expansion differences

stem from differences in the coefficients of ther-

mal expansion (CTEs) and thermal gradients as

the result of heat dissipation from functional die

within package. Global CTEmismatches typically

range from Da � 2 ppm/�C (2 � 10–6) for CTE-

tailored high-reliability assemblies to Da �14
ppm/�C for ceramic packages (e.g., CBGA/

CGA) on FR-4 PCBs. The shear strain representa-

tive of the global CTE mismatch due to thermal

excursion is given as follows:

g ¼ aC � aSð Þ Tc � T0ð ÞL H= ¼ Dað Þ DTð ÞLD H=

ð2Þ

Global CTEmismatches typically are the larg-

est, since all three parameters determining the

thermal expansion mismatch, i.e., the CTE

mismatch (Da), the temperature swing (DT),
and the largest acting package length (LD),

a.k.a., distance to neutral point (DNP), can be

large. In thermal cycling, this global expansion

thermal mismatch will induce cyclic stresses, and

thus fatigue the solder joints. The cumulative

fatigue damage will ultimately cause the failure

of one of the solder joints, typically a corner joint

in CBGA/CGA, causing permanent functional

electrical failure that initially may be intermit-

tent. The shear strain representing damage in

each cycle is proportional to Da, DT, and LD,
and inversely proportional to the package /PCB

separation height (H). For this reason, CGAs are

selected for higher package sizes and I/Os since

thermal strain is lower for higher column

height (H) than their CBGA counterparts; there-

fore, it is expected to show better thermal cycling

fatigue life.

The local expansion mismatch results from

differential thermal expansions of the solder and

the base material of the package or PCB assem-

bly. These thermal expansion differences result

from differences in the CTE of the solder and

those of the base materials together with thermal

excursions. Local CTE mismatches typically

range from Da �7 ppm/�C with copper to

�18 ppm/�C with ceramic. Local thermal expan-

sion mismatches typically are smaller than the

global expansion mismatches, since the acting
distance, the maximum wetted area dimension,

is much smaller in the order of tens of mils, e.g.,

20 mils for a typical column diameter.

Solder alloy CTE mismatch covers micro-

structural changes as solder alloy is a mixture of

two or more elements. The grain structure of tin-

lead solder is inherently unstable. The grains will

grow in size over time as the grain structure

reduces the internal energy of a fine-grained

structure. This grain growth process is increased

by exposures at elevated temperatures as well as

strain energy input during cyclic loading. The

grain growth process is thus an indication of the

accumulating fatigue damage. Figure 4 illus-

trated grain growth near cracks for a CGA assem-

bly after 200 thermal cycles in the range

of ─55�C to 100�C. For tin-lead solder, an inter-

nal CTEmismatch of�6 ppm/�C results from the

different CTEs of the Sn-rich and Pb-rich phases

of solder. Internal thermal expansion mismatches

typically are the smallest, since the acting dis-

tance, the size of the grain structure, is much

smaller than either the wetted length or the com-

ponent dimension, in the order of mils.

Fatigue Models for SMT Reliability Prediction

Predicting solder joint fatigue failure under ther-

mal cycling stress has been one of the challenging

problems for microelectronic packaging and

assembly [12]. Early solder joint fatigue models

were developed based on experimental thermal

cycling tests using strain gauge; therefore, most

models are correlated to strains. As size of pack-

age decreased, finite element analyses (FEA)

become a more popular approach for estimating

strains in PBGA/CBGA/CGA assemblies. The

Coffin-Manson relationship perhaps the best

known and most widely used was developed for

aerospace metals and was considered for tin-lead

solder. The model relates the total number of

cycles to failure (CTF) to the plastic strain ampli-

tude and the fatigue ductility coefficient and

exponential.

In a previous investigation, the modified

Coffin-Manson relationship (a.k.a., Norris and

Landzberg) was applied to correlate thermal

cycle failure test data of CBGA assemblies from

different thermal cycle regimes and ramp rates [5].
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This relationship is one of many numerous para-

metric modeling analysis methods that have been

proposed and used by industry for projection CTF

from one thermal cycle condition to a field appli-

cation. Table 1 lists a number of these models for

reliability extrapolation of tin-lead solder joint

attachments [10].

In the Coffin-Manson relationship, CTF is

inversely proportional to the creep strain. Its

modified version includes the effects of fre-

quency as well as the maximum temperature

and is given by:
N1 N2=ð Þ / Dg2 Dg1=ð Þb f 1 f 2=ð Þk

exp 1414ð 1 T1 � 1 T2==ð Þf g
ð3Þ

• N1 andN2 represent cycles to failure under two

plastic strain conditions. b is the fatigue expo-

nential and is generally assumed to be equal to

1.9 [13].

• Dg is proportional to (DNP/h) Da DT, where
DNP is the distance from the neutral point at

the center of the package, h is equal to the

solder joint height, Da is the difference in the

coefficient of thermal expansion of the pack-

age and PCB, and DT is the cycling tempera-

ture range.

• f1 and f2 are fatigue frequencies. k is the fre-

quency exponential varying from 0 to 1, with

value 0 for no frequency effect and 1 for the

maximum effect depending on the materials
and testing conditions. A value equal to 1/3 is

commonly used to extrapolate the laboratory

accelerated thermal cycles-to-failure data with

short duration (high frequency) to on/off field

operating cycles with long duration (low fre-

quency), i.e., a shorter field cycles-to-failure

projection.

• T1 and T2 are maximum temperatures (in

degrees Kelvin) under the two cycling

conditions.

Key Parameters Affecting CBGA/CGA

Assembly Under Thermal Cycles

Data on thermal cycles were gathered to illustrate

the effects of package and assembly parameters

(e.g., Da, DT, LD, H) for CBGAs and CGAs.

Table 2 lists cycles to failure for a number of

CGA and CBGA package assembly having dif-

ferent configurations, selected from the limited

data set reported in the literature [14–19]. Data

were chosen to illustrate the effects of only a few

key parameters on the reliability. The parameters

listed in the following were considered for tabu-

lating test data, even though in some cases spe-

cific information was not reported and missing.

• Thermal cycle range, ramp rate, dwell times

– For example, the CT50%F (cycles-to-fifty

percent-failure) for the CBGA 361 over the

range of 0�/100�C was 4,535 cycles (Case

#2); it diminished to 1,190 cycles when

the temperature range was broadened

to –55�/110 �C (Case #6)
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for plastic- and ceramic-grid-array packages

Model Reliability/life-prediction representation

Coffin-Manson Nf ¼ 2.277 � 10�3(Maxeeqv)
�2.61 J. H. Lau

Nf ¼ 1.2938(Deeqv)
�1.96 B. Z. Hong

Nf ¼ 0.4405(Deeqv)
�1.96 K. N. Chiang, et al.

Nf ¼ K(ep
�2) M. Farooq, et al.

Nf ¼ 0.5(Dg/2e0f)
1/C Howieson, M., et al

Nf ¼ 82.4(Dein)
�0.863 Perkins, A., et al

Engelmaier
Nf ðx%Þ ¼

1

2

2e0f
F

h

LDDaDTc

� ��1=c
:
Inð1� 0:01xÞ

Inð0:5Þ

� �1=b
Norris-Landzberg

AF ¼ Np

Nt
¼ DTt

DTp

� 	1:9 fp
ft

� 	1=3

e
1414 1

Tmax; p
� 1

Tmax; t

� 

S. Y. Teng

N50 % ¼
100

DT

� 	1:9 f

2

� 	
e
1414 1

TMax
� 1

373

� 

ðGÞ

G ¼ 12439�70:1A�434B�1301C�930D�272Eþ302CDð Þ;
A : substrate size; B : board and substrate CTE mismatch

C : substrate thickness; D : board thickness; E : ball pitch

A. Perkins, et al

Darveaux Ninit ¼ C1ðDWaveÞC2 ; da=dN ¼ C3ðDWaveÞC4

C1 ¼ 13173, C2 ¼ �1.38 to �1.45, C3 ¼ 1.72 to 3.92, C4 ¼ 1.12 to 1.15

SRS N63:2 % = A ¼ C1ðDWinÞC2 C2 ¼ �1 J. Clech

Nf ¼ ðDWÞ1:51 Ai

AD

� 

AD ¼ 5:9� 10�3 mm2 Wong, T. E., et al
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• Package size, thickness, materials, configura-

tion, and I/Os
– Comparing Case#2 to Case#3, a relatively

large reduction in CT50%F is shown when

the package thickness was increased from

0.8 to 1.2 mm (4,535 vs. 2,700 cycles).

When the package thickness was further

increased to 2.9 mm, the CT50%F was

further reduced, a reduction by 3.2 times

relative to the package with 0.8 mm thick-

ness. A similar reduction was observed for

the CGA 1657 I/Os when the package

thickness was increased from 1.5 to 3.7

mm (Case #13). The reliability decreases

by increasing the package I/O since the

distance to the neutral point has increased.

The CT50%F was reduced from 4,535

cycles to 2,462 cycles when the I/Os for

the 0.8 mm thick package increased from

361 to 625 (Case #2 vs. Case #5). The use

of higher CTE (HiCTE) ceramicmaterials –

to better match the ceramic CTE to the
PCB – also improved the reliability. For

example, compare Case #6 to the Case #7

for the 361 I/O CBGA assemblies. The

CT50%F increased from 1,190 to 2,160

cycles for the HiCTE package.

• Die size and its relation to the package size

and ball configuration
– The reliability effects of die size and pack-

age configuration (full vs. peripheral)

arrays were more pronounced for plastic

than for ceramic package assemblies.

• PCB thickness, pad definition, surface finish

– The preferred thickness was defined as

2.3 mm in IPC-9701 [20] since plastic

packages assembled on thinner PCBs gen-

erally show higher cycles to failure. The

effect of board thickness for ceramic pack-

ages was not well established, but its effect

may be less critical for column-grid-array

assemblies than for plastic package assem-

blies, especially when the dominant failure

is the columns rather than solder joints.
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a number of key variables

#

Package

I/O-pitch

Pkg size (die size,

mm)

Thermal cycle

condition (ramp,

dwell, cycle/h)

First

failure

Mean life

(63.2 %) Comments

1 CBGA-255-

1.27

21 � 21 (1 mm

substrate)

0–100 �C (10, 5,

2 cycles/h)

1,980

(1 %

failure)

2,426 (N50 %) PCB, 0.55 mm thickness

Ref. Burrnette [16]

2 CBGA-361-

1.27

25 � 25 (substrate

0.8 mm thickness)

0–100 �C
(3 cycles/h)

NA 4,535 (N50 %) Average solder paste vol 5,900

mil3

PCB, 1.57 mm thickness

Die 15 � 10 mm

3 CBGA-361-

1.27

25 � 25 (substrate

1.2 mm thickness)

0–100 �C
(3 cycles/h)

NA 2,700 (N50 %) Note: Increase from die thickness

0.8 to 1.2 and 2.9, reliability

reduction by 1.8 and 3.2 times

Ref [16]

4 CBGA-625-

1.27

32.5 � 32.5

(substrate 0.8 mm

thickness)

0–100 �C
(3 cycles/h)

NA 2,462 (N50 %) PCB, 1.57 mm thickness

Ref [17]

5 CBGA-361-

1.27

25 � 25 (substrate

0.8 mm thickness)

–55 �C to 110 �C
(2 cycles/h)

890

(100

ppm)

1,190 (N50 %) PCB, 1.57 mm thickness

Ref [14]

6 CBGA-361-

1.27-

HiCTE

Substrate

25 � 25 (substrate

0.8 mm thickness)

–55 �C to 110 �C
(2 cycles/h)

1,310

(100

ppm)

2,160 (N50 %) Substrate CTE, 12.2 ppm

Ref [14]

7 CGA-361-

1.27-

Interposer

25 � 25 (substrate

0.8 mm thickness)

–55 �C to 110 �C
(2 cycles/h)

1,350

(100

ppm)

2,320 (N50 %)) NTK interposer CGA

PCB, 1.57

Ref [14]

8 CGA-361-

1.27-IBM

25 � 25 (substrate

0.8 mm thickness)

–55 �C to 110 �C
(2 cycles/h)

1,080

(100

ppm)

1,520 (N50 %) Ref [14]

9 CBGA-

1681-1.27-

HiTCE

42.5 � 42.5 � 1.85

(substrate)

–25 �C to 125 �C
(1, 9 min, 3

cycles/h)

613

(1st

failure)

1,142 (N50 %) PCB, 93 mm thickness

Ref [18]

10 CBGA-625-

1.0

32 � 32 � 2.4 mm

(substrate)

0–100 �C
(2 cycles/h)

NA 740 (N50 %) Ref [15]

IBM-2003

11 CBGA937-

1.0

32 � 32 � 1.5

(substrate)

32 � 32 � 2.4

0–100 �C
(2 cycles/h)

NA 1,860 (N50 %)

1,310 (N50 %)

Reference M. Ref [15]

12 CGA1657-

1.0

42 � 42 � 1.5

42 � 42 � 2.55

42 � 42 � 3.7

0–100 �C
(2 cycles/h)

NA 1,530 (N50 %)

990

620

Ref [15]

13 CGA 1657-

1.0 Cu

42.5 � 42.5 � 2.55 0–100 �C
(2 cycles/h)

1,660

(1st

failure)

2,410 (N50 %) Cu Column, solder paste 96.5

Sn3.5Ag

Ref [19]
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• Single side or double side, relative offset of
package on top and bottom

– Double-sided, mirror-image PBGA

assemblies have significantly lower

CTF compared to their single-sided ver-

sion. Ghaffarian in his 1999 article

published in Chip Scale Review
Magazine reported that the mean time

to failure for mirror-imaged CSP assem-

blies in thermal cycling is 40–60 % less

than that observed for single-sided CSP

assemblies. The effect of mirror-image

assemblies on reliability for CGAs is

not presently known.
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Effect of Solder Volume on CBGA/CGA

Assembly Reliability

In contrast to PBGA assemblies, the reliability of

CGAs/CBGAs assemblies is significantly affected

by the amount of solder volume since contrary to

PBGAs, solder columns/balls do not melt during

reflow and remain intact. In fact, solder volume is

the most important key process variable affecting

the reliability of CGAs/CBGAs [13, 21]. As one

might expect, higher solder volume for CBGAs

increases the solder balls’ standoff height, which

affects reliability, but this is not the case for the

CGA assemblies where the effect is more complex

because column flexibility also plays a role in

reliability.

For CGA, as the volume increases, so does the

fillet height on the column. This increased fillet

height reduces the effective length of the flexible

column, thus making it stiffer. This effect – while

true for both cast and wire – is more pronounced

for the cast because it is stiffer in nature due to its

larger diameter. In a comprehensive investigation

performed for this category of packages, it has

been shown [19] that assemblies with a minimum

acceptable solder paste showed slightly higher reli-

ability than thosewith nominal andmuchbetter than

those with higher solder volume. To avoid inducing

opens however, the use of nominal rather than min-

imum solder paste volume is recommended.
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Overview

Heterogeneous materials like metal polycrystals

and metal matrix composites exhibit a size-

dependent mechanical elastoplastic and fracture

behavior. Generalized continuum theories can be

used for the constitutive behavior of each constit-

uent in order to predict such size effects.

Extended homogenization methods are then

needed to compute the effective properties of
composite higher-order materials. Higher-order

continua include the Cosserat medium for which

the material point is endowed with independent

translational and rotation degrees of freedom and

the micromorphic continuum which accounts for

the full microdeformation of a triad of directors

attached to the material point. An asymptotic

multiscale expansion method is used here to

derive the effective properties of heterogeneous

linear elastic micromorphic media. The type of

continuum theory representing the effective

medium is shown to be either a Cauchy, Cosserat,

microstrain, or full micromorphic model,

depending on the ratio between the characteristic

lengths of the micromorphic constituents and

the size of the heterogeneities. Applications

deal with fiber size effects in metal matrix com-

posites and with the grain-size effect in

polycrystals.
Introduction

The mechanics of generalized continua repre-

sents extensions of the classical Cauchy contin-

uum mechanics that incorporate some aspects of

the microstructure underlying the material point.

Directors can be attached to each material point

that evolve in a different way than the material

lines. They account for privileged physical direc-

tions existing in the microstructure like lattice or

fiber directions. In addition to the usual motion of

the material point, the associated directors can

rotate or even deform with straining. The

microrotation case corresponds to the Cosserat

continuum, whereas microdeformation is possi-

ble in the micromorphic continuum [6]. The

Cosserat and micromorphic media are examples

of higher-order continuum theories that are char-

acterized by additional degrees of freedom of the

material points. In the micromorphic continuum

designed by Eringen and Mindlin [7, 13], the

directors can also be distorted, so that a second-

order tensor is attributed to each material point.

Such higher-order media are sometimes called

continua with microstructure. This name has

now become misleading in the sense that even

Cauchy material models can integrate some
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http://dx.doi.org/10.1007/978-94-007-2739-7_287
http://dx.doi.org/10.1007/978-94-007-2739-7_287
http://dx.doi.org/10.1007/978-94-007-2739-7_292
http://dx.doi.org/10.1007/978-94-007-2739-7_292
http://dx.doi.org/10.1007/978-94-007-2739-7_859
http://dx.doi.org/10.1007/978-94-007-2739-7_859
http://dx.doi.org/10.1007/978-94-007-2739-7_860
http://dx.doi.org/10.1007/978-94-007-2739-7_860
http://dx.doi.org/10.1007/978-94-007-2739-7_296
http://dx.doi.org/10.1007/978-94-007-2739-7_296
http://dx.doi.org/10.1007/978-94-007-2739-7_297
http://dx.doi.org/10.1007/978-94-007-2739-7_297


A 240 Asymptotic Analysis of Heterogeneous Micromorphic Elastic Solids
aspects of the underlying microstructure as illus-

trated by classical homogenization methods used

to derive the effective properties of composites.

However, generalized continua incorporate

a feature of the microstructure which is not

accounted for by standard homogenization

methods, namely, their size-dependent material

response. They involve intrinsic lengths directly

stemming from the microstructure of the

material.

The links between the micromorphic contin-

uum and the behavior of crystalline solids have

been recognized very early by Eringen himself

[4]. Lattice directions in a single crystal can be

regarded as directors that rotate and deform. The

fact that lattice directions can be rotated and

stretched in a different way than material lines

connecting individual atoms, especially in the

presence of static or moving dislocations, illus-

trates the independence between directors and

material lines in a micromorphic continuum,

even though their deformations can be related at

the constitutive level.

The identification of a micromorphic contin-

uum from the discrete atomic single-crystal

model is possible based on suitable averaging

relations proposed in [3]. These works contain

virial formula for the higher-order stress tensors

arising in the micromorphic theory. This atomis-

tic-based approach can be used to predict phonon

dispersion relations; see for instance [4] for the

study of dispersion of waves in a dislocated

crystal.

If single-crystalline materials can be regarded

as micromorphic media, then polycrystalline

materials must be seen as a mixture of

micromorphic media. The effective behavior of

such materials can therefore be obtained by

means of homogenization methods well known

in the mechanics of heterogeneous materials

[16, 18]. Classical homogenization methods can

be used to account for the influence of the volume

fraction, distribution, and morphology of the dif-

ferent constituents of the heterogeneous material,

but they are not able to predict size effects. The

authors in [20] propose to incorporate intrinsic

length scales in the constitutive behavior of the

constituents by means of a strain-gradient theory
of plasticity. Reasons for introducing generalized

continuum models in the mechanics of heteroge-

neous materials are twofold. Firstly, it is a natural

way to obtain an explicit dependence of the effec-

tive properties of composites or multiphase mate-

rials on the absolute size of the constituents

within a continuum model and to account for

size effects observed for instance in materials

strengthened by inclusions, fibers, or precipitates

[1]. On the other hand, generalized continua can

be used to limit strain localization phenomena

that may occur in one constituent when it exhibits

a strain-softening behavior [14]. If the constitu-

ents of a heterogeneous material are described by

a generalized continuum like second grade,

Cosserat, or micromorphic media, specific

homogenization methods must be designed to

derive its effective behaviour. The questions are

the following: Does a homogeneous substitute

medium exist? Under which conditions does it

still have a nonlocal character? What is the rela-

tion between the effective characteristic length

and that of the constituents? Bounds and esti-

mates of the overall properties of heterogeneous

linear couple stress media have been proposed for

instance in [17]. Although most physically rele-

vant applications deal with plasticity or damage

phenomena, a first step is to develop homogeni-

zation methods for generalized continua in the

case of linear elasticity [9]. These methods can

then be applied to nonlinear behavior by intro-

ducing some linear comparison solids.

In this entry, the attention is focused on the

case of heterogeneous micromorphic media with

periodic microstructure. For that purpose, asymp-

totic methods classically used for periodic het-

erogeneous materials [15] are applied to linear

elastic micromorphic constituents. The main

interest of asymptotic methods in homogeniza-

tion theory lies in the fact that it can provide the

form of the balance and constitutive equations of

an effective medium without any assumption

on their nature and form. In particular, the nature

of the effective medium for a mixture of

micromorphic media will not be assumed

a priori but rather will be an essential outcome

of the asymptotic analysis. Asymptotic methods

have been used in [2] to get solutions of higher
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orders to the problem of the effective properties

of periodic heterogeneous classical media. In

contrast, the present analysis is restricted to the

first orders in the asymptotic developments, but

the method is applied to the case of periodic

heterogeneous micromorphic media.

Homogenization of Cosserat composites is

considered in the reference [9, 12, 19]. It is

a special case of the situation envisaged in

this entry. Note that this situation is different

from that of a classical heterogeneous Cauchy

material that can be homogenized into a Cosserat

continuum by suitable homogenization tech-

niques [11].

Regarding notations, the tensor product of two

vectors is � , with �
s
and �

a
respectively deliv-

ering the symmetric and skew–symmetric parts

of the tensor product of two vectors. A wide use

of the nabla operator = is made in the sequel. The

notation used for the gradient and divergence

operators are the following:
aH ¼ a;i�ei; �a� H ¼ ai; j �ei � �ej; �a:H ¼ �aij; j �ei

where a, a and �a respectively denote scalar, first-
and second-rank tensors. The ð�eiÞi¼1;2;3 are the

vectors of an orthonormal basis of space, and the

associated Cartesian coordinates have been used.

Third-, fourth-, fifth-, and sixth-rank tensors are

respectively denoted by ��a (or ��a), a


, ���
a, and ���

a.

Indices can be contracted as follows:

�a : �b ¼ aijbij,
��a : �b ¼ aijkbjk�ei; a


: �b ¼ aijklbkl�ei � �ej;

�a : A
 : �b ¼ aijAijklbkl; ��a
..
.
��b ¼ aijkbijk
Linear Elastic Micromorphic Media

The balance and constitutive equations of the

micromorphic continuum are recalled briefly in

the linear elastic framework. The motion of

a micromorphic bodyO is described by two inde-

pendent sets of degrees of freedom: the displace-

ment u and the microdeformation �x attributed to
each material point. The microdeformation

accounts for the rotation and distortion of a triad

associated with the underlying microstructure

[6]. The microdeformation field is generally not

compatible. The microdeformation can be split

into its symmetric and skew–symmetric parts:
�x ¼ �x
s þ �x

a ð1Þ

that are called respectively the microstrain and

the Cosserat rotation. The associated deformation

fields are the classical strain tensor �«, the relative
deformation �e, and the microdeformation gradi-

ent tensor ��k defined by:

�«¼�u�
s
H; �e¼�u�H��x; ��k¼�x�H ð2Þ

The symmetric part of �e corresponds to the

difference of material strain and microstrain,

whereas its skew–symmetric part accounts for

the relative rotation of the material with respect

to microstructure. The analysis is restricted to

small deformations, small micro-rotations, small

microstrains, and small microdeformation gradi-

ents. The microdeformation gradient can be split

into two contributions:

��
k ¼ ��k

s þ ��k
a; with ��

ks ¼
�
xs � H; ��k

a ¼
�
xa � H

ð3Þ

The statics of the micromorphic continuum is

described by the symmetric simple stress tensor

�s, the generally non-symmetric relative force–

stress tensor �s, and the third-rank double stress

tensor ��m. These tensors must fulfill the local form

of the balance equations in the static case, in the

absence of body simple nor double forces for

simplicity:
�s þ �s
� �

� H ¼ 0; ��m � Hþ �s ¼ 0 onO ð4Þ

The constitutive equations for linear elastic

centrosymmetric micromorphic materials read

�s ¼ a


: �«; �s ¼ b



: �e; ��m ¼ ���c

..

.
��k ð5Þ
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The elasticity tensors display the major

symmetries:

aijkl ¼ aklij; bijkl ¼ bklij; cijkpqr ¼ cpqrijk

ð6Þ

and
��
a has also the usual minor symmetries. The

last constitutive law can be written in the form

��m ¼ ���c
s_:��k

s þ ���c
a_:��k

a ð7Þ

For the sake of simplicity, the tensors ���
cs and ���

ca

are supposed to fulfill the following conditions:

csijkpqr ¼ csjikpqr; c
a
ijkpqr ¼ �cajikpqr ð8Þ

thus assuming that there is no coupling between

the contributions of the symmetric and skew–

symmetric parts of �k to the third-rank stress

tensor.

The setting of the boundary value problem on

bodyO is then closed by the boundary conditions.

In the following, Dirichlet boundary conditions

are considered of the form

�uð�xÞ ¼ 0; �xð�xÞ ¼ 0; 8�x 2 @O ð9Þ

where @O denotes the boundary of O. The equa-
tions (2), (4), (5), and (9) define the boundary

value problem P.
Multiscale Asymptotic Expansion
Method

The multiscale asymptotic expansion method is

exposed in details in the case of heterogeneous

micromorphic media so that the reader will be in

the position of applying it readily to other similar

situations.

The heterogeneous material under study is

a mixture of micromorphic constituents, i.e.,

a heterogeneous micromorphic medium. One

investigates the nature of the resulting homoge-

neous equivalent medium by means of asymp-

totic methods. The multiscale asymptotic method

from [15] is especially adequate for this purpose

since the nature of the effective medium is not
postulated a priori but rather is the result of the

analysis. The microstructure of the material is

assumed to be periodic. The heterogeneous mate-

rial is then obtained by space tessellation

with cells translated from a single cell Yl. The

period of the microstructure is described by three

dimensionless independent vectors �a1; �a2; �a3
� �

such that
Yl ¼


�x ¼ xi�ai; xij j<

l

2

�
where l is the characteristic size of the cell. We

call
��
al,
��
bl and

���
cl the elasticity tensor fields of

the periodic micromorphic material. They are

such that

8�x 2 O; 8 n1; n2; n3ð Þ 2 Z3=�x

þ lðn1�a1 þ n2�a2 þ n3�a3Þ 2 O

��
alð�xÞ ¼ ��a

lð�xþ lðn1�a1 þ n2�a2 þ n3�a3ÞÞ

��
blð�xÞ ¼ ��b

lð�xþ lðn1�b1 þ n2�b2 þ n3�b3ÞÞ

���
clð�xÞ ¼ ���c

lð�xþ lðn1�a1 þ n2�a2 þ n3�a3ÞÞ
Dimensional Analysis

The first step of a multiscale expansion analysis is

the dimensional analysis which is necessary to

identify the small parameters of the problem. The

size L of body O is defined for instance as

the maximum distance between two points.

Dimensionless coordinates and displacements

are introduced:
�x

 ¼ �x

L
; �u

ð�x
Þ ¼ �

uð�xÞ
L

; �x

ð�x
Þ ¼ �xð�xÞ ð10Þ

The corresponding strain measures are
�«

ð�x
Þ ¼ �u
 �

s
H
 ¼ �«ð�xÞ;

�e

ð�x

Þ ¼ �u


 � H
 � �x

 ¼ �eð�xÞ

ð11Þ

��k

ð�x
Þ ¼ �x


 � H
 ¼ L ��kð�xÞ ð12Þ

with H
 ¼ @�
@x


i

� 

�ei ¼ LH. Similarly,
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��k
s
ð�x
Þ ¼ �x

s
 � H
 ¼ L �k
sð�xÞ

��k
a
ð�x


Þ ¼ �x
a
 � H
 ¼ Lkað�xÞ

ð13Þ

It is necessary to introduce next a norm of the

elasticity tensors:
A ¼ Max
�x2Yl

alijklð�xÞ
��� ���; blijklð�xÞ

��� ���� 

Cs ¼ Max

�x2Yl
cslijkpqrð�xÞ
��� ���

Ca ¼ Max
�x2Yl

calijkpqrð�xÞ
��� ���

whereby characteristic lengths ls and la can be

defined as Cs ¼ Al2s ;C
a ¼ Al2a.

The definition of dimensionless stress and

elasticity tensors is as follows:
�s

ð�x
Þ ¼ A�1�sð�xÞ; s
ð�x
Þ ¼ A�1sð�xÞ;

��
m
ð�x
Þ ¼ ðALÞ

�1
��
mð�xÞ

��
a
ð�x
Þ ¼ A�1

��
alð�xÞ; ��b


ð�x
Þ ¼ A�1
��
blð�xÞ;

���
cs
ð�x
Þ ¼ ðAl2s Þ

�1
���
cslð�xÞ; ���

ca
ð�x
Þ ¼ ðAl2aÞ
�1
���
calð�xÞ

Since the initial tensors
��
al;
��
bl and

���
cl are

Yl-periodic, the dimensionless counterparts are

Y
-periodic:
Y
 ¼ 1

l
Y; Y ¼ �y ¼ yi�ai; yij j<

1

2


 �
ð14Þ

Y is the (dimensionless) unit cell used in the

following asymptotic analyses. As a result, the

dimensionless stress and strain tensors are related

by the following constitutive equations:
�s

 ¼

��
a
 : �«


; �s

 ¼

��
b
 : �e


;

��m

 ¼ ls

L

� 	2

���
cs
 ..

.
��k
s
 þ la

L

� 	2

���
ca
..

.
��k
a


ð15Þ

The dimensionless balance equations read
8�x

 2 O
; ð�s


 þ �s

Þ � H
 ¼ 0; ��m


 � H
 þ �s

 ¼ 0

ð16Þ
A boundary value problem P
 can be defined

using equations (12), (15), and (16), complemented

by the boundary conditions:
8�x
 2 @O
; �u

ð�x
Þ ¼ 0; �x


ð�x
Þ ¼ 0 ð17Þ
The Homogenization Problem

The boundary value problem P
 is treated here as
an element of a series of problems ðP«Þ«>0 onO


.
The homogenization problem consists in the

determination of the limit of this series when

the dimensionless parameter e, regarded as small,

tends towards 0. The series is chosen such that

P
e¼ l

L
¼ P


The unknowns of boundary value problem P«

are the displacement and microdeformation fields

�u
« and �x

« satisfying the following field equations

on O
:
�s
e¼

��
ae : ð�u«�

s
H
Þ; �s

e¼
��
be : ð�ue�H
 ��x

eÞ;

��
me¼

���
ce ..
.
ð
�
xe�H
Þ

ð18Þ

ð�s
e þ �s

eÞ � H
 ¼ 0; ��m
e � H
 þ �s

e ¼ 0 ð19Þ

Different cases must now be distinguished

depending on the relative position of the consti-

tutive lengths ls and la with respect to the char-

acteristic lengths l and L of the problem. Four

special cases can be distinguished for the present

asymptotic analysis. The first case corresponds

to a limiting process for which ls=l and la=l

remain constant when l=L goes to zero. The

second case corresponds to the situation for

which ls=L and la=L remain constant when l=L

goes to zero. The third (resp. fourth) situation

assumes that ls=l and la=L (resp. ls=L and la=l)
remain constant when l=L goes to zero. These

assumptions lead to four different homogeniza-

tion schemes labeled HS1 to HS4 in the sequel.

The homogenization scheme 1 (resp. 2) will be
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relevant when the ratio l=L is small enough and

when ls; la and l (resp. L) have the same order of

magnitude.

Accordingly, the following tensors of elastic

moduli are defined:
��
að0Þ

�
�y
�
¼
��
a
ð lL�yÞ; ��

bð0Þ
�
�y
�
¼
��
b

�
l
L�y
�
ð20Þ

��
cð1Þ
�
�y
�
¼ ls

l

� �2
��
c

�
l
L�y
�
;

��
cð2Þ
�
�y
�
¼ ls

L

� �2
��
c

�
l
L�y
�
ð21Þ

��
csð1Þ ð�yÞ ¼

ls
l

� �2
��
cs

�
l
L�y
�
;

��
cað1Þ

�
�y
�
¼ la

l

� �2
��
ca

�
l
L�y
�

ð22Þ

��
csð2Þ

�
�y
�
¼ ls

L

� �2
��
cs

�
l
L�y
�
;

��
cað2Þ

�
�y
�
¼ la

L

� �2
��
ca
 ð lL�yÞ

ð23Þ

They are Y-periodic since
��
a
;
��
b
 and

��
c
 are

Y
-periodic. Four different hypotheses will be

made concerning the constitutive tensors of prob-

lem P«:

Assumption 1 :
��
ae �x


� �
¼
��
að0Þ e�1�x


� �
��
be �x


� �
¼
��
bð0Þ e�1�x


� �
and

��
ce �x


� �
¼ e2

��
cð1Þ e�1�x


� �
Assumption 2 :

��
ae �x


� �
¼
��
að0Þ e�1�x


� �
��
be �x


� �
¼
��
bð0Þ e�1�x


� �
and

��
ce �x


� �
¼
��
cð2Þ e�1�x


� �
Assumption 3 :

��
ae �x


� �
¼
��
að0Þ e�1�x


� �
��
be �x


� �
¼
��
bð0Þ e�1�x


� �
and

��
cse �x


� �
¼ e2

��
csð1Þ e�1�x


� �
��
cae �x


� �
¼
��
cað2Þ e�1�x


� �
Assumption 4 :

��
ae �x


� �
¼
��
að0Þ e�1�x


� �
be �x


� �
¼
��
bð0Þ e�1�x


� �
and

��
cse �x


� �
¼
��
csð2Þ e�1�x


� �
��
cae �x


� �
¼ e2

��
cað1Þ e�1�x


� �
Assumptions 1 and 2 respectively correspond

to the homogenization schemes HS1 and HS2.

Both choices meet the requirement that
�
e ¼ l

L

	
)
�
��
ae ¼

��
a
 and

��
ce ¼

�
l

L

	2

��
c

	

Assumptions 3 and 4 respectively correspond

to the homogenization schemes HS3 and HS4.

Both choices meet the requirement that�
e ¼ l

L

	
)
�
��
ae ¼

��
a
;

��
cse ¼

�
ls
L

	2

��
cs
 and

��
cae ¼

�
la
L

	2

��
ca

	

It must be noted that, in our presentation of the

asymptotic analysis, the lengths l; ls; la and L are

given and fixed, whereas parameter « is allowed

to tend to zero in the limiting process. In the

sequel, the stars 
 are dropped for conciseness.
Multiscale Asymptotic Expansion of the
Fields

In the setting of the homogenization problems,

two space variables have been distinguished: �x
describes the macroscopic scale and �y is the local
variable in the unit Y.According to the method of

multiscale asymptotic developments, all fields

are regarded as functions of both variables �x
and �y. It is assumed that they can be expanded

in a series of powers of small parameter «. In

particular, the displacement, microdeformation,

and simple and double stress fields are supposed

to take the form
�u
eð�xÞ ¼ �u0ð�x; �yÞ þ e�u1ð�x; �yÞ þ e2�u2ð�x; �yÞ þ . . .

�X
eð�xÞ ¼ �X1

ð�x; �yÞ þ e�X 2
ð�x; �yÞ þ e�X 3

ð�x; �yÞ þ . . .

�s
eð�xÞ ¼ �s0

ð�x; �yÞ þ e�s1
ð�x; �yÞ þ e�s2

ð�x; �yÞ þ . . .

�s
eð�xÞ ¼ �s0ð�x; �yÞ þ e�s1ð�x; �yÞ þ e2�s2ð�x; �yÞ þ . . .

��m
eð�xÞ ¼ ��m0

ð�x; �yÞ þ e��m1
ð�x; �yÞ þ e2��m2

ð�x; �yÞ þ . . .

where the coefficients �uið�x; �yÞ; �xi
ð�x; �yÞ;

�sið�x; �yÞ; �sið�x; �yÞ and �mi
ð�x; �yÞ are assumed to

have the same order of magnitude and to be

Y-periodic with respect to variable �y �y ¼ �x=e
� 


.

The average operator over the unit cell Y is

denoted by
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A

�h i ¼ 1

jYj

Z
Y

�dV

As a result,
<�u
e> ¼ �U0

þ e�U1
þ . . . and <

�
xe> ¼ �eX2

þ . . .

ð24Þ

where �Ui ¼ <�ui> and �Xi
¼ <

�
x
i
>. The gradient

operator can be split into partial derivatives with

respect to �x and �y:

H ¼ Hx þ
1

e
Hy ð25Þ

This operator is used to compute the strain

measures and balance equations:
�«
e ¼ �e

�1
�«�1 þ �«0 þ e1�«1 þ . . .

¼ e�1�u0�
s
Hy þ ð�u0�

s
Hx þ �u1�

s
HyÞ

þ eð�u1�
s
Hx þ �u2�

s
HyÞ þ . . .

�e
e ¼ e�1�e�1 þ �e0 þ e1�e�1 þ . . .

¼ e�1�u0 � Hy þ ð�u0 � Hx þ �u1 � Hy � �x1
Þ

þ eð�u1 � Hx þ �u2 � Hy � �x2
Þ þ . . .

��k
e ¼ e�1��k�1

þ ��k0
þ e1��kþ . . .

¼ e�1
�
x
1
� Hy þ ð�x1

� Hx þ �x2
� HyÞ

þ eð
�
x
2
� Hx�

x
3
� HyÞ þ . . .

ð�s
e þ �s

eÞ � Hx þ e�1ð�s
e þ �s

eÞ � Hy ¼ 0;

��m
e � Hx þ e�1��m

e � Hy þ �s
e ¼ 0

ð26Þ

Similar expansions are valid for the tensors

��k
s; ��k

a. The expansions of the stress tensors are

then introduced in the balance equations (26), and

the terms can be ordered with respect to the

powers of e. Identifying the terms of same

order, we are lead to the following set of

equations:
� order e�1; ð�s0
þ �s0Þ � Hy ¼ 0 and ��

m
0
� Hy ¼ 0

� order e0; ð�s0
þ �s0Þ � Hx þ ð�s1

þ �s1Þ � Hy ¼ 0 and

��S0
� Hx þ ��S1 � Hy þ �s1 ¼ 0
The effective balance equations follow from

the first above equation by averaging over the

unit cell Y and, at the order e0, one gets
�S0
þ �S0

� �
� H ¼ 0 and ��

M
0
� Hþ �S0 ¼ 0

ð27Þ

where effective stress tensors are defined as the

following averages �S0
¼ <�s0

>; �S0 ¼ <�s0>
and ��M0

¼ <��m0
>.
Homogenization Scheme HS1

For the first homogenization scheme HS1 previ-

ously defined, the equations describing the local

behavior are
�s
e ¼

��
að0Þ

�
�y
�
: �«

e; �s
e ¼

��
bð0Þ

�
�y
�
: �e

e and

��m
e ¼ e2

���
cð1Þ
�
�y
�...��ke

ð28Þ

At this stage, the expansion (26) can be

substituted into the constitutive equations (28).

Identifying the terms of same order, one gets

• order e�1,
��
að0Þ : �«�1 ¼ ��a

ð0Þ : �u0�
s
Hy

� 

¼ 0

��
bð0Þ : �e0 ¼ ��b

ð0Þ : �u0 � Hy

� �
¼ 0

ð29Þ

• order e0,

�s0
¼
��
að0Þ : �e0; �s0¼��b

ð0Þ : �e0; ��m0
¼ 0 ð30Þ

• order e1,
�s1
¼
��
að0Þ : �e1; �s1 ¼ ��b

ð0Þ : �e1; ��m1
¼
���
cð1Þ..

.
��k�1

ð31Þ

The equation (21) implies that �u0 does not

depend on the local variable �y:

�u0ð�x; �yÞ ¼ �U0
ð�xÞ
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At the order e0, the higher-order stress tensor
vanishes, ��M0

¼ <��m0
> ¼ 0.

Finally, the fields ð�u1; �x1
; �s0

; �s0; ��m1
Þ are

solutions of the following auxiliary boundary

value problem defined on the unit cell:

�«0 ¼ �U0
�
s
Hx þ �u1�

s
Hy; �e0 ¼ �U0

� Hx

þ �u1 � Hy � x1

��k�1
¼ �x1

� Hy

�s0
¼
��
að0Þ : �e0; �s0 ¼ ��b

ð0Þ : �e0; m1 ¼ ���c
ð1Þ : �k�1

ð�s0
þ �s0Þ � Hy ¼ 0; ��m1

� Hy þ �s0 ¼ 0

8>>>>>>>>><>>>>>>>>>:
ð32Þ

The boundary conditions of this problem are

given by the periodicity requirements for the

unknown fields. A series of auxiliary problems

similar to (32) can be defined to obtain the solu-

tions at higher orders. It must be noted that these

problems must be solved in cascade since, for

instance, the solution of (32) requires the

knowledge of �U0
. A particular solution �x for

a vanishing prescribed �U0
�
s
Hx is �x ¼ �U0

�
a
Hx.

It follows that the solution ð�u1; �U0
�
a
Hx � �x1

Þ to
problem (32) depends linearly on �U0

�
s
Hx, up to

a translation term, so that
�u
e ¼ �U0

ð�xÞ þ eð�U1
ð�xÞ þ ��x

ð1Þ
u

�
�y
�
: ð�U0

�
s
HÞÞ þ . . .

ð33Þ

�x
e ¼ �U0

�
a
Hx þ

��
xð1Þ
x
ð�yÞ : �U0

�
s
Hþ . . . ð34Þ

where concentration tensors ��X
ð1Þ
u

and
��
Xð1Þ
x

have

been introduced, the components of which are

determined by the successive solutions of the aux-

iliary problem for unit values of the components of

�U0
�
s
H. Concentration tensor ��X

ð1Þ
u

is such that its

mean value over the unit cell vanishes.

The macroscopic stress tensor is given by

�S0
¼ <�s0

> ¼ <
��
að0Þ : ð

��
1þ Hx�

s

��X
ð1Þ
u
Þ> :

ð�U0
�
s
HÞ ¼

��
Að1Þ
0

: ð�U0
�
s
HÞ

ð35Þ
Accordingly, the tensor of effective moduli

possesses all symmetries of classical elastic

moduli for a Cauchy medium: A
ð1Þ
0ijkl ¼ A

ð1Þ
0klij

¼ A
ð1Þ
0jikl ¼ A

ð1Þ
0ijlk.

The additional second-rank stress tensor can

be shown to vanish:
�S0 ¼ <�s0> ¼ <� ��m1
� Hy> ¼ 0 ð36Þ

The effective medium is therefore governed

by the single equation:
�S0
� H ¼ 0 ð37Þ

The effective medium turns out to be a Cauchy

continuum with symmetric stress tensor.
Homogenization Scheme HS2

For the second homogenization scheme HS2, the

equations describing the local behavior are
�s
e ¼

��
að0Þ
�
�y
�
: �e

e; �s
e ¼

��
bð0Þ
�
�y
�
: �e

e; and

��m ¼ ���c
ð2Þ�
�y
�...��ke

ð38Þ

The different steps of the asymptotic analysis

are the same as in the previous section for HS1.

We will only focus here on the main results. At

the order e�1, one gets

��
að0Þ : �e�1 ¼ 0;

��
bð0Þ : �e�1 ¼ 0; ���

cð2Þ..
.
��k�1
¼ 0

ð39Þ

This implies that the gradients of �u0 and
�
x
1

with respect to �y vanish, so that

�u0ð�x; �yÞ ¼ �U0
ð�xÞ; �

x
1
ð�x; �yÞ ¼ �X1

ð�xÞ ð40Þ

The fields ð�u1; �x1
; �s0; ��m0

Þ are solutions of the
two following auxiliary boundary
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value problems defined on the unit cell:
A
�«0 ¼ �U0
�
s
Hx þ �u1�

s
Hy

�e0 ¼ �U0
� Hx þ �u1 � Hy � �X1

�s0
¼
��
að0Þ : �e0; �s0 ¼ ��b

ð0Þ : �e0

ð�s0
þ �s0Þ � Hy ¼ 0

8>>>>>>><>>>>>>>:
��k0
¼ �X1

� Hx þ �x2
Hy

��m0
¼
����
cð2Þ..

.
��k0

; ��m0
� Hy ¼ 0

8><>:
We are therefore left with two decoupled bound-

ary value problems: the first one with main

unknown �u1 depends linearly on �U0
�
s
Hx and

�U0
� Hx � �X1

, whereas the second one with

unknown
�
x
2
is linear in �X1

� Hx. The solutions

take the form
�u
e ¼ �U0

ð�xÞ þ eð�U1
ð�xÞ þ ��X

ð2Þ
u
ð�yÞ : ð�U0

�
s
HÞ

þ
��
Xð2Þ

e
ð�yÞ : ð�U0

� H� �X1
ÞÞ þ . . . ;

�
xe ¼ �X1

ð�xÞ þ eð�X2
ð�xÞ þ ���X

ð2Þ
k
ð�yÞ

..

.
ð�X1
� HÞÞ þ . . .

ð41Þ

where concentration tensors ��X
ð2Þ
u
; ��X
ð2Þ
e

and
���
Xð2Þ
k

have been introduced. Their components are

determined by the successive solutions of the

auxiliary problem for unit values of the compo-

nents of �U0
�
s
H; �U0

� H� �X1
and �X1

� Hy.

They are such that their mean value over the

unit cell vanishes.

The macroscopic stress tensors and effective

elastic properties are given by

�S0
¼ <

��
að0Þ : ð

��
1þ Hy�

s

��X
ð2Þ
u
Þ> : ð�U0

�
s
HÞ

þ<
��
að0Þ : ðHy�

s

��X
ð2Þ
e
Þ> : ð�U0

� H� �X1
Þ

�S0 ¼ <�s0> ¼ <
��
bð0Þ : ðHy � ��X

ð2Þ
u
Þ> : ð�U0

�
s
HÞ

þ<
��
bð0Þ : ðHy � ��X

ð2Þ
u
Þ> : ð�U0

� H� �X1
Þ

��M0
¼ <��m0

> ¼ <���
cð2Þ..

.�
���
1þ Hy � ���X

ð2Þ
k



>..
.
�X1
� H

None of these tensors vanishes in general,

which means that the effective medium is a full
micromorphic continuum governed by the bal-

ance equations (27).
Homogenization Scheme HS3

In the case HS3, the equations describing the

local behavior are
�s
e ¼

��
að0Þ
�
�y
�
: �«

e; �s
e ¼

��
bð0Þ
�
�y
�
: �e

e

��m
e ¼ e2���

csð1Þ
�
�y
�...��kse þ ���c

sð2Þ�
�y
�
��k
ae

ð42Þ

At the order e�1, one gets
��
að0Þ : �«�1 ¼

0;
��
bð0Þ : �e�1 ¼ 0;

���
cað2Þ..

.
��k
a

�1
¼ 0.

This implies that the gradients of �u0 and
�
x0

1
with respect to �y vanish, so that

�u0ð�x; �yÞ ¼ �U0
ð�xÞ; ��

xa

1
ð�x; �yÞ ¼ �X

a
1
ð�xÞ ð43Þ

The fields ð�u1; �x
s

1
;
�
xa

2
;
�
xa

3
; �s0

; �s0; ��m0
; ��m1
Þ are

solutions of the following auxiliary boundary

value problem defined on the unit cell:

�e0 ¼ �U0
�
s
Hx þ �u1�

s
Hy; �e0�U0

� Hx

þ �u1 � Hy � �X
a
1
�
�
xs

1

��k
s

�1
¼
�
xs

1
� Hy; ��k

s

�1
¼ �X

a
1
� Hx�

xa

2
� Hy

��k
a

1
¼
�
xa

3
� Hy

�s0
¼
��
að0Þ : �e0; �s0 ¼ ��b

ð0Þ : �e0

��m0
¼
���
cað2Þ..

.
��k
a

0
; ��m1

¼
���
csð1Þ..

.
�k
s
�1 þ ���

csð2Þ..
.
�k
a
1

ð�s0
þ �s0Þ � Hy ¼ 0; ��m0

� Hy ¼ 0;

��m0
� Hx þ ��m1

� Hy þ �s0 ¼ 0

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
This complex problem can be seen to depend

linearly on

�U0
�
s
H; �U0

�
a
��X

a
1
and �X

a
1
� H. The solutions

take the form

�u
e ¼ �U0

ð�xÞ þ eð�U1
ð�xÞ þ ��X

ð3Þ
u

�
�y
�
:

ð�U0
�
s
Hþ ��X

ð3Þ
e

�
�y
�
: �U0
�
a
H� �X

a
1
ÞÞ þ . . .

ð44Þ
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�
xe ¼ �X1

ð�xÞ þ eð�X2
ð�xÞ þ ���X

ð3Þ
k
ð�yÞ..

.
�X

a
1
� HÞÞ þ . . .
ð45Þ

where concentration tensors ��X
ð3Þ
u
; ��X
ð3Þ
e

and ��X
ð3Þ
k

have been introduced. Their components are

determined by the successive solutions of the

auxiliary problem for unit values of the compo-

nents of �U0
�
s
H; �U0

�
a
H� �X

a
1

and �X
a
1
� Hy.

They are such that their mean value over the

unit cell vanishes.

The macroscopic stress tensors and effective

elastic properties are given by
�S0
¼<

��
að0Þ : ð

��
1Hx�

s

��
Xð3Þ

u
Þ> : ð�U0

�
s
HÞ þ<

��
að0Þ :

ðHx�
s

��
Xð3Þ
u
Þ> : ð�U0

�
a
H� �X

a
1
Þ

�S0 ¼<�s0> ¼ <
��
bð0Þ : ðHx � ��X

ð3Þ
u
Þ> : ð�U0

�
s
HÞ

þ<
��
bð0Þ : ðHx � ��X

ð3Þ
e
Þ> : ð�U0

�
a
H� �X

a
1
Þ

��
M

0
¼<��

m
0
> ¼ <���

cað2Þ..
.
ð
��
1Hy�

s

��
Xð3Þ

k
Þ>..

.
�X

a
1
� H

They must fulfill the balance equations (27).

Note that ��m0
and therefore ��M0

are skew symmet-

ric with respect to their first two indices. The

averaged equation of balance of moment of

momentum implies that �S0 is symmetric. The

macroscopic degrees of freedom are the displace-

ment field �U0
and the symmetric strain tensor �X

a
1
.

The found balance and constitutive equations are

therefore that of a Cosserat effective medium.

The more classical form of the Cosserat theory

is retrieved once one rewrites the previous equa-

tions using the axial vector associated to the

skew–symmetric tensor �X
a [6].
Homogenization Scheme HS4

In the last considered case, the equations describ-

ing the local behavior are

�s
e ¼

��
að0Þ
�
�y
�
: �e

e; �s
e ¼

��
bð0Þ
�
�y
�
: �e

e;

��m
e ¼

���
csð2Þ

�
�y
�...��kae

ð46Þ
At the order e�1, one gets
��
að0Þ : �e�1 ¼ 0;

��
bð0Þ : �e�1 ¼ 0;

���
csð2Þ..

.
��k
s

�1
¼ 0

This implies that the gradients of �u0 and
�
xs

1
with respect to �y vanish, so that

�u0ð�x; �yÞ ¼ �U0
ð�xÞ; �

xs

1
ð�x; �yÞ ¼ �X

s
1
ð�xÞ ð47Þ

The fields ð�u1; �x
a

1
;
�
xs

2
;
�
xs

3
; �s0

; �s0; ��m0
; ��m1
Þ are

solutions of the following auxiliary boundary

value problem defined on the unit cell:
�e0 ¼ �U0
�
s
Hx þ �u1�

s
Hy; �e0 ¼ �U0

� Hx

þ �u1 � Hy � �X
s
1
�
�
xa

1

��k
a

�1
¼
�
xa

1
� Hy; ��k

s

0
¼ �X

s
1
� Hx þ �x

s

2
� Hy; ��k

a

�1

¼
�
xs

2
� Hx þ �x

s

3
� Hy

�s0
¼
��
að0Þ : �e0; �s0 ¼ ��b

ð0Þ : �e0

��m0
¼
���
csð2Þ..

.
��k
s

0
; ��m1

¼
���
cað1Þ..

.
�k
a
�1 þ ���

csð2Þ�k
s
1

ð�s0
þ �s0Þ � Hy ¼ 0; ��

m
0
� Hy ¼ 0; ��

m
0
� Hx

þ ��m1
� Hy þ �s0 ¼ 0

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
This complex problem can be seen to depend

linearly on �U0
�
s
H; �U0

�
s
H� �X

s
1
and �X

s
1
� H.

The solutions take the form
�u
e
�U0
ð�xÞ þ eð�U1

ð�xÞ��X
ð4Þ
u
ð�yÞ : ð�U1

�
s
HÞ

þ ��X
ð4Þ
e

: ð�U1
�
s
H� �X

s
1
ÞÞ þ . . .

�
xe ¼ �X1

ð�xÞ þ eð�X2
ð�xÞ þ ��X

ð4Þ
k
ð
�
yÞ..
.
ð�X

s
1
� HÞÞ þ . . .

where concentration tensors ��X
ð4Þ
u
; ��X
ð4Þ
e

and ��X
ð4Þ
k

have been introduced. Their components are

determined by the successive solutions of the

auxiliary problem for unit values of the compo-

nents of �U0
�
s
H; �U0

�
s
H� �X

s
1

and �X
s
1
� Hy.

They are such that their mean value over the

unit cell vanishes.

The macroscopic stress tensors and effective

elastic properties are given by



Asymptotic Analysis of Heterogeneous
Micromorphic Elastic Solids, Table 1 Homogeniza-

tion of heterogeneous micromorphic media: nature of the

homogeneous equivalent medium depending on the values

of the intrinsic lengths of the constituents

Homogenization

scheme

Characteristic

lengths

Effective

medium

HS1 ls � l; la � l Cauchy

HS2 ls � L; la � L Micromorphic

HS3 ls � l; la � L Cosserat

HS4 ls � L; la � l Microstrain

Asymptotic Analysis of Heterogeneous Micromorphic Elastic Solids 249 A

A

�S0
¼<

��
að0Þ : ð

��
1þ Hx�

s

��
Xð4Þ

u
Þ> : ð�U0

�
s
HÞ

þ<
��
að0Þ : ðHy�

s

��
Xð4Þ
e
Þ> : ð�U0

�
s
H� �X

s
1
Þ

�S0 ¼<�s0> ¼ <
��
bð0Þ : ðHy�

s

��X
ð4Þ
u
Þ> : ð�U0

�
s
HÞ

þ<
��
bð0Þ> : ð�U0

�
s
H� �X

s
1
Þ

��
M

0
¼<��

m
0
> ¼ <���

csð2Þ..
.
ð
��
1þ Hy � ��X

ð4Þ
k
Þ>..

.
ð�X

s
1
� HÞ

They must fulfill the balance equations (27).

Note that ��m0
and therefore ��M0

are

symmetric with respect to their first two indi-

ces. The averaged equation of balance of moment

of momentum implies that �S0 ¼ �<��m0
> � H is

symmetric. The macroscopic degrees of freedom

are the displacement field �U0
and the symmetric

strain tensor �X
s
1
.

Such a continuum is called a microstrain

medium [8].

As a conclusion, depending on the relative con-

tributions of the various intrinsic length scales of

the micromorphic continuum, different effective

media are obtained, as summarized in Table 1. The

effective medium can be of micromorphic,

microstrain, Cosserat, or Cauchy type. A similar

situation is found in the case of the homogeniza-

tion of heterogeneous Cosserat media. Depending

on the ratio between the Cosserat characteristic

length la and the sizes l; L, the effective medium

will be a Cauchy continuum with body couples or

a full Cosserat continuum [9].
Applications

The approach is applied to two important classes

of materials, namely, composite and polycrystal-

line materials. The auxiliary problems evidenced

in the previous homogenization method are

solved by means of the finite element method

with well-suited boundary conditions.
Fiber or Particle Composites

The reinforcement induced by fibers and particles

embedded in a matrix material depends on their
volume fraction and arrangement but also on

their size compared to the characteristic size

of the microstructure elements of the matrix.

The former effect is satisfactorily accounted

for by standard homogenization methods. The

latter can be described by considering that

both the matrix and inclusions are Cosserat

materials having different intrinsic length la.
The effective properties of such a composite

are found by solving auxiliary problems of the

unit cell. The unit cell corresponding to a square

arrangement of fibers with a volume fraction of

0.4 is shown in Fig. 1. According to scheme

HS3, the displacement microrotation fields

are searched for in the following form in the

unit cell:
�u
�
�y
�
¼ �E � �yþ �v

�
�y
�

�x
a
�
�y
�
¼ ��K � �yþ �j

a
�
�y
�

The fluctuation displacement �v and the skew–

symmetric microrotation fluctuation �j
a are

periodic. The macroscopic deformation �E and

curvature ��K are prescribed to the unit cell. The

computation of the mean elastic energy contained

in the deformed unit cell is used to identify the

microscopic elastic moduli. According to Hill–

Mandel’s lemma that can be derived from the

previous homogenization procedure, the macro-

scopic strain energy is the mean value of the local

one over the volume element:
�S : �Eþ ��M
..
.
��M ¼ <�s : �eþ ��m

..

.
��k> ð48Þ
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Solids, Fig. 1 Solution of

the auxiliary problem in the

homogenization of

Cosserat fiber composites:

unit cell of the composite

material (top right), simple

shear (top right), mean

relative rotation (bottom
left), and mean curvature

(bottom right), under plane
strain conditions
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Figure 1 shows how mean shear, relative rota-

tion, and curvature can be applied successively to

a unit cell.
Polycrystalline Materials

The previous homogenization method can be

extended, at least in a heuristic way, to nonlinear

micromorphic constitutive equations in order to

predict size effects in the plasticity of polycrys-

tals. The reader is referred to [5] for a detailed

presentation of such models and a more complete

description of polycrystal homogenization. The

computation of polycrystalline aggregates based

on standard crystal plasticity models follows

the rule of classical homogenization theory in

the sense that a mean strain is prescribed to

a volume element of polycrystalline materials
using suitable boundary conditions like strain-

based, stress-based, or periodic ones. The struc-

ture of the boundary value problem is modified if

a generalized continuum approach is used inside

the considered volume element. The grain bound-

ary conditions represent an important new feature

of the theory. At any interface of a micromorphic

continuum, there may exist some jump condi-

tions for the degrees of freedom of the theory

and the associated reactions, namely, the simple

and double tractions. As a first approximation,

however, the displacement vector and the

microdeformation tensor can be assumed to be

continuous at grain boundaries. As a result, the

simple and double tractions also are continuous.

The continuity of microdeformation is a new

grain boundary condition that does not exist in

classical crystal plasticity. It will generate bound-

ary layers at grain boundaries which are essential
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for the observed size effects [5, 10]. In that way,

material parameters of the micromorphic model

can be identified in order to quantitatively

describe the well-known Hall–Petch relationship

which is a direct correspondence between

the overall stress and the grain size at a given

plastic strain.
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thermoelasticity
Overview

We are interested to study the longtime behavior

for a linear one-dimensional thermoelastic sys-

tem where the hyperbolic elastic system is joined

with the parabolic heat equation. By some results

in semigroup theory, we prove the exponential

decay of the solutions related to the associated

initial boundary value problem. For a detailed

study in more general cases, some references

are given at the end of this section.
A Simple Model in Thermoelasticity

The One-Dimensional Linear Thermoelastic

System

For T > 0, we consider the following one-

dimensional linear thermoelastic system:
utt � a uxx þ g yx ¼ 0 in ð0; ‘Þ � ð0; TÞ ð1Þ

yt � k yxx þ g uxt ¼ 0 in ð0; ‘Þ � ð0; TÞ ð2Þ

supplemented with initial conditions

http://dx.doi.org/10.1007/978-94-007-2739-7_100138
http://dx.doi.org/10.1007/978-94-007-2739-7_100397
http://dx.doi.org/10.1007/978-94-007-2739-7_100397
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uðx; 0Þ ¼ u0ðxÞ; utðx; 0Þ ¼ u1ðxÞ in ð0; ‘Þ
ð3Þ

yðx; 0Þ ¼ y0ðxÞ in ð0; ‘Þ ð4Þ

and Dirichlet boundary conditions at both ends
uð0; tÞ ¼ 0; uð‘; tÞ ¼ 0 in ð0; TÞ ð5Þ

yð0; tÞ ¼ 0; yð‘; tÞ ¼ 0 in ð0; TÞ ð6Þ

in the unknown variables u ¼ uðx; tÞ :
ð0; ‘Þ � ð0; TÞ !R and y ¼ yðx; tÞ : ð0; ‘Þ�
ð0; TÞ !R. With regard to the physical mean-

ing of the variables in play, u represents the

longitudinal deflection of a bar of length ‘ with

unit reference density, while y actually arises

from the temperature variation with respect to

a reference value. Constants a; k 2Rþ and

g 2Rnf0g depend on the material properties.

Here and in what follows, the subscripts x and t

indicate partial derivatives.

For a detailed derivation of the modeling

under consideration, we refer, e.g., to [2, 4].

Solutions in appropriate Hilbert spaces will be

found by means of semigroup theory (see entry

“▶Existence and Uniqueness: Solutions of

Thermoelastodynamics”). Without loss of gener-

ality, throughout this section, we choose a ¼ 1.

Notation

Putting O ¼ ð0; ‘Þ, let us introduce the space
H ¼ H1
0ðOÞ � L2ðOÞ � L2ðOÞ

with norm
ðu; ut; yÞk kH ¼ uxk k2 þ utk k2 þ yk k2
� 
1=2

;

where

’k k ¼
ð‘
0

j’ðxÞj2 dx
� �1=2

is the L2 norm in O. Furthermore, we denote by

h�; �iH and h�; �i the inner products in H and L2,

respectively.
Formulation of the Problem

Setting v ¼ ut, z ¼ ðu; v; yÞT, and

z0 ¼ ðu0; u1; y0ÞT 2 H, system (1)–(2) can be

rewritten as an evolution system inH of the form
ztðtÞ ¼ AzðtÞ; t > 0 ð7Þ

zð0Þ ¼ z0 ð8Þ

The operator A : DðAÞ � H ! H is defined as
A ¼
0 I 0

ð:Þxx 0 �gð:Þx
0 �gð:Þx kð:Þxx

24 35 ð9Þ

with domain
DðAÞ ¼ H2ðOÞ \ H1
0ðOÞ

� �
� H1

0ðOÞ
� H2ðOÞ \ H1

0ðOÞ
� �

We can observe that A is a densely defined

operator from DðAÞ to H.

Useful Results in the Theory of Semigroups

We conclude this introductory part with

a necessary and sufficient condition for a C0-

semigroup being exponentially stable. For

a detailed exposition of the subject, the reader is

referred to, e.g., [9, 25, 30].

Theorem 1. Let SðtÞ ¼ eAt be a C0 -semigroup
of contractions (i.e., a C0-semigroup SðtÞ ¼ etA

such that SðtÞk kLðHÞ � 1 for every t � 0) on

a Hilbert space H. Then, SðtÞ is exponentially
stable if and only if
rðAÞ � ib; b 2Rf g ¼: iR ð10Þ

and
lim
jbj!1

ðibI � AÞ�1
�� ��

LðHÞ < þ1 ð11Þ

hold.

Here rðAÞ denotes the resolvent set of A.

http://dx.doi.org/10.1007/978-94-007-2739-7_535
http://dx.doi.org/10.1007/978-94-007-2739-7_535
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Exponential Decay

The presentation of this section is essentially

based on [18, 19]. To study the exponential

decay of the energy associated to system

(1)–(6), we now analyze if the assumptions of

Theorem 1 are satisfied.
� rðAÞ � ib; b 2Rf g ¼: iR

(i) Recalling that 0 2 rðAÞ (see entry “▶Exis-

tence and Uniqueness: Solutions of

Thermoelastodynamics”) and by the contrac-

tion mapping theorem, it follows that for any

b 2R with jbj < A�1
�� ���1, the operator

ibI � A ¼ AðibIA�1 � IÞ

is invertible. Moreover, ðibI � AÞ�1
�� ��

LðHÞ is
a continuous function of b in the interval�
� A�1
�� ���1

LðHÞ; A�1
�� ���1

LðHÞ

	
.

(ii) If sup
jbj< A�1k k�1LðHÞ

ðibI � AÞ�1
�� ��

LðHÞ ¼ M<þ1,

then, by the contraction mapping theorem,

the operator
ibI � A ¼ ðib0I � AÞ
�
�
I þ iðb� b0Þðib0I � AÞ�1

�

with jb0j < A�1

�� ���1 is invertible for

jb� b0j < 1
M . It turns out that by choosing

jb0j as close to A�1
�� ���1

LðHÞ as we can, we

find that
b : jbj < A�1
�� ���1

LðHÞþ
1

M


 �
� rðAÞ;
and ðibI � AÞ�1
�� ��

L Hð Þ is a continuous func-
tion of b in the interval
� A�1
�� ���1

L Hð Þ�
1

M
; A�1
�� ���1

L Hð Þþ
1

M

� 	
(iii) By argument in (ii), it follows that if (10) is

not true, then there exists o 2R with

A�1
�� ���1

LðHÞ� joj < þ1 such that
ib : jbj < jojf g � rðAÞ
and
sup
jbj<joj

ðibI � AÞ�1
�� ��

LðHÞ ¼ þ1

It turns out that there exist a sequence bn 2R
with bn ! o, jbnj < joj and a sequence of com-

plex vector functions yn ¼ ðun; vn; ynÞ 2 DðAÞ
with ynk k2H¼ unxk k2 þ vnk k2 þ ynk k2 ¼ 1 such

that
ðibnI � AÞynk kH ! 0; as n! þ1 ð12Þ

namely,
ibnun � vn ! 0 in H1
0ðOÞ ð13Þ

ibnvn � unxx þ gynx ! 0 in L2ðOÞ ð14Þ

ibnyn � kynxx þ gvnx ! 0 in L2ðOÞ ð15Þ

Taking the real part of the inner product

ðibnI � AÞyn; ynh iH, we obtain
Re ðibnI � AÞyn; ynh iH ¼ k ynxk k2 ! 0 ð16Þ

By (15)–(16) and the Poincaré inequality, it

follows that
kynxx � gvnx ! 0 in L2ðOÞ ð17Þ

Integrating (17) from 0 to x, we find

kynxðxÞ � kynxð0Þ � gvnðxÞ ! 0 in L2ðOÞ
ð18Þ

The dependence on t is omitted. Combining

(18) with (16), we have
kynxð0Þ þ gvnðxÞ ! 0 in L2ðOÞ ð19Þ

From ynk kH ¼ 1 and (13), we obtain that

vnxk k is uniformly bounded with respect to n.
Then, from (17), we find that ynxxk k is uniformly

bounded with respect to n. By the Gagliardo-

Nirenberg inequality (see, e.g., [6, 24]), we have

http://dx.doi.org/10.1007/978-94-007-2739-7_535
http://dx.doi.org/10.1007/978-94-007-2739-7_535
http://dx.doi.org/10.1007/978-94-007-2739-7_535
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jynxð0Þj � ynxk kL1ðOÞ �C1 ynxxk k1=2 ynxk k1=2

þC2 ynxk k! 0
ð20Þ

From (19) and (20), we find
vnðxÞ ! 0 in L2ðOÞ ð21Þ

Taking the inner product of (14) with un in

L2ðOÞ and integrating by parts also yield

unðxÞ ! 0 in L2ðOÞ ð22Þ

Then (16), (21), and (22) contradict

ynk kH ¼ 1, and the proof is complete.

� lim
jbj!1

ðibI � AÞ�1
�� ��

LðHÞ < þ1

We prove the second step by contradiction

argument again. Suppose that (11) is not true.

Then, there exist a sequence bn with

jbnj ! þ1 and a sequence of complex vector

functions yn 2 DðAÞ with ynk kH ¼ 1 such that

(12) holds. Again, we have (16). Dividing (15)

by bn and using the Poincaré inequality, we get
kynxx � gvnx
bn

! 0 in L2ðOÞ ð23Þ

Dividing (13) by bn and using (23), we find
kynxx
bn
� igunx ! 0 in L2ðOÞ ð24Þ

Since unxk k � 1, (24) implies that kynxx
bn

��� ��� is

bounded. Multiplying (24) by unx in L2ðOÞ, it
follows that
kynxx
bn

; unx

� �
� ig unxk k2 ! 0 ð25Þ

An integration by parts gives
kynxx
bn

;unx

� �
¼kynx

bn
unx

����
x¼‘
� kynx

bn
unx

����
x¼0

� kynx
bn

;unxx

� � ð26Þ
Dividing (14) by bn and using (16) and the

choice that vnk k � 1, we obtain that unxx
bn

��� ��� is

bounded. Then, from (16) and the Cauchy-

Schwarz inequality, it follows that
kynx
bn

; unxx

� �
! 0 ð27Þ

By the Gagliardo-Nirenberg inequality (see,

e.g., [6, 24]), we have
ynxffiffiffiffiffiffiffiffi
jbnj

p�����
�����
L1ðOÞ

� C1 ynxk k1=2 ynxxk k1=2ffiffiffiffiffiffiffiffi
jbnj

p þ C2

ynxk kffiffiffiffiffiffiffiffi
jbnj

p ! 0

ð28Þ

and
unxffiffiffiffiffiffiffiffi
jbnj

p�����
�����
L1ðOÞ

� C1 unxk k1=2 unxxk k1=2ffiffiffiffiffiffiffiffi
jbnj

p þ C2

unxk kffiffiffiffiffiffiffiffi
jbnj

p � C

ð29Þ

withC being a positive constant independent of n.
Thus, from (28)–(29), we have

ynxunx
bn

���� ����
L1ðOÞ

�
ynxk kL1ðOÞffiffiffiffiffiffiffiffi
jbnj

p unxk kL1ðOÞffiffiffiffiffiffiffiffi
jbnj

p ! 0

ð30Þ

Combining (30) with (25)–(27), we find
unxk k ! 0 ð31Þ

Then, by (27), we get
vnx
bn
! 0 in L2ðOÞ ð32Þ

Multiplying (12) by vn
bn

in L2ðOÞ, we find

i vnk k2 þ unx;
unx
bn

� �
! 0 ð33Þ

Therefore, by (31)–(33), we find

vn ! 0 in L2ðOÞ ð34Þ
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Thus, (34), (31), and (16) contradict

ynk kH ¼ 1, and the proof is complete.

We can resume the analysis above on the

asymptotic behavior of the solutions of problem

(1)–(6) into the following theorem.

Theorem 2 (Exponential Decay). The semi-
group SðtÞ generated by the operator A defined

in (9) is exponentially stable, namely, there exist

two positive constants M and a such that

SðtÞk k � Me�at 8t > 0
Remark 1. In [1], by using the same above

approach, the exponential decay of the related

energy has been shown for the following different

boundary conditions:
uð0; tÞ ¼ 0; uð‘; tÞ ¼ 0 in ð0; TÞ

yxð0; tÞ ¼ 0; yxð‘; tÞ ¼ 0 in ð0; TÞ

or
uxð0; tÞ � gyð0; tÞ ¼ 0 in ð0; TÞ

uxð‘; tÞ � gyð‘; tÞ ¼ 0 in ð0; TÞ

yð0; tÞ ¼ 0; yð‘; tÞ ¼ 0 in ð0; TÞ

or
uxð0; tÞ � gyð0; tÞ ¼ 0 in ð0; TÞ

uxð‘; tÞ � gyð‘; tÞ ¼ 0 in ð0; TÞ

yxð0; tÞ ¼ 0; yxð‘; tÞ ¼ 0 in ð0; TÞ
Remark 2. In one space dimension, the longtime

behavior of the solutions is dominated by the

dissipation related to the variation of the

temperature, and the associated energy decays

exponentially as time goes to infinity (see, e.g.,

[7, 8, 10, 14, 15, 21, 26–29]). In general, for the

linear higher-dimensional thermoelastic systems,

we cannot expect to prove the exponential stabil-

ity of the associated energy, unless some
assumptions are made on the domain and initial

data (cf., e.g., [16, 17]). For example, for mate-

rials that occupy the whole R3, Dassios and

Grillakis [5] showed that the heat difference and

the curl free part of the displacement vector field

decay uniformly in time like t3=2, while the diver-

gence-free part conserves its energy. In the spe-

cial case of symmetrical solutions, when the

material has a spherical shape, it was shown in

[11, 13, 20, 23] that the total energy decays expo-

nentially. For bounded domain, Chiriţă [3]

proved the asymptotic equipartition of the mean

kinetic and strain energy and that the thermal

difference decays to zero, but no rate of decay

was obtained. In [22], Muñoz Rivera showed that

the curl-free part of the displacement vector field,

as well as the thermal difference, decays exponen-

tially to zero as time goes to infinity, while the

divergence free part conserves its energy. In fact,

there exist oscillations that are not damped to zero.

The list of references is quite long but does not

claim to be exhaustive, cf. [12] for further refer-

ences on different topics.

In particular, the references under further

reading section may be useful for those interested

in learning more about the asymptotic behavior in

time for the thermoelastic systems.
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Synonyms

Coupled thermoelasticity
Overview

Asymptotic expansions technique is a method

used to obtain approximately analytical solution

for the inversion of Laplace transforms valid for

short values of time. This method is based on

expanding the solution of the problem in Laplace
transform domain in the Maclaurin series of

which the first selected terms then using the con-

volution theorem of the Laplace transform to

obtain the inversion transforms for the solution.

The inversion technique used is an analytical

one utilizing asymptotic expansions valid for short

values of time. It was found that [1] generalized

theories of thermoelasticity predict values quite

different from those predicted by the coupled the-

ories only when the time is small. For large values

of time, both the coupled and the generalized the-

ories differ numerically by very small amounts. It

was used successfully by Hetnarski [2, 3] to solve

problems in coupled thermoelasticity.

The advantages of using an analytical method

over a numerical one are evident. The numerical

program to find values of the functions is very

simple, easy to implement, and very fast in

execution.

The main advantage is that this method

enables us to find exact values for the locations

of the wave fronts and wave speeds associated

with the problem. These values are exact, though

the solution itself is approximate [4].

Sherief [5] and Sherief and Anwar [6] used this

method to obtain the fundamental solutions for

generalized thermoelasticity with one relaxation

time for the point and line sources of heat, respec-

tively. Sherief [7] used this method to obtain the

fundamental solution for thermoelasticity with two

relaxation times. The samemethod used by Sherief

et al. to solve some problems in theory of general-

ized thermoelasticity in Cartesian, spherical, and

cylindrical [8, 9] coordinate systems. The follow-

ing section is an application of using this method to

obtain the solution of a one-dimensional problem

in Cartesian coordinate.
Fundamental Equations

We shall consider a homogeneous, isotropic,

thermoelastic solid occupying the region x > 0.

We shall also assume that the initial state of

the medium is quiescent. The outer surface of this

the half space is assumed traction-free and subject

to a constant thermal shock. The equation of

motion in the absence of body forces is given by

http://dx.doi.org/10.1007/978-94-007-2739-7_100103
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r€ui ¼ lþ mð Þuj;ij þ mui;jj � gT;i ð1Þ

where l and m are Lamé’s constants, r is the

density, and T is the absolute temperature.

The constitutive equation is given by
sij ¼ lekkdij þ 2meij � g T� T0ð Þdij ð2Þ

where g is a material constant given by

g ¼ (3l + 2m)at. at is the coefficient of linear

thermal expansion.

The energy equation has the form
kT,ii ¼ rcE _Tþ t0€T
� �

þ gT0 _ekk þ t0€ekkð Þ ð3Þ

where k is the thermal conductivity, t0 is a con-
stant with the dimensions of time that act as

a relaxation time, cE is the specific heat at con-

stant strain, and T0 is the temperature of the

medium in its natural state, assumed to be such

that ðT� T0Þ=T0j j << 1. t0 is the relaxation

time, and eii is given by
eij ¼
1

2
ui;j þ uj;i
� �

ð4Þ

The dot denotes differentiation with respect to

time, while a comma denotes material. Deriva-

tives and the summation notation are used

throughout.
One-Dimensional Problem

For the one-dimensional problem, we assume

displacement components of the form
ux ¼ u x, tð Þ uy ¼ uz ¼ 0 ð5Þ

The cubical dilatation e is given by
e ¼ @u

@x
:

Equations (1), (2), and (3), then, reduce to

r
@2u

@ t2
¼ lþ 2mð Þ @

2u

@ x2
� g

@ T

@ x
ð6Þ
s ¼ lþ 2mð Þ @ u
@ x
� g T� T0ð Þ ð7Þ

k
@2T

@ x2
¼ rcE

@ T

@ t
þ t0

@2 T

@ t2

� 	
þ gT0

@ e

@ t
þ t0

@2 e

@ t2

� 	
ð8Þ

The governing equations can be put into

a more convenient form by using the

nondimensional variables
x0 ¼ c1xx; u0 ¼ c1x u; t0 ¼ c21x t;

t00 ¼ c21x t0; y ¼ g T� T0ð Þ
lþ 2mð Þ

s0 ¼ sij

lþ 2mð Þ

ð9Þ

where
c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2 mÞ=r

p
; x ¼ r cE=k:

Substituting from (9) in (6), (7), and (8) and

dropping the primes for convenience, we

obtain the following set of nondimensional

equations:

@2u

@ t2
¼ @ e

@ x
� @ y
@ x

ð10Þ

s ¼ e� y ð11Þ

@2y
@ x2
¼ @

@ t
þ t0

@2

@ t2

� 	
ð yþ e e Þ ð12Þ

where
e ¼ g2 T0= r cE ðlþ 2mÞ½ �

Applying the operator D ¼ @
@x

� �
on both sides

of (10), we obtain

@2e

@ t2
¼ @2 e

@ x2
� @2 y
@ x2

ð13Þ
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The boundary conditions are assumed to be
A
s x; tð Þjx¼0 ¼ 0; s x; tð Þjx¼1 ¼ 0; for t > 0

ð14Þ

y x; tð Þjx¼0 ¼ y0; y x; tð Þjx¼1 ¼ 0; for t > 0

ð15Þ
Solution in the Laplace Transform
Domain

Introducing the Laplace transform defined by the

formula

�fðpÞ ¼
ð1
0

e�ptfðtÞ dt

to both sides of (11)–(13), we obtain

�s ¼ �e� �y ð16Þ

D2�y ¼ pþ t0 p2
� �

ð �yþ e�e Þ ð17Þ

D2�y ¼ D2 � p2
� �

�e ð18Þ

The transformed boundary conditions (14) and

(15) become
�s x; pð Þjx¼0 ¼ 0, �s x; pð Þjx¼1 ¼ 0 ð19Þ

�y x; pð Þ
��
x¼0 ¼

y0
p
, �y x; pð Þ

��
x¼1 ¼ 0 ð20Þ

Eliminating �e between (17) and (18), we get
D4 � p2 þ 1þ eð Þ pþ t0 p2
� �� �

H2
�
þ p3 1þ t0pð Þ�y ¼ 0 ð21Þ

The above equation can be factorized as
ðH2 � k21ÞðH2 � k22Þ�y ¼ 0 ð22Þ

where k1 and k2 are the roots with positive real

parts of the characteristic equation
k4 � p2 þ 1þ eð Þ pþ t0p2
� �� �

k2

þ p3 1þ t0pð Þ ¼ 0
ð23Þ

Since �y must remain bounded as x!1, the

solution of (22) is given by

�y ¼
X2
i¼1

Ai k
2
i � p2

� �
e�kix ð24Þ

where A1 and A2 are parameters depending on p.

Similarly, eliminating �y between (17) and

(18), we find that �e satisfies an equation identical

to (21). Thus, we obtain the solution compatible

with (18) as
�e ¼
X2
i¼1

Aik
2
i e
�kix ð25Þ

Integrating both sides of (25) with respect to x,

we obtain

�u ¼ �
X2
i¼1

Aikie
�kix ð26Þ

Substituting from (24) and (25) into (16),

we get
�s ¼
X2
i¼1

Aip
2e�kix ð27Þ

From the boundary conditions (19) and (20), it

follows that
A1 ¼ �A2 ¼
y0

p k21 � k22
� � ð28Þ

This completes the solution of the problem in

the Laplace transform domain.
Inversion of the Laplace Transforms

Let us now determine inverse transforms for the

case of small values of time (large values of p).

We note first that the roots k1 and k2 of the

characteristic equation (23) have the form
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k1 ¼


p

2

�
pþ ð1þ eÞð1þ t0pÞ

þ
�
p2 þ 2pðe� 1Þð1þ t0pÞ

þ ð1þ eÞ2ð1þ t0pÞ2

1=2��1=2

ð29Þ

k2 ¼


p

2

�
pþ ð1þ eÞð1þ t0pÞ

�
�
p2 þ 2pðe� 1Þð1þ t0pÞ

þ ð1þ eÞ2ð1þ t0pÞ2

1=2��1=2

ð30Þ

Denoting q ¼ p�1, we have

ki ¼ q�1 fi qð Þ½ �1=2 ð31Þ

where

f1ðqÞ¼


1

2

�
1þð1þeÞðqþt0Þ

þ
�
1þ2ðe�1Þðqþt0Þþð1þeÞ2ðqþt0Þ2


1=2��

f2ðqÞ¼


1

2

�
1þð1þeÞðqþt0Þ

�
�
1þ2ðe�1Þðqþt0Þþð1þeÞ2ðqþt0Þ2


1=2��
Expanding f1(q) and f2(q) in the Maclaurin

series of which the first four terms are retained,

we have

fi qð Þ ¼ fið0Þ þ f0ið0Þqþ
f00ið0Þq2

2
þ f000iið0Þq3

6
;

i ¼ 1; 2

and we have

fi qð Þ ¼ ai0 þ ai1qþ ai2q
2 þ ai3q

3 ð32Þ

where

a10 ¼
1

2
1þ eþ 1ð Þt0 þ A½ �

a11 ¼
1

2
eþ 1þ e� 1ð Þ þ eþ 1ð Þ2t0

A

" #
a12 ¼ �a22 ¼
e
A3

a20

¼ 1

2
1þ eþ 1ð Þt0 � A½ �a21

¼ 1

2
eþ 1� e� 1ð Þ þ eþ 1ð Þ2t0

A

" #
ð33Þ

and A ¼ 1þ 2 e� 1ð Þt0 þ eþ 1ð Þ2t20
h i1=2

Next, we expand the expressions f1ðqÞ½ �1=2 and
f2ðqÞ½ �1=2 in the Maclaurin series, and retaining

the first three terms, we obtain finally the expres-

sions for k1 and k2 in the form
ki ¼ q�1 bi0 þ bi1qþ bi2q
2

� �
, i ¼ 1, 2 ð34Þ

where
bi0 ¼
ffiffiffiffiffiffi
ai0
p

b11 ¼
ai1

2bi0

bi2 ¼
4ai0ai2 � a2i1

8b3i0

ð35Þ

Using similar expansion methods, we get
1

k21 � k22
¼ q2 b0 þ b1qþ b2q

2 þ b3q
3

� �
ð36Þ

where

b0¼
1

A

b1¼�
e�1ð Þþ eþ1ð Þ2t0

h i
A3

b2¼

e2�4eþ1
� �

þ2 e�1ð Þ eþ1ð Þ2t0

þ eþ1ð Þ4t0
A5

2664
3775

b3¼

e�1ð Þ e2�8eþ1
� �

þ3 eþ1ð Þ2 e2�4eþ1
� �

t0

þ3 e�1ð Þ eþ1ð Þ4t20þ eþ1ð Þ6t30
A7

26664
37775

ð37Þ
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Stress Distribution

Let us substitute the expressions (28), (34), and

(36) in (27) to obtain
�s ¼ y0
b0

p
þ b1

p2
þ b2

p3
þ b3

p4

� �
:

exp �b11xð Þ exp �b10xð Þ exp �b12x
p

� 	

� exp �b21xð Þ exp �b20xð Þ exp �b22x

p

� 	�
ð38Þ

which can be written more concisely as
�s¼ y0e�b11x
X3
j¼0

bj

pjþ1
e�b10x exp

�b12x
p

� 	

�y0be�b21x
X3
j¼0

bj

pjþ1
e�b20x exp

�b22x
p

� 	
ð39Þ

In order to invert the Laplace transform, we

shall use the convolution theorem for the Laplace

transforms, namely,

L�1 �f pð Þ : �g pð Þ½ � ¼
ðt
0

L�1 �f pð Þ½ �t¼t�zL�1 �g pð Þ½ �t¼zd z

and the following three formulas from the table of

Laplace transforms [10]:

L�1 pn e�a p½ � ¼ dðnÞ t� að Þ

L�1
e�a=p

pjþ1

� �
¼ t

a

� 
 j
2

Jj 2
ffiffiffiffi
at
p� �

; ReðjÞ>�1; a> 0

L�1
ea=p

pjþ1

� �
¼ t

a

� 
 j
2

Ij 2
ffiffiffiffi
at
p� �

; ReðjÞ>�1; a> 0

Using these formulas, (39) transforms to

�s ¼ y0e�b11x
X3
j¼0

bj

ð1
0

d t� b10x� u½ �

u

b10x

� 	j=2

Jj 2
ffiffiffiffiffiffiffiffiffiffiffiffi
b12x u

p� 

du
� y0be�b21x
X3
j¼0

bj

ð1
0

d t� b20x� u½ �

u

�b20x

� 	j=2

Ij 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b22x u

p� 

du

or
s ¼y0Z t� b10xð Þe�b11x
X3
j¼0

bj
t� b10x

b10x

� 	j=2

Jj 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b12x t� b10xð Þ

p� 

� y0Z t� b20xð Þbe�b21x

X3
j¼0

bj
t� b20x

�b20x

� 	j=2

Ij 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b22x t� b20xð Þ

p� 

or, written in full, we have
s¼ y0 Z t�b10xð Þe�b11x
�

b0J0 z1ð Þþb1
t�b10x

b10x

� 	1=2
"

J1 z1ð Þþb2
t�b10x

b10x

� 	
J2 z1ð Þþb3

t�b10x

b10x

� 	3=2

J3 z1ð Þ
#

�Z t�b20xð Þe�b21x b0I0 z2ð Þþb1
t�b20x

�b20x

� 	1=2
"

I1 z2ð Þþb2
t�b20x

�b20x

� 	
I2 z2ð Þþb3

t�b20x

�b20x

� 	3=2

I3 z2ð Þ
#)
ð40Þ

where
z1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b12x t� b10xð Þ

p
z2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b22x t� b20xð Þ

p ð41Þ

In (40), Z(x) denotes the Heaviside step func-

tion, and Jn and In are Bessel functions of the first

and second kind of order n, respectively.
Temperature Distribution

Substituting from (28), (34), and (36) in (24),

we get



0.6θ

0.8

1.0
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�y ¼ y0
c10

p
þ c11

p2
þ c12

p3
þ c13

p4

� �
e�k1x



� c10

p
þ c11

p2
þ c12

p3
þ c13

p4

� �
e�k2x

� ð42Þ

where
1.00.80.6
X

0.40.20.0
0.0

0.2

0.4

Asymptotic Expansions in Coupled and Generalized
Thermoelasticity, Fig. 1 Temperature distribution

−1.0

−0.8

−0.6

−0.4σ

−0.2

0.2

0.0
c10¼
1

2
1þ eþ1ð Þt0�1

A

� �
c20¼

1

2
�1þ eþ1ð Þt0�1

A

� �
c11¼c21¼

e eþ1ð Þt0þ1ð Þ
A3

� �

c12¼c22¼

�e½ðe�2Þ�þðeþ1Þð2eþ1Þt0

þ eþ1ð Þ3t30
A5

2664
3775

c13¼c23¼

e½ e2�6eþ3
� �

þ eþ1ð Þ 3e2�4e�5
� �

t0

þ eþ1ð Þ3 3eþ1ð Þt20þ eþ1ð Þ5t30
A7

2664
3775

ð43Þ

Now, substituting from (34) and (42), we get
0.0 0.2 0.4 0.6
X

0.8 1.0

Asymptotic Expansions in Coupled and Generalized
Thermoelasticity, Fig. 2 Stress distribution
�y ¼ y0
c10

p
þ c11

p2
þ c12

p3
þ c13

p4

� �
exp �b11xð Þ



exp �b10xð Þ exp �b12x

p

� 	
� c20

p
þ c21

p2
þ c22

p3
þ c23

p4

� �
exp �b21xð Þ exp �b20xð Þ exp �b22x

p

� 	�

Performing the inverse Laplace transform,

using the general inversion formulas used before,

we obtain
y¼y0Z t�b10xð Þe�b11x
X3
j¼0

c1j
t�b10x
b10x

� 	j=2

Jj z1ð Þ

�y0Z t�b20xð Þe�b21x
X3
j¼0

c2j
t�b20x
�b20x

� 	j=2

Ij z2Þð

where z1 and z2 are given in (41).
Numerical Results

The copper material was chosen for purposes

of numerical evaluations. The constants of the

problem were taken as e ¼ 0.0168 and t0 ¼ 0.05.

The computations were carried out for two

values of time, namely, for t ¼ 0.05 and 0.1.

The results are illustrated graphically in Figs. 1

and 2 for the temperature increment y and stress

component s distributions, respectively. The

dashed lines represent the case when t ¼ 0.05,

while the solid lines represent the case when

t ¼ 0.1.

All the functions considered here have

two singularities at the points x ¼ t/b10 and

x ¼ t/b20. The locations of these singularities are

shown in Table 1. At these singularities, the
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Thermoelasticity, Table 1 Location of singularities

t Singularity 1 Singularity 2

0.05 0.043459 0.222650

0.10 0.092914 0.440376
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temperature and stress distributions are discontin-

uous. The first singularity in the temperature is

very small in magnitude and does not show in

the figures.

All the figures show that, as expected, the heat

and elastic effects propagate with finite speeds. It

was found that dimensionless speeds for the two

waves are v1 ¼ 0.999556 and v2 ¼ 4.474124. As

seen in the figures, the effect of the thermal shock

propagates into the medium with a finite speed.

For t ¼ 0.05, for example, the wave front has

reached the location x ¼ 0.22265. For t ¼ 0.1,

the temperature has nonzero value only in the

region x < 0.440376 and is identically zero

everywhere else. This region expands with the

passage of time.

This is different from the cases in both the

uncoupled and the coupled theories of

thermoelasticity [2]. There, the effect of the ther-

mal shock fills the whole space immediately,

signifying an infinite speed of propagation for

thermal waves.
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Italy
Overview

The problem concerning the ▶ partition of

energy in asymptotic form was first approached

in the 1960s (Lax and Phillips [1] and Brodsky

[2]). Afterwards, Goldstein [3, 4], applying the

semigroup theory, proved an equipartition theo-

rem asserting that the difference between kinetic

and potential energies vanishes as the time tends

to infinity. Later, using the Lagrange identity

method, Levine [5] proved in a simplified way

with respect to Goldstein [4] that asymptotic

equipartition occurs between the Cesàro means

of kinetic and potential energies. In the context of

linear elastodynamics, Day [6] established the

asymptotic equipartition between the mean

kinetic and strain energies. Such result has been

extended by Chiriţă [7] to the theory of linear

thermoelasticity.

On the other side, ▶ backward-in-time prob-

lems were initially considered by Serrin [8], who

established uniqueness results for the Navier–

Stokes equations. In such a context, interesting

results have been obtained by Knops and Payne

[9], Galdi and Straughan [10], and Payne and

Straughan [11]. Subsequently, Ames and Payne

[12] introduced the study of the dynamical linear

theory for thermoelasticity backward in time, and

http://dx.doi.org/10.1007/978-94-007-2739-7_255
http://dx.doi.org/10.1007/978-94-007-2739-7_255
http://dx.doi.org/10.1007/978-94-007-2739-7_244
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in this regard, other important results have been

recently achieved by Ciarletta [13], Ciarletta and

Chiriţă [14, 15], Iovane and Passarella [16],

Passarella and Tibullo [17], and Passarella,

Tibullo and Zampoli [18]. In particular, the

asymptotic partition backward-in-time shown in

[15] is here reported, likewise with regard to

the contents but with an additional level of detail

in terms of mathematical description.

In the context of the linear theory of

thermoelasticity backward in time, a final-

boundary value problem is considered such that

the final data are assigned at time t ¼ 0 and the

extrapolation of the solution to the time interval

�1; 0ð Þ is performed. To this end and through

some auxiliary Lagrange-Brun identities (see

[19, 20]), the Cesàro means of various parts of

the total energy are introduced, and the relations

describing the ▶ asymptotic behavior in time of

mean energies are established, provided that

some mild restrictions are imposed on the con-

sidered process.
Formulation of the Backward-in-Time
Problem

A bounded regular region of the physical space

E3 will be denoted by B, and @B will be its

piecewise smooth boundary surface; B is sup-

posed filled by an anisotropic and inhomoge-

neous thermoelastic medium. An orthonormal

system of reference is introduced such that all

vectors and tensors have components denoted by

Latin subscripts (ranging over 1,2,3). Summa-

tion over repeated subscripts and other typical

conventions for differential operations are

implied: a superposed dot or a comma followed

by a subscript will denote partial derivative

with respect to time or to the corresponding

Cartesian coordinate, respectively. Moreover,

regularity questions will be disregarded for all

involved functions, simply understanding

a degree of smoothness sufficient to ensure anal-

ysis to be valid. In the context of the linear

theory of thermoelasticity, a final-boundary

value problem will be considered in the time

interval �1; 0ð �.
Following [21] and neglecting supply terms,

the fundamental system of field equations can be

summarized as follows:

Equation of motion

Sji;j ¼ r€ui in B� �1; 0ð � ð1Þ

Energy equation

T0Mij _eij � qi;i ¼ cy_ in B� �1; 0ð � ð2Þ

Stress–strain-temperature relation

Sij ¼ Cijklekl þMijy in �B� �1; 0ð � ð3Þ

Heat conduction equation
qi ¼ �Kijgj in �B� �1; 0ð � ð4Þ

Strain–displacement relation
eij ¼
1

2
ui;j þ uj;i
� �

in �B� �1; 0ð � ð5Þ

Thermal gradient-temperature relation

gi ¼ y;i in �B� �1; 0ð � ð6Þ

In the above system of equations, the follow-

ing notations have been used: Sij are the compo-

nents of the stress tensor, ui are the components of

the displacement vector, and y is the temperature

variation from the uniform strictly positive refer-

ence temperature T0. Moreover, Mij are the com-

ponents of the stress-temperature tensor, eij
are the components of the strain tensor, qi are
the components of the heat flux vector, Cijkl

are the components of the elasticity tensor, Kij

are the components of the conductivity tensor,

and gi are the components of the thermal

gradient vector. Furthermore, r (mass density)

and c (specific heat) are assumed to be strictly

positive continuous functions of the position x

on �B, and tensors Cijkl,Mij, and Kij are continuous

differentiable functions of the position x on �B and

satisfy the following symmetry relations:

Cijkl ¼ Cklij ¼ Cjikl ð7Þ

http://dx.doi.org/10.1007/978-94-007-2739-7_531
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Mij ¼ Mji ð8Þ

Kij ¼ Kji ð9Þ

The considered final-boundary value problem

P is thus defined by the relations (1)–(6), by the

final conditions
ui x; 0ð Þ ¼ u0i xð Þ _ui x; 0ð Þ ¼ _u0i xð Þ

y x; 0ð Þ ¼ y0 xð Þ with x 2 �B
ð10Þ

and by the homogeneous boundary conditions
ui x; tð Þ ¼ 0 on S1 � �1; 0ð �
si x; tð Þ ¼ 0 on S2 � �1; 0ð �
y x; tð Þ ¼ 0 on S3 � �1; 0ð �
q x; tð Þ ¼ 0 on S4 � �1; 0ð �

ð11Þ

where u0i , _u
0
i , and y0 are assigned functions and
si x; tð Þ ¼ Sji x; tð Þ nj xð Þ
q x; tð Þ ¼ qi x; tð Þ ni xð Þ

ð12Þ

Moreover, ni are the components of the out-

ward unit normal vector to the boundary surface

andS1;S2;S3;S4 are subsurfaces of @B such that

S1[ �S2¼S3[ �S4¼ @B and S1\S2¼S3\S4¼;,
where the closure is relative to @B.

Through an appropriate change of variables

and referring to suitable notations, it is possible
to transform the considered final-boundary value

problem P into an initial-boundary value prob-

lem P*. For each function depending on time

f ðtÞ, it is considered that f 
 t
ð Þ ¼ f ðtÞ, with

t
 ¼ �t. Removing the star signs for the sake

of simplicity, the following set of equations can

be defined:

Sji;j ¼ r€ui in B� 0;1½ Þ ð13Þ

T0Mij _eij þ qi;i ¼ c _y in B� 0;1½ Þ ð14Þ

Sij ¼ Cijklekl þMijy in �B� 0;1½ Þ ð15Þ

qi ¼ �Kijgj in �B� 0;1½ Þ ð16Þ
eij ¼
1

2
ui;j þ uj;i
� �

in �B� 0;1½ Þ ð17Þ

gi ¼ y;i in �B� 0;1½ Þ ð18Þ

To the previous equations, the following

initial conditions have to be added:
ui x; 0ð Þ ¼ u0i xð Þ _ui x; 0ð Þ ¼ _u0i xð Þ
y x; 0ð Þ ¼ y0 xð Þ with x 2 �B

ð19Þ

together with the boundary conditions
ui x; tð Þ ¼ 0 on S1 � 0;1½ Þ
si x; tð Þ ¼ 0 on S2 � 0;1½ Þ
y x; tð Þ ¼ 0 on S3 � 0;1½ Þ
q x; tð Þ ¼ 0 on S4 � 0;1½ Þ

ð20Þ

A solution of the considered initial-boundary

value problem P* will be identified with an

ordered array p ¼ ui; eij; Sij; y; gi; qi
� �

satisfying

(13)–(20) and with the following properties:
a: ui; _ui; €ui; ui;j þ uj;i
� �

; _ui;j þ _uj;i
� �

continuous on �B� 0;1½ Þ
b: eij continuous symmetric

tensor field on �B� 0;1½ Þ
c: Sij; Sji;j continuous on �B� 0;1½ Þ
d: y; y;i; _y continuous on �B� 0;1½ Þ
e: gi continuous on �B� 0;1½ Þ
f : qi; qi;i continuous on �B� 0;1½ Þ
Some Auxiliary Integral Identities

It is now necessary to preliminarily establish

some auxiliary identities useful in order to

investigate the temporal behavior of the

solutions of the considered initial-boundary

value problem P*.

Lemma 1. Assuming that p¼ ui;eij;Sij;y;gi;qi
� �

represents a solution of P*, then it results
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1

2

Z
B

r _uiðtÞ _uiðtÞþCijkleijðtÞeklðtÞþ
c

T0
yðtÞ2

� �
dv

¼ 1

2

Z
B

r _uið0Þ _uið0ÞþCijkleijð0Þeklð0Þþ
c

T0
yð0Þ2

� �
dv

þ
Z t

0

Z
B

1

T0
KijgiðsÞgjðsÞdvds for all t2 0;1½ Þ

ð21Þ
Proof. Equations (7), (8), (13), and (17) imply that

r _uiðsÞ€uiðsÞ ¼ SjiðsÞ _uiðsÞ
� �

;j
� SijðsÞ _eijðsÞ ð22Þ

and then, taking into account (14), (15), and (18),

it can be easily deduced that

@

@s

1

2
r _uiðsÞ _uiðsÞþCijkleijðsÞeklðsÞþ

c

T0
yðsÞ2

� �
 �
¼ SjiðsÞ _uiðsÞþ

1

T0
qjðsÞyðsÞ

� �
;j

� 1

T0
qjðsÞgjðsÞ

ð23Þ

Substituting (16) into (23) and integrating the

result over B� 0; t½ �, with the aid of divergence

theorem and in view of boundary conditions (20),

identity (21) is obtained and the proof is complete.

Lemma 2. Assuming that p¼ ui;eij;Sij;y;gi;qi
� �

represents a solution of P*, then it results

2

Z
B

ruiðtÞ _uiðtÞdv

� 1

T0

Z
B

Kij

Z t

0

giðzÞdz
Z t

0

gjðzÞdzdv

¼ 2

Z t

0

Z
B



r _uiðsÞ _uiðsÞ

� CijkleijðsÞeklðsÞ þ
c

T0
yðsÞ2

� ��
dvds

þ 2

Z
B

ruið0Þ _uið0Þdv

� 2

Z t

0

Z
B

yðsÞ Mijeijð0Þ �
c

T0
yð0Þ

� �
dvds

for all t 2 0;1
��

ð24Þ
Proof. Integrating over the interval 0; t½ � the fol-
lowing identity

@

@s
ruiðsÞ _uiðsÞ½ � ¼ r _uiðsÞ _uiðsÞþruiðsÞ€uiðsÞ ð25Þ

it results

ruiðtÞ _uiðtÞ ¼ ruið0Þ _uið0Þ

þ
Z t

0

r _uiðsÞ _uiðsÞ þ ruiðsÞ€uiðsÞ½ �ds
ð26Þ

Now, considering (7), (8), (13), and (17), it is

possible to write

ruiðsÞ€uiðsÞ ¼ SjiðsÞuiðsÞ
� �

;j
� SijðsÞeijðsÞ ð27Þ

and then, using (15), it can be seen that

ruiðsÞ€uiðsÞ¼ SjiðsÞuiðsÞ
� �

;j
�CijkleijðsÞeklðsÞ

�MijeijðsÞyðsÞ
ð28Þ

On the other side, (14) can be integrated over

0; t½ � in order to obtain

MijeijðtÞ¼�
1

T0

Z t

0

qi;iðsÞdsþ
c

T0
yðtÞþ�0 ð29Þ

where �0 is defined as follows:
�0 ¼ Mijeijð0Þ �
c

T0
yð0Þ ð30Þ

So, taking into account (9), (16), (18), (28),

and (29), one can write

r uiðsÞ€uiðsÞ¼ SjiðsÞuiðsÞþ
1

T0
yðsÞ

Zs
0

qjðzÞdz

24 35
;j

� CijkleijðsÞeklðsÞþ
c

T0
yðsÞ2

� �

��0yðsÞþ
1

T0
KijgiðsÞ

Zs
0

gjðzÞdz

ð31Þ
Substituting (31) into (26) and integrating the

result over B, identity (24) is achieved with the
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help of divergence theorem and boundary condi-

tions (20). The proof can be completed underlining

that, through an integration by parts, it results

1

T0

Z
B

Z t

0

KijgiðsÞ
Zs
0

gjðzÞdz

24 35dsdv
¼ 1

T0

Z
B

Kij

Z t

0

giðzÞdz
Z t

0

gjðzÞdz

24 35dv
� 1

T0

Z
B

Z t

0

KijgjðsÞ
Zs
0

giðzÞdz

24 35dsdv ð32Þ
where symmetry relation (9) has been used.

Lemma 3. Assuming that p¼ ui;eij;Sij;y;gi;qi
� �

represents a solution of P*, then it results
2

Z
B

ruiðtÞ _uiðtÞdv

� 1

T0

Z
B

Kij

Z t

0

giðzÞdz
Z t

0

gjðzÞdzdv

¼
Z
B

r ui 2tð Þ _uið0Þþ _ui 2tð Þuið0Þ½ �dv

þ
Z t

0

Z
B

�0 y tþ sð Þ�y t� sð Þ½ �dvds

for all t2 0;1½ Þ

ð33Þ
Proof. Integrating with respect to the variable s

and over the interval 0; t½ � the following identity
@

@s
r ui tþ sð Þ _ui t� sð Þþ _ui tþ sð Þui t� sð Þ½ �f g

¼ r ui t� sð Þ€ui tþ sð Þ�ui tþ sð Þ€ui t� sð Þ½ �
ð34Þ

one can obtain
2ruiðtÞ _uiðtÞ ¼r ui 2tð Þ _uið0Þþ _ui 2tð Þuið0Þ½ �

þ
Z t

0

r ui tþ sð Þ€ui t� sð Þ½

� ui t� sð Þ€ui tþ sð Þ�ds

ð35Þ
Furthermore, in view of (7), (8), (13), (15), and

(17), it can be deduced that
r ui tþ sð Þ€ui t� sð Þ�ui t� sð Þ€ui tþ sð Þ½ �
¼ Sji t� sð Þui tþ sð Þ�Sji tþ sð Þui t� sð Þ
� �

;j

þ Sij tþ sð Þeij t� sð Þ�Sij t� sð Þeij tþ sð Þ
� � ð36Þ

and then

Sij tþ sð Þeij t� sð Þ�Sij t� sð Þeij tþ sð Þ
¼ y tþ sð ÞMijeij t� sð Þ�y t� sð ÞMijeij tþ sð Þ

ð37Þ

Bymeans of (16), (18), and (29), the following

relation can be derived

Sij tþsð Þeij t�sð Þ�Sij t�sð Þeij tþsð Þ
¼�0 y tþsð Þ�y t�sð Þ½ �

þ 1

T0
y t�sð Þ

Ztþs
0

qiðzÞdz�y tþsð Þ
Zt�s
0

qiðzÞdz

24 358<:
9=;

;i

þ 1

T0
gi t�sð ÞKij

Ztþs
0

gjðzÞdz�gi tþsð ÞKij

Zt�s
0

gjðzÞdz

24 35
ð38Þ

and substituted into (36); the result has to be

placed into (35).

Integrating the obtained relation over B, iden-
tity (33) is proved with the help of divergence

theorem and boundary conditions (20). The proof

is then complete.

Corollary 1. Assuming that p¼ ui;eij;Sij;y;gi;qi
� �

represents a solution of P*, then it results
2

Z t

0

Z
B



r _uiðsÞ _uiðsÞ �

�
CijkleijðsÞeklðsÞ

þ c

T0
yðsÞ2

��
dvds ¼ �2

Z
B

ruið0Þ _uið0Þdv

þ
Z

B

r½ui 2tð Þ _uið0Þ þ _ui 2tð Þuið0Þ� dv

þ
Z t

0

Z
B

�0 2yðsÞ þ y tþ sð Þ½
�y t� sð Þ�dvds for all t 2 0;1½ Þ
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Proof. Remembering (30), it is sufficient to note

that a combination of (24) and (33) implies iden-

tity (39). The proof is then complete.
Asymptotic Partition of Energy

In order to derive the relations that exhibit the

asymptotic partition of energy,M has to be iden-

tified as the set of all thermoelastic processes

p ¼ ui; eij; Sij; y; gi; qi
� �

defined on B� 0;1½ Þ
such that
Z t

0

Z
B

1

T0
KijgiðsÞgjðsÞdvds � M

for all t 2 0;1½ Þ

ð40Þ

and where M is a positive constant. The asymp-

totic partition in concern can be shown provided

that the considered thermoelastic process p is

constrained to lie into the setM.

Let p ¼ ui; eij; Sij; y; gi; qi
� �

be a solution of

the initial-boundary value problem P*, and

let the following Cesàro means be associated

with it:

KCðtÞ ¼
1

2t

Z t

0

Z
B

r _uiðsÞ _uiðsÞdvds ð41Þ

SCðtÞ ¼
1

2t

Z t

0

Z
B

CijkleijðsÞeklðsÞdvds ð42Þ
T CðtÞ ¼
1

2t

Z t

0

Z
B

c

T0
yðsÞ2dvds ð43Þ

DCðtÞ ¼
1

t

Z t

0

Zs
0

Z
B

1

T0
KijgiðzÞgjðzÞdvdzds

ð44Þ

It will be convenient, in order to perform the

incoming analysis, to assume that meas S3 6¼ 0,

also if the procedure that is going to be

shown could also be extended in theory to the

case when meas S3 ¼ 0. It is noticeable that if

meas S1 ¼ 0, then there exists a set of rigid

motions and null temperatures satisfying

(13)–(18) and boundary conditions (20). It is

thus possible to decompose the initial data u0i
and _u0i as follows:
u0i ¼ u
i þ U0
i _u0i ¼ _u
i þ _U0

i ð45Þ

where u
i and _u
i are determined in such a way that
Z
B

rU0
i dv ¼ 0

Z
B

reijkxjU0
kdv ¼ 0Z

B

r _U0
i dv ¼ 0

Z
B

reijkxj _U0
kdv ¼ 0

ð46Þ

where eijk is the alternating symbol.

The following notations are now introduced:
Ĉ
1ðBÞ ¼

n
v ¼ v1; v2; v3ð Þ; vi 2 C1 �Bð Þ : vi ¼ 0 on S1

and if meas S1 ¼ 0; then

Z
B

rvidv ¼
Z
B

reijkxjvkdv ¼ 0

�
Ĉ
1ðBÞ ¼ g 2 C1ðBÞ : g ¼ 0 on S3

� �
Ŵ1ðBÞ is the completion of Ĉ

1ðBÞ by means of �k kW1ðBÞ

Ŵ1ðBÞ is the completion of Ĉ
1ðBÞ by means of �k kW1ðBÞ
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where

C1 �Bð Þ is the set of scalar functions continuous
and continuously differentiable on �B

WmðBÞ represents the familiar Sobolev space

WmðBÞ ¼ WmðBÞ½ �3

It has to be underlined that the following

inequality

1

4

Z
B

Cijkl vi;jþ vj;i
� �

vk;lþ vl;k
� �

dv�m1

Z
B

vividv

ð47Þ

with m1 suitable strictly positive constant and for

all v 2 Ŵ1ðBÞ, holds in view of the fact that Cijkl

is a positive definite tensor (see [22]).

Moreover, taking into account that

meas S3 6¼ 0 and that the conductivity tensor is

positive definite, the following Poincaré inequal-

ity holds in view of boundary conditions (20):Z
B

Kijg;ig;jdv � m2

Z
B

g2dv ð48Þ

with m2 suitable strictly positive constant and for

all g 2 Ŵ1ðBÞ.
If meas S1 ¼ 0, then it will be convenient to

decompose ui; yf g as follows:

ui x; tð Þ ¼ u
i xð Þ þ t _u
i xð Þ þ vi x; tð Þ
y x; tð Þ ¼ g x; tð Þ ð49Þ

where v; gf g 2 Ŵ1ðBÞ � Ŵ1ðBÞ represents

the solution of the initial-boundary value

problem P* in which initial conditions (19) are

substituted by

vi x; 0ð Þ ¼ U0
i xð Þ _vi x; 0ð Þ ¼ _U0

i xð Þ

g x; 0ð Þ ¼ y0 xð Þ with x 2 �B
ð50Þ

Introducing the total energy associated with

the solution p ¼ ui; eij; Sij; y; gi; qi
� �

as

UðtÞ¼ 1

2

Z
B

r _uiðtÞ _uiðtÞþCijkleijðtÞeklðtÞþ
c

T0
yðtÞ2

� �
dv

ð51Þ
then it is possible to derive the asymptotic parti-

tion in terms of the Cesàro means (41)–(44).

Theorem 1. Let p ¼ ui; eij; Sij; y; gi; qi
� �

be

a solution of the initial-boundary value

problem P* lying in the setM defined by (40).

Then, for all choices of the initial data

u0 2W1ðBÞ; _u0 2W0ðBÞ, and y0 2 W0ðBÞ, it

results
lim
t!1
T CðtÞ ¼ 0 ð52Þ

Furthermore, it is possible to distinguish two

cases:

a. If meas S1 6¼ 0, then

lim
t!1
KCðtÞ ¼ lim

t!1
SCðtÞ ð53Þ

lim
t!1
DCðtÞ ¼ 2 lim

t!1
KCðtÞ � Uð0Þ

¼ 2 lim
t!1
SCðtÞ � Uð0Þ

ð54Þ

b. If meas S1 ¼ 0, then

lim
t!1
KCðtÞ ¼ lim

t!1
SCðtÞ þ

1

2

Z
B

r _u
i _u


i dv ð55Þ

lim
t!1
DCðtÞ ¼ 2 lim

t!1
KCðtÞ � Uð0Þ

� 1

2

Z
B

r _u
i _u


i dv ¼ 2 lim

t!1
SCðtÞ

� Uð0Þ þ 1

2

Z
B

r _u
i _u


i dv

ð56Þ
Proof. From Lemma 1 and (51), it follows that
UðtÞ¼Uð0Þþ
Z t

0

Z
B

1

T0
KijgiðsÞgjðsÞdvds

for t2 0;1½ Þ

ð57Þ

Taking into account (41)–(44) and (57), it is

possible to deduce that
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KCðtÞþSCðtÞþT CðtÞ

¼ 1

2t

Z t

0

Z
B

r _uiðsÞ _uiðsÞ½

þCijkleijðsÞeklðsÞþ
c

T0
yðsÞ2

�
dvds

¼1

t

Z t

0

UðsÞds

¼1

t

Z t

0

Uð0Þþ
Zs
0

Z
B

1

T0
KijgiðzÞgjðzÞdvdz

24 35ds
¼Uð0Þþ1

t

Z t

0

Zs
0

Z
B

1

T0
KijgiðzÞgjðzÞdvdzds

¼Uð0ÞþDCðtÞ
for all t2 0;1ð Þ

ð58Þ

From (40), (43), and (48), it can also be shown that

T CðtÞ�
1

2t

1

T0
max �BcðxÞ

� �Z t

0

Z
B

yðsÞ2dvds

� 1

2m2t
max �Bc xð Þ½ �

Z t

0

Z
B

1

T0
KijgiðsÞgjðsÞdvds

� M

2m2t
max �Bc xð Þ½ � for t2 0;1ð Þ

ð59Þ
So if t tends to infinity, the condition (52) is

proved, and (58) trivially implies that

lim
t!1
KCðtÞþ lim

t!1
SCðtÞ¼Uð0Þþ lim

t!1
DCðtÞ ð60Þ

On the other side, taking into account (39) and

(41)–(43), it is possible to write

KCðtÞ�SCðtÞ�T CðtÞ¼�
1

2t

Z
B

ruið0Þ _uið0Þdv

þ 1

4t

Z t

0

Z
B

�0 2yðsÞþy tþ sð Þ�y t� sð Þ½ �dvds

þ 1

4t

Z
B

r ui 2tð Þ _uið0Þþ _ui 2tð Þuið0Þ½ �dv for t2 0;1ð Þ

ð61Þ
From (40), (51), and (57), it can also be con-

sidered that
Z
B

r _uiðsÞ _uiðsÞdv � 2UðsÞ � 2 Uð0Þ þM½ � ð62Þ

and
Z
B

yðsÞ2dv � T0
min �Bc xð Þ

Z
B

c

T0
yðsÞ2dv

� 2T0
min �Bc xð Þ UðsÞ

� 2T0
min �Bc xð Þ Uð0Þ þM½ � ð63Þ

Furthermore, using into (61) the Schwarz’s

inequality and (52), (62), and (63), it is easy to

prove that
lim
t!1
KCðtÞ � lim

t!1
SCðtÞ

¼ lim
t!1

1

4t

Z
B

r _uið0Þui 2tð Þdv ð64Þ
Case A.
ðmeas S1 6¼ 0Þ

Since u 2 Ŵ1ðBÞ, from (40), (47), (51), and

(57), it can be deduced thatZ
B

uiðsÞuiðsÞdv �
2

m1

UðsÞ � 2

m1

Uð0Þ þM½ �

ð65Þ

and using again Schwarz’s inequality, it results
lim
t!1

1

4t

Z
B

r _uið0Þui 2tð Þdv ¼ 0 ð66Þ

So (64) and (66) lead to (53), while (54)

follows from (53) and (60).

Case B.
ðmeas S1 ¼ 0Þ

From (46), (49), and (50), it is possible to

deduce that
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1

4t

Z
B

r _uið0Þui 2tð Þdv ¼
1

4t

Z
B

r _u
i u


i dv

þ 1

4t

Z
B

r _u
i þ _U0
i

� �
vi 2tð Þdvþ

1

2

Z
B

r _u
i _u


i dv

ð67Þ

On the other hand, from (40), (47), (51), and

(57), it is noticeable that
Z
B

viðsÞviðsÞdv �
2

m1

UðsÞ � 2

m1

Uð0Þ þM½ �

ð68Þ

and so (67) leads to
lim
t!1

1

4t

Z
B

r _uið0Þui 2tð Þdv ¼
1

2

Z
B

r _u
i _u


i dv ð69Þ

Then, substituting (69) into (64), (55) is

obtained, while (56) follows from coupling (55)

and (60). The proof is then complete.

The performed analysis has to be concluded

underlining that the restriction (40), used in order

to establish Theorem 1, exists in connection

with uniqueness and ▶ continuous dependence

results obtained by Ames and Payne [12] and

Ciarletta [13].
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Overview

Ultrashort laser pulses are cataloged for those

whose durations are in the range of femtoseconds

(1 fs ¼ 10�15 s) to a few picoseconds

(1 ps ¼ 10�12 s), depending on the interacted

materials. Comparing with conventional laser

pulses that have a duration of nanoseconds

(1 ns ¼ 10�9 s) or longer, these laser pulses

have two exceptional features: (1) ultrashort

pulse duration and (2) extremely high laser

power, leading to a wide spectrum of application

in the fields of chemistry, physics, biology, med-

icine, and engineering. For example, ultrashort-

pulsed lasers have been used to observe chemical

bond formation and breaking [1, 2], generate

high-density plasma [3], image and manipulate

biological systems [4], deliver foreign gene into

cells in vitro [5], synthesize metal and semicon-

ductor nanoparticles [6], etc.

Over the past two decades, many efforts

have been stimulated to explore micro-/

nanoprocessing of solid thin films by ultrashort-

pulsed lasers. The ultrafast laser processing of

metal films can generally be categorized into

two main regimes: nanostructure fabrication and

ultrahigh-precision machining. The former is to

change film surface topography and controllably

generate nanostructures, such as nanojets and

nanobumps [7, 8], on a film surface; the latter is

to machine metal films through material removal

with minimal burr formation and collateral dam-

age [9, 10].
Under the ultrafast laser irradiation, temper-

ature in a metal target can easily shoot up to

several thousand degrees and the strain rate up

to 1010 s�1. In addition, the interacted material

could exhibit a very different thermomechanical

behavior from those caused by conventional

pulse lasers. The behaviors of metal thin films

induced by ultrafast laser heating can be simu-

lated using an integrated numerical method cou-

pling the molecular dynamics (MD) for lattice

and the energy transport model for electron gas

(continuum). This atomic-level hybrid approach

vitally does not require a priori knowledge

of lattice thermomechanical properties at

extremely high temperature and strain-rate con-

ditions, which, however, are barely available

thus far.
Theory

When a metal target is irradiated by an ultrashort

laser pulse, the incident laser energy is first

absorbed by those electrons located within the

skin (optical penetration) depth. During this

short period of time, temperature (Te) of the

excited electrons can be very high due to

the extremely high laser energy density and the

small electron heat capacity, while the lattice

temperature (Tl) basically remains unchanged.

Then, a portion of the electron thermal energy

diffuses, through electrons, into the deeper

region, while the other part of the electron ther-

mal energy transfers to the neighboring lattice via

collision between electrons and phonons. Even-

tually, a thermal equilibrium state (i.e., Te ¼ Tl)
will be established, and the subsequent thermal

transport process can then be characterized by the

classical heat conduction theory. The above two-

step thermal process of ultrafast laser heating can

be described by a two-temperature model (TTM)

(e.g., [11])
Ce
@Te

@t
¼ H KeHTeð Þ � G Te � Tlð Þ þ S ð1Þ

Cl
@Tl

@t
¼ H KlHTlð Þ þ G Te � Tlð Þ ð2Þ
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where C is the heat capacity, K is the thermal

conductivity, G is the electron-phonon coupling

factor, S is the volumetric laser heat source, t
represents time, and the subscripts e and l denote

the quantities associated with the electron and

lattice, respectively. The term G(Te�Tl ) in the

two equations is the thermal energy exchanged

between the electrons and lattice. For a slow laser

heating, the thermalization time for electrons and

lattice to reach equilibrium is much shorter than

the lasing time, and thus, the equilibrium temper-

ature (Te ¼ Tl) is assumed for the entire heating

process. In that case, the above two-temperature

model can be reduced, by combining (1) and (2)

with Te¼ Tl, to the classical Fourier heat conduc-
tion equation.

Since thermal expansion in lattice occurs in

such extremely short time (� ps) when the lattice

is heated up, the rate of change of the lattice

dilation could be on the order of magnitude

same as that of the lattice temperature. For that

reason, the exchange of the thermal and mechan-

ical energy in the lattice should be accommo-

dated so that the temperature response can be

better described. Thus, (2) is modified to
Cl
@Tl

@t
¼ H KlHTlð Þ þ G Te � Tlð Þ

� ð3lþ 2mÞaTl _ekk
ð3Þ

where l is the Lamb constant, m is the shear

modulus, a is the thermal expansion coefficient,

and _ekk is the time rate of change of the lattice

dilation with ekk denoting the sum of the three

normal strains exx, eyy, and ezz.
Because the dilation (_ekk) of lattice is involved

in (3), the momentum equation of lattice should

also be considered for solving the displacement

field for the strains. For a metal material

subjected to ultrashort-pulsed laser heating, the

momentum equation of lattice is written in the

following form [12]:
r€uz ¼ s�z;� þ
2

3
CeTeð Þ;z ð4Þ

where r is mass density of lattice, €uz are acceler-
ation components (z ¼ x, y, z), sZz are stress
components (Z ¼ x, y, z), and the subindices

after “,” denote the first spatial derivative with

respect to the corresponding coordinate, respec-

tively. Deviating from the classical momentum

equation, the second term on the right-hand side

of (4) is the so-called hot-electron blast force [13]

that results from the electric kinetic pressure [12].

This hot-electron blast force could be quite sig-

nificant during the early nonequilibrium stage,

when both the electron temperature and its spatial

gradient are very high. The stresses in (4) can be

expressed in terms of strains and then displace-

ments. Hence, the above ultrafast thermome-

chanical model, including five equations in (1),

(3), and (4), can be solved for the five unknowns

Te, Tl, ux, uy, and uz and subsequently the strains

and stresses.

The main challenges in solving the contin-

uum-based ultrafast thermomechanical model

include the following: (1) the temperature-

dependent thermal and mechanical properties of

lattice, such as thermal conductivity, heat capac-

ity, thermal expansion coefficients, and moduli,

under the extremely high temperature and strain-

rate conditions are barely available, and (2) the

progressive lattice deformation, e.g., crack for-

mation and propagation, is difficult to be accu-

rately described. The latter usually is

compounded by the former. To overcome these

predicaments, an MD model for the lattice can be

introduced to replace (3) and (4) since it has been

shown that MD is an efficient tool for modeling

ultrafast thermomechanical behavior of metal

materials [14–16]. In the MD simulation, the

lattice properties are characterized implicitly

through the interatomic potential. The lattice

temperature can be evaluated with the simulated

velocities of atoms, and the deformation can be

tracked and examined by the atom’s trajectory.

The classical MD equations of motion for the

lattice are given as follows [17]:

mi
d2ri
dt2
¼ �

XN
j¼1;j6¼i

@UðrijÞ
@rij

ð5Þ

in which mi and ri are the mass and position

vector of atom i, respectively; U(rij) is the

interatomic potential between atoms i and j
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separated by a distance rij; N is the total number

of atoms in the MD system; and the subscripts i

and j run over all the atoms in the system. To take

account of the thermal energy exchange between

the electron gas and atoms in the MD model, an

alternative form of the term G(Tl�Te ) in (2) is

inserted into the MD equations [18],
mi
d2ri
dt2
¼ �

XN
j¼1;j 6¼i

@UðrijÞ
@rij

� xmiv
T
i ð6Þ

x ¼
1
n Vc

Pn
m¼1

G Tl � Tm
e

� �
PNV

k¼1
mk vTk
� �2 ð7Þ

The new symbols in (6) and (7) are explained

below. Equation 1 governs the electron tempera-

ture and can be solved numerically using an

explicit finite difference (FD) method. To couple

with the FD method, the entire MD model is

discretized into a collection of volumes

corresponding to the FD cells. The maximum

time step allowed for integrating the finite differ-

ence equations is determined by the von Neu-

mann stability criterion and typically is much

smaller than the time step employed in the inte-

gration of the MD equations of motion. There-

fore, the time step for the MD simulation should

be chosen to be multiple times that for the FD

simulation. The symbols in (6) and (7) thus are

defined as follows: Vc is the volume of the FD cell

in which atom i exists, vTk is the velocity of an

atom k after subtracting out the center-of-mass

velocity of the atom group in Vc, n is the number

of the total FD time steps in a single MD

time step, Tm
e is the electron temperature obtained

at the m-th FD time step, and NV is the number

of atoms in the volume of Vc. Under this

manner, the lattice temperature of a FD cell is

computed by
Tl ¼

PNV

k¼1
mk vTk
� �2

3NVkB
ð8Þ

with kB being the Boltzmann constant.
Similar to the damping force converted for the

thermal energy exchange between electrons and

lattice, the hot-electron blast force, i.e., the last

term in (4), needs to be modified so that it can be

applied to the MD equations. By recalling the

discretion of the FD cells, the hot-electron blast

force Bi exerting on an atom i in the volume Vc

can be computed by [14]
Bi ¼
2=ðCeTeÞi

3

Vc

NV
ð9Þ

leading the MD equation of motion (6) to
mi
d2ri
dt2
¼ �

XN
j¼1;j 6¼i

@UðrijÞ
@rij

� xmiv
T
i þ Bi ð10Þ

The embedded atom method (EAM) potential

proposed by Daw and Baskes [19] can be

employed for the interatomic interaction between

atoms. For atom i, the EAM potential Ui is

expressed as

Ui ¼ Fi yið Þ þ
1

2

XN
j¼1;j 6¼i

fij rij
� �

ð11Þ

yi ¼
XN

j¼1;j 6¼i
gjðrijÞ ð12Þ

in which gj is the electron density at embedded

atom i contributed from atom j with a distance rij
between the two centers, yi is the electron density
at the atom i contributed from all other atoms, Fi

is the energy function of atom i in an electron

density yi, and fij is a short-range pair potential

function. The embedded function Fi is universal

and does not depend on the source of the back-

ground electron density, the pair interaction term

fij is purely repulsive, and the electron density gj
can be computed from the Hartree-Fock wave

functions [19].

The continuum-based energy and momentum

equations for lattice, (3) and (4), have been

replaced by the MD equations of motion (10)

with the additions of thermal energy exchange

between electrons and lattice and the hot-electron
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blast force. The temperature field, locations, and

stresses of lattice can be computed from the MD

results. On the other hand, the following temper-

ature-dependent material parameters Ce, Ke, and

G are employed to solve the electron temperature

from the energy balance equation (1) [12, 20, 21]:
Ke ¼ wWe
W2e þ 0:16
� �5 4=

W2e þ 0:44
� �

W2e þ 0:092
� �1 2=

W2e þ k#l

� � ð13Þ

G ¼ GRT
Ae

Bl
Te þ Tlð Þ þ 1

� �
ð14Þ

Ce ¼

Ce0Te; Te <
TF

p2

2Ce0Te

3
þ C0e

3
; TF

p2 � Te <
3TF

p2

NdkB þ C0e
3
; 3TF

p2 � Te < TF

3NdkB
2

; Te � TF

8>>>><>>>>: ð15Þ

with

C0e ¼
3NdkB

2
� Ce0TF

p2

TF � TF

p2
Te �

TF

p2

� 	
þ Ce0TF

p2
ð16Þ

In the above (13)–(16), w and k are material

parameters, We ¼ Te TF= and Wl ¼ Tl TF= with TF
denoting the Fermi temperature, GRT is the

electron-phonon coupling factor at room temper-

ature, Ae and Bl are material constants in the

characterization of electron relaxation time, Ceo

is the slope of Ce in the first range of Te < TF /p
2,

and Nd is the number density of atoms.
Numerical Analysis

Consider that a gold film is irradiated by a flat-

top, ultrashort laser pulse whose spot size is much

larger than the film thickness. The time period of

interest for the numerical simulation here is sig-

nificantly shorter than that for the outgoing lateral

stress wave to reflect back to the heated spot, due

to the assumption that the in-plane dimensions

are much larger than the thickness. Under these

conditions, the thermomechanical problem can

be treated as a case of one-dimensional (1-D)

thermal transport and uniaxial strain in the film
thickness direction. Let the z axis be along the

film thickness direction. The 1-D form of (1)

becomes

CeðTeÞ
@Te

@t
¼ @

@z

�
�
Ke

@Te

@z

	
� G Te � Tlð Þ þ S

ð17Þ

For a Gaussian beam with a FWHM (full

width at half maximum) duration tp, the 1-D

form of the laser heat source S in (17) is

described as
S z; tð Þ ¼ 0:94
Jabs
tpds

� exp � z

ds
� 2:77

t� 2tp
tp

� 	2
" #

ð18Þ

where Jabs is the absorbed laser fluence and ds is

the optical penetration depth. Equation 18 indi-

cates that the laser pulse is impinged on the front

film surface (z¼ 0). The lasing starts at t¼ 0 with

the peak power occurring at t ¼ 2tp. The laser is
assumed to be off at t ¼ 4tp since the laser power

after then is very small and can be neglected.

The MD equations of motion are solved using

the Velocity Verlet algorithm. At time t + Dt, the
acceleration ai, velocity vi, and position vector ri
of each atom i are updated by [15],
ri tþ Dtð Þ ¼ riðtÞ þ viðtÞDtþ
1

2
Dtð Þ2aiðtÞ ð19Þ

vi tþ 1

2
Dt

� 	
¼ viðtÞ þ

1

2
aiðtÞDt ð20Þ

aiðtþ DtÞ ¼
�
PN

j¼1;j 6¼i

@UðrijÞ
@rij

���
tþt
� xmiv

T
i þ Bi

mi

ð21Þ

vi tþ Dtð Þ ¼ vi tþ 1

2
Dt

� 	
þ 1

2
ai tþ Dtð ÞDt

ð22Þ
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chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Table 1 Thermophysical

parameters of gold

Parameter Value

TF (K) 64,000 [12]

Ce0 (Jm
�3 K�2) 71 [12]

Nd (m
�3) 5.9 � 1028 [14]

GRT (Wm�3 K�1) 2.1 � 1016 [12]

Ae (K
�2 s�1) 1.2 � 107 [20]

Bl (K
�1 s�1) 1.23 � 1011 [20]

ds (nm) 15.3 [12]

w (Wm�1 K�1) 353 [12]

k 0.16 [12]

Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 1 Time histories of

lattice and electron temperatures at the irradiated surface

of the 100-nm film heated by the 150-fs laser pulse of

Jabs ¼ 175 J/m2

Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 2 Hot-electron blast

force profiles along the thickness of the 100-nm film
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The virial stress in atomistic simulations and

its potential part have been demonstrated equiv-

alent to the continuum stresses in either the

Eulerian or Lagrangian configuration [22]. The

thermomechanical stresses in the films can be

computed by the following equation [23]:

s�z ¼ �
1

V

XNc

i¼1

viZviz
mi
þ 1

2

XNi

j¼1
rijZf ijz

 !
ð23Þ

where viZ and viz are the momentums of atom i in
the Z and z directions, respectively; rijZ is the

component of the position vector rij between

atoms i and j in the Z direction; f ijz is the compo-

nent of the force vector on atom i due to atom j

in the z direction; V is the current volume

corresponding to the FD cell; Nc is the total num-

ber of atoms in the volume V; and Ni is the

number of neighbor atoms to the atom i.

The MD system for the thin films

are created out of a bulk fcc gold crystal with

the [1 0 0], [0 1 0], and [0 0 1] crystallographic

directions along the x, y, and z axes, respectively.
The film surfaces normal to the z axis are free,

and periodic boundaries are applied in the x and y

direction. The two initial MD models have the

same length of 4.08 nm in each of the x and y

directions and different lengths of 99.96 nm and

499.8 nm in the z direction.
In the following numerical demonstration, two

thin gold films of thickness 100 nm and 500 nm

irradiated by a laser pulse of tp ¼ 150 fs

are considered. The electron temperature is
calculated from (1) with the adiabatic boundary

conditions using the explicit FD method. The

total numbers of cells in the FD model are 100

for the 100-nm film and 500 for the 500-nm film.

The time step is 2.0 fs for theMD simulations and

0.005 fs for the FD calculations, giving n ¼ 400

in (7). Before the laser beam is applied, the MD

systems are equilibrated at 298 K and zero stress

in both the x and y directions. The thermophysical

parameters of gold is listed in Table 1.
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by Ultrashort Laser Pulses, Fig. 3 Distributions of

the electron temperature along the thickness of the

100-nm film

Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 4 Distributions of
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Results

The simulated thermomechanical responses

shown in Figs. 1–4 are for the 100-nm gold film

heated by the laser pulse of Jabs ¼ 175 J/m2.

Figure 1 shows the time histories of electron

and lattice temperatures at the irradiated surface.

It is obvious that the highly nonequilibrium ther-

mal state exists in the early stage of the heating

process as the significant difference between

electron and lattice temperatures illustrated in

Fig. 1. The maximum electron temperature is

14,494 K at t ¼ 0.41 ps, while the lattice temper-

ature only raises 49 K to 347 K at that time

instant. The thermal equilibrium is established

at about t ¼ 28 ps when the lattice and electron

temperatures becomes identical, about 1,150 K.

Figure 2 plots the hot-electron blast force profiles
normal stress szz along the thickness of the 100-nm film:

(a) t¼ 2, 6, 10, and 16 ps, (b) t¼ 18, 22, 28, and 40 ps, (c)

t ¼ 56, 62, 66, and 70 ps



Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 5 Distributions of

normal stress szz along the thickness of the 500-nm film

heated by the laser pulse of Jabs ¼ 175 J/m2: (a) t¼ 2, 4, 6,

and 10 ps, (b) t¼ 20, 60, 100, and 140 ps, (c) t¼ 174, 200,

240, 290, and 346 ps
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along the thickness direction (z axis) at different
time instants, where the normalized values of

z ¼ 0 and 1 denote the irradiated and rear film

surface, respectively. The hot-electron blast force

reaches its maximum value of 2.74� 1017 Nm�3

at about t ¼ 0.4 ps and the normalized location

z¼ 0.095 and then quickly drops down due to the

fast decrease in the electron temperature and its

gradient, as shown in Fig. 3. Those kicks in Fig. 2

are because the electron capacity is assumed to be

a piecewise linear function of electron tempera-

ture (15).

Figure 4 presents the distributions of normal

stress szz along the z axis at various times. Ini-

tially, a compressive stress is generated in the

front film side.While the peak of the compressive

stress continues increasing, it also moves toward

to the deeper part of the film. The maximum

compressive stress is about 5 GPa occurring at
t ¼ 16 ps and the normalized location z ¼ 0.49.

Then, the stress wave becomes weaker and

weaker and, further, converts into tension. At

t ¼ 40 ps, the peak of the tensile stress is

4.75 GPa, which is much larger than the ultimate

strength of gold at room temperature (1.24 GPa).

Afterward the stress oscillates like a standing

wave as the film vibrates like a free-free spring.

The distributions of szz in the thicker film of

500 nm induced by the same laser pulse of 150 fs

and Jabs ¼ 175 J/m2 are shown in Fig. 5. Like-

wise, a compressive stress wave is first generated

in the region near the irradiated surface. How-

ever, it can be seen in the figure that a tensile

stress starts to emerge near the front film surface,

instead of the middle film depth in the 100-nm

film case. A twofold stress wave, comprising

compression and tension, is consequently formed

and propagates to the rear surface. As the twofold



Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 6 Results of the laser

heating for the 500-nm thick film with Jabs¼ 520 J/m2: (a)

distributions of szz along the film thickness (the stress

drop is marked by red arrow), (b) snapshots for atoms in

the region of normalized z ¼ 0.0–0.16 at t ¼ 30 ps

Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 7 Results of the laser

heating for the 500-nm thick filmwith Jabs¼ 900 J/m2: (a)

distributions of szz along the film thickness, (b) lattice
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wave approaches the back surface, the leading

compressive stress wave reverses to tension

by the free surface reflection, and thereby

transforming the twofold wave into a tensile

stress wave. The superposition of the reflected

and incoming tensile stress waves eventually

results in the maximum tensile stress in the rear

side, with the magnitude close to that of the

maximum compressive stress initially generated

in the front film side. Subsequently, the twofold

wave appears again and travels back to the front

film surface with a leading tensile wave instead.

In this thicker film, the generation and propaga-

tion of the stress wave seems to be more conceiv-

able though the wave is in a twofold form.

Figures 6 and 7 illustrate the results for the

500-nm film heated by the two laser pulses

at higher absorbed fluences Jabs ¼ 520 and

900 J/m2, respectively. It is observed in Fig. 6a

that a drop of the tensile stress szz suddenly takes

place at about t ¼ 54 ps in the region of normal-

ized z¼ 0.1. According to the snapshots shown in
temperature distributions along the film thickness, (c)

snapshots for atoms in the region of normalized

z ¼ 0.824–0.944 at t ¼ 180 ps, and (d) snapshots for

atoms in the region of normalized z ¼ 0.078–0.22 at

t ¼ 60 ps
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Fig. 6b, the stress drop can be attributed to the

crack formation there. For the case of even higher

absorbed fluence 900 J/m2, as shown in Fig. 7a,

the tensile stress abruptly drops also at about

t ¼ 200 ps in the region of normalized z ¼ 0.88

and is accompanied by a sharp spike temperature.

Those rapid changes are attributed to the spall-

ation in the rear side of the film as found in

Fig. 7c. By comparing with the case of

Jabs ¼ 520 J/m2, this higher-fluence laser pulse

removes much more material in the form of solid

and nonsolid phases, as shown in Fig. 7d.
Future Research Direction

Ultrafast lasers have been demonstrated to be

a promising and powerful tool for micro-/

nanoprocessing of metal thin films. This work

shows the simulated ultrafast thermomechanical

response for gold films induced by ultrashort-

pulsed lasers using an integrated atomic-level

model. Future research should focus on multi-

scale modeling for the interactions with matter

in three-dimensional space with affordable com-

putational cost so that laser parameters could be

optimized for enhancing the micro-/nanomaterial

processing.
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Overview

In 1967, the theory of generalized

thermoelasticity with one relaxation time was

introduced by Lord and Shulman [1]. The moti-

vation behind the introduction of this theory was

to deal with the apparent paradox of infinite

speeds of propagation predicted by the coupled

theory of thermoelasticity introduced by Biot [2]

in 1956. The generalized equation of heat con-

duction is hyperbolic and hence automatically

ensures finite speeds of wave propagation. This

theory was extended [3] by Dhaliwal and Sherief

to anisotropic media. Among the contributions to

this theory are the proofs of uniqueness theorems

by Ignaczak [4] and by Sherief [5]. The state

space formulation for one-dimensional problems

was completed by Anwar and Sherief in [6] and

by Sherief in [7]. The state space formulation

for two-dimensional problems was done by

Sherief and Anwar in [8]. The boundary element

formulation was conducted by Anwar and

Sherief in [9]. Sherief and Anwar also solved

a two-dimensional problem of a thick plate with

a moving heat source on its boundary and a

two-dimensional problem for an infinite cylinder

in [10] and [11], respectively. Sherief and Hamza

solved a two-dimensional problem of a thick

plate under axisymmetric temperature distribu-

tion and discussed wave propagation for this

theory in [12].

The solutions of thermoelastic problems for

spherical regions are not as numerous as those

for Cartesian and cylindrical ones. Most of the

treated problems are either one-dimensional

spherically symmetric ones or axisymmetric

two-dimensional problems under simplifying

assumptions. Sternberg and Chakravorty [13]
solved a thermal shock uncoupled one-

dimensional problem. Hata solved a coupled

one-dimensional thermal shock problem for a

hollow sphere caused by rapid uniform heating

in [14]. The general solution for spherically sym-

metric problems with a heat source in generalized

thermoelasticity valid for short times was

obtained by Sherief in [15]. Axially symmetric

steady-state two-dimensional problems in spher-

ical regions were solved byMcDowell and Stern-

berg in [16] and by lgnaczak in [17]. Ignaaak [18]

and Piechocki [19] solved dynamic problems in

thermoelasticity by assuming that the time vari-

able is harmonic, which tends to obscure the

transient nature of the problems considered.

Tanigawa and Kosako [20] solved a transient

coupled axially symmetric thermal stress prob-

lem for an infinite mediumwith a spherical cavity

by neglecting inertia terms in their solution.

Tanigawa and Takeuti [21] obtained the three-

dimensional solution to coupled thermoelastic

problems in spherical regions again by neglecting

inertia terms. Sherief andHamza [22] obtained the

solution in spherical regions for two-dimensional

thermoelastic problems under axisymmetric

temperature distributions within the context of

the theory of generalized thermoelasticity with

one relaxation time. Sherief and Megahed [23]

did the same for thermoelasticity with two

relaxation times. Sherief and Saleh [24] obtained

the exact solution for a one-dimensional problem

for a spherical cavity.
Formulation of the Problem

We consider a homogeneous isotropic

thermoelastic solid under axisymmetric condi-

tions. We shall take the axis of symmetry to be

the z-axis and the origin of the system of coordi-

nates at the center of the sphere. By denoting the

spherical polar coordinates as r; #; ’ð Þ and the

time variable by t, we can take the axisymmetric

temperature distribution throughout the solid to

be T r; #; ’ð Þ. The solution of the problem

requires the determination of the displacement

components u and v in the r – and # – directions,

respectively, together with the nonvanishing
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stress components sij in the region under

consideration.

We shall use the following nondimensional

variables:

r
0 ¼ c1 � r; a

0 ¼ c1 � a; u0 ¼ c1 � u; v
0 ¼ c1 � v;

t0 ¼ c21 � t; t
0

0 ¼ c21 � t0;s
0

ij ¼
sij
m
; y ¼ g T � T0ð Þ

lþ 2m

where t0 is the relaxation time, a is a typical

length, and To is a reference temperature chosen

such that
T�T0ð Þ
T0

��� ��� << 1, c1 is the velocity of prop-

agation of longitudinal isothermal waves given

by c1 ¼
ffiffiffiffiffiffiffiffi
lþ2m
r

q
, where l and m are Lame’s con-

stants and r is the density � is a constant given by

� ¼ rCE=k, k being the thermal conductivity and

CE is the specific heat at constant strain. g is

a material constant given by g ¼ ð3lþ 2mÞ at
where at is the coefficient of linear thermal

expansion.

The strain tensor components are given

by [25]

err ¼
@u

@r
; e## ¼

1

r

@v

@#
þ u

r
; e’’ ¼

v

r
cot#þ u

r

er# ¼
1

2

@v

@#
þ 1

r

@u

@ #
� v


 �� �
; er’ ¼ e#’ ¼ 0

The cubical dilatation thus has the form
e ¼ @u

@r
þ 2u

r
þ 1

r sin#

@ðv sin#Þ
@#

ð1Þ

The constitutive equations have the form
srr ¼ 2
@u

@r
þ b2 � 2
� �

e� b2y ð2aÞ

s## ¼
2

r

@v

@#
þ 2u

r
þ b2 � 2
� �

e� b2y ð2bÞ

s’’ ¼
2 cot#

r
vþ 2u

r
þ b2 � 2
� �

e� b2y ð2cÞ

sr# ¼
@v

@#
þ 1

r

@u

@#
� v

r
ð2dÞ
sr’ ¼ s#’ ¼ 0 ð2eÞ

where b2 ¼ ðlþ 2mÞ=m:
The equations of motion, after applying the

Laplace transform and using the homogeneous

initial conditions, can be written as [22]
b2
@

@r
e� y
� �

þ H2u� 1

r2
@

@r
r2

@u

@r

� �
� 1

r2 sin#

@2

@r@#
rv sin#½ � ¼ b2s2u

ð3aÞ

1

r

@

@#
b2ðe� yÞ � @u

@r

� �
þ 1

r2
@

@r
r2

@v

@r

� �
¼ b2s2v

ð3bÞ

The heat equation in Laplace transform

domain has the form
H2y ¼ s 1þ t0 sð Þ yþ e e
� �

ð4aÞ

where e ¼ g2T0=½rCEðlþ 2mÞ� and H2 is

Laplace’s operator given by
H2 � 1

r2
@

@r
r2

@

@r

� �
þ 1

r2 sin#

@

@#
sin#

@

@#

� �
Equations (3a) and (3b) can be combined

to give

ðH2 � s2Þ �e ¼ H2�y ð4bÞ

Eliminating �e between (4a) and (4b), we get
H4� s2þ 1þ eð Þ sþ t0s2
� �� �

H2þ s3 1þ t0 sð Þ
� �

�y¼ 0

This can be factorized as
H2 � k21
� �

H2 � k22
� �

�y ¼ 0 ð5Þ

where k2i ; i ¼ 1; 2 are the roots with positive real

parts of the characteristic equation

k4 � s2 þ 1þ eð Þ sþ t0s2
� �� �

k2

þ s3 1þ t0 sð Þ ¼ 0
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The solution of (5) can be written in the form

�y ¼ �y1 þ �y2

where �yi; i ¼ 1; 2 is the solution of the equation

H2 � k2i
� �

�yi ¼ 0; i ¼ 1; 2

Solving the above equation [22], we obtain
�y ¼ 1ffiffi
r
p

X1
n¼0

PnðmÞ
X2
i¼1

k2i � s2
� �

Ani Inþ1=2ðkirÞ þ Bni Knþ1=2ðkirÞ
� � ð6aÞ

Similarly, eliminating �y between (4a) and

(4b), we get

H2 � k21
� �

H2 � k22
� �

�e ¼ 0

The solution of this equation compatible with

(4b) and (6a) is given by
�e ¼ 1ffiffi
r
p

X1
n¼0

PnðmÞ
X2
i¼1

k2i

Ani Inþ1=2ðkirÞ þ Bni Knþ1=2ðkirÞ
� � ð6bÞ

In the above equations, In and Kn denote

the modified Bessel functions of the first and

second kinds of order n, respectively. Pn is the

Legendre polynomial of degree n of argument

m ¼ cos#, and Ani,Bni are parameters depending

on s only to be determined from the boundary

conditions.

Using (1) to eliminate the last term in the

left-hand side of (3a),we obtain the following

equation satisfied by the displacement compo-

nent u:
H2uþ 2

r

@ �u

@ r
þ 2 �u

r2
� b2s2u

¼ ð1� b2Þ @ e
@r
þ 2 �e

r
þ b2

@ y
@r

ð7aÞ

Substituting for �e and �y from (6a, b) into (7a),

we get
H2uþ 2

r

@u

@r
þ 2 u

r2
� b2s2u

¼ c

r3=2

X1
n¼0

Pn mð Þ �f n1ðrÞ þ �f n2ðrÞ½ � ð7bÞ

where
�f n1ðrÞ ¼
X2
i¼1

Ani k2i � b2s2
� �

ki r Inþ3=2 ki rð Þ
�

þ nþ 2ð Þk2i � n b2s2
� �

Inþ1=2 ki rð Þg

�f n2ðrÞ ¼
X2
i¼1

Bni � k2i � b2s2
� �

ki r Knþ3=2 ki rð Þ
�

þ nþ 2ð Þk2i � n b2s2
� �

Knþ1=2 ki rð Þg

In obtaining (7b), we have used the

following well-known formulas of the Legendre

functions [26]
dInþ1=2ðkrÞ
dr

¼ k Inþ3=2ðkrÞ þ
nþ 1=2

r
Inþ1=2ðkrÞ

dKnþ1=2ðkrÞ
dr

¼�kKnþ3=2ðkrÞþ
nþ1=2

r
Knþ1=2ðkrÞ

Solving (7b), we obtain the solution in the

form
u ¼ u1 þ u1 ð7cÞ

where

�u1 ¼
1

r3=2

X1
n¼1

Pn mð Þ
(X2

i¼1
Ani

�
ki r Inþ3=2 ki rð Þ

þ n Inþ1=2 ki rð Þ
�
þ Cn Inþ1=2 b s rð Þ

)

�u2 ¼
1

r3=2

X1
n¼1

Pn mð Þ
(X2

i¼1
Bni

�
�ki r Knþ3=2 ki rð Þ

þ nKnþ1=2 ki rð Þ
�
þ Dn Knþ1=2 b s rð Þ

)

where Cn and Dn are parameters depending on s
only. In obtaining (7b), we have used the
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following well-known formulas of the Legendre

functions [26]
dInþ3=2ðkrÞ
dr

¼ k Inþ1=2ðkrÞ �
nþ 3=2

r
Inþ3=2ðkrÞ

dKnþ3=2ðkrÞ
dr

¼�kKnþ1=2ðkrÞ�
nþ1=2

r
Knþ3=2ðkrÞ

Substituting from (6b) and (7b) into (1), we

obtain
@ v sin#ð Þ
@m

¼ 1

r3=2

X1
n¼1

Pn mð Þ �gn1ðrÞ þ �gn2ðrÞ½ �

ð8Þ

where
�gn1ðrÞ¼ nðnþ1Þ
X2
i¼1

Ani Inþ1=2 ki rð Þ

þCn nþ1ð ÞInþ1=2 bsrð ÞþbsrInþ3=2 bsrð Þ
� �

�gn2ðrÞ¼nðnþ1Þ
X2
i¼1

Bni Knþ1=2 ki rð Þ

þDn nþ1ð ÞKnþ1=2 bsrð Þ�bsrKnþ3=2 bsrð Þ
� �

For convenience, from now on, we shall write

simply Pn instead of Pn mð Þ.
Integrating both sides of (8) with respect to m,

we obtain
v ¼ v1 þ v1 ð9Þ

where
�v1¼
1

r3=2

X1
n¼1

mPn�Pn�1
sin#

� � X2
i¼1

nAni Inþ1=2 ki rð Þ
(

þ Cn Inþ1=2 bsrð Þþ bsr
nþ1

Inþ3=2 bsrð Þ
� �)

�v2¼
1

r3=2

X1
n¼1

mPn�Pn�1
sin#

� � X2
i¼1

nBni Knþ1=2 ki rð Þ
(

þ Dn Knþ1=2 bsrð Þ� bsr
nþ1

Knþ3=2 bsrð Þ
� �)
In obtaining (9), we have used the following

integral relation of the Legendre polynomials [26]:
ð
PnðmÞ dm ¼

mPnðmÞ � Pn�1ðmÞ
nþ 1

Although v contains sin # in the denominator,

it can be shown that it is bounded as #! 0.

In fact lim
#!0

v ¼ 0.

Substituting from (6a, b) and (7c) into (2a),

we obtain
�srr ¼ �srr1 þ �srr2 ð10Þ

where
�srr1¼
1

r5=2

X1
n¼0

Pn

X2
i¼1

Ani

��
b2s2r2

þ2nðn�1Þ
�
Inþ1=2ðki rÞ�4ki r Inþ3=2ðki rÞ

�
þ 2

r5=2

X1
n¼1

PnCn

�
ðn�1ÞInþ1=2ðbsrÞþbsr Inþ3=2ðbsrÞ

�

�srr2 ¼
1

r5=2

X1
n¼0

Pn

X2
i¼1

Bni

� �
b2s2r2

þ 2nðn� 1Þ
�
Knþ1=2ðki rÞ þ 4 ki r Knþ3=2ðki rÞ

�
þ 2

r5=2

X1
n¼1

Pn Dn

�
ðn� 1ÞKnþ1=2ðbs rÞ

� b s r Knþ3=2ðbs rÞ
�

Substituting from (6a, b) and (7c) into (2d), we

obtain
�sr# ¼ �sr#1 þ �sr#2 ð11Þ

where
�sr#1 ¼
2

r5=2 sin#

X1
n¼0

n mPn � Pn�1ð Þ

X2
i¼1

Ani n� 1ð ÞInþ1=2 ki rð Þ þ ki r Inþ3=2 ki rð Þ
� �

þ 1

r5=2 sin#

X1
n¼1

Cn
mPn � Pn�1ð Þ

nþ 1

b2s2r2 þ 2n2 � 2
� �

Inþ1=2 bs rð Þ � 2bsrInþ3=2ðbsrÞ
� �
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�sr#2 ¼
2

r5=2 sin#

X1
n¼0

n mPn � Pn�1ð Þ

X2
i¼1

Bni n� 1ð ÞKnþ1=2 ki rð Þ � ki r Knþ3=2 ki rð Þ
� �

þ 1

r5=2 sin#

X1
n¼1

Dn
mPn � Pn�1ð Þ

nþ 1

b2s2r2 þ 2n2 � 2
� �

Knþ1=2 bs rð Þ þ 2bsr Knþ3=2ðbsrÞ
� �
The remaining stress components can be obtained

in a similar manner.

Equations (6a, b), (7c), (9), (10), and (11) give

the general solution of the problem in the Laplace

transform domain in terms of the parameters Ani,

Bni, Cn, and Dn. These parameters can be

obtained from the boundary conditions of the

problem under consideration.
Application and Numerical Results

We consider a solid sphere of radius “a” with

center at the origin. For the present problem, we

keep in the solution only the terms with a suffix of

1 and discard those with a suffix of 2 that are not

bounded at the origin (i.e., we take y ¼ y1,
u ¼ u1; ::; ::Þ. The surface of the sphere is assumed

to be traction free and is immersed in a medium

with Biot’s number L whose temperature F on the

surface of the sphere is a function of # and t.

The boundary conditions thus have the form
srr ¼ 0 at r ¼ a ð12Þ

sr# ¼ 0 at r ¼ a ð13Þ

qr ¼ L y� Fð Þ at r ¼ a ð14Þ

where qr is the component of the heat flux vector

in the radial direction. The generalized Fourier’s

law of heat conduction in nondimensional form

can be written as
qr þ t0
@qr
@t
¼ � @y

@r

Taking Laplace transforms of both sides, we

obtain
�qr ¼ �
1

1þ t0s
@y
@r

Using the above relation, the boundary condi-

tion (14) takes the form
@y
@r
þ 1þ t0sð Þ L y� F

� �
¼ 0 at r ¼ a ð15Þ

Expanding the function Fðm; sÞ in a series of

Legendre polynomials, we obtain
Fðm; sÞ ¼
X1
n¼0

fnðsÞPnðmÞ ð16aÞ

where

fnðsÞ ¼
2nþ 1

2

ð1
�1

Fðm; sÞPnðmÞ d m ð16bÞ

Using (6a), (10), (12), (15), and (16a), we

obtain upon equating the coefficients of P0ðmÞ
on both sides the following two linear equations

in A01 and A02
X2
i¼1

A0i b
2s2a I1=2ðkiaÞ � 4 ki I3=2 ðkiaÞ

� �
¼ 0

X2
i¼1

A0iðki2� s2Þ ki I3=2ðkiaÞþLð1þ t0sÞ I1=2 ðkiaÞ
� �

¼ Lð1þ t0sÞ
ffiffiffi
a
p

f0ðsÞ

Solving the above two equations, we obtain

A01 ¼
�Lð1þ t0sÞ

ffiffiffi
a
p

f0ðsÞ
c

b2s2a I1=2ðk2aÞ
�

� 4 k2 I3=2 ðk2aÞ �

A02 ¼
Lð1þ t0sÞ

ffiffiffi
a
p

f0ðs
c

b2s2a I1=2ðk1aÞ
�

� 4 k1 I3=2 ðk1aÞ �
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c¼ðk22� s2Þ k2 I3=2 ðk2aÞþLð1þ t0sÞ I1=2ðk2aÞ
� �

b2s2aI1=2ðk1aÞ�4k1 I3=2 ðk1aÞ
� �
�ðk21� s2Þ k1 I3=2 ðk1aÞþLð1þ t0sÞ I1=2ðk1aÞ

� �
b2s2aI1=2ðk2aÞ�4k2 I3=2 ðk2aÞ
� �
For n > 0, using (6a), (10), (11), (12), (13),

(15), and (16a), we obtain upon equating the

coefficients of PnðmÞ on both sides a system of

three linear equations in the unknowns An1, An2,

and Cn whose solution gives
An1 ¼
Lð1þ t0sÞa3=2 fnðsÞ

O
m22

m23

� m12

m13

� �

An2 ¼
Lð1þ t0sÞa3=2 fnðsÞ

O
m11

m13

� m21

m23

� �

Cn ¼
�Lð1þ t0sÞa3=2 fnðsÞ

Om13

m11

m22

m23

� m12

m13

� �

þ m12

m11

m13

� m21

m23

� ��
where

O ¼ m31

m22

m23

� m12

m13

� �
þ m32

m11

m13

� m21

m23

� �

m1i ¼ ðb2s2a2 þ 2n2 � 2nÞ Inþ1=2ðkiaÞ
�
�4 kia Inþ3=2 ðkiaÞ �; i ¼ 1; 2

m13 ¼ 2 ðn� 1Þ Inþ1=2ðbsaÞ þ bsa Inþ3=2 ðbsaÞ
� �

m2i ¼ 2n ðnþ 1Þ n� 1ð Þ Inþ1=2ðkiaÞ
�

þ kia Inþ3=2 ðkiaÞ �; i ¼ 1; 2

m23 ¼ ðb2s2a2 þ 2n2 � 2Þ Inþ1=2ðb saÞ
�
�2b sa Inþ3=2 ðb saÞ �

m3i ¼ðk2i � s2 Þ kia Inþ3=2ðkiaÞ
�

þ nþ aLð1þ t0sÞf g Inþ1=2 ðkiaÞ �; i¼ 1; 2

During subsequent calculations, the functions

Fð#; tÞ will be taken in the form Fð#; tÞ ¼ sin2#
This gives Fð#; sÞ ¼ sin2#=s. It follows from
(16b) that
f0ðsÞ ¼
2

s
; f2ðsÞ ¼

�2
3s

and fiðsÞ ¼ 0; i 6¼ 0 or 2

The copper material was chosen for purposes

of numerical evaluations. The constants for the

problem were taken as e ¼ 0.0168, b2 ¼ 3.5,

L ¼ 1, a ¼ 1, and t0 ¼ 0:02. The numerical

computations were carried out for three values

of time, namely, for t¼ 0.1 (dotted lines), t¼ 0.2

(dashed lines), and t ¼ 0.5 (solid lines).

A numerical method [27] was used to invert the

Laplace transform to obtain the temperature, dis-

placement, and radial stress distributions in the

physical domain.

The radial variation of the temperature y, the
radial displacement component u, and the radial

stress srr on the plane # ¼ p=2, 0 � r � 1 are

shown in Figs. 1, 2, and 3, respectively. The dis-

placement component v is identically zero on this

plane due to symmetry. Variation of y, u, and v on
the surface of the sphere (r ¼ 1, 0 � # � p=2 ) is

shown in Figs. 4, 5, and 6, respectively. Of course,

on the surface srr ¼ 0 from the boundary

conditions.

The computations were carried out also for the

coupled theory of thermoelasticity (t0 ¼ 0). It

was found that for large values of time, the

coupled and the generalized theories give close

results. The case is quite different when we con-

sider small values of time. The coupled theory
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predicts infinite speeds of wave propagation. This

is evident from the fact that the temperature, say,

is not identically zero for any value of time but

fades gradually to very small values at points far

removed from the surface [22]. The solution

obtained using the equations of generalized

thermoelasticity, however, exhibits the behavior

of finite speeds of wave propagation. For small

values of time, the solution is localized in a finite

region of space surrounding the surface and is

identically zero outside this region. This region

grows with increasing time. Its edge is the loca-

tion of the wave front. This region is determined

only by the values of the time t and the relaxation

time t0 and is the same for all functions
considered. It is seen from Fig. 1, for example,

that for t ¼ 0.1, the temperature predicted by

the generalized theory is identically zero for

r less than 0.285.
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Overview

In 1967, the theory of generalized

thermoelasticity with one relaxation time was

introduced by Lord and Shulman [1]. The moti-

vation behind the introduction of this theory was

to deal with the apparent paradox of infinite

speeds of propagation predicted by the coupled

theory of thermoelasticity introduced by Biot [2]

in 1956. The generalized equation of heat con-

duction is hyperbolic and hence automatically

ensures finite speeds of wave propagation. This

theory was extended by Dhaliwal and Sherief [3]

to include the effects of anisotropy.

Among the contributions to this theory are the

proofs of uniqueness theorems by Ignaczak [4]

and by Sherief [5]. Anwar and Sherief [6] and

Sherief [7] completed the state-space formulation

for one-dimensional problems. Sherief and

Anwar [8] conducted the state-space formulation

for two-dimensional problems. The fundamental
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solutions for the cylindrically symmetric spaces

were obtained by Sherief and Anwar [9].

The importance of axisymmetric problems

arises from the fact that they have many applica-

tions in industry. The most important one is in

the fabrication of vehicle brakes and other

machine components of cylindrical shapes.

Sherief and Hamza [10] have obtained the com-

plete solution to axisymmetric problems in gen-

eralized thermoelasticity with one relaxation

time and studied wave propagation.
Two-Dimensional Axisymmetric
Problems

We consider a homogenous isotropic

thermoelastic region initially quiescent. The con-

ditions of the problem are assumed to be

axisymmetric. We shall take the axis of symme-

try to be the z-axis. By denoting the cylindrical

polar coordinates as (r,c, z) and the time variable

by t, we can take the axisymmetric temperature

distribution throughout the solid to be T(r,z,t).
We shall use the following nondimensional

variables:
r0 ¼ c1�r; z
0 ¼ c1�z; u

0 ¼ c1�u; w
0 ¼ c1�w

t0 ¼ c21�t; t
0
0 ¼ c21�t0; s

0
ij ¼

sij
lþ 2m

; y ¼ g T � T0ð Þ
lþ 2m

In terms of these nondimensional variables,

the governing equations take the form (dropping

the primes for convenience) [10]:
H2uþ b2 � 1
� �

grad div u� b2grad y ¼ b2€u

ð1Þ

H2y ¼ @

@t
þ t0

@2

@t2

� 	
yþ eeð Þ ð2Þ

The constitutive equations have the form [10]:
srr ¼
2

b2
@u

@r
þ

b2 � 2
� �

b2
e� y ð3aÞ
scc ¼
2

b2
u

r
þ

b2 � 2
� �

b2
e� y ð3bÞ

szz ¼
2

b2
@w

@z
þ

b2 � 2
� �

b2
e� y ð3cÞ

srz ¼
1

b2
@u

@z
þ @w

@r

� 	
ð3dÞ

where e is the cubical dilatation given by:
e ¼ div u ¼ 1

r

@

@r
ruð Þ þ @w

@z
ð4Þ
Solution in the Laplace-Hankel
Transform Domain

Taking the Laplace transform of both sides of

(1)–(4) and using the homogenous initial condi-

tions, we get:
e ¼ 1

r

@

@r
ruð Þ þ @w

@z
ð5Þ

H2�uþ b2 � 1
� �

grad div �u� b2grad y ¼ b2s2�u

ð6Þ

H2 � s� t0s2
��
y ¼ e sþ t0s2

� �
e ð7Þ

Equation of motion (6) takes the form:

b2 grad div �u� curl curl �u� b2 grad y ¼ b2s2�u

ð8Þ

Applying divergence operator to both sides of

(8), we get:

H2 � s2
� �

e ¼ H2y ð9Þ

From (7) and (9), we obtain:
H4 � s2 þ 1þ eð Þ sþ t0s2
� �� �

H2
�
þ s3 1þ t0sð Þ� y

�e

	
¼ 0

�
ð10Þ
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Equation (10) can be factorized as:

H2 � k21
� �

H2 � k22
� � y

�e

� 	
¼ 0 ð11Þ

where k2i ; i ¼ 1; 2 are the roots with positive real

parts of the characteristic equation:

k4 � s2 þ 1þ eð Þ sþ t0s2
� �� �

k2 þ s3 1þ t0sð Þ ¼ 0

The solution of (11) for �y can be written in the
form:

y ¼
X2
1

yi

where yi is the solution of the equation:

H2 � k2i
� �

yi ¼ 0; i ¼ 1; 2 ð12Þ

We shall use the Hankel transform defined by

the relation [11]:
f 
 a; z; sð Þ ¼ H f r; z; sð Þ½ � ¼
ð1
0

f r; z; sð ÞrJ0 arð Þdr

where J0 is the Bessel function of the first kind of

order zero.

Applying the Hankel transform to both sides

of (12), we obtain:

D2 � a2 � k2i
� �

�yi

ða; z; sÞ ¼ 0 ð13Þ

where the operator D denotes partial differentia-

tion with respect to z.

The solution of (13) has the form:
�yi

ða; z; sÞ ¼ k2i � s2

� �
A1iða; sÞemi z þ A2iða; sÞe�mi zð Þ;

i ¼1; 2
ð14Þ

where A1i, A2i are parameters that depend on a,s
and mi is given by:
mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þ a2

q

Using (14) the solution of (11) can be written

in the form:

y

 ¼

X2
i¼1

k2i � s2
� �

A1ie
miz þ A2ie

�mizð Þ ð15Þ

In a similar manner, we can show that the

solution for e
 compatible with (14)–(15) is

given by:

e
 ¼
X2
i¼1

k2i A1ie
miz þ A2ie

�mizð Þ ð16Þ

Applying the inversion formula of the Hankel

transform to (15) and (16), we get:

y r; z; sð Þ ¼
X2
i¼1

k2i � s2
� � ð1

0

aJ0 arð Þ A1ie
miz þ A2ie

�mizð Þda

ð17Þ

e r; z; sð Þ ¼
X2
i¼1

k2i

ð1
0

aJ0 arð Þ A1ie
miz þ A2ie

�mizð Þda:

ð18Þ

The components of (8) in the r- and z- direc-

tions, respectively, are:
@

@z

@w

@r
� @u

@z

� 	
þ b2s2u ¼ b2

@

@r
e� y
� �

ð19Þ

1

r

@

@r
r

@u

@z
� @w

@r

� 	
 �
þ b2s2w ¼ b2

@

@z
e� y
� �
ð20Þ

Using (5) and (19), (20), we get:
H2u� u

r2
�b2s2u¼ @

@r
1�b2
� �

eþb2y
� �

ð21Þ

H2w� b2s2w ¼ @

@z
1� b2
� �

eþ b2y
� �

ð22Þ

Introducing the function f, defined by the

relation,

u ¼ @f
@r

ð23Þ
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into (21), integrating the resultant equation with

respect to r, we obtain:

H2f� b2s2f ¼ 1� b2
� �

eþ b2y

Taking the Hankel transform of both sides of

the above equation, we get:

D2 � m2
� �

f

 ¼ 1� b2

� �
e
 þ b2y


 ð24Þ

where m2 ¼ b2s2 þ a2.
Using (15) and (16), we get the following

relation:

D2 � m2
� �

f

 ¼

X2
i¼1

k2i � b2s2
� �

A1ie
miz þ A2ie

�mizð Þ

ð25Þ

Thus, the general solution of (25) has the form:

’
 ¼ A1e
mz þ A2e

�mz þ
X2
i¼1

A1ie
miz þ A2ie

�mizð Þ

ð26Þ

Applying the inversion formula of the Hankel

transform, namely [11],

f r; z; sð Þ ¼ H�1 f 
 a; z; sð Þ½ �

¼
ð1
0

f 
 a; z; sð ÞrJ0 arð Þda

to the above equation, we obtain:

’ r; z; sð Þ ¼
ð1
0

aJ0 arð Þ
 
A1e

mz þ A2e
�mz

þ
X2
i¼1

A1ie
miz þ A2ie

�mizð Þ
!
da

ð27Þ

Differentiating both sides of (27) with respect

to r, we get upon using (23):

u r;z;sð Þ¼�
ð1
0

a2J1 arð Þ
 
A1e

mzþA2e
�mz

þ
X2
i¼1

A1ie
mizþA2ie

�mizð Þ
!
da

ð28Þ
In a similar manner solving (22), we obtain:

w r;z;sð Þ¼
ð1
0

aJ0 arð Þ a2

m
A1e

mz�A2e
�mzð Þ




þ
X2
i¼1

mi A1ie
miz�A2ie

�mizð Þ
)
da

ð29Þ

Finally, to obtain the Laplace transform of the

stress components, we denote by F the quantity:

F r; z; tð Þ ¼
b2 � 2
� �

b2
e� y ð30Þ

Taking the Laplace transform of both sides of

the above equation and substituting from (15) and

(16), we get:

F r; z; tð Þ ¼
X2
i¼1

s2 � 2k2i
b2

� 	 ð1
0

aJ0 arð Þ

� A1ie
miz þ A2ie

�mizf g½ �da

ð31Þ

Using the Laplace transform of (3a, c, d) and

(30) together with (28) and (29), we obtain:
srr ¼
2

b2

ð1
0

a3
1

ar
J1 arð Þ � J0 arð Þ

� �(
A1e

mz þ A2e
�mz

þ
X2
i¼1

A1ie
miz þ A2ie

�mizð Þ
)
daþ F

ð32aÞ

szz ¼
2

b2

ð1
0

aJ0 arð Þ a2 A1e
mz þ A2e

�mz½ �
�

þ
X2
i¼1

m2i A1ie
miz þ A2ie

�mizð Þ
!
daþ F

ð32bÞ

srz ¼�
1

b2

ð1
0

a2J1ðarÞ
 �

m2 þ a2

m

	
ðA1e

mz � A2e
�mzÞ

þ
X2
i¼1

2miðA1ie
miz � A2ie

�mizÞ
!
da

ð32cÞ
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Example. We consider a thick plate composed

of a homogenous isotropic thermoelastic material

of infinite extent and finite thickness. The upper

surface of the plate is subjected to an axisymmet-

ric temperature distribution and is traction free.

The lower surface of the plate is laid on a rigid

foundation, which is thermally insulating. The

region O of the plate is defined by:
O ¼ r;c; zð Þ : 0 � r � 1; 0 � c � 2p;f
and� h < z < h

The boundary conditions in the Laplace trans-

form domain are:
u ¼ 0; w ¼ 0;
@y
@z
¼ 0; for z ¼ �h ð33aÞ
6

Þ1
szz ¼ 0; srz ¼ 0; for z ¼ h ð33bÞ

y ¼ HðtÞf ðrÞ; for z ¼ h ð33cÞ

where f(r) is a known function of r.

From the boundary condition (33a, b, c) and

(17), (28), (29), (31), and (32a, b, c), we get

a system of six linear equations in the unknown

parameters A1;A2;A11;A12;A21 and A22. Solving

this system completes the solution in the trans-

form domain.
Numerical Results

The copper material was chosen for purposes of

numerical evaluations. The material constants of

the problem are thus given by:
:73 s=m2; t0 ¼ 0:02 s; e ¼ 0:0168;
0
kg=m=s2; m ¼ 86 10ð Þ10 kg=m=s2
b2 ¼ 4; r ¼ 8;954 kg=m3; � ¼ 888

cE ¼ 381 J=kg=c; k ¼ 386W=m=c; l ¼ 7:76 10ð
The half-thickness h of the plate was taken

equal to 0.5. The computations were carried out

for three values of time, namely, t¼ 0.05, t¼ 0.1,

and t ¼ 0.15.

The inversion of the Hankel transform was

done using the inversion formula of the trans-

form. The inversion of the Laplace transform

was done using a numerical technique based on

Fourier expansion [12].

The temperature of the surface of the upper

plate is taken as:
f ðrÞ ¼
y0 if r � 1

0 otherwise

(

where y0 is a constant. This means that starting at

time t ¼ 0, a circle of unit radius is suddenly

raised to a temperature equal to y0 and kept at

this temperature, while the rest of the upper sur-

face is kept at zero temperature.
This can be written more concisely as:
f ðrÞ ¼ y0 Hð1� rÞ ð34Þ

Taking the Hankel transform, we obtain:
f 
 að Þ ¼ y0

ð1
0

Hð1� rÞrJ0ðarÞdr

¼ y0

ð1
0

rJ0ðarÞdr ¼
y0
a
J1 að Þ ð35Þ

The constant y0 was taken equal to unity dur-

ing computations.

We evaluated the different functions along the

z-axis (r ¼ 0) as functions of z. The results are

shown in Fig. 1 for the temperature and Fig. 2 for

the vertical displacement component w. The

radial stress components srr and the axial stress
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components szz are shown in Figs. 3 and 4,

respectively. The radial displacement component

u is identically zero along the z-axis. Solid lines

represent the case when t ¼ 0.05, dashed lines

represent the case when t¼ 0.1 while dotted lines

represent the case when t¼ 0.15. The FORTRAN

programming language was used. The accuracy

maintained was five digits for the numerical

program.

The finite speed of wave propagation mani-

fests itself in all these figures. The upper surface

is sending thermoelastic waves into the region of

the plate. This is shown by the fact that the solu-

tion is not identically equal to zero for the value

of time t ¼ 0.05 when 0.12 < z < 0.5 for all the

functions considered. The solution is not equal to

zero for the value of time t¼ 0.1 when�0.18< z

< 0.5. For t ¼ 0.15, the solution fills the whole

region of the plate.

We notice that the solution (for small values of

time) is nonzero only in a region of space
adjacent to the surface. This region expands

with the passage of time to fill the whole region

of the thick plate.
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Synonyms

Anisotropic
Overview

Based on the theory of linear elasticity, thermal

stresses can be obtained from solutions of heat

conduction and equilibrium displacement equa-

tions. If the equations involve only constant coef-

ficients and the body of interest is simple, they

can be solved by many well-established methods,

both analytical and numerical [1]. Due to recent

advances in technologies, a modern design may

involve materials that have much more sophisti-

cated properties that cannot simply be modeled

by constants. Methods that could be used to solve

for some of those complex mathematical models

become more of a challenge. On the other hand,
Formerly School of Mechanical and Manufacturing

Engineering
important system parameters in a heat generating

body may be changed by thermal effects and

stresses. A good design will need precise knowl-

edge of the temperature and stress fields.

A common example is in the design of miniatur-

ized electronic device in which very small elec-

trical current could induce large temperature

changes. Many electronic properties are sensitive

to both temperature and stress. All of these point

to the importance of thermal stress analysis in

modern system designs.

This entry is concerning with axisymmetric

thermal stresses in a finite and hollow cylinder.

Due to the axisymmetric assumption, both tem-

perature and displacement equations are two-

dimensional. Although within the framework of

linear elasticity where strains are linearly propor-

tional to stresses, nonconstant material properties

could introduce complexity to the mathematical

models such that the equations, even in two

dimensions, cannot be solved analytically. Over

the last 20–40 years or so, those problems are

solved mostly by finite element methods [3, 5]

that have been implemented in commercial com-

puter packages for a large varieties of problems.

The limitations of those methods are due to the

fact that the approximation functions used have

not been optimized such that many grid points are

required in numerical simulations. In this entry,

the pseudospectral methods [4] are suggested as

preferred alternatives, as optimized series expan-

sions are used such that at least an order fewer

number of equations is required for the same level

of solution accuracy. A pseudospectral method,

known as the Lanczos-Chebyshev pseudospectral

(LCPS) method [2] that uses an optimized power

series, will be described in some details.

As a departure from common practice of

deriving the equilibrium displacement equations

for material with constant properties, a set of

equations for materials with nonconstant proper-

ties will be given. However, numerical examples

that may yield some insight into the importance

of thermal stresses in a design will still be

restricted to constant properties systems. An

additional example will be given to show how

a nonlinear problem could be solved by the

LCPS method.

http://dx.doi.org/10.1007/978-94-007-2739-7_100023
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Mathematical Formulation

A linear thermal stress problem shares the

common mathematical formulation with linear

elasticity in that a solid body is studied of how it

would deform under prescribed loading inter-

nally or on the boundaries. In the case of thermal

stresses, the internal loadings come from the

thermal strains produced by the temperature

field. Throughout this entry, we consider the

plane problem of thermoelastics. For a circular

hollow cylinder with finite length, cylindrical

coordinates, r, y, and z, are used in the analysis.

With an axisymmetric problem, the formulation

will not involve any y-dependent terms

resulting in sets of simpler governing equations

as given below.

Geometric Equations (Strain–Displacement

Relations)

er ¼
@u

@r
; ey ¼

u

r
; ez ¼

@w

@z
; grz ¼

@u

@z
þ @w

@r

ð1Þ

where u and w are the radial and axial displace-

ments. The above relations are based on so-called

engineering notation. In mathematical notation,

the strain–displacement equations are
« ¼ 1

2
Huþ ðHuÞT
h i

ð2Þ

where « is the strain tensor and u is the displace-

ment vector. Obviously, the separated use of

these two notations will lead to a slightly differ-

ent set of field equations.

Thermal Strains

Temperature changes could cause strains. In

isotropic material, the induced thermal exten-

sional strains are equal in all directions, and

there are no shear strains. In the simplest cases,

thermal strains can be treated as being propor-

tional to temperature change in relative to

a reference temperature. The proportional con-

stant is called the coefficient of linear thermal

expansion. For anisotropic material, the linear
thermal expansion coefficient could have differ-

ent values at different directions.

Generalized Hook’s Law (The Stress–Strain

Relations)

For anisotropic media, the symmetry of the stress

tensor sij means that there are at most six differ-

ent elements of stress. Similarly, there are at most

six different elements of the strain tensor eij. For
elastic materials, Hooke’s law is
s ¼ C : « ð3Þ

where s is the Cauchy stress tensor and C is

the second-order stiffness tensor. The simplest

anisotropic case that of cubic symmetry has

three independent elements:
Cab ¼

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44

26666664

37777775
ð4Þ

The case of polar anisotropic (with 3-axis of

symmetry) has five independent elements:
Cab¼

C11 C11�2C66 C13 0 0 0

C11�C66 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66

26666664

37777775
ð5Þ

The case of orthotropic (the symmetry of

a brick) has nine independent elements:
Cab ¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C22 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

26666664

37777775
ð6Þ
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The special isotropic case has elements

involving two independent material properties

K, the bulk modulus, and m, the shear modulus:
Cab¼

Kþ4m=3 K�2m=3 K�2m=3 0 0 0

K�2m=3 Kþ4m=3 K�2m=3 0 0 0

K�2m=3 K�2m=3 Kþ4m=3 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m

26666664

37777775
ð7Þ

For an axisymmetric problem with aniso-

tropic properties, there are only four nonzero

stresses: applying Voigt notation for tensor indi-

ces, the four elements of stress in cylindrical

coordinates are s11 ¼ sr, s22 ¼ sy, s33 ¼ sz,

and s55 ¼ trz.

The Equilibrium Equations

The fundamental system of field equations for the

time-independent behavior of a linearly elastic

body consists of the strain–displacement rela-

tions, the stress–strain relations, and the equa-

tions of equilibrium. In the case of a plane

axisymmetric problem, the equations of equilib-

rium in the absence of body forces are
@sr
@r
þ @trz

@z
þ sr � sy

r
¼ 0

@trz
@r
þ @sz

@z
þ trz

r
¼ 0

ð8Þ
Displacement Formulation for an

Axisymmetric Problem

Altogether, the above equations involve four

stresses, four strains, and two displacements

with four stress–strain relations, four strain–

displacement relations, and two equilibrium con-

ditions. All these equations could be combined to

give two displacement equations from which

the stresses could be found. First, the strain–

displacement (1) is substituted into (3) (Hooke’s

law) using as stiffness coefficients (5). The

strains, excluding the thermal strains, are then

eliminated to give:
sr ¼ C11

@u

@r
þ C12

u

r
þ C13

@w

@z
� p1T

sy ¼ C12

@u

@r
þ C11

u

r
þ C13

@w

@z
� p1T

sz ¼ C13

@u

@r
þ C13

u

r
þ C33

@w

@z
� p2T

trz ¼ C44

@u

@z
þ @w

@r

� 	
ð9Þ

whereC12¼ C11� 2C66, p1¼ (C11 +C12)ar + C13

az, p2 ¼ 2C13 + C33 az, and ar and az are the

coefficient of linear thermal expansion along the

radial and axial directions. Substituting (9) into (8)

gives the displacement equations (i.e., the equilib-

rium equations in terms of the displacements):

@

@r
C11

@

@r

� 	
þC11

r

@

@r
þ1

r

@C12

@r

�
�C11

r2
þ @

@z
C44

@

@z

� 	�
uðr;zÞ

þ @

@r
C13

@

@z

� 	
þ @

@r
C44

@

@z

� 	� �
wðr;zÞ¼ @

@r
p1Tðr;zÞð Þ

@

@z
C13

@

@r

� 	
þ @

@r
C44

@

@z

� 	�
þ1

r

@C13

@z
þC44

r

@

@z

�
uðr;zÞ

þ @

@r
C44

@

@r

� 	
þC44

r

@

@r
þ @

@z
C33

@

@z

� 	� �
wðr;zÞ¼ @

@z
p2Tðr;zÞð Þ ð10Þ

The equations above are applicable for cases

in that the material properties are nonlinear

and/or position dependent. For material with con-

stant properties, these equations are simplified to
C11

@2

@r2
þC11

r

@

@r
�C11

r2
þC44

@2

@z2

� �
uðr;zÞ

þðC13þC44Þ
@2

@r@z
wðr;zÞ¼ p1

@

@r
Tðr;zÞ

ðC44þC13Þ
@2

@r@z
þC13þC44

r

@

@z

� �
uðr;zÞ

þ C44

@2

@r2
þC44

r

@

@r
þC33

@2

@z2

� �
wðr;zÞ

¼ p2
@

@z
Tðr;zÞ

ð11Þ
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For a finite and hollow cylinder of inner radius ri
and outer radius of ro, and length of h, the boundary

conditions associated with the displacement equa-

tions may involve specified stress components:

srjri;ro ¼ sor ðzÞ
� �

ri;ro

trzjri;ro ¼ torzðzÞ
� �

ri;ro

szj0;h ¼ soz
� �

0;h

trzj0;z ¼ torz
� �

0;h

ð12Þ

Some of the stress conditions above could be

replaced by specified displacements or displace-

ment gradients.

Heat Conduction Equations

For isotropic bodies, the Fourier law states:
q ¼ �kHT ð13Þ

The steady-state heat conduction equation

then represents thermal energy balance:
H � qþ Q ¼ 0 ð14Þ

where Q is the heat source. For an axisymmetric

problem in cylindrical coordinates, the above

becomes

1

r

@

@r
rkr

@

@r

� 	
þ @

@z
kz

@

@z

� 	� �
Tðr;zÞþQðr;zÞ¼ 0

ð15Þ

where kr and kz are the thermal conductivities in

the radial and axial directions. The heat conduc-

tion for a system with constant properties (kr and
kz are constant) is

kr
r

@

@r
r
@

@r

� 	
þ kz

@2

@z2

� �
Tðr;zÞþQðr;zÞ¼ 0 ð16Þ

Assume that the boundary conditions are

given as follows:

kr
@T

@r
þ hrðT � TcÞ

� �
ri;ro

¼ 0

kz
@T

@z
þ hzðT � TcÞ

� �
0;‘

¼ 0

ð17Þ
where the parameters h, the heat transfer coeffi-

cient, and Tc, the coolant temperature, are to be

specified along the boundaries.
Solution Methods

In order to discuss solution methods in the sim-

plest possible way, only equations for systems

with constant properties are used here. The

cases with nonconstant properties are deferred

to a later section.

Conversion to Dimensionless Equations

For convenience in applications, it is useful to

reduce all the equations to dimensionless forms.

The following set of dimensionless variables will

be used:
�r ¼ r

ro
; �z ¼ z

ro

�Cij ¼
Cij

C11

; �u ¼ u

aoToro
; �w ¼ w

aoToro

�sr ¼
sr

aoC11To
; �sy ¼

sy
aoC11To

;

�sz ¼
sz

aoC11To
; �trz ¼

trz
aoC11To

�T ¼ T

To
; �kr;z ¼

kr;z
ko

; �Q ¼ Qr2o
koTo

;

�p1;2 ¼
p1;2
aoC11

; �h ¼ h

ho

ð18Þ

where ao, To, ko, and ho are reference values of

linear thermal expansion coefficient, tempera-

ture, thermal conductivity, and heat transfer coef-

ficient. Substituting the above into all previous

equations and canceling all the common factors

will achieve the conversions. It should be noted

that all equations have retained exactly their

original forms and for simplicity all dimension-

less quantities will be written without an over-

head bar.

Pseudospectral Methods

Evolving from the well-known spectral methods

over the last two decades, pseudospectral

methods themselves have emerged as attractive

alternatives to better known computational
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procedures such as finite difference and finite

element methods. The notable strength of the

pseudospectral methods lies with their ability

to solve differential equations with nonconstant

coefficients such as in the particular displace-

ment and heat conduction equations developed

above.

The main idea behind all spectral approaches

is to approximate the solution as a truncated

series expansion in the most efficient way. For

this reason, many versions of pseudospectral

methods have been developed each with a set of

different approximation functions, consisting

mostly of orthogonal polynomials. The most

widely used one is the Chebyshev polynomials.

The use of orthogonal polynomials is a legacy

inherited from the spectral methods in that

orthogonal property of the approximating func-

tion is mandatory. It is quite different with the

pseudospectral methods in that solutions are

obtained by collocations at points specially

selected to give least possible errors. The only

conditions for the approximation functions to be

suitable are that each function must be unique and

the series is complete. With this freedom, users

who are not prepared to work through the many

complex mathematical properties of orthogonal

polynomials may find that choices of non-

orthogonal functions such as a power series are

their preferred alternatives.

The Lanczos-Chebyshev Pseudospectral

(LCPS) Method

The LCPS method uses power series as approxi-

mating functions and collocation at Chebyshev

points so that the solutions obtained are as accu-

rate as those based on the Chebyshev polynomial

series when both expansions use the same num-

ber of terms. Implementation of this approach is

best illustrated by showing how it can be used to

solve the thermal stress problems as prescribed

by the displacement and heat conduction

equations.

Reduction to Algebraic Equations

The pseudospectral approach is used to reduce

the governing differential equations to a set of

algebraic equations that could be solved by
well-established numerical techniques. In the

case of a {r,z} rectangular 2D problem as

the one considered here, linear transformations

are used to rescale the domain into a square

[�1,1] � [�1, 1]. Recalling that the finite and

hollow cylinder considered has an inner radius

of ri, an outer radius of ro, and a length from

0 to l; the new coordinates {R,Z} relate to {r,z}

through:

r¼arRþbr; ar¼0:5ðro�riÞ; br¼0:5ðroþriÞ
z¼azZþbz; az¼0:5‘; bz¼0:5‘

ð19Þ

Converting the displacement equations, (11),

to the new coordinates to give:

C11

a2r

@2

@R2
þ C11

arðarRþbrÞ
@

@R

�
� C11

ðarRþbrÞ2
þC44

a2z

@2

@Z2

�
uðR;ZÞ

þC13þC44

araz

@2

@R@Z
wðR;ZÞ¼ p1

ar

@

@R
TðR;ZÞ

C44þC13

araz

@2

@R@Z
þ C13þC44

azðarRþbrÞ
@

@Z

� �
uðR;ZÞ

þ C44

a2r

@2

@R2
þ C44

arðarRþbzÞ
@

@R
þC33

a2z

@2

@Z2

� �
wðR;ZÞ¼ p2

az

@

@Z
TðR;ZÞ

ð20Þ

Converting the heat conduction equation,

(16), to the new coordinates to give:
kr
a2r

@2

@R2
þ kr
arðarRþ brÞ

@

@R
þ kz
a2z

@2

@Z2

� �
TðR; ZÞ þ QðR; ZÞ ¼ 0

ð21Þ

Similarly, all the associated boundary condi-

tions can be converted. Also affected are the

strain–displacement relations, (1), and the

stress–strain relations, (9). Working with any

equations, it is important to distinguish between

{R,Z} the computational coordinates and {r,z}

the physical coordinates. For example, solutions

are to be worked out on the physical coordinates
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while the computational coordinates are used in

the numerical simulations.

Within the computational domain, the dis-

placement and temperature fields may be approx-

imated by

uðR; ZÞ ¼
XM;N

i;j

uijR
i�1Zj�1;

wðR; ZÞ ¼
XM;N

i;j

wijR
i�1Zj�1

TðR; ZÞ ¼
XM;N

i;j

tijR
i�1Zj�1

ð22Þ

Terms used in the temperature approximation

need not be the same as those for the displace-

ments. Using the same number of terms as in (22)

is purely for numerical convenience. The deci-

sion on the values for M and N are based on the

smoothness of the solutions. It is often possible

that 10–20 terms in each coordinate direction

could give solutions with relative errors in the

order of 10–4 or less.

Derivatives can be obtained from (20) using

term-by-term differentiation. For example,
@u

@R
¼
XM;N

i;j

ði� 1ÞuijRi�2Zj�1;

@2u

@R2
¼
XM;N

i;j

ði� 1Þði� 2ÞuijRi�3Zj�1

@u

@Z
¼
XM;N

i;j

ðj� 1ÞuijRi�1Zj�2;

@2u

@Z2
¼
XM;N

i;j

ðj� 1Þðj� 2ÞuijRi�1Zj�2

ð23Þ

The collocation points are chosen from the

roots of the Chebyshev polynomials given by
Rm ¼ cos
2m� 1

M � 2

p
2

� 	
; m ¼ 1; 2; . . .M � 2

Zn ¼ cos
2n� 1

N � 2

p
2

� 	
; n ¼ 1; 2; . . .N � 2

ð24Þ
Replacing at the collocation points all the vari-

ables and their derivatives by their series expan-

sions, the differential equations are reduced

to a set of simultaneous algebraic equations

with the series expansion coefficients as the

unknowns.

Treatment of Boundary Conditions

Differential equations cannot be completely

solved by themselves without considering the

boundary conditions. Having reduced the

governing differential to a set of simultaneous

algebraic equations, the collocation method is

applied also to the boundary conditions. In the

standard spectral approach, if the tau method is

adopted, extra unknown variables, the tau’s, are

added to the series expansions to cater for the

prescribed boundary conditions. It is the same

with the power series approach. The order of the

power series must be increased. In fact, these

extra terms have already been built in when (24)

is used. According to (24), the number of collo-

cation points is M � 2 in the R-direction and

N � 2 in the Z-direction, making up a total of

(M� 2)� (N� 2) interior collocation points. As

the series expansion hasM�N coefficients, there

are already excess numbers for the boundary

conditions. For a boundary value problem-like

thermal stresses, each governing 2nd-order

partial-differential equation is associated with

4 boundary conditions, one each at the four

sides of the computational domain. Applying

the collocation method at the Chebyshev points

on each of the boundaries will produce 2 (M� 2)

+ 2 (N� 2) equations. Considering also that there

are 2 boundary conditions for each of the 4 cor-

ners will give a further 8 equations. The final total

number of equations isM� N + 4, that is, 4 more

than the unknown coefficients. The fact that there

are more equations than the unknowns is not

a problem with the numerical solution proce-

dures. A least-squares method could be employed

to give a best set of solutions.

Discontinuous Boundary Conditions

For 2D or 3D problems, specified boundary con-

ditions at the corners could be discontinuous and

these could be a problem for some numerical
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procedures. An example is in the case where the

constant temperatures specified on the two sides

of the corner are different. Physically, discontin-

uous conditions should not exist, although in

some systems rapid temperature variations near

the corners could be possible. If this is the actual

situation, the preferred alternative is to consider

a different model for the boundary condition. For

the conduction problem with heat removing by

a coolant, the preferred model is the conjugate

boundary conditions in that both heat and heat

flux are specified to be continuous across the

boundary. A general boundary condition that

includes of the function as well as the function

derivative could also avoid discontinuity at the

corner. Anyhow, it should be noted that the col-

location approach outlined above is applicable

even when conditions at the corners are modeled

as discontinuous. This is possible because the

equations are solved for their least-squares solu-

tions including the least possible error at the

discontinuous boundary point.
Implementation of the Reduction
Procedures

Using the heat conduction equation, (21), as an

illustrating example, the substitution of the power

series for the temperature as well as its deriva-

tives at the collocation points given by (24) leads

to (M � 2) � (N � 2) algebraic equations as

follows:

XM;N

i;j

tij kr
ði�1Þði�2Þ

a2rR
2
m

þ i�1

arðarRmþbrÞRm

� 	�

þ kz
ðj�1Þðj�2Þ

a2z Z
2
n

�
Ri�1
m Zj�1

n

þQðRm;ZnÞ¼ 0; m¼ 1; . . . ;M�2;
n¼ 1; . . . ;N�2

ð25Þ

It should be noted that the division by Rm and

Zn in the equation above is just a convenient way
of making up the loss of power index through

differentiations. There is no other mathematical

implication.
Now, applying collocation to the boundary

conditions described by (17) and for R ¼ �1
and R ¼ 1 (corresponding to r ¼ ri and r ¼ ro)
gives 2 � (N � 2) equations:

XM;N

i;j

tij �
krði� 1Þ

ar
þ hrð�1; ZnÞ

� �
ð�1Þði�1ÞZj�1

n

¼ hrð�1; ZnÞTc; n ¼ 1; . . .N � 2;XM;N

i;j

tij
krði� 1Þ

ar
þ hrð1; ZnÞ

� �
Zj�1
n

¼ hrð1; ZnÞTc; n ¼ 1; . . .N � 2

ð26Þ

Similarly, for the boundary conditions at

Z ¼ �1 and Z ¼ 1 (corresponding to z ¼ 0 and

z ¼ h), there are 2 � (M � 2) equations:

XM;N

i;j

tij �
kzðj� 1Þ

az
þ hzð�1;RmÞ

� �
ð�1Þðj�1Þ

Ri�1
m ¼ hzð�1;RmÞTc; m ¼ 1; . . . ;M � 2;XM;N

i;j

tij
kzðj� 1Þ

az
þ hzð1;RmÞ

� �
Ri�1
m ¼ hzð1;RmÞTc; m ¼ 1; . . . ;M � 2

ð27Þ

There are eight equations from applying

collocation to the four corner points:
XM;N

i;j

tij �
krði�1Þ

ar
þhrð�1;�1Þ

� �
ð�1Þði�1Þð�1Þj�1

¼hrð�1;�1ÞTc;XM;N

i;j

tij �
krði�1Þ

ar
þhrð�1;1Þ

� �
ð�1Þði�1Þ

¼hrð�1;1ÞTc;XM;N

i;j

tij
krði�1Þ

ar
þhrð1;�1Þ

� �
ð�1Þj�1

¼hrð1;�1ÞTc;XM;N

i;j

tij
krði�1Þ

ar
þhrð1;1Þ

� �
¼hrð1;1ÞTc

ð28Þ
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XM;N

i;j

tij �
kzðj�1Þ

az
þhzð�1;�1Þ

� �
ð�1Þðj�1Þð�1Þi�1

¼hzð�1;�1ÞTc;XM;N

i;j

tij �
kzðj�1Þ

az
þhzð�1;1Þ

� �
ð�1Þðj�1Þ

¼hzð�1;1ÞTc;XM;N

i;j

tij
kzðj�1Þ

az
þhzð1;�1Þ

� �
ð�1Þi�1

¼hzð1;�1ÞTc;XM;N

i;j

tij
kzðj�1Þ

az
þhzð1;1Þ

� �
¼hzð1;1ÞTc

ð29Þ

For the displacements, there are two variables,

u and w, in (22). Applying the same collocation

procedures will give twice as many equations as

in the case of the conduction problem. Both sets

of simultaneous equations, one for the tempera-

tures and the other for the displacements, could

be solved by routines for least-squares solutions.

Having determined the coefficients, the power

series in (22) could be used to find solutions at

any positions in the computational space, while

(19) could be used if conversion to the physical

space is required.

Numerical Example 1

For this example, dimensionless quantities based

on (18) are used. The chosen hollow and finite

cylinder has ro ¼ 1.0, ri ¼ 0.6, and ‘ ¼ 2.0 with

material constants 1.0, 0.25, 0.25, 1.0, and 0.25

for C11, C12, C13, C33, and C44, respectively. The

values for ar and az are 1.0 and 0.95. For the

stresses, the boundary conditions include zero

stresses at the curved surfaces and sz ¼ 0 and

@u=@z ¼ 0 at the z ¼ l plane. Assuming symme-

try, the conditions at the z ¼ 0 are w ¼ 0 and

@w=@z ¼ 0:

For the heat conduction problem, the system

parameters chosen are kr ¼ kz ¼ 1.0 and Q ¼ 1.0.

The boundary conditions are given in (24)–(27). It

is chosen for this particular example that T ¼ 0 at

r ¼ ri (i.e., R ¼ �1, kr ¼ 0, hr ¼ 1 and Tc ¼ 0);

@T=@R ¼ 0 at r¼ ro (i.e.,R¼ 1, kr¼ 1, hc¼ 0 and
Tc ¼ 0); @T=@R ¼ 0 at z ¼ 0 (i.e., at Z ¼ �1,
kz ¼ 1, hz ¼ 0 and Tc ¼ 0); T ¼ 0 at z ¼ l (i.e.,

at Z¼ 1, kz¼ 0, hz¼ 1 and Tc¼ 0). UsingM¼ 10

and N ¼ 20, the stresses obtained are shown

in Fig. 1.

Long Cylinder Solutions

From Fig. 1, it can be seen that the stresses over

a distance more than three times of the wall

thickness measured from the top end are no lon-

ger dependent of z. These stresses are known as

long cylinder solutions as z-dependency could be
discarded. Under an axially symmetric tempera-

ture field T(r), axially independent boundary con-

ditions, and assuming plane strain and w ¼ 0, the

radial displacement equation (The first of the two

equations in (11) without the z-dependent terms)

can be integrated analytically to give
uðrÞ ¼ p1
c11

1

r

ðr
ro

TðrÞrdr þ A1r þ
A2

r
ð30Þ

where A1 and A2 are integration constants that

could be found from the given boundary condi-

tions. The corresponding stresses for a displace-

ment field given by (30) are

sr ¼�
p1
c11

c11� c12
r2

ðr
ro

TðrÞrdrþðc11þ c12ÞA1

�ðc11� c12ÞA2=r
2

sy¼
p1
c11

c11� c12
r2

ðr
ro

TðrÞrdrþðc11þc12ÞA1

þðc11� c12ÞA2=r
2þp1

c12
c11
�1

� 	
TðrÞ

ð31Þ

There is also an axial stress,
sz ¼ 2c13A1 þ ðc13p1=c11 � p2ÞT þ A3 ð32Þ

where the constant A3 is determined from the

condition that the axial resultant force is zero.

It is easy to obtain an analytical solution for the

temperatures from the axially independent form
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of the heat conduction equation, (21). As it can

be seen from results plotted in Fig. 2, the long

cylinder solutions for the example used above

are the same as the numerical results at the same

locations. In fact, designs for long cylinders that

require considerations of thermal stresses are

often based on those analytical solutions. It is

also convenience to use them to investigate

various factors that could influence thermal

stresses, as it is done in the examples given

below.

Thermal Designs as a Stress Reduction

Strategy

It is obvious that thermal stresses could be

lowered by reducing temperature gradients. In

the previously solved numerical example, the

boundary condition at ro was set at @T=@r ¼ 0:

(i.e., completely insulated). Simulation results

shown in Table 1 indicate that if more and more

heat is allowed to be removed from that bound-

ary, the maximum stresses could be lowered.
Effects of Anisotropic Properties

Using the long cylinder solutions for the numer-

ical example, results in Table 2 show that aniso-

tropic properties only have relatively small

influence on the stresses.

End Stresses

From Fig. 1, it could be seen that the stress fields

near the top are quite different to those at the rest

of the cylinder. As temperatures change rapidly

from the main body to comply with the thermal

boundary condition at the top end, the large tem-

perature gradients are responsible for higher

stresses in this end region. The effects on the

temperature and displacement fields can be seen

from the contour plots shown in Fig. 3a–b.

Designs of equipment involving heat trans-

fers need to consider end stresses as they may be

much higher than the long cylinder solutions. On

the other hand, the thermal gradients could be

changed by controlling the rate of heat leaving

the top end (i.e., by changing the heat transfer



Axisymmetric Thermal Stresses in an Anisotropic
Finite Hollow Cylinder, Table 1 Maximum stress

reduction fractions due to thermal boundary condition

changes at r ¼ ro (The first case is used as the reference)

hr sr=ðsrÞref sy=ðsyÞref sz=ðszÞref
0 1 1 1

0.5 0.811 0.836 0.836

1 0.686 0.722 0.722

5 0.333 0.421 0.421

Axisymmetric Thermal Stresses in an Anisotropic
Finite Hollow Cylinder, Table 2 Maximum stress

intensity comparisons for various combinations of aniso-

tropic properties (The first case is used as the reference)

C11 C12 C13 C33 sr=ðsrÞref sy=ðsyÞref sz=ðszÞref
1 0.25 0.25 1 1 1 1

1 0.25 0.25 0.9 1 1 0.911

1 0.25 0.25 1.1 1 1 1.089

1 0.25 0.3 1 1.033 1.033 1.009

1 0.25 0.2 1 0.967 0.967 0.987

1 0.3 0.25 1 0.964 0.964 0.989

1 0.2 0.25 1 1.031 1.031 1.011
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coefficient). Table 3 shows how end stresses

are reduced by lowering the heat transfer

coefficient.
Systems with Nonlinear Material
Properties

The displacement (10) has been derived from

linear elasticity. Throughout the body under con-

sideration, the linear stress–strain relations

should hold everywhere. However, the stiffness

coefficients or other material properties could be

temperature or stress dependent, such that (10) is

in fact a nonlinear problem. Numerically, the

pseudospectral methods could still be used to
reduce the differential equations into algebraic

equations that are now nonlinear. Numerical pro-

cedures for nonlinear problems are then needed to

solve the algebraic equations. There are many

different methods available with various degree

of efficiency. One method, the pseudo-transient

approach, is chosen and described below because

it is also being used for real transient problems.

During a temperature transient, maximum stress

level developed could be exceeding that of the

steady state. Although this entry will not deal

with transient stresses, it should be noted that

given the temperature field at any time instant,
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Stresses in an
Anisotropic Finite
Hollow Cylinder,
Fig. 3 Solution contours

for the numerical example:

(a) temperature, (b) radial

displacement, (c) axial

displacement, and (d)

temperature with partial

insulation at the top end

Axisymmetric Thermal Stresses in an Anisotropic
Finite Hollow Cylinder, Table 3 Maximum end stress

intensity factors for different heat transfer coefficients at

the top end (The long cylinder solutions are used as

references)

hz sr=ðsrÞref sy=ðsyÞref sz=ðszÞref
100 2.777 0.909 0.781

10 2.164 0.948 0.828

5 1.771 0.976 0.867

1 1.026 1.086 0.943

100 (with temperature

dependent

conductivity)

2.127 0.875 0.757
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the methodology of solving for the transient

stresses is the same as those described in this

entry. When the stress problems involve

nonlinear properties, the same principles used in

the temperature solutions, as described below,

could be employed to obtain a set of nonlinear

algebraic equations for the displacements.
The Pseudo-Transient Approach

Like many other boundary value problems, solu-

tions of the heat conduction equation could be

taken to be the stationary solutions of a transient

equation which need not be exactly in the same

form as the real transient heat conduction

equation. This is the reason why the term

pseudo-transient is used. After rearranging the

differentiation terms, the heat conduction equa-

tion (15) could be written as a pseudo-transient

problem where the variable t does not represent
real time:

@Tðr;zÞ
@t

¼ kr
@2

@r2
þ1

r

@

@r

� 	
þ@kr

@r

@

@r

�
þ kz

@2

@z2
þ@kz

@z

@

@z

�
Tðr;zÞþQðr;zÞ

¼ Lðr;z; t;TÞTðr;zÞþQðr;zÞ
ð33Þ

where the operator L is written symbolically as

dependent of t and T as thermal conductivity

could be temperature dependent.
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When applying the Lanczos-Chebyshev

pseudospectral spatial discretization formulation,

it is necessary to approximate the coefficients in

(33) by power series so that their values as well as

their derivatives are available at the collocation

points. For the pseudo-time term, the uncondition-

ally stable Crank-Nicholson formulation could be

used to reduce the equation to a discrete one:
Tjþ1�Tj

Dt

¼ 1

2
Lðr;z; tjþ1;Tjþ1ÞTjþ1þLðr;z; tj;TjÞTj
� �

þQ

where the superscript j refers to the pseudo-time

step. With the temperature field represented by

a power series and applying collocation method

at the Chebyshev points, (24) is reduced to a set of

nonlinear algebraic equations that could be

solved by be a stepwise manner until the station-

ary solutions are reached. The step size Dt should
be small enough to avoid the exponential growth

of truncation errors.
Numerical Example 2

The previous numerical example under the same

boundary conditions is chosen. All the system

parameters are the same with the exception that

the thermal conductivity is temperature dependent:

kr ¼ kz ¼ 1þ 0:1 Tðr; zÞ þ 0:1 T2ðr; zÞ

The temperature solutions compared with

those of constant thermal conductivity are

shown in Fig. 4. From the temperature contours,

it can be seen that the higher conductivity

introduced by the temperature dependency has

decreased the temperature maxima and the

temperature gradients. At the top end, stress

intensities have also decreased as shown in

Table 3 (last row).
Concluding Remarks

As in the example of a hollow cylinder of

finite length and under a given axisymmetric
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temperature field, the mathematical models to

predict thermal stresses could be derived from

basic geometrical relationships, heat, and force

balances. The models are a set of partial differ-

ential equations that could be too complex to

have analytical solutions. To overcome these

difficulties, reduction techniques could be used

to convert the governing equations to a set of

algebraic equations. Some mathematical diffi-

culties are still present in this set of equations

such as how to deal with nonlinearity. However,

procedures well established in numerical analy-

sis are available and could be used to give

solutions.

Areas within the theory of linear elasticity but

not covered by this entry include bodies of non-

rectangular shapes, layered structures, and three-

dimensional problems. The possibilities of using

domain subdivision to improve efficiency and

flexibility have not been explored in this entry.

However, the methodology described in this

entry could be further developed to include

these areas.

The potential to use the LCPS method for

stress analysis has been demonstrated in exam-

ples used in this entry. There are clear evi-

dences that solutions could be obtained with

a far smaller number of grid points than both

finite differences and finite element methods.

Further research is needed to develop the

LCPS method into a general purpose stress

analysis tool.
References

1. Bower AF (2010) Applied mechanics of solids. CRC

Press, Boca Raton

2. Chen PYP, Malomed BA (2011) Lanzos-Chebyshev

pseudospectral methods for wave-propagation prob-

lems. Math Comput Simul. doi:10.1016/j.

matcom.2011.05.013

3. Cook RD (1995) Finite element modeling for stress

analysis. Wiley, New York

4. Gottlieb D, Orszag SA (1977) Numerical analysis of

spectral methods: theory and applications. SIAM,

Philadelphia

5. Krysl P (2006) A pragmatic introduction to the finite

element method for thermal and stress analysis. World

Scientific, Singapore
Axisymmetric Thermal Stresses
in Disks

Naotake Noda

Shizuoka University, Hamamatsu, Japan
Overview

Mechanical and structural bodies are frequently

subjected to both mechanical loads and tempera-

ture changes. The mechanical and structural ele-

ments are three-dimensional bodies such as

rectangular bars, cylindrical bars, and spheres.

The analysis of three-dimensional bodies typi-

cally relies on displacement potentials, such as

Goodier’s displacement function, Papkovich-

Neuber functions, Michell’s function, and

Boussinesq’s functions.

Two-dimensional axisymmetric thermal

stresses in disks subjected to two-dimensional

temperature changes are considered in the

cylindrical coordinate system (r, z). Goodier’s

displacement function, Michell’s function, and

Boussinesq’s function are introduced. The tran-

sient thermal stress in an infinite disk with

thickness 2 h is discussed. Next, the transient

thermal stress in a disk with radius a and thick-

ness 2 h is explained. In this case, the analytical
treatment is complex in order to satisfy the

boundary conditions on both the circular and

the flat surfaces.
Basic Equations in the Cylindrical
Coordinate System (r, z)

The governing equations for axisymmetric

thermoelastic problems in the cylindrical coordi-

nate system (r, z) are summarized as follows [1]:

The equilibrium equations are
@srr
@r
þ @szr

@z
þ srr � syy

r
þ Fr ¼ 0

@srz
@r
þ @szz

@z
þ srz

r
þ Fz ¼ 0

ð1Þ
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where Fr and Fz denote the body forces in the r
and z axes, respectively. The strains are defined

by displacements ur and uz:

err ¼
@ur
@r

; eyy ¼
ur
r
; ezz ¼

@uz
@z

ezr ¼
1

2

�
@ur
@z
þ @uz

@r

	
; ery ¼ eyz ¼ 0

e ¼ err þ eyy þ ezz ¼
@ur
@r
þ ur

r
þ @uz

@z

ð2Þ

Hooke’s law is
err ¼
1

E
ðsrr � nsyy � nszzÞ þ at

eyy ¼
1

E
ðsyy � nszz � nsrrÞ þ at

ezz ¼
1

E
ðszz � nsrr � nsyyÞ þ at

erz ¼
1

2G
srz

ð3Þ

The alternative forms are
srr ¼ 2merr þ le� bt

syy ¼ 2meyy þ le� bt

szz ¼ 2mezz þ le� bt

srz ¼ 2merz

ð30Þ

in which E; G; n; l; m; a and b are Young’s

modulus, the shear modulus, Poisson’s

ratio, Lame’s constants, the coefficient of

linear thermal expansion, and the thermoelastic

constant ðb ¼ að3lþ 2mÞ ¼ aE=ð1� 2nÞÞ,
respectively.

Navier’s equation is

ðlþ 2mÞ@e
@r
�m �@2ur

@z2
þ @2uz
@r@z

� 	
�b

@t
@r
þFr ¼ 0

ðlþ 2mÞ@e
@z
�m

1

r

@ur
@z
þ @2ur
@r@z

�@2uz
@r2
� 1

r

@uz
@r

� 	
�b@t

@z
þFz ¼ 0

ð4Þ

Navier’s equation, as expressed by (4), with-

out body forces can be solved by Goodier’s
thermoelastic potential F and Boussinesq’s har-

monic functions ’ and c:

ur ¼
@F
@r
þ @’

@r
þ z

@c
@r

uz ¼
@F
@r
þ @’

@z
þ z

@c
@z
� ð3� 4nÞc

ð5Þ

where the three functions satisfy:

H2F ¼ 1þ n
1� n

at; H2’ ¼ H2c ¼ 0 ð6Þ

and H2 ¼ @2

@r2 þ 1
r

@
@r þ @2

@z2

The stress components are
srr ¼ 2G
@2F
@r2
�1þ n
1� n

atþ@2’

@r2
þ z

@2c
@r2
�2n

@c
@z

� �
syy¼ 2G

1

r

@F
@r
�1þ n
1� n

atþ1

r

@’

@r
þ z

r

@c
@r
�2n

@c
@z

� �
szz¼ 2G

@2F
@z2
�1þ n
1� n

atþ@2’

@z2
þ z

@2c
@z2
�2ð1� nÞ@c

@z

� �
srz¼ 2G

@2F
@r@z

þ @2’

@r@z
þ z

@2c
@r@z

�ð1�2nÞ@c
@z

� �
ð7Þ

The solutions of the Laplace equation (6) in

the cylindrical coordinate system are
1

ln r

� 	
1

z

� 	
;

J0ðarÞ
Y0ðarÞ

� 	
expðazÞ
expð�azÞ

� 	
J0ðarÞ
Y0ðarÞ

� 	
coshaz

sinhaz

� 	
;

I0ðarÞ
K0ðarÞ

� 	
cos az

sinaz

� 	
ð8Þ

where J0(ar) and Y0(ar) are Bessel functions of

the first and second kind, of order n, respectively,
I0(ar) and K0(ar) are modified Bessel functions

of the first and second kind, of order n,

respectively, a is an arbitrary constant, and

1

ln r

� 	
1

z

� 	
means

1

ln r
z

z ln r

0BB@
1CCA

Here, Michell’s function M is related to

Boussinesq’s harmonic functions ’ and c:

M ¼ �
ð
ð’þ zcÞdz ð9Þ
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Michell’s function M must satisfy the

equation:
A

H2H2M ¼ 0 ð10Þ

The displacements and the stresses are

represented by
ur ¼
@F
@r
� @2M

@r@z

uz ¼
@F
@z
þ 2ð1� nÞH2M � @2M

@z2

ð11Þ

srr ¼ 2G
@2F
@r2
� 1þ n
1� n

atþ @

@z
ðnH2M� @2M

@r2
Þ

� �
syy ¼ 2G

1

r

@F
@r
� 1þ n
1� n

atþ @

@z
ðnH2M� 1

r

@M

@r
Þ

� �
szz ¼ 2G

@2F
@z2
� 1þ n
1� n

atþ @

@z
ð2� nÞH2M� @2M

@z2

� �
 �
srz ¼ 2G

@2F
@r@z

þ @

@r
ð1� nÞH2M� @2M

@z2

� �
 �
ð12Þ

The solutions of the bi-Laplace equation (10)

in the cylindrical coordinate system are
1

lnr

r2

r2 lnr

0BBB@
1CCCA 1

z

� 	
;

J0ðarÞ
Y0ðarÞ
rJ1ðarÞ
rY1ðarÞ

0BBB@
1CCCA expðazÞ

expð�azÞ

� 	

J0ðarÞ
Y0ðarÞ
rJ1ðarÞ
rY1ðarÞ

0BBB@
1CCCA coshaz

sinhaz

� 	
;

I0ðarÞ
K0ðarÞ
rI1ðarÞ
rK1ðarÞ

0BBB@
1CCCA cosaz

sinaz

� 	

1

lnr

� 	
z2

z3

� 	
;

J0ðarÞ
Y0ðarÞ

� 	
zexpðazÞ
zexpð�azÞ

� 	
J0ðarÞ
Y0ðarÞ

� 	
zcoshaz

zsinhaz

� 	
;

I0ðarÞ
K0ðarÞ

� 	
zcosaz

zsinaz

� 	
ð13Þ

We consider two problems:

[Case I] Transient thermal stress in an infinite

disk with thickness 2 h.

[Case II] Transient thermal stress in a disk with

radius a and thickness 2 h.
[Case I] Transient Thermal Stress in an
Infinite Disk with Thickness 2 h

Consider transient temperature in an infinite cir-

cular disk with thickness 2 h. The governing

equation for the transient temperature without

internal heat generation is

1

k
@T

@t
¼ @2T

@r2
þ 1

r

@T

@r
þ @2T

@z2
ð14Þ

The boundary condition is
� l
@T

@z
¼ �hb½T � TbðrÞ� on z ¼ �h ð15Þ

where Tb(r) denotes the surrounding temperature,

l is the heat conductivity, and hb denotes the heat
transfer coefficient on the flat surfaces.

The initial condition is
T ¼ Ti at t ¼ 0 ð16Þ

We introduce the temperature change

t (¼T � Ti) from the constant initial temperature

Ti. The governing equation, boundary conditions,
and initial condition reduce to

1

k
@t
@t
¼ @2t

@r2
þ 1

r

@t
@r
þ @2t

@z2
ð14’Þ

�l@t
@z
¼�hbft�½TbðrÞ�Ti�g on z¼�h ð15’Þ

t ¼ 0 at t ¼ 0 ð16’Þ

Here, we introduce the method of separation

of variables to obtain the general solution of

(14’). When the temperature is expressed as
tðr; z; tÞ ¼ f ðrÞgðzÞhðtÞ ð17Þ

three separation equations can be obtained by

substitution of (17) into (14’):

dhðtÞ
dt
þ kðs2 þ p2ÞhðtÞ ¼ 0

d2f ðrÞ
dr2

þ 1

r

df ðrÞ
dr
þ s2f ðrÞ ¼ 0

d2gðzÞ
dz2

þ p2gðzÞ ¼ 0

ð18Þ
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The solutions of (18) are
hðtÞ ¼1; f ðrÞ ¼ J0ðsrÞ; Y0ðsrÞ
gðzÞ ¼ cosh sz; sinh sz for p2 ¼ �s2

hðtÞ ¼1; f ðrÞ ¼ I0ðprÞ; K0ðprÞ
gðzÞ ¼ cos pz; sin pz for s2 ¼ �p2

hðtÞ ¼ exp½�kðs2 þ p2Þt� for s2 þ p2 6¼ 0

f ðrÞ ¼1; ln r for s ¼ 0

f ðrÞ ¼J0ðsrÞ; Y0ðsrÞ for s 6¼ 0

gðzÞ ¼1; z for p ¼ 0

gðzÞ ¼ cos pz; sin pz for p 6¼ 0

ð19Þ

The general solution of (14’) for this problem

is expressed by
tðr; zÞ ¼
ð1
0

sJ0ðsrÞfAðsÞ cosh sz

þ
X1
m¼1

AmðsÞ cos pmz exp½�kðsþ p2mÞt�gds

ð20Þ

First, we express the surrounding temperature

Tb(r) � Ti by the Bessel integral:
TbðrÞ � Ti ¼
ð1
0

TbsðsÞsJ0ðsrÞds ð21Þ

where
TbsðsÞ ¼
ð1
0

½TbðrÞ � Ti�rJ0ðsrÞdr ð22Þ

Taking into consideration the boundary con-

ditions given by (15’), we can obtain that pm are

the eigenvalues of the equation:
ðhbh=lÞ cos pmh� pmh sin pmh ¼ 0 ð23Þ

and

AðsÞ ¼ ðhbh=lÞTbsðsÞ
ðhbh=lÞ cosh shþ sh sinh sh

ð24Þ
The initial condition (16’) givesX1
m¼1

AmðsÞ cos pmz ¼ �AðsÞ cosh sz ð25Þ

Multiplying cospnz on both sides of (25) and

integrating from 0 to h, we get

X1
m¼1

AmðsÞ
ðh
0

cos pmz cos pnzdz

¼ �AðsÞ
ðh
0

cosh sz cos pnzdz

ð26Þ

Taking into consideration the integral results
ðh
0

cos pmz cos pnzdz

¼
0 m 6¼ n

ðcos pnh sin pnhþ pnhÞ=ð2pnÞ m ¼ n



ð
cosh sz cos pnzdz

¼ 1

s2 þ p2n
½ pn cosh sz sin pnzþ s sinh sz cos pnz�

An(s) can be determined as

AnðsÞ ¼ �
2TbsðsÞp2nh2

½cos pnhþ pnh= sin pnh�ðs2h2 þ p2nh
2Þ
ð27Þ

Then, the temperature change t is determined by

tðr; zÞ ¼
ð1
0

sJ0ðsrÞTbsðsÞ

�



hbh=l
ðhbh=lÞ cosh shþ sh sinh sh

cosh sz

� 2
X1
m¼1

p2mh
2

½cos pmhþ pmh= sin pmh�ðs2h2 þ p2mh
2Þ

� cos pmz exp½�kðsþ p2mÞt�
�
ds

ð28Þ

Next, we consider the thermal stresses under

the boundary conditions

szz ¼ szr ¼ 0 at z ¼ �h ð29Þ
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Goodier’s thermoelastic function F and

Michell’s functions M for this problem are:
A

Fðr; z; tÞ ¼ 1þ n
1� n

a
ð1
0

sJ0ðsrÞ


AðsÞ
2s

z sinh sz

�
X1
m¼1

AmðsÞ
s2 þ p2m

cos pmz exp½�kðs2 þ p2mÞt�
�
ds

ð30Þ

Mðr; zÞ ¼
ð1
0

sJ0ðsrÞ½C0ðsÞ sinh szþ D0ðsÞz cosh sz�ds

ð31Þ

Substitution of (30) and (31) into (11) and (12)

gives the displacements and thermal stresses as

follows:
ur ¼
ð1
0

s2J1ðsrÞ
�
sC0ðsÞ cosh sz

þ D0ðsÞðcosh szþ sz sinh szÞ

� 1þ n
1� n

a


AðsÞ
2s

z sinh sz�
X1
m¼1

AmðsÞ
s2 þ p2m

� cos pmz exp½�kðs2 þ p2mÞt�
�	

ds

ð32Þ

uz ¼
ð1
0

sJ0ðsrÞ


� C0ðsÞs2 sinh sz

þ D0ðsÞs½2ð1� 2nÞ sinh sz� sz cosh sz�

þ 1þ n
1� n

a
AðsÞ
2s
ðsinh szþ sz cosh sz Þ



þ
X1
m¼1

pmAmðsÞ
s2 þ p2m

sin pmz exp½�kðs2 þ p2mÞt�
�
ds

ð33Þ

srr
2G
¼
ð1
0

s

�
C0ðsÞs3½J0ðsrÞ �

1

rs
J1ðsrÞ� cosh sz

þ D0ðsÞs2


2nJ0ðsrÞ cosh sz

þ ½J0ðsrÞ �
1

sr
J1ðsrÞ�ðcosh szþ sz sinh szÞ

�

� 1þ n
1� n

a


AðsÞ
2

J0ðsrÞð2 cosh szþ sz sinh szÞ

� AðsÞ
2

J1ðsrÞ
sr

sz sinh sz

þ
X1
m¼1

AmðsÞ
1

s2 þ p2m
½ p2mJ0ðsrÞ þ

s2

sr
J1ðsrÞ�

� cos pmz exp½�kðs2 þ p2mÞt�
�	

ds

ð34Þ

syy
2G
¼
ð1
0

s

�
s3C0ðsÞ

1

sr
J1ðsrÞ cosh sz

þ s2D0ðsÞ½2nJ0ðsrÞ cosh sz

þ 1

rs
J1ðsrÞðcosh szþ sz sinh szÞ�

� 1þ n
1� n

a


AðsÞ
2
½2J0ðsrÞ cosh sz

þ 1

sr
J1ðsrÞsz sinh sz � þ

X1
m¼1

AmðsÞ

� ½J0ðsrÞ �
s2

s2 þ p2m

1

sr
J1ðsrÞ�

� cos pmz exp½�kðs2 þ p2mÞt�
�	

ds ð35Þ

szz
2G
¼ �

ð1
0

sJ0ðsrÞ
�
s3C0ðsÞ cosh sz

� s2D0ðsÞ½ð1� 2nÞ cosh sz� sz

� sinh sz� þ 1þ n
1� n

af�AðsÞ
2

sz

� sinh sz þ
X1
m¼1

s2AmðsÞ
s2 þ p2m

cos pmz

� exp½�kðs2 þ p2mÞt�g
	
ds ð36Þ

srz
2G
¼
ð1
0

s2J1ðsrÞ
 
s2C0ðsÞ sinh sz

þ sD0ðsÞð2n sinh szþ sz cosh szÞ

� 1þ n
1� n

a
AðsÞ
2s
ðsinh szþ sz cosh szÞ



þ
X1
m¼1

pmAmðsÞ
s2 þ p2m

sin pmz exp½�kðs2 þ p2mÞt�
�!

ds

ð37Þ
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The unknown coefficients C0 and D0 can be

determined by the boundary conditions given

by (29).
s3C0ðsÞ ¼
1þ n
1� n

a


AðsÞ
2
ð1� 2nÞ

�sh

sh½2nþ ðhbh=lÞ� sinh sh

½s2h2 � ðhbh=lÞð1� 2nÞ� cosh sh
sinh sh cosh shþ sh

�
X1
m¼1

AmðsÞ cos pmh
s2h2 þ p2mh

2
exp½�kðs2 þ p2mÞt�

�
s2D0ðsÞ ¼

1þ n
1� n

a


AðsÞ
2

þsh ðhah=lÞ cosh shþ sh sinh sh

cosh sh sinh shþ sh

�
X1
m¼1

AmðsÞ cos pmh
s2h2 þ p2mh

2
exp½�kðs2 þ p2mÞt�

�
ð38Þ
[Case II] Transient Thermal Stress in
a Disk with Radius a and Thickness 2h

The governing equation for transient temperature

without internal heat generation is given by

(14) [2]. The boundary conditions are
�l @T
@r
¼ haðT � TiÞ at r ¼ a

�l @T
@z
¼� hb½T � TbðrÞ� at z ¼ �h

ð39Þ

where Tb(r) denotes the surrounding temperature,

l is the heat conductivity, and ha and hb denote

the heat transfer coefficients on the circular and

flat surfaces, respectively.

The initial condition is
T ¼ Ti at t ¼ 0 ð40Þ

We introduce the temperature change t
(¼T � Ti) from the constant initial temperature

Ti. The governing equation, boundary conditions,

and initial condition reduce to
1

k
@t
@t
¼ @2t

@r2
þ 1

r

@t
@r
þ @2t

@z2
ð14’Þ

� l
@t
@r
¼ hat on r ¼ a

� l
@t
@z
¼ �hb



t� ½TbðrÞ � Ti�

�
on z ¼ �h

ð39’Þ

t ¼ 0 at t ¼ 0 ð40’Þ

Using the method of separation of variables,

the general solution of (14’) for this problem is

expressed by

tðr; zÞ ¼
X1
n¼1

J0ðsnrÞ


An cosh snz

þ
X1
m¼1

Anm cos pmz exp½�kðs2n þ p2mÞt�
�
ð41Þ

Taking into consideration the boundary con-

dition given by the first equation (39’), sn are the
eigenvalues of the equation

snaJ1ðsnaÞ � ðhaa=lÞJ0ðsnaÞ ¼ 0 ð42Þ

We express the surrounding temperature Tb(r)

as the Bessel series:

TbðrÞ � Ti ¼
X1
n¼1

TbnJ0ðsnrÞ ð43Þ

where
Tbn ¼
2s2n

J20ðsnaÞ½s2na2 þ ðhaa=lÞ
2�

�
ða
0

½TbðrÞ � Ti�rJ0ðsnrÞdr
ð44Þ

and pm are the eigenvalues of the equation that

satisfies the boundary condition (39’), i.e.,

z ¼ �h
ðhbh=lÞ cos pmh� pmh sin pmh ¼ 0 ð45Þ
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A

and

An ¼
Tbnðhbh=lÞ

ðhbh=lÞ cosh snhþ snh sinh snh
ð46Þ

Taking into consideration the initial condition

(40’), the unknown constants can be

determined as
Anm ¼ �
2p2mh

2Tbn
½cos pmhþ pmh= sin pmh�ðs2nh2 þ p2mh

2Þ
ð47Þ

Then the temperature change t is expressed by:
tðr; zÞ ¼
X1
n¼1

J0ðsnrÞ


An cosh snz

þ
X1
m¼1

Anm cos pmz exp½�kðs2n þ p2mÞt�
�

¼
X1
n¼1

J0ðsnrÞTbn



ðhbh=lÞ cosh snz
ðhbh=lÞ cosh snhþ snh sinh snh

� 2
X1
m¼1

p2mh
2

½cos pmhþ pmh= sin pmh�ðs2nh2 þ p2mh
2Þ

� cos pmz exp½�kðs2n þ p2mÞt�
�

ð48Þ

Next, we consider thermal stresses under the

following boundary conditions:
srr ¼ srz ¼ 0 on r ¼ a ð49Þ

szz ¼ szr ¼ 0 on z ¼ �h ð50Þ

Goodier’s thermoelastic function F, and

Michell’s function M for this problem are:
Fðr; z; tÞ ¼ 1þ n
1� n

a
X1
n¼1

J0ðsnrÞ



An

2sn
z sinh snz

�
X1
m¼1

Anm

s2n þ p2m
cos pmz exp½�kðs2n þ p2mÞt�

�
ð51Þ
Mðr; zÞ ¼ E0r
2zþ E

0

0z
3

þ
X1
n¼1

J0ðsnrÞ½CnðsnÞ sinh snzþ DnðsnÞz cosh snz�

þ
X1
i¼1

J0ðqirÞ½Ei sinh qizþ E
0

iz cosh qiz�

þ
X1
j¼1
½FjI0ðvjrÞ þ F

0

irI1ðvjrÞ� sin vjz

ð52Þ

where qi and vj are the eigenvalues for J0(qia)¼ 0

and sinvjh ¼ 0, respectively.

Substitution of (51) and (52) into (11) and (12)

gives the displacements and thermal stresses:
ur ¼ �2E0r þ
X1
n¼1

snJ1ðsnrÞ
 
snCnðsnÞ cosh snz

þ DnðsnÞðcosh snzþ snz sinh snzÞ

� 1þ n
1� n

a


AnðsnÞ
2sn

z sinh snz

�
X1
m¼1

Anm

s2n þ p2m
cos pmz exp½�kðs2n þ p2mÞt�

�!

þ
X1
i¼1

qiJ1ðqirÞ½qiEi cosh qiz

þ E
0

iðcosh qizþ qiz sinh qizÞ�

�
X1
j¼1
½v2j FjI1ðvjrÞ þ v2j F

0

jrI0ðvjrÞ� cos vjz

ð53Þ

uz¼ 8ð1� nÞE0zþ6ð1�2nÞE00z

þ
X1
n¼1

J0ðsnrÞf�CnðsnÞs2n sinhsnz

þDnðsnÞsn½2ð1�2nÞsinhsnz� snzcoshsnz�

þ1þ n
1� n

a


AnðsnÞ
2sn

ðsinhsnzþ snzcoshsnzÞ

þ
X1
m¼1

pmAnm

s2nþp2m
sinpmzexp½�kðs2nþp2mÞt�

�
þ
X1
i¼1

J0ðqirÞf�Eiq
2
i sinhqiz

þE
0

iqi½2ð1�2nÞsinhqiz�qizcoshqiz�

þ
X1
j¼1
fv2j FjI0ðvjrÞþ vjF

0

j½4ð1� nÞI0ðvjrÞ

þ vjrI1ðvjrÞ�gsinvjz ð54Þ
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srr
2G
¼�2ð1�2nÞE0þ6nE

0

0

þ
X1
n¼1

 
CnðsnÞs3n½J0ðsnrÞ�

1

rsn
J1ðsnrÞ�coshsnz

þDnðsnÞf2ns2nJ0ðsnrÞcoshsnz

þs2n½J0ðsnrÞ�
1

snr
J1ðsnrÞ�ðcoshsnz

þsnzsinhsnzÞg

�1þn
1�na



AnðsnÞ

2
J0ðsnrÞð2coshsnzþsnzsinhsnzÞ

�AnðsnÞ
2

J1ðsnrÞ
snr

snzsinhsnz

þ
X1
m¼1

Anm
1

s2nþp2m
½p2mJ0ðsnrÞ

þ s2n
snr

J1ðsnrÞ�cospmzexp½�kðs2nþp2mÞt�
�!

þ
X1
i¼1

 
Eiq

3
i ½J0ðqirÞ�

1

qir
J1ðqirÞ�coshqiz

þE0i


2nq2i J0ðqirÞcoshqiz

þq2i ½J0ðqirÞ�
1

qir
J1ðqirÞ�ðcoshqizþqizsinhqizÞ

�!

�
X1
m¼1



v3j Fj½I0ðvjrÞ�

1

vjr
I1ðvjrÞ�

þv2j F
0

j½ð1�2nÞÞI0ðvjrÞþvjrI1ðvjrÞ�
�
cosvjz

ð55Þ
syy
2G
¼� 2ð1� 2nÞE0 þ 6nE

0

0

þ
X1
n¼1

 
s3nCnðsnÞ

1

snr
J1ðsnrÞ cosh snz

þ s2nDnðsnÞ½2nJ0ðsnrÞ cosh snz

þ 1

snr
J1ðsnrÞðcosh snzþ snz sinh snzÞ�

� 1þ n
1� n

a


AnðsnÞ

2
½2J0ðsnrÞ cosh snz

þ 1

snr
J1ðsnrÞsnz sinh snz �

þ
X1
m¼1

Anm½J0ðsnrÞ �
s2n

s2n þ p2m

1

snr
J1ðsnrÞ�

� cos pmz exp½�kðs2n þ p2mÞt�
�!
þ
X1
i¼1

 
q3i Ei

1

qir
J1ðqirÞ cosh qiz

þ q2i E
0

i½2nJ0ðqirÞ cosh qiz

þ 1

qir
J1ðqirÞðcosh qizþ qiz sinh qizÞ�

!

�
X1
j¼1
½v3j Fj

1

vjr
I1ðvjrÞ

þ ð1� 2nÞv2j F
0

jI0ðvjrÞ� cos vjz ð56Þ

szz
2G
¼ 4ð2� nÞE0 þ 6ð1� nÞE00

�
X1
n¼1

J0ðsnrÞ
 
s3nCnðsnÞ cosh snz

� s2nDnðsnÞ½ð1� 2nÞ cosh snz � snz sinh snz�

þ 1þ n
1� n

a


� AnðsnÞ

2
snz sinh snz

þ
X1
m¼1

s2nAnm

s2n þ p2m
cos pmz exp½�kðs2n þ p2mÞt�

�!

�
X1
i¼1

J0ðqirÞ


q3i Ei cosh qiz

� q2i E
0

i½�ð1� 2nÞ cosh qizþ qiz sinh qiz�
�

þ
X1
j¼1



v3j FjI0ðvjrÞ

þ v2j F
0

j½2ð2� nÞI0ðvjrÞ þ vjrI1ðvjrÞ�
�
cos vjz

ð57Þ

srz
2G
¼
X1
n¼1

snJ1ðsnrÞ
�
s2nCnðsnÞ sinh snz

þ snDnðsnÞð2n sinh snzþ snz cosh snzÞ

� 1þ n
1� n

a


AnðsnÞ
2sn

ðsinh snzþ snz cosh snzÞ

þ
X1
m¼1

pmAnm

s2n þ p2m
sin pmz exp½�kðs2n þ p2mÞt�

�	
þ
X1
i¼1

qiJ1ðqirÞ½q2i Ei sinh qiz

þ qE
0

ið2n sinh qizþ qiz cosh qizÞ�
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þ
X1
j¼1



v3j FjI1ðvjrÞ

þ v2j F
0

j½2ð1� nÞI1ðvjrÞ þ vjrI0ðvjrÞ�
�
sin vjz

ð58Þ

The boundary conditions given by (50) give
s3nCnðsnÞ cosh snh
� s2nDnðsnÞ½ð1� 2nÞ cosh snh� snh sinh snh�

¼ 1þ n
1� n

a


AnðsnÞ

2
snh sinh snh

�
X1
m¼1

s2nAnm

s2n þ p2m
cos pmh exp½�kðs2n þ p2mÞt�

�
� s2nCnðsnÞ sinh snhþ snDnðsnÞ
ð2n sinh snhþ snh cosh snhÞ

¼ 1þ n
1� n

a


AnðsnÞ
2sn

ðsinh snhþ snh cosh snhÞ

þ
X1
m¼1

pmAnm

s2n þ p2m
sin pmh exp½�kðs2n þ p2mÞt�

�
ð59Þ

4ð2� nÞE0 þ 6ð1� nÞE00

�
X1
i¼1

J0ðqirÞfq3i Ei cosh qih

� q2i E
0

i½�ð1� 2nÞ cosh qihþ qiz sinh qih�g

þ
X1
j¼1
ð�1Þjfv3j FjI0ðvjrÞ þ v2j F

0

j

� ½2ð2� nÞI0ðvjrÞ þ vjrI1ðvjrÞ�g ¼ 0

ð60Þ

q3i Ei sinh qihþ q2i E
0

ið2n sinh qihþ qih cosh qihÞ ¼ 0

ð61Þ

The boundary conditions given by (49) give
� 2ð2� nÞE0 þ 6nE
0

0

þ
X1
n¼1

�
s3n½J0ðsnaÞ �

1

sna
J1ðsnaÞ�CnðsnÞ cosh snz

þ DnðsnÞf2ns2nJ0ðsnaÞ cosh snzþ s2n½J0ðsnaÞ
� 1

sna
J1ðsnaÞ�ðcosh snzþ snz sinh snzÞg �

1þ n
1� n

� a


AnðsnÞ

2
J0ðsnaÞð2 cosh snzþ snz sinh snzÞ

� AnðsnÞ
2

J1ðsnaÞ
sna

snz sinh snz

þ
X1
m¼1

Anm
1

s2n þ p2m
½p2mJ0ðsaÞ þ

s2n
sna

J1ðsaÞ�

cos pmz exp½�kðs2n þ p2mÞt�
�	

�
X1
i¼1

1

qia
J1ðqiaÞ½q3i Ei cosh qiz

þ E
0

iq
2
i ðcosh qizþ qiz sinh qizÞ�

�
X1
j¼1
fv3j Fj½I0ðvjaÞ �

1

vja
I1ðvjaÞ�

þ v2j F
0

j½ð1� 2nÞÞI0ðvjaÞ þ vjrI1ðvjaÞ�g cos vjz ¼ 0

ð62ÞX1
n¼1

snJ1ðsnaÞ
�
s2nCnðsnÞ sinh snz

þ snDnðsnÞð2n sinh snzþ snz cosh snzÞ

� 1þ n
1� n

a


AnðsnÞ
2sn

ðsinh snzþ snz cosh snzÞ

þ
X1
m¼1

pmAnm

s2n þ p2m
sin pmz exp½�kðs2n þ p2mÞt�g

	
þ
X1
i¼1

J1ðqiaÞ½q3i Ei sinh qiz

þ q2i E
0

ið2n sinh qizþ qiz cosh qizÞ�

þ
X1
j¼1



v3j FjI1ðvjaÞ

þ v2j F
0

j½2ð1� nÞI1ðvjaÞ þ vjrI0ðvjaÞ�g sin vjz ¼ 0

ð63Þ

The unknown coefficients Cn and Dn can be

determined by (59). In order to determine the

unknown coefficients E0, Eo

0
, Ei, Ei

0
, Fj, and Fj

0
in

(60)–(63),we expand themodifiedBessel functions

to a series of Bessel functions J0(qir) as follows:

I0ðvjrÞ ¼ G00
j0 þ

X1
i¼1

G00
ji J0ðqirÞ

rI1ðvjrÞ ¼ G10
j0 þ

X1
i¼1

G10
ji J0ðqirÞ

ð64Þ
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as well as expand the hyperbolic functions as

a series of trigonometric functions as follows:

coshðsnzÞ ¼ Hcc
n0 þ

X1
j¼1

Hcc
nj cosðvjzÞ

z sinhðsnzÞ ¼ Hsc
n0 þ

X1
j¼1

Hsc
nj cosðvjzÞ

sinhðsnzÞ ¼
X1
j¼1

Hss
nj sinðvjzÞ

z coshðsnzÞ ¼
X1
j¼1

Hcs
nj sinðvjzÞ

coshðqizÞ ¼ Qcc
n0 þ

X1
j¼1

Qcc
ij cosðvjzÞ

z sinhðqizÞ ¼ Qsc
n0 þ

X1
j¼1

Qsc
ij cosðvjzÞ

sinhðqizÞ ¼
X1
j¼1

Qss
ij sinðvjzÞ

z coshðqizÞ ¼
X1
j¼1

Qcs
ij sinðvjzÞ

cosðpmzÞ ¼ Fcc
m0 þ

X1
j¼1

Fcc
mj cosðvjzÞ

sinðpmzÞ ¼
X1
j¼1

Fss
mj sinðvjzÞ

ð65Þ

Substitution of (64) and (65) into (60), (62),

and (63) gives simultaneous linear equations to

determine the unknown coefficients E0, E0

0
, Ei,

Ei

0
, Fj, and Fj

0
.

q3i Ei cosh qih� q2i E
0

i½�ð1� 2nÞ cosh qih

þ qih sinh qih� �
X1
j¼1
ð�1Þjfv3j FjG

00
ji

þ v2j F
0

j½2ð2� nÞG00
ji þ vjG

10
ji �g ¼ 0

ð66Þ

q3i Ei sinh qihþ q2i E
0

ið2n sinh qihþ qih cosh qihÞ ¼ 0

ð67Þ

½I0ðvjaÞ �
1

vjr
I1ðvjaÞ�n3j Fj

þ ½ð1� 2nÞI0ðvjaÞ þ vjrI1ðvjaÞ�v2j F
0

j

�
X1
n¼1

�
s3n½J0ðsnaÞ �

1

sna
J1ðsnaÞ�CnðsnÞHcc

nj

þ DnðsnÞf2ns2nJ0ðsnaÞHcc
nj

þ s2n½J0ðsnaÞ �
1

sna
J1ðsnaÞ�ðHcc

nj þ snH
sc
njÞg

� 1þ n
1� n

a


AnðsnÞ

2
J0ðsnaÞð2Hcc

nj þ snH
sc
nj Þ

� AnðsnÞ
2

J1ðsnaÞ
sna

snH
sc
nj

þ
X1
m¼1

Anm
1

s2n þ p2m
½ p2mJ0ðsnaÞ

þ s2n
sna

J1ðsnaÞ�Fcc
mj exp½�kðs2n þ p2mÞt�

�	
þ
X1
i¼1

1

qia
J1ðqiaÞ½q3i EiQ

cc
ij

þ E
0

iq
2
i ðQcc

ij þ qiQ
cc
ij Þ� ¼ 0

ð68Þ

v3j FjI1ðvjaÞ þ v2j F
0

j½2ð1� nÞI1ðvjaÞ þ vjrI0ðvjaÞ�

þ
X1
n¼1

snJ1ðsnaÞ
�
s2nCnðsnÞHss

nj

þ snDnðsnÞð2nHss
nj þ snH

cs
nj Þ

� 1þ n
1� n

a


AnðsnÞ
2sn

ðHss
nj þ snH

cs
nj Þ

þ
X1
m¼1

pmAnm

s2n þ p2m
Fss
mj exp½�kðs2n þ p2mÞt�

�	
þ
X1
i¼1

J1ðqiaÞ½q3i EiQ
ss
ij þ q2i E

0

ið2nQss
ij þ qiQ

cs
ij Þ� ¼ 0

ð69Þ

Solving the simultaneous linear equations

(66)–(69), we can obtain the unknown coeffi-

cients Ei, Ei

0
, Fj, and Fj

0
. Furthermore,

4ð2� nÞE0 þ 6ð1� nÞE00

¼ �
X1
j¼1
ð�1Þjfv3j FjG

00
j0 þ v2j F

0

j½2ð2� nÞ

� G00
j0 þ vjG

10
j0 �g

ð70Þ

2ð1� 2nÞE0 � 6nE
0

0

¼
X1
n¼1

�
s3n½J0ðsnaÞ �

1

sna
J1ðsnaÞ�CnðsnÞHcc

n0
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þ DnðsnÞf2ns2nJ0ðsnaÞHcc
n0

þ s2n½J0ðsnaÞ �
1

sna
J1ðsnaÞ�ðHcc

n0 þ snH
sc
n0Þg

� 1þ n
1� n

a


AnðsnÞ

2
J0ðsnaÞð2Hcc

n0 þ snH
sc
n0Þ

� AnðsnÞ
2

J1ðsnaÞ
sna

snH
sc
n0

þ
X1
m¼1

Anm
1

s2n þ p2m
½p2mJ0ðsnaÞ

þ s2n
sna

J1ðsnaÞ�Fcc
m0 exp½�kðs2n þ p2mÞt�

�	
�
X1
i¼1

1

qir
J1ðqiaÞ½q3i EiQ

cc
i0 þ q2i E

0

iðQcc
i0 þ qiQ

sc
i0Þ�

ð71Þ

Solving the simultaneous linear equations (70)

and (71), we can obtain the unknown coefficients

E0 and Eo

0
.

We finally obtain the displacements and stresses

by substituting these coefficients into (53)–(58).
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Axisymmetric Thermal Stresses in
Solid Cylinders

Naotake Noda

Shizuoka University, Hamamatsu, Japan
Overview

Mechanical and structural bodies are frequently

subjected to both mechanical loads and temper-

ature changes. The mechanical and structural

elements are three-dimensional bodies such as

rectangular bars, cylindrical bars, and spheres.

The analysis of three-dimensional bodies

typically relies on displacement potentials,

such as Goodier’s displacement function, the
Papkovich-Neuber functions, Michell’s func-

tion, and Boussinesq’s functions.

Two-dimensional axisymmetric thermal

stresses in solid cylinders subjected to two-

dimensional temperature changes are considered

in the cylindrical coordinate system (r, z).
Goodier’s displacement function,Michell’s func-

tion, and Boussinesq’s function are introduced.

The transient thermal stress in an infinite solid

circular cylinder with radius a is discussed. Next,

the transient thermal stress in a finite solid circu-

lar cylinder with radius a and length 2l is

explained. In this case, the analytical treatment

is complex in order to satisfy the boundary con-

ditions on both the circular and the flat surfaces.
Basic Equations in the Cylindrical
Coordinate System (r, z)

The governing equations for axisymmetric

thermoelastic problems in the cylindrical coordi-

nate system (r, z) are summarized as follows [1]:

The equilibrium equations are:

@srr
@r
þ @szr

@z
þ srr � syy

r
þ Fr ¼ 0

@srz
@r
þ @szz

@z
þ srz

r
þ Fz ¼ 0

ð1Þ

where Fr and Fz denote the body forces in the r

and z axes, respectively. The strains are defined

by displacements ur and uz:

err ¼
@ur
@r

; eyy ¼
ur
r
; ezz ¼

@uz
@z

ezr ¼
1

2

� @ur
@z
þ @uz

@r



; ery ¼ eyz ¼ 0

e ¼ err þ eyy þ ezz ¼
@ur
@r
þ ur

r
þ @uz

@z

ð2Þ

Hooke’s law is:

err ¼
1

E
ðsrr � nsyy � nszzÞ þ at

eyy ¼
1

E
ðsyy � nszz � nsrrÞ þ at

ezz ¼
1

E
ðszz � nsrr � nsyyÞ þ at

erz ¼
1

2G
srz

ð3Þ
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The alternative forms are:
srr ¼ 2merr þ le� bt

syy ¼ 2meyy þ le� bt

szz ¼ 2mezz þ le� bt

srz ¼ 2merz

ð30Þ

in which E; G; n; l; m; a and b are Young’s

modulus, the shear modulus, Poisson’s ratio,

Lame’s constants, the coefficient of linear ther-

mal expansion, and the thermoelastic constant

ðb ¼ að3lþ 2mÞ ¼ aE=ð1� 2nÞÞ, respectively.
Navier’s equation is:
ðlþ 2mÞ @e
@r
� m
�
� @2ur

@z2
þ @2uz
@r@z



� b

@t
@r
þ Fr ¼ 0

ðlþ 2mÞ @e
@z

� m
� 1
r

@ur
@z
þ @2ur
@r@z

� @2uz
@r2
� 1

r

@uz
@r



� b

@t
@z
þ Fz ¼ 0

ð4Þ

Navier’s equation, as expressed by (4), with-

out body forces can be solved by Goodier’s

thermoelastic potential F and Boussinesq’s

harmonic functions j and c:
ur ¼
@F
@r
þ @’

@r
þ z

@c
@r

uz ¼
@F
@z
þ @’

@z
þ z

@c
@z
� ð3� 4nÞc

ð5Þ

where the three functions satisfy:
H2F ¼ 1þ n
1� n

at; H2’ ¼ H2c ¼ 0 ð6Þ

and H2 ¼ @2

@r2 þ 1
r

@
@r þ @2

@z2.

The stress components are:

srr ¼ 2G
h@2F
@r2
�1þ n
1� n

atþ@2’

@r2
þ z

@2c
@r2
�2n

@c
@z

i
syy¼ 2G

h1
r

@F
@r
�1þ n
1� n

atþ1

r

@’

@r
þ z

r

@c
@r
�2n

@c
@z

i

szz ¼ 2G
h @2F
@z2
� 1þ n
1� n

atþ @2’

@z2

þ z
@2c
@z2
� 2ð1� nÞ @c

@z

i
srz ¼ 2G

h @2F
@r@z

þ @2f
@r@z

þ z
@2c
@r@z

� ð1� 2nÞ @c
@z

i
ð7Þ

The solutions of the Laplace equation (6) in

the cylindrical coordinate system are:
1

ln r

� 	
1

z

� 	
;

J0ðarÞ
Y0ðarÞ

� 	
expðazÞ
expð�azÞ

� 	
J0ðarÞ
Y0ðarÞ

� 	
coshaz

sinhaz

� 	
;

I0ðarÞ
K0ðarÞ

� 	
cosaz

sinaz

� 	
ð8Þ

where J0(ar) and Y0(ar) are Bessel functions of

the first and second kind, of order n, respectively,

I0(ar) andK0(ar) are modified Bessel functions of

the first and second kind, of order n, respectively,

and a is an arbitrary constant.

Here, Michell’s function M is related to

Boussinesq’s harmonic functions ’ and c:

M ¼ �
ð
ð’þ zcÞdz ð9Þ

Michell’s function M must satisfy the

equation:
H2H2M ¼ 0 ð10Þ

The displacements and the stresses are

represented by:
ur ¼
@F
@r
� @2M

@r@z

uz ¼
@F
@z
þ 2ð1� nÞH2M � @2M

@z2

ð11Þ

srr¼2G

"
@2F
@r2
�1þn
1�n

atþ @

@z
nH2M�@2M

@r2

� 	#

syy¼2G

"
1

r

@F
@r
�1þn
1�n

atþ @

@z
nH2M�1

r

@M

@r

� 	#
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szz ¼ 2G
n @2F
@z2
� 1þ n
1� n

atþ @

@z

h
ð2� nÞH2M

� @2M

@z2

io
srz ¼ 2G

n @2F
@r@z

þ @

@r

h
ð1� nÞH2M � @2M

@z2

io
ð12Þ

The solutions of the bi-Laplace equation (10)

in the cylindrical coordinate system are:
1

lnr

r2

r2 lnr

0BBB@
1CCCA 1

z

� 	
;

J0ðarÞ
Y0ðarÞ
rJ1ðarÞ
rY1ðarÞ

0BBB@
1CCCA expðazÞ

expð�azÞ

� 	

J0ðarÞ
Y0ðarÞ
rJ1ðarÞ
rY1ðarÞ

0BBB@
1CCCA coshaz

sinhaz

� 	
;

I0ðarÞ
K0ðarÞ
rI1ðarÞ
rK1ðarÞ

0BBB@
1CCCA cosaz

sinaz

� 	

1

lnr

� 	
z2

z3

� 	
;

J0ðarÞ
Y0ðarÞ

� 	
zexpðazÞ
zexpð�azÞ

� 	
J0ðarÞ
Y0ðarÞ

� 	
zcoshaz

zsinhaz

� 	
;

I0ðarÞ
K0ðarÞ

� 	
zcosaz

zsinaz

� 	
ð13Þ
Transient Thermal Stress in an Infinite
Solid Circular Cylinder with Radius a

Consider transient temperature in an infinite solid

circular cylinder with radius a. The governing

equation for the transient temperature without

internal heat generation is:

1

k
@T

@t
¼ @2T

@r2
þ 1

r

@T

@r
þ @2T

@z2
ð14Þ

The boundary condition is:
� l
@T

@r
¼ hb½T � TbðzÞ� on r ¼ a ð15Þ

where Tb(z) denotes the surrounding temperature,

l is the heat conductivity, hb denotes the heat

transfer coefficient on the circular surface, and

Tb(z) ¼ Tb(�z) is assumed here.
The initial condition is:
T ¼ Ti at t ¼ 0 ð16Þ

We introduce the temperature change

t (¼T – Ti) from the constant initial temperature

Ti. The governing equation, boundary conditions,

and an initial condition reduce to:
1

k
@t
@t
¼ @2t

@r2
þ 1

r

@t
@r
þ @2t

@z2
ð14’Þ

� l
@t
@r
¼ hbft� ½TbðzÞ � Ti�g on r ¼ a ð15’Þ

t ¼ 0 at t ¼ 0 ð16’Þ

Here, we introduce the method of separation

of variables to obtain the solution of (14’). When

the temperature change is expressed as:
tðr; z; tÞ ¼ f ðrÞgðzÞhðtÞ ð17Þ

Three equations can be obtained by substitu-

tion of (17) into (14’):
dhðtÞ
dt
þ kðs2 þ p2ÞhðtÞ ¼ 0

d2f ðrÞ
dr2

þ 1

r

df ðrÞ
dr
þ p2f ðrÞ ¼ 0

d2gðzÞ
dz2

þ s2gðzÞ ¼ 0

ð18Þ

The solutions of (18) are:
hðtÞ ¼ 1; f ðrÞ ¼ J0ðprÞ; Y0ðprÞ
gðzÞ ¼ cosh pz; sinh pz for s2 ¼ �p2

hðtÞ ¼ 1; f ðrÞ ¼ I0ðsrÞ; K0ðsrÞ
gðzÞ ¼ cos sz; sin sz for p2 ¼ �s2

hðtÞ ¼ exp½�kðs2 þ p2Þt� for s2 þ p2 6¼ 0

f ðrÞ ¼ 1; ln r for p ¼ 0

f ðrÞ ¼ J0ðprÞ; Y0ðprÞ for p 6¼ 0

gðzÞ ¼ 1; z for s ¼ 0

gðzÞ ¼ cos sz; sin sz for s 6¼ 0

ð19Þ
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The general solution of (14’) for this problem

is expressed by:
tðr;zÞ¼
ð1
0

cosszfAðsÞI0ðsrÞþ
X1
m¼1

AmðsÞJ0ðpmrÞ

� exp½�kðs2þp2mÞt�gds
ð20Þ

First, we express the surrounding temperature

Tb(z)-Ti by the Fourier cosine integral:
TbðzÞ � Ti ¼
ð1
0

TbsðsÞ cos szds ð21Þ

where
TbsðsÞ ¼
2

p

ð1
0

½TbðzÞ � Ti� cos szdz ð22Þ

Taking into consideration the boundary con-

ditions given by (15’), we can obtain that pm are

eigen-values of the equation:
ðhba=lÞJ0ðpmaÞ � pmaJ1ðpmaÞ ¼ 0 ð23Þ

and
AðsÞ ¼ ðhba=lÞTbsðsÞ
ðhba=lÞI0ðsaÞ þ saI1ðsaÞ

ð24Þ

The initial condition (16’) gives:

X1
m¼1

AmðsÞJ0ðpmrÞ ¼ �AðsÞI0ðsrÞ ð25Þ

Multiplying rJ0( pnr) on both sides of (25) and
integrating from 0 to a, we get:X1

m¼1
AmðsÞ

ða
0

rJ0ðpmrÞJ0ðpnrÞdr

¼ �AðsÞ
ða
0

rJ0ðpnrÞI0ðsrÞdr
ð26Þ
Taking into consideration the integral results:
ðr
0

JnðkrÞJnðmrÞrdr

¼
r

k2�m2 ½kJnðmrÞJnþ1ðkrÞ�mJnðkrÞJnþ1ðmrÞ� k 6¼m
1
2
r2½J2nðkrÞ� Jn�1ðkrÞJnþ1ðkrÞ� k¼m



ðr
0

InðkrÞJnðmrÞrdr

¼ r

k2þm2
½kJnðmrÞInþ1ðkrÞþmInðkrÞJnþ1ðmrÞ�

An(s) can be determined as:

AnðsÞ¼�
2p2na

2ðhba=lÞTbsðsÞ
ðp2na2þ s2a2Þ½p2na2þðhba=lÞ

2�J0ðpnaÞ
ð27Þ

Then, the temperature change t is

determined by:
tðr;zÞ¼
ð1
0

cossz
n ðhba=lÞTbsðsÞ
ðhba=lÞI0ðsaÞþ saI1ðsaÞ

I0ðsrÞ

�2
X1
m¼1

p2ma
2ðhba=lÞTbsðsÞ

ðp2ma2þ s2a2Þ½p2ma2þðhba=lÞ
2�J0ðpmaÞ

�J0ðpmrÞexp½�kðs2þp2mÞt�
o
ds

ð28Þ

Next, we consider the thermal stresses under

the boundary conditions:
srr ¼ srz ¼ 0 at r ¼ a ð29Þ

Goodier’s thermoelastic function F and

Michell’s functions M for this problem are:
Fðr; z; tÞ ¼ 1þ n
1� n

a
ð1
0

cos sz
AðsÞ
2s

rI1ðsrÞ



�
X1
m¼1

AmðsÞ
s2 þ p2m

J0ðpmrÞ

� exp½�kðs2 þ p2mÞt�
�
ds

ð30Þ

Mðr;zÞ¼
ð1
0

½C0ðsÞI0ðsrÞþD0ðsÞrI1ðsrÞ�sin szds

ð31Þ
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Substitution of (30) and (31) into (11) and (12)

gives the displacements and thermal stresses as

follows:
ur¼
ð1
0

cossz
�
� s2C0ðsÞI1ðsrÞ�s2D0ðsÞrI0ðsrÞ

þ1þn
1�n

a
nAðsÞ

2
rI0ðsrÞþ

X1
m¼1

pmAmðsÞ
s2þp2m

J1ðpmrÞ

�exp½�kðs2þp2mÞt�
o


ds

ð32Þ

uz¼
ð1
0

sinsz
�
s2C0ðsÞI0ðsrÞ

þ sD0ðsÞ½4ð1� nÞI0ðsrÞþ srI1ðsrÞ�

�1þ n
1� n

a
nAðsÞ

2
rI1ðsrÞ

�
X1
m¼1

sAmðsÞ
s2þp2m

J0ðpmrÞexp½�kðs2þp2mÞt�
�	

ds

ð33Þ

srr
2G
¼
ð1
0

cossz
�
� s3C0ðsÞ

h
I0ðsrÞ�

1

sr
I1ðsrÞ

i
� s2D0ðsÞ½ð1�2nÞI0ðsrÞþ srI1ðsrÞ�

�1þ n
1� n

a
nAðsÞ

2
½I0ðsrÞ� srI1ðsrÞ�

þ
X1
m¼1

AmðsÞ
1

s2þp2m

h
s2J0ðpmrÞþ

p2m
pmr

J1ðpmrÞ
i

� exp½�kðs2þp2mÞt�
o


ds

ð34Þ

syy
2G
¼�

ð1
0

cos sz
�
s3C0ðsÞ

1

sr
I1ðsrÞ

þ s2D0ðsÞð1� 2nÞI0ðsrÞ

þ 1þ n
1� n

a
nAðsÞ

2
I0ðsrÞ

þ
X1
m¼1

AmðsÞ
h
J0ðpmrÞ

� p2m
s2 þ p2m

1

pmr
J1ðpmrÞ

i
� exp½�kðs2 þ p2mÞt�

o

ds

ð35Þ
szz
2G
¼
ð1
0

cossz
�
s3C0ðsÞI0ðsrÞ

þ s2D0ðsÞ½2ð2� nÞI0ðsrÞþ srI1ðsrÞ�

�1þ n
1� n

a
nAðsÞ

2
½2I0ðsrÞþ srI1ðsrÞ�

þ
X1
m¼1

p2mAmðsÞ
s2þp2m

J0ðpmrÞ

� exp½�kðs2þp2mÞt�
o


ds

ð36Þ

srz
2G
¼
ð1
0

sinsz
�
s3C0ðsÞI1ðsrÞ

þ s2D0ðsÞ½2ð1� nÞI1ðsrÞþ srI0ðsrÞ�

�1þ n
1� n

a
nAðsÞ

2
srI0ðsrÞ

þ
X1
m¼1

spmAmðsÞ
s2þp2m

J1ðpmrÞ

� exp½�kðs2þp2mÞt�
o


ds

ð37Þ

The unknown coefficients C0 and D0 can be

determined by the boundary conditions given

by (29).

s3C0ðsÞ¼�
1þn
1�na

1

EðsÞ
AðsÞ
2

2ð1�nÞ

�½I1ðsaÞI0ðsaÞ�saI21ðsaÞþsaI20ðsaÞ�

�1þn
1�na

1

EðsÞ

(�
2ð1�nÞðs2a2þhba

l
Þ

þs2a2hba
l

�
I1ðsaÞ

þsa
�
s2a2þ2ð1�nÞhba

l

�
I0ðsaÞ

)

�
X1
m¼1

AmðsÞJ0ðpmaÞ
s2þp2m

exp½�kðs2þp2mÞt�

s2D0ðsÞ¼
1þn
1�na

1

EðsÞ
AðsÞ
2

sa½I20ðsaÞ� I21ðsaÞ�

þ1þn
1�na

sa

EðsÞ
hhba
l

I0ðsaÞþsaI1ðsaÞ
i

�
X1
m¼1

AmðsÞJ0ðpmaÞ
s2þp2m

exp½�kðs2þp2mÞt�

ð38Þ
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where
EðsÞ¼ fs2a2I20ðsaÞ� ½2ð1� nÞþ s2a2�I21ðsaÞ�g=sa
Transient Thermal Stress in a Finite
Solid Circular Cylinder with Radius a and
Length 2l

Consider transient temperature in a finite solid

circular cylinder with radius a and length 2l [2].

The governing equation for transient temperature

without internal heat generation is given by (14).

The boundary conditions are:
�l @T
@r
¼ hb½T � TbðzÞ� on r ¼ a

l
@T

@z
¼ 0 on z ¼ �l

ð39Þ

where Tb(z) denotes the surrounding temperature

on the circular surface, l is the heat conductivity,
and hb denotes the heat transfer coefficient on

the circular surface and Tb(z) ¼ Tb(�z) is

assumed here.

The initial condition is:
T ¼ Ti at t ¼ 0 ð40Þ

We introduce the temperature change t (¼T –Ti)
from the constant initial temperature Ti. The

governing equation, boundary conditions, and ini-

tial condition reduce to:
1

k
@t
@t
¼ @2t

@r2
þ 1

r

@t
@r
þ @2t

@z2
ð14’Þ

�l@t
@r
¼ hbft�½TbðzÞ�Ti�g on r¼ a

l
@t
@z
¼ 0 on z¼�l

ð39’Þ

t ¼ 0 at t ¼ 0 ð40’Þ

Using the method of separation of variables,

the general solution of (14’) for this problem is

expressed by:
tðr; zÞ ¼
X1
n¼0

cos snzfAnI0ðsnrÞ

þ
X1
m¼1

AnmJ0ðpmrÞ exp½�kðs2n þ p2mÞt�g

ð41Þ

Taking into consideration the boundary con-

dition given by the second equation (39’), sn are
the eigen-values of the equation:
sin snl ¼ 0 ∴ sn ¼ np=l ð42Þ

First, we express the surrounding temperature

Tb(z)�Ti by the Fourier series:
TbðzÞ � Ti ¼ Tb0 þ
X1
n¼1

Tbn cos snz ð43Þ

where
Tb0 ¼
1

l

ðl
0

½TbðrÞ � Ti�dz

Tbn ¼
2

l

ðl
0

½TbðrÞ � Ti� cos snzdz n ¼ 1; 2; 3; ::

ð44Þ

Taking into consideration the first boundary

condition given by (39’), we can obtain that pm
are eigen-values of the equation:
ðhba=lÞJ0ðpmaÞ � pmaJ1ðpmaÞ ¼ 0 ð45Þ

and

A0 ¼ Tb0; An ¼
ðhba=lÞTbn

ðhba=lÞI0ðsnaÞ þ snaI1ðsnaÞ
ð46Þ

Taking into consideration the initial condition

(40’), the unknownconstants can be determined as:
Anm¼�
2p2ma

2ðhba=lÞTbn
ðp2ma2þ s2na

2Þ½p2ma2þðhba=lÞ
2�J0ðpmaÞ

ð47Þ
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where s0 ¼ 0. Then the temperature change t is

expressed by:

tðr;zÞ¼
X1
n¼0

cossnz
n
AnI0ðsnrÞ

þ
X1
m¼1

AnmJ0ðpmrÞexp½�kðs2nþp2mÞt�
o

¼hba
l

X1
n¼0

Tbn cossnz
n I0ðsnrÞ
ðhba=lÞI0ðsnaÞþ snaI1ðsnaÞ

�
X1
m¼1

2p2ma
2J0ðpmrÞ

ðp2ma2þ s2na
2Þ½p2ma2þðhba=lÞ

2�J0ðpmaÞ

� exp½�kðs2nþp2mÞt�
o

ð48Þ

Next, we consider thermal stresses under the

following boundary conditions:
srr ¼ srz ¼ 0 on r ¼ a ð49Þ

szz ¼ szr ¼ 0 on z ¼ �h ð50Þ

Goodier’s thermoelastic function F and

Michell’s function M for this problem are:
Fðr;z; tÞ¼1þ n
1� n

a
X1
n¼0

cossnz
n An

2sn
rI1ðsnrÞ

�
X1
m¼1

Anm

s2nþp2m
J0ðpmrÞexp½�kðs2nþp2mÞt�

o
ð51Þ

Mðr; zÞ ¼ E0r
2zþE

0

0z
3

þ
X1
n¼1

sinðsnzÞ½CnI0ðsnrÞþDnrI1ðsnrÞ�

þ
X1
i¼1

J0ðqirÞ½Ei sinhqizþE
0

izcoshqiz�

þ
X1
j¼1
½FjI0ðvjrÞþF

0

irI1ðvjrÞ� sinvjz

ð52Þ

where qi and vj are the eigen-values for

J0(qia) ¼ 0 and sinvjl ¼ 0, respectively.

Substitution of (51) and (52) into (11) and

(12) gives the displacements and thermal

stresses:
ur ¼� 2E0r �
X1
n¼1

cos snz½s2nCnI1ðsnrÞ

þ s2nDnrI0ðsnrÞ�

þ 1þ n
1� n

a
X1
n¼0

cos snz
nAn

2
rI0ðsnrÞ

þ
X1
m¼1

pmAnm

s2n þ p2m
J1ðpmrÞ exp½�kðs2 þ p2mÞt�

o
þ
X1
i¼1

qiJ1ðqirÞ½qiEi cosh qiz

þ E
0

iðcosh qizþ qiz sinh qizÞ�

�
X1
j¼1
½v2j FjI1ðvjrÞ þ v2j F

0

jrI0ðvjrÞ� cos vjz

ð53Þ

uz ¼ 8ð1� nÞE0zþ 6ð1� 2nÞE00z

þ
X1
n¼1

sin snzfs2nCnI0ðsnrÞ

þ snDn½4ð1� nÞI0ðsnrÞ þ snrI1ðsnrÞ�g

� 1þ n
1� n

a
X1
n¼1

sin snz
nAn

2
rI1ðsnrÞ

�
X1
m¼1

snAnm

s2n þ p2m
J0ðpmrÞ exp½�kðs2n þ p2mÞt�

o
þ
X1
i¼1

J0ðqirÞ
n
� Eiq

2
i sinh qiz

þ E
0

iqi½2ð1� 2nÞ sinh qiz� qiz cosh qiz�

þ
X1
j¼1
fv2j FjI0ðvjrÞ þ vjF

0

j½4ð1� nÞI0ðvjrÞ

þ vjrI1ðvjrÞ�
o
sin vjz

ð54Þ

srr
2G
¼�2ð1�2nÞE0þ6nE

0

0

�
X1
n¼1

cossnzfs3nCn½I0ðsnrÞ�
1

snr
I1ðsnrÞ�

þ s2nDn½ð1�2nÞI0ðsnrÞþ snrI1ðsnrÞ�g

�1þ n
1� n

a
X1
n¼0

cossnzf
An

2
½I0ðsnrÞ� snrI1ðsnrÞ�

þ
X1
m¼1

Anm

s2nþp2m
½s2nJ0ðpmrÞ
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þ p2m
pmr

J1ðpmrÞ� exp½�kðs2n þ p2mÞt�g

þ
X1
i¼1

�
Eiq

3
i ½J0ðqirÞ �

1

qir
J1ðqirÞ� cosh qiz

þ E
0

i

n
2nq2i J0ðqirÞ cosh qizþ q2i ½J0ðqirÞ

� 1

qir
J1ðqirÞ�ðcosh qizþ qiz sinh qizÞ

o

�
X1
m¼1

n
v3j Fj

h
I0ðvjrÞ �

1

vjr
I1ðvjrÞ

i
þ v2j F

0

j

h
ð1� 2nÞI0ðvjrÞ þ vjrI1ðvjrÞ

io
cos vjz

ð55Þ
syy
2G
¼� 2ð1� 2nÞE0þ 6nE

0

0

�
X1
n¼1

cos snz

�
s3nCn

1

snr
I1ðsnrÞ

þ s2nDnð1� 2nÞI0ðsnrÞ
�

þ 1þ n
1� n

a
X1
n¼0

cos snz
nAn

2
I0ðsnrÞ

þ
X1
m¼1

Anm

h
J0ðpmrÞ�

p2m
s2nþ p2m

1

pmr
J1ðpmrÞ

i
� exp½�kðs2nþ p2mÞt�

�
þ
X1
i¼1

(
q3i Ei

1

qir
J1ðqirÞcoshqiz

þ q2i E
0

i

�
2nJ0ðqirÞcoshqiz

þ 1

qir
J1ðqirÞðcoshqizþ qiz sinhqizÞ

�)

�
X1
j¼1

�
v3j Fj

1

vjr
I1ðvjrÞ

þ ð1� 2nÞv2j F
0

j I0ðvjrÞ
�
cosvjz

ð56Þ

szz
2G
¼ 4ð2� nÞE0þ 6ð1� nÞE00

þ
X1
n¼1

cos snzfs3nCnI0ðsnrÞ

þ s2nDn½2ð2� nÞI0ðsnrÞþ snrI1ðsnrÞ�g
þ 1þ n
1� n

a
X1
n¼0

cos snz
n
� An

2
½2I0ðsnrÞ

þ snrI1ðsnrÞ�

�
X1
m¼1

p2mAnm

s2n þ p2m
J0ðpmrÞ exp½�kðs2n þ p2mÞt�

o
�
X1
i¼1

J0ðqirÞfq3i Ei cosh qiz

� q2i E
0

i½�ð1� 2nÞ cosh qizþ qiz sinh qiz�g

þ
X1
j¼1
fv3j FjI0ðvjrÞ

þ v2j F
0

j½2ð2� nÞI0ðvjrÞ þ vjrI1ðvjrÞ�g cos vjz
ð57Þ

srz
2G
¼
X1
n¼1

sin snzfs3nCnI1ðsnrÞ

þ s2nDn½2ð1� nÞI1ðsnrÞ þ snrI0ðsnrÞ�g

� 1þ n
1� n

a
X1
n¼1

sin snz
nAn

2
snrI0ðsnrÞ

þ
X1
m¼1

snpmAnm

s2n þ p2m
J1ðpmrÞ exp½�kðs2n þ p2mÞt�

o
þ
X1
i¼1

qiJ1ðqirÞ½q2i Ei sinh qiz

þ qiE
0

ið2n sinh qizþ qiz cosh qizÞ�

þ
X1
j¼1
fv3j FjI1ðvjrÞ

þ v2j F
0

j½2ð1� nÞI1ðvjrÞ þ vjrI0ðvjrÞ�g sin vjz
ð58Þ

The boundary conditions given by (49) give:
s3nCn

h
I0ðsnaÞ �

1

sna
I1ðsnaÞ

i
þ s2nDn½ð1� 2nÞI0ðsnaÞ þ snaI1ðsnaÞ�

¼ � 1þ n
1� n

a
nAn

2
½I0ðsnaÞ � snaI1ðsnaÞ�

þ
X1
m¼1

Anm

s2n þ p2m

h
s2nJ0ðpmaÞ

þ p2m
pma

J1ðpmaÞ
i
exp½�kðs2n þ p2mÞt�

o
ð59Þ
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s3nCnI1ðsnaÞþs2nDn½2ð1� nÞI1ðsnaÞ þ snaI0ðsnaÞ�

¼ 1þ n
1� n

a
nAn

2
snaI0ðsnaÞ

þ
X1
m¼1

snpmAnm

s2n þ p2m
J1ðpmaÞ

� exp½�kðs2n þ p2mÞt�
o

ð60Þ

� 2ð1� 2nÞE0 þ 6nE
0

0

� 1þ n
1� n

a
hA0

2
þ
X1
m¼1

A0m

pma
J1ðpmaÞ expð�kp2mtÞ

i
�
X1
i¼1

J1ðqiaÞ
qia

½Eiq
3
i cosh qiz

þ E
0

iq
2
i ðcosh qizþ qiz sinh qizÞ�

�
X1
j¼1

n
v3j Fj

h
I0ðvjaÞ �

1

vja
I1ðvjaÞ

i
þ v2j F

0

j½ð1� 2nÞÞI0ðvjaÞ

þ vjaI1ðvjaÞ�
o
cos vjz ¼ 0

ð61Þ

X1
i¼1

qiJ1ðqiaÞ½q2i Ei sinh qiz

þ qE
0

ið2n sinh qizþ qiz cosh qizÞ�

þ
X1
j¼1
fv3j FjI1ðvjaÞ

þ v2j F
0

j½2ð1� nÞI1ðvjaÞ
þ vjaI0ðvjaÞ�g sin vjz ¼ 0

ð62Þ

The boundary conditions given by (50) give:
4ð2� nÞE0þ6ð1� nÞE00

þ
X1
n¼1

cossnlfs3nCnI0ðsnrÞ

þ s2nDn½2ð2� nÞI0ðsnrÞþ snrI1ðsnrÞ�g

þ1þ n
1� n

a
X1
n¼0

cossnl
n
�An

2
½2I0ðsnrÞþ snrI1ðsnrÞ�

�
X1
m¼1

p2mAnm

s2nþp2m
J0ðpmrÞexp½�kðs2nþp2mÞt�

o

�
X1
i¼1

J0ðqirÞfq3i Ei cosh qil� q2i E
0

i½�ð1

� 2nÞ cosh qilþ qiz sinh qil�g

þ
X1
j¼1
fv3j FjI0ðvjrÞ þ v2j F

0

j ½2ð2

� nÞI0ðvjrÞ þ vjrI1ðvjrÞ�g cos vjl
¼ 0 ð63Þ

q2i Ei sinhqilþqiE
0

ið2nsinhqilþqilcoshqilÞ¼ 0

ð64Þ

The unknown coefficients Cn and Dn can be

determined by (59) and (60). In order to deter-

mine the unknown coefficients E0, Eo
0, Ei, Ei

0, Fj,

and Fj
0 in (61)–(64), we expand both the Bessel

function and the modified Bessel functions to

a series of Bessel functions J0(qir) and J1(qir) as

follows:
I0ðvjrÞ ¼ G00
j0 þ

X1
i¼1

G00
ji J0ðqirÞ

rI1ðvjrÞ ¼ G10
j0 þ

X1
i¼1

G10
ji J0ðqirÞ

I0ðsnrÞ ¼ H00
n0 þ

X1
i¼1

H00
ni J0ðqirÞ

rI1ðsnrÞ ¼ H10
n0 þ

X1
i¼1

H10
ni J0ðqirÞ

rI0ðsnrÞ ¼
X1
i¼1

F01
ni J1ðqirÞ

I1ðsnrÞ ¼
X1
i¼1

F11
ni J1ðqirÞ

J0ðpmrÞ ¼ E00
m0 þ

X1
i¼1

E00
miJ0ðqirÞ

J1ðpmrÞ ¼
X1
i¼1

E11
miJ1ðqirÞ

ð65Þ

as well as expand the hyperbolic functions as

a series of trigonometric functions as follows:
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coshðqizÞ ¼ Qcc
i0 þ

X1
j¼1

Qcc
ij cosðvjzÞ

z sinhðqizÞ ¼ Qsc
i0 þ

X1
j¼1

Qsc
ij cosðvjzÞ

sinhðqizÞ ¼
X1
j¼1

Qss
ij sinðvjzÞ

z coshðqizÞ ¼
X1
j¼1

Qcs
ij sinðvjzÞ

ð66Þ

Substitution of (65) and (66) into (61), (62)

and (63) gives

�2ð1�2nÞE0þ6nE
0

0

¼ 1þ n
1� n

a
hA0

2
þ
X1
m¼1

A0m

pma
J1ðpmaÞexpð�kp2mtÞ

i
þ
X1
i¼1

J1ðqiaÞ
qia

½Eiq
3
i Q

cc
i0 þE

0

iq
2
i ðQcc

i0 þqiQ
sc
i0Þ�

ð67Þ

X1
i¼1

J1ðqiaÞ
qia

½Eiq
3
i Q

cc
ij þE

0

iq
2
i ðQcc

ij þqiQ
sc
ij Þ�

þ v3j Fj½I0ðvjaÞ�
1

vja
I1ðvjaÞ�

þ v2j F
0

j½ð1�2nÞI0ðvjaÞþ vjaI1ðvjaÞ� ¼ 0

ð68Þ

X1
i¼1

qiJ1ðqiaÞ½q2i EiQ
ss
ij þqE

0

ið2nQss
ij þqiQ

cs
ij Þ�

þv3j FjI1ðvjaÞþv2j F
0

j½2ð1� nÞI1ðvjaÞ
þvjaI0ðvjaÞ� ¼ 0 ð69Þ

4ð2� nÞE0 þ 6ð1� nÞE00

þ
X1
j¼1
ð�1Þj

n
v3j FjG

00
j0

þ v2j F
0

j½2ð2� nÞG00
j0 þ vjG

10
j0 �
o

¼ �
X1
n¼1
ð�1Þn

n
s3nCnH

00
n0

þ s2nDn½2ð2� nÞH00
n0 þ snH

10
n0�
o

� 1þ n
1� n

a
X1
n¼0
ð�1Þn

n
� An

2
½2H00

n0 þ snH
10
n0�

�
X1
m¼1

p2mAnm

s2n þ p2m
E00
m0 exp½�kðs2n þ p2mÞt�

o
ð70Þ
�q3i Eicoshqilþq2i E
0

i½�ð1�2nÞcoshqil

þqilsinhqil�þ
X1
j¼1
ð�1Þjfv3j FjG

00
ji

þv2j F
0

j½2ð2�nÞG00
ji þvjG10

ji �g

¼�
X1
n¼0
ð�1Þn

n
s3nCnH

00
ni

þs2nDn½2ð2�nÞH00
ni þsnH10

ni �
o

�1þn
1�na

X1
n¼0
ð�1Þn



�An

2
½2H00

ni þsnH10
ni �

�
X1
m¼1

p2mAnm

s2nþp2m
E00
miexp½�kðs2nþp2mÞt�

�

ð71Þ

Solving the simultaneous linear equations

(64), (68), (69), and (71), we can obtain the

unknown coefficients Ei, Ei
0, Fj, and Fj

0. Further-
more, we can obtain the unknown coefficients E0

and Eo
0 solving the simultaneous linear equations

(67) and (70). We finally obtain the displace-

ments and stresses by substituting these coeffi-

cients into (53)–(58).
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Overview

Mechanical and structural bodies are frequently

subjected to both mechanical loads and tempera-

ture changes. The sphere is one of the important
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mechanical and structure elements. The thermal

stress analysis of three-dimensional bodies typi-

cally relies on displacement potentials, such as

Goodier’s displacement function and Boussinesq’s

function.

Axisymmetric thermal stresses in spheres

subjected to axisymmetric temperature changes

are considered in the spherical coordinate system

(r, y, f). The steady thermal stress problems in

a hollow sphere and an infinite body with

a spherical cavity and the transient thermal stress

problem in a solid sphere are discussed. Goodier’s

displacement function and Boussinesq’s function

are introduced in analytical treatment.
Basic Equations in the Spherical
Coordinate System (r, u, f)

The governing equations for three-dimensional

thermoelastic problems in the spherical coordinate

system (r, y, f) are summarized as follows [1]:

The equilibrium equations are
@srr
@r
þ 1

r

@syr
@y
þ 1

r sin y
@sfr
@f

þ 1

r
ð2srr � syy � sff þ syr cot yÞ þ Fr ¼ 0

@sry
@r
þ 1

r

@syy
@y
þ 1

r sin y
@sfy
@f

þ 1

r
½ðsyy � sffÞ cot yþ 3sry� þ Fy ¼ 0

@srf
@r
þ 1

r

@syf
@y
þ 1

r sin y
@sff
@f

þ 1

r
ð3srf þ 2syf cot yÞ þ Ff ¼ 0

ð1Þ

where Fr; Fy, and Ff denote the body forces in

the r, y, and f axes, respectively. The strains are

defined by displacements ur, uy, and uf:

err ¼
@ur
@r

; eyy ¼
ur
r
þ 1

r

@uy
@y

eff ¼
ur
r
þ cot y

uy
r
þ 1

r sin y
@uf
@f

ery ¼
1

2

1

r

@ur
@y
þ @uy

@r
� uy

r

� 	
eyf ¼
1

2

1

r

@uf
@y
� cot y

uf
r
þ 1

r sin y
@uy
@f

� 	
efr ¼

1

2

1

r sin y
@ur
@f
þ @uf

@r
� uf

r

� 	
e ¼err þ eyy þ ezz

¼ @ur
@r
þ 2

ur
r
þ 1

r

@uy
@y
þ cot y

uy
r
þ 1

r sin y
@uf
@f

ð2Þ

Hooke’s law is

err ¼
1

E
ðsrr� nsyy� nsffÞþat

eyy¼
1

E
ðsyy� nsff� nsrrÞþat

eff¼
1

E
ðsff� nsrr� nsyyÞþat

ery¼
1

2G
sry; eyf¼

1

2G
syf; efr ¼

1

2G
sfr

ð3Þ

The alternative forms are

srr ¼ 2merr þ le� bt

syy ¼ 2meyy þ le� bt

sff ¼ 2meff þ le� bt

sry ¼ 2mery; syf ¼ 2meyf; sfr ¼ 2mefr

ð4Þ

where E; G; n; l; m; a, and b are Young’s

modulus, the shear modulus, Poisson’s ratio,

Lamé’s constant, the coefficient of linear thermal

expansion, and the thermoelastic constant

ðb ¼ að3lþ 2mÞ ¼ aE=ð1� 2nÞÞ, respectively.
Navier’s equations are

ðlþ2mÞ @e
@r
� 2m
r sin y

@ðof sin yÞ
@y

� @oy

@f

� �
� b

@t
@r
þ Fr ¼ 0

ðlþ 2mÞ 1
r

@e

@y
� 2m
r sin y

@or

@f
� sin y

@ðrofÞ
@r

� �
� b

1

r

@t
@y
þ Fy ¼ 0

ðlþ 2mÞ 1

r sin y
@e

@f
� 2m

r

@ðroyÞ
@r

� @or

@y

� �
� b

1

r sin y
@t
@f
þ Ff ¼ 0

ð5Þ
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where

or ¼
1

2r sin y
@ðuf sin yÞ

@y
� @uy

@f

� �
oy ¼

1

2r sin y
@ur
@f
� sin y

@ðrufÞ
@r

� �
of ¼

1

2r

@ðruyÞ
@r

� @ur
@y

� � ð6Þ

When the body forces do not act on the body,

Navier’s equations, as given by (5) can be solved

by Goodier’s thermoelastic potential F and

Boussinesq’s harmonic functions f; #, and c:

ur ¼
@F
@r
þ @’

@r
þ 2

r

@#

@y
þ r cos y

@c
@r

� ð3� 4nÞc cos y

uy ¼
1

r

@F
@y
þ 1

r

@f
@y
þ 2

r tan y
@#

@f

þ cos y
@c
@y
þ ð3� 4nÞc sin y

uf ¼
1

r sin y
@F
@f
þ 1

r sin y
@’

@f
� 2 sin y

@#

@r

� 2
cos y
r

@#

@y
þ 1

tan y
@c
@f

ð7Þ

where Goodier’s thermoelastic potential F is the

particular solution of the equation:

H2F ¼ 1þ n
1� n

at ð8Þ

H2 ¼ @2

@r2
þ 2

r

@

@r
þ 1

r2
@2

@y2
þ 1

r2 tan y
@

@y

þ 1

r2sin2y
@2

@f2

ð9Þ

and the three functions ’; #, and c must satisfy

the Laplace equation:

H2’ ¼ H2# ¼ H2c ¼ 0 ð10Þ
Basic Equations for Axisymmetric
Problems

When the spherical bodies are deformed symmet-

rically with respect to the coordinate axis z, the

basic equations (1) to (10) reduce to
@srr
@r
þ 1

r

@syr
@y

þ 1

r
ð2srr � syy � sff þ syr cot yÞ þ Fr ¼ 0

@sry
@r
þ 1

r

@syy
@y

þ 1

r
½ðsyy � sffÞ cot yþ 3sry� þ Fy ¼ 0

ð11Þ

The strains are
err ¼
@ur
@r

; eyy ¼
ur
r
þ 1

r

@uy
@y

;

eff ¼
ur
r
þ cot y

uy
r

ery ¼
1

2

1

r

@ur
@y
þ @uy

@r
� uy

r

� 	
e ¼ err þ eyy þ ezz ¼

@ur
@r
þ 2

ur
r

þ cot y
uy
r
þ 1

r

@uy
@y

ð12Þ

Hooke’s law is

err ¼
1

E
ðsrr � nsyy � nsffÞ þ at

eyy ¼
1

E
ðsyy � nsff � nsrrÞ þ at

eff ¼
1

E
ðsff � nsrr � nsyyÞ þ at

ery ¼
1

2G
sry

ð13Þ

The alternative forms are
srr ¼ 2merr þ le� bt

syy ¼ 2meyy þ le� bt

sff ¼ 2meff þ le� bt

sry ¼ 2mery

ð14Þ

Navier’s equations are

ðlþ 2mÞ @e
@r
� 2m
r sin y

@ðof sin yÞ
@y

� b
@t
@r
þ Fr ¼ 0

ðlþ 2mÞ 1
r

@e

@y
þ 2m

r

@ðrofÞ
@r

� b
1

r

@t
@y
þ Fy ¼ 0

ð15Þ
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where
A

of ¼

1

2r

@ðruyÞ
@r

� @ur
@y

� �
ð16Þ

When the body forces do not act on the

body, Navier’s equations, as given by (15)

can be solved by Goodier’s thermoelastic poten-

tial F and Boussinesq’s harmonic functions

’ and c:
ur ¼
@F
@r
þ @’

@r
þ r cos y

@c
@r
� ð3� 4nÞc cos y

uy ¼
1

r

@F
@y
þ 1

r

@’

@y
þ cos y

@c
@y
þ ð3� 4nÞc sin y

ð17Þ

where Goodier’s thermoelastic potential F is the

particular solution of the equation:
H2F ¼ 1þ n
1� n

at ð18Þ

H2 ¼ @2

@r2
þ 2

r

@

@r
þ 1

r2
@2

@y2
þ 1

r2 tan y
@

@y
ð19Þ

and the two functions ’ and c must satisfy the

Laplace equation:

H2’ ¼ H2c ¼ 0 ð20Þ

The stress comportments are
srr ¼ 2G
@2F
@r2
� 1þ n
1� n

atþ @2’

@r2
þ r cos y

@2c
@r2

�
� 2ð1� nÞ cos y @c

@r
þ 2n

sin y
r

@c
@y

�
syy ¼ 2G

1

r

@F
@r
þ 1

r2
@2F

@y2
� 1þ n
1� n

at
�

þ 1

r

@’

@r
þ 1

r2
@2’

@y2
þ ð1� 2nÞ cos y @c

@r

þ cos y
r

@2c

@y2
þ 2ð1� nÞ sin y

r

@c
@y

�

sff ¼ 2G
1

r

@F
@r
þ cot y

r2
@F
@y
� 1þ n
1� n

at
�

þ 1

r

@’

@r
þ cot y

r2
@’

@y
þ ð1� 2nÞ cos y @c

@r

þ cos y cot yþ 2n sin yð Þ1
r

@c
@y

�
sry ¼ 2G

@2

@r@y
F
r

� 	
þ @2

@r@y
’

r

� 
�
þ ð1� 2nÞ sin y @c

@r
þ cos y

@2c
@r@y

� 2ð1� nÞ cos y
r

@c
@y

�
ð21Þ

Let us consider the general solutions of the

Laplace equation (20) in the spherical coordinate

system. Introducing a new variable defined by

m ¼ cos y ð22Þ

Laplace equation (20) reduces to
@2’

@r2
þ 2

r

@’

@r
þ 1

r2
@

@m
ð1� m2Þ @’

@m

� �
¼ 0 ð23Þ

We assume that the potential functionf can be

expressed by a product of two functions.
’ðr; mÞ ¼ f ðrÞgðmÞ ð24Þ

Substitution of (24) into (23) gives
r2

f ðrÞ
d2

dr2
þ 2

r

d

dr

� 	
f ðrÞ

¼ � 1

gðmÞ
d

dm
ð1� m2Þ dgðmÞ

dm

� �
� nðnþ 1Þ

ð25Þ

where n is an arbitrary constant. Equation (25)

yields to
d2f ðrÞ
dr2

þ 2

r

df ðrÞ
dr
� nðnþ 1Þ

r2
f ðrÞ ¼ 0

d

dm
ð1� m2Þ dgðmÞ

dm

� �
þ nðnþ 1ÞgðmÞ ¼ 0

ð26Þ
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Second equation of (26) is called Legendre’s

differential equation. The general solution of

(26) is

f ðrÞ ¼ rn

r�n�1

� 	
; gðmÞ ¼ PnðmÞ

QnðmÞ

� 	
ð27Þ

where PnðmÞ and QnðmÞ denote the Legendre’s

function of the first kind and second kind of

order n, respectively. The general solutions of

the two functions ’ and c are

’
c

� 	
¼ rn

r�n�1

� 	
Pnðcos yÞ
Qnðcos yÞ

� 	
ð28Þ

Since axisymmetric problems are considered,

the arbitrary constant n reduces to integer n. The

Legendre’s function of the second kindQnðcos yÞ
has a singular value when cosy ¼ 1 (y ¼ 0).

Then, the general solutions of the two functions

for axisymmetric problems in the spherical coor-

dinate reduce to
’

c

� 	
¼

rn

r�n�1

� 	
Pnðcos yÞ ðn ¼ 0; 1; 2; . . .Þ

ð29Þ
Steady Thermal Stress in
a Hollow Sphere

Consider a steady thermal stress in a hollow

sphere with inner radius a and outer radius b,

when the hollow sphere is subjected to the steady

temperature change.

The heat conduction equation is

@2T

@r2
þ 2

r

@T

@r
þ 1

r2
@2T

@y2
þ 1

r2 tan y
@T

@y
¼ 0 ð30Þ

The boundary and initial conditions are
T ¼ TaðyÞ on r ¼ a

T ¼ TbðyÞ on r ¼ b
ð31Þ

T ¼ Ti at t ¼ 0 ð32Þ
The steady temperature T is

T ¼ A0 þ B0r
�1 þ

X1
n¼1
ðAnr

n þ Bnr
�n�1ÞPnðmÞ

ð33Þ

where m ¼ cosy. We expand both the boundary

temperatures Ta(y) and Tb(y) into the series of

Legendre polynomials

TaðyÞ
TbðyÞ

� 	
¼

Ta0

Tb0

� 	
þ
X1
n¼1

Tan

Tbn

� 	
PnðmÞ

Tan

Tbn

� 	
¼ 2nþ1

2

ð1
�1

TaðyÞ
TbðyÞ

� 	
PnðmÞdm

ð34Þ

Substitution of (33) into (31) gives
An ¼ ðTbnbnþ1 � Tana
nþ1Þ=ðb2nþ1 � a2nþ1Þ

Bn ¼ anþ1bnþ1ðTanbn � Tbna
nÞ=ðb2nþ1 � a2nþ1Þ
ðn ¼ 0; 1; 2; . . .Þ

ð35Þ

Therefore, the temperature change t (¼T � Ti) is

t ¼ A0 � Ti þ B0r
�1 þ

X1
n¼1
ðAnr

n þ Bnr
�n�1ÞPnðmÞ

ð36Þ

When the temperature change t is given by

(36), the particular solution of Goodier’s

thermoelastic potential F in (18) is

F ¼ 1þ n
1� n

afðA0 � TiÞ
r2

6
þ B0

r

2

þ
X1
n¼1
½ 1

2ð2nþ 3ÞAnr
nþ2

� 1

2ð2n� 1ÞBnr
�nþ1�PnðmÞg

ð37Þ

The general solutions of the Boussinesq’s har-

monic functions ’ and c are

’ ¼ C
0

0 þ D
0

0r
�1 þ

X1
n¼1
ðC0nrn þ D

0

nr
�n�1ÞPnðmÞ

c ¼ E
0

0 þ F
0

0r
�1 þ

X1
n¼1
ðE0nrn þ F

0

nr
�n�1ÞPnðmÞ

ð38Þ
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Substitution of (38) into (17) gives the radial

displacement �ur in terms of ’ and c.
A

�ur ¼
@’

@r
þ r cos y

@c
@r
� ð3� 4nÞc cos y

¼ �D00r�2 þ
X1
n¼1
½nC0nrn�1 � ðnþ 1ÞD0nr�n�2�PnðmÞ

� ð3� 4nÞmE00 � 4ð1� nÞmF00r�1

þ
X1
n¼1
ðn� 3þ 4nÞE0nrn � ðnþ 4� 4nÞF0nr�n�1
h i

� 1

2nþ 1
½ðnþ 1ÞPnþ1ðmÞ þ nPn�1ðmÞ�

ð39Þ

Equation (39) is not suitable to satisfy the

boundary conditions because it contains three

kinds of Legendre’s functions with different

orders n � 1, n, and n + 1 under the summation

signs. Therefore, we introduce new unknown

constants given by

C
0

n ¼ Cn � ðn� 4þ 4nÞEn�2

D
0

n ¼ Dn � ðnþ 5� 4nÞFnþ2

E
0

n ¼ ð2nþ 1ÞEn�1; F
0

n ¼ ð2nþ 1ÞFnþ1

ð40Þ

The radial displacement �ur in terms of ’ and c
reduces to
�ur ¼� D0r
�2 � 2ð1� 2nÞE0r

þ
X1
n¼1



nCnr

n�1 � ðnþ 1ÞDnr
�n�2

þ ðnþ 1Þðn� 2þ 4nÞEnr
nþ1

� nðnþ 3� 4nÞFnr
�n
�
PnðmÞ

ð41Þ

Then, we can get the displacements and ther-

mal stresses

ur ¼
1þ n
1� n

a


ðA0�TiÞ

r

3
þ 1

2
B0

þ
X1
n¼1

�
nþ 2

2ð2nþ 3ÞAnr
nþ1þ n� 1

2ð2n� 1ÞBnr
�n
�
PnðmÞ

�
�D0r

�2� 2ð1� 2nÞE0r
þ
X1
n¼1

�
nCnr

n�1 � ðnþ 1ÞDnr
�n�2

þ ðnþ 1Þðn� 2þ 4nÞEnr
nþ1

� nðnþ 3� 4nÞFnr
�n
�
PnðmÞ ð42Þ

uy ¼�
1þ n
1� n

a
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� m2
p X1

n¼1

h 1

2ð2nþ 3ÞAnr
nþ1

� 1

2ð2n� 1ÞBnr
�n
i
ðnþ 1Þ½mPnðmÞ

� Pnþ1ðmÞ�

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p X1
n¼1
½Cnr

n�1 þ Dnr
�n�2

þ ðnþ 5� 4nÞEnr
nþ1

þ ðn� 4þ 4nÞFnr
�n�

ðnþ 1Þ½mPnðmÞ � Pnþ1ðmÞ�
ð43Þ

srr
2G
¼ 1þ n

1� n
a


� 2

3
ðA0 � TiÞ � B0r

�1

þ
X1
n¼1

n2 � n� 4
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The boundary conditions are

srr ¼ sry ¼ 0 on r ¼ a

srr ¼ sry ¼ 0 on r ¼ b
ð48Þ

Substitution of (44) and (47) into the boundary

condition (48) gives
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The unknown coefficients can be determined

by solving simultaneous equations (49) and (50).

Substitution of the coefficients determined by

(49) and (50) into (42)–(47) gives the displace-

ments and thermal stresses.

Steady Thermal Stress in an Infinite
Body with a Spherical Cavity

Consider a steady thermal stress in an infinite

body with a spherical cavity with radius a, when

the body is subjected to the steady temperature

change. The hollow sphere reduces to the infinite

body with a spherical cavity, when the ratio a/b in

the hollow sphere tends to be zero. Then, the

temperature in the infinite body is from (36)

t ¼ �Ti þ B0r
�1 þ

X1
n¼1

Bnr
�n�1PnðmÞ ð51Þ

where Bn ¼ Tana
n+1.

The corresponding displacements and thermal

stresses are given from (42) to (47)
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The boundary conditions are

srr ¼ sry ¼ 0 on r ¼ a ð58Þ

The unknown coefficients can be determined as
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Transient Thermal Stress in
a Solid Sphere

Consider transient thermal stress in a solid sphere

with a radius a, when the solid sphere is subjected

to the transient temperature change. The heat

conduction equation is
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þ 1

r2 tan y
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¼ 1

k
@2T

@t2

ð60Þ

where t and k denote time and the thermal diffu-

sivity, respectively. The boundary condition and

initial condition are

T ¼ TaðyÞ on r ¼ a ð61Þ

T ¼ Ti at t ¼ 0 ð62Þ

Then, the heat conduction equation and the

boundary and initial conditions for the tempera-

ture change t (¼T � Ti) reduce to
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t ¼ TaðyÞ � Ti on r ¼ a ð64Þ

t ¼ 0 at t ¼ 0 ð65Þ

where m ¼ cos y. Here, we introduce the method

of separation of variables to obtain the general

solution of (63). When the temperature change is

expressed as
tðr; z; tÞ ¼ f ðrÞgðmÞhðtÞ ð66Þ

three separation equations can be obtained by

substitution of (66) into (63):
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where the second equation in (67) is called the

spherical Bessel’s equation. The general solu-

tions of (61) are

gðmÞ ¼ PnðmÞ
QnðmÞ

� 	
ð68Þ

f ðrÞ ¼ rn

r�n�1

� 	
; hðtÞ ¼ 1 for s ¼ 0 ð69Þ

f ðrÞ ¼
jnðsrÞ
ynðsrÞ

� 	
; hðtÞ ¼ expð�ks2tÞ for s 6¼ 0

ð70Þ

where jn(r) and yn(r) are the spherical Bessel

functions of the first and second kind of order n,
respectively.

The general solution of (63) for this problem is

expressed by
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Taking into consideration the boundary con-

ditions given by (64), we can obtain that sni are

the eigenvalues of the equation:
jnðsniaÞ ¼ 0 ð72Þ

and
A0¼ Ta0�Ti; An¼ Tan=a
n ðn¼ 1;2; ::::Þ ð73Þ

where
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X1
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TanPnðmÞ ð74Þ

The initial condition (65) givesX1
i¼1

AnijnðsnirÞ ¼ �Anr
n ð75Þ
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Multiplying r2jn(snjr) on both sides of (75) and
integrating from 0 to a, we get
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Then, the temperature change t is determined by
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Next, we consider the thermal stresses under

the boundary conditions
srr ¼ sry ¼ 0 at r ¼ a ð78Þ

Goodier’s thermoelastic function F and the

Boussinesq’s harmonic functions ’ and c are

for this problem:
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Then, we can get the displacements and ther-

mal stresses:
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The unknown coefficients can be determined

from the boundary condition (78).
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