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Overview

Emanating from the Boltzmann transport equa-

tion, a newly developed C- and F-processes heat

conduction constitutive model and the associated

dynamic thermoelasticity are described. The

model acknowledges the notion of the simulta-

neous coexistence of both the slow Cattaneo-type

C-processes and fast Fourier-type F-processes in

the mechanisms of heat conduction. The formu-

lation leads to a generalization of the macroscale

in space one temperature theory for heat conduc-

tion in solids of the Jeffreys-type model, Cattaneo

model, and the Fourier model for heat conduction

in solids. This is unlike the Jeffreys-type phe-

nomenological model which cannot reduce to

the classical Fourier model (but only to

a Fourier-like representation with relaxation),

and the Jeffreys-type model cannot explain the

underlying physics associated the C- and

F-processes model. A generalized thermoelastic

theory is described to study the dynamic

thermoelastic behavior of solids with special fea-

tures which can explain the classical and

nonclassical dynamic thermoelastic theories.
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Introduction

The basis of heat conduction and transport relies

heavily upon the underlying heat flux constitutive

models, and the fusion of the mechanisms asso-

ciated with heat conduction to those of elasticity

lead to the fundamental description of the

thermoelastic behavior of solids. Among the var-

ious currently available heat flux constitutive

models, the Fourier model [1] which is based

upon steady-state assumptions has long been

widely accepted for a variety of practical engi-

neering situations. With the Fourier model, the

resulting transient temperature equations are of

the parabolic type. Under certain special heating

durations and scales (regime maps) of applica-

tions and temperature regimes, the Fourier model

not only fails to predict the temperature propaga-

tion speed [2, 3] but also suffers from certain

anomalies. To account for the temperature prop-

agation speed and to account for the anomalies

associated with the Fourier model, the Cattaneo

model [4] was introduced. With the Cattaneo

model, the resulting temperature equations are

of the hyperbolic type. Joseph and Preziosi [5]

independently note (based on analogies of visco-

elastic flows) a phenomenological model formal-

ized as the so-called Jeffreys’ type for heat

conduction. The Cattaneo model and a Fourier-

like diffusive model are sub-cases which can be

degenerated from this generalized constitutive

model. A point of clarification is important

regarding the Jeffreys-type model. Although it

can be degenerated to the Cattaneo model, it
I 10.1007/978-94-007-2739-7,
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does not exactly degenerate to the classical

Fourier model; the resulting mathematical repre-

sentation is a Fourier-like diffusive model but

with relaxation term involved. Here, a new

C- and F-processes heat conduction constitutive

model is overviewed from physical principles

emanating from the Boltzmann transport equa-

tion (BTE). A nondimensional heat conduction

model number is introduced in the process of the

development of the formulations. A new gener-

alized dynamic thermoelastic theory employing

the C- and F-processes heat conduction constitu-

tive model is also described.
The C-Processes and F-Processes Model
for Heat Conduction

Assuming that simultaneously Fourier-type fast

processes (F-processes) which have infinite

speed of propagation and Cattaneo-type slow

processes (C-processes) which have finite speed

of propagation independently coexist in the heat

conduction process, a C- and F-processes heat

conduction model with a physical interpretation

and the notion of a linear combination of the

total heat flux as the sum of the F-processes and

C-processes is described as
qF ¼ �kFHT ¼ �FTkHT ð1Þ

qC þ t
@qC
@t

¼ �kCHT ¼ �ð1� FTÞkHT ð2Þ

q ¼ qF þ qC ð3Þ

In the above, q is the total heat flux due to the

mechanism of heat conduction (which is com-

prised of that associated with each of the

Fourier-type fast and Cattaneo-type slow

processes) and k is the total conductivity

which is the sum of the Fourier (effective) con-

ductivity kF and the Cattaneo (elastic) conduc-

tivity kC. Thus, k ¼ kF þ kC. It is to be noted

that the subscripts F and C pertain to the F-

processes and C-processes, and the model

acknowledges the coexistence of both finite

and infinite speed of propagation of the thermal
disturbances. Also note that when FT 2 ð0; 1Þ
the combined representation of the C- and F-

processes model leads to the Jeffreys-type

model, when (FT ¼ 0) the C- and F-processes

model naturally reduces to the Cattaneo model,

and when (FT ¼ 1) the C- and F-processes

model naturally reduces to the Fourier model.

At very early in the transient, the Cattaneo-type

slow processes dominate, and subsequently

with evolution of time the Fourier-type fast

processes dominate.

We define the F-processes associated with the

Fourier-type heat flux law from (1) as
qF :¼ �FTkHT ð4Þ

We rewrite (2) of the C-processes associated

with the Cattaneo-type heat flux law in integral

form [6] as
qC :¼ �ð1� FTÞk
t

ðt
�1

e�
t�s
t HTðx; sÞds ð5Þ

Now substituting (4) and (5) into (3) leads to

the total heat flux given as

q ¼ qF þ qc ¼ �FTkHTðx; tÞ

� ð1� FTÞk
t

ðt
�1

e�
t�s
t HTðx; sÞds ð6Þ

On the other hand, we next write the Jeffreys-

type heat flux model in integral form [5, 7] as
q¼�FTkHTðx; tÞ�ð1�FTÞk
t

ðt
�1

e�
t�s
t HTðx;sÞds

ð7Þ

Therefore, the C- and F-processes model leads

to and is identical with the Jeffreys-type phenom-

enological model as
qþ t
@q

@t
¼ �k HT þ tFT

@ðHTÞ
@t

� �
ð8Þ

Note that we introduced a macroscale heat
conduction model number, FT , defined as

follows:
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FT :¼ ConductivityðkFÞdue to F-processes

ConductivityðkFÞdue to F-processesþ conductivityðkCÞdue to C-processes
ð9Þ
C

The evolution of FT with time starting from

zero and leading to unity bridges the constitutive

models associated with C-processes and the

F-processes.

Derivation of the C- and F-Processes Model

Via the Boltzmann Transport Equation

The Boltzmann transport equation (BTE) is

given as
@f

@t
þ v � Hf þ a � @f

@v
¼ @f

@t

� �
scatt

ð10Þ

where f ðx;T;EðoÞÞ is the nonequilibrium

thermodynamic distribution function (Maxwell-

Boltzmann distribution for identical but

distinguishable particles (such as ideal gas),

Bose-Einstein distribution for boson particles

(such as photons and phonons), and Fermi-Dirac

distribution for fermion particles (such as elec-

trons)), vðoÞ is the heat carrier velocity which is

the speed of the first sound of the medium, aðvÞ is
the particle acceleration, T is absolute tempera-

ture,o is the frequency, and EðoÞ is energy state.
The first term in (10) represents the net rate of

particles over time, the second term is the con-

vective inflow of particles in physical space, the

third term is the net convective inflow due to

acceleration in velocity space, and the term on

the right-hand side is the net rate of change of

particles inside a control volume due to colli-

sions. Assuming the heat carrier velocity is con-

stant over a large frequency range, @f
@v can be

neglected [8, 9]. Both energy and temperature

gradient tend to disturb the distribution function

f ; this tendency is opposed by processes that

restore equilibrium. Therefore, the scattering

term is linearly approximated under the relaxa-

tion-time approximation which simplifies the

equation as
@f

@t

� �
scatt

¼ @ðf � f 0Þ
@t

¼ f 0 � f

t
ð11Þ
where f 0ðx; T;EðoÞÞ is the thermodynamic dis-

tribution at equilibrium, @f 0

@t ¼ 0, and tðo; vÞ is

the rate of return to equilibrium and called as

the relaxation time.

Fourier Model: Derivation

For a steady-state one-dimensional case, (10)

describes the particle diffusion and reduces to
vx
@f

@x
¼ f 0 � f

t
ð12Þ

The kinetic theory is derived under the pre-

mise of local thermal dynamic equilibrium
(LTE). LTE is implied and @f

@x � @f 0

@x and the @f
@x

term can be approximated as (see [10])
@f

@x
¼ df 0

dT

dT

dx
ð13Þ

Multiplying (12) by vx�hoDðoÞ and integrat-

ing over all frequency, we obtain the following

expression:
ðoD

0

v2x�ho
df 0

dT

dT

dx
DðoÞ do

¼
ðoD

0

vx�hoDðoÞ f
0 � f

t
do ð14Þ

where �h is the Planck’s number divided by 2p,
DðoÞ is the density of states, andoD is the Debye

cutoff angular frequency. The first term in the

right-hand side is zero (vx is an odd function and

f 0 is an even function of vx). Thus, the net particle

conduction heat flux vanishes for the equilibrium

function f 0.

The flux due to heat conduction of particles is

given by

qðxÞ ¼
ðoD

0

vxf ðxÞ�hoDðoÞ do ð15Þ
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Using the particle flux definition in (15), we

can reduce (14) to

qðxÞ ¼ � dT

dx

ðoD

0

v2xt
df 0

dT
�hoDðoÞ do ð16Þ

The specific heat is given as

c ¼
ðoD

0

df 0

dT
�hoDðoÞ do ð17Þ

and based on kinetic theory, the thermal conduc-

tivity is related to the specific heat as
k ¼
ðoD

0

v2xt
df 0

dT
�hoDðoÞ do ¼ 1

3
cvl ð18Þ

where kðTÞ is the total thermal conductivity, cðTÞ
is the total specific heat per unit volume, v is the

average speed of the heat carriers (v2x ¼ 1
3
v), and

l is the mean free path (l ¼ vt).
Substituting (17) and (18) into (16), the

Fourier model is derived as (see also [9])
qðxÞ ¼ �k
dT

dx
ð19Þ

Note that from this derivation the obtained

thermal conductivity is the total conductivity

with the assumption that the velocity and relaxa-

tion time are independent of frequency. Hence,

this yields

k ¼ v2xt
ðoD

0

df 0

dT
�hoDðoÞ do ð20Þ
Cattaneo Model: Derivation

The transient one-dimensional BTE equation

under the relaxation-time approximation and the

temperature gradient approximation yields
@f

@t
þ vx

df 0

dT

dT

dx
¼ f 0 � f

t
ð21Þ

As with the Fourier model, (21) is multiplied

by vx�hoDðoÞ and integrated over all frequency

range to yield
ðoD

0

vx�hoDðoÞ @f

@t
þ vx

df 0

dT

dT

dx
� f 0 � f

t

� �
do ¼ 0

ð22Þ
Applying similar definitions from (15), (17),

(18), and (20), the Cattaneo model is readily

derived as (see also [11])

qþ t
dq

dt
¼ �k

dT

dx
ð23Þ
The C- and F-Processes Model: Derivation

The difference between the Fourier model and

the Cattaneo model is in the presence of the

term @f
@t . For a given location, temperature, and

time, the three possible distribution functions

existing are given as

Maxwell-Boltzmann distribution function:
f ðEðoÞÞ ¼ fMBðEðoÞÞ :¼ 1

Ae
EðoÞ
TkB

ð24Þ

Bose-Einstein distribution function:
f ðEðoÞÞ ¼ fBEðEðoÞÞ :¼ 1

Ae
EðoÞ
TkB � 1

ð25Þ

Fermi-Dirac distribution function:
f ðEðoÞÞ ¼ fFDðEðoÞÞ :¼ 1

Ae
ðEðoÞ�EFÞ

TkB þ 1

ð26Þ

where A is a normalized constant, kB is the

Boltzmann’s constant, and EF is the Fermi

energy.

If the frequency o is large enough, in the

above distribution functions, we have
f ðEðoÞÞ � 0; 8o 2 ½oT ;oD� ð27Þ

Therefore, we have
@f ðEðoÞÞ
@t

� 0; 8o 2 ½oT ;oD� ð28Þ
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We now define the total heat flux as

q ¼
ðoT

0

vxf�hoDðoÞ do

þ
ðoD

oT

vxf�hoDðoÞ do ¼ qC þ qF

ð29Þ

where the postulation made here is that the inte-

gral up to a threshold frequency oT involves the

slow C-processes and termed qC and that the

integral from the threshold to infinity involves

the fast F-processes and termed qF.

Multiplying the BTE by vx�hoDðoÞ and inte-

grating over the entire frequency range yields
ðoT

0

vx�hoDðoÞ @f
@t

doþ
ðoT

0

v2x�hoDðoÞ
@f

@x
do

þ
ðoD

oT

v2x�hoDðoÞ
@f

@x
do

¼
ðoT

0

vx�hoDðoÞ f 0 � f

t

� �
do

þ
ðoD

oT

vx�hoDðoÞ f 0 � f

t

� �
do

ð30Þ

Note that the
ÐoD

oT
vx�hoDðoÞ@f@t do ¼ 0 (not

shown above) due to the observation that the

distribution function is constant over time for

high frequency; therefore, dfdt ¼ 0.

Instead of dealing directly with (30) which

describes the total heat conduction process, we

next independently derive from the BTE the fol-

lowing two equations which are associated with

the C-processes and the F-processes:
ðoT

0

vx�hoDðoÞ @f
@t

doþ
ðoT

0

v2x�hoDðoÞ
@f

@x
do

¼
ðoT

0

vx�hoDðoÞ f 0 � f

t

� �
do

ð31Þ

and
ðoD

oT

v2x�hoDðoÞ
@f

@x
do

¼
ðoD

oT

vx�hoDðoÞ f 0 � f

t

� �
do ð32Þ
Note that (31) and (32) can indeed explain and

lead to (30); however, the converse is not true.

We further define
k ¼
ðoT

0

v2xt
df 0

dT
�hoDðoÞ do

þ
ðoD

oT

v2xt
df 0

dT
�hoDðoÞ do ¼ kC þ kF

ð33Þ

and introducing the nondimensional heat conduc-

tion model number as the following ratio:
FT ¼
ÐoD

oT
v2xt

df 0

dT�hoDðoÞ doÐoD

0
v2xt

df 0

dT�hoDðoÞ do
ð34Þ

then (29), (31), and (32) finally yield the C- and

F-processes heat conduction model as
qF ¼ �FTk
dT

dx
ð35Þ

qC þ t
dqC
dt

¼ �ð1� FTÞk dT
dx

ð36Þ

q ¼ qF þ qC ð37Þ

In general, we now readily have
qF ¼ �kFHT ¼ �FTkHT ð38Þ

qC þ t
@qC
@t

¼ �kCHT ¼ �ð1� FTÞkHT ð39Þ

q ¼ qF þ qC ð40Þ

which explains the derivation based on funda-

mental physical principles emanating from the

Boltzmann transport equation.

One Temperature Equation for Heat

Conduction in Solids

When (1)–(3) for the C- and F-processes model

are coupled with the energy equation, this results

in a generalized heat conduction temperature

equation of the Jeffreys’ type which is



C 522 C- and F-Processes Model and Dynamic Thermoelasticity
macroscopic in space and microscopic in time

and termed here as the generalized one-step

[GOS] formulation associated with the one tem-

perature theory given by
1

c2T

@2T

@t2
þ 1

a
@T

@t
¼ H2T þ tFT

@

@t
H2T
� �

þ 1

k
Sþ t

@S

@t

� �
ð41Þ

where FT 2 ½0; 1�

Remarks. The differences contrasting the

C- and F-processes model [12] and the Jeffreys-

type model formulations are the following:

1. When the macroscale heat conduction model
number FT 2 ð0; 1Þ, the combined representa-

tion of the C- and F-processes constitutive

model, (6), leads to the Jeffreys-type model,

which in conjunction with the energy equation

leads to the GOS temperature (41) which is of

the Jeffreys’ type. It is strictly parabolic in

nature with the discontinuities being

smoothed by diffusion effects associated with

the effective thermal conductivity kF. Conse-
quently, even for very small values of FT ,

although the diffusive response is wavelike,

nonetheless the transmission of information

is felt everywhere.

2. When the macroscale heat conduction model

number FT ¼ 0, the C- and F-processes con-

stitutive model, (1)–(3), pertains to the

Cattaneo model and in conjunction with the

energy equation yields (42) belowwhich is the

hyperbolic one-step [HOS] equation of the

Cattaneo type which is propagative, where

heat is now transmitted as waves with finite

speeds dictated by cT :
1

c2T

@2T

@t2
þ 1

a
@T

@t
¼ H2T þ 1

k
Sþ t

@S

@t

� �
ð42Þ

3. When the macroscale heat conduction model

number FT ¼ 1, the C- and F-processes con-

stitutive model, (1)–(3), pertains to the classi-

cal Fourier model which in conjunction with

the energy equation yields (43) below which is
the classical parabolic one-step [POS] temper-

ature equation which is diffusive (i.e., the

transmission of information is felt every-

where) and is given by
1

a
@T

@t
¼ H2T þ S ð43Þ

Note that the Jeffreys-type constitutive

model, for the selection of the retardation

time equal to the relaxation time, only yields

a Fourier-like diffusive model with relaxation

which in conjunction with the energy equation

yields the following diffusive temperature

equation:
1

c2T

@2T

@t2
þ1

a
@T

@t
¼H2Tþ t

@

@t
H2T
� �þ1

k
Sþ t

@S

@t

� �
ð44Þ
The C- and F-Processes-Based
Generalized Dynamic Thermoelasticity

Consider the Lagrangian finite strain measure of

the Green-St. Venant strain tensor at time t with

respect to the Lagrangian configuration at time ta
as Eta 2 <3 � <3 and defined as
Eta :¼
1

2
ðCta � IÞ ð45Þ

where I is the second-order identity tensor and

Cta is the right Cauchy-Green deformation tensor

which is defined in terms of the deformation

gradient tensor Fta 2 <3 �<3 as
Cta :¼ FT
ta
Fta ð46Þ

The deformation gradient tensor is a two-point

tensor defined by the change of a material particle

of a deformable body of the Eulerian description

x ¼ ðx; y; zÞ with respect to the Lagrangian

description X ¼ ðX; Y; ZÞ as

Fta :¼
@x

@X
ð47Þ
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We have the following constitutive model in

Lagrangian configuration
C

Sta ¼ Cta : Eta þ a6Iy ð48Þ

r0s ¼ �2a6y� a5Eta ð49Þ

where
Cta :¼ lI� Iþ 2mI ð50Þ

and I is the fourth-order identity tensor and

defined as
I ijkl :¼ dikdjl ð51Þ

and dij is the Kronecker delta.
Considering the C- and F-processes model

described previously,
qF ¼ �FTkHT ð52Þ

qC þ t
@qC
@t

¼ �ð1� FTÞkHT ð53Þ

q ¼ qF þ qC ð54Þ

Finally, we have the C- and F-processes gen-

eralized dynamic thermoelasticity model of the

Lagrangian configuration in the form
H � qF ¼ �FTkH2T ð55Þ

1þ t
@

@t

� �
ðH � qCÞ ¼ �ð1� FTÞkH2T ð56Þ

2T0a6 _yþT0a5
@

@t
ðHuÞþrr¼H � ðqCþqFÞ ð57Þ

Cta : Eta þ a5Iyþ rb ¼ r
@2u

@t2
ð58Þ

For FT ¼ 1, the C- and F-processes

thermoelasticity model reduces to the classical

linear thermoelasticity model in Lagrangian

configuration

2T0a6 _yþ T0a5
@

@t
ðHuÞ þ rr ¼ �kH2T ð59Þ
Cta : Eta þ a5Iyþ rb ¼ r
@2u

@t2
ð60Þ

For FT ¼ 0, the C- and F-processes

thermoelasticity model reduces to the Lord and

Shulman model [13] in Lagrangian

configuration:
1þt
@

@t

� �
2T0a6 _yþT0a5

@

@t
ðHuÞþrr

� �
¼�kH2T

ð61Þ

Cta : Eta þ a5Iyþ rb ¼ r
@2u

@t2
ð62Þ
Example. The illustrative numerical test example

described here concerns dynamic thermoelastic

wave propagation in an elastic half-space (x > 0)

due to second sound effects. The bounding plane

x ¼ 0 is subjected to loading situations; a sudden

step change in temperature (Model 1) (following

the original work of Danilovskaya [14, 15] where

the classical thermoelastic model was employed).

The bounding plane at x ¼ 0 is assumed to be

traction free at all times and the half-space is

constrained so that there is only uniaxial motion.

Hence, we have

ux ¼ uðx; tÞ
uy ¼ 0

uz ¼ 0

ð63Þ

The initial and boundary conditions are given as
uxðx; 0Þ ¼ _ux ðx; 0Þ ¼ 0

Tðx; 0Þ ¼ Ti

_Tðx; 0Þ ¼ _Ti

sxðx; 0Þ ¼ 0

ð64Þ

This test case concerns the dynamic

thermoelastic response due to second sound

effects when a sudden change in temperature is

applied on the plane x ¼ 0. The data employed

for the computations is representative of stain-

less steel. First the analysis was performed for

equal speeds of thermal and structural model
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Fig. 1 Representative

temperature, displacement

and stress histories for (a)

Cs ¼ CT and (b) Cs ¼ 2
3
CT
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(CT ¼ Cs). A nondimensional characteristic

length (l ¼ 4) and a mesh having 501 degrees

of freedom were used. The time step employed

for the computation was Dt ¼ 0:001. Figure 1a

shows the temperature, displacement, and stress

histories obtained (after smoothing) via the pre-

sent formulations. However, employing

a further refined mesh of 501 degrees of free-

dom, the resulting response is significantly

higher. This may be attributed to the fact that

the presence of jump in stress is caused because

of the presence of sharp front which occurs in

the displacement and temperature profiles for

non-Fourier models at the nondimensional loca-

tion (x ¼ 1:0). The dynamic thermoelastic

response for the case of unequal speeds

(CT ¼ 2
3
Cs) is shown in Fig. 1b. Note that the

thermal wave front is at a different location

and the displacement and stress histories are
not sharp. Furthermore, the magnitude of the

stress is comparatively less than that for the

case of equal speeds. The results presented

here depict the representative response and are

accurate to within the framework of the mesh

refinement. Nonetheless, in comparison to the

assumption of infinite speed of thermal wave

propagation (see Danilovskaya [14, 15]), the

results are significantly different and indicate

the important effect due to second sound.
Concluding Remarks

The new C- and F-processes heat conduction

constitutive model which emanates from the

physics of the Boltzmann transport equation and

the associated generalized dynamic thermoelastic

theory for studying the thermomechanical
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behavior of solids acknowledges the notion of the

simultaneous coexistence of both slow Cattaneo-

type C-processes and fast Fourier-type F-

processes in the process of heat conduction. The

new C- and F-processes-based generalized

dynamic thermoelastic theory readily encom-

passes the classical and nonclassical dynamic

thermoelasticity theories.
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Transient Diffusive, Wavelike and
Ballistic Solid State Heat Conduction
Problems
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Overview

The classical description of solid state heat trans-

fer, described by Fourier law, holds up for many

or most of the systems encountered in engineer-

ing design. However, this diffusive description of

energy transport breaks down under certain con-

ditions, many of which are interesting for the

development of novel engineering systems.

Using the particle description of solids, particles

such as electrons, phonons, and molecules act

as energy carriers. Within this framework three

types of thermal transport mechanisms have been

identified. For purposes of illustration, consider

a block of solid material divided into many tiny

(differential) volumes.

• Diffusive Transport: All energy carriers are

constantly scattering. Any differential volume

of the solid has numerous collisions taking

place at any time. Diffusion is a local effect –

energy in one differential volume is carried

only to the volumes around it. Any change in

temperature in the solid is felt everywhere in

the solid instantaneously. This is the so-called

heat conduction paradox. Allowing for this

paradox is, however, a reasonable approxima-

tion for most systems under consideration in

everyday engineering applications.

• Wavelike Transport: The wave description

of heat conduction is also local and energy

carriers are considered to be constantly

scattering. However, the instantaneous nature

of the Fourier description is removed by

introduction of a finite propagation speed as
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described by Cattaneo [1]. This effect has

been studied since the early to mid-twentieth

century in very low-temperature environments

which, in general, only exist in an extreme lab

setting. Recently, however, wavelike transport

has been found at more commonly encoun-

tered temperatures during studies of pulsed

laser heating of metals [2] and in porous mate-

rials [3].

• Ballistic Transport: Energy carriers may not

scatter. This phenomenon is nonlocal since an

energy carrier in one differential volume of

our imaginary solid could travel and deposit

its energy into any other volume within the

solid. First proposed in 1938 [4], a recent push

to understand this process has led to numerous

mathematical models [5–7] and proposed

applications [8]. Since the times and spatial

scales associated with ballistic transport are so

small, no experimental measurement of tem-

perature profile (or widely accepted definition

of temperature!) exists to date.

Numerous physical descriptions and equations

governing these processes exist. While many

models give the same predictions at steady state,

it is the transient response predicted by these

models that are significantly different. All models

(to the author’s knowledge) are either first- or

second-order in time. One model that has arisen

with particular promise to make prediction for

diffusive, wavelike, and ballistic behavior is the

C- and F- (C-F) model [9]. Since this mathemat-

ical model can lead to a first- or second-order

system in time depending on a physically based

parameter, we will use it to demonstrate how to

numerically solve a general class of problems

arising in heat conduction.

To integrate in time the semi-discretized

systems resulting from spatial finite elements,

we will use the newly established isochronous

integration or iIntegration framework.

This framework unifies two existing families of

algorithms and features powerful numerical

and order-preserving attributes. Of note is the

second-order accuracy regardless of the order

of the system or the amount of controllable

numerical dissipation applied. The advantage

emanating from such an integrated framework is
the practicality and convenience of using the

same computational framework and numerical

implementation when solving first- and/or

second-order systems without having to resort to

separately switching from one individual

framework to another.

We will proceed as follows: Section “Model

Development” gives a physical description of the

C-F model: the governing heat transport equa-

tions and the corresponding boundary

conditions. Section “Numerical Formulation in

Space” gives a brief summary of the spatial

discretization of the resulting model.

Section “Numerical Formulation in Time: The

iIntegration Framework” presents the unified

time integration framework. Section “Numerical

Results” presents several illustrative examples.

In Section “Concluding Remarks”, we conclude

with final remarks.
Model Development

The C-F model, like many models of heat con-

duction, has been derived from the Boltzmann

transport equation. The foundational assumption

made in deriving the C-F model is that we can

split up the particles into high and low energy

carriers. This leads to the simultaneous coexis-

tence of heat carriers that behave “Fourier-like”

and “Cattaneo-like” – hence the model’s name.

The result is a thermal conductivity associated

with each process such that
K ¼ KC þ KF ð1Þ

The idea of a dimensionless heat conduction

model number can be introduced:
FT ¼ KF

KC þ KF
ð2Þ

For a full derivation of the C-F model, see

Anderson and Tamma [9]. For illustration, we

consider the heat conduction across a thin

film of thickness, L. We assume the film to be

dielectric, so the dominant energy carriers are

acoustic waves which, in a crystalline film, are
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quantized and can be treated as particles called

phonons. Our problem can now be approximated

as one-dimensional with the governing equation

Ct
@2T

@t2
þ C

@T

@t
¼K

@2T

@x2
þ tFTK

@

@t

@2T

@x2

� �
þ Sþ t

@S

@t
; for FT < 1

ð3Þ

C
@T

@t
¼ K

@2T

@x2
þ S; for FT ¼ 1 ð4Þ

where T is the temperature, t is time, x is location,

C is the volumetric heat capacity, t is the relax-
ation time of the heat carrier (average time

traveled before scattering), and S is a volumetric

source within the film. Note that for FT ¼ 0, the

hyperbolic heat equation is recovered from (3)

and for FT ¼ 1, the parabolic heat equation is

exactly recovered. Thus, by the choice of FT ,

our model can represent a fully diffusive descrip-

tion of heat conduction or a fully wavelike

description along with any behavior in between.

Boundary conditions of three different types

are considered for the thin film problem:

• Type 1 or Dirichlet – This boundary condition

corresponds to a given temperature on

a surface of the film. Type 1 conditions are

typical in all presentations of phonon heat

transfer models and exact solutions exist for

parabolic and hyperbolic heat conduction

problems. Complications arise when consid-

ering reports of so-called temperature “jumps”

at the boundaries of the films due to the

nonlocal nature of ballistic transport. Type 1

conditions are given by
T ¼ T11 at x ¼ 0 ð5Þ

T ¼ T12 at x ¼ L ð6Þ

• Type 2 or Neumann – The heat flux is given at

the boundary of the film. It permits jumps at

the boundaries and is given by the following:

If FT < 1,
�K
@T

@x
� KtFT

@2T

@x@t
¼ constant at x ¼ 0 ð7Þ
K
@T

@x
þ KtFT

@2T

@x@t
¼ constant at x ¼ L ð8Þ

If FT ¼ 1
�K
@T

@x
¼ constant at x ¼ 0 ð9Þ

K
@T

@x
¼ constant at x ¼ L ð10Þ

• Type 3 or Robin – This form of boundary

condition is the kind often found in classical

heat conduction problems with convection on

the surface of the solid. It is argued that type 3

conditions can recover the boundary slip result

found using models like the equation of pho-

non radiative transport [10] and can be con-

sidered a “microscale boundary condition”

resulting in a description of ballistic transport.

An example is given in section “Case 2”.

Drawing upon the work of Klitsner [11], we

use the following form:

If FT < 1,
�K
@T

@x
�KtFT

@2T

@x@t
¼b T11�Tð Þþbt _T11� _T

� �
at x¼ 0

ð11Þ

K
@T

@x
þKtFT

@2T

@x@t
¼b T12 � Tð Þ þ bt _T12� _T

� �
at x ¼ L

ð12Þ

If FT ¼ 1
�K
@T

@x
¼ b T11 � Tð Þ at x ¼ 0 ð13Þ
K
@T

@x
¼ b T12 � Tð Þ at x ¼ L ð14Þ

Here the parameter b is a “microscale coeffi-

cient.” This parameter has been found to be

a sufficient parameter to fit a multitude of exper-

imental thermal conductivity data.
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Before proceeding with the numerical

discretization, we introduce y ¼ T�T12

T11�T12
, � ¼ x

L,

and x ¼ t
t to nondimensionalize the C-F model. If

we assume the classic kinetic theory result,

K ¼ 1
3
Cvl, this allows us to express (3), with no

source, in terms of only the Knudsen number,

Kn ¼ l
L, and the heat conduction model number. l

is the mean free path of the energy carriers. For

FT 2 ½0; 1Þ,
@2y

@x2
þ @y
@x

¼ K2
n

3

@2y
@�2

þ K2
n

3
FT

@

@t

@2y
@�2

� �
ð15Þ

and for FT ¼ 1;
@y
@x

¼ K2
n

3

@2y
@�2

ð16Þ

Note that in nondimensionalizing (11)–(14), we

have introduced a dimensionless microscale coeffi-

cient, g ¼ b
Cv. We now have a mathematical model

which we would like to solve that is either a first- or

second-order partial differential equation in time.

Numerical Formulation in Space

We proceed to fully discretize (15) in space and

time. Because of the flexibility of the iIntegration
framework, this formulation also adapts to (16) as

will be shown in a later section. For spatial

discretization we choose the Galerkin finite ele-

ment method with linear shape functions. For

(15) this yields the semi-discrete equations as

M½ ��€y	þ C1½ � þ C2½ �ð Þ�_y	þ K1½ � yf g ¼ q1f g ð17Þ

where for a particular element, e,

½M� ¼
ðh
0

Nb cT Nb cd�

C1½ � ¼
ðh
0

Nb cT Nb cd�

½K1� ¼ K2
n

3

ðh
0

Bb cT Bb cd�

C2½ � ¼ K2
n

3
FT

ðh
0

Bb cT Bb cd�

ð18Þ
where h is the element length, Nb c ¼ 1� �
h
�
h


 �
,

and Bb c ¼ d
d� Nb c. Additional terms due to

Neumann- and Robin-type boundary conditions

(denoted by a subscript N or R, respectively)

result in a final semi-discretized system
M½ ��€y	þ C½ ��_y	þ K½ � yf g ¼ qf g ð19Þ

where

½C� ¼ ½C1� þ ½C2� þ ½CR� ½K� ¼ ½K1� þ ½KR�
fqg ¼ fq1g þ fqR=Ng

ð20Þ
Similarly for the first-order case, (16), we get
½C�f _yg þ ½K�fyg ¼ fq1g ð21Þ
where ½C2� ¼ 0. So for FT ¼ 1, (20) becomes

½C� ¼ ½C1� þ ½CR� ½K� ¼ ½K1� þ ½KR�
fqg ¼ fq1g þ fqR=Ng

ð22Þ
Numerical Formulation in Time: The
iIntegration Framework

The generalized single-step single-solve (GS4-2)

computational framework has been recently devel-

oped to yield a family of second-order accurate,

implicit, unconditionally stable algorithms with

controllable numerical dissipation on the zeroth-,

first-, and second-order time derivatives as well as

zero-order overshooting behavior [12]. While orig-

inally designed for time integration of structural

dynamics which are second-order in time, the

more recent works extend to the so-called GS4-1

framework dealing with time marching of first-

order systems [13]. These algorithms have the

same desirable features as their second-order

counterparts.

The essence of the framework and the under-

lying algorithms by design is as follows: using

a generalized method of time-weighted residuals,

the various unknowns to be solved for and the

consequent update variables are chosen to be

approximated by general asymptotic series
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expansions. This allows for a general algorithm

architecture or rather a whole family of infinitely

many algorithms, which are expressed in terms of

the coefficients of the expansion terms.

By imposing a “wish list” (a set of algorithmic

properties), the authors were able to reduce these

coefficients down to a set of parameters all

described in terms of the eigenvalues of the ampli-

fication matrix. These parameters, known as

rmin
1 ; rmax

1 ; rs1
� �

, allow the user to choose between

virtually any known (to date, in the context of LMS

methods) implicit algorithm for second-order sys-

tems in time. It also includes new and optimal

designs of algorithms within this framework.

Because of their common roots, it has been

suspected that there is a connection between

GS4-1 and GS4-2. Indeed, it has been shown that

the first-order algorithms can be recovered from

the second-order algorithms by a shift in variables

and parameters [14]. The resulting general set of

algorithms can recover most implicit time integra-

tion algorithms for first- or second-order systems

in time. The framework also includes new and

optimal designs of algorithms with useful features

that preserve the problem physics. The complete

details and derivation of this iIntegration frame-

work can be found in Masuri et al. [14].

We obtain a fully discretized system by apply-

ing the GS4 framework to (19) along with the

initial conditions

fygð0Þ ¼ y0 ð23Þ

f _ygð0Þ ¼ _y0 ð24Þ

The result is the following system:
½M�fe€yg þ ½C�fe_yg þ ½K�feyg ¼ feqg ð25Þ

where

fe€yg ¼ f€ygn þ L6W1 f€ygnþ1 � f€ygn
� 

ð26Þ

fe_yg ¼ f _ygn þ L4W1Dtf€ygn þ L5W2Dt

� f€ygnþ1 � f€ygn
� 

ð27Þ
feyg ¼ fygn þ L1W1Dtf _ygn
þ L2W2Dt2f€ygn
þ L3W3Dt2 f€ygnþ1 � f€ygn

� 
ð28Þ

f~qg ¼ 1�W1ð Þfqgn þW1fqgnþ1 ð29Þ

and the subscript n indicates the timestep.

Substituting these into (25), we can solve for

fD€yg ¼ f€ygnþ1 � f€ygn from

ðL6W1½M�þ L5W2Dt½C�þL3W3Dt2½K�ÞfD€yg
¼�½M�f€ygn�½C�ðf _ygnþL4W1Dtf€ygnÞ
� ½K�ðfygnþL1W1Dtf _ygnþL2W2Dt2f€ygnÞ
þð1�W1ÞfqgnþW1fqgnþ1

ð30Þ

Once we have fD€yg we can solve for dimen-

sionless temperature and its first- and second-

order derivatives in time, at time t ¼ nþ 1, using
f€ygnþ1 ¼ f€ygn þ fD€yg ð31Þ

f _ygnþ1 ¼ f_ygn þ l4Dtf€ygn þ l5DtfD€yg ð32Þ

fygnþ1 ¼fygnþl1Dtf_ygnþl2Dt2f€ygnþl3Dt2fD€yg
ð33Þ

where

L1W1 ¼ 3þ rmin
1 þ rmax

1 � rmin
1 rmax

1
2ð1þ rmin1 Þð1þ rmax1 Þ

L2W2 ¼ 1

ð1þ rmin1 Þð1þ rmax1 Þ
L3W3 ¼ 1

ð1þ rmin1 Þð1þ rmax1 Þð1þ rs1Þ

L4W1 ¼ 3þ rmin
1 þ rmax

1 � rmin
1 rmax

1
2ð1þ rmin1 Þð1þ rmax1 Þ

L5W2 ¼ 2

ð1þ rmin1 Þð1þ rmax1 Þð1þ rs1Þ

L6W1 ¼ 2þ rmin
1 þ rmax

1 þ rs1 � rmin
1 rmax

1 rs1
ð1þ rmin1 Þð1þ rmax1 Þð1þ rs1Þ

W1 ¼ 3þ rmin
1 þ rmax

1 � rmin
1 rmax

1
2ð1þ rmin1 Þð1þ rmax1 Þ
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l1 ¼ 1; l2 ¼ 1=2;

l4 ¼ 1l3 ¼ 1

2ð1þ rs1Þ ;

l5 ¼ 1

1þ rs1

ð34Þ

are the algorithmic parameters which can be

controlled via a set of user-defined parameters

rmin
1 ; rmax

1 ; rs1
� �

associated with the high-

frequency damping of the variables (fyg, f _yg,
f€yg), respectively. These parameters must satisfy

the relation

1 	 rmax
1 	 rmin

1 	 rs1 	 0 ð35Þ

Note that the algorithm given by (34)

corresponds to the so-called V0 family of

algorithms of GS4-2. There also exists a family

of U0 algorithms. Details can be found in Zhou

and Tamma [15].

This entirely describes the spatial and

temporal discretization of (15). To adapt the

above framework for (16), one must perform

the following procedure:

1. ½M� :¼ ½C�
2. ½C� :¼ ½K�
3. ½K� :¼ ½0� (Note that because of this assign-

ment, fyg no longer participates in the

solution)

4. Treat f€yg as f _yg
5. Treat f _yg as fyg
6. rmax

1 ¼ 1

7. Treat rmin
1 as r1

8. Disregard (24)

where :¼ is the assignment operation (i.e.,

assign the value of ½C� to ½M�). We have essen-

tially interpreted the ðnþ 1Þst order derivative

and its corresponding coefficient matrix as the

nth order derivative and its corresponding coeffi-

cient matrix. This set of operations yields the

GS4-1 family of algorithms exactly as given in

Masuri et al. [13]. We now have an integrated

computational framework in which general first-

and second-order systems can be solved using the

same code.

It should be pointed out that the parameters

rmin
1 ; rmax

1 ; rs1
� �

serve to control the numerical
dissipation on the zeroth-, first-, and second-order

derivative of the dependent variable for a second-

order system, respectively. When GS4 is shifted

to handle first-order systems, rmax
1 ¼ 1,

r1; rs1
� �

now control the numerical dissipation

on the zeroth- and first-order derivatives, respec-

tively. From (35), the family of first-order algo-

rithms must now satisfy the relation
1 	 r1 	 rs1 	 0 ð36Þ
Numerical Results

In this section we consider three different values

of the heat conduction model number, FT , and

Knudsen numbers,Kn. Using these three different

values for FT and Kn, we can demonstrate the

ability of the GS4 computational framework to

handle both first-order parabolic ðFT ¼ 1Þ and

second-order hyperbolic ðFT ¼ 0Þ systems. We

also present the use of type 1, 2, and 3 boundary

conditions. We follow these results with the

corresponding convergence plots which show

the second-order time accuracy of the algorithm

regardless of the values for rmin
1 ; rmax

1 ; rs1
� �

. The

examples given for these are separated into three

cases which span large length scales and varying

strengths of wavelike transport.

A film starts at temperature y ¼ 0 when

suddenly:

1. FT ¼ 1, Kn ¼ 1. A constant heat flux, (9) with

constant ¼ 0:2 is enforced at � ¼ 0 and a

Robin condition with g ¼ 1 is applied at

� ¼ 1 for x > 0.

2. FT ¼ 0:5,Kn ¼ 10. Both boundaries are given

a type 3 conditions, (11)–(12) with g ¼ 1 for

x > 0.

3. FT ¼ 1
2
, Kn ¼ 0:1. A Dirichlet condition, (5) is

applied to � ¼ 0 while a Robin condition with

g ¼ 1 is enforced at � ¼ 1 for x > 0.

A brief description of the model resulting from

our choice of the heat conduction model number

is included in each of the following subsections.

Numerical issues, as they arise, are also

highlighted. Note that the use of “exact solution”

in Figs. 1–3 is not literal. These curves should be
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C- and F-Processes Model: A Generalized Approach
to Solving Transient Diffusive, Wavelike and Ballis-
tic Solid State Heat Conduction Problems,
Fig. 1 Results for Case 1: FT ¼ 1, Kn ¼ 1. Plots on the

left-hand side correspond to r1; rs1
� � ¼ ð1; 1Þ and plots

on the right-hand side correspond to r1; rs1
� � ¼ ð0:5; 0Þ.

(a, b) A snapshot in time of the temperature profile.

(c, d) Nodal time history of nondimensional temperature.

(e, f) Nodal time history of time derivative of

nondimensional temperature
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C- and F-Processes Model: A Generalized Approach
to Solving Transient Diffusive, Wavelike and Ballis-
tic Solid State Heat Conduction Problems,
Fig. 2 Results for Case 2: FT ¼ 0:5, Kn ¼ 10.

Plots on the left-hand side correspond to

rmin
1 ;rmax

1 ;rs1
� � ¼ ð1; 1; 1Þ and plots on the right-hand

side correspond to rmin
1 ; rmax

1 ;rs1
� � ¼ 1

2
; 1; 0

� �
. (a, b) A

snapshot in time of the temperature profile. (c, d) Nodal

time history of nondimensional temperature. (e, f) Nodal

time history of time derivative of nondimensional

temperature
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C- and F-Processes Model: A Generalized Approach
to Solving Transient Diffusive, Wavelike and Ballis-
tic Solid State Heat Conduction Problems,
Fig. 3 Results for Case 3: FT ¼ 1, Kn ¼ 1. Plots on the

left-hand side correspond to rmin
1 ;rmax

1 ; rs1
� � ¼ ð1; 1; 1Þ

and plots on the right-hand side correspond to

rmin
1 ;rmax

1 ; rs1
� � ¼ ð0; 1; 0Þ. (a, b) A snapshot in time of

the temperature profile. (c, d) Nodal time history of

nondimensional temperature. (e, f) Nodal time history

of time derivative of nondimensional temperature
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C- and F-Processes Model: A Generalized Approach
to Solving Transient Diffusive, Wavelike and Ballis-
tic Solid State Heat Conduction Problems,
Fig. 4 Convergence plots for all three cases showing

second-order time accuracy in the zeroth-, first-,

and second-order derivatives. These plots correspond to

and reflect the convergence behavior after numerical

dissipation has been applied to the solution. (a) Case 1,

r1; rs1
� � ¼ ð0; 0Þ. (b) Case 2, rmin

1 ; rmax
1 ; rs1

� � ¼
1
2
; 1; 0

� �
(c) Case 3, ðrmin

1 ;rmax
1 ; rs1Þ ¼ ð0; 1; 0Þ
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taken as a reference solution which solves the

same problem with the same number of elements

and a very large number of timesteps, 10,000.

Case 1

In this case, our choice of FT ¼ 1 recovers clas-

sical Fourier-type heat conduction. The choice of

Kn ¼ 1 is the transition region for ballistic trans-

port. Solving this transient system shows the

ability of the iIntegration framework to shift

seamlessly between first- and second-order sys-

tems. Note that the iIntegration framework

allows for selective control of numerical dissipa-

tion on y and _y. Less numerical dissipation results
in a more accurate solution at the risk of having

numerical oscillations present as seen in Fig. 1.

The algorithm chosen to remove numerical oscil-

lations in Case 1, r1; rs1
� � ¼ ð0:5; 0Þ, shows

successful damping of oscillatory behavior.

Case 2

The general C-F model given by (15) with

FT 2 ð0; 1Þ takes on the same form as an existing

heat conduction model which is known as Jeffreys

model. An excellent overview of wavelike heat

propagation as well as a discussion and derivation

of Jeffreys model can be found in the work of

Joseph and Preziosi [16]. Kn ¼ 10 indicates
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a very thin film where ballistic transport is the

dominant energy transfer mechanism. The use of

type 3 boundary conditions is of particular impor-

tance as the ability to change g ¼ b
Cv has been

shown to be important in fitting thermal conduc-

tivity experiments where ballistic transport is

important. A characteristic feature of ballistic

transport, a temperature jump at the boundaries,

is evident in the solution given in Fig. 2a, b.

Significant oscillations can be seen in the time

derivative of the dependent variable which is

controlled by the rmax
1 parameter. The GS4

framework has the unique ability to provide

control of numerical damping of this variable

independently of y. In heat transfer applications,

the time derivative of temperature can be of

fundamental importance when modeling, for

example, plumes in turbulent convection [17] or

crystallization of materials [18]. These results

can be seen in Fig. 2.

Case 3

For the case of the C-F model with FT ¼ 0, the so-

called hyperbolic heat equation (also known as the

Cattaneo-Vernotte equation and the telegraph

equation) is recovered. The hyperbolic nature of

this equation causes its solution to be wavelike.

This brings about unphysical oscillatory behavior

in numerical solution schemes, and various efforts

have been put forth to combat these difficulties.

The choice ofKn ¼ 0:1 is generally considered the

diffusive or macroscale limit.

TheGS4 framework, with its tunable numerical

dissipation, easily controls this phenomenon.

Nodal oscillations over time of the temperature

and its time derivative are controlled to permit

more physically realistic results as shown in Fig. 3.

Convergence plots for all three cases

presented above can be found in Fig. 4a–c.

These plots demonstrate the second-order accu-

racy of the iIntegration framework after the appli-

cation of numerical dissipation.
Concluding Remarks

Wehave presented the unified isochronous integra-

tion ðiÞ computational framework for integrating
first- and second-order transient systems arising in

the study of thermal transport in solids. Numerical

oscillations for a class of problems have been

shown to be more easily treated while retaining

the second-order in time accuracy of the selected

algorithm within this integrated framework.

A theoretical model of solid state heat transfer,

the C-F model, has been used for illustration.

This model represents all heat conduction mecha-

nisms – diffusive, wavelike, and ballistic transport

as was shown through various examples. Applica-

tion of the described approach allows for an effi-

cient and effective solution to any transient

problem of heat conduction in solids.
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Overview

Classical linear thermoelasticity with Fourier’s

law of heat conduction leads to a propagation of
thermal disturbances at infinite speed (cf. [6]),

what is contrary to the existence of a limiting

speed for physical processes. Furthermore, the

canonical writing of such a theory provides

a nonhomogeneous system of conservation laws

of momentum and energy (cf. [3]), what has for

direct consequence to provide path-dependent

integrals in fracture (cf. [5]). Several approaches

have been proposed to remedy the first

deficiency. Among these, one is the theory of

Green and Naghdi [1] that exploits the notion of

thermal displacement or “thermacy” (introduced

by van Dantzig in the 1920s). The idea is to give

to the temperature the status of a velocity (time

derivative of a scalar). As a result, it is possible to

construct a thermoelasticity with no apparent

dissipation (we have at hand a “dissipation-free”

theory of thermoelastic conductors; almost an

oxymoron!), yielding a finite speed of propaga-

tion (i.e., the mathematical system under study

becomes hyperbolic). It is also possible to con-

struct path-independent integrals in the resulting

theory of fracture (cf. Dascalu and Maugin [2]).

This works out just like a magician trick notwith-

standing the lack of deep physics. Both basic

formulation involving a modified material

Eshelby stress and the accompanying revisited

version of the thermoelastic fracture problem

involving path-independent integrals are given.
Field Equations and Conservation
Equations

Thus, we introduce a scalar variable g such that

the thermodynamic temperature is given by
y X; tð Þ ¼ @

@ t
g X; tð Þ 
 _g or g ¼

ðt
0

y X; t 0ð Þ dt 0

ð1Þ

A variational formulation based on a direct-

motion description will consider a Lagrangian

density per unit reference volume in the form

Lth ¼ �Lth v ¼ _�x; F ¼ HR�x; _g; HRg
� �

¼ 1

2
r0v

2 �W F; _g;HRgð Þ ð2Þ

http://dx.doi.org/10.1007/978-94-007-2739-7_292
http://dx.doi.org/10.1007/978-94-007-2739-7_292
http://dx.doi.org/10.1007/978-94-007-2739-7_296
http://dx.doi.org/10.1007/978-94-007-2739-7_296
http://dx.doi.org/10.1007/978-94-007-2739-7_297
http://dx.doi.org/10.1007/978-94-007-2739-7_297
http://dx.doi.org/10.1007/978-94-007-2739-7_859
http://dx.doi.org/10.1007/978-94-007-2739-7_859
http://dx.doi.org/10.1007/978-94-007-2739-7_860
http://dx.doi.org/10.1007/978-94-007-2739-7_860
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where no inertia term is isolated for the field g
which, just like x or the usual displacement

u ¼ X� x, does not appear just by itself (Gali-

lean invariance; but X would be present in both

r0 and W in the presence of true material inho-

mogeneities). Here, the potential (Helmholtz)

energy depends on temperature and the past his-

tory of the temperature gradient since

HRg ¼
ðt
0

HRy X; t0ð Þð Þ dt0

Skipping details of the derivation [3], the

Euler-Lagrange field equations for x and g valid
at regular material points X are readily obtained

as the linear (physical) momentum equation
@ p

@ t
� divRT ¼ 0; p :¼ r0v; T ¼ @W=@F ð3Þ

and the entropy equation in the form
@ S

@ t
þ HR:S ¼ 0; S ¼ � @W

@ _g

¼ � @W

@ y
; S ¼ � @W

@ HRgð Þ ð4Þ

The first of (4) has no source term although S is
obviously identified as the entropy density. That

is the reason why this theory is called a theory of

thermoelasticity “without dissipation.” Applica-

tion of Noether’s theorem to the present varia-

tional formulation for space-time translations in

material space yields the canonical equations of

(material) momentum and energy in the form

(compare [5])
@ P th

@ t

����
X

�divRb
th ¼ 0;

@ H th

@ t

����
X

�HR:Q
th ¼ 0

ð5Þ

where
P ¼ Pmech � S HRg; Pmech :¼ �p:F ð6Þ

b th ¼ � L th þ T:F� S � HRg
� � ð7Þ
H th ¼ 1

2
r0v

2 þ E; E ¼ W þ Sy; Q th ¼ T:v� y S

ð8Þ

Thus, the energy equation given by the second

of (5) is in a standard form if one accepts the

identifications considered in (5), and �W as the

free energy, and we set the material heat flux

Q ¼ y S. What is new here are the additional

contributions due to HRg in the expressions of

the canonical linear momentum P and of the

new Eshelby material stress tensor bth. Thus,

both (3)1 and (5)1 are in their classical form

while (4)1 and (5)1 contain no source terms.

We could have started with a variational for-

mulation based on the consideration of the

inverse motion, for which the initial Lagrangian

density is taken per unit actual volume of mass

density r x; tð Þ as [4]
J�1
F L ¼ 1

2
r V:C:V

� w F�1 x; tð Þ; @g x; tð Þ=@t; Hg ¼ @g=@x
� �

ð9Þ

where
C ¼ FTF; V ¼ �F�1: v ð10Þ

In this case, the Euler-Lagrange equations are

directly the equation of canonical material

momentum (5)1 and the entropy (4)1, while the

standard linear momentum (3)1 and the energy

(5)2 are obtained by application of Noether’s

theorem.
The Problem of Thermoelastic Fracture
Revisited

This was considered by Dascalu and Maugin [2].

There is no need to duplicate the arguments

followed in [5]. We simply note that with the

requirements that
N:T� ¼ 0; N:Q� ¼ 0 ð11Þ
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along the faces of the crack, equations similar to

(12) and (13) of [7] will be obtained but with

quantities noted with superscript th (here in

quasi-statics),
F th
crack ¼ lim

ð
G

P thðV:NÞ þ N:b th
� �

dG as G ! 0

ð12Þ

Gcrack ¼ lim

ð
G

Hth V:N
� �þN: T:v�Qð Þ� �

dG as G ! 0

ð13Þ

These two are compatible, yielding the local

statement of the second law of thermodynamics

Gcrack ¼ V:F th
crack 	 0 ð14Þ

when we have the following asymptotic behavior

of the fields at the crack tip

_g X; tð Þ � � V:HR

� �
g X; tð Þ ð15Þ

y � �V:=Rg; v � �V:FT

while
SV:HRg � �Sy; V:Pmech � r0v
2 ð16Þ

Note that the result (14) is general, being in

fact independent of the considered

thermoelasticity theory. An equivalent form of

(13) is obtained as
Gcrack ¼
ð
L

N: b th þ V:P th
� �

1R
� �

:V
� �

ds

� d

dt

ð
A

V:P thdA ð17Þ

whereL is another contour encircling the domain

A which contains the crack tip and moves

together with it. In quasi-statics, this reduces to
Gcrack ¼
ð
L

N:b th:Vds ð18Þ
where the kinetic energy is no longer involved

in the Eshelby stress bth. This is compatible

with (14).
Recovery of Classical Thermoelasticity

We are obviously aware of the amount of artifi-

ciality in the Green and Naghdi [1] construct. All

is based on the assumptions made regarding the

free energy functional dependence. An approxi-

mation yielding the classical theory of

thermoelasticity has, therefore, to be obtained

from an approximation of that energy. With

b ¼ HRg, we can write a Taylor series expansion

with respect to that material vector about its zero

value. Thus,
W F; y ¼ _g; b ¼ HRgð Þ ¼ Ŵ F; y; b ¼ 0ð Þ
þ @W

@b
b ¼ 0ð Þ : bþ 0 b2

� �
ð19Þ

We let the reader evaluate all the derivatives

of W needed in the theory, with
Ŝ ¼ � @Ŵ

@y
; Ŝ ¼ � @W

@b
b ¼ 0ð Þ; Q̂ ¼ yŜ ð20Þ

It is checked that (3)1, (4)1, and (5) yield the

equations [3] (Section 6 in that reference)
@ p

@ t
� divRT̂ ¼ 0 ð21Þ

@ Ŝ

@ t
þ HR:Ŝ ¼ �y Ŝ: HRy ¼ �Q̂:HRy ð22Þ

@ Pmech

@ t
� divRb̂ ¼ f̂

th ¼ ŜHRy ð23Þ

@Ĥ

@t
� HR: T̂:v� Q̂

� 
¼ 0 ð24Þ

where all symbols with a superimposed caret are

indeed those of the classical theory, e.g., in Ĥ,

Ê ¼ Ŵ þ Ŝy, and Pmech is none other than the
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classical purely mechanical term. In the fracture

problem, one has to focus attention on the addi-

tional terms that were involved in the Eshelby

stress of the Green-Naghdi theory. In this limit,

a source term will appear in the expression of the

driving force. This will be none other than the

bulk integral of the material thermal force present

in the right-hand side of (23). Thus, in (20)

through (24), one simply has to forget about the

way the entropy flux was introduced (the second

of (20)) and then construct a constitutive equation

for it or for Q̂ as is usually done [5].
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Overview

Traditionally, the basic equations of balance of

continuum mechanics and thermodynamics are

first presented in the framework designed by

Cauchy and other scientists in the nineteenth
century, i.e., at actual time t and per unit volume

or surface in the so-called actual, or physical,

configuration, Kt. Speaking of finitely deform-

able solids, with Piola and Kirchhoff, another

format was introduced which still considers

equations of motion in the actual framework

but per unit volume or surface of a reference

configurations KR. More recent works dealing

with the theory of material inhomogeneities

and the progress of material defects require

a full projection of these equations onto the

material manifold itself as this is the true arena

of these phenomena. This may be related to the

insightful works of J.D. Eshelby (1916–1981).

But this new format may also be called canoni-
cal as it no longer deals with the actual config-

uration. This format is particularly enlightening

in thermoelasticity. It emphasizes the role

played by the conservation law of so-called

(canonical) material momentum with the

appearance of the material Eshelby stress and

the accompanying form of the local energy

equation. Here we are concerned with equations

valid at any regular material point X in

a thermoelastic body B. But the formulation

demonstrates its full power in rationally intro-

ducing the driving forces acting on field singu-

larities (discontinuity surfaces, cracks, etc.; see

the corresponding entries in the ETS).
Cauchy Format of the Basic Equations
of Thermoelasticity in Finite Strains

At time t and actual placement x resulting from a

finite deformation x ¼ x X; tð Þ between a global

reference configuration KR and the actual config-

uration Kt in Euclidean physical space E3, we

have the following local balance laws (also

referred to as “field” equations):

• Balance of mass, also called the continuity
equation
_rþ r H:vð Þ ¼ @r
@ t

����
x

þH: ptð Þ ¼ 0; pt :¼ rv ð1Þ

• Balance of linear (physical) momentum (in the

absence of body force)
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r _v� div s ¼ 0 ð2Þ

• Balance of angular (physical) momentum
s ¼ sT i:e:; sij ¼ sji or s ij½ � ¼ 0 ð3Þ

• First law of thermodynamics
r
d

dt
Ht=rð Þ � H: s:v� qð Þ ¼ rh ð4Þ

• Balance of entropy
r
d

dt
St=rð Þ þ H: sð Þ � r�̂ ¼ r~� ð5Þ

• Second law of thermodynamics
r~� 	 0 ð6Þ

Here, r is the matter density at time t, s is the

symmetric Cauchy stress, q is the heat flux vec-

tor, e is the internal energy per unit mass in Kt,

h x; tÞð is a body source of energy per unit mass in

Kt, � is the entropy per unit mass in Kt, �̂ is a body

source of entropy per unit mass in Kt, ~� is an

internal source of entropy per unit mass in Bt, S
t

is the entropy per unit volume, and s is the

entropy (in)flux vector, and we have set
Ht ¼ Kt þ Et; Kt ¼ 1

2
r x; tð Þv2; Et ¼ re ð7Þ

with v ¼ @x=@tjX: The standard assumptions

(Coleman-Noll; see [1]) are that

s ¼ q=y; �̂ ¼ h=y ð8Þ

where y > 0; inf y ¼ 0 is the thermodynamic

temperature.
Piola-Kirchhoff Format of the Local
Balance Laws of Thermomechanics

On introducing the matter density r0 at KR and

the first Piola-Kirchhoff stress T by the so-called

Piola transformation,
r0 ¼ JFr; T ¼ JFF
�1s ð9Þ

where JF ¼ detF and F�1 is the inverse of F,

with F :¼ HRx ¼ @x=@X; and using the

identities,

HR JFF
�1

� � ¼ 0; H J�1
F F

� � ¼ 0 ð10Þ

we transform the set of balance equations (1)

through (6) into the following set:

• Balance of mass, also called the continuity
equation
@

@t
r0

����
X

¼ 0 ð11Þ

• Balance of linear (physical) momentum
@

@t
pR

����
X

�divRT ¼ 0; pR :¼ r0v ð12Þ

• Balance of angular (physical) momentum
FT ¼ TTFT ð13Þ

• First law of thermodynamics
@

@ t
HR

����
X

�HR: T:v�Qð Þ ¼ r0h ð14Þ

• Balance of entropy
@

@t
SR

����
X

þHR:S� r0�̂ ¼ SR :¼ r0 ~� ð15Þ

• Second law of thermodynamics
SR 	 0 ð16Þ

where (Piola transformations)

Q ¼ JF F
�1q; S ¼ JF F

�1 s ð17Þ

Sometimes, these equations – which are very

useful in the finite strain framework – are

referred to as material equations, as compared

to the spatial equations deduced in the Cauchy

format. This is a misnomer because only the
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space-time parametrization and partial deriva-

tives here refer to this framework while both

(12) and (13) still have components in the phys-

ical framework (actual configurationKt). We see

below how one constructs equations that are

completely in the material framework, both in

terms of tensorial objects and space-time

parametrization.
General Thermomechanical Theorems

• Kinetic energy theorem: On taking the inner

product of (2) with v, we obtain (tr ¼ trace)
r
d Kt=rð Þ

dt
� H: s:vð Þ þ tr s: Hvð ÞT

� 
¼ 0 ð18Þ

• Internal energy theorem: On expanding (4)

and combining with (18), we obtain
r
d Et=rð Þ

dt
� tr s: Hvð ÞT

� 
þ H:q ¼ rh ð19Þ

• Clausius-Duhem inequality: Combining now

(19) and (5)–(6) and introducing the free

energy density c ¼ e� �y, we obtain the fol-

lowing inequality:
� r _cþ � _y
� 

þ tr s: Hvð ÞT
� 

� q=yð Þ :Hy ¼ r y~� 	 0
ð20Þ

In direct parallelism with these spatial

equations, it is easy to establish the following

equations in the Piola-Kirchhoff format:

• Kinetic energy theorem
@KR

@ t

����
X

�HR: T:vð Þ þ tr T: HRvð ÞT
� 

¼ 0 ð21Þ

• Internal energy theorem
@ ER

@ t

����
X

�tr T: HRvð ÞT
� 

þ HR:Q ¼ r0h ð22Þ
• Clausius-Duhem inequality
ySR ¼� _W þ S _y
� 

þ tr T: HRvð ÞT
� 

� Q=yð ÞHRy 	 0
ð23Þ

where we introduced the free energy

W ¼ ER � Sy, per unit volume in the refer-

ence configuration.
Thermoelastic Conductors: Standard
Theory

Apart for pure elasticity, this is the simplest

thermomechanical behavior for deformable

solids. The observable variables of state in this

case are the deformation gradient F and thermo-

dynamic temperature y, so that we would a priori
write the following functional dependence for the

thermodynamic dependent variables (Coleman-

Noll; see [1, 2]):

T ¼ T F; y; HRyð Þ; Q ¼ Q F; y; HRyð Þ
W ¼ W F; y; HRyð Þ; S ¼ S F; y; HRyð Þ ð24Þ

where the same functional dependency is

assumed just as a precautionary measure

(so-called equipresence). But in the end, however
[1], [2], and [3], we have the following results:
@W

@ HRyð Þ ¼ 0; T¼ ~
T F; yð Þ ¼ @

~
W

@F

����
y
;

S¼ ~S F; yð Þ ¼�@
~
W

@ y

����
F

; Q¼~
Q F;y; HRyð Þ

ð25Þ

with

W ¼ ~
W F; yð Þ; lim ~

Q F; y; HRy ! 0ð Þ ¼ 0

ð26Þ

That is, entropy is formally defined just like in

thermostatics, although there is thermal disequi-

librium, and heat flux may still depend, as param-

eters, on deformation and temperature. The

remaining dissipation inequality is of pure ther-

mal origin and reads
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Fconduction 
 � Q=yð Þ :HRy 	 0 ð27Þ

A standard expression for Q respecting this is

given by
Q ¼ �K F; yð Þ:HRy ð28Þ

where the necessarily symmetric material tensor

K is positive definite.
Canonical “Eshelby” Format of the Basic
Equations of Thermoelasticity in Finite
Strains

To be somewhat more general, we consider the

possible occurrence of material inhomogeneities

(dependence of properties on the material point)

of both inertial and thermoelastic origins so that

the material may be nonlinear, anisotropic, and

inhomogeneous and thus giving up the three basic

tenets of nineteenth-century continuum mechan-

ics. Thus,

r0 ¼ r0 Xð Þ; W ¼ ~
W F; y;Xð Þ ð29Þ

The second and third equations (25) hold

good. Equation (11) is satisfied, and we assume

that h ¼ 0 although this is not important.

Applying F to the right of (12)1 and account-

ing for the general expressions (29), after some

simple manipulations, we arrive at the following

fully material (co-vectorial) equation of linear

momentum [4]:
d P

d t
� divRb ¼ f th þ f inh ð30Þ

where the following quantities have been defined
P :¼ �pR:F ¼ �r0v:F ð31Þ

b ¼ � LW1R þ T:Fð Þ; LW :¼ K �W ð32Þ

f inh :¼@ LW=@Xjexpl 
 @ LW=@Xjfixed fields
¼ v2=2
� �

HRr0 � @
~
W=@X

���
expl

ð33Þ
f th :¼ SHRy; S ¼ �@
~
W=@y ð34Þ

Here, P is the (canonical) material momen-

tum, b is referred to as the (nonsymmetric)

Eshelby material stress, LW is akin to

a Lagrangian density (difference between

a kinetic energy and a potential energy); f inh

and f th may be called a material force of inho-

mogeneity and a thermal material force [5],

respectively. Equation (30) is entirely on the

material manifold M of element X, and so both

forces are indeed on the material manifold and

not in physical space. The general theory of such

forces was mostly developed by the author and

coworkers [6] and references therein. The ther-

mal material force appears for the first time in

small strains in a work by Bui [7].

In parallel with the transformation that led to

(30), noting that E ¼ W þ Sy, (22) is transformed

to
d Syð Þ
dt

þ HR:Q ¼ h th; h th :¼ S y
� ð35Þ

Equations (30) and (35) constitute the canon-
ical thermomechanics of materially inhomoge-

neous thermoelasticity. As readily checked, they

are but space and time components of a true four-

dimensional (space-time) balance law, although

we note that there is no « time-like » scalar

equivalent to f inh in (35)1. An explicit depen-

dence of W on time (in a rheonomic system)

would yield a nonzero term h inh and would

restore a complete symmetry.

Remark 1. Associated Jump Relations. The

above developed equations are supposed to be

valid at any regular material point X. They, of

course, have jump relations associated with each

of them at the crossing of singular surfaces. This

is exposed in [1], [2] and [6].

Remark 2. Role of Canonical Equations. Bal-

ance equations such as (1)–(3), complemented by

boundary and initial conditions, are exploited in

the solution of practical thermoelastic problems.

Only these formats can be used because data in
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bulk and at boundaries are given in the present

configuration Kt. In contrast, the canonical

Eshelbian formulation – entirely in the material

framework at KR – is to be exploited, as in a post-

processing procedure, to evaluate critical quanti-

ties of which the force acting on the tip of a crack

and the energy release rate are the most popular

examples, hence the main use of such equations is

where field singularities and inhomogeneities are

present. The main reason for this is – as remarked

during the construction of such canonical equa-

tions – that quantities there are of a higher order

than in the standard balance equations that do not

capture efficiently such singularities (see [4] for

these general concepts; cf. [9, 10]).

Remark 3. Use of the Internal Energy. The

formulation (30)–(35) seems to attribute

a privileged role to the Helmholtz free energy

W. However, using the relation W ¼ E� Sy;
one can also define an Eshelby stress tensor, bE
in terms of the internal energy E, so that (30) and
(35) are replaced by
@ P

@ t

����
X

�div R bE ¼ f thE ; f thE 
 �yHRS ð36Þ

HR :Q ¼ h th
E ; h th

E 
 �y
�
S ð37Þ

with
bE ¼ bþ ySð Þ 1R 
 � LE1R þ TE:Fð Þ;
LE 
 K � E

ð38Þ

f thE ¼ f th � HR: yS 1Rð Þ ð39Þ

But this formulation loses the symmetry between

space and time components in a four-dimensional

formulation. Of course, (37) is none other than

the original form of the energy equation (eventu-

ally the heat propagation equation).

Remark 4 Generalization to Complex Dissipa-

tive Media and Others. Whenever the free

energy depends also on an internal variable of

state denoted by a (this may be a tensor of any

order) such as in thermo-elasto-plasticity, i.e.,
W ¼ ~
W F; y; að Þ in the materially homogeneous

case, we obtain the following generalizations [8]:
d P

dt
� divR b ¼ f th þ f intr;

d Syð Þ
dt

þ HR:Q ¼ hth þ hintr
ð40Þ

where in
f intr ¼ A: HRað ÞT; hintr ¼ A: �a; A :¼�@
~
W=@a

ð41Þ

where the dot product must be understood as a full

saturation between the indices of tensors A and a,
while the superscript notation “intr” refers to the

processes of intrinsic dissipation (e.g., plasticity).
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Overview

Thermally excited mechanical response of solid

materials is of increasing interest in the engineer-

ing sciences. In the power-generating equipment,

in the electromagnetic radiation pulse emitters,

and in many other electronic devices, materials

may be subjected to sudden large thermal fluxes,

and the inertia effects characterized by the prop-

agation of thermal stress waves become signifi-

cant. The need for numerical methods for the

solution of these dynamic problems is dictated

by the well-known difficulty of obtaining the

exact solutions.
Among the various numerical approaches,

the method of characteristics, also numerical in

nature, has the advantages of giving a simple

description of the wavefronts, and it can give

numerical solutions readily to problems with

any types of input functions. Generally, the

method of characteristics is a technique for solv-

ing a partial differential equation of hyperbolic

type in mathematics. The method is to reduce

a hyperbolic partial differential equation to

a family of ordinary differential equations

along which the solution can be integrated

from some initial data given on a suitable hyper-

surface (called the characteristics). These equa-

tions (called the characteristic equations) are

more suitable for numerical analysis because

the use of these equations makes it possible to

obtain the solution via a step-by-step integration

procedure.

This entry deals with the characteristic method

for the solutions of the one- and/or two-

dimensional thermal stress problems. To keep

the numerical treatment general, the development

of the formulation is based on the generalized

dynamic theory of thermoelasticity proposed by

Load and Shulman [1].
One-Dimensional Problem

Generalized Theory of Thermoelasticity

According to the generalized theory of

thermoelasticity proposed by Lord and Shulman,

a coupling between thermal and mechanical

fields is taken into account, and the classical

Fourier’s law is also modified by adding

a thermal relaxation term to eliminate the para-

dox of the infinite thermal speed of the classical

theory of thermoelasticity; the equations that

govern the propagation of one-dimensional ther-

mal and thermal stress waves in linear elastic,

isotropic, and homogeneous materials under

plane strain are given by one set of generalized

equations:

1. Equation of motion

r
@W

@t
� @szz

@z
¼ 0 : W ¼ @w

@t
ð1Þ

http://dx.doi.org/10.1007/978-94-007-2739-7_950
http://dx.doi.org/10.1007/978-94-007-2739-7_690
http://dx.doi.org/10.1007/978-94-007-2739-7_690
http://dx.doi.org/10.1007/978-94-007-2739-7_255
http://dx.doi.org/10.1007/978-94-007-2739-7_100286
http://dx.doi.org/10.1007/978-94-007-2739-7_100423
http://dx.doi.org/10.1007/978-94-007-2739-7_100423
http://dx.doi.org/10.1007/978-94-007-2739-7_100641
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2. Constitutive equations
@szz
@t

� C11

@W

@z
þ b

@T

@t
¼ 0 ð2Þ

3. Modified Fourier’s law
C

t
@qz
@t

þ k
@T

@z
¼ �qz ð3Þ

4. Coupled energy equation
@qz
@z

þ rcv
@T

@t
þ T0b

@W

@z
¼ 0 ð4Þ

In (1–4), t is the time; z is the Cartesian coor-

dinate; w is the displacement and W ¼ @w=@t is
the particle velocity in the direction z of wave

propagation; szz is the normal stress; qz is the heat

flux; T is the temperature change from the abso-

lute reference temperature T0; r is the density; cv
is the specific heat; k is the coefficient of thermal

expansion; C11 ¼ ðlþ 2mÞ, b ¼ að3lþ 2mÞ,
where l and m are Lamé’s constants; and a is

the coefficient of thermal expansion.

In (3), t is the relaxation time, which physi-

cally signifies the initiation of heat flow after the

temperature gradient has been imposed. Various

authors have determined the relaxation time t for
different types of materials and found it to range

from 10�10 [sec] for gases to 10�14 [sec] for

metals [2, 3].

The third term on the left-hand side of (4)

means the coupling term between the deforma-

tion and heating.

Eliminating qz from (3) and (4), we obtain the

heat conduction equation:

k
@2T

@z2
¼rcv t

@2T

@t2
þ @T

@t

� �
þ T0b t

@3w

@t2@z
þ @2w

@t@z

� � ð5Þ

Eliminating szz from (1) and (2), we obtain the

governing equation in terms of displacement:

C11

@2w

@z2
¼ r

@2w

@t2
þ b

@T

@z
ð6Þ
Thus, the generalized thermoelasticity theory

results in temperature and displacement fields

governed by two coupled hyperbolic second-

order partial differential equations, which predict

finite propagation velocities for thermal and

mechanical disturbances.

Characteristics and Characteristic Equations

For the method of characteristics, we use the

system of four linear first-order partial differen-

tial equations (1)–(4) with W, szz, qz, and T as

four dependent variables. In the ðz� tÞ plane,

certain curves may exist, along which these vari-

ables are continuous, but their first partial deriv-

atives may be discontinuous. These curves will

be called the characteristics, physical charac-

teristics, or waves, and the differential equations

governing the propagation of discontinuities

(waves) along characteristics will be called the

characteristic equations. The characteristics

and the characteristic equations may be derived

by the conventional directional derivative

method.

The total differentials of four dependent vari-

ables are written as
dW ¼ @W

@t
dtþ @W

@z
dz ð7Þ

dszz ¼ @szz
@t

dtþ @szz
@z

dz ð8Þ

dqz ¼ @qz
@t

dtþ @qz
@z

dz ð9Þ

dT ¼ @T

@t
dtþ @T

@z
dz ð10Þ

Equations (1)–(4) and (7)–(10) may be con-

sidered as linear equations with eight derivatives

@W=@t, @W=@z, � � � @T=@t, @T=@z. In matrix

notation, (1)–(4) and (7)–(10) become
AX ¼ B :
X8
j¼1

aijxj ¼ bi; ði ¼ 1 � 8Þ ð11Þ
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where the matrix A and vectors X and B denote
A ¼ ½aij�

¼

r 0 0 �1 0 0 0 0

0 �C11 1 0 0 0 b 0

0 0 0 0 t 0 0 k
0 T0b 0 0 0 1 rcv 0

dt dz 0 0 0 0 0 0

0 0 dt dz 0 0 0 0

0 0 0 0 dt dz 0 0

0 0 0 0 0 0 dt dz

266666666664

377777777775

X¼ ½xi� ¼

@W=@t
@W=@z
@szz=@t
@szz=@z
@qz=@t
@qz=@z
@T=@t
@T=@z

266666666664

377777777775
; B¼ ½bi� ¼

0

0

�qz
0

dW
dszz
dqz
dT

266666666664

377777777775
By Cramer’s formula of linear equations, the k

th solution of (11) is given as
xk ¼ jAkj
jAj ð12Þ

where the matrix Ak is obtained by exchanging

the k th column of the matrix A by the column

vector B. Therefore, when both the determinants

of matrices jAkj and jAj become zero, the solution

xk becomes indeterminate. Calculating the deter-

minant of matrix A be zero ðjAj ¼ 0Þ, we obtain

dz

dt

� �4

� C11

r
þ k

rcvt
þT0b

2

r2cv

� �
dz

dt

� �2

þ k

r2cvt
¼ 0

ð13Þ

If we denote the four solutions of (13) as

� c1;�c2, we obtain
dz

dt

� �2

¼ c21
c22

( )
¼ 1

2

"
c2L þ dc2L þ

k
t

� 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2L þ dc2L þ

k
t
Þ2 � 4

kc2L
t

r # ð14Þ
In (14), k is the thermal diffusivity, cL is the

isothermal dilatation wave speed, and d is the

thermomechanical coupling parameter, respec-

tively defined by

k ¼ k

rcv
; cL ¼

ffiffiffiffiffiffiffi
C11

r

s
; d ¼ b2T0

rcvC11

ð15Þ

Therefore, for the system of (1)–(4), the char-

acteristics are found to be composed of four fam-

ilies of characteristic lines Ij:
Ij :
dz

dt
¼ Vj; ð j ¼ 1 � 4Þ

ðV1;V2;V3;V4Þ ¼ ðc1;�c1; c2;�c2Þ
ð16Þ

For homogeneous materials, the velocities c1
and c2 are constant throughout the medium, and

the characteristics are straight lines of equal slope

as shown in Fig. 1. The I1 and I2 characteristics

describe two characteristic families of lines with

slopes c1 and � c1, respectively. The I3 and I4
define another two families of lines with slopes c2
and �c2.

For the case of uncoupled theory ðd ¼ 0Þ, the
velocity of the first wavefront becomes equal to

c1 ¼ cL and corresponds to the mechanical wave

velocity of the classical theory. The velocity of

the second wavefront becomes equal to

c2 ¼
ffiffiffiffiffiffiffiffi
k=t

p
, which is called the thermal wave

velocity.

For the case of classical theory ðt ¼ 0Þ, the
velocity c1 becomes equal to c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ dÞp
cL,

and the velocity c2 becomes infinite, which

implies an infinite speed of thermoelastic distur-

bances in a solid.

The corresponding characteristic equations

along characteristics are obtained by calculating

the determinant of matrix Ak be zero ðjAkj ¼ 0Þ.
Therefore, the characteristic equations along

characteristics Ij : dz=dt ¼ Vj; ðj ¼ 1 � 4Þ are

given as follows:
l
ð jÞ
1 dszz þ l

ð jÞ
2 dW þ l

ð jÞ
3 dqz þ l

ð jÞ
4 dT ¼ l

ð jÞ
5 qzdt

ð17Þ
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where
l
ð jÞ
1 ¼ 1; l

ð jÞ
2 ¼ �rVj; l

ð jÞ
3 ¼ btVj

ðk � rcvtV2
j Þ

l
ð jÞ
4 ¼ l

ð jÞ
3 � k

tVj
; l

ð jÞ
5 ¼ �l

ð jÞ
3 � 1

t
ð18Þ

Finally, the values ofW; szz; qz, and T may be

found by solving (17) subjected to the appropriate

initial and boundary conditions.

Difference Equations and Numerical

Procedure

The use of characteristic (17) makes it possible to

obtain the solutions by utilizing the step-by-step

integration procedure. The ðz� tÞ plane is

subdivided into a network constructed by two

families of characteristic lines: z� c1t ¼ const:
so that each element of the network is a parallel-

ogram with the diagonals measuring 2Dz and 2Dt
as shown in Fig. 1. At a typical mesh point D, we
draw two characteristic lines ED;FD with slopes

�c2 through the point D. For computing the

values of variables at points E and F, we use

a linear interpolation between the points A;B

and C;B. If we assume a linear variation in

these variables between these closely spaced

mesh points, the integration of the characteristic

(17) along characteristic lines AD, CD, ED, FD

yields their finite-difference equivalents.
l
ð jÞ
1 szzD þ l

ð jÞ
2 WD þ l

ð jÞ
3 � l

ð jÞ
5

Dtj
2

� �
qzD

þ l
ð jÞ
4 TD ¼ l

ð jÞ
1 szzj þ l

ð jÞ
2 Wj

þ l
ð jÞ
3 þ l

ð jÞ
5

Dtj
2

� �
qzj þ l

ð jÞ
4 Tj

ð19Þ

where the quantities with subscripts D and

ðj ¼ 1 � 4Þ represent the values at the points D

and A;C;E;F, respectively. Therefore, the four

unknowns at a point D can be calculated from

these four finite-difference equations if all the

quantities at neighboring points A;C;E;F are

known from the previous calculations. Along

the boundary points where two of the four vari-

ables are prescribed, the analysis is the same

except that the two characteristic equations

along two characteristics extending outside of

the region should be replaced by the prescribed

boundary conditions.

The characteristic equations with reference to

the cylindrical and spherical coordinates are

presented in [4].

For the case of nonhomogeneous or nonlinear

elastic materials, material properties vary with

the position z. Therefore, the wave velocities

c1; c2 defined by (14) vary spatially, and the char-

acteristics become curved lines. For such cases,

the method needs to employ an iterative strategy

to determine the mesh points in the ðz� tÞ plane
[5]. Lopez and Lord [6] applied the method of

characteristics to a system of second-order partial

differential equation relating the second-order

derivatives of temperature and strains.

Classical Uncoupled Theory

of Thermoelasticity

Since the relaxation time t is found to be very

small, the heat conduction phenomenon for most

engineering applications can be described by the

classical Fourier’s law. By deleting the term

involving t in (5), the classical theory of

thermoelasticity results in temperature and dis-

placement fields governed by two coupled partial

differential equations, one equation being para-

bolic and the other hyperbolic. Also, in practice,

the coupling term is usually neglected when its

value is very small as compared with unity for the
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purpose of computational convenience. By delet-

ing the term involving t and T0b from (5), we

obtain the classical uncoupled heat conduction

equation of parabolic type:
k
@2T

@z2
¼ rcv

@T

@t
ð20Þ

which permits the temperature state to be found

independently of the mechanical state of the

body.

The heat conduction (20) can be solved

numerically by writing (20) in the explicit

finite-difference form by using the “leap-frog”

method [7] in the ðz� tÞ characteristic plane.
For the case of classical uncoupled theory

ðt ¼ 0; d ¼ 0Þ, (1) and (2) are considered as

a system of two linear first-order partial differen-

tial equations with W and szz as two dependent

variables. For this case, the velocity c1 in (14)

becomes equal to c1 ¼ cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C11=r

p
, and c2

becomes infinity that implies an infinite speed

of thermoelastic disturbances predicted by the

classical theory. The characteristics are found to

be composed of two families of characteristic

lines Ij, (j ¼ 1,2):
Ij : dz=dt ¼ ðV1;V2Þ ¼ ðc1;�c1Þ; ð j ¼ 1; 2Þ
ð21Þ

The corresponding characteristic equations

are
l
ð jÞ
1 dszz þ l

ð jÞ
2 dW ¼ �b

@T

@t
dt; ð j ¼ 1; 2Þ ð22Þ

For this type of problem, it is advantageous

to employ a technique called the characteristic-

difference method [7, 8] which combines some of

the advantageous of both the characteristic and

finite-difference method. The numerical method

employs appropriate characteristic relations (22)

on the boundaries while using a more convenient

explicit finite-difference approximations of (1)

and (2) by using central differences in both

space and time at all other intermediate points

in ðz� tÞ plane.
Materials with Temperature-Dependent

Properties

In many practical applications, the heat addition

in materials for high-temperature applications is

sufficiently intense to cause large thermal varia-

tions which, in turn, may alter the material prop-

erties considerably.

The thermal stresses in FGMs with

temperature-dependent material properties are

solved by the method of characteristics [9].

We assume that the material properties have

nonhomogeneous character in the direction of

coordinate axis and are functions of tempera-

ture. Then, the heat conduction equation

becomes
@

@z
k
@T

@z

� �
¼ rcv

@T

@t
ð23Þ

As the material parameters r; cv, and k vary

with the position and the temperature, (23) is

of nonlinear form. Therefore, the temperature

may be obtained by writing (23) in the explicit

finite-difference form and by using the itera-

tion technique to obtain the convergent

solution.

The governing equations for materials with

temperature-dependent properties are given by
r
@W

@t
� @szz

@z
¼ 0 : W ¼ @w

@t
ð24Þ

@szz
@t

� C11

@W

@z
� @C11

@t
eþ @

@t
ðb�
ð
adTÞ ¼ 0

ð25Þ

where e ¼ @w=@z is the strain and
C11 ¼ lþ 2m; b� ¼ 3lþ 2m ð26Þ

These material properties are functions of

coordinate z and temperature T.

Equations (24) and (25) constitute a system of

two quasi-linear first-order partial differential

equations with szz and W as the dependent

variables. The characteristics are given by (21),

and the characteristic equations along

dz=dt ¼ Vj ¼ �c1ðrÞ; ðj ¼ 1; 2Þ are given by
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l
ð jÞ
1 dszz þ l

ð jÞ
2 dW ¼ @C11

@t
e� @

@t
b�
ð
adT

� �
dt

ð27Þ
As e in (27) is also unknown, we add two more

equations along the plane z ¼ const:, that is,

along dz=dt ¼ 0:
dszz ¼ edC11 þ C11de� db�
ð
adT ð28Þ

dw ¼ Wdt ð29Þ

By integrating (27)–(29) along four characteris-

tics, we can obtain szz; W; e, and w. However, for
materials with temperature-dependent properties,

the velocity c1 varies spatially and the characteris-

tics become curved lines. Therefore, solutions must

be obtained by using the iteration technique.
Two-Dimensional Problem

Generalized Theory of Thermoelasticity

The basic equations governing the propagation of

two-dimensional thermal and thermal stress

waves for linear elastic, isotropic, and homoge-

neous materials can be written in the form [10]:

1. Equation of motion

@sxx
@x

þ @szx
@z

¼ r
@U

@t
: U ¼ @u

@t
@szx
@x

þ @szz
@z

¼ r
@W

@t
: W ¼ @w

@t
ð30Þ

2. Constitutive equations

@sxx
@t

¼ ðlþ 2mÞ @U
@x

þ l
@W

@z
� b

@T

@t
@szz
@t

¼ l
@U

@x
þ ðlþ 2mÞ @W

@z
� b

@T

@t
@szx
@t

¼ mð@W
@x

þ @U

@z
Þ

ð31Þ

3. Modified Fourier’s law
t
@qx
@t

þ qx ¼ �k
@T

@x

t
@qz
@t

þ qz ¼ �k
@T

@z

ð32Þ
4. Coupled energy equation
@qx
@x

þ @qz
@z

þ rcv
@T

@t
þ T0b

@U

@x
þ @W

@z

� �
¼ 0

ð33Þ
whereU andW are particle velocities in the x and

z directions, respectively.
The equations (30) to (33) constitute a system

of eight linear first-order partial differential equa-

tions with three real wave speeds.

Characteristics and Characteristic Equations

As is well known, the characteristic manifold for

two-dimensional wave propagations is composed

of hypersurfaces, not lines as for the one-

dimensional case. The characteristic equations

on characteristic surfaces are partial differential

equations, not ordinary differential equations as

for the one-dimensional case. The characteristic

equations which relate the eight dependent vari-

ables U, W, sxx, szz, szx, qx, qz, and T along the

characteristic surfaces (bicharacteristics) can be

derived by the conventional directional deriva-

tive approach, which was used to solve the

two-dimensional classical elastic problems by

Clifton [11].

In matrix notation, (30)–(33) become
L½X� ¼ AtX;t þ AxX;x þ AzX;z � B ¼ 0 ð34Þ

where subscripts preceded by a comma denote

partial differentiation with respect to

the subscript variables. X and B denote the

vectors
X ¼

U
W
sxx
szz
szx
qx
qz
T

266666666664

377777777775
; B ¼

0

0

0

0

0

0

�qx
�qz
0

26666666666664

37777777777775
and At;Ax, and Az denote the following matrices:
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ized theory of thermoelasticity
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At ¼

�r 0 0 0 0 0 0 0

0 �r 0 0 0 0 0 0

0 0 �1 0 0 0 0 �b
0 0 0 �1 0 0 0 �b
0 0 0 0 �1 0 0 0

0 0 0 0 0 t 0 0

0 0 0 0 0 0 t 0

0 0 0 0 0 0 0 rcv

266666666664

377777777775

Ax ¼

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

lþ 2m 0 0 0 0 0 0 0

l 0 0 0 0 0 0 0

0 m 0 0 0 0 0 0

0 0 0 0 0 0 0 k
0 0 0 0 0 0 0 0

T0b 0 0 0 0 1 0 0

266666666664

377777777775

Az ¼

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 l 0 0 0 0 0 0

0 lþ 2m 0 0 0 0 0 0

m 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 k
0 T0b 0 0 0 0 1 0

266666666664

377777777775
The condition that a surfaceFðt; x; zÞ ¼ const:

is a characteristic surface of (34) coincides with

the condition that the determinant of the charac-

teristic matrix A defined by
A ¼ AtF;t þ AxF;x þ AzF;z ð35Þ

is zero. If we calculate the determinant of matrix

A be zero (jAj ¼ 0), we obtain
F2
;tfF2

;t � c21ðF2
;x þ F2

;zÞgfF2
;t � c22ðF2

;x þ F2
;zÞg

� fF2
;t � c23ðF2

;x þ F2
;zÞg ¼ 0

ð36Þ

where c1; c2 are the dilatational wave velocities

defined by (14) and c3 is the shear wave velocity

defined by

c3 ¼
ffiffiffiffiffiffiffiffi
m=r

p
ð37Þ
The solutions of (36) are the characteristic

planes

Fðt; x; zÞ ¼ciðt� t0Þ � ðx� x0Þcosa
� ðz� z0Þsina; ci ¼ ðc1; c2; c3Þ

ð38Þ

If a is regarded as a parameter, then (38)

represents one-parameter families of characteris-

tic planes though the point ðt0; x0; z0Þ. The enve-
lopes of these one-parameter families of planes

are also characteristic surfaces and constitute the

characteristic cones (Monge cones [12]) through

the point ðt0; x0; z ¼ 0Þ:
c2l ðt� t0Þ2 ¼ ðx� x0Þ2 þ ðz� z0Þ2 ð39Þ

The three backward-drawn characteristic

cones are shown in Fig. 2, where � is the incre-

ment of time and el ¼ cl�; ðl ¼ 1 � 3Þ. x is

a square mesh size for finite-difference approxi-

mation. The lines of contact of the one-parameter

families of planes with their envelopes are
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dx

dt
¼ clcosa

dz

dt
¼ clsina

9>=>;; cl ¼ ðc1; c2; c3Þ ð40Þ

which are the bicharacteristics for (30)–(33).

If F is a characteristic surface of (30)–(33),

then there exist null vectors l such that
lA ¼ 0 ð41Þ

The null vectors l associated with the

bicharacteristic strips defined by (38) and (41) are
l ¼

�Djcosa
�Djsina

Dj=cj cos
2 a

Dj=cj sin
2 a

Dj=cjsin2a
tcj
cosa
sina

266666666664

377777777775
; cj ¼ ðc1; c2Þ ð42Þ

l ¼

c3sina
�c3cosa
�sin2a=2
sin2a=2
cos2a
0

0

0

266666666664

377777777775
; c ¼ c3 ð43Þ

If l is the null vector for a characteristic sur-

face F, then the partial differential equation

l � L½x� ¼ 0 ð44Þ
is an interior differential equation on the surface

F. The derivatives of a function x in

a bicharacteristic direction are given by
dX

dt
¼ X;t þ X;x

dx

dt
þ X;z

dz

dt
ð45Þ

Substituting (42) and (43) into (44) and partial

derivatives with respect to t are eliminated by use

of (45), differential relations along bicharac-

teristics are obtained. It is convenient to let

a ¼ 0 for backward-drawn bicharacteristics
drawn in the positive x-direction. This requires

the replacement of a by aþ p. After making this

change the (44), the characteristic equations

along bicharacteristics are respectively given by

rDjðcosadUþ sinadWÞþDj

cj
ðcos2 adsxx

þ sin2 adszzþ sin2adszxÞþ Dj

cj
b�rcvtcj

� �
dT

þðcosadqr þ sinadqzÞ ¼ SjðaÞdt; ðj¼ 1;2Þ
ð46Þ

and

� rc3sin adU þ rc3cosadW � 1

2
sin2adsrr

þ 1

2
sin2adszz þ cos2adszx ¼ S3ðaÞdt

ð47Þ

where
Dj ¼
T0btc2j

rc2j � ðlþ 2mÞ ; ð j ¼ 1; 2Þ ð48Þ

In (46) and (47), for example, dU denotes the

incremental change on U along the characteristic

for an incremental change in time dt. The

SjðaÞ; ðj ¼ 1; 2Þ and S3ðaÞ in (46) and (47) are

respectively given by
SjðaÞ¼Dj

2
sin2afsinaðsxx�szzÞ;x

�cosaðsxx�szzÞ;zg
�Djcos2aðcosaszx;z�sinaszx;xÞ
þDj

2cj
sin2að2m�rc2j ÞðU;zþW;xÞ

þ
�
Dj

cj
flþð2m�rc2j Þcos2agþT0btcj

�
ðU;xþW;zÞ

�ðDjb�rcvtc2j þkÞðcosaT;x�sinaT;zÞ
þtcjfsin2aqx;xþcos2aqz;z

�1

2
sin2aðqx;zþqz;xÞg�ðcosaqxþsinaqzÞ

ð49Þ
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S3ðaÞ ¼ � c3 sin
3 asxx;x þ c3 cos

3 aszz;z

þ c3sin2a
�
1

2
ðsinasxx;z � cosaszz;xÞ

þ sinaszx;x � cosaszx;z

�
� 1

2
msin2aðU;x

�W;zÞ þ mðcos2 aU;z � sin2 aW;xÞ
ð50Þ

Equations (46) and (47) are the desired differ-

ential relations along the bicharacteristics.

An alternative approach to the conventional

directional derivative approach, these character-

istic equations may also be derived by use of

Hadamard’s kinematic discontinuity relations,

used to derive the characteristic equations for

the classical theory of elasticity by Ziv [12].

Difference Equations and Numerical

Procedure

The characteristic (46) and (47) are more suitable

for numerical analysis because the use of these

equations makes it possible to obtain the solutions

via a step-by-step integration procedure. The differ-

ence equations for computing the solution of eight

variablesU,W, sxx, szz, sxz, qx, qz, and T at a mesh

point Oðt0; x0; z0Þ from known data at neighboring

mesh points on the plane t ¼ t0 � � can be derived

by the method of Clifton [11]. These equations are

obtained by linear combinations of equations

resulting from integration of (46) and (47) along

characteristics (40) and integration of governing

equations (30)–(33) along the line x ¼ x0; z ¼ z0.

If a function f stands for any of eight dependent

variables, the derivative of f in a characteristic

direction can be written by df ¼ SðaÞdt as indi-
cated in (46) and (47). Integration of this relation,

along the characteristic for which a ¼ ai, from the

point i of intersection of the characteristic with the

plane t ¼ t0 � � to the point O gives
df ¼ �

2
fSðaiÞO þ SðaiÞig � ð f0 � fiÞ þ Oð�3Þ

ð51Þ

where the superscript O and subscripts 0 and i
denote that the associated function is evaluated at

the points Oðt0; x0; z0Þ, 0ðt0 � �; x0; z0Þ, and
iðt0 � �; xi; ziÞ, respectively. df denotes the incre-
ment df ¼ f O � f0. Integrating (46) and (47) by

use of the relation (51) along four characteristics

corresponding to ai ¼ ði� 1Þp=2; ði ¼ 1 � 4Þ on
each of three characteristic cones, 12 equations

involving the increments dU; dW; � � �; dT are

obtained.
rDjðcosaidUþ sinaidWÞþDj

cj
ðcos2aidsxx

þ sin2aidszzþ sin2aidszxÞþ Dj

cj
b�rcvtcj

� �
dT

þ tðcosaidqxþ sinaidqzÞ¼ �

2
SjðaiÞOþSjðaiÞi
n o

�EjðaiÞ; ðj¼ 1;2; i¼ 1� 4Þ
ð52Þ

� rc3sinaidU þ rc3cosaidW � 1

2
sin2aidsxx

þ 1

2
sin2aidszz þ cos2aidszx

¼ �

2
fS3ðaiÞO þ S3ðaiÞig � E3ðaiÞ; ð i ¼ 1 � 4Þ

ð53Þ

where
EjðaiÞ ¼ rDjfcosai U0 � Uið Þ
þ sinaiðW0 �WiÞg þ Dj

cj
fcos2 aiðsxx0 � sxxiÞ

þ sin2 aiðszz0 � szziÞg þ sin2aiðszx0 � szxiÞ

þ Dj

cj
b� rcvtcj

� �
ðT0 � TiÞ

þ tfcosaiðqx0 � qxiÞ þ sinaiðqz0 � qziÞg

ð54Þ

E3ðaiÞ¼�rc3sinaiðU0�UiÞ
þrc3cosaiðW0�WiÞ�1

2
sin2aiðsxx0�sxxiÞ

þ1

2
sin2aiðszz0�szziÞþcos2aiðszx0�szxiÞ

ð55Þ
Equations (52) and (53) contain the unknown

derivatives at point O which appear in terms of

having superscript O. In order to eliminate the

unknown derivatives, we introduce additional

eight equations, which are obtained by integra-

tion of (30)–(33) from the point 0 to the point O
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along the line x ¼ x0; z ¼ z0. Thus, for example,

from (30), we obtain

rdU ¼ �

2
ðsxx;x þ szx;zÞO þ ðsxx;x þ szx;zÞ0
h i

rdW ¼ �

2
ðszx;x þ szx;zÞO þ ðszz;z þ szz;zÞ0
h i

ð56Þ
All the terms on the right-hand side of these

20 equations can be evaluated from data on the

plane t ¼ t0 � � except the derivatives at the

point O which appear in the terms having

a superscript O. Eliminating the terms having

superscript O by using linear combinations of

the eight equations analogous to (56) and

twelve equations from (52) and (53), we obtain

the final system of equations for the eight incre-

ments, which do not involve the unknown

derivatives at point O. Then the final expres-

sions for the difference equations are obtained

as follows:

rDjdU � ðDjb� rcvtcj2Þ 1
k

tþ �

2

� 
dqx

¼ e2j
2

rDjU;xx þ 1

c2j
ðDjlþ Djmþ T0btc2j ÞW;vz

"

þ c23
c2j

rDjU;zz þ tqz;xz þ tqx;xx

#
0

þ ej
cj

Djðsxx ;x þ sxz;zÞ þ ðDjb� rcvtc2j ÞT;x
h

þ 1

k
ðDjb� rcvtc2j Þqx

�
0

; ð j ¼ 1; 2Þ

ð57Þ

rDjdW � ðDjb� rcvtcj2Þ 1
k

tþ �

2

� 
dqz

¼ e2j
2

rDjW;zz þ 1

c2j
ðDjlþ Djmþ T0btc2j ÞU;xz

"

þ c23
c2j

rDjW;xx þ tqz;zz þ tqx;xz

#
0

þ ej
cj

Djðszz;z þ sxz;xÞ þ ðDjb� rcvtc2j ÞT;z
h

þ 1

k
ðDjb� rcvtc2j Þqz

�
0

; ð j ¼ 1; 2Þ

ð58Þ
lþ 2m
2ðlþ mÞ

Dj

cj
dðsxx þ szzÞ

þ lþ 2m
lþ m

Djb� rcvtc2j

� �
1

cj
dT

¼ e2j
2

�
Dj

cj
ðsxx;xx þ szz;zz þ 2sxz;xzÞ

� k

cj
ðT;xx þ T;zzÞ

�
0

þ ej½DjrðU;x þW;zÞ

þ t� �

2

� 
ðqx;x þ qz;zÞ�0; ðj ¼ 1; 2Þ

ð59Þ

ðlþ2mÞDjþT0btc2j
n o 1

2mcj
dðsxx�szzÞ

þejt
2

@qx
@x

� �O

� @qz
@z

� �O
( )

¼ e2j
2

Dj

cj
ðsxx;xx�szz;zzÞ�

k

cj
ðT;xx�T;zzÞ

� �
0

þej DjrðU;x�W;zÞþ t�k

2

� �
ðqx;x�qz;z;Þ

� �
0

;

ð j¼1;2Þ
ð60Þ

dsxz ¼ e23
2

ðsxx þ szzÞ;xz þ sxz;xx þ sxz;zz
h i

0

þ e3rc3½U;z þW;x�0
ð61Þ

In the derivation of the difference equations,

the following four types of quantities to be eval-

uated at mesh points on the plane t ¼ t0 � � are

expressed by the first and second partial deriva-

tives at point 0ðt0 � �; x0; z0Þ.

f1 � f3 ¼ 2cl�ðf;xÞ0 þ Oð�3Þ
f1 þ f3 � 2f0 ¼ ðcl�Þ2ðf;xxÞ0 þ Oð�4Þ
�½ðf;zÞ1 � ðf;zÞ3� ¼ 2cl�

2ðf;zxÞ0 þ Oð�4Þ
�½ðf;zÞ1 þ ðf;zÞ3 � 2ðf;zÞ0� ¼ Oð�5Þ

ð62Þ

c1 ¼ cL ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C11=r

p
where cl; ðl ¼ 1; 2; 3Þ correspond to each of three
characteristic cones. Analogous quantities

obtained by interchange of the role of x and z in

(62) also occur. Thus Oð�3Þ accuracy of
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(57)–(61) is retained provided that difference

approximations for the first and second partial

derivatives at O are used which have accuracies

Oð�2Þ and Oð�Þ, respectively. Thus, the Oð�3Þ
accuracy of (57)–(61) in one time step is retained

provided that difference approximations for the

first and second partial derivatives at point

0ðt0 � �; x0; z0Þ are used which have accuracies

Oð�2Þ and Oð�Þ, respectively. Therefore, the

unknowns at point Oðt0; x0; z0Þ for the interior

points can be computed by expanding the deriv-

atives at point 0ðt0 � �; r0; z0Þ by the central dif-

ference for a square mesh as shown in Fig. 2 The

resulting difference scheme is a nine-point

scheme since the centered difference formulas

for ½ f;x�0; ½ f;z�0; ½ f;xx�0; ½ f;zz�0, and ½ f;zx�0 at point 0
involve values of f at the mesh point 0 and eight

neighboring points.

Consideration must specially be given to the

computation of the difference solutions at

boundary or corner points of the materials. The

increments at these points can be obtained from

the boundary conditions, and linear combina-

tions of the above equations for which the equa-

tions along characteristics extending outside of

the region are eliminated. In these cases, back-

ward or forward differences with second-order

accuracy must be used for approximating

derivatives.

The characteristic method for two-

dimensional classical and generalized

thermoelastic problems in cylindrical coordinates

is treated by Sumi [13, 14].
Future Directions for Research

The applicability of the present method is con-

fined to cases where discontinuities may occur in

the first-order derivatives of dependent variables

while these variables remain continuous. The

simple recurrent finite-difference equations

obtained by the method of characteristics are

easily adaptable to computer calculations. The

method presented here is believed to be used

successfully for many problems involving multi-

ple wave reflections.
In the near future, the use of piezoelectric

materials of nano-order thickness will be put

into practical use as sensors and actuators in

smart structural systems. Sumi and Ashida [14]

have treated the thermal and mechanical wave

problem in a piezoelectric plate by the method

of characteristics.
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Overview

The “classical plate theory” (as formulated in

▶ Plates, Classical Theory), applicable to thin,

isotropic, homogeneous, linearly elastic plates

undergoing small deflections, is further special-

ized here to the case of plates of circular plan-

form. The equations governing both in-plane

stretching as well as transverse thermal bending

are presented for circular plates exposed to

a time-independent three-dimensional tempera-

ture distribution in combination with an applied

transverse load. A general solution is presented

for the mid-surface displacement of the plate for

the case in which the thermal loading and bound-

ary conditions are independent of the angular

coordinate. A solution procedure is also given

for non-axisymmetric bending, for the situation

in which the plate experiences a thermal gradient

that varies linearly through the plate thickness.

References to publications treating various other

axisymmetric and non-axisymmetric problems

are cited.
Governing Equations

For convenience in analyzing the response of

circular plates, the basic equations of classical

plate theory are expressed in terms of circular

cylindrical coordinates ðr; y; zÞ. The equations

which follow can be derived directly by consider-

ing the behavior of a typical element cut from the

plate by axial planes and cylindrical surfaces, or

they can be obtained by applying a coordinate

transformation to the equations given in ▶plates,

classical theory and in [1]. Following this proce-

dure, the in-plane strain components are found to be
err ¼ @u

@r
¼ e0rr þ zkr

eyy ¼ u

r
þ 1

r

@v

@y
¼ e0yy þ zky

gry ¼
1

r

@u

@y
þ @v

@r
� v

r
¼ g0ry þ zkry

ð1Þ

where u and v denote the in-plane displacement

components in the r and y directions. Also,

appearing in (1) are the middle-surface strains

designated by the superscript ð0Þ and curvatures,

defined, respectively, by
e0rr ¼
@u0

@r
; e0yy ¼

u0

r
þ 1

r

@v0

@y

g0ry ¼
1

r

@u0

@y
þ @v0

@r
� v0

r

ð2Þ

and

kr ¼ � @2w

@r2
; ky ¼ � 1

r

@w

@r
� 1

r2
@2w

@y2

kry ¼ � 2

r

@2w

@r@y
þ 2

r2
@w

@y

ð3Þ

The resultant in-plane forces per unit length

Nr;Ny; and Nry, which involve integrations of the

stress components srr; syy; and sry with respect

to the thickness coordinate z, become

Nr ¼ A e0rr þ ne0yy
� �� NT

Ny ¼ A ne0rr þ e0yy
� �� NT

Nry ¼ 1

2
ð1� nÞAg0ry

ð4Þ

http://dx.doi.org/10.1007/978-94-007-2739-7_130
http://dx.doi.org/10.1007/978-94-007-2739-7_777
http://dx.doi.org/10.1007/978-94-007-2739-7_777
http://dx.doi.org/10.1007/978-94-007-2739-7_803
http://dx.doi.org/10.1007/978-94-007-2739-7_803
http://dx.doi.org/10.1007/978-94-007-2739-7_189
http://dx.doi.org/10.1007/978-94-007-2739-7_189
http://dx.doi.org/10.1007/978-94-007-2739-7_189


C 556 Circular Plates, Statical Problems
and the resultant bending moments per unit

length Mr;My and the twisting moment per

length Mry become

Mr ¼ Dðkr þ nkyÞ �MT

My ¼ Dðnkr þ kyÞ �MT

Mry ¼ 1

2
ð1� nÞDkry

ð5Þ

Here,A¼Eh=ð1� n2Þ andD¼Eh3=12ð1� n2Þ
represent extensional and bending stiffnesses of a

plate of depth h in the z-direction, respectively;

NTandMT are the thermal force and thermal

moment, respectively, given by

NT ¼ Ea
1� n

ðh=2
�h=2

Tðr; y; zÞ dz

MT ¼ Ea
1� n

ðh=2
�h=2

Tðr; y; zÞ z dz

ð6Þ

Furthermore, the stresses in terms of their

resultants become

srr ¼ 1

h
ðNr þ NTÞ þ 12z

h3
ðMr þMTÞ � Ea

1� n
T

syy ¼ 1

h
ðNy þ NTÞ þ 12z

h3
ðMy þMTÞ � Ea

1� n
T

sry ¼ 1

h
Nry þ 12z

h3
Mry

ð7Þ

Equilibrium in the plane of the plate is then

governed by the equations [1]
@Nr

@r
þ 1

r

@Nry

@y
þ Nr � Ny

r
¼ 0

@Nry

@r
þ 1

r

@Ny

@y
þ 2

r
Nry ¼ 0

ð8Þ

whereas plate bending is governed by the

equilibrium equations
@Qr

@r
þ 1

r

@Qy

@y
þ 1

r
Qr þ qðr; yÞ ¼ 0

@Mr

@r
þ 1

r

@Mry

@y
þMr �My

r
¼ Qr

@Mry

@r
þ 1

r

@My

@y
þ 2

r
Mry ¼ Qy

ð9Þ
in which Qr;Qy represent shear forces per unit

length (as defined in ▶ Plates, Classical Theory)

and qðr; yÞ is an applied transverse load.

Since the in-plane response of the plate asso-

ciated with (8) represents a problem of plane

stress, it can be treated using a stress-function

approach; the stress function F is defined here

as (see for example [2] or [3])
Nr ¼ 1

r

@F

@r
þ 1

r2
@2F

@y2
; Ny ¼ @2F

@r2

Nry ¼ � @

@r

1

r

@F

@y

� � ð10Þ

in which case (8) are satisfied identically. The

function F must satisfy certain compatibility

requirements (see [2], p. 382), which in the pre-

sent situation reduce to the single relation
H4F ¼ �ð1� nÞH2NT ð11Þ

where for cylindrical coordinates
H2 ¼ @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@y2
ð12Þ

For the thermal bending response, the governing

equations (9) can be reduced to a single differential

equation for w by first eliminating the shear force

resultants Qr and Qy and then making use of (3)

and (5). The resulting equation is

DH4w ¼ q� H2MT ð13Þ
Axisymmetric Bending

Axisymmetric bending occurs when the loading

and boundary conditions are independent of the

angular coordinate y. Further, in the absence of

a transverse load q, (13) reduces to
H4w ¼ �H2MT=D ð14Þ

where now

H2 ¼ d2

dr2
þ 1

r

d

dr
¼ 1

r

d

dr
r
d

dr

� �
ð15Þ

http://dx.doi.org/10.1007/978-94-007-2739-7_189
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The general solution to (14) is [3]
C

w ¼ C1 þ C2r
2 þ C3 ln

r

a
þ C4r

2 ln
r

a

þ
ðb
r

1

r

ðr
a

MT

D
r dr

0@ 1Adr
ð16Þ

in which a and b denote the inner and outer radii

of the plate and C1; C2; C3; and C4 are constants

of integration.

For use in satisfying boundary conditions, it is

noted that the relevant moment and shear force

resultants are given by

Mr ¼�D 2ð1þnÞC2�ð1�nÞC3

r2

�

þð3þnÞC4þ2ð1þnÞC4 ln
r

a

�
�1�n

r2

ðr
a

MTrdr

Mry¼ 0

Qr ¼ @Mr

@r
þMr�My

r
¼�4D

C4

r

ð17Þ
From (17), it follows that in the case of a solid

plate ða ¼ 0Þ the constants C3 ¼ C4 ¼ 0 in order

that Mr and Qr remain finite at r ¼ 0.

For a solid plate, clamped on the edge r ¼ b
such that w ¼ @w=@r ¼ 0, substitution of (16)

into the boundary conditions yields
C1 ¼ �b2C2 ¼ � 1

2D

ðb
0

MTr dr ð18Þ

whereas for the simply supported conditions

w ¼ Mr ¼ 0 on r ¼ b
C1 ¼ �b2C2 ¼ 1� n
2ð1þ nÞD

ðb
0

MTr dr ð19Þ

Transverse deflections corresponding to other

boundary conditions can be found in a similar

fashion. Results for hollow circular plates having

both edges clamped, or one edge clamped and

one edge free, are given in [2] and [3],

respectively.
Mention should also be made of an investiga-

tion by Sarkar [4] on the thermal deflection of an

axisymmetric circular plate exposed to

a nonstationary temperature distribution. The

heat conduction equation governing the

nonstationary quasi-static case was first solved,

after which closed-formmathematical expressions

were obtained for the resulting thermal deflections

associated with different boundary conditions.

Furthermore, Biswas [5] considered the ther-

mal deflection of a circular plate of variable

thickness. Exponential variation of plate thick-

ness was considered, and the basic governing

equations derived. Two successive substitutions

then lead to a confluent hypergeometric equation

for which the solution is known. Both bending

moments and bending stresses were calculated

for simply supported and clamped plates.
Non-axisymmetric Bending

In the case of a temperature distribution which

varies with the angular coordinate y as well as

r and z, we seek a solution to (14). Forray and

Newman [6] consider such a problem, in which

the thermal gradient is presumed to vary linearly

through the plate thickness. Following their

approach, it is assumed that the thermal moment

MT is expressible in the form

MT ¼
X1
m¼0

X1
k¼0

Akmr
k cosmyþ

X1
m¼1

X1
k¼0

Bkmr
k sinmy

ð20Þ
The general solution to (14) then can be

expressed as
w¼a0þb0r
2þc0r

2 lnrþd0 lnr

þða1rþb1r
3þc1r

�1þd1r lnrÞcosy
þða01rþb01r3þc01r�1þd01r lnrÞsiny

þ
X1
n¼2

½ðanrnþbnr
nþ2þcnr

�nþdnr
�nþ2Þcosny

þða0nrnþb0nrnþ2þc0nr�nþd0nr�nþ2Þsinny�

þ
X1
m¼0

gmðrÞcosmyþ
X1
m¼1

hmðrÞsinmy

ð21Þ
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where an; a
0
n; bn; . . . ðn ¼ 0; 1; . . . ;1Þ are arbi-

trary constants and
ðgm;hmÞ¼� 1

D
r�m

ð
r2m�1

ð
ðAkm;BkmÞrkþ1�mdr

� �
dr

ð22Þ

In the case of a solid plate ða ¼ 0Þ, the

constants cn ¼ c0n ¼ dn ¼ d0n ¼ 0 in order

to avoid singularities at r ¼ 0. A detailed

solution and corresponding design

curves are given for a clamped solid circular

plate in [6].

A more complicated non-axisymmetric

problem occurs when the boundary conditions

vary with the angular coordinate y. Nowacki
and Olesiak [7] demonstrate application

of a Green’s function approach to such

problem.
Cross-References
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Overview

Thermal buckling of circular plates without ini-

tial geometric imperfections made of func-

tionally graded materials with surface-bounded

piezoelectric layers is studied. The material prop-

erties of the FG plates, except Poisson’s ratio, are

assumed to vary continuously through the plate

thickness by distribution of power law, sigmoid,

and exponential functions of the volume fraction

of the constituent. The general thermoelastic

nonlinear equilibrium and linear stability equa-

tions for the piezoelectric FG plate are derived

based on the classical plate theory using the var-

iational formulations and are used to obtain the

governing equations of piezoelectric FG plate.

Buckling load is derived for solid circular plates

under uniform temperature rise and nonlinear and

linear temperature variations through the thick-

ness for immovable clamped edge of boundary

conditions. Resulting equations are employed to

obtain the closed-form solution for the critical

buckling load for each loading case.

Ma and Wang [1–3] have presented the

nonlinear bending and postbuckling of circu-

lar functionally graded plates subjected to

mechanical and thermal loadings based on

the first-order and the third-order shear defor-

mation theories. Reddy and Khdeir [4] studied

the buckling and free-vibration behavior of

cross-ply rectangular composite laminated

plates using the classical, first-order, and

http://dx.doi.org/10.1007/978-94-007-2739-7_189
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third-order plate theories under various types of

boundary conditions. Exact analytical solutions

as well as the finite element numerical solutions

were developed in their studies. Piezoelectric

effects on the buckling and postbuckling char-

acteristics of piezoelectric FGM hybrid plates is

studied by Wang et al. [5]. Several authors have

investigated the elastic stability of composite

circular plates subjected to various loadings

and boundary conditions. The buckling analysis

of circular FGM plates under thermal loads

and radial compressive load are given by

Najafizadeh and Eslami [6, 7]. Khorshidvand

et al. [8] presented buckling analysis of circular

FGM plate integrated with piezoelectric layers

subjected to three types of thermal loadings

based on the classical plate theory. Javaheri

and Eslami [9–12] presented the thermal and

mechanical buckling of rectangular FGM plates

based on the first- and higher-order plate theo-

ries. Thermo-electro-mechanical buckling and

postbuckling of FGM plates with piezoelectric

actuators is reported by Shen [13–15] based

on the singular perturbation method. Liew

et al. [16] presented postbuckling of piezoelec-

tric FGM plates subjected to the thermo-

electro-mechanical loading. They used a

semi-analytical iteration to determine the

postbuckling response of the plate. Axisymmet-

ric bending of functionally graded circular and

annular plates is studied by Reddy et al. [17].
Ceramic

x

0.5 ha

0.5 ha

h

Metal
Piezoelectric

Circular/Annular Plates,
Thermal Buckling,
Fig. 1 Geometry of

a piezoelectric coupled P-

FGM circular plate
They presented the solutions for deflections and

force and moment resultants based on the first-

order plate theory in terms of those obtained

using the classical plate theory. Shariat et al.

[18, 19] reported the mechanical and thermal

buckling of imperfect functionally graded

plates based on the classical and first-order

shear deformation theories. They presented

closed-form solutions for critical buckling

loads for the imperfect rectangular FG plates

and investigated the influence of the geometri-

cal imperfections on stability of the plate.
Basic Assumptions

Consider a uniform thin circular plate made of

FGM in the middle with two identical piezo-

electric layers which are bonded to its upper

and lower surfaces, as shown in Fig. 1. To

extract formulations, a cylindrical coordinates

system is taken in the center of plate’s middle

plane. The FGM profile across the thickness

direction of the plate, made of ceramic and

metal constituent materials, may be assumed

to follow a form as

P-FGM plates
prðzÞ ¼ prm þ prcm
2zþ h

2h

� �n

ð1Þ
wire
v1

v2

z

r

y
q
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S-FGM plates (two power law functions)
prðzÞ ¼ prm þ prcm 1� 1

2

h� 2z

h

� �n� �
for 0  z  h=2

prðzÞ ¼ prm þ prcm
1

2

hþ 2z

h

� �n� �
for � h=2  z  0

ð2Þ

E-FGM plates (exponential function)
prðzÞ ¼ AeB
2zþh
2hð Þ; A ¼ prm; B ¼ lnðprc=prmÞ

ð3Þ

where pr is any material property of the FGM and

is assumed to be functions of coordinate so that

the effective properties are continuous through

the plate thickness and are assumed to be temper-

ature independent. This parameter represents the

modulus of elasticity E and the coefficient

of thermal expansion a. Term prm is the metal

property of FGM, prcm ¼ prc � prm, prc
represents the ceramic property of FGM, and n

is the power law index which takes values greater

than or equal to zero, respectively. The value of n

equal to zero represents a fully ceramic plate.

The material properties may be assumed to

follow the power law form (PFGM), two power

law functions (SFGM), and the exponential law

(EFGM), indicated by (1) to (3). Note that the

volume fraction of the ceramic is high near the

top surface of the plate and that of metal is

high near the bottom surface. In addition, the

equations indicate that the top surface of

the plate (z ¼ h=2) is ceramic rich, whereas the

bottom surface (z ¼ �h=2) of the plate is metal

rich. Generally, Poisson’s ratio n is assumed

constant across the plate thickness.
Analysis

Governing Equations

The two-dimensional stress–strain law for the

plane-stress condition is given as
srr ¼ EðzÞ
ð1� n2Þ ðerr þ neyyÞ � EðzÞaðzÞ

ð1� nÞ TðzÞ ð4Þ

syy ¼ EðzÞ
ð1� n2Þ ðeyy þ nerrÞ � EðzÞaðzÞ

ð1� nÞ TðzÞ ð5Þ

sry ¼ EðzÞ
2ð1þ nÞ gry ð6Þ

The plate is assumed to be comparatively

thin, and according to the Love-Kirchhoff

assumptions, planes normal to the median sur-

face are assumed to remain plane after deforma-

tion. Thus, shear deformations normal to the

plate are disregarded. Using the classical plate

theory (CPT), strain components at distance z

from the middle plane are given in matrix form

as [21]
err
eyy
gry

8><>:
9>=>; ¼

u;r þ 1
2
ðw;rÞ2

1
r v;y þ 1

r uþ 1
2

1
r w;y
� �2

1
r u;y þ v;y � 1

r v;y þ 1
r w

2
;y

� 
8>>><>>>:

9>>>=>>>;
þ z

�w;rr

� 1
r w;r þ 1

r2 w;yy
� �
� 1

r w;ry þ 1
r2 w;y

� �
8><>:

9>=>;
ð7Þ

where a comma in subscript indicates partial

differentiation and err , eyy, and gry are the strain

components along the r-, y-, and z-directions,

respectively. The stress components in plane-

stress condition in FGM (with superscript h) and

piezoelectric parts (with superscript p) of the

plate are written as
fsgh ¼
shrr

shyy

shry

8>><>>:
9>>=>>; ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q44

264
375

err � aðzÞTðzÞ
eyy � aðzÞTðzÞ

gry

8><>:
9>=>;

ð8Þ
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fsgp ¼
sprr

spyy

spry

8>><>>:
9>>=>>;¼

c11 c12 0

c12 c22 0

0 0 c44

264
375

err � apTðzÞ
eyy � apTðzÞ

gry

8><>:
9>=>;�

0 0 e31

0 0 e32

0 0 0

264
375

Er

Ey

Ez

8>><>>:
9>>=>>;
ð9Þ

where the plane-stress-reduced stiffness Qij are

defined as
Q11ðzÞ ¼ Q22ðzÞ ¼ EðzÞ
1� n2

; Q12ðzÞ ¼ Q21ðzÞ

¼ nQ11ðzÞ; Q44ðzÞ ¼ EðzÞ
2ð1þ nÞ

ð10Þ

In general case, the total potential energy

for FG circular plate integrated with two

piezoelectric layers can be written as
U ¼ Uh þ Up ð11Þ

in which
Uh ¼ 1

2

ð
r

ð
y

ð
z

½shrrðerr � aðzÞTðzÞÞ

þ shyyðeyy � aðzÞTðzÞÞ þ 2shryery�rdzdydr
ð12Þ

and considering the thermal effects through the

thickness of piezoelectric layers
Up ¼1

2

ð
r

ð
y

ð
z

ðfe�apDfTggT ½C�fe�apDfTgg

�fEgT ½k�fEg�2fe�apDfTggT ½e�fEgÞrdzdydr
ð13Þ

where Uh and Up are strain energies of the FGM

and piezoelectric parts of the plate, respectively,

and fshg indicates the stress components in
middle FGM part of the plate, and ½C�, ½k�,
and ½e� are matrix form of elastic, dielectric

permeability, and piezoelectric material

coefficients, respectively, defined as
½C� ¼
c11 c12 0

c12 c22 0

0 0 c44

264
375; ½k� ¼ k11 0 0

0 k22 0

0 0 k33

264
375;

½e� ¼
0 0 e31

0 0 e32

0 0 0

264
375

ð14Þ

Here, cij, kij, and eij are the components of

the plane-stress-reduced stiffness, dielectric per-

meability, and piezoelectric stiffness coefficients,

respectively. Assuming that the actuator is poled

along the z-direction, and viewing the piezoelectric
material as a transversely isotropic material, which

is true for piezoelectric ceramics, many of the

parameters in the mentioned matrices will

be either zero or can be expressed in terms of

the other parameters. In particular, the nonzero

coefficients of piezoelectric properties may be

written as [20]
c11 ¼ c22; c12; c44; e31 ¼ e32; k11 ¼ k22; k33

ð15Þ

Thus, the only nonzero electric field is in the

z-direction and the vector of applied electric

field fEg can be shown as
E ¼ Er Ey Ezf gT ¼ 0 0 Ezf gT ð16Þ

Considering relations (13) to (16) and

substituting relations (4) to (9) into (12) to (13),

and finally into (11) and integrating with respect

to z, the total potential energy is obtained. Using

variational approach, the equilibrium equations

for circular plate may be obtained. Applying the

Euler equations for total functional of U in (11),

we obtain [21]
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Nrr;rþðNrr�NyyÞ
r

þ1

r
Nry;y ¼ 0

2

r
Nryþ1

r
Nyy;yþNry;r ¼ 0

ðrNrrw;rþNryw;y�MyyÞ;r
þ 1

r
Nyyw;yþNryw;rþ2

r
Mry

� �
;y

þðrMrrÞ;rrþð2MryÞ;ryþ
1

r
Myy

� �
;yy

¼ 0

ð17Þ

The stability equations of the circular plate are

derived using the adjacent equilibrium criterion.

We assume u0, v0, and w0 as the displacement

components of the equilibrium state and u1, v1,

and w1 as the virtual displacements

corresponding to a neighboring state. The

displacement components and then the linear

force and moment incremental resultants are
u ¼ u0 þ u1; v ¼ v0 þ v1; w ¼ w0 þ w1 ð18Þ

Nrr ¼ Nrr0 þ Nrr1; Nyy ¼ Nyy0 þ Nyy1;

Nry ¼ Nry0 þ Nry1
ð19Þ

Mrr ¼ Mrr0 þMrr1; Myy ¼ Myy0 þMyy1;

Mry ¼ Mry0 þMry1

ð20Þ

Substituting relations (18) to (20) into (17), the

terms with zero index satisfy the equilibrium

equations, the higher-order terms are neglected

and the linear terms constitute the stability

equations as
Nrr1;r þ Nrr1 � Nyy1

r
þ 1

r
Nry1;y ¼ 0

2

r
Nry1 þ 1

r
Nry1;y þ Nry1;r ¼ 0

rNrr0w1;r þ Nry0w1;y �Myy1
� �

;r

þ 1

r
N1;yyw1;y þ Nry0w1;r þ 2

r
Mry1

� �
;y

þ ðrMrr1Þ;rr þ ð2Mry1Þ;ry þ
1

r
Myy1

� �
;yy

¼ 0

ð21Þ
The force and moment resultants are

expressed in terms of the stress components

through the thickness as
fNg¼
Nrr

Nyy

Nry

8><>:
9>=>;¼

ðþh=2

�h=2

fsghdz

þ
ð�h=2

�ðhþhaÞ=2
fsgpdzþ

ðþðhþhaÞ=2

þh=2

fsgpdz

ð22Þ

fMg¼
Mrr

Myy

Mry

8><>:
9>=>;¼

ðþh=2

�h=2

zfsghdz

þ
ð�h=2

�ðhþhaÞ=2
zfsgpdzþ

ðþðhþhaÞ=2

þh=2

zfsgpdz

ð23Þ

The stress resultants are simplified in the

matrix form as
Nf g
Mf g

� �
¼ Aþ haC½ � B½ �

B½ � Dþ LC½ �

� �
eð0Þ
� 	
eð1Þ
� 	( )

� NðTÞ� 	
MðTÞ� 	( )

� NðEÞ� 	
MðEÞ� 	( )

ð24Þ

where
ðAij;Bij;DijÞ ¼
ð
z

QijðzÞð1; z; z2Þdz; ði; j¼ 1;2;3Þ
ð25Þ

Here, the quantities fNðTÞg, fMðTÞg, fNðEÞg,
and fMðEÞg are the resultants due to the

applied temperature and electrical fields on

the plate, respectively, and they can be computed

as
fNðTÞg ¼ fNðTÞgFGM þ fNðTÞgpiezo
fMðTÞg ¼ fMðTÞgFGM þ fMðTÞgpiezo

ð26Þ
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fNðTÞgFGM ¼ E4

1� n
;

E4

1� n
; 0

� �T

fMðTÞgFGM ¼ E5

1� n
;

E5

1� n
; 0

� �T
ð27Þ

fMðTÞgpiezo ¼ fðc11 þ c12ÞðE6 þ E7Þ;
ðc21 þ c22ÞðE6 þ E7Þ; 0gT

ð28Þ

fNðTÞgpiezo ¼ fðc11 þ c12ÞðE8 þ E9Þ;
ðc21 þ c22ÞðE8 þ E9Þ; 0gT

ð29Þ

fNðEÞg ¼ fe31Ezha; e31Ezha; 0gT

fMðEÞg ¼ f0; 0; 0gT
ð30Þ

where

E4 ¼
ð
z

aðzÞEðzÞDTdz; E5 ¼
ð
z

zaðzÞEðzÞDTdz;

E6 ¼
ððhþhaÞ=2

h=2

zapDTdz

E7 ¼
ð�h=2

�ðhþhaÞ=2
zapDTdz; E8 ¼

ððhþhaÞ=2

h=2

apDTdz;

E9 ¼
ð�h=2

�ðhþhaÞ=2
apDTdz

ð31Þ

Now, consider a circular plate subjected to

thermal loading of the form T ¼ TðzÞ.
Taking polar symmetry condition for this case

of loading, the first and third of stability equations

(21), based on the displacement components,

lead to
E�
1þc11ha

� � d2u1
dr2

þ1

r

du1
dr

� 1

r2
u1

� �
þE�

2 �d3w1

dr3
�1

r

d2w1

dr2
þ 1

r2
dw1

dr

� �
¼ 0

E�
3H

4w1þðNrr0Þd
2w1

dr2
þ1

r
ðNyy0Þdw1

dr
þLc11H4w1

þE�
2

1

r2
du1
dr

� 1

r3
u1�2

r

d2u1
dr2

�d3u1
dr3

� �
¼ 0

ð32Þ
where E�
1; E

�
2; E

�
3 are given as
E�
1 ¼ E1=ð1� n2Þ E�

2 ¼ E2=ð1� n2Þ
E�
3 ¼ E3=ð1� n2Þ ð33Þ

ðE�
1;E

�
2;E

�
3Þ ¼ 1=ð1� n2Þ

ð
z

ð1; z; z2ÞEðzÞdz
ð34Þ

and Nrr0 and Nyy0 are the prebuckling forces. For

clamped and immovable edge in r direction, the
boundary conditions are expressed as [22]

u1ðr ¼ 0Þ ¼ 0 w1ðr ¼ 0Þ ¼ finite

u1ðr ¼ aÞ ¼ w1ðr ¼ aÞ ¼ d

dr
w1ðr ¼ aÞ ¼ 0

ð35Þ
Prebuckling of Axisymmetric Thermal Load

Consider a circular plate subjected to transversely

distributed thermal field T ¼ TðzÞ and constant

applied voltage. Since the structure under consid-

eration is unsymmetrical with respect to the

mid-plane, the prebuckling state of the plate has

to be studied carefully. For the case when thermal

moments are vanished, bifurcation phenomenon

may occur. However, for general cases of thermal

loading, based on relations (26) to (30), thermal

moments do not vanish. There is another possi-

bility for a plate to follow the primary-secondary

equilibrium path and that is when extra moments

are supplied at boundaries to retain the plate flat

in prebuckling regime. As known, clamped edge is

capable of exhibiting such characteristic because

the out-of-plane boundary conditions of a clamped

edge are all essential and are not affected by

thermal loading. Therefore, in this entry, only the

clamped-type edge support is considered.

To study the prebuckling state of the plate,

the symmetrical behavior of equilibrium state is

analyzed. The lateral deflection is omitted,

as the prebuckling state of the clamped plate is

deflection-less. Solution of the first equilibrium

equation in conjunction with the immovability

condition at boundary and finiteness condition
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at center reveals that radial displacement

is also vanished and therefore prebuckling

components are
u0 ¼ v0 ¼ w0 ð36Þ

Here a subscript zero indicates the prebuckling

state. The prebuckling force and moment

resultants of the plate according to (24) are
Nrr0 ¼ Nyy0 ¼�N
ðTÞ
rr0 �NðEÞ

rr ¼�N
ðTÞ
rr0 � e31Ezha

Nry0 ¼ 0 Mrr0 ¼Myy0 ¼�MðTÞ Mry0 ¼ 0

ð37Þ
Solution of Stability Equations

Substituting relations (37) into the stability

equations (32) yield
ðE�
1þ c11haÞ d2u1

dr2
þ1

r

du1
dr

� 1

r2
u1

� �
þE�

2 �d3w1

dr3
�1

r

d2w1

dr2
þ 1

r2
dw1

dr

� �
¼ 0

ðE�
3þLc11ÞH4w1þ1

r

d

dr
r N

ðTÞ
rr0 þ e31Ezha

� dw1

dr

� �
þE�

2

1

r2
du1
dr

� 1

r3
u1�2

r

d2u1
dr2

�d3u1
dr3

� �
¼ 0

ð38Þ

Thus, the set of coupled stability equations

must be solved. It is considered that a is the radius

of solid circular plate and there is no initial

imperfection. The solutions of (38) are assumed

in the form
u1 ¼ A1J1ðlrÞ þ A2Y1ðlrÞ þ A3ð1=rÞ þ A4r

w1 ¼ A5J0ðlrÞ þ A6Y0ðlrÞ þ A7Lnr þ A8

ð39Þ

where J1; J0 and Y1; Y0 are the Bessel functions of

first, zero order, and first and second kinds, respec-

tively. Also, A1 to A8 are the integration constants.

Using the first and second boundary conditions
yields A2 ¼ A3 ¼ A6 ¼ A7 ¼ 0. Satisfying the

third boundary condition of relations (35) yields
A4 ¼ 0 A8 ¼ �J0ðlaÞA5 J1ðlaÞ ¼ 0 ð40Þ

Thus, the smallest root is la ¼ 3:83. It is seen

that for the clamped edge
u1 ¼ A1J1ðlrÞ w1 ¼ A5ðJ0ðlrÞ � J0ðlaÞÞ ð41Þ

Substituting the expressions (41) into (38),

two linear homogeneous equations are obtained

as follows:
�l2ðE�
1 þ c11haÞA1 � l3E�

2A5 ¼ 0

l3E�
2A1 þ ½l4ðE�

3 þ c11LÞ
�l2ðNðTÞ

rr0 þ e31EzhaÞ�A5 ¼ 0

ð42Þ

For a nontrivial solution of these equations,

the determinant of coefficient must be set to zero,

and when the temperature distribution of the plate

is a function of thickness direction only, l is

constant and yields
l2 ¼ N
ðTÞ
rr0 þ e31Ezha

fðE�
3 þ c11LÞ � E�2

2 =ðE�
1 þ c11haÞg ð43Þ

Table 1 presents DTcr for thermoelastic

buckling of a clamped piezoelectric circular

plate made of functionally graded material

under three types of thermal loads, uniform

temperature rise, linear and nonlinear tempera-

ture distributions through the thickness of plate.

Applied constant voltage on piezoelectric layers

is considered. To validate the formulations of this

entry, thermal buckling loads of the circular

plate, neglecting the piezoelectric layers, are

compared with those obtained by Najafizadeh

and Eslami [6] for the FGM and isotropic plate.

It is clear that from equation in second column,

without taking piezoelectric effects, the same

results are obtained for the FGM circular plate

and homogeneous isotropic full ceramic circular

plate in the third column.
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Conclusions

In this entry, the effect of piezoelectric layers

on thermal buckling capacity of circular

plates as closed-form solution is presented.

This entry concludes with the following

observations:

1. The equilibrium and stability equations are

identical with the corresponding equations

for FGM plates.

2. Application of piezoelectric material in thermal

problems depends on an important parameter,

the Curie temperature Yc. For PZT ceramics,

the phase above the Curie temperature is

a paraelectric and also non-piezoelectric

(isotropic) [23].

3. The effect of piezoelectric layers on buckling

of full metal plate is more relevant.

4. Applied voltage variation of the peizoelectric

layers do not have much influence on the

buckling of an FG plate.

5. The critical buckling temperature is reduced

when volume fraction index increases, as the

plate becomes more metal rich.

6. The critical buckling temperature is raised

when the ratio ha=h is increased.

7. Consideration of temperature distribution

through the thickness of piezoelectric layers

does not have significant effective on the

increase of thermal buckling load.
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Université de Carthage, Tunisia
Overview

The development of high technologies in the

years before, during, and after the Second

World War pronouncedly affected the investiga-

tions in which the fields of temperature and dif-

fusion in solids cannot be neglected [1].

Diffusion can be defined as the movement of

particles from an area of high concentration to an

area of lower concentration until equilibrium is

reached. It occurs as a result of second law of

thermodynamics which states that the entropy or

disorder of any system must always increase with

time. There is now a great deal of interest in the

study of diffusion, due to its many applications in

geophysics and industrial applications. In integrated

circuit fabrication, diffusion is used to introduce

dopants in controlled amounts into the semiconduc-

tor substrate. Diffusion is used also to form the base

and emitter in bipolar transistors, form integrated

resistors, form the source/drain regions in MOS

transistors, and dope polysilicon gates inMOS tran-

sistors. In most of these applications, the concentra-

tion is calculated usingwhat is known as Fick’s law.

This is a simple law that does not take into consid-

eration the mutual interaction between the intro-

duced substance and the medium into which it is

introduced or the effect of the temperature on this

interaction. The phenomenon of diffusion is used to

improve the conditions of oil extractions (seeking

ways of more efficiently recovering oil from oil

deposits). These days, oil companies are interested

in the process of diffusion for more efficient extrac-

tion of oil from oil deposits [2].

Thermodiffusion in the solids is one of the trans-

port processes that has great practical importance

and is due to coupling of the fields of temperature,
mass diffusion, and that of strain. The concept of

thermodiffusion is used to describe the process of

thermomechanical treatment of metals (carboniz-

ing, nitriding steel, etc.); these processes are ther-

mally activated, their diffusing substances being,

e.g., nitrogen and carbon.Theyare accompanied by

deformations of the solid. With the advance of

a nuclear energetics, the interest in thermodiffusion

has returned to metallic oxides that often heat up in

inhomogeneous temperature field in connection

with technological conditions.

The first theoretical works in the field of

thermodiffusion of elastic deformable solid bod-

ies belong to Pidstryhach who deduced funda-

mental equations of linear thermodiffusion in

1961 [3]. Nowacki, started from the linear

thermoelasticity of elastic solids, continued and

later developed the theory of thermodiffusion of

elastic solids (see, e.g., [4]).
Classic Thermoelastic Diffusion Theory

Nowacki [4] derived the classic thermoelastic

diffusion theory (by using classic Fourier’s law

(5) and Fick’s law (8)). The governing equations

for an anisotropic and homogenous solid are

given by:

The equation of motion
r€ui ¼ sji; j þ rFi

The stress tensor relation
sij ¼ cijklekl þ aijyþ bijC ð2Þ

The strain tensor relation
eij ¼ 1

2
ðui; j þ uj;iÞ ð3Þ

The energy equation
� qi;i þ rh ¼ rT0 _S ð4Þ

The Fourier’s law

� kijy; j ¼ qi ð5Þ
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The entropy relation

rS ¼ �aijeij þ rcE
T0

yþˆC ð6Þ

The equation of conservation of mass

� �i;i þ r ¼ _C ð7Þ

The Fick’s law

� dijP;j ¼ �i ð8Þ

The chemical potential relation
P ¼ bijeij �ˆyþ RC ð9Þ

where y ¼ T � T0 is the small temperature incre-

ment, T is the absolute temperature of the medium,

T0 is the reference uniform temperature of the body

chosen such that jy=T0j � 1, r is the mass density,

qi is the heat conduction vector, kij is the thermal

conductivity tensor, cE is the specific heat at con-

stant strain, cijkm is the tensor of elastic constants,sij
are the components of the stress tensor, u ¼ ðuiÞ
are the components of the displacement vector, eij
are the components of the strain tensor, F ¼ ðFiÞ is
the external body force per unit mass, S is the

entropy per unit mass, h is the heat supply per unit

mass, P is the chemical potential per unit mass,C is

the concentration of the diffusive material in the

elastic body, dij is the diffusion tensor, r is the

diffusion supply, ˆ is a measure of thermoelastic

diffusion effect, R is a measure of diffusive effect,

and aij and bij are constitutive coefficients.

To obtain the equations of motion, we substi-

tute from (2) and (3) into (1), we get
r€ui ¼ cjiklekl; j þ ajiy; j þ bjiC; j þ rFi ð10Þ

Now, substituting the divergence of both sides

of (5) with (6) into (4), we obtain the equation of

heat conduction
rcE _y� aijT0 _eij þˆT0 _C� rh ¼ kijy;ij ð11Þ

Substituting the divergence of both sides of (8)

with (9) into (7), we obtain the equation of mass

diffusion
dijðRCþ bijeij �ˆyÞ;ij þ r ¼ _C ð12Þ

For the case of isotropic materials, we have
cijkl ¼ ldijdkl þ mdikdjl þ mdildjk aij ¼ �b1dij
bij ¼ �b2dij kij ¼ kdij dij ¼ �hdij

ð13Þ
where l and m are Lamé’s constants,

b1 ¼ ð3lþ 2mÞat and b2 ¼ ð3lþ 2mÞac, where
at is the coefficient of linear thermal expansion

and ac is the coefficient of linear diffusion expan-
sion. dij is the Kronecker symbol defined by
dij ¼ 1 i ¼ j
0 i 6¼ j

�

Substituting from (13) into (10)–(12), we get

the governing equations for isotropic and homog-

enous solid

r€ui ¼ðlþmÞuj; jiþmui; jj�b1y;i�b2C;iþrFi

rcE _y¼ ky;ii�b1T0 _eii�ˆT0 _Cþrh
_C¼ h�ðRC�b2ekk�ˆyÞ;iiþ r

ð14Þ
Generalized Thermoelastic Diffusion
Theory

The classical theory of thermoelasticity is based

on the conventional heat conduction equation.

This equation, due to its parabolic nature, pre-

dicts that the thermal disturbances propagate

at infinite speeds. This prediction may be

suitable for most engineering applications, but it

is a physically unacceptable assumption. To

eliminate this paradox, several generalized

thermoelastic theories have been developed sub-

sequently. The development of these theories was

accelerated by the advent of the second sound

effects observed experimentally in materials at

a very low temperature. A survey article of vari-

ous representative theories in the range of gener-

alized thermoelasticity has been brought out by

Hetnarski and Ignaczak [5].
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Lord and Shulman Model

The first generalization was developed by Lord

and Shulman [6], which replaces the classic

Fourier’s law (5) with the Cattaneo-Maxwell

law of heat conduction [7]
C
t0 _qi þqi ¼ �kijy; j ð15Þ

where t0 is the thermal relaxation time which

ensures that the heat conduction equation will pre-

dict finite speeds of heat propagation. Analogous to

(15) for the heat flux vector, we assume a similar

equation for the mass flux vector of the form [2]:
t _�i þ�i ¼ �dijP; j ð16Þ

where t is the diffusion relaxation time, which

ensures that the equation satisfied by the concen-

tration will also predict finite speeds of propaga-

tion of matter from one medium to the other.

Sherief et al. [2] derived the generalized

thermoelastic diffusion theory under Lord and

Shulman model. By using (15) instead of (5)

into (11) and (16) instead of (7) into (12), the

authors obtained the following generalized sys-

tem of governing equations:
r€ui ¼ cjiklekl; j þ ajiy; j þ bjiC; j þ rFi

kijy;ij ¼ rcEð _yþ t0€yÞ � aijT0ð _eij þt0 €eijÞ
þˆT0ð _Cþ t0 €CÞ � rðhþ t0 _hÞ

RdijC;ij ¼ _Cþ t €C� dijðbijeij þˆyÞ;ij
� ðr þ t _rÞ

ð17Þ

For isotropic materials, system (17) becomes

r€ui ¼ðlþ mÞuj; ji þ mui; jj � b1y;i � b2C;i

þ rFi

ky;ii ¼ rcEð _yþ t0€yÞ þ b1T0ð _eii þt0 €eijÞ
þˆT0ð _Cþ t0 €CÞ � rðhþ t0 _hÞ

RC;ii ¼ b2ekk;ii þˆy;ii þ 1

�h
ð _Cþ t €CÞ

� 1

�h
ðr þ t _rÞ

ð18Þ
The generalized systems (17) and (18) associ-

ated with Cattaneo-Maxwell laws (15) and (16)

become hyperbolic and, hence, automatically

eliminate the paradox of infinite speeds.

Green and Lindsay Model

The second generalization was developed

by Green and Lindsay [8] and called as

temperature rate-dependent thermoelasticity. In

thermoelasticity, the temperature rate dependent

is included among the consecutive variables with

two constants that act as two relaxation times.

This does not violate the classical Fourier’s law

of heat conduction when body under consider-

ation has a center of symmetry.

Rajneesh and Tarun [9] derived the general-

ized theory of thermoelastic diffusion under

Green and Lindsay model. The thermodiffusion

and thermodiffusion-mechanical relaxations are

governed by four different time constants. If the

material has center of symmetry, the constitutive

equations take the form

sij ¼ cijklekl þ aijðyþ t1 _yÞ þ bijðCþ t1 _CÞ
rS ¼ c1 � aijeij þ rcE

T0
ðyþ t0 _yÞ þˆðCþ t0 _CÞ

P ¼ bijeij �ˆðyþ t1 _yÞ þ RðCþ t1 _CÞ þ c2

ð19Þ
We add also the equation of motion (1),

the energy equation (4), the Fourier’s law

(5), the equation of conservation of mass (7),

and the Fick’s law (8). In system (19), t0 and

t1 are the thermal relaxation times, which

ensure that the heat conduction equation, sat-

isfied by the temperature y, will predict finite
speeds of heat propagation. t0 and t1 are the

diffusion relaxation times which ensure that

the equation, satisfied by the concentration C,
will also predict finite speeds of propagation

of matter from one medium to other. c1 and c2
are two constants.

To obtain the equations of motion, we substi-

tute from (19)1 and (3) into (1), we get
r €ui ¼ cjiklekl; jþajiðyþ t1 _yÞ; jþbjiðCþ t1 _CÞ; jþrFi

ð20Þ



C 570 Classic and Generalized Thermoelastic Diffusion Theories
Now, substituting the divergence of both sides

of (5) with (19)2 into (4), we obtain the equation

of heat conduction
rcEð _yþ t0€yÞ�aijT0 _eijþˆT0ð _Cþ t0 €CÞ�rh¼ kijy;ij

ð21Þ

Substituting the divergence of both sides of (8)

with (19)3 into (7), we arrive at the equation of

mass diffusion
dijðRðCþ t1 _CÞ þ bijeij �ˆðyþ t1 _yÞÞ;ij þ r ¼ _C

ð22Þ

For isotropic materials, the governing equa-

tions (20)–(22) become

r€ui ¼ðlþ mÞuj;ji þ mui;jj � b1ðyþ t1 _yÞ;i
� b2ðCþ t1 _CÞ;i þ rFi

ky;ii ¼ rcEð _yþ t0€yÞ þ b1T0 _eii

þˆT0ð _Cþ t0 €CÞ � rh

�hRC;ii ¼ �hb2ekk;ii þ �hˆðyþ t1 _yÞ;ii
þ _C� �hRt1 _C;ii �r

ð23Þ

The generalized systems (20)–(22) and (23)

derived under Green and Lindsay model become

hyperbolic and, hence, automatically eliminate

the paradox of infinite speeds.
Classic Micropolar Thermoelastic
Diffusion Theory

In problems of waves and vibrations, the classi-

cal theory of elasticity fails to provide complete

information, and the results obtained do not con-

form with experimental ones in case of media

with granular structures. Most of the natural and

man-made materials, including engineering,

geological, and biological media, possess

a microstructure. Furthermore, the micropolar

elastic model is more realistic than the purely

elastic theory for studying the response of mate-

rials to external stimuli. Eringen [10] developed

the linear theory of micropolar elasticity.
Under this theory, solids can undergo macro-

deformations and microrotations. The motion

in this kind of solids is completely characterized

by the displacement vector uiðx; tÞ and the rota-

tion vector fiðx; tÞ, while in the case of classical
elasticity, the motion is characterized by the

displacement vector only. Micropolar solids

can support couple stresses in addition to force

stresses.

Tauchert et al. [11] extended the micropolar

theory to include thermal effects. Aouadi [12]

extended the micropolar theory to include ther-

mal and diffusion effects. The linear system of

governing equations of the classic micropolar

thermoelastic diffusion theory consists of (see

[12]):

The equations of motion

r€ui ¼ sji;j þ rFi Eijksjk þ mji;j þ rGi ¼ rJij €fj

ð24Þ
The kinematic relations

eji ¼ ui; j � Ekjifk fji ¼ fi; j ð25Þ

The stress tensor relation

sij ¼ cijklekl þ pijklfkl þ aijyþ bijC ð26Þ
The moment of couple stress tensor relation

mij ¼ pijklekl þ dijklfkl þ pijyþ qijC ð27Þ

The entropy relation

rS ¼ �aijeij � pijfij þ
rcE
T0

yþˆC ð28Þ

The chemical potential relation

P ¼ bijeij þ qijfij �ˆyþ RC ð29Þ

We add also the energy equation (4), the

Fourier’s law (5), the equation of conservation

of mass (7), and the Fick’s law (8). In the above

equations, mji is the moment of couple stress

tensor, eijk is the alternating tensor, Jij is the

microrotation tensor, fi is the vector of internal

rotations, Gi is the component of the external

applied couple per unit mass, and eji is the

micro-strain tensor.
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To obtain the governing equations of motion,

we proceed as in previous sections, we get
C

r€ui ¼ cjiklekl; j þ pjiklfkl; j þ ajiy; j

þ bjiC;j þ rFi

rJij €fj ¼ pjiklEkl; j þ djiklfkl; j þ pjiy; j þ qjiC; j

þ eijkðcjkmleml þ pjkmlfml þ ajky

þ bjkCÞ þ rGi

rcE _y ¼ kijy;ij þ T0aij _eij þT0pij _fij �T0ˆ _C

þ rh
_C ¼ dijðRCþ bijeij þ qijfij �ˆyÞ

;ij
þ r

ð30Þ

For the case of isotropic materials, we have
cijkl ¼ ldijdkl þ ðmþ aÞdikdjl þ ðm� aÞdildjk
dijkl ¼ edijdkl þ ðnþ bÞdikdjl þ ðn� bÞdildjk

aij ¼ �b1dij bij ¼ �b2dij; kij ¼ kdij dij ¼ �hdij
Jij ¼ Jdij pij ¼ qij ¼ pijkl ¼ qijkl ¼ 0

where b1¼ð3lþ2mþaÞat and b2¼ð3lþ2mþaÞac.
Substituting the above equations into (30),

we get

r€ui ¼ðlþ mÞuj; ji þ ðmþ aÞui; jj þ aEijkfk; j

� b1y;i � b2C;i þ rFi

rJ €fi ¼ðeþ bÞfj; ji þ nfi; jj þ aEijkuk; j

� 2afi þ rGi

rcE _y ¼ ky;ii � b1T0 _eii �ˆT0 _Cþ rh
_C ¼ �hðRC� b2ekk �ˆyÞ;ii þ r

ð31Þ
Generalized Micropolar Thermoelastic
Diffusion Theory

Aouadi [13] derived the generalized micropolar

thermoelastic diffusion theory under Lord and

Shulman model. Using the relations (15) and

(16) instead of (5) and (8), respectively, the

author gets the governing equations
r€ui ¼ cjiklekl; j þ pjiklfkl; j þ ajiy; j þ bjiC; j

þ rFi

rJij €fj ¼pjiklekl; j þ djiklfkl; j þ pjiy; j þ qjiC; j

þ Eijkðcjkmleml þ pjkmlfml þ ajkyþ bjkCÞ
þ rGi

kijy;ij ¼rcEð _yþ t0€yÞ � aijT0ð_eijþt0€eijÞ
� pijT0ð _fijþt0 €fijÞ þˆT0ð _Cþ t0 €CÞ
� rðhþ t0 _hÞ

dijRC;ij ¼ _Cþ t €C� dijðbijeij þ qijfij �ˆyÞ
;ij

� ðrþ t _rÞ
ð32Þ

For isotropic materials, system (32) becomes
r€ui ¼ðlþ mÞuj;ji þ ðmþ aÞui;jj þ aeijkfk;j

� b1y;i � b2C;i þ rFi

rJ €fi ¼ðeþ bÞfj;ji þ nfi;jj þ aEijkuk;j

� 2afi þ rGi

ky;ii ¼ rcEð _yþ t0€yÞ þ b1T0ð _eii þt0 €eijÞ
þˆT0ð _Cþ t0 €CÞ � rðhþ t0 _hÞ

RC;ii ¼ b2ekk;ii þˆy;ii þ 1

�h
ð _Cþ t €CÞ

� 1

�h
ðr þ t _rÞ

ð33Þ
Classic Thermoelastic Theory with Voids

There are a number of theories about mechanical

properties of porous materials. The concept of

a distributed body introduced by Goodman and

Cowin [14] in the context of granular and porous

materials asserts that the mass density has the

decomposition gn, where g is the density of the

matrix material and n is the volume fraction filed

[15]. This representation introduces an additional

degree of kinematic freedom, and by using this

concept, Nunziato and Cowin [16] proposed

a theory to describe the properties of homoge-

neous elastic materials with voids free of fluid.
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Moreover, the theory of Cowin and Nunziato is

more appropriated than other theories for the

study of special continuum and geological mate-

rials, such as rocks, soils, and manufactured

porous materials like ceramics and pressed pow-

ders. More in detail, it is used for solid material

with voids but without any other phase, like liq-

uid or gas. Generally, this theory is based on the

balance of energy, where presence of the pores

involves additional degree of freedom, namely,

the fraction of elementary volume. Ieşan [17] has

developed a linear theory of thermoelastic mate-

rials with voids. Aouadi [18] has extended the

thermoelastic theory with voids to include diffu-

sion effects. In the linear context, the equations of

motion are given by

r€ui ¼ sji; j þ rFihi;i þ gþ rL ¼ rJ€f ð34Þ

The constitutive equations are given by
sij ¼ cijklekl þ pijfþ aijyþ bijC

hi ¼ qijf; j;

g ¼ �pijeij � d0f� xy� zC

rS ¼ �aijeij � xfþ rcE
T0

yþˆC

P ¼ bijeij þ zf�ˆyþ RC

ð35Þ

To the last system, we add the energy equation

(4), Fourier’s law (5), Fick’s law (8), and the

equation of conservation of mass (7). In this sys-

tem hi are the components of the equilibrated

stress vector, g is the intrinsic equilibrated body

force, L is the extrinsic equilibrated body force, f
is the change in volume fraction from the reference

volume fraction, and J is the equilibrated inertia.

To obtain the governing equations of motion,

we proceed as in the above sections, we get
r€ui ¼ cjiklekl; j þ pjif; j þ ajiy; j þ bjiC; j þ rFi;

rJ€f ¼ �pijeij þ qijf; ji � d0f� xy� zCþ rL

rcE _y ¼ kijy;ij þ T0aij _eij þT0x _f�ˆT0 _Cþ rh
_C ¼ dijðbijeij þ zf�ˆyþ RCÞ;ij þ r

ð36Þ
For the case of isotropic materials, the consti-

tutive equations (35) become
sij ¼ lekkdij þ 2meij þ gfdij � b1ydij � b2Cdij
hi ¼ Bf;i

g ¼ �gekk � d0f� xy� zC

rT0S ¼ b1T0ekk � xT0fþ rcEyþˆT0C

P ¼ �b2ekk þ zf�ˆyþ RC

ð37Þ

and the governing equations (36) take the form
r€ui ¼ ðlþ mÞuj; ji þ mui;jj þ gf; j

� b1y;i � b2C;i þ rFi

rJ€f ¼ Bf;ii � gekk � d0f� xy� zCþ rL

rcE _y ¼ ky;ii þ xT0 _f� b1T0 _eii �ˆT0 _Cþ rh
_C ¼ �hðRC� b2ekk þ zf�ˆyÞ;ii þ r

ð38Þ
Generalized Thermoelastic Diffusion
Theory with Voids

By using the relations (15) and (16) instead of (5)

and (8), respectively, Singh [19] obtained the

governing equations of the generalized

thermoelastic diffusion theory with voids under

Lord and Shulman model
r€ui ¼cjiklekl; jþ pjif; jþ ajiy; jþ bjiC; j

þrFi

rJ€f¼ � pijeijþ qijf; ji� d0f� xy� zCþrL

kijy;ij ¼rcEð _yþ t0€yÞ� aijT0ð _eijþt0 €eijÞ
�T0xð _fþ t0€fÞþˆT0ð _Cþ t0 €CÞ
�rðhþ t0 _hÞ

dijRC;ij ¼ _Cþ t €C� dijðbijeijþ zf�ˆyÞ;ij
�ðrþ t _rÞ

ð39Þ
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For isotropic materials, system (39) becomes
C

r€ui ¼ðlþ mÞuj; ji þ mui; jj þ gf; j

� b1y;i � b2C;i þ rFi

rJ€f ¼ Bf;ii � gekk � d0f� xy� zCþ rL

ky;ii ¼ rcEð _yþ t0€yÞ þ b1T0ð _eii þt0 €eiiÞ
� T0xð _fþ t0€fÞ þˆT0ð _Cþ t0 €CÞ
� rðhþ t0 _hÞ

RC;ii ¼ b2ekk;ii � zf;ii þˆy;ii þ 1

�h
ð _Cþ t €CÞ

� 1

�h
ðr þ t _rÞ

ð40Þ
Thermoelastic Diffusion Mixture Theory

The importance of the study of mixtures was rec-

ognized long ago when the basic concepts of the

theory have been established and the possible

applications of the mathematical models were

identified. The first works on the continuum theory

of mixtures were the contributions of Truesdell

and Toupin [20], Kelly [21], and others.

The theory on mixtures of elastic solids is

naturally described by a Lagrangian approach,

and the independent constitutive variables are

the displacement vector fields, their relative gra-

dients, the temperature, and its gradient. The idea

of employing interpenetrating continua as

a model of composite materials was introduced

by Bedford and Stern [22, 23]. In this theory,

a mixture of two interacting continua s1 and s2
is considered. The mixture is viewed as

a superposition of two continua each following

its own motion and at any time each place in the

mixture is occupied simultaneously by different

particles, one from each constituent. The motion

of a mixture is described by the equations

x ¼ xðX; tÞ; y ¼ yðY; tÞ, where the particles

under consideration occupy the same position in

the reference configuration, so that X ¼ Y. Fol-

lowing them, Ieşan [24] has developed a linear

theory of thermoelastic mixtures. Aouadi [25]

has extended the thermoelastic mixtures theory

to include diffusion effects. In the linear context,

the equations of motion are given by
tji; j � pi þ r01Fi ¼ r01 €ui

sji; j þ pi þ r02Gi ¼ r02 €wi ð41Þ

The strain measures relations
eij ¼ 1

2
ðui;j þ uj;iÞ gij ¼ uj;i þ wi;j di ¼ ui � wi

ð42Þ

The constitutive equations are given by
tji ¼ Ajiklekl þ Bjiklgkl þ ajiyþ bjiC

sji ¼ Bklijekl þ Cijklgkl þ cjiyþ djiC

pi ¼ aijdj

r0S ¼ �aijeij � cijgij þ
r0cE
T0

yþˆC

P ¼ bijeij þ dijgij �ˆyþ RC

ð43Þ

To the last system, we add the energy equation

(4), Fourier’s law (5), the equation of conserva-

tion of mass (7), and Fick’s law (8). In the above

equations r0a are the mass density associated with

the constituent sa, tij and sij are the partial stress
tensors associated with the constituent sa, Fi and

Gi are the body forces associated to sa, pi is the
vector field characterizing the mechanical inter-

action between the constituents s1 and s2, and,

finally, ui and wi represent the displacement vec-

tor fields associated with the constituents s1 and

s2, respectively. To obtain the governing equa-

tions of motion, we proceed as in previous sec-

tions, we get
r€ui ¼Ajiklekl; j þ Bjiklgkl; j � aijdj

þ ajiy; j þ bjiC; j þ r01Fi

r €wi ¼Bklijekl; j þ Cijklgkl;j þ aijdj

þ cjiy; j þ djiC; j þ r02Gi

rcE _y ¼ kijy;ij þ T0aij _eij þT0cij _gij �ˆT0 _Cþ rh;
_C ¼ dijðbijeij þ dijgij �ˆyþ RCÞ

;ij
þ r

ð44Þ
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For isotropic solids, we have
Aijkl ¼ l1dijdkl þ ðm1 þ k1Þdikdjl þ m1dildjk
Cijkl ¼ l2dijdkl þ ðm2 þ k2Þdikdjl þ m2dildjk
Bijkl ¼ ndij dkl þ xdik djl þ zdildjk; �hij ¼ �hdij
aij ¼ adij aij ¼ �b1dij bij ¼ �b2dij
cij ¼ �b3dij dij ¼ �b4dij kij ¼ kdij

The constitutive equations reduce to
tij ¼ l1ekkdij þ ðm1 þ k1Þeij þ m1eji þ ngrrdij
þ xgij þ zgji � b1ydij � b2Cdij

sij ¼ nekkdij þ xeij þ zeji þ l2grrdij
þ ðm2 þ k2Þgij þ m2gji � b3ydij � b4Cdij

pi ¼ adi

r0S ¼ b1ekk þ b3gkk þ
r0cE
T0

yþˆC

P ¼� b2ekk � b4gkk �ˆyþ RC

By substituting the last system into (44), we

obtain the governing equations of the linear the-

ory of thermoelastic diffusion mixture for isotro-

pic materials.

By using the relations (15) and (16) instead of

(5) and (8), respectively, in the system (44), one

can get the governing equations of the general-

ized thermoelastic diffusion mixture theory under

Lord-Shulman model
r €ui ¼Ajiklekl; j þ Bjiklgkl; j � aijdj

þ ajiy; j þ bjiC; j þ r01Fi

r €wi ¼Bklijekl; j þ Cijklgkl; j þ aijdj

þ cjiy; j þ djiC; j þ r02Gi

kijy;ij ¼ rcEð _yþ t0€yÞ � aijT0ð _eij þt0 €eijÞ
� cijT0ð _gij þt0 €gijÞ þˆT0ð _Cþ t0 €CÞ
� rðhþ t0 _hÞ

dijRC;ij ¼ _Cþ t €C� dijðbijeij þ dijgij �ˆyÞ
;ij

� ðr þ t _rÞ
ð45Þ
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24. Ieşan D (1991) On the theory of mixtures of

thermoelastic solids. J Therm Stress 14:389–408

25. Aouadi M (2010) Qualitative results in the theory of

thermoelastic diffusion mixtures. J Therm Stress

33:595–615
Classical Coupled Thermoelasticity
in Unbounded Domains

Remigio Russo

Department of Mathematics and Physics,

Second University of Naples, Caserta, Italy
Synonyms

Coupled thermoelasticity
j

Overview

The purpose of this entry is to give a review of

the main results concerning the system of linear

coupled thermoelastodynamics in unbounded

domains. In contrast with what happens in linear

elastodynamics, where the hyperbolicity condi-

tion on the acoustic tensor [4] assures that the

main properties of the motion of an elastic body

usually stated for bounded domains, like unique-

ness of the initial boundary value problem, can

be extended to unbounded domain; a well-

known counterexample of Tykhonov [20]

about uniqueness of the solution to the Cauchy

problem for the heat equation shows that this is

not possible. It is necessary to require that the

solution cannot grow at infinity more rapidly

than the fundamental solution. So a condition

on the temperature difference y, like

yðxÞ ¼ Oðer2Þ, should be sufficient. Actually,

we show that this is thus. Indeed, we define

a function class F of solutions to the equations

of linear thermoelastodynamics defined by

a condition on y similar to that founded by
Tykhonov, and we show that for solutions in F,
the most important properties of solutions hold-

ing in bounded domains, like the work energy

theorem, uniqueness, Graffi’s reciprocity rela-

tion, and the time decay to zero at infinity of

the temperature difference field, can be extended

to the unbounded ones. Moreover, in the last

section we discuss the possibility to justify the

application of a generalized Saint–Venant’s

principle in thermoelasticty.

Notation – We essentially follow the notation

of [8, 9]. ℕ and ℝ denote the sets of natural

and real numbers, respectively. A domain O
is an open connected set of R3. SR ¼
fx 2 R3 : jx� oj<Rg, OR ¼ O \ SR, where o
is the origin of the coordinate system,

r ¼ jx� oj, x ¼ x� o ¼ rer: L
qðOÞ p 	 1ð Þ is

the Lebesgue space endowed with its natural

norm; if u is a regular vector field, Ĥu denotes

the symmetric part of Hu. As is usual, if ’ðxÞ and
cðrÞ are functions defined in an unbounded

domain, the symbols cðxÞ ¼ oð’ðrÞÞ and

cðxÞ ¼ Oð’ðrÞÞ mean, respectively, that

lim
xj!1

cðxÞ=’ðrÞ ¼ 0 and jcðxÞj  c’ðrÞ; for

large r. Finally, unless otherwise stated, c stands

for a positive constant whose value is not essen-

tial for our aims; its numerical value may change,

e.g., in a same line.
The System of Linear
Thermoelastodynamics

Let B be a linearly heat-conducting elastic body,

identified with an unbounded domain O ofR3; it

occupies in an assigned stress-free reference con-

figuration. Let us assign the following fields

expressing the material properties of B [5]: the

mass density r : O� ð0;þ1Þ; the elasticity ten-
sor, i:e, a map C : O� Lin ! Sym, linear on

Lin, such that C[W] ¼ 0 for all W 2 Skw and

E � C½L� ¼ L � C½E� for all E;L 2 Lin;

a reference temperature Y0; the specific heat

ce : O ! ð0;þ1Þ; the conductivity tensor
K : O ! Sym; and the stress–temperature tensor

M : O ! Sym.

http://dx.doi.org/10.1007/978-94-007-2739-7_100103
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Let p½E� ¼ E � C½E�, g½a� ¼ a �Ka. Let us

assume that ce is bounded and

• C is positive semi-definite, i.e.,

p½E� 	 0; 8E 2 Lin

• K is bounded and positive semi-definite, i.e.,

0  g½a�  cjaj2; 8a 2 R3.

Note that the above properties and the sym-

metry of C and K assure the following

inequalities:
2E � C½F�  xp½E� þ x�1p½F�; 8 E;F 2 Lin;

2a �K½b�  xg½a� þ x�1g½b�; 8 a; b 2 R3

ð1Þ

for all x > 0.

Let n be the unit outward (with respect to O)
to @O and denote by f@1O; @2Og and

f@3O; @4Og two partitions of @O. Let u0, _u0,

and y0 be three assigned fields in O. The mixed
problem of the dynamical theory of
thermoelasticity is to find a pair u (displacement

field) and y (temperature difference field) that

satisfies the equations [5]:
r€u� div C½Hu�� div ðyMÞ ¼ 0 in O� ½0;þ1Þ;
r _y� div ðKHyÞ�Y0M � Ĥ _u¼ 0 in O� ½0;þ1Þ;

u¼ 0 on @1O� ½0;þ1Þ;
ðC½Hu� þ yMÞn¼ 0 on @2O� ½0;þ1Þ;

y¼ 0 on @3O� ½0;þ1Þ;
�ðKHyÞn¼ 0 on @4O� ½0;þ1Þ

u¼ u0; _u¼ _u0 y¼ y0 in O�f0g
ð2Þ

Only for the sake of simplicity we assume

homogeneous boundary data and zero body

force. The extension of the results we derive

to solutions of system (2) for

nonhomogeneous data is immediate under

suitable summability assumptions on them.

Our aim is to find conditions on the material

data assuring that a solution to (2) satisfies in

a sharp function class F the classical properties
holding for solutions in bounded domains, like
the work and energy theorem, Graffi’s reci-
procity relation, uniqueness [5], and the time
decay to zero at infinity of the temperature
difference field. Moreover, we aim at showing
that a solution in F decays at large spatial
distance according to a generalized Saint–
Venant’s principle.
• Only for the sake of simplicity, through the

entry we shall assume thatO, the material data

and u0, _u0, and y0 are of classC1, and we shall

consider solutions u, y to (2) of class C1 in

O� ½0;þ1Þ.
TheHyperbolicity Condition and a Sharp
Function Class

The acoustic tensor for the direction m (|m| ¼ 1)

is defined by [8]
Aðx;mÞa ¼ r�1C½a�m�m; 8 a:

We say that the acoustic tensor satisfies

the hyperbolicity condition if there is a

regular, positive and unbounded function

p : ða;þ1Þ ! ð0;þ1Þ ða > 0Þ, with p0 > 0

and p00< 0, such that
jAðx;mÞj  ½p0ðrÞ��2
; 8 r ð3Þ

Note that, choosing pðrÞ ¼ log . . . log|fflfflfflfflfflffl{zfflfflfflfflfflffl}
kþ1 times

r, (3)
reads jAðx;mÞj  ½c1r log . . . log|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k times

r�2 The impor-
tance of this assumption in the isothermal

case (y ¼ 0) has been discussed in [16] (see also

[4]). Roughly speaking, it assures that a signal

traveling in B cannot reach the infinity in a finite

time.

Since (2) reduces to the initial-boundary

value problem for the heat equation when the

elastic body is kept at rest, we cannot expect

uniqueness of solution to (2) without making

any assumption at infinity on the (difference)

temperature field y. Indeed, a celebrated counter-
example of Tykhonov [20] (see also [6, 18])

shows that in the function class
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fyðx; tÞ : yðx; tÞ ¼ Oðer2þEÞ; for some E > 0g;

the Cauchy problem for the heat equation
C

_y� Dy ¼ 0 in R� ½0;þ1Þ

y ¼ 0 in R� f0g

has a solution which does not identically vanish.

Hence, it follows that in order to get qualitative

properties of thermoelastic solutions analogous

to that derived in the isothermal case, we have

to define a function class where the difference

temperature y cannot grow at infinity as er
2þE
,

for some E > 0. To this end, consider the function

p in (3) and set

Rt ¼ p
�1 ðpðRÞ þ c0tÞ ð4Þ

for some positive c0. We denote by F the set of
(regular) solutions (u, y) to system (2) such that

Hy satisfies for some positive k, �R, the growth

conditionðt
0

ds

ð
ORt�s

g½Hy�dv ¼ o exp

ðR
�R

ðkðp0ðxÞÞ�1
dx

� �� �
ð5Þ
Remark 1. If we choose pðrÞ ¼ log r, then (5)

reads
ðt
0

ds

ð
ORt

g½Hy�dv ¼ oðeR2Þ

so that, in particular, F contains the set of all
couple (u, y) such that g½Hy� ¼ oðer2=r3Þ. Other
good functions p are log . . . log|fflfflfflfflfflffl{zfflfflfflfflfflffl}

kþ1 times

r.

Let (u, y) be a solution to (2). We set
�½u�ðx; tÞ ¼ 1

2
rj _uj2 þ p½Hu�
� 

ðx; tÞ

e½u; y�ðx; tÞ ¼ �½u� þ 1

2
ceY�1

0 y2ðx; tÞ
The Work and Energy Theorem

In this section, we extend to unbounded domains

the classical work and energy theorem usually

stated for bounded regions [5]. Beyond its intrin-

sic interest, it provides the main tool in

establishing the results of the next sections.
Theorem 1. [15] Let A and M satisfy (3) and
Y0ðcerÞ�1jMðxÞj2  ½p0ðrÞ��2
; 8 r ð6Þ

If u; yð Þ 2 F and e½u; y�ðx; 0Þ 2 L1ðOÞ, then

ð
O
e½u; y�ðx; tÞdvþY�1

0

ðt
0

ds

ð
O
g½Hy�ðx; sÞdv

¼
ð
O
e½u; y�ðx; 0Þdv ð7Þ
Proof. Let w be a regular, nondecreasing func-

tion in R, equal to 1 in [1, þ1), vanishing in

(–1,0) and let
gðr; sÞ ¼ wðd�1ðpðRÞ þ c0ðt� sÞ � pðrÞÞ ð8Þ

with 0< d< pðRÞ. Of course,

_g ¼ �d�1c0w
0; Hg ¼ �d�1w0p0ðrÞer ð9Þ

The support of g at instant s is the ball

S
p
�1 ðpðRþcðt�sÞÞ, and g is equal to 1 in

S
p
�1 ðpðRþcðt�sÞ�dÞ.

Multiply (2)1 scalarly by g _u and (2)2 by

gY�1
0 y, respectively. Then an integration by

parts yields
d

ds

ð
O
ðge½u;y�Þðx; sÞdvþY�1

0

ð
O
gg½Hy�ðx; sÞdv

¼
ð
O
_ge½u;y�ðx; sÞdv�

ð
O
_u � fðC½Hu� þ yMÞHg

þY�1
0 yHg �KHygðx; sÞdv

ð10Þ
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By (1) and (8), we have
2j _u � C½Hu�Hgj ¼ 2d�1w0p0ðrÞ _u � C½Hu�erj
 d�1w0ðjp0ðrÞj2 _u � C½ _u� er�er þ p½Hu�Þ
 2d�1w0�½u�; 2jy _u �MHgj
 d�1w0 ceY�1

0 y2 þ c�1
e Y0ðp0ðrÞj _ujjMjÞ2

n o
 2d�1w0e½u; y�; jY�1

0 yHg �KHyj
 d�1w0 e½u; y� þ kY�1

0 jp0ðrÞj2g½Hy�
n o

ð11Þ

for some positive constant k. Therefore, choosing
c0 sufficiently large, (10) impliesð
O
ðge½u; y�Þðx; tÞdv

þY�1
0

ðt
0

ds

ð
O
gg½Hy�ðx; sÞdv 

ð
O
ge½u; y�ðx; 0Þdv

þ ðdY0Þ�1k
ðt
0

ds

ð
O
jp0ðrÞj2g½Hy�ðx; sÞdv

ð12Þ

By the properties of (8), we can let d ! 0 in

(12) to have (see [15] for the details)ð
OR

e½u; y�ðx; tÞdv

þY�1
0

ðt
0

ds

ð
ORt�s

g½Hy�ðx; sÞdv 
ð
O
e½u; y�ðx; 0Þdv

þ kY�1
0

ðt
0

ds

ð
O\SRt�s

p0ðrÞg½Hy�ðx; sÞda

ð13Þ

Starting from estimate (13), let us show that

the LHS of (13) is dominated uniformly on

R by the initial energy. Indeed, if per

absurdum this were not true, it should exist �R

such that
GðRÞ ¼
ðt
0

ds

ð
ORt�s

g½Hy�ðx; sÞdv

 k
ðt
0

ds

ð
O\SRt�s

p0ðrÞg½Hy�ðx; sÞda ð14Þ
for R > �R. By the basic calculus
G0ðRÞ ¼
ðt
0

ds

ð
O\SRt�s

½p0ðRÞ=p0ðRt�s�g½Hy�ðx; sÞda

and by the properties of p,

p0ðRt�sÞ  p0ðRÞ�2=p0ðRt�sÞ

Therefore, (14) implies
GðRÞ  kp0ðRÞG0ðRÞ

Hence, by a simple integration,

GðRÞ 	 Gð �RÞ exp
ðR
R

ðkp0ðrÞ�1
dx

� �
Since this contradicts (5), we conclude thatð

OR

e½u; y�ðx; tÞdv 
ð
O
e½u; y�ðx; 0Þdv

By an analogous argument, we see thatðt
0

ds

ð
ORt�s

g½Hy�ðx; sÞdv 
ð
O
e½u; y�ðx; 0Þdv

Thus,ð
O
e½u; y�ðx; tÞdv

þY�1
0

ðt
0

ds

ð
O
g½Hy�ðx; sÞdv 

ð
O
e½u; y�ðx; 0Þdv

ð15Þ

Consider now (10) with c0 ¼ 0 and integrate

over (0, t). Then
ð
O
ðge½u;y�Þðx; tÞdvþY�1

0

ð
O
gg½Hy�ðx; sÞdv

¼
ð
O
ge½u;y�ðx;0Þdv�

ðt
0

ds

ð
O
_u � fðC½Hu�þ yMÞHg

þY�1
0 yHg �KHygðx; sÞdv

ð16Þ
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Since by (11)
C

ð
O
_u � fðC½Hu� þ yMÞHgþY�1

0 yHg �KHygðx; sÞdv
���� ����

 c

ðt
0

ð
ORt�snORt�s�d=c0

e½u; y� þ g½Hy�f gðx; sÞdv;

by (15), we can let R ! þ1 in (16) to get (4).
Uniqueness, Graffi’s Reciprocity
Relation, and Time Decay of the
Temperature Difference

As a simple consequence of (7), we prove now

two classical properties of linear thermoelasticity

[3, 15].

Theorem 2. Under the hypotheses of theorem 1,
system (2) has at most one solution in the class F.

Proof. If u1; y1ð Þ and u2; y2ð Þ are two solutions

to (2), from (7) it follows that the pair

ðu ¼ u1 � u2; y ¼ y1 � y2Þ satisfies
ð
O
e½u; y�ðx; tÞdvþY�1

0

ðt
0

ds

ð
O
g½Hy�ðx; sÞdv ¼ 0

ð17Þ

By the positive semi-definiteness of C and K,

(17) implies
ð
O
½rj _uj2 þ ceY�1

0 y2�ðx; tÞdv  0

Hence, the desired result follows, taking into

account that uðx; 0Þ ¼ 0, _uðx; 0Þ ¼ 0, yðx; 0Þ ¼ 0,

and that r > 0, ce > 0.
Theorem 3. Let the hypotheses of theorem 1 be

satisfied. Let ðu; yÞ and ~u; ~y
� 

2 F correspond

to initial data (2)7 and ~u0, ~_u0, and ~y0. If

e½u; y�ðx; 0Þ, e½~u; ~y�ðx; 0Þ, rju0j2, rj~u0j2, c�1
e M �

Ĥu0, and c�1
e M � Ĥ~u0 2 L1ðOÞ, then
ð
O
r½u0ðxÞ � _~uðx; tÞ þ _u0ðxÞ � ~uðx; tÞ�dv

þ
ð
O
ðcey0 þY0M � Ĥu0ÞðxÞ~yðx; tÞdv

¼
ð
O
r½~u0ðxÞ � _uðx; tÞ þ _~u0ðxÞ � uðx; tÞ�dv

þ
ð
O
ðce~y0 þY0M � Ĥ~u0ÞðxÞyðx; tÞdv

The proof of theorem 3 is obtained by inte-

grating by parts and using the methods we

outlined in the proof of theorem 1 (see [2] and

[15] for the details).

It is well known that the solution to

a homogeneous parabolic equation in an

unbounded domain decays to zero as t ! þ1.

The following theorem shows that, under reason-

able assumptions on the initial data, the temper-

ature difference field y of any thermoelastic

solutions u; yð Þ 2 F such that _u; _y
� 

2 F tends

to zero in a suitable sense at long time. In physical

terms, from this property we infer that the

thermoelastic solution tends, as t ! þ1, to the

(purely elastic) solution to the system obtained

from (2) by setting y ¼ 0. Let us note that this

result, proved in a very elementary way, extends

to unbounded domain in a well-known result of

Slemrod and Infante [17].

Theorem 4. [15] Let the hypotheses of theorem
1 be satisfied. If (u,y), _u; yð Þ 2 F and e½u; y�ðx; 0Þ,
e½ _u; _y�ðx; 0Þ 2 L1ðOÞ, then
lim
t!þ1

ð
O
g½Hy�ðx; tÞdv ¼ 0 ð18Þ

Moreover, if K is positive definite and

@3O 6¼ Ø, then for large R
lim
t!þ1

ð
OR

y2ðx; tÞdv ¼ 0 ð19Þ
Proof. By our hypotheses and (7) g½Hy�,
g½H _y� 2 L1ðO� ð0;þ1Þ. Hence, it follows
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that there is a sequence tk such that

g½Hy�ðx; tkÞ 2 L1ðOÞ and limk!þ1
Ð
O g½Hy�

ðx; tkÞdv ¼ 0. From the relationð
OR

g½Hy�ðx; tÞdv ¼
ðt
tk

d

ds

ð
OR

g½Hy�ðx; sÞdv
� �

ds

þ
ð
OR

g½Hy�ðx; tkÞdv ¼ 2

ðt
tk

ds

ð
OR

ðH _yÞ �KðHyÞdv

þ
ð
OR

g½Hy�ðx; tkÞdv

by (1)2, we have
ð
OR

g½Hy�ðx; tÞdv  c

�ðþ1

tk

ds

ð
O

�
g½Hy�

þ g½H _y�Þðx; tÞdv
�
þ
ð
O
g½Hy�ðx; tkÞdv

Hence, letting first R!þ1, then t!þ1, it

follows (18). Finally, (19) follows from (18) and

the Poincaré inequality
ð
OR

y2ðx; tÞdv  cðRÞ
ð
OR

jHyj2ðx; tÞdv
Saint–Venant’s Generalized Principle

As is well known, the so-called Saint–Venant’s

principle of classical elastostatics is a conjecture

about the stress distribution in a right, linearly

elastic cylinder C loaded on the bases, where the

ratio between the diameter of the section and the

length of C is very small. In short, if the lateral

surface is assumed to be force-free and both the

tractions s over the bases are assumed to be – as

force systems – statically equivalent to zero,

the principle suggests to neglect the stress at the

points of C that are sufficiently far from the bases.

Accordingly, in the study of the equilibrium of C,
a solution corresponding to a surface traction

distribution s may be replaced – at least at

the interior points of C far from the bases – by

another solution (the Saint–Venant’s elementary
solution, see, e.g., [7]), mathematically more

manageable, corresponding to a load which van-

ishes on the lateral surface and is statically equiv-

alent to s on each basis. It is readily understood

that the criterion suggested by Saint–Venant’s

principle leads to a great simplification for the

equilibrium problem concerning elastic bodies of

a cylindrical shape. In the last 40 years, Saint–

Venant’s principle has been largely studied and

justified by several deep researches originated by

Toupin [15] (see also [7, 10]). As previous results

about Saint–Venant’s principle are concerned,

we quote [8], p. 190. More recently, it has been

realized that Saint–Venant’s conjecture could be

extended outside the frontiers of linear

elastostatics. At a deeper glance, it should in

fact be clear that such a conjecture suggests

that, at least in the case of a linearly elastic

cylinder, the answer is affirmative to the follow-

ing question: in a continuous system, can the

effects of some particular data be neglected in
region far from their supports? In the dynamical

context, this question takes a particularly inter-

esting formulation, which will be called general-

ized Saint–Venant’s principle: in an evolutionary

system, can the effects of a perturbation, initially

confined in a bounded region, be neglected at
large distance?As far as dynamical perturbations

in a purely elastic body are concerned, the answer

to the above question is given by the domain of

influence theorem [1, 4, 8]. Denoting by S the

support of the data, at each instant t, the pertur-

bation vanishes outside the envelops of the balls

of radius Rt (see (4)) centered at the points of the

support ofS. Quite different is the case of diffu-
sion phenomena that obey equations of parabolic

type – such as that of the heat conduction: it is

well known that, though the thermal effects of

spatially bounded heat source can be instanta-

neously acknowledged at any point of the space,

nevertheless their perceptibility decays exponen-

tially at large spatial distance. As a consequence,

in the heat conduction, the thermal effects can be

neglected with good approximation at points far

from the heat source. In several papers, Oleinik

and other authors (see, e.g., [10–15], and the
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references therein) have extended the method of

[19] and have applied the estimates thus obtained

to the study of the asymptotic (in space and time)

properties of solutions of elliptic and parabolic

type. In particular, for these last ones, the gener-

alized Saint–Venant’s principle has been given

an affirmative answer. In connection with this

problem, this section essentially aims at provid-

ing that thermal perturbations in a thermoelastic

body can be neglected at each point suitably far

from the support of the data. Indeed, the follow-

ing theorem holds true [15].

Theorem 5. Let the hypotheses of theorem 1 be

satisfied. If u; pð Þ 2 F corresponds to initial data

u0, _u0, and y0 with compact support in O , then
there exists a positive �R such that for all R > �Rð

CORt

e u; y½ � x; tð ÞdvþY�1
0

ðt
0

ds

ð
CORs

g Hy½ � x; sð Þdv

 exp �
ðR
�R

kp0 xð Þð Þ�1
dx

� � ð
O
e u; y½ � x; 0ð Þdv

ð20Þ
Proof. Consider the cutoff function

gðr; sÞ ¼ wðd�1ðpðRÞ þ c0s� pðrÞÞ

and denote by f the above function with c0 ¼ 0.

Then, repeating the steps in the proof of theorem

(see [15] for the details), we arrive atð
CORt

e½u; y�ðx; tÞdvþY�1
0

ðt
0

ds

ð
CORs

g½Hy�ðx; sÞdv

 kY�1
0

ðt
0

ds

ð
O\@SRs

g½Hy�ðx; sÞda

Hence, by the same argument used in the proof

of theorem 1, we get (20).
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Definition

Thermal stress analysis of multilayered shells is

here proposed by using classical governing equa-

tions. Such equations are obtained from the

extension of Kirchhoff model and Reissner-

Mindlin model to laminated shells. The first

extension gives the Classical Lamination Theory

(CLT) for shell geometry; the second extension

allows the First-Order Shear Deformation Theory

(FSDT) to be written for the shell case. Such

theories discard the thickness-stretching effect

(zero transverse normal strain), and this feature

suggests the uselessness of a calculated tempera-

ture profile for these models. A linear tempera-

ture profile is always considered, and it allows the

main limitations of classical governing equations

for the thermal stress analysis of multilayered

shells to be pointed out.
Overview

The thermoelastic formulation of shells in terms

of classical governing equations is a fundamental

topic to investigate the effects of both high-

temperature and mechanical loadings in the

design process of multilayered shell structures

[1]. Classical governing equations consider the
temperature as an external load, and this last is

defined bymeans of a linear assumed temperature

profile through the thickness direction. The

assumption of a linear temperature profile is

a big limitation in the thermal stress analysis of

multilayered shells, but it allows the importance

of refined kinematics models to be pointed out in

the case of multilayered composite structures (see

the works by Brischetto and Carrera [1], Khare

et al. [2], and Khdeir et al. [3]). A calculated

temperature profile in thick and thin multilayered

shells is fundamental for the correct definition of

an opportune thermal load, and it must be used

together with refined two-dimensional models to

obtain a satisfactory thermal stress analysis of

multilayered structures [4–7]. In the case of clas-

sical models, a linear temperature profile is

employed because it is more coherent with the

linear expansion of the in-plane displacement

components and the constant transverse displace-

ment assumption. This linear temperature profile

remains for the quasi-3D solutions in order to

better discuss the main limitations of classical

theories in terms of kinematic assumptions.
Basic Methodology

The shell geometries considered have constant

radii of curvature Ra and Rb as indicated in Fig. 1.

a and b are the shell dimensions, and h is the

thickness value; the curvilinear reference system

is indicated as (a, b, z).
Kirchhoff hypotheses [8] extended to multi-

layered structures give the Classical Lamination

Theory (CLT); when the hypothesis of infinite

transverse shear rigidity is removed (as suggested

in Reissner-Mindlin hypotheses [9, 10]), a First-

Order Shear Deformation Theory (FSDT) is con-

sidered for the laminated structure. Opportune

geometrical relations must be written for the

shell case in order to link the strains with the

displacements, the constitutive equations con-

sider both the mechanical and thermal contribu-

tions of the stress components. Constitutive

equations, geometrical relations, and CLT or

FSDT model must be introduced in the Principle

http://dx.doi.org/10.1007/978-94-007-2739-7_100032
http://dx.doi.org/10.1007/978-94-007-2739-7_100075
http://dx.doi.org/10.1007/978-94-007-2739-7_100075
http://dx.doi.org/10.1007/978-94-007-2739-7_100367
http://dx.doi.org/10.1007/978-94-007-2739-7_100557
http://dx.doi.org/10.1007/978-94-007-2739-7_100573
http://dx.doi.org/10.1007/978-94-007-2739-7_100573
http://dx.doi.org/10.1007/978-94-007-2739-7_100687
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of Virtual Displacements (PVD) in order to

obtain the classical governing equations for the

thermal stress analysis of shells.

Classical Two-Dimensional Models

and Geometrical Relations

First-Order Shear Deformation Theory (FSDT) is

the extension of the Reissner-Mindlin hypotheses

[9, 10] to multilayered structures, such hypothe-

ses are:

• Straight lines that are perpendicular to the

midsurface (i.e., transverse normals) before

deformation remain straight after the

deformation.

• The transverse normals do not experience

elongation (i.e., they are inextensible).

These first two assumptions imply that the

transverse displacement is independent of the

transverse (or thickness) coordinate and the trans-

verse normal strain Ezz is zero. The displacement

model and the temperature approximation in the

case of shell geometry are:
uða; b; zÞ ¼ u0ða; bÞ þ zFaða; bÞ;
vða; b; zÞ ¼ v0ða; bÞ þ zFbða; bÞ;
wða; b; zÞ ¼ w0ða; bÞ;
yða; b; zÞ ¼ y0ða; bÞ þ zy1ða; bÞ ð1Þ

u0, v0, and w0 are the midsurface displacements

in the three directions a, b, and z, respectively.

Fa and Fb are the two additional rotations

typical of the Reissner-Mindlin model. The

sovra-temperature y ¼ T � T0 (temperature T
referred to the reference room temperature T0)

is imposed on the shell structure through

the thickness, and it is given as linear by

means of the mean value y0 ¼ ytþyb
2

and the

slope y1 ¼ yt�yb
h . yt is the sovra-temperature

imposed at the top of the shell, yb is the sovra-
temperature imposed at the bottom of the

shell, and h is the thickness of the structure

considered.

In the case of FSDT model, the geometrical

relations for shells are [11]:
Ekaa ¼
1

Hk
a

@u

@a
þ 1

Hk
aR

k
a
w

¼ 1

Hk
a

@u0
@a

þ z

Hk
a

@Fa

@a
þ 1

Hk
aR

k
a
w0

¼ 1

Hk
a

@u0
@a

þ 1

Hk
aR

k
a
w0

� �
þ z

1

Hk
a

@Fa

@a

� � ð2Þ

Ekbb ¼ 1

Hk
b

@v

@b
þ 1

Hk
bR

k
b

w

¼ 1

Hk
b

@v0
@b

þ z

Hk
b

@Fb

@b
þ 1

Hk
bR

k
b

w0

¼ 1

Hk
b

@v0
@b

þ 1

Hk
bR

k
b

w0

 !

þz
1

Hk
b

@Fb

@b

 ! ð3Þ
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gkab ¼ 1

Hk
b

@u

@b
þ 1

Hk
a

@v

@a

¼ 1

Hk
b

@u0
@b

þ z

Hk
b

@Fa

@b
þ 1

Hk
a

@v0
@a

þ z

Hk
a

@Fb

@a

¼ 1

Hk
b

@u0
@b

þ 1

Hk
a

@v0
@a

 !

þ z
1

Hk
b

@Fa

@b
þ 1

Hk
a

@Fb

@a

! 
ð4Þ

gkbz ¼
1

Hk
b

@w

@b
þ @v

@z
� 1

Hk
bR

k
b

v

¼ 1

Hk
b

@w0

@b
þ Fb � 1

Hk
bR

k
b

v0

 !

� z
1

Hk
bR

k
b

Fb

 !
ð5Þ

gkaz ¼
1

Hk
a

@w

@a
þ @u

@z
� 1

Hk
aR

k
a
u

¼ 1

Hk
a

@w0

@a
þ Fa � 1

Hk
aR

k
a
u0

� �
� z

1

Hk
aR

k
a
Fa

� �
ð6Þ

For shell geometries, even though the dis-

placements are in Equivalent Single Layer form,

the strain components depend by the k layer

because of the curvature.

Classical Lamination Theory (CLT) is the

extension of the Kirchhoff hypotheses [8] to mul-

tilayered structures; a third assumption is added

to the two ones already considered by Reissner

and Mindlin [9, 10]:

• The transverse normals rotate so that they

remain perpendicular to the midsurface after

the deformation.

This third assumption results in zero trans-

verse shear strains gaz ¼ gbz ¼ 0.

In order to obtain the kinematic model for

CLT, we impose gbz ¼ gaz ¼ 0 in (5) and (6).
In this way, we obtain the relations for Fb

and Fa [11]:
Fb ¼ 1

Hk
bR

k
b

v0 � 1

Hk
b

@w0

@b

 !
Hk

bR
k
b

Hk
bR

k
b � z

ð7Þ

Fa ¼ 1

Hk
aR

k
a
u0 � 1

Hk
a

@w0

@a

� �
Hk

aR
k
a

Hk
aR

k
a � z

ð8Þ

In the CLT case, Fb and Fa in (7) and (8) do

not depend on the k layer if we consider the mean

value at the mid-reference surface for the radii of

curvature Rk
a and Rk

b. The meaning of the radii of

curvature Ra and Rb and the parametric coeffi-

cientsHa ¼ ð1þ z=RaÞ andHb ¼ ð1þ z=RbÞ has
been discussed in the section of this encyclopedia

about constitutive and geometrical equations for

the thermomechanical analysis of shells.

By substituting (7) and (8) in (1), we obtain the

kinematic model for CLT in the case of shell

geometry. The sovra-temperature remains line-

arly imposed through the thickness of the shell.

In the same way, it is possible to write the geo-

metrical relations for the CLT case by starting

from the geometrical relations for the FSDT case

((2)–(6)), where gbz ¼ gaz ¼ 0, and (7) and (8)

give the rotations Fb and Fa.

Constitutive Equations

The constitutive equations for the FSDT model

consider both mechanical sm and thermal st con-

tributions for the stress components in each k layer:

s k ¼ s k
m � s k

t ¼ Qk ek � lk yk ð9Þ

The stress and strain component vectors have

5� 1 dimension because the transverse normal

stress szz and strain Ezz are zero as hypothesis in

such a model:
sk ¼

skaa
skbb
skab
skbz
skaz

2666664

3777775; Ek ¼

Ekaa
Ekbb
gkab
gkbz
gkaz

2666664

3777775 ð10Þ
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The sovra-temperature y is a scalar. The

matrix of elastic coefficients has 5� 5 dimen-

sion, and its elastic coefficients are the reduced

ones in order to overcome the Poisson locking

phenomenon typical of classical two-

dimensional models with zero or constant trans-

verse normal strain Ezz [12, 13]:
Qk ¼

Qk
11 Qk

12 Qk
16 0 0

Qk
12 Qk

22 Qk
26 0 0

Qk
16 Qk

26 Qk
66 0 0

0 0 0 Qk
44 Qk

45

0 0 0 Qk
45 Qk

55

266664
377775 ð11Þ

The thermomechanical coupling vector l

has 5� 1 dimension, and it is given as

a product between the elastic coefficient

matrix and the thermal expansion coefficient

vector a:
lk ¼ Qk a k ð12Þ

where
lk ¼

lk1
lk2
lk6
0

0

26666664

37777775; ak ¼

ak1
ak2
0

0

0

26666664

37777775 ð13Þ

In the CLT model, transverse shear stresses

sbz and saz and transverse shear strains gbz and gaz
are zero; therefore, the vectors in (10) and (13)

are reduced to 3� 1 dimension by deleting the

last two lines, and the matrix in (11) has 3� 3

dimension obtained by deleting the last two rows

and columns. The Poisson locking phenomenon

appears, and it is contrasted by means of the

reduced elastic coefficients as obtained in [12]

and [13].

Governing Equations

The Principle of Virtual Displacements (PVD)

written for multilayered shells subjected to ther-

mal and/or mechanical loads reads [1]:
XNl

k¼1

Z
Ok

Z
Ak

d Ek
T ðs k

m � s k
t Þ

n o
dOkdz ¼

XNl

k¼1

dLke

ð14Þ

where Nl indicates the number of layers and

Ok and Ak are the integration domains in in-plane

(a, b) and z directions, respectively. k indicates

the layer and T the transpose of a vector. dLke
is the external work for the kth layer.

The steps to obtain the governing equations

are:

• Substitution of geometrical relations for strain

components

• Substitution of appropriate constitutive equa-

tions for stress components

• Introduction of the kinematic model for the

FSDT or CLT analysis which means two-

dimensional approximation for displacement

vector u and sovra-temperature y.
The general form of governing equations for

a multilayered shell subjected to thermal and

mechanical loadings is:
duT : Kuu u ¼ �Kuy yþ Pu ð15Þ

where (� Kuyy) is the thermal load and Pu is the

external mechanical load. The sovra-temperature

y is always linear assumed through the thickness

(mean value y0 and slope y1); the stiffness

matrix Kuu has dimension 5� 5 and 3� 3 for

the FSDT and CLT cases, respectively. The

matrix Kuy for the thermal load has dimension

5� 2 and 3� 2 for the FSDT and CLT

cases, respectively (yT ¼ ðy0 y1Þ). The FSDT

model has 5� of freedom which means vector

uT ¼ ðu0 v0 w0 Fa FbÞ; the CLT model has 3�

of freedom which means vector uT ¼ ðu0 v0 w0Þ.
In the results proposed in the next section,

governing equations are solved in Navier-type

closed-form solution via substitution of harmonic

expressions for the displacements and tempera-

ture as well as considering materials with

Q16 ¼ Q26 ¼ Q45 ¼ 0 and l6 ¼ 0. The following

harmonic assumptions can be made for the field

variables which correspond to simply supported

boundary conditions for shells:
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u¼
X
m;n

Ûcos
mpa
a

� 
sin

npb
b

� �
v¼
X
m;n

V̂sin
mpa
a

� 
cos

npb
b

� �
ðw;yÞ¼

X
m;n

ðŴ; ŷÞsin mpa
a

� 
sin

npb
b

� � ð16Þ

where Û, V̂, Ŵ, and ŷ are the amplitudes, m and n

are the wave numbers, and a and b are the shell

dimensions.
Some Results

The results proposed in this section consider

a linear assumed temperature profile which

goes from the top value yt ¼ þ0:5K to the bot-

tom value yb ¼ �0:5K (bisinusoidal form in the

plane with wave numbersm ¼ n ¼ 1). This tem-

perature profile could also be calculated, but in

this analysis, we always consider it linear

through the thickness direction in order to better

compare the classical models (CLT and FSDT)

with the quasi-3D ones. The quasi-3D models,

here given, have been proposed in [5] in the

framework of the Carrera Unified Formulation

(CUF); the case of calculated temperature pro-

file will be discussed in dedicated sections of

this encyclopedia.

Two different configurations have been

analyzed for the cylindrical shell geometry

which has dimensions a ¼ 1m and b ¼ p
3
Rb ¼

10:47197551m. The radii of curvature in the a
and b directions are Ra ¼ 1 and Rb ¼ 10m,

respectively. The considered total thickness

values are h ¼ 2:5m; 1:0m; 0:1m; 0:01m, which
mean thickness ratios Rb=h ¼ 4; 10; 100; 1000.

The configuration 1 considers a one-layered iso-

tropic shell in aluminum alloy Al5086 with

Young modulus E ¼ 70:3GPa, Poisson ratio

n ¼ 0:33, and thermal expansion coefficient a ¼
24� 10�6K�1. The configuration 2 is a two-

layered isotropic shell; the bottom layer is in

Al5086 (the same of case 1), while the top layer

is in titanium alloy Ti22 with Young modulus

E ¼ 110GPa, Poisson ratio n ¼ 0:32, and thermal
expansion coefficient a ¼ 8:6� 10�6K�1. The

two considered layers have the same thickness

h=2. The third configuration considers

a cylindrical shell with dimensions a ¼ b ¼ 1m.

The radii of curvature in the a and b directions are

Ra ¼ 1 and Rb ¼ 5m; 10m; 50m. The consid-

ered total thicknesses is h ¼ 0:1m. The ratio

between Young modulus in the longitudinal and

transverse direction is EL=ET ¼ 25. The shear

modulus ratio is GLT=GTT ¼ 2:5, and the Poisson

ratio is nLT ¼ nTT ¼ 0:25. The ratio between the

thermal expansion coefficient in the transverse

and longitudinal direction is aT=aL ¼ 3. The two

layers have the same thickness h=2 with lamina-

tion sequence 0�=90�.
In Table 1, the transverse displacement �w

and the in-plane stress sab are calculated in

the middle of the shell. Different thickness

ratios Rb=h are investigated. For thick shells,

classical theories give an error even if the shell

is isotropic and one-layered made. Such an

error is smaller for thin shells, but it remains.

FSDT and CLT models are very similar for thin

shells because the hypothesis of zero transverse

shear strains is true in this case. For thermal

stress analysis, the importance of the thickness-

stretching effect is important as demonstrated

by the difference between CLT/FSDT models

and reference solutions for each thickness ratio

investigated.

The nondimensional quantities in Table 2 are

normalized with the data of the aluminum alloy

Al5086. Nondimensional transverse displace-

ment �w is considered in z ¼ h=4. For classical
theories, the error remains even if the shell is

very thin (Rb=h ¼ 1000); this happens because

of the high transverse anisotropy due to the dif-

ferent elastic properties of the two layers

embedded.

The displacement in Table 3 is given in the

middle of the shell (z ¼ 0), and it is normal-

ized with the longitudinal thermal expansion

coefficient of the composite material. The

error for the classical theories remains in

Table 3 because in the case of composite

shells both in-plane and transverse anisotropy

are evident (see both thick and thin

geometries).
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pic one-layered shell in aluminum alloy. Nondimensional transverse displacement �w ¼ 10wh
a2aT1

and in-plane stress sab in

z ¼ 0. T1 ¼ 1:0K is the gradient of the linear temperature profile

�w sab
Rb=h 10 100 1000 10 100 1000

CUF [5] 0.9468 1.2007 0.1151 0:3209 � 104 0:1916 � 105 0:1822 � 105
FSDT 1.9818 1.7943 0.1715 0:4086 � 104 0:2846 � 105 0:2712 � 105
CLT 1.9869 1.7985 0.1716 0:4087 � 104 0:2852 � 105 0:2713 � 105

Classical Governing Equations for the Thermome-
chanical Analysis of Shells, Table 2 Configuration 2.

Two-layered isotropic shell in aluminum and titanium

alloys. Nondimensional transverse displacement

�w ¼ 10wh
a2aAlT1

in z ¼ h=4. T1 ¼ 1:0K is the gradient of the

linear temperature profile

Rb=h 4 10 100 1000

CUF [5] 0.4002 0.7472 0.7468 0.0325

FSDT 1.2351 1.2694 1.1054 0:0463

CLT 1.2908 1.2914 1.1096 0:0463

Classical Governing Equations for the Thermome-
chanical Analysis of Shells, Table 3 Configuration 3.

Two-layered carbon fiber-reinforced cylindrical shell

(0�=90�). Nondimensional transverse displacement
�w ¼ w

b2aLT1
in z ¼ 0. T1 ¼ 1:0K is the gradient of the linear

temperature profile

Rb=h 50 100 500

CUF [5] 1.1280 1.1434 1.1477

FSDT 1.1805 1.1959 1.1997

CLT 1.1834 1.1966 1.1997
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Conclusions

The governing equations for the thermo-

mechanical analysis of multilayered shells have

been proposed for classical two-dimensional

models such as the Classical Lamination Theory

(CLT) and the First-Order Shear Deformation

Theory (FSDT). These governing equations are

very simple because they consider 3 degrees of

freedom in the CLT analysis and 5 degrees of

freedom for the FSDT model. However, they

exhibit some limitations which are the assump-

tion of a linear temperature profile coherent with
the models and the simplified kinematic assump-

tions which do not consider the transverse normal

strain (both CLT and FSDT model) and the trans-

verse shear deformation (CLT analysis). Kine-

matic assumption limitations give several

problems in the thermomechanical analysis of

thick and/or in-plane and transverse anisotropic

shells. The use of refined models and calculated

temperature profiles appear mandatory in the

thermal stress analysis of multilayered shells.
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recherche 7190, Universite Pierre et Marie Curie,

Paris, France
Overview

Classical thermodynamics, one of the greatest

scientific achievements of the nineteenth century,

naturally associated with simple energetic pro-

cesses, provides the basis for all further progress

and complexification of a science that bears on all

aspects of evolution of inert and living matter.

Essentially built by pioneers such as Sadi Carnot

(1795–1832), William Thomson (Lord Kelvin;

1824–1907), William Rankine (1820–1872),

Rudolf Clausius (1822–1888), and James Joule

(1818–1889) in a period of steam machine

design, classical thermodynamics deals in

a phenomenological way with the exchanges of

energy in the form of heat and work between

well-delineated systems. The present entry of
a general scope and a discursive style introduces

the relevant main concepts and definitions. In

particular, are discussed the notions of energy,

heat, work, and power and those of thermody-

namic states and processes. The four laws of

thermodynamics are enunciated together with

a brief definition of various thermodynamic pro-

cesses, conjugate state variables, and thermody-

namics potentials. This is but a necessary

prerequisite for the deeper apprehending of the

thermodynamics of continua that includes

thermoelasticity as a very specialized case.
Definition and Main Concepts

“Thermodynamics” is a term that goes back to

James Joules and William Thomson (later Lord

Kelvin) in the late 1850s. In Greek, “thermé”

means “heat” and “dynamis” means “power.” It

was introduced to refer to the transfer of heat and

of work done on or by bodies and radiation. It is

acknowledged as being of universal application,

to both inert and living matter, having for objects

“macroscopic systems” in its “classical” frame-

work [1–6]. In principle, any reference to the

atomic description of matter is left aside. None-

theless, a microscopic interpretation of its basic

concepts was also provided by the considerations

of statistical thermodynamics (not to be consid-

ered here) by James C. Maxwell (1831–1879),

Ludwig Boltzmann (1844–1906), and Josiah W.

Gibbs (1839–1903).

Thus, classical thermodynamics interrelates

macroscopic variables such as temperature, vol-

ume, and pressure, but in a more modern context,

it involves also notions such as chemical reac-

tions, electric current, and strains. Its origins are

marked by a strong interest in the possible

increase of the efficiency of early steam engines.

The French scientist Nicolas Léonard Sadi Car-

not (1796–1832) is considered the “father of ther-

modynamics” with his “Reflections on themotive

power of fire” (1824). He paid special attention to

cyclic non-equilibrium processes although ther-

modynamics is essentially well understood for

systems in so-called thermodynamic equilibrium.

Out of equilibrium systems are much more
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difficult to study while they abound in physics,

chemistry, biology, and engineering science

(see [6–7]).

Thus, thermodynamics deals with the study of

energy transfers that are resolved in two distinct

components, heat and work.

Here, “energy” must be understood as the

capacity of a system to modify a state and to

produce a work resulting in motion, in electro-

magnetic radiation, or in heat. It can be viewed as

an “exchange currency” between physical phe-

nomena. In the MKS (IS) system of units, energy

is measured as a work in joules (one joule¼ force

of one newton acting through one meter).

Heat itself is a transfer of thermal agitation. It

can only flow from hot to cold – see Second law

of thermodynamics. Heat deals with temperature

scale and calorimetry. The scientific temperature

scale is the so-called absolute one, referred to

“degrees K” (or kelvins).

“Work” has a definite mechanical flavor:

work ¼ force � displacement.

Finally, “power” – in the physical sense – is

the capacity of mobilizing energy in a more or

less short (or long) interval of time. Power is

measured in energy per unit of time, usually

watts. In contrast, “action” is energy multiplied

by time.

Thermodynamics uses all these notions.

Carnot’s fruitful fundamental views (1824) are

expressed as a discourse on these notions of

heat, power, energy, and engine efficiency.
Thermodynamic States and Processes

Thermodynamics describes how systems change

when they interact with one another or with their

surroundings. For this, one must be able to define

thermodynamic systems and states and the notion

of surroundings.

• A thermodynamic system is a precisely delin-

eated region of the universe considered as

a macroscopic physical object defined in

terms of its states that can evolve in time.

Macroscopic state variables have been identi-

fied in the course of empirical work. In some

conditions, such variables can be related to
one another through so-called equations of

state (e.g., the celebrated equation of perfect

gases: pV¼ RT, relating pressure p, volume V,

and temperature T, with R a universal physical

constant). Systems can be open (admitting

mass flow, work, and heat exchanges with

the surroundings), closed (no mass flow

allowed across its boundary), or isolated (nei-

ther mass flow nor exchanges by heat or work

with the exterior).

• Thermodynamic processes are the more or less

rapid successions of events a thermodynamic

system can undergo. Cyclic processes were of

paramount importance in the initial develop-

ments of the thermodynamics of engines (e.g.,

in Carnot’s and Rankine’s works).

• The surroundings of a thermodynamic system

are other thermodynamic systems that can

interact with it.

Thermodynamic processes are governed by

a set of four universally acknowledged state-

ments known as the laws of thermodynamics.
Laws of Thermodynamics

• The so-called “zeroth” law of thermodynam-

ics expresses the existence of an equivalence

relation on the set of considered thermody-

namic systems: If two systems are each in

thermal equilibrium with a third, then they
are also in thermal equilibrium with each

other. This is tacitly assumed inmeasurements

of temperature.

• The first law specifies that energy can be

exchanged between physical systems in the

form of heat and thermodynamic work, more

precisely: A change in the internal energy of

a closed thermodynamic system is the differ-

ence between the heat supplied to the system
and the amount of work done by the system on

its surroundings. This is mathematically for-

mulated as the principle of conservation of
energy.

• The second law that deals with entropy

expresses some limitation on the amount of

work that can be delivered to an external sys-

tem by a thermodynamic system. This
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represents what is known as irreversibility. It

is basically expressed as follows: Heat cannot
spontaneously flow from a colder region to

a hotter location. This is the expression of

a universal principle of decay observable in

nature that is mathematically expressed by

a forbidden decrease in entropy. The latter is

a measure of how much this decay process has

progressed. It is measured in work (heat) per

unit of temperature, i.e., in J/K.

• The third law (also known as Nernst heat

theorem: unattainability of absolute zero tem-

perature) is a statistical law of nature that

concerns entropy and the impossibility to

reach the absolute zero of temperature, more

precisely: As a system approaches absolute
zero, all processes cease and the entropy of

the system approaches a minimum value. This

principle provides an absolute reference point

for the determination of entropy.
Special Thermodynamic Processes

These are defined as processes in which one sin-

gle variable is kept constant. Most common

examples are:

• Isobaric process: occurs at constant pressure p
• Isochoric process: occurs at constant volume

V

• Isothermal process: occurs at constant temper-

ature T

• Adiabatic process: occurs without loss or gain

of energy by heat

• Isentropic process: a reversible adiabatic pro-

cess that occurs at constant entropy

• Isolated process: occurs at constant internal

energy U (and constant elementary chemical

composition)

But the entropy of an isolated system which is

not in equilibrium tends to increase over time,

approaching a maximum value at equilibrium.
Conjugate Variables

In agreement with the notion of work, con-

jugate thermodynamic variables are pairs of
thermodynamic variables, with one being akin

to a “force” and the other to a resulting “displace-

ment.” Examples of such pairs are pressure and

volume as mechanical parameters, temperature

and entropy as thermal parameters, and chemical

potential and particle number as material param-

eters. In each pair, one of the quantities is exten-

sive (proportional to the quantity of matter) and

the other intensive (independent of the quantity of
matter). Examples of extensive variables are vol-

ume, number of moles, entropy, electric polari-

zation, and magnetization. The corresponding

conjugate intensive variables are pressure, con-

centration, temperature, electric field, and mag-

netic induction, respectively. Specific volume is

intensive.
Thermodynamic Potentials

They are different quantitative measures of the

stored energy in a system. The most familiar ones

are:

• The internal energy U : function of entropy S,
volume V, and particle number N

• The Helmholtz free energy F ¼ U�TS, func-

tion of temperature T, volume V, and particle

number N

• The enthalpyH¼U + pV, function of entropy,

pressure, and particle number

• The Gibbs free energy G ¼ U + pV–TS ¼ F +

pV ¼ H�TS, function of temperature, pres-

sure, and particle number

The most appropriate potential to be used in

measuring energy changes in systems that evolve

from an initial state to a final one depends on the

constraints imposed on this evolution. Thus, the

Helmholtz free energy is the energy available in

a system to do useful work when the temperature

and volume are kept fixed. Internal energy is

more appropriate to describe systems in adiabatic

evolution, etc.

Various general subfields of thermodynamics

are:

• The thermodynamics of engines/machines

(not the object of the ETS)

• The thermodynamics of discrete systems (not

the object of the ETS)
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• The thermodynamics of continua

In the last case – the thermodynamics of con-
tinua – the “continuity” assumption made in

describing the physical response of many bodies

implies the application of mathematical analysis.

The operational realm of this thermodynamics

thus is provided by partial differential equations
(for short, pde’s). One of its basic formulations

provided in the nineteenth century is

a paradigmatic type of such pde’s known as the

parabolic type illustrated by the heat equation

(with infinite speed of propagation) and the dif-

fusion equation. This belongs in the general the-
ory of fields, where all quantities become more or

less smooth functions of space and time.

Thermoelasticity, the main object of this encyclo-

pedia, is the foremost application of the thermo-

dynamics of deformable continua of the solid

type. It concerns the coupling between heat and

reversible deformation with basic independent

state variables, temperature, and strain. Thermo-

anelasticity is its extension when the material

body is also dissipative from a pure mechanical

viewpoint (e.g., in viscoelasticity, plasticity).

Thermo-electro-elasticity and thermo-magneto-
elasticity in addition consider a possible coupling

with electric properties (e.g., in piezoelectric

materials) or magnetic ones (e.g., in elastic con-

ductors of heat and electricity). For more about

this see Reference [7].

Note that “energetism” – often used in

opposition to atomism – is a view of physics

that sees all phenomena as governed by ther-

modynamic principles and more particularly

the fundamental concept of energy. Foremost

among its propagandists was Pierre Duhem

(1861–1916).
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Overview

There are a significant number of general sci-

ence and engineering applications wherein an

accurate understanding of the multidisciplinary

thermal-structural interactions are of utmost

importance and concern in the design and anal-

ysis stage. The complexity and multidis-

ciplinary nature of these structures

significantly influence the response characteris-

tics and make the combined modeling and anal-

ysis a formidable and challenging task.

Furthermore, for several related applications,

routine experimental and/or ground tests are

highly impractical and difficult or cumbersome

to simulate. As a consequence, there is

a pressing need to effectively formulate accurate

representative models, modeling/analysis strat-

egies, and computational approaches to numer-

ically simulate the combined response for

a variety of situations. The focus here is upon

numerical discretization for the classical

thermomechanical formulations.

http://dx.doi.org/10.1007/978-94-007-2739-7_248
http://dx.doi.org/10.1007/978-94-007-2739-7_248


C 592 Classical Thermomechanical Models: Numerical Formulations
Introduction

Among the various numerical approaches, finite

element methods have been commonly used for

the modeling and analysis of thermal-structural

problems. Historically, it was common to use

finite difference techniques exclusively for the

heat equation by the thermal analysts, whereas

the finite element method was the ideal choice of

structural analysts for the structural problems.

For combined thermal-structural interactions,

one needs to perform an accurate thermal analy-

sis in complex structures subjected to complex

boundary conditions, irregular and complicated

geometries, and the like. As a consequence, the

finite element method has evolved as one of the

more effective general purpose approaches avail-

able for the numerical solution of these classes of

problems because of the inherent advantages of

the method. Furthermore, the finite element

method in conjunction with direct time-

integration procedures is routinely being

employed for solving multidisciplinary thermal-

structural problems in most commercial codes.

Traditionally, the transient governing differ-

ential equations are first discretized in space,

employing the finite element method. This pro-

cedure is known as semidiscretization. The

semidiscretization process reduces the partial

differential equations to a system of ordinary

differential equations in time. These equations

are further integrated in time to obtain the tran-

sient response. The commonly adopted tech-

niques for solving transient problems are direct

time-integration methods and modal superposi-

tion methods. The direct time-integration

methods are the most widely used approaches

for transient analysis. Modal analysis approaches

are preferred mostly for linear situations and

inertial type structural dynamic problems and

have not been popular for nonlinear situations

and for propagation type problems where high

frequencies are involved, thereby, becoming

computationally intensive and unattractive. In

direct time-integration methods, finite difference

approximations are introduced for the time

derivative terms of the semidiscretized equations

for deriving the necessary algorithmic relations.
The basic types of direct time-integration tech-

niques are explicit methods, implicit methods,

and mixed or variable time-integration methods.

Problems encompassing the general field of

thermal-structural interactions may thus be cate-

gorized as follows: (1) thermally induced stress-

wave propagation problems, (2) thermally

induced inertial dynamic problems, and (3) the

field of thermal stresses.
Classical Dynamic Thermoelasticity
Equations

The dynamic thermoelasticity theory based on

the Fourier heat conduction equation is known

as the classical theory of dynamic

thermoelasticity. In the classical theory, the ther-

mal disturbances are assumed to propagate at

infinite speeds through the continuum. Coupling

between the deformation and the temperature

fields was originally postulated by Duhamel [1].

The fundamental relations and the basic equa-

tions of thermoelasticity are given in Biot [2].

Solutions to the problems in dynamic

thermoelasticity have drawn considerable inter-

est, and the first analytic solution to an initial

boundary value problem in dynamic uncoupled

classical thermoelasticity is that presented by

Danilovskaya [3]. This well-known

Danilovskaya’s problem proposed in the 1950s

originally studies an elastic semi-finite medium

subjected to a uniform heating on its boundary

plane, the plane assumed to be always traction

free. The temperature variations in the half-space

were calculated from the classical heat conduc-

tion equation, neglecting thermomechanical cou-

pling. Next, the associated thermally induced

loads were used for predicting the dynamic

response of the medium. These results were

later extended by Danilovskaya [4] to account

for boundary-layer conductance. Sternberg and

Chakravorty [5] further extended the problem to

include a more realistic ramp-type temperature

boundary condition.

The approaches for thermoelasticity problems

involve deriving two sets of finite element formu-

lations, one for the heat conduction and the other
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for the mechanical displacement. The resulting

combined system of finite element matrix equa-

tions is then solved for the temperature and dis-

placement fields.

Classical Dynamic Thermoelasticity Model

Equations

Coupled

rc _yþ To bij _ui;j � ð kijy;jÞ;i ¼ r Q ð1Þ

r€u
i � ðDijkl ekl � bij yÞ

;j
¼ r fi ð2Þ

And To is the reference temperature, and bij is the
thermoelasticity tensor.

Uncoupled

The corresponding uncoupled (one-way coupled)

equations are readily obtained by setting To ¼ 0

in (1). The first equation (1) does not account for

the short time response required for steady-state

heat conduction to be reached when

a temperature gradient is suddenly introduced.

Therefore, the thermal energy transport is

assumed to be transmitted instantaneously to

every other point so that the speed of propagation

is infinite. Such a notion of instantaneous heat

diffusion does yield accurate temperature predic-

tions for most commonly encountered practical

engineering situations.

Quasi-Static Representations

The quasi-static (neglecting dynamic aspects in

the structure) representations commonly

employed for thermomechanical applications

can be cast in the form

Coupled

rc _yþ To bij _ui;j � ðkijyjÞ;i ¼ r Q ð3Þ

� ðDijkl ekl � bij yÞ;j ¼ r fi ð4Þ

where there is a two-way coupling.

Uncoupled

The corresponding uncoupled equations are

obtained by setting To ¼ 0 in (3).
Static Representations

The representative steady thermal and static

equations of equilibrium can be cast in the form

Coupled

Tobij _ui;j � ðkijy;jÞ;i ¼ rQ ð5Þ

� ðDijkl ekl � bij yÞ;j ¼ r fi ð6Þ
Uncoupled

Setting To ¼ 0 in (5) results in a one-way cou-

pling between the thermal and mechanical

models.

Boundary and Initial Conditions

Typical thermal boundary and initial conditions

that may exist for a given domain R bounded by

a closed surface @R ¼ @Rp [ @Rq are given as

Thermal

y ¼ yp on @Rp ð7Þ

qi ni ¼ �qS þ hðy� yhÞ þ sT eT ðy4

� y4r Þ on @Rq ð8aÞ

or,
qi ni þ qS � qh � qr ¼ 0 on @Rq ð8bÞ

and the initial condition is given as
yðx; oÞ ¼ y0 in R ð9Þ
The first boundary condition (7) is the pre-

scribed temperature condition on @Rp. The sec-

ond boundary condition (8) is the flux condition

on @Rq. The terms qs, qh, and qr represent the

surface heating rate per unit area, the rate of heat

flow per unit area due to convection, and the rate

of heat flow per unit area due to radiation, respec-

tively. h is the convective heat transfer coeffi-

cient, yh is the convection medium temperature,

sT is the Stefan-Boltzman constant, eT is the

surface emissivity, and yr is the radiation medium

temperature.
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Mechanical

Typical mechanical boundary and initial condi-

tions are given as
ui ¼ gi on @Rp ð10Þ

sij nj ¼ hi on @Rq ð11Þ

and the following initial conditions:
ui ðt ¼ 0Þ ¼ u0i in R ð12aÞ

_ui ðt ¼ 0Þ ¼ _u0i ð12bÞ

The first boundary condition is the prescribed

displacement on ∂Rp, and the second boundary

condition is the traction condition on ∂Rq.

The general representation is the classical

fully coupled dynamic thermoelasticity model

equations. A two-way coupled or fully coupled

problem implies that the temperature field

influences the displacement field and vice

versa. A one-way coupled problem implies

that only the temperature changes influence

the displacement field. A one-way coupled

problem with a transient thermal field and

a static structural field leads to a quasi-static

analysis. For static analysis, the transient terms

in both the thermal and the structural fields are

neglected.
Finite Element Discretization

Solutions of coupled/uncoupled thermomechanical

problems (both dynamic and static), particularly

those that admit closed-form analytical solutions

are limited. Hence, numerical methods of approach

seem to be a viable alternative. Nevertheless, both

the multidisciplinary nature of the thermome-

chanical interactions and the geometric complexity

of the structural components pose significant chal-

lenges for the combined modeling and analysis of

these classes of problems which can be broadly

categorized as (1) thermally induced wave propa-

gation type, (2) thermally induced inertial dynamic

type, and (3) the remaining class of quasi-static and

static thermal stress problems.
Of the various numerical methods available for

the modeling/analysis of thermal, mechanical, and

multidisciplinary thermomechanical interactions,

finite differences, finite volume-based techniques,

finite element methods, and boundary element

methods have been previously employed and

have no doubt matured over the years to improved

levels. The choice of the particular method has

been a matter of some debate, although the selec-

tion of the finite element method seems to be quite

popular. Here, for purposes of illustration, attention

is confined to employing the finite element method

for each of the individual disciplines and for the

combined analysis of thermomechanical interac-

tions in engineering problems.

Let the solution domain R be enclosed by

a boundary surface @R ¼ @Rp [ @Rq where

@Rp and @Rp are nonoverlapping subregions of

@R. For the thermal model, the boundary surface

@R consists of prescribed temperature conditions

on @Rp and flux boundary conditions on @Rq as

given in an earlier section. For the structural

model, the boundary surface @R consists of pre-

scribed displacements on @Rp and traction con-

ditions on @Rq also given in an earlier section.

Based on the particular class of problems, the

initial conditions are also given quantities for

both the thermal and the mechanical models,

respectively.

Within each element Re contained in R, the

element variables are approximated following
ye ¼ Ny y ð13aÞ

ue ¼ Nm u ð13bÞ

where Ny and Nm are the element interpolation

functions for the temperature and the displace-

ment fields in the thermal and mechanical

models, respectively, and u are the nodal values

of the temperature field, and u are the nodal

values of the displacement field, respectively.

Introducing the discrete approximations

(13) into the general form of the governing model

equations and employing the relevant constitutive

relations such as the flux-temperature relations for

the thermal model and the strain-displacement

relations for the mechanical model, respectively,
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and following the standard weak formulation asso-

ciated with the initial boundary value problem,

yield (boundary effects are purposely not included,

and the following notations for the superscripts are

used: m ¼ mechanical, y ¼ thermal):

Classical Models

Semidiscretized Equations

Cyy _uþ Cym _uþKyy u ¼ FyðtÞ ð14aÞ

Mmm €uþKmm uþKmy u ¼ FmðtÞ ð14bÞ

where

Mmm ¼ R�
Rc

rNm
aN

m
b dR

Cyy ¼ R
Re

rcNy
aN

y
bdR

Cym ¼ R
Re

TobijN
m
a;jN

y
a dR

Kyy ¼ R
Re

kijN
y
a;iN

y
b; j dR

Kmm ¼ R
Re

DijklN
m
a;iN

y
b;j dR

Kmy ¼ R
Re

ð�ÞbijNm
aN

y
b;i dR

Fy ¼ R �
Rc
r QNy

adR

Fm ¼ R
Rc

rfi Nm
a dR

For the classical models, the resulting equa-

tions are, in general, symbolically represented as
Cy vþKy d ¼ FyðtÞ ð15aÞ

Mm aþ Cm vþKm d ¼ FmðtÞ ð15bÞ

where the thermal model is a parabolic first-order

ordinary differential equation in time with the

need for one initial condition on the temperature

field, while the corresponding mechanical model

is a hyperbolic second-order ordinary differential

equation in time with the need for two initial

conditions, namely, one for displacement field

and one for the velocity field. In (15a), Cy is

associated with thermal capacitance,Ky is associ-

ated with thermal conductance, and Fy is associ-

ated with heat load vectors, respectively. The

vector v ¼ _u and vector d ¼ u represent the
first-order time derivative of the temperature field

and the temperature field, respectively. In (15b),

Mm is associated with the mass matrix, Cm is

associated with the damping matrix, Km is associ-

ated with the structural stiffness, and Fm is associ-

ated with the load vector, respectively. Note that a

is the acceleration vector, v is the velocity vector,

and d is the displacement field vector, respectively.

Quasi-Static Representations

In the absence of inertial dynamic terms in the

mechanical model, the resulting quasi-static

semidiscretized representations are obtained as
Cyy _uþ Cym _uþKyy u ¼ FyðtÞ ð16aÞ

Kmm uþKmy u ¼ FmðtÞ ð16bÞ
Static Representations

In the absence of the transient/dynamic inertial

terms in the thermal and mechanical models,

respectively, the resulting static or steady

thermomechanical semidiscretized representa-

tions are obtained as

Cym _uþKyy u ¼ FyðtÞ ð17aÞ

Kmm uþKmy u ¼ FmðtÞ ð17bÞ

Much of the research appearing in the litera-

ture relevant to thermomechanical problems

focuses emphasis on the classical approach to

the thermoelasticity equations. The assumptions

involved here are indeed adequately representa-

tive and quite accurate for most of the practical

situations encountered in common engineering

practice. On the other hand, for certain other

classes of problems, such as those applications
involving very short transient durations, sudden

high heat flux situations, and/or for very low

temperatures near absolute zero, the notion to
adopt the nonclassical models has been cited in

literature as being relevant and important.

Computational Aspects in

Thermomechanical Problems

In this section, first an overview of computational

algorithms and approaches for transient/dynamic
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and steady/static thermomechanical problems is

presented. Following this, solution strategies and

computational approaches are illustrated and

briefly described. Finally, a needs assessment is

briefly identified based on a review of the litera-

ture and personal experiences gained by the

author in working over the years in multidis-

ciplinary flow/thermal-structural problems.

Overview: Computational Algorithms

Various computational algorithms and solution

techniques for parabolic and hyperbolic-parabolic

systems of equations have also no doubt matured

over the years. These in conjunction with effective

modeling and analysis approaches and equation

solvers serve a very important role in the analysis

of thermal-structural problems. There exist many

numerical approximation methods which have

been introduced for the time discretization and the

solution of these classes of problems. These include

finite difference approximations for the time deriv-

atives which lead to the so-called direct time-

integration one-step and multistep methods [6–9,

16, 17], hybrid transfinite element formulations

which employ transform methods in conjunction

with standard Galerkin procedures and finite ele-

ments and then numerically invert the resulting

representations to obtain the solutions at desired

times of interest [10–13], finite element formula-

tions in space and time [7, 8, 14], and the like. Of

the various computational algorithms available in

literature for dynamic/transient problems, direct

time-integration approaches have been consistently

popular and most common in production codes.

Direct time-integration methods for transient

thermal, structural dynamic, and combined

dynamic thermal-structural problems have long

been a subject matter of widespread research

activity. To date, much progress has been made

in the development and understanding of the

direct time-integration methods. This includes

the development of efficient algorithmic repre-

sentations, investigations encompassing accu-

racy and stability properties, formulations of

variable and mixed time-integration approaches,

adaptive time stepping approaches, effective

solution methods, implementation aspects, and

the like.
Computational Algorithms: First-Order Systems

Focusing attention on the classical form of the

transient parabolic thermal problems (diffusive),

the first step involves the semidiscretization pro-

cess on the form of the parabolic heat conduction

equation. This semidiscretization process leads to

a system of simultaneous ordinary differential

equations, which can be represented in matrix

form as
C ðy; tÞ _uþK ðy; tÞ u ¼ Q ðy; tÞ ð18Þ

C; K;2 RNEQ x RNEQ; _u; u and Q 2 RNEQ

where C is the capacitance matrix, K is the ther-

mal conductance matrix, andQ is a vector of heat

loads. The specific heat and density may be tem-

perature dependent and affect the solution

through the capacitance matrix. The thermal con-

ductivity and the convection coefficient may be

temperature dependent and affect the solution

through the conduction and convection matrices,

contained in K, respectively. Radiation heat

transfer is inherently nonlinear and affects the

solution through K and the incident heat load

vector in Q. Also, internal heat generation, sur-

face convection, and surface heating rates may be

temperature dependent and affect the solution

through the heat load vectors contained in Q. u

is the global nodal temperature field. The initial

conditions are given as uðt ¼ 0Þ ¼ uo.
The semidiscretized matrix representations

described above usually involve integrals over

the element domain and surface. Further, these

matrices are customarily evaluated using numer-

ical integration. For nonlinear situations, these

element matrices are evaluated repeatedly to

account for proper updating of material

thermophysical parameters besides the issues

involving the radiation matrix. Since the system

of equations (18) does not readily permit closed-

form analytical solutions, numerical time-

integration schemes are mostly adopted.

Following the semidiscretization process, the

next step is the time discretization. The solution is

typically marched out in time at each time step

Dt, starting from the initial conditions until the

total duration of the transient response is reached.



Classical Thermomechanical Models: Numerical Formulations 597 C
Typical well-known and commonly advocated

time-integration approaches for transient heat

transfer analysis include the one-step generalized

a-family of methods [7, 8, 16, 17]). The general-

ized trapezoidal a-family of methods are typi-

cally represented as

C

C _unþ1 þ Kunþ1 ¼ Qnþ1 ð19aÞ

unþ1 ¼ un þ Dt _unþa ð19bÞ

_u
nþa ¼ ð1� aÞ _un þ a _u

nþ1 ð19cÞ

where Dt is the time step. The parameter

a a 2 ½0; 1�ð Þ controls the stability and accuracy

of the schemes.

The initial value problem consists of finding

the temperature field u ¼ u ðtÞ satisfying (19) and
the initial conditions u ðt ¼ 0Þ ¼ uo.

The commonly advocated a�family of time-

integration methods are the explicit (a ¼ 0)

and the implicit (a ¼ 1/2) schemes. For a ¼ 0,

the method is the explicit (or Euler forward),

which is first-order accurate and is condition-

ally stable. For a ¼ 1/2, the method is the

implicit (or Crank-Nicolson [15]), which is sec-

ond-order accurate and is unconditionally sta-

ble. For a ¼ 2/3, the method is implicit (or

Galerkin method) and is first-order accurate

and unconditionally stable. For a ¼ 1, the

method is the implicit (or Euler backward),

which is first-order accurate and uncondition-

ally stable.

Computational Algorithms: Second-Order

Systems

The governing equations for the dynamic

thermoelasticity models and the dynamics of

structures are hyperbolic in nature.

The semidiscretized dynamical equations are

typically represented in matrix form as
My=m aþ Cy=m vþKy=m d ¼ Fy=m ð20Þ

where My/m is associated with the mass matrix,

Cy/m is associated with the damping, and Ky/m is

associated with the stiffness matrix. The vectors
d, v, and a are the displacement, velocity, and

acceleration vectors, respectively. Fy/m is the

load vector. In (20), My/m is positive-definite

and symmetric, and Cy/m and Ky/m are positive

semi-definite and symmetric.

The initial value problem consists of finding

the vector d ¼ d(t) satisfying (20) and the fol-

lowing initial conditions:
d ¼ d0 ð21aÞ

v ¼ v0 ð21bÞ

For dynamical situations, numerous direct

time-integration approaches exist for the analyses

of this class of problems. Explicit, implicit,

mixed explicit-implicit, and variable time-

integration approaches have been employed for

a variety of situations in dynamical thermal-

structural problems. The direct time-integration

approaches rely on deriving recursion formulas

that relate the values of d, v, and a at one instant

of time, n, to the values of these quantities at

a later time, n + 1. These recursion relations

make it possible for the solution to be marched

out in time, starting with the initial conditions at

t ¼ tn and continuing until the desired duration of

time.

The evaluation of direct time-integration

methods and the current state of the art appears

in Tamma et al. [7, 8, 16, 17]. As a general

guideline, thermal stress-wave or mechanical

stress-wave propagation problems are solved

using explicit time-integration methods, while

implicit methods are employed for the remain-

der class of inertial problems. This is because in

the former, the small time steps ensure accurate

tracking of the induced stress-wave fronts,

while for the latter, such a restriction is not as

severe.

Attention is next purposely focused on two of

the approaches that have been employed for

dynamic thermoelasticity problems involving

the classical and the nonclassical models. The

widely used Newmark-b family of direct

integration methods and the generalized gs-
family of representations for solving the dynamic

equations are detailed next ([7, 8]; [16, 17]).
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Newmark Family of Methods

M anþ1 þ C vnþ1 þK dnþ1 ¼ Fnþ1 ð22aÞ

dnþ1 ¼ dn þ Dt vn þ Dt2

2

� ð1� 2bÞan þ 2banþ1

 � ð22bÞ

vnþ1 ¼ vn þ Dt ð1� gÞ an þ g anþ1

 � ð22cÞ

where dn+1 in (22b) and vn+1 in (22c) are the

finite difference approximations for the displace-

ment d(tn) and velocity v(tn) in terms of the

acceleration at the (n + 1) time level. The param-

eters b and g determine the stability and accuracy

of the algorithm. The values b ¼ 0 and g ¼ 1/2

lead to an explicit scheme (central difference)

which is conditionally stable, second-order accu-

rate, and one of the most widely advocated

explicit methods. The values of b ¼ 1/4 and

g ¼ 1/2 lead to the original Newmark or trape-

zoidal method which is implicit, unconditionally

stable, and second-order time accurate.

gs-Family of Direct Self-Starting Methods

Mþ Dtg1Cþ Dt2g1 g2K

 �

vnþ1

¼ M� Dtð1� g1ÞC� Dt2g1ð1� g2ÞK

 �

vn

� DtKdn þ Dtð1� g1ÞFn þ Dtg1F
nþ1

ð23aÞ

dnþ1 ¼ dn þ Dt g3v
nþ1 þ ð1� g3Þvn


 � ð23bÞ

where vn+1, dn+1 are the current computed veloc-

ity and displacement fields and vn, dn are the

values known from the previous time step or the

initial conditions.

For given initial conditions vn, dn, the gs-
family of representations shown in (23a) directly

yields the representative velocities at the current

time level n + 1. Next, these velocities are

substituted in (23b) to directly obtain the dis-

placement field at time level n + 1. The evalua-

tion of the accelerations is not involved in the

computational process. The parameters for gs,
s ¼ 1,2,3 govern the stability and accuracy of

the family of representations. For 0  x  1 and
g1 ¼ 1/2 and g3 ¼ 1/2, and g2 ¼ 0, the scheme is

explicit, conditionally stable, and second-order

accurate. For 0  x  1 and g1 ¼ 1/2, g2 ¼ 1/2,

and g3 ¼ 1/2, the scheme is implicit, uncondition-

ally stable, and second-order accurate. x 6¼ 0

implies those cases where physical damping is

present in the problem.

More Recent and Current State-of-the-Art

Methods

Other relevant, and more recent state-of-the-art

approaches which have been successfully

employed to a class of transient/dynamic situa-

tions are highlighted in Tamma et al. (see, Refs.

[7, 8, 16, 17]).
Concluding Remarks

The objective here was to briefly provide an

overview of classical dynamic thermoelasticity

models and subsequently describe computational

methods for the modeling/analysis of various

classes of problems encompassing thermal-

structural interactions. The developments shed

light on the computational aspects as related to

multidisciplinary thermal-structural interactions.
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Overview

The “fusion” of both the fields of heat conduction

in solids and continuum elasticity results in

the so-called field of dynamic thermoelasticity.

Typical in the aforementioned class of multidis-

ciplinary problems are those associated with
thermal-structural interactions (or thermo-

elasticity problems). Thermoelasticity represents

a generalization of both the heat conduction and

the elasticity theories. The theory based on the

Fourier’s law of heat conduction is known as the

classical theory of thermoelasticity. In the classi-

cal theory, the thermal disturbances are assumed

to propagate at infinite speeds. This results in

a parabolic (diffusive) type of thermal response.

The focus is upon classical thermomechanical

formulations and the consequent theoretical for-

mulations for linear thermoelasticity.
Introduction

Customarily, the modeling/analysis of thermally

induced deformations and stresses (the general

field of thermal stresses) neglects the effects of

the mechanical coupling term in the heat conduc-

tion equation [1] and the inertia terms in the elas-

ticity equations. The resulting deformations and

stress fields are evaluated from known transient

temperature fields as a series of quasi-static thermal

stress analysis. While the mechanical coupling

term may play a significant role in the case of

inelastic solids at elevated temperature environ-

ments, inertia effects, however, may become

important and need to be accounted for those gen-

eral situations which experience sudden rapid

heating or thermal shock [2]. The class of problems

with the temperature field dependent upon the

deformation field and vice versa are often referred

to as coupled problems, while if the temperature

field is independent of the deformation field, an

uncoupled problem results. One may encounter

(1) thermally induced stress-wave propagation

problems, (2) thermally induced inertial dynamic

problems, and (3) the field of thermal stresses.

The general class of coupled/uncoupled prob-

lems in interdisciplinary thermal-structural

mechanics falls in the realm of “thermoelasticity”

or “dynamic thermoelasticity.” In the develop-

ment of the governing equations relevant to the

aforementioned categories, the formulations

emanate starting from the principles of contin-

uum mechanics. The conservation of mass, the

conservation of momentum, and the conservation
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of energy for a continuum are first described in

the sections to follow for the classical models

relevant to dynamic thermoelasticity.

A thermoelastic model can be defined as one

in which a coupled exchange of mechanical

energy and thermal energy takes place under

the action of an external thermomechanical

load. The field of thermoelasticity represents

a generalization of both the theory of elasticity

and the theory of heat conduction. The focus here

is upon thermoelasticity theory influenced by

classical heat conduction effects. The objectives

here are to overview and briefly present the basic

equations of classical dynamic thermoelasticity

theories and illustrate their effects on thermal-

structural problems rather than make any

attempts to improve upon the various theories

[3, 4]. Hence, the basic equations of the

thermoelasticity theories are briefly discussed,

and pertinent references are cited during the dis-

cussions that follow.
Preliminaries

A continuum occupying a volume Vo in the

reference configuration occupies a volume

V in the current configuration. Let Xi be the

coordinates of the continuum particles in the

reference configuration at time t ¼ 0 which are

often called as the “material coordinates,”

while xi be the coordinates in the current con-

figuration at time t which are often called as the

“spatial coordinates.” Ii and ei are the unit nor-

mal vectors in the reference and the current

configurations, and Po, P are the position vec-

tors of a typical particle of the continuum in the

reference and the current configuration. The

two basic approaches generally followed in

the derivation of governing equations for flow

and motion are the Lagrangian and the Eulerian

approach. The motion of the continuum may be

expressed either in terms of the material coor-

dinates (Lagrangian approach) as given by (1)

or in terms of the spatial coordinates (Eulerian

approach) as given by (2). Physically, the

Lagrangian approach focuses attention on spe-

cific particles of the continuum, whereas the
Eulerian description concerns itself with

a particular region of the space occupied by

the continuum.

In the Lagrangian approach, the mass of the

selected particles remains constant, while the

volume occupied by these particles is assumed

to change with time. Hence, the spatial coordi-

nates can be expressed as a function of the mate-

rial coordinates as
xi ðX1;X2;X3; tÞ ¼ xi ð�X; tÞ ð1Þ

Alternately, in the Eulerian approach, the

volume (termed as the control volume) occu-

pied by the particles within the continuum is

fixed, and the different particles are assumed to

occupy the same control volume at different

times. Hence, the material coordinates can be

expressed in terms of the spatial coordinates on

the basis of the Eulerian approach as given by

(2) which essentially is the inverse relationship

of (1):
Xi ðx1; x2; x3; tÞ ¼ Xi ðx; tÞ ð2Þ

The two coordinate systems, namely, the

coordinate systems representing the reference

and the current configuration, can be super-

posed leading to the vector b ¼ 0. The map-

ping of spatial coordinates xi and the material

coordinates Xi is assumed as one-to-one with

continuous partial derivatives which leads to

the following relationship given by (3) where

J is called as the Jacobian of the

transformation:
dxi ¼ J dXj ð3Þ

where
J ¼ dxi

dXj

���� ���� ð4Þ

We focus attention here to the Lagrangian

description of motion. The basic equations of

dynamic thermoelasticity, namely, continuity,

equations of motion, and energy, are briefly

described in the sections to follow.
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Conservation of Mass

In this section, the continuity equation for

a single-phase continuum is derived.

The mass M occupying a region V bounded by

surface d at time t can be expressed as
C

M ¼

ð
V

r dV ð5Þ

where r ¼ r(x, y, z, t) is the mass density of the

continuum field and dV denotes the element of V.

The rate of change of mass with respect to time is

given as
DM

Dt
¼ D

Dt

ð
V

r dV ð6aÞ

where D/Dt is the total (material) time

derivative.

From the principle of conservation of mass,

the mass of a given body during motion and

possible deformations remains unchanged [5].

Therefore,
DM

Dt
¼ D

Dt

ð
V

r dV ¼ 0 ð6bÞ

The material derivative of the volume integral

in (6b) can be expressed [5] as
ð
V

@r
@t

þ ðrviÞ;i
� �

dV ¼ 0 ð7Þ

where vi is the velocity component and comma

(,i) denotes partial differentiation with respect to

the spatial variables. Since the above equation

holds for any arbitrary volume V, the integrand

must vanish or
@r
@t

þ ðrviÞ;i ¼ 0 ð8Þ

The above equation is called the continuity

equation, which represents the conservation of
the mass of the continuum. The above equation

can be modified for the case of a continuum

with reference density r0 different from the

current density r. The resulting expression is

given [6] as
r0
r

¼ 1þ vi;i ð9Þ
Conservation of Linear Momentum

The equations of motion based on the principle of

conservation of linear momentum are discussed

next. This principle states that the time rate of

change of the total momentum of a given body

equals the vector sum of all the external forces

acting on the body, provided Newton’s third law

of action and reaction, governs the internal

forces.

The total momentum over the volume is

given by
ð
V

r vi dV ð10Þ

where vi is the velocity, and the time rate of

momentum is
D

Dt

ð
V

r vi dV ð11Þ

and D
Dt

denotes the total (material) time

derivative.

Using the Reynolds transport theorem [7], the

material derivative of the volume integral given

by (11) can be expressed as
D

Dt

ð
V

r vi dV ¼
ð
V

@rvi
@t

þ ðrvi vjÞ;j
� �

dV ð12Þ

¼
ð
V

vi
@r
@t

þ @rvj
@xj

� �
þ r

@vi
@t

þ vj
@vi
@xj

� �
dV

� �
ð13Þ
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The first term in the parentheses (13) vanishes

by the principle of conservation of mass, and the

second term in the parentheses is equal to the

acceleration _vi. The time rate of momentum

(11) stated earlier can now be expressed as
D

Dt

ð
V

rvi dV ¼
ð
V

r _vi dV ð14Þ

where superposed dot (.) is used to denote the

material time derivative. The momentum princi-

ple now can be expressed as
ð
V

r _vi dV ¼
ð
V

rfi dVþ
ð
S

TidS ð15Þ

where rfi is the body force and Ti is the surface

traction and is expressed in terms of the stress

tensor sijðsij ¼ sjiÞ and the unit normal nj as

sij nj. Transforming the surface integral in (15)

to a volume integral by the Gauss’ theorem, we

have
 ð
V

r _vi dV ¼
ð
V

rfi dVþ
ð
V

sij;j dV ð16Þ

The above relationship holds good for all

volumes V. This implies that the integrand of

(16) must vanish. Thus, the equations of motion

of a continuum are
r _vi ¼ rfi þ sij;j ð17Þ
Conservation of Energy

The time rate of change of the kinetic energy

added to the rate of change of internal energy is

equal to the sum of the rate of work which is done

on the body due to body forces rfi and surface

tractions Ti, plus the heat produced by internal

heat generation and the rate of heat input per unit

time.

For a heat-conducting elastic body, the con-

servation principle (first law of thermodynamics)

takes the form [5]
D

Dt

ð
V

rc dVþ D

Dt

ð
V

1

2
rvivi dV ¼

ð
V

rfivi dV

þ
ð
S

Tivi dSþ
ð
V

rQ dV�
ð
S

qini dS

ð18Þ
where c is the internal energy, r is the mass

density, fi is the body force per unit mass, vi
is the velocity of the particles of the body, Ti (¼
sijnj and where sij ¼ sji) is the external surface

traction, qi is the heat flux, Q is the heat produced

by the internal heat sources per unit time and unit

mass, and ni is the exterior normal at the surface.

Following the development leading to (14),

the first term in (18) can be written as
D

Dt

ð
V

rc dV ¼
ð
V

r _c dV ð19Þ

upon using local mass conservation. Proceeding

similarly, we have the second term in the (18) as
D

Dt

ð
V

1

2
r vivi dV ¼

ð
V

r vi _vidV ð20Þ

Converting the surface integrals to volume

integrals, the resulting expressions (18) can be

represented as
ð
V

ðr _c� sijvi;j þ qi;i � rQÞ
�
þ viðr _vi � sij;j � r fiÞ

�
dv¼ 0 ð21Þ

Further, employing the equations of motion (17)

and taking advantage of the symmetry of the stress

tensor, the energy equation (21) takes the form
ð
V

ðr _c� sij _eij þ qi;i � rQÞdv ¼ 0 ð22Þ

or
rð _c� QÞ ¼ sij _eij � qi;i ð23Þ
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where
C

eij ¼ 1

2
ðui;j þ uj;iÞ ð24Þ

The continuity equation, the equation of motion,

and the energy equation are subsequently com-

bined with the relevant form of the Fourier’s

model of heat conduction and the second law of

thermodynamics for formulating the linear

thermoelasticity equations.
Classical Dynamic Thermoelasticity
Equations

The dynamic thermoelasticity theory based on

the Fourier heat conduction equation is known

as the classical theory of dynamic

thermoelasticity. In the classical theory, the

thermal disturbances are assumed to propagate

at infinite speeds through the continuum. Cou-

pling between the deformation and the temper-

ature fields was originally postulated by

Duhamel [8]. The fundamental relations and

the basic equations of thermoelasticity are

given in Biot [1]. Solutions to the problems in

dynamic thermoelasticity have drawn consider-

able interest, and the first analytic solution to an

initial boundary value problem in dynamic

uncoupled classical thermoelasticity is that

presented by Danilovskaya [9]. This well-

known Danilovskaya’s problem proposed in

the 1950s originally studies an elastic semi-

finite medium subjected to a uniform heating

on its boundary plane, the plane assumed to be

always traction-free. The temperature variations

in the half-space were calculated from the clas-

sical heat conduction equation, neglecting

thermomechanical coupling. Next, the associ-

ated thermally induced loads were used for

predicting the dynamic response of the medium.

These results were later extended by

Danilovskaya [10] to account for boundary-

layer conductance. Sternberg and Chakravorty

[11] further extended the problem to include

a more realistic ramp-type temperature bound-

ary condition.
The linear thermoelasticity theory is based on

the following fundamental equations:

Conservation of Mass (Ref. [6])

r0
r

¼ 1þ vi;i ð25Þ

Conservation of Momentum (Ref. [5])

sji;j þ r fi ¼ r _vi ð26Þ
where
sji ¼ sij ð27Þ

Energy Equation (Ref. [5])
rð _c� QÞ ¼ sij _eij � qi;i ð28Þ

Fourier’s Law of Heat Conduction (Ref. [5])

The classical Fourier’s law, on which the theory

of heat conduction is based, relates the heat flux

vector qi to the temperature gradient y,j through
the equation
qi ¼ �kij y;j ð29Þ

where the thermal conductivity kij must be posi-

tive to assume a positive rate of entropy produc-

tion and

r ¼ mass density in current configuration

r0 ¼ mass density in reference configuration

sij ¼ stress tensor (Cauchy)

eij ¼ linear strain tensor ¼ 1
2
ðui;j þ uj;iÞ

ui ¼ displacement vector

vi ¼ velocity vector

fi ¼ body force vector

qi ¼ heat flux vector

c ¼ internal energy

Q ¼ heat source

kij ¼ thermal conductivity tensor (kij ¼ kji)

y ¼ temperature (T–T0)

T ¼ absolute temperature

T0 ¼ initial uniform temperature (assumed to be

positive)

Equations (25–29) are supplemented by the

second law of thermodynamics, which demands

positive production of entropy in the form of the

Clausius-Duhem inequality [7]. Relevant details
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are described elsewhere. Considering a function

f known as the free energy (or Helmholtz’s

function), which is a combination of the

internal energy, temperature, and entropy. The

Helmholtz’s function is represented [12] as
f ¼ c� TZ ð30Þ

or

_f ¼ _c� T _Z� Z _T ð31Þ

where c, Z, and T are functions of the state,

finally leading to the following to be concluded:
qi T;i  0 and qi;i þ rðT _Z� QÞ ¼ 0
Linear Thermoelasticity Approximations

The fundamental assumptions of the theory of

linear thermoelasticity are [7] that the field

variables are infinitesimally small and that

the free energy is a differentiable function of

only the instantaneous strain and absolute

temperature.

Let y (¼ T –T0) as the increment of the abso-

lute temperature T over the reference tempera-

ture T0. The reference temperature is assumed to

be uniform throughout the body. The associated

mechanical state of zero strain and zero stress is

known as the natural or unstressed state. For

linear thermoelasticity, it is assumed that the

increment of the temperature compared with

the reference temperature is small (Ref. [6]),

that is,
jyj
T0

<< 1 ð32Þ

For the constitutive relations, consider the free

energy per unit volume j (also known as the

thermoelastic potential) which is given [6] as
j ¼ rf ðeij;TÞ ð33Þ

Expanding the function j in a power series in

terms of its arguments eij and T (¼ y þ T0), and
ignoring in the series all terms of order higher

than the second (a term linear in y is disregarded

since it does not appear in the equations of

interest), the resulting expression [6] is
j ¼ rf ¼ j0 þ dij eij þ 1

2
Dijkl eij ekl

� bij eij y�
1

2

rc
T0

� �
y2

ð34Þ

where j0 is the energy in the initial state. The

coefficient Dijkl is the elasticity tensor, bij is the
thermoelasticity tensor, and c is the specific heat

per unit mass in the isothermal state.

In the natural state of the body, its free energy

vanishes, then j0 ¼ 0 and dij ¼ 0 (since sij, eij
and y vanish simultaneously). Thus, (Ref. [6]) we

have
j ¼ 1

2
Dijkl eij ekl � bij eij y�

1

2

rc
y0

� �
y2 ð35Þ

From the above considerations, we obtain the

following Duhamel-Neuman relations and

entropy density function as (Ref. [6])
sij ¼ Dijkl ekl � bij y ð36Þ

rZ ¼ bij eij þ
rc
T0

y ð37Þ

The stress and strain tensors are symmetric.

Substituting for qi, Z, and sij in a linearized

form, we obtain the linear coupled dynamic

thermoelasticity equations based on the classical

theory [6] as follows:

Classical Dynamic Thermoelasticity Equations

The coupled equations are given as
rc _yþ To bij _ui;j � ðkij y;jÞ;i ¼ r Q ð38Þ

r€ui � ðDijkl ekl � bij yÞ;j ¼ r fi ð39Þ

where To is the reference temperature and bij is
the thermoelasticity tensor.
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Quasi-Static Representations

The coupled quasi-static (neglecting dynamic

aspects in the structure) representations com-

monly employed for thermomechanical applica-

tions can be cast in the form
C

rc _yþ To bij _ui;j � ðkij y;jÞ;i ¼ r Q ð40Þ

� ðDijkl ekl � bij yÞ;j ¼ r fi ð41Þ
Static Representations

The coupled representative steady thermal and

static equations of equilibrium can be cast in the

form
To bij _ui; j � ðkij y;jÞ;i ¼ r Q ð42Þ

� ðDijkl ekl � bij yÞ;j ¼ r fi ð43Þ
Boundary and Initial Conditions

The general thermal boundary and initial condi-

tions that may exist for a given domainR bounded

by a closed surface @R ¼ @Rp [ @Rq are given as

Thermal:
y ¼ yp on @Rp ð44Þ

qi ni ¼ �qS þ hðy� yhÞ þ sT eTðy4 � y4r Þ on @Rq

ð45Þ

or
qi ni þ qS � qh � qr ¼ 0 on @Rq

ð46Þ
and
yðx; oÞ ¼ y0 in R ð47Þ

The above equations refer to general unsteady

nonlinear thermal fields in materials with

thermophysical properties dependent upon tem-

perature. The first boundary condition (44) is the

prescribed temperature condition on @Rp. The
second boundary condition (45) is the flux condi-

tion on @Rq. The terms qs, qh, and qr represent the

surface-heating rate per unit area, the rate of heat

flow per unit area due to convection, and the rate of

heat flow per unit area due to radiation, respec-

tively; h is the convective heat transfer coefficient,

yh is the convectionmedium temperature,sT is the

Stefan-Boltzmann constant, eT is the surface emis-

sivity, and yr is the radiation medium temperature.

Mechanical:

Typical mechanical boundary and initial con-

ditions are given as
ui ¼ gi on @Rp ð48Þ

sij nj ¼ hi on @Rq ð49Þ

and the following initial conditions:
ui ðt ¼ 0Þ ¼ u0i in R ð50Þ

_ui ðt ¼ 0Þ ¼ _u0i ð51Þ

The first boundary condition is the prescribed

displacement on @Rp, and the second boundary

condition is the traction condition on @Rq.

Equations (38–39) represent the classical fully

coupled dynamic thermoelasticity equations.

A two-way coupled or fully coupled problem

implies that the temperature field influences the

displacement field and vice versa. A one-way

coupled problem implies that only the tempera-

ture changes influence the displacement field.

A one-way coupled problem with a transient ther-

mal field and a static structural field leads to

a quasi-static analysis. For static analysis, the

transient terms in both the thermal and the struc-

tural fields are neglected. For the numerical

modeling and simulation of the class of general

dynamic problems, see Refs. [13–16].
Concluding Remarks

The dynamical thermoelasticity theory is a “fusion”

of the multidisciplinary areas of heat conduction in

solids and continuum elasticity. The focus was
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upon the classical formulations. The computational

issues are indeed challenging, and the development

of accurate and efficient numerical approaches is

described in a separate entry. The objective was to

briefly provide to the reader a quick overview of

nonclassical dynamic thermoelasticity formula-

tions and equations governing these situations.
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Synonyms

Clutches
Overview

Hot spotting is a phenomenon observed in fiction

clutches as well as many other types of sliding

systems. The term hot spotting is typically used in

reference to macroscopic phenomena, and all

considerations here are confined to this scale.

Sliding motion causes generation of frictional

heat at the interface between members in relative

motion. It is desired that distribution of the heat

be uniform across the entire interface, meaning

uniform thermal load. Geometry imperfections of

mating surfaces, deformations of clutch compo-

nents, and other factors cause that in practice heat

distribution varies from place to place. Moderate

heat variation is natural and acceptable. How-

ever, sometimes very strong local heat concen-

trations may occur with very low or complete

lack of heat elsewhere across the nominal inter-

face. This phenomenon is commonly known as

http://dx.doi.org/10.1007/978-94-007-2739-7_287
http://dx.doi.org/10.1007/978-94-007-2739-7_287
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http://dx.doi.org/10.1007/978-94-007-2739-7_154
http://dx.doi.org/10.1007/978-94-007-2739-7_100076
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hot spotting. It often leads to excessive wear,

malfunction, or even complete failure of the slid-

ing system due to thermal damage. The mecha-

nism of creation of hot spots was not understood

until discovery made by J.R. Barber in the late

1960s [1] that identified the core mechanism of

this phenomenon, which involves coupling

between generation of frictional heat and

thermoelastic deformation of sliding members.

Since then, the hot spotting and the theory behind

it were subject of intense exploration, and sub-

stantial progress in this area has been made.
Friction Clutches, Function, and
Modes of Operation

Friction clutch is a mechanical device that trans-

fers power from one rotating component to

another. Generally, a clutch is used wherever the

ability to control power flow is required:

disconnecting the rotating members and

connecting them. The process of connecting is

initiated when the members rotate at different

speeds or when one of them rotates and the

other stands still. The process completes when

both are brought to the same speed. This process

has by nature a transient character. An important

functional requirement for a friction clutch is

a smooth transition during speed synchronization.

An example of a clutch operating in such a mode

is a so-called shifting clutch used in automotive

automatic transmissions. We should note that

there is a broad variety of clutches in terms of

function and associated mode of operation. Fric-

tion clutches may also play a role such as

maintaining some amount of speed difference

between two members or transferring required

amount of torque under conditions of relative

motion of the members. Slip duration of a clutch

operating in any of those capacities may range

from short-lasting event to a long-term process.
Types and Design of Friction Clutches

Two types of clutches, wet and dry, are in common

use. Wet clutches operate in a fluid such as
transmission oil. Oil lubricates and cools the fric-

tion surfaces. However, friction surfaces are not

intended to be separated by a fluid film during

clutch engagement. Instead, boundary lubrication

is developed at the interfaces during clutch slip,

which helps to produce a relatively high and stable

friction coefficient. Friction pair in a wet clutch is

typically constituted of dissimilar materials. One of

them is a ferrous material, steel, or cast iron; the

other is a special friction composite. There is

a variety of friction materials in use such as

paper-type composites or sintered metals. Most

friction materials for wet clutches have substantial

porosity so that the fluid can penetrate the material.

In dry clutches, the friction pair is created by

a friction material sliding against ferritic material,

usually cast iron, and there is no fluid lubricant.

Dry friction materials may have various composi-

tions and are generally different from wet mate-

rials, although some sintered metals can be used in

both applications. Dry friction pairs have

a substantially higher friction coefficient than wet

ones, which is advantageous. On the other hand,

the friction coefficient of dry materials shows

much greater variability. Also the wear is much

greater than that of wet materials, which is accom-

panied by substantial production of wear debris.

From the design point of view, clutches can be

classified depending on the number of friction

disks. Wet clutches usually include multiple

disks with layers of friction materials interleaved

with disks (plates) made of steel; they are known

as multidisk clutches. Rarely, they include

a single friction disk with two sliding interfaces.

Some wet clutches, such as those used in torque

converters of automotive transmissions, may

have just a single sliding interface. Most common

dry clutches have a single friction disk with two

sliding interfaces or two disks with four inter-

faces. Working surfaces in clutches are typically

annular, and both mating members extend over

the whole circumference.
Heat Generation in Friction Clutches

Energy is dissipated in a clutch whenever transfer

of frictional torque and slip take place
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concurrently. Power P dissipated in the clutch is

determined by equation
P ¼ M � o ð1Þ

whereM is the torque ando is the relative angular

speed of input member and output member. In

general, both torque M and relative speed o vary

over time. For description of local phenomena on

sliding surfaces, we express infinitesimal torque as
dM ¼ fpr � dA ð2Þ

where dA is the infinitesimal area of friction

surface, r – the radial coordinate of dA, f – the

friction coefficient, and p – the contact pressure.

Then the torque can be expressed as

M ¼
ð
A

fpr � dA ð3Þ

Substitution of (3) into (1) yields
Clutches, Hot Spotting Behavior, Fig. 1 Hot spots on

the surface of steel disk of a wet clutch produced after

single clutch engagement
P ¼
ð
A

fpro � dA ¼
ð
A

fpv � dA ð4Þ

where local sliding speed v ¼ ro. The integrand
in (4) expresses the local frictional heat flux
q ¼ fpv ð5Þ
Hot Spotting Engineering Perspective

It is difficult and often impossible to observe the

process of formation of hot spots in clutches. That

process was successfully monitored by means of

infrared imaging in designs like automotive disk

brakes, where a portion of the surface of the cast

iron disk is exposed during operation. Most typ-

ically, however, evidence of hot spots is seen

after the event, usually having the form of dark

local thermal discoloration of the surface of the

ferrous material. In severe cases, plastic deforma-

tion of the material caused by high thermal

stress occurs. Plastic deformation is sometimes
accompanied by cracks. Those evidences of hot

spotting are customarily also called hot spots.

Figure 1 shows an example of hot spots cre-

ated on the surface of a steel disk of a wet

multidisk clutch. The hot spots are discontinuous

in the sliding direction (circumferential direc-

tion), and this type of pattern is called focal hot

spots. On the other side of the disk, which also

has a working surface sliding against another

friction disk, similar pattern occurs. Hot spots

on two sides can be alternately located in circum-

ferential direction, creating an antisymmetric

mode [2]. Alternatively, they can be aligned,

constituting a symmetric mode. Focal hot spots

arise on the steel surface, and there is no similar

pattern on the mating surface of friction material.

However, on the surface of friction material,

there might be ring-shaped traces of degraded

material, a damage incurred by hot spots occur-

ring on the mating metal surface. Of the two
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the surface of steel disk of a wet clutch after multiple

engagements
Clutches, Hot Spotting Behavior, Fig. 3 Hot spots on

the surface of cast iron plate of an automotive dry clutch
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materials, focal hot spots generally occur on the

one with greater thermal conductivity [2]. Hot

spots in Fig. 1, which exhibit a quite regular

pattern, were produced during just a single cycle

of clutch operation. Figure 2 shows further exam-

ples of focal hot spots on surfaces of metal disk of

a wet multidisk clutch. They show a fairly irreg-

ular pattern. This irregular geometry is likely to

be the result of a sequence of hot spotting events,

some of them causing permanent deformation of

the steel disks. The subsequent hot spotting will

occur in a system that is geometrically modified

and therefore produces different patterns.

Figure 3 shows a part of a dry automotive

clutch with hot spots. The part is called pressure

plate and is made of cast iron. It has sliding

surface only on one side and slides against

a single friction disk.

A quite different pattern of hot spots occurring

in a wet multidisk clutch is shown in Fig. 4. The

hot spots are ring-shaped and are sometimes

called band hot spots [3]. Unlike focal hot spots,

band hot spots occur on both the metal surface

and the mating friction material surface.

Hot spots have been observed in sliding sys-

tems such as clutches and brakes for a long time

[1, 4]. One of the most comprehensive descrip-

tions for friction brakes was provided by

Anderson and Knapp [3], where different patterns

and conditions of occurrence were discussed.

Many of these observations apply to friction

clutches as well.
Mechanisms of Spotting

Hot spots can be caused by an imperfect geome-

try of the clutch disks or by clutch design features

that induce nonuniform pressure distributions at

sliding interfaces. These causes of hot spots are

relatively easy to identify and eliminate. In most

cases, however, hot spots arise in absence of such

distinct contributions. Geometric profiles of sur-

faces measured before hot spotting often do not

show correlation with hot spots’ pattern observed

afterward. The mechanism of hot spotting relies

on interactions between thermal deformations of

clutch components and the distribution of fric-

tional heat. This mechanism was identified by

James R. Barber when he studied hot spots in

railway brakes [1]. It can be explained as follows.

Local heat generation due to friction is propor-

tional to the local contact pressure (5). Conse-

quently, areas with higher contact pressure

experience higher temperature rise and thereby

greater thermal expansion. The increased local

thermal expansion, in turn, causes further local

pressure increase and further pressure concentra-

tion. This mechanism inherits a positive feedback

loop, which may produce system instability. Bar-

ber called it frictionally excited thermoelastic

instability (abbreviation: TEI). Numerous later

studies further proved a crucial role of TEI in

hot spotting in a broad variety of sliding systems,

including clutches.
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Behavior, Fig. 4 Hot

spots on the surface of steel

disk of a heavy-duty wet

clutch
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Model-Based Hot Spotting Analysis

Analytical description of thermoelastic behavior

of a sliding system includes the following phys-

ical phenomena:

1. Heat conduction in the members that are in

frictional contact with appropriate boundary

conditions at the interface. The boundary con-

ditions include the following: (a) condition of

temperature continuity across the interface or

definition of temperature discontinuity, such

as contact resistance, and (b) definition of heat
generation.

2. Thermal deformation of system components

due to temperature field defined by problem

(1), with sliding contact conditions at the

interfaces.

Part of the solution of problem (2) is the con-

tact pressure p at the interface. The pressure,

in turn, defines generation of a frictional heat

flux q ¼ fvp (5) in problem (1). It is clear from

interrelations between the two problems that the

compound thermoelastic problem is fully

coupled, and equations describing thermal and

thermoelastic behavior have to be solved

simultaneously.

The first analytical description of this

thermoelastic problem was given by Barber [1]

along with his fundamental explanation of the

core mechanism. The next milestone was Dow

and Butron’s study [5] where they considered

a perturbation imposed over the solution of the
unperturbed thermoelastic problem. In this way,

they reduced the problem to an eigenvalue prob-

lem, which is a robust approach to stability anal-

ysis. These early works showed that stability

depends on the sliding speed: when the speed

exceeds some threshold, called critical speed,

the system becomes unstable – the crucial finding

for TEI and thereby for understanding mecha-

nism responsible for hot spotting. Early studies

provided satisfactory estimation of the critical

speed in some cases, while in other, the predic-

tions were very inaccurate [6], making practical

usefulness of the analytical solution question-

able. In the early models, an infinite spatial extent

of the bodies in direction normal to the contact

interface was adopted, and later it was found that

accounting for real, finite dimensions is crucial

for a realistic behavior. Furthermore, in sliding

systems where both sides of metal disks have

sliding interfaces, as is the case with multidisk

clutches, there is strong coupling between the two

sides [2, 7], which dramatically reduces stability,

and this aspect has certainly to be included in the

model.

We can distinguish three major approaches to

modeling of the thermoelastic behavior: (1) ana-

lytical models that lead to an analytical eigen-

value stability problem [2, 5, 8], (2) numerical

models to simulate thermoelastic behavior as

a time-dependent process [7, 9, 10]; they usually

utilize the finite element method (FEA), see

Fig. 5, and (3) modal decomposition that
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obtained from finite element simulation of thermoelastic

contact in a wet clutch

Clutches, Hot Spotting Behavior, Fig. 6 Surface of

a steel disk after experimental test. Conditions: (both
cases) single engagement, energy dissipated 28 kJ, slip

duration 0.74 s; (left) sliding speed 32 m/s, mean contact

pressure 1.14 MPa; (right) sliding speed 19.6 m/s, mean

contact pressure 1.87 MPa
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encompasses two steps: spatial discretization of

the problem using FEA and then reduction to

a discrete eigenvalue problem [11–14]. Each of

these approaches has its own distinct features,

and they are to some extent complementary.

In many practical cases, the models do not

provide a highly accurate estimation of the critical

speed. This is due to the complexity of phenomena

involved and related involvement of many param-

eters, some ofwhich exhibit inherent variability or

are difficult to evaluate. For example, the friction

coefficient in dry conditions exhibits significant

variability that is dependent on temperature and

other conditions. Nonetheless, modeling provides

an exceptional insight into the mechanisms

governing hot spotting, and even if quantitative

accuracy is not fully satisfactory, modeling usu-

ally gives univocal directional hints. Indeed,

modeling has lead to great progress in mitigation

of hot spotting in clutches in recent years.
Key Findings

Existence of the critical sliding speed, that is,

speed below which the system is stable and

above which it is unstable, is one of the key

findings. This fact was not entirely intuitive as

in conventional engineering thinking, propensity

to hot spotting was often associated with fric-

tional heat flux fvp so that the pressure p was
considered to be a factor as important as the

speed v. TEI theory predicts independence of

stability on pressure p, a fact verified experimen-

tally (see Fig. 6). More precisely, pressure p may

affect thermoelastic stability indirectly; this is the

case when friction material is nonlinear with

pressure-dependent properties such as modulus

of elasticity.

Eigenvalue analysis of the thermoelastic slid-

ing system provides a set of eigenmodes and

associated eigenvalues. Each eigenmode repre-

sents a pattern of thermoelastic deformation or,

in other words, a pattern of potential hot spots.

The eigenvalue represents exponential growth

rate of the mode. If the real part of an eigenvalue

is negative or zero, themode is stable, otherwise it

is unstable. The eigenvalue problem is speed-

dependent, and themodes and eigenvalues evolve

as the sliding speed changes (Fig. 7). The speed at

which the specific eigenvalue is found to be zero

is the critical speed. In general, there are multiple

unstable modes and multiple corresponding crit-

ical speeds. The lowest of all these speeds is

considered the critical speed of the system.
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curves: real parts of eigenvalues as a function of sliding

speed representing frictionally excited thermoelastic

instability problem
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If the sliding speed substantially exceeds the

critical speed, more than one mode can be unsta-

ble. In this case, thermoelastic deformation

represented by each of the unstable modes

grows exponentially, but often one of them dis-

tinctly dominates. The dominating mode is not

necessarily the one that has the lowest critical

speed (i.e., the one that determines stability

limit of the system). It tends to be the mode

with the highest growth rate at a given sliding

speed (Fig. 7). However, relative strength of exci-

tation of individual modes also influences their

magnitude and may play a meaningful role when

growth rates are close [13]. Excitation is caused

by different factors, one of them being pressure

variation due to geometry imperfections. It is

clear from this discussion that hot spots of differ-

ent patterns can occur in the same clutch as the

operational conditions vary. As discussed earlier,

permanent deformations of disks may lead to an

irregular pattern of hot spots. Similarly, sequence

of hot spotting events with distinct modes may

produce an irregular pattern such as that shown in

Fig. 2.

In multidisk clutches, both sides of metal disks

and friction disks have sliding interfaces. There is

a strong thermomechanical interaction between

the two sides [2, 7, 13] that promotes instability.

Antisymmetric mode of deformation of the metal

disk manifests this interaction, and this mode is

typically by far the most unstable one [2, 11].
Mitigation of Hot Spotting

Hot spotting is not acceptable in clutches because

of the detrimental consequences for clutch per-

formance and durability. In engineering practice,

a set of measures are taken to mitigate this

unwanted phenomenon. It is convenient to

group the factors that determine hot spotting

into three categories:

• Stability of the sliding system

• Exposure of the system to operation in the

unstable regime

• Excitation of unstable mode(s)

Stability of the Sliding System

Ensuring thermoelastic stability of a clutch so that

the critical speed is higher than the range of oper-

ational speeds is themost desired solution. Stability

depends strongly on friction coefficient, and the

higher the coefficient, the lower the critical speed.

Friction coefficient is typically dictated by func-

tional requirements so that selection of this param-

eter is rarely a subject of practical TEI

considerations. Factors by means of which TEI

can be affected include (1) structural configuration
of the clutch. Most common clutch packs have

friction disks, with layers of friction material on

each side, alternately arranged with metal disks.

An alternative to this is a pack where each disk has

a metal core with a single layer of friction material

facing metal surface of the adjacent disk. These

disks are called single-sided. Thermoelastic behav-

ior of a pack with single-sided disks is much dif-

ferent from that of conventional pack. In particular,

thermoelastic coupling between two sides of

a single-sided disk is much weaker than that in

the metal disk of conventional pack, thanks to

differences in thermomechanical properties

between the metal core and the attached friction

material. As a consequence, this pack configuration

has a relatively high critical speed for focal modes

and in this sense is superior. However, there are

also other differences that need to be considered

when choosing one configuration or the other.

(2) Material properties. Modulus of elasticity of

friction material has a great influence on

thermoelastic behavior. Increase of modulus

decreases the stability. Modulus spans fairly wide
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range, depending on the material type. Since

decrease of modulus increases the critical speed

[2, 10], compliant materials are generally

recommended for high-speed applications, while

for low speeds, relatively stiff materials can be

used. Most friction materials have a very low ther-

mal conductivity. Any increase of conductivity is

advantageous particularly for stability of the focal

modes. Thermal expansion coefficient of friction

material plays a relatively small role in focal hot

spots, but is quite substantial in band hot spots, and

lower coefficient improves stability.Material prop-

erties of metal disks certainly have great influence

on stability, but for steel (or cast iron), differences

in properties among material grades are much less

than differences among friction materials.

(3) Dimensional parameters. Increase of the thick-

ness of friction material generally increases the

critical speed [10]. Effectiveness of this factor is

greatest when the thickness is small and tends to

diminish as it increases. Influence of the thickness

of metal disks is fairly complex. Interestingly, for

metal disks with sliding interfaces on both sides,

stability of the antisymmetric mode shows coun-

terintuitive dependence on the disk thickness.

Namely, within thickness range of typical applica-

tions, the critical speed increases as the thickness

decreases [2]. (4) Cooling. Clutches are cooled

either by air or by liquid. Liquid cooling in wet

clutches can be very intense. It is facilitated by

forcing fluid to flow in groves made in the surface

of the friction material. Heat transfer from the

cooled surfaces to the fluid modifies thermal

behavior and influences thermoelastic stability

characteristics of the system. With intense cooling

used in some modern clutches, the critical speed

for TEI is noticeably increased.

Exposure of the System to Operation in the

Unstable Regime

For hot spotting avoidance, clutches with long-

term slip are required to operate in stable regime,

which means that the span of operational speeds

has to be less than the critical speed. However,

for clutches operating at variable sliding speed

which changes at fast rate, for example, shifting

clutches in transmissions, instantaneous operation

above the critical speed is not uncommon; the
operational speedsmay be so high that they exceed

critical speeds of practical clutch solutions. This

situation is acceptable under the condition that the

slip time is very short so that it is insufficient for

the unstable mode to substantially grow. Duration

of the slip is crucial as it determines the ultimate

magnitude of an unstable mode. In practical appli-

cations, the rate of change of slip speed is some-

times a controllable parameter, and by proper

control, the clutch can pass the supercritical

speed range sufficiently quickly to avoid hot spots.

Excitation of Unstable Mode(s)

There are different potential sources of excitation

of unstable modes [13]. One, always present in

a real system, is geometry imperfection of the

disks that causes contact pressure nonuniformity.

Evaluation of this factor requires extracting from

the overall pressure distribution those compo-

nents that are consistent with the modes of hot

spotting [13]. For example, if an unstable mode

has n waves around circumference, then the Fou-

rier component (harmonic) of pressure with the

same number of waves excites this mode. It may

happen that pressure component corresponding to

an unstable mode has excessive magnitude, and

then by correcting the disks’ geometry, the prob-

lem can be alleviated. Most typically, however,

these imperfections are small (but sufficient to

effectively excite unstable modes) and therefore

beyond control of the manufacturing process.

In some cases, pressure variations may be

caused by structural factors. A known practical

example is an actuator that applies axial force to

the pack of disks by means of several protrusions

distributed around the circumference that produce

a nonuniform pressure in the circumferential direc-

tion. Therefore, an unstablemodewould be excited

if the pressure pattern is consistent with the mode.
References

1. Barber JR (1969) Thermoelastic instabilities in the

sliding of conforming solids. Proc R Soc London A

312:381–394

2. Lee K, Barber JR (1993) Frictionally excited

thermoelastic instability in automotive disk brakes.

ASME J Tribol 115:607–614



C 614 Column Grid Array Assembly Under Thermal Cycling Stress
3. Anderson AE, Knapp RA (1990) Hot spotting in

automotive friction systems. Wear 135:319–337

4. Parker RC, Marshall PR (1990) The measurement of

the temperature of sliding surfaces with particular

reference to railway blocks. Proc Inst Mech Eng

159:319

5. Dow TA, Burton RA (1972) Thermoelastic instability

of sliding contact in the absence of wear. Wear 19:

315–328

6. Dow TA (1980) Thermoelastic effects in brakes.

Wear 59:213–221

7. Zagrodzki P (1990) Analysis of thermomechanical

phenomena in multidisk clutches and brakes. Wear

140:291–308

8. Decuzzi P, Ciavarella M, Monno G (2001) Friction-

ally excited thermoelastic instability in multi-disk

clutches and brakes. ASME Tribol 123:865–871

9. Kao TK, Richmond JW, Douarre A (2000) Brake disc

hot spotting and thermal judder: an experimental and

finite element study. Int J Vehicle Design 23(3/

4):276–296

10. Zagrodzki P, Truncone SA (2003) Generation of hot

spots in a wet multidisk clutch during short-term

engagement. Wear 254:474–491

11. Yi Y-B, Barber JR, Zagrodzki P (2000) Eigenvalue

solution of thermoelastic instability problems using

Fourier reduction. Proc R Soc Lond A 456:

2799–2821

12. Li J, Barber JR (2008) Solution of transient contact

problems by the fast speed expansion method. Wear

265:402–410

13. Zagrodzki P (2009) Thermoelastic instability in fric-

tion clutches and brakes – transient modal analysis

revealing mechanisms of excitation of unstable

modes. Int J Solids Struct 46:2463–2476

14. Al-Shabibi AM, Barber JR (2009) Transient solution

of the unperturbed thermoelastic contact problem.

J Therm Stresses 32:226–243
Column Grid Array Assembly Under
Thermal Cycling Stress

Reza Ghaffarian

Jet Propulsion Laboratory, California Institute of

Technology, Pasadena, CA, USA
Overview

Understanding reliability of microelectronics

under thermal cycling stresses is an integral part

of implementation of advanced packaging tech-

nologies. Among these, commercial-off-the-shelf
column grid array (COTS CGA) packaging tech-

nologies in high reliability versions are in use in

a number of high reliability applications and

space electronics systems. Establishing the pro-

cess controls and identifying quality assurance

(QA) indicators for reliability are critical for

low-risk insertion of these advanced electronics

packages.

This chapter presents extensive test data gath-

ered during several years of investigations for

CGA packages with 560–1517 columns assem-

bled onto printed circuit boards (PCBs). The

CGA assemblies are typically manufactured

using a vapor-phase reflow machine or, in rare

occasion, using a rework station with eutectic tin-

lead paste for solder attachment. This chapter

presents lessons learned from test results gath-

ered by various manufacturing, assembly, and

environmental testing along with photomicro-

graphs taken at various test intervals showing

damage progress and failures. The chapter also

includes inspections results, which were

performed by researchers to determine key prin-

ciple parameters affecting assembly, reliability,

and quality assurance controls. Thermal cycle

reliability test results included up to 1819 cycles

in the range of �50 �C/+75 �C, –55 �C/+100 �C,
–55 �C/+125 �C, –65 �C/+150 �C, and �120 �C/
+85 �C for assemblies including CGA560,

CGA717, and CGA1144.
Single-Chip Packaging Trends

The trend in surface-mount packaging technology

have illustrated in Fig. 1. Single-chip packages

including column grid array (CGA), ball grid

array (BGA), and CSPs (chip scale package) are

now widely used for many electronic applications

including portable and telecommunication elec-

tronics products. The CGAs are implemented for

spacemicroelectronics systems. As the I/O of CGA

packages increase and become more complex with

using non-hermetic flip-chip die and added pas-

sives, there is a continuous need to understand

behavior under thermal cycling stresses.

Thermal stress due to column attachment for

LGA and/or reworked CGA packages affects
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reliability. Assembly of LGA directly onto

a board using conductive adhesive may become

a viable option in a near future possibly using

adhesive with nanoparticulates or other

approaches. With commercial industry, it is

mostly implemented by Pb-free solders, and this

adds currently additional challenges for high reli-

ability applications. The options left for use of

tin-lead solders are either to continue to use tin-

lead solder with Pb-free columns/solder balls

(backward compatibility), replace Pb-free balls/

columns with tin-lead, and accommodate Pb-free

in a near future with understanding associated

risks and development of mitigation approaches.

Even though CGAs are commercial, off-the-

shelf (COTS) packages, their high reliability

package versions go through a more stringent

screening with added significant cost and a long

time in a delivery schedule. The issues with CGA

COTS packages are essentially the same as other

COTS issues and include package die source and

lot-to-lot materials variations, availability of

packages with radiation-hard die, outgassing for

materials including underfill, etc. Assembly,

inspection, and lack of individual solder

re-workability issues are additional key aspects

of such implementation [1–11].
CGAs/PBGAs (Up to 1000 I/Os) Under
Thermal Cycling Conditions

Overview on Evaluation of CGA560/

PBGA560/CGA717/PBGA728

This section presents test results for characteriza-

tion of the reliability of CGA packages with 560

and 717 I/Os (CGA560/CGA717) and plastic ball

grid array with 560 and 728 I/Os (PBGA560/

PBGA728). The results of the 560 I/O 2nd level

package assemblies with tin-lead solder cover the

effect of thermal cycling temperature ranges and

corner staking on the failure of CGAs and their

plastic BGA counterparts. Both CGA560 and

PBGA560 have an identical number of balls/col-

umns populated at the periphery with no center

population; therefore, it is a peripheral configu-

ration. An additional discussion of first failure for

low and high solder volumes CGA560 is also

presented. The other set of area array packages

was fully populated with 728 balls in the plastic

package and 717 columns in the ceramic pack-

age. For the CGA717, the 3-corner solder col-

umns were missing; it is purposely removed by

the package manufacturer to improve reliability.

A design of experimental (DOE) technique

was utilized to cover processing and other aspects
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that are considered unique for the potential use of

these packages in high reliability applications.

Solder joint reliability is affected by many vari-

ables including solder volume. The assemblies

were subjected to five types of thermal cycles.

Both the process and reliability results for the

CGA package assemblies are discussed below

and compared to their PBGA counterparts.

CGA560/CGA717 Assemblies After Thermal

Cycling

CGA560 and Effect of Solder Volume Under

Thermal Cycling Stress

Figure 2 presents optical images of solder joint

damage conditions for assemblies with low and

high solder volume after 991 thermal cycles
Column Grid Array
Assembly Under
Thermal Cycling Stress,
Fig. 2 Optical

photomicrographs of CGA

assemblies built with an

8 mil (left) and 10.5 mil

thick stencil after 991

cycles Cycle A (�50 �C/
75 �C)

Column Grid Array
Assembly Under
Thermal Cycling Stress,
Fig. 3 SEM

Photomicrographs before

and after cross-section for

a PBGA package after 588

cycles (�55 �C/125 �C)
(�50 �C/75 �C), the low solder volume condition

shows significant damage at the board site. Fail-

ures were in solder joints at the board site for the

assembly with low solder volume. Note that the

corner columns at the board site tilted more

toward the center of the package due to the higher

CTE mismatch compared to the interface at the

package site.

CGA560/PBGA560 with Corner Staking Under

Thermal Cycling Stress

Figure 3 compares optical and SEM photomicro-

graphs of PBGA balls after exposure to 1819

thermal cycles Cycle A (�50 �C/75 �C) and

another subjected to 588 cycles in the range of

�55 �C/125 �C (Cycle C condition). Both
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Fig. 4 Photomicrographs

of column failure at

interposer with corner

staking over two thermal

cycle ranges
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assemblies had corner staking. No significant

microstructural changes for the Cycle

A condition were found, whereas a small

microcrack was initiated in the solder joint at

the package interface for the Cycle C condition

(�55 �C/125 �C). The latter photograph also

clearly shows the grain growth due to exposure

at elevated temperature. Similar optical photomi-

crographs for CGA assemblies with corner stak-

ing after the same number of cycles and

conditions: 1819 (�50 �C/75 �C) and 588

(�55 �C/125 �C) are shown in Fig. 4. Although

both assemblies had identical build conditions

with identical corner staking materials, the failure

mechanisms were different and dependent on the

temperature cycle range and the maximum tem-

perature. One failed away from staking whereas

the other (�55 �C/125 �C) failed within the stak-
ing adhesive at the interposer solder interconnec-

tion interfaces.

CGA717 Damage Progress Due to Thermal Cycling

Stress-Optics/SEM

Figure 5 shows optical and SEM photomicro-

graphs of CGA717 assemblies at 950 thermal

cycles Cycle B condition (�55 �C/100 �C). No
failures yet detected by electrical monitoring, but

signs of damage at the board and package sites

are apparent.

CGA560/CGA717 and Projection of Thermal

Cycles to Failure

Figure 6 compares cycles to first failures (about

5 % failure) for the CGA560 and CGA717. These

plots also include extrapolations from the

test results under various thermal conditions to

0 �C/100 �C, a more common thermal cycle
temperature range for commercial applications.

The extrapolation was carried out using the mod-

ified Coffin-Manson relationship. This relation-

ship is one of many numerous parametric

modeling analysis methods (see R. Ghaffarian

in the previous chapter) that have been proposed

and used by industry to project cycles to failure

(CTF) from one thermal cycle condition to a field

application.

Specifically, the Coffin-Manson relationship

was used to correlate the test results for the

CGA560 I/Os for three thermal cycling condi-

tions with increasing temperature ranges, i.e.,

–50 �C/75 �C, –55 �C/100 �C, and �55 �C/
125 �C to a control cycle data set in the range of

0 �C/100 �C. As the peak temperature and tem-

perature range increases, projections become less

accurate. Projection is the least accurate for the

extreme range of �55 �C to 125 �C and better

matches the CTF data for �50 �C/75 �C. Thus,
the test results are either conservative or

nonconservative depending upon how they are

applied for a field application.

For example, if data generated by the package

supplier, generally in the range of 0 �C/100 �C,
are used as the baseline for the CTF projection to

a harsher requirement of �55 �C to 125 �C,
then projection could result in unrealistic

nonconservative CTF data. On the other hand, if

the extreme temperature data are considered,

a conservative projection could cause rejection

of a package that might be suitable for a field

application. Microstructural and failure mecha-

nism changes due to corner staking (demon-

strated here by testing) are also unknown factors

that should be considered for harsher environ-

mental applications.
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assembly at 950 thermal cycles (�55 �C/100 �C) showing signs of microcracking
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temperature range on first

failure for CGA 560 I/Os

and no failure yet (�55 �C/
100 �C) for CGA 717 I/Os

using a modified Coffin-

Manson relationship
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Projections made for CGA717 are also

included in the plot, even though no failures

were found to 950 thermal cycles for assemblies

with no conformal coating and thermal cycling in

the various ranges. Specifically, the plot includes
projection of 950 CTF for the �55 �C/100 �C
range to the control data set in the 0 �C/100 �C
range. Projection made for the case of CGA717

is in contrast with those made for CGA560.

Projection from a deeper cycle test data
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(�55 �C/100 �C) to a milder range (0 �C/100 �C)
results in higher projection values than the test

results reported by the manufacturer, even though

identical PCBs were used for assembling at two

different facilities. Solder volume andmore accu-

rate process control and using a vapor phase

machine for reflow may be one possible explana-

tion for the improvement observed relative to the

package supplier’s test condition. The other pos-

sible explanation may be related to column

design; the copper wrap may be such that the

effects of exposure below 0 �C become less crit-

ical. None of these hypotheses have been thor-

oughly verified and remain as postulates until

they are tested by a more comprehensive design

of experiments with controlled variables, includ-

ing various thermal cycle parameters.
LGA/CGAs (Up to 1517 I/Os) Under
Thermal Cycling Condition

Evaluation of CGA1144 and LGA/CGA1517

The purpose of this aspect of the investigation

was to characterize reliability of a new CGA

package with much higher columns (1144 I/Os)

than its previous version (560 & 717 I/Os). The

CGA1144 package is a fully populated area array

package and the chip is a field programmable gate

array with a much higher number of gates than its
Column Grid Array
Assembly Under
Thermal Cycling Stress,
Fig. 7 Land grid array

(LGA) before column

attachment (top) and after

both copper-wrapped

solder column attachment

(left) and microspring

attachment (right)
previous version. To accommodate higher I/Os in

a small package size, this package uses a finer

pitch of 1 mm rather than 1.27 mm, commonly

used for lower than 1000 I/O CGA versions.

The scope of our evaluation also included

a ceramic array package with 1517 I/Os that

came as a land grid array (LGA) with no column

attachment. A number of these LGAs were

converted into CGA by performing column

attachment. Two facilities were used to perform

column attachment, each having a unique column

style. One style had copper wrapped onto a solder

column with a diameter slightly lower than stan-

dard value; the other style had a micro-spring coil

with no solder column, but a standard diameter.

Photomicrographs of the LGA package and the

two column types are shown in Fig. 7.

CGA1144 Assemblies After Thermal Cycling

Stress Test

Figure 8 shows optical photomicrographs for two

high I/O CGA package assemblies with corner

staking adhesive and with/without conformal

coating after 350 thermal cycles (�55 �C/
125 �C). Appreciable surface damage is apparent

for the sample with no conformal coating, but it is

less evident for the one with conformal coating.

Therefore, it is difficult to determine visually if

conformal coating accelerates or decelerates sol-

der damage progress due to thermal cycling.
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Assembly Under
Thermal Cycling Stress,
Fig. 8 Optical

photomicrographs of two

high I/O CGA assemblies at

350 thermal cycles

(�55 �C/125 �C). The
sample on the right has

conformal coating in

addition to corner staking

Column Grid Array
Assembly Under
Thermal Cycling Stress,
Fig. 9 SEM

photomicrographs of a high

I/O CGA assembly

showing crack initiation

and propagation from

solder starved fillet at the

board side

Column Grid Array
Assembly Under
Thermal Cycling Stress,
Fig. 10 Cross-sectional

optical photomicrographs

of CGA 717 I/O assembly

with NSMD pad design

after thermal cycling
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Figure 9 shows a SEM photomicrographs of

an assembly after thermal cycling. It is apparent

that most of the damage occurred on the board

side, which shows relatively deeper cracks,

whereas the cracks from the package sides, are
difficult to see except at a very high magnification

since they are extremely fine and are at the inter-

faces. It is also apparent that cracks at the

board side initiated from the starved solder

fillets progressing towards the good solder fillet



Column Grid Array
Assembly Under
Thermal Cycling Stress,
Fig. 11 Cross-sectional

optical photomicrographs

of CGA 717 I/O assembly

with SMD pad design after

thermal cycling

Column Grid Array
Assembly Under
Thermal Cycling Stress,
Fig. 12 Cross-sectional

photomicrograph of the

CGA1144 I/O assembly

after thermal cycling
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areas. The extent of the cracks can only be deter-

mined by destructive techniques such as cross-

sectioning.

CGA717/CGA1144 X-Sectional Verification

Figures 10 and 11 compare optical photographs

of two CGA 717 I/Os with NSMD and SMD pad

designs after thermal cycling, respectively. It is

clear that the NSMD design solder joints show

much lower damage due to cycling than the SMD

design configuration. Both configurations

showed signs of cracking, the NSMD cracks

were penetrated to about a maximum of 50 % of

the pad diameter, whereas for the SMD cracks,

there are various sizes with a few at 100 % which

means that the solder joints were in a failure

condition.

Figure 12 shows optical photographs for the

CGA1144 I/O package after thermal cycling. At

the top is a photomicrograph from the package

section revealing a flip chip die attach configura-

tion with internal solder balls. The center photo-

micrographs clearly show tilted solder columns at

the corner solder joints due to the higher CTE

mismatch on these joint’s furthest distances from

package neutral points. There is also evidence of

cracks, although the crack lengths were less than

50 % of the pad diameters.
References

1. Ghaffarian R (2012) Reliability of column/board

CCGA attachment. In: IEEE intersociety thermal

conference (ITherm), San Diego, May 31-June 2

2. Ghaffarian R (2011) Chapter 22. Thermal cycle and

vibration/drop reliability of area array package

assemblies. In: Suhir E, Connally E, Steinberg

D (eds) Structural dynamics of electronics and pho-

tonic systems. Springer, New York

3. Ghaffarian R (2008) Thermal cycle reliability and

failure mechanisms of CCGA and PBGA assemblies

with and without corner staking. IEEE Trans Comp

Packag Technol 31(2):285–296

4. Ghaffarian R (2006) Chapter 16. Area array technol-

ogy for high reliability applications. In: Suhir E (ed)

Micro-and opto-electronic materials and structures:

physics, mechanics, design, reliability, packaging.

Springer, New York

5. Ghaffarian R (2006) CCGA packages for space appli-

cations. Microelectron Reliab 46:2006–2024
6. Ghaffarian R (2004) Chapter 20. BGA assembly reli-

ability. In: Gilleo K (ed) Area array packaging hand-

book. McGraw-Hill, New York

7. Fjelstad J, Ghaffarian R, Kim YG (2002) Chip scale

packaging for modern electronics. Electrochemical

Publications, Isle of Man, UK

8. Ghaffarian R (2001) Chip scale package assembly

reliability. In: Puttlitz K, Totta PA (eds) Area array

interconnection handbook. Kluwer Academic, Boston

9. Tasooji A, Ghaffarian R, Rinaldi A (2006) Design

parameters influencing reliability of CCGA assembly

and sensitivity analysis. In: Proceedings of Itherm,

San Diego, May 30–June 2

10. Ghaffarian R (2012) Assembly and reliability of 1704

I/O FCBGA and FPBGAs. In: Proceeding IPC APEX

conference, San Diego, Feb-Mar 2012

11. Column Grid Array and Rework, IBM user’s guide-

line, 22 July 2002
Complex Variable Analysis

▶Thermal Stresses of Thin Films on Flexible

Substrates
Complex Variable Method

▶Goursat Functions of Thermoelastic Problem

of an Infinite Plate with Hypitrochoidal Hole

▶Orthotropic Rectangular Plate with a Rigid

Ribbonlike Inclusion, Thermal Stress
Composite

▶High-Order Theory, Composite Plates

▶Hygrothermal Effects on Polymeric Compos-

ite Materials and Sandwich Structures

▶Thick Plates, Reissner–Mindlin Theory, Stati-

cal Problems
Composite Structures

▶Thermomechanical Coupling in Plate and

Shell Structures – Some Significant Results

http://dx.doi.org/10.1007/978-94-007-2739-7_125
http://dx.doi.org/10.1007/978-94-007-2739-7_125
http://dx.doi.org/10.1007/978-94-007-2739-7_106
http://dx.doi.org/10.1007/978-94-007-2739-7_106
http://dx.doi.org/10.1007/978-94-007-2739-7_120
http://dx.doi.org/10.1007/978-94-007-2739-7_120
http://dx.doi.org/10.1007/978-94-007-2739-7_168
http://dx.doi.org/10.1007/978-94-007-2739-7_425
http://dx.doi.org/10.1007/978-94-007-2739-7_425
http://dx.doi.org/10.1007/978-94-007-2739-7_206
http://dx.doi.org/10.1007/978-94-007-2739-7_206
http://dx.doi.org/10.1007/978-94-007-2739-7_294
http://dx.doi.org/10.1007/978-94-007-2739-7_294


Computational Methods in Stationary and Nonstationary Thermal-Plasticity Problems 623 C
Computational Methods

▶Computational Methods in Stationary and

Nonstationary Thermal-Plasticity Problems
C

Computational Methods in
Stationary and Nonstationary
Thermal-Plasticity Problems

Pavlo Steblyanko1 and Yuriy Shevchenko2

1Dneprodzerzhinsk State Technical University,

Dneprodzerzhinsk, Ukraine
2Timoshenko Institute of Mechanics,

National Academy of Sciences of Ukraine,

Kiev, Ukraine
Synonyms

Computational methods; Thermal stresses;

Thermoplasticity
Overview

A geometrically linear statement of spatial

stationary and nonstationary problems of the

thermo-elasto-plasticity theory (TEPT) is

discussed. The set of governing equations is

presented by the heat conduction equation, the

displacement (balance) equations, the geometrical

relations, and the equations describing non-

isothermal processes of loading on both rectilinear

trajectories of deformation and trajectories of small

curvature in view of the history of loading. The

boundary and initial conditions are formulated

generically. The basic numerical methods for solv-

ing the stationary and nonstationary problems of

TEPT in three-dimensional cases are considered.
Introduction

In [1–9], the solutions to a number of stationary

and nonstationary TEPT problems have been
given. The physical relationship describing simple

or almost simple processes of deformation were

employed. Processes of deformation on trajectories

of small curvature were also considered for non-

isothermal deformation processes in an element of

a solid. The fundamental relationships for describ-

ing of such processes were derived and substanti-

ated experimentally at the Department of Thermal

Plasticity of Timoshenko Institute of Mechanics,

National Academy of Sciences of Ukraine [6–9].

An approach, which is based upon application

of the fractional-step method or component-wise

splintering method [1, 10] along with interpola-

tion of the quested-for functions by spline func-

tions [2–5], appears to be efficient for numerical

analysis of the spatial nonstationary TEPT prob-

lems. This approach exhibits the following

advantages:

• Its application is as simple as in the case of

finite-difference methods.

• The solution can be found in the form of

a spline for the entire domain of definition,

while the finite-difference method provides

a solution only on a grid [1–3, 10].

• The accuracy rate is much better, which

allows for using a larger grid in comparison

to the finite- difference method to achieve the

same accuracy of calculations [2].

Note that two-dimensional splines were used

when employing the fractional-step method [3, 5]

to approximate the unknown functions and their

partial derivatives on the coordinates. In the case

of plane strain, the splines can be used directly,

and, thus, the geometrical-parameter splintering

method needs not to be involved.
Statement of TEPT Problems

The main purpose of nonstationary TEPT prob-

lems consists in determination of the displace-

ments (displacement rates) and the stress-tensor

and strain-tensor components in a solid subjected

to the force loading and heating, when some of its

elements perform beyond the limit of the material

elasticity. Consider time-varying loading pro-

cesses, those that induce displacements in some

parts of a solid.

http://dx.doi.org/10.1007/978-94-007-2739-7_605
http://dx.doi.org/10.1007/978-94-007-2739-7_605
http://dx.doi.org/10.1007/978-94-007-2739-7_100084
http://dx.doi.org/10.1007/978-94-007-2739-7_100696
http://dx.doi.org/10.1007/978-94-007-2739-7_100754


C 624 Computational Methods in Stationary and Nonstationary Thermal-Plasticity Problems
Let us consider an isotropic homogeneous

body V with limiting surface S. At the initial

moment of time t ¼ 0, the body is in the natural

non-stressed state with temperature To(yi), where
i ¼ 1,2,3. The body is exposed to the heating and

force loading (volumetric forces influencing each

element of a body, external forces acting on the

entire surface or its part). On a part of the surface,

the displacement rates can also be given as func-

tions of the coordinates and time. Let us assume

that the heating and loading processes progress in

such a way that the rise of deformations does not

change the temperature of a body element signif-

icantly, and, furthermore, the rheological proper-

ties of the material can be disregarded.

The thermophysical properties of the material

can be characterized by the parameters of heat

conductivity and thermal conductivity, those that

are irrespective of the temperature. The heat

exchange conditions can be imposed as the bound-

ary conditions; the mechanical characteristics of

the material (when studying the processes of

deformation on rectilinear trajectories and small-

curvature trajectories) are assumed to be in the

form of instant stretching diagrams of specimens

for different fixed values of the temperature.

The formulated problem is aimed to determine

the temperature T, three components of the dis-

placement-rate vectorV, six components of stress

tensor S, and six components of the strain tensor

E (16 unknown functions of time and three coor-

dinates, in toto). For this goal achievement, the

displacement equations, the geometrical and

physical equations, and the heat conductivity

equation are to be employed.

Having neglected the generation of heat due to

the deformation process, the temperature field in

an isotropic body with no heat sources can be

determined from the following heat conductivity

equation [6]:
rCv
_T ¼ kijT;j

� �
;i

ð1Þ

where r, Cv, and kij (hereinafter i, j, . . .¼ 1, 2, 3)

are the mass density, the heat capacity per mass

unit at constant volume, and the thermal conduc-

tivity, respectively.
As it was mentioned above, the initial distri-

bution of temperature, which corresponds to the

natural non-stressed state, is as follows:
T ¼ T0ðyiÞ ð2Þ

Let the boundary condition, which reflects the

environmental influence on the temperature

within the body, have a form [6]
l � @T
@n

¼ �ay� q ð3Þ

Here n is the external normal to the surface

and ~l is the heat exchange coefficient. Generally,
the parameters a, y, q (a is a factor of proportion-
ality, y ¼ T – T0 is the temperature difference, q

denotes the heat flux) can depend on the time and

position. For different values of the parameters a,
y, and q, condition (3) presents three kinds of the
possible boundary conditions when (a) the tem-

perature is given on the surface (the boundary

conditions of the first kind), (b) the heat flux q

through the surface is given (the boundary con-

ditions of the second kind), and the heat exchange

between the body surface and the environment of

the temperature y is assumed (the boundary

conditions of the third kind).

After the temperature field for an arbitrary

moment of time is found, the components of the

displacement-rate vector and stress and strain ten-

sors are to be determined from the three differen-

tial equations, six geometrical equations, and six

physical equations. These 15 equations must be

accompanied with certain initial and boundary

conditions. The initial conditions are to be set for

all 15 unknown values at t ¼ 0 as follows:
V ¼ V0ðyiÞ; S ¼ S0 yið Þ; E ¼ E0 yið Þ ð4Þ

On a part of the surface, where external forces

b are given, the stress-tensor components should

satisfy three boundary conditions

sinðyk; tÞ ¼ sij � nj ð5Þ

where nj are the direction cosines of the external

normal to the surface. On the other part of the
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surface, where the displacement-rate-vector com-

ponents are given, the boundary conditions

appear as follows:
C

vi ¼ Viðyj; tÞ ð6Þ

The complete set of three boundary conditions

can also be formed by setting any of the condi-

tions (5) and (6).

When using a variant of the mixed solution

method, the three displacement-rate-vector com-

ponents and six stress-tensor components, for

which the boundary conditions are imposed, as

the basic unknown values. By means of the geo-

metrical Cauchy relations, the displacements can

be eliminated from physical relations (describing

the non-isothermal loading processes on both the

rectilinear trajectories of deformation and the tra-

jectories of small curvature) and determined later

by means of the known displacement-rate-vector

components. Having solved the problem, the reli-

ability of the used physical equations can be veri-

fied by the geometry of the deformation trajectory.
The Equations of Motion and
Geometrical Relations for Three-
Dimensional Bodies in Orthogonal
Coordinate Systems

In geometrically linear case, the equations of

motion for an infinitesimal volumetric element of

a continuous medium in an orthogonal coordinate

system can be written in the following form [2]:
€ui ¼ _vi ¼ 1

r
sij;j ð7Þ

When deriving formulae (7), the equations of

motion were employed, in which the first deriva-

tives by time of the displacement rates are used

instead of the second derivatives of the displace-

ment-rate-vector component by time:
vi ¼ _ui; i ¼ 1; 2; 3 ð8Þ

The equations of equilibrium of an infinitesi-

mal volumetric element of a continuous media in
an orthogonal coordinate system in geometrically

linear case can be given as [2]
sij;j ¼ 0 ð9Þ

In general case of an orthogonal coordinate

system, the strain tensor and displacement-vector

components are connected by the expressions

[6–8]
2eij ¼ ui;j þ uj; i;

ui;j ¼ @ ui
@yj

� uk � Gk
ji

ð10Þ

where Gk
ij are the Christoffel symbols.

For the rate of deformation, the following

formula
_eij ¼ 1

2
vi;j þ vj; i
� � ð11Þ

can be written. The system of equations (7), (11)

becomes complete by addition of the physical

equations connecting stresses and deformations.
The Governing Relations of TEPT

An important aspect of the solution construction

to the general nonstationary problems for

nonelastic bodies lies in an appropriate choice

for the governing relations connecting stresses

and strains. In general case, the deformations

depend on the variation of stresses and tempera-

ture and are determined through the characteris-

tics of the entire process of deformation (not only

through the current values). One can find the

extended reviews on this matter in [6–9].

Let us consider some simple deformation

processes, and similar to them, including ones

with regard to the small-curvature trajectories.

A trajectory, which swerves from the straight

lines connecting the origin of the coordinates

and a point on the trajectory (that corresponds

to the initial yield stress) not more than the

delay track of the vector properties of the mate-

rial (5 to 15 of the yield stress with respect to

deformation), is called a close to rectilinear
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deformation trajectory. In this case, the

smallest curvature radius of the deformation

trajectory appears to be greater than the delay

track. If the swerve from the strait line is greater

than the delay track and the curvature radius of

the deformation trajectory is smaller than the

latter one, then the deformation occurs on the

trajectory of small curvature [6–8]. Under such

conditions, the stress vector is directed tangen-

tially to the trajectories of irreversible

deformations.

To derive the physical relations, suitable for

analysis of both above-mentioned processes, we

split the loading process onto sufficiently small

stages of time. By making use of the Ilyushin’s

postulate [9] along with the law of elastic change

in a volume for each of these stages, the relations

between the stresses and strains can be written as

follows:
sij ¼ 2G�ðeij þ e
ðnÞ
ij Þ þ ð3l�e0 � KayÞdij ð12Þ

where
l� ¼ 2Gð1þ nÞ � 2G�ð1� 2nÞ
3ð1� 2nÞ ;

K ¼ 2Gð1þ nÞ
1� 2n

; e0 ¼ 1

3
ðe11 þ e22 þ e33Þ

The expressions for G* and e(n)ij may assume

different forms according to the chosen plasticity

relations model (simple processes off loading or

processes of small curvature).
The Theory of Small Elastic–Plastic
Deformations

When an element of a solid is loaded by the

rectilinear deformation trajectories or by ones

close to them, parameter G* is related to the

intensity of the tangential stresses and the addi-

tional shearing deformations. This function is

supposed to be independent of the type of the

stressed state. Therefore, it is to be determined

from the experimental stretching of specimens at

various temperatures [8]
G� ¼ s
2 1þ n�ð Þe ; n

� ¼ 1

2
� 1� 2n
2Gð1þ nÞ �

s
e

Here s and e are the axial stress and strain of

a specimen. In the case of active process of load-

ing, the components of nonelastic deformation

meet the condition

e
ðnÞ
ij ¼ 0;

or
e
ðnÞ
ij ¼ 1

2G�ð1Þ �
1

2G

� �
� sð1Þij � dijsð1Þ
� 

in the case of unloading. Here the superscript (1)

designates the corresponding values at the begin-

ning of unloading.

Having determined the aforementioned depen-

dency from the experiment of simple stretching of

a cylindrical specimen at different fixed values of

temperatures, we can construct the function
s ¼ Fðe;TÞ ð13Þ

This equation defines the so-called instant

thermomechanical surface, whose appearance

has been shown experimentally in [9].
Relations of the Theory of
Small-Curvature Processes

When an element of a solid is loaded on the

deformation trajectories of small curvature,

values of G* and e(n)ij, those that appear in phys-
ical relations (12), can be given as
G� ¼ G;e
ðnÞ
ij ¼

Xp
k¼1

Dke
ðnÞ
ij ð14Þ

Here e(n)ij are the nonelastic deformations accu-

mulated during the loading process, andDk e
(n)

ij are

the increments of these deformations at each stage

of loading.

It has been confirmed experimentally [9] that

a function of the type (13) is irrespective of the
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kind of stressed state for some classes of originally

isotropic materials. As a result, it can be deter-

mined experimentally by stretching the cylindrical

specimens. In this case, the nonelastic part of the

relative specimen elongation can be given as
C
eðnÞ ¼ e� s
2Gð1þ nÞ

Hence, the concretization of the governing equa-

tions can be reduced to the problem on the instant

thermomechanical surface (13). To evaluate this

function numerically, it must be approximated in

a certain manner. When solving numerically, the

equation of an instant thermomechanical surface of

the kind (13) can be given in a form of experimental

data table (s) i, (e) i, i ¼ 0,1. . ., N at fixed T.

Note that when solving nonstationary prob-

lems, the relationships (12) can be reduced to

the following form:

_sij ¼ aijkl _eij � dij Kaþ y
@ Kað Þ
@T

� �
_T ð15Þ

where aijkl are constants in the case of elastic

material or functional of the deformation process

in the case of plastic deformation [2].

Thus, apparently, formula (12) or (15) has

completed the system of equations for

constructing the solution of both stationary and

nonstationary three-dimensional problems of

thermo-elasto-plasticity. Having constructed

a solution by means of one or another type of

the governing equations in the Ilyushin space, the

deformation trajectory is to be constructed in

separate elements of the body that are being

deformed beyond the framework of elasticity [6].

As it was mentioned above, the form of defor-

mation trajectory in this space can serve as an

adequacy criterion of the governing equations

chosen for the considered process of deformation.

For the active loading, the condition
sij � dijs
� � � DeðnÞij 	 0

must hold. Otherwise, in compliance with the

elastic law, the unloading takes place.
Methods for Solution of the Stationary
Problems

There are following dominant methods for solu-

tion of the stationary TEPT problems [6–9]:

• The method of elastic solutions in the theory

of simple processes of deformation;

• The method of variable elasticity parameters

in the theory of simple processes of

deformation;

• The method of variable elasticity parameters

in the theory of small-curvature processes;

• The method of additional deformations in the

theory of small-curvature processes;

• The iterative method in the theory of arbitrary

deformation processes.

When the method of elastic solutions is used

to solve the stationary TEPT problems within the

framework of the theory of simple deformation

processes, the system of nonlinear equations (9),

(10), and (12) can be used to determine the compo-

nents of stresses, strains, and displacements at each

stage of deformation (loading). Nonlinearity of this

system of equations is caused by the nonlinear

functional dependence between the intensity of

the tangential stress and the shearing strain, tem-

perature, and time. This system can be solved in

terms of either displacements or stresses. To solve

the TEPT problem in terms of displacements, it is

necessary to eliminate the stress and strain compo-

nents from the system of 15 equations (9), (10), and

(12). For this purpose, the physical relations can be

represented in the form of generalized Hooke’s law

with additional members. Ultimately, the system of

three partial differential equations in terms of dis-

placements appears as follows:

G � H2ui þ Gþ lð Þ uj; j
� �

; i
¼ Ri ð16Þ

where Ri are the additional members which are to

be specified at each stage of loading on the basis

of the previous iteration. Values of G and l are

taken at the given value of T0 . Equation (16) must

be supplemented with appropriate boundary con-

ditions. On the part of the surface, where the

external forces b with components bi are given,

the stress-tensor components should satisfy three

static boundary conditions
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sij � nj ¼ biðykÞ

These conditions can be written in terms of

displacements by means of relations (12).

On the part of the surface, where the displace-

ment-vector components are given, the boundary

conditions appear as
ui ¼ UiðyjÞ

When solving equation (16) numerically, the

loading process must be split into a number of

stages so that the moments of time, those that

limit the separate stages, coincide with the

moments of change of the deformation process

from the loading to unloading and vice versa.

Besides the method of the elastic solutions,

there exist other iterative methods for solution of

the systems of nonlinear equations (9), (10), and

(12) in the theory of simple deformation processes.

One of them is the method of variable elasticity

parameters. The central idea of this method con-

sists in the following: the governing equations are

formulated in much the same form as the Hooke’s

law in one of its representations with elasticity

coefficients G and l depending (except for the

last one) on the temperature and stress–strain

state. Hence, the solution of the TEPT problem

can be reduced to the sequential solution of

a number of elasticity problems with the variable

coefficients, which are found for every approxi-

mation. The efficiency of this method is in a rapid

convergence of the successive approximations and

in the fact that it is enough to hold only one

approximation for each short-term loading stage.

It is necessary, however, to verify the satisfaction

of the basic equations for the complete values of

stresses, strains, and displacements. The basic

equations are usually being solved approximately

for the increments of these functions and, when

they are summed up, the computational error is

being accumulated necessarily. That is why it is

necessary to verify this error on each stage of

computation and put the results into the adjust-

ment data for the next approximation. In addition,

the tangential module of the stress–strain diagram

must be accounted in the governing equations for

increments of the quested-for functions. For
stability of the computational process, it is neces-

sary to approximate these diagrams by an appro-

priate analytical expression and then set a dense

grid of transient stress–strain diagrams for speci-

mens at different fixed values of the temperature.

The above-considered drawbacks can be obvi-

ated, in part, when applying the method of addi-

tional strains. In [6], this method is called the

modified method of additional strains. The system

of equations (9), (10), and (12) can be written for

each stage of loading in terms of the total strains

instead of their increments. Therefore, the succes-

sive approximation must be performed on each

stage irrespectively of the stage size.

The above-mentioned methods can be used for

solving TEPT problems, when the governing

equations do not contain the parameters character-

izing the interior geometry of the deformation

trajectories of body elements. In [9], we suggested

a method of successive approximations for solu-

tion of TEPT problems employing the governing

equations that describe the processes of deforma-

tion (loading) on arbitrary trajectories. The physi-

cal relations, which determine the dependency

between the components of stress and strain devi-

ators based on the structural model of the environ-

ment in an implicit form, can be used as well.

The central idea of the successive approxi-

mations in the theory of the arbitrary defor-

mation processes lies in the following. First, the

problem is to be solved for the process of loading

on the basis of the governing equations, those do

not contain the parameters characterizing the

geometry of deformation trajectory for each ele-

ment of the body. One of the above-mentioned

methods can be used for this goal achievement.

Then for each element of the body, where the

stress–strain state can be treated as uniform, the

deformation trajectories are constructed in the five-

dimensional deformation space. After that, the

parameters of the structural model of the continu-

ous environment can be specified and the process

of the stresses component changes is calculated by

the trajectory geometry (curvature, torsion). The

obtained values should correspond to the obtained

deformation trajectories and the corresponding

equations of the relationship between the stresses

and strains. The above-described solution
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algorithm is to be repeated until achievement of the

required accuracy for the stresses.
C

The Methods for Solution of
Nonstationary Problems

The dominant methods for solution of

nonstationary TEPT problems are the following

[1–4, 10]:

• The finite differences method (in the theory of

simple deformation processes);

• The finite elements method (in the theory of

simple deformation processes and the theory

of small-curvature processes);

• The method of splitting on geometrical prop-

erties (in the theory of simple deformation

processes and the theory of small-curvature

processes).

Within the framework of the finite differences

method and the method of finite elements, the

solution of nonstationary TEPT problems can be

reduced to the systems of a large number of alge-

braic equations constructed by the classical

scheme [1–3, 10]. The essence of this scheme

lies in the substitution of the differential operators

in the complete system of equations (9), (10), and

(12) by their difference analogues. According to

the form of the physical relations, different vari-

ants of these methods can be employed.

In [2], a new high-precision variant of the

method of component-wise splintering has

been suggested for solution of nonstationary

thermoelasticity and thermoplasticity problems.

The rates of displacements (the latter ones are

determined by means of integration of the

corresponding rates by time) as well as stresses,

strains, and temperature are chosen to be basic

unknowns. All the unknown functions appear to

be functions of the time and coordinates. Then the

system of equations (9), (10), and (12) yields [2]
_W ¼ A1W;1 þ A2W; 2 þ A3W; 3 ð17Þ

where W is a vector, whose components can be

the rates of displacements vi, the stress tensor sij,
or the strain tensor eij components.
For writing of the vector equation (17), the

equations of motion (7), geometrical relations

(11), and the physical relations (15) were used.

When using the component-wise splintering

method, system (17) and heat conduction equa-

tion (1) are to be replaced with an equivalent

system of equations. For this purpose, a time-

grid with fractional step must be taken into con-

sideration. Then the splitting scheme for equation

(1) can be presented as follows [4]:

rCv
_T¼ ki1T;1

� �
;1
; t2 tp; tpþ1=3


 �
rCv

_T¼ ki2T;2

� �
;2
; t2 tpþ1=3; tpþ2=3


 �
rCv

_T¼ ki3T;3

� �
;3
; t2 tpþ2=3; tpþ1


 � ð18Þ

The algorithm for determination of the tem-

perature field in a body, constructed on the basis

of formulae (18), can combine the advantages of

the explicit difference scheme and the implicit

scheme [2, 4, 10]. At each of the consecutive

steps on time, three one-dimensional equations

are to be solved. The solution of the previously

solved equation serves as the initial condition for

the subsequent equation.

As mentioned in [2, 10], the original

nonstationary spatial problem (17) can be

reduced to the system of three successively

solved one-dimensional problems equivalent on

fraction steps on time:
_W ¼ A1W; 1; t 2 ½tp; tpþ1=3�
_W ¼ A2W;2; t 2 ½tpþ1=3; tpþ2=3�
_W ¼ A3 W;3; t 2 ½tpþ2=3; tpþ1�

ð19Þ

The solution of the previous vector equation

serves as the initial condition for the subsequent

equation.

Conclusions

In the given entry, questions are taken up

connected with development and application of

the basic numerical methods of the decision of

stationary and nonstationary problems of the

theory TEPT for spatial bodies at simple and

complex deformation.



C 630 Computational Welding Mechanics
References

1. Steblyanko PA (1997) Spatial non-stationary prob-

lems of the theory thermo-elastic-plasticity. Institute

of Mechanics NAS of Ukraine, Kyiv [in Russian]

2. Steblyanko PA (1998) Methods of decomposition in

space problems of the theory of plasticity. Naukova

dumka, Kyiv [in Russian]

3. Steblyanko PA (1999) Method of the decision of non-

stationary problems of the theory of plasticity. Prize,

Tver [in Russian]

4. Steblyanko PA (2003) The schemes of abnormally

high accuracy solution of non-stationary problems of

theory of the thermo-elastic-plasticity for plates and

shells. Thermal Stresses and Related Topics. Proc. 5th

Int. Conf., Blacksburg, Virginia, 2003, pp 231–234

5. Steblyanko PA, Shevchenko YuN (2007) Calculation

of temperature non-stationary stress-strained state of

composite shall on the basis of combined 2D model

with 3D elements. 7th Int. Congress on Thermal

Stresses and Related Topics, Taipei, Taiwan, 4–9

June 2007, pp 647–650

6. Shevchenko YN, Babeshko ME, Piskun VV,

Savchenko VG (1980) Space problems thermal-plas-

ticity. Naukova dumka, Kyiv [in Russian]

7. Shevchenko YN (1986) Space problems of the theory

elasticity and the theory plasticity, vol. 6: the thermo-

viscous plasticity. Naukova dumka, Kyiv [in Russian]

8. Shevchenko YN, Savchenko VG (1987) The mechan-

ics of coupled fields in elements of constructions, vol.

2: the thermo-viscous plasticity. Naukova dumka,

Kyiv [in Russian]

9. Shevchenko YN, Babeshko ME, Terehov RG

(1992) Thermoviscoelastoplastic processes of the

combined deformation of structural elements,

Naukova dumka. Ukraine, Kyiv [in Russian]

10. Marchuk GI (1988) The method of decomposition.

Nauka, Moscow [in Russian]
Computational Welding Mechanics

Lennart Karlsson1 and John Goldak2

1Engineering Sciences and Mathematics,
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Definition

Computational welding mechanics (CWM)

establishes methods and models that are usable

for control and design of welding processes to
obtain appropriate mechanical performance of

the welded component or structure. CWM can

also be used to drive solutions in product devel-

opment of welded products and structures. There-

fore, CWM needs to be concerned with subjects

ranging from modeling of heat generation, weld

pool phenomena, and heat flow to thermal

stresses and deformations. Constitutive modeling

(building on materials science) is an essential

ingredient in the modeling of welding processes

due to the severe thermal cycle(s) during

welding. CWM models often need to be com-

bined with models for microstructure evolution

and other features that enable the prediction of

microstructure, cracking, and other phenomena

that are determined by the temperature and defor-

mation history of the material.
Overview

The field of computational welding mechanics

(CWM) is partially built upon earlier work

within the fields of thermal, mechanical, and

metallurgical (microstructural) properties of

materials. The principles and applications of

CWM have been described by Karlsson [1]

Goldak [2], and Lindgren [3]. Welding simula-

tion is a good example of how mechanics of

materials and structures can be put to practical

use with the support of computers. The essential

features of CWM are the following: (1) it

requires solving the nonlinear, coupled three-

dimensional transient partial differential equa-

tions (PDEs) for heat flow (conservation of

energy), microstructure evolution, and stress–

strain evolution (conservation of momentum);

(2) the material properties are temperature

dependent and history dependent and involve

phase changes; (3) the welding process usually

adds material, that is, filler metal, that makes the

geometric domain a time-dependent free-

surface problem; (4) the boundary conditions

applied by fixtures, clamps, and tack welds are

complex and transient; (5) the geometry of

welded structures is often complex with many

parts; and (6) modeling the heat source of the arc

is itself complex.
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C

The centerpiece in welding simulations is the

heat generation process. Its description belongs

to the domain of thermomechanics in the case of

explosive welding, friction welding, and friction

stir welding. Resistance welding also includes the

electrical field. However, the process becomes

much more complex for fusion welding pro-

cesses. Weld process modeling (WPM) focuses

on modeling the physics of the heat generation.

CWM models, on the other hand, start with

a given heat input that replaces the details of the

heat generation process and focus on the larger

scales. The modeling of fluid flow and pertaining

convective heat transfer may be integrated with

a CWM model. However, the classical approach

in CWM is to ignore the fluid flow and use a heat

input model where the heat distribution is pre-

scribed. Thus, the heat input model in CWMmust

be calibrated with respect to experiments or

obtained fromWPMmodels. Therefore, the clas-

sical CWM models do have some limitations in

their predictive power when used to solve

different engineering problems. For example,

they cannot prescribe what penetration a given

welding procedure will give. Appropriate

procedure to determine the heat input model is

therefore important in CWM.

The use of computational models does not

replace experimental methods, but redefines

their role. Fewer experiments are needed for eval-

uation of different design concepts when utilizing

the power of computer models. Furthermore, the

more established simulation becomes in a given

field, the less validation testing is needed. How-

ever, more demands are placed on determination

of material properties and boundary conditions

needed for the computational model.
Flow in fluid

Heat transfer
generation

Deformation in
solid

Material
properties

Computational Welding Mechanics, Fig. 1 Different

field equations in CWM together with weld process

models
Constituents of Computational Welding
Mechanics

As illustrated above, welding is a multiphysics

problem where the physical phenomena are

described by different coupled field equations

that overlap or have a common boundary.

Fortunately, many welding processes can be

represented by simplified models. The main
stream in CWM is the use of weakly coupled

models where the physics in the weld is replaced

by a heat input model. A general description

about procedures for solving coupled systems is

given in this entry, with focus on the use of the

so-called staggered approach common in CWM,

whereby the solution of the problem is split into

a thermal and a mechanical phase. There are

several options available in the thermal and

mechanical analyses. One common concern is

the choice of coordinate system. Most models

use a fixed coordinate system. However, the

moving heat source with near stationary

conditions can be favorably treated by a moving

coordinate system in some cases.
Decoupling of the Subdomains of
Welding Simulations

In Fig. 1, a general view of the relevant fields in

welding simulations is shown. The field “physics

of heat generation” denotes a generic representa-

tion for all possible welding processes. Simula-

tions of this type require weld process models in

combination with the CWM model. This kind of

multiphysics is not discussed further in this entry.

The distribution of heat input is usually

predefined in CWM models. It is determined by

calibrating the model with respect to measure-

ments. A heat input model, as illustrated in

Fig. 2, replaces the “physics of heat generation”

field. The domains of the fields “fluid flow” and

“deformation in solid” in Fig. 1 have a common

interface at the weld pool boundary.
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CWM modeling of fusion welding, with a heat input

model instead of a weld process model
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Computational Welding Mechanics, Fig. 3 Fields in

classical CWM modeling of fusion welding without

a welding process model and without fluid flow
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ComputationalWeldingMechanics, Fig. 4 Couplings

in thermomechanical models

Computational Welding Mechanics,
Table 1 Thermomechanical couplings in Fig. 4

Coupling Description

1 Temperature changes drive the deformation via

thermal expansion and volume changes due to

phase changes denoted by coupling No 6

2 (a) Deformation generated heat

(b) Deformation affects thermal boundary

conditions

3 Thermal properties depend on microstructure,

and phase changes are associated with latent

heats

4 Thermal-driven phase changes

5 Deformation-driven phase changes

6 The mechanical material behavior depends on

the microstructure and temperature
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Most analyses in CWM ignore the fluid flow

and prescribe the distribution of the heat input

and the coupling scheme as shown in Fig. 3.

A fully coupled solution of these fields is thor-

oughly discussed in Lindgren [3] Chapter 3.2

(p 16) and Chapter 3.3 (p 24).

The coupling between material behavior and

temperature and deformation fields are shown in

Fig. 4 and explained in Table 1. The plastic dis-

sipated energy, coupling No 2a, is the largest

contribution to the mechanically generated heat

but still negligible compared to the heat input [4].

Furthermore, if the effect of the deformation on

thermal boundary conditions, coupling No 2b,

can be ignored, then a weakly coupled analysis

can be done. The complete simulation of the heat

flow is then followed by the deformation simula-

tion. The temperature is read from the file in the

latter simulation. This file was saved during the
thermal simulation. However, in nearly all cases,

it is most convenient to use a staggered approach

for weakly coupled problems, Lindgren [3]

Chapter 3.1 (p 10), as the thermal analysis does

not add much to the required computer time, and

one does not need the bookkeeping necessary for

assuring that the correct temperature file is read

during a subsequentmechanical analysis. Figure 5

shows the staggered procedure, which is

convenient to use in CWM simulations.

Thermal stress problems can usually be

treated as quasi-static problems. Then, the inertia

forces are ignored in the mechanical analysis.

This is also the case for welding processes, with

the exception of explosive welding, where the

deformation generates the heat.
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Example

In this section, an example is presented. In this

example, the CWM approach as presented above

is applied, that is, the staggered approach is used.

Here, the modeling and simulation software

VrWeld from Goldak Technologies Inc. [5] has

been used to demonstrate the proposed strategy.

As will be noted below, a traditional moving heat

source solution is compared to a so-called block-

dumping heat source solution. The main reason

for using the block-dumping technique is

increased simulation efficiency, particularly for

simulation-driven design applications.
conduction analysis with fixed geometry
Simulation Strategy

Karlsson et al. [6] proposed a welding simulation

strategy for improved efficiency of welding simu-

lation. This simulation strategy reduces the calcu-

lation time for welding simulations by replacing the

traditional moving heat source with a calibrated

block-dumping heat source. The block-dumping

heat source is calibrated to give a good compromise

between simulation accuracy and calculation time,

thus allowing a larger design space to be explored

during a given period of time. A rear axle bridge

from a Volvo Construction Equipment wheel

loader is used as a demonstrator case to show that

steps 1–6work on an industrial application. Twenty

different welding sequences are compared to find

the welding sequence that gives the smallest

welding distortion at key positions.
Welding Case Study

The object of this case study is a rear axle bridge

from a Volvo Construction Equipment wheel

loader. The axle bridge is positioned in the rear

frame according to Fig. 5. An axle working as

a pivot for the rear axle assembly is mounted in

the two holes in the axle bridge. The axle is

supported by journal bearings, which are lubri-

cated with oil from the rear axle differential. The

concentricity between the two holes and the par-

allelism and perpendicular alignment between
the plates are two important tolerance demands

for the axle bridge. Due to these requirements, it

is important that the welding process used to

manufacture the axle bridge does not introduce

excessive deformations. Therefore, the aim of

this case study is to derive a suitable welding

sequence that minimizes the welding distortion

in the axle bridge. Identifying the proper welding

sequences is done by use of the proposed simula-

tion strategy (Fig. 6); see Table 2.
Welding and Material Properties

The three plates are joined by welds a–d in Fig. 7;

the welds have a throat size of 6 mm. The axle

bridge is manually tack-welded with 40-mm long

tack welds at start, mid, and end of the four welds.

The tack welding is performed in a separate fix-

ture; the tack-welded axle bridge is then posi-

tioned in the welding fixture shown in Fig. 7. An

automated MAG welding process then applies the

four welds (see Table 3 for welding parameters).
Geometry and Preprocessing

A CAD model of the axle bridge assembly was

provided by the manufacturer. This CAD model

was imported to Siemens PLMNX6, where small

features were removed to ease the meshing
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Mechanics, Fig. 6 Rear

frame and rear axle bridge

Computational Welding Mechanics, Table 2 Welding simulation strategy for simulation-driven design

1. Welding and material parameters. Gather information about the real welding process, such as welding method,

welding speed, welding power, and welding efficiency. The material parameters

include thermal and mechanical properties

2. Geometry and preprocessing. Create CAD geometries of welded parts, and possibly each weld, and import

them into the welding simulation software (STL-files in VrWeld), where the

initial simulation mesh is created. Another approach is to create the initial mesh

with external software and then import it into the welding simulation software

(ABAQUS is one example of a mesh format supported in VrWeld). Define

mechanical and thermal constraints, material models, and weld paths. Apply

boundary conditions and external loads

3. Heat source and mesh calibration. (a) Calibrate the moving heat input model, for example, by results from

thermocouple measurements or weld cross section samples. (b) Calibrate the

mesh for a suitable compromise between accuracy and calculation time. This is

normally done by running three or more simulations with varying mesh density

and then evaluating how the result converges

4. Block dump calibration. Run a series of block dump weld simulations with varying numbers of block

dumps. Compare the results from a moving heat source simulation with the

block dump simulation results to evaluate how many block dumps are needed to

achieve the required accuracy of the simulation. If a moving heat source

simulation will be too time consuming, the needed number of block dumps can

be decided by observing result convergence for an increasing number of block

dumps. The level of accuracy is often case specific. Therefore, the decided

number of block dumps can be applicable for similar products

5. Design space exploration (DSE) Use the calibrated block-dumping simulation to explore the design space, for

example, welding sequences, welding parameters, weld geometries, and

designs. The use of design of experiments (DoE) or optimization can further

increase the efficiency of the DSE

6. Verifying results with moving heat

source simulation

Compare a portion of the result from the DSE to corresponding simulations with

a moving heat source or with an increased number of block dumps to ensure that

results obtained in the previous step are accurate enough

7. Physical testing and/or

manufacturing

Proceed with physical testing and/or manufacturing based on the results

achieved from the welding simulations. The amount of physical testing should at

this stage have been reduced compared to a situation where no welding

simulations have been performed

C 634 Computational Welding Mechanics



a

b

c

d

Computational Welding
Mechanics, Fig. 7 Photo

of real axle bridge placed in

its welding fixture. The

weld joints (a–d) are

marked with red lines;

welds a and c are placed

underneath the center plate

Computational Welding Mechanics,
Table 3 Welding parameters

Parameter Value

Power 10,880 W (34 V, 320 A)

Efficiency 85 %

Welding speed 37 cm/min
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process. The idealized part shown in Fig. 8 was

exported to the welding simulation software

(VrWeld) in STL format. The simulation model

was then created in VrWeld by defining weld

joints, assigning materials, creating an initial

mesh and assigning initial and boundary condi-

tions, etc. The material model described by

Andersson [7] was used for both plates and filler

metal. The used fixture shown in Fig. 7 prevents

rigid body motions (locks six DOFs) without

restraining the growth/shrinkage of the plates.

This fixture modeling method was used, since

the real fixture only clamps one of the plates

and should therefore not have a large impact on

the welding distortions. The welding distortion in

the rear axle bridge was measured as the global

displacement of points P1 and P2. The global

ambient temperature is set to 300� K.
CWM Results

Both simulation approaches predict the same

welding sequences to give the smallest and largest

welding distortions in P1 and P2; see Fig. 9.

Welding sequences 1–4 are welded with full-

length welds only and simulated in 170 time

steps. Welding sequence 20 is welded with two

full-length welds and four half-length welds and

simulated in 250 time steps. Welding sequences

5–19 are welded with eight half-length welds and

simulated in 330 time steps. The moving heat

source is simulated in 450 time steps. Hence, the

number of time steps has then been reduced by

60 % (welding sequences 1–4), 45 % (welding

sequence 20), and 25% (welding sequences 5–19).
The Future of CWM

CWM was conceived in the late 1900s and has

now reached a degree of maturity. The software

has largely been commercialized and is rapidly

being adopted by the welding industry. The next

stages in the evolution of CWM in welding tech-

nology are expected to focus on the following

developments:
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• Real-time CWM, that is, the time to solve a 3D

transient nonlinear-coupled CWM problem

for transient temperatures, microstructure

evolution and stress, strain, and displacement

while welding large welded structures with

roughly 1-s temporal resolution and 1-cm spa-

tial resolution, will be less than the welding

arc time. For analysis of some large complex

structures, with arc speeds that are not too fast,

it is judged that commercial software for use

with desktop computers will be available in

2012. If some preprocessing is permitted, then

this will also most likely be available in 2012
for structures using very fast welding pro-

cesses, such as laser welding. At this point,

the time and cost of high-resolution CWMwill

become a negligible part of the total cost of

product development.

• Designer-driven optimization in a design

space and the design of optimal experiments

will enable designers to explore larger, more

complex virtual design spaces to better opti-

mize designs and to choose optimal designs to

be built and tested that reduce the time and

cost of development and increase the quality

of the product.
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• Black boxes for welding will be developed

that log data characterizing each weld. These

will be similar to the black box flight recorders

on aircraft. As sensors systems, cell phones

and iPads are integrated into welding systems;

large amounts of data will be collected for

every weld in a structure. Computer vision

will play a major role. This is called big data,

and data analytics will be important.

CWM will become part of a holistic software

analysis framework that integrates design with

the manufacturing chain, in-service operation,

and maintenance.
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Synonyms

Divergence equations; Electric field-electric

potential relations; Equation of heat conduction;

Fourier law of heat conduction; Strain-

mechanical displacement relations; Stress equa-

tions of motion
Definition

Thermal stress analysis is fundamental in the

structural analysis of multilayered structures;

the temperature variations are one of the most

important factors for the stress fields that can

cause failure of such structures. The effects of

heat on the deformations and stresses of solid

elastic bodies are considered by the theory of

thermoelasticity. It is also possible that

a deformation of the body produces changes in

its temperature, which means that the effect of the

temperature field on the deformation field is not

a one-way phenomenon. These features demon-

strate that the mechanical and thermal aspects are

coupled and inseparable, and this coupling
considerably complicates the computational

aspect of solving actual thermoelastic problems.

In order to obtain refined thermomechanical

models which are able to analyze multilayered

shells, the use of appropriate constitutive and

geometrical relations is mandatory. These rela-

tions are here discussed in details for shell geom-

etries; plate geometries can be seen as particular

cases.
Overview

Thermal effects on a body made of traditional

materials are limited to strains due to the temper-

ature gradient, which is a datum for the stress

analysis. In the case of sophisticated materials

(e.g., high-performance composites), thermal

effects can also include heat production due to

strain rate; in this case, thermal and stress ana-

lyses are coupled [1].

Thermoelasticity is a branch of applied

mechanics which investigates the effects of heat

on the deformations and stresses of solid elastic

bodies. It is a sort of extension of the conventional

theory of isothermal elasticity to those processes in

which deformations and stresses are produced by

both mechanical forces and temperature varia-

tions. Thermoelastic processes are not totally

reversible; in fact the elastic part may be reversed,

but the thermal part may not be reversed because

of the dissipation of energy which takes place

during heat transfer. The effect of the temperature

field on the deformation field is not a one-way

phenomenon because a deformation of the body

also produces changes in its temperature; these

effects suggest the idea that the mechanical and

thermal aspects are coupled and inseparable [2].

The thermoelastic problem, where the effects of

the temperature gradient on the deformation/stress

fields are considered, can be defined as a partial

coupled thermomechanical problem. Otherwise

full coupled thermomechanical problems are

defined when also the temperature due to defor-

mations is included.

In order to obtain a full coupled thermome-

chanical analysis of one-layered andmultilayered

isotropic and composite shells, opportune
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constitutive equations must be introduced where

the coupling between the elastic and thermal

fields is clearly involved. Such constitutive equa-

tions can correctly be applied to shells if oppor-

tune geometrical relations are defined; these last

allow the strains with the displacements and the

temperature gradient with the sovra-temperature

to be linked.
Basic Methodology

The coupling between the mechanical and ther-

mal fields can be determined by using thermody-

namical principles and Maxwell relations [3–6];

therefore, a Gibbs free-energy function G and

a thermomechanical enthalpy density H [2, 6]

must be defined. The thermomechanical enthalpy

density H can be written in a quadratic form for

a linear interaction, and constitutive equations are

obtained as partial derivatives of this quadratic

form.

The constitutive equations proposed are

completely defined if the thermomechanical geo-

metrical relations for shells are introduced; these

last link the strain components with the displace-

ment vector and the spatial gradient of tempera-

ture with the scalar sovra-temperature.
Constitutive Equations

Constitutive equations, for the thermomechanical

problem, are obtained in according to that

reported in Brischetto and Carrera [7] and Carrera

et al. [8] where the coupling between the mechan-

ical and thermal fields is investigated by using

thermodynamical principles and Maxwell

relations [3–5, 9]. Therefore, it is necessary to

define a Gibbs free-energy function G and

a thermomechanical enthalpy density H [2, 6]:
Gðeij; yÞ ¼ sijeij � �y ð1Þ

Hðeij; y; #iÞ ¼ Gðeij; yÞ � Fð#iÞ ð2Þ

where sij and eij are the stress and strain compo-

nents. � is the variation of entropy per unit of
volume, and y the sovra-temperature considered

with respect to the reference temperature T0. The

function Fð#iÞ is the dissipation function which

depends on the spatial temperature gradient #i:
Fð#iÞ ¼ 1

2
kij#i#j � t0 _hi ð3Þ

where kij is the symmetric, positive semidefinite

conductivity tensor. In the second term, t0 is

a thermal relaxation parameter, and _hi is the

temporal derivative of the heat flux hi. The ther-

mal relaxation parameter is usually omitted in

most of the thermomechanical problems ana-

lyzed. Further details about the dissipation func-

tion Fð#iÞ can be found in Altay and Dökmeci [3]

and Yang et al. [9].

The thermomechanical enthalpy densityH can

be expanded in a quadratic form for a linear

interaction:
Hðeij; y; #iÞ ¼ 1

2
Qijkleijekl � lijeijy

� 1

2
wy2 � 1

2
kij#i#j

ð4Þ

where Qijkl is the elastic coefficients tensor con-

sidered for an orthotropic material in the problem

reference system and lij are the thermomechanical

coupling coefficients. w ¼ rCv

T0
where r is the mate-

rial density, Cv is the specific heat per unit mass,

and T0 is the reference temperature [7, 8].

The constitutive equations are obtained by

considering the following partial derivatives:
sij ¼ @H

@eij
; � ¼ � @H

@y
; hi ¼ � @H

@#i
ð5Þ

By considering (4) and (5), the constitutive

equations for the thermomechanical problem are

explicitly given:
sij ¼ Qijklekl � lijy ð6Þ

� ¼ lijeij þ wy ð7Þ

hi ¼ kij#j ð8Þ
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Single-subscript notation is introduced by

using the indexes m ¼ q ¼ 1; 2; 3; 4; 5; 6 and

i ¼ j ¼ 1; 2; 3:
sm ¼ Qmqeq � lmy ð9Þ

� ¼ lqeq þ wy ð10Þ

hi ¼ kij#j ð11Þ

From the equations written in single-subscript

notations, it is easy to write their matrix form

where the matrices and vectors are indicated in

bold. Equations (9)–(11) are written for a generic

k layer in the problem reference system (a; b; z)
for a generic multilayered shell:

sk ¼ Qkek � lkyk ð12Þ

�k ¼ lkTek þ wkyk ð13Þ

hk ¼ kkqk ð14Þ

where the sovra-temperature yk, the term wk, and
the entropy per unit volume �k are scalar vari-

ables in each k layer. T indicates the transpose of

a vector. The (6� 1) stress and strain compo-

nents are
sk ¼

skaa
skbb

skzz
skbz

skaz
skab

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
; ek ¼

ekaa
ekbb

ekzz
gkbz

gkaz
gkab

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ð15Þ

The (3� 1) vectors of heat flux hk and spatial

gradient of temperature qk are
hk ¼
hka

hkb

hkz

8><>:
9>=>;; qk ¼

#k
a

#k
b

#k
z

8>><>>:
9>>=>>; ð16Þ

The (6� 1) array of thermomechanical cou-

pling coefficients lk is
lk ¼ Qk ak ¼

lk1
lk2
lk3
0

0

lk6

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð17Þ

where the elastic coefficients matrix Qk of Hooke

law, in problem reference system for an

orthotropic material [10], is
Qk ¼

Qk
11 Qk

12 Qk
13 0 0 Qk

16

Qk
12 Qk

22 Qk
23 0 0 Qk

26

Qk
13 Qk

23 Qk
33 0 0 Qk

36

0 0 0 Qk
44 Qk

45 0

0 0 0 Qk
45 Qk

55 0

Qk
16 Qk

26 Qk
36 0 0 Qk

66

26666666664

37777777775
ð18Þ

the vector ak has (6� 1) dimension, and it con-

tains the thermal expansion coefficients:
ak ¼

ak1
ak2
ak3
0

0

0

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð19Þ

The matrix kk of conductivity coefficients has

(3� 3) dimension:
kk ¼
kk11 kk12 0

kk12 kk22 0

0 0 kk33

264
375 ð20Þ

Each component proposed does not change in

the case of plate geometry; the curvilinear coor-

dinates a and b are replaced with the rectilinear

ones x and y, respectively.



α

β

a

z

b

h

Constitutive and Geometrical Equations for the Thermomechanical Analysis of Shells 641 C

C

Geometrical Relations

A thin shell is a three-dimensional body bounded

by two closely spaced curved surfaces; the dis-

tance between these two surfaces is small in com-

parison with the other dimensions. The middle

surface of the shell is the locus of points which lie

midway between these surfaces. The distance

between the surfaces along the normal to the

middle surface is the thickness of the shell at

that point [11]. An example of geometry and

reference system for a doubly curved shell is

indicated in Fig. 1. The square of an infinitesimal

linear segment in the k layer and the associated

infinitesimal area and volume are
Rα
Rβ

Constitutive and Geometrical Equations for the
Thermomechanical Analysis of Shells, Fig. 1 Geom-

etry and reference system for a multilayered shell
ds2k ¼ Hk
a
2
da2k þ Hk

b
2
db2k þ Hk

z

2
dz2k ð21Þ

dOk ¼ Hk
aH

k
bdakdbk ð22Þ

dVk ¼ Hk
aH

k
bH

k
z dakdbkdzk ð23Þ

where the metric coefficients are
Hk
a ¼ Akð1þ zk=R

k
aÞ;

Hk
b ¼ Bkð1þ zk=R

k
bÞ; Hk

z ¼ 1
ð24Þ

k denotes the kth layer of the multilayered shell;Rk
a

and Rk
b are the principal radii of curvature along

the coordinates ak and bk, respectively. A
k and Bk

are the coefficients of the first fundamental form of

Ok (Gk is the Ok boundary). If the attention is

restricted to shells with constant radii of curvature

(cylindrical, spherical, toroidal geometries), Ak

and Bk equal 1. The geometrical relations for

shells, in case of thermomechanical problems,

link the mechanical strains with the displacement

vector and the spatial gradient of temperature with

the scalar sovra-temperature. These relations are:
ek ¼ ðekaa ekbb ekzz gkbz gkaz gkabÞ
T ¼ ðDk þ AkÞuk

ð25Þ

qk ¼ ð#k
a #

k
b #

k
zÞ

T ¼ �Dk
t y

k ð26Þ
where ek is the strain vector, uk ¼ ðuk vk wkÞT is

the displacementvector,qk is the spatial gradientof

temperature, and yk is the scalar sovra-temperature

referred to the reference external room temperature.

Tmeans the transpose of a vector. The explicit form

of the introduced arrays is

Dk ¼

@ak
Hk

a
0 0

0
@bk
Hk

b
0

0 0 @zk

0 @zk
@bk
Hk

b

@zk 0
@ak
Hk

a

@bk
Hk

b

@ak
Hk

a
0

2666666666666664

3777777777777775
; Dk

t ¼

@ak
Hk

a

@bk
Hk

b

@zk

26664
37775

Ak ¼

0 0 1
Hk

aR
k
a

0 0 1
Hk

bR
k
b

0 0 0

0 � 1
Hk

bR
k
b

0

� 1
Hk

aR
k
a

0 0

0 0 0

266666666664

377777777775

ð27Þ
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The symbols in differential operators matrices

indicate the partial derivatives @ak ¼ @
@ak

,

@bk ¼ @
@bk

, and @zk ¼ @
@zk
. The parameters Hk

a and

Hk
b equal 1 in case of plates because the radii of

curvature Rk
a and Rk

b are infinite. Therefore, the

pure geometrical contribute Ak equals zero in the

plate case, and the coordinate system is the recti-

linear one (x, y, z).
Possible Applications and Extensions

In order to define refined thermomechanical

models for the accurate analysis of multilayered

shells, the use of appropriate constitutive and

geometrical relations is fundamental. They

allow the thermomechanical effects and cou-

plings to be evaluated and the static and dynamic

response of such structures to be considered when

they are subjected to mechanical and thermal

loads. These equations can easily be extended to

further multifield analyses (e.g., thermo-electro-

mechanical problems) by considering opportune

forms of the Gibbs free-energy functionG and the

thermo-electro-mechanical enthalpy density H

and by adding the geometrical relations which

link the electric field components with the elec-

tric potential.
Cross-References

▶Thermal Load

▶Thermal Stress Analysis
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Overview

Polymeric materials exhibit stress relaxation,

creep, and general time-dependent mechanical

response that is characterized as

viscoelastic. A change in the temperature of

a solid polymer produces two effects: (1) thermal

expansion or contraction and (2) a change in its

creep and stress-relaxation properties. Spatially

varying thermal expansion or contraction pro-

duces thermal stresses in polymeric structures

just as in metal structures. The dependence of

creep and stress relaxation on temperature is

a property of polymers that has important impli-

cations for structural applications. It provides the

means for calculating “frozen-in” stress distribu-

tions as well as determining the time dependence

of deformed states.
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This entry presents the most commonly used

constitutive equation for linear viscoelastic mate-

rials with temperature-dependent properties. Only

one-dimensional response is discussed in order to

introduce the important concepts. The entry closes

with a description of some interesting applications

of the constitutive equation.Many of the modeling

ideas presented here represent the current state of

development. They can be expected to evolve as

new experimental results lead to a better under-

standing of polymer response processes.
Isothermal Linear Viscoelasticity

It is useful to begin with an outline of linear isother-

mal viscoelasticity. A detailed development of the

results presented in this section can be found in [1].

Time plays a central role in describing viscoelastic

response. Let t denote the current time and let s

denote a generic time, with s  t. Let eðsÞ and

sðsÞ denote the strain and stress, respectively, at

time s. For times t  0, the material is assumed to

be in its reference configuration, eðtÞ ¼ 0, and stress

free,sðtÞ ¼ 0.Whena linear viscoelasticmaterial is

subjected to a step strain history, eðtÞ ¼ e0, t > 0, e0
being a constant, the corresponding stress response

is given by sðtÞ ¼ e0GðtÞ, t > 0. The functionGðtÞ
is a material property, called the stress-relaxation

modulus, that decreases monotonically with time t
from Gð0Þ to an asymptotic value denoted by

Gð1Þ. When a linear viscoelastic material is

subjected to a general strain history, eðtÞ, the stress
at time t depends on the preceding strain history

eðsÞ, 0 < s  t, and the stress-relaxation modulus

GðtÞ through the relation:
sðtÞ ¼ eð0ÞGðtÞ þ
Z t

0

Gðt� sÞ deðsÞ
ds

ds ð1Þ

This is a constitutive equation for isothermal

linear viscoelastic response whose form is moti-

vated as follows.deðsÞ denotes a step strain applied
at time s, t� s is the time that has elapsed since the

step strain was applied, dsðsÞ ¼ Gðt� sÞdeðsÞ is
the corresponding stress at time t, and (1) repre-

sents the superposition or sumof all stresses at time

t due to all of the preceding step strains.
An equivalent approach that can be used to

describe linear viscoelastic response is to subject

the material to a step stress history, sðtÞ ¼ s0,
t > 0, s0 being a constant. The corresponding

strain response is given by eðtÞ ¼ s0JðtÞ, t > 0.

The function JðtÞ is an alternate material prop-

erty, called the creep compliance, that increases

monotonically with time t from Jð0Þ to an asymp-

totic value denoted by Jð1Þ. When a linear vis-

coelastic material is subjected to a general stress

history, sðtÞ, the strain at time t depends on the

preceding stress history, sðsÞ, 0 < s  t, and the

creep compliance JðtÞ through the relation:
eðtÞ ¼ sð0ÞJðtÞ þ
Z t

0

Jðt� sÞ dsðsÞ
ds

ds ð2Þ

The form of this equation can be motivated in

the same way as was (1). The stress-relaxation

modulus and creep compliance are not indepen-

dent material properties, but satisfy the integral

relation:
1 ¼ Gð0ÞJðtÞ þ
Z t

0

Jðt� sÞ dGðsÞ
ds

ds ð3Þ

With the use of (3), (2) can be transformed into

(1), and vice versa. In this way, (1) and (2) are

considered inverses of each other.

Linear viscoelasticity can also be described by

considering the response to a strain that varies

sinusoidally with frequency o, eðtÞ ¼ eo sinot,
where eoj j << 1. Using (1), it can be shown that

the stress has a steady state sinusoidal response

described by
sðtÞ ¼ eo G0 oð Þ sinotþ G00 oð Þ cosot½ � ð4Þ

or, equivalently,
sðtÞ ¼ eoG� oð Þ sin otþ d oð Þð Þ ð5Þ

where
G� oð Þ ¼ G0 oð Þ2 þ G00 oð Þ2
h i1 2=

tan d oð Þ ¼ G00 oð Þ G0 oð Þ=

ð6Þ



C 644 Constitutive Equation for Linear Viscoelastic Materials with Temperature-Dependent Properties
As seen from (5), the stress varies sinusoidally

at the same frequency o as the strain but is out of

phase with the strain by d oð Þ. Both G� oð Þ, the
ratio of the stress and strain amplitudes, and d oð Þ,
the phase difference between the stress and strain,

vary with frequency o. G0 oð Þ is called the stor-

age modulus, and G00 oð Þ is called the loss modu-

lus. They are an alternate set of material

properties that vary with frequency. G0 oð Þ and

G00 oð Þ can be calculated from the stress-

relaxation modulus GðtÞ and vice versa, but

such relations are not presented here.

Similarly, the strain response to a sinusoidally

oscillating stress sðtÞ ¼ so sinot is found from

(2). The steady state strain is
eðtÞ ¼ so J0 oð Þ sinotþ J00 oð Þ cosot½ � ð7Þ

J0 oð Þ is called the storage compliance, and

J00 oð Þ is called the loss compliance. They are

another set of material properties that vary with

frequency. J0 oð Þ and J00 oð Þ can be calculated

from the creep compliance JðtÞ and vice versa.

They can also be expressed in terms ofG0 oð Þ and
G00 oð Þ.

Finally, it is important to point out one conse-

quence of stress relaxation. Positive work is done

when a viscoelastic solid is deformed and then

returned it to its original state. Much of this work is

converted to heat and leads to a rise in temperature.
Thermally Induced Dimensional
Changes

Attention is restricted to materials undergoing

small strains. When a viscoelastic rod is subjected

to both stress and a temperature change, the total

strain etotal is the superposition of two separate

strains, one due only to temperature change in

the absence of stress, denoted by ethermal, and one

due only to the stress, denoted by emech. Thus,

etotal ¼ ethermal þ emech ð8Þ

Consider a viscoelastic rod that is at some

constant reference temperature T0 for t < 0. Let

the block be subjected to a step temperature
history of amount TðtÞ � To ¼ DTo, t > 0, DTo
being a constant. The block appears to undergo

a time-dependent thermal strain given by
ethermalðtÞ ¼ aðtÞDTo ð9Þ

in which aðtÞ is another material property, a time-

dependent coefficient of thermal expansion.

Experimental results suggest that aðtÞ is

a monotonically increasing function of time

(see, e.g., [2]).

Suppose the viscoelastic rod is subjected to

a general temperature history, DTðtÞ ¼ TðtÞ � To.

It is assumed that the response to temperature

changes also satisfies the conditions of superpo-

sition used in developing (1) and (2). Thus, the

total thermal strain at time t depends on the pre-

ceding temperature history and aðtÞ:
ethermalðtÞ ¼ DTð0ÞaðtÞ

þ
Z t

0

aðt� sÞ dðDTðsÞÞ
ds

ds ð10Þ
Mechanical Response at Different
Temperatures

The description of the mechanical response now

involves the temperature, strain, and stress histo-

ries. Consider a series of step strain experiments

carried out at the same strain but at different con-

stant temperatures. Let Gðt; TÞ denote the stress-

relaxation modulus corresponding to temperature

T. If T1 and T2 are two temperatures with T2 > T1,

then at a given time t, the stress relaxes to a smaller

value at temperature T2 than at temperature T1,
that is, Gðt; T2Þ < Gðt; T1Þ. In other words, the

stress relaxes faster at the higher temperature.

The manner in which the stress-relaxation

modulus depends on time and temperature has

been the subject of a great deal of research [3].

Experimental results have led to a method of

accounting for the temperature dependence

known as time-temperature superposition. It is
commonly used as a basis for calculating ther-

mally induced stresses and deformations in vis-

coelastic structures.
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In order to describe time-temperature super-

position, the stress-relaxation modulus is

expressed as a function of log t:
C

Gðt; TÞ ¼ Eðlog t; TÞ ð11Þ

This is done because a log t scale is more

convenient for plotting stress-relaxation data

over a large range of times. Time-temperature

superposition is based on the following interpre-

tation of such plots of stress-relaxation data:

1. By shifting a stress-relaxation curve for one

temperature horizontally along the log t axis,

it can coincide with the stress-relaxation

curve for any other temperature.

2. The initial and long time values of the stress-

relaxation modulus are independent of the

temperature.

In order to express this mathematically, let it

be assumed that the stress-relaxation modulus

Eðlog t; T0Þ is known at temperature T0. Let

Eðlog t; T1Þ denote the stress-relaxation modulus

at temperature T1. If T1 > T0, then Eðlog t;T1Þ is
obtained by shifting Eðlog t; T0Þ horizontally to

the left, that is, to smaller times, by an amount

denoted as logfðT1; T0Þ. A given value of the

stress-relaxation modulus is then reached at

a smaller time at temperature T1 than at the

lower temperature T0. The higher the temperature

T1, the larger is the amount of shift to the left.

This can be expressed by writing
Eðlog t; T1Þ ¼ Eðlog tþ logfðT1; T0Þ; T0Þ
¼ Eðlog fðT1; T0Þt; T0Þ

ð12Þ

The stress-relaxation modulus on the t -axis is

obtained using (11):
Gðt; T1Þ ¼ GðfðT1; T0Þt; T0Þ ð13Þ

For a particular viscoelastic material, the

amount of shift logfðT1; T0Þ is constructed

graphically from its stress-relaxation data. This

process thus establishes the function fðT1; T0Þ as
a new material property. It is common practice to

define
fðT1; T0Þ ¼ 1

aðT1; T0Þ ð14Þ

and write (13) as
Gðt; T1Þ ¼ Gð t

aðT1; T0Þ ; T0Þ ð15Þ

Equation (15) expresses the important result

following from time-temperature superposition

that the stress-relaxation modulus at any temper-

ature can be expressed in terms of two material

properties: the stress-relaxation modulus at

a reference temperature Gðt; T0Þ and a function

aðT1; T0Þ, known as the called the time-
temperature shift function.

If T1 ¼ T0, the construction and (12) imply that

fðT1; T0Þ ¼ aðT1; T0Þ ¼ 1. If T1 > T0, the con-

struction and (12) imply that logfðT1; T0Þ > 0,

logaðT1; T0Þ < 0, and aðT1; T0Þ < 1. On the other

hand, if T1 < T0, then aðT1; T0Þ > 1. For a fixed

value ofT0, aðT1; T0Þ is amonotonically decreasing

function of T1. At a fixed temperature T1, the argu-

ment t a= ðT1; T0Þ in the right side of (15) increases
with increasing time t, and G monotonically

decreases. At a fixed time t̂, aðT1; T0Þ decreases as
T1 increases, and the argument t̂ aðT1= ; T0Þ again

increases. Thus,G decreaseswith increasing time or

increasing temperature, and there is said to be time-

temperature equivalence.

An interpretation of this result is provided by

considering the sequence of changes in the con-

figurations of a polymer’s macromolecular struc-

ture during creep or stress relaxation at some

specific temperature. When the temperature is

changed, essentially the same sequence of mac-

romolecular reconfigurations takes place but with

a speed that depends on the temperature.

A temperature rise causes a uniform speeding

up of the sequence, and a temperature decrease

causes a uniform slowing down of the sequence.

Some researchers have described this response by

saying that a polymer has an intrinsic or internal

clock. Each macromolecular configuration corre-

sponds to a time on the clock. Higher tempera-

tures make the internal clock run faster relative to

our physical clock, and lower temperatures make

the internal clock run slower.
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Comments on Time-Temperature
Superposition

A more detailed discussion of the remarks

presented here can be found in [4]. Time-

temperature superposition is approximately

valid for amorphous polymers. The shift function

is often expressed in the form:
log aðT; T0Þ ¼ C1ðT � TgÞ
C2 þ T � Tg

ð16Þ

in which C1; C2 are constants associated with

the reference temperature T0. Tg is an important

polymer property that is determined from a plot

of the total volume per unit mass, that is, the

specific volume, vs. temperature. This plot has

a rapid change or “discontinuity” in slope, called

the dilatometric glass transition, at

a characteristic temperature Tg, called the glass

transition temperature. The mechanical proper-

ties of an amorphous polymer change dramati-

cally as the temperature passes through Tg. At

temperatures above Tg, the polymer is soft and

highly deformable and in a rubberlike state. At

temperatures below Tg, the material is stiff and

brittle and in a glass-like state. For typical poly-

mers, the value of aðT; T0Þ can decrease from the

order of 106 to the order of 10�2 as T increases

from below to above Tg, an important observa-

tion with relevance to the mechanics of

polymers.

Equation (16), referred to as the WLF

Equation [3], is approximately valid for amor-

phous polymers above Tg. Recent work [5] has

discussed forms for the shift function which can

be applied for a range of temperatures above and

below the glass transition.
Influence of Temperature on Material
Properties

The stress-relaxation modulus at temperature T

can be written in terms of a “master” relaxation

function ĜðtÞ that decays monotonically from

Ĝð0Þ to its large time limit Ĝð1Þ:
Gðt; TÞ ¼ Ĝð t

tRðTÞÞ ð17Þ

tRðTÞ is a characteristic stress-relaxation time

at temperature T that can be defined as the time

coordinate of the centroid of the plot of

Gðt; TÞ � Gð1; TÞ vs. t. A specific example of

a master relaxation function is given by
ĜðtÞ ¼ G1 þ ðG0 � G1Þe�t ð18Þ

in which Ĝð0Þ ¼ G0 and Ĝð1Þ ¼ G1. The

stress-relaxation modulus at temperature T for

the standard linear solid [1] is given by
Gðt; TÞ ¼ G1 þ ðG0 � G1Þe�t tRðTÞ= ð19Þ

It can be seen from (15) and (17) that the

characteristic stress-relaxation times at tempera-

tures T0 and T1 are related by
tRðT1Þ ¼ aðT1; T0ÞtRðT0Þ ð20Þ

From the properties of aðT1; T0Þ and (20), the

influence of temperature on the characteristic

stress-relaxation time is seen to be summarized as
T1>T0; aðT1; T0Þ<1; tRðT1Þ<tRðT0Þ
T1<T0; aðT1; T0Þ>1; tRðT1Þ>tRðT0Þ

ð21Þ

A comment was made at the end of the preced-

ing section that aðT1; T0Þ could undergo enormous

changes in value with change in temperature.

Accordingly, the characteristic stress-relaxation

time could change from seconds to years or vice

versa, depending on the temperature change.

Let Jðt; TÞ denote the creep compliance at

temperature T. It can be shown using (3) that

time-temperature superposition is also valid for

the creep compliance:
Jðt; T1Þ ¼ Jð t

aðT1; T0Þ ; T0Þ ð22Þ

LettingG0ðo; TÞ andG00ðo; TÞ denote the stor-
age and loss moduli, respectively, at temperature

T, it can be shown that
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G0ðo; T1Þ ¼ G0ðaðT1; T0Þo; T1Þ
G00ðo; T1Þ ¼ G00ðaðT1; T0Þo; T1Þ

ð23Þ

Letting J0ðo; TÞ and J00ðo; TÞ denote the stor-
age and loss compliances, respectively, at tem-

perature T:

C

J0ðo; T1Þ ¼ J0ðaðT1; T0Þo; T1Þ
J00ðo; T1Þ ¼ J00ðaðT1; T0Þo; T1Þ

ð24Þ

Suppose that T1 > T0 so that aðT1; T0Þ < 1.

According to (23) and (24), the response at

a specific frequency o at temperature T1 corre-

sponds to the response at the lower frequency

aðT1;T0Þo at the lower temperature T0. Alterna-

tively, the response at a specific frequency o at

temperature T0 corresponds to the response at the
higher frequency o aðT1= ; T0Þ at the higher tem-

perature T1. Analogous statements hold when

T1 < T0.
Extension to Time-Varying Temperature
Histories

There are many applications in which

a viscoelastic structure experiences a time-

dependent temperature history. For example, the

external thermal environment may vary with

time, or the temperature may rise because of

energy dissipation as work is done during oscil-

latory deformations. In either case, it is necessary

to account for the influence of time-dependent

temperature histories on the material properties.

The constitutive equation presented here relating

stress, strain, and temperature histories was intro-

duced by Morland and Lee [6] and makes use of

time-temperature superposition.

The development uses a result that can be

deduced from (15). Let G1 and G2 be any two

values of the stress-relaxation modulus, with

G1 > G2. Let t1 and t2 be the times when the

stress-relaxation modulus reaches the values G1

andG2, respectively, at temperature T1. Then, the
change in value from G1 to G2 occurs during the

time interval t2 � t1 while at temperature T1.

According to (15), at temperature T0, the values
G1 and G2 are reached at times t1 aðT1= ; T0Þ and
t2 aðT1= ; T0Þ, respectively. Thus, at temperature

T0, the change in value from G1 to G2 occurs

during the time interval ðt1 � t2Þ aðT1= ; T0Þ.
Next, suppose a viscoelastic specimen is

subjected to both a step strain history of amount

e0 applied at time t ¼ 0 and some temperature

history TðsÞ; s 2 0; t½ �. Let the stress-relaxation

response be denoted by
sðtÞ ¼ eoG t; TðsÞjts¼0


 � ð25Þ

This notation suggests that the stress-

relaxation response depends in some way on all

the values TðsÞ from the time t ¼ 0 when the step

strain was applied to the current time t. The form

for this temperature-dependent stress-relaxation

function is determined under the following

assumption:

The macromolecular reconfigurations that occur

as the temperature varies with time follow the

same sequence as would occur at a constant

temperature. During a small time interval, the

speed of the macromolecular reconfiguration

process, and the resultant stress relaxation,

depends only on the temperature during that

interval. Time-temperature superposition can

be used to relate the amount of stress relaxa-

tion during this time interval at this tempera-

ture to that during a corresponding time

interval at a reference temperature.

Since the initial and residual moduli are unaf-

fected by temperature,
G 0; T1½ � ¼ G 0; T0½ � ¼ G 0; TðsÞj0s¼0

h i
ð26Þ

G 1; T1½ � ¼ G 1; T0½ � ¼ G 0; TðsÞj1s¼0


 � ð27Þ

Now consider a time interval 0  s  t1 at the

beginning of stress relaxation and let ~T1 be an

average temperature in this time interval. Using

the result established above, the decrease in G at

temperature ~T1 during the time interval t1 � 0 is

the same as the decrease in G at a reference

temperature T0 during the time interval

ðt1 � 0Þ að ~T�
1
; T0Þ or
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G t1; TðsÞjt1s¼0


 � ¼ G t1 � 0ð Þ að ~T1

�
; T0Þ; T0


 �
ð28Þ

During the next time interval, t1  s  t2, the

average value of the temperature is ~T2. The

decrease in G at this temperature during time

interval t2 � t1 is the same as at temperature T0
during the time interval ðt2 � t1Þ að ~T�

2
; T0Þ. G at

time t2 has reduced to a value given by
G t2; TðsÞjt2s¼0


 � ¼ G t1 � 0ð Þ að ~T1

�
; T0Þ



þ t2 � t1ð Þ að ~T2

�
; T0Þ; T0� ð29Þ

Continuing in this manner results in an expres-

sion for the stress-relaxation modulus at time tn:
G tn; TðsÞjtns¼0


 � ¼ G
Xn
k¼1

tk � tk�1ð Þ að ~Tk

�
; T0Þ; T0

" #
ð30Þ

where ~Tk is the average temperature during the

time interval tk�1  s  tk. The approximation to

the relaxation modulus at time t is improved by

increasing the number of time intervals tk�1  tk
and decreasing their duration tk � tk�1. In the

limit, the expression for stress-relaxation modu-

lus at time t is

G t; TðsÞjts¼0


 � ¼ G

Z t

0

ds

aðTðsÞ;T0Þ; T0
� �

ð31Þ

The integral

xðtÞ ¼
Z t

0

ds

aðTðsÞ; T0Þ ð32Þ

is called the “reduced time,” “intrinsic time,” or

“pseudo time” [6]. Materials for which this model

is valid are called “thermo-rheologically simple,”

a terminology introduced in [7].

Equation (31) has interesting implications for

stress analysis when combined with the experi-

mental results that the stress-relaxation modulus

can decrease by a factor of 103 and the shift

function aðT1; T0Þ can increase to 106 if T1 < T0
or decrease to 10�4 if T1 > T0. In order to see

this, consider stress relaxation in which a step

strain is applied when the specimen is at temper-

ature T0. At time t1, let the temperature be

reduced to T1. For t < t1, it is seen from (32) that
xðtÞ ¼
Z t

0

ds

aðT0; T0Þ ¼
Z t

0

ds

1
¼ t ð33Þ

The reduced time is still the physical time, and

by (31), stress relaxation is given by
G t; TðsÞjts¼0


 � ¼ G t; T0½ � ð34Þ

For t > t1, the reduced time is found from (32)

to be
xðtÞ ¼
Z t1

0

ds

aðT0; T0Þ þ
Z t

t1

ds

aðT1; T0Þ
¼ t1 þ t� t1

aðT1; T0Þ
ð35Þ

and the stress-relaxation response is given by
G t; TðsÞjts¼0


 � ¼ G t1 þ t� t1
aðT1; T0Þ ; T0

� �
ð36Þ

When T1 is sufficiently low temperature,

aðT1;T0Þ can be large, say 104. The argument of

G in (36) changes very little from t1 until t� t1
has increased substantially. Then, after, say 104

hours, the reduced time has become large enough

that the relaxation modulus will begin to decrease

noticeably. For a long time there is negligible

stress relaxation, the stress is essentially “frozen”

at the value Gðt1;T0Þ.
Constitutive Equation for Time-Varying
Temperature Histories

It is assumed that the same construction that led

to (1) is valid when the temperature varies with

time. Let eðtÞ now denote the mechanical part of

the strain, defined in (8). The mechanical strain

history is treated as the superposition of step

strain increments. The stress at time t is the

superposition at time t of responses to these step
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strain increments. The additional assumption is

made that the contribution to the stress at time t

arising from the step strain initiated at time s
depends only on the temperature history during

the time interval s; t½ �:
C

dsðtÞ ¼ deðsÞG

Z t

s

dx

aðTðxÞ; T0Þ ; T0
� �

ð37Þ

The total stress at time t is, by superposition,
sðtÞ ¼ eð0ÞG
Z t

0

dx

aðTðxÞ; T0Þ ; T0
� �

þ
Z t

0

G

Z t

s

dx

aðTðxÞ; T0Þ ; T0
� �

deðsÞ ð38Þ

which is often written in the form:
sðtÞ ¼ eð0ÞG xðtÞ; T0½ �

þ
Z t

0

G xðtÞ � xðsÞ; T0½ � deðsÞ ð39Þ

It can be shown that the strain at time t can be

expressed in terms of the stress history, tempera-

ture history, and creep compliance by
eðtÞ ¼ sð0ÞJ xðtÞ; T0½ �

þ
Z t

0

J xðtÞ � xðsÞ; T0½ � dsðsÞ ð40Þ
Applications

Equation (39), combined with the thermal history

and material properties incorporated in (36), has

been used in a variety of structural analyses. As an

example, consider a simple structure consisting of

three parallel rods connected at one end by smooth

pins to a rigid support and at the other end to a rigid

cross bar. A force history is applied to the cross

bar, and each rod experiences a specified temper-

ature history. Examples with different force

and temperature histories are given in [1] that

illustrate the use of (39) in determining (a) fro-

zen-in deformation, (b) frozen-in bar forces, or (c)
cooling-induced warping. The three-dimensional

version of (39) along with a time and spatially

varying temperature determined from theheat equa-

tionwas used in [8] to show how a desired frozen-in

stress distribution can be produced in a glass plate.

There have been a number of studies that use the

alternate form of constitutive equation, (4), with

temperature- and frequency-dependent properties

given by (23). A representative example is given

by [9] which determines temperature rise during

torsional oscillations of a linear viscoelastic rod.
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Definition

Physically based models for the plastic behavior

of crystalline, metallic materials are discussed.

However, deformation by twinning and phase

transformations as well as the evolution of texture

are omitted.
Overview

Slip of dislocations is the main cause for plastic

deformation. Additional mechanisms are forma-

tion of twins and phase transformations (mainly

austenite to martensite). Several models for

deformation hardening have been proposed and

most of them depict proportionality between

the flow stress in shear, t, and the square root

of the total dislocation density, r, giving the

relationship
t ¼ aGb
ffiffiffi
r

p ð1Þ

where a ~ 0.2 for fcc and a ~ 0.4 for bcc metals

(Chapter 1 in [1]).G is the shear modulus and b is

the magnitude of Burgers vector. Moving dislo-

cations are the cause of the plastic shear rate

expressed by the Orowan equation
_gp ¼ dgp

dt
¼ rmbv ð2Þ

where rm is the density of mobile dislocations

and v is their average velocity. During deforma-

tion, the mobile dislocations move an average

distance L before being immobilized, giving rise

to a plastic shear strain, g p. Using (2) and assum-

ing dri ¼ rmdx/L, where dx is the distance, the

dislocations have moved during the time step dt,

gives the relationship
dri
dt

¼ 1

bLðgpÞ _g
p ð3Þ

where ri is the immobile dislocation density.

Equations 1, 2, and 3 define the fundamental

relation between shear flow stress and plastic

shear strain. The model can be used in crystal
plasticity models, and then the relations are

applied to the different slip systems. The mobile

dislocation density is often assumed to be very

small and constant, and then (1) and (3) are also

valid for the total dislocation density. The model

can be rewritten into a von Mises effective stress

and effective plastic strain relation and extended

to account for a variety of flow stress contribu-

tions as described shortly below.
Dislocation Density–Based Flow Stress
Model

As the shear due to dislocation slip is confined to

certain crystallographic planes and directions,

translation to flow stress, s, and effective plastic

strain, e
�p

is derived by using the Taylor factor,m.
This is the inverted average of the individual

Schmid factors, giving the relation between

applied stress and the shear stress in the slip

plane in the slip direction, in a grain. For bcc

and fcc metals, the Taylor factor is approximately

2.8 (2 if assuming an infinite number of available

slip systems) and 3.1 (for 12 independent slip

systems), respectively. These values vary with

deformation due to rotations of the individual

grain(s). We thus have
s ¼ s0 þ maGb
ffiffiffi
r

p ð4Þ

dr
d�ep

¼ m

bLð�epÞ ð5Þ

Here s0 denotes all contributions to the flow

stress from other strengthening mechanisms that

are independent of deformation, such as atoms in

solid solution, the friction from the atomic lattice

(commonly referred to as Peierls-Nabarro bar-

riers), and precipitation of small precipitates (in

comparison to the individual length of dislocation

segments). It is also common to include the influ-

ence of grain size, sg, in s0 using the Petch-Hall

relationship, sg ¼ kgd
-1/2. If L is independent of

strain, we obtain the classic Ludwik relation [2]
s ¼ s0 þ c
ffiffiffiffi
�ep

p ð6Þ



Constitutive Models, Physically Based Models for Plasticity 651 C

C

Equations 4 and 5 are the fundamental equa-

tions for the basic type of flow stress model

discussed below. The contributions to s0 will be
discussed in the next sections. Equation 5

describes the generation of dislocations. There

are also processes that will decrease the disloca-

tion density simultaneously due to annihilation or

remobilization of immobile dislocations (see,

e.g., Bergström [3]). Such processes are caused

by cross-slip and diffusion-assisted climb of dis-

locations and by recrystallization. These addi-

tional contributions will also be discussed

below. As diffusion is due to the availability

and migration of vacancies in the crystal lattice,

the generation of excess vacancies is also impor-

tant. Recrystallization changes the grain size as

well as the average dislocation density and thus

also alters the flow stress.
Additional Contributions to the Flow
Stress

The additional strain-independent contributions

to the flow stress, first term in (4), arise from

obstacles with short-range or long-range interac-

tions with dislocations. The former are thermally

activatable obstacles and the latter are not. Exam-

ples of thermally activatable obstacles are the

atom lattice (Peierls-Nabarro barriers), solute

atoms, and cross-slip of dislocations due to

constraint of partial dislocations. Examples of

long-range obstacles are precipitates where we

distinguish between coarse and small precipitates

with regard to the size of the dislocation network

(substructure). Small precipitates act on the indi-

vidual dislocation links while coarse precipitates

act as regions with different elastic and plastic

properties. Individual grains also belong to the

second category. The flow stress is expressed as

shear stress contributions, t, in the following. The
given relations can easily be translated into

a normal flow stress using the Taylor factor

m in order to add the contributions to (4). Some

of the contributions contain a calibration param-

eter, and then, there is no need to include the

m factor specifically as it is accommodated by

the calibration parameter.
Thermally Activated Deformation
Processes

Barriers to dislocations with small extension in

space and of small to moderate strength can be

overcome by thermal activation. Typical barriers

are the individual atoms in the lattice, giving rise

to the Peierls-Nabarro mechanism, substitutional

and interstitial solute atoms with differing elastic

properties and sizes as compared to the main

specie of the metal. The mentioned barriers give

rise to mainly strain-independent contributions.

The effect is described by the probability, p, to
overcome an activation energy multiplied with

the frequency, o, of attacks on the barrier. Thus,

the average speed of the dislocation, v, can be

written as
v ¼ v0op ð7Þ

where v0 is the speed of the dislocation when no

barriers are present. The probability can be writ-

ten as
p ¼ e�
DG
kT ð8aÞ

where the activation energy is

DG ¼
Z r0

�r0

ðF� t�bL�Þdr

¼ DG1 � t�bL�2r0

¼ DG0 � b

Z t�

0

A�dt ð8bÞ

F is the force barrier over the distance –r0 to r0
(assuming a symmetric obstacle) and t*bL* is the
force exerted on the barrier by the dislocation. L*

is a characteristic length of the dislocation partic-

ipating in the activation event. The area swept by

the dislocation during passing of the barrier,

2r0L
*, is also called the activation area, A*, for

the event. T is the temperature and k is

Boltzmann’s constant. DG0 is the activation

energy for the total barrier and DG1 is the total

barrier between –r0 and r0.

Inserting (7) into (2) and adapting to the poly-

crystal case, we obtain
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_�e
p ¼ d�ep

dt
¼ rmbv0

m
oe�

DG
kT ð9Þ

where v0 is the speed for the dislocation moving

without barriers and o the frequency with which

the dislocation attempts to overcome the barrier.

Depending on the actual shape of the barrier,

different relations emerge. For ferrite (bcc), it

has been observed that the activation area is

inversely proportional to the stress, A*�a/t, and
using the last relation in (8b) with a finite lower

cutoff value for t*, t�c , this gives

_�e ¼ _eref
t�

tc

� �T0
T

ð10aÞ

tc ¼ t�cexp
DG0

ab

� �
ð10bÞ

T0 ¼ ab

k
ð10cÞ

_eref ¼ rmbv0o
m

ð10dÞ

A good description of the temperature and

strain-rate dependence at low and ambient tem-

peratures in ferrite has been achieved [4] by

assuming two parallel coupled mechanisms. For

interstitially dissolved carbon in ferrite, a strong

asymmetric distortion of the lattice is obtained.

By using the relationships for the interaction with

a dislocation as proposed by [5] and assuming

Friedel statistics (Chapter 2 in [1]), we obtain
t� ¼ t0G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

x0
1þ kT

Df0Gb3
ln

_�e
p

_�eref

� �� �s
ð11Þ

where t0, Df0, and _�eref are constants and x is the

atomic fraction of carbon in the ferrite. x0 is

a reference value, typically bulk value, of carbon.

For other barrier shapes, a more general form

of the activation energy has been proposed [6]

DG ¼ Df0Gb3 1� t�

t0G

� �p� �q
ð12Þ
where DG0¼Df0Gb3 is the free energy required

to overcome the lattice resistance or obstacles

without aid from external stress. The quantity

t̂ ¼ t0G is the athermal flow strength that must

be exceeded in order to move the dislocation

across the barrier without aid of thermal energy.

The parameters p and q allow great variations in

barrier shape. Parameter q mainly determines the

shape close to the barrier maximum and

p determines the shape at longer distances from

the maximum position. Inserting this into (9)

leads to
t� ¼ t0G 1� kT

Df0Gb3
ln

_�eref
_�e
p

� �� �1=q
" #1=p

ð13Þ

It can be noted that there is a lower limit on the

plastic strain rate under which the contribution

should be set to zero.

Cross-slip of dislocations is another important

thermally activatable process [7]. The activation

energy for cross-slip of dissociated dislocations

has been suggested by Escaig [8] to be
DGcs ¼ G0ð1� 1:2
tcsb
g

� 1:5
tpsb
g

Þ ð14aÞ

where tps is the applied shear stress on the pri-

mary slip plane, tcs is the applied shear stress on

the cross-slip plane, and g is the stacking fault

energy. The constriction energy, G0, is given by
G0 ¼ Gb2dp
37

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2

ffiffiffi
3

p
dp

b
Þ

s
ð14bÞ

where dp is the equilibrium splitting distance

between the dislocation partials given by
dp ¼ A
Gb2

g
ð14cÞ

where A is ~0.019 and ~0.048 for screw and edge

dislocations, respectively. The rate for cross-slip

is then given by setting DG to DGcs in (9).
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The variants of t* shown above can be added

into s0 in (4) when required.
C

Solution and Precipitation Hardening

The strengthening contribution of an obstacle

will be determined by the distance between the

obstacles along the dislocation, Lobst, and

the strength of the obstacle, Fobst. Bypassing of

the obstacle will occur if the force exerted by the

dislocation, tbLobst, equals the strength of the

obstacle

tbLobst ¼ Fobst ¼ 2Tcos
b
2

� �
ð15Þ

The obstacle strength can also be expressed

with the angle, b, of the dislocation segments on

both sides of the obstacle at the bypassing situa-

tion, Fig. 1.

F ¼ tb is the force on the dislocation due to

the applied stress and is always perpendicular

to the dislocation line, R is the radius of the

dislocation segment, T is the line tension, Fobst

is the opposing force due to the obstacle, and

Lobst is the distance between the obstacles on

the dislocation. b is the angle between two
β

T
Fobst

Constitutive Models,
Physically Based Models
for Plasticity,
Fig. 1 Forces on

a dislocation segment

blocked by two obstacles
dislocation segments. The line tension is

approximately
T � Gb2

2
ð16Þ

If the obstacles are impenetrable for the

dislocation, then the obstacle is bypassed by

bowing around it leaving a dislocation loop

behind. This is commonly referred to as the

Orowan mechanism and the dislocation as

completely flexible. In this case, the distance

between the dislocations along the dislocation

is the average distance between the obstacles

in the slip plane. If the obstacles are very

weak, then the dislocation moves as an almost

straight line, stiff dislocation, through the lat-

tice and the number of obstacles encountered

along the dislocation line is much smaller than

for the case of more flexible dislocations.

For all cases in between the completely stiff

and completely flexible, we denote the dislo-

cation as partially flexible. For weak obsta-

cles, Friedel [9] has proposed that the

distance between the obstacles is given by

assuming that the probability for encountering

just one new obstacle when breaking away

from another is exactly 1. This leads to
T

R

F

Lobst
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Lobst ¼ Lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos b

2

� r ð17Þ

where L is the average distance between the

obstacles in the slip plane as given by (18c)

below. Brown and Ham (Chapter 2 in [1]) have

summarized various computer simulations in the

following equations
tobst ¼ Gb

L
cos

b
2

� �� �3=2
for 100�  b  p

ð18aÞ

tobst ¼ 0:8Gb

L
cos

b
2

� �
for 0o  b  100o

ð18bÞ

L ¼
ffiffiffiffiffiffiffiffi
p
fobst

r
� 2

� � ffiffiffi
2

3

r
robst ð18cÞ

where tobst is the shear stress required to over-

come the obstacle, robst is the mean radius, and

fobst is the volume fraction of the obstacles. If we

have obstacles of different strengths, then the

situation is more complex. An equation of the

form
tmobst ¼
Xn

i¼1
tmi ð19aÞ

is often used. ti denotes tobst for obstacle i

according to (18a, c). A simple mixture law has

also been proposed
tobstfobst ¼
Xn

i¼1
fiti ð19bÞ

where fi is the volume fraction of obstacle i and

fobst is the total volume fraction of obstacles

(¼Sfi). The most common values used for

m are 1 or 2. Brown and Ham (Chapter 2 in

[1]) also discussed these types of combinations

with regard to computer simulations for two sets

of point obstacles with different strengths made

by Foreman and Makin [10]. In Fig. 2, the data

of Forman and Makin have been reproduced and

compared to (19a) with m ¼ 1 and m ¼ 2 and
to (19b). The total number of obstacles, nobst, is
constant and the relative concentration c relates

the individual numbers of obstacles so that nobst
¼ (1–c)*nobst1 þ c*nobst2. Using m ¼ 1 is obvi-

ously wrong except for the case with a large

amount of weak obstacles combined with a few

strong obstacles which gives some justification

to the often applied summation of hardening

contributions from solute atoms and precipi-

tates, where the former are very weak obstacles

with b not far from 180 �. Using m equal to 2

gives a considerably better fit, although not

perfect.

The average distance between obstacles, L, is
L � bffiffiffi
x

p ð20Þ

for elements in solid solution where x is the atom

fraction of the element. The interaction force

between a substitutional solute atom (in the slip

plane) and a screw dislocation is given by
FS
i ¼ esol

Gb2R3
atom

3p
1

r3
ð21aÞ

with the misfit parameters
eb ¼ 1

b

db

dx
ð21bÞ

eG ¼ 1

G

dG

dx
ð21cÞ

esol ¼ ½ðaebÞn þ ðe0GÞn�ð1=nÞ ð21dÞ

e0G ¼ eG
1þ 0:5 eGj j ð21eÞ

n equals 1 if the contributions from size and

modulus misfit are summed and n equals 2 if

a geometrical sum is used. Ratom is the atomic

radius for the main specie. a is a parameter in the

range of around 3–16 [5, 11]. For Si in copper

a value of esol ¼ 0.8 has been given.

For an interstitial solute in ferrite, the interac-

tion force is
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Fig. 2 Computer

calculations by Forman and

Makin [10] for obstacles

with b equal to 10 � and 90 �

(left diagram) and with

b 10 � and 130 �

(right diagram), solid
curves. Equation (19a) with
m equal to 1 and 2, dotted
curves, and (19b), dashed

curve, have been calculated

using (18a, c) for the

individual obstacles
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FS
i ¼ Desol

4
ffiffiffi
2

p
GbR3

atom

9

1

r2
ð22Þ

where Desol is the difference between the maxi-

mum and minimum strain of the bcc lattice due

to the interstitial (equals 0.41 for carbon in

ferrite).

If we use (15–16, 20) and assume that Friedel

statistics, (17), (weak obstacles) are valid, then the

shear stress, tsol, needed to overcome these obsta-

cles is

tsol ¼ FS
i
3=2

b3

ffiffiffiffi
x

G

r
ð23Þ

Using the elastic interaction force up to

a cutoff value of rc combined with (8) and (9),

we obtain
tsol
G
ffiffiffi
x

p ¼ A
2=3
sub

b4=3r2c
þ kT

6A
1=3
sub b

4=3G
ln

_�e
p

_�e
p

� �" #9=4

withAsub ¼ esol
b2R3

atom

3p
ð24aÞ

for substitutional species and

tsol
G
ffiffiffi
x

p ¼ A
1=2
int

brc
þ kT

4A
1=2
int bG

ln
_�e
p

_�ep0

� �" #9=3
with Aint

¼ Desol
4
ffiffiffi
2

p
bR3

atom

9

ð24bÞ

for interstitials [(24b) was given in a simplified

form in (11) above]. In Fig. 3, we have
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applied (24b) to data for C in ferrite [12] and

(24a) for Si in copper [5] using rc ¼ b/2 and

fudge factors of 1.25 for Aint and 0.5 for Asub.

The parameter _�ep0 has been put to 1,000 s–1.

The proportionality of tsol with x0.5 in the rela-

tions above comes from the assumption of partially

flexible dislocations. As the strength of substitu-

tional species is low, the dislocation can be approx-

imated as completely stiff (b¼p), which leads to t
proportional to x. Using the theory of Labusch and

Nabarro (ref. in [11]) tobst is then predicted to be

proportional to x2/3. The maximum at room tem-

perature of the interaction force given in (21a) is
Fmax ¼ esol
Gb2

120
ð25Þ

This corresponds to a breaking angle of

0.996*p for Si in copper. If we approximate this

with a stiff dislocation, we obtain

t
Gx

¼ A
2=3
sub

b4=3r2c
þ kT

6A
1=3
sub b

4=3G
ln

_�e
p

_�ep0

� �" #3=2
with Asub

¼ esol
b2R3

atom

3p
ð26Þ

The result using (26) for Si in copper is shown

in Fig. 3 above. The used Asub factor was 1.2 in

this case.
According to Labusch and Nabarro (ref. in

[11]), we obtain

tsol ¼ 1

2

2r0F
4
maxx

2

Gb9

� �1=3
ð27Þ

where r0 is the range of the maximum interaction

force.

Precipitates can be bypassed by dislocations in

three different ways, by bowing around the parti-

cle leaving a dislocation loop around it (often

referred to as the Orowan mechanism), by cutting

(shearing) through the particle, and finally by com-

bined cross-slip and climb over the particle (see,

e.g., Lagneborg [13]). When particles precipitate

in solid state, they usually get a close relation

between their lattice and the matrix phase.

Depending on the crystal structure of the matrix

and the particle, they become coherent (all lattice

directions and planes coincide) or semicoherent. If

the atomic spacings differ between the particle and

the matrix phase, elastic coherency strains are also

induced and increase as the particle grows. When

these strains get too large, the particle will lose

coherency with the matrix as it is more favorable

to introduce phase boundary dislocations instead.

This will occur at rprec 	 2b/(3emf) for a spherical
particle with misfit strain emf. When cutting of the

particles is possible, the contribution to the flow

stress, first term in (4), will be given by one or

several mechanisms.
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• Increase in surface area, chemical strengthen-

ing, leading to
C

tsurfprec ¼
2

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g3pbfprec
Gbrprec

s
ð28aÞ

where gpb is the phase boundary energy

[chapter 2 in [1, 14]]. The equation predicts

that the strength is reduced for larger particles,

which is not observed. The mechanism is thus

usually ignored [14].

• For a difference in stacking fault energy, Dgsf
the hardening contribution is proportional to

Dgsf and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rprecfprec

p
[12]

• Difference in elastic modulus, DG [15]
tmodprec ¼ 0:16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDGÞ3rprecfprec

Gb ln
2rprec

b
ffiffiffiffiffiffi
fprec

p
� �� �3

vuuuut ð28bÞ

• Coherency strains: In this case, all particles,

below and above the slip plane, contribute to

the strength and the problem is how to sum

them. Brown and Ham (chapter 2 in [1]) used

the summation according to (19a) above with

m ¼ 2. This gives
tcohprec ¼ 4:1G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emf
�� ��3fprecrprec

b

s
ð28cÞ

According to Martin [14], the constant 4.1

should be replaced by a number between 5 and7.

For larger particles, but not large enough to

cause transition to the Orowan mechanism,

that is, for b/(4|emf|) < rprec < 2b/(3|emf|), the
breaking angle is 0 but the dislocation leaves

no loop around the particle. In this case,

Brown and Ham (Chapter 2 in [1]) proposed
tcohprec ffi 0:7G
ffiffiffiffiffiffiffiffi
fprec

p emf
�� ��b3
r3prec

 !1=4

ð28dÞ

neglecting the influence of particles giving

larger breaking angles than 0.
• Creation of antiphase boundary, APB, with

surface energy gAPB:
When a dislocation cuts an ordered parti-

cle, the order is disturbed and an antiphase

boundary is created. If the Friedel assumption

is used, the strengthening is given by
tAPBprec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g3APBrprecfprec

pGb4

s
ð28eÞ

for a single dislocation. As a second disloca-

tion on the same slip plane might restore the

order, the dislocations are in many cases seen

to move in pairs. For this case, the strengthen-

ing is given by
tAPBprec ¼
gAPB
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8gAPBrprecfprec

pGb2

r
� fprec

" #
ð28fÞ

according to Brown and Ham. Slightly differ-

ent values of the constants have been given by

other researchers [14].

The varying expressions for tsol and tprec are
contributions to s0 in (4).
Dislocation Evolution

The evolution of dislocation density in (5) is

elaborated further below. There are hardening

and recovery mechanisms. Self-diffusion plays

a role in the latter and is therefore also coupled

to vacancy generation. Furthermore, recrystalli-

zation may enter and affect grain size as well as

reduce the dislocation density.

Dislocation Generation

In (5), the variation of the mean free distance of

slip, L, with strain controls the rate of generation.
Bergström [3] showed that the empirical relation

L ¼ L1 þ ðL0 � L1Þe�k�ep ð29Þ

where the mean free distance starts at a value L0
and asymptotically approaches a final value L1,
can give a good description for a lot of different
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metals and alloys. For some materials, the final

value seems to be reached at very small strains,

giving rise to a parabolic stress-strain relation.

This holds for low alloyed steel and copper, for

example. As other dislocations impede the

motion of slipping dislocations, it is reasonable

to relate L to the distance between dislocations, or

walls or arrays of dislocations. Thus
L ¼ cdffiffiffi
r

p ð30Þ

For a Frank network, the proportionality con-

stant, cd, is close to 1. For more heterogeneous

networks, the value is higher. Local

rearrangement of the dislocations into cells and

subgrains is facilitated by cross-slip and climb of

the dislocations.

The presence of grain and phase boundaries

also adds to the generation of dislocations. Ashby

(Chapter 3 in ref. [1]) called this generation of

geometrically necessary dislocations and also

suggested values for geometrical slip distances.

Thus
Lgd ¼ cgd ð31Þ

for grains with diameter d and for precipitates
Lgp ¼ cp
rprec
fprec

ð32Þ

For rigid, randomly distributed, spherical par-

ticles of radius rprec and volume fraction fprec, the

proportionality constant, cp, is 1. If the particles

are not rigid, cp should be replaced by cp(1–dep/
dem) where dep is the strain increment in the

particle and dem in the matrix. Equation 31 gives

a dependence of the grain size which is almost

identical to the commonly used Petch-Hall rela-

tionship where ky/d
0.5 is added to the flow stress

(ky is an experimentally derived constant), if Lgd
dominates L initially.

Bergström et al [16] have suggested that for

dual phase steel with non-deforming martensite,

the deformation is inhomogeneous in the ferrite

phase and that the increase in the volume fraction

that is deforming can be described by
f ep
� � ¼ f0 þ ðf1 � f0Þe�rep ð33Þ

where f0 is the total volume fraction of ferrite and

f1 is the fraction that initially participates in the

deformation. Assuming constant stress in the

microstructure, the strain in the ferrite is given

by e/f(e) as it is assumed that the martensite does

not deform.

Assuming that the different mechanisms give

additive contributions to the increase in immobile

dislocation density in (5) we can combine the

different mean free distances for slip giving
dr
dep

¼ m

b

ffiffiffi
r

p
cd

þ 1

Lgd
þ 1

Lgp

� �
ð34Þ
Dislocation Recovery/Annihilation

Rearrangement, remobilization, and annihilation

of dislocations are mechanisms by which the

dislocation density is reduced. Bergström [3]

suggested that this could be described by
dr
dep

¼ �Or ð35Þ

At higher temperatures, above ~0.5Tm (Tm is

the melting temperature in Kelvin), climb of dis-

locations becomes an important mechanism for

dislocation recovery. Assuming a Frank network,

the rate is given by (ref. in [17])
dr
dt

¼ �Mmr2 1� 3fprec
4rprec

ffiffiffi
r

p
� �

ð36Þ

where the rate parameter Mm is expressed as the

dislocation mobility times the dislocation line

tension (~0.5Gb2) and is given by
Mm ¼ M0xvDmb

kT
Gb2 ð37Þ

whereM0 is a constant. The self-diffusion coeffi-

cient is expressed as the vacancy concentration,

xv, times the migration coefficient, Dm, of vacan-

cies. The influence of particles on the climb rate

is inferred as the initial effect during and after

deformation as the last term in (36).
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Point Defects (Vacancies, Solute Atoms)

Plastic deformation in addition to generation of

dislocations also generates point defects, vacan-

cies. The equilibrium concentration of vacancies

can be written as
C
xeqv ¼ e�
Qv
kT ð38Þ

whereQv is the activation energy for formation of

vacancies and has a value around half the activa-

tion energy for self-diffusion. According to

Friedel [9], the generation is due to cutting of

dislocations and should thus be proportional to

the distance between dislocations. The vacancies

generated will diffuse to sinks for vacancies,

grain boundaries, free surfaces, and most impor-

tantly to dislocations. Assuming one-dimensional

diffusion, this can be written as [17]

dxv
dt

¼ dxeqv
dT

dT

dt
þ kv1b

de
dt

ffiffiffi
r

p

� kv2xvDmvðxv � xeqv Þ ffiffiffi
r

p ð39Þ

where the first term is the change in equilibrium

concentration due to temperature changes, the

second is the generation due to cutting of dislo-

cations, and the third the diffusion to sinks. kvi

are model constants. Another model has been

proposed by Millizer et al. [18] who assumed

that nonconservative motion of jogs was respon-

sible for vacancy generation giving

dxv
dt

¼ dxeqv
dT

dT

dt
þ k

sO0

Qgv

de
dt

þ cjO0

4b3
de
dt

� Dmvr
k2

xv � Dmv

d2
xv ð40aÞ

where k is a structural parameter describing the

distribution of dislocations, O0 is the atomic vol-

ume, and cj is the concentration of thermal jogs
cj ¼ e�
Gb3

4p 1�uð ÞkT ð40bÞ

u is Poisson’s ratio. Although (39) and (40) are

quite different, they give approximately the same

results for the formation of vacancies. The com-

puted vacancy formation in excess of the
equilibrium value can be used to enhance the

diffusion mediated by vacancies in (37). It can

be noted that it is possible to account for diffusion

along dislocations (pipe diffusion) as well as

grain boundaries for some phenomena.

For metal alloys, we may also get drag of

solute atoms impeding the movement of disloca-

tions and grain/phase boundaries if diffusion

rates are high enough. The drag force, Fsd, during

climb of a dislocation over a distance, dy, is

given by
Fsd ¼ 1

b

X
A

�
Z1
�1

xA
dWA

dy
dy

24 35 ð41Þ

where WA is the interaction energy between

a solute atom and a dislocation and xA is the

corresponding atom fraction of specie A. The

summation is done over all solute atoms giving

drag.

A solution to Fick’s second law around

a moving dislocation has been given by Hirth

and Lothe [19]
xA ¼ vx0A
D

e �WA
kT�vy

Dð Þ
Zy
�1

e
WA
kTþ vy

DA

� 
dy ð42Þ

where v is the climb rate in the y direction, DA is

the diffusion coefficient for the solute A, and xA
0

is the mean concentration of A in the matrix. See

Magnusson and Sandström [20] for an applica-

tion showing the effect during creep in a 9 % Cr

steel. The solution of (42) is not trivial and for

practical reasons, a quasi-stationary solution can

be used [21], giving a decrease of the mobility

for climb. Then Mm in (36) is replaced by Mmsd

given by
Mmsd ¼ Mm

1þPA
Dsdx

0
A
b2A

ðkTÞ2DA

ð43Þ

The summation is done over the solute atoms,

A, with diffusion coefficients DA, mean concen-

tration xA
0, and interaction coefficients with the

dislocation, bA.
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bA ¼ Gbedge
2p

1þ nð Þ
1� nð Þ ðO

A
0 � O0Þ ð44Þ

where bedge is the edge component of

Burgers vector and O0
A is the atomic volume of

the solute A.
Recrystallization

The kinetics of recrystallization is usually

described using the JMAK-expression (Johnson-

Mehl-Awrami-Kolmogorov) on the form (Sellars

in [22])

Xrec ¼ 1� e
�n t

t0:5

� k

ð45Þ

for the evolution of the fraction recrystallized,

Xrec, with time t. The parameter n is usually

close to 0.693. k is a parameter that varies with

deformation conditions as well as the material.

The time to 50 % recrystallization, t0.5, is usually

fitted by regression to relations of the form

(Siwecki and Engberg in [22])

t0:5 ¼ Ada�e�b
p Z�ce

Qrec
kT ð46Þ

where A, a, b, c, and Qrec are fitting parameters. Z

is the Zener-Hollomon parameter. The use of

equations like (45) and (46) is limited to the

specific material under the specifically studied

deformations/time/temperature sequences. This

is a common empirical approach of curve fitting

type. Humphreys [23] describes the physics of

recrystallization as a process where new disloca-

tion-free grains grow from small regions, recov-

ered subgrains, or cells, which are already present

in the deformed structure. The nucleation process

as a selection process of successful embryos. The

nucleation of recrystallization is considered as

abnormal subgrain growth in an orientation gra-

dient, which leads to the formation of small

grains with a high angle boundary. These new

grains then grow and consume the old grains,

resulting in a new grain structure with low dislo-

cation density and, as a result, the stored energy is

lowered. The kinetics for recrystallization is well

described using this theory for growth combined
with nucleation site saturation (on old grain

boundaries) and hard impingement of the grow-

ing grains. A simplified model has been shown to

work quite well for CMn steel [17] and for Cr and

austenitic stainless steel, Figs. 4 and 5, but the

model is still fairly complex.

The model in [17] includes the dislocation

density in the driving force for recrystallization.

The dislocation density is reduced in the

recrystallized fraction of the material, and thus,

the model has two constituents, recrystallized and

not recrystallized fractions. The flow stress for

the recrystallized and not recrystallized regions

can then be calculated and the flow stress of the

material is given by a mixture law using an equa-

tion similar to (19). See [17] for details.
Phase Mixtures

The mixture laws given in (19) and (20) by them-

selves cannot be used for phase mixtures gener-

ally. Additional information is needed on how the

strain is distributed between the phases. For

lamellar structures, we can use the simple

assumptions of equal strain or equal stress in the

constituents if deforming parallel or perpendicu-

lar to the lamella, respectively. Equal stress is

also a good approximation for many particle

composites with a fraction of the softest constit-

uent larger than 50 %. It has been proposed [24]

that a mixture law given by assuming equal work

in the constituents

sidei ¼ sjdej ð47aÞ

s ¼
X

i
fisiðeiÞ ð47bÞ

where i and j denote the different constituents is

more general. This was shown [24] to work quite

well for two iron-silver composites and for a Ti-

Mn alloy with a duplex structure of a and b phase.
Final Remarks

The references [19] and [23] contain a substantial

amount of useful information.



1.00

0.80

0.60

0.40

0.20

0.1 1.0 10.0
0.00

100.0 10000.01000.0

1100'C Exp

800'C Exp

Model 1100'C 

Model 800'C 

Time (s)

X

40% Def

R
ec

ry
st

al
liz

ed
 f

ra
ct

io
n

Constitutive Models,
Physically Based Models
for Plasticity,
Fig. 4 Recrystallization

after uniaxial compression

of a 13 % Cr steel

1

0.9

0.8

0.7

0.6

R
ec

ry
st

al
liz

ed
 f

ra
ct

io
n

0.5

0.4

0.3

0.2

0.1

0
0 20 40 60

Time (s)
80 100

1200'C EXp

316L 12% Def

Model 1200'C

Model 1100'C

1100'C EXp

120

Constitutive Models,
Physically Based Models
for Plasticity,
Fig. 5 Recrystallization

after uniaxial compression

of an austenitic stainless

steel

Constitutive Models, Physically Based Models for Plasticity 661 C

C

The use of physically based plasticity models

is expected to gain ground not only due to their

relations to the physics of the deformation pro-

cess but also due to their natural coupling

to microstructure. It is obvious how they can

be coupled with models for grain growth,
precipitate growth, or dissolution, etc. There

are issues like the problem of adding contribu-

tions to the flow stress from different obstacles

that have still not been resolved and the devel-

opment of the models and their use are expected

to evolve in the future.
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Cross-References

▶Heat Treatment of Aluminum Alloys

▶Repair Welding and Local Heat Treatment

▶ Shaped Metal Deposition Processes

▶Welding and Heat Treatment of Alloys
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Overview

A simple idealization of a thermoelastic contact

problem assumes that there is no resistance to

heat flow in regions of mechanical contact and

that there is no heat exchange in regions of sep-

aration. However, problems with these boundary

conditions are not mathematically well posed and

can exhibit nonexistence of solution. Asymptotic

arguments show that for the contact of bodies

with smoothly turning tangents, no solution exists

when the heat flows out of the more distortive

material. This difficulty is resolved if one inter-

poses a thermal contact resistance, that is,

a continuous monotonic function of contact

http://dx.doi.org/10.1007/978-94-007-2739-7_431
http://dx.doi.org/10.1007/978-94-007-2739-7_454
http://dx.doi.org/10.1007/978-94-007-2739-7_808
http://dx.doi.org/10.1007/978-94-007-2739-7_996
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pressure or gap. A limiting form of this boundary

condition (known as imperfect contact) can be

defined which enables boundary value problems

to be stated in linear form on unknown regions

determined by inequalities.
C

Introduction

If two thermoelastic bodies at different tempera-

tures are placed in contact, heat will flow between

them through the contact area, and the resulting

modification in the temperature field will gener-

ally cause thermoelastic distortion that affects the

distribution of contact pressure and, in some

cases, the extent of the contact area itself.

The thermal contact process itself is quite

complex since surfaces are generally rough, caus-

ing actual contact to occur only at isolated points

in the nominal contact area (see ▶Thermal Con-

tact Resistance), and also some heat can be

exchanged between the bodies by radiation and

convection in regions that are not in physical

contact. However, for the purposes of

thermoelastic analysis, it is conventional to ide-

alize the boundary conditions.
Perfect Thermal Contact

The simplest approximation is to assume that the

surfaces are smooth and that in regions of contact,

the temperature is continuous across the inter-

face, whereas in regions that are not in contact

(the separation region), there is no exchange of

heat between the surfaces. Mathematically, it is

convenient to identify the region of the interface

that is in contact as A in which case these condi-

tions can be stated in the form
T1ðx; yÞ ¼ T2ðx; yÞ ðx; yÞ 2 A ð1Þ

q1ðx; yÞ ¼ q2ðx; yÞ ¼ 0 ðx; yÞ =2A ð2Þ

where

qi ¼ �Ki
@T1
@n

ð3Þ
is the heat flux across the interface, K is thermal

conductivity, n is a local normal to the interface,

and i ¼ 1; 2 refers to the two contacting bodies,

respectively. We shall refer to this set of bound-

ary conditions as “perfect thermal contact.” They

have been used to generalize the classical

Hertzian contact problem to include

thermoelastic effects [1–3].

Existence and Uniqueness

Unfortunately, the boundary conditions (1, 2)

are not sufficient to guarantee existence and

uniqueness of a steady-state solution in

thermoelastic contact (see ▶ Existence and

Uniqueness for Thermoelastic Contact). The

reason is that the underlying mechanical con-

tact problem is nonlinear through the unilateral

inequalities defining contact. Briefly, it is pos-

sible to push against a surface but not to pull on

it, at least at conventional engineering length

scales. (When we consider contact at the nano-

scale, van der Waal’s adhesive forces between

the bodies become significant and must be

taken into account, but this does not substan-

tially alter the conclusions reached in this

entry.) This is most clearly expressed by defin-

ing the normal contact pressure pðx; yÞ and the

gap gðx; yÞ between the surfaces. We can then

state the mechanical contact conditions in the

dual form
gðx; yÞ ¼ 0 ðx; yÞ 2 A ð4Þ

pðx; yÞ > 0 ðx; yÞ 2 A ð5Þ

pðx; yÞ ¼ 0 ðx; yÞ =2 A ð6Þ

gðx; yÞ > 0 ðx; yÞ =2 A ð7Þ

Here, the inequalities (5, 7) serve to determine

the extent of the contact area A, and in the

absence of thermoelastic effects and friction, it

can be shown that the resulting solution is unique.

However, the contact area also appears in the

definition of the heat conduction problem and

hence of the thermoelastic problem, so the two

problems are coupled and must be solved

together.

http://dx.doi.org/10.1007/978-94-007-2739-7_901
http://dx.doi.org/10.1007/978-94-007-2739-7_901
http://dx.doi.org/10.1007/978-94-007-2739-7_816
http://dx.doi.org/10.1007/978-94-007-2739-7_816
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Dundurs and Comninou [4] showed in

a simple one-dimensional example that the

steady-state solution of the resulting

thermoelastic contact problem may be unique,

nonunique, or even nonexistent, depending on

the parameters in the problem. For example,

Fig. 1 shows a thermoelastic rod of length L,
built in to a rigid wall at A and separated from

a second rigid wall B by a small gap g. Suppose

that the gap is equal to g0, when the temperature

of the rod T ¼ 0. If there is no heat flow across the

gap, the rod will adopt the temperature, TA, of

wall A, and elementary calculations show that the

gap is reduced to g ¼ g0 � aLTA. The gap cannot
be negative, so the configuration of Fig. 1 is

possible only for aLTA < g0.
For higher values of TA, we anticipate contact

between the rod and the wall at B and, if there is

perfect thermal contact, there will be heat flow

along the rod, and the steady-state temperature

will vary linearly from TA to TB. Elementary

calculations then show that the contact pressure

p is given by
pL

E
¼ aLðTA þ TBÞ

2
� g0 ð8Þ

This state is possible only if p > 0, so the

system is governed by the two inequalities

aLTA < g0 ðseparationÞ
aL TA þ TBð Þ > 2g0 ðcontactÞ ð9Þ

If TB > TA, there is a range in which both

inequalities are satisfied, and the steady-state

solution is nonunique. If TB < TA, there is

a range in which neither inequality is satisfied

and no steady-state solution exists [5].
Pressure-Dependent Contact Resistance

This mathematical difficulty can be resolved if

instead we recognize the inevitable presence of

a thermal contact resistance at the interface

whose value depends on the contact pressure p

or the gap g. Suppose that the free end of the rod

in Fig. 1 is at temperature TC in the steady state. If
the thermal contact resistance is R, the steady-

state heat flux q must satisfy the equations
q ¼ TC � TB
R

; q ¼ TA � TC
KL

ð10Þ

and we can eliminate q to obtain
TC ¼ KRTA þ LTB
KRþ L

ð11Þ

The unrestrained thermal expansion of the rod

is aLðTA þ TCÞ=2 and elementary calculations

then show that the gap g is defined by the

equation
f ðgÞ 
 L

KRðgÞ þ L
¼ g� ðg0 � aLTAÞ

aLðTA � TBÞ=2 ð12Þ

This condition can be generalized to both

contact and separation régimes by defining a gen-

eralized gap function ~g through
~g ¼ g ; g > 0 ð13Þ

¼ � pL

E
; p > 0 ð14Þ

Physical considerations suggest that the con-

tact resistance, Rð~gÞ, should be a monotonically

increasing function of ~g, tending to a small pos-

itive value as ~g ! �1 (very large contact pres-

sure) and to infinity as ~g ! 1 (very large gap).

The corresponding function f must therefore

have the general form shown in Fig. 2,

constrained between the limits 0 < f < 1.

The solution of equation (12) is defined by the

intersection of the function f ð~gÞ and a straight

line of slope 2=aLðTA � TBÞ representing the

right-hand side of the equation. Clearly there

must be at least one intersection for all such
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straight lines, so the problem of existence of

solution is resolved. If the contact resistance

and, hence, f ð~gÞ is monotonic, only one intersec-

tion can occur if the slope is positive (i.e.,

TA > TBÞ. This is illustrated by line I in Fig. 2.

However, multiple solutions can occur for

sufficiently large negative slopes ðTA < TBÞ as

represented by line II in Fig. 2.

The contact resistance boundary condition can

be generalized to two- and three-dimensional

problems by defining a resistance such that
qðx; yÞ ¼ T1ðx; yÞ � T2ðx; yÞ
Rðp; gÞ ð15Þ

A more general discussion of existence and

uniqueness with this boundary condition is given

by Duvaut [6], who concludes that, as in the rod

model, it is sufficient to guarantee existence, but

the possibility of nonuniqueness remains, and this

is believed to be a real physical effect. In effect,

the steady state of the system depends on the

history of loading and heating. For example, if

the thermoelastic rod exists in a state involving

separation and if the rod is now heated externally

until it has expanded sufficiently to make contact

with the wall, the temperature of the wall may now

be sufficient to supply enough heat to sustain it in

this new configuration.

We see therefore that the introduction of

a pressure-dependent thermal contact resistance

is sufficient to ensure that the steady-state

thermoelastic contact problem is well posed, but

at the price of making the underlying boundary
value problem strongly nonlinear. By contrast,

with the perfect thermal contact boundary condi-

tions (1, 2), the nonlinearity appears only in the

definition of the contact area through the inequal-

ities (5, 7), and this can often be finessed from the

problem by treating a parameter (such as the

radius of A in an axisymmetric problem) as an

independent variable.

This desirable simplification can be recovered

in the limiting case where the contact pressure

needed to establish almost perfect contact (negli-

gible contact resistance) is sufficiently small.

This is best understood by referring to the rod

model in the case where both the separation and

the contact solutions fail the inequality condi-

tions. In this case, the introduction of a contact

resistance allows the system to adopt a state

where the rod expands until it is near enough to

the other wall to allow enough conductance into

the cold wall to prevent further expansion. This

state has been characterized as “imperfect ther-

mal contact,” and in the limit, it satisfies the

linear conditions
gðx; yÞ ¼ 0 ð16Þ

pðx; yÞ ¼ 0 ð17Þ

In effect, the thermal resistance R now

becomes the dependent variable, but it must be

positive from thermodynamic considerations,

and hence the solution must also satisfy the

inequality condition
T1ðx; yÞ � T2ðx; yÞ
qðx; yÞ > 0 ð18Þ
Boundary Value Problems

In two- and three-dimensional contact problems,

it is usually found that there exists a steady-state

solution satisfying the perfect thermal contact

boundary conditions (1, 2) in cases where the

heat flows into the body with the greater thermal

distortivity defined as

d ¼ að1þ nÞ
K

ð19Þ
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where a is the coefficient of thermal expansion

and n is Poisson’s ratio. For the opposite direction
of heat flow, such a solution may still exist if the

contact is “complete” meaning that it is deter-

mined by the shape of the contacting bodies, as

in the case of the indentation of an elastic body by

a rigid flat punch. In fact, the earliest indication of

the mathematical difficulties described in this

entry were associated with an attempt to explain

the phenomenon of thermal rectification by the

development of a closed region of separation

completely contained within a region of perfect

contact [7]. It was shown in [1] that such a state

cannot occur for either direction of heat flow.

If we then consider the case of axisymmetric

Hertzian contact [2], the solution involving

a circular contact area satisfies the inequality

conditions if and only if the heat flows into the

body with the greater thermal distortivity. For the

opposite case, there always exists a region near

the edge of the contact circle in which the contact

pressure is predicted to be negative, thus violat-

ing the inequality (5).

This situation was elucidated by Comninou

and Dundurs [8] by considering the asymptotic

stress and temperature fields at the transition

point between perfect contact and separation,

using a technique pioneered by Williams [9].

The field sufficiently near to this transition

appears two-dimensional under a sufficiently

large magnification and thus permits an

eigenfunction expansion in terms of the

eigensolution of the corresponding homoge-

neous problem. Comninou and Dundurs were

able to demonstrate that the sign of the scalar

multiplier on the dominant term in this expan-

sion could be chosen to satisfy both the inequal-

ities (5, 7) in the case where the local heat flow is

directed into the more distortive material, but

that either sign would lead to a violation of one

of the two inequalities in the opposite case.

Thus, this transition is impossible for this direc-

tion of heat flow.

If we also allow the possibility of regions of

imperfect contact as defined by equations (16, 17)

and the inequality (18), we find that an acceptable

steady-state solution exists in such cases, but that

there is a region of imperfect contact between
regions of perfect contact and regions of separa-

tion. A formal statement of these modified

boundary conditions is as follows:

Perfect Contact

gðx; yÞ ¼ 0; T1ðx; yÞ ¼ T2ðx; yÞ; pðx; yÞ > 0
Imperfect Contact

gðx; yÞ ¼ 0; pðx; yÞ ¼ 0;
T1ðx; yÞ � T2ðx; yÞ

qðx; yÞ > 0
Separation

pðx; yÞ ¼ 0; qðx; yÞ ¼ 0; gðx; yÞ > 0

Several problems have been solved using this

idealization, including the axisymmetric and

plane Hertzian contact problems [10, 11] and

the indentation of a thermoelastic half-space by

a cooled rigid punch [12]. The latter problem is of

course complete, as defined above, so there exist

a range of thermal conditions under which the

perfect contact solution satisfies the inequality

conditions. However, if the punch is cooled to

a sufficiently low temperature, this solution pre-

dicts the development of a region of negative

(i.e., tensile) contact pressure near the axis of

symmetry. In nonthermoelastic contact prob-

lems, this would be an indication of the develop-

ment of a region of separation, but we have

already explained above that such a contained

region cannot exist in the thermoelastic case.

Thus, we must conclude that there exists

a central region of imperfect contact, and the

solution using this assumption does indeed

satisfy all the conditions of the problem.
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Overview

A class of the problem involving inclusions or

bodies inserted into a hole in an elastic medium

has attracted much attention in engineering com-

munity. The problem will become more compli-

cated when separation occurs between an

inclusion or insert and the surrounding medium

caused by an applied loading or a nonuniform

expansion of the inclusion. Unlike the

corresponding problem with bonded interface

between dissimilar media, there is no exact solu-

tion available for the current problem involving

incomplete contact. In fact, a singular integrodif-

ferential equation is derived to account for the

incomplete contact problem that has

been discussed by Muskhelishvili [1] and

England [2]. A similar equation with a Prandtl

type of singular integrodifferential equation has

also been derived by Stippes et al. [3] and Wilson

[4] in the case of separation of a circular elastic

insert from the matrix. For solving the above

equation, it requires some approximate methods

to evaluate the contact angle and the contact

stresses between an infinite plate and a smooth

elastic insert. In this entry, we restrict our atten-

tion to the determination of the contact stress and

the contact angle. The effect of the applied tem-

perature gradient and a uniform temperature

change on the contact stress as well as the contact

angle are discussed in details and displayed in

graphic form.
Problem Statement

Consider the two-dimensional problem in which

an infinite plate containing a rigid circular

http://dx.doi.org/10.1007/978-94-007-2739-7_158
http://dx.doi.org/10.1007/978-94-007-2739-7_158
http://dx.doi.org/10.1007/978-94-007-2739-7_148
http://dx.doi.org/10.1007/978-94-007-2739-7_690
http://dx.doi.org/10.1007/978-94-007-2739-7_690
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inclusion of radius a is subjected to a uniform

temperature change as well as a remote uniform

heat flux with the strength q approached from the

negative x-axis (see Fig. 1). This problem is con-

veniently formulated in terms of the complex

potentials as
srr þ syy ¼ 2

�
f0ðzÞ þf0ðzÞ

�
srr þ isry ¼ f0ðzÞ þ f0ðzÞ � zf00ðzÞ � �z

z
cðzÞ

2mður þ iuyÞ ¼ e�iy kfðzÞ � zf0ðzÞ � cðzÞ þ 2mb
ð
g0ðzÞdz

� �
ð1Þ

where srr; sry; sty; ut; uy are the stresses and

the displacements, respectively, in polar coordi-

nates which can be expressed in terms of two

stress functions fðzÞ; cðzÞ and a temperature

function g0ðzÞ. The shear modulus is denoted by

m and k ¼ ð3� uÞ=ð1þ uÞ; b ¼ a for plane

stress and k ¼ 3� 4u; b ¼ ð1þ uÞa for plane

strain with u being Poisson’s ratio and a the

thermal expansion coefficient. Primes denotes

differentiation with respect to z, and

a superimposed bar denotes the complex conju-

gate. For this problem involving a rigid inclusion

inserted into a hole in an elastic medium under

thermal loads, one might expect separation to

occur along the arc L0, namely, �  y  2p� �,

where � is the unknown contact angle. Since the

insert is assumed to be perfectly smooth, no shear

stresses act on the contact arc L defined by

jyj  �; and then the boundary conditions for

the infinite medium jzj 	 a are
srr þ isry ¼ 0 ðs 2 L0Þ ð2Þ

sry ¼ 0 ðs 2 LÞ ð3Þ

ur ¼ f ðsÞ ðs 2 LÞ ð4Þ

where f ðsÞ is real and has the following symmet-

ric property:
f ðsÞ ¼ f ð�sÞ ð5Þ

This symmetry implies that there is a zero

resultant force over the hole jzj ¼ a Let us sup-

pose the region occupied by the elastic

medium, the exterior of the circle jzj ¼ a, is

denoted by Sþ and its complement, the interior

of the circle jzj ¼ a, by S�. Based on the method

of analytical continuation, the traction-free

boundary conditions, (2), allow us to represent

the remaining boundary conditions, (3) and (4), in

terms of a single stress function r and

a temperature function g0ðzÞ as

Im

�
f0þðsÞ � f0�ðsÞ

�
¼ 0 s 2 L ð6Þ

Re

�
e�iy

�
kfþðsÞ þ f�ðsÞ þ 2mbgþðsÞ

)#
¼ 2mf ðsÞ s 2 L

ð7Þ

where the superscript + (or �) denotes limiting

values of f0ðzÞ for an approach to a point s on

L from outside (or inside) the hole boundary.

In the present study, we assume that the rigid

circular inclusion is thermally insulated from the

heat flux, and the temperature function g0ðzÞ in an
infinite plate has been found as [5]

g0ðzÞ ¼ t zþ a2

z

� �
þ l ð8Þ

where t ¼ �q=k is the temperature gradient

applied at infinity and l is a uniform temperature

change. Unlike the corresponding problem with

perfect interface conditions, the current problem

with boundary conditions is impossible to reduce
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to a Hilbert problem for which an exact solution

can be obtained. In order to solve this problem,

we assume srr ¼ NðsÞ ðs 2 LÞ where the real

function NðsÞ satisfies the symmetric property

of (5) and then the stress function f0ðzÞ satisfies
the Cauchy problem
C

f0þðsÞ � f0�ðsÞ ¼ 0 ðs 2 L0Þ
f0þðsÞ � f0�ðsÞ ¼ NðsÞ ðs 2 LÞ

ð9Þ

The solution to the Cauchy problem, (9), is

readily obtained as
f0ðzÞ ¼ m0ðzÞ � 2mbta2

1þ k
1

z
ð10Þ

where
m0ðzÞ ¼ 1

2pi

ð
NðsÞds
s� z

ð11Þ

Notice that the second term in the right-hand

side of (10) represents the behavior of f0ðzÞ at

infinity due to the thermal effect induced by the

applied temperature gradient t. The contour L in

(11) is described in a clockwise direction. In view

of the symmetric propertyNðsÞ ¼ Nð�sÞ ¼ NðsÞ;
(11) can also be represented as (see Appendix)

m0ðzÞ ¼ 2M �M0 a2

z

� �
ð12Þ

where

M ¼ 1

4pi

ð
L

NðsÞds
s

ð13Þ

By approaching z to the hole boundary in (12),

it is easy to show that

m0�ðsÞ ¼ 2M � m0� sð Þ ð14Þ

Differentiating (14) will respect to s yields
m00�ðsÞ ¼ s2

a2
m00�ðsÞ ð15Þ
Singular Integrodifferential Equation

For incomplete contact problems, one might

expect separation to occur along the arcs L0

which are unstressed, while the given normal

displacement is specified over the contact region

L as indicated in (7). By successively differenti-

ating (7) with respect to the argument y twice and
combining itself, we have
ak½f0þðsÞ þ f0þðsÞ � sf00þðsÞ � a2

s
f00þðsÞ�þ

a½f0�ðsÞ þ f0�ðsÞ � sf00�ðsÞ � a2

s
f00�ðsÞ�þ

2mba½g0þðsÞ � sg00þðsÞ þ g0þðsÞ � a2

s
g00þðsÞ� ¼

4m f ðsÞ þ @2

@y2
f ðsÞ

� �
ð16Þ

With the help of (8) and (10) and using the

derived formulas (14) and (15), we can rewrite

the interface condition (16) in terms of m0ðsÞ and
m00ðsÞ as

aðk� 1Þ½m0þðsÞ � m0�ðsÞ��
asðkþ 1Þ½m00þðsÞ þ m00�ðsÞ� ¼

4m f ðsÞ þ @2

@y2
f ðsÞ

� �
� 2aðkþ 1ÞM � 4mbal

ð17Þ

Use of (11) and the Plemelj formulas shows

that
m0þðsÞ � m0�ðsÞ ¼ NðsÞ ð18Þ

m0þðsÞ þ m0�ðsÞ ¼ 1

pi

ð
L

NðtÞdt
t� s

ð19Þ

Moreover, differentiating (19) with respect

to s yields
m00þðsÞ þ m00�ðsÞ ¼ 1

pi

ð
L

N0ðtÞdt
t� s

ð20Þ
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Substitution of (18) and (20) into (17) gives
ðk� 1ÞNðsÞ � ðkþ 1Þ s
pi

ð
L

N0ðtÞdt
t� s

þ 2ðkþ 1ÞM

¼ 4m
a
f f ðsÞ � sf 0ðsÞ � s2f 00ðsÞg � 4mbl

ð21Þ

Equation (21) is a Prandtl type of singular

integrodifferential equation for the current

incomplete contact problem. Note that, by put-

ting l ¼ 0 in (21), the above singular integrodif-

ferential equation can be reduced to that for the

isothermal elasticity problem [2]. Equation (21)

can be rewritten in a form more convenient for

the analysis by letting a ¼ 1 and f ðsÞ¼ 0 as
ðk� 1ÞNðsÞ� ðkþ 1Þ s
pi

ð
L

N0ðtÞdt
t� s

þ 2ðkþ 1ÞM¼

� 4mbl

ð22Þ

Auxiliary Constraint Condition

In order to determine the stress distribution on the

contact arc, it is necessary to solve (22) subject to

the auxiliary condition that the displacements

must vanish at some fixed points due to the sym-

metric property. For the present problem, both the

normal and tangential displacements are found to

vanish at the point s ¼ 1 since the plate and the

rigid insert coincide at this point when the heat

flux approaches from the negative x-axis. This

condition gives
2m½urðsÞ þ iuyðsÞ� ¼ kfþðsÞ þ f�ðsÞ
þ 2mbgþðsÞ ð23Þ

If one integratesf0ðzÞ in (10) with respect to z,
it can be shown that
fþðsÞ ¼ fðsÞ

¼
ðs
1
m0ðxÞdx� 2mbt

1þ k
logðsÞ ð24Þ
and

f�ðsÞ ¼ f
1

s

� �

¼ �
ð1s
0

m0ðxÞdx� 2mbt
1þ k

log
1

s

� �
ð25Þ

With the help of (24) and (25) and an integra-

tion of g0ðzÞ in (8), the condition in (23) becomes
� k
ð1
1þ

m0ðzÞdzþ
ð1�
0

m0ðzÞdzþ 2mbð0:5tþ lÞ ¼ 0

ð26Þ

Substituting (11) into (26) and performing

some algebraic manipulations, we finally have

(see Appendix)
ðk� 1Þ
2p

ð�
0

NðyÞðp� yÞ sinðyÞdyþ

ð1þ kÞ
2p

ð�
0

NðyÞ cosðyÞ log½2� 2 cosðyÞ�dy

¼ �2mbð0:5tþ lÞ
ð27Þ

where � is the contact angle to be determined.
Approximate Solutions

As we mentioned previously, there is no exact

solution available for the current incomplete con-

tact problem involving a Prandtl type of singular

integrodifferential equation, (22), together with the

auxiliary condition, (27). In order to solve (22) and

(27) with the unknown function NðyÞ and the

undetermined contact angle �, we first assume

that the contact normal stress is represented as

NðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� cos �

p
�
Xp
n¼0

Cn cos nþ 1

2

� �
y

� �
ð28Þ
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For the problem of constructing the function

m0ðzÞ corresponding to (28), we now introduce

a branch function as
C

oðzÞ ¼ ½z� ei��12½z� e�i��12

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2 cosð�Þzþ 1

p
ð29Þ

which is defined in the plane cut along L with the

chosen branch such that
lim
x!1

oðzÞ
z

� �
¼ 1 ð30Þ

It is easy to see that the boundary values of

oðzÞ on L are given by
o�ðsÞ ¼ �
ffiffiffiffiffiffi
2s

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðyÞ � cosð�Þ

p
ð31Þ

By connecting the function oðzÞ with the gen-
erating function for the Legendre polynomials

[6], it can be shown that oðzÞ has series expan-
sions of the form
oðzÞ ¼ �
Xk¼1

k¼0

Dkz
k jzj < 1 ð32Þ

and
oðzÞ ¼ z
Xk¼1

k¼0

Dkz
�k jzj > 1 ð33Þ

where
D0 ¼ 1; D1 ¼ � cosð�Þ ð34Þ

and
Dk ¼ cosð�ÞPk�1ðcos �Þ � Pk�1ðcos �Þ
k � 1

k 	 2

ð35Þ
with PkðxÞ being the Legendre polynomials of

degree k.

In view of the fact that the contract stress

function NðyÞ in (28) is related to the branch

function oðzÞ in (31), m0ðzÞcan then be approxi-

mated by a linear combination of the function

m0
nðzÞ as
m0ðzÞ ¼
Xn¼p

n¼0

Anm
0
nðzÞ ð36Þ

where m0
nðzÞ is defined by
m0
nðzÞ ¼ ðzn þ z�n�1ÞoðzÞ � D�

nþ1þXn
k¼0

Dk½zðnþ1�kÞ � z�ðnþ1�kÞ� ð37Þ

with
D�
nþ1 ¼ d0nþDnþ1 ð38Þ

and
d0n
¼ 1; n ¼ 0

¼ 0; n 6¼ 0

(
ð39Þ

Moreover, use of (31) and the Plemelj formu-

las shows that
m0
nþðsÞ � m0

n�ðsÞ 
 NnðyÞ ¼

4
ffiffiffi
2

p
� cos nþ 1

2

� �
y

� ��
cos y� cosð�Þ

�1
2 ð40Þ

and
m
00þ
n ðsÞ þ m

00�
n ðsÞ ¼

s
pi

ð
L

N
0
nðtÞdt
t� s


 InðyÞ

¼4
Xn
k¼0

ðnþ 1� kÞDk

cos½ðnþ 1� kÞy�
ð41Þ
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Similarly, the function M in (13) can also be

approximated as
M ¼
Xn¼p

n¼0

AnMn ð42Þ

where MnðzÞ is defined by
Mn ¼ 1

4pi

ð
L

NnðtÞdt
t

¼ �D�
nþ1 ð43Þ

Substitution of (40) and (43) into (22) leads to
Xn¼p

n¼0

AnGnðyÞ ¼ �4mblþ eðyÞ ð44Þ

where
GnðyÞ ¼ðk� 1ÞNnðyÞ � ðkþ 1ÞInðyÞ
� 2ðkþ 1ÞD�

nþ1

ð45Þ

and eðyÞ denotes the error in the approximate

solution. If the coefficients An are chosen to min-

imize the integral
ð�
0

e2ðyÞdy ð46Þ

then the method of least squares requires that
Xn¼p

n¼0

An

ð�
0

GnðyÞGkðyÞdy ¼
ð�
0

�4mblGkðyÞdy

k ¼ 0; 1; 2:::::P

ð47Þ

Substitution of (40) into (27) for the determi-

nation of the contact angle � yields the condition
Xn¼p

n¼0

½ðk� 1ÞEn þ ð1þ kÞFn�An ¼ �2mbð0:5tþ lÞ

ð48Þ

where
En ¼ 2
ffiffiffi
2

p

p

ð�
0

ðp� yÞ sinðyÞ � cos nþ 1

2

� �
y

� �
½cosðyÞ � cosð�Þ�12dy

ð49Þ

and
Fn ¼ 2
ffiffiffi
2

p

p

ð�
0

log½2� 2 cosðyÞ� cosðyÞ

� cos nþ 1

2

� �
y

� �"
cosðyÞ � cosð�Þ

#1
2

dy

ð50Þ

The system of simultaneous equations,

(47), together with the auxiliary condition,

(48), is then established for solving the

unknown coefficients A0;A1; ::::::Ap and the

contact angle �. Once the coefficients An and

the angle � are computed, both the normal and

circumferential stresses along the hole bound-

ary can be obtained. It follows from (36) and

(40) that the normal stress on the contact arc is

expressed as
NðyÞ ¼ 4
ffiffiffi
2

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðyÞ � cosð�Þ

p
�
Xn¼p

n¼0

An cos nþ 1

2

� �
y

� �
ð51Þ

Similarly, the circumferential stress can so be

expressed as
syy ¼ NðyÞ þ 4M � 8mbt
1þ k

cos y ð52Þ
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C

Results and Discussion

The numerical calculations in (47) and (48) are

performed with Simpson’s quadrature formula

using a maximum number of 1,000 evenly

spaced subdivisions in the interval 0  y  �.

With an initial guess of the value � for

a fixed number of terms in the approximating
series, (47) is solved, and the error in

satisfying (48) is evaluated.

The distributions of the normal stress on the

contact arc and the circumferential stress

around the hole in the matrix with a different

number of terms in the approximating series for

the case l=ta ¼ 1 are shown in Fig. 2 and 3,

respectively. It is interesting to see that the

maximum circumferential stress occurs at the

ends of the contact arc, while themaximum

compressive normal stress occurs at the middle

of the contact arc. The above conclusion can

also be applied for different loading conditions

as shown in Figs. 4 and 5. Although the general

trend of the normal stress and the circumferen-

tial stress curves is qualitatively the same for

different loading conditions, the values of the

maximum stress are strongly dependent on

the applied thermal loading. By increasing the

value of l=ta, both the maximum compressive

normal stress and the maximum circumferen-

tial stress increase, whereas the contact angle

decreases. Generally speaking, the magnitude

of a uniform temperature change l applied to

the system plays the more important role

than the applied temperature gradient t in

affecting the current problem. This can be ver-

ified from the fact that only the parameter l
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appears in the right-hand side of a singular

integrodifferential equation as indicated in

(22). The presence of the temperature gradient

applied at infinity can only determine the posi-

tion where separation is supposed to exist. It is

expected that the arc L0, where separation

occurs, locates near the site with higher tem-

perature, while the contact arc L locates near

the side with lower temperature.
Concluding Remarks

A Prandtl type singular integrodifferential equa-

tion governing the current incomplete contact

problem is derived and solved approximately

by constructing a finite series which minimizes

the error in the sense of least squares. Although

there is no exact solution available in the litera-

ture to check the accuracy of the approximate

solution, the present derived solution seems to

yield reasonable results that fit some physical

considerations. The method presented here can

also be applied to a related case where the plate

contains an elliptic elastic insert. This problem

may reduce to a singular integrodifferential

equation similar to (21) but of a more compli-

cated form.
Appendix

Derivation of (12)

By replacing z with a2

z in (11) and taking the con-

jugate, we have
m0 a2

z

� �
¼ � 1

2pi

ð
L

NðtÞd�t
�t� a2

z

ð53Þ

Using the property NðtÞ ¼ NðtÞ and noting

that t�t ¼ a2, (53) can be replaced by
m0 a2

z

� �
¼ � 1

2pi

ð
L

zNðtÞdt
tðz� tÞ ð54Þ

Equation (54) can be rearranged as
m0 a2

z

� �
¼� 1

2pi

ð
L

NðtÞdt
t� z

þ 1

2pi

ð
L

NðtÞdt
t

¼� m0ðzÞ þ 2M

ð55Þ

By approaching z to o in (55), we obtain
m0�ðsÞ ¼ 2M � m0�ðsÞ ð56Þ
Derivation of (27)

Equation (10) can be rewritten as
m0ðzÞ ¼ 1

2pi

ð
L1

NðsÞds
s� z

� 1

2pi

ð
L1

NðsÞd�s
�s� z

ð57Þ

where the contour L1, defined by

0  arg ðsÞ  �; jsj ¼ 1, is represented as the

upper part of the contact arc L.
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Integrating (57) with respect to z yields
C

ð1
0

m0ðzÞdz ¼ 1

2pi

ð
L1

NðsÞ½� logðs� zÞ�10ds�
8<:

ð
L1

NðsÞ½� logð�s� zÞ�10d�s
9=;

¼ 1

2pi

ð
L1

NðsÞ½� logðs� 1Þ þ logðsÞ�ds
8<:

�
ð
L1

NðsÞ½� logð�s� 1Þ þ logð�sÞ�d�s
�

ð58Þ

In view of the relation s ¼ eiy; s ¼ e�iy (58)

becomes

ðl
0

m0ðzÞdz

¼ 1

2pi

ð�
y

NðyÞ½� logðeiy � 1Þ þ logðeiyÞ�ðdeiyÞ
8<:

�
ð�
y

NðyÞ½� logðe�iy � 1Þ þ logðe�iyÞ�dðe�iyÞ
�

¼ 1

2pi

ð�
y

NðyÞ logðeiy � 1Þ � logðeiyÞ
8<:
� logðe�iy � 1Þ þ logðe�iyÞ� sinðyÞdy
þ
ð�
y

NðyÞ � logðeiy � 1Þ þ logðsiyÞ

:

� logðe�iy � 1Þ þ logðe�iyÞi cosðyÞdy�
�

¼ 1

2p

ð�
0

NðyÞ �2iyþ log
eiy � 1

e�iy � 1

� �
sinðyÞdy

� 1

2p

ð�
0

NðyÞ log½ðeiy � 1Þðe�iy � 1Þ�i cosðyÞdy

¼ 1

2p

ð�
0

NðyÞðp� yÞ sinðyÞdy

� 1

2p

ð�
0

NðyÞ cosðyÞ log½2� 2 cosðyÞ�dy

ð59Þ
Similarly,
ð1
1

m0ðzÞdz ¼ 1

2p

ð�
0

NðyÞðp� yÞ sinðyÞdy
8<:

þ
ð�
0

NðyÞ cosðyÞ log½2� 2 cosðyÞ�dy
9=;
ð60Þ

Substitution of (59) and (60) into (27) gives
ðk� 1Þ
2p

ð�
0

NðyÞðp� yÞ sinðyÞdy

þ ð1þ kÞ
2p

ð�
0

NðyÞ cosðyÞ log½2� 2 cosðyÞ�dy

¼ �2mbð0:5tþ lÞ

ð61Þ
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Overview

Piezoelectric materials are referred to the most

actively developed contemporary materials

which are widely used in engineering as sensors,

transducers, and actuators. However, piezoelec-

tric materials are very brittle in general and often

contain various microdefects and particularly

interface cracks. Such cracks are the most dan-

gerous kind of defects, especially under essential

thermal and electromechanical fields. Therefore,

it is important to understand and to be able to

analyze the fracture characteristics of piezoelec-

tric materials so that reliable service life predic-

tions of the pertinent devices can be conducted.

An interface crack in an infinite piezoelectric

bimaterial under the action of a remote tempera-

ture flux has been analytically investigated in

paper [1], where the representations of [2–4]

extended for the piezoelectric case in paper [5]

have been used. Thereby, an electrically imper-

meable crack has been assumed in this entry.

Later a similar problem for an electrically perme-

able interface crack has been considered in paper

[6], where also as in paper [1] the classical inter-

face crack model has been used. The solutions

obtained in the frame of this model possess the
oscillating singularities at the crack tips which

were found in [7]. Nevertheless, for small zone

lengths of overlapping of crack faces, this solu-

tion is rather useful for an interface crack inves-

tigation because for such cases the required

fracture mechanical parameters can be accurately

defined by this solution. However, the existence

of an essential shear loading and a temperature

field lead in certain cases to the appearance of

a long contact zone of the interface crack faces. In

such cases the approach based upon the initial

assumption concerning the existence of

a contact zone [8] should be used.

A penny-shaped interface crack with a contact

region between two isotropic materials under

a thermomechanical loading has been investi-

gated in papers [9, 10] by means of the method

of singular integral equations. The thermal con-

ditions in the zone of the mechanical contact of

the crack faces in particular have been investi-

gated in these papers, and important conclusions

concerning the formulation of these conditions

depending on the direction of the heat flux have

been developed. An interface crack with a contact

zone in an anisotropic bimaterial under

thermomechanical loading has been analytically

studied in Ref. [11], and the problems of

thermoelasticity for a set of interface cracks

with contact zones in isotropic and anisotropic

materials were investigated in [12, 13].

A thermopiezoelectric bimaterial with an inter-

face crack under the assumption of a contact zone

model has been investigated in paper [14] by

means of the Lekhnitskii-Eshelby-Stroh formal-

ism. The method of singular integral equations

has been used in this paper, and the crack faces

including the contact zones were assumed to be

thermally and electrically insulated.

Electrically permeable and electrically imper-

meable interface cracks with a frictionless

contact zone at the right crack tip between two

semi-infinite piezoelectric spaces under the

action of a remote electromechanical loading

and a temperature flux were studied in papers

[15, 16].

In this entry the problem of a crack with

a contact zone between two piezoelectric semi-

infinite spaces under a remote electromechanical

http://dx.doi.org/10.1007/978-94-007-2739-7_100098
http://dx.doi.org/10.1007/978-94-007-2739-7_100183
http://dx.doi.org/10.1007/978-94-007-2739-7_100183
http://dx.doi.org/10.1007/978-94-007-2739-7_100486
http://dx.doi.org/10.1007/978-94-007-2739-7_100696
http://dx.doi.org/10.1007/978-94-007-2739-7_100750
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loading and a temperature flux has been

discussed. The peculiarities of an analytical con-

sideration of this problem and the results of the

analysis have been presented.
C
Definition

An interface crack with electrically permeable

or insulated open part and mechanically fric-

tionless contact zone in a piezoelectric

bimaterial under the action of a remote mixed-

mode mechanical loading as well as thermal and

electrical fields is considered. By use of the

matrix–vector representations of thermal,

mechanical, and electrical fields via sectionally

holomorphic functions, the problems of linear

relationships are formulated and solved exactly

for both electrically permeable and electrically

impermeable interface cracks. For these cases

the transcendental equations and clear analyti-

cal formulas are derived for the determination

of the contact zone lengths and the associated

fracture mechanical parameters. The influence

of the thermal and electrical fluxes upon the

mentioned values is demonstrated.
Basic Relations for
a Thermopiezoelectric Solid

The constitutive relations in the absence of body

forces and free charges for a linear piezothermo-

electric material can be presented according to

Ref. [17] in the form

Y
iJ ¼ EiJKlVK:l � biJT;

Y
iJ; i ¼ 0 ð1Þ

qi ¼ �lijT; j; qi;i ¼ 0 ð2Þ

where
VK ¼ uk; K ¼ 1; 2; 3

’; K ¼ 4

�
ð3Þ

’iJ ¼ sij; i; J ¼ 1; 2; 3
Di; i ¼ 1; 2; 3; J ¼ 4

�
ð4Þ
and
EiJkl ¼

Cijkl; J;K ¼ 1; 2; 3

elij; J ¼ 1; 2; 3;K ¼ 4

eikl;K ¼ 1; 2; 3; J ¼ 4

� eil; J ¼ K ¼ 4

8>>><>>>: ð5Þ

In relations (1)–(5), ’ is electric potential; elij,
eij, and lij are the piezoelectric constants, dielec-
tric constants, and the heat conduction coeffi-

cients, respectively. The values biJ are the

stress-temperature coefficients for J ¼ 1, 2, 3

and bi4 present the pyroelectric constants. Small

subscripts in (1)–(5) and afterward are always

ranging from 1 to 3, capital subscripts are ranging

from 1 to 4, and summation on repeated Latin

suffixes has been used.

Assuming all fields are independent on the

coordinate x2, using the Lekhnitskii-Eshelby-

Stroh representation and its application to piezo-

electric [5] and thermopiezoelectric [1, 14] mate-

rials, the following presentations are obtained:

V ¼ AfðzÞ þ cwðztÞ þ �A�fð�zÞ þ �c�wð�ztÞ ð6Þ

t ¼ Bf 0ðzÞ þ dw0ðztÞ þ �B�f 0ð�zÞ þ �d�w0ð�ztÞ ð7Þ

where zJ ¼ x1 þ pJx3, V ¼ ½u1; u2; u3; ’�T ,
t ¼ ½s31; s32; s33; D3�T (the superscript

T stands for the transposed

matrix), and A ¼ ½A1;A2;A3;A4�; pJ and

AJ ¼ ½a1J; a2J; a3J; a4J�T are an eigenvalue and

an eigenvector, respectively, of the system:
Qþ pJðRþ RTÞ þ p2JT

 �

AJ ¼ 0 ð8Þ

with the elements of the 4� 4 matricesQ,R, and

T defined as QJK ¼ E1JK1, RJK ¼ E1JK3, and

TJK ¼ E3JK3. The vector c is defined by the

equation

Qþ tðRþ RTÞ þ t2T

 �

c ¼ N1 þ tN2 ð9Þ

with Nm ¼ ½bm1; bm2; bm3; bm4�T(m ¼ 1,2), and

the 4� 4 matrix B and the vector d can be

found by the formulas
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B ¼ RTAþ TAP; d ¼ ðRT þ tTÞc� N2 ð10Þ

with P ¼ diag½p1; p2; p3; p4�
A Bimaterial Thermopiezoelectric Space
with Mixed Conditions at the Interface

Further, a bimaterial composed of two different

piezoelectric semi-infinite spaces x3 > 0 and

x3 < 0 with thermomechanical properties

defined by the matrices E
ð1Þ
iJKl; l

ð1Þ
ij ; bð1ÞiJ and

E
ð2Þ
iJKl; l

ð2Þ
ij ; bð2ÞiJ , respectively, is considered. We

assume that the component q3 of the temperature

flux vector and the vector t are continuous across

the whole bimaterial interface and the

parts Lt ¼ �1; d1ð Þ [ a1; d2ð Þ [ . . . dn;1ð Þf g
and L ¼ �1; c1ð Þ [ b1; c2ð Þ [ . . . bn;1ð Þf g
( di; ai½ � � ci; bi½ �) of the interface

�1 < x1 < 1, x3 ¼ 0 are thermally and elec-

tromechanically bounded, respectively, i.e., the

boundary conditions at the interface x3 ¼ 0 are

the following:

q
ð1Þ
3 ¼ q

ð2Þ
3 ; tð1Þðx1; 0Þ ¼ tð2Þðx1; 0Þ for x1 2 ð�1;1Þ

ð11Þ

Tð1Þ ¼ Tð2Þ for x1 2 Lt; V
ð1Þðx1; 0Þ

¼ Vð2Þðx1; 0Þ for x1 2 L
ð12Þ

The temperature and the thermal flux at the

interface can be presented in the form
½T 0ðx1Þ� ¼ y00þðx1Þ � y00�ðx1Þ ð13Þ

and the thermal flux can be presented as
q
ð1Þ
2 ðx1; 0Þ ¼ �ik0 y00þðx1Þ þ y00�ðx1Þ

n o
ð14Þ

where k0 ¼ kð1Þkð2Þ

kð1Þþkð2Þ
(kðmÞ is defined by lðmÞij ) and

the function yðzÞ is analytic in the whole plane

with a cut along ð�1;1ÞnLt.
Using an approach developed for

a thermoelastic case in Ref. [18] and relations

(7), (11), the following expressions at the inter-

face are obtained:
V0ðx1Þ½ � ¼ Wþðx1Þ �W�ðx1Þ ð15Þ

tð1Þðx1; 0Þ ¼ GWþðx1Þ � �GW�ðx1Þ � gðx1Þ
ð16Þ

where
½V0ðx1Þ� ¼ V0ð1Þðx1; 0Þ � V0ð2Þðx1; 0Þ ð17Þ

G¼Bð1ÞD�1, D¼Að1Þ��LBð1Þ, L¼Að2ÞðBð2ÞÞ�1
,

W�ðx1Þ ¼ Wðx1 � 0Þ, and the vector function

gðx1Þ ¼ g1ðx1Þ; g2ðx1Þ; g3ðx1Þ; g4ðx1Þ½ �T can be

presented in the form
gðx1Þ ¼ hy0þðx1Þ � �hy0�ðx1Þ ð18Þ

with
h ¼ 1

kð1Þ þ kð2Þ

� �Gð�Ld� � c�Þ � kð2Þdð1Þ
n o

ð19Þ

and
c� ¼ kð2Þcð1Þ þ kð1Þ�cð2Þ; d� ¼ kð2Þdð1Þ þ kð1Þ�dð2Þ

ð20Þ

It is worth to note that for the boundary con-

ditions (12) the vector function W(z) ¼ ½W1ðzÞ;
W2ðzÞ;W3ðzÞ;W3ðzÞ; �T is analytic in the whole

plane with a cut along (�1,1)\L. We note as

well that the matrix G and the vector functionW

(z) are related to the matrix H and the vector

function C0ðzÞ of papers [19] and [1] as

iG�1 ¼ H, W(z) ¼� iHC0ðzÞ, respectively,

and relations (15), (16) can be written without

any difficulties in terms of the matrix H and the

vector function C0ðzÞ from these papers. But for

the formulation of the problems considered in the

following entries, presentations (15) and (16)

appear to be more convenient than the form

used in the mentioned papers. On the base of

relations (15), (16), different problems of linear
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relationship can be formulated for thermopiezo-

electric bimaterials with cuts at the material

interfaces.

The attention is focused in the following on

thermopiezoelectric materials of the symmetry

class 6 mm [20] poled in the direction x3 which
have an essential practical significance as so-

called poled ceramics. In this case for all fields

which are independent of the coordinate x2, the
displacement V2 of the vector function V of

equation (3) decouples in the (x1,x3)-plane from

the components (V1,V3,V4). Because of the sim-

plicity of the V2-determination, our attention will

be focused on the plane problem for the compo-

nents (V1,V3,V4). In this case, similar to the

contracted notations in the anisotropic elasticity

[21], the following relations for the elements of

the matrix E related to the (x1,x3)-plane can be

introduced: E1111 ¼ C11, E1133 ¼ C13,

E3333 ¼ C33; E1313 ¼ C44, E1143 ¼ e31,

E3343 ¼ e33; E1341 ¼ e15; E1441 ¼ �e11, and

E3443 ¼ �e33. Moreover, the matrix G without

the second row and column and the vector h

without the second element have the following

structure [22]:
G ¼
G11 G13 G14

G31 G33 G34

G41 G43 G44

264
375 ¼

i g11 g13 g14
g31 i g33 i g34
g41 i g43 i g44

264
375;

h ¼
iy1
y3
y4

8><>:
9>=>;

ð21Þ

where all gij and yi are real.
Presentations (15), (16) play an important role

for the formulations of the linear relationship

problems for cracks, inclusions, etc. at the

interface.
A Crack with a Contact Zone at the
Material Interface

Consider a crack situated in the region c x1 b,

x3 = 0 between two semi-infinite spaces (x3>0,
material 1 and x3 < 0, material 2) which are

loaded at infinity with uniform stresses

sðmÞ33 ¼ s, sðmÞ13 ¼ t, and sðmÞ11 ¼ s1xm, as well as

with uniform electric fluxes D
ðmÞ
3 ¼ d;

D
ðmÞ
1 ¼ D1

xm satisfying the continuity conditions

at the interface. Besides, a uniform temperature

flux q0 in the x3-direction is imposed at infinity. It

is assumed that the crack surfaces are traction-

free for x1 2 ðc; aÞ while they are in frictionless

contact for x1 2 ða; bÞ, and the position of the

point a < b is arbitrarily chosen for the time

being. It means that the interface conditions for

the thermally perturbed state have the following

forms:
x1 =2 ðc; bÞ : ½Vðx1; 0Þ� ¼ 0; ½tðx1; 0Þ� ¼ 0

ð22Þ

x1 2 ðc; aÞ : q�3 ¼ �q0; s
ðmÞ
13 ðx1; 0Þ ¼ 0; sðmÞ33 ðx1; 0Þ

¼ 0; ½D3ðx1; 0Þ� ¼ 0; ½’ðx1; 0Þ� ¼ 0

� for an electrically permeable crack;

ð23Þ
q�3 ¼ �q0; t

ðmÞðx1; 0Þ ¼ 0

� for an electrically impermeable crack;

ð24Þ

x1 2 ða; bÞ : T½ � ¼ 0; q3½ � ¼ 0; ½u3ðx1; 0Þ� ¼ 0

sðmÞ13 ðx1; 0Þ ¼ 0; ½s33ðx1; 0Þ� ¼ 0; ½D3ðx1; 0Þ� ¼ 0

½’ðx1; 0Þ� ¼ 0

ð25Þ

This problem is a particular case of the

problem considered in the previous section

for n ¼ 1, c1 ¼ d1 ¼ c, a1 ¼ a, b1 ¼ b, and

therefore, presentations (13), (14) and (15),

(16) obtained there hold true in this case.

Due to these presentations, the thermal prob-

lem can be reduced to a relatively simple Hil-

bert problem and solved exactly for both

electrically permeable and electrically imper-

meable interface cracks.

Combining further each group of equations

(15), (16) in the same way as it has been

performed in Ref. [22], one arrives for the
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electrically permeable crack at the following

presentations:
sð1Þ33 ðx1; 0Þ þ imjs
ð1Þ
13 ðx1; 0Þ ¼ Wj½Fþ

j ðx1Þ
þ gjF

�
j ðx1Þ� þ s0 � g0jðx1Þ; j ¼ 1; 3ð Þ

ð26Þ

½u01ðx1Þ� þ iSj½u03ðx1Þ� ¼ Fþ
j ðx1Þ � F�

j ðx1Þ ð27Þ

where
FjðzÞ ¼ W1ðzÞ þ iSjW3ðzÞ ð28Þ

g0jðx1Þ ¼ g3ðx1Þ þ imjg1ðx1Þ ð29Þ

s0 ¼� g34D
�1
1 ðg43s� g33dÞ

D1 ¼g33g44 � g43g34;
ð30Þ

and the constants mj; #j; Sj are defined by the

elements of the matrix G.

The satisfaction of the electromechanical

boundary conditions (22)–(25) by use of (26),

(27) leads for an electrically permeable interface

crack to the following inhomogeneous-combined

Dirichlet-Riemann problem for a sectionally

holomorphic function F(z):
Fþðx1Þ þ gF�ðx1Þ ¼ C1ðx1Þ for
x1 2 ðc; aÞ ð31Þ

ImF�ðx1Þ ¼ C2ðx1Þ for x1 2 ða; bÞ ð32Þ

where the functions C1ðx1Þ and C2ðx1Þ are

defined by the thermal solution obtained above.

It is important that the solution of the problem of

linear relationship (31), (32) has been presented

in a closed form similar to those given in

[11, 23].

For an electrically impermeable interface

crack, a Hilbert problem appears in addition to

problem (31), (32), but nevertheless, the analyti-

cal solutions of all obtained problems are found

and all necessary thermal, mechanical, and elec-

trical characteristics at the interface are presented

in a closed form. Moreover, the clear analytical

formulas for the stress intensity factors
k1 ¼ lim
x1!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � aÞ

p
sð1Þ33 ðx1; 0Þ

k2 ¼ lim
x1!bþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � bÞ

p
sð1Þ13 ðx1; 0Þ

as well as the electrical displacement intensity

factor k4 ¼ lim
x1!aþ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx1 � aÞp

D
ð1Þ
3 ðx1; 0Þ have

been obtained for an arbitrary value of the rela-

tive contact zone length l ¼ b�a
b�c :

Further, the real contact zone length should be

obtained. For this purpose the following addi-

tional conditions
sð1Þ33 ðx1; 0Þ  0 for x1 2 ða; bÞ;
u3ðx; 0Þ½ � 	 0 for x1 2 ðc; aÞ ð33Þ

should be satisfied. For an electrically permeable

crack, the satisfaction of inequalities (33) gives

a transcendental equation with respect to the rel-

ative contact zone length l. The largest root l0 of
this equation from the interval (0, 1) defines the

required real contact zone length. This root can be

found numerically, but for a small l0, an analyt-

ical formula has been obtained as well.

The numerical results were obtained for

a bimaterial composed of piezoelectric cadmium

selenium (the upper material) and glass (the

lower one) [24]. In Fig. 1 the variation of the

relative contact zone length l0 with respect to

the dimensionless parameter p which is propor-

tional to the intensity of the thermal flux q0 is

shown for the coefficients of normal-shear load-

ing k ¼ t=s equal to 0 (line1), 10 (line II), and 50

(line III). The values of l0 are usually rather

small; therefore, the logarithmic scale is used

with the definition #0 ¼ �lnðl0Þ. It should be

noted that for k ¼ 50 and relatively small magni-

tudes of p, the values of l0 are comparable to 1,

and moreover, for any value of k, the relative

contact zone length l0 for p ! �1 tends to the

same value 7:0225� 10�19 as for a pure thermal

loading. It is important to note as well that for an

electrically permeable interface crack neither the

contact zone length nor the intensity factors

depend on the intensity of the electrical flux d.

A more complicated situation concerning the

determination of the real contact zone length
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takes place for an electrically impermeable inter-

face crack. In this case, inequalities (33) hold true

if a is taken from the segment ½a1; a2� providing
a1  a2 holds true, where a ¼ b� l l,
a1 ¼ b� l1l, a2 ¼ b� l2l, and l1 is the maxi-

mum root from the interval (0,1) of the equation

k1 ¼ 0 and l2 is the similar root of the equation

lim
x1!a�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� x1

p ½u03ðx1; 0Þ� ¼ 0: The required

roots of the mentioned equations can be

found numerically or analytically (for a small l1
and l2), and the segment ½a1; a2� can be obtained.
An additional analysis based upon the theorem of

the minimum potential energy shows that the real

position of the point a coincides with a1 provid-

ing a1  a2 holds true. If the last inequality is not

valid, then the inequalities (33) cannot be satis-

fied and other thermal and electrical interface

conditions should be introduced.

The numerical analysis showed that for the

electrical flux d ¼ 0, the contact zone lengths

correspondent to an electrically insulated and an

electrically permeable crack are practically the

same. However, a nonzero electrical flux changes

the real contact zone length and the associated

fracture mechanical parameters for an electri-

cally impermeable interface crack. In Fig. 2 the

variations of the relative contact zone lengths l1
and l2 with respect to the intensity of the
electrical flux d� ¼ C
ð1Þ
33 d=ðeð1Þ33 sÞ for k ¼ 0 and

two different intensities of the temperature flux

are shown (C
ð1Þ
33 and e

ð1Þ
33 are the elastic and pie-

zoelectric moduli, respectively). The same

bimaterial as in the previous example was used,

and the designation #i ¼ �lnðliÞ (i¼ 1,2) for the

logarithmic scale of Fig. 2 was adopted. It can be

seen that the increasing of d leads to the increas-

ing of the differences between l1 and l2 which

for the left points of each pair of lines are equal to

zero.

It is worth to be mentioned that according to

the last results, the contact zone length and the

associated fracture mechanical parameters

depend on the electrical flux for an electrically

insulated crack. However, the essential depen-

dencies of these values on d appear for rather

large relative intensities of the electrical flux

only. It is particularly demonstrated by Table 1

where the values of the relative contact zone
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length l1 are shown with respect to the intensity

of the electrical flux d* for p¼ 0, k¼ 0 and for the

same bimaterial as earlier.
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Overview

Parts I, II, and III, for which this section is

a synoptic introduction, present accounts of
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continuous data dependence, or structural stabil-

ity, in thermoelastodynamics. A corresponding

account for thermoelastostatics is presented

in [1]. As in that contribution, we focus solely

on linear versions of classical and nonclassical

theories, with the distinction maintained between

linearized and linear formulations.

Specifically, the equations studied are those

for small elastic displacements and temperature

deviation obtained by linearization of the full

nonlinear equations either about a finitely

deformed configuration (the linearized, or small

deformations superposed upon large, theory)

or about the natural configuration (the linear

theory). Derivations are provided in [2]. Quasi-

static theories are not considered.

A significant feature of linear continuum

dynamics is that continuous dependence, and

to some extent existence, does not require positive-

or even sign-definite elastic coefficients. It follows

that sign-definiteness likewise is not required for

uniqueness in the initial boundary value problem.

Instead, only symmetry of appropriate constitutive

tensors, implied by energy conservation, is

required. The problem, however, then becomes

ill-posed. Fritz John [3] demonstrates how

continuous dependence may be recovered

provided continuity is understood in the sense of

Hölder, weaker than the standard definition, and

solutions belong to suitable constraint classes.

Different constraint classes, however, may be

required for different data. Consequently, linearity

is forfeited, and treatments of separate data cannot

be linearly superposed.

Several techniques are available to study

continuous dependence under these relaxed

conditions. Attention is confined to the tech-

niques of logarithmic convexity and the

Lagrange identity, essential features of which

are briefly introduced in the respective parts to

assist understanding. Both methods have been

applied in [4–6] to linear elastodynamics,

while somewhat earlier, Brun [7] had indepen-

dently developed the Lagrange identity

method to establish uniqueness in linear

thermoelastodynamics and viscoelasticity.

Although similar results are obtained from

either method, both are included for
comparative purposes as each offers slightly

different advantages.

Logarithmic convexity (Part I) and Lagrange

identity (Part II) arguments establish continuous

dependence upon data that includes source terms,

initial and boundary conditions, and mechanical

and thermal constitutive tensors. Uniqueness

under the same constitutive conditions may be

deduced as a special case of dependence upon

initial and boundary data.

Problems forward and backward in time are

examined along with both bounded and

unbounded regions, and in particular, exterior

regions and the half-space. Proofs, details of

which may be found in the cited references, are

briefly described. Nor is it possible, also due to

space limitations, to include the important class

of problems that treat continuous dependence for

the half-cylinder and similar semi-infinite bodies.

The usual positive-definite conditions recover

well-posedness for the forward-in-time problem

and enable the standard concept of continuity to

be employed in the derivation of continuous data

dependence. This permits application, for exam-

ple, of semigroup theory and conservation laws.

Uniqueness is again implied.

Under the same positive-definite conditions,

however, the corresponding backward-in-time

problem becomes ill-posed, and logarithmic

convexity or Lagrange identity methods are

employed to study continuous data dependence.

Methods for dealing with these different circum-

stances in classical linear theories are illustrated

in Parts I and II. Nonclassical linear theories are

discussed in Part III.

Although each part is written independently of

the others, all three parts are intended to form

a coherent study and may be read as such. In

particular, equations, expressions, and notation

are often cross-referenced.

A comprehensive survey of the literature is

not attempted in any part. Citations are restricted

to those that help explain principal features of

methods selected for presentation. Techniques

not discussed, but possibly suitable for continu-

ous data dependence in thermoelastodynamics,

include weighted energy arguments, quasi-

reversibility, and others listed by Payne [8].
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The treatments outlined here extend easily to

weak versions of the problems under consider-

ation, and in consequence, we treat only a strong

formulation. Abstract derivations include those

provided by Levine [9], Dafermos [10], and

Marsden and Hughes [11].

The summation and comma conventions are

adopted throughout all three parts, with Roman

subscripts having the range 1; 2; 3. Greek

subscripts, with the exception of � and t which

are used as additional time variables, range over

1; 2. A vector or tensor is loosely denoted by its

Cartesian components, but otherwise scalar,

vector, and tensor quantities are not typographi-

cally distinguished.
Basic Initial Boundary Value Problems

Let O denote the (bounded) three-dimensional

region occupied by a thermoelastic body in its

equilibrium (undeformed) reference configura-

tion, and let @O be the Lipschitz continuous

smooth boundary of O. With respect to a given

Cartesian system of rectangular axes, the balance

law of linear momentum and the analogous law

for heat, which may be either postulated or

derived from the first law of thermodynamics, in

linear theories are given by

tij; j þ r0 fi ¼ r0 €ui ðx; tÞ 2 QðTÞ ð1Þ

qi;i þ r0r ¼ r0y0 _S ðx; tÞ 2 QðTÞ ð2Þ

where a superposed dot indicates differentia-

tion with respect to time t. The maximal inter-

val of existence is ½0; T�; T > 0,

QðtÞ ¼ O� ½0; t�; uiðx; tÞ are the Cartesian com-

ponents of the increment in displacement vec-

tor; tijðx; tÞ are those of increments in the first

Piola stress tensor; qiðx; tÞ are those of the incre-
ment in the heat flux vector; yðx; tÞ is the incre-
ment in temperature; Sðx; tÞ is the increment in

the (scalar) entropy; r0ðxÞ > 0 is the positive

mass density in the reference configuration;

fiðx; tÞ are components of the increment in vec-

tor body-force per unit mass of the reference

configuration; rðx; tÞ is the increment in (scalar)
heat supply per unit mass of the reference con-

figuration; and y0ðxÞ is the reference

temperature.

The constitutive relations in the linearized

theory assume the form
tij ¼ dijkluk;l � bijy ð3Þ

S ¼ bijui;j þ ay ð4Þ

qi ¼ hijkuj;k þ aiyþ kijy;j ð5Þ

where bijðxÞ; hijkðxÞ; aiðxÞ; aðxÞ and kijðxÞ are

Cartesian components of various tensor, vector,

and scalar constitutive coefficients assumed to be

differentiable and known. The components

dijklðxÞ of the elastic coefficient tensor, likewise

supposed differentiable, are related to the

differentiable elastic moduli cijklðxÞ by
dijkl ¼ cijkl þ diksjl ð6Þ

in which dij denotes the standard Kronecker delta
and sij are Cartesian components of the symmet-

ric Cauchy stress tensor in the large deformed

equilibrium configuration. The elastic moduli

possess both major symmetry and minor

symmetry:
cijkl ¼ cklij ¼ cjikl ð7Þ

so that the elastic coefficients from (6) possess

only the major symmetry:
dijkl ¼ dklij ð8Þ

Since the coefficients dijkl depend upon the

large Cauchy stress sij, which can be arbitrarily

assigned, there is no a priori reason to suppose

that they are sign-definite. Consequently, it is

important to establish qualitative properties

subject only to the symmetry (8). Furthermore,

there is scant physical reason for supposing that

the elastic moduli cijkl are sign-definite. The usual

arguments are either simplistic, tautological, or

occasionally spurious. Furthermore, mere

mathematical expediency is inadequate as

sole a priori justification. However, exploration
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of the consequences of such mathematical

postulates is perfectly legitimate.

The linear theory, which represents small devi-

ations from the reference configuration, is

obtained by setting sij ¼ 0 in the preceding

relations. We regard the linear theory as an impor-

tant, but special, case of the linearized theory and

therefore do not explicitly refer to it for sign-

indefinite elasticities. A significant difficulty,

however, occurs when the elastic moduli are pos-

itive-definite. Then, the displacement gradient

must be replaced by the symmetric linear strain

tensor, and this affects integration by parts and

other operations. These aspects are not discussed.

Equations of motion are derived by substitu-

tion of the constitutive relations in the balance

laws (1) and (2) which, for ðx; tÞ 2 QðTÞ, gives
dijkluk;l � bijy
� �

;j
þ r0fi ¼ r0 €ui ð9Þ

hijkuj;kþaiyþ kijy;j
� �

;i
þ r0r¼ r0y0 bij _ui;jþa _y

� 
ð10Þ

When the primary configuration is at constant

temperature, the heat conduction tensor becomes

symmetric ðkij ¼ kjiÞ, while the constitutive

relation for the increment in the heat flux vector

simplifies to
qi ¼ kijy;j ð11Þ

and consequently (10) is replaced by
kijy;i
� �

;j
þ r0r ¼ r0y0 bij _ui;j þ a _y

� 
ðx; tÞ 2 QðTÞ

ð12Þ

Material symmetries, for example, isotropy,

introduce further simplifications, but these are

not considered.

Specification of the initial boundary value

problem is completed by adjoining standard

initial and boundary conditions to the above

field equations. For convenience, attention

is restricted mainly to Dirichlet boundary

conditions. Accordingly, the boundary conditions

for ðx; tÞ 2 @O� ½0; T� are given by
uiðx; tÞ ¼ u�i ðx; tÞ yðx; tÞ ¼ y�ðx; tÞ ð13Þ

while initial conditions for x 2 O are
uiðx; 0Þ ¼ u
ð0Þ
i ðxÞ _ui ðx; 0Þ ¼ v

ð0Þ
i ðxÞ ð14Þ

yðx; 0Þ ¼ yð0ÞðxÞ ð15Þ

where u�i ; y
�; uð0Þi ; v

ð0Þ
i ; yð0Þ are prescribed

functions. A further condition stated in Part III

supplements (15) in the specification of the initial

boundary value problem for nonclassical theories.

Suppose conditions are satisfied such that r0y0
is constant, and in consequence (11) and (12) hold.

Then, the equations may be rescaled by setting
ðr0y0Þ1=2bij ¼ �bij ð16Þ

ðr0y0Þa ¼ �a ð17Þ

y ¼ ðr0y0Þ1=2�y ð18Þ

r ¼ ðr0y0Þ1=2�r ð19Þ

Thus, without loss, it is possible to set r0y0 ¼ 1

in (9) and (12), provided the heat conduction ten-

sor, kij, remains unaltered. Henceforth, under the

stated conditions, it will be assumed that rescaling

has occurred, with the same notation retained for

rescaled quantities. As already remarked, the same

conditions imply the symmetry
kijðxÞ ¼ kjiðxÞ x 2 O ð20Þ

Homogeneous boundary data and uniform

density and reference temperature ensure that

solutions to (9) and the rescaled (12) obey

a conservation law.

Define the energy EðtÞ to be
EðtÞ ¼
ð
O

r0ui;tðtÞui;tðtÞ þ dijklui;jðtÞuk;lðtÞ



þ ay2ðtÞ�dx
ð21Þ
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where the spatial variable in the argument is

suppressed. By direct time differentiation of

(21) and use of (9) and (12) rescaled, the function

JðtÞ defined by

JðtÞ ¼ EðtÞ þ 2

ð
QðtÞ

kijy;ið�Þy;jð�Þ dxd� ð22Þ

satisfies the relation
JðtÞ ¼ Jð0Þ þ 2I1ðtÞ ð23Þ

in which
I1ðtÞ ¼
ð
QðtÞ

r0 fið�Þui;�ð�Þ þ rð�Þyð�Þ� �
dxd�

ð24Þ

Consequently, JðtÞ is conserved when source

terms vanish.

More generally, consider the unscaled equa-

tions (9) and (10), for which y0ðxÞ is not constant,
and let

WðtÞ ¼ EðtÞ þ V1ðtÞ þ V2ðtÞ t 2 ½0; T�
ð25Þ

where EðtÞ is defined in (21), and
V1ðtÞ ¼ 2

ð
QðtÞ

ðr0y0Þ�1kijy;ið�Þy;jð�Þdxd�

ð26Þ

V2ðtÞ ¼ 2

ð
QðtÞ

ðr0y0Þ�1 r0y0Aið�Þy;ið�Þ



� Aið�Þyð�Þðr0y0Þ;i
�
dxd�

ð27Þ

AiðtÞ ¼ hijkuj;kðtÞ þ aiyðtÞ
� � ð28Þ

Subject to homogeneous boundary data and

uniform mass density, direct differentiation of

WðtÞ, and appeal to the unscaled equations (9)

and (10), lead to the relation
WðtÞ ¼ Wð0Þ þ 2I1ðtÞ ð29Þ
Zero source terms imply that WðtÞ is

conserved.
Existence of Solutions

Existence and uniqueness of weak and strong solu-

tions with finite energy JðtÞ to the mixed initial

boundary value problem for the coupled linear

classical thermoelastic system (9) and (12) on

a bounded region has been established

by Dafermos [10] under conditions that include

positive-definiteness of the energy JðtÞ and

symmetry of the thermal coupling tensor, bij. He
appeals to the Riesz representation theorem and

also demonstrates that solutions are asymptotically

stable with respect to time. Certain conditions,

however, permit convergence of the displacement

to an undamped oscillation. The same positive-

definite condition enables contractive semigroup

theory to be alternatively employed in the proof of

existence (see [11, p. 360], and [12]).

When positive-definiteness is abandoned, it is

shown in the Section entitled “Nonexistence” by

a modification of the logarithmic convexity

technique that a solution to linear classical

problems cannot exist globally in time.

Uniqueness, however, still holds.

For isotropic linear classical thermoelasticity,

Lebeau and Zuazua [13] demonstrate decay with

respect to time of the energy EðtÞ.
Logarithmic Convexity Arguments

Introduction

Logarithmic convexity arguments are employed

in partial differential equations, for example, by

Agmon [14] and applied to linear theories of

elastodynamics by Knops and Payne [4, 5] who

further extend the approach to classical

thermoelastodynamics [15]. Elements of the

method occur in the investigation of n-body dis-

persion by Lagrange and Jacobi and in treatments

of elasticity by Lipschitz [16] and Duhem [17]

(see also [18, p. 222]). Here, chief characteristics

of the procedure are described before particular
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features are sketched of its applications to

thermoelastic systems.

A major prerequisite is a conservation law of

the form
C

KðtÞ þ VðtÞ  Eð0Þ t 2 ½0; T� ð30Þ

where VðtÞ, a sign-indefinite function, and KðtÞ,
a positive-definite function, are defined on the

(weak) solution to the linear initial boundary

value problem of concern, and ½0; T�; T > 0 is

the maximal interval of existence. Examples of

VðtÞ and KðtÞ are the potential and kinetic ener-
gies. A second positive-definite function, GðtÞ,
for example, the L2ðOÞ-norm of the solution,

must be identified which by virtue of the

governing equations, boundary conditions,

and standard inequalities ensures that the

function

FðtÞ ¼ GðtÞ þ g1ðtþ t�Þ2 t 2 ½0; T� ð31Þ

where g1 and t� are positive constants to be

chosen, satisfies
_FðtÞ  2 ½ðGðtÞ þ g1ðtþ t�Þ2ÞðKðtÞ þ g1Þ�
1=2

ð32Þ

€F ¼ 2KðtÞ � 2VðtÞ þ 2g1 ð33Þ

	 4ðKðtÞ þ g1Þ � 2ðEð0Þ þ g1Þ ð34Þ

The sign-indefinite function VðtÞ has been

eliminated by means of (30). Consider the

differential inequality
FðtÞ €FðtÞ � _F
2 ðtÞ 	4 FðtÞðKðtÞ þ g1Þ � _F

2 ðtÞ
n o
� 2FðtÞðEð0Þ þ 2g1Þ

	 �2FðtÞðEð0Þ þ 2g1Þ ð35Þ

where (35) follows from (32). Suppose that

Eð0Þ < 0 and choose 2g1 ¼ �Eð0Þ so that

FðtÞ > 0; t 2 ½0; T� and inequality (35) may be

written as
d2

dt2
ln FðtÞð Þ ¼ FðtÞ €FðtÞ � _F

2 ðtÞ
F2ðtÞ 	 0 ð36Þ

which indicates that the positive-definite function

FðtÞ possesses a convex logarithm. Jensen’s

inequality and convexity properties lead to
FðtÞ  Fð0Þ½ �t=T FðTÞ½ �ð1�t=TÞ ð37Þ

FðtÞ 	 Fð0Þ exp ðt _Fð0Þ Fð0Þ= Þ ð38Þ

where t 2 ½0; T� and _Fð0Þ is positive for suitable
choice of t�. These inequalities are used to

determine continuous data dependence and

growth properties.

Dependence on Initial Data

Applications of logarithmic convexity to

linearized classical thermoelasticity are now

briefly discussed. Application to nonclassical the-

ories is treated in Part III.

First Treatment

Let O be bounded and consider a strong solution

to the classical system (9) and (12) rescaled so

that r0y0 ¼ 1. The displacement and the temper-

ature are specified everywhere on the boundary

@O, and Cauchy initial data is given by (14) and

(15). Assume that a 6¼ 0, together with
max
O

bijbij þ bij;jbik;k
� �  M2

1 ð39Þ

whereM1 is a bounded positive constant, and also

that there exists a positive constant k0 such that
k0xixi  kijxixj x 2 O ð40Þ

To establish continuous dependence upon

initial data, fix all other data and denote the

difference in the displacements and tempera-

tures corresponding to two distinct sets of ini-

tial data by ðui; yÞ, respectively. For this

problem, treated in [15], the function FðtÞ is

selected to be
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FðtÞ ¼
ð
QðtÞ

r0uiui dxd� þ ðT � tÞ

�
ð
O
r0u

ð0Þ
i ðxÞuð0Þi ðxÞdxþ g2 ð41Þ

where t 2 ½0; TÞ; and g2 is a positive constant

depending upon, and vanishing with, the initial

data. The differential inequality corresponding to

(35) for t 2 ½0; TÞ, becomes
F €F� _F
� �2 	 �c1F _F� 2c2F

2 ð42Þ

where c1; c2 are computable positive constants.

A sequence of standard inequalities is deployed

in the derivation of (42), details of which are given

in [15]. To proceed further, it must be proved that

FðtÞ does not vanish at any point t 2 ½0; T� for
nonzero initial data. This is equivalent to unique-

ness of the displacement or to proving that FðtÞ is
identically zero subject to zero initial data.

It should be remarked that Brun [7, 19], using

Lagrange identities discussed in Part II, apparently

was the first to prove uniqueness of solutions to

coupled linearized thermoelastodynamics under

the present assumptions. Nevertheless, the proof

based upon logarithmic convexity is included for

completeness. Assume the contrary and that there

exists an open interval ðt1; t2Þ on which FðtÞ > 0.

Put t ¼ expð�c2tÞ, and rewrite (42) as
d2

dt2
ln FðtÞt�2c1=c

2
2

� h i
	 0 ð43Þ

to demonstrate the relationship with logarithmic

convexity. Consequently, Jensen’s inequality

implies for t1  t  t2 that there holds
FðtÞt�2c1=c
2
2  Fðt1Þt�2c1=c

2
2

1

h i ðt�t2Þ
ðt1�t2Þ

� Fðt2Þt�2c1=c
2
2

2

h i ðt1�tÞ
ðt1�t2Þ ð44Þ

where ta ¼ expð�c2taÞ; a ¼ 1; 2. Suppose that

Fðt1Þ ¼ 0, which by (44) and continuity implies

that FðtÞ ¼ 0; t 2 ½0; t2�, and therefore FðtÞ ¼ 0
on ½0; T�. The contradiction establishes unique-

ness and justifies the assumption that FðtÞ does
not vanish at any point of ½0; T� for nonzero initial
data. Accordingly, (44) holds for t 2 ½0; T�, or
equivalently,
FðtÞexpð2c1t=c2Þ Fð0Þ½ �ð1�dðtÞÞ FðTÞe2c1T=c2
h idðtÞ

ð45Þ

where
dðtÞ ¼ ð1� expð�c2tÞÞ
ð1� expðc2TÞÞ ð46Þ

Assume that the initial temperature, displace-

ment, and velocity are square integrable onO and

that the initial energy is finite. Then for smooth

solutions in the constraint class
ð
QðTÞ

r0uiui dxd�  N2
1 ð47Þ

for specified positive constant N1, it follows from

(45) that the L2ðOÞ-norm of the displacement

depends continuously upon the initial data

measured by Fð0Þ.
An extension of the argument enables

continuous dependence of the temperature upon

initial data to be similarly established but with

respect to the different choice
PðtÞ ¼
ð
QðtÞ

ðt� �Þy2 dxd�

þ 1

2

ð
QðtÞ

ðt� �Þ2kijy;iy;j dxd�
ð48Þ

See [15] for details.

Second Treatment

An alternative treatment, due to Wilkes [20],

again assumes sign-indefinite elasticities and

proves logarithmic convexity of the weaker norm

GðtÞ ¼
ð
O
r0uiui dxþ a�1

ðt
0

ð
O
kijF;iF;j dxd�

þ g3ðtþ t�Þ2
ð49Þ
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where

Fðx; tÞ ¼ byðx; tÞ d� þ zðxÞ ð50Þ

g3 and t� are positive constants to be chosen, and

for any general integrable function

cðx; tÞ; ðx; tÞ 2 QðTÞ, the notation
bcðx; tÞ ¼ ðt
0

cðx; �Þd� ð51Þ

is introduced.

The scalar function zðxÞ, whose existence is

assured by the theory of elliptic equations, is

determined as the solution to the boundary

value problem
ðkijzðxÞ;iÞ;j ¼ yð0ÞðxÞ þ a�1biju
ð0Þ
i;j ðxÞ x 2 O

ð52Þ

zðxÞ ¼ 0 x 2 @O ð53Þ

The proof avoids the boundedness condition

(39) and involves the construction of the differ-

ential inequality
GðtÞ €GðtÞ � _GðtÞ � a

ð
O
kijz;iz;j dx

� �2
	 �2 aJð0Þ þ g3½ �GðtÞ ðx; tÞ 2 QðTÞ

ð54Þ

where JðtÞ is the conserved energy defined in

(22). Initial conditions that correspond to
ayð0ðxÞ þ biju
ð0Þ
i;j ðxÞ ¼ 0 x 2 O ð55Þ

lead to zðxÞ ¼ 0, and consequently, when

Jð0Þ  0, the selection g3 ¼ �aJð0Þ, inequality
(54) reduces to the convexity of ln GðtÞ, already
discussed. When Jð0Þ > 0 and ðx; tÞ 2 QðTÞ,
(54) may be rewritten as
GðtÞ €GðtÞ � _GðtÞ
 �2 	 �2 1þ aJð0Þ
g3

� �
� G2ðtÞ

ðtþ t�Þ2 ð56Þ

where definition (49) is used. Inequality (56) may

be integrated to give (see [21])
GðtÞ  1þ t

t�
� 2þe

Gð0Þ exp t

T

� ln
GðTÞ
Gð0Þ 1þ T

t�

� ��2�e
" #

e ¼ 2aJð0Þ
g3

ð57Þ

whose further discussion, beyond the present

scope, may be found in [21].

Otherwise, two cases are distinguished depen-

dent upon the sign of Jð0Þ. For this purpose, set
g3 ¼ t� ¼ 0; and let t 2 ½0; T�. When Jð0Þ  0, it

is proved ([20]) that
GðtÞ þ aðT � tÞ
ð
O
kijz;iz;j dx

 Gð0Þ þ aT

ð
O
kijz;iz;j dx

� �ð1�t=TÞ
GðTÞt=T

ð58Þ

whereas when Jð0Þ > 0, it follows that
GðtÞþaðT� tÞ
ð
O
kijz;iz;j dxþa�1Jð0Þ

 etðT�tÞ Gð0ÞþaT

ð
O
kijz;iz;j dxþa�1Jð0Þ

� �1�t=T

� GðTÞþaJð0Þ½ �t=T

ð59Þ

Either inequality demonstrates that solutions

in the class for which GðTÞ is bounded depend

continuously in the sense of Hölder upon initial

data in the half-open interval ½0; tÞ. Initial data is
measured by the first term on the right of each

inequality which, besides Gð0Þ, also requires
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both the integral A ¼ ÐO kijz;iz;j dx and Jð0Þ to be

correspondingly small.

These conclusions impose different conditions

to those required for the validity of (45) or

a similar inequality that involves (48), for which

boundedness of temperature at t ¼ T and small-

ness of A are unnecessary. Note, however, that

Wilkes’ derivation of continuity does not depend

upon the bound (39) for the thermal coupling

tensor.

Continuous Dependence upon Other Data

Source Terms and Heat Coupling Tensor

The calculations so far establish continuous

dependence only upon initial data. Dependence

upon other data may be derived from continuous

dependence upon source terms. The problem for

the rescaled system (9) and (12) is treated by

Ames and Straughan [22, 23], who also appeal

to logarithmic convexity and in their discussion

simultaneously include dependence upon the heat

coupling tensor. All other data are held fixed. Let

f
ðaÞ
i ; rðaÞ; bðaÞij ; a ¼ 1; 2 be two different sets of

source terms and heat coupling tensor, and

ðuðaÞi ; yðaÞÞ be the corresponding displacements

and temperatures. Set
ui ¼ u
ð2Þ
i � u

ð1Þ
i y ¼ yð2Þ � yð1Þ ð60Þ

fi ¼ f
ð2Þ
i � f

ð1Þ
i r ¼ rð2Þ � rð1Þ ð61Þ

�bij ¼ bð2Þij � bð1Þij ð62Þ

Substitution in (9) and (12) of the difference

between the solutions to the initial boundary

value problems for the different coupling coeffi-

cients and source terms leads to the equations
dijkluk;l � bð2Þij y
� 

;j
þ r0fi � �bij y

ð1
� 

;j
¼ r0 €ui

ð63Þ

kijy;i
� �

;j
þ r0r � �bij _u

ð1Þ
i;j ¼ bð2Þij _ui;j þ a _y ð64Þ

subject to homogeneous initial and boundary

conditions for ðui; yÞ.
Recall the notation (51) and consider the

function
HðtÞ ¼
ð
QðtÞ

r0uið�Þuið�Þ dxd�

þ
ð
QðtÞ

ðt� �Þkij by;i ð�Þby;j ð�Þ dxd� þ g4

ð65Þ

where the positive constant g4 is given by
g4 ¼
ð
QðTÞ

fið�Þfið�Þ þ 2 �bij ð�Þ �bij ð�Þ



þ �bij;j ð�Þ �bik;k ð�Þ þ r2ð�Þ þ br2 ð�Þ� dxd�
ð66Þ

Differentiation, substitution from (63) and

(64), followed by integration by parts, and appeal

to standard inequalities show that HðtÞ satisfies

the differential inequality
H €H � _H
� �2 	 �c3H

2 ð67Þ

for computable positive constant c3. But

HðtÞ > 0 for t 2 ½0;T� and consequently inequal-
ity (67) may be integrated to yield
HðtÞ  exp c3tðT � tÞ=2ð ÞHð0Þð1�t=TÞHðTÞt=T
ð68Þ

where t 2 [0, T]. Assume solutions belong to the

constraint class in which displacement and tem-

perature gradients possess bounded L2ðQðTÞÞ-
norms, so that HðTÞ  N2, for positive constant

N2. Because Hð0Þ ¼ g4, it follows from (68) that

the solution in measure HðtÞ depends Hölder

continuously upon source terms and coupling

tensor.

Boundary Data

Continuous dependence upon boundary

data is illustrated for Dirichlet data. Let

u
�ðaÞ
i ðx; tÞ; y�ðaÞðx; tÞ; where ðx; tÞ 2 @O � ½0;T�;

a ¼ 1; 2 be two specified sets of boundary data
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and assume all other data are held fixed. Without

confusion with the previous notation, let u
ðaÞ
i ; yðaÞ

be the displacement and temperature in the

corresponding problems, and let the respective

differences be ui ¼ u
ð2Þ
i � u

ð1Þ
i ; y ¼ yð2Þ � yð1Þ,

which accordingly satisfy (9) and (12) with zero

source terms and initial data, but nonzero bound-

ary data. Introduce the following decompositions

for ðx; tÞ 2 QðTÞ:
uiðx; tÞ ¼ Hiðx; tÞ þ wiðx; tÞ ð69Þ

yðx; tÞ ¼ hðx; tÞ þ fðx; tÞ ð70Þ

where
r0 €Hi ¼ Hi;jj ðx; tÞ 2 QðTÞ ð71Þ

Hiðx; 0Þ ¼ _Hi ðx; 0Þ ¼ 0 x 2 O ð72Þ

and when ðx; tÞ 2 @O � ½0; T�
Hiðx; tÞ¼ u��i ðx; tÞ
 u
�ð2Þ
i ðx; tÞ�u

�ð1Þ
i ðx; tÞ ð73Þ

with analogous conditions for hðx; tÞ. The pair

ðwi;fÞ satisfies rescaled versions of (9) and (12)

subject to homogeneous boundary conditions and

with source terms given by
r0fi ¼ dijklHk;l � bijh
� �

; j
� r0 €Hi ð74Þ

r0r ¼ kijh;i
� �

; j
� a _h� bij _Hi;j ð75Þ

Substitution of the expressions (74) and (75) in

(66), where terms in �bij are no longer present,

introduces terms in Hi, h, and their appropriate

partial derivatives which must be bounded above

by the given boundary data u��i ; y��. For this

purpose, let piðx; �Þ be the solution to the dual

problem, which for fixed t is specified by

pi;jj � r0pi;�� ¼ r0Hiðx; �Þ ðx; �Þ 2 QðtÞ
piðx; tÞ ¼ _pi ðx; tÞ ¼ 0 x 2 O

piðx; �Þ ¼ 0 x; �ð Þ 2 @O� 0; t½ �

with an analogous dual problem defined for the

function hðx; �Þ.
A Rellich identity ([5]) is used in the deriva-

tion of the boundð
QðtÞ

r0HiHi dxd�  c4

ð
QðtÞ

u��i u��i dxd�

for computable positive constant c4, which,

together with a similar bound for h, use of

estimates given in [24, 25], ultimately yields the

desired bound, a typical component of which is

ð
QðTÞ

wiwi dxd�  c5

�ðT
0

ð
@O

D2
s u

��
i D2

s u
��
i þ Dsu

��
i Dsu

��
i

�
þ u��i u��i þr0u

��
i;��u

��
i;��


dSd�

�t=T

Here, c5 is a computable positive constant, and

Ds denotes the tangential derivative on the sur-

face @O. Corresponding bounds forf and its time

integral are obtained in similar manner. Conse-

quently, continuous dependence upon Dirichlet

boundary data is established. Precise calculations

are easily adapted from [5].

Other Data

The argument of the previous section may be

used to establish continuous dependence

upon other constitutive coefficients, since the

difference in solutions to problems for different

coefficients leads to a problem of the form just

discussed for nonzero source terms. Logarithmic

convexity, however, is less suited to establish

continuous dependence on initial geometry

which is better treated by means of Lagrange

identity arguments. See Part II.

Nonexistence

Wilkes [26] has applied logarithmic convexity

arguments to demonstrate conditions under

which the solution cannot exist globally. His pro-

cedure demonstrates that, subject to appropriate

initial data, the function GðtÞ defined in (49)

possesses an exponentially increasing lower

bound. The scaling operation described in [26]

leads to the conclusion that the solution does not

generate a semigroup and therefore cannot

globally exist in time. In conjunction with

results mentioned in the Section entitled
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“Existence of Solutions,” this conclusion implies

that positive-definiteness of both elasticities and

heat conduction tensor is necessary for the solu-

tion to globally exist in the form of a semi-group.

Part II examines similar properties of

continuous data dependence for the initial

boundary value problems of linearized classical

thermoelasticity but by the alternative method of

Lagrange identities. Modifications demanded by

linear theories are briefly considered. Part II in

addition includes a discussion of how sign-

definite assumptions improve these properties.
Notation
O
 Three-dimensional reference spatial

region occupied by thermoelastic body
@O
 Lipschitz continuous smooth boundary

of O

½0; T�; T > 0
 Maximal closed interval of existence
t
 Time variable (scalar)
x
 Position vector
QðtÞ
 O� ½0; t�

uiðx; tÞ
 Cartesian components of increment in

displacement vector
tijðx; tÞ
 Cartesian components of increment in

first Piola stress tensor
sij
 Cartesian components of symmetric

(large) Cauchy stress tensor
qiðx; tÞ
 Cartesian components of increment in

heat flux vector
yðx; tÞ
 Increment in scalar temperature
y0ðxÞ
 Scalar reference temperature
Sðx; tÞ
 Increment in scalar entropy
aðxÞ
 Scalar thermal capacity
r0ðxÞ
 Mass density in reference configuration
fiðx; tÞ
 Cartesian components of increment in

body-force per unit mass in reference

configuration
rðx; tÞ
 Increment of scalar heat supply per unit

mass of reference configuration
dijklðxÞ
 Cartesian components of linearized

elastic coefficient tensor
cijklðxÞ
 Cartesian components of linear elastic

moduli tensor
dij
 Kronecker delta
kij
 Cartesian components of heat

conduction tensor
Oðt1; t2Þ
 O� Qðt1; t2Þ

(continued)
bij
 Cartesian components of heat coupling

tensor
hijk; ai
 Cartesian components of material heat

coefficient tensors
EðtÞ
 Total energy of classical linearized

thermoelastic system
JðtÞ
 Augmented total energy of classical

linearized system
KðtÞ
 Kinetic energy of classical linearized

thermoelastic system
VðtÞ
 Potential energy of classical linearized

thermoelastic system
I1ðtÞ
 Total work done by supply terms
FðtÞ; GðtÞ; HðtÞ
 Various solution measures
ZðtÞ
 Supply term measure
a
 Scalar thermal displacement
Gijk; bi; bij
 Cartesian components of nonclassical

thermomechanical coefficient tensors
EIIIðtÞ
 Total energy of linearized nonclassical

Green-Naghdi system of type III

without center of symmetry
JIIIðtÞ
 Augmented energy of linearized

nonclassical Green-Naghdi system of

type III without center of symmetry
~EIII ðtÞ
 Total perturbed energy of linearized

nonclassical Green-Naghdi system of

type III with center of symmetry
PIIIðtÞ
 Total work done by source terms in

perturbed linearized nonclassical

Green-Naghdi system of type III with

center of symmetry
Mi; Ni
 Various specified constants
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Overview

The reader is referred to the overview of Part I

for a general introduction and to the section

entitled “Basic Initial Boundary Value Prob-

lems,” also in Part I, for the linear classical

problems discussed in this Part and for the nota-

tion adopted throughout all Parts. Attention,

here, however, is devoted to applications of the

Lagrange identity method. Although most prob-

lems are amenable to logarithmic convexity

techniques, continuous dependence upon initial

geometry is selected for explicit separate treat-

ment using Lagrange identities. Later sections

consider modifications resulting from various

positive-definite assumptions. The section entitled

“Existence of Solutions” and the subsection

entitled “Nonexistence” of the section entitled

“Continuous Dependence upon Other Data”

belonging to Part I.

An early appearance of Lagrange identities

occurs in the context of ordinary differential equa-

tions. The extension to linear thermoelasto-

dynamics was first achieved apparently by Brun

[1, 2] as part of a comprehensive discussion pri-

marily directed at proofs of uniqueness and stabil-

ity notable for not requiring sign-definite

elasticities. Subsequently, the technique has been

used by several authors to establish not only

uniqueness but also continuous dependence upon

various data again without sign-definiteness
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elasticities, provided that solutions belong to vari-

ous constraint classes. The method, not devoid of

subtlety, derives from a reciprocal property and

introduction of corresponding adjoint systems.

Several versions of the identity are possible,

including those valid only on the half-open interval

½0; T=2Þ. Extension to the whole interval ½0; TÞ is
by iteration. Moreover, as with logarithmic con-

vexity, continuity is in the weaker sense of Hölder.

A consequence for strong solutions is an energy

conservation law, which Rionero and Chirita [3]

show is unnecessary for either uniqueness or con-

tinuous data dependence. For weak solutions,

energy conservation must be separately postulated.

Levine [4] extends the application of the Lagrange

identity method to weak solutions for isothermal

elasticity and emphasizes that energy conservation

likewise is not required for uniqueness.

Many of the arguments applied in the context

of thermoelasticity are extensions of those devel-

oped for elasticity. See, for example, [5].

Althoughunnecessaryfor theLagrangeidentities

themselves, the thermal conductivity tensor, never-

theless, is assumed to be positive definiteness when

continuous data dependence is being discussed.
Lagrange Identities

Suppose that ðuiðx; tÞ; yðx; tÞÞ represent the dis-

placement and temperature belonging to the

rescaled system (9) and (12) of Part I. Let

ðwiðx; tÞ;fðx; tÞÞ be the solution to the adjoint

system defined on QðTÞ by
dijklwk;lð�Þ � bijfð�Þ
� �

; j
þ r0 f

�
i ð�Þ ¼ r0 €wi ð�Þ

ð1Þ

� kijf;ið�Þ
� �

; j
þ r0r

�ð�Þ ¼ bij _wi; j ð�Þ þ a _fð�Þ
ð2Þ

where f �i ðx; tÞ; r�ðx; tÞ are source terms. Depen-

dence upon the spatial argument is implied.

Assume homogeneous Dirichlet boundary

conditions of the form ui ¼ wi ¼ y ¼ f ¼ 0 for

x 2 @O, and let
Qðt1; t2Þ ¼ O� ½t1; t2� QðtÞ ¼ Qð0; tÞ ð3Þ

Multiplication of the rescaled equations (9)

and (12) of Part I, respectively, by _wi and f,
added to (1) and (2) multiplied, respectively, by

_ui and y, after integration by parts over QðtÞ
leads to (cp. [6])
ð

O
r0 _ui _wi þdijklui;jwk;l þ ayf
� �

dxjt0

¼
ð
QðtÞ

r0 fið�Þwi;�ð�Þ þ f �i ð�Þui;�ð�Þ
� �

dxd�

þ
ð
QðtÞ

r0 rð�Þfð�Þ þ r�ð�Þyð�Þð Þ dxd�

ð4Þ

Three different identities may now be deduced

for particular choices of the functions ðwi;fÞ and
source terms ðf �i ; r�Þ. The substitution
wiðx; �Þ ¼ uiðx; �Þ fðx; �Þ ¼ yðx; �Þ ð5Þ

converts the adjoint equation (2) into the original

rescaled equation (12) of Part I provided the heat

source is given by
r� ¼ 2 kijy;i
� �

; j
þ r ð6Þ

Identity (4) then reduces to the conservation

law (23) for JðtÞ obtained in Part I.

Discussion of the second and third identities is

facilitated by introduction of the definitions
Kðt1; t2Þ ¼
ð
O
r0ui;tðt1Þui;tðt2Þ dx ð7Þ

Vðt1; t2Þ ¼
ð
O
dijklui;jðt1Þuk;lðt2Þ dx ð8Þ

Wðt1; t2Þ ¼
ð
O
ayðt1Þyðt2Þ dx ð9Þ

where 0  t1  t2  T. Consider, for fixed t and

for 0  �  2t  T, the choice
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wið�Þ ¼ @ui
@�

2t� �ð Þ

fð�Þ ¼ @y
@�

2t� �ð Þ
ð10Þ

for which the appropriate source terms are

C

f �i ð�Þ ¼
@fi
@�

ð2t� �Þ r�ð�Þ ¼ � @r

@�
2t� �ð Þ

ð11Þ

Substitution in the fundamental identity (4)

succeeded by integration over ½0; t� leads to the

second identity, valid for t 2 ½0; T=2�:

Kðt; tÞ � Vðt; tÞ �Wðt; tÞ
¼ Kð0; 0Þ � Vð0; 0Þ �Wð0; 0Þ
þ
ð
O

�
r0ui;tð0Þ

�
ui;tð2tÞ � ui;tð0Þ

	
� dijklui;jð0Þ

�
uk;lð2tÞ � uk;lð0Þ

	
� ayð0Þ�yð2tÞ � yð0Þ	 dx
þ 2

ðt
0

"ð
Qð0;sÞ

fið�Þui;��ðtÞ dxd�

�
ð
Qðs;2sÞ

fið�Þui;��ðtÞ dxd�

þ
ð
O

�
fiðsÞui;sðsÞ � fið2sÞui;tð0Þ

�
dx

#
ds

þ 2

ðt
0

"ð
Qð0;sÞ

rð�Þy;�ðtÞ dxd�

�
ð
Qðs;2sÞ

rð�Þy;�ðtÞ dxd�

�
ð
O

�
rðsÞyðsÞ � rð2sÞyð0Þ� dx# ds

ð12Þ

where t ¼ 2t� � and t 2 ½0; T=2�.
The third identity is established by setting
wið�Þ ¼ uið2t� �Þ
fð�Þ ¼ yð2t� �Þ 0  �  2t < T

ð13Þ
and noting that wi;�ð�Þ ¼ �ui;tðtÞ;f;�ð�Þ ¼
�y;tðtÞ; t ¼ 2t� �. Consequently, we have
f �i ð�Þ ¼ fið2t� �Þ
r�ð�Þ ¼ �rð2t� �Þ 0  �  2t < T

ð14Þ

and substitution in (4) gives

Kðt; tÞ � Vðt; tÞ �Wðt; tÞ ¼ Kð0; 2tÞ � Vð0; 2tÞ
�Wð0; 2tÞ þ

ð
Qðt;2tÞ

ui;�ð�Þfið2t� �Þ dxd�

�
ð
Qð0;tÞ

ui;�ð�Þfið2t� �Þ dxd�

þ
ð
Qð0;2tÞ

yð�Þrð2t� �Þ dxd�

ð15Þ

where 0  2t < T.
Variants of the last identity are obtained as

follows. Retain the previous notation, and let

uiðx; tÞ, wiðx; tÞ, yðx; tÞ, and fðx; tÞ denote suffi-

ciently smooth functions. Suppose that ðui; yÞ
satisfy suitably rescaled equations (9) and (12)

of Part I, subject to source terms fiðx; tÞ and

rðx; tÞ. But instead of (12) in Part I, consider its

time integral:

kij by;i ðtÞ� 
; j
þ r0brðtÞ þ C ¼ bijui;jðtÞ þ a

_byðtÞ
ðx; tÞ 2 Q

ð16Þ

where the function CðxÞ ¼ ayð0Þ þ bijui;jð0Þ
vanishes with initial data and by is defined by

(51) in Part I.

Denote source terms by f �i ; r
�, and suppose the

pair ðwi;fÞ for ðx; tÞ 2 QðTÞ satisfies the adjoint
system

dijklwk;lðtÞ � bijfðtÞ
� �

; j
þ r0 f

�
i ðtÞ ¼ r0wi;ttðtÞ

ð17Þ

� kij bfi ðtÞ
� 

; j
þ r0 br� ðtÞ þ C ¼ bijwi; jðtÞ þ a

_bfðtÞ
ð18Þ
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For simplicity, assume that O is bounded and

that the respective boundary conditions are

homogeneous.

Operations similar to those leading to (4)

establish the Lagrange identity (cp., Rionero

and Chirita [3], and Ames and Payne [7]):
ð
O
r0 uið�Þwi;�ð�Þ � ui;�ð�Þwið�Þ

 �

dxjt0

¼
ð
QðtÞ

r0 uið�Þwi;��ð�Þ � ui;��ð�Þwið�Þ

 �

dxd�

¼
ð
QðtÞ

bijui;jð�Þfð�Þ � bijwi;jð�Þyð�Þ

 �

dxd�

¼
ð
QðtÞ

r0 f �i ð�Þuið�Þ � fið�Þwið�Þ
� �

dxd�

ð19Þ

by virtue of the symmetry relation (8) and (9), both

of Part I, along with the adjoint equation (17).

Appeal to (16) and (18) succeeded by spatial inte-

gration by parts and time integration then yieldsð
O
r0
h
uið�Þwi;�ð�Þ � ui;�ð�Þwið�Þ

i
dxjt0

¼ �
ð
QðtÞ

�
kij by;i ð�Þf;jð�Þ þ kij bf;i ð�Þy;jð�Þ

þ C
h
fð�Þ � yð�Þ

i�
dxd�

þ
ð
QðtÞ

r0
n
f �i ð�Þuið�Þ � fið�Þwið�Þ

þ brð�Þfð�Þ � br� ð�Þyð�Þo dxd�

¼ �
ð
O
kij by;i ðtÞ bf;j ðtÞ dx

þ
ð
O
kij by;i ð0Þ bf;j ð0Þ dxþ I2ðtÞ

ð20Þ

where

I2ðtÞ ¼
ð
QðtÞ

C fð�Þ � yð�Þ½ � dxd�

þ
ð
QðtÞ

r0
h
f �i ð�Þuið�Þ � fið�Þwið�Þ:

þbrð�Þfð�Þ � br� ð�Þyð�Þi dxd�
ð21Þ
Fix t and take wið�Þ ¼ uiðtÞ and fð�Þ ¼ yðtÞ,
where t ¼ 2t� �, so that
bfð�Þ ¼ �byðtÞ f �i ð�Þ ¼ fiðtÞ br� ð�Þ ¼ brðtÞ
ð22Þ

In consequence, identity (20) becomes, for

0  2t < T,
ð
O
kij by;i ðtÞby;j ðtÞ dxþ 2

ð
O
uiðtÞui;tðtÞ dx

¼
ð
O
r0 uið0Þui;tð2tÞ þ uið2tÞui;tð0Þ

 �

dxþ I3ðtÞ

ð23Þ

where
I3ðtÞ ¼
ð
QðtÞ

r0
h
fið�ÞuiðtÞ � fiðtÞuið�Þ

i
dxd�

þ
ð
QðtÞ

r0
hbrðtÞyð�Þ � brð�ÞyðtÞi dxd�

þ
ð
QðtÞ

C yðtÞ � yð�Þð Þ dxd�

ð24Þ

Continuous data dependence may be

established using any of the previous identities,

and in the later section entitled “Continuous

Dependence on Source Terms and Related

Data,” identity (20) is employed to illustrate the

procedure. Meanwhile, uniqueness is discussed

for the initial boundary value problem which,

juxtaposed to the corresponding proof by loga-

rithmic convexity, enables their respective

advantages and disadvantages to be contrasted.
Uniqueness

Uniqueness in the linearized coupled

thermoelastic initial boundary value problem on

bounded regions, first due to Brun [1, 2], is

proved by demonstrating that at most only the

trivial solution can exist to the problem with

homogeneous data. As usual, the proof is by

contradiction. Assume that there exists a smooth
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non-identically zero displacement uiðx; tÞ and

temperature yðx; tÞ on the maximal interval of

existence ½0; T� to the rescaled equations (9) and

(12) of Part I subject to zero source terms and

zero initial and boundary data. In his proof, Brun

[1, 2] combines conservation of energy expressed

by (23) in Part I and explicitly given by

JðtÞ 
 Kðt; tÞ þ Vðt; tÞ þWðt; tÞ
þ 2

ð
QðtÞ

kijy;iy;j dxd� ¼ 0 ðx; tÞ 2 QðTÞ

ð25Þ

with relation (12) which becomes

Kðt; tÞ � Vðt; tÞ �Wðt; tÞ ¼ 0 t 2 ½0; T=2Þ
ð26Þ

Addition of the last two expressions elimi-

nates the term with the indefinite elasticities dijkl
and gives

Kðt; tÞ þ
ð
QðtÞ

kijy;iy;j dxd� ¼ 0 ðx; tÞ 2 QðT=2Þ

ð27Þ

which by virtue of the positive-definite heat

conduction tensor specified by (40) of Part I

implies that _ui ðx; tÞ ¼ y;iðx; tÞ ¼ 0; ðx; tÞ 2 QðT=2Þ.
Consequently, the conclusions

uiðx; tÞ ¼ uiðxÞ ¼ 0; ðx; tÞ 2 QðT=2Þ follow

from the homogeneous initial conditions, while

yðx; tÞ ¼ yðtÞ ¼ 0; t 2 ½0; T=2� follow from the

homogeneous boundary conditions and continu-

ity. In summary,
uiðx; tÞ ¼ yðx; tÞ ¼ 0 ðx; tÞ 2 QðT=2Þ ð28Þ

These results show that uiðx; T=2Þ ¼
_ui ðx; T=2Þ ¼ yðx; T=2Þ ¼ 0; x 2 O. Accord-

ingly, the procedure may be repeated for the

interval ½T=2; T=2þ T=4� so that (28) is extended
toQð3T=4Þ and by further iterations toQðTÞ. The
contradiction proves that the solution is unique.

Brun’s proof as described above relies upon

energy conservation. An alternative proof due to

Rionero and Chirita [3], explained in the next

section, avoids this property and consequently
may be extended to weak solutions. See Levine

[4, 8] for an abstract version.
Continuous Dependence on Source
Terms and Related Data

Consideration of continuous data dependence is

commenced by a description of dependence simul-

taneously upon source terms and initial data. The

argument differs slightly from that developed by

Rionero and Chirita [3], an account of which is

presented also in [9, pp. 264–267]. Furthermore,

theapproachprovidesanalternativeproofofunique-

ness to that originally devised by Brun [2], and does

not depend upon energy conservation. As just men-

tioned, the distinction is important in the discussion

of weak solutions. Initial and boundary data are

again supposed to be zero. The Lagrange identity

in the form (23) under the stated conditions and after

an application of Schwarz’s inequality yields

2

ð
O
r0uiðtÞui;tðtÞ dxþ

ð
O
kijby;iðtÞby;j ðtÞ dx


ð
QðtÞ

r0
�
fið�Þfið�Þ þ fiðtÞfiðtÞ

"

þbr2 ð�Þ þ br2 ðtÞ dxd�#1=2

�
ð
QðtÞ

r0 uið�Þuið�Þ þ uiðtÞuiðtÞð
"

þy2ð�Þ þ y2ðtÞ� dxd�#1=2

¼
ð
Qð2tÞ

r0 fið�Þfið�Þ þ br2 ð�Þ� 
dxd�

" #1=2

�
ð
Qð2tÞ

r0 uið�Þuið�Þ þ y2ð�Þ� �
dxd�

" #1=2
ð29Þ

Consider solutions in the constraint class
ð
QðTÞ

r0 uið�Þuið�Þ þ y2ð�Þ� �
dxd�  N2

3 ð30Þ
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for specified positive constant N3. Let

0 < 2s  T, and integrate inequality (29) over

ð0; sÞ to giveð
O
r0uiðsÞuiðsÞ dxþ

ð
QðsÞ

kij by;i ð�Þby;j ð�Þ dxd�
 s

ð
QðTÞ

r0ð fið�Þfið�Þ þ br2 ð�ÞÞ dxd�
" #1=2

�
ð
QðTÞ

r0 uið�Þuið�Þ þ y2ð�Þ� �
dxd�

" #1=2

 1

2
TN3

ð
QðTÞ

r0ð fið�Þfið�Þ þ br2 ð�ÞÞ dxd�
" #1=2

ð31Þ
from which follows continuous dependence upon

source terms in the half-interval ½0; T=2�.
A similar argument may be applied to the first

term on the right of (23) to establish continuous

dependence upon initial data in the constraint class

(30). An alternative method is described in [3].

Continuous dependence upon the elasticities

dijkl, coupling tensor bij, and heat conduction ten-
sor kij are reduced to that of dependence upon

source terms according to the device adopted in

the subsection entitled “Source Terms and

Heat Coupling Tensor” of the section entitled

“Continuous Dependence upon Other Data” of

Part I and employed in [3, 5, 10]. Let

d
ðaÞ
ijkl ; b

ðaÞ
ij ; k

ðaÞ
ij ; a ¼ 1; 2 denote two sets of coeffi-

cients and let ðuðaÞi ; yðaÞÞ be the respective solu-

tions of (9) and (12) in Part I that for simplicity

satisfy the same source terms, initial and bound-

ary conditions. In terms of the notation given in

Part I by (58) and (59), subtraction of the

governing rescaled equations yields for

ðx; tÞ 2 QðTÞ:

d
ð2Þ
ijkluk;l � bð2Þij y

� 
; j
þ r0fi ¼ r0 €ui ð32Þ

kð2Þy;i
� 

; j
þ r0r ¼ bð2Þij ui;jt þ a _y ð33Þ

where
r0fi ¼ �dijkl u
ð1Þ
k;l � �bij y

ð1Þ
� 

; j
ð34Þ
r0r ¼ �kij y
ð1Þ
;i

� 
;j
� �bij u

ð1Þ
i; jt ð35Þ

�dijkl ¼ d
ð2Þ
ijkl�d

ð1Þ
ijkl

�bij ¼ bð2Þij �bð1Þij
�kij ¼ k

ð2Þ
ij � k

ð1Þ
ij

ð36Þ

Substitution of these source terms in (31) then

leads to continuous dependence upon the elastici-

ties, coupling tensor, and heat conduction tensor,

provided the component solutions ðuðaÞi ; yðaÞÞ
belong to the constraint class (30) and furthermore

that the solution ðuð1Þi ; yð1ÞÞ satisfies the boundð
QðTÞ

u
ð1Þ
i;jku

ð1Þ
i;jk þ u

ð1Þ
i;j�u

ð1Þ
i;j� þ yð1Þ;ij y

ð1Þ
;ij

� 
dxd�  N2

4

ð37Þ

for specified positive constant N4.

Identity (31) is also fundamental to the treat-

ment by Ames and Payne [7] who establish con-

tinuous dependence upon initial geometry. The

analysis, outlined in the next section, extends that

presented in [5] for elasticity. Song and Payne

[11] in addition to continuous dependence upon

initial geometry also investigate dependence

upon spatial geometry, again by Lagrange iden-

tity techniques.

It must be remarked that all the above calcu-

lations are valid only on the half-interval

½0; T=2Þ. Extension to the whole interval ½0; T� is
by the recursive procedure described in [5] and

leads to continuous dependence on compact sub-

intervals in the sense of Hölder.
Dependence Upon Initial Geometry

Initial data is usually assumed to be measured

instantaneously everywhere in the region O at

say the instant t ¼ 0. In practice, this is rarely, if

ever, achieved. Instead, measurement usually

occurs during some time interval about the instant

t ¼ 0, the actual time of measurement at point

x 2 O being given by t ¼ esðxÞ; x 2 O, where

without loss we may assume that jsðxÞj  1. It

becomes of interest to estimate the error in the

solution due to the error between initial data

measured at the actual and presumed times.
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Such investigations, initiated and developed by

Payne [12, 13] employing Lagrange identity argu-

ments, are extended by Ames and Payne [7] to

linear coupled thermoelasticity subject to homo-

geneous Dirichlet boundary data and zero source

terms. Their proof is summarized as follows:

Let QsðTÞ ¼ ðx; tÞ : esðxÞ  t  T; x 2 Of g,
and assume that the function sðxÞ is sufficiently
smooth and that e is sufficiently small. More

general conditions on sðxÞ are possible; see [7].

Let ðuð2Þi ; yð2ÞÞ be the solution defined on QsðTÞ
generated by initial data ðuð0Þi ðxÞ; yð0ÞðxÞÞ pre-

scribed on t ¼ esðxÞ, and let ðuð1Þi ; yð1ÞÞ be the

solution defined on QðTÞ generated by the same

initial data but prescribed at t ¼ 0. Set
uiðx; tÞ ¼ u
ð2Þ
i ðx; tÞ � u

ð1Þ
i ðx; tÞ ðx; tÞ 2 Qðe;TÞ

ð38Þ

yðx; tÞ ¼ yð2Þðx; tÞ � yð1Þðx; tÞ ðx; tÞ 2 Qðe; TÞ
ð39Þ

Homogeneous Dirichlet data is assumed on

the respective lateral boundaries, and solutions

are supposed to belong to the constraint set
sup
estT

ð
O
r0u

ðaÞ
i u

ðaÞ
i dx  N2

5 ð40Þ

ðT
e

ð
O
r0y

ð1Þ2
� �1=2

þ
ð
O
r0y

ð2Þ2
� �1=2( )

d�  N6

ð41Þ

ðT
e

ð
O
r0y

ð1Þ
;i yð1Þ;i

� �1=2
þ
ð
O
r0y

ð2Þ
;i yð2Þ;i

� �1=2( )
d�  N7

ð42Þ

where N5;N6;N7 are prescribed positive

constants.

Lagrange identity (23) is applied to the differ-

ence solutions ðui; yÞ followed by integration

with respect to time over ½e; tÞ and the determina-

tion of a suitable bound for I3ðtÞ. Deployment of

Schwarz’s inequality similar to that in the previ-

ous section leads to the bound
ð
O
r0uiui dxþ

ð
Qðe;tÞ

kijy;iy;j dxd�

 1

2

ð
O
r0uiðeÞuiðeÞ dx

þM2

ð
O
r0uiðeÞuiðeÞ dx

� �1=2

þM3

ð
O
r0ui;�ðeÞui;�ðeÞ dx

þM4

ð
O
f2ðeÞ dx

� �1=2

e  t  ðT þ eÞ=2
ð43Þ

where M2;M3;M4 are certain positive constants

dependent upon N5;N6;N7 and time T. The inte-

grals on the right are estimated by continuing the

solutions backward in time to t ¼ �e subject to
the previously stated conditions for sðxÞ. Back-
ward continuation is achieved by defining new

solutions to be
euð1Þi ðx; tÞ ¼ u
ð1Þ
i ðx; tÞ; 0< t< T x 2 O

u
ð0Þ
i ðxÞ t  0 x 2 O

(
ð44Þ

euð2Þi ðx; tÞ ¼ u
ð2Þ
i ðx; tÞ esðxÞ< t< T x 2 O

u
ð0Þ
i ðxÞ t  esðxÞ x 2 O

(
ð45Þ

with similar continuations for velocities and tem-

peratures. It follows, for example, that because

uiðx;�eÞ ¼ 0, we may use Poincaré’s inequality

to obtain
ðe
�e

ð
O
r0uiui dxd�  4e

p

� �2

�
ðe
�e

ð
O
r0ui;�ui;� dxd�

ð46Þ

Further computations, details of which are

presented in [7], employ the governing equations

to construct the bound
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ð
O
r0uiðeÞuiðeÞ dx  eM2

5 ð47Þ

and companion bounds for velocity and temper-

ature, where M5 is a computable positive con-

stant. Substitution of these respective

expressions in (6) yields
ð
O
r0uiui dxþ

ð
Qðe;tÞ

kijy;iy;j dxd�  e1=2M6

e  t  ðT þ eÞ=2
ð48Þ

for computable positive constant M6 and estab-

lishes the desired continuous dependence upon

initial geometry as e ! 0. Extension to the

whole interval ½e; T� is achieved by a recurrence

operation similar to before.
Exterior Unbounded Regions:
The Half-Space

Arguments presented in the section entitled “Con-

tinuous Dependence Upon Source Terms and

Related Data” may be extended to exterior

unbounded regions and the half-space by

employing certain weighted integrals to derive

a weighted Lagrange identity. The procedure, in

thermoelasticity due to Rionero and Chirita [3], in

part depends upon those developed in [14–17] for

corresponding problems in linear elastodynamics.

Further discussion is provided by Flavin and

Rionero [18]. Asymptotic behavior must be suit-

ably restricted to ensure solutions both exist and

are unique. Counterexamples, presented, for

example, in [18] and by John [19] for the heat

conduction equation, illustrate the difficulty.

SupposeO is an unbounded three-dimensional

region exterior to a bounded three-dimensional

regionO1. The half-space is treated later. Let gðxÞ
be the weight function given by

gðxÞ ¼ expð�c6jxjÞ jxj ¼ ðxixiÞ1=2 ð49Þ

where c6 is a prescribed positive constant, and

consider solutions that, in addition to the
constraint class (30), belong to the class which

for t 2 ½0; T� requires the spatial asymptotic

behavior to be
juiðx; tÞj þ jui;jðx; tÞj þ jyðx; tÞj þ jkij by;i by;j j
¼ O expðc6jxjÞð Þ as jxj ! 1

ð50Þ

and
lim
c6!0

c26

ð
QðTÞ

r�1
0 expðc6jxjÞ

� ui;jui;j þ y2 þ kij by;j kip by;p� 
dxd� ¼ 0

ð51Þ

Similar arguments to before are now applied

to the governing equations after each has been

multiplied by the weight function gðxÞ in order to
establish continuous dependence upon source

terms and initial data, first on the half-interval

½0; T=2� and then by iteration on the whole inter-

val ½0; T�.
When O is assumed to be the half-space

x3 	 0, the weight function is chosen to be
gðxÞ ¼ exp�fc7ðxaxaÞc8 þ c9x3g ð52Þ

where c7; c8; c9 are positive constants.

Subject to certain transverse spatial asymp-

totic behavior as ðxaxaÞ1=2 ! 1, and asymptotic

conditions similar to (51), suitable Lagrange

identities are derived in [3] that enable continu-

ous data dependence to be established for solu-

tions in the constraint class (30).
Backward in Time

Problems in this category are concerned with an

investigation of the previous history of the pro-

cess when “present” data is prescribed at t ¼ 0.

The problem is ill-posed, even under positive-

definiteness assumptions, and is studied on

some reverse maximal interval of existence

½�T; 0�. A pertinent comment by J. Clerk Max-

well is quoted by Flavin and Rionero [18, p.156].
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The problem is converted into one forward in

time on replacing t by � t, so that rescaled equa-

tions (9) and (12) of Part I for ðx; tÞ 2 QðTÞ
become
C

dijkluk;l � bijy
� �

; j
þ r0 fi ¼ r0 €ui ð53Þ

kijy;i
� �

;j
þ bij _ui; j þ a _yþ r0r ¼ 0 ð54Þ

Of course, boundary conditions on @O� ½0; T�
and initial conditions on O� f0g also must be

prescribed.

Lagrange identities are used by Ames and

Payne [6] in conjunction with an energy inequal-

ity to establish continuous dependence upon ini-

tial data for elasticities dijkl that are either

positive-definite, negative-definite, or indefinite

and for positive or negative a. Conditions

imposed on the coupling tensor and heat conduc-

tion tensor are similar to those already adopted in

Part I and also in this Part, while the constraint set

requires only that the L2ðOÞ-norm of the temper-

ature is uniformly bounded on ½0; T�. The argu-

ments, which broadly repeat earlier ones, are

presented in [6] and summarized in [9]. Ciarletta

[20] provides a closely related discussion.

As previously remarked, uniqueness is recov-

ered as a special case.
Nonlocalization of Energy

By means of uniqueness in the forward and back-

ward in time problems, we may prove that the

solution cannot be locally compact in time, or

otherwise expressed, cannot be localized in time.

Assume the contrary, and let the support of the

solution be contained in the time interval ðt1; t2Þ.
At t0 < t1, the Cauchy data vanishes, and unique-

ness for the forward in time problem creates

a contradiction. Similarly, at t00 > t2, the solution

vanishes by hypothesis, and backward uniqueness

again establishes a contradiction. Obviously, the

last part of the argument also demonstrates that for

nonzero initial data, the solution cannot vanish in

finite time, which is of significance for asymptotic

behavior with respect to time.
Sign-Definite Assumptions

This section is devoted to a discussion of how con-

ditions for uniqueness and continuous data depen-

dence are modified by the assumptions of positive-

definite elasticities and heat conduction tensor.

Suppose that there exists a positive constant d0
such that

d0cijcij  dijklcijckl 8cij ð55Þ

Buckling and similar phenomena may cause

this condition to be violated.

Also suppose that the coefficient a is positive

and, as in Part I, that there exists a positive con-

stant k0 such that
k0xixi  kijxixj 8xi ð56Þ

Diverse methods, in general reliant upon energy

conservation laws, are equally applicable to the

problems under consideration. As illustration, one

possible method is selected for each problem with

the common objective of deriving estimates for

continuous data dependence and uniqueness. For

simplicity, throughout this section, homogeneous

Dirichlet boundary conditions continue to be

assumed. Source terms may or may not be zero.

Consider the rescaled system (9) and (12) of

Part I and the nonnegative energy function

defined by expression (21) also of Part I.

The conservation law (23) of Part I in the

absence of source terms ðI1ðtÞ ¼ 0Þ implies that

EðtÞ ¼ Eð0Þ � 2

ð
QðtÞ

kijy;iy;j dxd�

 Eð0Þ
ð57Þ

from which it is easy to deduce uniqueness and

continuous dependence upon initial data in

energy measure. When source terms are present,

differentiation of (23) in Part I gives

_EðtÞ ¼ � 2

ð
O
kijy;iy;j dxþ 2

ð
O
r0 fiui;t þ ry
� �

dx

 2Z1=2ðtÞ
ð
O
r0 ui;tui;t þ y2
� �

dx

� �1=2
ð58Þ
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 2c10Z
1=2ðtÞE1=2ðtÞ ð59Þ

where
ZðtÞ ¼
ð
O
r0 fifi þ r2
� �

dx ð60Þ

and

c210 ¼ max
O

ð1; r0a�1Þ ð61Þ

Integration of (59) yields

E1=2ðtÞ  E1=2ð0Þ þ c10

ðt
0

Z1=2ð�Þ d� ð62Þ

Provided ZðtÞ  M2
7 and t 2 ½0; T�, for positive

constant M7, it may be concluded that the dis-

placement gradient, temperature, and, by

Poincaré’s inequality, also the displacement are

bounded in L2ðOÞ-norm. The same procedure

applied to (9) and (12) of Part I, after differenti-

ation with respect to time, delivers a bound for

the gradient of the velocity subject to bounded

time derivatives of the source terms. These

results are used in the discussion of continuous

dependence upon the thermal coupling tensor

undertaken at the end of this section.

Meanwhile, the analysis is extended to the

systems (9) and (10) of Part I valid when the

reference temperature y0ðxÞ is not uniform and

the previous rescaling cannot be undertaken. In

addition to the positive-definite assumptions (18)

and (19), we suppose that the following bounds

are satisfied:
max
O

ðaiai þ ai;jai;jÞ  M2
8 ð63Þ

max
O

hijkhijk  M2
9 ð64Þ

M2
10  inf

O
y20 sup

O
y0;iy0;i  M2

11 ð65Þ

where Mi; i ¼ 8; 9; ; . . . 11 are specified positive

constants.

A time differentiation of the energy function

given by (21) in Part I and substitution from (9)
and (10) in the same Part together with homoge-

neous boundary conditions lead immediately to

the expression
_EðtÞ ¼ �
ð
O

1

y0
hijkuj;k þ aiyþ kijy;j
� �

y;i dx

þ
ð
O

y0;iy

y20
hijkuj;k þ aiyþ kijy;j
� �

dx

þ
ð
O
r0 ryy�1

0 þ fiui;t
� �

dx

ð66Þ

Standard inequalities and appeal to the bounds

(63)–(65) then yield the inequality

_EðtÞ  c11EðtÞ þ c12E
1=2ðtÞZ1=2ðtÞ ð67Þ

where the function ZðtÞ is defined by (60) and

c11; c12 are positive computable constants.

In order to integrate (30), set yðtÞ ¼ E1=2ðtÞ,
and rewrite (67) in the form
d

dt
ye�ðc11t=2Þ
� 

 c12
2

e�ðc11t=2ÞZ1=2ðtÞ

 c12
2

Z1=2ðtÞ
ð68Þ

to obtain
E1=2ðtÞ  1

2
2E1=2ð0Þ þ c12

ðt
0

Z1=2ð�Þ d�
� �

eðc11t=2Þ

ð69Þ

Subject to the stipulated conditions, unique-

ness to the initial boundary value problem is

easily derived from (69). More generally, we

may obtain continuous dependence upon initial

data and source terms. By means of operations

similar to before, continuous dependence upon

constitutive coefficients may be deduced. Depen-

dence obviously is established with respect to the

energy norm, although use of Poincaré’s and

similar embedding inequalities enables depen-

dence to be derived in the L2ðOÞ-norm.

But instead of appealing to these methods, it is

possible to directly establish continuous
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dependence upon most coefficients. The tech-

nique is illustrated by reference to dependence

upon the heat coupling tensor bij in the linearized
classical problem with all other data assumed

fixed. For simplicity, consider the rescaled sys-

tems (9) and (12) of Part I, and let

ðuðaÞi ; yðaÞÞ; a ¼ 1; 2 be the displacement and tem-

perature corresponding to the heat coupling ten-

sor bðaÞij . This problem has been treated in Part I in

the section entitled “Source Terms and Heat Cou-

pling Tensor” and in the section entitled “Con-

tinuous Dependence on Source Terms and

Related Data” of this part, but for indefinite elas-

ticities. Consequently, retain the notation

(58)–(60) of Part I, and consider (61) and (62),

again from Part I, with data specified by
uiðx; 0Þ ¼ _ui ðx; 0Þ ¼ yðx; 0Þ ¼ 0 x 2 O

uiðx; tÞ ¼ y x; tð Þ ¼ 0 x; tð Þ 2 @O� 0; T½ �
r0fiðx; tÞ ¼ � �bij y

ð1Þ
� 

; j
x 2 QðTÞ

r0rðx; tÞ ¼ � �bij _u
ð1Þ
i; j x 2 QðTÞ

The conservation relation (23) from Part

I after an integration by parts and appeal to

Schwarz’s inequality successively yields
JðtÞ ¼ 2

ð
QðtÞ

bij yð1Þui;j� � u
ð1Þ
i;j�y

� 
dxd�

 ��b

"ð
QðtÞ

ðyð1ÞÞ2 þ y2
� 

dxd�

ð
QðtÞ

u
ð1Þ
i;j�u

ð1Þ
i;j� þ ui;j�ui;j�

� 
dxd�

#1=2

 6��b

"ð
QðTÞ

yðaÞyðaÞ
� 

dxd�

ð
QðTÞ

u
ðaÞ
i;j�u

ðaÞ
i;j�

� 
dxd�

#1=2
ð70Þ

where
��b
2 ¼ max

O
�bij �bij
It is inferred from the bound (62) that the

integrals on the right of (70) remain bounded for

T < 1 subject to the respective component

source terms and their time derivatives remaining

bounded. The positive-definite assumptions (55)

and (56) imply that the displacement and temper-

ature vanish in the L2ðOÞ -norms as ��b ! 0.

Accordingly, continuous dependence upon the

heat coupling tensor is established. Unlike con-

ditions imposed in the previous discussions, the

gradient of �bij is not required to be bounded.
Linear Thermoelasticity

Many of the conclusions of the previous sections

are valid for the linear theory for which the pos-

itive-definite condition (55) is replaced by
c0xijxij  cijklxijxkl 8xij ¼ xji ð71Þ

where c0 is a specified positive constant. The

restriction, however, of (71) to symmetric tensors

present certain difficulties outwith the scope of

the present discussion.
Backward in Time

Continuous data dependence results for the back-

ward in time problem for the rescaled systems (9)

and (12) specified in Part I subject to homoge-

neous Dirichlet boundary data are due to Ames

and Payne [6] and are also described in [9]. The

heat conduction tensor satisfies the positive-

definite condition (56), but the elasticities dijkl
are assumed to be positive semi-definite. By com-

bining Lagrange identities with energy conserva-

tion, it is demonstrated for t 2 ½0; T=2� that
EðtÞ  4M2
12 þ Eð0Þ� �1=2

Eð0Þ1=2 þ 3E1ð0Þ
h i
� expðc13tÞ

where

E1ðtÞ ¼ 1

2

ð
O

r0 _ui _ui þ dijklui;juk;l
� �

dx
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and c13 is a computable positive constant. The

positive constant M12 constrains the temperature

according to the bound
ð
O
y2ðtÞ dx  M2

12 t 2 ½0; T�

Specialization of this conclusion to unique-

ness in conjunction with the corresponding prob-

lem forward in time demonstrates that the

solution cannot have compact support in the

time interval. Expressed otherwise, for nonzero

initial data, localization of the solution with

respect to time is not possible.

Part III describes the application of both log-

arithmic convexity and Lagrange identity

methods to nonclassical linear theories of

thermoelasticity and also examines consequences

of sign-definite assumptions.
Notation
O
 Three-dimensional reference spatial

region occupied by thermoelastic body
@O
 Lipschitz continuous smooth boundary

of O

½0; T�; T > 0
 Maximal closed interval of existence
t
 Time variable (scalar)
x
 Position vector
QðtÞ
 O� ½0; t�

uiðx; tÞ
 Cartesian component of increment in

displacement vector
tijðx; tÞ
 Cartesian component of increment in

first Piola stress tensor
sij
 Cartesian component of symmetric

(large) Cauchy stress tensor
qiðx; tÞ
 Cartesian component of increment in

heat flux vector
yðx; tÞ
 Increment in scalar temperature
y0ðxÞ
 Scalar reference temperature
Sðx; tÞ
 Increment in scalar entropy
aðxÞ
 Scalar thermal capacity
r0ðxÞ
 Mass density in reference configuration
fiðx; tÞ
 Cartesian component of increment in

body force per unit mass in reference

configuration
rðx; tÞ
 Increment of scalar heat supply per unit

mass of reference configuration
(continued)
dijklðxÞ
 Cartesian component of linearized

elastic coefficient tensor
cijklðxÞ
 Cartesian component of linear elastic

moduli tensor
dij
 Kronecker delta
kij
 Cartesian component of heat conduction

tensor
Qðt1; t2Þ
 O� ðt1; t2Þ

bij
 Cartesian component of heat coupling

tensor
hijk; ai
 Cartesian component of material heat

coefficient tensors
EðtÞ
 Total energy of classical linearized

thermoelastic system
JðtÞ
 Augmented total energy of classical

linearized system
KðtÞ
 Kinetic energy of classical linearized

thermoelastic system
VðtÞ
 Potential energy of classical linearized

thermoelastic system
I1ðtÞ
 Total work done by supply terms
FðtÞ; GðtÞ; HðtÞ
 Various solution measures
ZðtÞ
 Supply term measure
a
 Scalar thermal displacement
Gijk; bi; bij
 Cartesian components of nonclassical

thermomechanical coefficient tensors
EIIIðtÞ
 Total energy of linearized nonclassical

system of Green-Naghdi type III

without center of symmetry
JIIIðtÞ
 Augmented energy of linearized

nonclassical Green-Naghdi of type III

without center of symmetry
~EIII ðtÞ
 Total perturbed energy of linearized

nonclassical Green-Naghdi system of

type III with center of symmetry
PIIIðtÞ
 Total work done by source terms in

perturbed linearized nonclassical

Green-Naghdi system of type III with

center of symmetry
Mi; Ni
 Various specified constants
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d’unicité. J de Mech 8:125–166, 167–192

3. Rionero S, Chirita S (1987) The Lagrange identity

method in linear thermoelasticity. Int J Eng Sci

25:935–947

4. Levine HA (1977) An equipartition of energy theo-

rem for weak solutions of evolutionary equations in

Hilbert space. The Lagrange identity method. J Diff

Equ 24:197–2120

5. Knops RJ, Payne LE (1988) Improved estimates for

continuous data dependence in linear elastodynamics.

Math Proc Camb Phil Soc 103:535–559

6. Ames KA, Payne LE (1991) Stabilizing solutions of

the equations of dynamical linear thermoelasticity

backward in time. Stab Appl Anal Cont Media

1:243–260

7. Ames KA, Payne LE (1995) Continuous dependence

on initial-time geometry for a thermoelastic system

with sign-indefinite elasticities. J Math Anal Appl

189:693–714

8. Levine HA (1970) On a theorem of Knops and Payne

in dynamical linear thermoelasticity. Arch Ration

Mech Anal 38:290–319

9. Ames KA, Straughan B (1997) Non-standard and

improperly posed problems. Academic Press,

San Diego/London

10. Knops RJ, Payne LE (1969) Continuous data depen-

dence for the equations of classical elastodynamics.

Math Proc Camb Phil Soc 66:481–491

11. Song JC, Payne LE (1989) Continuous dependence on

the time and spatial geometry for the equations of

thermoelasticity. Math Method Appl Sci 11:317–329

12. Payne LE (1985) On stability and growth of solutions

to second-order operator equations. In: Mathematical

methods and models in mechanics, vol 15. Banach

Center Publications, Warsaw, pp 465–475

13. Payne LE (1987) On geometric and modelling pertur-

bations in partial differential equations. In: Knops RJ,

Lacey AA (eds) Proceedings of LMS Durham sym-

posium on non-classical continuum mechanics. Cam-

bridge University Press, Cambridge, pp 108–128

14. Galdi GP, Rionero S (1979) Continuous dependence

theorems in linear elasticity on exterior domains. Int

J Eng Sci 17:521–526

15. Galdi GP, Rionero S (1983) Continuous data depen-

dence in linear elastodynamics on unbounded

domains without definiteness conditions on the elas-

ticities. Proc R Soc Edin A93:299–306

16. Galdi GP, Rionero S (1985) Weighted energy

methods in fluid dynamics and elasticity. In: Lecture

notes in mathematics, vol 1134. Springer, Berlin/

Heidelberg/New York/Tokyo

17. Galdi GP, Knops RJ, Rionero S (1986) Uniqueness

and continuous dependence in the linear

elastodynamic exterior and half-space problems.

Math Proc Camb Phil Soc 99:357–366

18. Flavin JN, Rionero S (1996) Qualitative estimates for

partial differential equations. An introduction. CRC

Press, Boca Raton
19. John F (1982) Partial differential equations, 4th edn.

Springer, Berlin/New York

20. Ciarletta M (2003) On the uniqueness and continuous

dependence of solutions in dynamical thermoelasticity

backward in time. J Therm Stress 25:969–984
Continuous Data Dependence in
Linear Theories of
Thermoelastodynamics. Part III:
Nonclassical Theories

Robin J. Knops1 and Ramon Quintanilla2

1The Maxwell Institute of Mathematical

Sciences, Heriot-Watt University, Edinburgh,

Scotland, UK
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Overview

Parts I and II discuss continuous data dependence

for classical linearized thermoelasticity. In this

part, these properties are examined for selected

nonclassical linearized theories using the

methods of logarithmic convexity and Lagrange

identities presented in Parts I and II, respectively.

Implications of sign-definite assumptions are also

treated. A general introduction to these investi-

gations is included in the first section of Part 1,

which also defines the notation employed in all

three parts of this coordinated study. Additional

notation is introduced as appropriate.

The Fourier theory of heat conduction predicts

that heat propagates with infinite speed, which in

certain practical circumstances is unrealistic. Alter-

native theories free from this defect include those

formulated by Maxwell [1] and Cattaneo [2].

Books by Ames and Straughan [3], Iesan [4],

Ignaczak and Ostoja-Starzewski [5], and Straughan

[6] contain further references. Several relaxed heat

conductionmodels have successfully been incorpo-

rated into thermoelasticity, and of these we select

for study those proposed by Green and Naghdi.

Other notable models are due to Lord and Shulman

[7] and Green and Lindsay [8]. A general theory,
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developed within the context of extended thermo-

dynamics, is constructed by M€uller and Ruggeri

and presented in their book [9]. The Green-Naghdi

theories [10–12] depend upon an entropy balance

law rather than upon the usual entropy production

inequality. Three related theories, called Types I, II,

and III, are developed. The linearized version of the

field equations belonging to Type I is identical to

those of classical thermoelasticity, while those

corresponding to Type II, also known as

thermoelasticity without energy dissipation, is the

limiting case of Type III in which the heat conduc-

tion tensor, kij, vanishes and exhibits energy con-

servation. By contrast, equations for Type III

exhibit energy dissipation and do not necessarily

admit a finite speed of heat propagation. The

corresponding linearized equations in the absence

of a center of symmetry and for ðx; tÞ 2 QðTÞ are
represented by

dijkluk;l � bijyþ Gijka;k
� �

;j
þ r0fi ¼ r0€ui ð1Þ

Gjkiuj;k þ biyþ kijy;j þ bija;j
� �

;i
þ biy;i

þ r0r ¼ r0y0 bij _ui; jþa _y
�  ð2Þ

_a ¼ y ð3Þ

where aðx; tÞ is the thermal displacement and

Gijk; bi; bij are components of constitutive tensor

coefficients, which satisfy the symmetries
Gijk ¼ Gjik bij ¼ bji ð4Þ

A center of symmetry induces odd order con-

stitutive tensors to vanish, so that
Gijk ¼ bi ¼ 0 ð5Þ

Moreover, in what follows it is assumed that

under appropriate conditions, (1)–(3) have been

rescaled such that r0y0 ¼ 1, and that the heat

conduction tensor is symmetric so that

kijðxÞ ¼ kjiðxÞ ð6Þ

Boundary conditions are specified for the dis-

placement and temperature, and when of
Dirichlet type are given by Part I, (13). Initial

conditions (14) and (15) of Part I, however, are

for x 2 O augmented by
aðx; 0Þ ¼ að0ÞðxÞ _aðx; 0Þ ¼ yðx; 0Þ ¼ yð0ÞðxÞ
ð7Þ

Without loss, it may be assumed that a0ðxÞ ¼ 0,

since otherwise terms involving nonzero að0ÞðxÞ
may be absorbed into the respective source terms.

Subject to homogeneous boundary conditions,

uniform coefficients, bi, and on defining the

energy EIIIðtÞ to be

EIIIðtÞ ¼
ð
O

r0 _ui _ui þ dijklui;juk;l þ 2Gijkui;ja;k



þ bija;ia;j þ ay2
�
dx

ð8Þ
the following conservation law may easily be

proved:

JIIIðtÞ 
 EIIIðtÞ þ 2

ð
QðtÞ

kijy;ið�Þy;jð�Þ dxd�

ð9Þ

¼ JIIIð0Þ þ 2I1ðtÞ ð10Þ

where I1ðtÞ is defined in Part I, (24).

Equations governing Type II theory are

obtained on setting kij ¼ 0 in the preceding

Type III equations. In consequence, (2) reduces to
Gijkuj;k þ biyþ bija;j
� �

;i
þbiy;i þ r0r

¼ r0y0 bij _ui;j þa _y
� 

ðx; tÞ 2 QðTÞ
ð11Þ

which in the presence of a center of symmetry

becomes invariant forward and backward in time.

For homogeneous boundary conditions, the

Type III conservation law (10) indicates that the

energy EIIIðtÞ for the linearized Type II theory

satisfies
EIIIðtÞ ¼ EIIIð0Þ þ 2I1ðtÞ ð12Þ

and is conserved when both source terms vanish.
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Scope of Part III

Many of the techniques explained in Parts I and II

are applicable to nonclassical linear theories of

thermoelastodynamics. Rather than an exhaus-

tive treatment, we confine attention to the

Green-Naghdi theories of Types II and III

whose reference configurations possess a center

of symmetry. Principal investigations include

those by Quintanilla and Straughan [13] and

Quintanilla [14, 15] who employ logarithmic

convexity and Lagrange identities to establish

uniqueness, continuous data dependence, and

growth estimates for bounded and unbounded

spatial regions and sign-indefinite elasticities.

Logarithmic convexity is employed by Bofill,

Leseduarte, and Quintanilla [16] to obtain

uniqueness and growth estimates in the linear

theories of Lord and Shulman and of Green and

Lindsay subject to sign-indefinite elasticities and

positive-definite heat conduction tensor. Other

conditions are implied by an entropy production

inequality proposed by Green and Lindsay [8],

who prove uniqueness for positive semi-definite

elasticities.

Type II and III theories without a center of

symmetry require certain positive-definite assump-

tions and are considered by Quintanilla [17].

The methods of either logarithmic convexity,

Lagrange identities, or energy conservation for

positive-definite elasticities are applicable in

principle to both Type II and Type III theories.

But for illustrative purposes, different problems

are selected for each method. Conditions are sup-

posed satisfied that enable the equations to be

rescaled to give r0y0 ¼ 1.
Logarithmic Convexity

Type II

Consider the system specified by (1), (3), and (11)

modified by assumption (5), and seek to establish

continuous dependence upon initial data with

zero source terms and boundary conditions.

Initial data is specified in Part I by conditions

(14) and (15), and by (7), while the tensor bij is

supposed symmetric and positive definite:
bij ¼ bji b0xixi  bijxixj 8xi ð13Þ

for positive constant b0.

The logarithmic convexity analysis developed

in [13] employs a new variable which in the

notation of Part I, (51) is given by
oðx; tÞ ¼ baðx; tÞ þ zðxÞ ð14Þ

where aðx; tÞ is defined by (3) and zðxÞ is the

solution to the elliptic equation

bijz;j
� �

;i
¼ biju

ð0Þ
i; j ðxÞ þ ayð0ÞðxÞ ð15Þ

This enables (11) to be written in the alterna-

tive forms

bija;j
� �

;i
¼ bij _ui;j þ a€a ð16Þ

bijo;j

� �
;i
¼ bijui;j þ a€o ð17Þ

It may be shown [13] that the function FðtÞ,
defined by

FðtÞ ¼
ð
O

r0uiui þ bijo;io;j

� �
dxþ g5ðtþ t��Þ2

ð18Þ

where g5; t
�� are positive constants to be chosen,

satisfies the differential inequality
FðtÞ €FðtÞ � _FðtÞ� �2 	 �2FðtÞ 2EIIIð0Þ þ g5ð Þ
ð19Þ

in which EIIIðtÞ is the conserved quantity defined

by (12). The discussion of (19) now proceeds as

before. In particular, zero initial data implies

EIIIð0Þ ¼ 0, and on selecting g5 ¼ 0, we have

Fð0Þ ¼ 0. Uniqueness is recovered both forward

and backward in time, demonstrating that the

solution cannot have compact support in ½0; T�.
Green and Naghdi [11] prove uniqueness for the

isotropic Type II theory using Lagrange identities

considered in the section entitled “Lagrange

Identities.”

When initial data is such that EIIIð0Þ  0 or

> 0, it may be deduced from inequality (19)
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with g5 ¼ �2EIIIð0Þ or g5 ¼ 0 that the solution

grows according to
FðtÞ 	 Fð0Þ exp F0ð0Þ
Fð0Þ t

� �
ð20Þ

Detailed arguments are presented in [13].

Because the rescaled (11) with a center of

symmetry is invariant with respect to a time

reversal, the results of this section apply both

forward and backward in time. In particular,

localization of the solution subject to nonzero

initial data is not possible.

Type III

Logarithmic convexity arguments may also be

applied to the Green-Naghdi Type III theory with

a center of symmetry. The problem is studied by

Quintanilla [14] who derives continuous depen-

dence on source terms and coupling coefficients

for homogeneous materials. The initial boundary

value problem treated consists of (1)–(3) subject to

(5) and the boundary and initial conditions speci-

fied in Part I by (13)–(15) supplemented by (7) of

this part. Suppose that kij and bij are symmetric and

satisfy the positive conditions
kijxixj 	 k0xixi bijxixj 	 0 8xi ð21Þ

where k0 is a positive constant. Let ðui; y; aÞ
denote the difference in displacement, tempera-

ture, and thermal displacement for two different

sets of source terms f
ðaÞ
i ; rðaÞ; a ¼ 1; 2 and cou-

pling coefficients bðaÞij . Other data are held fixed.

Subtraction of the respective equations and

use of the definitions
ui ¼ u
ð2Þ
i � u

ð1Þ
i y ¼ yð2Þ � yð1Þ ð22Þ

fi ¼ f
ð2Þ
i � f

ð1Þ
i r ¼ rð2Þ � rð1Þ ð23Þ

for ðx; tÞ 2 QðTÞ leads to
dijkluk;l � bð2Þij y� �bij y
ð1Þ

� 
; j
þ r0fi ¼ r0 €ui

kijy;i þ bija;i
� �

;j
þr0r � �bij _u

ð1Þ
i; j ¼ bð2Þij _ui;j þa _y
adjoined to which are homogeneous initial and

boundary conditions.

Assume solutions are constrained to have the

temperature and temperature spatial gradient

bounded and the displacement and velocity

gradients bounded according to
max
O

ð _ui;j�v
ð0Þ
i; j Þð _uð2Þi; j �v

ð0Þ
i; j Þþðuð2Þi; j �u

ð0Þ
i; j � tv

ð0Þ
i; j Þ

�
ðuð2Þi; j �u

ð0Þ
i; j � tv

ð0Þ
i; j Þ

N2

7

where N7 is a specified positive constant.

In terms of the notation given by (51) of Part I,

the function FðtÞ defined by

FðtÞ¼
ð
QðtÞ

r0uiuiþ kijba;i ba; jþðt��Þkija;ia;j
� �

dxd�

þ
ð
QðTÞ

r20fifiþ2�bij �bij þ r20ðR2
1þR2

2Þ
� �

dxd�

R1ðtÞ¼brð�Þ R2 ¼bbrð�Þ
ð24Þ

may be shown [14] to satisfy the differential

inequality
FðtÞ €FðtÞ � _FðtÞ� �2 	 �c14F
2ðtÞ t 2 ½0; T�

where c14 is a computable positive constant.

Consequently, FðtÞ possesses a convex logarithm
on ½0; T� which, for computable positive constant

M13, leads after integration to the inequality

FðtÞ  M13

ð
QðTÞ

r20fifi þ 2bijbij
�"

þr20ðR2
1 þ R2

2Þ
�
dxd�

#ð1�t=TÞ

In consequence, continuous dependence is

established upon source terms and the coupling

tensor.

Lagrange Identities

Application of the technique of Lagrange identities

to nonclassical thermoelastic theories is illustrated
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by the proof of uniqueness for the Green-Naghdi

Type III theory with a center of symmetry.

Continuous dependence upon various other data

may be derived by obvious extension of the

discussion in Parts I and II for classical theories.

The relevant initial boundary value problem is

specified by (1)–(3) subject to (5), together with

conditions (13)–(15) of Part I augmented by (7). It

is preferable to express (2) alternatively as

kij _a;j
� �

;i
þ bija;j
� �

;i
þ r0r ¼ bij _ui;j þ a€a ð25Þ

Recall that the solution satisfies the conserva-

tion law (10) subject to homogeneous boundary

conditions. In what follows, it is necessary to

require only the positive semi-definite conditions
kijxixj 	 0 8xi ð26Þ

bijxixj 	 0 8xi ð27Þ

As usual, to prove uniqueness, it is sufficient

to assume homogeneous initial and boundary

conditions, and zero source terms. Computations

similar to those outlined in Part II lead for

t 2 ½0; T=2� to the identityð
O

r0 _uiðtÞ _uiðtÞ � dijklui;jðtÞuk;lðtÞ � ay2ðtÞ�
þbija;iðtÞa;jðtÞ

	
dx ¼ 0

ð28Þ

The sign-indefinite terms may be eliminated by

combining with the conservation law (10) to giveð
O

r0 _ui _uiþbija;ia;j
� �

dxþ
ð
QðtÞ

kijy;iy;j dxd�¼ 0

ð29Þ

which from (26), (27), and homogeneous

initial conditions implies that uiðx; tÞ 
 0;

ðx; tÞ 2 QðT=2Þ. Insertion into (10) leads to the

conclusion that yðx; tÞ 
 0; ðx; tÞ 2 QðT=2Þ and

uniqueness is established inQðT=2Þ and by recur-
sion in QðTÞ.

Inclusion of nonzero source terms modifies the

above argument in a manner similar to that

presented in Part II. Continuous dependence on
constitutive coefficients again reduces to the con-

sideration of nonzero source terms.

Type II theory is, of course, included as

a special case in these results. Note, however, that

the backward in time problem for sign-indefinite

elasticities appears to await investigation for both

Type II and III theories by means of Lagrange

identities, even though continuous data depen-

dence, uniqueness, and related properties for

Type II backward in time may be derived using

logarithmic convexity methods as discussed in the

section entitled “Logarithmic Convexity, Type II.”
Sign-Definite Assumptions

As already mentioned, provided it is accepted

that the maximal interval of existence may be

finite and continuity may be in a weak sense,

sign-definite elasticities are not essential for

proofs of continuous data dependence. Neverthe-

less, it is instructive to examine the improvement

gained by introduction of these assumptions. The

analysis has been undertaken by Quintanilla [15]

for dependence upon various coefficients and for

the isotropic version of the Type III theory with

center of symmetry. The treatment is sketched for

the corresponding anisotropic version and for

dependence upon the elasticities, coupling tensor,

and the heat conduction tensor subject to a > 0.

Furthermore, the positive conditions
d0zijzij  d
ðaÞ
ijklzijzkl 8zij ð30Þ

0  k
ðaÞ
ij xixj 8xi ð31Þ

0  b
ðaÞ
ij xixj 8xi ð32Þ

where the superscript a ¼ 1; 2 refers to the dif-

ferent sets of coefficients and d0 is a specified

positive constant are assumed also to hold.

Quintanilla and Racke [18] under the same

conditions have established exponential stability

(i.e., continuous dependence upon initial condi-

tions) with respect to the energy norm for the

linearized version of Type III both in one dimen-

sion and for radially symmetric solutions.
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These authors appeal to energy methods and

spectral analysis. Similar behavior is examined

by Zhang and Zuazua [19].

Recall that the solutions ðuðaÞi ðx; tÞ;
yðaÞðx; tÞÞ; a ¼ 1; 2 satisfy the respective conser-

vation laws (10), and supplement the notation

(22) and (23), by
�dijkl ¼ d
ð2Þ
ijkl � d

ð1Þ
ijkl

�bij ¼ bð2Þij � bð1Þij

�kij ¼ k
ð2Þ
ij � k

ð1Þ
ij

ð33Þ

aðx; tÞ ¼ að2Þðx; tÞ � að1Þðx; tÞ ð34Þ

�bij ðxÞ ¼ b
ð2Þ
ij ðxÞ � b

ð1Þ
ij ðxÞ ð35Þ

Dirichlet boundary conditions are assumed

fixed, while initial data may alter, so that

uiðx; tÞ ¼ yðx; tÞ ¼ 0 ðx; tÞ 2 @O� ½0; T�
ð36Þ

uiðx; 0Þ ¼ u
ð00Þ
i ðxÞ _ui ðx; 0Þ ¼ v

ð00Þ
i ðxÞ x 2 O

ð37Þ

yðx; 0Þ ¼ yð00ÞðxÞ aðx; 0Þ ¼ að00ÞðxÞ x 2 O

ð38Þ

where u
ð00Þ
i ðxÞ; vð00Þi ðxÞ; yð00ÞðxÞ; að00ÞðxÞ are pre-

scribed functions.

A center of symmetry enablesGijk ¼ bi ¼ 0 to

be taken in (1) and (2). Subtraction of the respec-

tive equations leads to the system

d
ð2Þ
ijkluk;l � bð2Þij y

� 
;j
þXi ¼ r0€ui ð39Þ

k
ð2Þ
ij y;i þ b

ð2Þ
ij a;i

� 
; j
þ R ¼ bð2Þij _ui;j þ a _y ð40Þ

where

Xiðx; tÞ ¼ r0 fi þ �dijkl u
ð1Þ
k;l � �bij y

ð1Þ
� 

;j
ð41Þ

Rðx; tÞ ¼ r0r þ �kij y
ð1Þ
;i þ �bij a

ð1Þ
;i

� 
; j
� �bij _u

ð1Þ
i; j

ð42Þ
Multiplication of (39) by _ui and addition of

the resulting expression to (40) multiplied by

y ¼ _a, succeeded by integration over QðtÞ, yields
the conservation identity
~EIII ðtÞ ¼ ~EIII ð0Þ þ PIIIðtÞ ð43Þ

where
~EIII ðtÞ ¼ 1

2

ð
O

r0 _ui ðtÞ _ui ðtÞ þ d
ð2Þ
ijklui;jðtÞuk;lðtÞ

�
þ b

ð2Þ
ij a;iðtÞa;jðtÞ þ ay2ðtÞ


dx

þ
ð
QðtÞ

k
ð2Þ
ij y;ið�Þy; jð�Þ dxd�

ð44Þ

PIIIðtÞ ¼
ð
QðtÞ

Xiui;� þ Ry
� �

dxd� ð45Þ

Set
�d
2 ¼ max

O
�dijkl �dijkl þ �dijkl; j �dipkl;p
� � ð46Þ

�b
2 ¼ max

O
�bij�bij þ �bij; j�bip;p
� � ð47Þ

�k
2 ¼ max

O
�kij �kij þ �kij; j �kip;p
� � ð48Þ

�b
2 ¼ max

O
�bij �bij þ �bij; j �bip;p
� � ð49Þ

and assume that ðuð1Þi ; yð1ÞÞ satisfies the bound

ð
QðTÞ

u
ð1Þ
i; j u

ð1Þ
i; j þu

ð1Þ
i;jku

ð1Þ
i;jkþu

ð1Þ
i;j�u

ð1Þ
i;j�þyð1Þ;i yð1Þ;i

�
þyð1Þ;ij y

ð1Þ
;ij það1Þ;i að1Þ;i það1Þ;ij a

ð1Þ
;ij


dxd�N2

8

ð50Þ

whereN8 is a specified positive constant. It is subse-

quentlyproved later in this section that impositionof

a stricterbound than(50) leads to improvedresult for

continuous data dependence provided the heat con-

duction tensor kij is positive definite.

Standard inequalities applied to the second

term on the right of (43) yield
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PIIIðtÞ 
ð
QðtÞ

XiXi þ R2
� �

dxd�

" #1=2
ð
QðtÞ

ui;�ui;� þ y2
� �

dxd�

" #1=2

 D1

ðt
0

~EIII ð�Þ d�
� �1=2

ð51Þ

where

D2
1 ¼ 6c15

ð
QðTÞ

r0 fifi þ r2
� �

dxd�

"

þð�d2 þ �b
2 þ �k

2 þ �b
2ÞN2

8

#1=2
c15 ¼ max

O
1; r�1

0 ; a�1r0a
�1

� �
It immediately follows that D1 ! 0 as the dif-

ferences between the respective source terms and

constitutive coefficients vanish provided T<1.

Let
yðtÞ ¼
ðt
0

~EIII ð�Þ d�

Substitution of (51) in (43) gives the differential

inequality
_yðtÞ  ~EIII ð0Þ þ D1y
1=2ðtÞ ð52Þ

 ~EIII ð0Þ þ 1

2
D2

1 þ
1

2
yðtÞ ð53Þ

Comment on two special cases is appropriate

prior to discussion of the general integration of

inequality (53). Variation of initial data alone

implies D1 ¼ 0, and continuous dependence in

EIII-measure follows immediately from (52). By

contrast, subject to fixed initial data and variable

other data, (52) may be integrated to obtain

yðtÞ  D2
1t
2=4 ð54Þ

_yðtÞ ¼ ~EIII ðtÞ  D2
1t=2 ð55Þ

and continuous dependence again follows.
More generally, integration of (52) gives
yðtÞ  2 ~EIII ð0Þ þ D2
1

2

� �
et=2 � 1
� 

ð56Þ

and consequently substitution in (52) gives
~EIII ðtÞ  ~EIII ð0Þ

þD1 2 ~EIII ð0Þ þD2
1

2

� �
et=2 � 1
� � �1=2

ð57Þ

When t ! 0, the second term in (57) vanishes,

and the bound reduces to an identity. Moreover, the

bound for t > 0 establishes continuous dependence

in turn upon the initial data, source terms, and con-

stitutive coefficients. Differences in all data must

simultaneously approach zero, or each datum must

be considered independently with the remainder

held fixed during the limiting process. Convergence

is respect to the EIII-measure, although Poincaré’s

inequality may be used to obtain L2ðOÞ-norm con-

vergence for the displacement. In particular, these

conclusions imply that Type III theory converges to

Type II as kij ! 0, all other data being fixed.

Positive definiteness of the heat conduction

tensor, given by

k0xixi  k
ðaÞ
ij xixj 8xi ð58Þ

where k0 is a prescribed positive constant,

enables improved estimates for continuous data

dependence to be determined, subject to

a constraint class stricter than (50).

An integration by parts with respect to both

space and time gives

PIIIðtÞ ¼
ð
QðtÞ

�
r0fiui;� þFij;�ui;jþr0ryþCiy;i:

þbij;ju
ð1Þ
i;� y

dxd�

ð59Þ

where
Fijðx; tÞ ¼ �dijkl _u
ð1Þ
k;l � �bij _y

ð1Þ� 
ð60Þ
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Ciðx; tÞ ¼ �kij y
ð1Þ
;j þ �bij a

ð1Þ
;j þ �bji u

ð1Þ
j;�

� 
ð61Þ

An application of Schwarz’s inequality leads to
(continued)
PIIIðtÞ  D3

"ð
QðtÞ

r0ui;�ui;� þ ui;jui;j
�

þ ðr0 þ 1Þy2� dxd�#1=2

þD4

ð
QðtÞ

y;iy;i dxd�

" #1=2

þD5

ð
O
ui;jðtÞui;jðtÞdx

� �1=2
þ D6

 D7

ðt
0

~EIII ð�Þd�
� �1=2

þ D8
~E
1=2

III ðtÞ þD6

ð62Þ

where Di; i ¼ 3; . . . 8 are positive constants com-

putable in terms of the data.

Substitution of (62) in (43) gives

~EIII ðtÞ  ~EIII ð0Þ þ D6 þ D7

ðt
0

~EIII ð�Þ d�
� �1=2

þ D8
~E
1=2

III ðtÞ
 2ð ~EIII ð0Þ þ D6Þ þ D2

8

þ 2D7

ðt
0

~EIII ð�Þ d�
� �1=2

ð63Þ
after an appeal to the arithmetic–geometric mean

inequality. Inequality (63) is of the same form as

inequality (52) and may be discussed as previ-

ously subject, however, to the bound (50) being

replaced byð
QðTÞ

u
ð1Þ
i;j�ð�Þuð1Þi;j�ð�Þ þ ðyð1Þ;� Þ2 þ yð1Þ;i ð�Þyð1Þ;i ð�Þ

�
það1Þ;i ð�Það1Þ;i


dxd�  N2

9

ð64Þ

sup
t2½0;T�

ð
O
u
ð1Þ
i; j ðtÞuð1Þi; j ðtÞ þ ðyð1ÞðtÞÞ2

� �
 N2

10

ð65Þ
where N9;N10 are prescribed positive constants.

Of course, sufficient smoothness of

u
ð1Þ
i ; yð1Þ; and að1Þ is implicit in these assump-

tions. In this regard, the bound (64) is superfluous

for terms involving time derivatives since we can

derive from (1), (2), and (3), differentiated with

respect to time, a modified conservation law

which leads to the required bound provided initial

data are sufficiently smooth.
Backward in Time

The backward in time problem for the

Green-Naghdi Type III linear theory is discussed

by Quintanilla [20]. Uniqueness is proved for

positive-definite elasticities and heat conduction

tensor. Consequently, in view of uniqueness for

the forward in time problem, localization of the

solution in the time interval becomes impossible.
Notation
O
 Three-dimensional reference spatial

region occupied by thermoelastic body
@O
 Lipschitz continuous smooth boundary

of O

½0; T�; T > 0
 Maximal closed interval of existence
t
 Time variable (scalar)
x
 Position vector
QðtÞ
 O� ½0; t�

uiðx; tÞ
 Cartesian component of increment in

displacement vector
tijðx; tÞ
 Cartesian component of increment in

first Piola stress tensor
sij
 Cartesian component of symmetric

(large) Cauchy stress tensor
qiðx; tÞ
 Cartesian component of increment in

heat flux vector
yðx; tÞ
 Increment in scalar temperature
y0ðxÞ
 Scalar reference temperature
Sðx; tÞ
 Increment in scalar entropy
aðxÞ
 Scalar thermal capacity
r0ðxÞ
 Mass density in reference configuration
fiðx; tÞ
 Cartesian component of increment in

body force per unit mass in reference

configuration
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rðx; tÞ
 Increment of scalar heat supply per unit

mass of reference configuration
dijklðxÞ
 Cartesian component of linearized

elastic coefficient tensor
cijklðxÞ
 Cartesian component of linear elastic

moduli tensor
dij
 Kronecker delta
 C

kij
 Cartesian component of heat conduction

tensor
Qðt1; t2Þ
 O� ðt1; t2Þ

bij
 Cartesian component of heat coupling

tensor
hijk; ai
 Cartesian component of material heat

coefficient tensors
EðtÞ
 Total energy of classical linearized

thermoelastic system
JðtÞ
 Augmented total energy of classical

linearized system
KðtÞ
 Kinetic energy of classical linearized

thermoelastic system
VðtÞ
 Potential energy of classical linearized

thermoelastic system
I1ðtÞ
 Total work done by supply terms
FðtÞ; GðtÞ; HðtÞ
 Various solution measures
ZðtÞ
 Supply term measure
a
 Scalar thermal displacement
Gijk; bi; bij
 Cartesian components of nonclassical

thermomechanical coefficient tensors
EIIIðtÞ
 Total energy of linearized nonclassical

system of Green-Naghdi Type III

without center of symmetry
JIIIðtÞ
 Augmented energy of linearized

nonclassical Green-Naghdi of Type III

without center of symmetry
~EIII ðtÞ
 Total perturbed energy of linearized

nonclassical Green-Naghdi system of

Type III with center of symmetry
PIIIðtÞ
 Total work done by source terms in

perturbed linearized nonclassical

Green-Naghdi system of Type III with

center of symmetry
Mi; Ni
 Various specified constants
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Overview

A close connection between thermodynamics

and stability has been reported in various papers

[4, 7, 10]. For the nonlinear thermoelasticity

without heat conduction, the problem of stability

has been investigated by Dafermos [6], who

established the continuous dependence of smooth

thermodynamic processes upon initial state and

supply terms. The proof is based on the local

convexity of internal energy (or the strong ellip-

ticity condition).

The results obtained by Dafermos have been

completed by Chiriţă [3], who studied the general

case of heat-conducting thermoelastic materials.

Using the consequences of the Clausius–Duhem

inequality, Chiriţă [3] proved uniqueness and

continuous dependence results for smooth admis-

sible thermodynamic processes, under the further

condition stating that the elastic material behaves

as a definite conductor of heat.

This method has been utilized and extended

recently to viscoelastic materials [9, 11, 12] and

to some generalized models of continua [2, 8].

Based on the papers [3, 6], this work describes

the method in question. Thus, in the next section,
we recall the basic equations of the nonlinear

thermoelasticity. Then, an evolutionary identity

controlling the time evolution of the so-called

distance between two processes is presented.

A discussion concerning the technical ingredients

in the proof of the stability theorem, for both

types of elastic materials: nonconductors and

conductors of heat, is also given. Finally,

a uniqueness theorem and the continuous depen-

dence of smooth thermodynamic processes upon

initial state and body loads are presented.
Basic Formulation

We consider a body that at time t ¼ 0 occupies

the regular region B of the three-dimensional

Euclidean space and is bounded by a piecewise

smooth surface @B. We denote by B the closure of

B. The configuration of the body at time t ¼ 0 is

taken as the reference configuration. We refer the

motion of the body to the reference configuration

and to a fixed system of rectangular axes. We

identify a typical particle X of the body with its

position X in the reference configuration. The

coordinates of a typical particle X in B are XK

ðK ¼ 1; 2; 3Þ. The coordinates of this particle in

the position x at time t are denoted by xi. The

deformation of the body is described by
x ¼ xðX; tÞ; X 2 B; t 2 ½0; t0Þ ð1Þ

We assume the continuous differentiability of

x with respect to the variables XK and t as many

times as required and

J ¼ det
@xi
@XK

� �
> 0 ð2Þ

In the following, we shall employ the follow-

ing notations and conventions: Latin subscripts

are understood to range over the integers ð1; 2; 3Þ;
summation over repeated subscripts is implied;

subscripts preceded by a comma denote partial

differentiation with respect to the corresponding

Cartesian coordinate; a superposed dot denotes

time differentiation; NK are the components of

the unit outward normal vector to the surface @B;

http://dx.doi.org/10.1007/978-94-007-2739-7_259
http://dx.doi.org/10.1007/978-94-007-2739-7_100099
http://dx.doi.org/10.1007/978-94-007-2739-7_100457
http://dx.doi.org/10.1007/978-94-007-2739-7_100599
http://dx.doi.org/10.1007/978-94-007-2739-7_100599
http://dx.doi.org/10.1007/978-94-007-2739-7_100725
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the symbol j � j denotes a norm, either in the

Euclidean vector space or in a tensor space,

while �k kL2ðBÞ denotes the L2 –norm. We say that

a function f defined on B� ½0; t0Þ is of class CM;N ,

where M and N are given nonnegative

numbers, if the functions @mf ðnÞ 
 @m

@xi@xj: : :@xs

@nf
@tn

� 
;

m2f0;1; . . .Mg; n2f0;1; .. . ;Ng, and

mþnmaxfM;Ng exist and are continuous on

B�½0; t0Þ.
We assume that an elastic material fills B.

Then, the fundamental equations of the nonlinear

theory of thermoelasticity are [1, 3]

– The equations of motion
SKi;K þ r0bi ¼ r0€xi ð3Þ

– The energy equation

r0T _S ¼ �QK;K þ r0r ð4Þ

– The constitutive equations
c ¼ ĉðxi;K;T;XLÞ

SKi ¼ r0
@ĉ
@xi;K

S ¼ � @ĉ
@T

QK ¼ Q̂Kðxi;K; T; T;K;XLÞ

ð5Þ

where r0ðXLÞ > 0 is the reference mass

density, biðXK; tÞ is the body force, rðXK; tÞ
is the heat supply, SKi is the first Piola–

Kirchhoff stress tensor, TðXK; tÞ > 0 is the

absolute temperature, S is the entropy, QK

is the heat flux vector and c is the free

energy. The response functions ĉ and Q̂K

are assumed to be of class C1 on their

domains of definition. The domain of ĉ is

the set of all ðxi;K; T;XLÞ, where

detðxi;KÞ > 0, T > 0, and X 2 B, while the

domain of Q̂K is the set of all

ðxi;K; T; T;K;XLÞ, where detðxi;KÞ > 0,

T > 0, and X 2 B. Moreover, the functional

Q̂K must satisfy the following restrictions

[1, 3]:
Q̂KT;K  0

Q̂Kðxi;K; T; 0;XLÞ ¼ 0
ð6Þ

An admissible thermodynamic process,

corresponding to an elastic material character-

ized by the density r0 and the response functions

ĉ, Q̂K, is the ordered array ½xi; T; c; SKi;
S; QK; bi; r� ðXM; tÞ having the regularity

properties:

aÞ xi 2 C1;2 on B� ½0; t0Þ
bÞ T;c; S 2 C1 on B� ½0; t0Þ
gÞ QK; SKi 2 C1;0 on B� ½0; t0Þ
dÞ bi; r 2 C0 on B� ½0; t0Þ
and satisfying (3)–(6).

We shall say that U ¼ fxi; Tg is a smooth
admissible state corresponding to the load ðbi; rÞ
if ½xi; T; c; SKi; S; QK; bi; r� is an admissible

thermodynamic process.

For admissible thermodynamic processes, we

have the relation
@

@t
r0 cþ TSþ 1

2
_xi _xi

� �� �
¼ SKi _xi � QKð Þ;K þ r0ðbi _xi þ rÞ ð7Þ

which follows by adding (4) and the relations (3)

multiplied by _xi, and then by using
r0 _c ¼ r0
@ĉ
@xi;K

_xi;K þ r0
@ĉ
@T

_T

¼ SKi _xi;K � r0S _T

ð8Þ

In the following, we denote by F the deforma-

tion gradient, g the temperature gradient, and v

the velocity. Their components will be denoted

by FiK , gK , and vi, respectively, namely,

FiK ¼ xi;K; gK ¼ T;K; vi ¼ _xi ð9Þ
Preliminary Results

Let U ¼ fxi; Tg and U ¼ fxi; Tg be two smooth

admissible states on B� ½0; t0Þ corresponding to
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the loads ðbi; rÞ and ðbi; rÞ, respectively. We

define the function D on ½0; t0Þ by
D ¼
Z
B

�
1

2
r0ðvi � viÞðvi � viÞ þ r0c� r0c

�SKiðFiK � FiKÞ þ r0SðT � TÞ
�
dV

ð10Þ

where

FiK ¼ xi;K; gK ¼ T ;K; vi ¼ _xi

c ¼ ĉðFiK ; T;XKÞ

S ¼ � @c
@T

SLj ¼ r0
@c
@FjL

QL ¼ Q̂LðFiK; T; gK;XKÞ

ð11Þ

On account of (5), (9), and (11), it is easy to

see that D is of quadratic order in

v� �v;F� F; T � T
�� ��

L2ðBÞ

The evolution in time of this function is

described by the following theorem:

Theorem 1. If U ¼ fxi; Tg and U ¼ xi; T
� 	

are

two smooth admissible states on B� ½0; t0Þ
corresponding to the loads ðbi; rÞ and ðbi; rÞ in
L1ðB� ½0; t0ÞÞ, then
_D ¼
Z
@B

GdAþ
Z
B

h
Lþ Z þ r0ðbi � biÞðvi � viÞ

þr0
T

r � rð Þ T � T
� �

� 1

TT
�QK;K þ r0r
� �

T � T
� �2i

dV

ð12Þ

where
G ¼ SKi � SKi
� �

vi � við Þ � 1

T
QK � QK

� �
T � T
� �� �

NK

ð13Þ
L ¼ _FiK SKi � SKi � @SKi

@FjL

FjL � FjL

� �� @SKi

@T
T � T
� �� �

� r0T S� S� @S

@FiK

FiK � FiK

� �� @S

@T
T � T
� �� �

ð14Þ

Z ¼ QK � QK

� � T � T

T

� �
;K

ð15Þ
Proof. From (10) we obtain
_D ¼
Z
B

�
@

@t

�
r0

�
cþ TSþ 1

2
vivi

��
� @

@t

�
r0

�
cþ T Sþ 1

2
vivi

��
�r0

�
vi _vi þ _vivi � 2vi _vi

�
� _SKi

�
FiK � FiK

�
�SKi

�
_FiK � _FiK

�
� r0

_T

�
S� S

�
�r0T

�
_S� _S

��
dV

ð16Þ

Using the balance laws (3), (7), we may write

(16) in the form

_D ¼
Z
B

h
SKi � SKi
� �

vi � við Þ
i
;K
þ r0 bi � bi

� �
vi � við Þ

�
þr0r � QK;K � r0r þ QK;K � _SKi FiK � FiK

� �
þ _FiK SKi � SKi

� �� r0
_T S� S
� �� r0T _S� _S

� o
dV

ð17Þ
Introducing the notations

R ¼ � _SKi FiK � FiK

� �þ _FiK SKi � SKi
� �

�r0
_T S� S
� �þ r0

_S T � T
� � ð18Þ

P ¼ r0r � QK;K � r0r þ QK;K � r0
_ST þ _ST � 2 _ST
� 

ð19Þ

we have

_D ¼
Z
B

SKi � SKi
� �

vi � við Þ
 �
;K

n
þr0 bi � bi

� �
vi � við Þ þ Rþ P

o
dV

ð20Þ
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It follows from (11) that

_SKi ¼ @SKi

@FjL

_FjL þ @SKi

@T
_T

_S ¼ @S

@FiK

_FiK þ @S

@T
_T

ð21Þ

With the help of (21), we find that

R ¼ L ð22Þ

On the other hand, using (4) we have

P ¼ r0r � QK;K � r0r þ QK;K � r0
_S T � T
� �

� r0T _S� _S
� 

¼ r0r � QK;K � r0r þ QK;K

þ T

T
�QK;K þ r0r
� �� T

T
�QK;K þ r0r
� �

� �QK;K þ r0r
� � T

T
� 2þ T

T

� �
¼ r0

T
r � rð Þ T � T

� �� QK � QK

� � T � T

T

� �
;K

þ QK � QK

� � T � T

T

� �
;K

� 1

TT
�QK;K þ r0r
� �

T � T
� �2

ð23Þ
Collecting (20), (22), (23) and using (13), (14),

(15) and the divergence theorem, we conclude

that (12) holds. The proof is complete.

Remark 1. For a nonconductor of heat elastic

material (QK ¼ QK ¼ 0), the right-hand side of

(12) is of quadratic order in

v� �v;F� F; T � T; b� �b; r � �r
�� ��

L2ðBÞ

provided the smooth admissible states satisfy the

same boundary conditions.

On the other hand, since DðtÞ is of quadratic
order in

v� �v;F� F; T � T
�� ��

L2ðBÞ;

then from (12) some stability results may be

obtained by applying Gronwall-type inequalities.

This was the case studied by Dafermos [6].
Remark 2. For the general case of elastic mate-

rials which are conductors of heat, it is clear that

the right-hand side of (12) is of quadratic order in

v� �v;F� F; T � T; g� �g; b� �b; r � �r
�� ��

L2ðBÞ

provided the smooth admissible states satisfy the

same boundary conditions. So, in order to apply

a Gronwall-type inequality, some further results

giving an estimate involving the function Z,

defined by the relation (15), are needed. In [3],

Chiriţă showed how to overcome this problem for

definite heat-conducting elastic materials.

In the following, we consider the general case

of elastic materials which are conductors of heat.

First, we recall the notion of definite conductor,

introduced by Coleman and Gurtin [5] and uti-

lized by Chiriţă [3], to study the stability of

smooth admissible states.

From (11), it follows that
QK ¼QK � KKL gL � gLð Þ � eKiL FiL � FiL

� �
� aK T � T

� �þ Q0
K

ð24Þ

where

KKL ¼ � @ bQK

@gL
FkM; T; gM;XM

� �
eKiL ¼ � @ bQK

@FiL
FkM; T; gM;XM

� �
aK ¼ � @ bQK

@T
FkM; T; gM;XM

� �
ð25Þ

and Q0
K is a function of order oðrÞ, r being

defined by
r ¼ F� F
�� ��þ T � T

�� ��þ g� �gj j ð26Þ
Definition 1. We say that the admissible state U

resides in the region where the material is
a definite heat conductor if

kKL ¼ 1

2
KKL þ KLK

� � ð27Þ

is positive definite.
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We introduce the following notation:
yðtÞ¼ F�F;T�T
� �ð�; tÞ�� ��

L2ðBÞ; t2 ½0; t0Þ
ð28Þ

Theorem 2. Let U ¼ xi; T
� 	

be a smooth

admissible state residing in the region where the

material is a definite conductor of heat. Then
there exist the positive constants d, m1 and with

the following property: if U ¼ fxi; Tg is any

smooth admissible process defined on
B� ½0; t0Þ, such that

r ¼ F� F
�� ��þ T � T

�� ��þ g� �gj j < d ð29Þ

on B� ½0; t0Þ, then
Z
B

ZdV  m1y
2ðtÞ; t 2 ½0; t0Þ ð30Þ
Proof. Since U ¼ xi; T
� 	

resides in the region

of state where the elastic material behaves as

a definite conductor of heat, it follows that there

is a positive constant l such thatZ
B

1

T
KKL gK � gKð Þ gL � gLð ÞdV

¼
Z
B

1

T
kKL gK � gKð Þ gL � gLð ÞdV

	 l
Z
B

gK � gKð Þ gK � gKð ÞdV

ð31Þ

Then in view of (15), (24), and the above

inequality, we conclude that there exist

a positive constant d such that when (29) is satis-
fied, then
Z
B

ZdV  �l
Z
B

ðgK � gKÞðgK � gKÞdV

þ
Z
B

h
IKiLðgK � gKÞðFiL � FiLÞ

þ GKðgK � gKÞðT � TÞ
þ HiKðFiK � FiKÞðT � TÞ þ EðT � TÞ2

i
dV

ð32Þ
where
IKiL ¼ � 1

T
eKiL; GL ¼ 1

T2
gKKLK � aLT
� �

HiL ¼ 1

T2
gKeKiL; E ¼ 1

T2
gLaL

ð33Þ

Applying the Schwarz inequality and the

mean arithmetic–geometric inequality

a1a2  1

2
ea21 þ

a22
e

� �
; e > 0 ð34Þ

to the last terms in (32), we obtain
2

Z
B

ZdV  e1 þ e2 � 2lð Þ ðg� �gÞð�; tÞk k2L2ðBÞ

þ M2
1

e1
þM2

4 þ 1

� �
T � TÞð�; tÞ�� ��2

L2ðBÞ

þ M2
2

e2
þM2

3

� �
ðF� FÞð�; tÞ�� ��2

L2ðBÞ

ð35Þ

where e1, e2 are arbitrary positive constants and

M1 ¼ max jGj; M2 ¼ max jIj
M3 ¼ max jHj; M2

4 ¼ 2max jEj; on B� ½0; t0Þ
ð36Þ

Now, choosing the arbitrary constants e1 and

e2 so that
e1 þ e2 � 2l  0 ð37Þ

from (35), it follows the inequality (30) with

m1 ¼ 1

2
max

M2
1

e1
þM2

4 þ 1;
M2

2

e2
þM2

3

� �
ð38Þ

The proof is complete.
Stability of Smooth Admissible States

Definition 2. A smooth admissible state

U ¼ xi; T
� 	

resides in the convexity region of
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internal energy if [6] the following two conditions

are satisfied:
(i) For each ðX; tÞ 2 B� ½0; t0Þ, there exists

a positive constant m such that

@c
@FiKFjL

xiKxjL 	 m xiKxiK; for all xiK ð39Þ

ðiiÞ @S

@T
> 0 ð40Þ

The study on stability and uniqueness is based on

the following Gronwall-type inequality [6]:

Lemma 1. Assume that the nonnegative func-

tions zðtÞ 2 L1½0; s� and gðtÞ 2 L1½0; s� satisfy
the inequality
z2ðtÞ  M2z2ð0Þþ2

Z t

0

ðaþ 2btÞz2ðtÞ

þNgðtÞzðtÞ�dt t 2 ½0; s�

ð41Þ

with a, b, M, and N nonnegative constants. Then

zðsÞ  Mzð0Þ þ N

Z s

0

gðtÞdt
� �

exp ssþ bs2
� �

ð42Þ

where s ¼ aþ b=a.
Now, we are ready to state the following sta-

bility result:

Theorem 3. Let U ¼ xi; T
� 	

be a smooth

admissible state on B� ½0; t0Þ corresponding to

the loading ðbi; rÞ 2 L1ðB� ½0; t0ÞÞ and residing
in the region where the internal energy is

a convex function and the elastic material is

a definite conductor of heat. Then there exist the
positive constants d1, a0, M0, and N0 with the

following property: if U ¼ xi; Tf g is any smooth
admissible state on B� ½0; t0Þ corresponding to

the loading ðbi; rÞ 2 L1ðB� ½0; t0ÞÞ, such that
r ¼ F� F
�� ��þ T � T

�� ��þ g� �gj j < d1 ð43Þ

on B� ½0; t0Þ and
vi � við Þ SKi � SKi
� �

NK ¼ 0

T � T
� �

QK � QK

� �
NK ¼ 0; on @B� ½0; t0Þ

ð44Þ

then for any s 2 ½0; t0Þ, we have
z0ðsÞ  M0z0ð0Þ þ N0

Z s

0

g0ðtÞdt
� �

expða0sÞ

ð45Þ

where
z0ðsÞ ¼ v� �v;F� F; T � T
� �ð�; sÞ�� ��

L2ðBÞ
ð46Þ

g0ðsÞ ¼ b� �b; r � �rð Þð�; sÞk kL2ðBÞ ð47Þ
Proof. From (13) and (44) we have G ¼ 0.

In view of (12), (14), (30), and Schwarz inequal-

ity, it follows that there exist the positive

constants d, n1, and n2 such that whenever (29)

holds, we have
_DðtÞ  n1y2ðtÞ þ n2g0ðtÞwðtÞ; t 2 ½0; t0Þ
ð48Þ

where yðtÞ is defined by (28) and
wðtÞ ¼ v� �v; T � T
� �ð�; tÞ�� ��

L2ðBÞ ð49Þ

Let us fix s 2 ½0; t0Þ and integrate (48) over

½0; t�, with t 2 ½0; s�. Then, we have
DðtÞ  Dð0Þ þ n1

Z t

0

z20ðtÞdtþ n2

Z t

0

g0ðtÞz0ðtÞdt

ð50Þ

Here we used the inequalities yðtÞ  z0ðtÞ and
wðtÞ  z0ðtÞ, t 2 ½0; t0Þ.
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On the other hand, in view of (5), (9), and (11),

we obtain
r0c� r0c� SKi FiK � FiK

� �þ r0S T � T
� �

¼ r0
2

@c
@FiK@FjL

FiK � FiK

� �
FjL � FjL

� �
þ 1

2

@S

@T
T � T
� �2 þ o F� F

�� ��2 þ T � T
�� ��2� 

ð51Þ

It follows from (10), (39), (40), and (51) that

there exist the positive constants d0 and n3 such

that, whenever

F� F
�� ��þ T � T

�� �� < d0 ð52Þ

we have

n3z0ðtÞ  2DðtÞ; t 2 ½0; t0Þ ð53Þ

Setting d1 ¼ minðd; d0Þ in (43), from (50) and

(53), we obtain
n3z20ðtÞ  2Dð0Þ þ 2n1

Z t

0

z20ðtÞdtþ 2n2

Z t

0

g0ðtÞz0ðtÞdt

ð54Þ

Using the estimate

Dð0Þ  n4z0ð0Þ; n4 > 0 ð55Þ

and the notations
M2
0 ¼

2n4
n3

; a0 ¼ n1
n3

; N0 ¼ n2
n3

ð56Þ

then (54) implies that

z20ðtÞ  M2
0z0ð0Þ þ 2

Z t

0

a0z20ðtÞdtþ N0g0ðtÞz0ðtÞ

 �

dt

ð57Þ

An application of the Lemma 1 completes the

proof.

A direct consequence of the above theorem is

the following uniqueness result:
Theorem 4. Let U and U be as in Theorem 3.

Assume that the corresponding body loads coin-
cide on B� ½0; t0Þ and U and U originate from

the same state, namely,

xiðX; 0Þ ¼ xiðX; 0Þ; viðX; 0Þ ¼ viðX; 0Þ
TðX; 0Þ ¼ TðX; 0Þ; X 2 B

ð58Þ

Then U and U coincide on B� ½0; t0Þ.

Remark 3. Theorem 3 describes the continuous

dependence of smooth thermodynamic processes

upon initial state and the body loads, while

Theorem 4 deals with the uniqueness of pro-

cesses. Both results are local, and they are

established under the assumption that the internal

energy is a convex function and the elastic mate-

rial behaves as a definite conductor of heat.

Similar results are obtained when the convex-

ity of internal energy is replaced by a weaker

condition expressing that U resides in the strong

ellipticity region (for more details see [3, 6]).
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Overview

A thermal stress induced by a localized temper-

ature change in the vicinity of crack tip often

causes crack to propagate. Taking advantage of

this phenomenon, brittle plates can be cleaved

without any mechanical tool but with adequate

temperature control [1, 2]. This technique is

useful in the division of thin glass plates into

parts and is called thermal stress cleaving. That

is, in the thermal stress cleaving, a crack propa-

gation is controlled by the control of tempera-

ture change in the body. Since the generated

surface by thermal stress cleaving is strong,

smooth, and not stained by coolant nor cutting

fluid, this method is expected as one of the

desired technique for dividing brittle plates. In

this entry, the fundamental background and

some numerical results of thermal stress cleav-

ing are presented.
Mechanics of Crack Growth Under
Thermal Stress Induced by Point
Heating

When an infinite plate of thickness B is heated

by a continual point heat source applied at an

origin of the coordinate system, the tempera-

ture rise Tðr; tÞ at a point of radial distance r
from the origin, after heating duration t, is

given by [3]
Tðr; tÞ ¼ Q

4pl
E1

r2

4kt

� �
ð1Þ

where Q is a magnitude of heat source per thick-

ness, l is a thermal conductivity, k is a thermal

diffusivity, and E1ðxÞ is an exponential integral

function defined as
E1ðxÞ ¼
ð1
x

e�u

u
du ð2Þ

Note that (1) expresses the mean value of

temperature rise in thickness and no heat dissipa-

tion from surfaces of plate is assumed. The asym-

metric thermal stress field corresponding to (1)

is calculated by

srðr; tÞ ¼ � aEQ
8pl

1� e�p

p
þ E1ðpÞ

� �
syðr; tÞ ¼ aEQ

8pl
1� e�p

p
� E1ðpÞ

� �
ð3Þ

in which p is a nondimensional parameter defined

by p ¼ r2=4kt. E is Young’s modulus and a is

a coefficient of linear expansion.

The thermoelastic field of (1) and (3) is plotted

in Fig. 1. Contrast to the distributions T and sr,
which do not change their sign, sy varies

from negative to positive value depending on

the parameter r2=4kt. A positive sy around the

heating point can be used for the crack extension

force. That is, if the crack exists along the radial

direction to the point of heat, the mode I singular

stress field would be produced in the vicinity

of the crack tip. In this entry, it is assumed that

the heat transfer coefficient gwhich characterizes
the heat dissipation from surfaces of plate to

atmosphere is independent of the temperature

rise. Therefore, g is constant regardless of

temperature. When line crack of length 2a exists

along the radial direction from the heating point

as illustrated in Fig. 2, the crack tip stress inten-

sity factor (SIF) is estimated by
KN
I ¼ aEQ

8pl
dffiffiffiffiffiffi
pa

p
ð1þ2a=d

1

SyðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a=dþ1�X

X�1

q
dX

ð4Þ
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for near side tip and

KF
I ¼ aEQ

8pl
dffiffiffiffiffiffi
pa

p
ð1þ2a=d

1

SyðXÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X�1
2a=dþ1�X

q
dX

ð5Þ

for far side tip, respectively. In (4) and (5), it is

assumed that the crack opening does not alter the

temperature distribution. SyðXÞ is a function

defined as
SyðXÞ ¼
ð1
X2=P

e�GX2=u 1� e�u

u2
� 2

e�u

u

� �
du

ð6Þ
where d is the distance between point of heat and

the near side crack tip, G and P are the

nondimensional parameters defined by

G ¼ gd2=4Bl and P ¼ d2=4kt, respectively. KN
I

is plotted against 4kt=d2 in Fig. 3. As seen in this
figure, the degree of heat dissipation from

the surface of plate influences significantly on

the value of resulted SIF. That is, the peak value

of KN
I decreases with increase of G.

If the magnitude of point heat source Q is suit-

able, the crack may propagate toward to a heating

point. This crack propagation then causes the

decrease of distance d. Once the distance d

decreases to some level, the crack tip SIF becomes

small and the crack would be finally arrested. In

order to hold the SIF at some material dependent

level so that the crack could grow continuously, the

heating point should be moved so as to hold an

appropriate distance d [1]. The quasi-steady stress

sy distribution along the x axis when the point heat
moves in a constant velocity v on x axis is given by
syðxÞ¼ aEQ
8pl

ð1
0

e�Gu 1�e�ðxþVuÞ2=u

ðxþVuÞ2 �2

u
e�ðxþVuÞ2u

" #
du

ð7Þ

and the SIF of a semi-infinite crack following the

point of heat with the identical velocity is

obtained from
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KI ¼
ffiffiffiffiffi
2d

p

r ð1
1

syð�xÞffiffiffiffiffiffiffiffiffiffiffi
x� 1

p dx ð8Þ

In (7), V is a nondimensional parameter

defined by V ¼ vd=4k.
sy induced by a moving heat along the x axis

exhibits the different tendency in the forward

(x > 0) and in the backward (x < 0) regions.

In the backward region, the sy ¼ 0 boundary

goes far off with increase of moving velocity as

seen in Fig. 4. In Fig. 5, the nondimensional SIF of

a semi-infinite crack which follows the moving

heat source keeping a constant distance d0 is plot-
ted against nondimensional cutting velocity

vd0=4k. It is found that if the values of v and Q

are appropriate, the thermal stress cleaving could

be continued stationary. It is also seen that there

exist the limit velocity under which the steady

crack growth is realized. This limit velocity

becomes large with increase of the degree of heat

dissipation from the surfaces of plate G. The vari-
ation of SIF can also be calculatedwhen the cutting

velocity is assumed at a constant v0. Then the SIF

is the function of distance d, as seen in Fig. 6.
Point Heat Source in a Rectangular Plate

When the plate is large enough to be regarded as an

infinite, some results shown so far would be useful

for the explanation of mechanics of thermal stress
cleaving. However, there are many situations in

which the size effect cannot be ignored.

Thermoelastic Fields in a Rectangular Plate

The transient temperature field Tðx; y; tÞ in

a rectangle with insulated boundaries heated by

an instantaneous point heat can be expressed

by series expansion as
Tðx; y; tÞ ¼ kq
abl

e�gkðt�tÞ=lB þ 2
X1
n¼1

fn

"

þ 2
X1
m¼1

gm þ 4
X1
m;n¼1

hmn

#
ð9Þ
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fn ¼ e�
np
bð Þ2þ g

Bl

� 	
kðt�tÞcos

np�
b

cos
npy
b

ð10Þ

gm ¼ e�
mp
að Þ2þ g

Bl

� 	
kðt�tÞcos

mpx
a

cos
mpx
a

ð11Þ

hmn ¼ e�
mp
að Þ2þ np

bð Þ2þ g
Bl

� 	
kðt�tÞcos

mpx
a

cos
mpx
a

� cos
np�
b

cos
npy
b

ð12Þ

In (9–12), (x; y) are the coordinates of refer-

ence point, (x; �) are the coordinates of heating
point, ðt� tÞ is the progress time after heating,

a and b are the length and width of the rectan-

gle, and q is the magnitude of an instantaneous

point heat source per thickness. The tempera-

ture field in (9) can be used as the Green func-

tion. In fact, by integrating it with respect to

heating time t and heating position (x; �), the
temperature fields due to the continual point

heat source, area heating, and line heating can

be obtained.

The thermoelastic field corresponding to the

temperature field of (9) can be obtained through

the thermoelastic displacement potential F for

plane stress. That is, the stress components are

given by [3, 4]
sx ¼ aE
@2F
@x2

� DF
� �

;

sy ¼ aE
@2F
@y2

� DF
� �

; txy ¼ aE
@2F
@x@y

ð13Þ

wherein F is the solution of

DFðx; y; tÞ ¼ Tðx; y; tÞ ð14Þ

In (13) and (14),D is the Laplacian. In general,

the stress field corresponding to the particular

solution of F in (14) does not satisfy the mechan-

ical boundary conditions. In that case, the

suitable isothermal stress field must be super-

posed onto (13) in order to fulfill the boundary

condition.

Some Numerical Results

SIF by Circular Heating

Equation (9) is integrated over the circular area

assuming that the heating density is uniform as

illustrated in Fig. 7. The SIF normalized by using

a total heating energy Q is plotted against

a normalized heating duration in Fig. 8. The SIF

increases monotonically with increase of the

heating duration and decreases with the increase

of heating radius r. Since the decrease of heating

radius leads a localized overheating that may

bring a thermal damage, the heating radius should

not be set too small. The ratio of SIF and the

temperature rise at the center of heating circle

Tc is plotted in Fig. 9. It is found that the ratio

KI=Tc increases with increase of the heating area.

This inclination is especially remarkable in the

beginning of heating.

In Fig. 10, the nondimensional SIF normalized

using Q is plotted against the crack length c=b
when the heating radius is r=b ¼ 0:25. The SIF

becomes maximum when the position of crack

tip coincides with the edge of heating circle.

When the crack length is small, say c=b < 0:15,

the SIF becomes negative for any heating dura-

tion. In order to make such small crack to grow,

the heating position x should be placed nearer to

the crack tip. The SIF is still positive when the

crack tip exists within the heating area

0:75 < c=b < 1:15.
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SIF Under Line Heating

The temperature rise shown in (9) and

corresponding stress tensors in (13) can also be

extended to the problem of line heating as seen

in Fig. 11. In Figs. 12 and 13, the SIFs normal-

ized using Q (the total heating energy) and Tc
(temperature rise at heating line) are plotted

against the heating duration. It is found from

both figures that the line heating is effective

when the length of crack is small. It is also

found from Fig. 13 that the maximum value of

KI=Tc appears when kt=b2 � 0:5 almost inde-

pendently of the crack length [5]. Figure 14

shows the variation of KI=Q as the function of

c=b. The SIF increases rapidly, while the crack

length is small and then takes almost constant
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within the range c=b 2 ½0:2; 0:5�. In this K -

constant range, the steady crack growth could

be observed.

The temperature field under line heating is

independent of the length a, but the function of

width b and heating position �. On the other

hand, the SIF strongly depends upon the aspect

ratio a=b. The effect of aspect ratio on the SIF is

shown in Fig. 15. It can be said that the more the

rectangle becomes slender (a=b ! large), the

larger the SIF becomes at the same heating

duration.
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Overview

Thermal residual stresses play the key role in the

mechanical behavior of various composite mate-

rials. The control of residual stresses in materials

allows the highest possible mechanical properties

to be achieved. This is of special importance to

ceramics-matrix composites, which are being used

in numerous crosscutting industrial applications

due to their excellent hardness, wear, corrosion

resistance, and ability to withstand high tempera-

tures. The best approach to increasing the fracture

toughness and reliability, which enables the struc-

tural application of ceramics, is through the devel-

opment of ceramic layered structures. Several

publications on ceramics show that the use of

layered materials is the most promising method

for controlling cracks by deflection, bifurcation,

microcracking, or internal stresses [1–5]. Layered

structures clearly offer a key to greater reliability

at a moderate cost, and new applications may

result as more complex structures are tailored to

specific applications [6].

One can increase the strength and apparent

fracture toughness of ceramics by creating

a layer with compressive stresses on the surface.

This way, surface cracks will be arrested, and,

therefore, higher failure stresses are achieved [7].

The variable layer composition, as well as the

system’s geometry, allows the designer to control

the magnitude of the residual stresses in such

a way that compressive stresses in the outer layers

near the surface increase strength, flaw tolerance,
fatigue strength, resistance to oxidation, and

stress corrosion cracking. The changes in com-

pressive and tensile stresses depend on the

mismatch of coefficients of thermal expansion

(CTEs), Young’s moduli, as well as on the thick-

ness ratio of layers [8, 9]. Compressive thermal

stress arises after cooling from fabrication tem-

perature if the CTE of the corresponding layer is

less than CTEs of the surrounding layers. There

have also been a number of experimental studies

on laminated ceramics attempting to maximize

the mechanical properties through control of ther-

mal stresses [10–13].
Calculation of Thermal Stresses in
a Layered Structure

The main assumptions of the calculation are:

1. The layered composite is considered as

a rectangular cross section beam loaded in

pure bending in the plane perpendicular to

the layers.

2. The material of each layer is assumed elastic,

strictly obeying Hooke’s law.

3. The plane sections remain plane.

4. Temperature gradients, edge effects, and shear

stresses are neglected.

5. The interface between two layers is suggested

to be indestructible, and two layers are bonded

rigidly (without sliding).

The cross section of the multicomponent lay-

ered beam is shown in Fig. 1. The total thickness

of the specimen of its rectangular cross section is

w, its width is b, and the total number of layers is

n. It is most appropriate to put the coordinate

origin on the free surface of the first layer. Note

that the geometry of the multilayered material is

such that the problem can be reduced to one

dimension. The thickness of the i-th layer is wi,

w ¼Pn
i¼1

wi, and the coordinate of interface

between i-th and ðiþ 1Þ-th layers is yi ¼
Pi
j¼1

wj.

Note that y0 ¼ 0 and yn ¼ w. In a case when

deformation is a function of coordinate y only, it
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follows from strain compatibility that overall

deformation must be linear for elastic material:
eðyÞ ¼ k0yþ e0 ð1Þ

where k0 is the curvature of surface when

e¼0 and e0 is the overall strain at y¼0. Note

that in general, the overall strain is the sum of

strains related to the applied bending moment

and thermal expansions. The parameters k0 and

e0 can be found from a system of linear

equations:
b
Rw
0

sðyÞdy ¼ 0

M þ b
Rw
0

ysðyÞdy ¼ 0

8>><>>: ; ð2Þ

where sðyÞ is the stress at the point with coordi-

nate y and M is the applied bending moment. In

fact, the system of linear equations (2) is the static

balance conditions for the considered cross

section.

The stress in the i-th layer can be expressed by
siðyÞ ¼ E0
iðeðyÞ � aiDTÞ

¼ E0
iðk0yþ e0 � aiDTÞ; yi�1<y<yi ð3Þ
where E0
i ¼ Ei

1�ni
; Ei and ni are the Young modu-

lus and Poisson ratio of the i-th layer, respec-

tively; aiDT is the i-th layer thermal expansion

strain; ai is the coefficient of thermal expansion

of i-th layer, DT ¼ T � Tjoin; T is the current

temperature; and Tjoin is the joining temperature

which is determined to be the temperature at

which the layers constituting the material are

rigidly joined.

For a layered structure, the system (2) can be

transformed to
b
Pn
i¼1

Ryi
yi�1

siðyÞdy¼ 0

M þ b
Pn
i¼1

Ryi
yi�1

ysiðyÞdy¼ 0

8>>><>>>: ð4Þ

Accounting for (3), the system (4) can be

written as
L0e0 þ L1k0 ¼ J0
L1e0 þ L2k0 ¼ J1 �M=b

�
ð5Þ

where
Lj ¼ 1

jþ 1

Xn
i¼1

E0
i ðyiÞjþ1 � ðyi�1Þjþ1
h i

; j ¼ 0; 1; 2

Jj ¼ 1

jþ 1

Xn
i¼1

aiDTE0
i ðyiÞjþ1 � ðyi�1Þjþ1
h i

; j ¼ 0; 1

ð6Þ

Note that Lj is only related to the elastic prop-

erties of layers and layered structure geometry.

Then it follows from (5) that

e0 ¼ L2J0 � L1J1 þ L1M=b

L0L2 � L21

k0 ¼ L0J1 � L1J0 � L0M=b

L0L2 � L21
ð7Þ

It is evident that e0 ¼ eðrÞ0 þ eðaÞ0 where
eðrÞ0 ¼ L2J0 � L1J1
L0L2 � L21

ð8Þ
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is associated with thermal expansion and thermal

stresses, and
C

eðaÞ0 ¼ L1M=b

L0L2 � L21
ð9Þ

is associated with applied bending moment. Cor-

respondingly, k0 ¼ kr þ ka, where
kr ¼
L0J1 � L1J0
L0L2 � L21

and ka ¼ � L0M=b

L0L2 � L21
ð10Þ

It is convenient to present siðyÞ as

siðyÞ ¼ sðrÞi ðyÞ þ sðaÞi ðyÞ where
sðrÞi ðyÞ ¼ E0
iðkryþ eðrÞ0 � aiDTÞ ð11Þ

is the stress related to thermal expansion of

layers and

sðaÞi ðyÞ ¼ E0
iðkayþ eðaÞ0 Þ ð12Þ

is the stress related to applied bending moment.

Note that the stresses are linear functions of y

inside each layer. The stresses have jumps at

interfaces due to the difference of elastic con-

stants and CTEs between layers. Also note that

the thermal expansion can generally result in

nonzero curvature of the layered beam even in

the case of zero-applied bending moment.

Often, only two-component layered compos-

ites with symmetric macrostructure are consid-

ered [14]. In this case, the layers consisting of

different components alternate one after another,

and the external layers consist of the same com-

ponent. The total number of layers n in such

a composite sample is odd. Often, the layer of

each component has some constant thickness,

and the layers of same component have identical

thickness. In this case, all layers of the first com-

ponent including the two external (top) layers can

be designated by index 1, and all layers of the

second component (internal) can be designated

by index 2. The number of layers designated by

index 1 is ðnþ 1Þ=2, and the number of layers

designated by index 2 is ðn� 1Þ=2.
The residual thermal stresses in the case of

a two-component material with a symmetrical

layered structure can be derived from (11):

sðrÞ1 ¼ E0
1E

0
2 f2ða2 � a1ÞDT

E0
1 f1 þ E0

2 f2
ð13Þ

and
sðrÞ2 ¼ E0
2E

0
1 f1ða1 � a2ÞDT

E0
1 f1 þ E0

2 f2
ð14Þ

where f1 ¼ ðnþ1Þw1

2w and f2 ¼ ðn�1Þw2

2w . Note that

k0¼0 in this case, and thermal stresses are not

a function of y.

The mismatch of thermal expansion coeffi-

cients between different layers inevitably gener-

ates thermal residual stresses during subsequent

cooling of layered ceramics with strong inter-

faces [15]. The relative thickness of different

layers determines the relative magnitudes of

compressive and tensile stress, while the strain

mismatch between the layers dictates the abso-

lute values of the residual stresses. The important

trends are a decreasing of tensile residual stress

and an increasing of compressive residual stress

with an increase in the thickness of layers under

tension and a decrease in the thickness of layers

under compression. In this way, a change of

a layer thickness ratio allows for control of the

residual stress level in laminates.
Designing Laminates to Enhance
Apparent Fracture Toughness

The compressive thermal stresses in the outer

layers of a layered composite shield natural and

artificial cracks. Therefore, the resistance to frac-

ture of such a structure increases. The more com-

pressive residual stress is induced, the greater

shielding occurs. In the case of layered material,

the so-called apparent fracture toughness is usu-

ally considered [14]. Such an approach does not

take into account the stress distribution near the

crack tip in layered media, but it is still a useful

characteristic allowing for the effective contribu-

tion of thermal stresses to be accounted for.
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In fracture mechanics, both thermal and applied

stresses are usually included in the crack driving

force. However, thermal stresses can be consid-

ered as a part of the crack resistance. Therefore,

in layered composites, the higher resistance to

failure results from a reduction of crack driving

force rather than from an increase in intrinsic

material resistance to crack extension [16].

The calculation of thermal stresses is a powerful

tool of laminate design because it enables

predicting its mechanical behavior. The design of

a layered structure is one way to control thermal

stresses. Compositions of the layers should be

selected depending on the intended application of

the composite. Then, the relevantmaterial constants

entering the design are determined. The constants

for design are the coefficient of thermal expansion,

Young’smodulus, Poisson’s ratio, the density of the

corresponding constituents, and the joining temper-

ature. Effective coefficients of thermal expansion,

effective Young’s modulus, average density, and

the thickness ratio of layers are determined using

the rule ofmixtures. An important step in the design

is the selection of the number of layers. Really, this

can be any appropriate number depending on the

total thickness of the specimen. Usually, the

thickness of the thinnest possible layer is limited

by the manufacturing technology. Note that

a compressive layer should be thin enough

to reach a high level of thermal stress. Another

important requirement is the determination of thick-

ness of layers with higher CTE where tensile stress

arises. Any appropriate thickness can be used as

a first approximation. After this, the calculation of

thermal stresses is done using (11) or (13) and (14).

The total thickness of the specimen is determined

for selected layer thicknesses. The layer thickness is

changed after analysis of the thermal stress and the

total thickness of the specimen. Other conditions

being equal, increasing the tensile layer thickness

decreases tensile thermal stress. However, it can

result in increasing total thickness of specimen.

After changing the thicknesses, calculation is

repeated. Such iterations are continued to find opti-

mal layer thicknesses that produce the maximum

possible compressive thermal stress, low tensile

thermal stress, and required total thickness of the

specimen. A design algorithm is presented in Fig. 2.
Themaximumpossible apparent fracture toughness

of the corresponding layered structure is also deter-

mined in all iterations as an indicative parameter of

the design [14]. The determination of the apparent

fracture toughness uses the compressive thermal

stress and the thickness of an outer layer as

a crack length at any given iteration. These two

parameters (the compressive thermal stress and

the thickness of the outer layer) have trends acting

in opposite directions. A decrease in the outer layer

thickness can increase the thermal stress in the

layer, but it also decreases the maximum length of

the crack. To obtain the highest resistance to failure,

the tensile layer should be made as stiff as possible

(i.e., high elastic modulus), whereas the compres-

sive layers should be as compliant as feasible (i.e.,

low elastic modulus) [13].
Examples of Control of Thermal Residual
Stresses in Laminates

Silicon-Nitride-Based Laminates

The structures investigated were a combination

of alternative Si3N4 layers and (1) Si3N4-20wt%
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TiN layers, (2) Si3N4-30wt%TiN layers, and

(3) Si3N4-50wt%TiN layers [12, 17–19]. While

the strength of Si3N4/Si3N4-20 wt% TiN lami-

nates are approximately on the same level as the

Si3N4 specimens, further increase of the TiN con-

tent to 50 wt% results in a significant decrease in

both strength and Young’s modulus.

The Si3N4/Si3N4-20 wt% TiN laminates

showed an increase in apparent fracture tough-

ness. This increase can be explained by the intro-

duction of residual bulk compressive stresses in

Si3N4 layers. There was an increase in apparent

fracture toughness (8.5�0.01 MPa m1/2) for the

laminates with 20 wt% TiN. The reason for this is

a significant residual compressive stress in the

Si3N4 layers and, at the same time, a decrease of

the residual tensile stress in the Si3N4-20 wt%

TiN layers.

For the Si3N4/Si3N4-30 wt% TiN laminate

with an Si3N4 top compressed layer, the apparent

fracture toughness increases up to 17 MPa m1/2.

The failure of all samples occurred at 351 �
13 MPa. The toughness decreases from 17 to

5 MPa m1/2, if the crack tip is located in the

second Si3N4-30 wt% TiN layer with a residual
tensile stress. The next increase from 5 to

14 MPa m1/2 occurs if the crack tip is located in

the third Si3N4 layer with a residual compressive

stress.

All surface cracks of sufficient length will

cause failure at the same stress because these

will grow in non-catastrophic regime up to some

threshold stress due to an increase of apparent

fracture toughness in the layer with compressive

stress. At the same time, if the residual compres-

sive stress in the top layer is not high enough, the

small cracks can cause catastrophic failure once

they start to grow. Therefore, obtaining a high

residual compressive stress in the first layer is an

effective way of providing high toughness at

small crack lengths, thereby ensuring improved

flaw tolerance and surface damage resistance.

An increase of TiN content to 50 wt%

resulted in a significant increase in the residual

tensile stress of the laminates. The tensile stress

became higher than the tensile strength of the

material, resulting in much cracking and

a decrease in all mechanical properties. Fracture

surface of Si3N4/Si3N4-50%wt%TiN composite

is shown in Fig. 3.
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Boron-Carbide-Based Laminates

A symmetric three-layered B4C/B4C-30wt%SiC

laminate was investigated [20]. The layers with

residual tensile and compressive stresses are the

B4C and B4C-30wt%SiC layers, respectively.

The outer layers have residual compressive

stress. The laminates were designed in such

a way that the tensile stresses were maintained

at low values. The apparent fracture toughness

was 7.42 � 0.82 MPa m1/2 [21], which is still

a very high value for brittle boron-carbide-based

composites.

The research [22] represents the first step in

boron-carbide-based laminate development and

should provide higher performance. The control

of thermal residual stresses was used to develop

optimal design parameters. As a result, laminates

with high compressive residual stresses (up to

650 MPa) and low tensile residual stresses

(below 150MPa) were developed. The feasibility

of manufacturing laminate composite systems

with enhanced toughness through the incorpora-

tion of thin layers with high compressive stresses

in the ceramics was demonstrated.
Possible Effect of Uncontrolled Thermal
Stresses

A laminate with outer B4C-30wt%SiC layers

having a thickness of 1,650 mm and the thick

B4C layer having a thickness of 9,000 mm was

fabricated [22]. For such a design, the level of

residual tensile stress was raised to 210 MPa after

cooling from 2,200 �C. Such high residual tensile
stress led to a complete fracture of the tile during

decompression of the graphite die to separate the

tile after hot pressing (Fig. 4). The failure appar-

ently started from the tile edges with cracks prop-

agating further into the tile body.

This example shows the importance of control

of thermal residual stress in layers. However, the

tensile strength of layers usually exhibits an essen-

tial scattering. One of the problems is that the

mechanical properties of an individual layer of

laminate can significantly deviate from the ones

of a corresponding bulk material. The critical ten-

sile stress can be easily calculated if the intrinsic
fracture toughness and the size of the critical flaw

inside the layer are determined. However, the crit-

ical defect in the layer cannot usually be identified.

There is a possibility of determining the stress for

crack tunneling in the tensile layer [23]. Such

stress depends only on the intrinsic fracture tough-

ness and the layer thickness and is in fact the

threshold stress for tensile layer cracking. Another

way is to use an empirical value of tensile strength.

Such an approach, in fact, is also rather successful

in eliminating cracking in laminates.
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Synonyms

Amorphous polymers; Biopolymers; Bitumen

materials; Metals at very high temperatures;

Plexiglas; Semicrystalline polymers
Definition

In the theory of linear elasticity, the response

behavior can be described by Hooke’s law, that

is, if the deformations are small, the stress is

proportional to the strain and is independent of

the strain rate. When the load is removed, the

material returns to its undeformed state. On the

other hand, the viscous fluid is described by

Newton’s law, that is, the stress is proportional

to the strain rate, provided it is small [1].
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Viscoelastic material exhibits both viscous

and elastic characteristics and do not conserve

energy. The theory of linear viscoelasticity is

a generalization to the classical theories of linear

elasticity and hydromechanics of viscous fluid.

The simple viscoelastic solid has the following
properties:

1. Stress relaxation when constant strain causes

decreasing stress (Maxwell element

represented by a spring and a dashpot in series

Fig. 1). Then, _e ¼ ð _s=2mÞ þ ðs=2�Þ, where

� – the coefficient of viscosity, m – the shear

modulus. Assuming eðtÞ ¼ eð0Þ ¼ const:,

sð0Þ ¼ s0:, and integrating the preceding

equation, we get ðsðtÞ=s0Þ ¼ expð�t=tÞ,
where t ¼ �=m is the stress relaxation time.

2. Creep [2] which results when the body

undergoes continuous deformation under

constant load or stress and the strain tends to

limiting value as t ! 1, (Kelvin–Voigt

element represented by a spring and a dashpot

in parallel Fig. 2). Then, s ¼ 2meþ 2�_e.
Assuming eð0Þ ¼ 0, sðtÞ ¼ s0 ¼ const:, and

integrating the preceding equation, we get

ð2meðtÞ=s0Þ ¼ ½1� expð�t=lrÞ�, where

lr ¼ �=m in case of creep is called the retarda-

tion time.
Overview

Boltzmann [3] in 1874 apparently supplied the first

formulation of a three-dimensional theory of
isotropic viscoelasticity, while Volterra [4]

obtained comparable forms for anisotropic solids

in 1909. The mechanical model representation of

linear viscoelastic behavior was investigated by

many authors [5]. Notable works in these fields

include those of Gurtin and Sternberg [6] and Stern-

berg [7].

The linear viscoelasticity remains an important

area of research not only due to the advent and use

of polymers but also because most solids when

subjected to dynamic loading exhibit viscous

effects. The stress–strain law for many materials

such as polycrystalline metals and high polymers

can be approximated by the linear viscoelasticity

theory. Recently, thermoviscoelasticity has an

increasing role in modeling soft tissues and bones.
Governing Equations of the Linear
Coupled Thermoviscoelasticity

We assume a linear thermoviscoelastic material

occupies a regular region V with a piecewise

smooth boundary surface @V in the three-

dimensional Euclidean space. All the functions

are considered to be functions of position

x ¼ ðx1, x2, x3Þ and time t. A superposed dot

denotes differentiation with respect to time, and

the comma followed by a subscript denotes par-

tial differentiation with respect to the space vari-

ables xi. The summation notation is used.
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The equation of motion is
sji;j þ rbi ¼ r€ui ð1Þ

The kinematical relations are
C

eij ¼ 1

2
ðui;j þ uj;iÞ ð2Þ

The energy equation is

T0 _S ¼ Q� qi;i ð3Þ

and the heat conduction law for the coupled

thermoviscoelasticity is the classical Fourier

law [5]
q
i
¼ �kijy;j ð4Þ

where ui; eij; sij; y; S; qi; bi; r; kij, and Q are

respectively the displacement vector, strain

tensor, stress tensor, temperature deviation from

a reference temperature T0, entropy per unit

volume, heat flux vector, mass force, density,

thermal conductivity tensor, and the intensity of

applied heat source per unit volume.

The initial conditions on �V ¼ V [ @V are
uiðx; 0Þ ¼ u0i ðxÞ _uiðx; 0Þ ¼ v0i ðxÞ
yðx; 0Þ ¼ y0ðxÞ _yðx; 0Þ ¼ #0ðxÞ

ð5Þ

where the functions u0i ; v
0
i ; y0, and #0 are

prescribed functions of x on �V.
The boundary conditions on @V � ½0;1Þ are
uiðx; tÞ ¼ ûi on @Vu and

sjinj ¼ f̂iðx; tÞ on @Vs

ð6Þ

yðx; tÞ ¼ ŷ on @Vy and

qini ¼ q̂ðx; tÞ on @Vq
ð7Þ

where @V ¼ @Vs [ @Vu ¼ @Vq [ @Vy and

Ø ¼ @Vu \ @Vs ¼ @Vy \ @Vq and ni ¼ niðx@VÞ.
The functions ûi andŷ are prescribed functions of
ðx@V ; tÞ on @Vw � ½0;1Þ, where (w ¼ u and y).
The functions f̂i and q̂ are prescribed functions of
ðx@V ; tÞ on @Vwc � ½0;1Þ, where wc ¼ s and q.

The constitutive laws are
sijðx; tÞ ¼ ðGijkl � _eÞ � ðgij � _yÞ ð8Þ

Sðx; tÞ ¼ ðb � _yÞ þ ðgij � _eijÞ ð9Þ

where

ð f � gÞ ¼
ðt
0

f ðx; t� tÞgðx; tÞ dt

Comparing with the corresponding elasticity

tensors CijklðxÞ; gijðxÞ, and bðxÞ which are

independent of time, the relaxation

tensors Gijklðx; tÞ; gijðx; tÞ; and bðx; tÞ are time-

dependent and highly temperature sensitive

fourth order, second order, and zero order

tensors [8].
Basic Assumptions (Thermoviscoelastic
State)

The ordered array of field histories fui; y; eij; sijg
belongs to the class of thermoviscoelastic state on

V � ð�1;1Þ corresponding [7] to the data

Gijkl; gij; b if (a) Gijkl; gij, and b vanish on

�V � ð�1; 0Þ, are twice continuously differentia-
ble functions of x and t on �V � ½0;1Þ; (b) the
symmetry relations Gijkl ¼ Gklij ¼ Gjikl ¼ Gijlk,

gij ¼ gji, hold on V � ½0;1Þ and kijð�xÞ ¼ kjið�xÞ
on V; (c) ui; y; eij; sij vanish on �V � ð�1; 0Þ, y,
eij being once – and ui twice continuously differ-

entiable functions of x and t on V � ½0;1Þ; (d)
(1)–(9) hold on V � ½0;1Þ; and (e) the equilib-

rium elastic moduli Gijklð1Þ, gijð1Þ, and bð1Þ
exist [9].

From (3), (4), and (9), the heat transport equa-

tion results in the form
T�1
0 ðki;jy; jðtÞÞ;i ¼

@

@t
½ðb � _yÞ þ ðgij � _eijÞ�

� T�1
0 QðtÞ ð10Þ
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For convenience, we suppressed the

argument x

The isotropic forms of the constitutive laws

(8), (9), and (10) can be obtained by setting

kij ¼ kdij, gijðtÞ ¼ gðtÞdij, and
GijklðtÞ ¼ 1

3
ðG2ðtÞ � G1ðtÞÞdijdkl

þ 1

2
G1ðtÞðdikdjl þ dildjkÞ ð11Þ

whereG1ðtÞ andG2ðtÞ are two independent relax-
ation functions and dij is the Kronecker’s delta.

We introduce the deviatoric components of strain

and stress tensors
eij ¼ eij � ekk
3
dij; sij ¼ sij � skk

3
dij ð12Þ

Then, (8), (9), (11), and (12) lead to
sijðtÞ ¼ ðG1 � _eijÞ;
skkðtÞ ¼ ðG2 � _ekkÞ � 3ðg � _yÞ ð13Þ

where G1ð0Þ ¼ 2m; G2ð0Þ ¼ 3lþ 2m ¼ 3K;

gð0Þ ¼ g0 ¼ 3KaT , l; m,K, and aT are Lame con-

stants, bulk modulus, and coefficient of linear

thermal expansion. Gnð0Þ and ðn ¼ 1; 2Þ are the

instantaneous elastic moduli.

The heat transport (10) for isotropic solids

takes the form
T�1
0 ðky;iðtÞÞ;i ¼

@

@t
½ðb � _yÞ þ ðg � _ekkÞ�

� T�1
0 QðtÞ ð14Þ

For an isotropic solid, the creep laws are
eijðtÞ ¼ ðJ1 � _sijÞ;
ekk ¼ ðJ2 � _skkÞ þ 3ðaT � _yÞ

ð15Þ

where Jn are two independent compliance

functions, aT the coefficient of linear thermal

expansion, and Jn ¼ G�1
n ;

@Jn
@t

> 0;
@Gn

@t
< 0:
The Generalized Thermoviscoelasticity
Theories

(A) Lord–Shulman Thermoviscoelasticity

Theory

Equations (1)–(3) and (5)–(9) remain the same.

Equation (4) is replaced by the Maxwell–

Cattaneo law [10]
qi þ t0 _qi ¼ �kijy;j ð16Þ

where t0 > 0 is the relaxation time. Using (9), (11),

(13), and (16), we obtain the heat transport equation

for the Lord–Shulman generalized thermoviscoe-

lasticity (with one relaxation time [11])

T�1
0 ðkijy; jðtÞÞ;i ¼

�
@

@t
þ t0

@2

@t2

�
½b � _yÞ þ ðgij � _eijÞ�

� T�1
0

�
Qþ t0

@Q

@t

�
ð17Þ

For an isotropic solid, we get
T�1
0 ðky;iðtÞÞ;i ¼

�
@

@t
þ t0

@2

@t2

�
½b� _yÞþðg� _ekk Þ�

�T�1
0

�
Qþ t0

@Q

@t

�
ð18Þ

(B) Green–Lindsay Thermoviscoelasticity

Theory

The second generalization to the coupled theory of

elasticity is the theory of thermoelasticity with two

relaxation times or the theory of temperature-rate-

dependent thermoelasticity [12]. This theory con-

tains two constants that act as relaxation times and

modify all the equations of the coupled theory, not

only the heat equation [13]. Therefore, (8), (9), and

(4) in this theory take the form

sijðtÞ ¼ ðGijkl � _eklÞ � ðgij � ð_y � n€yÞÞ ð19Þ

SðtÞ ¼ ðb � ð_yþ t1€yÞÞ þ ðgij � _eijÞ � aiy;i

q
i
ðtÞ ¼ �ðkijy;j þ T0ai _yÞ
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where ai are components of a constant vector

such that ai ¼ 0 if the medium under consider-

ation has a center of symmetry; t1 and n are two
relaxation times 0 < t1  n.

The heat transport equation takes the form

T�1
0 ðkijy;jÞi þ 2ai _y;i ¼ @

@t
½ðb � ð_yþ t1€yÞÞ

þ ðgij � _eijÞ� � T�1
0 Q ð20Þ

For an isotropic solid, we get

sij ¼ ðG1 � _eijÞ;
skk ¼ ðG2 � _ekkÞ � 3ðg � ð_yþ n€yÞÞ

ð21Þ

T�1
0 ðky;iÞi ¼

@

@t
½ðb � ð_yþ t1€yÞÞ þ ðg � _ekkÞ�

� T�1
0 Q

ð22Þ

(C) The Dual-Phase-Lag Thermoviscoelasticity

In this model, the Fourier law is replaced by

the equation [14]�
1þ tq

@

@t
þ 1

2
t2q

@2

@t2

�
qi ¼ �kij

�
1þ ty

@

@t

�
y; j

ð23Þ

where ty and tq are the phase lags of the temper-

ature gradient and of the heat flux. Equations (8),

(9), and (13) remain the same. Introducing the

notation Of ¼ ðtq @
@t þ 1

2
t2q

@2

@t2Þ f , the heat trans-

port equation takes the form

T�1
0

�
kij

�
1þ ty

@

@t

�
y;j

�
;i

¼ ð1þ OÞ
�
@

@t
ðb � _yÞ

þ @

@t
ðgij � _eijÞ � T�1

0 Q

�
ð24Þ

For an isotropic solid, we obtain
T�1
0

�
k

�
1þ ty

@

@t

�
y;i

�
;i

¼ ð1þ OÞ
�
@

@t
ðb � _yÞ

þ @

@t
ðg � _ekkÞ � T�1

0 Q

�
ð25Þ
Example: Generalized Thermoviscoelasticity

in a Semi-space. We consider a semi-space

homogeneous viscoelastic medium occupying

the region x 	 0 with quiescent initial state.

A thermal shock is applied to the boundary

plane x ¼ 0, which is assumed traction-free.

Then, the boundary condition is
yð0; tÞ ¼ y0 HðtÞ; sxxð0; tÞ ¼ 0 ð26Þ

where y0 is constant and HðtÞ is the Heaviside

unit step function.

Since the solution is unbounded at infinity, the

initial conditions should be so adjusted that the

infinite terms are eliminated. The relaxation

functions for the homogeneous solid depend

only upon time and may be taken in the form

G1ðtÞ ¼ 2mð1� A1

ðt
0

f ðtÞdtÞ ¼ 2mRmðtÞ;

G2ðtÞ ¼ 3Kð1� A2

ðt
0

f ðtÞdtÞ ¼ 3KRKðtÞ

gðtÞ ¼ G2ðtÞaT ; bðtÞ ¼ bð0Þð1� A3

ðt
0

f ðtÞdtÞ

¼ b0RbðtÞ; b0 ¼ bð0Þ ¼ rCE=T0

ð27Þ

where f ðtÞ ¼ tz�1e�b�t; A;A0; b
�; z are empiri-

cal constants [15], CE is the specific heat at

constant strain, and 0 < A3  A2  A1 <
ðb�Þz
GðzÞ

b� > 0; 0 < z < 1.

For the one-dimensional problems, all the

considered functions will depend only on the

space variable x and the time t. The displacement

vector has components ðu ðx; tÞ; 0; 0Þ.
Then, considering A1 ¼ A2 ¼ A3 ¼ A, we get

RxðtÞ ¼ RðtÞ; x ¼ m;K; b. Equations (13)

and (17), in absence of heat source, take the form
sxx ¼ ðlþ 2mÞðR � _eÞ � 3KaTðR � _yÞ; T�1
0 k

@2y
@x2

¼
�

@

@t
þ t0

@2

@t2

�
½b0ðR � _yÞ þ g0ðR � _eÞ�;
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where e ¼ @u
@x . Introducing the following non-

dimensional variables
x0 ¼ C0 � x; t0 ¼ C2
0 � t; s

0
ij ¼ sij=ðlþ 2mÞ;

y0 ¼ yg0=rC
2
0;

where C2
0 ¼ ðlþ 2mÞ=r, � ¼ rCE=k, we get

suppressing primes
sxx ¼ ðR � ð _e� _yÞÞ; @2y
@x2

¼
�

@

@t
þ t0

@2

@t2

�
ðR � ð _yþ e _eÞÞ; @sxx

@x
¼ @2u

@t2
; e ¼ T0g20

k�rC2
0

Performing Laplace transform defined by

Lff ðtÞg ¼ �f ðsÞ ¼ Ð1
0

e�stf ðtÞdt, we get
sxx ¼ sR

�
@u

@x
� y
�
;

@2y
@x2

¼ s2ð1þ t0sÞ

R

�
yþ e

@u

@x

�
; s2u ¼ @sxx

@x
;

sR ¼ 1� AGðzÞ
ðsþ b�Þz

Choosing as state variables the temperature

deviation y, the displacement component u and

their gradients, applying the state space approach

[16], we obtain the solution in Laplace transform

domain:
yðx; sÞ ¼ 1

s ðk21 � k22Þ
��

k21 �
s

R

�
e�k1x

�
�
k22 �

s

R

�
e�k2x

� ð28Þ

uðx; sÞ ¼ � 1

s ðk21 � k22Þ
½k1 e�k1x

� k2 e
�k2x� ð29Þ

sxxðx; sÞ ¼ s

ðk21 � k22Þ
½e�k1x � e�k2x� ð30Þ

where k1 and k2 are the roots of the characteristic
equation
k4 �
�
s

R
þ ð1þeÞ s2Ro

�
k2 þ s3 o ¼ 0;o ¼ 1þ t0s

In order to invert the Laplace transform in the

above equations, we adopt a numerical inversion

method based on a Fourier series expansion [17].

The calculations are carried out for a copper-like

material, and the constants are e ¼ 0:0168.

z ¼ 0:5; b� ¼ 0:05; A ¼ 0:106. For Lord–

Shulman theory, t0 ¼ 0:02, and for the coupled

theory, t0 ¼ 0. Results are illustrated graphically

in Figs. 3, 4, and 5.

Figures 4 and 5 show that the viscoelastic effect

is to decrease the magnitude of stress component

with increase of the temperature deviations.

Figure 5 demonstrates clearly the difference

between the coupled and the generalized theory
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of thermoviscoelasticity with one relaxation

time. In the first and older theory, the waves

propagate with infinite speeds, so the value the

stress component is not identically zero (though it

may be very small) for any large value of x. In the

generalized theory, the response to the thermal

and mechanical effects does not reach infinity

instantaneously but remains in a bounded region

of space.
Cross-References

▶Creep Analysis

▶Dual Phase-Lag Thermoelasticity

▶Generalized Theory of Thermoelasticity with

One Relaxation Time

▶Laplace Transform
▶ State-Space Approach to Generalized

Thermoelasticity

▶Wave Propagation in Coupled and Generalized

Thermoelastic Media
Appendix

Kelvin–Voigt Model

sijðtÞ ¼ 2meijðtÞ þ 2� _eijðtÞ; s ¼ skk
3

¼ K

�
1þ lr

@

@t

��
e� 3aTy

� ð31Þ

Equations (31) lead to the equation

sij ¼
�
1þ lr

@

@t

��
ledij þ 2meij � 3KaTy

�
ð32Þ
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The heat transport equation is

T�1
0 ðky;iÞ;i ¼ bð0Þ _yþ gð0Þ _ekk � T�1

0 Q ð33Þ

Maxwell Model
_eij ðtÞ ¼ 1

2m
_sijðtÞ þ 1

2�
sijðtÞ;

_e ¼ _ekk ¼ 1

K

�
_sþ s

t

�
þ 3aT

�
_yþ y

t

�
t ¼ �=m

ð34Þ

Equation (34) lead to
_eij ¼ 1þ n
E

ð _sij þ sij
t
Þ � n

E
ð _skk þ skk

t
Þdij

þ aTð_yþ y
t
Þdij ð35Þ

where E and n are modulus of elasticity and

Poisson’s ratio.

The heat transport equation in this case is the

same (33).

Replacing y by ŷ ¼ yþ t0 _y in (31–35), we

get the corresponding equations for the general-

ized Kelvin–Voigt and Maxwell models with one

relaxation time.
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Overview

In linear classical elastodynamics, the mixed

initial-boundary value problem may be reduced

to solving one tensorial stress equationwith certain

initial-boundary conditions expressed in stresses

http://dx.doi.org/10.1007/978-94-007-2739-7_503
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by Hetnarski and Ignaczak [1, pp. 212–218],

Gurtin [2, p. 212], and Eringen [3]. Ignaczak [4]

proved that solving the stress initial-boundary

value problem (SIBVP) in linear micropolar iso-

thermal elastodynamics is equivalent to solving

the system of two coupled tensor stress equations

with appropriately formulated initial-boundary

conditions in terms of stresses. Closely related to

the subject are the pure stress field equations

presented by Ieşan [5] and Olesiak [6]. In this

entry stress-temperature initial-boundary value

problems (STIBVP) of Ignaczak type for the

coupled dynamical thermoelasticity for the

Eringen–Nowacki (E–N) model of a micropolar

body with six degrees of freedom (three-

dimensional (3D) and two-dimensional (2D)

problems) will be presented. The foundations of

the linear theory of the general Cosserat contin-

uum can be found in the following monographs:

Eringen [7], Nowacki [8], Kupradze, Gegelia,

Basheleishvili and Burchuladze [9], Kunin [10],

Rubin [11], Ieşan [12], and Ostoja-Starzewski

[13]. In the newest survey article of Altenbach

et al. [14], a few hundreds of papers are listed,

and in the introduction, the authors gave an exten-

sive and detailed historical description of the

development of scientific theories of Cosserat

type. In this entry, we collect some basic relations

and equations for the linear coupled dynamical

thermoelasticity (the E–N model) on the basis

of the monograph [8] (see also ▶Dynamic

Micropolar Thermoelasticity).

Notations

The right-hand orthogonal Cartesian coordinate

system Ox1x2x3, the Cartesian tensor index nota-

tion is used, and the extended summation conven-

tion is applied – small Latin indices i, j, and k
assume the values 1, 2, and 3, Greek indices a, b,
and g assume the values 1 and 2. The partial deriv-

atives with respect to the position variables are

denoted by an apostrophe, and the derivative with

respect to the time t is denoted by a superscribed

dot: _f 
 @f=@t. Symbol Eijk denotes the Levi-

Civitá tensor, dij is the Kronecker symbol, R
denotes the set of real numbers, R3 is the three-

dimensional Euclidean space, xi 
 ðx1; x2; x3Þ are
points in R3, O is a region in R3 with piecewise

smooth boundary @O, and nj are the components of

the unit outward normal vector to @O. Further, the
closed region O is the union of the sets O and @O
(O ¼ O [ @O); the time intervals are denoted

as follows: T ¼ ½0;1Þ ¼ ft 2 R : t 	 0g,
Tþ ¼ ð0;1Þ ¼ ft 2 R : t > 0g, and symbol

O� T denotes the Cartesian product of the sets O
andT. A function f belongs to the classCn in the set

O ( f 2 CnðOÞ) if f and all its partial derivatives

up through the n-th order are continuous in

the set O (n ¼ 0, 1, 2, . . .). The fact that the

function f is defined in the set O� T will

be denoted as follows: f : O� T ! R. The

parameters ðm; l; a; b; g; e; r; J; k; �0; nTÞ 2 R
are thermo-elastodynamical constants in the E–N

model. For the plain strain state (causes and effects

do not depend on the variable x3), the above nota-
tion should be adapted to the Cartesian coordinate

system Ox1x2. Throughout the entry, the numbers

of equations and formulae are sometimes furnished

with natural indices, which indicate which equation

or formula from a given group is selected. Thus, for

instance, (7)3,4 denotes the third and the fourth

formulae from the group (7).
Basic Equations of the E–N Model: The
3D Problem

The linear E–N model of the micropolar body is

subject to certain restrictions. The micropolar

body is elastic, homogeneous, isotropic, and

centrosymmetric. Considerations are referred to

the medium Oðm; l; a; b; g; e; r; J; k; �0; nTÞ
described by the set of thermo-elastodynamic

real-valued parameters given in the parentheses.

The initial configuration of the medium is the

region O. All the physical fields defining the

thermo-elastodynamical states of the medium

are real-valued functions of the position variables

xi and the time variable t. The basic equations of

the E–N model can be divided into the following

groups:

• The equations of motion in O� Tþ [8, p. 11]

sji; j þ Xi ¼ r €ui; Eijk sjk þ mji;j þ Yi ¼ J €’i ð1Þ

http://dx.doi.org/10.1007/978-94-007-2739-7_930
http://dx.doi.org/10.1007/978-94-007-2739-7_930
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where sji and mji 2 C1ðO� TþÞ are 3� 3

matrices with physical components of the

asymmetric force-stress tensor and the

asymmetric couple-stress tensor; Xi and

Yi 2 C0ðO� TÞ are the fields of body loadings
and body moments, respectively; ui and

’i 2 C2ðO� TþÞ are components of the dis-

placement and the rotation vectors, respec-

tively; r is the density; and J is the rotational

inertia of the medium.

• The equations of compatibility in O� T

[8, p. 21]

gli;h � ghi;l � Ekhi klk þ Ekli khk ¼ 0; kli;h � khi;l ¼ 0

ð2Þ

where gji and kji 2 C1ðO� TÞ are the 3� 3

matrices with physical components of the

asymmetric strain tensor and the asymmetric

micro-strain (torsion-flexure) tensor.

The tensors gji and kji are defined by [8,

pp. 12, 14]:

• The geometric relations in O� Tþ
gji ¼ ui;j � Ekji ’k; kji ¼ ’i;j ð3Þ

• The constitutive relations in O� T

sji ¼ ðmþ aÞgji þ ðm� aÞgij þ ðlgkk � nTyÞdij
mji ¼ ðgþ eÞkji þ ðg� eÞkij þ bkkkdij

ð4Þ

where m, l, a, b, g, and e are the elasticity

constants of the medium; nT ¼ ð2mþ 3lÞat;
and at is the linear coefficient of thermal

expansion of the medium.

The function y ¼ T � T0 describes the

temperature field, and it satisfies [8, p. 203]:

• The coupled heat equation in O� Tþ
y;ii � 1

k
_y� �0 _uj;j ¼ �Q

k
ð5Þ

where
Q ¼ kW
l0

; k ¼ l0
ce

; �0 ¼
nTT0
l0

y 2 C2ðO� TþÞ
Q stands for the heat sources in the body,W is

the amount of heat generated in a unit volume

and unit time, l0 represents the heat conduc-

tion coefficient, T0 means the natural state

temperature, and ce denotes the specific heat

for constant deformation.

• The initial-boundary conditions:

– The boundary conditions on @O� T

sjinj ¼ pi; mjinj ¼ mi; y ¼ # ð6Þ
where the functions pi, mi, and # : @O�
T ! R are given.

– The initial conditions in O� f0g
ui ¼ hi; ’i ¼ ki; y ¼ l
_ui ¼ ci; _’i ¼ wi

ð7Þ

where the functions hi, ki, l, ci, and

wi : O ! R are given.

Definition 1. By stress and temperature fields

corresponding to the solution of the problem given

by (1)–(7), we understand the triple ðs;m; yÞ with
such properties that there exists a quadruple

ðu;w;g;kÞ, such that the system of functions

ðu;w;g;k;s;m; yÞ is a solution of (1)–(7), where
u;w;g;k;s;m are the vectors of displacements,

rotations and the tensors of strain, micro-strain,

force-stress, couple-stress, respectively.
Let us assume that we know the triple

ðs;m; yÞ and the pair ðg;kÞ. Then the pair

ðu;wÞ can be obtained from the pair ðg;kÞ by

integrating the geometric relations (3)

with respect to the position coordinates xi,

and arbitrary integration functions Aijðxk; tÞ;
Bijðxk; tÞ ðj 6¼ kÞ can be determined by using

the compatibility equations (2). In section

“Stress-Temperature Equations of Motion for

the 3D Problem,” we offer an alternative method

of recovering ðu;wÞ from ðg;kÞ.
Stress–Temperature Equations of
Motion for the 3D Problem

Let us turn to the derivation of the stress-temper-

ature equations of motion of Ignaczak type
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(STEMP). Using the geometric relations (3), we

obtain from the equations of motion (1) the

following equations in O� Tþ:

r�1Ri;j � J�1 Ekji Mk ¼ €gji; J�1Mi;j ¼ €kji ð8Þ

where Ri ¼ sji;j þ Xi,Mi ¼ Eijk sjk þ mji;j. In view
of equations (3), the coupled heat equation (5)

takes the form in O� Tþ
y;ii � 1

k
_y� �0 _gkk ¼ �Q

k
ð9Þ

The constitutive relations (4), when solved

for strains, take the following equivalent form

in O� T:

gji ¼
1

2m
sð jiÞ þ 1

2a
s½ ji� � 1

2m
ðle� nTyÞdij

kji ¼ 1

2g
mð jiÞ þ

1

2e
m½ ji� �

b
2gð2gþ 3bÞ mkkdij

ð10Þ

where e ¼ 1
2mþ3l ðskk þ 3nTyÞ and the parentheses

ð : Þ and brackets ½ : � denote the symmetric part

and the antisymmetric part of a tensor, respec-

tively. By using relations (10), we reduce equa-

tions (8) and (9) to the form in O� Tþ:
r�1Ri;j þ J�1 Eijk Mk � 1

2m
€sðjiÞ � 1

2a
€s½ ji�

þ 1

2m
ðl€e� nT€yÞdij ¼ 0

J�1Mi;j � 1

2g
€mðjiÞ �

1

2e
€m½ji� þ

b
2gð2gþ 3bÞ €mkk dij ¼ 0

y;ii � 1

k
_y� �0 _e ¼ �Q

k

ð11Þ

where
_e ¼ 1

2mþ 3l
ð _skk þ3nT _yÞ; €e ¼ 1

2mþ 3l
ð€skk þ3nT€yÞ

The initial conditions for the triple ðs;m; yÞ
which satisfies the field equations (11) follow

from the initial conditions (7), the constitutive

relations (4), the geometric relations (3), and the
coupled heat equation (5). We obtain the follow-

ing matrices of initial values of stresses s0;m0

and stress velocities _s0; _m0 :

s0 
 ½s0ji�; m0 
 ½m0ji� ð12Þ

_s0 
 ½ _s0ji�; _m0 
 ½ _m0ji� ð13Þ

where

s0ji ¼ ðmþ aÞg0ji þ ðm� aÞg0ij þ ðle0 � nTlÞdij
m0ji ¼ ðgþ eÞki;j þ ðg� eÞkj;i þ bkk;kdij

g0ji ¼ hi;j � Ekji kk; e0 ¼ hk;k

ð14Þ

and
_s0ji ¼ðmþ aÞ _g0ji þðm� aÞ _g0ij
þ ðlþ nTk�0Þ _e0 �nTðk l;kk þ Q0Þ
 �

dij

_m0ji ¼ ðgþ eÞwi;j þ ðg� eÞwj;i þ bwk;kdij

_g0ji ¼ ci;j � Ekji wk; _e0 ¼ ck;k

ð15Þ

where Q0 is the initial value of the heat sources.

Let us formulate the following useful lemma

[15].

Lemma 1. Assume that the fields u;w;s, and m

are sufficiently smooth on O� T. Then the fields
u;w;s, and m satisfy the equations of motion (1)

and the initial conditions (7) if and only if the

following relations hold in O� T:
ui ¼ citþ hi þ r�1ðt � RiÞ
’i ¼ witþ ki þ J�1ðt �MiÞ

ð16Þ

where � denotes the convolution [16]:
t � f ðx1; x2; x3; tÞ ¼
ðt
0

ðt� tÞf ðx1; x2; x3; tÞ dt
Definition 2. (STEMP). By the stress-

temperature equations of motion problem
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of linear, homogeneous, isotropic, coupled,

dynamical, micropolar thermoelasticity for a
three-dimensional body, we understand the

initial-boundary value problem, in which the

field equations (11) are satisfied, together with
the initial conditions in O� f0g
s ¼ s0; m ¼ m0; y ¼ l

_s ¼ _s0; _m ¼ _m0
ð17Þ

and the boundary conditions (6) on @O� T.

Theorem 1. (Formulation of the problem in

terms of stresses and temperature). Let the systems

of functions ðu;wÞ,ðs;m; yÞ, and ðg;kÞ be suffi-
ciently smooth onO� T. Thens;m, and y are the
stress fields and the temperature field, respectively,

corresponding to the solution of the initial-bound-
ary value problem (1)–(7) if and only if equations

(11) hold and the initial conditions (17) and the

boundary conditions (6) are satisfied.

Proof. Necessity. It has been shown that the

relations (1) and (3)–(7) give the field equations

(11), the boundary conditions (6), and the initial

conditions (17).

Sufficiency. Let us assume that the stress and

temperature fields s, m, and y correspond to the

solution of STEMP. Therefore, by using (10), we

determine the strain fields g and k. Next, we

determine the displacement field u and the rota-

tion field w by means of the relations (16). Let us

notice that the conditions (16), (10), and (11)

imply the relations (3). The system of functions

ðu;w;s;mÞ satisfies the equations of motion (1)

and the initial conditions (7)1,2,4,5 if and only if

the relations (16) hold. Since it is easy to notice

that (11)3 and (17)3 imply the heat conduction

equation (5) and the initial condition (7)3,

we conclude that the system of functions

ðu;w;g;k;s;m; yÞ is a solution of the problems

(1)–(7). This completes the proof.

Remark 1. When solving a STEMP, one does
not have to refer to the compatibility equations

(2) since equations (2) are implied by equations

(11), (17), and (12)–(15).
Remark 2. ASTEMPmakes sensewhen the initial

stress, stress rate, and temperature are presented in
an arbitrary way. However, in such a general case,

the compatibility equations (2) will not be satisfied

at t ¼ 0, and the problem does not belong to classi-
cal micropolar dynamical thermoelasticity.
A Singular Solution of STEMP for an
Infinite 3D Space

Let us consider harmonic vibrations of an infinite

micropolar thermoelastic space which corre-

spond to the following concentrated loads:

• The case of body loadings

ðXi; YiÞ ¼ ðP0;M0Þe�iotdðx1Þdðx2Þdðx3Þdis
ð18Þ

• The case of heat source

Q ¼ Q0e
�iotdðx1Þdðx2Þdðx3Þ ð19Þ

where dð:Þ is the Dirac delta distribution, o is

the vibration frequency, and P0 andM0 refer to

the unit force and the unit moment, respec-

tively, Q0 ¼ 1.

A singular solution of STEMP for an infinite

space corresponding to the loads Xi, Yi, and Q

given by (18) and (19), respectively, will be

obtained with the help of differential equations

for the stress components and for the tempera-

ture, which are obtained from the field equations

(11) in the form:

• The equation for force-stresses

D2�3ð�2�4þ4a2DÞsij ¼�2aEijkD2L1Ys;sk

þ2aD2�3


ðmþaÞEjskYk;si
þðm�aÞEiskYk;sjþ Eijk�2Yk

�
þ2m�3ðDL2� vT�0@t�4ÞXk;kij

�D2�3

�
�4


ðmþaÞXj;iþðm�aÞXi;j

�
þ4a2ðXj;i�Xi;jÞ

	��3ð�2�4þ4a2DÞ
�ðlD� vT�0@tÞXk;kdij

�vT
k
�3ð�2�4þ4a2DÞ
2mQ;ijþðlD��1ÞQdij

�
ð20Þ
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where

L1 ¼ðbþ g� eÞ�2�4a2

L2 ¼ðlþm�aÞ�4�4a2

�1 ¼ðlþ2mÞD�r@2
t ; �2 ¼ðmþaÞD�@2

t

�3 ¼ðbþ2gÞD�4a� J@2
t ; �4 ¼ðgþ eÞD�4a� J@2

t

D¼D� 1

k
@t; D2 ¼D�1��0vT@tD

Dð : Þ ¼ ð : Þii, the symbol @t denotes the partial

derivative with respect to time.

• The equation for couple-stresses

�3ð�2�4 þ 4a2DÞmij
¼ 2a�3 ðgþ eÞEjskXk;si þ ðg� eÞEiskXk;sj


 �
��2�3 ðgþ eÞYj;i þ ðg� eÞYi;j


 �
þ 2gL1Yk;kij � bð�2�4 þ 4a2DÞYk;kdij

ð21Þ

• The equation for temperature
D2y ¼ � �0@tXk;k þ 1

k
�1Q

� �
ð22Þ

First, a singular solution to STEMP will be

obtained for the case P0 6¼ 0, M0 ¼ 0, and

Q0 ¼ 0. Applying the method of integral

transformations based on the Fourier transforma-

tion (direct and inverse) of a function f ðxÞ
[17, p. 27]

~f ðjÞ ¼ ð2pÞ�n
2

ð
Rn

f ðxÞeij�xdx

f ðxÞ ¼ ð2pÞ�n
2

ð
Rn

~f ðjÞe�ij�xdj ð23Þ

where
x ¼ ðx1; . . . ; xnÞ 2 Rn

j ¼ ðx1; . . . ; xnÞ 2 Rn

j � x ¼ x1x1 þ � � � þ xnxn

(for n ¼ 4), and using (18)1, we obtain from

equations (20)–(22) the following formulae:
– For the force-stresses

sðsÞij ¼ P0e
�iot

4pro2

ro2a

ml2ðl21 � l22Þ

"
disF1;j � djsF1;i

� �
þ 2mðK1 � K2Þ;ijs þ lG2 � ro2qe

m21 � m22
G1

� �
;s

dij

þ ðmþ aÞdjsG1;i þ ðm� aÞdisG1;j

�
ð24Þ

where
K1 ¼ 1

R
A1e

il1R þ A2e
il2R

� �
K2 ¼ 1

R
E1e

im1R � E2e
im2R

� �
G1 ¼ 1

R
A1l

2
1e

il1R þ A2l
2
2e

il2R
� �

G2 ¼ 1

R
E1m21e

im1R � E2m22e
im2R

� �
F1 ¼ 1

R
eil1R � eil2R
� �

G1 ¼ 1

R
eim1R � eim2R
� �

A1 ¼ s22 � l22
l21 � l22

;A2 ¼ s22 � l21
l22 � l21

;R ¼ ffiffiffiffiffiffiffi
xjxj

p

E1 ¼ ðm21 � qÞs21
m21ðm21 � m22Þ

; E2 ¼ ðm22 � qÞs21
m22ðm21 � m22Þ

si ¼ o
ci

ði ¼ 1; 2; 3; 4Þ

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

r

s
; c2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
mþ a
r

r
; c3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ 2g

J

r

c4 ¼
ffiffiffiffiffiffiffiffiffiffi
gþ e
J

r
n20 ¼ 2p ¼ 4a

gþ e
; s ¼ 2a

mþ a
; �20 ¼ ps

The values l21 and l
2
2 are the roots of the equation
W4ðlÞ ¼ l4 � l2 s22 þ s24 þ pðs� 2Þ
 �
þ s22ðs24 � 2pÞ ¼ 0

with the determinant DW ¼ ðs22 � s24 � �20 þ n20Þ2
þ4s22�

2
0 > 0. The polynomial W4ðlÞ is obtained
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from the operator�2�4 þ 4a2D. The roots l21 and
l22 2 R are different, and
l1;2
2 ¼ 1

2
s22 þ s24 þ �20 � n20



�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs22 � s24 � �20 þ n20Þ2 þ 4s22�

2
0

q
�:

Since we assume only real-phase velocities in

(24), we let Jo2 � 4a > 0 in order to satisfy the

inequalities l21 > 0 and l22 > 0 (see [8, p. 50] and

[9, p. 71]). The values m21 and m22 are the roots of
the equation W4ðmÞ ¼ 0. The polynomial W4ðmÞ
with complex coefficients, obtained from the

operator D2, has the following form:
W4ðmÞ ¼ m4 � s21 þ qð1þ eÞ
 �
m2 þ qs21

¼ ðm2 � m21Þðm2 � m22Þ

where q¼ io=k, e¼ k�0m, and m¼ nT=ð2mþlÞ.
Thus, we obtain m1;2

2 ¼ 1
2
½s21þqð1þ eÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½s21þqð1þ eÞ�2�4qs21

q
�. The roots m1 and m2

are complex-valued. For a detailed discussion of

this problem, see [18] and [19, pp. 96–102]:

– For the couple-stresses
mðsÞij ¼ P0e
�iot

8pml2
1

ðl21 � l22Þ
� ðgþ eÞ Ejks F1;ik þ ðg� eÞ Eiks F1;jk


 �
ð25Þ

where l2 ¼ ðgþeÞðmþaÞ
4am .

– For the temperature
yðsÞ ¼ P0e
�iot

4pro2

qes21
mðm21 � m22Þ

G1;s ð26Þ

Formulas (24)–(26) represent a singular solu-

tion ðsðsÞ;mðsÞ; yðsÞÞ, which corresponds to the

load (18)1. In order to obtain displacement and

rotation fields associated with the solution, we

use relations (16). For this purpose, we need to
specify the initial values of displacements, rota-

tions, and their velocities. It follows from equa-

tions (14), (15), (24), and (25) that

cðsÞ
i ¼ �iohðsÞi ; wðsÞi ¼ �iokðsÞi ð27Þ

and

h
ðsÞ
i ¼ A0 ðK1 � K2Þ;is þ disG1

h i
k
ðsÞ
i ¼ ro2

2ml2
1

l21 � l22
A0 Eiks F1;k

ð28Þ

where A0 ¼ P0

4pro2 . Hence, from equations (16),

(24), (25), (27), and (28) and the relations
ðt
0

ðt� tÞe�iotdt ¼ o�2 1� iot� e�iot� �
A1 þ A2 ¼ 1; E1 � E2 ¼ 1

D
eil1R

R

� �
¼ D

1

R

� �
� l21

eil1R

R

ð29Þ

we obtain
u
ðsÞ
i ¼ AðtÞ ðK1 � K2Þ;is þ disG1

h i
’
ðsÞ
i ¼ ro2

2ml2
1

l21 � l22
AðtÞ Eiks F1;k

ð30Þ

where AðtÞ ¼ A0e
�iot. One can check that when

R ! 1, the stress fields (24) and (25), the tem-

perature field (26), as well as the displacement

and rotation fields (30), all tend to zero. Also, by

taking into account relations (18)1, (24)–(26), and

(30) and the formula
1

4p
D

1

R

� �
¼ �dðx1Þdðx2Þdðx3Þ ð31Þ

we note that the equations of motion (1) and

the coupled heat equation (5) are satisfied

identically.

Next, a singular solution to STEMP is

obtained for the case P0 ¼ 0, M0 6¼ 0, and
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Q0 ¼ 0. Proceeding in a way similar to that of

nonzero mass forces, we receive:

– The force-stresses
C
sðsÞij ¼ M0e
�iot

4p
�pðEijk K3;ks þ Eijs F2Þ

(

þ 1

2ml2ðl21 � l22Þ
ðmþ aÞ Ejks F1;ik þ ðm� aÞ Eiks F1;jk


 �)
ð32Þ

where
K3 ¼ 1

R
C1e

il1R þ C2e
il2R þ C3e

il3R
� �

F2 ¼ 1

R
A1e

il2R þ A2e
il1R

� �
C1 ¼ A2

1

l21
; C2 ¼ A1

1

l22
; C3 ¼ � s22

l21l
2
2

l3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s23 � t20

q
> 0; t20 ¼

4a
bþ 2g

– The couple-stresses
mðsÞij ¼M0e
�iot

4pJc24
2gK3;ijs þ bðgþ eÞ

bþ 2g
eil3R

R

� �
;s

dij

"
þ ðgþ eÞdjsF2;i þ ðg� eÞdisF2;j

�
ð33Þ

In this case, the formula for the temperature yðsÞ

reads

yðsÞ 
 0 ð34Þ

Formulas (32)–(34) represent a singular solution

ðsðsÞ;mðsÞ; yðsÞÞ of STEMP for an infinite space

corresponding to the load (18)2. Furthermore,

initial values of displacements, rotations, and

their velocities are given by the formulas

(see (27))
cðsÞ
i ¼ �iohðsÞi ; wðsÞi ¼ �iokðsÞi ð35Þ
and
h
ðsÞ
i ¼ Jc24

2ml2
1

l21 � l22
C0 Eiks F1;k

k
ðsÞ
i ¼ C0ðK3;is þ disF2Þ; C0 ¼ M0

4pJc24

ð36Þ

Finally, the formulas for the displacements and

the rotations read

u
ðsÞ
i ¼ Jc24

2ml2
1

l21 � l22
CðtÞ Eiks F1;k

’
ðsÞ
i ¼ CðtÞðK3;is þ disF2Þ

ð37Þ

where CðtÞ ¼ C0e
�iot. One can check that when

R ! 1, the stress fields (32), (33), the tempera-

ture field (34), as well as the displacement and

rotation fields (37), all tend to zero. Also, by

taking into account relations (18)2, (32)–(34),

(37), and (31), we note that the equations of

motion (1) and the coupled heat equation (5) are

satisfied identically. Let us note that in this case

a temperature field vanishes.

Finally, in case P0 ¼ 0, M0 ¼ 0, and Q0 6¼ 0,

from equations (24) and (26), we obtain
D2sij ¼ � nT
k

2mQ;ij þ ðlD��1ÞQdij

 � ð38Þ

D2y ¼ � 1

k
�1Q ð39Þ

Applying to equations (38), (39), and (19), the

same integration method based on the four-

dimensional Fourier transform (23) as in the pre-

vious cases, we obtain the following results in

a closed form:

– The force-stresses
sij ¼ �Q0e
�iot

4p
m

k
2m

m21 � m22
G1;ij

�
þ 2mG2 � ls21

m21 � m22
G1

� �
dij

�
ð40Þ
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– The temperature
y ¼ Q0e
�iot

4p
1

k
G2 ð41Þ

where G2 ¼ 1
m2
1
�m2

2

ðDþs21ÞG1 ¼ 1
R E1e

im2R�E2e
im1Rð Þ:

By using equation (21), in this case, for the cou-

ple-stresses, we obtain the formula
mij 
 0 ð42Þ

The pair ðu; wÞ given by formula (16) is deter-

mined by a method described in the previous

cases. The initial values of displacements, rota-

tions, and their velocities take the form:
ci ¼ �iohi; wi ¼ �ioki ð43Þ

and
hi ¼ �B0

1

m21 � m22
G1;i; ki ¼ 0 ð44Þ

where B0 ¼ mQ0

4pk . Using these formulas as well as

relations (16) and (29), we obtain results for ui
and ’i in the following form:
ui ¼ �BðtÞ 1

m21 � m22
G1;i; ’i ¼ 0 ð45Þ

where BðtÞ ¼ B0e
�iot. When R ! 1, all physi-

cal fields obtained above tend to zero. Besides,

taking into account relations (40)–(42), (45),

(19), and (31), we note that the equations of

motion (1) and the heat conduction equation (5)

are satisfied identically. Formulas (40), (45)1, and

(41) determine the fields of stresses s, displace-

ments u, and temperature y corresponding to the

heat source (19). This is the classical result

ð’i 
 0; mij 
 0Þ.

Remark 3. The results for the physical fields

produced by the loads (18) and (19) which were

obtained by the STEMP method [20, p. 37] cor-
respond to the results given in [8, pp. 238–244],

[21], and [20, pp. 24, 29].
STEMP for a Plane State of Strain: The
2D Problem

Let us discuss briefly, for didactic purposes,

STIBVP for the case of the plane state of defor-

mation for a coupled dynamic thermoelasticity.

In the plane state of strain, all causes and results

depend on two ðx1; x2Þ variables only. In the case
of the action of a temperature field yðx1; x2; tÞ, the
deformation of the body is described by the

vectors

u ¼ ½u1ðx1; x2; tÞ; u2ðx1; x2; tÞ; 0�
w ¼ ½0; 0; ’3ðx1; x2; tÞ�

ð46Þ

The force- and couple-stress tensor fieldss andm

and the strain and micro-strain tensor fields g and

k can be written as the matrices
s 

s11 s12 0

s21 s22 0

0 0 s33

264
375; m 


0 0 m13
0 0 m23
m31 m32 0

264
375

ð47Þ

g 

g11 g12 0

g21 g22 0

0 0 0

264
375; k 


0 0 k13
0 0 k23
0 0 0

264
375
ð48Þ

The basic equations of the E–N model can be

divided into the following groups [8, p. 250]:

• The equations of motion in O� Tþ

sba;b þ Xa ¼ r €ua

Eab sab þ ma3;a þ Y3 ¼ J €’3

ð49Þ

Here X 
 ðX1;X2; 0Þ and Y 
 ð0; 0; Y3Þ are

the vectors of body force and body moment,

respectively.

• The compatibility equations in O� T
k23;1 � k13;2 ¼ 0; k13 � g21;1 þ g11;2 ¼ 0

k23 þ g12;2 � g22;1 ¼ 0

ð50Þ
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• The geometric relations in O� Tþ

gab ¼ ub;a þ Eba ’3; ka3 ¼ ’3;a ð51Þ

• The constitutive relations in O� T
sab ¼ ðmþ aÞgab þ ðm� aÞgba þ ðle1 � nTyÞdab
s33 ¼ nsaa � m

mþ l
nTy

ma3 ¼ ðgþ eÞka3; m3a ¼
g� e
gþ e

ma3

ð52Þ

where e1 ¼ gee and n ¼ l
2ðmþlÞ is Poisson’s

ratio.

• The coupled heat equation in O� Tþ
y;aa � 1

k
_y� �0 _ue;e ¼ �Q

k
ð53Þ

• The initial-boundary conditions:
– The boundary conditions on @O� T
sbanb ¼ pa; ma3na ¼ m3; y ¼ # ð54Þ

where the functions pa, m3, and # : @O
�T ! R are given.

– The initial conditions in O� f0g
ua ¼ fa; ’3 ¼ f3; y ¼ l; _ua ¼ ga; _’3 ¼ g3

ð55Þ

where the functions fa, f3, l, ga, and

g3 : O ! R are given.

Definition 1 remains valid and takes the form.

Definition 3. By stress and temperature fields

corresponding to the solution of the problem

(49)–(55), we mean a triplet ðs;m; yÞ with the
property that there exists a system of functions
ðu;w;g;kÞ such that ðu;w;g;k;s;m; yÞ is

a solution of the problem given by (46)–(55).
Let us suppose that we know ðs;m; yÞ and the

deformations ðg;kÞ. Note that we obtain a triplet

ðu1; u2; ’3Þ from a pair ðg;kÞ by integrating (51),
and C1ðx1; tÞ, C2ðx2; tÞ, C3ðx1; tÞ, C4ðx2; tÞ,
C5ðx1; tÞ, and C6ðx2; tÞ – arbitrary functions of

integration – are determined from the compatibil-

ity equations (50). Next, we offer an alternative

method of recovering ðu1; u2; ’3Þ from ðg;kÞ.
Let us turn to the derivation of STEMP. From

equations (49), by use of (51), we obtain the

following equations in O� Tþ:
r�1Ra;b þ J�1 Eab R3 ¼ €gba; J�1R3;a ¼ €ka3

ð56Þ

where Ra ¼ R̂a þXa, R3 ¼ R̂3 þY3, R̂a ¼ sba;b,
and R̂3 ¼ Eab sab þ ma3;a. From equation (53),

by use of (51), we get in O� Tþ:
y;aa � 1

k
_y� �0 _gee ¼ �Q

k
ð57Þ

Let us write down (52) in an equivalent form in

O� T:
gab ¼ 1
2m sðabÞ þ 1

2a s½ab� � 1
2m le1 � nTyð Þdab

ka3 ¼ 1
gþe ma3; e1 ¼ 1

2ðmþlÞ ðsee þ 2nTyÞ ð58Þ

Next, equations (56) and (57) are used to trans-

form (58) into
r�1Ra;b þ J�1 Eab R3 � 1
2m €sðabÞ þ 1

2a €s½ab�

þ 1

2m
l €e1 �nT€y
� 

dab ¼ 0

c24R3;a � €ma3 ¼ 0

y;aa � 1

k
_y� �0 _e1 ¼ �Q

k
in O� Tþ

ð59Þ

where

_e1 ¼ 1

2ðmþ lÞ ð _see þ2nT _yÞ

€e1 ¼ 1

2ðmþ lÞ ð€see þ2nT€yÞ
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The initial conditions for a triplet ðs;m; yÞ that
satisfies equations (59) are implied by (55) and

(51)–(53). We obtain the following matrices of

initial valuess0,m0, _s0 , and _m0 for stresses and

their velocities:
s0 

s011 s012 0

s021 s022 0

0 0 s033

264
375;m0 


0 0 m013
0 0 m023
m031 m032 0

264
375

ð60Þ

_s0 

_s011 _s012 0

_s021 _s022 0

0 0 _s033

264
375; _m0 


0 0 _m013
0 0 _m023
_m031 _m032 0

264
375

ð61Þ

where
s0ab ¼ ðmþ aÞg0ab þ ðm� aÞg0ba þ ðle01 � nTlÞdab
m0a3 ¼ ðgþ eÞf3;a; g0ab ¼ fb;a � Eab f3; e01 ¼ fe;e

_s0ab ¼ ðmþ aÞ _g0ab þðm� aÞ _g0ba
þ ðlþ nTk�0Þ _e01 �nTðkl;dd þ Q0Þ
 �

dab

_m0a3 ¼ ðgþ eÞg3;a; _g0ab ¼ gb;a � Eab g3; _e01 ¼ ge;e

ð62Þ

For the initial moment t ¼ 0, we have Q ¼ Q0.

Now we present the following lemma.

Lemma 2. Let u and w given by (46) and s and

m given by (47) be smooth functions on O� T.
Then u, w, s, and m satisfy the equations of

motion (49) as well as the initial conditions

(55)1, 2, 4, 5 if and only if in O� T
ua ¼ gatþ fa þ r�1ðt � RaÞ
’3 ¼ g3tþ f3 þ J�1ðt � R3Þ

ð63Þ

where � stands for the convolution product on
the t -axis.

Proof. We integrate the equations of motion (49)

twice with respect to time and take into account

the initial conditions (55)1, 2, 4, 5 to obtain (63)

in O� T. To show that (63) implies (49) and
(55) 1, 2, 4, 5, we proceed in a way similar to that

in [15] and [4, p. 93]. �

Definition 4. By STEMP associated with the lin-

ear homogeneous isotropic micropolar coupled
dynamic thermoelasticity problem in the plane

state of deformation, we mean the initial-boundary
value problem in which the fields equations (59)

are satisfied together with the initial conditions

(17) and the boundary conditions (54). Of course,
the expressions s, m, s0, m0, _s0, and _m0 are

now described by the expressions (47), (60), and

(61), respectively.
Remarks 1 and 2 remain valid here. We can

formulate the following theorem.

Theorem 2. (Characterization of the problem

under consideration in terms of stress and tem-

perature). Let the systems of functions
ðu;wÞ,ðs;m; yÞ, and ðg;kÞ be sufficiently smooth
on O� T. Then the fields s,m, and y correspond
to the solution of the initial-boundary value prob-
lem given by (46)–(55) if and only if the equations

(59), the initial conditions (17), as well as the

boundary conditions (54) are satisfied.
In the paper [22], we describe a pure stress–

temperature initial-boundary value problem

(STIBVP) of a micropolar coupled dynamic

thermoelasticity, taking into account the stress–

temperature equations of motion of Ignaczak type

(STEMP) for the cases of the plane and axisym-

metric state of deformation of the E–Nmodel and

to illustrate this method by the time-harmonic

Green functions for an unbounded space. Now

we will present here some results from [22]. It

should be noted that the singular solutions to this

problem (the plane state of strain) have been

obtained before by Crăciun [23] by means of the

method of direct determination of displacements,

rotations, and temperature.

Let us consider harmonic vibrations of an infi-

nite micropolar space produced by the following

concentrated loadings:

• The body force

Xa ¼ P1e
�iotdðx1Þdðx2Þda1; Y3 ¼ 0; Q ¼ 0

ð64Þ
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• The heat source
Q ¼ Q0e
�iotdðx1Þdðx2Þ; Xa ¼ 0; Y3 ¼ 0

ð65Þ

C

Remark 4. The coefficients P0, P1, P2, M0, and
Q0 in (18), (19), (64), and (65) are introduced to

comply with SI units (see [20, p. 36]) and to have

the singular solutions in a dimensional form.
A singular solution generated by Xa and Q by

solving a STEMP associated with the loadings

(64) and (65) will be obtained by means of dif-

ferential equations for individual stress compo-

nents and temperature implied from (59) in the

form:

• The force-stress equations
D2ð�2�4þ4a2D1Þsab
¼� vT

k
ð�2�4þ4a2D1Þ 2mQ;abþðlD1��1ÞQdab


 �
þ2aD2 ðmþaÞEbgY3;gaþðm�aÞEagY3;gbþ Eab�2Y3


 �
þ2mðDL2�vT�0@t�4ÞXg;gab

�ð�2�4þ4a2D1ÞðlD� vT�0@tÞXg;gdab

þ4a2EabEdgD2Xd;g

�D2�4 ðmþaÞXb;aþðm�aÞXa;b

 �

ð66Þ

• The couple-stress equations
ð�2�4 þ 4a2D1Þma3 ¼ �ðgþ eÞð2aEdgXd;ga þ�2Y3;aÞ
ð67Þ

• The temperature equation

D2y ¼ � �0 _Xd;d þ 1

k
�1Q

� �
ð68Þ

Here the operators �1;�2;�4; L2;D and D2

are the same as in section “A Singular Solution

of STEMP for an Infinite 3D Space,” but the

Laplace operator D must be replaced by the

operator D1 (D1f ¼ f;aa).
Remark 5. From the equation (68), it can be

seen that action of the body moments Y3 in
the infinite space will not cause the temperature

field y.
Let us turn to the case of the body force (64).

Applying an integration method based on the

triple Fourier integral transform (23) (for n ¼ 3

with respect to the position variable xa and time t)

to equations (64) and (66)–(68), and using [24,

pp. 182–183] and [25], we obtain the closed-form

results.

The force-stress components sab are given by
sab ¼ iP1e
�iot

4ro2

ro2ps

l21 � l22
Eab F1;2 þ 2mðc1 � c2Þ;1ab

"

þ lG2 � ro2qe
m21 � m22

F2

� �
;1

dab

þ ðmþ aÞdb1G1;a þ ðm� aÞda1G1;b
�

ð69Þ

where
F1 ¼H
ð1Þ
0 ðl1rÞ � H

ð1Þ
0 ðl2rÞ; r ¼ ðxaxaÞ1=2

i ¼
ffiffiffiffiffiffiffi
�1

p
; F2 ¼ H

ð1Þ
0 ðm1rÞ � H

ð1Þ
0 ðm2rÞ

c1 ¼ A1H
ð1Þ
0 ðl1rÞ þ A2H

ð1Þ
0 ðl2rÞ

c2 ¼ E1H
ð1Þ
0 ðm1rÞ � E2H

ð1Þ
0 ðm2rÞ

G1 ¼ A1l
2
1H

ð1Þ
0 ðl1rÞ þ A2l

2
2H

ð1Þ
0 ðl2rÞ

G2 ¼ E1m21H
ð1Þ
0 ðm1rÞ � E2m22H

ð1Þ
0 ðm2rÞ

H
ð1Þ
0 ðzÞ is the Hankel function of the first kind, andðþ1

�1

ðþ1

�1

e�ixaxa

x2 � a2
dx1 dx2 ¼ ip2Hð1Þ

0 ðarÞ

a2 is either a real number or a complex one, and

x2 ¼ xaxa. Other symbols are the same as in

section “A Singular Solution of STEMP for an

Infinite 3D Space.”

The couple-stress components ma3 are given by
ma3 ¼ � iP1se
�iot

4ðl21 � l22Þ
F1;2a ð70Þ



C 752 Coupled Dynamic Micropolar Problems of Thermoelasticity
The temperature y is given by

y ¼ iP1e
�iot

4ro2

qes21
mðm21 � m22Þ

F2;1 ð71Þ

Formulae (69), (70), (52)2,4, and (71) determine

the stress fieldss andm and the temperature field

y, respectively, corresponding to the singular

solution. To obtain the displacement and rotation

fields associated with the singular solution under

consideration we use the formulae (63). Clearly,

we need to know the initial values for the dis-

placements and rotations, as well as their veloc-

ities. Combining (62) with (69)–(71) yields
ga ¼ �iofa; g3 ¼ �iof3 ð72Þ

and

fa ¼ iP1

4ro2
ðc1 � c2Þ;1a þ da1G1

h i
f3 ¼ � iP1s

4Jc24ðl21 � l22Þ
F1;2

ð73Þ

Now, using (63), (69), (70), (72), (73), and (29)1,2
and the relation

D1H
ð1Þ
0 ðl1rÞ ¼ 2i

p
D1ðln rÞ � l21H

ð1Þ
0 ðl1rÞ ð74Þ

we obtain the formulas for the triplet (u1, u2, ’3):
ua ¼ iP1e
�iot

4ro2
ðc1 � c2Þ;1a þ da1G1

h i
’3 ¼ � iP1se

�iot

4Jc24ðl21 � l22Þ
F1;2

ð75Þ

Now, let us turn to the case of the heat source

(65). Proceeding in a way similar to that of the

above case, we obtain the closed-form results.

The force-stress components sab are given by

sab ¼ � iQ0e
�iot

4

m

k

2m
m21 � m22

F2;ab

�
þ 2mG4 � ls21

m21 � m22
F2

� �
dab

�
ð76Þ

where G4 ¼ E1H
ð1Þ
0 ðm2rÞ � E2H

ð1Þ
0 ðm1rÞ.
The couple-stress components ma3 are given by
ma3 
 0 ð77Þ

The temperature y is given by
y ¼ � iQ0e
�iot

4

1

k
G4 ð78Þ

Formulae (76), (77), (52)2,4, and (78) determine

the stress fieldss andm and the temperature field

y, respectively, corresponding to the singular

solution. The initial values for the displacement

and rotation fields and their velocities are given

by (72) and
fa ¼ � iQ0

4

m

k
1

m21 � m22
F2;a; f3 
 0 ð79Þ

Then the displacements ua and the rotation ’3 are

given by

ua ¼ � iQ0e
�iot

4

m

k
1

m21 � m22
F2;a; ’3 
 0

ð80Þ
Remark 6. Let us notice that the heat source

provokes the classical fields only.

It can easily be verified that the stress fields

(69), (70), (76), and (77) and the temperature

fields (71) and (78) as well as the displacement

rotation fields (75) and (80) tend to zero as

r ! 1. Furthermore, upon taking into account

(64) and (65); formulae (69), (70), (76), and (77);

formulae (71) and (78); formulae (75) and (80),

respectively; and the relation
D1ðlnrÞ ¼ 2pdðx1Þdðx2Þ ð81Þ

we verify that the equations of motion (49) and the

coupled heat equation (53) are identically satisfied.

Remark 7. From the singular solutions in
the E–N model, we can obtain the singular solu-

tions for the limiting theories by performing the

corresponding limits [20, p. 27].
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Synonyms

Coupled thermoelasticity
Overview

There are materials in which the elastic coeffi-

cients are position dependent. Such materials are

called nonhomogeneous materials. In solid

mechanics, many of engineering materials,

such as composites and a large variety of bonded

materials and structural components, are gener-

ally modeled as nonhomogeneous continua.

A composite is a solid material that results when

two or more different substances, each with its
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own characteristics, are combined to create a new

substance whose properties are superior to those

of the original components in a specific applica-

tion. Most primitive composite materials com-

prised straw and mud in the form of bricks for

building construction. Plywood is a common

composite material encountered in everyday life.

A functionally graded material is a

nonhomogeneous composite which consists of a

graded change in the volume fraction of constitu-

ents from one location to other in a component.

The concept of FGMs was initially proposed in

1984 by a group of scientists in Sendai, Japan

[18, 27]. Since then, FGMs have been of intensive

research interests. Due to the continuously varying

material properties in space on the microscopic

scale, FGMs are usually superior to conventional

traditional materials in mechanical behavior, espe-

cially under thermal loads. Nitride, steel, for

instance, could be regarded as FGM. Modern

FGMs are constructed for complex requirements,

such as the heat shield of a rocket or implants for

humans. FGMs have potential applications in auto-

motive brakes and clutches. It can bemore resistant

to crack initiation and propagation. FGMs made

from ceramic andmetal are suitable for use in high-

temperature-generating systems, e.g., the use of

ceramic composite microstructure in gas turbines

can protect metals and improve the life and reli-

ability of thermal barrier coating.

The classical uncoupled theory of thermo-

elasticity [8] predicts two phenomena not compati-

blewith physical observations. First, the equation of

heat conduction of this theory does not contain any

elastic terms contrary to the fact that elastic changes

produce heat effects. Second, the heat equation is of

parabolic type predicting infinite speeds of propa-

gation for heat waves. AlthoughBiot’s [4] theory of

coupled thermoelasticity eliminates the first para-

dox of classical theory, both theories share the sec-

ond shortcoming since the heat equation for the

coupled theory is also parabolic.

During last five decades, nonclassical

thermoelasticity theories involving hyperbolic

type heat transport equations admitting finite

speeds for thermal signals have been formulated.

According to these theories, heat propagation is

to be viewed as a wave phenomenon rather
than a diffusion phenomenon. These nonclassical

theories are referred to as generalized

thermoelasticity theories and are motivated by

experiments [1–3, 12, 16, 17, 20, 21, 24, 26]

exhibiting the actual occurrence of thermal

wave at low temperatures and for small intervals

of time. A wide variety of problems revealing

interesting phenomenon characterizing these the-

ories have been investigated, and the relevant

literature can be found in [5, 6, 13–15].

According to Lord-Shulman theory, Fourier’s

law of heat conduction is modified by introducing

a single relaxation time [19]. In Green-Lindsay

theory, two relaxation times are introduced by

modifying the stress–strain relations and the

entropy density [9]. Green and Naghdi proposed

twomodels known as Green-Naghdi model II and

III which permit propagation of thermoelastic

waves with a finite speed. The Green-Naghdi

model II does not sustain dissipation of thermal

energy [11]. The Green-Naghdi model III [10]

admits the dissipation of energy.

Dual-phase lag thermoelasticity was proposed

by Chandrasekharaiah [7] and Tzou [25] (CT

model) in which the Fourier law is replaced by

an approximation to a modification of the Fourier

law with two different time translations for the

heat flux and the temperature gradient. Tzou [25]

introduced two-phase-lags to both the heat flux

vector and the temperature gradient.

The latest in this row is three-phase-lag

thermoelasticity theory proposed by Roychoud-

huri [22]. In this theory, he established

a generalized mathematical model of a coupled

thermoelasticity theory that includes three-phase

lags in the heat flux vector, the temperature

gradient, and in the thermal displacement gradi-

ent. The more general model established reduces

to the previous models as special cases.
Basic Equations for Functionally Graded
Material

Strain–Displacement Relations

eij ¼ 1

2
ðui; j þ uj;iÞ; i; j ¼ 1; 2; 3 ð1Þ
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where eij is the strain tensor and ui is the displace-
ment component.

Stress–Strain Temperature Relations

tij ¼Cijklekl � bij½ðT � T0Þ þ t1a0 _T�
or

eij ¼ Sijkltkl þ aij½ðT � T0Þ þ t1a0 _T�
i; j; k; l ¼ 1; 2; 3;

ð2Þ

where
Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij;
Sijkl ¼ Sjikl ¼ Sijlk ¼ Sklij;

Sijkl ¼ ðCijklÞ�1;

ð3Þ

and tij, Cijkl, and Sijkl are stress tensor, elasticity

tensor, and elastic compliance tensor, respec-

tively; bij ¼ Cijklakl; aij ¼ Sijklbkl; and bij and

aij are thermal moduli and thermal expansion

tensor, respectively, and T is the absolute

temperature.

Law of Heat Conduction

qiþ t2tq _qiþ t3
t2q
2
€qi ¼� ðt?nÞijT; j

�
þ tTKij

_T; jþK?
ijn; j

;

i; j¼ 1;2;3

ð4Þ

where qi is the component of the heat flux vector

and Kij is the thermal conductivity tensor, _n ¼ T,
ðt?nÞij ¼ Kij þ tnK?

ij.
Energy Equation

�qi;iþrQ¼ rCvð _Tþ t4a1 €TÞþT0bij _eij; i; j¼ 1;2;3

ð5Þ

where Q is the heat source acting per unit

mass per second and Cv is the specific heat

at constant strain and the term T0bij _eij brings

about coupling between temperature and

strain field.
Heat Equation

Elimination of qi from (4) and (5) leads to the

following hyperbolic type heat transport equation

in unified form:
ððt?nÞij _T; jÞ;iþ tTðKij
€T; jÞ;iþðK?

ijT; jÞ;i ¼

1þ t2tq
@

@t
þ t2

1

2
t2q

@2

@t2

� �
rCvT0

@

@t
ð _Tþ t4a1 €TÞ

� �
þ 1þ t2tq

@

@t
þ t2

1

2
t2q

@2

@t2

� �
bij €eij�r _Q
� �

ð6Þ

where t1; t2; t3; t4 are unified parameters.

In the case when t1 ¼ 0, t2 ¼ 1, t3 ¼ 0, t4 ¼ 0,

tT ¼ 0, tq ¼ t0, K?
ij ¼ 0, tn ¼ 0, and hence

ðt?nÞij ¼ Kij, this theory clearly reduces to L-S

theory. t0 is called relaxation time, which is the

time required to maintain steady-state heat con-

duction in an element of volume of an elastic body

when a sudden temperature gradient is imposed on

that volume element. When t1 ¼ 1, t2 ¼ 0, t3 ¼ 0,

t4 ¼ 1, tT ¼ 0, tq ¼ 0, t2q ¼ 0, K?
ij ¼ 0, tn ¼ 0,

and hence ðt?nÞij ¼ Kij, t1 ¼ 1, and t2 ¼ 1, this

theory clearly reduces to G-L theory, where a1
and a2 (a1 	 a2 	 0) are two constitutive con-

stants having the dimension of time. For t1 ¼ 0,

t2 ¼ 0, t3 ¼ 0, t4 ¼ 0, tT ¼ 0, and tn ¼ 0, this

theory reduces to (for much low thermal conduc-

tivity) Green-Naghdi’s second model of general-

ized thermoelasticity without energy dissipation.

For t1 ¼ 0, t2 ¼ 0, t3 ¼ 0, t4 ¼ 0, tT ¼ 0, tn ¼ 0,

and hence ðt?nÞij ¼ Kij, this theory becomes third

model of Green-Naghdi. Here, n is the thermal

displacement and K?
ij is the tensor of additional

material constant for Green-Naghdi theory. Fur-

ther in the case, when t1 ¼ 0, t2 ¼ 1, t3 ¼ 1,

t4 ¼ 0, K?
ij ¼ 0, tn ¼ 0, and hence ðt?nÞij ¼ Kij,

this theory clearly reduces to dual-phase-lag

model. Finally, for t1 ¼ 0, t2 ¼ 1, t3 ¼ 1, and

t4 ¼ 0, this theory reduces to three-phase-lag

model. The delay time tT is called the phase lag

of the temperature gradient and the other delay

time tq, the phase lag of the heat flux. The delay

time tT is caused by the microstructural interac-

tions (small scale effects of heat transport in space

such as phonon–electron interaction or phonon
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scattering). The second delay time tq is caused due
to the fast transient effects of thermal inertia (or

small scale effects of heat transport in time). The

phase lags tq and tT are small, positive, and

assumed to be intrinsic properties of the medium.

The third delay time tn may be interpreted,

following Tzou [25], as the phase lag of the ther-

mal displacement gradient.

Equations of Motion

tij; j þ rFi ¼ r€ui; i; j ¼ 1; 2; 3 ð7Þ

where Fi is the component of body force per unit

mass and r ð> 0Þ the mass density.

Equations (2), (6), and (7) constitute complete

mathematical model of different hyperbolic

thermoelasticity theories.

The relations given above, valid for an aniso-

tropic body, readily reduce to the corresponding

relations for an isotropic body by means of the

relations
Cijkl ¼ mðdikdjl þ dildjkÞ þ ldijdkl

Sijkl ¼ m0ðdikdjl þ dildjkÞ þ l0dijdkl

bij ¼ bdij; aij ¼ atdij;Kij ¼ Kdij;K?
ij ¼ K?dij

where
m0 ¼ 1

4m
; l0 ¼ � l

2mð3lþ 2mÞ
b ¼ 3kat; k ¼ lþ 2

3
m

Here, l and m are Lamé constants, k is the

compressibility modulus, and at the coefficient

of linear thermal expansion for an isotropic body.
Application to a Problem

We consider a functionally graded infinite isotro-

pic thermoelastic body at a uniform reference

temperature y0 in the presence of periodically
varying heat sources distributed over a plane

area. We shall consider one-dimensional distur-

bance of the medium, so that the displacement

vector~u and temperature field y can be expressed
in the following form:

~u ¼ ðuðx; tÞ; 0; 0Þ
y ¼ yðx; tÞ ð8Þ

In the context of linear theory of generalized

thermoelasticity based on Green-Naghdi model II

(Green and Naghdi, 1993), the equation of

motion, heat equation, and constitutive equation

can be written as
f ðxÞ ðl0þ2m0Þ
@2u

@x2
� g0

@y
@x

� �
þ

ðl0þ2m0Þ
@u

@x
� g0ðy�y0Þ

� �
@f ðxÞ
@x

¼ r0 f ðxÞ
@2u

@t2

ð9Þ

@

@x
K?
0 f ðxÞ

@y
@x

� �
þ r0 f ðxÞ _Q

¼ r0 f ðxÞcv€yþ g0 f ðxÞy0€D
ð10Þ

txx ¼ f ðxÞ ðl0 þ 2m0Þexx � g0ðy� y0Þ½ � ð11Þ

where
exx ¼ @u

@x
ð12Þ

and it is assumed that variation of material prop-

erties are dependent on f(x). Introducing the fol-

lowing nondimensional variables:
x0 ¼ x

l
; u0 ¼ l0 þ 2m0

g0y0l
u; t0 ¼ ct

l
; y0 ¼ y� y0

y0

f 0ðx0Þ ¼ f ðxÞ; t0x0x0 ¼ txx
g0y0

; e0x0x0 ¼ exx ð13Þ

where l is a standard length and c is a standard

speed, and omitting the primes (9)–(12) can be

rewritten in nondimensional form as
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f ðxÞ @2u

@x2
�@y
@x

� �
þ @u

@x
�y

� �
@f ðxÞ
@x

¼ f ðxÞ 1

C2
P

@2u

@t2

ð14Þ

C2
T

@

@x
f ðxÞ @y

@x

� �
þ f ðxÞQ0 ¼ f ðxÞ @

2y
@t2

þ eTf ðxÞ @3u

@t2@x
ð15Þ

txxðx; tÞ ¼ f ðxÞ @u

@x
� y

� �
ð16Þ

exxðx; tÞ ¼ g0y0
l0 þ 2m0

@u

@x
ð17Þ

where
C2
T ¼ K?

0

r0cvc2
; eT ¼ g20y0

ðl0 þ 2m0Þr0cv

C2
P ¼ l0 þ 2m0

r0c2
;Q0 ¼ l

y0cvc
@Q

@t

We assume that the medium is initially at rest.

The undisturbed state is maintained at reference

temperature. Then, we have
uðx; 0Þ ¼ _uðx; 0Þ ¼ yðx; 0Þ ¼ _yðx; 0Þ ¼ 0 ð18Þ

We take exponential variation of nonhomo-

geneity (i.e., f ðxÞ ¼ e�kx, where k is a dimension-

less constant).

Applying Laplace-Fourier double integral

transform defined by
�gðx; pÞ ¼
ð1
0

gðx; tÞe�ptdt;ReðpÞ > 0

�̂gða; pÞ ¼ 1ffiffiffiffiffiffi
2p

p
ð1
�1

�gðx; pÞeiaxdx
ð19Þ

to the (14)–(17) and solving the resulting equa-

tion, we get solutions for �̂uða; pÞ, �̂yða; pÞ,
�̂txxða; pÞ, and �̂exx ða; pÞ as follows:
�̂uða; pÞ ¼
�̂Q0 ðiaþ kÞ

MðaÞ ð20Þ

�̂yða; pÞ ¼
�̂Q0 a2 þ p2

C2
P

� iak
� 

MðaÞ ð21Þ

�̂txx ða; pÞ ¼ � p2 �̂Q0

Mðaþ ikÞ ð22Þ

�̂exx ða; pÞ ¼ b1 �̂Q0 aða� ikÞ
MðaÞ ð23Þ

where
MðaÞ¼C2
Ta

4�2ikC2
Ta

3þp2 1þ eT þC2
T

C2
P

� �
a2

�C2
Tk

2a2� p2ik 1þ eT þC2
T

C2
P

� �� �
aþ p4

C2
P

;

¼C2
Tða�a1Þða�a2Þða�a3Þða�a4Þ

ð24Þ
Periodically Varying Heat Source

Now, let us take the heat source in the following

form:
Q0 ¼ Q?
0dðxÞ sin

pt
t

� 
for 0  t  t

¼ 0 for t > t;
ð25Þ

then,

�̂Q0 ¼
Q?

0ptð1þ e�ptÞffiffiffiffiffiffi
2p

p ðp2 þ p2t2Þ ð26Þ

Thus, the expressions for displacement, tem-

perature, stress, and strain in Laplace transform

domain take the following form:
�uðx; pÞ ¼
ð1
�1

Q?
0tð1þ e�ptÞðiaþ kÞe�iaxda

2ðp2 þ p2t2ÞMðaÞ
ð27Þ
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�yðx;pÞ¼
ð1
�1

Q?
0tð1þ e�ptÞða2þ p2

C2
P

� iakÞe�iaxda

2ðp2þp2t2ÞMðaÞ
ð28Þ

�txx ðx; pÞ ¼
ð1
�1

�Q?
0tð1þ e�ptÞp2e�iaxda
2ðp2 þ p2t2ÞMð�aÞ

ð29Þ

�exx ðx;pÞ¼
ð1
�1

b1Q
?
0tð1þe�ptÞaða� ikÞe�iaxda

2ðp2þp2t2ÞMðaÞ
ð30Þ

Applying contour integration to the (27)–(30),

we obtain the solution for displacement (�uðx; pÞ),
temperature (�yðx; pÞ), stress (�txx ðx; pÞ), and strain

(�exx ðx; pÞ) in Laplace transform domain as follows:

�uðx; pÞ ¼ �FðpÞ
X4
j ¼ 1

ImðajÞ< 0

Aj �uj e
�iajx; x > 0

¼ FðpÞ
X4
j ¼ 1

ImðajÞ > 0

Aj �uj e
�iajx; x< 0

ð31Þ
�yðx; pÞ ¼ �FðpÞ
X4
j ¼ 1

ImðajÞ< 0

Aj
�yj e�iajx; x > 0

¼ FðpÞ
X4
j ¼ 1

ImðajÞ > 0

Aj
�yj e�iajx; x< 0

ð32Þ

�txx ðx; pÞ ¼ FðpÞ
X4
j ¼ 1

ImðljÞ< 0

Bje
�iljx; x > 0

¼ �FðpÞ
X4
j ¼ 1

ImðljÞ > 0

Bje
�iljx; x< 0

ð33Þ

�exx ðx; pÞ ¼ �FðpÞ
X4
j ¼ 1

ImðajÞ< 0

Aj �ej e
�iajx; x > 0

¼ FðpÞ
X4
j ¼ 1

ImðajÞ > 0

Aj �ej e
�iajx; x< 0

ð34Þ
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where Aj’s, Bj’s, F(p), �uj, �yj, and �ej are given by
Aj ¼
Y4

n ¼ 1

n 6¼ j

1

ðaj � anÞ

Bj ¼
Y4

n ¼ 1

n 6¼ j

1

ðlj � lnÞ ; j ¼ 1; 2; 3; 4

ð35Þ
FðpÞ ¼ iQ?
0ptð1þ e�ptÞ

C2
Tðp2 þ p2t2Þ ð36Þ

�uj ¼ ðiaj þ kÞ
�yj ¼ ða2j þ p2

C2
P

� iajkÞ
�ej ¼ ajðaj � ikÞ

ð37Þ

and aj, lj, and (j ¼ 1(1)4) are roots of the equa-

tions MðaÞ ¼ 0 and Mð�aÞ ¼ 0, respectively.
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Numerical Results and Discussion

To get the solution for thermal displacement,

temperature, stress, and strain in space-time

domain, we have to apply Laplace inversion for-

mula to the (31)–(34), respectively. This has been

done numerically using a method based on
Fourier series expansion technique. For the pur-

pose of illustration, we consider copper-like

material with material constants as follows [23]:
l ¼ 1:387� 1012dynes=cm2

m ¼ 0:448� 1012dynes=cm2
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eT ¼ 0:0168; at ¼ 1:67� 10�8=0C; y0 ¼ 10C

Also, we have taken Q?
0 ¼ 1, t ¼ 1;CP ¼ 1,

and CT ¼ 2, so the faster wave is the thermal

wave.

Figure 1 depicts variation of thermal displace-

ment versus distance for time t ¼ 0:4 when the

nonhomogeneity parameter k ¼ 0; 0:5; 1:0. It is

observed that as the value of the nonhomogeneity

parameter k decreases, the peak of thermal

displacement also decreases. The effect of

nonhomogeneity is seen in the interval 0< x< 3.

Figure 2 is plotted to show the variation of tem-

perature y with distance x. It is seen from figure

that as the value of k increases, the magnitude of

the temperature decreases for fixed x and ulti-

mately y approaches to zero value. This is because
heat source varies periodically with the time for

a short duration. This can also be verified from

the expression of �y given in (32) involving

e�iajx; ImðajÞ< 0 for x 	 0. Figure 3 shows varia-

tion of thermal stress versus distance x. Here, the
stress takes negative values for k ¼ 0; 0:5; 1:0 and

themagnitude of stress increases as k decreases for

the particular value of x. Figures 4–6 are plotted to
show the variation of thermal displacement, tem-

perature, and thermal stress, respectively, against
x for k ¼ 0:5 and t ¼ 0:4; 0:6. It is observed from

these figures that as time t increases, the magni-

tude of displacement, temperature, and thermal

stress increases.
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Overview

In the classic uncoupled thermoelasticity, the

field of the temperature is governed by the partial

differential equation, the Fourier equation of heat

conduction. This equation does not contain stress

or displacement terms. And since this equation is

of parabolic type, its solutions are smooth; thus,

the temperature effects described by the solutions

are felt instantly up to infinity. This theory of

uncoupled thermal stresses is considered in

a number of textbooks, including [1, 2], and [3].

In these books, the field equations of dynamic

theory of thermal stresses, in which there is no

coupling between the mechanical and thermal

fields, are thoroughly analyzed. In this classic the-

ory, the transient thermal stresses are produced by

a time-dependent temperature field that satisfies

the parabolic heat conduction equation, separate

from the dynamic displacement–temperature field

equations. This theory does not explain simple

experimental results, for example, why a steel

specimen gets hot during a standard tension test.

As early as 1837, J. M. C. Duhamel [4] pro-

posed a set of equations that would remedy this

situation. However, the more extensive research

in this area started only a few decades ago. It

was in 1956 that the theory of coupled

thermoelasticity was introduced in 1956 by

M. Biot [5]. This theory provides the coupling

between the temperature field and the stress field

and thus removes the paradox that elastic changes

have no effect on the temperature. As for the

displacement–temperature equations, they are of
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hyperbolic–parabolic type. And this is the theory

of which one problem we will solve in this ency-

clopedia entry.
C

Coupled Thermoelasticity

The governing equations of coupled

thermoelasticity for a linear homogeneous isotro-

pic material are:

The equation of motion
div Sþ b ¼ r€u; S ¼ ST ð1Þ

The strain–displacement relation
E ¼ 1

2
ðHuþ HuTÞ ð2Þ

Hooke’s law
S ¼ 2mEþ lðtrEÞ1� gT1; T ¼ y� y0 ð3Þ

The energy equation
H2T � 1

k
_T � gy0

k
tr _E ¼ �Q

k
ð4Þ

Here 1 is the unit second-order tensor, y is

the temperature, y0 is the reference tempera-

ture, and T is temperature change. From the

combination of the first three equations, the

displacement–temperature equation of motion

is obtained:
mH2uþ ðlþ mÞHðdivuÞ � gHTþ b ¼ r€u ð5Þ

Equations (4) and (5) represent the displace-

ment–temperature equations of coupled

thermoelasticity for a solid elastic body. The

full description of the problem requires the

energy equation and the equation of motion

complemented by appropriate initial and

boundary conditions for thermal and mechani-

cal loads.
Coupled Thermoelasticity Problem for
an Infinite Body

As an example, it will be shown now the

approach to a solution of a coupled problem of

spherical stress and temperature waves in an

infinite elastic space, initially at rest [6]. The

contents of the same paper [6] are the topic of

Section 3.3 of the book by JP Nowacki [7]. It is

assumed that there acts an instantaneous point

source of heat Q ¼ Q0dðtÞ dðRÞ; where Q0 is

a constant and R is the radial distance from the

source to a representative point in the space.

Assuming the body force b to be zero in (5) and

writing the energy equation (4) in slightly

changed rendition, the fundamental equations

are
mH2uþ ðlþ mÞHðdiv uÞ � gHT ¼ r€u ð6Þ

and
H2T � 1

k
_T � g y0

k
div _u ¼ �Q P; tð Þ

k
ð7Þ

where P means the position of a representative

point. Write the displacement vector u as a sum

of two parts, namely, an irrotational part and

a potential part [8],
u ¼ Hfþ H�C ð8Þ

where f denotes a scalar potential andC denotes

a vector potential.

Equation (8) is substituted into (6) and (7) to

obtain
H2f� 1

c21

€f ¼ g
lþ 2m

T

H2Ci � 1

c22
€Ci ¼ 0 i ¼ 1; 2; 3

H2T � 1

k
_T � g y0

k
H2 _f ¼ �QðP; tÞ

k

ð9Þ
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where c1 and c2 stand, respectively, for the speed
of propagation of the elastic longitudinal wave

and the speed of the shear wave.

Elimination of T from the first and the third of

(9) leads to a single differential equation for f
H2 � 1

k
@

@t

� �
H2 � 1

c21

@2

@t2

� �
f

� g2 y0
ðlþ 2mÞkH

2 _f ¼ � g
lþ 2m

QðP; tÞ
k

ð10Þ

The immediate goal is to find the scalar poten-

tial f from (10). Once f is determined, both the

stresses and the temperature can be calculated.

Now, introduce a nondimensional coupling

parameter e defined as
e ¼ g2 y0
c r ðlþ 2mÞ ð11Þ

and the expression for QðP; tÞ and apply the

Laplace transform to (10) subject to homoge-

neous initial conditions. The result is
H2 � p

k

� 
H2 � p2

c21

� �
� e
k
pH2

� �
f

¼ � g
lþ 2m

Q0 dðRÞ
k

ð12Þ

Let Laplacians be treated as numbers, and use

the notation h1 ¼ p=c1, where c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2mÞ=rp

and h2 ¼
ffiffiffiffiffiffiffiffi
p=k

p
, with p being the Laplace trans-

form parameter. This leads to
f ¼ � g
lþ 2m

Q0

k
1

ðH2 � h21ÞðH2 � h22Þ � eh22H
2
dðRÞ

¼ g
lþ 2m

Q0

k
1

ðH2 � h21ÞðH2 � h22Þ

� 1

1� h22e
H2

H2�h2
1ð Þ H2�h2

2ð Þ

24 35dðRÞ
ð13Þ

Expand now the expression in square brackets

into the power series in terms of e:
f ¼ � g
lþ 2m

Q0

k
1

ðH2 � h21ÞðH2 � h22Þ

�
�
1þ h22e

H2

ðH2 � h21ÞðH2 � h22Þ

þ h22e
H2

ðH2 � h21ÞðH2 � h22Þ

� �2
þ . . .

)
dðRÞ

ð14Þ

or
f ¼ A
X1
n¼0

h22 eH
2

� �n
H2 � h21
� �nþ1

H2 � h22
� �nþ1

" #
½�4pdðRÞ�

ð15Þ

where
A ¼ g
4pðlþ 2mÞ

Q0

k
ð16Þ

It is known that for an infinite space [9],
H2 � h21
� � expð�h1RÞ

R
¼ �4pd Rð Þ

H2 � h22
� � expð�h2RÞ

R
¼ �4pd Rð Þ

ð17Þ

Combining these two equations results in

1

ðH2 � h21ÞðH2 � h22Þ
½�4pdðRÞ�

¼ expð�h1RÞ � expð�h2RÞ
ðh21 � h22ÞR

ð18Þ

Now, introduce two nondimensional parame-

ters o1 and o2 and replace h21 by o1h
2
1 and h22 by

o2h
2
2, and get
1

H2 � o1h21
� �

H2 � o2h22
� � ½�4pdðRÞ�

¼ exp � ffiffiffiffiffiffi
o1

p
h1R

� �� exp � ffiffiffiffiffiffi
o2

p
h2R

� �
o1h21 � o2h22
� �

R

ð19Þ

Consecutive differentiation of ðH2 � o1h
2
1Þ

�1

with respect to o1 leads to
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C

@

@o1

H2 � o1h
2
1

� ��1 ¼ 1 � h21 H2 � o1h
2
1

� ��2

@2

@o2
1

H2 � o1h
2
1

� ��1 ¼ 1 � 2 � h21
� �2

H2 � o1h
2
1

� ��3

..

.

@n

@on
1

H2 � o1h
2
1

� ��1 ¼ n! h21
� �n

H2 � o1h
2
1

� ��n�1

ð20Þ

Similarly,
@n

@on
2

ðH2 � o2h
2
2Þ

�1 ¼ n! ðh22Þ
nðH2 � o2h

2
2Þ

�n�1

ð21Þ

Substitute expressions appearing in (20) and

(21) with o1 ¼ o2 ¼ 1 in (15)
f ¼ A
X1
n¼0

enðH2Þn
ðn!Þ2

1

ðh21Þn
(

@2n

@on
1 @o

n
2

1

ðH2 � o1h21ÞðH2 � o2h22Þ
½�4pdðRÞ�

�����
o1¼o2¼1

ð22Þ
Introduce (19) into (22) and denote the inverse

Laplace transform by L�1ff ðpÞg. Then,
fðR; tÞ ¼ L�1 fðR; pÞ� 	 ¼ A
X1
n¼0

enðH2Þn
ðn!Þ2

(
@2n

@on
1 @o

n
2

L�1 expð� ffiffiffiffiffiffi
o1

p
h1RÞ � expð� ffiffiffiffiffiffi

o2
p

h2RÞ
ðh21Þnðo1h21 � o2h22ÞR

� ������
o1¼o2¼1

ð23Þ

ffiffiffiffiffiffip ffiffiffiffiffiffip

To make (23) simpler for performing inverse

Laplace transformation, the following relations

are used:
ðH2Þn expð�
ffiffiffiffiffiffi
o1

p
h1RÞ

R
¼ on

1h
2n
1

expð� ffiffiffiffiffiffi
o1

p
h1RÞ

R

ð24Þ

and
ðH2Þn expð� o2h2RÞ
R

¼ on
2h

2n
2

expð� o2h2RÞ
R

ð25Þ

Substitute (24) and (25) into (23) and get
fðR; tÞ ¼ L�1 fðR; pÞ� 	 ¼ A
X1
n¼0

en

ðn!Þ2
(

� @2n

@on
1 @o

n
2

L�1 on
1h

2n
1 expð� ffiffiffiffiffiffi

o1
p

h1RÞ � on
2h

2n
2 expð� ffiffiffiffiffiffi

o2
p

h2RÞ
ðh21Þnðo1h21 � o2h22ÞR

� ��
ð26Þ
and take the expression in braces for

o1 ¼ o2 ¼ 1: The result obtained is the power

series in terms of the coupling parameter e. The
first term, for n ¼ 0, gives the solution to

the classic (uncoupled) problem, while the fol-

lowing terms show the effect of the coupling.
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This problem in the classic (uncoupled) case is

extensively discussed in Subsection 11.2.1 of [3].

It should be noted that the Laplace transform

parameter p appears in h1 and h2.

After performing the required operations, both

o1 and o2 should be made equal one.

The next step is the inversion of the Laplace

transform of the expression in brackets in (26).

The method of inversion of this Laplace transform

is not the topic of this encyclopedia entry.Adetailed

method of obtaining the inverse transform is a quite

lengthy process and requires special formulas of

which some are given in “Cross-References.” The

entire inversionof the first two termsof the series, as

well as the analysis and discussion of the results,

with tables and figures, is to be found in [6]. After

the potential fðR; tÞ is determined, the stresses and

the temperature are arrived at by using the formulas
SRR ¼ � 4m
R

@f
@R

þ r
@2f
@t2

ð27Þ

S’’ ¼ S##

¼ �2m
1

R

@f
@R

þ @2f
@R2

� �
þ r

@2f
@t2

ð28Þ

SR’ ¼ S’# ¼ SR# ¼ 0 ð29Þ

T ¼ lþ 2m
g

@2f
@R2

þ 2

R

@f
@R

� 1

c21

@2f
@t2

� �
ð30Þ

The method of attacking one of the basic

problems of coupled thermoelasticity illustrates

the fact that solution of problems of coupled

thermoelasticity is not a simple matter, and only

few such problems have been solved without

recurrence to numerical methods.
Cross-References

▶Application of the Generalized Functions

Method for Analysis of Thermal Stresses in

Piecewise-Homogeneous Solids

▶Laplace Transforms of Specific Exponential

Form Encountered in Thermoelasticity
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Synonyms

Coupled thermoelasticity
Overview

The experimental evidence of heat propagating

as thermal wave at low temperature, a

phenomenon commonly called “second sound,”

has fueled scientific research in the past few

decades. The aim was to remove the paradox of

infinite speed of propagation of waves in classical

thermodynamics, in which Fourier law for heat

conduction plays a central role, leading to

a partial differential equation of parabolic type

for temperature. It was recognized at an early

stage that the cause of this paradox was an insuf-

ficient description of the nonequilibrium thermo-

dynamical state in the existing model.

An early attempt to modify Fourier law for

heat conduction was undertaken by Cattaneo [1]

who introduced in the classical law a new term

involving a time derivative of the heat flux vector.

Chester [2] notes that “this generalized law itself

is a truncated form of a more extensive relation

obtained earlier by Maxwell who, in view of the

problems he was treating then, casually neglected

the time derivative term as well as many others.”

An example of such an extensive law is given

by Grad [3]. Although the kinetic formula pro-

posed by Cattaneo does not satisfy the funda-

mental principle of frame indifference, it can
nevertheless be considered as an important step

in the way of formulating more sophisticated

laws which are in conformity with the general

principles of thermodynamics and continuum

mechanics. Within this framework, several con-

tributions have been devoted to the study of ther-

modynamical models, relativistic or

nonrelativistic, including rate-type constitutive

relations. This trend has been given the general

appellation of extended thermodynamics. Among

the pioneering contributions in this field of

research, we cite those by M€uller [4, 5]; Lord

and Y. Shulman [6]; Gurtin and Pipkin [7]; Fox

[8]; Green and Lindsay [9]; Maugin [10]; Atkin,

Fox, and Vasey [11]; Israel [12]; Massa and

Morro [13]; Lebon, Jou, and Casas-Vasquez

[14]; Bampi and Morro [15]; Coleman, Fabrizio,

and Owen [16]; Ghaleb [17]; Green and Naghdi

[18]; and Önc€u and Moodie [19].

Many of the established models were later on

generalized to include interaction with electric

and magnetic fields. Apart from the importance

of studying generalized thermoelastic effects in

polarizable and magnetizable continuous media

at low temperatures, recent experimental evi-

dence by Rybalko [20] has shown that heat pulses

at low temperatures are accompanied by some

electrical activity. An explanation of this phe-

nomenon is undertaken by Rybalko et al. [21]

and Pashitskii et al. [22, 23]. The investigation

of such phenomena, together with the problem of

experimental determination of new physical

parameters, clearly points out at the importance

of developing and investigating complex

models on the basis of rational thermodynamics,

involving electromagneto-thermomechanical

interactions.

There is ample literature on the subject of

electromagneto-thermoelastic interactions in

generalized thermodynamics. Ersoy [24, 25]

proposes a new nonlinear theory of constitutive

equations for electrically and thermally

conducting magnetothermoelastic solids in

which the electric current and heat flux vectors

are considered to be independent variables in the

argument of each constitutive function.

Chandrasekharaiah [26] developed a model of

http://dx.doi.org/10.1007/978-94-007-2739-7_626
http://dx.doi.org/10.1007/978-94-007-2739-7_100103
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thermoelasticity for piezoelectric materials in

which the heat flux figures among the indepen-

dent thermodynamical variables. He showed that

the linearized model still admits finite velocity of

propagation of thermal signals. Singh [27] for-

mulated the governing equations for generalized

thermopiezoelectric solids using Green-Lindsay

and Lord-Shulman theories. Montanaro [28]

derived thermodynamic restrictions on the con-

stitutive equations for an electrically polarizable,

heat-conducting elastic continuous medium

subjected to an electric field.

Several papers were devoted to the investiga-

tion of different phenomena in polarizable and

magnetizable media in extended thermodynam-

ics, most are concerned with piezoelectric

ceramics. Bassiouny and Ghaleb [29] studied

the propagation of thermoelastic waves in

a semi-infinite rod of a piezoelectric material.

Roy Choudhuri [30] studied the propagation of

plane electro-magneto-thermo-elastic harmonic

waves in an unbounded isotropic conducting

medium permeated by a primary uniform mag-

netic field when the entire medium rotates with

a uniform angular velocity. Sherief [31] solved

the electromagneto-thermoelastic wave propaga-

tion problem in an infinitely long circular solid

cylinder. Majhi [32] investigated the propagation

of discontinuities in generalized thermoelastic

wave propagation in a semi-infinite piezoelectric

rod. Sherief and Ezzat [33] addressed the same

problem, but for an annular circular cylinder.

Tianhu, Xiaogeneg, and Yapeng [34, 35] studied

shock-wave propagation in piezoelectric rods and

plates. Restuccia and Maruszewski [36]

described the behavior of anisotropic piezoelec-

tric crystals defective by dislocations, using

a nonconventional model based on the extended

irreversible thermodynamics in which

a dislocation tensor and its flux are introduced

as internal variables. Xia Lu and Hanagud [37]

investigated the self-heating or dissipation in

piezoelectric ceramics within Onsager’s theory,

with application to actuators. Singh [27]

solved a two-dimensional problem for

a thermopiezoelectric solid. He, Tian, and Shen

[38] studied a generalized electromagneto-

thermoelastic problem for an infinitely long
solid cylinder. Aouadi [39–41], and [42] studied

one- and two-dimensional problems of

thermoelastic diffusion. Youssef and Bassiouny

[43] studied two-temperature generalized

thermopiezoelasticity for one-dimensional

problems using state-space approach.

In what follows, we present a fully nonlinear

model for electrically polarizable, heat-

conducting elastic continuous media including

several couplings between the mechanical,

thermal, and electric fields. A consistent

approach to build such models can be conducted

within the frame of the theory of relativity,

which is a common natural frame for

mechanics, thermodynamics, and electromagne-

tism. This was achieved in [10, 12, 13], and [15].

Our attention, however, will be restricted to the

quasi-electrostatic case, and this can be carried

out in the nonrelativistic approximation. The

ensuing field equations and constitutive relations

are formulated in the reference configuration.

This makes the model particularly suitable for

handling many situations, for example, problems

with moving boundaries. The rationalized MKS

system of units is used throughout. The basic

unknown functions in the proposed system of

nonlinear equations are the mechanical displace-

ment, the electric field, and the temperature. The

number of unknown functions may be reduced by

noting that the electric field is derived from

a scalar electric potential. Details concerning

the definitions and the derivations may be found

in the textbook by Maugin [44], and also in

Maugin [45].
Notation and Kinematics

We use the standard Cartesian tensor notation in

orthogonal Cartesian coordinate systems, and the

summation convention over repeated indices is

adopted. The “comma” denotes covariant

derivative and the “dot,” the material time

derivative, as defined in [44]. The motion

between the reference configuration KR, thought

of as a natural configuration free of loads, strains,

and fields and where the mass density and the

temperature have uniform values rR and y0,
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respectively, and the current configuration Kt at

time t is represented by the law of the motion
C

xi ¼ ~xi ðXK; tÞ; i;K ¼ 1; 2; 3 ð1Þ

J 
 detðxi;KÞ > 0 ð2Þ

where xi and XK are the Eulerian and the material

coordinates, respectively. By inversion, one has
XK ¼ ~XK ðxi; tÞ ð3Þ

and the following relations hold:
xi;K XK;j ¼ dij; XK;i xi;L ¼ dKL

the dij and dKL being the usual Kronecker sym-

bols. The deformation gradient tensor F is

defined through its components as
FiK ¼ xi;K F�1
Ki ¼ XK;i

One also needs to introduce the finite-strain

symmetric Lagrangian tensors ℂ and E with

respective components
CKL ¼ xi;K xi;L; EKL ¼ 1

2
ðCKL � dKLÞ

The components ui and UK of the displace-

ment vector in Kt and KR, respectively, are

given by
ui ¼ xi � diKXK; UK ¼ dKixi � XK

where diK and dKi are the so-called shifters. By

differentiation, one obtains
xi;K ¼ diK þ ui;K; XK;i ¼ dKi � UK;i

and therefore,
EKL ¼ 1

2
ðUK;L þ UL;K þ UM;K UM;LÞ ð4Þ

The following developments may be useful in

finding successive approximations from the basic

equations:
xi;K ¼ diLðdLK þ UL;KÞ ð5Þ

XK;i ¼ dKi � UK;L dLi þ UK;L UL;M dMi

� UK;L UL;M UM;N dNi þ � � � ð6Þ

J ¼1þ UK;K þ 1

2
ðUK;KÞ2

� 1

2
UK;L UL;K þ 1

3!
ðUK;KÞ3

� 1

2
UK;K UM;N UN;M

þ 1

3
UM;L UL;N UN;M þ � � �

ð7Þ

The velocity field v is defined through its

components vi as
vi ¼ @xi
@t

� �
XK

ð8Þ

All fields appearing in the subsequent equa-

tions are material fields, depending on the vari-

ables (XK, t), unless otherwise stated.
Equations for the Electric Field

All effects connected with the magnetic field will

be disregarded. Definitions and details

concerning the material form of the electric quan-

tities may be found in the books by Nelson [46]

and byMaugin [44]. In quasistatic approximation

and in the absence of external electric charges,

the equations in material form satisfied by the

electric fields are
!R:�D ¼ 0 ð9Þ

!R � �E ¼ 0 ð10Þ

where subscript R refers to the referential configu-

ration and the material fields are endowed with

a “bar.” The material electric field �E and electric

induction �D are related to the corresponding

quantitiesE andD in the Eulerian configuration by
�E ¼ EF; �D ¼ JF�1D ð11Þ
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or in components

�EK ¼ Ei xi;K; �DK ¼ JXK;i Di ð12Þ

Recalling the relation between the Eulerian

electric induction and electric field
D ¼ e0Eþ P ð13Þ

where P denotes the polarization per unit volume

of the medium and e0 ¼ 1
36p � 10�9 Fm�1 is

the permittivity of a vacuum. Introducing the

material polarization per unit volume

�P ¼ JF�1P ð14Þ

the material counterpart of (13) takes the form

�D ¼ e0JC�1�Eþ �P ð15Þ

or in components

�DK ¼ e0JXK;i XL;i
�EL þ �PL ð16Þ

According to (10), the electric field is derived

from a vector potential, F say, so that one may

write
E ¼ �!RF ð17Þ

The boundary conditions related to the above

equations may be derived in the usual way.

On a surface of discontinuity with unit normal

N, these conditions read
½�D:N� ¼ 0; ½F� ¼ 0; ð18Þ

where [.] denotes the jump in crossing the surface

along N.
Equations of Motion

In the absence of body forces of nonelectric ori-

gin, the equations of motion in material form are

(cf. [44], p. 194)
rR
@2ui
@t2

¼ TKi;K ð19Þ

where TKi are the components of the “total”

Piola-Kirchhoff stress tensor, given as the sum

of mechanical (labelled E) and electrical

(labelled F) contributions:

TKi ¼ TE
Ki þ TF

Ki ð20Þ

This tensor is related to the Eulerian stress

tensor
t ¼ tE þ tF ð21Þ

by the relation

T ¼ JF�1t ð22Þ

Tensor tE is assumed symmetric. At this stage,

it is convenient to introduce the “total” second

Piola-Kirchhoff stress tensor (cf. [44], p. 196)

�T ¼ �T
E þ �T

F ð23Þ

through the relation

T ¼ �TFT ð24Þ

This may be rewritten in components as

TKi ¼ xi;L ð �TE
KL þ �T

F
KLÞ ð25Þ

Tensor �T
E

is clearly symmetric. Its compo-

nents will be determined later on within the

constitutive theory, while the electric part is

given by the expression
�T
F
KL ¼ XL;j XM;j ð �DK

�EM � 1

2
�EN

�DN dKMÞ
ð26Þ

this being taken directly from the well-known

Eulerian counterpart
tFji ¼ EiDj � 1

2
EkDk dij ð27Þ
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The skew-symmetric part of tensor �T
F

has

components
C

�T
F
½KL� ¼ �D½K XL�;j XM;j

�EM ð28Þ

and is related to the density of volume and surface

couples of electric origin acting on the medium

through the formula
�T
F �ð �TFÞT ¼ �JF�1ðCþMÞðFTÞ�1 ð29Þ

The components of the Eulerian, skew-

symmetric second-order tensors C and M are

related to those of the body torque per unit volume

c ¼ ðciÞ and contact torque per unit area

mðnÞ ¼ ðmjinjÞ, where n denotes the unit normal

to the surface, by the formulae
Cij ¼ eijk ck; Mij ¼ eijk mkr;r ð30Þ

where eijk denote the components of the

Levi-Civita completely skew-symmetric tensor.

The boundary condition corresponding to the

equation of motion (19) is
½NKTK;i� ¼ 0 ð31Þ
Equation of Heat Conduction

Let q denote the heat flow vector, Q its material

counterpart defined as
Q ¼ JF�1q ð32Þ

and r the heat supply. Then, the equation of

heat conduction in material form reads (cf. [44],

p. 196)
_S ¼ TE
KL

_EKL þ �E: _�P� QK;K þ rR r ð33Þ

where the left-hand side is related to the time rate

of change of the specific internal energy e by
_S ¼ rR _e ð34Þ

and the “dot” means differentiation w.r. to time

under constant XK.
Clausius-Duhem Inequality

The second law of thermodynamics yields the

following material equation for the time rate of

variation of the specific entropy �:

rR _� ¼ � QK

y

� �
;K

þ s; s 	 0 ð35Þ

where y is the absolute temperature and s the

dissipation function.

Introducing the specific free energy c by the

relation
c ¼ e� y� ð36Þ

and using (35) and (44), the equation of energy (33)

yields the well-known Clausius-Duhem inequality:
�rRð _cþ � _y Þ þ TE
KL

_EKL þ �E: _�P

�y�1Q:!Ry ¼ s 	 0
ð37Þ
Constitutive Relations

The following constitutive assumption is made

concerning the dependence of the free energy on

the different thermodynamical variables:
c ¼ cðEKL; �PK; y;QKÞ ð38Þ

The problem of inclusion of flow rates as

thermodynamical arguments in the free energy

was discussed by several authors, among whom

we cite [16, 24], and [17]. In addition, one also

assumes the validity of the following set of

constitutive relations:

TE
KL ¼ rR

@c
@EKL

ð39Þ
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�EK ¼ rR
@c
@ �PK

ð40Þ

� ¼ � @c
@y

ð41Þ

A systematic deduction of these equations

may be found in [28]. In view of the above, the

Clausius-Duhem inequality (37) reduces to
s ¼ �rR
@c
@QK

_QK � y�1QKy;K 	 0 ð42Þ
Cattaneo-Type Evolution Equation for
the Heat Flux

The present model can accommodate an evolu-

tion equation of Cattaneo’s type for the heat flow

vector. A detailed investigation of this matter was

carried out by Montanaro [28]. Following this

last reference, we postulate the existence of the

evolution equation
tKL _QL ¼ QK þ kKLy;L ð43Þ

where tensors t and k are positive definite, and that
the free energy c can be represented in the form
c ¼ c0ðEKL; �PK; yÞ þ 1

2
NKL QKQL ð44Þ

with (NKL) a symmetric tensor. Substituting for
_QK from (43) and forc from (44) into the reduced

Clausius-Duhem inequality (42) and choosing
NKL ¼ �r�1
R y�1 k�1

ðKjStSjLÞ ð45Þ

one finally arrives at the following expression for

the dissipation function:
s ¼ y�1k�1
KLQKQL ð46Þ

and this is nonnegative in view of the above

property of tensor k.
Conclusions

1. A model has been presented for elastic, elec-

trically polarizable, and heat-conducting con-

tinuous media within the frame of extended

thermodynamics.

2. The present model complies with the basic

assumptions of Continuum Mechanics and

Thermodynamics.

3. The used approach is nonrelativistic, and the

equations of electromagnetism are taken in the

quasistatic approximation, when all phenomena

including the magnetic field can be disregarded.

4. All equations are formulated in material form

in the reference configuration, which carries

some advantages in many situations, especially

in treating problems with moving boundaries.

5. The model is fully nonlinear and involves

couplings between the mechanical, thermal,

and electric fields.

6. A Cattaneo-type evolution equation for the

heat flow vector could be obtained by assum-

ing an extra dependence of the free energy,

as compared to the classical model, on the heat

flow vector. At the same time, the frequently

used Onsager-type theory to deduce the

kinetic equations has to be abandoned.

7. Proofs and details of calculations were

omitted for the sake of conciseness. These

may be found in the relevant literature.
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Synonyms

Crack; Crack surface interference; Crack sur-
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Definitions

A crack in a body subjected to tension loading is

completely open only at high load levels, or in
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other words, at low load levels a part of the crack

near the tip remains closed during the loading as

well as the unloading phase of the cycle. More-

over, in the mechanism that is called crack

breathing phenomenon, the crack moves from

an upper position with respect to the direction of

an alternating thermal and/or mechanical loading

where the load forces the crack to be “closed” to

the opposite position in which the crack is forced

to be “open.” Furthermore, the contact of the

surfaces of a crack subjected to sudden heating

implies that the crack is no longer fully open. The

interference of deformations of crack faces in

previous situations is commonly referred to the

literature as crack closure, and this phenomenon

effects and considerably controls various aspects

of the crack propagation.
Overview

The concept of crack closure was first proposed

by Elber [1] in 1970 to explain the characteris-

tics of fatigue crack growth in aluminum alloys.

Beyond the mechanical loading, insert wear

characterized by small cracks and fissures

caused by temperature fluctuations and the

crack closure phenomenon exists resulting

from cyclic stresses due to temperature changes.

The study of crack interference under given

thermal loadings is becoming increasingly

important and has attracted considerable atten-

tion in the design of various machine compo-

nents. The presence of imperfect contact and

thermal resistance, which depends on the pres-

sure between the contacting faces, leads to cou-

pling of the thermal and stress field in such

problems. Indicative modeling efforts [2] deal-

ing with heat transfer and thermoelastic prob-

lems take into account the imperfect contact and

thermal resistant. The conditions presented in

the crack area depend on the mechanical pres-

sure applied in the crack surfaces. According to

the nature of the load, the crack can remain open,

and then there is no sliding contact phenomenon.

In addition, the symmetry of an imposed thermal

load does not permit any heat exchange between

the crack faces. Therefore, neither thermal
contact resistance nor gap conductance could

exist in such a problem. On the other hand, the

loading conditions may lead to crack closure,

resulting in heat flux between the crack faces

that is mediated by the thermal contact resis-

tance [3, 4].

Special interest has been given in the determi-

nation of fracture characteristics of thermally

stressed cracks contained in elastic solids, mainly

because of their importance in the theory of brit-

tle fracture and in many industrial applications.

The complicated geometry configurations of

structures combined with the developed step tem-

perature gradients enforce failures reducing

safety and reliability standards. According to the

finite element method (FEM) formulation that is

usually followed, the overlapping of the crack

faces is prevented by assuming proper constraints

between adjacent nodes. Three states of contact

are possible: the open, stick, and slip state. It is

assumed that slip occurs under dry Coulomb fric-

tion conditions. Due to the presence of friction,

the problems considered are solved in an

incremental–iterative fashion.
Contact Between Two Crack Faces

The crack surface interference problem is usually

treated like a classical contact problem between

deformable but interconnected bodies at the

crack front. In order to approach frictional con-

tact between these sub-bodies, it is assumed that

possible sliding obeys Coulomb’s law of friction

and that penetration between contacting areas is

not allowed. The breathing crack behavior is usu-

ally treated as a contact problem between the

crack surfaces IS and IIS, which intersect in the

crack area. As shown in Fig. 1, these surfaces

may come into contact on an interface cS, given

by cS ¼ IS \ IIS. The size of cS can vary during

the interaction between the load and the structure,

but it usually consists of two parts, an adhesive

(aS) and a slipping (sS) part, depending on

the friction conditions maintained between the

contacting surfaces. In the open crack state,

the oS part of the crack surface is subject to the

traction-free condition.



Crack Closure, Fig. 1 Contact of crack surfaces

C 776 Crack Closure
Contact State

The open crack model requires crack faces to be

thermally insulated and traction-free. Under ther-

mal loading, these assumptions are no longer

valid because partial crack closure may occur.

Assume that the body is subject to small strains

and small deformations due to the action of ther-

mal load and that this thermal load eventually

causes the closure of the crack.

The contact area along cS can be divided then

into three possible states of contact: the open, slip,

and adhesion state. The relationships between the

normal and tangential traction in the local coordi-

nate system for each one of these contact states are
px1 ¼ px2 ¼ 0 openð Þ ð1Þ

px1 ¼ �mpx2 ¼ 0 slipð Þ ð2Þ

px1
�� �� < m px2

�� �� ¼ 0 adhesionð Þ ð3Þ

where m is the coefficient of friction of cS. As it can
be seen from the above equation, it is assumed that

slip occurs under Coulomb friction conditions. The

crack surfaces are defined by local coordinate sys-

tems
�ðjx1; jx2Þ; with J ¼ I; II

�
. Subscripts 1 and 2

represent the tangential and normal directions,

respectively, to the crack surfaces. Both axes jx2
define the direction of the unit outward normal

vector of the corresponding surfaces, while the

corresponding axes jx1 define the slipping direction.
The so-called slave–master concept that is

widely used for the implementation of contact

analysis can be adopted for prediction of the

crack surface interference. Assuming that the

crack surface IS is the slave, the nodes on this

surface are called slave nodes. Then the surface
IIS is the master one, and the nodes that belong to

this are called master nodes. Contact segments

that span master nodes cover the contact surface

of the structure. Therefore, the above problem can

be regarded as contact between a slave node and

a point on a master segment. This point may be

located at a node, an edge, or a point of a master

segment. A slave point makes contact with only

one point on the master segments, but one master

segment can make contact with one or more slave

nodes at each time. For every contact pair, the

mechanical contact conditions are expressed in

a local coordinate system in the direction of the

average normal to the boundaries of the bodies.

Contact problems are in general nonlinear

since the extent of contact is not known in

advance and because the friction phenomena at

the contact area lead to the load history depen-

dency of the boundary conditions. Therefore,

these problems have to be formulated in an incre-

mental and iterative fashion. In the steady-state

problems, the extent of contact may be load inde-

pendent. Despite this fact, an incremental proce-

dure is generally needed to deal with such

problems because the areas of stick and slip can

be still load dependent. However, if the partition

of stick–slip regions in the contact area is load

independent as well, then these problems can be

solved iteratively, with one step using the total

load. When the external loading varies, then the

regions on which the adhesion, slip, and traction-

free conditions occur also vary. The existence of

pressure-dependent thermal contact leads to cou-

pling of temperature and stress fields. Therefore,

the inherent nonlinearity of the problem demands

simultaneous treating of both thermal and

mechanical boundary integral equations, while

iterative procedures are introduced to ensure

equilibrium of mechanical and thermal contact

conditions at each step of the process. Under

crack contact conditions, the near crack tip
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displacements and stresses keep their essential

singular behavior, despite the imposed contact

constraints. However, because of the nonlinearity

of the contact phenomenon, an accurate analyti-

cal solution is not possible.
C

Incremental Solution

Since the frictional contact problems are inher-

ently nonlinear and irreversible, an incremental

approach could be implemented. The discretized

nonlinear system of equations can be written as

a set of algebraic equations in the form
½KTðUÞ�fUg ¼ fFg ð4Þ

In (1), fFg is the external force vector, and

fUg is the structural displacement vector,

respectively.

To trace the nonlinear structural response,

a load stepping procedure must be used.

Assuming that the load is applied in M equal

small increments of the form fDFmg ¼
fFmg � fFm�1g, m ¼ 1; 2; . . . ; M, an incre-

mental procedure is then set up. The incremental

procedure makes use of the fact that the solution

for fUm�1g is known when the load term fFm�1g
is applied to the structure. Such a method can

yield reasonable results and guaranteed to con-

verge if a suitably small increment of fFg is

chosen.

The application of a trial load fDFmg at the

step m of the procedure yields the incremental

form of (1) in the form

½KT�fDUmg ¼ fDFmg ð5Þ

where ½KT� is the tangent stiffness matrix and

fDUmg ¼ fUmg � fUm�1g is the increment in

the structural displacement. At any increment m,

it must be satisfied also the equilibrium condition
fRmg ¼ fPmg � fFmg � f0g ð6Þ

where fRmg is the residual and fPmg is the vector
of internal forces. The solution of the problem
posed by (5) and (6) cannot approach directly,

and some form of iteration will be always

required to zero the residual and restore the equi-

librium for every load step. The iterative proce-

dure approximately achieves the solution, and

some tolerance limits are set to terminate the

iteration and ensure the convergence of the itera-

tive procedure.

Under the FEM approach and load reversing,

in adjacent node pairs, the tractions vary

according to the type of contact (1–3). This

means that some displacement components are

constrained and force components are altering.

The time variation of the external loading

imposes changes in the nodal pairs on which

these constrains are valid. Recalling the equilib-

rium condition between the components of the

incremental force is always maintained by the

following equations:
ID f i
m þ IID f i

m ¼ 0; i ¼ 1; 2; 3 ð7Þ

In the open crack state (surface oS), the incre-

mental traction components are simplified as

follows:
ID f i
m ¼ �IIf i

m�1; i ¼ 1; 2; 3 ð8Þ

By the definition of adhesion, on the

corresponding crack surfaces (aS), the incremen-

tal displacement components are interconnected

by the equation

Iui
m�1 þ ID ui

m ¼ IIui
m�1 þ IID ui

m; i ¼ 1; 2

ð9Þ

When exists a gap g0 in the normal direction,

then the incremental displacement component

along the normal direction is
Iu3
m�1 þ ID u3

m ¼ IIu3
m�1 þ IID u3

m � g0 ð10Þ

where g0 is the initial normal gap between the

master and slave node of the corresponding node

pair. The slip state does not prohibit the existence

of a gap between the crack surfaces, so (7) is still
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Assumption

Decision

Open Contact

Open IID u3
m � ID u3

m > Iu3
m�1 � IIu3

m�1 þ g0 IID u3
m � ID u3

m  Iu3
m�1 � IIu3

m�1 þ g0

Contact If 3
m�1 þ ID f 3

m 	 0 If 3
m�1 þ ID f 3

m < 0

Adhesion Slip

Adhesion
����If im�1 þ ID f i

m

���� <

����m ðIf 3m�1 þ ID f 3
mÞ
����,

i ¼ 1; 2

����If im�1 þ ID f i
m

���� 	
����m ðIf 3m�1 þ ID f 3

mÞ
����,

i ¼ 1; 2

Slip ðIf im�1 þ ID f i
mÞ ðID f i

m � IID f i
mÞ > 0, i ¼ 1; 2 ðIf im�1 þ ID f i

mÞ ðIDf im � IID f i
mÞ  0, i ¼ 1; 2
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valid in this case. However, the coplanar force

components are defined in terms of friction

If i
m�1 þ ID f i

m ¼ �m If 3
m�1 þ ID f 3

m
� �

; i ¼ 1; 2

ð11Þ
where m is the coefficient of Coulomb friction.

Lowercase symbols jui
m and jf i

m, i ¼ 1; 2 denote

nodal displacement and force components,

respectively, defined on the local coordinate sys-

tems ðjx1; jx2Þ, j ¼ I; II. For reasons of simplic-

ity, the subscripts that indicate nodal numbers

were dropped out.

The constraints appearing in (7)–(11) can be

embedded in the previously reported incremental

FEM procedure if they are transformed to the

global coordinate system and properly assembled

to the master system of (5). Assume that the

problem has been solved for the step m� 1 and

consequently that the total nodal values fUm�1g,
fFm�1g are known for the whole structure. To

determine the corresponding total nodal values

of the step m, the contact conditions must be

satisfied first. Therefore, the iterative procedure

must be applied by initially utilizing the conver-

gent contact status c ¼ a [ s [ o of the previous

step m� 1. The procedure initially assumes that
ID f i

m ¼ 0, i ¼ 1; 2; 3. Then, the accurate values

of incremental forces can be estimated via the

iterative procedure. The contact state for every

node pair is examined according to Table 1.

This Table describes criteria to check if viola-

tions involving geometrical compatibility and

force continuity have occurred.Where necessary,
appropriate changes from open to contact and

from adhesion to slip state, and vice versa are

made to seek the equilibrium state of contact

conditions. For the node pair closest to

a change, the new contact condition is applied.

If the change is from open state to contact state,

then the adhesion condition is adjusted. When the

iterative procedure is converged, the incremental

nodal values fDUmg, fDFmg become known for

the whole structure. After calculating the total

nodal values, the procedure goes to the next step

of the load increment and continues until the final

incrementM is reached. Then, the solution of the

problem is evidently attained.

In order to solve the thermomechanical

problem, the computational simplicity of the

incremental–iterative procedure depends strongly

on the way that thermal contact is formulated.

Many researchers – in order to resolve the thermal

crack closure phenomenon – assumed that the

crack faces were insulated [4], while others

assumed perfect thermal contact between the

crack faces when in frictionless mechanical con-

tact. In other works [6], imperfect thermal contact

conditions were assumed in order to solve general

frictionless thermoelastic contact problems.

In adiabatic crack contact approach, it is

assumed that the crack faces are fully adiabatic

being in mechanical contact or not. This

assumption uncouples the thermal solution of

the problem from the mechanical one, in the

sense that during the incremental procedure

the thermal part of the problem does not need

to be resolved according to the new contact
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state because thermal conditions in the contact

region are not affected.

In general, thermal contact conditions are

defined according to the assumption that the

heat flow between the contacting areas is depen-

dent on thermal resistance R which is regarded as

a function of contact pressure. The thermome-

chanical contact conditions for a node pair

being in adhesion, slip, and open state, respec-

tively, are:

1. Adhesion state
Iq ¼ �IIq; Iy ¼ IIy� RðItx2ÞIq ð12Þ

Itx1 ¼ �IItx1 ;
Itx2 ¼ �IItx2 ;

Iux1

¼ IIux1 ;
Iux2 ¼ IIux2 � g0x2 ð13Þ

where y and q denote temperature and heat

flux.

2. Slip state
Iq ¼ �IIq; Iy ¼ IIy� RðItx2ÞIq ð14Þ

Itx1 ¼ �IItx1 ;
Itx2 ¼ �IItx2 ;

Itx1

¼ �mItx2 ;
Iux2 ¼ IIux2 � g0x2 ð15Þ

3. Open state

Iq ¼ �IIq; Iqm ¼ 0 ð16Þ
Itx1 ¼ �IItx1 ;

Itx2 ¼ �IItx2 ;
Itx1 ¼ 0; Itx2 ¼ 0

ð17Þ

In addition, the boundary conditions along the

interface of the bodies are
Iq ¼ �IIq; Iy ¼ IIy ð18Þ

Itx1 ¼ �IItx1 ;
Itx2 ¼ �IItx2 ;

Iux1

¼ IIux1 ;
Iux2 ¼ IIux2 ð19Þ

As it can be seen, the interface is regarded as

perfect. For convenience, the boundary condition

(18, 19) are as well expressed in aforementioned
local coordinate system. Finally, it is noted that

for the previously given thermal boundary condi-

tions (12, 14, 16) there is
Iq ¼ Ik
I @T

@x2

� �
; IIq ¼ IIk

II @T

@x2

� �
ð20Þ

where Ik and IIk are thermal conductivities of the

bodies I and II, respectively. Someone may use

the aforementioned thermal and mechanical

contact conditions in order to solve the thermome-

chanical crack closure phenomenon implementing

the boundary element approach [5].
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Definitions

The Joule heating effect is a thermoelectric cou-

pling phenomenon, which can be used to achieve

crack detection and arrest.

In electrically conductive materials subjected

to an electric current, locally higher values of

electric current density occur near fillets, holes,

and crack/notch tips. This phenomenon is analo-

gous to stress concentration in solidmechanics. By

the Joule heating effect, a higher temperature will

be induced in those regions experiencing higher

electric current densities. Additional thermal

stresses and deformations are thus also induced.

By varying the size of the external current,

crack arrest or crack detection can be achieved.

When a sufficiently large amount of electrical

energy is applied to a material containing cracks,

crack tips can melt, causing the formation of

a crack tip hole during the cooling process. This

crack tip hole can arrest further crack growth.

On the other hand, when a lower amount of

electrical energy is applied to the material, crack

tips will not melt, but a local hot region will form

around the crack tip. These hot spots can be

detected using thermal sensors or an infrared

sensing system. In this way, the Joule heating

effect enables the detection of cracks on surfaces
J0

crack

a

J

Crack Detection/Arrest
with Joule Heating,
Fig. 1 Electric current

density concentration. (a)

Concentration at crack tip

and (b) concentration at

fillet (J, J0 : electric current
density)
of a structure. This method is one kind of

nondestructive testing (NDT).
Overview

When a conductive material carries electric

current, the electric current density field is

concentrated at fillets, holes, and crack/notch

tips. Figure 1 illustrates this electric current

density concentration effect. This effect is similar

to stress concentration in solid mechanics. Like

the stress field in solid mechanics, the electric

current density field also has a singularity at the

crack tip. The current density theoretically

approaches an infinite value at the singular point.

Due to the electric current density concentra-

tion and the Joule heating effect, a local hot

region will form around the crack tip (as shown

in Fig. 2a). This hot spot can be used to detect and

arrest cracks. The hot spot can also be detected by

thermal sensors or an infrared sensing system, so

the crack tip location can be determined. If suffi-

ciently high values of electric current and energy

are applied, the crack tip temperature may surpass

the material melting point. At this point, the crack

tip melts, and a circular hole may form at the tip

during the cooling process (as shown in Fig. 2b, c).
b

J0

fillet

J



local hot spot
 at crack tip  crack

a

b

c
crack

crack tip hole

melting crack tip
crack

Crack Detection/Arrest with Joule Heating,
Fig. 2 (a) Local hot spot at crack tip, (b) melting crack

tip and (c) crack tip hole
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This crack tip hole, like a drilled hole, halts crack

propagation, and crack arrest is achieved.

In 1982, Parton et al. [1, 2] reported that the

Joule heating effect can induce local compressive

thermoelastic stresses and melting at the crack tip

to arrest crack propagation. Recently, Librescu

et al. [3–5] used mathematical and analytical

methods to investigate cracked conducting plates

and shells under electric current. They reported

that significant Joule heating concentration

occurs around the crack tip.

Experimental studies have shown the creation

of a crack tip hole using the Joule heating effect to

be an effective crack arrest technique. The crack

tip can melt under high electric current loading

and a crack tip hole occurs during the subsequent

cooling process [6–9]. A typical fine phase trans-

formation microstructure is obtained around the

crack tip as a result of rapid heating and cooling

[6]. It was found that ductility and wear capacity

around the crack tip were increased and promoted

[6]. In addition to experiments, finite element

analyses of the Joule heating crack arrest mecha-

nism have been performed by Cai and Yuan

[10, 11] and Liu [12, 13]. The finite element

results can provide more practical and complete
information that analytical and experimental

methods cannot obtain. The melting crack tip

and crack arrest theories are proved from the

numerical solutions. In ref. [13], it is proposed

that electric currents on the order of

20,000–30,000 A cause melting in the vicinity

of the crack tip. The resistance spot welding

technique, associated with high currents up to

30,000 A, can be applied to the Joule heating

crack arrest method [13].

For crack detection, very high electric currents

are not necessary, since melting of the crack tip

is not desired. However, a local hot spot at the

crack tip is still necessary for the crack detection

process. The magnitude of the applied current

will thus affect the crack detection performance.
Basic Methodology

Fundamental Equations

The fundamental equations for the crack detec-

tion/arrest analysis are listed as follows [12–16]:

1. Electric current analysis
E ¼ �Hf; J ¼ 1

r
E; H � J ¼0 ð1Þ

where E, J, f, and r are the electric field (V/m),

electric current density (A/m2), electric potential

(V), and resistivity (O-m), respectively.

2. Thermal analysis
q00 ¼ �kHT; kH2T þ _q ¼ bCp
@T

@t
; _q ¼ r Jj j2

ð2Þ

where q00, k, T, _q, b, Cp, and t are the heat flux

(W/m2), thermal conductivity (W/m-K), temper-

ature (K), heat generation (W/m3) of Joule

heating, mass density (kg/m3), specific heat (J/

kg-K), and time (s), respectively.

3. Thermoelastic analysis

sji;j þ Xi ¼ b€ui; i; j ¼ x; y; z ð3Þ
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eij ¼ 1

2
ðui;j þ uj;iÞ; i; j ¼ x; y; z ð4Þ

eij ¼ 1

E
ð1þ nÞsij � ðnI1 � EaDTÞdij

 �

;

i; j ¼ x; y; z
ð5Þ

where sij, eij, Xi, ui, €ui, E, n, I1, a, DT, and dij are
the stress (Pa ¼ N/m2), strain (dimensionless),

body force (N/m3), displacement (m), accelera-

tion (m/s2), Young’s modulus (Pa), Poisson’s

ratio (dimensionless), stress invariant (I1 ¼ sxx
+ syy + szz), coefficient of thermal expansion

(1/K), temperature difference (DT¼T � T0
where T0 is the reference temperature), and

Kronecker delta, respectively.

Coupled-Field Analysis

Crack detection/arrest analysis is represented by

the thermo-electro-structural coupled-field prob-

lem. Equations (1)–(5) need to be coupled, but

the equations are difficult to solve by analytical

methods. Using numerical methods, such as the

finite element method, is the preferred way to

solve this complicated problem.

In this study, the finite element equations of

the thermo-electro-structural coupled-field anal-

ysis are as follows [17]:
M 0 0

0 0 0

0 0 0

264
375 €U

€T

€V

264
375þ

C 0 0

Ctu Ct 0

0 0 0

264
375 _U

_T

_V

264
375

þ
K Kut 0

0 Kt 0

0 0 Kv

264
375 U

T

V

264
375 ¼

F

Q

I

264
375
ð6Þ

whereU, T,V, F,Q, and I are the vector forms of

the displacement (m), temperature (K), electric

potential (V), force (N), heat flow rate (W), and

electric current (A), respectively. The material

constant matrices M, C, Ct, Ctu, K, Kt, Kut, and

K
v are the structural mass, structural damping,

thermal specific heat, thermoelastic damping,

structural stiffness, thermal conductivity,

thermoelastic stiffness, and electric conductivity,

respectively. The coupled heat flow matrix
Q contains the effects of thermal loading

and electrical Joule heating. Ctu and Kut are

thermoelastic coupled terms. Equation (6) is

a directly coupled nonlinear equation which is

solved using the Newton–Raphson iterative

method. Equations (1)–(6) can be solved using

the finite element software ANSYS [17].

Temperature-Dependent Material Constants

In analytical or numerical studies of crack detec-

tion/arrest, it is more practical and accurate to use

temperature-dependent material constants. The

material constants of mild steel are listed in

Table 1 [13, 18]; however, it is difficult to find

complete temperature-dependent material con-

stant data for other materials from past refer-

ences. Many material constants and data at high

temperatures are yet to be measured.

Simulating the creation of a crack tip hole is

more difficult than the simple heated case, since it

includes a solid–fluid phase change and material

shrinkage during the cooling process. To simplify

the analysis and ignore the phase change, only the

temperature contour is adopted to estimate the

size of the melted crack tip [12, 13].

Crack Contact

During the Joule heating process, the two sur-

faces of a crack may contact each other. The

contact area becomes a thermo-electro-structural

coupled-field problem. As shown in Fig. 3, this

complicated problem includes structural contact,

electrical contact, and thermal contact. Structural

contact means the contact pressure exists on the

crack surfaces. Electrical and thermal contact

means that electric current and heat flow can

pass through the crack contact surfaces.

The contact problem is not easily solved ana-

lytically; a simpler way is to use the finite ele-

ment method. The structural contact problem is

a standard analysis in many finite element soft-

ware packages. However, the nature of the elec-

trical and thermal contact is more complex.

Indeed, the contact resistance depends on the

temperature and contact pressure [19]. It is dif-

ficult to find the physical constants of the con-

tact interface for the numerical calculation.

Typical and simplified values of the contact
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units) [13, 18]

Temperature

T (�C)

Young’s

modulus E
(GPa)

Coefficient of thermal

expansion a (1/�C)
Thermal conductivity

k (W/m-�C)
Specific heat Cp

(J/kg-�C)
Resistivity r
(O-m)

21 206.8 10.98 � 10�6 64.60 444 0.14224� 10�6

93 196.5 11.52 � 10�6 63.15 452.38 0.18644� 10�6

204 194.4 12.24 � 10�6 55.24 511.02 0.26670� 10�6

315.5 186 12.96 � 10�6 49.87 561.29 0.37592� 10�6

426.7 169 13.50 � 10�6 44.79 611.55 0.49530� 10�6

537.8 117 14.04 � 10�6 39.71 661.81 0.64770� 10�6

648.9 55 14.58 � 10�6 34.86 762.34 0.81788� 10�6

760 6.9 14.05 � 10�6 30.46 1,005.3 1.0109 � 10�6

871 – 13.05 � 10�6 28.37 1,005.3 1.1151 � 10�6

982 – – 27.62 1,005.3 1.1582 � 10�6

1,093 – – 28.52 1,189.6 1.1786 � 10�6

1,204 – – – 1,189.6 1.2090 � 10�6

Poisson’s ratio n ¼ 0.3, density b ¼ 7,861.2 kg/m3, melting point ¼ 1,521 �C

contact pressure

crack

electric current

a

b

c

crack

heat flow

crack

Crack Detection/Arrest with Joule Heating, Fig. 3 (a)

Structural contact, (b) electrical contact, and (c) thermal

contact
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resistance or conductance of mild steel can be

found in ref. [13, 18].

Electric Current Density Factor

In linear elastic fracture mechanics (LEFM), the

stress near the crack tip has an r�1/2 singularity.

Likewise, in the electric current problem, the

electric current density field near the crack tip

also has an r�1/2 singularity [10, 20, 21]. Analo-

gous to the stress intensity factor (SIF), the
electric current density factor (ECDF) KJ was

introduced in [10, 20, 21] as a parameter for

describing the current density singularity.

In a cracked conductive material carrying

electric current, the near-field solutions of the

current density field near the crack tip are

expressed as follows [21]:

Jx ¼ �KJffiffiffiffiffiffiffiffi
2pr

p sin
y
2

ð7Þ

Jy ¼ KJffiffiffiffiffiffiffiffi
2pr

p cos
y
2

ð8Þ

where Jx and Jy are electric current density com-

ponents along the x� and y� directions. For (7)

and (8), the local coordinate system at the crack

tip is defined in Fig. 4. Furthermore, the ECDF

can be defined as [21]

KJ ¼ lim
r!0

ffiffiffiffiffiffiffiffi
2pr

p
Jyðr; 0Þ ð9Þ

For an infinite plane subjected to a remote

current density J0 (shown in Fig. 5), the analytical

solution of a central crack of length 2a is [21]
KJ ¼ J0
ffiffiffiffiffiffi
pa

p ð10Þ
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Equation (10) is similar to the SIF of the

Griffith crack problem in LEFM.

The definition ofKJ is similar to the concept of

LEFM. In ref. [22], the analogy between the

electric current density and antiplane shear

(Mode-III) problem has been reported.

Both fields are governed by the Laplace equation

as follows [22]:
H2f ¼ 0 ð11Þ

H2w ¼ 0 ð12Þ
where w is the antiplane (z-direction) displace-
ment. However, the ECDF and SIF for the Grif-

fith crack problem of both fields are similar as

KJ ¼ J0
ffiffiffiffiffiffi
pa

p
;KIII ¼ t0

ffiffiffiffiffiffi
pa

p ð13Þ

where t0 and KIII are the remote antiplane shear

stress and Mode-III SIF. Analogous to the previ-

ous equations, both factors from the near-field

solutions are also similar [12, 13]:
KJ ¼ �f
2 sin y

2

ffiffiffiffiffiffi
2p
r

r
ð14Þ

KIII ¼ Gw

2 sin y
2

ffiffiffiffiffiffi
2p
r

r
ð15Þ

where � is the electrical conductivity (� ¼1/r)
and G is the shear modulus.

Finite Element Model

The crack detection/arrest problem is nonlinear,

and the finite element method is suitable for solv-

ing this complicated problem. In doing so,

a thermo-electro-structural coupled-field analysis

has to be adopted.

The finite element model for crack detection/

arrest analysis must include the following items:

1. Finite element mesh

2. Element type with the capability of thermo-

electro-structural coupled-field analysis

3. Quarter-point elements (QPE) [23] to simulate

the crack tip singularity (as shown in Fig. 6)

4. Temperature-dependent material constants

5. Contact analysis and parameters between

crack surfaces

6. Structural, thermal, and electrical boundary

conditions

Validation of Finite Element Model by ECDF

To calculate the ECDF from the finite element

results, the limited electric potential extrapola-

tion technique (LEPET) [12, 13] for calculating

KJ is adopted as follows. As shown in Fig. 7,

each KJ at nodes C, D, and E along the crack

surface can be computed using (14) [12, 13].
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Crack Detection/Arrest with Joule Heating 785 C

C

The electric potential f at each node can be

obtained from the finite element results. Refer-

ring to Fig. 4, the angles y ¼180 � and

y ¼ �180 � denote the two crack surfaces. In

Fig. 7, three nodal values of KJ are used to fit

a straight line using linear regression. This line

is extrapolated to r ¼ 0 to obtain KJ at the crack

tip. The concept of the LEPET [12] is adopted

from the LDET method [24].

The accuracy of the finite element mesh can

be confirmed using the ECDF. For example,

a finite element mesh with a central crack

and relatively large boundary can be

established to simulate an infinite plane.

Then the finite element solution of KJ can be

compared with (10).

Case Study I: Crack Detection

A case study for crack detection extracted from

Ref. [25] is described herein. As shown in Fig. 8,
the thin plate is made of the mild steel (ASTM

A36), with dimensions L¼ 200 mm,W¼ 25 mm,

and e¼ 0.1mm,where e is the thickness. The plate

contains an edge crack of length a ¼ 4.3301 mm.

The main conditions adopted in this analysis

are listed as follows:

1. Thermoelectric coupled-field analysis.

2. Three-dimensional analysis.

3. Temperature-dependent material properties in

Table 1 are considered.

4. Contact conditions on crack surfaces are ignored.

In addition, the electric input i0 is direct current

(DC). The convection conditions h ¼ 15 W/m2K

and T1 ¼ 25 �C are applied on all surfaces of the

plate. The initial temperature T0 is 25
�C.

The finite element software ANSYS was

adopted, and the plate was modeled using

SOLID226 elements, i.e., 20-node isoparametric

solid elements, with the thermoelectric coupled-

field analysis [17]. The nodal degrees of freedom
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of SOLID226 are T and f. Figure 9 shows the

ANSYS finite element mesh.

Under i0 ¼ 150 A, Fig. 10 shows the electric

current density vectors at t ¼ 1 s. It is clear that
power
supplier

W

L
a

i0

Crack Detection/Arrest with Joule Heating,
Fig. 8 Configuration of case study I: a plate with an

edge crack for crack detection research [25]

Crack Detection/Arrest
with Joule Heating,
Fig. 9 Finite element

mesh. (a) Global view and

(b) local view near crack tip
there is a field concentration at the crack tip.

Similar to the elastic stress field, the electric

current density also exhibits an r�1/2 singularity

at the crack tip. Figure 11 shows the temperature

contour of the plate, and it can be seen that the

Joule heating effect causes a high temperature

area around the crack tip. The crack tip location

can be detected by a thermal sensor.

Figure 12 shows the temperature distribution

in front of the crack tip at t ¼ 1 s under i0 ¼ 10

A and i0 ¼ 150 A. The temperature decreases

from the crack tip to the surrounding area.

When the external current i0 is larger, the

value of the temperature gradient near the

crack tip is larger. If the temperature gradient

near the crack tip is too small, it is hard to detect

the crack tip. For example, in Fig. 12a, the

temperature variation from point A to B under

i0 ¼ 10 A is 0.035 �C. Thermal sensing equip-

ment without a high resolution may not detect

such a small temperature variation. In Fig. 12b,

the temperature variation from point A to

B under i0 ¼ 150 A is 18.46 �C, which is

much easier to detect [25].

Case Study II: Crack Arrest

This case study for crack arrest research is

adopted from ref. [13]. As shown in Fig. 13, the

thin plate contains a central crack of length 2a.

The dimensions of the plate are L¼W ¼ 50 mm,



Crack Detection/Arrest
with Joule Heating,
Fig. 10 Electric current

density vectors (units:

A/m2)

Crack Detection/Arrest
with Joule Heating,
Fig. 11 Distribution of

temperature field

(units: �C)
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a ¼ 10 mm, and e ¼ 1 mm, where e is the

thickness, and the plate material is mild steel

(ASTM A36).

The main conditions adopted in this analysis

are listed as follows:

1. Thermo-electro-structural coupled-field

analysis.
2. Two-dimensional analysis.

3. Plane stress condition.

4. Linear elastic property.

5. Temperature-dependent material properties in

Table 1 are considered.

6. Contact conditions on crack surfaces are

considered.
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A (units: �C)
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Crack Detection/Arrest with Joule Heating,
Fig. 13 Configuration of case study II: a plate with

a central crack for crack arrest research [13]

C 788 Crack Detection/Arrest with Joule Heating
The plate is subjected to a remote stress s0.
Also, the electric input is alternating current (AC)

i0(t) ¼ iAsin(2pft) where t, iA, and f are the time,
amplitude, and frequency, respectively. As the

time span is relatively short in the transient ther-

mal analysis, all surfaces of the plate are assumed

to undergo adiabatic processes [11]. The initial

temperature T0 is 21
�C.

The finite element software ANSYS was uti-

lized here. The plate is modeled using ANSYS

type PLANE223 elements, i.e., 8-node

isoparametric plane elements with thermo-

electro-structural coupled-field analysis [17]. The

nodal degrees of freedom of PLANE223 are ux, uy,

T, and f. The plane stress option is used. Due to

symmetry, only half of the region is analyzed.

Figure 14 shows the ANSYS finite element mesh.

In this case study, a current i0(t) ¼ 28000sin

(120pt) A is applied to the plate. The AC

frequency is 60 Hz, and there are five cycles

(1 cycle ¼ 1/60 s) in the process.

Figure 15 shows the crack tip temperature

variation with time under varying mechanical

load s0. When a compressive stress

s0¼�20 MPa is applied, the two crack surfaces

contact each other, and the crack tip cannot melt

at the end of the last cycle (t ¼ 0.0833 s). Due to

the contact, the electric current density vectors

can pass through the crack so that the crack tip

concentration and temperature are simulta-

neously reduced.
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Fig. 14 Finite element

mesh (1/2 symmetrical

model). (a) Global view

and (b) local view near

crack tip
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In Fig. 15, the results from s0 ¼ 30 MPa

yield the highest temperature. The tensile load

makes the crack open enough to cause a high

current density concentration at the crack tip so

that the crack tip can melt. When there is no

mechanical load (s0 ¼ 0 MPa), crack contact

occurs near the crack tip. This contact is due to

thermal deformation and results in a lower
crack tip temperature. However, for some inter-

nal cracks in the structure, it is difficult to make

the crack open using tensile loading only. In

this case, a larger electric power and longer

process time are required to induce melting of

the crack tip.

Figure 16 shows a time history of the tempera-

ture change near the crack tip. The crack tip
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temperature increases with time under electric

current. The red color denotes the melted region

(T> 1,521 �C). According to experimental results

[6–9], this melted region at the crack tip can shrink

to a hole during the cooling process. This hole

prevents crack growth, and crack arrest is

achieved.
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Synonyms

Crack
Overview

Fracture mechanics is essential to the mechanical

safety of structures, in which cracks and the

corresponding stress intensity factors (SIFs) near

their tips (fronts) are important [1]. In 1957, Irwin

[2] introduced the SIFs to describe the stress and

displacement fields near a crack tip. As it is well

known, there are three basic crack modes: opening

(mode I), sliding (mode II), and tearing (mode III).

Determining the SIFs near the crack tip (or front) in

linear elasticity is interesting yet challenging.

While most previous studies in SIFs were focused

on one or two fracture modes, mixed three-

dimensional (3D) modes need to be considered as

materials could be mostly failed under combined

tensile/compressive, shearing, and tearing loads or

the material under consideration is anisotropic (as

for most composite materials). For 3D isotropic

elastic materials, Singh et al. [3] obtained the SIFs

using the concept of a universal crack closure inte-

gral. For transversely isotropic (TI), orthotropic,

and anisotropic solids, Pan and Yuan [4] presented

http://dx.doi.org/10.1007/978-94-007-2739-7_632
http://dx.doi.org/10.1007/978-94-007-2739-7_632
http://dx.doi.org/10.1007/978-94-007-2739-7_100114
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the general relationship between the SIF and the

relative crack opening displacement (COD). Laza-

rus et al. [5] compared the calculated SIFs with

experimental results for brittle solids under mixed

mode I-III or I-II-III loadings. The 3D SIFs were

also calculated byZhou et al. [6] using the variable-

order singular boundary element. More recently,

Yue et al. [7] employed the boundary element

method (BEM) [8, 9] in their calculation of the

3D SIFs of an inclined square crack within a finite

but bimaterial domain. Other representative

works in this direction are those by Liu et al. [10],

Blackburn [11], dell’Erba and Aliabadi [12],

Partheym€uller [13], Hatzigeorgiou and Beskos

[14], Popov [15], Ariza and Dominguez [16],

Lo et al. [17], and Zhao et al. [18]. The weakly

singular and weak-form integral equation method

recently proposed by Rungamornrat [19] and

Rungamornrat and Mear [20] is also efficient in

crack analysis in anisotropic media. Besides the

analytical (integral equation) and BEM methods

[21], other common methods, such as the finite

difference (FD) [22–24] and finite element (FE)

[25, 26], were also applied to the 3D SIF analysis.

Since both the FD and FE methods require

discretization of the whole problem domain, they

could be time consuming and more expensive than

the BEM in fracture analyses.

While BEM is an excellent choice for fracture

mechanics analysis in a linear and homogeneous

solid, material heterogeneity or inhomogeneity

introduces complexity to this approach. Neverthe-

less, various progresses have been made in modify-

ing BEM for the inhomogeneity systems, including

composites, rock structures, porous and cracked

media. Bush [27] investigated the interaction

between a crack and a particle cluster in composites

using the BEM. Also applying the BEM, Knight

et al. [28] analyzed the effect of the constituent

material properties, fiber spatial distribution, and

microcrack damage on the local behavior of fiber-

reinforced composites. Dong et al. [29] presented

a general-purpose integral formulation in order to

study the interaction between the inhomogeneity

and cracks embedded in 3D isotropic matrices.

Based on a symmetric Galerkin BEM, Kitey et al.

[30] investigated the crack growth behavior in
materials embedded with a cluster of inhomogene-

ities. Lee and Tran [31] applied the Eshelby equiv-

alent inclusion method to carry out the stress

analysis when a penny-shaped crack interacts with

inhomogeneities and voids. Dong et al. [32] inves-

tigated the interaction between cracked TI inhomo-

geneous solids using a special BEM formulation.

Interface cracks in two or more isotropic materials

were also studied bySladek andSladek [33] andLiu

andXu [34]. Recent representative developments in

this direction include the three-step multi-domain

BEM solver [35], the subregion-by-subregion

approach based on the Krylov solver [36, 37], and

the well-known fast multipole BEM [38, 39].

In this entry, wewill give a brief account on 3D

linear fracture mechanics in TI inhomogeneous

materials, based on the BEM approach. The field

responses, the relative crack opening displace-

ment (COD), as well as the SIFs will be discussed.
Governing Equations

– Equations of equilibrium
sij;j þ bi ¼ 0; i; j ¼ 1; 2; 3 ð1Þ

where sij is the stress tensor; bi the body force;
and the subscript “j ” denotes the partial dif-

ferentiation with respect to the coordinates x,
y, and z.

– Strain and displacement relation
eij ¼ 0:5 ui; j þ uj;i
� �

; i; j ¼ 1; 2; 3 ð2Þ

where ui is the elastic displacement.

– Constitutive relation

Again, we assume that the material is TI

and we let the global z-axis be along the

symmetry axis of the material. Then, the con-

stitutive relation for this case can be written as
sxx ¼ c11exx þ c12eyy þ c13ezz
syy ¼ c12exx þ c11eyy þ c13ezz
szz ¼ c13exx þ c13eyy þ c33ezz
syz ¼ 2c44eyz; sxz ¼ 2c44exz; sxy ¼ 2c66exy

ð3Þ
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where cij are the stiffness coefficients with

c66 ¼ (c11-c12)/2. Thus, in a TI, there are only

five independent material coefficients. In terms of

the compliance coefficients (the inverse of the

stiffness), the physical meanings of the five inde-

pendent coefficients are: the Young’s modulus

and Poisson’s ratio in the isotropic plane (i.e.,

the xoy plane), the Young’s modulus and

Poisson’s ratio in the plane normal to the isotro-

pic plane, and the shear modulus in the plane

normal to the isotropic plane.

It is noted that since a crack may be oriented in

any direction with respect to the TI material sys-

tem, one usually needs to introduce two orienta-

tion angles, for instance, c and b [4, 40], to

describe the relation between the material system

and the crack orientation. Furthermore, one may

need extra coordinate transforms between the

material systems and the global space-fixed coor-

dinate system if multiple material domains (inho-

mogeneous materials) are involved and/or the

boundary conditions are described in terms of

the global system.
The BEM for a Cracked Matrix with
a Single Inhomogeneity

We start with a cracked matrix containing only

one inhomogeneity. The single crack is located in

the matrix. We now present the solution process

based on the BEM. First, we discretize the

cracked matrix in terms of the single-domain

BEM [4]. In other words, we apply the following

displacement and traction boundary integral

equations [4]
bijujðySÞ ¼
ð
S

UijðyS; xSÞ tjðxSÞdSðxSÞ

�
ð
S

TijðyS; xSÞ ujðxSÞdSðxSÞ

�
ð
Gþ

TijðyS; xGþÞ ½ujðxGþÞ

� ujðxG�Þ�dGðxGþÞ þ u0i ðySÞ

ð4Þ
½tlðyGþÞ � tlðyG�Þ�=2þ nmðyGþÞð
S

clmikTij;kðyGþ; xSÞujðxSÞdSðxSÞ

þ nmðyGþÞ
ð
Gþ

clmikTij;kðyGþ; xGþÞ

½ujðxGþÞ � ujðxG�Þ�dGðxGþÞ
¼ nmðyGþÞ

ð
S

clmikU
�
ij;kðyGþ; xSÞtjðxSÞdSðxSÞ

þ ½t0l ðyGþÞ � t0l ðyG�Þ�=2
ð5Þ

to the cracked matrix. In (4) and (5), bij are the

coefficients that depend only on the local geom-

etries of the inhomogeneity–matrix interface S
at ys. A point on the positive (negative) side of

the cracks is denoted by xG+ (xG-), and on the

inhomogeneity–matrix interface S by both xs
and ys; nm is the unit outward normal of the

positive side of the crack surface at yG+; clmik

is the fourth-order stiffness tensor of the TI

material; u0i ðysÞ is the i-th displacement compo-

nent at point ys corresponding to the given

remote loading, and t0l ðyGþÞ and t0l ðyG�Þ the

corresponding traction components along the

l-direction at points yG+ and yG-; ui and ti are

the displacements and tractions on the inhomo-

geneity–matrix interface S (or the crack surface

G); Uij and Tij are the Green’s functions of the

displacements and tractions; Uij,k and Tij,k are,
respectively, the derivatives of the Green’s dis-

placements and tractions with respect to the

source point. The displacement and traction

Green’s functions are taken from Pan and

Chou [41] while their derivatives are taken

from Pan and Yuan [4]. It is noted that the

single-domain boundary integral equations

similar to (4) and (5) were applied to

a cracked homogeneous solid before and it has

been demonstrated that this single-domain

BEM approach is very efficient. However, if

there is also an inhomogeneity in the cracked

domain, one needs another BEM equation. In

other words, the displacement integral equation
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needs to be applied to the surface of the inho-

mogeneity as follows [32]:
bijujðySÞ ¼
ð
S

UijðyS; xSÞ tjðxSÞdSðxSÞ

�
ð
S

TijðyS; xSÞ ujðxSÞdSðxSÞ
ð6Þ

Equations (4), (5), and (6) then can be uti-

lized to investigate the effect of the inhomoge-

neity on the SIFs of the crack in a TI matrix as

well as the internal field behaviors both within

the inhomogeneity and the matrix. In

discretization of these equations, the nine-node

quadrilateral curved elements can be applied to

the inhomogeneity–matrix interface and the

crack surface with the crack front being treated

by special elements [4].

Taking each node in turn as the collocation

point and performing the involved integrals, we

finally obtain the compact forms of the

discretized equations from (4), (5), and (6) as
H11 H12

H21 H22

� �
Um

DUc

� �
þ B1

B2

� �
¼ G11 G12

G21 G22

� �
Tm

Tc

� �
ð7Þ

and
HiUi ¼ GiTi ð8Þ

where the subscripts i and m represent, respec-

tively, the inhomogeneity and matrix; H and G

are, respectively, the influence coefficient matri-

ces containing integrals of the fundamental

Green’s function solutions;B1 andB2 are, respec-

tively, the displacement and traction vectors

induced by the remote loading; Um (Ui) and Tm

(Ti) are, respectively, the nodal displacement and

traction vectors on the matrix side (inhomogene-

ity side) of the inhomogeneity–matrix interface;

DUc and Tc are, respectively, the discontinuous

displacement and traction vectors over the crack

surface. In this entry, we assume that the tractions
on both sides of the crack are equal and opposite,

and thus, Tc is equal to zero.

Using the continuity condition of the dis-

placement and traction vectors along the inter-

face, i.e., Um ¼ Ui and Tm ¼ �Ti, between the

inhomogeneity and matrix, we can combine (7)

and (8) into
H11 þG11G
�1
i Hi H12

H21 þG21G
�1
i Hi H22

� �
Um

DUc

� �
¼ � B1

B2

� �
ð9Þ

which can be solved for the unknowns Um and

DUc. After that, a boundary integral equation

similar to (4) or (6) can be applied to find the

internal displacements and their gradients (by

taking the derivatives) inside the matrix or the

inhomogeneity. It is pointed out that in

discretizing the boundary and the crack face,

besides the regular shape functions, special

ones need to be applied. For instance, the dis-

continuous elements need to be introduced to

handle the common edge of the displacement

and traction boundary conditions, and the com-

mon edge of the displacement/traction boundary

and the crack surface. Furthermore, special

shape functions have to be utilized to the ele-

ments adjacent to the crack front to make sure

that the relative COD is proportional to √rwhere
r is the distance behind the crack front. These

discontinuous/special elements along with their

corresponding shape functions can be found in

Pan and Yuan [4].

Once the relative COD DUc is solved in the

global coordinates, it can be transformed to

the local coordinates (or the crack-tip coordi-

nates) to find the SIFs. Assuming that the

crack front is smooth and that the crack tip

is away from the possible corner of the prob-

lem geometry, then the singular term (in the

sense of stresses) in the asymptotic expansion

of the displacement field near the crack tip

(front) satisfies the generalized plane-strain

condition in the local coordinates. Actually,

if we let r be the distance behind the crack

front, then in terms of the relative CODs in
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the crack-tip coordinate, the three SIFs can be

expressed as follows:

KII

KI

KIII

8<:
9=; ¼ 2

ffiffiffiffiffi
2r

p

r
L�1

Du1
Du2
Du3

8<:
9=; ð10Þ

where L is the Barnett-Lothe tensors [42] which

depends only on the anisotropic properties of the

solid in the crack-front coordinates, andDu1,Du2,
and Du3 are the relative CODs in the local crack-
front coordinates. We also point out that r in (10)
was selected to be a very small value as compared

to the crack size [4, 32, 40]. For a penny-shaped

crack lying in the isotropic plane of the TI mate-

rial, the SIF can be calculated analytically [43],

which can be used as the benchmark for BEM

modeling. The result was extended to the

bimaterial case where the crack was located on

the interface plane [44].
General Inhomogeneity Problems with
Multiple Cracks

It is obvious that the approach presented above

can be extended to the multi-inhomogeneity case

with multiple cracks. However, there are more

efficient approaches proposed recently to the

problems in inhomogeneous or heterogeneous

media, as discussed briefly below.

Three-step Multi-domain BEM

The three-step multi-domain BEM solution tech-

nique [35] can be used to effectively solve the

problems consisting of any number of arbitrarily

distributed sub-domains. In the multi-domain

BEM technique, nodes are arranged in the fol-

lowing order: The “self nodes” which are used

only by the considered sub-domain itself are col-

located first; the “common nodes” which are

shared by two adjacent sub-domains are collo-

cated next; and the “internal nodes” which are

located inside a sub-domain are arranged in the

last step. The three-step multi-domain BEM solu-

tion technique will produce condensations by

eliminating the internal unknowns (internal

nodal displacements) and boundary unknowns
(self-nodal quantities) so that the final multi-

domain BEM formula only contains the common

nodal displacements. Since the number of

degrees of freedom in the system is reduced by

this technique and the coefficient matrix is

blocked sparse, the computational efficiency of

large-scale problems can be improved.

Subregion-by-subregion with Krylov Solver

In general, this approach contains two main parts:

(1). A robust subregion-by-subregion (SBS) tech-

nique, which is necessary for coping with hetero-

geneous materials. (2). The efficient integration

procedures, which are needed for evaluating the

singular and nearly singular integrals involved in

the BEM. The SBS technique is based on the use

of the Krylov solver, which allows the treatment

of a large number of inhomogeneities. The diag-

onal-preconditioned bi-conjugate gradient solver

is employed to solve the resulting linear system

of equations. A detailed description on this

method can be found in the work by Araujo and

coworkers [36, 37].

Fast Multipole BEM

With the development of the fast multipole

methods (FMMs) [39, 45] for solving boundary

integral equations, large models with several mil-

lion degrees of freedom can be solved readily on

a desktop computer. Rokhlin and Greengard [46],

who pioneered the FMM, and coworkers [47]

have done extensive research on the FMM in

the context of potential fields. Fu et al. [48] for-

mulated the boundary integral equations for the

3D elastic inclusion problem using the FMM.

Solutions for up to 343 spherical voids in an

elastic domain were computed using the parallel

FMM BEM code with total degrees of freedom

around 400 K. Some other developments of the

fast multipole BEM can be found in Pierce and

Napier [49] and Popov and Power [50] for gen-

eral elasticity problems, and in Nishimura et al.

[51], Yoshida et al. [52], and Lai and Rodin [53]

for crack problems. To develop an FMM for

BEM, one needs simple and appropriate expres-

sions of the two-point Green’s functions of

the associated problem domain, and their suit-

able expansion, i.e., the multipole expansion.
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For most linear systems, the two-point Green’s

functions can be successfully expanded and

therefore, the three key translations in FMM can

be achieved (M2M, L2L, and M2L) [38, 39].
Future Directions for Research

Solution to the penny-shaped crack problem in

pure elasticity is a benchmark, and it has been

extended to the multiphase material couplings

[54–57]. For instance, Zhao et al. [54] derived

the solution for an ellipsoidal cavity in an infinite

TI magneto-electro-elastic medium, and obtained

the exact closed-form solution for a penny-

shaped crack by letting the minor axis of the

ellipsoidal cavity approach zero. Zhao et al. [55]

analyzed the planar crack of arbitrary shape in

the isotropic plane of a 3D TI magneto-electro-

elastic medium by using the hyper-singular

integral equation method. Niraula and Wang

[56] derived an exact closed-form solution

for a penny-shaped crack in an infinite magneto-

electro-thermo-elastic medium under a tempera-

ture field, where the problem was transformed

into the dual integral equations which were

solved directly. Wang and Niraula [57] further

considered the transient thermal fracture problem

of TI magneto-electro-elastic materials, where

the problem is reduced to an integral equation

which was treated exactly using the Abel’s

integral equation. The fracture properties of

a penny-shaped crack embedded in a magneto-

electro-elastic layer of finite height under both

thermal flow and radial shear loads were investi-

gated by Feng et al. [58]. Thermally insulated

crack surface assumption is adopted. By means

of the Hankel transform technique, the problem

was reduced to a Fredholm integral equation,

which is different to that addressed previously

[54–57].
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Overview

This entry introduces the asymptotic tempera-

ture, thermal flux, stress, and displacement fields

near the tip of a crack in a functionally graded

material (FGM) with continuous and piecewise

differentiable material properties. This entry

begins with the introduction of basic equations

of heat conduction, thermoelasticity, and
thermoplasticity for FGMs. The eigenfunction

expansion method is then employed to prove

that the governing equations of the crack-tip

dominant solutions of temperature and stress

functions remain the same as the corresponding

equations for homogeneous materials in every

differentiable piece near the crack tip. Hence,

the inverse square-root singular thermal flux and

stress fields still prevail at the crack tip in

a thermoelastic FGM, and the near-tip HRR

field exists for a power-law hardening FGM.

The effects of material property gradients on the

dominance of the crack-tip singular fields are also

discussed.
Introduction

Functionally graded materials (FGMs) represent

a new concept of tailoring materials with micro-

structural and property gradients to achieve opti-

mized performance. FGMs were originally

conceived as high-temperature-resistant mate-

rials for aircraft and aerospace applications. The

FGM concept has since spread to other areas, for

example, tribological coatings, diesel engines,

energy conversion systems, biomedical engineer-

ing, and so on. An FGM is a multiphase material

with volume fractions of the constituents varying

gradually in a predetermined (designed) profile,

thus yielding a nonuniform microstructure in the

material with continuously graded properties. In

applications involving severe thermal gradients,

FGMs exploit the heat, oxidation, and corrosion

resistance typical of ceramics and the strength,

ductility, and toughness typical of metals. Dam-

age tolerance and defect assessments for struc-

tural integrity of FGM components require

knowledge of the fracture behavior of FGMs.

From the fracture mechanics point of view,

materials fail by the initiation and unstable

growth of macroscopic cracks. Fracture parame-

ters often arise from analyses of the asymptotic

stress and deformation fields near the crack tip.

The validity of continuum fracture mechanics to

predict material failure lies in the fact that the

fracture process zone around the crack tip is

contained in a singular field of continuum
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mechanics and the failure is governed by the

controlling parameter(s) of the crack-tip singular

fields. The study of fracture mechanics of FGMs

thus begins with analyses of crack-tip asymptotic

stress and deformation fields.

This entry introduces the asymptotic temper-

ature, thermal flux, stress, and displacement

fields near the tip of a crack in an FGM. Both

thermoelastic and thermoelastic-plastic FGMs

are considered. The material properties of the

FGM are assumed to be continuous and piece-

wise continuously differentiable. The remainder

of this entry is organized as follows. The basic

thermoelasticity and thermoplasticity equations

of FGMs are described in Section 2. Section 3

presents the asymptotic temperature and heat

flux fields near a crack tip. Section 4 introduces

the crack-tip stress and displacement fields in

a thermoelastic FGM. Section 5 considers

a crack in a thermoelastic-plastic FGM. The

effects of material gradation on the dominance

of the crack-tip singular fields are also

discussed.
Thermoelasticity and Thermoplasticity
Equations of FGMs

Fracture behavior of FGMs is generally investi-

gated in the standard micromechanics/contin-

uum framework, that is, FGMs are treated as

macroscopically nonhomogeneous materials

with space-dependent thermomechanical prop-

erties approximately evaluated from the conven-

tional micromechanics models of composite

materials. Moreover, an uncoupled approach is

adopted in quasi-static thermal fracture prob-

lems in which the influence of deformation on

temperature is ignored, and hence the tempera-

ture field is obtained independently of

deformations.

Heat Conduction

The Fourier law of heat conduction in isotropic

FGMs is given by

qi ¼ �kðxÞ @T
@xi

ð1Þ
where T is the temperature, qi the heat fluxes, and
k(x) the space-dependent thermal conductivity.

The Latin indices have the range 1, 2, and 3, and

repeated indices imply summation over the range

of the index. Equation (1) has been written in

rectangular Cartesian coordinates x ¼ (x1, x2, x3)
which will also be denoted by (x, y, z).

The governing equation of the temperature for

isotropic FGMs without consideration of a heat

source/sink is
kðxÞH2T þ @k

@xi

@T

@xi
¼ rðxÞcðxÞ @T

@t
ð2Þ

where t is time, r(x) the mass density, c(x) the

specific heat, and H2 the Laplacian operator.

Thermoelasticity

The basic equations of thermoelasticity of isotro-

pic FGMs include the equations of equilibrium

(in the absence of body forces)

sij;j ¼ 0 ð3Þ

the strain–displacement relations for infinitesi-

mal deformations
eij ¼ 1

2
ui;j þ uj;i
� � ð4Þ

and the constitutive relation

eij ¼ 1þ nðxÞ
EðxÞ sij � nðxÞ

EðxÞ skkdij þ aðxÞ

� T � T0ð Þdij: ð5Þ

In (3–5), sij denote stresses, eij strains, ui
displacements, dij the Kronecker delta, E(x)
Young’s modulus, n(x) Poisson’s ratio, a(x) the
coefficient of thermal expansion, T0 the reference

temperature, and a comma followed by the index

j implies partial derivative with respect to xj.

Under plane stress conditions, the equilibrium

equations can be satisfied by expressing stresses

in terms of the Airy stress function F as follows:

sxx ¼ @2F

@y2
; syy ¼ @2F

@x2
; sxy ¼ � @2F

@x@y
ð6Þ
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The governing equation of the Airy function

can be obtained using the constitutive relation (5)

and the strain compatibility conditions as follows:

H2 1

E
H2F

� �
� @2

@y2
1þ n
E

� �
@2F

@x2
� @2

@x2

� 1þ n
E

� �
@2F

@y2
þ 2

@2

@x@y

1þ n
E

� �
@2F

@x@y

¼ �H2 a T � T0ð Þ½ � ð7Þ

where H2 is the Laplacian operator in the

x-y plane. For plane strain deformations, E, n,
and a are replaced by E=ð1� n2Þ, n=ð1� nÞ,
and ð1þ nÞa, respectively.

The material parameters of an FGM (E, n, a,
and so on) can be calculated from

micromechanics models or can be assumed as

elementary functions which are consistent with

the micromechanics analyses. The properties are

usually continuous and piecewise continuously

differentiable functions of spatial coordinates.

Thermoplasticity

When investigating stationary crack-tip fields in

elastic–plastic FGMs, it may be appropriate to

use the constitutive law of deformation plasticity

with space-dependent material properties. For

a power-law hardening material described by

the Ramberg-Osgood model, the stress–strain

relationship of the deformation plasticity can be

expressed as
eij ¼ 1þ n
E

sij þ 1� 2n
3E

skkdij

þ 3

2
apsen�1sij þ a T � T0ð Þdij ð8Þ

where ap ¼ ap(x) is a (dimensional) material

parameter in the Ramberg-Osgood model,

n ¼ n(x) is the hardening exponent, sij are the

deviatoric stress components given by
sij ¼ sij � 1

3
skkdij ð9Þ

and se is the effective stress defined by
se ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3

2
sijsij

r
ð10Þ

Under plane stress conditions, the basic equa-

tion of the Airy stress function for the power-law

hardening FGM is given by
H2 1

E
H2F

� �
� @2

@y2
1þ n
E

� �
@2F

@x2
� @2

@x2
1þ n
E

� �
� @2F

@y2
þ 2

@2

@x@y

1þ n
E

� �
@2F

@x@y
þ @2

@x2

apsn�1
e

@2F

@x2
� 1

2

@2F

@y2

� �� �
þ @2

@y2

apsn�1
e

@2F

@y2
� 1

2

@2F

@x2

� �� �
þ 3

@2

@x@y

apsn�1
e

@2F

@x@y

� �
þH2 a T� T0ð Þ½ � ¼ 0

ð11Þ
Temperature and Heat Flux Fields near
a Crack Tip

Consider a crack in an FGM with continuous and

piecewise differentiable thermal properties, as

shown in Fig. 1, where (r, y) are the polar coor-

dinates centered at the crack tip which terminates

at the boundary L between two differentiable

pieces. The thermal properties of the FGM are

continuously differentiable in each piece, contin-

uous across the boundary L, and their derivatives

with respect to the spatial coordinates may

undergo jumps across L. Assume that the temper-

ature has the following asymptotic expansion in

each differentiable piece at the crack tip:
T ¼ R1ðtÞrd1 ~T1ðyÞ; r ! 0;�p < y < � p� yLð Þ
T ¼ R2ðtÞrd2 ~T2ðyÞ; r ! 0;� p� yLð Þ < y < yL

T ¼ R3ðtÞrd3 ~T3ðyÞ; r ! 0; yL < y < p

ð12Þ

where di (i ¼ 1, 2, 3) are the eigenvalues to be

determined and ~TiðyÞ (i ¼ 1, 2, 3) are the angular

distributions of the temperature. The thermal

properties can be expanded into Taylor series at
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the crack tip in each differentiable piece. For

example, the thermal conductivity has the expan-

sion as follows:

k ¼ ktip þ a11xþ b11yþ . . . ; �p < y < � p� yLð Þ
k ¼ ktip þ a12xþ b12yþ . . . ; � p� yLð Þ < y < yL
k ¼ ktip þ a13xþ b13yþ . . . ; yL < y < p

ð13Þ
where (x, y) ¼ (rcosy, rcosy) are the rectangular

coordinates, ktip is the thermal conductivity at the

crack tip, and aij and bij are constants related to the
derivatives of the thermal conductivity at the crack

tip in the differentiable pieces. Similarly, the mass

density and specific heat can also be expanded into

Taylor series in each differentiable piece. By

substituting (12) and (13) and the expansions of

specific heat and mass density into the governing

equation (2), we can find that the first term on the

left-hand side dominates the other terms near the

crack tip, and hence the dominant term for the

temperature still satisfies the Laplacian equation

in every differentiable piece, that is,
H2T ¼ 0 ð14Þ

which is the same as that for homogeneous mate-

rials. Thus, the dominant solution for the homoge-

neous material [1] is also the solution for the FGM

in every differentiable piece and satisfies the tem-

perature and heat flux continuity conditions across
the boundary between the differentiable pieces as

long as the thermal conductivity is continuous.

Hence, the crack-tip temperature and heat flux

fields have the following forms:
T ¼ RðtÞ
ffiffiffiffiffi
2r

p
sin

y
2

ð15Þ

qr ¼ �ktip
@T

@r
¼ �ktip

RðtÞffiffiffiffiffi
2r

p sin
y
2
;

qy ¼ �ktip
@T

r@y
¼ �ktip

RðtÞffiffiffiffiffi
2r

p cos
y
2

ð16Þ

where R(t) describes the intensity of the crack-tip

singular thermal flux field and cannot be

determined by the local asymptotic analysis.

The above conclusion on the crack-tip tempera-

ture and heat flux fields in FGMs was reached by

Jin and Noda [2] and Noda and Jin [3].
Crack-Tip Fields in Thermoelastic FGMs

Consider a cracked thermoelastic FGM, as shown in

Fig.1,where thecrack tip terminatesat theboundary

between the two differentiable pieces. We assume

thatYoung’smodulusE(x),Poisson’s ration(x), and
the coefficient of thermal expansiona(x) are contin-
uous and piecewise differentiable functions of spa-

tial position. Jin and Noda [2] and Noda and Jin [3]

proved that the crack-tip stress and deformation

fields in FGMs with continuous and piecewise dif-

ferential properties have the same forms as those for

homogeneous elastic materials, which is an exten-

sion of Eischen’s result [4] for nonhomogeneous

materials with continuously differentiable proper-

ties. Assume the following asymptotic expansion

of the Airy stress function near the crack tip:
F ¼ rs1 ~F1ðyÞ; r ! 0;�p < y < � p� yLð Þ
F ¼ rs2 ~F2ðyÞ; r ! 0;� p� yLð Þ < y < yL

F ¼ rs3 ~F3ðyÞ; r ! 0; yL < y < p

ð17Þ

where si (i ¼ 1, 2, 3) are the eigenvalues to be

determined and ~FiðyÞ (i ¼ 1, 2, 3) are the angular

distributions of the Airy function. At the same
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time, the elastic modulus can be expanded into

a Taylor series at the crack tip in each differen-

tiable piece as follows:
E ¼ Etip þ a11xþ b11yþ . . . ; �p < y < � p� yLð Þ
E ¼ Etip þ a12xþ b12yþ . . . ; � p� yLð Þ < y < yL
E ¼ Etip þ a13xþ b13yþ . . . ; yL < y < p

ð18Þ
where Etip is the modulus at the crack tip and aij
and bij are constants related to the derivatives of

Young’s modulus at the crack tip in the differen-

tiable pieces. Similarly, Poisson’s ratio and the

coefficient of thermal expansion can also be

expanded into Taylor series in each differentiable

piece. Substituting (17) and (18) and the temper-

ature field (15) into the governing equation (7)

and keeping only the dominant terms, we obtain

H2H2F ¼ 0 ð19Þ

which holds true in every differentiable piece. The

singular solution to homogeneous materials [5]

satisfies the same equation. Thus, it is also the

dominant solution to the FGM in every differen-

tiable piece. The continuities in displacements and

tractions across the boundary between the differ-

entiable pieces are maintained by this solution as

long as Young’s modulus and Poisson’s ratio are

continuous. Hence, the crack-tip stress and dis-

placement fields in FGMs have the same forms

as those in homogeneous materials [6] provided

the material properties are continuous and piece-

wise differentiable. Thus, the crack-tip stress and

displacement fields are given as follows:

sxx ¼ KIffiffiffiffiffiffiffiffi
2pr

p cos
y
2

1� sin
y
2
sin

3y
2

� �
� KIIffiffiffiffiffiffiffiffi

2pr
p sin

y
2

2þ cos
y
2
cos

3y
2

� �
syy ¼ KIffiffiffiffiffiffiffiffi

2pr
p cos

y
2

1þ sin
y
2
sin

3y
2

� �
þ KIIffiffiffiffiffiffiffiffi

2pr
p sin

y
2
cos

y
2
cos

3y
2

sxy ¼ KIffiffiffiffiffiffiffiffi
2pr

p sin
y
2
cos

y
2
cos

3y
2

þ KIIffiffiffiffiffiffiffiffi
2pr

p cos
y
2

1� sin
y
2
sin

3y
2

� �
ð20Þ
ux ¼ KI

4mtip

ffiffiffiffiffiffi
r

2p

r
2ktip � 1
� �

cos
y
2
� cos

3y
2

� �
þ KI

4mtip

ffiffiffiffiffiffi
r

2p

r
2ktip þ 3
� �

sin
y
2
þ sin

3y
2

� �
uy ¼ KI

4mtip

ffiffiffiffiffiffi
r

2p

r
2ktip þ 1
� �

sin
y
2
� sin

3y
2

� �
� KI

4mtip

ffiffiffiffiffiffi
r

2p

r
2ktip � 3
� �

cos
y
2
þ cos

3y
2

� �
ð21Þ

where KI and KII are mode I and mode II stress

intensity factors (SIFs), respectively, mtip is the

shear modulus at the crack tip, ktip ¼ 3 – 4ntip
for plane strain, and ktip ¼ (3 – ntip)/(1 + ntip) for
plane stress with ntip being the Poisson’s ratio at

the crack tip. Equations (20) and (21) indicate that

material nonhomogeneities influence the crack-tip

stress and displacement solutions only through

SIFs. The sameness of the crack-tip fields between

homogeneous and nonhomogeneous materials

implies that the SIF concept can still be used to

study the linear elastic fracture behavior of FGMs

and the SIF is the fracture driving force.

Equations (20) and (21) are the dominant

stress and displacement solutions near the crack

tip. They can be used to represent the complete

stress and displacement fields at points very close

to the crack tip as compared with the crack length

or any other characteristic lengths of the cracked

body. The region in which the solutions (20) and

(21) hold is called the K-dominance zone. While

gradients of the elastic modulus do not influence

the inverse square-root singularity, they may

affect the size of the K-dominance zone. Jin and

Batra [7] estimated the effect of material grada-

tion on the size of the K-dominance zone based

on the governing equation (7) and the asymptotic

solution (20). Equation (7) can be rewritten as

1

E
H2H2Fþ 2

@

@x

1

E

� �
@H2F

@x
þ @

@y

1

E

� �
@H2F

@y

� �
þ H2 1

E

� �
H2F� @2

@y2
1þ n
E

� �
@2F

@x2

� @2

@x2
1þ n
E

� �
@2F

@y2
þ 2

@2

@x@y

1þ n
E

� �
@2F

@x@y

þ H2 a T � T0ð Þ½ � ¼ 0

ð22Þ
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We know from (20) that for a model I crack, at

a radial distance r from the crack tip,
C

@2F

@xa@xb
� KIffiffiffiffiffiffiffiffi

2pr
p ð23Þ

to within an angular multiplier of order unity.

This singularity is due to the first term in (22).

Neglecting gradients of Poisson’s ratio, the dom-

inance of this first term over other terms involv-

ing modulus gradients in (22) leads to the

K-dominance conditions related to material

nonhomogeneities
1

E

@E

@xa

���� ���� <<
1

r
;
1

E

@2E

@xa@xb

���� ���� <<
1

r2
ð24Þ

The above condition indicates that the size of

the K-dominance zone decreases with

increasing magnitude of modulus gradients. The

K-dominance zone becomes vanishingly small

for a crack located in a nearly sharp interface

region where the modulus gradients are

extremely steep. For the stress intensity factor to

be a meaningful fracture parameter, the crack-tip

fracture process zone should be engulfed in the

K-dominance zone.
Crack-Tip Fields in Thermoelastic-Plastic
FGMs

Consider a crack in a thermoelastic-plastic

FGM with continuous and piecewise differen-

tiable elastic–plastic properties. We still

assume that the crack tip terminates at the

boundary between the two differentiable

pieces as shown in Fig. 1. Jin and Noda [2]

and Noda and Jin [3] proved that the crack-tip

stress and displacement fields in the

thermoelastic-plastic FGM with continuous

and piecewise differential properties have the

same forms as those for the corresponding

homogeneous material. This entry focuses on

the thermoelastic power-law hardening mate-

rial described in Section 2.3.
As in the case of thermoelastic FGMs, we

still assume the following asymptotic expan-

sion of the Airy stress function near the

crack tip:
F ¼ rs1 ~F1ðyÞ; r ! 0; �p < y < � p� yLð Þ
F ¼ rs2 ~F2ðyÞ; r ! 0; � p� yLð Þ < y < yL

F ¼ rs3 ~F3ðyÞ; r ! 0; yL < y < p

ð25Þ

where si (i ¼ 1, 2, 3) are the eigenvalues to be

determined and
�
FiðyÞ (i ¼ 1, 2, 3) are the angular

distributions of the Airy function. At the same

time, the hardening exponent n(x) and the param-

eter ap(x) can be expanded into Taylor series at

the crack tip in each differentiable piece as

follows:
n¼ ntip þ a11xþ b11yþ . . . ; �p< y<� p� yLð Þ
n¼ ntip þ a12xþ b12yþ . . . ; � p� yLð Þ< y< yL
n¼ ntip þ a13xþ b13yþ . . . ; yL < y< p

ð26Þ

ap ¼ atipp þ c11xþd11yþ . . . ;�p< y<� p�yLð Þ
ap ¼ atipp þ c12xþd12yþ . . . ;� p�yLð Þ< y< yL

ap ¼ atipp þ c13xþd13yþ . . . ;yL < y< p

ð27Þ

where ntip and atipp are the values of the hardening

exponent and parameter ap at the crack tip, aij
and bij are constants related to the derivatives of

the hardening exponent at the crack tip in the

differentiable pieces, and cij and dij are constants
related to the derivatives of the parameter ap at
the crack tip in the differentiable pieces.

Substituting (25) through (27), the Taylor series

expansions of the thermoelastic properties and

the temperature field (15) into (11), we find that

the plastic deformation dominates the elastic

and thermal ones. Hence, the governing equa-

tion of the Airy function reduces to the follow-

ing in the crack-tip region in each differentiable

piece:
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@x2
sntip�1
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@2F

@x2
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@2F

@y2
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þ @2

@y2
sntip�1
e

@2F

@y2
� 1
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@2F

@x2
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@2
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sntip�1
e

@2F

@x@y
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ð28Þ

Equation (28) is the same as the governing

equation for the homogenous power-law harden-

ing material with constant properties of ntip and

atipp . Thus, the HRR field for the homogeneous

power-law hardening material [8, 9] is also the

dominant solution to the FGM in every differen-

tiable piece. The continuities in displacements

and tractions across the boundary between the

differentiable pieces are maintained by this solu-

tion as long as the hardening exponent n and

parameter ap are continuous. Hence, the crack-

tip stress and displacement fields in the FGM are

still the HRR field provided the material proper-

ties are continuous and piecewise differentiable.

We note that if the Ramberg-Osgood model is

expressed in a dimensionless form, the yield

stress and yield strain should also be continuous

and piecewise differentiable. The crack-tip stress

and displacement fields are thus given as follows:
sabðr; yÞ ¼ KMr
�1= ntipþ1ð Þ~sabðyÞ ð29Þ

eabðr; yÞ ¼ atipp KMð Þntip r�ntip= ntipþ1ð Þ�eabðyÞ ð30Þ

uaðr; yÞ ¼ atipp KMð Þntip r1= ntipþ1ð Þ�uaðyÞ ð31Þ

where KM represents the intensity of the singular

stress field and ~sabðyÞ, ~eabðyÞ, and ~uaðyÞ are the

angular variations of the crack-tip stress, strain,

and displacement fields, respectively. These

angular distributions can be found in Hutchinson

[8] and Rice and Rosengren [9].

We note that the properties of a homogeneous

material in a thermal gradient become space-

dependent when the temperature dependence of

material properties is taken into consideration.

Yuan and Kalkhof [10] studied crack-tip fields

in a power-law hardening material with
temperature-dependent properties using a finite

element method. Their numerical results showed

that the HRR field exists in the crack-tip region if

the temperature gradient is not very severe.

We have seen that the crack-tip fields in

a power-law hardening FGM have the same

forms as those for a homogeneous material

(HRR field) as long as the material properties

are continuous and piecewise continuously dif-

ferentiable. The size of the region in which the

crack-tip fields (29) through (31) dominate (HRR

dominance zone), however, will be affected by

the material property gradients. Jin [11] esti-

mated the effect based on the crack-tip solutions

(29) through (31) and the basic equation (11). To

simplify the analysis, only mode I deformation is

considered. For a power-law hardening material,

it follows from the HRR solution (29) that at

a radial distance r from the crack tip,
@2F

@xa@xb
� KMr

�1= ntipþ1ð Þ

F � KMr
ð2ntipþ1Þ= ntipþ1ð Þ; r ! 0

ð32Þ

By comparing the magnitude of the dominant

terms in (11) related to the asymptotic solution

(29) and the magnitude of the terms related to the

material gradation, we can show that the crack-tip

solutions (29) through (31) will dominate at

points for which
1

ap

@ap
@xa

���� ���� <<
1

r
;

1

ap

@2ap
@xa@xb

���� ���� <<
1

r2
ð33Þ

1

n

@n

@xa

���� ���� <<
1

r lnðr=AÞj j ;
1

n

@2n

@xa@xb

���� ���� <<
1

r2 lnðr=AÞj j
ð34Þ

where A is a length parameter. We note that (33)

and (34) are the estimates on the order of magni-

tude of the HRR dominance zone size and the

selection of A does not affect the asymptotic

nature of (34) when r ! 0. Equations (33) and

(34) indicate that the size of the HRR dominance

zone decreases with increasing magnitude of

material property gradients in the crack-tip
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region. The HRR dominance conditions (33) and

(34) involve only the plastic properties of the

material (ap and n).
C
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Overview

Engineers designing structures operating at

higher temperatures noticed that at a constant

level of stress, structural deformation continues
to increase. Such behavior is known as creep and

strains that occur are known as creep strains. An

opposite effect is also seen: if a structure is

subjected to a constant strain at elevated temper-

atures, the stress level will decrease. This phe-

nomenon is known as stress relaxation. Strain

rate becomes an important factor in the design

and it is assumed to be influenced by the stress

level and temperature. This strain accompanies

usual, elastic strain. Most applications involving

creep are concerned with the behavior below

yielding point, but creep can be accompanied by

the instantaneous plastic strain as well. The creep

process is not limited to constant levels of stress;

it occurs as well in the case of variable stress

levels. Although higher temperatures are usually

understood as a trigger for creep and relaxation

behavior, the phenomenon is present at room

temperature in the case of some polymers and

even metals – lead for an example. Besides

already mentioned temperature and stress as

basic variables influencing creep, grain size,

alloying, prestrain, and recovery are additional

factors influencing creep.

This entry is intended to give a brief introduc-

tion to the problems of creep and relaxation anal-

ysis. The outline is as follows – initially typical

curves representing this behavior are described.

Discussion of creep mechanisms follows. Rela-

tions between stress and strain are presented for

the uniaxial case and extended to the multiaxial

case. To familiarize the reader with the problem,

three different applications are selected: stress

relaxation of a uniaxially loaded bar, creep of

a thin-walled tube, and stress relaxation in

a beam. At the end, some conclusions are given.
Creep and Relaxation Curves

Typical creep curve for the constant load level

and constant temperature is shown in Fig. 1 [1–3].

The uniaxial creep test could be performed under

constant load or constant stress assumption.

Although both assumptions give the same result

at the beginning of the test, at the later stage they

diverge. Since the testing apparatus for constant

load is much simpler, this is the preferred
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approach although from the metallurgical point

of view, creep is a stress function. The curve

obtained in that way can be divided into three

distinctive parts. Upon instantaneous-elastic (and

possibly plastic) strain e0, the first part of the

curve describes primary or transient creep. It is

characterized by decrease of the creep strain rate

and is relatively short compared to the second

part. The second phase is known as secondary

or steady-state creep. The name itself implies

that during this phase creep strain rate is constant,

leading to linear rise of the creep strain with

respect to time. It is the longest step in the creep

process. Under favorable conditions, the final,

tertiary, or accelerating creep stage is reached.

Creep strain rate now starts to rapidly increase,

eventually leading to the failure of the specimen.

This phase is accompanied by the necking of the

test specimen. The creep curve in Fig. 1 is only

a typical one. Often creep curves do not have the

tertiary phase or the secondary is either

completely absent or very short. For example,

for lower temperatures and loads, after primary

creep phase, creep might cease to propagate

entirely. Some general guidance [4–8] is that at

temperatures up to 0.3 T/TM, where TM is melting

temperature in degrees kelvin, primary creep is

most significant, while secondary creep is negli-

gible. At moderate temperatures (T/TM < 0.7)
both primary and secondary creep are important,

while at the temperatures near melting point pri-

mary creep can be neglected and secondary creep

takes the dominant role.

If strain is kept constant then under suitable

environment conditions, stresses are going to

decrease through relaxation process. The phenom-

enon is closely related to creep and it is believed

that it could be analyzed by the same underlying

mechanism as the creep itself. Therefore, a typical

relaxation test is carried out by constraining the

contraction of a previously uniaxially loaded spec-

imen. During the test, stresses are registered and

obtained curve should look like the one given in

Fig. 2. In the first part of the relaxation curve, the

stress decrease rate is the highest but it soon starts

to slow down. The source of stress decrease is that

elastic strain, Fig. 2b, is gradually substituted by

the creep strain. It should be noted that total strain

remains constant throughout the whole process.

Probably the most frequently met problem of this

kind is found in bolts joining two flanges of

a pipeline operating at high temperature.
Creep Mechanisms

To keep it very simple, it could be said that creep

occurs either through the movement of
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dislocations or through diffusion. Both can take

place simultaneously. Dislocation creep is domi-

nated by the movement of dislocations, i.e., crys-

tallographic defects [9–13]. Since the movement

of dislocations involves higher stresses needed to

overcome obstacles, such creep arises only if the

stresses are high enough. Similar behavior is

found in plastic deformation. However, differ-

ently from plastic deformation where stresses

are used to unlock the dislocation, at elevated

temperatures diffusional movement of vacancies

is exploited to unlock the dislocations. This is

known as the climb. So, although movement of

dislocations is the cause of creep, diffusion of

vacancies should be present as well for the pro-

cess to occur. Temperatures in the creep of metals

should be at least 0.3–0.4 TM in most cases. Due

to the climb, sliding of dislocations does not

necessary have to be in the same plane like in

plasticity. When sufficient number of vacancies

is diffused away a dislocation can change a slip

plane in order to avoid an obstacle, evidently

increasing the deformation of the material. In

dislocation creep, a certain threshold stress is

frequently introduced below which no creep is

present (or can be neglected). To describe such

creep a power law is often used.

Diffusional creep is dominant as temperature

is approaching the melting point in materials

with fine grain crystal structure. The stress

level could be low. Two kinds of diffusion are

important in the creep of metals: interstitial and

vacancy diffusion. Interstitial diffusion exploits

the small gaps between atoms, i.e., smaller
atoms in the crystal lattice can diffuse through

the gaps if their energy level is sufficiently high.

For example, steel – the most widely used struc-

tural material nowadays – could creep in that

manner since carbon atoms are small enough to

travel through these gaps. It has to be empha-

sized that interstitial diffusion is less frequently

found than vacancy diffusion. Vacancy diffu-

sion occurs in crystals with the approximately

equal size of atoms in the lattice. Since the atoms

are of equal size, neither atom can squeeze

through the gaps; instead a vacancy in the lattice

must be present if the atom is going to move.

Obviously, grain boundaries or other defects in

the lattice are places where such missing atoms

could be found in larger numbers. In that way,

diffusion is greatly enhanced by the presence of

grain boundaries or other defects [11]. There-

fore, vacancies move from the one grain bound-

ary to the next, grouping at the boundaries. The

flow of vacancies is not random; they have ten-

dency to move and group in the direction per-

pendicular to the axis at which tensile stresses

are positioned – in the region with compressive

stresses. On the other side, atoms move in the

opposite direction, from the compressive

stresses zone to the tensile stresses zone. If the

temperature is high enough, diffusion will occur

also through the crystal. The movement of dis-

locations does not have to take place. As

a consequence of such diffusion, grains elongate

what effectively enhances creep. Diffusional

creep can be rather accurately described by lin-

ear stress dependence on the strain rate.
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Constitutive Models of Creep

Uniaxial Model of Creep Strain Evolution

The uniaxial model of creep must provide an

approximation to the creep curve, Fig. 1, i.e., of

strain change versus time. A starting hypothesis

is partition of strain e into the instantaneous elas-
tic and the creep parts:
e ¼ ee þ ec ð1Þ

where is ee linear elastic strain and is ec creep

strain. Linear elastic strain is calculated as usual:
ee ¼ s=E ð2Þ

while creep strain remains to be approximated

from the test results. It should be emphasized

that instantaneous plastic strain can also be

added besides elastic strain, but such cases are

not the topic of this entry. For more details, the

interested reader should refer to some of the stan-

dard textbooks on elastoplasticity.

To describe the evolution of creep strain

a number of models were developed. Since the

secondary creep phase is usually most significant,

the greatest number of models deal with this

phase. Some models can be used to describe

both primary and secondary phase, while some

deals with the tertiary creep. In the text that

follows only models dealing with primary and

secondary creep are considered. The general

approach is to assume that creep strain is

a function of stress, temperature, and time:
ec ¼ F s; T; tð Þ ð3Þ

The usual assumption is that influence of each

particular variable can be uncoupled, i.e. [14]:

ec ¼
XN
i¼1

fi sð ÞgiðTÞhiðtÞ ð4Þ

where f, g, and h are functions of stress, temper-

ature, and time, respectively. Such an approach is

strongly supported by the testing procedures –

usually both stress and temperature are kept

fixed and creep strain variation in time is
monitored. Alternatively, temperature and strain

are held fixed and stress is allowed to vary. The

results can be then compared at given time t. It is
not rare to see that temperature is not explicitly

introduced into the equation, but rather material

parameters are considered to be functions of

temperature.

Majority of the models used for creep are

based on the Arrhenius equation:

_ec ¼ f sð Þe� Q
RT ð5Þ

where Q is the activation energy (J mol�1) and R
is the universal gas constant (8.31 J mol�1 K�1).

In Arrhenius equation, strain rate is an exponen-

tial function of temperature and therefore it is

usually to find the same functional dependence

in empirical equations.

List of possible creep models is very long

[15, 16]. Some are more suitable for metals,

others for ceramics or plastics. Themost common

options are summarized below. Most simple

cases are based on the time dependence only,

for example, logarithmic law:
ec ¼ A ln tþ B ð6Þ

where A and B are material parameters. The law

is suitable for temperature ratios

0:05 < T=TM < 0:3 and primary creep. Strain

rate for the model described by (6) is:
_ec ¼ A t= ð7Þ

therefore giving infinitely large strain rate at the

t ¼ 0. An alternative form that circumvents the

problem is given by
ec ¼ A ln 1þ Ctð Þ ð8Þ

Various more or less sophisticated time depen-

dence models can be envisaged; just to give an

idea of these forms, combined exponential-power

and logarithmic-power laws are provided:

ec ¼ A 1þ Bt1=3
� 

eCt � A

ec ¼ A lnðtÞ þ BtC þ Dt
ð9Þ
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Probably the most popular model is the

Bailey-Norton law, in which stress function in

(5) is considered to be a power law on the stress:

ec ¼ AsBtC ð10Þ

This law is suitable for modeling both primary

and secondary creep. This model can be catego-

rized as a combined stress-time dependent law.

Other examples of this type are exponential law:

_ec ¼ Ae BþCsð Þ ð11Þ

or hyperbolic law:

_ec ¼ A sinh Bsð Þ½ �C ð12Þ

Generally, in the case of metals, power law,

(10) is more suitable for lower stresses, while

exponential law (11) is more useful for higher

stresses [6]. Hyperbolic sine law, (12) can be

used for both lower and higher stresses.

Combined time-temperature-stress-dependent

functions take the most complex form, for

example:
ec ¼ Ae�B=TsCtD

ec ¼ Ae�B=T sinh Csð Þ½ �DtF
ð13Þ

Finally, it should be noted that the material

parameters A, B, C, D, F in the above equations

can be different for the tensile and compressive

loading.

Multiaxial Model of Creep Strain Evolution

Upon definition of uniaxial models, these should

be now extended to the multiaxial case. To keep

the presentation as simple as possible, only iso-

tropic models will be considered. Readers famil-

iar with the theory of plasticity will find this

subject more easily to understand.

For an isotropic body, the strain tensor and the

stress tensor can be related through the Lévy-

Mises equations [4, 14]. Basically, these equa-

tions state that principal axes of these two tensors

coincide. The same assumption can be extended

to the strain rate tensor:
_eij ¼ Sijl ð14Þ

where Sij represents the deviatoric part of stress

tensor, i.e.:
Sij ¼ sij � 1

3
skkdij ð15Þ

and is dij Kronecker delta. It is assumed that strain

tensor can be additively separated into the elastic,

the creep, and the thermal strain parts. Since the

elastic and the thermal strain parts are not time

dependent, there is:
eij ¼ eeij þ ecij þ adijDT ) _eij ¼ _ecij ð16Þ

Furthermore, it should be noted that the creep

strain tensor is isochoric, i.e., volume does not

change during creep:
trecij ¼ 0; tr _ecij ¼ 0 ð17Þ

Deviatoric part of the elastic strain tensor is

calculated as:
e
e;ðdÞ
ij ¼ 1

2m
Sij ð18Þ

where m is the shear modulus. Because of (16) the

creep strain rate tensor is defined by the flow rule:
_ecij ¼ Sijl ð19Þ

i.e., principal axes of the stress tensor and the

creep strain tensor rate also coincide. Compo-

nents of these tensors differ for a factor of pro-

portionality l. So, to complete determination of

the stress–strain relationship, a factor l must be

calculated. In the line with that, effective stress:
s� ¼
ffiffiffiffiffiffiffi
3J2

p
; J2 ¼ 1

2
SijSij ð20Þ

and effective creep strain rate:
_e�c ¼
ffiffiffiffiffiffiffi
4

3
I2

r
; I2 ¼ 1

2
_ecij _e

c
ij ð21Þ
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are introduced. In (20) and (21) J2; I2 are second
invariants of the stress and the creep strain rate

tensors, respectively. Introduction of (19) into

(21), together with (20), yields:
_e�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_ecij _e

c
ij

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
SijlSijl

r
¼ 2

3
ls�

l ¼ 3

2

_e�c

s�

ð22Þ

what now completes stress–creep strain rate

constitutive law.

The above procedure must be valid in the

uniaxial case as well. In that case, effective stress

is equal to uniaxial stress and effective creep

strain is equal to the uniaxial creep strain.

Consequently, if now instead of effective creep

strain a uniaxial model is used, say the Bailey-

Norton law, (10):
_e�c ¼ _ec ¼ A s�ð ÞBCtC�1 ð23Þ

then the proportionality factor l is:
l ¼ 3

2

_e�c

s�
¼ 3

2
A s�ð ÞB�1CtC�1 ð24Þ

In this particular case, the constitutive law is:
_ecij ¼ Sijl ¼ 3

2
A s�ð ÞB�1CtC�1Sij ð25Þ

Other creep laws (e.g., any of (6)–(13)) can be

easily employed in (23).

It should be emphasized that a more general

theory of creep can be envisaged through the

employment of the advanced continuummechan-

ics. Such considerations are beyond this entry and

the interested reader should consult [4, 17] for an

initial study.
Applications

The purpose of this section is to provide an

insight into the above presented theory through

simple applications that can be solved by hand.

More details can be found in references cited in
the text. If a more complex problem has to be

solved, then perhaps some numerical procedure

could be better suited. The most frequent choice

is the finite element method [18, 19]. Better com-

mercial finite element codes have the option for

creep analysis readily available. However, the

topic goes beyond the interest of this entry and

the reader should consult appropriate literature

for further information.

Application 1: Unixial Creep Relaxation

in Bars

As a first application of the above presented the-

ory, a creep relaxation of a bar is considered.

Contrary to the classical creep problem in which

the stresses are prescribed, in the creep relaxation

strain is prescribed while stresses are allowed to

vary. It is customary to assume that the same

material data is valid for both creep and relaxa-

tion [14, 20]. Such assumption is frequently made

since data about relaxation is scarce; therefore the

reader is directed to verify if such an assumption

can be made for the material in question. In this

particular application, it will be assumed that

creep and relaxation data are the same.

To visualize the problem at hand, consider

a flange of pipe used to transport fluid at ele-

vated temperature. Bolts are applied to con-

nect two flanges. For the sake of simplicity,

flanges will be treated as rigid. Therefore, total

elongation of bolts DL must remain constant.

Initially, bolts are tightened with stress in the

elastic range. However, due to creep of the

material, a part of elastic strain will be

transformed into creep strain what will lead

to the decrease in stresses (Fig. 2). This

means that the total elongation of bolts DL in

some time instant t will be:
DL ¼ DLeðtÞ þ DLcðtÞ ¼ const ð26Þ

where DLe is elastic part of elongation and DLc
creep part of elongation. If initial stress in bolts is

now denoted as s0, Young’s modulus as E while

initial strain is e0, then it is:

e0 ¼ s0
E

¼ sðtÞ
E

þ ecðtÞ ð27Þ
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To obtain evolution of stresses, (27) should be

differentiated with respect to time t:
C

0 ¼ 1

E
_sþ _ec ð28Þ

At this point, a suitable uniaxial law for creep

strain rate should be used. Consider the Bailey-

Norton creep law, (10), for example:
_ec ¼ AsBCtC�1 ð29Þ

A careful reader will notice that stress rate in

the above creep strain rate equation is neglected.

Such procedure has its stronghold in the fact that

the Bailey-Norton law is almost exclusively

obtained from the creep test – that is, with the

constant load during the test. Therefore, it has an

obvious shortcoming when processes that

involve changes of stress are concerned. It basi-

cally limits the consideration to slower stress

changes. Nevertheless, this is a standard proce-

dure successfully applied in the series of prob-

lems [14, 20]. Another simplification is to

consider only secondary creep where the creep

strain rate is constant. In this case, the Bailey-

Norton law (10) should be linear in time, that is

C ¼ 1. This transforms (28) to:
ds
sB

¼ �AE dt ð30Þ

Integration of (30) yields:

s1�BðtÞ ¼ B� 1ð Þ At � Eþ C1ð Þ ð31Þ

The constant of integration C1 is evaluated

from the initial conditions. Since in the time

instant t ¼ 0 bolts were tightened to stress

s ¼ s0, then it is:

C1 ¼ s1�B
0

B� 1
ð32Þ

Therefore, creep relaxation of stresses in bolts

is governed by the function:
sðtÞ ¼ B� 1ð ÞAt � Eþ s1�B
0


 �1= 1�Bð Þ ð33Þ
In the particular case when bolts are consid-

ered, additional effects, like bending of the

flanges can increase the rate of the relaxation

process. Such effects are not considered here

and for further details the reader is directed to

[20], for example.

Application 2: Mutliaxial Creep in

Thin-Walled Tubes

To demonstrate an application of the multiaxial

creep model, creep of a thin-walled tube with

closed ends is considered. The tube radius is r,
wall thickness h, and the constant inner pressure

in the tube is p. Well-known formulas for

stresses in radial, circumferential, and axial

directions are [15]:
srr ¼ 0; syy ¼ pr

h
; szz ¼ pr

2h
ð34Þ

To evaluate effective stress, (20), deviatoric

stresses should be known. Since hydrostatic

stress is:
s0 ¼ 1

3

pr

h
þ pr

2h

� 
¼ pr

2h
ð35Þ

deviatoric stresses are:
Srr ¼ srr � s0 ¼ � pr

2h
; Syy ¼ syy � s0 ¼ pr

2h
;

Szz ¼ szz � s0 ¼ 0

ð36Þ

Consequently, effective stress, (20), is:
s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
SijSij

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
2

pr

2h

� 2r
¼

ffiffiffi
3

p pr

2h
ð37Þ

Now the effective stress should be related

to the creep stain law. If the Bailey-Norton

creep law is considered, the proportionality fac-

tor, (24), is:

l ¼ 3

2

_e�c

s�
¼ 3

2
A

ffiffiffi
3

p pr

2h

� B�1

CtC�1 ð38Þ
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Therefore, creep strain rates are calculated

using (25) as:

_ecrr ¼
3

2
A

ffiffiffi
3

p pr

2h

� B�1

CtC�1 � pr

2h

� 
¼�

ffiffiffi
3

p

2
AC

ffiffiffi
3

p
pr

2h

� �B

tC�1

_ecyy ¼
3

2
A

ffiffiffi
3

p pr

2h

� B�1

CtC�1 pr

2h

¼
ffiffiffi
3

p

2
AC

ffiffiffi
3

p
pr

2h

� �B

tC�1

_eczz ¼ 0

ð39Þ

Since _eczz ¼ 0 the pipe will not extend longi-

tudinally. Radial displacement can be evalu-

ated as a sum of initial elastic and creep

displacement [15]:
uðtÞ ¼ reyyðtÞ ¼ u0 þ r

ðt
0

_ecrrdt

¼ u0 þ
ffiffiffi
3

p

2
A

ffiffiffi
3

p
pr

2h

� �B

rtC; ð40Þ

where initial elastic displacement is:
u0 ¼ pr2

Eh
1� n

2

� 
ð41Þ
Application 3: Creep Relaxation in Beams

In this case, creep relaxation of a beam is consid-

ered [3, 4]. In particular, stress redistribution due

to creep is analyzed. Only stresses caused by the

bending moment in a plane will be analyzed. The

solution will be based on the small strain Euler-

Bernoulli beam theory and the influence of shear-

ing stresses will be neglected. Therefore, elabo-

rations follow elementary steps from the beam

theory. The longitudinal axis of a beam is denoted

with x, while cross-section lies in the y-z plane.

The bending moment vector is taken to be coaxial

with y axis. The cross-section of the beam is

arbitrary, where the height is defined with coor-

dinates starting at zmin till zmax and the width is

a function of height, b ¼ f(z).
It is assumed that strain in a point can be

additively decomposed into the elastic and the

creep parts:
e ¼ ee þ ec; ee ¼ s
E

ð42Þ

Also, usual assumption of linear distribution

of strain on the cross-section is accepted:
e ¼ Kz ð43Þ

Combining (42) and (43) distribution of

stresses sðzÞ can be evaluated as:
s ¼ E e� ecð Þ ¼ E Kz� ecð Þ ð44Þ

Standard procedure from the equilibrium con-

dition yields the bending moment:
M ¼
ðzmax

zmin

sbz dz ð45Þ

If stress (44) is introduced into (45), it is:
M ¼
ðzmax

zmin

E Kz� ecð Þ bzdz

¼ EK

ðzmax

zmin

bz2dz� Ee

ðzmax

zmin

ecbzdz

¼ EKIy � E

ðzmax

zmin

ecbzdz ð46Þ

Complete solution is obtained by differentiat-

ing (43), (44), (45):
_e ¼ _Kz _s ¼ E _Kz� _ec
� �

_M ¼ E _KIy � E

ðzmax

zmin

_ecbzdz ð47Þ

Model is completed by the selection of the

suitable creep strain rate law _ec in (47) and

exploiting condition that creep strain is not
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present ec ¼ 0 at the t ¼ 0. This condition also

gives initial stress value and initial curvature

value from (44) and (46), respectively:

s t ¼ 0ð Þ ¼ s0 ¼ EKz; K t ¼ 0ð Þ ¼ K0 ¼ M

EIy

ð48Þ

Of special importance is the case when load-

ing does not change, i.e., M ¼ const. In that case
_M ¼ 0, so (47)3 gives

_K ¼ 1

Iy

ðzmax

zmin

_ecbzdz ð49Þ

so the stress rate, (47)2 is now:
_s ¼ E z
1

Iy

ðzmax

zmin

_ecbzdz� _ec

0B@
1CA ð50Þ

Finally, integrationgivesevolutionof stressesas:
s ¼
ð
E _Kz� _ec
� �

dtþ C0

¼
ð
E z

1

Iy

ðzmax

zmin

_ecbzdz� _ec

0B@
1CAdtþ C0 ð51Þ

where constant of integration is obtained from

(48) as C0 ¼ s0. The model is completed by the

selection of a suitable creep strain rate law _ec in

(47). For example, if the hyperbolic law is

adopted, (12), stresses can be calculated as:
s ¼ s0 þ
ð
E z

1

Iy

ðzmax

zmin

A sinh Bsð Þ½ �Cbz dz

0B@
�A sinh Bsð Þ½ �C

!
dt ð52Þ

The analytical solution is not straightfor-

ward since stresses occur at both sides of (52),
so an iterative solution sequence should be used

to obtain the solution, see [3, 4] for more

details.
Conclusions

A brief presentation of creep analysis was given,

with an emphasis on analytical solutions. Proce-

dures suitable for uniaxial and multiaxial cases

were presented. They enable efficient solutions

for both problems: one in which strains vary

while stresses are kept constant and the other –

stresses are relaxed while strains are kept fixed.

An illustration of creep problems was provided

through three typical applications. In order to

provide a clear insight the focus was given to

the simplicity. For other problems or extension

of the applications given here, the interested

reader is directed to [3, 4, 14] for a starting point.
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▶Linear Aero-Thermo-Servo-Viscoelasticity,

Part I: General Theory
Creep Crack Growth

Ching-Kong Chao

Department ofMechanical Engineering, National

Taiwan University of Science and Technology,

Taipei, Taiwan, Republic of China
Synonyms

Crack
Overview

Failure analysis of the Zircaloy cladding of spent

fuel in interim storage is an important topic for

the management of nuclear wastes. However,

there have been few studies concerning the

long-term behavior of the cladding, and its integ-

rity, in dry storage conditions. Hydrides are usu-

ally dissolved into the material at high

temperatures, and then, hydrogen in solid solu-

tion diffuses in the presence of concentration,

temperature and stress gradients, and precipitates

out as radial hydrides under the presence

of the circumferential stress. In this study, the

reorientation of hydrides and its effect on
the creep life of the spent fuel Zircaloy cladding

is also taken into account. A law of viscoplasticity

for application to the cladding creep behavior

during long-term dry storage has been established

by Limon et al. [1]. The effects of hydride orien-

tation on the cladding crack propagation have

been studied by Daum et al. [2]. In this study,

according to the latest version of ISG-11, we used

the C*-integral [3] and the strain energy density

criteria [4] to analyze the creep effect for spent

fuel cladding in interim dry storage, and discuss

the effects of hydride embrittlement, the initial

crack length and different storage temperature

profiles on the cladding failure. The results

obtained in this study can estimate what kind of

environment and storage conditions are most

likely to cause degradation leading to cladding

failure during the interim dry storage.
Proposed Failure Criterion

Riedel [5] suggested that the stress intensity fac-

tor, KI, and the path independent integral, C
*, are

the appropriate parameters for linear elasticity. In

the present study, the path independent integral,

C*, together with the strain energy density theory

[4] is proposed to examine the effects of initial

crack lengths and storage temperature profiles on

cladding failure. Landes et al. [3] determined the

energy rate line integral, C*, to be defined as
C� ¼
ð
G
ðW�dy� Ti

@ui
@x

dsÞ ð1Þ

where

W� ¼
ð _e
0

sijd _eij

is the strain rate energy density associated with

the point stresses, sij, and the strain rate, _eij: C� is
a modified J-integral in which the strain and the

displacement vectors are replaced by their rates.

Goldman et al. [6] described C� as a single

parameter characterizing the stress–strain rate in

the near-tip field for a material governed by

power laws for creep.

http://dx.doi.org/10.1007/978-94-007-2739-7_908
http://dx.doi.org/10.1007/978-94-007-2739-7_908
http://dx.doi.org/10.1007/978-94-007-2739-7_100114
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Sih [4] proposed the strain energy density

theory, which states that the amount of incremen-

tal crack growth, r1; r2 . . . rj; is governed by

dW

dV

� �
c

¼ S1
r1

¼ S2
r2

¼ . . . ¼ Sj
rj

ð2Þ

where Sj represents the strain energy density fac-
tor, rj is the crack growth increment, and

ðdW=dVÞc is the critical strain energy density

which is assumed to be a material dependent

constant. Since the strain energy density factor,

S, can be related to the energy rate line integral,

C*, by the equation

S ¼ l
ðt
0

C�dt ð3Þ

for a self-similar crack growth. The dimension-

less constant l is defined as
l ¼ 1� 2n
2ð1� nÞ

where n is the Poisson’s ratio.
Substitution of (3) into (2) leads to
1

l
dW

dV

� �
c

¼
Ð t1
0
C�
1dt

r1
¼
Ð t2
t1
C�
2dt

r2
¼ . . . ¼

Ð tj
tj�1

C�
j dt

rj

ð4Þ

If we further assume that the energy rate line

integral, C*, remains constant during each time

interval Dtj, (4) can then be replaced by

1

l
dW

dV

� �
c

¼ C�
1Dt1
r1

¼ C�
2Dt2
r2

¼ . . . ¼ C�
j Dtj
rj

ð5Þ

From (5), we now establish an important linear

relationship between the creep crack growth rate,

da/dt, and the energy rate line integral, C*, by
Da
Dt

� �
j

¼ lCj
�

dW
dV

� �
c

ð6Þ

where the crack growth increment, rj ¼ Daj.
This investigation determines the creep

crack growth rate, da=dt, from the energy

rate line integral, C*, which can be evaluated

from the numerical software simulation

discussed in the next section. Note that the

incremental crack growth for each time incre-

ment can be summed up over the entire com-

putation for any specified crack size. A crack

size with the total crack length exceeding the

thickness of the cladding represents a through-

wall crack.
Problem Description

In order to simplify the complex geometry with

this irregular distribution of cracks, we adopted

a symmetric distribution of eight double cracks

embedded in the spent fuel Zircaloy cladding of

dimensions, 9.5 mm OD, and 8.36 mm ID, as

displayed in Fig. 1. Note that both the inner

crack (Tip-A) and the outer crack (Tip-B) are

considered to simulate the worst scenario of

cladding failure (see Fig. 2). Three different

initial crack lengths are considered in the pre-

sent work, with a cladding thickness of

w ¼ 0:57 mm. To investigate the effects of

hydride embrittlement on the creep life of clad-

ding, radial hydrides with rectangular dimen-

sions, 0.12 � 0.06 mm (see Fig. 2), are placed

ahead of crack Tip-A and crack Tip-B. Material

constants are listed in Table 1. A constant pres-

sure of 90 MPa is applied to the inner boundary

of the cladding, and a constant temperature of

400 �C is present at the outer boundary of the

cladding. Meanwhile, the temperature ranges

from 400 �C to 570 �C at the inner boundary of

the cladding. Three different storage tempera-

ture profiles on the inner surface of the cladding

are suggested in this work, and are shown in

Fig. 3. The instantaneous response is purely

elastic since creep deformation develops over

a period of time. With the load held constant,

subsequent creep deformation causes a relaxa-

tion of the crack-tip stresses until a steady-state

stress distribution is reached. The material prop-

erties of the spent fuel Zircaloy cladding are

listed in Table 2.



x

y

z

Creep Crack Growth, Fig. 1 The Zircaloy cladding

model include inner and outer cracks

Tip-A Tip-B

Creep Crack Growth, Fig. 2 Both the inner crack

(Tip-A) and the outer crack (Tip-B)

Creep Crack Growth, Table 1 Material properties of

the hydride

Zr-2.5%Nb

Young’s modulus, GPa 97.9

Poisson’s ratio 0.33

Conduction coefficient, W/m�K 17.1

Expansion coefficient, 1/K 6.3 � 10�6

Density, g/cc 6.44

Specific heat, J/g�K 0.285
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Numerical Analysis

A finite element program which provides a high

degree of accuracy for the crack tip element is now

applied to perform the two-dimensional thermovis-

coelastic analysis. The FEM program used in this

study isABAQUS™ v.6.5-1,which uses an embed-

ded enriched eight-node biquadratic plane-stress

quadratic reduced integration. Due to geometric

symmetry, only one octant is needed to analyze

the present study. Figure 4 represents the finite

element mesh discretization where the elements

are fine in the crack tip region and coarse in the

region away from it. In order to calculate the energy

rate line integral, C*, we use Matsuo’s creep model

_e ¼ A
E

T

� �
sinh

asy
E

� � n
e�

Q
RT ð7Þ

where A, n, and a are constant, T is the tempera-

ture, E is the Young’s modulus, R is the universal

gas constant, Q is the activation energy. These

properties are listed in Table 2. Note that sy
represents the uniaxial equivalent deviatoric

stress and the dependency of the Young’s modu-

lus (MPa) on the temperature (K) is assumed as
E ¼ 9:93� 104 � 59:5� T

By interpreting the strain rate obtained from

(7), the energy rate line integral C* can be deter-

mined by using contour integral evaluation pro-

vided by ABAQUS™.
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Creep Crack Growth, Fig. 3 Three different storage temperature profiles applied on the inner boundary of the

cladding

Creep Crack Growth, Table 2 Material properties of

the spent fuel Zircaloy cladding

Zircaloy-2

Young’s modulus, GPa 99.3

Poisson’s ratio 0.37

Conduction coefficient, W/m�K 51.5

Expansion coefficient, 1/K 6 � 10�6

Density, g/cc 6.56

Specific heat, J/g�K 0.285

Creep Crack Growth, Fig. 4 The finite element mesh

discretization where the elements are fine in the crack tip

region
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Results and Discussion

The three different temperature profiles: 0-5-15-

20, 0-10-20, and 0-15-20, are defined as type I, II,

and III, respectively, as shown in Fig. 3. These

three types are all considered in the analyses.

Referring to Fig. 3a, a storage temperature profile

is applied at the inner boundary of cladding, while

a constant pressure of 90 MPa is applied to the

inner boundary of the cladding, and a constant
temperature of 400 �C is present at the outer

boundary of the cladding. The crack growth incre-

ment rate da=dt can be determined from our pro-

posed criterion with the given material constant
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C

ðdW=dVÞc ¼ 0:32MPa. Note that the creep crack

growth rate, da=dt, at Tip-A is larger than that at

Tip-B since the circumferential stress along the

inner boundary of cladding is greater than that

along the outer boundary of cladding. The total

crack growth for both Tip-A and Tip-B is obtained

by directly integrating the crack growth increment

rate. The total creep life can then be determined by

setting conditions which represent the situation of

through-wall crack, namely, when the sum of the

total crack growth for both the inner and outer

crack is equal to the thickness of the cladding.

Here, it is understood that a larger initial crack

length sustains a shorter creep life. The creep life

for the different storage temperature profiles and

different initial crack lengths is provided in Fig. 5.

Referring to Fig. 3b, a storage temperature profile

is applied at the inner boundary of cladding while

a constant pressure of 90 MPa is applied to the

inner boundary of the cladding, and a constant

temperature of 400 �C is present at the outer

boundary of the cladding. The C* value rises to

its maximum value at t ¼ 10 years with

a maximum temperature of 570 �C and is then
followed by a decrease from 570 �C to 400 �C
for the last 10 years. The C* value in the Type-II

case rises less sharply than that seen in the Type-I,

because the rate of increase of the storage temper-

ature for the Type-II is just one half of that of the

Type-I case. Consequently, both the crack growth

increment rate, da=dt, and the total crack length, a,
for the Type-II case are larger than those in the

Type-I case. The results are displayed in Fig. 6.

Referring to Fig. 3c, a storage temperature profile

is applied at the inner boundary of cladding while

a constant pressure of 90 MPa is applied to the

inner boundary of the cladding, and a constant

temperature of 400 �C is present at the outer

boundary of the cladding. The trend of C*, da=dt

and the total crack length, a, is found to be similar

to the trend presented by the Type-II case, except

that both the crack growth increment rate, da=dt,

and the total crack length, a, for the Type-III case

are larger than those of the Type-II case, as indi-

cated in Fig. 7. This is because the rate of increase

of the storage temperature for Type-III is one half

of that for Type-II, resulting in a higher creep life

for the Type-III temperature profile.
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Conclusions

Based on the energy rate line integral, C*, and the

strain energy density factor, S, a linear relation-

ship between the energy rate line integral, C*,

and the creep crack growth rate, da=dt, is

established theoretically. This criterion enables

us to estimate the creep crack growth rate,

da=dt, from the energy rate line integral, C*,

which is evaluated by using contour integral eval-

uation provided by the ABAQUS™ software.

Three different storage temperature profiles and

a constant storage temperature profile are used to

simulate the loading conditions for spent fuel

Zircaloy cladding in interim storage. The results

show that the initial crack length and the storage

temperature profile play an important role in the

interim dry storage.We expect that a longer creep

life can be predicted for claddings having

a tougher material constant.

Acknowledgments The authors wish to acknowledge

their appreciation to the National Science Council,

Republic of China, through Grant No. NSC 93-2212-

E011-001. Many thanks to G. A. Porter for his profes-

sional consultation services.
References

1. Limon R, Cappelaere C, Bredel T, Bouffioux P (2000)

A formulation of the spent fuel cladding creep behav-

iour for long term storage. In: Proceedings of the 2000

international topical meeting on light water reactor fuel

performance, Utah

2. Daum RS, Majumdar S, Liu Y, Billone MC

(2005) Mechanical testing of high-burnup Zircaloy-4

fuel cladding under conditions relevant to drying oper-

ations and dry-cask storage. In: Proceedings of the

2005 water fuel performance meeting, Kyoto

3. Landes JD, Begley JA (1976) A fracture mechanics

approach to creep crack growth. ASME STP, 590.

American Society for Testing and Materials,

Philadelphia

4. Sih GC (1973) Some basic problems in fracture

mechanics and new concepts. J Energ Fract Mech

5:365–377

5. Riedel H (1981) Creep deformation at crack tips in

elastic-viscoplasticitic solids. J Mech Phys Solids

29:35–50

6. Goldman NL, Hutchinson JW (1973) Fully plastic

crack problems: the centre cracked strip under plane

strain. Harvard University, Cambridge, MA
Creep Ratcheting

▶Thermal Plastic Ratcheting
Creep Theory

▶Thermo-creep Damage in Cu/Al-Alloys
Critical Flow Velocity

▶ Fluid-Thermal Structural Coupling in the

Modeling of Carbon Nanotubes
Critical Speed

▶ Perturbation Methods in Thermoelastic Insta-

bility (TEI) with Finite Element Implementation
Critical Temperature Difference

▶ FGM Cones Surrounded by Pasternak-Type

Elastic Medium Subjected to Thermal Load
Cryogenic Condition, Damage In
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strain-induced fcc-bcc phase transformation,

g - a phase transformation
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Definition

The processes occurring in metals and alloys at

very low temperatures are strictly related to their

physical and mechanical properties, to the type of

lattice and its imperfections, as well as to the

mechanisms of heat transport. The basic mecha-

nism of inelastic deformations remains the same

and is based on the motion of dislocations. How-

ever, as the Peierls-Nabarro potential increases at

low temperature, the dislocations are less mobile.

Thus, the same load applied at the temperatures

close to 0 K will produce much less inelastic

deformation than at room temperature. Neverthe-

less, when approaching absolute zero several

thermodynamic quantities like thermal conduc-

tivity, thermal contraction coefficient, specific

heat at constant volume, or state functions like

entropy also tend to 0. This fact results in the so-

called thermodynamic instability at the tempera-

tures close to absolute zero [1] and has funda-

mental meaning for the existence and triggering

of coupled thermomechanical effects related to

inelastic deformations.

Fcc (face-centered cubic) metals and alloys

(such as Cu, Al, Cu-Al, stainless steels, etc.),

frequently used in cryogenic applications, may

undergo at low temperatures some or all of three

distinct phenomena: discontinuous plastic flow

related to dynamic strain ageing, plastic strain–

induced transformation from the fcc parent phase

to the bcc (body-centered cubic), and secondary

phase and plastic strain–induced evolution of

micro-damage. All three phenomena lead to irre-

versible degradation of lattice and can accelerate

the process of material failure. Discontinuous

plastic flow occurs below a temperature thresh-

old, characteristic of given material [2], and is

described by the mechanism of local catastrophic

failure of Lomer-Cottrell (LC) locks under the

stress fields related to the accumulating edge

dislocations. Fcc-bcc phase transformation

results from metastability of low stacking fault
energy metals and alloys at very low tempera-

tures. The phase transformation process leads to

creation of two-phase continuum where the par-

ent phase coexists with the inclusions of second-

ary phase. Evolution of micro-damage can be of

brittle or ductile nature. In the case of brittle

damage a micro-defect is initiated without

a significant amount of plastic strain. Here, the

intergranular damage mechanism plays funda-

mental role. It is related to nucleation and evolu-

tion of micro-cracks and micro-voids at the grain

boundaries. In the case of ductile damage, the

process of micro-decohesion is initiated as soon

as the plastic strain threshold is reached. Ductile

damage mechanism is often related to material

instability that occurs within the slip-bands cre-

ated in the favorably oriented crystal grains. The

motion of dislocations is stopped by the micro-

defects or the concentration of micro-stress on

internal barriers (locks) as well as inclusions.

Further increase of load leads to formation of

micro-damage fields because of the increase of

local shear stress beyond the cohesive strength.

Thus, formation of micro-damage in cryogenic

conditions appears to be strongly coupled to the

mechanism of discontinuous plastic flow and to

the phenomenon of phase transformation.
Overview

A broad class of fcc metals and alloys applied in

cryogenic conditions is characterized by the low

stacking fault energy. Such materials like austen-

itic stainless steels, strained at extremely low

temperatures, undergo dynamic strain ageing

(reflected by the plastic flow instability) and

transformation from the parent phase (fcc) to

the secondary phase (bcc). Each phenomenon

can be classified as material instability associated

on one hand with oscillatory mode of plastic flow

(dynamic strain ageing) and, on the other hand,

with a particular sensitivity to inelastic strain

(fcc-bcc phase transformation). Thermodynamic

conditions of plastic flow discontinuities and

plastic strain–induced phase transformation are

related to the so-called thermodynamic instabil-

ity resulting from vanishing specific heat when
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the temperature approaches absolute zero. While

the dynamic strain ageing manifests itself at the

macroscopic level by discontinuous plastic flow

(serrated yielding), the phase transformation con-

verts the material from homogeneous to

a heterogeneous two-phase continuum. Both phe-

nomena are accompanied by nucleation and evo-

lution of micro-damage fields, driven by inelastic

strains that develop at very low temperatures.

Three distinct phenomena (Fig. 1), associated

with the evolution of plastic strains at very low

temperatures, are characterized by the following

features:

• Discontinuous (serrated) yielding is character-

istic both of low (LSFE) and high stacking

fault energy (HSFE) materials strained at

very low temperatures. It represents oscilla-

tory mode of plastic deformation and reflects

discontinuous nature of plastic flow (discon-

tinuous in terms of ds de= ). Serrated yielding

occurs below a specific temperature: T1 for

LSFE materials and T0 for HSFE materials.

Each of them represents transition from screw

to edge dislocations [2]. The transition tem-

perature is material dependent and its maxi-

mum value known to date reaches some 35 K.

Also, serrated yielding turns out to be a strain

rate–sensitive phenomenon and occurs for

plastic strain rate exceeding a critical – mate-

rial-dependent – value [3, 4].

• During the plastic strain–induced phase trans-

formation that occurs in LSFEmaterials at low
temperatures the g austenite (type fcc lattice)

is transformed into a0 martensite (type bcc

lattice). The presence of lenticular martensite

inclusions embedded in the austenitic matrix

modifies the surrounding fcc lattice and

implies local distortions. The plastic strain–

induced phase transformation remains at the

origin of considerable evolution of material

properties (strong hardening). The main

mechanism contributing to the onset of

g ! a0 phase transformation in such materials

like stainless steels is the intersection of shear

bands [5]. These materials are often termed

TRIP since they exhibit the so-called transfor-

mation-induced plasticity [6].

• The plastic strain driven evolution of ductile

micro-damage at cryogenic temperatures [7]

represents a dissipative and irreversible pro-

cess that leads to creation of micro-cracks and

micro-voids (micro-damage fields) and results

in material “softening” (decrease of the effec-

tive unloading modulus). Formation of micro-

damage fields is often related to material insta-

bilities that occur when the motion of disloca-

tions is stopped by the lattice defects,

inclusions or the concentration of micro-stress

on internal barriers (locks).

Three distinct domains of response of LSFE

materials are indicated in Fig. 1 for one of

the most frequently applied materials in

cryogenic conditions – stainless steel 316LN.

Domain I corresponds to the temperature range
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below T1 and to the plastic flow instability called

discontinuous yielding. Domain II stretches

between T1 and Md, the latter being the tempera-

ture above which the process of plastic strain–

induced g ! a0 phase transformation does not

take place. Inside this domain, the plastic flow is

smooth and accompanied by the transformation

from the parent g phase to the secondary a0 phase.
The phase transformation leads to a significant

increase of the yield stress. Finally, domain III

above the temperature Md is characterized by

smooth plastic flow and no phase transformation.

It is worth pointing out that the evolution of

micro-damage occurs in all three domains and is

driven by stable or unstable plastic flow.

Conditions of Plastic Flow and Damage

Evolution

Domain I: Serrated yielding has been investi-

gated – mostly experimentally – by many authors

[8]. However, experimental evidence for the dis-

location mechanism of serrated yielding was

found in the 1990s [2, 9]. According to this

explanation, the pile-ups of dislocations on the

internal barriers in the lattice give rise to stress

concentrations of the order of theoretical shear

strength. The load drops observed in the stress–

strain curves are due to catastrophic process

consisting in the spontaneous generation of dis-

locations as soon as the internal barriers are bro-

ken. Thus, the origin of the plastic flow instability

is of mechanical nature. A different point of view

was developed earlier [10] and attributed the load

drops to thermodynamic properties of materials

at very low temperatures, such as the specific heat

and the thermal conductivity tending to 0 with the

temperature approaching 0 K. The so-called adi-

abatic heating hypothesis was based on the

assumption that any sufficiently fast dissipative

process at very low temperatures, where the plas-

tic work is converted to heat, leads to increase of

local temperature and to drastic decrease of flow

stress (negative slope of flow stress against tem-

perature). Two different theories: the mechanical

and the thermodynamic originated from these

two competing hypotheses. Both of them reflect

complex nature of the flow instabilities that occur

at very low temperatures.
Domain II: The classical model of plastic

strain–induced g ! a0 phase transformation at

low temperatures [5] attributes the onset of trans-

formation to the intersection of shear bands.

A three parameters model has been postulated for

the so-called TRIP steels. It is capable of describ-

ing the experimentally verified sigmoidal curve

that represents the volume fraction of martensite

as a function of plastic strain. The sigmoidal curve

is valid for a wide range of temperatures, including

room temperature. However, at very low temper-

atures the rate of phase transformation for LSFE

material becomes less temperature dependent and

can be described by a simplified linearized model

[11]. The g ! a0 phase transformation yields the

initially homogeneous material strongly heteroge-

neous, as a result of the presence of a0-martensite

platelets embedded in the g-austenitematrix. Since

the a0-martensite behaves in the flow range of

austenite-martensite composite mostly elastically

(yield point of a0-martensite is much higher that

the yield point of g-austenite), its presence in the

lattice affects the plastic flow and the process of

hardening [12]. As a result of the plastic strain–

induced phase transformation at cryogenic tem-

peratures, the material properties evolve in

a considerable way and – in the critical cases –

the parent g-phase can be completely replaced by

the brittle a0-phase leading to a premature failure

of the material.

Domains I, II, and III: Ductile materials

strained in cryogenic conditions develop micro-

damage fields in a similar way like at room or

enhanced temperatures. Evolution of damage

fields (micro-cracks and micro-voids) is also

driven by the plastic strains and similar kinetic

laws can be used. The conjugate thermodynamic

force associated to damage variable by means of

the Helmholtz free energy is the strain energy

density release rate. On the other hand, damage

rate can be obtained directly from the potential of

dissipation representing the irreversible process

of damage evolution [13]. As at very low temper-

atures the yield stress of typical stainless steels is

approximately doubled when compared to room

temperature, the level of stress needed to obtain

damage fields of similar intensity like at room

temperature is much higher.
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Basic Methodology

Thermodynamic Background of

Low-Temperature Plasticity

A quantum representation of elastic vibrations of

lattice (phonons) is adopted as one of the funda-

mental mechanisms of heat transport. Thus, it is

assumed that the heat-induced vibrations of lat-

tice are composed of phonons. The energy of

lattice (sum of energy of all the “harmonic oscil-

lators”) is given by [14]:
Eph ¼ E0 þ
X
k

Nk�hoðkÞ ð1Þ

where Nk denotes the sequence of quantum num-

bers, each representing the number of excited

phonons, that corresponds to a given wave vector

k. Here, �h denotes the Planck constant. Thus, the

energy of lattice is expressed as a sum of two

terms – the energy of zero vibrations and the

energy of the phonon “gas.” The main mecha-

nism of heat transport at very low temperatures is

based on the diffusion of phonon gas. The aver-

age free path of a phonon is determined by the

mechanism of collisions either with the lattice

imperfections or with other phonons. It is

assumed that the reference (Debye) temperature,

characteristic of the lattice, is defined as:
Y ¼ �homax ð2Þ

where omax is the maximum frequency of acous-

tic phonons. The current temperature is consid-

ered low if the following inequality is satisfied:
T << Y ð3Þ

For the energy of lattice at low temperatures

the following equation holds:

DEph ¼ Eph � E0 ¼
ðomax

0

cðoÞnðoÞ�hodo ð4Þ

where cðoÞ denotes the statistical distribution

function (Bose-Einstein statistics) and nðoÞ is

the phonon density of states function. Given the
assumption of linear dispersion law, the internal

energy due to the phonon states takes the follow-

ing form:

DEph � N
T

Y

� �3

T ð5Þ

where N denotes the number of atoms (cells) in

the lattice. Based on the internal energy of lattice

associated with phonon excitations, one can eas-

ily derive the specific heat under constant

volume:

CV ¼ @Eph

@T

� �
V

� N
T

Y

� �3

ð6Þ

Thus, the specific heat is a nonlinear function

of normalized temperature and tends to 0 when

the temperature T approaches absolute zero. Spe-

cific heat under constant volume (strain) as

a function of temperature normalized to Debye

reference value is shown in Fig. 2a.

The thermal conductivity kT in the lattice

at low temperatures is defined (for uniaxial

model) as:
_q ¼ �kT
@T

@x
ð7Þ

where _q denotes the heat flux. Based on the

kinetic theory of perfect gas the thermal conduc-

tivity can be written in the following form [15]:
kT ¼ CVul
3

ð8Þ

where u denotes the average velocity of gas par-

ticles and l is the average free path between the

interactions. A similar reasoning can be applied

to the phonon gas interactions in the lattice. At

very low temperatures the free path of phonons

between interactions is of the order of the size of

sample or of the order of the distance between the

lattice imperfections. In both cases the free path

of phonons does not depend on temperature. The

velocity of acoustic phonons is also constant and

equal to the speed of sound in the lattice. Thus,

the only function in (8) that depends on
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temperature is the specific heat. This leads to the

following conclusion:

kT � usL
3

N
T

Y

� �3

ð9Þ

where us denotes the speed of sound and L is the

size of sample. Thus, thermal conductivity is again

a nonlinear function of temperature and tends to

0 when the temperature approaches absolute zero.

Thermal conductivity as a function of temperature

for stainless steel 316L is shown in Fig. 2b.

Thermodynamic Instability at Very Low

Temperatures

The fact that the state functions tend to 0when the

temperature approaches absolute zero (which

reflects the third law of thermodynamics) leads

to the phenomenon of thermodynamic instability

[1]. The heat increment is related to temperature

by the following equation:
dQ ¼ mCVdT ð10Þ

where m is the mass of the sample. By

transforming this equation to the form:
dT

dQ
¼ 1

mCV
ð11Þ

and knowing that CV ! 0 when T ! 0 one

obtains:
dT

dQ
! 1 ð12Þ

which means that close to absolute zero an arbi-

trary small dissipation of energy in the lattice will

produce a significant increase of temperature.

Such energy dissipation can be induced by plastic

deformation (motion of dislocations in the

lattice), accompanied by the plastic work partially

converted to heat. Thus, thermodynamic instabil-

ity is of fundamental importance for the plastic

flow instabilities (discontinuous plastic flow) and

determines their thermomechanical conditions.

Kinetics of the Plastic Strain–Induced

Phenomena at Cryogenic Temperatures

Kinetics of Discontinuous (Serrated) Yielding

(Domain I)

The main feature of serrated yielding consists in

frequent abrupt drops of stress as a function of strain
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during monotonic loading. The mechanism of dis-

continuous yielding is related to formation of dislo-

cation pile-ups at strong obstacles such as the

Lomer-Cottrell locks during the strain hardening

process. The back stresses of the piled-up groups

block the motion of newly created dislocations.

The local shear stress at the head of dislocation

pile-up, proportional to the number of dislocations

in the pile-up, reaches the level of cohesive strength

and the Lomer-Cottrell lock collapses by becoming

aglissile dislocation.This process takes placebelow

the temperature T1 (or T0) where the dislocations

have predominantly edge character and cannot

leave the pile-up by cross-slip. Such a local cata-

strophic event can trigger similar effects in the other

groups of dislocations. Thus, the final result is mas-

sive and has a collective character. At low tempera-

tures, where very high stresses are expected, this

avalanche-like process is followed by spontaneous

generation of dislocations by rapidly increasing

number of sources. This – in turn – leads to the load

drops observed in the stress–strain curve. It is well

known that the increasing intensity of plastic flow

generates more barriers for the motion of disloca-

tions. Therefore, the following kinetic law of evolu-

tion of density of the Lomer-Cottrell locks holds:
_B ¼ FLC r; T; sij
� �

_p;

_p ¼ dp

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
_epij _e

p
ij

r
; p 	 pLC

ð13Þ
where FLC is function of density of dislocations r,
temperature T, and the level of stress sij, whereas
pLC represents the plastic strain threshold above

which the Lomer-Cottrell barriers massively

develop. During tensile test at low temperature

the avalanche-like barrier crossing by dislocation

pile-ups is manifested by acoustic effects of “dry”

sounds emitted by the specimen. Each serration is

accompanied by a considerable increase of tem-

perature, related to dissipation of plastic power

and thermodynamic instability described in the

previous section. Typical stress–strain curves for

selected materials that exhibit discontinuous

yielding (stainless steel 316LN and OFE Copper

at 4.2 K) are illustrated in Fig. 3.

Kinetics of Phase Transformation (Domain II)

The plastic strain–induced g ! a0 phase transfor-
mation in metastable materials (like stainless

steels) occurs in a wide range of temperatures

below Md (Fig. 4). For instance, it can be easily

activated at 77 K, in liquid nitrogen. The process

is represented by the transformation kinetics,

reflected by the phase transformation curve.

Kinetics of g ! a0 phase transformation [5] is

described by typical sigmoidal curve defining

the evolution of martensite content x as

a function of plastic strain p. At very low temper-

atures the phase transformation process can be

subdivided into three stages: low rate transforma-

tion below the plastic strain threshold px (stage I),
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fast transformation with high and nearly constant

transformation rate (stage II), and asymptotically

vanishing transformation with the rate decreasing

to 0 and the volume fraction of martensite

reaching a maximum xL (stage III). For the

phase transformation that occurs at very low tem-

peratures (typically in liquid helium 4.2 K or in

liquid nitrogen 77 K), the steep part of the trans-

formation curve (Fig. 5, stage II) remains in the

domain of relatively small strains [7] and is

expressed by the following equation:
_x ¼ A T; sij; _e
p
ij

� 
_p; p 	 px; x  x

L
ð14Þ

where A is a function of temperature T, stress

state sij, and strain rate _epij.
Kinetics of Micro-damage Evolution (Domains I, II,

and III)

Isotropic damage, represented by a scalar (dam-

age parameter), is related to the plastic strain for

monotonic loads and to the accumulated plastic

strain for cyclic loads. The classical kinetic law of

micro-damage evolution [16] for isotropic and

ductile damage postulates linear relation between

the damage rate and the plastic strain rate. The

conjugate force associated to damage by means

of the Helmholtz free energy is the strain energy

density release rate. Kinetics of damage evolu-

tion can be obtained directly from the potential of

dissipation that reflects the irreversible process of

material degradation. As the materials applied at

low temperatures are often characterized by tex-

ture, the scalar damage variable is replaced by



0

200

400

600

800

1000

1200

1400

0 0,05 0,1 0,15 0,2 0,25

Strain

S
tr

es
s

0

0,1

0,2

0,3

0,4

0,5

0 0,05 0,1 0,15 0,2

Plastic strain

a b

Damage in a two-phase continuum
Volume fraction of martensite
Damage in austenite

Cryogenic Condition, Damage In, Fig. 6 (a) Loading-unloading test for stainless steel 316L at 4.2 K; (b) evolution

of micro-damage in two-phase continuum (316L transformed)

C 828 Cryogenic Condition, Damage In
damage tensor [17] in order to allow for damage

anisotropy. In the anisotropic case, the plastic

strain remains the main driving force of ductile

damage evolution [7]:

_Dij ¼ CikYklCjl _p; p 	 pD ð15Þ

where Ykl stands for the strain energy density

release rate tensor, Cij defines the material prop-

erties in the principal directions of damage and

pD denotes the damage threshold. As the yield

stress of typical stainless steels is approximately

doubled at very low temperatures, the level of

stress needed to obtain damage fields of similar

intensity like at room temperature is much higher.

The evolution of micro-damage at cryogenic

temperatures starts as soon as the damage thresh-

old, expressed in terms of plastic strain or accu-

mulated plastic strain, is reached. In the simplest

case, damage variable increases in the form of

linear function of plastic strain. However, activa-

tion of the phase transformation process affects

significantly the evolution of micro-damage,

decreasing its rate (Fig. 6).

Damage in Structures Operating at Cryogenic

Temperatures

Bellows expansion joints belong to thin-walled

structures of high flexibility, commonly applied

as compensation elements in complex cryogenic

systems. They are used to compensate for the

relative motion of two adjacent assemblies,

subjected to thermal cycles or to service loads.
Bellows are frequently used in extreme condi-

tions, comprising various temperature ranges

and load types, which makes them a class of

highly engineered shell structures. Bellows

expansion joints are crucial elements of systems

working at cryogenic temperatures, where the

adjacent structures contract significantly during

the cool-down process and the emerging displace-

ments of components need to be compensated.

Among many systems working at cryogenic tem-

peratures and using this type of thin-walled struc-

tures the modern particle accelerators comprising

the superconducting magnets are eminent. The

expansion bellows for low temperature applica-

tions are usually made of metastable stainless

steels and – depending on the operational tem-

perature – all or some of the above described

phenomena may take place. In particular, the

evolution of micro-damage accompanied by

the phase transformation process is observed

in the bellows wall. The bellows operating at

extremely low temperatures (liquid helium) are

subjected to plastic flow discontinuities and

enhanced rate of micro-damage production.

A profile of bellows segment (half wave) is illus-

trated in Fig. 7. Thin-walled bellows convolutions

form a set of waves obtained from the hydro-

forming process, which induces an initial state of

plastic deformation. The intensity of plastic strain

fields depends on the ratio between the depth of

convolutions and the pitch (the wave-length).

Since the plastic strain intensity may locally

reach high values after the forming process, an
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initial state of damage exists even before the

structure is loaded in cryogenic conditions. The

bellows expansion joints are subjected to particu-

larly severe conditions: thermomechanical cycles

between room and operational temperature asso-

ciated with axial deflections of the order of the

bellows length and internal pressure up to 2 MPa.

Such a severe loading conditions may cause fast

evolution of micro-damage fields (Fig. 8) and lead

to development of macro-crack and to fracture of

the expansion joint (Fig. 9).
Key Research Findings

Three fundamental phenomena occur at

extremely low temperatures in metals and alloys

characterized by low stacking fault energy:
1. Dynamic strain ageing, reflected by discontin-
uous plastic flow

2. Plastic strain–induced transformation from

the parent fcc phase to the secondary bcc

phase, characteristic of metastable materials

3. Evolution of micro-damage fields (micro-

voids and micro-cracks), reflected by decreas-

ing unloading modulus in the course of

deformation

The thermodynamic background is related to

the mechanisms of heat transport in the weakly

excited lattice at very low temperatures. In par-

ticular, the fact that the thermodynamic quantities

(specific heat, thermal conductivity, thermal

expansion coefficient) tend to 0 when the temper-

ature approaches absolute zero, leads to the phe-

nomenon of thermodynamic instability. It is of

fundamental importance for the conditions of
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plastic flow instabilities (discontinuous plastic

flow) and provides the framework for thermome-

chanical coupling.

Discontinuous plastic flow may significantly

intensify evolution of micro-damage, which

leads to irreversible degradation of lattice and

accelerates the process of material failure. On

the other hand, plastic strain–induced phase

transformation of small and moderate intensity

essentially decelerates the evolution of micro-

damage, which is beneficial for the lifetime of

cryogenic installations. However, massive fcc-

bcc phase transformation may cause embrittle-

ment of structures and lead to premature fracture

of the components. One of the cryogenic compo-

nents loaded far beyond the yield point is called

bellows expansion joint. Cryogenic expansion

bellows are excellent examples of structures

where all three phenomena may simultaneously

occur. Integrity of expansion bellows is crucial

for such applications like superconducting parti-

cle accelerators.
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Overview

Problems of finding the stress distribution around

circular-arc cracks in an infinite plate subjected to

a uniform tensile load have been solved by using the

complex variable theory [1]. The studywas initiated

byMuskhelishvili [2], and later, the formulae of the

stress intensity factors were derived by Sih et al. [3].

Thereafter, a number of problems of various types

of circular-arc cracks, including the inhomogeneous

cases, have been published. The stress distribution

in an infinite plate with a circular disk was investi-

gated by Dundurs and Hctinyi [4]. The problems of

curvilinear cracks in bonded dissimilar materials

were studied by Perlman and Sih [5]. It was found

that the stresses near the tips of a curved crack

possess the same trig-log character of singularity

as those obtained for a straight crack between dis-

similar media. By using the boundary collocation

method, Cheung et al. [6] obtained the stress inten-

sity factors for a circular-arc crack in a finite width

strip. In this entry, we focus on the determination of

thermal stress distribution around circular-arc

cracks embedded in an infinite elastic plate under

a uniform heat flow. An exact solution is given for

a semicircular insulated crack in an infinite plate

subjected to a uniform heat flow at an arbitrary

angle. Unlike the cases of straight cracks, the simul-

taneous existence of mode-I and mode-I1 stress

intensity factors for curvilinear cracks in the

thermoelastic body is found in this entry which

will affect the pattern of initial crack propagation

and failure instability.
Statement of the Problem

A homogeneous isotropic elastic body divided

by two regions Sþ, interior to the unit circle,

rj j ¼ 1, and S�, exterior to the unit circle, is

considered as shown in Fig. 1. If the bond

between the two regions on the unit circle is

imperfect, it can be represented as the sum of

L and L*, with L being the union of n circular-arc

cracks ajbj; j ¼ 1; 2; . . . ; n; and L* being the

union of n circular-arc bond. Let the center of

the unit circle be placed at the origin of the

complex plane and z ¼ xþ iy and t ¼ ei’ be

http://dx.doi.org/10.1007/978-94-007-2739-7_681
http://dx.doi.org/10.1007/978-94-007-2739-7_100114
http://tandfonline.com
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those of z on zj j ¼ 1. For the problem of steady-

state heat conduction, the temperature Tðx; yÞ
can be related to the analytic function f0ðzÞ, i.e.,
Tðx; yÞ ¼ Re½f0ðzÞ� ð1Þ

where Re stands for the real part of the complex

function. By using the Cauchy-Riemann condi-

tions, the temperature gradient is represented as:
@T

@x
� i

@T

@y
¼ f0

0ðzÞ ¼ F0ðzÞ ð2Þ

where the prime (0) denotes differentiation with

respect to its argument. In order to specify the

temperature gradient on L, the heat flux qr is

introduced in terms of the temperature gradient

F0ðzÞ by the equation:
qr ¼ � k

2
F0ðzÞ þ F0ðzÞ z

z

� �
ei’ ð3Þ

where the overbars denote the complex conju-

gates and k stands for the heat conductivity. By

introducing a new function,
YðzÞ ¼ 1

z2
F0

1

z

� �
ð4Þ

the heat flux qr specified on L can be expressed as:
2qr
þe�i’ ¼ �k½F0

þðtÞ þY�ðtÞ� on L ð5Þ

2qr
�e�i’ ¼ �k½F0

�ðtÞ þYþðtÞ� on L ð6Þ

where the superscripts + and� are used to denote

the boundary values of the physical quantities as

they are approached from Sþ and S�, respec-
tively. Equations (5) and (6) can be rewritten as

the Hilbert problem:

½F0ðtÞ �YðtÞ�þ � ½F0ðtÞ �YðtÞ�� ¼ 2f ðtÞ on L

ð7Þ

½F0ðtÞ þYðtÞ�þ þ ½F0ðtÞ þYðtÞ�� ¼ 2gðtÞ on L

ð8Þ

where f ðtÞ and gðtÞ are related to the heat flux qr
on L by

f ðtÞ ¼ �½qrþ � qr
��e�i’=k ð9Þ

gðtÞ ¼ �½qrþ þ qr
��e�i’=k ð10Þ

The solutions to the Hilbert problem can be

found as:

F0ðzÞ �YðzÞ ¼ 1

pi

ð
L

f ðtÞ
t� z

dtþ e0 þ e1
z
þ e2

z2

ð11Þ

F0ðzÞ þYðzÞ ¼ 1

piX0ðzÞ
ð
L

Xþ
0 ðtÞgðtÞ
t� z

dt

þ 1

X0ðzÞ QnðzÞ þ E1

z
þ E2

z2

� �
ð12Þ

where the Plemelj function X0ðzÞ is given by

Muskhclishvili [2]
X0ðzÞ ¼
Yn
j¼1

ðz� ajÞ1=2ðz� bjÞ1=2 ð13Þ
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and the polynomial QnðzÞ is of degree not

greater than n, i.e.,
C

QnðzÞ ¼ l0zn þ l1zn�1 þ � � � þ ln ð14Þ

The problem of finding the temperature field is

now reduced to the determination of the n + 6

unknown constants e0; e1; e2;E1;E2; ljðj ¼ 0;

1; . . . ; nÞ which may be solved by using the prop-

erties of the complex functions.
Thermal Stresses

For the two-dimensional theory of thermoelasticity,

the components of the stress and displacement can

be expressed in terms of the complex functions

FðzÞ and cðzÞ. It follows [7]:
sr þ sy ¼ 4RefFðzÞg ð15Þ

sr þ itry ¼ FðzÞ þ FðzÞ � zF0ðzÞ � z

z

� �
CðzÞ

ð16Þ

2mðuþ ivÞ ¼ kfðzÞ � zf0ðzÞ � cðzÞ þ 2mbgðzÞ
ð17Þ

f0ðzÞ ¼ FðzÞ c0ðzÞ ¼ cðzÞ gðzÞ ¼
ð
f0ðzÞdz

ð18Þ

where k ¼ ð3� nÞ=ð1þ nÞ for plane stress,

k ¼ 3� 4n for plane strain, and b ¼ ð1þ nÞa0,
with n; m; a0, being Poisson’s ratio, elastic modu-

lus, and thermal expansion coefficient, respec-

tively. By introducing a new function:
OðzÞ ¼ F
1

z

� �
� 1

z
F0 1

z

� �
� 1

z2
C

1

z

� �
ð19Þ

the traction force specified on L can be

expressed in terms of two complex functions

FðzÞ and OðzÞ as:
½FðtÞ þ OðtÞ�þ þ ½FðtÞ þ OðtÞ�� ¼ 2pðtÞ ð20Þ

FðtÞ � OðtÞ½ �þ � FðtÞ � OðtÞ½ �� ¼ 2qðtÞ ð21Þ

where

pðtÞ ¼ 1

2
sþr þ s�r
� �þ i tþry þ t�ry

� �
 �
qðtÞ ¼ 1

2
sþr � s�r
� �þ i tþry � t�ry

� �
 �
The general solution to the Hilbert problem

can be ready to follow as:
FðzÞ ¼ 1

2pi

ð
L

qðtÞ
t� z

dtþ 1

2piXðzÞ
ð
L

XþðtÞpðtÞ
t� z

dt

þ d0
2
þ d1

2z
þ d2
2z2

þ 1

2XðtÞ PnðzÞ þ D1

z
þ D2

z2

� �
ð22Þ

OðzÞ ¼ �1

2pi

ð
L

qðtÞ
t� z

dtþ 1

2piXðzÞ
ð
L

XþðtÞpðtÞ
t� z

dt

� d0
2
� d1
2z

� d2
2z2

þ 1

2XðtÞ PnðzÞ þ D1

z
þ D2

z2

� �
ð23Þ

where the Plemelj function XðzÞ is given by

Muskhclishvili [5] as:
XðzÞ ¼
Yn
j¼1

z� aj
� �1=2

z� bj
� �1=2 ð24Þ

and the polynomial PnðzÞ is of degree not greater
than n, i.e.,
Pn zð Þ ¼ c0z
n þ c1z

n�1 þ � � � þ cn ð25Þ

The problem of finding the stress field is now

reduced to the determination of the n + 6

unknown constants d0; d1; d2;D1;D2; cjð j ¼ 0;

1; . . . ; nÞ which may be solved by using the prop-

erties of the complex functions.
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Semicircular Crack

Consider the problem of an infinite plate with

a semicircular crack lying along the interface of

a unit disk as shown in Fig. 2. The applied loads

at infinity consist of uniform tension, p0 directed at

an angle a and uniform heat flux, q0 directed at an

angle g, respectively, with respect to the x-axis. For
an insulated crack free from surface tractions, all

the functions f ðtÞ; gðtÞ; pðtÞ; qðtÞ vanish. The ends
of the crack L are located at a ¼ expð�ip=2Þ and
b ¼ expðip=2Þ on zj j ¼ 1. Hence, the Plemelj

functions in (13) and (24) yield:

X0ðzÞ ¼ XðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p
ð26Þ

For the case of pure mechanical load, the stress

functions in (22) and (23) can be obtained as:
uniform heat flow or tensile load
FðzÞ ¼ p0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p C0z� e2ia

2z2

� �
þ p0

4
1� 2C0 � e2ia

z2

� � ð27Þ

OðzÞ ¼ p0

2
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p C0z� e2ia

2z2

� �
þ p0

4
1� 2C0 � e2ia

z2

� � ð28Þ

where
C0 ¼ 4� cos 2að Þ
12

þ i sin 2að Þ
4

which is in agreement with the solution given by

Muskhelishvili [5]. In order to examine the mag-

nitude of the local stress field, the stress intensity

factors are computed in the present study. With

the usual definition, the stress intensity factors

can be obtained as:
K1 � iK11 ¼ 2
ffiffiffiffiffiffi
2p

p
lim
z!z1

z� z1ð Þ1=2FðzÞ ð29Þ

where z1 ¼ a or b in the given problem. In order

to treat the problem by making use of (29), the

coordinate must be rotated such that the crack tip
is parallel to the x-axis. The convenient trans-

formations for this purpose are:
z ¼ � z0 � ið Þ ð30Þ

at point b, and
z ¼ � z0 þ ið Þ ð31Þ

at point a.

Substituting (30), (31), and (27) into (29), the

stress intensity factors at point b are:
K1 ¼
ffiffiffi
p
2

r
p0

4� cos 2að Þ
12

þ 3 sin 2að Þ
4

� cos 2að Þ
2

� �

K11 ¼
ffiffiffi
p
2

r
p0

4� cos 2að Þ
12

þ sin 2að Þ
4

þ cos 2að Þ
2

� �
ð32Þ

and the stress intensity factors at point a are:
K1 ¼
ffiffiffi
p
2

r
p0

4� cos 2að Þ
12

� 3 sin 2að Þ
4

� cos 2að Þ
2

� �
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K11 ¼
ffiffiffi
p
2

r
p0

4� cos 2að Þ
12

� sin 2að Þ
4

þ cos 2að Þ
2

� �
ð33Þ

which is in agreement with the solution given by

Sih [3].

For the case of thermal load, the stress

functions in (22) and (23) become:
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Curvilinear Cracks, Fig. 3 Dimensionless stress inten-

sity factor KI versus orientation of the heat flow for plane
FðzÞ ¼ mq0
H1 g; zð Þffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p þ H2 g; zð Þ
� �

ð34Þ

OðzÞ ¼ mq0
H1 g; zð Þffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p � H2 g; zð Þ
� �

ð35Þ

where

strain condition with n ¼ 0:3
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Curvilinear Cracks, Fig. 4 Dimensionless stress inten-

sity factor KII versus orientation of the heat flow for plane

strain condition with n ¼ 0:3
m ¼ mbðkþ 2Þ
4 kþ 1ð Þk

H1 g; zð Þ ¼ � cos gþ i sin gð Þzþ 3 cos gþ i sin g

� k
kþ 2

3 cos gþ i sin gð Þ 1
z

H2 g; zð Þ ¼ cos g� i sin g� k
kþ 2

3 cos gþ i sin gð Þ 1
z

Following the same procedures as aforemen-

tioned, the stress intensity factors at point b are:

K1 ¼
ffiffiffi
p
2

r
mbq0

2k kþ 1ð Þ 3kþ 4ð Þ sin g� kþ 8ð Þcon g½ �

K11 ¼
ffiffiffi
p
2

r
mbq0

2k kþ 1ð Þ �k sin gþ 5kþ 4ð Þcon g½ �

ð36Þ

and the stress intensity factors at point a are:
K1 ¼
ffiffiffi
p
2

r
mbq0

2k kþ 1ð Þ � 3kþ 4ð Þ sin g� kþ 8ð Þcon g½ �

K11 ¼
ffiffiffi
p
2

r
mbq0

2k kþ 1ð Þ k sin gþ 5kþ 4ð Þcon g½ �

ð37Þ
The dimensionless stress intensity factors ver-

sus the angle of heat flow are provided in graph-

ical form as shown in Figs. 3, 4. Note that the

mode-I stress intensity factor, K, is negative for

0 < g < 133� and 314� < g < 360� at the crack

tip z1 ¼ a and for 0 < g < 46� and

227� < g < 360� at the crack tip z1 ¼ b which
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violates the assumption of fully open crack and

hence the solution is invalid.

In order to avoid crack closure, a slight

amount of mechanical load p0 would have to be

applied at an angle a ¼ 90�. The curve in Fig. 5

shows the minimum value of kp0=mbq0 as

a function of the direction of the applied heat

flow g that must be maintained without having

the crack surfaces come into contact.
Conclusions

The problem of finding the thermal stress field in an

infinite region with circular-arc cracks has been

reduced to the solutions of the Hilbert problem

based on the method of complex variable. A closed

form solution is given for an example with

a semicircular crack. The stress intensity factors are

obtained in terms of the heat flow (or tensile load),

material geometry, and elastic and thermal isotropy.
References

1. England AH (1971) Complex variable methods in elas-

ticity. Wiley-Interscience, New York

2. Muskhclishvili NI (1953) Some basic problems of the

mathematical theory of elasticity. Noordhoff, Gronongcn
3. Sih GC, Paris PC, Erdogan F (1962) Crack-tip stress-

intensity factors for plane extension and bending prob-

lem. J Appl Mech 29:306–312

4. Dundurs J, Hctinyi M (1961) The elastic plane with

a circular insert loaded by a radial force. J Appl Mech

28:103–111

5. Perlman AB, Sih GC (1967) Elastostatic problem for

curvilinear cracks in bonded dissimilar materials. J Eng

Sci 5:845–867

6. Cheung YK, Woo CW, Wang YH (1989) Stress Inten-

sity factors for a circular arc crack by collocation

method. Eng Fract Mech 34:841–849

7. Bogdanoff JL (1954) Note on thermal stress. J Appl

Mech 21:88
Cyclic Loading of Secondary Stresses

▶Effect of Creep on Thermal Cyclic Loading of

Rotating Disks

▶Thermal Cyclic Loading of Beams Based on

the Prager and Armstrong-Frederick Kinematic

Hardening Models

▶Thermal Cyclic Loading of Rotating Disks

▶Thermal Cyclic Loading of Thick Cylindrical

Vessels Based on the Prager and Armstrong-

Frederick Kinematic Hardening Models

▶Thermal Cyclic Loading of Thick Spherical

Vessels Based on the Prager and Armstrong-

Frederick Kinematic Hardening Models
Cyclic Loading of Strain-Controlled
Stresses

▶Thermal Cyclic Loading of Thick Spherical

Vessels Based on the Prager and Armstrong-

Frederick Kinematic Hardening Models
Cylinder

▶Deterministic and Stochastic Coupled

Thermoelasticity Analysis in Thick Hollow Cyl-

inder Subjected to Thermal Shock Loading Using

Green-Naghdi Theory

http://dx.doi.org/10.1007/978-94-007-2739-7_973
http://dx.doi.org/10.1007/978-94-007-2739-7_973
http://dx.doi.org/10.1007/978-94-007-2739-7_964
http://dx.doi.org/10.1007/978-94-007-2739-7_964
http://dx.doi.org/10.1007/978-94-007-2739-7_964
http://dx.doi.org/10.1007/978-94-007-2739-7_972
http://dx.doi.org/10.1007/978-94-007-2739-7_967
http://dx.doi.org/10.1007/978-94-007-2739-7_967
http://dx.doi.org/10.1007/978-94-007-2739-7_967
http://dx.doi.org/10.1007/978-94-007-2739-7_968
http://dx.doi.org/10.1007/978-94-007-2739-7_968
http://dx.doi.org/10.1007/978-94-007-2739-7_968
http://dx.doi.org/10.1007/978-94-007-2739-7_968
http://dx.doi.org/10.1007/978-94-007-2739-7_968
http://dx.doi.org/10.1007/978-94-007-2739-7_968
http://dx.doi.org/10.1007/978-94-007-2739-7_288
http://dx.doi.org/10.1007/978-94-007-2739-7_288
http://dx.doi.org/10.1007/978-94-007-2739-7_288
http://dx.doi.org/10.1007/978-94-007-2739-7_288


Cylindrical Elastic Bodies with Directors, Thermal Stresses 837 C

C

Cylindrical Elastic Bodies with
Directors, Thermal Stresses

Mircea Bı̂rsan

Department of Mathematics, University “A.I.
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Overview

We consider the problem of thermal stresses in

cylindrical elastic shells, modeled as Cosserat

surfaces. In the theory of Cosserat shells, the

thermal effects are described generally by

means of two temperature fields. The problem

consists in finding the equilibrium of the shell

under the action of a given temperature distribu-

tion. For the case of a temperature distribution

independent of the axial coordinate, we present

the analytical solution in closed form. For the

general case when the temperature fields are

polynomial functions in the axial coordinate

whose coefficients depend on the circumferential

coordinate, we present a recurrence process with

respect to the degree of the polynomials. Finally,

we apply this method to solve a thermal stress

problem for thin-walled circular tubes, when the

temperature distribution is linear in the axial

coordinate.
Introduction

The problem of thermal stresses in cylindrical

bodies has been investigated in many works

(see, e.g., [1–3]). In what follows we study the

problem of thermal stresses in cylindrical elastic

shells, using the Cosserat theory. The theory of

Cosserat shells is an interesting approach to the
mechanics of elastic shell-like bodies, in which

the thin three-dimensional body is modeled as

a two-dimensional continuum (i.e., a surface)

endowed with a deformable director assigned to

every point. For a detailed analysis of the theory

of Cosserat surfaces and its relation with other

(hierarchical) shell theories, we refer to the

classical monograph of [4] and the more recent

book of [5].

We employ the Cosserat theory for shells

to solve the following problem: determine the

static deformation of a cylindrical shell, due to

a given temperature distribution in the body. We

consider cylindrical shells made of isotropic and

homogeneous materials. The cross sections of

the cylindrical surfaces are curves of arbitrary

shape. We assume that the temperature distribu-

tion is a general polynomial in the axial coordi-

nate, which coefficients depend only on the

circumferential coordinate. The mechanical

loads are absent. We follow a procedure similar

to that used in the corresponding problems for

solid cylinders, from the three-dimensional

thermoelasticity [1]. On the basis of some results

concerning Saint-Venant’s problem for cylindri-

cal shells [6], we obtain a solution of the thermal

stresses problem in the form of the displacement

field. The result is expressed in terms of the

solutions to some auxiliary boundary-value

problems for ordinary differential equations.

Finally, we apply these results to solve a special

problem concerning the deformation of circular

cylindrical shells.
Basic Equations and Formulation of the
Problem

Let us present the equilibrium equations for

thermoelastic Cosserat shells, specialized for

cylindrical thin bodies. The general thermody-

namic theory for Cosserat shells has been

presented in the works [7–9].

Let S be the reference configuration of

a cylindrical Cosserat surface and let (s, z) be

the curvilinear material coordinate system on S

such that z is the axial coordinate and s is the

circumferential coordinate (i.e., s is the arc length

http://dx.doi.org/10.1007/978-94-007-2739-7_100135
http://dx.doi.org/10.1007/978-94-007-2739-7_100634
http://dx.doi.org/10.1007/978-94-007-2739-7_100634
http://dx.doi.org/10.1007/978-94-007-2739-7_100709
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parameter along the cross-sectional curves of S).
The deformation of the thermoelastic Cosserat

shell is defined by the functions

r ¼ r s; z; tð Þ; d ¼ d s; z; tð Þ
y ¼ y s; z; tð Þ; f ¼ f s; z; tð Þ ð1Þ

where r and d represent the position vector and the

director attached to each point at time t and the

scalars y and f denote the two temperature fields

which describe the thermal properties of Cosserat

shells [9]: y is regarded as representing the abso-

lute temperature in the middle surface of the shell-

like body, while f accounts for the temperature

variations along the thickness of the shell. Let R,

D, wðsÞ ¼ ffðsÞ; gðsÞg, and f0 designate, respec-

tively, the reference values of the functions r, d, y,
and f (on the reference surface S).

Consider a rectangular Cartesian coordinate

frame Ox1x2x3 such that Ox3 is parallel to the

generators and S is situated between the planes

x3 ¼ 0 and x3 ¼ �z. Denote by ei the unit vectors

along the Oxi axes (i ¼ 1; 2; 3). Then, the para-

metric equation of S can be written as
R ¼ Rðs; zÞ ¼ x1ðsÞe1 þ x2ðsÞe2 þ ze3;

s 2 ½0; �s�; z 2 ½0; �z� ð2Þ

where xaðsÞ are known functions of class C3½0; �s�
which determine the shape of the cross section.

Let Cz be the cross-sectional curve of S lying in

the plane x3 ¼ z. Subsequently, we deal with

open cylindrical shells, but the same analysis

can be adapted also for closed shells. The cross

sections Cz are simple open curves of arbitrary

shape (0  z  �z). We designate by Ls the gener-

ator of S which points are characterized by the

circumferential coordinate s. Clearly, the bound-
ary @S of the surface S consists of the lateral

edges L0 and L�s and the end edges C0 and C�z.
In the linear theory, we introduce the infinites-

imal displacement vector u ¼ r–R, the director

displacement vector d ¼ d� D, and the varia-

tions in temperature fields t ¼ y� y0,
s ¼ f� f0. The displacement vectors can be

decomposed in the vector bases feig and

ft; n; e3g as
u ¼ uiei ¼ ustþ unnþ uze3

d ¼ diei ¼ dstþ dnnþ dze3

where t and n are the unit tangent vector and

normal vector to Cz, given by
tðsÞ ¼ x0aðsÞea; nðsÞ ¼ eabx0bðsÞea
rðsÞ ¼ eabx0aðsÞx00bðsÞ

h i�1

Here, eab is the two-dimensional alternator

(e12 ¼ �e21 ¼ 1, e11 ¼ e22 ¼ 0) and rðsÞ is the

curvature radius of Cz, and we use the notation

f 0 ¼ df
ds, for any field f.

We consider the following thermal stresses

problem: determine the equilibrium of

a cylindrical Cosserat shell, under the action of
a given temperature field. As it is usual in the

treatment of Saint-Venant’s problem, we con-

sider a relaxed formulation of the problem in

which the pointwise assignment of mechanical

loads on the end edges of cylindrical shells is

replaced by prescribing the corresponding resul-

tant forces and resultant moments acting on these

boundaries.

The linear strain measures for cylindrical

shells are [6]
ess¼ @

@s
usþunr

�1; esz¼ ezs¼1

2

@

@z
usþ @

@s
uz

� �
ezz¼ @

@z
uz; gs¼ds�usr

�1þ @

@s
un

gz¼dzþ @

@z
un; gn¼dn

rss¼
@

@s
dsþr�1 @

@s
usþunr

�2; rzz¼
@

@z
dz

rsz¼
@

@z
ds; rzs¼

@

@s
dzþr�1 @

@z
us

rns¼
@

@s
dn; rnz¼

@

@z
dn

ð3Þ

We designate by N the contact force vector

andM the contact director couple acting per unit

length of the curves c included in S. For an

arbitrary such curve c having the unit normal
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n ¼ nstþ nze3 (v is tangent to the surface S),
these vectors admit Cauchy-type decompositions

as follows: N ¼ Nsstþ Nsze3 þ Vs nð Þns
þ Nzstþ Nzze3 þ Vz nð Þnz and M ¼ Msstþð
Msze3 þMsnnÞns þ MzstþMzze3 þMznnð Þnz.

The constitutive equations of thermoelastic

Cosserat shells, for isotropic and homogeneous

materials, are given in the form [10]
Nss ¼ a1 þ 2a2ð Þess þ a1ezz þ a9gn
þ b1tþ ða0rss þ a5rzz þ b4sÞr�1

Nzz ¼ a1ess þ a1 þ 2a2ð Þezz þ a9gn þ b1t;

Nsz ¼ 2a2esz
Vs ¼ a3gs; Vz ¼ a3gz
Vn ¼ a9 ess þ ezzð Þ þ a4gn þ b2t

Mss ¼ a0rss þ a5rzz
Mzz ¼ a5rss þ a0rzz þ b4s; Msz ¼ a6rzs þ a7rsz
Mzs ¼ a6rsz þ a7rzs; Msn ¼ a8rns
Mzn ¼ a8rnz

ð4Þ

where a1; . . . ; a9 and b1; . . . ; b5 are the constant

constitutive coefficients of the shell and we

denote by a0 ¼ a5 þ a6 þ a7 and b0 ¼ a5a�1
0 for

brevity.

The equilibrium equations in the absence of

body loads can be written as
@

@s
Nssþ @

@z
Nzsþ 1

r
Vs ¼ 0

@

@s
Nszþ @

@z
Nzz ¼ 0

@

@s
Vsþ @

@z
Vz� 1

r
Nss ¼ 0

@

@s
Mssþ @

@z
Mzs�Vs ¼ 0

@

@s
Mszþ @

@z
Mzz�Vz ¼ 0

@

@s
Msnþ @

@z
Mzn�Vn ¼ 0

ð5Þ

Since the lateral edges are free of applied

loads, we have the following boundary conditions

on the lateral edges:

Nss ¼ Nsz ¼ Vs ¼ 0; Mss ¼ Msz ¼ Msn ¼ 0

on L0 [ L�s

ð6Þ

We define the vector-valued linear functionals

Rð�Þ and Mð�Þ by
RðvÞ¼
Z
C0
NðvÞdl¼�

Z
C0

x 0aNzsðvÞþ eabx0bVzðvÞ
h i

dlea

�
Z
C0
NzzðvÞdle3;

MðvÞ¼
Z
C0

R�NðvÞþD�MðvÞ½ �dl

¼
Z
C0

ebaxbNzzðvÞþx 0aMzzðvÞ

 �

dlea

þ
Z
C0

eabx 0axbNzsðvÞþxax
0
aVzðvÞ�MzsðvÞ


 �
dle3

for any displacement field v ¼ fu; dg 2 C1ð�SÞ.
We mention that RðvÞ and MðvÞ represent the

resultant force and the resultant moment about O

of the contact forces and contact director couples

acting on C0, corresponding to the field v.
We consider the following boundary condi-

tions on the end edges:
RðvÞ ¼ 0; MðvÞ ¼ 0 ð7Þ

which express that the resultant force and the

resultant moment acting on the end edge C0 are

zero. In view of (5)–(7), the resultant force and

the resultant moment acting on the other end edge

C�z are also zero.

The problem of thermal stresses consists in

finding the displacement field fu; dg which sat-

isfies equations (3)–(5) and the boundary condi-

tions (6) and (7), assuming that the temperature

fields t and s are given. We solve this problem in

the case when the temperature distribution is

a general polynomial in the axial coordinate z,

i.e., we have
t ¼ tðs; zÞ ¼
Xn
k¼0

tkðsÞ zk

s ¼ sðs; zÞ ¼
Xn
k¼0

skðsÞ zk
ð8Þ

where tk and sk are given functions which

depend only on s.

For any integer m 2 f0; 1; . . . ; ng, let us

denote by PðmÞ the problem of solving equations

(3)–(5) together with the boundary conditions (6)

and (7), when the temperature fields t and s have

the forms
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t ¼ tmðsÞ zm; s ¼ smðsÞ zm ð9Þ

Obviously, by the linearity of the theory, if we

know the solutions of the problems PðmÞ for

m 2 f0; 1; . . . ; ng, then we can find the solution

of our initial thermal stresses problems (3)–(8),

by additive superposition.

To solve the problem PðmÞ, we proceed by

mathematical induction: we solve first the prob-

lem Pð0Þ, and then we establish a method to find

the solution of Pðmþ1Þ once the solution of PðmÞ is
known. In this purpose, we notice that the prob-

lem of thermal stresses under consideration can

be rewritten in the form of an elastostatic problem

for cylindrical shells, where the mechanical loads

are expressed in terms of the given temperature

fields. We observe that if we separate the thermal

terms (i.e., those involving t and s) from the

elastic terms, then the constitutive equations (4)

can be written as
Nss ¼ Ne
ss þ b1tþ b4sr

�1; Nzz ¼ Ne
zz þ b1t

Nsz ¼ Ne
sz; Nzs ¼ Ne

zs;Vs ¼ Ve
s ; Vz ¼ Ve

z

Vn ¼ Ve
n þ b2t; Mss ¼Me

ss þ b4s; Msz ¼Me
sz

Mzz ¼Me
zz þ b4s; Mzs ¼Me

zs

Msn ¼Me
sn; Mzn ¼Me

zn

ð10Þ

where the superscript e is used to indicate the

elastic terms. The expressions of the tensor com-

ponents Ne
ss,. . .,M

e
zn follow readily from relations

(4) and (10). Then, the equations of equilibrium

(5) can be put in the form

@

@s
Ne
ss þ

@

@z
Ne
zs þ

1

r
Ve
s ¼ � @

@s
ðb1tþ

1

r
b4sÞ

@

@s
Ne
sz þ

@

@z
Ne
zz ¼ �b1

@t
@z

@

@s
Ve
s þ

@

@z
Ve
z �

1

r
Ne
ss ¼

1

r
ðb1tþ

1

r
b4sÞ

@

@s
Me

ss þ
@

@z
Me

zs � Ve
s ¼ �b4

@s
@s

@

@s
Me

sz þ
@

@z
Me

zz � Ve
z ¼ �b4

@s
@z

@

@s
Me

sn þ
@

@z
Me

zn � Ve
n ¼ b2t

ð11Þ
The boundary conditions on the lateral edges

(6) reduce to

Ne
ss ¼ �ðb1tþ

1

r
b4sÞ; Ne

sz ¼ 0; Ve
s ¼ 0;

Me
ss ¼ �b4s; Me

sz ¼ 0; Me
sn ¼ 0; for s ¼ 0; �s

ð12Þ
On the other hand, the boundary conditions on

the end edges (7) can be written asZ
C0

x 0aN
e
zsþ eabx0bV

e
z

� 
dl¼ 0;

Z
C0
Ne
zzdl¼�

Z
C0
b1tdl;Z

C0
ebaxbNe

zzþ x 0aM
e
zz

� �
dl¼�

Z
C0
ðb4sx0aþb1tebaxbÞdl;Z

C0
eabx 0axbN

e
zsþ xax

0
aV

e
z �Me

zs

� �
dl¼ 0

ð13Þ
Our elastostatic problem (equivalent to the

thermal stresses problem) consists in determining

the displacement field v ¼ fu; dg which satisfies

the equilibrium equations (11) and the boundary

conditions (12) and (13).

The solution of this problem is based on cer-

tain results concerning Saint-Venant’s problem

for Cosserat shells [see 6], which have been

presented in the section ▶Saint-Venant’s prob-

lem for Cosserat elastic shells of this Encyclope-

dia of Thermal Stresses. We introduce the

displacement field v½ai; k� defined by relations

(22) from the section ▶ Saint-Venant’s problem

for Cosserat elastic shells, depending on the arbi-

trary constants ai and k. The displacement field

v½ai; k� possesses the following properties:

(i)
@v½ai;k�
@x3

is a rigid body displacement field of the

Cosserat shell.

(ii) v½ai; k� satisfies the equations of equilibrium

(4) for vanishing right-hand sides.

(iii) v½ai; k� verifies the following zero boundary

conditions on the lateral edges
Ne
ss ¼ Ne

sz ¼ Ve
s ¼ 0; Me

ss ¼ Me
sz ¼ Me

sn ¼ 0

on L0 [ L�s

ð14Þ

(iv) The displacement field v½ai; k� corresponds
to the resultant force and resultant moment

on the end edge C0 given by

http://dx.doi.org/10.1007/978-94-007-2739-7_780
http://dx.doi.org/10.1007/978-94-007-2739-7_780
http://dx.doi.org/10.1007/978-94-007-2739-7_780
http://dx.doi.org/10.1007/978-94-007-2739-7_780
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Rðv½ai;k�Þ ¼ I3iai e3; Mðv½ai;k�Þ ¼ Iaiaiea� k �De3

i.e., v½ai; k� satisfies the end edges conditions
C

Z
C0

x 0aN
e
zsþ eabx0bV

e
z

� 
dl¼ 0;

Z
C0

Ne
zz dl¼�I3i ai;Z

C0

ebaxbNe
zzþx 0aM

e
zz

� �
dl¼ Iai ai;Z

C0

eabx 0axbN
e
zsþxax

0
aV

e
z �Me

zs

� �
dl¼�k �D

ð15Þ

The expressions of the constant coefficients Iji
and �D appearing in (15) are given by the relations

(26) from section ▶ Saint-Venant’s problem for

Cosserat elastic shells. In what follows, we use

the field v½ai; k� to express the solution of our

thermal stresses problem.
Solution of the Thermal Stresses
Problem

Temperature Distribution Depending on the

Circumferential Coordinate

Let us consider first the problem Pð0Þ and assume

that the temperature distribution is independent

of the axial coordinate but depends only on the

circumferential coordinate, i.e., it has the form
t ¼ t0ðsÞ; s ¼ s0ðsÞ ð16Þ

where t0ðsÞ and s0ðsÞ are given functions.

Suggested by the corresponding results from the

three-dimensional theory [1], we search for the

solution v in the form
v ¼ v½ai; k� þ wðsÞ ð17Þ

where ai and k are constants and

wðsÞ ¼ fðsÞ; gðsÞf g is a displacement field of

class C2½0; �s� which depends only on s. In what

follows, we determine the constants ai and k and

the functions fðsÞ ¼ fiðsÞei and gðsÞ ¼ giðsÞei
such that the displacement field v given by (16)

represents a solution of problems (11)–(13). In
this purpose, we denote by YðsÞ and ZðsÞ the

solution of the following boundary-value

problem:
a8Z 00ðsÞ � a4ZðsÞ � a9YðsÞ ¼ b2t0ðsÞ;
ða1 þ 2a2ÞYðsÞ þ a9ZðsÞ ¼ �b1t0ðsÞ; s 2 ½0;�s�;
Z 0ð0Þ ¼ Z 0ð�sÞ ¼ 0

ð18Þ

We mention that the solution of the boundary-

value problem (18) is unique and it can be calcu-

lated by the variation of constants method [see

11]. The following theorem [10] solves the prob-

lem Pð0Þ:

Theorem 1. Let v be a displacement field of the

form (17). Then, v ¼ fu; dg is a solution of the
thermal stresses problems (3)–(7) with the tem-

perature distribution (16) if and only if v is

given by

ua ¼ �1

2
aax

2
3 þ b0eabegdag

Z s

0

x 0bxd ds

þ
Z s

0

x0a aiyðiÞ þ Y
� �

dsþ
Z s

0

eabx0b

�
Z s

0

h1
r
ðaiyðiÞ þ YÞ þ b4

a0
s
i
dsds;

da ¼ b0ebgagxbx
0
a þ eabx 0bðaizðiÞ þ ZÞ

� x 0a

Z s

0

h1
r
ðaiyðiÞ þ YÞ þ b4

a0
s
i
ds;

u3 ¼ ðaaxa þ a3Þx3; d3 ¼ eabaax 0bx3

ð19Þ

up to an additive rigid displacement field. The
constants ai in (19) are determined by the

relations

Iaiai ¼
Z �s

0

ð1� b0Þb4 x0as0ðsÞ þ 2a2ebaxbYðsÞ

 �

ds

I3iai ¼ b1ð1þ yð3ÞÞ þ b2zð3Þ

 � Z �s

0

t0ðsÞ ds

ð20Þ
Proof. In view of (17) and the properties (ii) and

(iii) of the field v½ai; k�, we see that v satisfies

equations (5) and (6) if and only if

http://dx.doi.org/10.1007/978-94-007-2739-7_780
http://dx.doi.org/10.1007/978-94-007-2739-7_780
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wðsÞ ¼ ffðsÞ; gðsÞg verifies (11) and (12). Using

the constitutive relations, we find

Ne
ssðwÞ ¼ ða1 þ 2a2 þ a0

r2
Þf 0 � tþ a9 g � nþ a0

r
ðg � tÞ0;

Ne
zzðwÞ ¼ a1f 0 � tþ a9g � n; Ne

szðwÞ ¼ a2f 03ðsÞ;
Ne
zsðwÞ ¼ a2 f 03ðsÞ þ

a6
r
g03ðsÞ;Ve

s ðwÞ ¼ a3ðf 0 � nþ g � tÞ;
Ve
z ðwÞ ¼ a3g3ðsÞ; Ve

nðwÞ ¼ a9f 0 � tþ a4g � n;
Me

ssðwÞ ¼ a0½1
r
f 0 � tþ ðg � tÞ0�;

Me
zzðwÞ ¼ a5½1

r
f 0 � tþ ðg � tÞ0�;

Me
szðwÞ ¼ a6g03ðsÞ; Me

zsðwÞ ¼ a7g03ðsÞ;
Me

snðwÞ ¼ a8ðg � nÞ0; Me
znðwÞ ¼ 0

ð21Þ

Using the equilibrium equations (4)2,5 written

for w and the lateral edge conditions

Ne
szðwÞ ¼ Me

szðwÞ ¼ 0 for s ¼ 0; �s, we obtain

that f3ðsÞ ¼ 0 and g3ðsÞ ¼ 0, for s 2 ½0; �s�.
On the other hand, if we write the equilibrium

equations (11) 1;3;4;6 and the boundary conditions

(12)1;3;4;6 for the field w and use (21), then we

deduce the following system of ordinary differ-

ential equations for the unknown functions faðsÞ
and gaðsÞ:
ða1 þ 2a2Þf 0 � tþ a9 g � n ¼ �b1t0;

a8ðg � nÞ00 � a4 g � n� a9f 0 � t ¼ b2t0;

1

r
f 0 � tþ ðg � tÞ0 ¼ � b4

a0
s0;

f 0 � nþ g � t ¼ 0; s 2 ½0; �s�

ð22Þ

with the boundary conditions
ðg � nÞ0ð0Þ ¼ ðg � nÞ0ð�sÞ ¼ 0 ð23Þ

By virtue of (18), from the boundary-value

problem (22)1;2 and (23), we obtain
ðf 0 � tÞðsÞ ¼ YðsÞ; ðg � nÞðsÞ ¼ ZðsÞ;
s 2 ½0; �s� ð24Þ

Finally, from relations (22)3;4 and (24), we

find that
faðsÞ ¼
Z s

0

½x0aY þ eabx0b

Z s

0

ð1
r
Y þ b4

a0
s0Þds�ds

gaðsÞ ¼ eabx0bZðsÞ � x0a

Z s

0

ð1
r
Y þ b4

a0
s0Þds

ð25Þ

If we substitute the expression of v½ai; k� and
(25) into (17), then we deduce that v has the form
(19). To determine the constants ai and k, we

impose the boundary conditions on the end

edges (13). In view of (21) and the property (iv)

of the displacement field v½ai; k�, we see that v

satisfies the conditions (13) if and only if we have
Iaiai þ
Z
C0

ebaxbNzzðwÞ þ x 0
aMzzðwÞ


 �
dl ¼ 0;

� I3iai þ
Z
C0

NzzðwÞ dl ¼ 0; k ¼ 0

ð26Þ

In view of (10), (21), (22), and (24), the rela-

tions (26)1;2 reduce to equation (20). This com-

pletes the proof.

Thus, we have solved our thermal stresses

problem in the case when the temperature distri-

bution is independent of the axial coordinate.

Temperature Distribution Depending on the

Axial Coordinate

Let us treat the thermal stresses problem in the

case when temperature depends also on the axial

coordinate. More precisely, we consider that the

temperature distribution is a general polynomial in

the axial coordinate, with coefficients being given

functions of s, as it was written in relation (8).

In this context, we describe a method to solve

the problem Pðmþ1Þ, once a solution of the prob-

lem PðmÞ is known (m 	 0). As we already men-

tioned, the problem PðmÞ consists in finding the

displacement field which satisfies equations

(3)–(7), when the temperature distribution is

given by (9). Since the solution of problem PðmÞ

is known for every function tmðsÞ and smðsÞ, it
means that we can also find the solution

v� ¼ fu�; d�g of the thermal stresses problem

for the temperature distribution
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t ¼ tmþ1ðsÞ zm; s ¼ smþ1ðsÞ zm ð27Þ

In what follows, we show how to determine

the solution v ¼ fu; dg of equations (3)–(7) with

the thermal fields given by
C
t ¼ tmþ1ðsÞ zmþ1; s ¼ smþ1ðsÞ zmþ1 ð28Þ

in the hypothesis that we know the solution v� of
problems (3)–(7) corresponding to the tempera-

ture distribution (27). The next theorem [10]

establishes the existence of such solution, and

its proof describes the procedure to calculate it.

Theorem 2. Let v� ¼ fu�; d�g be a displace-

ment field satisfying equations (3)–(7)

corresponding to the thermal fields (27). Then,

there exists a solution v ¼ fu; dg of the thermal

stresses problems (3)–(7) with the temperature
distribution (28), having the following form:
v ¼ ðmþ 1Þ
�Z x3

0

v� dx3 þ v½ai; k� þ wðsÞ


ð29Þ

where ai and k are constants and the field

wðsÞ ¼ ffðsÞ; gðsÞg is a function of class C2½0; �s�.

Proof. We determine the constants ai and k and

the functions fðsÞ ¼ fiðsÞei and gðsÞ ¼ giðsÞ ei
such that the displacement field v given by (29)

represents a solution of problems (3)–(7) and

(28). First, we find the functions fiðsÞ and giðsÞ
from the boundary-value problems (11) and (6).

To this aim, we use the constitutive equations (4),

the induction hypothesis on v�, and the properties
(ii) and (iii) of the field v½ai; k�. Thus, the equilib-
rium equation (11)2 can be written as

f 003 ðsÞ ¼ �½ @
@s

u�s þ
1

a2
Ne
zzðv�Þ�ðs; 0Þ �

b1
a2

t1ðsÞd0m;
s 2 ½0; �s�

ð30Þ

where d0m is the Kronecker symbol. The bound-

ary conditions on the lateral edges NszðvÞ ¼ 0

reduce to

f 03ðsÞ ¼ �u�s ðs; 0Þ for s ¼ 0; �s ð31Þ
From the boundary-value problems (4) and

(5), we find that
f3ðsÞ ¼ �
Z s

0

½u�s ðs; 0Þ þ
1

a2

�
Z s

0

Ne
zzðv�Þðs; 0Þ þ b1t1ðsÞd0m

� �
ds�ds
ð32Þ

In a similar way, the equilibrium equation

(11)5 and the conditions on the lateral edges

MszðvÞ ¼ 0 reduce to the following boundary-

value problem for the unknown g3ðsÞ:
a6g003ðsÞ � a3g3ðsÞ ¼ �½ @
@s

ða6
r
u�s þ a7d

�
s Þ

� a3u�n þMe
zzðv�Þ�ðs; 0Þ � b4s1ðsÞd0m

g03ð0Þ ¼ �
� 1
r
u�s þ

a7
a6

d�s

ð0; 0Þ;

g03ð�sÞ ¼ �
� 1
r
u�s þ

a7
a6

d�s

ð�s; 0Þ

ð33Þ

The function g3ðsÞ can be determined from the

boundary-value problem (33).

In order to find faðsÞ and gaðsÞ, we write the

equilibrium equations (11)1;3;4;6 and the boundary

conditions (6) for the field v given by (29). In this

way, we obtain a system of four ordinary differ-

ential equations, together with appropriate

boundary conditions in the endpoints s ¼ 0; �s,

which can be solved to determine faðsÞ and

gaðsÞ. Thus, we consider that the field w(s) has

been determined.

Finally, we find the values of the constants ai
(i ¼ 1; 2; 3) and k by imposing that the field v

given by (29) satisfies the end edge conditions

(7). The proof is complete.

Remark. The expression of solution (29) has

been suggested by the results of the three-

dimensional thermoelastostatics [1] and those

for loaded cylindrical Cosserat shells [8].

Using the above theorem and the method

of induction, we obtain a solution of the ther-

mal stresses problem when the temperature
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distribution is a general polynomial (9) in the

axial coordinate. We mention that the same

approach can be adapted also for the case of

closed cylindrical shells, i.e., for thin-walled

tubes. We do not give the details about the ther-

mal stresses problem for closed cylindrical shells

in the general case, but we present the solution in

a special situation: the case of closed circular

cylindrical shells.
Thermal Stresses in Thin-Walled Tubes

Let us consider a thermal stresses problem for

circular cylindrical closed shells, i.e., for thin-

walled tubes. In the case of closed cylindrical

shells, the boundary conditions on the lateral

edges (6) are replaced by the following continuity

conditions for s ¼ 0; �s:
u; d;
@ku

@sk
;
@kd

@sk

� �
ð0; zÞ ¼ u; d;

@ku

@sk
;
@kd

@sk

� �
ð�s; zÞ

for z 2 ½0; �z�; k ¼ 1; 2

ð34Þ

Thus, the thermal stresses problem consists in

finding the displacement field v ¼ fu; dg of the

Cosserat shell which satisfies equations (3)–(5),

the conditions on the end edges (7), and the con-

tinuity conditions (34), under a given temperature

distribution.

Assume that the thermal fields t and s are

linear functions of the axial coordinate, i.e., we

have
t ¼ t0 þ t1 z; s ¼ s0 þ s1 z ð35Þ

where t0; t1; s0 and s1 are known constants.

Since t is interpreted as the average temperature

through the thickness of the shell and s represents
the average through-the-thickness temperature

gradient [9], we see that the problem considered

has practical significance for the situation when

a thin elastic tube is subject to different temper-

atures applied at its end edges and also to

a difference of temperature between the inner

and outer regions. For the circular cylindrical
surface S under consideration, the parametric

equation is given by (2) with
x1ðsÞ ¼ r0 cos
s

r0
; x2ðsÞ ¼ r0 sin

s

r0
;

s 2 ½0; 2pr0�
ð36Þ

where r0 denotes the radius of the cylindrical

surface. In accordance with the procedure

established in the preceding sections, we divide

our problem into two problems Pð0Þ and Pð1Þ,
described as
Pð0Þ : the thermal fields are t ¼ t0; s ¼ s0;

Pð1Þ : the thermal fields are t ¼ t1z; s ¼ s1z

Theorem 1 allows us to solve the problem Pð0Þ,
while the solution of problem Pð1Þ can be

constructed by applying Theorem 2. After some

calculations, we obtain the following solution for

the thermal stresses problem corresponding to

a temperature distribution linear in the axial coor-

dinate [10]:
ua ¼ �ðbA0 þ A2Þxax3 � ðaA0 þ A1Þxa;
u3 ¼ 1

2
b x23 þ a x3

da ¼ � 1

r0
ðbC0 þ C2Þxax3 � 1

r0
ðaC0 þ C1Þxa

d3 ¼ 1

a3
½b4s1 þ

�
a3r0 � a5

r0


ðbA0 þ A2Þ�

ð37Þ

where the coefficients Ak and Ck (k ¼ 0; 1; 2) are

given by
A0 ¼ ða29 � a1a4Þd;
C0 ¼ �a9ð2a2 þ a0r�2

0 Þd;
ða1 þ 2a2 þ a0

r20
ÞA1 þ a9C1 ¼ b1t0 þ

b4
r0

s0;

a9A1 þ a4C1 ¼ b2t0;

ða1 þ 2a2 þ a0
r20
ÞA2 þ a9C2 ¼ b1t1 þ

b4
r0

s1;

a9A2 þ a4C2 ¼ b2t1
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and the constants a, b, and d denote the

expressions
C

a ¼ � a1A1 þ a9C1 � b1t0
a1A0 þ a9C0 � ða1 þ 2a2Þ ;

b ¼ � a1A2 þ a9C2 � b1t1
a1A0 þ a9C0 � ða1 þ 2a2Þ ;

d ¼ ½a29 � a4ða1 þ 2a2 þ a0r�2
0 Þ��1

Solution (37) gives the displacement and

director displacement vector fields of the cylin-

drical Cosserat shell under the action of the ther-

mal fields (35).

Finally, we mention that the results of the

Cosserat theory for cylindrical shells are in accor-

dance with those predicted by the three-

dimensional thermoelasticity. The agreement

between the two approaches has been shown in

[10], where certain corresponding solutions have

been compared using the identification of the

constitutive coefficients for Cosserat shells in

terms of the classical thermoelasticity constants

[7, 9, 12].
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Overview

Using the direct approach to shell theory, we

present a general set of constitutive equations

which is able to describe thermoelastic

orthotropic layered shells. By comparison of

solutions to thermal stress problems in the shell

theory and the three-dimensional theory, we

determine the expression of the coupling

thermoelastic coefficients for layered shells, in

http://dx.doi.org/10.1007/978-94-007-2739-7_780
http://dx.doi.org/10.1007/978-94-007-2739-7_780
http://dx.doi.org/10.1007/978-94-007-2739-7_100107
http://dx.doi.org/10.1007/978-94-007-2739-7_100136
http://dx.doi.org/10.1007/978-94-007-2739-7_100136
http://dx.doi.org/10.1007/978-94-007-2739-7_100376


C 846 Cylindrical Orthotropic Thermoelastic Shells Modeled by Direct Approach
terms of the three-dimensional material/geomet-

rical parameters. We verify our theoretical ana-

lytical results by comparison with numerical

(finite element) solutions for the thermal bending

of layered shells.
Introduction

In the classical approach to shell theory, the shell-

like body is described as a thin three-dimensional

continuum [1]. The two-dimensional shell equa-

tions are then derived by integration over the

thickness and certain simplifying assumptions.

In some cases, the simplifying assumptions

restrict the range of applicability of such theories.

An alternative to the classical approach is the

direct approach to shell theory. In the direct

approach, the shells are modeled as two-

dimensional continua (i.e., deformable surfaces)

endowed with a certain microstructure. This

additional microstructure attached to each point

of the surface accounts for the three-dimensional

effects in the mechanical behavior of shells. The

idea of the direct approach was first proposed by

the Cosserat brothers and developed subse-

quently by many scientists like Truesdell,

Ericksen, Green, Naghdi, and Antman. Follow-

ing this original idea, Zhilin [2, 3] has developed

a direct approach to shells in which the deform-

able surfaces are endowed with a triad of ortho-

normal vectors connected to each point. The three

vectors (also called directors) are rigidly rotating

during deformation, and they specify the orienta-

tion of the material points, which are thus viewed

as infinitesimal rigid bodies.

In this theory, also called the theory of simple

shells [4], Zhilin has supplemented the kinemat-

ical model proposed by Cosserat with specific

constitutive equations, thus making the model

useful for the treatment of practical shell prob-

lems [3]. The theory of simple shells describes

thermal effects in thin shells by introducing two

temperature fields assigned to the points of the

deformable surface. The two thermal fields rep-

resent the temperature on the two major surfaces

(top and bottom) of the shell. To formulate
appropriate constitutive equations in the direct

approach, one can use the effective stiffness con-

cept. In this entry, we consider a general set of

constitutive equations which can describe

thermoelastic orthotropic layered shells. The

components of the constitutive tensors represent

the effective stiffness properties and the coupling

thermoelastic coefficients of shells.We begin this

entry with a short review of the governing equa-

tions for linear thermoelastic shells in the direct

approach. Then, we present the structure of the

constitutive tensors for orthotropic layered shells.

In the next section, we turn our attention to cylin-

drical shells and investigate the equilibrium

deformation under the action of given tempera-

ture fields. The analytical solution to the thermal

stress problem allows us to determine the expres-

sion of the coupling thermoelastic coefficients.

We present these expressions in closed form, in

the case of three-layered shells. Finally, we con-

sider the thermal deformation of two-layered

plates and determine the coupling thermoelastic

coefficients of such thin structures. The compar-

ison between theoretical and numerical results

shows a very good agreement, which indicates

that the direct approach is an efficient model for

the analysis of layered thermoelastic shells.
General Equations for Thermoelastic
Shells

In the theory of simple elastic shells [2–4], the

shell-like body is modeled as a directed surface,

i.e., a two-dimensional continuum in which each

material point is connected with an orthonormal

triad of vectors (directors). These three vectors

can undergo rigid rotations in the course of shell

deformation. Thus, the directors describe the

orientation of the material points, which are

viewed as small rigid bodies.

Denote by S the actual configuration of the

directed surface at time t, which is determined by

the fields Rðx; tÞ;Dkðx; tÞf g, k ¼ 1; 2; 3, where

x ¼ ðx1; x2Þ represents the material curvilinear

coordinates on the surface, R is the position vec-

tor, and Dk are the directors associated to each
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material point. In the reference configuration S0

(at time t ¼ 0), we designate the corresponding

fields by rðxÞ; dkðxÞf g. We have dk � dm ¼ dkm
(the Kronecker symbol), and we introduce

the orthogonal rotation tensor P by

Pðx; tÞ ¼ Dkðx; tÞ � dkðxÞ. The Einstein summa-

tion convention is employed.

In the linear theory, we define the infinitesimal

displacement vector uðx; tÞ ¼ Rðx; tÞ � rðxÞ and

the infinitesimal rotation vector w by the

relations _wðx; tÞ ¼ � 1
2
½ _P � PT �� and @awðx; tÞ ¼

� 1
2
½@aP � PT ��. Here, a superposed dot stands for

the material time derivative; we designate by ½���
the vector invariant (or “Gibbsian cross”) for any

second-order tensor ½�� and by @a ¼ @
@xa

. The Greek

indices take the values f1; 2g, while the Latin indi-
ces range over the set f1; 2; 3g. We observe that _w

and@aw are the axial vectors of the skew-symmetric

tensors _P � PT and @aP � PT , respectively.

Let us denote by raðxÞ ¼ @arðxÞ the covar-

iant base vectors in the tangent plane and by

n(x) the unit normal to the surface S0

(n � ra ¼ 0; n � n ¼ 1). Consider also the vec-

tors raðxÞ given by ra � rb ¼ dab. For simplicity,

we chose the initial director d3ðxÞ to coincide

with n(x). We may consider that

wðx; tÞ � nðxÞ ¼ 0, since the (drilling) rotations

about the normal n do not intervene in the

governing equations in the linear theory of

simple shells [3]. The vector fields u and w

can be decomposed as u ¼ uar
a þ u3n;

w ¼ war
a; which shows that we have five

independent kinematical scalar fields (three

displacements ui and two rotations wa). Thus,

the theory of simple shells is in this sense

a Reissner-type theory for shells. The first

and second fundamental tensors of S0 are

a ¼ ra � ra and b ¼ �ra � @an, respectively.

We also consider the skew-symmetric alterna-

tor tensor c given by c ¼ �a� n ¼ �n� a.

In order to take into account the thermal

effects in shells, we distinguish between the two

sides of the directed surface, which will be

labeled as faces 1 and 2, such that the unit normal

n is taken from side 2 toward side 1. We denote

by T1ðx; tÞ and T2ðx; tÞ the temperature fields on

the sides 1 and 2, respectively, at time t. Bymeans
of these two temperature fields, one can describe

the variation of temperature across the shell’s

thickness as T1 � T2 and the average temperature

through the thickness as 1
2
ðT1 þ T2Þ. In the

linear theory of thermoelastic simple shells,

the infinitesimal temperature variations t1 and t2
are introduced by t1ðx; tÞ ¼ T1ðx; tÞ � T0;

t2ðx; tÞ ¼ T2ðx; tÞ � T0, where T0 is the constant

temperature of the shell in the reference

undeformed configuration S0. The linear strain

tensors for simple shells are given by
« ¼ 1

2
e � aþ a � eT� �

g ¼ e � n ¼ ðHuÞ � nþ c � w
k ¼ k � aþ 1

2
ðe � �cÞb

ð1Þ

where we denote by e ¼ Huþ a� w ¼
ra � @auþ a� w, k ¼ Hw ¼ ra � @aw. From

(1) we see that e is a symmetric tensor describing

the extensional and in-plane shear strains of the

shell, g is a vector which accounts the transverse

shear deformation, and k is a tensor of bending

and twist strains [3].

In order to present the equilibrium equations,

let us introduce the force tensor T and the

moment tensor M. For any subset P0 of the

reference surface S0, we designate by v the exter-

nal unit normal to the boundary curve @P0 which

lies in the tangent plane and by t and m the

vectors of external force and moment acting on

the boundary @P0. Then, the force tensor T and

the moment tensor M satisfy the relations of

Cauchy type t ¼ n � T,m ¼ n �M. The equations

of equilibrium have the form

ra � @aTþ F ¼ 0; ra � @aMþ T� þ L ¼ 0

ð2Þ

Here the vectors F and L are the external

forces and moments per unit area of S0.

Let us present next the constitutive equations

for orthotropic nonhomogeneous thermoelastic

simple shells. The Helmholtz free energy func-

tion C is expressed in terms of the variables

ð«;g; k; t1; t2Þ by the relations [3, 8]
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Cð«;g; k; t1; t2Þ ¼ Uð«;g; kÞ þCTð«; k; t1; t2Þ;

rU ¼ 1

2
« � �C1 � �«þ « � �C2 � �k

þ 1

2
k � �C3 � �kþ 1

2
g � G � g;

rCT ¼ « � �ðC4 t1 þ C5 t2Þ
þ k � �ðC6 t1 þ C7 t2Þ
� 1

2
~a1t21 �

1

2
~a2t22

ð3Þ

Here r denotes the mass density in the refer-

ence configuration, while the tensors C1, C2, C3

(of fourth order), and the tensor G (of second

order) represent the stiffness tensors which

characterize the effective elastic properties of the

simple shell. The second-order tensors Ck

(k ¼ 4; . . . ; 7) and the coefficients ~a1 and ~a2
express the material properties concerning the

coupling between the thermal fields and the

elastic deformations. These constitutive tensors

satisfy the symmetry conditions G ¼ GT ,

C4 ¼ CT
4 , C5 ¼ CT

5 , c � �Ca ¼ 0 ða ¼ 1; 2Þ, and
v � �Ck ¼ Ck � �v ðk ¼ 1; 3Þ for any second-order

tensor v. Then, the constitutive equations for

general orthotropic thermoelastic shells are [8]
symðT � aÞ 
 1

2
ðT � aþ a �TTÞ ¼T � a

þ1

2
ðM � �bÞc¼ @ðrCÞ

@«

¼C1 � �«þC2 � �kþC4 t1þC5 t2;

N
T �n¼ @ðrCÞ
@g

¼G �g;

M¼ @ðrCÞ
@k

¼ ð« � �C2þC3 � �kþC6 t1þC7 t2ÞT
ð4Þ

together with the restrictionsMT � �bþ TT � �c ¼ 0

andM � n ¼ 0, which follow from the fact that the

(drilling) rotations about n are not taken into

account [3].

This set of constitutive equations is quite gen-

eral and can describe various types of composite
shells, such as multilayered shells or reinforced

shells. The system of governing field equations

described above has been studied from

a mathematical point of view in [5] in the isother-

mal theory and in [6] in the thermodynamical

theory. In these papers, some important properties

of solutions to the governing linear equations have

been established, such as existence, uniqueness,

continuous dependence on body loads and initial

data, reciprocity, and variational characterization.

For orthotropic layered shells (with symmetric

or nonsymmetric sequences of layers), the struc-

ture of the constitutive tensors in the isothermal

theory has been derived in [3]. To obtain

simpler forms of these expressions, we can

assume that the basis fr1; r2g is orthogonal. We

denote by ak ðk ¼ 1; . . . ; 4Þ the second-order

tensors a1 ¼ a; a2 ¼ r1 � r1 � r2 � r2; a3 ¼ c; a4 ¼
r1 � r2 þ r2 � r1. According to [3], the tensors

C1, C2, C3, and G are expressed by
C1 ¼ A11a1 � a1 þ A12ða1 � a2 þ a2 � a1Þ
þA22a2 � a2 þ A44a4 � a4

C2 ¼ B13a1 � a3 þ B14a1 � a4 þ B23a2 � a3

þ B24a2 � a4 þ B41a4 � a1þB42a4 � a2

C3 ¼ C11a1 � a1 þ C12ða1 � a2 þ a2 � a1Þ
þ C22a2 � a2 þ C33a3 � a3

þC34ða3 � a4 þ a4 � a3Þ
þ C44a4 � a4; G ¼ G1 a1 þ G2 a2

ð5Þ

where the coefficients Ars; Brs; Crs and Ga are the

effective stiffness moduli. Using the theory of

tensor symmetry, we can deduce in the same

way as in the structure of the thermoelastic cou-

pling tensors C4, C5, C6, and C7.

In the general case of orthotropic shells with

nonsymmetric arrangement of layers, the cou-

pling thermoelastic tensors have the following

representations [8]:
C4 ¼ C4a1 þ bC4a2; C5 ¼ C5a1 þ bC5a2;

C6 ¼ C6a3 þ bC6a4; C7 ¼ C7a3 þ bC7a4

ð6Þ
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where Ck and bCk are coupling coefficients.

In the particular case when the shell is trans-

versal isotropic, the relations (6) reduce to [8]
C

C4 ¼ C4a1; C5 ¼ C5a1;

C6 ¼ C6a3; C7 ¼ C7a3
ð7Þ

In the case of transversal isotropic shells

with symmetric distribution of layers, the struc-

ture of the thermoelastic constitutive tensors

simplify [8]
C4 ¼ C5 ¼ C4a1; C6 ¼ �C7 ¼ C6a3; ~a1 ¼ ~a2

ð8Þ

In what follows, we consider the general case

of (nonsymmetric) layered shells having the con-

stitutive tensors of the forms (5) and (6).
Deformation of Cylindrical Shells Under
Given Temperature Fields

Let the reference configuration S0 be

a cylindrical surface. We refer the surface to

a Cartesian orthogonal frame Ox1x2x3, such

that the generators of S0 are parallel to the axis

Ox3. The material surface coordinates are

denoted by x1 ¼ s and x2 ¼ z, where the axial

coordinate z is the distance to the plane x1Ox2,

while the circumferential coordinate s is the arc
length parameter along the cross-sectional

curves z ¼ const. If we designate by ei the unit

vectors along the axes Oxi, then the parametric

equation of the reference surface S0 can be writ-

ten in the form
r ¼ rðs; zÞ ¼ xaðsÞea þ z e3;
s 2 ½0; �s�; z 2 ½0; �z� ð9Þ

where x1ðsÞ and x2ðsÞ are given functions which

describe the shape of the reference cylindrical

surface. Let us designate by s the unit tangent

vector to the cross-sectional curve, n the unit
normal vector to the surface, and rðsÞ the radius
of curvature of the cross-sectional curve.

For cylindrical shells, the following relations

hold [8]:
r1 ¼ s ¼ x0aea; r2 ¼ e3; n ¼ eabx
0
bea;

c ¼ eabra � rb; a ¼ s� sþ e3 � e3;

b ¼ � 1

rðsÞ s� s; rðsÞ ¼ ½eabx0aðsÞx
00
bðsÞ��1

ð10Þ

where ð � Þ0 ¼ dð�Þ
ds and eab represent the

two-dimensional alternator (e12 ¼ �e21 ¼ 1;

e11 ¼ e22 ¼ 0). In view of (10)1,2, we denote the

components as follows [8, 9]:
u ¼ u1sþ u2e3 þ u3n; w ¼ �’2sþ ’1e3;

g ¼ g1sþ g2e3;

« ¼ e1s� sþ e2e3 � e3 þ e12s� e3 þ e21e3 � s;

k ¼ �d1s� sþ d2e3 � e3 þ k1s� e3 � k2e3 � s;

T ¼ T1s� sþ T2e3 � e3 þ T12s� e3 þ T21e3 � s

þ N1s� nþ N2e3 � n;

M ¼ �M12s� sþM21e3 � e3 þM1s� e3

�M2e3 � s

ð11Þ
The strain tensor components are expressed

by [9]
e1 ¼ u1;1 þ 1

r
u3; e2 ¼ u2;2

e12 ¼ e21 ¼ 1

2
ðu1;2 þ u2;1Þ

g1 ¼ u3;1 � 1

r
u1 þ ’1; g2 ¼ u3;2 þ ’2

d1 ¼ ’2;1 þ
1

2r
ðu1;2 � u2;1Þ; d2 ¼ ’1;2

k1 ¼ ’1;1; k2 ¼ ’2;2

ð12Þ

Here we designate the partial derivatives in the

usual manner: f;1 ¼ @f
@x1

¼ @f
@s ; f;2 ¼ @f

@x2
¼ @f

@z , for

any function f . To write the constitutive equations

(4) in component form, we decompose them in

“elastic parts” Te
a; M

e
a and “thermal parts”

Tt
a; M

t
a [8]:



C 850 Cylindrical Orthotropic Thermoelastic Shells Modeled by Direct Approach
T1 ¼ Te
1 þ Tt

1; T2 ¼ Te
2 þ Tt

2;

M1 ¼ Me
1 þMt

1; M2 ¼ Me
2 þMt

2;

Tt
1 ¼ f1t1 þ f2t2; Tt

2 ¼ f3t1 þ f4t2;

Mt
1 ¼ f5t1 þ f6t2; Mt

2 ¼ f7t1 þ f8t2;

Te
1 ¼ a1e1 þ a3e2 þ b1k1 þ b2k2;

Te
2 ¼ a2e2 þ a3e1 þ b3k1 þ b4k2;

Me
1 ¼ b1e1 þ b3e2 þ c1k1 þ c3k2;

Me
2 ¼ b2e1 þ b4e2 þ c3k1 þ c2k2;

T12 ¼ 1

2
b5 � 1

r
c4

� �
d1 þ 1

2
b6 � 1

r
c6

� �
d2

þ 1

2
a4 � 1

r
b5

� �
e12; N1 ¼ d1g1;

T21 ¼ 1

2
b5 þ 1

r
c4

� �
d1 þ 1

2
b6 þ 1

r
c6

� �
d2

þ 1

2
a4 þ 1

r
b5

� �
e12; N2 ¼ d2g2;

M12 ¼ b5e12 þ c4d1 þ c6d2;

M21 ¼ b6e12 þ c6d1 þ c5d2

ð13Þ

The coefficients f1; . . . ; f8 entering in the

thermal part of (13) are given by

f1 ¼ C4 þ bC4; f2 ¼ C5 þ bC5;

f3 ¼ C4 � bC4; f4 ¼ C5 � bC5;

f5 ¼ �ðC6 þ bC6Þ; f6 ¼ �ðC7 þ bC7Þ;
f7 ¼ �ðC6 � bC6Þ; f8 ¼ �ðC7 � bC7Þ

ð14Þ

The coefficients as, bs, cs, and dg appearing in

the purely elastic terms of (13) are expressed in

terms of the effective elastic moduli Ars; Brs; Crs

and Ga by
a1 ¼ A11 þ 2A12 þ A22; a2 ¼ A11 � 2A12 þ A22;

a3 ¼ A11 � A22; a4 ¼ 4A44;

b1 ¼ �B13 � B23 þ B14 þ B24;

b2 ¼ �ðB13 þ B23 þ B14 þ B24Þ;
b3 ¼ �B13 þ B23 þ B14 � B24;

b4 ¼ �B13 þ B23 � B14 þ B24;

b5 ¼ �2ðB41 þ B42Þ; b6 ¼ 2ðB41 � B42Þ;
d1 ¼ G1 þ G2; d2 ¼ G1 � G2;

c1 ¼ C33 � 2C34 þ C44; c2 ¼ C33 þ 2C34 þ C44;

c3 ¼ C33 � C44; c4 ¼ C11 þ 2C12 þ C22;

c5 ¼ C11 � 2C12 þ C22; c6 ¼ �C11 þ C22

ð15Þ
The general form of the constitutive equations

(13)–(15) is applicable for orthotropic layered

thermoelastic shells. For any given material dis-

tribution in the layered cylindrical shell, one

should make a suitable choice of the effective

elastic moduli Ars; Brs; Crs and Ga and the

coupling coefficients Ck and bCk.

For the type of shells described above, we

consider the following thermal stress problem:

find the equilibrium deformation of the layered

orthotropic cylindrical shell under a given tem-

perature field applied to the shell, in the absence
of body loads.

In our case, the equilibrium equations in com-

ponent form are [8, 9]
T1;1 þ T21;2 þ 1

r
N1 ¼ 0;

T12;1 þ T2;2 ¼ 0;

N1;1 þ N2;2 � 1

r
T1 ¼ 0;

M1;1 þM21;2 � N1 ¼ 0;

M12;1 þM2;2 � N2 ¼ 0

ð16Þ

As is usual in the treatment of the relaxed

Saint-Venant’s problem, the pointwise assign-

ment of forces and couples on the end edges of

the shell is replaced by prescribing the appropri-

ate resultant forces and moments acting on these

boundaries. We impose the condition that the

resultant forces and resultant moments on the

end edges of the shell are vanishing. The shells

under consideration can be either open or closed

cylindrical surfaces. In the case of open cylindri-

cal shells, we impose that the lateral edges are

traction free, i.e., we consider the boundary con-

ditions t ¼ 0 and m ¼ 0 on the lateral edges. In

the special case when the reference cylindrical

surface S0 is open and flat, we deal with the

deformation of plates. Thus, our solution proce-

dure can be applied to cylindrical (open or

closed) shells, as well as to plates, as we will

show later on.

The cylindrical shell deforms under the action

of the temperature fields t1 and t2, which are

prescribed on the faces of the shell. In the case

when the temperature fields t1 and t2 are
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polynomials in the axial coordinate z, i.e., they
have the form taðs; zÞ ¼

Pn
k¼0 t

ðkÞ
a ðsÞ zk with tðkÞa

given functions of s, we can solve this thermal

stress problem by an analytical solution proce-

dure. First, we determine the solution for the

case when t1 and t2 are independent of the

axial coordinate. Then, we consider the more

general case when the given temperature fields

are polynomials in the axial coordinate (of

degree n), and we obtain a solution of our

thermoelastic equilibrium problem by the math-

ematical induction procedure with respect to the

degree n.

This method is similar to a classical procedure

from three-dimensional thermoelasticity theory

(see, e.g., [7]). In the framework of the theory of

Cosserat surfaces, this method is presented in the

section ▶Cylindrical Elastic Bodies with Direc-

tors, Thermal Stresses of this Encyclopedia of

Thermal Stresses. Within the theory of simple

thermoelastic shells, the solution procedure is

described in details in the paper [8].
Identification of the Constitutive
Coefficients

The analytical solution to the thermal stress prob-

lem allows us to determine the expression of the

effective stiffness coefficients and of the coupling

thermoelastic coefficients in terms of the three-

dimensional material parameters. The idea is to

compare the analytical solution obtained in the

theory of shells with the three-dimensional solu-

tion of the same problem and to identify the

corresponding quantities.

Layered Shells with Symmetrical Structure

For transversal isotropic shells with symmetric

distribution of layers, the structure of

thermoelastic constitutive tensors is given by

(8)1,2, so that they are expressed in terms of

only two coefficients: C4 and C6. We present

the expressions of the coefficients C4 and C6 in

two particular situations: three-layered shells and

homogeneous shells.

Let us consider first the simplest case, i.e., the

case of isotropic and homogeneous shells. We
denote byE the Young’s modulus, n the Poisson’s
ratio, m the shear modulus, a the coefficient of

linear expansion of the isotropic thermoelastic

material, and by 2 h the constant thickness of

the shell. The effective stiffness moduli

appearing in the constitutive equations are given

by [3, 9]
A11 ¼ Eh

1� n
; A12 ¼ 0; A22 ¼ A44 ¼ mh;

B13 ¼ Eh3n

3rð1� nÞ2 ; B14 ¼ � E h3

3rð1� nÞ ;

B41 ¼ E h3

6rð1þ nÞ ; B23 ¼ Eh3

3rð1� n2Þ ;

C11 ¼ h2

12r2
Eh3

3ð1þ nÞ ; C33 ¼ E h3

3ð1� nÞ ;

C22 ¼ C44 ¼ Eh3

3ð1þ nÞ ;

B24 ¼ B42 ¼ 0; C12 ¼ C34 ¼ 0;

G1 ¼ m hG0; G2 ¼ 0

ð17Þ

where G0 ¼ p2
12

stands for the shear correction

factor. By comparison of exact shell solutions

and three-dimensional solutions to thermal stress

problems, the following expressions of

thermoelastic coupling coefficients have been

determined in [8]:
C4 ¼ a
Eh

n� 1
; C6 ¼ a

Eh2

3ð1� nÞ ð18Þ

Let us consider now the more complex case of

three-layered shells with a symmetrical arrange-

ment of layers: the two exterior layers have the

same thickness h2, and they are made of the same

isotropic material, while the inner layer has the

thickness 2h1 and is made from a different isotro-

pic material. We denote by E1, n1, m1, and a1 the
Young’s modulus, Poisson’s ratio, shear modu-

lus, and coefficient of linear expansion of the

interior layer, respectively, and use the analogous

notations E2, n2, m2, and a2 for the exterior layers.
In this case, the effective stiffness moduli have

the form [3, 9]

http://dx.doi.org/10.1007/978-94-007-2739-7_772
http://dx.doi.org/10.1007/978-94-007-2739-7_772
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A11 ¼ E1h1
1� n1

þ E2h2
1� n2

;

A22 ¼ A44 ¼ E1h1
1þ n1

þ E2h2
1þ n2

; A12 ¼ 0;

C33 ¼ E1h
3
1

3ð1� n1Þ þ E2ðh3 � h31Þ
3ð1� n2Þ ;

C22 ¼ C44 ¼ E1h
3
1

3ð1þ n1Þ þ E2ðh3 � h31Þ
3ð1þ n2Þ ;

G2 ¼ 0; C11 ¼ C12 ¼ C34 ¼ 0;

Bkl ¼ 0 ð8 k; lÞ
ð19Þ

where h ¼ h1 þ h2. By comparison of solutions

to various thermal stress problems in the two

approaches (shell theory and three-dimensional),

the thermoelastic coupling coefficients C4 and C6

are determined in the form [8]

C4 ¼ a1
E1h1
n1 � 1

þ a2
E2h2
n2 � 1

C6 ¼ 1

3h
a1

E1h
3
1

1� n1
þ a2

E2ðh3 � h31Þ
1� n2

� � ð20Þ

The comparison between analytical solutions

based on formulas (18) and (20) and numerical

solutions obtained by finite element method

shows a very good agreement [8].
Two-Layered Nonsymmetric Flat Shells

In this section, we investigate the case of two-

layered thermoelastic flat shells and present in

details the determination of all thermoelastic

coupling coefficients.

Consider a flat shell (plate) with two layers of

thicknesses h1 and h2, composed of different iso-

tropic and homogeneous materials. We denote by

E1; n1; m1; a1 the thermoelastic material constants

for the first layer and E2; n2; m2; a2 for the second
layer. Let us establish the appropriate form of the

constitutive equations for two-layered

thermoelastic plates. For the elastic part, the

structure of the constitutive tensors is given by

(5), where the effective stiffness moduli are
A11 ¼ 1

2
�Cað1þ naÞ; A22 ¼ A44 ¼ 1

2
�Cað1� naÞ;

A12 ¼ 0; B14 ¼ B23 ¼ 0;

B13 ¼ 1

4
ðh1 �C1ð1þ n1Þ � h2 �C2ð1þ n2ÞÞ;

B41 ¼ B42 ¼ 0; C11 ¼ C12 ¼ 0;

B24 ¼ 1

4
ð�h1 �C1ð1� n1Þ þ h2 �C2ð1� n2ÞÞ;

C22 ¼ C44 ¼ 1

2
�Dað1� naÞ; C34 ¼ 0;

C33 ¼ 1

2
�Dað1þ naÞ;

G1 ¼ l20
3maha

1

4
ðm1h21 � m2h

2
2Þ

2 þ m1m2h1h2h
2

� �
;

G2 ¼ 0

ð21Þ
In (21), we have used the notations
�C1 ¼ E1h1
1� n21

; �C2 ¼ E2h2
1� n22

;

�D1 ¼ E1h
3
1

3ð1� n21Þ
; �D2 ¼ E2h

3
2

3ð1� n22Þ
;

h ¼ h1 þ h2

ð22Þ

and l0 is the smallest positive solution of the

equation m1 tanðl0h1Þ þ m2 tanðl0h2Þ ¼ 0:

The structure of the thermoelastic constitutive

tensors is given by (7), so they are expressed in

terms of four coupling coefficients C4;C5;C6,

and C7. Then, the constitutive equations (13)

reduce to the following form:
T1 ¼ Te
1 þ C4t1 þ C5t2;

T2 ¼ Te
2 þ C4t1 þ C5t2;

Te
1 ¼ ð �C1 þ �C2Þe1 þ ð �CanaÞe2

� 1

2
ð �C1h1 � �C2h2Þk1 � 1

2
ð �C1n1h1 � �C2n2h2Þk2;

Te
2 ¼ ð �CanaÞe1 þ ð �C1 þ �C2Þe2

� 1

2
ð �C1n1h1 � �C2n2h2Þk1 � 1

2
ð �C1h1 � �C2h2Þk2;

M1 ¼ Me
1 � C6t1 � C7t2;

M2 ¼ Me
2 � C6t1 � C7t2;

Me
1 ¼ ð �D1 þ �D2Þk1 þ ð �DanaÞk2

� 1

2
ð �C1h1 � �C2h2Þe1 � 1

2
ð �C1n1h1 � �C2n2h2Þe2;
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Me
2 ¼ ð �DanaÞk1 þ ð �D1 þ �D2Þk2

� 1

2
ð �C1n1h1 � �C2n2h2Þe1 � 1

2
ð �C1h1 � �C2h2Þe2;

T12 ¼ T21 ¼ �Cað1� naÞe12
M12 ¼ M21 ¼ 1

2
�Dað1� naÞðd1 þ d2Þ;

N1 ¼ m l20 g1; N2 ¼ m l20 g2;

m ¼ ðm1h21 � m2h
2
2Þ2 þ 4m1m2h1h2h

2

12ðm1h1 þ m2h2Þ
ð23Þ

In order to make the equations (23) useful in

applications, we need to express the coupling

coefficients C4;C5;C6;C7 in terms of the three-

dimensional parameters h1; h2;E1;E2; n1; n2;
a1; a2. This identification of constitutive coeffi-

cients will be done by comparison of solutions for

thermal stress problems.

The parametric equations of the plate are

given by (9) with x1ðsÞ ¼ 0; x2ðsÞ ¼ s� �s
2
;

s 2 ½0; �s�. Thus, the flat surface of the plate

occupies the region fðx1; x2; x3Þ j x1 ¼ 0;

x2 2 ð��s=2; �s=2Þ; x3 2 ð0; �zÞg. The equilibrium

equations (16) can be written as
Te
1;1 þ T21;2 ¼ �ðC4t1;1 þ C5t2;1Þ;

T12;1 þ Te
2;2 ¼ �ðC4t1;2 þ C5t2;2Þ;

N1;1 þ N2;2 ¼ 0;

Me
1;1 þM21;2 � N1 ¼ C6t1;1 þ C7t2;1;

M12;1 þMe
2;2 � N2 ¼ C6t1;2 þ C7t2;2

ð24Þ

The conditions t ¼ 0 andm ¼ 0 on the lateral

edges s ¼ 0; �s become
Te
1 ¼ �ðC4t1 þ C5t2Þ; T12 ¼ 0; N1 ¼ 0;

M12 ¼ 0; Me
1 ¼ C6t1 þ C7t2

ð25Þ

The condition that resultant forces and

moments vanish on the end edges reduces to
ð
C0

T21 dl ¼ 0;

ð
C0

N2 dl ¼ 0;ð
C0

Te
2 dl ¼ �

ð
C0
ðC4t1 þ C5t2Þdl;ð

C0
Me

2 dl ¼
ð
C0
ðC6t1 þ C7t2Þdl;ð

C0
x1T

e
2 dl ¼ �

ð
C0
x1ðC4t1 þ C5t2Þdl;ð

C0
ðx1N2 �M21Þdl ¼ 0

ð26Þ

Thus, the thermal stress problem for two-

layered flat shells consists in the (23), (24) and

the boundary conditions (25), (26).

Solution of Thermal Stress Problem

We present the closed-form solution in the case

when the temperature fields are arbitrary given

functions of the coordinate x2, i.e.,

t1 ¼ t1ðx2Þ; t2 ¼ t2ðx2Þ; x2 2 � �s

2
;
�s

2

� �
ð27Þ

Using the general procedure [8], we find the

following solution of the problem:
u1 ¼ 1

2
o2ðA1x

2
2 � x23Þ þ ðA1o3 þ A2o1Þx2

þ
ðx2
0

ðK1t1 þ K2t2Þdx2;

u2 ¼ x3ðo2x2 þ o3Þ; u3 ¼ � 1

6
B1o2 x

3
2

� 1

2
½o1x

2
3 þ ðB1o3 þ B2o1Þx22�

�
ðx2
0

ðx2
0

ðK3t1 þ K4t2Þdx2dx2;

’1 ¼
1

2
B1o2x

2
2 þ ðB1o3 þ B2o1Þx2

þ
ðx2
0

ðK3t1 þ K4t2Þdx2; ’2 ¼ o1 x3

ð28Þ

where the constants A1;B1;A2;B2 are determined

by the systems
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ð �C1 þ �C2ÞA1 þ 1

2
ð� �C1h1 þ �C2h2ÞB1

¼ �ð �C1n1 þ �C2n2Þ;
1

2
ð� �C1h1 þ �C2h2ÞA1 þ ð �D1 þ �D2ÞB1

¼ 1

2
ð �C1n1h1 � �C2n2h2Þ

ð29Þ

ð �C1 þ �C2ÞA2 þ 1

2
ð� �C1h1 þ �C2h2ÞB2

¼ 1

2
ð �C1n1h1 � �C2n2h2Þ

1

2
ð� �C1h1 þ �C2h2ÞA2 þ ð �D1 þ �D2ÞB2

¼ �ð �D1n1 þ �D2n2Þ

ð30Þ

and the coefficients K1; . . . ;K4 are given by
K1 ¼ 1

D
C6

2
ð �C1h1 � �C2h2Þ � C4ð �D1 þ �D2Þ

� �
;

K2 ¼ 1

D
C7

2
ð �C1h1 � �C2h2Þ � C5ð �D1 þ �D2Þ

� �
;

K3 ¼ 1

D
C6ð �C1 þ �C2Þ � C4

2
ð �C1h1 � �C2h2Þ

� �
;

K4 ¼ 1

D
C7ð �C1 þ �C2Þ � C5

2
ð �C1h1 � �C2h2Þ

� �
;

D ¼ ð �C1 þ �C2Þð �D1 þ �D2Þ � 1

4
ð �C1h1 � �C2h2Þ2

In (28), the constantsoi are expressed in terms

of the thermal loads by
D22 o2 ¼ ½ �C1ð1� n1Þ þ �C2ð1� n2Þ�

�
ð�s=2
��s=2

x2ðK1t1 þ K2t2Þdx2

� 1

2
½ �C1h1ð1� n1Þ � �C2h2ð1� n2Þ�

�
ð�s=2
��s=2

x2ðK3t1 þ K4t2Þdx2;

D11 o1 þ D13 o3 ¼ ½ �D1ð1� n1Þ þ �D2ð1� n2Þ�

�
ð�s=2
��s=2

ðK3t1 þ K4t2Þdx2

� 1

2
½ �C1h1ð1� n1Þ � �C2h2ð1� n2Þ�

�
ð�s=2
��s=2

ðK1t1 þ K2t2Þdx2;
D31 o1 þ D33 o3 ¼ ½ �C1ð1� n1Þ þ �C2ð1� n2Þ�

�
ð�s=2
��s=2

ðK1t1 þ K2t2Þdx2

� 1

2
½ �C1h1ð1� n1Þ � �C2h2ð1� n2Þ�

�
ð�s=2
��s=2

ðK3t1 þ K4t2Þdx2

ð31Þ

where the coefficients Drk for two-layered flat

shells are
D11 ¼ �s

"
ð �D1 þ �D2Þ þ 1

2
ð� �C1n1h1 þ �C2n2h2ÞA2

þð �DanaÞB2

#

D22 ¼ �s3

12

"
ð �C1 þ �C2Þ þ ð �CanaÞA1

þ 1

2
ð� �C1n1h1 þ �C2n2h2ÞB1

#

D33 ¼ �s

"
ð �C1 þ �C2Þ þ ð �CanaÞA1

þ 1

2
ð� �C1n1h1 þ �C2n2h2ÞB1

#

D13 ¼ �s

"
1

2
ð� �C1h1 þ �C2h2Þ

þ 1

2
ð� �C1n1h1 þ �C2n2h2ÞA1 þ ð �DanaÞB1

#

D31 ¼ �s

"
1

2
ð� �C1h1 þ �C2h2Þ þ ð �CanaÞA2

þ 1

2
ð� �C1n1h1 þ �C2n2h2ÞB2

#

The solution is determined up to a rigid body

displacement–rotation field of the shell.

Let us consider also the special case when the

given temperature fields t1 and t2 in (27) are

constants. In this situation, the solution (28)

reduces to
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u1 ¼ o3x2; u2 ¼ o3x3; u3 ¼ �o1

2
ðx22 þ x23Þ;

’1 ¼ o1x2; ’2 ¼ o1x3

ð32Þ

where o1 and o3 are specified by the system
½ �C1ð1þ n1Þþ �C2ð1þ n2Þ�o3�1

2
½ �C1h1ð1þ n1Þ

� �C2h2ð1þ n2Þ�o1¼�ðC4t1þC5t2Þ;
�1

2
½ �C1h1ð1þ n1Þ� �C2h2ð1þ n2Þ�o3

þ½ �D1ð1þ n1Þþ �D2ð1þ n2Þ�o1 ¼C6t1þC7t2

ð33Þ

To identify the coupling constitutive coeffi-

cients C4; . . . ;C7, let us solve now the

corresponding thermal stress problem for three-

dimensional plates. Consider a layered plate

which occupies the domain f ðx�1; x�2; x�3Þ;
x�1 2 ð�h1; h2Þ; x�2 2 ð��s=2; �s=2Þ; x�3 2 ð0; �zÞ g,
where the first layer corresponds to

x�1 2 ð�h1; 0Þ and the second layer to

x�1 2 ð0; h2Þ. We determine the deformation of

this plate under a temperature field Twhich varies

linearly in the thickness direction, i.e.,

Tðx�1Þ ¼ Tð0Þ þ x�1 Tð1Þ ðTð0Þ; Tð1Þ const:Þ.
This three-dimensional problem corresponds

to the shell problem treated above and admits the

following analytical solution:
u�2 ¼ ðax�1 þ bÞ x�2; u�3 ¼ ðax�1 þ bÞ x�3;

u�1 ¼

� a

2
ðx�22 þ x�23 Þ þ 1

2
G2 x

�2
1 þ g2 x

�
1

for x�1 2 ð0; h2Þ

� a

2
ðx�22 þ x�23 Þ þ 1

2
G1 x

�2
1 þ g1 x

�
1

for x�1 2 ð�h1; 0Þ

8>>>>>>>><>>>>>>>>:
ð34Þ

where a; b;Gg, and gg are constants given by
½ �C1ð1þ n1Þþ �C2ð1þ n2Þ�b�1

2
½ �C1h1ð1þ n1Þ

� �C2h2ð1þ n2Þ�a3¼ ½a1 �C1ð1þ n1Þþa2 �C2ð1þ n2Þ�Tð0Þ
�1

2
½a1 �C1h1ð1þ n1Þ�a2 �C2h2ð1þ n2Þ�Tð1Þ;

�1

2
½ �C1h1ð1þ n1Þ� �C2h2ð1þ n2Þ�b

þ½ �D1ð1þ n1Þþ �D2ð1þ n2Þ�a
¼ ½a1 �D1ð1þ n1Þþa2 �D2ð1þ n2Þ�Tð1Þ
�1

2
½a1 �C1h1ð1þ n1Þ�a2 �C2h2ð1þ n2Þ�Tð0Þ

ð35Þ

and
Gg ¼ ag
1þ ng
1� ng

Tð1Þ � 2ng
1� ng

a;

gg ¼ ag
1þ ng
1� ng

Tð0Þ � 2ng
1� ng

b; g ¼ 1; 2

ð36Þ

To make the comparison between the three-

dimensional solution u� ¼ u�i ei in (34)–(36) and

the displacement–rotation field ðu;wÞ given by

(32) and (33), we need to use the correspondence

formulas
u ¼ 1

h
1þ 3ðh1 � h2Þ2

h2

 !ðh2
�h1

u�dx�1

þ 6ðh1 � h2Þ
h3

ðh2
�h1

x�1u
�dx�1;

w ¼ 12

h3

ðh2
�h1

x�1ðu�2e3 � u�3e2Þdx�1

þ 6ðh1 � h2Þ
h3

ðh2
�h1

ðu�2e3 � u�3e2Þdx�1

ð37Þ

The relations between the thermal fields t1 and
t2 and the temperature T are given by
t1 ¼ Tð0Þ þ h2Tð1Þ; t2 ¼ Tð0Þ � h1Tð1Þ
ð38Þ

By virtue of relations (37) and (38), we obtain

that the two solutions (32) and (34) coincide if
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ments for the points P1; . . . ;P4 of the shell, computed in the two approaches: analytical (Theor.) and numerical (FEM)

Coordinates u1 (mm) u2 (mm) u3 (mm)

Point x2 (mm) x3 (mm) Theor. FEM Theor. FEM Theor. FEM

P1 47.5 0 0.0020 0.0020 0 0 0.41982 0.41982

P2 23.75 100 0.0010 0.0010 0.00421 0.00421 1.96565 1.96565

P3 0 150 0 0 0.00632 0.00632 4.18657 4.18657

P4 47.5 210 0.0020 0.0020 0.00884 0.00884 8.62549 8.62549
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and only if the constitutive coefficients are

expressed by

U, U3

8.62549
7.90670
7.18791
6.46912
5.75033
5.03154
4.31275
3.59396
2.87516
2.15637
1.43758
0.71879
0.00000

X1 X2

X3

Cylindrical Orthotropic Thermoelastic Shells
Modeled by Direct Approach, Fig. 1 The deformed

shell and the distribution of transversal displacements

(U3)
C4 ¼ �a2
E2h2
1� n2

� 1

2h
a1

E1h
2
1

1� n1
� a2

E2h
2
2

1� n2

� �
C5 ¼ �a1

E1h1
1� n1

þ 1

2h
a1

E1h
2
1

1� n1
� a2

E2h
2
2

1� n2

� �
C6 ¼ a2

E2h
2
2

3ð1� n2Þ �
h1
6h

a1
E1h

2
1

1� n1
� a2

E2h
2
2

1� n2

� �
C7 ¼ �a1

E1h
2
1

3ð1� n1Þ �
h2
6h

a1
E1h

2
1

1� n1
� a2

E2h
2
2

1� n2

� �
ð39Þ

Thus, all thermoelastic constitutive coeffi-

cients have been determined.

Comparison Between Analytical and

Numerical Solutions

In order to verify the formulas (39), we compare

the theoretical solutions with numerical results

obtained by the finite element method. Consider

a rectangular two-layered flat shell as described in

the previous section, whose surface occupies the

region fðx1; x2; x3Þ j x1 ¼ 0; x2 2 ð��s=2; �s=2Þ;
x3 2 ð0; �zÞg. The dimensions of the rectangular

plate are the length �z ¼ 210 mm and the width

�s ¼ 95 mm. The first layer has thickness

h1 ¼ 2 mm and is made of carbon steel 1 %,

with material parameters E1 ¼ 205 GPa,

n1 ¼ 0:3, and a1 ¼ 1:3 � 10�5 K�1. The second

layer is a wrought aluminum alloy 1,060 of

thickness h2 ¼ 0:5 mm and material parameters

E2 ¼ 69 GPa, n2 ¼ 0:33, and

a2 ¼ 2:35 � 10�5 K�1. The plate is deformed due

to the difference of temperature applied to its

surfaces: the temperature on the top surface
(x�1 ¼ h2) is t1 ¼ �10� C, while the temperature

on the bottom surface (x�1 ¼ �h1) is t2¼ 60� C.
The theoretical solution of the problem is given

by relations (32), where the coupling coefficients

C4; . . . ;C7 are expressed by (39). We observe that

the displacements in thickness direction (i.e., the

transversal displacements u3) are of order 1 mm,
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while the in-plane displacements u1 (in width

direction) and u2 (in length direction) are of order

10�3 mm (see Table 1). We compare the values of

ui with the numerical results obtained by a finite

element analysis with ABAQUS. We employ

a shell model with elements of type S4T (a 4-

node thermally coupled doubly curved general-

purpose shell) and the section Composite from

ABAQUS. The number of elements is 55,300.

Since the analytical solution is determined up to

a rigid body displacement field, we fix this rigid

body field by considering in the numerical model-

ing some boundary conditions corresponding to the

solution (32). The values of displacements ui are
recorded at the surface of separation between

layers, in the numerical approach. The deformed

shell and the distribution of transversal displace-

ments u3 are represented in Fig. 1.

For comparison of results, we choose four

different points P1; . . . ;P4 distributed in the sur-

face of the flat shell, whose coordinates ðx2; x3Þ
are presented in Table 1.We observe fromTable 1

that the theoretical and numerical values for the

displacements ui coincide.

Figure 2 presents the comparison of the

two solutions for u3 along the straight line ‘

characterized by the constant coordinate

x2 ¼ 23:75 mm and the variable coordinate x3
from 0 to 210 mm. We can see that the
agreement is very good all along the path ‘.

The very close agreement between analytical

and numerical results indicates that the formulas

for the coupling coefficients (39) are appropri-

ate, and they can be used to treat thermoelastic

shell problems.
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7. Ieşan D (2004) Thermoelastic models of continua.

Kluwer Academic, Dordrecht/Boston/London

8. Bı̂rsan M, Sadowski T, Pietras D (2013) Thermoelastic

deformations of cylindrical multi-layered shells using

a direct approach. J Therm Stress (2013) DOI: 10.1080/

01495739.2013.764802

9. Bı̂rsan M, Altenbach H (2011) Analysis of the defor-

mation of multi-layered orthotropic cylindrical elastic

shells using the direct approach. In: Altenbach H,

Eremeyev VA (eds) Shell-like structures, vol 15,

Advanced structured materials. Springer,

Berlin/Heidelberg, pp 29–52
Cylindrical Shell

▶Dynamic Stability of Electroconductive Cylin-

drical Shells in Magnetic Field
▶Thermal Buckling and Dynamic Post-Buckling

Analysis of Piezoelectric FGM Hybrid Cylindrical

Shells

▶Vibrations of Electroconductive Cylindrical

Shells in a Magnetic Field
Cylindrical Surface, Cosserat Shell

▶Cylindrical Elastic Bodies with Directors,

Thermal Stresses
Cylindrical Thermoelastic Shells

▶Cylindrical Orthotropic Thermoelastic Shells

Modeled by Direct Approach

http://dx.doi.org/10.1007/978-94-007-2739-7_295
http://dx.doi.org/10.1007/978-94-007-2739-7_295
http://dx.doi.org/10.1007/978-94-007-2739-7_980
http://dx.doi.org/10.1007/978-94-007-2739-7_980
http://dx.doi.org/10.1007/978-94-007-2739-7_980
http://dx.doi.org/10.1007/978-94-007-2739-7_301
http://dx.doi.org/10.1007/978-94-007-2739-7_301
http://dx.doi.org/10.1007/978-94-007-2739-7_772
http://dx.doi.org/10.1007/978-94-007-2739-7_772
http://dx.doi.org/10.1007/978-94-007-2739-7_993
http://dx.doi.org/10.1007/978-94-007-2739-7_993

	C
	C- and F-Processes Model and Dynamic Thermoelasticity
	Overview
	Introduction
	The C-Processes and F-Processes Model for Heat Conduction
	Derivation of the C- and F-Processes Model Via the Boltzmann Transport Equation
	Fourier Model: Derivation
	Cattaneo Model: Derivation
	The C- and F-Processes Model: Derivation

	One Temperature Equation for Heat Conduction in Solids

	The C- and F-Processes-Based Generalized Dynamic Thermoelasticity
	Concluding Remarks

	Acknowledgment
	References

	C- and F-Processes Model: A Generalized Approach to Solving Transient Diffusive, Wavelike a
	Overview
	Model Development
	Numerical Formulation in Space
	Numerical Formulation in Time: The i Integration Framework
	Numerical Results
	Case 1
	Case 2
	Case 3

	Concluding Remarks
	References

	Calculated Temperature Profile
	Canonical Formulation of ``Nondissipative Thermoelasticity´´ (with Application to Thermoelastic Fracture)
	Overview
	Field Equations and Conservation Equations
	The Problem of Thermoelastic Fracture Revisited
	Recovery of Classical Thermoelasticity
	References

	Canonical Formulation of Thermoelasticity
	Overview
	Cauchy Format of the Basic Equations of Thermoelasticity in Finite Strains
	Piola-Kirchhoff Format of the Local Balance Laws of Thermomechanics
	General Thermomechanical Theorems
	Thermoelastic Conductors: Standard Theory
	Canonical ``Eshelby´´ Format of the Basic Equations of Thermoelasticity in Finite Strains
	References

	Carbon Fiber
	Cayley-Hamilton Theorem
	Cellular Undulation
	Cesàro Means
	Characteristic Method of Thermal Stresses
	Synonyms
	Overview
	One-Dimensional Problem
	Generalized Theory of Thermoelasticity
	Characteristics and Characteristic Equations
	Difference Equations and Numerical Procedure
	Classical Uncoupled Theory of Thermoelasticity
	Materials with Temperature-Dependent Properties

	Two-Dimensional Problem
	Generalized Theory of Thermoelasticity
	Characteristics and Characteristic Equations
	Difference Equations and Numerical Procedure

	Future Directions for Research
	References

	Charge-Free Zone Model
	Chiral
	Circular Plates, Statical Problems
	Overview
	Governing Equations
	Axisymmetric Bending
	Non-axisymmetric Bending
	Cross-References
	References

	Circular/Annular Plates, Thermal Buckling
	Overview
	Basic Assumptions
	Analysis
	Governing Equations
	Prebuckling of Axisymmetric Thermal Load
	Solution of Stability Equations

	Conclusions
	References

	Classic and Generalized Thermoelastic Diffusion Theories
	Overview
	Classic Thermoelastic Diffusion Theory
	Generalized Thermoelastic Diffusion Theory
	Lord and Shulman Model
	Green and Lindsay Model

	Classic Micropolar Thermoelastic Diffusion Theory
	Generalized Micropolar Thermoelastic Diffusion Theory
	Classic Thermoelastic Theory with Voids
	Generalized Thermoelastic Diffusion Theory with Voids
	Thermoelastic Diffusion Mixture Theory
	References

	Classical Coupled Thermoelasticity in Unbounded Domains
	Synonyms
	Overview
	The System of Linear Thermoelastodynamics
	The Hyperbolicity Condition and a Sharp Function Class
	The Work and Energy Theorem
	Uniqueness, Graffi´s Reciprocity Relation, and Time Decay of the Temperature Difference
	Saint-Venant´s Generalized Principle
	References

	Classical Governing Equations for the Thermomechanical Analysis of Shells
	Synonyms
	Definition
	Overview
	Basic Methodology
	Classical Two-Dimensional Models and Geometrical Relations
	Constitutive Equations
	Governing Equations

	Some Results
	Conclusions
	Cross References
	References

	Classical Thermodynamics
	Overview
	Definition and Main Concepts
	Thermodynamic States and Processes
	Laws of Thermodynamics
	Special Thermodynamic Processes
	Conjugate Variables
	Thermodynamic Potentials
	References

	Classical Thermoelasticity
	Classical Thermomechanical Models: Numerical Formulations
	Overview
	Introduction
	Classical Dynamic Thermoelasticity Equations
	Classical Dynamic Thermoelasticity Model Equations
	Coupled
	Uncoupled

	Quasi-Static Representations
	Coupled
	Uncoupled

	Static Representations
	Coupled
	Uncoupled

	Boundary and Initial Conditions
	Thermal
	Mechanical


	Finite Element Discretization
	Classical Models
	Semidiscretized Equations
	Static Representations

	Computational Aspects in Thermomechanical Problems
	Overview: Computational Algorithms
	Computational Algorithms: First-Order Systems
	Computational Algorithms: Second-Order Systems
	Newmark Family of Methods
	gammas-Family of Direct Self-Starting Methods
	More Recent and Current State-of-the-Art Methods


	Concluding Remarks
	References

	Classical Thermomechanical Models: Theoretical Formulations
	Overview
	Introduction
	Preliminaries
	Conservation of Mass
	Conservation of Linear Momentum
	Conservation of Energy

	Classical Dynamic Thermoelasticity Equations
	Linear Thermoelasticity Approximations
	Classical Dynamic Thermoelasticity Equations
	Quasi-Static Representations
	Static Representations
	Boundary and Initial Conditions


	Concluding Remarks
	References

	Classical Two-Dimensional Models
	Clutches
	Clutches, Hot Spotting Behavior
	Synonyms
	Overview
	Friction Clutches, Function, and Modes of Operation
	Types and Design of Friction Clutches
	Heat Generation in Friction Clutches
	Hot Spotting Engineering Perspective
	Mechanisms of Spotting
	Model-Based Hot Spotting Analysis
	Key Findings
	Mitigation of Hot Spotting
	Stability of the Sliding System
	Exposure of the System to Operation in the Unstable Regime
	Excitation of Unstable Mode(s)

	References

	Column Grid Array Assembly Under Thermal Cycling Stress
	Overview
	Single-Chip Packaging Trends
	CGAs/PBGAs (Up to 1000 I/Os) Under Thermal Cycling Conditions
	Overview on Evaluation of CGA560/PBGA560/CGA717/PBGA728
	CGA560/CGA717 Assemblies After Thermal Cycling
	CGA560 and Effect of Solder Volume Under Thermal Cycling Stress
	CGA560/PBGA560 with Corner Staking Under Thermal Cycling Stress
	CGA717 Damage Progress Due to Thermal Cycling Stress-Optics/SEM

	CGA560/CGA717 and Projection of Thermal Cycles to Failure

	LGA/CGAs (Up to 1517 I/Os) Under Thermal Cycling Condition
	Evaluation of CGA1144 and LGA/CGA1517
	CGA1144 Assemblies After Thermal Cycling Stress Test
	CGA717/CGA1144 X-Sectional Verification

	References

	Complex Variable Analysis
	Complex Variable Method
	Composite
	Composite Structures
	Computational Methods
	Computational Methods in Stationary and Nonstationary Thermal-Plasticity Problems
	Synonyms
	Overview
	Introduction
	Statement of TEPT Problems
	The Equations of Motion and Geometrical Relations for Three-Dimensional Bodies in Orthogonal Coordinate Systems
	The Governing Relations of TEPT
	The Theory of Small Elastic-Plastic Deformations
	Relations of the Theory of Small-Curvature Processes
	Methods for Solution of the Stationary Problems
	The Methods for Solution of Nonstationary Problems
	Conclusions
	References

	Computational Welding Mechanics
	Definition
	Overview
	Constituents of Computational Welding Mechanics
	Decoupling of the Subdomains of Welding Simulations
	Example
	Simulation Strategy
	Welding Case Study
	Welding and Material Properties
	Geometry and Preprocessing
	CWM Results
	The Future of CWM
	Cross-References
	References

	Computer Simulation
	Concentrated Loading
	Conditions of Compatibility
	Conduction Shape Factors
	Conformal Mapping Technique
	Conservation of Energy
	Constitutive and Geometrical Equations for the Thermomechanical Analysis of Shells
	Synonyms
	Definition
	Overview
	Basic Methodology
	Constitutive Equations
	Geometrical Relations
	Possible Applications and Extensions
	Cross-References
	References

	Constitutive Equation for Linear Viscoelastic Materials with Temperature-Dependent Properties
	Overview
	Isothermal Linear Viscoelasticity
	Thermally Induced Dimensional Changes
	Mechanical Response at Different Temperatures
	Comments on Time-Temperature Superposition
	Influence of Temperature on Material Properties
	Extension to Time-Varying Temperature Histories
	Constitutive Equation for Time-Varying Temperature Histories
	Applications
	References

	Constitutive Models, Physically Based Models for Plasticity
	Synonyms
	Definition
	Overview
	Dislocation Density-Based Flow Stress Model
	Additional Contributions to the Flow Stress
	Thermally Activated Deformation Processes
	Solution and Precipitation Hardening
	Dislocation Evolution
	Dislocation Generation
	Dislocation Recovery/Annihilation
	Point Defects (Vacancies, Solute Atoms)

	Recrystallization
	Phase Mixtures
	Final Remarks
	Cross-References
	References

	Contact Boundary Conditions
	Overview
	Introduction
	Perfect Thermal Contact
	Existence and Uniqueness
	Pressure-Dependent Contact Resistance
	Boundary Value Problems
	Perfect Contact
	Imperfect Contact
	Separation


	References

	Contact Conductance Per Unit Area
	Contact Fourier Problem
	Contact Resistance
	Contact Stresses in an Infinite Plate with a Rigid Circular Inclusion
	Overview
	Problem Statement
	Singular Integrodifferential Equation
	Auxiliary Constraint Condition
	Approximate Solutions
	Results and Discussion
	Concluding Remarks
	Appendix
	Derivation of (12)
	Derivation of (27)

	References

	Contact Zone
	Contact Zone Model for an Interface Crack in a Piezoelectric Bimaterial Under Thermoelectromechanical Loadings
	Synonyms
	Overview
	Definition
	Basic Relations for a Thermopiezoelectric Solid
	A Bimaterial Thermopiezoelectric Space with Mixed Conditions at the Interface
	A Crack with a Contact Zone at the Material Interface
	References

	Continuous Data Dependence in Linear Theories of Thermoelastodynamics. Part I: Classical Theories. Basics and Logarithmic Conv
	Overview
	Basic Initial Boundary Value Problems
	Existence of Solutions
	Logarithmic Convexity Arguments
	Introduction
	Dependence on Initial Data
	First Treatment
	Second Treatment

	Continuous Dependence upon Other Data
	Source Terms and Heat Coupling Tensor
	Boundary Data
	Other Data
	Nonexistence


	Notation
	References

	Continuous Data Dependence in Linear Theories of Thermoelastodynamics. Part II: Classical Theories, Lagrange Identity Methods,
	Overview
	Lagrange Identities
	Uniqueness
	Continuous Dependence on Source Terms and Related Data
	Dependence Upon Initial Geometry
	Exterior Unbounded Regions: The Half-Space
	Backward in Time
	Nonlocalization of Energy
	Sign-Definite Assumptions
	Linear Thermoelasticity
	Backward in Time
	Notation
	Acknowledgments
	References

	Continuous Data Dependence in Linear Theories of Thermoelastodynamics. Part III: Nonclassical Theories
	Overview
	Scope of Part III
	Logarithmic Convexity
	Type II
	Type III

	Lagrange Identities
	Sign-Definite Assumptions
	Backward in Time
	Notation
	Acknowledgement
	References

	Continuous Dependence
	Continuous Dependence on Constitutive Quantities
	Continuous Dependence Results
	Synonyms
	Overview
	Basic Formulation
	Preliminary Results
	Stability of Smooth Admissible States
	References

	Control of Crack Propagation
	Overview
	Mechanics of Crack Growth Under Thermal Stress Induced by Point Heating
	Point Heat Source in a Rectangular Plate
	Thermoelastic Fields in a Rectangular Plate
	Some Numerical Results
	SIF by Circular Heating
	SIF Under Line Heating


	References

	Control of Thermal Residual Stresses
	Overview
	Calculation of Thermal Stresses in a Layered Structure
	Designing Laminates to Enhance Apparent Fracture Toughness
	Examples of Control of Thermal Residual Stresses in Laminates
	Silicon-Nitride-Based Laminates
	Boron-Carbide-Based Laminates

	Possible Effect of Uncontrolled Thermal Stresses
	References

	Cosserat Surfaces
	Coupled and Generalized Thermoviscoelasticity
	Synonyms
	Definition
	Overview
	Governing Equations of the Linear Coupled Thermoviscoelasticity
	Basic Assumptions (Thermoviscoelastic State)
	The Generalized Thermoviscoelasticity Theories
	Cross-References
	Appendix
	References

	Coupled Displacement Fields
	Coupled Dynamic Micropolar Problems of Thermoelasticity: Stress-Temperature Equations of Motion of Ignaczak Type
	Overview
	Notations
	Basic Equations of the E-N Model: The 3D Problem
	Stress-Temperature Equations of Motion for the 3D Problem
	A Singular Solution of STEMP for an Infinite 3D Space
	STEMP for a Plane State of Strain: The 2D Problem
	Cross-References
	References

	Coupled Generalized Thermoelasticity of Functionally Graded Materials
	Synonyms
	Overview
	Basic Equations for Functionally Graded Material
	Strain-Displacement Relations
	Stress-Strain Temperature Relations
	Law of Heat Conduction
	Energy Equation
	Heat Equation
	Equations of Motion

	Application to a Problem
	Periodically Varying Heat Source

	Numerical Results and Discussion
	References

	Coupled Problem of Thermoelasticity: Solution in a Series of Functions Form
	Overview
	Coupled Thermoelasticity
	Coupled Thermoelasticity Problem for an Infinite Body
	Cross-References
	References

	Coupled Thermoelasticity
	Coupled Thermoelasticity of Shells
	Coupled Thermoelectroelasticity in Extended Thermodynamics
	Synonyms
	Overview
	Notation and Kinematics
	Equations for the Electric Field
	Equations of Motion
	Equation of Heat Conduction
	Clausius-Duhem Inequality
	Constitutive Relations
	Cattaneo-Type Evolution Equation for the Heat Flux
	Conclusions
	References

	Coupling Constitutive Coefficients
	Coupling of Electromechanical and Temperature Fields Under Monoharmonic Electrical and Mechanical Loading
	Coupling of Mechanical and Temperature Fields Under Harmonic Loading
	CPLPS
	Cr3+ Fluorescence Spectroscopy
	Cr3+ Photoluminescence Piezo-spectroscopy
	Crack
	Crack Closure
	Synonyms
	Definitions
	Overview
	Contact Between Two Crack Faces
	Contact State
	Incremental Solution
	References

	Crack Detection/Arrest with Joule Heating
	Synonyms
	Definitions
	Overview
	Basic Methodology
	Fundamental Equations
	Coupled-Field Analysis
	Temperature-Dependent Material Constants
	Crack Contact
	Electric Current Density Factor
	Finite Element Model
	Validation of Finite Element Model by ECDF
	Case Study I: Crack Detection
	Case Study II: Crack Arrest

	References

	Crack Surface Interference
	Crack Surfaces Contact
	Cracks in Transversely Isotropic and Inhomogeneous Elastic Solids
	Synonyms
	Overview
	Governing Equations
	The BEM for a Cracked Matrix with a Single Inhomogeneity
	General Inhomogeneity Problems with Multiple Cracks
	Three-step Multi-domain BEM
	Subregion-by-subregion with Krylov Solver
	Fast Multipole BEM

	Future Directions for Research
	Acknowledgment
	References

	Crack-Tip Singular Fields in Functionally Graded Materials
	Overview
	Introduction
	Thermoelasticity and Thermoplasticity Equations of FGMs
	Heat Conduction
	Thermoelasticity
	Thermoplasticity

	Temperature and Heat Flux Fields near a Crack Tip
	Crack-Tip Fields in Thermoelastic FGMs
	Crack-Tip Fields in Thermoelastic-Plastic FGMs
	References

	Creep Analysis
	Overview
	Creep and Relaxation Curves
	Creep Mechanisms
	Constitutive Models of Creep
	Uniaxial Model of Creep Strain Evolution
	Multiaxial Model of Creep Strain Evolution

	Applications
	Application 1: Unixial Creep Relaxation in Bars
	Application 2: Mutliaxial Creep in Thin-Walled Tubes
	Application 3: Creep Relaxation in Beams

	Conclusions
	References

	Creep Buckling
	Creep Crack Growth
	Synonyms
	Overview
	Proposed Failure Criterion
	Problem Description
	Numerical Analysis
	Results and Discussion
	Conclusions
	Acknowledgments
	References

	Creep Ratcheting
	Creep Theory
	Critical Flow Velocity
	Critical Speed
	Critical Temperature Difference
	Cryogenic Condition, Damage In
	Synonyms
	Definition
	Overview
	Conditions of Plastic Flow and Damage Evolution

	Basic Methodology
	Thermodynamic Background of Low-Temperature Plasticity
	Thermodynamic Instability at Very Low Temperatures
	Kinetics of the Plastic Strain-Induced Phenomena at Cryogenic Temperatures
	Kinetics of Discontinuous (Serrated) Yielding (Domain I)
	Kinetics of Phase Transformation (Domain II)
	Kinetics of Micro-damage Evolution (Domains I, II, and III)

	Damage in Structures Operating at Cryogenic Temperatures

	Key Research Findings
	Cross-References
	References

	Cryogenic Conditions, Cryogenic Temperatures
	Curvilinear Cracks
	Synonyms
	Overview
	Statement of the Problem
	Thermal Stresses
	Semicircular Crack
	Conclusions
	References

	Cyclic Loading of Secondary Stresses
	Cyclic Loading of Strain-Controlled Stresses
	Cylinder
	Cylindrical Elastic Bodies with Directors, Thermal Stresses
	Synonyms
	Overview
	Introduction
	Basic Equations and Formulation of the Problem
	Solution of the Thermal Stresses Problem
	Temperature Distribution Depending on the Circumferential Coordinate
	Temperature Distribution Depending on the Axial Coordinate

	Thermal Stresses in Thin-Walled Tubes
	Cross-References
	References

	Cylindrical Orthotropic Thermoelastic Shells Modeled by Direct Approach
	Synonyms
	Overview
	Introduction
	General Equations for Thermoelastic Shells
	Deformation of Cylindrical Shells Under Given Temperature Fields
	Identification of the Constitutive Coefficients
	Layered Shells with Symmetrical Structure

	Two-Layered Nonsymmetric Flat Shells
	Solution of Thermal Stress Problem
	Comparison Between Analytical and Numerical Solutions
	Acknowledgments
	References


	Cylindrical Shell
	Cylindrical Surface, Cosserat Shell
	Cylindrical Thermoelastic Shells


