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Overview

We define a backward in time problem as

a boundary–final value problem associated with

the linear theory of thermoelasticity. The final data

are given at t ¼ 0, and we are interested in extrap-

olating to previous times. It is like we see a movie

from the end to the beginning, but it is a problem;

we can imagine different beginnings for the same

end. It is well known that this type of problem is ill

posed (it fails to have a global solution, or it fails to

have a unique solution, or the solution does not

depend continuously on the data). In order to sta-

bilize such kind of problems, many different tech-

niques have been developed in literature such of

those of “solving” ill–posed problems for equa-

tions of evolution. Some of these involve the alter-

ing of governing equations in such a way as to

make such problems well posed. Others involve

changing the initial and/or boundary conditions

again in such way as to make the problems well

posed. Still others involve constraining solutions

to lie in a certain constraint set.

This class of problems was studied by Ames

and Payne [1] who derived stabilizing criteria for
R.B. Hetnarski (ed.), Encyclopedia of Thermal Stresses, DO
# Springer Science+Business Media Dordrecht 2014
solutions of the Cauchy problem for the standard

equations of dynamical linear thermoelasticity

backward in time. They also obtained inequalities

establishing continuous dependence on the cou-

pling parameter that links the elastic displace-

ment field and the temperature field.

This type of problems has been initially con-

sidered by Serrin [2] who established uniqueness

results for the Navier–Stokes equations backward

in time. Explicit uniqueness and stability criteria

for the classical Navier–Stokes equations

backward in time were obtained by Knops and

Payne [3] and Galdi and Straughan [4]. For an

overview of improperly posed problems, the

reader may look in the important study made by

Ames and Straughan [5].

A study of uniqueness and continuous

dependence upon mild requirements concerning

the thermoelastic coefficients for the solution of

the boundary–value problems associated with the

linear theory of thermoelasticity has been made

by Ciarletta [6]. These results have been extended

for the theory of thermo-microstretch elastic

materials by Bulgariu [7]. The spatial behavior

of the thermoelastic process backward in time has

been studied by Ciarletta and Chiriţă [8]. A time-

weighted volumemeasure is used for establishing

a first-order partial differential inequality

which implies the spatial estimate describing the

spatial exponential decay of the thermoelastic

process backward in time. The asymptotic parti-

tion of energy for the thermoelastic process back-

ward in time was obtained by Ciarletta and

Chiriţă [9].
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The main purpose of this chapter is to present

the backward in time problems associated with

the linear theory of thermoelasticity. Firstly, we

transform the boundary–final value problem on

the time interval ð�t0; 0� into a boundary–initial

value problem on ½0; t0Þ, using the change of

variable t ⇝ �t. Then we study the uniqueness,

continuous dependence of the solutions of

the boundary–final value problem with respect to

the final data and establish some energy estimates.
The Boundary–Final Value Problem

We suppose thatB is a bodymade by an anisotropic

and inhomogeneous thermoelastic material. We

consider the boundary–final value problem associ-

ated with the linear theory of thermoelasticity on

the time interval ð�t0; 0�, t0 > 0 may be infinity.

The fundamental system of field equations consists

of the strain–displacement relation

eij ¼ 1

2
ðui;j þ uj;iÞ ð1Þ

the constitutive equations

sij ¼ Cijklekl �Mijy ð2Þ

qi ¼ �kijy;j ð3Þ

in B� ð�t0; 0�, the equations of motion
sji;j þ rbi ¼ r€ui ð4Þ

and energy equation
�qi;i � T0Mij _eij þ rr ¼ c _y ð5Þ

in B� ð�t0; 0�, where r is the density mass. Con-

stitutive equations satisfy the symmetry relations:

Cijkl ¼ Cklij ¼ Cjikl; Mij ¼ Mji;
kij ¼ kji

ð6Þ

The boundary–final value problem ðPÞ is

defined by relations (1)–(5)with the final conditions
uiðx; 0Þ ¼ u0i ðxÞ; _uiðx; 0Þ ¼ _u0i ðxÞ
yðx; 0Þ ¼ y0ðxÞ; x 2 B

ð7Þ

and the boundary conditions
uiðx; tÞ ¼ ûiðx; tÞ; onS1 � ð�t0; 0�
siðx; tÞ � sjiðx; tÞnjðxÞ ¼ ŝiðx; tÞ; onS2 � ð�t0; 0�
yðx; tÞ ¼ ŷðx; tÞ; on S3 � ð�t0; 0�
qðx; tÞ � qiðx; tÞniðxÞ ¼ q̂ðx; tÞ; onS4 � ð�t0; 0�

ð8Þ

where u0i ; _u
0
i ; y

0; ûi; ŝi; ŷ, and q̂ are prescribed

functions and S1;S2;S3;S4 are subsurfaces of

@B, such that S1 [ S2 ¼ S3 [ S4 ¼ @B;

S1 \ S2 ¼ S3 \ S4 ¼ ;.
We now describe the work of Ciarletta [6] and

consider that

rðxÞ � r0 > 0; x 2 B ð9Þ

kijxixj � k0xixi > 0; 8xi ð10Þ

where k0 > 0 can be identified with the minimum

of the positive eigenvalues of kij on B.

Since we will consider the coupled theory of

thermoelasticity, we will assume that
m ¼ sup
B

ðMijMijÞ1=2 > 0 ð11Þ

We also set
m� ¼ sup
B

ðMir;rMis;sÞ1=2 � 0 ð12Þ

Thus, we can deduce that
MirMisy;ry;s � m2y;iy;i ð13Þ
The Transformed Problem

Using the change of variable t ⇝ �t, we trans-

form the boundary–final value problem ðPÞ
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into a boundary–initial value problem ðP�Þ
defined by equations
B

eij ¼ 1

2
ðui;j þ uj;iÞ ð14Þ

sij ¼ Cijklekl �Mijy ð15Þ

qi ¼ �kijy;j ð16Þ

in B� ½0; t0Þ and

sji;j þ rbi ¼ r€ui ð17Þ

�qi;i þ T0Mij _eij þ rr ¼ �c _y ð18Þ

in B� ½0; t0Þ, with the initial conditions
uiðx; 0Þ ¼ u0i ðxÞ; _uiðx; 0Þ ¼ _u0i ðxÞ
yðx; 0Þ ¼ y0ðxÞ; x 2 B

ð19Þ

and the boundary conditions
uiðx; tÞ ¼ ûiðx; tÞ; onS1 � ½0; t0Þ
siðx; tÞ ¼ ŝiðx; tÞ; onS2 � ½0; t0Þ
yðx; tÞ ¼ ŷðx; tÞ; onS3 � ½0; t0Þ
qðx; tÞ ¼ q̂ðx; tÞ; onS4 � ½0; t0Þ

ð20Þ

We observe that only the energy equation has

a different form in the two considered problems

because only in this equation occurs the first-

order derivative with respect to time.

By a solution of the boundary–initial value

problem ðP�Þ, Ciarletta [6] understands an

ordered array p ¼ ½ui; eij; sij; y; y;i; qi� with the

components sufficient smooth for all the

calculation.

Using some Lagrange–Brun identities,

Ciarletta [6] established some auxiliary results

concerning the solutions of the boundary–initial

value problem ðP�Þ.

Lemma 1. Let p ¼ ½ui; eij; sij; y; y;i; qi� be

a solution of the boundary–initial value
problem ðP�Þ corresponding to the external

given data D ¼ ½bi; r; u0i ; _u0i ; y0; ûi; ŝi; ŷ; q̂�.
Then, for all t 2 ½0; t0Þ, we have
Z
B

½r _uiðtÞ _uiðtÞ þ CijkleijðtÞeklðtÞ�dv

¼
Z
B

½r _uið0Þ _uið0Þ þ Cijkleijð0Þeklð0Þ�dv

þ2

Z t

0

Z
B

rbið�Þ _uið�Þdvd�

þ2

Z t

0

Z
@B

sið�Þ _uið�Þdad�

þ2

Z t

0

Z
B

Mijyð�Þ _eijð�Þdvd�
ð21Þ

Z
B

1

T0
cy2ðtÞdv� 2

Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd�

¼
Z
B

1

T0
cy2ð0Þdv� 2

Z t

0

Z
B

1

T0
rrð�Þyð�Þdvd�

þ 2

Z t

0

Z
@B

1

T0
qð�Þyð�Þdad�

� 2

Z t

0

Z
B

Mijyð�Þ _eijð�Þdvd�
ð22Þ
Lemma 2. Let p ¼ ½ui; eij; sij; y; y;i; qi� be

a solution of the boundary–initial value problem

ðP�Þ corresponding to the external given data

D ¼ ½bi; r; u0i ; _u0i ; y0; ûi; ŝi; ŷ; q̂�. Then, for all

t 2 ½0; t0
2
Þ, we have
Z
B

�
r _uiðtÞ _uiðtÞ�

�
CijkleijðtÞeklðtÞþ 1

T0
cy2ðtÞ

��
dv

¼
Z
B

n
r _uið0Þ _uið2tÞ�

�
Cijkleijð0Þeklð2tÞ

þ 1

T0
cyð0Þyð2tÞ�odvþZ t

0

Z
B

n
r _uiðtþ�Þbiðt��Þ

�r _uiðt��Þbiðtþ�Þþ 1

T0
r
�
yðtþ�Þrðt��Þ

�yðt��Þrðtþ�Þ�odvd�þZ t

0

Z
@B

n
_uiðtþ�Þsiðt��Þ

� _uiðt��Þsiðtþ�Þþ 1

T0

�
yðt��Þqðtþ�Þ

�yðtþ�Þqðt��Þ�odad�
ð23Þ



B 340 Backward in Time Problems
Proof. Let us consider � 2 ½0; t�; t 2 ½0; t0
2
Þ. If we

integrate the identity
� @
@� ½r _uiðt� �Þ _uiðtþ �Þ�

¼ r _uiðtþ �Þ€uiðt� �Þ � r _uiðt� �Þ€uiðtþ �Þ
ð24Þ

we obtain

r _uiðtÞ _uiðtÞ ¼ r _uið0Þ _uið2tÞþ
Z t

0

r½ _uiðtþ �Þ
€uiðt� �Þ � r _uiðt� �Þ€uiðtþ �Þ�d�

ð25Þ

Considering the relation (17) at the moment

tþ � multiplied with _uiðt� �Þ, combined with

the same relation at the moment t� �, and mul-

tiplied with _uiðtþ �Þ, we obtain

r½ _uiðtþ �Þ€uiðt� �Þ � _uiðt� �Þ€uiðtþ �Þ�
¼ r _uiðtþ �Þbiðt� �Þ � r _uiðt� �Þbiðtþ �Þ
þ½ _uiðtþ �Þsjiðt� �Þ � _uiðt� �Þsjiðtþ �Þ�;j
þ½sijðtþ �Þ _eijðt� �Þ � sijðt� �Þ _eijðtþ �Þ�

ð26Þ

In the same way like above, combining

relations (15), (16), and (18), we get
sijðtþ�Þ _eijðt��Þ�sijðt��Þ _eijðtþ�Þ
¼� @

@�

h
Cijkleijðt��Þeijðtþ�Þ

i
� @

@�

�
1

T0
cyðt��Þyðtþ�Þ

�
þ 1

T0
r½yðtþ�Þrðt��Þ�yðt��Þrðtþ�Þ�

þ
�

1

T0

�
yðt��Þqiðtþ�Þ

�yðtþ�Þqiðt��Þ��
;j

ð27Þ

Finally, combining relations (25)–(27), inte-

grating over B the result and using the divergence

theorem, we get relation (23) and the proof is
complete. This proof is an example of using

some Lagrange–Brun identities.
Uniqueness Results

In this section, we present some results

established by Ciarletta [6] regarding the unique-

ness of the boundary–initial value problem ðP�Þ
under various assumptions of the thermoelastic

coefficients and the density mass. He assumed

that symmetry relations (6) are satisfied and that

meas S4 ¼ 0. He considered the hypotheses:

(H1) Relations (9) and (10) are true.

(H2) Cijkl is a positive semidefinite tensor.

(H3) c is nonpositive.

The hypotheses (H1) and (H2) are used exten-

sively in the studies on the thermoelastic problems.

Knops and Payne [3] outlined that hypothesis (H3)

is reasonable and can characterize a certain state

supported by the thermoelastic body.

Theorem 1. Assuming that the hypotheses (H1)

and (H2) hold true, then the boundary–initial
problem ðP�Þ has at most one solution.

Proof. Let pðaÞ ¼ ½uðaÞi ; e
ðaÞ
ij ; sðaÞij ; yðaÞ; yðaÞ;i ; q

ðaÞ
i �

be two solutions of the boundary–initial problem

ðP�Þ corresponding to the same external given

data ðDÞ. Then their difference p ¼ pð1Þ � pð2Þ is
a solution for ðP�Þ corresponding to the null

external given data. We will demonstrate that

solution p is the null solution.

Using the results from the two lemmas

presented in the previous section, we deduce that
Z
B

r _uiðtÞ _uiðtÞdv ¼
Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd�

ð28Þ

for t 2 ½0; t0
2
Þ. We note that meas S4 ¼ 0 implies

that yðx; tÞ ¼ 0 on@B� ½0; t0Þ, and hence,wehave
�2

Z t

0

Z
B

Mijyð�Þ _eijð�Þdvd� ¼ 2

Z t

0

Z
B

½Mij;jyð�Þ _uið�Þ
þMijy;jð�Þ _uið�Þ�dvd�

ð29Þ



Backward in Time Problems 341 B
and also [1]
B

Z
B

y;iðtÞy;iðtÞdv � l
Z
B

y2ðtÞdv; l ¼ const: > 0

ð30Þ

where l is the first eigenvalue of clamped

membrane problem.

If we use the hypotheses (H1) and (H2), the

Schwarz’s inequality, and relations (28)–(30), we

conclude that
Z
B

�
r _uiðtÞ _uiðtÞ þ CijkleijðtÞeklðtÞ

�
dv

�
� 1

e1
þ 1

e2

	Z t

0

Z
B

r _uið�Þ _uið�Þdvd�

þ T0
r0k0

ðe1l�1m�2 þ e2m2Þ
Z
B

r _uiðtÞ _uiðtÞdv

ð31Þ

for all e1; e2 > 0 and with t 2 ½0; t0
2
Þ. We further

choose the arbitrary parameters e1; e2 so small

to have
b � 1� T0
r0k0

ðe1l�1m�2 þ e2m2Þ > 0 ð32Þ

From (31) and (32), we deduce
Z
B

r _uiðtÞ _uiðtÞdv � 1

b



1

e1
þ 1

e2

�
�
Z t

0

Z
B

r _uið�Þ _uið�Þdvd�
ð33Þ

for t 2 ½0; t0
2
Þ, and using Gronwall’s lemma, we

obtain
Z
B

r _uiðtÞ _uiðtÞdv ¼ 0; t 2
h
0;
t0
2

	
ð34Þ

This relation is true only if p is the null solu-

tion over B� ½0; t0
2
Þ. If t0 ¼ 1, then we have

uniqueness of solutions of ðP�Þ. Otherwise, for
t0 <1, we repeat the procedure of proof on the

interval ½t0
2
; t0Þ and get the null solution over
B� ½t0
2
; 3t0
4
Þ. Continuing this procedure, we

demonstrate the uniqueness.

Using the same techniques, we can also prove

the following results:

Theorem 2. Assuming that the hypotheses (H1)

and (H3) hold true, then the boundary–initial

problem ðP�Þ has at most one solution.

Corollary 1. Assuming that the hypotheses

(H1), (H2), and (H3) hold true, then the bound-

ary–initial problem ðP�Þ has at most one
solution.

In the proof of the final corollary, we don’t

need any procedures of extension of the solution

like in the proofs of the theorems.
Continuous Dependence with Respect
to the Final Data

In this section, we describe two results of

continuous dependence with respect to the

final data who becomes initial data for the

transformed boundary–initial problem ðP�Þ.
First, we derive the continuous dependence

inequality valid on the whole interval ½0; TÞ
considering only the hypotheses (H1), (H2),

and (H3) (from the previous section) without

imposing any constraint restriction upon

the solution. This result was obtained by

Ciarletta [6].

Theorem 3. Suppose that the hypotheses (H1),

(H2), and (H3) hold true. Let ½ui; eij; sij; y; y;i; qi�
be a solution of the boundary–initial value

problem ðP�Þ corresponding to the external
given data D0 ¼ ½0; 0; u0i ; _u0i ; y0; 0; 0; 0; 0�. Then
we have the estimate
eðtÞ þ
Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd� � eð0ÞeMt

ð35Þ

8t 2 ½0; t0Þ
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where
eðtÞ ¼
Z
B

�
r _uiðtÞ _uiðtÞ þ CijkleijðtÞeklðtÞ

� 1

T0
cy2ðtÞ�dv ð36Þ

M ¼ 8T0
r0k0

ðl�1m�2 þ m2Þ ð37Þ
Proof. We easily note, because of the linearity of

the problem ðP�Þ, that the continuous depen-

dence under perturbations of arbitrary initial

data is equivalent to the stability of the null solu-

tion. Combining the conclusions of the Lemma 1,

written for the external given data D0, with the

relation (36), we deduce

eðtÞþ2

Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd�¼ eð0Þ

�4

Z t

0

Z
B

½Mij;jyð�ÞþMijy;jð�Þ� _uið�Þdvd�
ð38Þ

for t 2 ½0; t0Þ. Now, using Schwarz’s inequality

and the arithmetic–geometric mean inequality

combined with relations (11)–(13), we get

4

Z t

0

Z
B

½Mij;jyð�ÞþMijy;jð�Þ� _uið�Þdvd�

� 2

e

Z t

0

Z
B

r _uið�Þ _uið�Þdvd�

þ2e
r0

Z t

0

Z
B

½Mir;ryð�ÞþMiry;rð�Þ�

�½Mis;syð�ÞþMisy;sð�Þ�dvd�

� 2

e

Z t

0

Z
B

r _uið�Þ _uið�Þdvd�þ4eT0
r0k0

ðl�1m�2þm2Þ

�
Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd�; 8e> 0

ð39Þ

It is now convenient to take

e ¼ r0k0
4T0ðl�1m�2 þ m2Þ ð40Þ
in inequality (39) and use the result in relation

(38) to get
eðtÞ þ
Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd�

� eð0Þ þM

Z t

0

Z
B

r _uið�Þ _uið�Þdvd�;
t 2 ½0; t0Þ

ð41Þ

This final relation obtained is a Gronwall-type

inequality that produces the relation (35), and the

proof is complete.

The second result of continuous dependence

with respect to the final data was established by

Ames and Payne [1]. The conditions imposed by

them are the following: strain energy form is

positive definite so that
Z
B

CijklfijðxÞfklðxÞdv � 0; 8fijðxÞ ð42Þ

the hypotheses (9)–(12) are again made, and

c> 0.

Ames and Payne [1] introduce the class of

functions c defined on B� ½0; t0Þ that satisfy
max
t2½0;t0Þ

Z
B

c2ðtÞdv � G2 ð43Þ

for a prescribed constant G, and they assume that

the temperature y belongs to this class.

The continuous dependence inequality

obtained
EðtÞ � f4½G2 þ Eð0Þ�1=2Eð0Þ1=2 þ 3E1ð0Þge4K2t=k0

ð44Þ

is valid for 0 � t � t0
2
, where

E1ðtÞ ¼ 1

2

Z
B

½r _uiðtÞ _uiðtÞ þ Cijklui;jðtÞuk;lðtÞ�dv
ð45Þ

EðtÞ ¼ E1ðtÞ þ 1

2

Z
B

y2ðtÞdv ð46Þ
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K ¼ max
B

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MijMij

r

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mir;rMis;s

rl

s( )
ð47Þ
B

Other Uniqueness Results

In addition to the results presented in the sec-

tion Uniqueness Results, Chiriţă [10] studied

the uniqueness of solution for the thermoelastic

processes backward in time in an appropriate

class of displacement–temperature fields. The

density mass and the specific heat are consid-

ered strictly positive, and the conductivity ten-

sor is assumed positive definite. In what

follows, we present the two main theorems

established by Chiriţă [10], just sketching the

proofs. From this moment, we will consider

t0 ¼ 1.

Theorem 4. Suppose that the density mass r is

strictly positive on B, kij is a positive-definite
tensor, Cijkl is a negative semidefinite tensor,

and c> 0 in B. Then there exists a strictly positive

constant a so that in the class of thermoelastic
processes ½ui; eij; sij; y; y;i; qi�, defined on

B� ½0;1Þ, that satisfy
Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd� � M2

1e
at; 8t 2 ½0;1Þ

ð48Þ

with M1 ¼ const:, the boundary–initial value

problem ðP�Þ has at most one solution, provided
meas S3 6¼ 0.

Proof. Assuming that kij is a positive-definite

tensor, relation (10) holds true.

Let us consider ½ui; eij; sij; y; y;i; qi� a solution

of the boundary–initial value problem ðP�Þ
corresponding to zero external given data. For

proving the uniqueness of the solution, we will

demonstrate that ½ui; eij; sij; y; y;i; qi� ¼ 0 in

B� ½0;1Þ. Combining the results from Lemmas

1 and 2, one can obtain
Z
B

�
CijkleijðtÞeklðtÞ þ 1

T0
cy2ðtÞ

�
dv

¼
Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd�; t 2 ½0;1Þ

ð49Þ
Since the elasticity tensor Cijkl is a negative

semidefinite tensor, it follows, from the identities

(10), (30), and (49), that
Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd�

� o2

Z
B

1

T0
kijy;iðtÞy;jðtÞdv; t 2 ½0;1Þ

ð50Þ

with
o2 ¼ supBc

lk0
ð51Þ

By setting

’2ðtÞ ¼
Z t

0

Z
B

1

T0
kijy;ið�Þy;jð�Þdvd�; t 2 ½0;1Þ

ð52Þ

relation (51) becomes

’2ðtÞ � 2o2’ðtÞ _’ðtÞ; t 2 ½0;1Þ ð53Þ

We can now discuss the differential inequality

just obtained. If’ðtÞ ¼ 0 for all t 2 ½0;1Þ, then it
follows that
y;iðx; tÞ ¼ 0; in B� ½0;1Þ ð54Þ

and hence, recalling that measS3 6¼ 0, we deduce

that

yðx; tÞ ¼ 0; in B� ½0;1Þ ð55Þ

Further, using relation (53) into identity (28)

and using the zero initial conditions, we get
uiðx; tÞ ¼ 0; in B� ½0;1Þ ð56Þ

and the uniqueness result is obtained.
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Let us suppose now that there exist t 2 ð0;1Þ
so that ’ðtÞ> 0, and hence, we have
’ðtÞ> 0; 8t 2 ½t;1Þ ð57Þ

Multiplying relation (53) with e�t=ð2o2Þ, we
obtain
d

dt
½’ðtÞe�t=ð2o2Þ� � 0; 8t 2 ½t;1Þ ð58Þ

and hence, we deduce
’ðtÞe�t=ð2o2Þ � ’ðtÞe�t=ð2o2Þ

� lim
t!1 ½’ðtÞe�t=ð2o2Þ�; 8t 2 ½t;1Þ ð59Þ

Choosing that
0 � a � 1

o2
ð60Þ

then from (48), we have
lim
t!1 ½’ðtÞe�t=ð2o2Þ� ¼ 0 ð61Þ

and therefore ’ðtÞ ¼ 0, for all t 2 ½t;1Þ, in

contradiction with our assumption expressed by

(57). Thus, ’ðtÞ ¼ 0, and so we have the unique-

ness result.

This result of uniqueness for the backward in

time processes associated with the linear theory

of thermoelasticity completes the study made by

Ciarletta [6]. To obtain this result of uniqueness

for c> 0, it is necessary to assume that the solu-

tion belongs to the class of thermoelastic pro-

cesses ½ui; eij; sij; y; y;i; qi� that satisfy the

constraint (48). The next theorem shows in what

conditions the result of uniqueness remains valid

if we remove the condition that Cijkl is a negative

semidefinite tensor.

Theorem 5. Suppose that the density mass r is

strictly positive on B, kij is a positive-definite
tensor, c> 0 in B, and meas S4 ¼ 0. Then, the

boundary–initial value problem ðP�Þ has at most
one solution that lies in the class of thermoelastic
processes ½ui; eij; sij; y; y;i; qi�, defined on

B� ½0;1Þ, that satisfy
lim
t!1

Z t

0

Z �

0

Z
B

1

T0
kijy;iðtÞy;jðtÞdvdtd� ¼ 0

ð62Þ

The assumption embedded in (62) is more

restrictive than given in (48), and so the class of

thermoelastic processes ½ui; eij; sij; y; y;i; qi�,
where the uniqueness result holds true, is essen-

tially reduced.
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Overview

Boltzmann transport equation (BTE)-basedmodel-

ing of thermal transport has been a topic of recent

interest. Numerous models have emerged that

attempt to explain the diffusive, wavelike, and bal-

listic heat transfer processes that exist in solids due

to material heterogeneity, size effects, and the like

[1, 2]. TheEquation of PhononRadiativeTransport

(EPRT) has emerged as a promising model

for thermal transport simulations in dielectric

media [3]. When modeling materials and devices

with EPRT, the primary variable is a function of not

only space and time but also velocity. This elimi-

nates the ability to apply standard discretization

methods in space and time without first dealing

with discretizing this velocity component. Thepop-

ular discrete ordinates method is accurate but adds

numerousdegrees of freedomper solution node [4].

The ballistic-diffusive approximation (BDA) has

been formulated as an approximate solution

method to the EPRT for the purpose of avoiding

difficulties associated with velocity discretization

[5]. The BDA claims to provide an efficient alter-

native for applications with complex geometry

requiring many degrees of freedom where solving

the EPRT would become cumbersome.

In the following exposition, we give an alter-

native derivation of the ballistic-diffusive equa-

tions. We find it to be more simple and

transparent than the original derivation. We

clearly state all assumptions made in this

approach making it more comprehensible and

enlightening. We then give a one-dimensional

thin solid film problem as an illustrative example.

A complete numerical formulation in space and

time, that is second-order accurate and has con-

trollable numerical dissipation, is given next. We

close with concluding remarks.
Governing Equations

The Boltzmann transport equation can be used to

accurately model out-of-equilibrium systems

where a particle description of the energy carriers

is appropriate [6]. Thermal transport in solids can

be described as particle driven when quantization

is considered. Phonons are quasiparticles that

result from the quantization of vibrational

modes in a solid crystal. Thus, the BTE describes

thermal transport in a dielectric solid. The BTE

states that the distribution of phonons,

f ¼ f ðr; v; tÞ, at any location in phase space,

ðr; v ¼ jjvjĵsÞ, and point in time, t, is governed by
@f

@t
þ @f

@r

dr

dt
þ @f

@v

dv

dt
¼ @f

@t


 �
collision

ð1Þ

Note that the term on the right-hand side of (1)

is not a literal partial derivative. It represents the

change in distribution function due to scattering

of particles – in our case, phonons. Like the

EPRT, the BDA is derived from this equation.

The essential assumption of the BDA is that the

distribution of thermal carriers can be split into

two different types – ballistic and diffusive

(denoted by a subscript b and d, respectively),

such that the total distribution function is

given by

f ¼ fb þ fd ð2Þ

It is important to note the definitions of these

carriers. The general physical description is as

follows: Ballistic transport is a nonlocal phenom-

enon where phonons travel without scattering.

This invalidates the temperature gradient

assumption inherent to the Fourier and Cattaneo

models of heat flux. Diffusive transport is a local

effect where the gradient assumption is appropri-

ate. The convention used in the derivation of the

BDA assumes ballistic carriers are those phonons

which have left their source and have yet to

scatter.

Definitions

We define internal energy, u, and heat flux, q, in

the manner standard to solid-state physics [7]
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u ¼ 1

4p

ð
4p

ð
o
�hoð fb þ fdÞDdodO

¼ ub þ ud

ð3Þ

q ¼ 1

4p

ð
4p

ð
o
v�hoðfb þ fdÞDdodO

¼ qb þ qd

ð4Þ

where �h is Planck’s constant divided by 2p, o is

the phonon frequency (�ho being the fundamental

unit of vibrational energy in the crystal),

D ¼ DðoÞ is the phonon density of states, and

O is the solid angle.

The definition of temperature in an out-of-

equilibrium, nonlocal system is problematic.

When using the BDA, there are two concep-

tual pitfalls. Firstly, the system we are consid-

ering is, by design, out of thermodynamic

equilibrium. Thus, no real temperature can be

assigned to the entire film. We also cannot, as

in classical heat transfer which assumes local

thermodynamic equilibrium, assign a local

temperature. Thus the temperature, T, should
be understood only as a measure of the local

internal energy of the solid. Temperature is

related to the internal energy by the volumet-

ric heat capacity, C. When using the BDA, we

consider two simultaneous temperatures (bal-

listic and diffusive) which make up the total

temperature
CT ¼ CðTb þ TdÞ ¼ ub þ ud ¼ u ð5Þ

with the caveat that this definition, while

simple, presents another conceptual problem –

temperatures are not additive. Again, the notion

of the temperatures, Tb and Td, simply being

a measure of the internal energy provides a rea-

sonable interpretation of this definition. Two dif-

ferent conventions have been used in previous

derivations of BDA with respect to temperature.

In [5], this two-temperature notion is used. To

circumvent the problem of temperature additiv-

ity, a second convention was used in [8] which

defines ub þ ud ¼ CT. For simplicity in the deri-

vation of the governing equations, we use the

temperature additivity convention.
Diffusive Part

To derive a constitutive relationship between

heat flux and temperature for diffusive phonons,

we begin with the BTE, (1). This equation can be

simplified by assuming there are no external

forces on the phonons which eliminates the third

term.We also replace the right-hand side with the

relaxation time approximation resulting in

@fd
@t

þ v 	 Hfd ¼ f 0 � fd
t

ð6Þ

where f 0 represents the equilibrium distribution

function given for phonons by the Planck

distribution. Multiplying (6) by 1
4pv�hoDt then

integrating over frequency and solid angle

and applying (4) gives the desired result. We

consider each term individually. For the time

derivative term,
ð
4p

ð
o

1

4p
v�hoDt

@fd
@t

dodO

¼ t
@

@t

1

4p

ð
4p

ð
o
v�hofdDdodO

� �
¼ t

@qd
@t

ð7Þ

where we have assumed that v;o;D, and t are all
time independent. For the gradient term, we getð

4p

ð
o
ðv 	 vÞ 1

4p
�hoDtHfddodO

¼ 1

4p

ð
4p

ð
o

vk k2t�hoDdf 0

dT
dodO HTd ¼ kHTd

ð8Þ

An important assumption has been made here

(touched on in section “Definitions”) that says

that the change in distribution function in space

can be approximated by a temperature gradient,

Hfd ¼ df 0

dTd
HTd. The introduction of this expression

brings with it the assumption of local thermody-

namic equilibrium. For carriers that are behaving

diffusively – constantly scattering and contribut-

ing to the local internal energy of the crystal – this

is a reasonable assumption. We have also defined

the thermal conductivity following from [9] with

an added directional dependence:
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k ¼ 1

4p

ð
4p

ð
o
jjvjj2t�hoD df 0

dTd
dodO ð9Þ

To treat the equilibrium term, we must assume

velocity to be an odd function of direction, i.e.,

vð�ŝÞ ¼ �vðŝÞ. Then since f 0 is an even function
of direction, the integral of the product over

direction must be zero:
1

4p

ð
4p

ð
o
v�hoDf 0dodO ¼ 0 ð10Þ

Finally, we have the last term which simply

yields the definition of heat flux:
1

4p

ð
4p

ð
o
v�hoDfddodO ¼ qd ð11Þ

We are left with what is known as the Cattaneo

definition of heat flux:
qd þ t
@qd
@t

¼ �kHTd ð12Þ

We now have a constitutive relation for the

diffusive heat flux which will be used later when

considering conservation of energy in a differen-

tial volume of dielectric material to obtain a

governing equation for the diffusive transport.

Ballistic Part

To handle the ballistic part of the distribution

function, we consider a relaxation time BTE

with no source term

@fb
@t

þ v 	 Hfb ¼ �fb
t

ð13Þ

The absence of the equilibrium distribution

function in (13) can be understood by considering

that, by our definition of ballistic, no phonons

governed by this equation have been scattered.

Thus, none of these phonons can be brought to

equilibrium and reemitted. While the interpreta-

tion of f 0 as an equilibrium distribution function

(such as a Planck distribution for phonons) is

common, in the sense of EPRT this term
represents the contribution to a distribution at

some location resulting from scattering in other

areas of phase space. By definition, these pho-

nons are not to be included as ballistic carriers,

hence the term’s absence. Conveniently, (13) has

a known solution given by

fbðr; ŝ; tÞ ¼ fw t� s� s0
vk k ; r� s� s0ð Þŝ


 �
exp �

ðs
s0

1

vk kt ds

 �

ð14Þ
where fw is the distribution of thermal carriers

at a boundary or source and s� s0 is a distance
along the direction, ŝ. The time delay in this

function is due to the finite speed of the

phonons.

For future use we derive another relation from

(13) by multiplying it by 1
4p�hoDt and integrating

over frequency and solid angle. Considering term

by term,

t
@

@t

1

4p

ð
4p

ð
o
�hofbDdodO

� �
¼ t

@ub
@t

¼ Ct
@Tb
@t

ð15Þ

by definitions (3) and (5).
tH 	 1

4p

ð
4p

ð
o
v�hofbDdodO

� �
¼ tH 	 qb

ð16Þ

and trivially,
1

4p

ð
4p

ð
o
�hofbDdodO ¼ ub ¼ CTb ð17Þ

resulting in
Ct
@Tb
@t

þ tH 	 qb þ CTb ¼ 0 ð18Þ

Although this equation could be solved, it is

not necessary since (14) along with (3) and (4)

entirely describes the ballistic contribution of the
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heat carriers. It has been given only for use in the

derivation of the governing equation for diffusive

carriers given in the next section.

Energy Balance

In order to obtain a governing equation for diffu-

sive thermal transport in space and time, we

impose that energy is conserved for any differen-

tial volume in space:
@u

@t
¼ C

@Tb
@t

þ @Td
@t


 �
¼ �H 	 qþ S

¼ �H 	 qb � H 	 qd þ S ð19Þ

where S is a volumetric heat source in the film

(note that phonons generated by a source

within the film behave ballistically much like

phonons generated from the surface. Treat-

ment of this phenomenon is beyond the scope

of this work, but can be found in [10]). This

statement represents the last relationship

needed to establish a governing equation for

the diffusive carriers. While we do not write

out the steps, the following equation is

obtained by substituting first law and the

energy conservation statement (19) and its

time derivative into the divergence of (12) to

eliminate qd. Three of the four remaining bal-

listic terms can be removed using (18)

resulting in the governing equation for diffu-

sive carriers

Ct
@2Td
@t2

þ C
@Td
@t

¼ kH2Td � H 	 qb þ Sþ t
@S

@t

ð20Þ

This equation is only in terms of Td since qb is

given by (14) and (4):
qbðr; tÞ ¼ qb ŝq ¼ 1

4p

ð
4p

ð
o
jjvjj�hoDfw

t� s� s0
jjvjj ; r� ðs� s0Þŝ


 �
exp �

ðs
s0

1

jjvjjt ds

 �

ðŝq 	 ŝÞ dodO

ð21Þ
Boundary Conditions

The boundary conditions of the BDA are of

utmost importance in its derivation and applica-

tion. For the ballistic part, a prescribed distribu-

tion function is specified at the boundary
fbðrw; ŝ; tÞ ¼ fwðŝ; tÞ ð22Þ

where rw is a location on the boundary. No pho-

nons emitted from the wall contribute to the dif-

fusive component. Thus, only energy carriers

incident upon the boundary contribute to the

heat flux so
qd 	 n̂ ¼ 1

4p

ð
4p

ð
o
�hofDðv 	 n̂ÞdodO ð23Þ

By approximating the carrier distribution as

isotropic with respect to direction and integrating

over the resulting half sphere gives, using (3),
qd 	 n̂ ¼ � 1

2
jjvjjud ð24Þ

Further details on this boundary condition can

be found in [8] and [11]. By dotting the Cattaneo

expression for the heat flux of diffusive carriers,

(12), with the wall unit normal, n̂, and substitut-

ing in the above expression, we get a boundary

condition for the diffusive carriers
vk kCTd þ vk kCt @Td
@t

¼ 2kHTd 	 n̂ ð25Þ

The right-hand side of this equation is partic-

ularly important because it naturally arises in the

finite-element implementation of (20).

This completes the derivation of the BDA.

Solution to (20) with the ballistic source given

by (21), subject to the boundary condition (25),

and initial conditions

Tdðrw; 0Þ ¼ Td0 ð26Þ
_Td ðrw; 0Þ ¼ _Td0 ð27Þ

gives the diffusive temperature everywhere at

any time. The ballistic temperature can be
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computed from (14) with the prescribed bound-

ary conditions (22).
B
Example Problem

The problem we consider is a thin, dielectric

film of thickness, L, at an initial temperature of

T ¼ T0 ¼ Tb0 þ Td0. At time, t ¼ 0, the left

boundary at � ¼ 0 is raised to a temperature of

T ¼ T1 ¼ Tb1 þ Td1. Transport in this film can

be considered one-dimensional. For simplicity,

phonon velocity is assumed uniform in every

direction, i.e., not a function of direction. As

a result, we may consider propagation direction

to be only a function of polar angle, y. We define

y as the angle between the unit vector in the x -

direction and the propagation direction. This

prompts the introduction of the directional

cosine, m ¼ cos y. The integrations over solid

angle in our definitions of internal energy (3)

and heat flux (4) are now carried out over the

domain m ¼ ½�1; 1� and normalized by a factor

of 1
2
. We introduce the following non-

dimensionalization:

x ¼ t

t
� ¼ x

L
Kn ¼ l

L

y ¼ T � T0
T1 � T0

¼ T � T0
DT

yb ¼ Tb � Tb0
DT

¼ ub � ub0
CDT

yd ¼ Td � Td0
DT

qb ¼
qb � qb0
C vk kDT

ð28Þ

where Kn is the Knudsen number relating the

mean free path of the thermal carrier, l, to

the characteristic domain size. We also assume

the classical relation, k ¼ 1
3
Cjjvjjl. Substitution

into (20) yields

@2yd
@x2

þ C
@yd
@x

� Kn2

3

@2yd
@�2

¼ �Kn
@qb
@�

ð29Þ

This equation is subject to the boundary

conditions
yd þ @yd
@x

¼ � 2Kn

3

@yd
@�

at � ¼ 0 ð30Þ

yd þ @yd
@x

¼ 2Kn

3

@yd
@�

at � ¼ L ð31Þ

and initial conditions
ydð�; 0Þ ¼ 0 ð32Þ

y_d ð�; 0Þ ¼ 0 ð33Þ

Note that the initial values stated above

(indicated by a subscript 0) are not trivial to

compute in general, but we need not consider

them in our example because of the non-

dimensionalization. There exists an inconsis-

tency in the initial conditions as a result of

the ballistic-diffusive approximation, (20). This

raises concerns about the ability of the BDA to

make steady-state predictions such as thermal

conductivity. Details can be found in [8].

For the ballistic part, we can get an analytical

result for both components necessary to the solu-

tion of this example, the ballistic temperature

profile and the spatial derivative of the ballistic

heat flux appearing in (29). To start we non-

dimensionalize (13) and get
@fb
@x

þ mKn
@fb
@�

þ fb ¼ 0 ð34Þ

To get convenient analytical results, we intro-

duce the new quantity, ubm, defined by
ubm ¼
ð
o
�hofbDdo ð35Þ

that can be thought of as the directional compo-

nent of the total internal energy. The

nondimensional ballistic temperature is,

therefore,
yb ¼
ð1
�1

ubmdm ð36Þ
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Integrating (34) over m and using (35) gives
@ubm
@x

þ mKn
@ubm
@�

þ ubm ¼ 0 ð37Þ

which has a known solution of
ubm ¼ uwm x� �

Knm


 �
e
� �
Knm ð38Þ

where uwm is the directional wall internal energy

defined such that a constant temperature of

yb1 ¼ 1 is maintained at the left boundary

for x � 0. For x< 0, yb1 ¼ 0. Thus, uwm can

be defined as the Heaviside step function, H.

We have

ybð�; xÞ ¼ 1

2

ð1
0

H x� �

Knm


 �
e
� �
Knmdm ð39Þ

where the integration is from 0 to 1 since ballistic

phonons on the left boundary only travel in

the positive direction. Then following from our

definition of heat flux, (4), we have
qbð�; xÞ ¼
1

2

ð1
0

H x� �

Knm


 �
me

� �
Knmdm ð40Þ

Thus,
@qb
@�

¼� 1

2Kn

ð1
0

H x� �

Knm


 �
e
� �
Knm

�
þd x� �

Knm


 �
e
� �
Knm

�
dm

ð41Þ

where d is the Dirac delta function.

All of the equations necessary to solve our

non-dimensionalized 1D problem are now

defined. The diffusive portion of the temperature

can be found by solving (34) with a ballistic flux

term defined by (41) subject to boundary condi-

tions (30) and (31) along with initial conditions

(32) and (33). The ballistic portion of the temper-

ature is given by (39).
Numerical Formulation in Space

To discretize in space we utilize the Galerkin

finite-element method with linear shape functions.

For (29) this yields the semi-discrete equations as

½M�fy€g þ ½C1�fy_g þ ½K1�fyg ¼ fq1g ð42Þ

For a particular element, e,
½M� ¼
ðh
0

Nb c T Nb cd� ð43Þ

½C1� ¼
ðh
0

Nb c T Nb cd� ð44Þ

½K1� ¼ K2
n

3

ðh
0

Bb c T Bb cd� ð45Þ

fq1g ¼
ðh
0

Nb cTd� @qb
@�

� �
ð46Þ

where h is the element length, Nb c ¼ 1� �
h
�
h

� �
and Bb c ¼ d

d� Nb c. For clarity, ½	� indicates

a matrix, f	g indicates a column vector, and 	b c
indicates a row vector. The Robin-type boundary

conditions given by (30) and (31) should be

applied cautiously. Proper application results in

additions to the right-hand side of (42) as well as

the capacitance matrix, ½C�, and the stiffness

matrix, ½K�. These contributions are denoted by

fqBCg, ½CBC�, ½KBC�, respectfully. The final semi-

discretized system takes the form
½M�fy€g þ ½C�fy_g þ ½K�fyg ¼ fqg ð47Þ

where fqg ¼ fq1g þ fqBCg, ½C� ¼ ½C1� þ ½CBC�,
and ½K� ¼ ½K1� þ ½KBC�. We have now reduced

a partial differential equation in space and time,

(29), to a set of ordinary differential equations in

time, (47).

Discretization in Time

The Generalized Single Step Single Solve (GS4)

computational framework has been recently

developed to yield a family of second-order accu-

rate, implicit, unconditionally stable algorithms
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Ballistic-Diffusive Approximation: A New Look, Fig. 1 Simulation results in the highly ballistic limit, Kn ¼ 10 for

various snapshots in time. The ballistic portion of the temperature can be seen to be dominant
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with controllable numerical dissipation on the

zeroth, first, and second-order time derivatives

as well as zero-order overshooting behavior

[12, 13]. We obtain a fully discretized system

by applying the GS4 framework to (47) along

with the initial conditions

fygð0Þ ¼ 0 ð48Þ

fy_gð0Þ ¼ 0 ð49Þ

The result is the following system:
½M� e€yn oþ ½C� e_yn oþ ½K�feyg ¼ feqg ð50Þ
Where
ey€n o
¼ y€

 �

n
þ L6W1 y€


 �
nþ1

� y€

 �

n

� 	
ð51Þ

fe_yg ¼f _ygn þ L4W1Dtf€ygn
þ L5W2Dt €y

n o
nþ1

� €y
n o

n


 � ð52Þ

feyg ¼fygn þ L1W1Dtf _ygn þ L2W2Dt2f€ygn
þ L3W3Dt2ðf€ygnþ1 � f€ygnÞ

ð53Þ

f~qg ¼ ð1�W1Þfqgn þW1fqgnþ1 ð54Þ
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Ballistic-Diffusive Approximation: A New Look,
Fig. 2 Simulation results in the transition regime,

Kn ¼ 1 for various snapshots in time. The ballistic and

diffusive contributions of the temperature are shown to

both be important in the total profile result
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and the subscript n indicates the timestep.

Substituting these into (50), we can solve for

fD€yg ¼ f€ygnþ1 � f€ygn from
ðL6W1½M� þ L5W2Dt½C� þ L3W3Dt2½K�ÞfD€yg
¼ �½M�f€ygn � ½C�ðf _ygn þ L4W1Dtf€ygnÞ
� ½K�ðfygn þ L1W1Dtf _ygn þ L2W2Dt2f€ygnÞ
þ ð1�W1Þfqgn þW1fqgnþ1

ð55Þ

Oncewe have fD€yg, we can find dimensionless

temperature and its first- and second-order deriva-

tives in time, at time t ¼ nþ 1, using the updates
f€ygnþ1 ¼ f€ygn þ fD€yg ð56Þ

f _ygnþ1 ¼ f _ygn þ l4Dtf€ygn þ l5DtfD€yg ð57Þ

fygnþ1 ¼fygn þ l1Dtf _ygn
þ l2Dt2f€ygn þ l3Dt2fD€yg

ð58Þ

where
L1W1 ¼ 3þ rmin
1 þ rmax

1 � rmin
1 rmax

1
2ð1þ rmin1 Þð1þ rmax1 Þ
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Ballistic-Diffusive Approximation: A New Look, Fig. 3 Simulation results in the highly diffusive regime, Kn ¼ 0:1
for various snapshots in time. Ballistic effects are only important near the wall where phonons are being emitted
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L2W2 ¼ 1

ð1þ rmin1 Þð1þ rmax1 Þ

L3W3 ¼ 1

ð1þ rmin1 Þð1þ rmax1 Þð1þ rs1Þ

L4W1 ¼ 3þ rmin
1 þ rmax

1 � rmin
1 rmax

1
2ð1þ rmin1 Þð1þ rmax1 Þ

L5W2 ¼ 2

ð1þ rmin1 Þð1þ rmax1 Þð1þ rs1Þ ð59Þ
L6W1 ¼ 2þ rmin
1 þ rmax

1 þ rs1 � rmin
1 rmax

1 rs1
ð1þ rmin1 Þð1þ rmax1 Þð1þ rs1Þ

W1 ¼ 3þ rmin
1 þ rmax

1 � rmin
1 rmax

1
2ð1þ rmin1 Þð1þ rmax1 Þ

l1 ¼ 1; l2 ¼ 1=2; l4 ¼ 1

l3 ¼ 1

2ð1þ rs1Þ ; l5 ¼ 1

1þ rs1

are the algorithmic parameters which can be con-

trolled via a set of user-defined parameters

(rmin
1 ; rmax

1 ; rs1) associatedwith the high-frequency

damping of the variables (fyg, f _yg, f€yg),
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respectively. Note that the algorithm given by (59)

corresponds to the so-called V0 family of algo-

rithms of GS4-2. There also exists a family of U0

algorithms. Details can be found in [13].

Numerical Results

Temperature profiles have been computed

for three different values of the Knudsen

number, Kn. These values represent three

transport regimes:

• Kn ¼ 10, corresponding to highly ballistic

transport. Results can be seen in Fig. 1.

• Kn ¼ 1, where ballistic and diffusive effects are

both important. Results can be seen in Fig. 2.

• Kn ¼ 0:1, indicating highly diffusive trans-

port. Results can be seen in Fig. 3.

All results have been plotted against

a validated numerical solution of the EPRT

using the discrete ordinates method and

a weighted residual approach as shown in [4].

The EPRT solutions seen in Figs. 1–3 used 16

ordinates and 20 linear finite elements for a total

of 320 degrees of freedom and 20 timesteps.

BDA results show good agreement with EPRT

solutions. For results given in Figs. 1a–3a, BDA

solutions were computed using 50 elements and

20 timesteps. For Figs. 3b–c, 500 elements were

used. Fewer elements, in these two cases, resulted

in exceedingly poor agreement with the EPRT

results. This refinement was still unable to pro-

duce a satisfactory agreement with EPRT, as can

be seen in Fig. 3c. In addition, the high number of

elements led to slow solution times due to numer-

ous integral evaluations of (41).
Concluding Remarks

We have presented a new derivation of the

ballistic-diffusive approximation, originally

introduced by Chen [5, 8], that requires no com-

plicated approximation techniques. We find this

approach more straightforward and elucidating

than the original. A simple 1D problem was

formulated entirely, and a complete numerical

procedure has been described for its solution.

The solution included a numerical time integra-

tion technique that is second-order accurate in
time with controllable numerical dissipation.

While the BDA has been developed as

a computationally efficient alternative to the

Equation of Phonon Radiative Transport, it

requires expensive integral evaluations for

every point in space and time due to the ballistic

distribution (14) and ballistic flux present in the

governing equation (20). Particular numerical

difficulty has been found in the diffusive limit,

L >> l, as the system approaches steady state.

More work needs to be done to truly evaluate the

claim of computational efficiency.
References

1. Anderson CVDR, Tamma KK (2006) Novel heat

conduction model for bridging different space and

time scales. Phys Rev Lett 96(18):184–301

2. Alvarez FX, Jou D (2009) Memory and nonlocal

effects in heat transport: from diffusive to ballistic

regimes. Appl Phys Lett 90(8):83–109

3. Majumdar A (1993) Microscale heat conduction in

dielectric thin films. ASME Trans J Heat Transf

115:7–16

4. Wheeler VM, Shankar N, Tamma KK (2013) Equa-

tion of phonon radiative transport: formulation and

analysis by the weighted residual method In: Ency-

clopedia of thermal stresses

5. Chen G (2001) Ballistic-diffusive heat-conduction

equations. Phys Rev Lett 86(11):2297–2300

6. Reif F (1965) Fundamentals of statistical and thermal

physics, McGraw-hill series in fundamentals of

physics. McGraw-Hill Science/Engineering/Math,

New York

7. Ashcroft NW,Mermin ND (1976) Solid state physics.

Thomson Learning, Florence

8. Chen G (2002) Ballistic-diffusive equations for tran-

sient heat conduction from nano to macroscales.

J Heat Transf 124(2):320–328

9. Peierls RE (1955) Quantum theory of solids.

Clarendon, Oxford

10. Laroche M, Taur Y (2005) Simulation of nanoscale

multidimensional transient heat conduction problems

using ballistic-diffusive equations and phonon

Boltzmann equation. J Heat Transf 127:298

11. ModestMF (2003) Radiative heat transfer. Academic,

New York

12. Zhou X, Tamma KK (2004) Design, analysis, and

synthesis of generalized single step single solve and

optimal algorithms for structural dynamics. Int

J Numer Method Eng 59(5):597–668

13. Zhou X, Tamma KK (2006) Algorithms by design

with illustrations to solid and structural mechanics/

dynamics. Int J Numer Method Eng 66(11):

1738–1790



Basic Theorems in Thermoelastostatics of Bodies with Microtemperatures 355 B

B

Basic Theorems in
Thermoelastostatics of Bodies with
Microtemperatures

Antonio Scalia1 and Merab Svanadze2

1Department of Mathematics and Computer

Science, University of Catania, Catania, Italy
2Institute for Fundamental and Interdisciplinary

Mathematics Research, Ilia State University,

Tbilisi, Georgia
Synonyms

Boundary value problems; Equilibrium theory;

Potential method; Thermoelasticity with

microtemperatures; Uniqueness and existence

theorems
Overview

Grot [5] developed a theory of thermodynamics

for elastic materials with microstructure

whose microelements, in addition to

microdeformations, possess microtemperatures.

Iesan and Quintanilla [9] investigated the linear

theory of thermoelasticity with microtem-

peratures and proved an existence result and the

continuous dependence of solutions upon initial

data and body loads.

Since then many papers have been written on

this subject. The fundamental solutions of the

theory of thermoelasticity with microtem-

peratures were constructed by Svanadze [21].

The representations of Galerkin type and general

solutions of equations of dynamic and steady

vibrations in this theory were obtained by Scalia

and Svanadze [16]. Casas and Quintanilla [2]

studied the exponential stability of solution in
Revised version of:Scalia A, Svanadze M, Tracinà R

(2010) Basic Theorems in the Equilibrium Theory of

Thermoelasticity with Microtemperatures. Journal of

Thermal Stresses Vol 33–8:721–753, reprinted by

permission of # Taylor & Francis Group, LLC (http://

tandfonline.com)
the theory of thermoelasticity with microtem-

peratures. Using the potential method and the

theory of singular integral equations, the basic

boundary value problems (BVPs) of steady vibra-

tions were investigated by Svanadze [20] and

Scalia and Svanadze [18]. Within the frame of

the linear theory, the representation of the

general solution and fundamental solution for

steady vibrations are established by Scalia and

Svanadze [17], and uniqueness and existence the-

orems are proved.

A theory ofmicromorphic fluidwithmicrotem-

peratures has been established by Riha [14, 15].

For an extensive review and the basic results in the

microcontinuum field theories, see the books of

Eringen [3] and Iesan [8].

The study of BVPs of mathematical physics

by the classical potential method has notched up

a century. The application of this method to

the three-dimensional basic BVPs of the theory

of elasticity reduces these problems to two-

dimensional singular integral equations [12].

The theory of multidimensional singular inte-

gral equations has presently been worked out

with sufficient completeness [1, 11–13]. This

theory makes it possible to investigate three-

dimensional problems not only of classical theory

of elasticity but also problems of generalized

theories. An extensive review of works on the

potential method can be found in Gegelia and

Jentsch [4].

Scalia et al. [19] established various analytical

results in the linear theory of thermoelastostatics

of bodies with microtemperatures, and some

basic results of the classical theories of

elasticity and thermoelasticity are generalized

(see [6, 7, 12]).

This entry is concerned with the equilib-

rium theory of thermoelastic solids with

microtemperatures. First, we present some

uniqueness results. Then, we use the funda-

mental matrix to obtain a representation of

Somigliana type. The potentials of single

layer and double layer are used to reduce the

BVPs to singular integral equations for which

Fredholm’s basic theorems are valid. Finally,

the existence and uniqueness theorems are

established.
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Basic Equations. Boundary Value
Problems

We consider an isotropic elastic material with

microstructure that occupies the region O of the

Euclidean three-dimensional space E3. Let

x ¼ ðx1; x2; x3Þ be the point of E3,

Dx ¼ ð @
@x1

; @
@x2

; @
@x3

Þ.
The fundamental system of field equations in

the linear equilibrium theory of thermoelasticity

with microtemperatures consists of the equations

of equilibrium [5]:
tjl;j þ rFð1Þ
l ¼ 0 ð1Þ

The balance of energy
ql;l þ rs ¼ 0 ð2Þ

The first moment of energy

qjl;j þ ql � Ql þ rFð2Þ
l ¼ 0 ð3Þ

The constitutive equations
tjl ¼ ðl err � byÞ djl þ 2mejl
ql ¼ k y;l þ k1 wl

qjl ¼ �k4 wr;rdjl � k5 wj;l � k6 wl;j

Ql ¼ ðk1 � k2Þwl þ ðk � k3Þ y;l

ð4Þ

The geometrical equations
elj ¼ 1

2
ðul;j þ uj;lÞ ð5Þ

where u ¼ ðu1; u2; u3Þ is the displacement vector,

w ¼ ðw1;w2;w3Þ is the microtemperature vector,

y is the temperature measured from the constant

absolute temperature T0 ðT0 > 0Þ, tjl is the stress
tensor, r is the reference mass density (r > 0),

Fð1Þ ¼ ðFð1Þ
1 ;F

ð1Þ
2 ;F

ð1Þ
3 Þ is the body force,

q ¼ ðq1; q2; q3Þ is the heat flux vector, s is the

heat supply, qjl is the component of first heat
flux moment tensor, Q ¼ ðQ1;Q2;Q3Þ is the

mean heat flux vector, Fð2Þ ¼ ðFð2Þ
1 ;F

ð2Þ
2 ;F

ð2Þ
3 Þ

is first heat source moment vector,

l;m;b;k;k1;k2; 	 	 	 ;k6 are constitutive coeffi-

cients, dlj is the Kronecker delta, elj is the

component of strain tensor, the subscripts

preceded by a comma denote partial differentia-

tion with respect to the corresponding Cartesian

coordinate, and j, l¼ 1, 2, 3, and repeated indices

are summed over the range (1, 2, 3).

By virtue of (4) and (5), system (1)–(3) can be

expressed in terms of the displacement vector u,

the microtemperature vector w, and the tempera-

ture y. We obtain the system of equations of the

linear equilibrium theory of thermoelasticity with

microtemperatures [5]:
mDuþ ðlþ mÞ grad div u� b grad y ¼ �rFð1Þ

k6 Dwþ ðk4 þ k5Þ grad divw� k3

grad y� k2w ¼ rFð2Þ

kD yþ k1 divw ¼ �r s

ð6Þ

We introduce the matrix differential operator:
AðDxÞ ¼ ApqðDxÞ
� �

7�7

AljðDxÞ ¼ mD dlj þ ðlþ mÞ @2

@xl@xj

Alþ3;jþ3ðDxÞ ¼ ðk6D� k2Þdlj þ ðk4 þ k5Þ @2

@xl@xj

Al 7ðDxÞ ¼ �b
@

@xl
Alþ3;7ðDxÞ ¼ �k3

@

@xl

A7;lþ3ðDxÞ ¼ k1
@

@xl
A77ðDxÞ ¼ kD

Al;jþ3ðDxÞ ¼ Alþ3;jðDxÞ ¼ A7lðDxÞ ¼ 0

l; j ¼ 1; 2; 3

The system (6) can be written as
AðDxÞUðxÞ ¼ FðxÞ ð7Þ

where U ¼ ðu;w; yÞ; F ¼ ð�rFð1Þ; rFð2Þ;�rsÞ
and x 2 O:
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Let S be the smooth closed surface surrounding

the finite domain O+ in E3; �O
þ ¼ Oþ [ S;

O� ¼ E3n �O
þ
; �O

� ¼ O� [ S:

Definition 1. A vector function U¼
ðU1;U2;			;U7Þ is called regular in O–(or O+) if

1.
Ul 2 C2ðO�Þ \ C1ð�O�Þ
ðor Ul 2 C2ðOþÞ \ C1ð�OþÞÞ

2.

UlðxÞ ¼ Oðjxj�1Þ @

@xj
UlðxÞ ¼ oðjxj�1Þ

for jxj 
 1

ð8Þ
where j ¼ 1; 2; 3; l ¼ 1; 2; 	 	 	 ; 7:

In the sequel, we use the matrix differential

operators
PðmÞðDx; nÞ ¼ ðPðmÞ
lj ðDx; nÞÞ3�3

P
ð1Þ
lj ðDx; nÞ ¼ mdlj

@

@n
þ mnj

@

@xl
þ lnl

@

@xj

P
ð2Þ
lj ðDx; nÞ ¼ k6dlj

@

@n
þ k5nj

@

@xl
þ k4nl

@

@xj

and
PðDx;nÞ¼ ðPljðDx;nÞÞ7�7

PljðDx;nÞ¼P
ð1Þ
lj ðDx;nÞ Plþ3;jþ3ðDx;nÞ¼P

ð2Þ
lj ðDx;nÞ

Pl7ðDx;nÞ¼�bnl P7;lþ3ðDx;nÞ¼ k1nl

P77ðDx;nÞ¼ k
@

@n
Pl;jþ3¼Plþ3;j¼Plþ3;7¼P7l¼0

where n ¼ ðn1; n2; n3Þ; nðzÞ is the external unit

normal vector to S at z; @
@n is the derivative along

the vector n, m ¼ 1,2, and l, j ¼ 1,2,3;

PðDx; nÞUðxÞ is the stress vector in the theory of

thermoelasticity with microtemperatures [9].

The internal and external basic BVPs of the

equilibrium theory of thermoelasticity with

microtemperatures are formulated as follows.
Find a regular (classical) solution to system (7)

for x 2 Oþ satisfying the boundary condition
lim
Oþ3x!z2S

UðxÞ � UðzÞf gþ ¼ fðzÞ

in the internal Problem ðIÞþF;f and

PðDz; nðzÞÞUðzÞf gþ ¼ fðzÞ

in the internal Problem ðIIÞþF;f . Find a regular

(classical) solution to system (7) for x 2 O� sat-

isfying the boundary condition
lim
O�3x!z2S

UðxÞ � UðzÞf g� ¼ fðzÞ

in the external Problem ðIÞ�F;f and

PðDz; nðzÞÞUðzÞf g� ¼ fðzÞ

in the external Problem ðIIÞ�F;f . Here F and f are

the known seven-component vector functions,

and supp F is a finite domain in O–.
Uniqueness Theorems

In this section, first, we present the Green’s

formulae of the linear equilibrium theory of

thermoelasticity with microtemperatures, and

then we prove the uniqueness theorems of regular

solutions of above formulated BVPs.

We introduce the notation

WðU;U0Þ ¼Wð1Þðu; u0Þ
þWð2Þðw;w0Þ � b y div u0

þ k2ww0 þ k1 w grad y0

þ k3 grad yw0

þ k grad y grad y0

where u0 ¼ ðu01; u02; u03Þ and w0 ¼ ðw0
1;w

0
2;w

0
3Þ

are three-component vector functions, y0 is scalar
function, U0 ¼ ðu0;w0; y0Þ, and
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Wð1Þðu;u0Þ¼ 1

3
ð3lþ2mÞdivudivu0

þm
1

2

X3
l;j¼1;l 6¼j

@uj
@xl

þ@ul
@xj


 �
@u0j
@xl

þ@u0l
@xj


 �"

þ1

3

X3
l;j¼1

@ul
@xl

�@uj
@xj


 �
@u0l
@xl

�@u0j
@xj


 �#

Wð2Þðw;w0Þ¼ 1

3
ð3k4þk5þk6Þdivwdivw0

þ1

2
ðk6�k5Þcurlwcurlw0

þ1

2
ðk6þk5Þ 1

2

X3
l;j¼1; l 6¼j

@wj

@xl
þ@wl

@xj


 �"
@w0

j

@xl
þ@w0

l

@xj


 �
þ1

3

X3
l;j¼1

@wl

@xl
�@wj

@xj


 �
@w0

l

@xl
�@w0

j

@xj


 �#

As in classical theory of elasticity (see, for details

[12]), we can prove the following results (Green’s

theorems in the linear equilibrium theory of

thermoelasticity with microtemperatures).

Theorem 1. If U ¼ ðu;w; yÞ is a regular vector
field in O+ and U0 ¼ ðu0;w0; y0Þ 2 C1ðOþÞ, then
ð
Oþ

AðDxÞUðxÞU0ðxÞ þWðU;U0Þ½ �dx

¼
ð
S

PðDz; nðzÞÞUðzÞU0ðzÞdzS
Theorem 2. If U ¼ ðu;w; yÞ is a regular vector

field in O–, U0 ¼ ðu0;w0; y0Þ 2 C1ðO�Þ, and

U0ðxÞ ¼ Oðjxj�1Þ @

@xj
U0ðxÞ ¼ oðjxj�1Þ

for jxj 
 1 j ¼ 1; 2; 3

then
ð
O�

AðDxÞUðxÞU0ðxÞ þWðU;U0Þ½ �dx

¼ �
ð
S

PðDz; nðzÞÞUðzÞU0ðzÞdzS
Theorem 3. If U ¼ ðu;w; yÞ is a regular vector

field in O+ and U0 ¼ ðu0;w0; y0Þ 2 C1ðOþÞ, then
ð
Oþ

h
Að1Þ uðxÞ � b grad y
� 	

u0ðxÞ

þ Wð1Þðu; u0Þ � b y divu0ðxÞ
i
dx

¼
ð
S

Pð1ÞðDz; nðzÞÞvðzÞu0ðzÞdzS

ð
Oþ

h
Að2ÞðDxÞw� k2w� k3grad y
� 	

w0ðxÞ

þWð2Þðw;w0Þ þ k2wþ k3grad yð Þw0ðxÞ
i
dx

¼
ð
S

Pð2ÞðDz; nðzÞÞwðzÞw0ðzÞdzS

We are now in a position to prove the follow-

ing uniqueness theorems in the equilibrium the-

ory of thermoelasticity with microtemperatures.

Theorem 4. If conditions
m > 0 3lþ 2m > 0 ð9Þ

and
3k4 þ k5 þ k6 > 0 k6 � k5 > 0

k > 0 ðk1 þ T0 k3Þ2 < 4T0 k k2
ð10Þ

are satisfied, then each of the problems

ðIÞþF;f ; ðIÞ�F;f and ðIIÞ�F;f admit at most one regular
solution.

Proof. (a) Suppose that there are two regular

solutions of problem ðIÞþF;f . Then their difference

U corresponds to zero data ðF ¼ f ¼ 0Þ, i.e., U is

a regular solution of problem ðIÞþ0;0. If U ¼ U
0
,

then on the basis of Theorem 3, we obtain
ð
Oþ

Wð1Þðu; uÞ � b y divu
h i

dx ¼ 0 ð11Þ
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ð
Oþ

Wð2Þðw;wÞ þ k2wþ k3 grad yð Þw
h i

dx ¼ 0

ð12Þð
Oþ

k grad y grad yþ k1w grad y½ � dx ¼ 0 ð13Þ

Equations (12) and (13) implyð
Oþ

h
T0 W

ð2Þðw;wÞ

þ T0 k2jwj2 þ ðk1 þ T0 k3Þw grad y
�

þ k jgrad yj2
	 i

dx ¼ 0

ð14Þ

Keeping in mind (10) from (14), we have
wðxÞ ¼ 0 yðxÞ ¼ const for x 2 Oþ

In viewofhomogeneous boundary condition,we

have yðxÞ ¼ 0 for x 2 Oþ, and from (11), we get
ð
Oþ

Wð1Þðu; uÞdx ¼ 0 ð15Þ

It is easy to see that by condition (9), we can

write Wð1Þðu; uÞ � 0 and from (15) we obtain

Wð1Þðu; uÞ ¼ 0, and hence, u is the vector of

rigid displacement [12]
uðxÞ ¼ aþ ½b� x� ð16Þ

where a and b are arbitrary real constant three-

component vectors and ½b� x� is the vector

product of vectors b and x. On the basis of homo-

geneous boundary condition from (16), we have

uðxÞ ¼ 0 for x 2 Oþ, and the uniqueness of solu-
tion of problem ðIÞþF;f is proved.

(b) Suppose that there are two regular solu-

tions of the external BVP ðKÞ�F;f , where K ¼ I, II.

Then their difference U corresponds to zero data

ðF ¼ f ¼ 0Þ, i.e., U is a regular solution of prob-

lem ðKÞ�0;0. Quite similarly, we obtain

wðxÞ ¼ 0 yðxÞ ¼ const for x 2 O�
In view of (8), we have yðxÞ ¼ 0 for, x 2 O�

and by theorem 2 we get Wð1Þðu; uÞ ¼ 0. Hence,

vector u has the form (16) for x 2 O�:Keeping in
mind condition (8), we have uðxÞ ¼ 0 for

x 2 O�, and the uniqueness of solution of prob-

lem ðKÞ�F;f is proved, where K ¼ I, II.

Similarly we can prove the following theorem:

Theorem 5. If the conditions (9) and (10) are

satisfied, then any two regular solutions of the
BVP ðIIÞþF;f may differ only to within additive

vector Uð0Þ ¼ ðuð0Þ;wð0Þ; yð0ÞÞ, where
uð0ÞðxÞ ¼ aþ ½b� x� þ c2x wð0ÞðxÞ ¼ 0

yð0ÞðxÞ ¼ c1 for x 2 Oþ

where a and b are arbitrary real constant three-

component vectors and c1 is an arbitrary real

constant and c2 ¼ c1 b
3lþ2m .

As in classical theory of elasticity [10], we can

prove uniqueness of regular solution of the prob-

lems ðIÞþF;f and ðIÞ�F;f in more weak conditions that

(9) and (10). We have the following result [19]:

Theorem 6. If conditions
m > 0 lþ 2m > 0 ð17Þ

and

k > 0 k6 > 0 k7 > 0

ðk1 þ T0 k3Þ2 < 4T0 k k2
ð18Þ

are satisfied, then the problems ðIÞþF;f and ðIÞ�F;f
admit at most one regular solution, where

k7 ¼ k4 þ k5 þ k6.

Remark 1. Obviously, from (9) and (10) we

have (17) and (18), respectively. Indeed, (9) and

(10) imply
lþ 2m ¼ 1

3
½ð3lþ 2mÞ þ 4m� > 0

k6 ¼ 1

2
½ðk6 þ k5Þ þ ðk6 � k5Þ� > 0

k7 ¼ 1

3
½ð3k4 þ k5 þ k6Þ þ 2ðk6 þ k5Þ� > 0
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Remark 2. The uniqueness theorem of the first

BVP (when on the boundary is prescribed

the displacement vector) of the classical theory

elasticity is proved in the condition (17) [see, for

details [10]].
Representation of Somigliana Type

In this section, the formulae of integral represen-

tations of regular vector and regular solution of

system (6) in the domainsO+ andO–are obtained.

Definition 2. The matrix ~AðDxÞ¼ ~Alj ðDxÞ
� �

7�7
,

where ~Alj ðDxÞ¼Ajlð�DxÞ; l; j¼ 1;2; 	 	 	 ;7; will

be called the associated operator of differential
operator A.

Hence, the associated operator ~A satisfies the

condition ~AðDxÞ ¼ ATð�DxÞ, where superscript

“T” denotes transposition. The homogeneous

associated system of (6) will be the following

system:
m Duþ ðlþ mÞ grad div u ¼ 0

k6 Dwþ ðk4 þ k5Þ grad div

w� k1 grad y� k2w ¼ 0

k D yþ b div uþ k3 div w ¼ 0

ð19Þ

Let ~GðxÞ ¼ ~Glj ðxÞ
� �

7�7
be a fundamental

solution (fundamental matrix) of the system

(19) (operator ~AðDxÞ).
By the method, developed in Svanadze [21],

we can construct the matrix ~GðxÞ. Obviously,
~GðxÞ ¼ GTð�xÞ; where G(x) is the fundamental

matrix of operator AðDxÞ and is constructed by

means of elementary functions in Svanadze [21].

The following basic properties of matrix ~GðxÞ
may be easily verified:

Theorem 7. Each column of the matrix ~GðxÞ,
considered as a vector, satisfies the associated

system (19) at every point of E3 except the
origin, i.e.,

~AðDxÞ ~GðxÞ ¼ 0 for x 6¼ 0
Theorem 8. The elements of the matrix
~GðxÞ �CðxÞ are bounded at x ¼ 0, while the
first derivatives have isolated singularities of

the kind jxj�1
, i.e.,
~Glj ðxÞ �CljðxÞ ¼ Oð1Þ
@

@ xm
~Glj ðxÞ �CljðxÞ
� � ¼ Oðjxj�1Þ

l; j;m ¼ 1; 2; 3

whereC(x) is the fundamental solution of system
m Duþ ðlþ mÞ grad div u ¼ 0

k6 Dwþ ðk4 þ k5Þ grad div w ¼ 0

k D y ¼ 0

and has the following form [21]:

CðxÞ¼ ~Clj ðxÞ
� �

7�7

CljðxÞ¼ 1

m
Ddlj�lþm

mm0

@2

@xl@xj


 �
�jxj
8p


 �
Clþ3; jþ3ðxÞ¼ 1

k6
Ddlj� k4þ k5

k6 k7

@2

@xl@xj


 �
�jxj
8p


 �
C77ðxÞ¼� 1

4pk jxj
Cl; jþ3 ¼Clþ3; j ¼Cl7 ¼Clþ3;7 ¼C7l

¼C7; lþ3 l; j¼ 1;2;3

Let the vector ~Ul be the l-th column of the

matrix ~U ¼ ð ~UjlÞ7�7
; ~ul ¼ ð ~U1l; ~U2l; ~U3lÞT ;

~wl ¼ ð ~U4l; ~U5l; ~U6lÞT ; ~yl ¼ ~U7l; l ¼ 1; 2; 	 	 	 ; 7:
In the sequel, we use thematrix differential operator

~PðDz; nÞ ¼ ~Plj ðDz; nÞ
� �

7�7
~Plj ¼ P

ð1Þ
lj

~Plþ3; jþ3 ¼ P
ð2Þ
lj

~P7; jþ3 ¼ k3 nj ~P77 ¼ k
@

@n
~Pl; jþ3 ¼ ~Pl7 ¼ ~Plþ3; j ¼ ~Plþ3; 7 ¼ ~P7j ¼ 0

l; j ¼ 1; 2; 3

As in classical theory of elasticity [12], we can

prove the following results (Green’s theorems in
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the linear theory of thermoelasticitywithmicrotem-

peratures for the domains O+ and O–) [19]:

Theorem 9. If U and ~Ul ðl ¼ 1; 2; 	 	 	 ; 7Þ are

regular vectors in O+, then
ð
Oþ

n
½~AðDyÞ~UðyÞ�TUðyÞ

�½~UðyÞ�TAðDyÞUðyÞ
o
dy

¼
ð
S

n
½~PðDz;nÞ~UðzÞ�TUðzÞ

�½~UðzÞ�TPðDz;nÞUðzÞ
o
dzS
Theorem 10. If U and ~Ul ðl ¼ 1; 2; 	 	 	 ; 7Þ are

regular vectors in O–, then
ð
O�

n
½~AðDyÞ~UðyÞ�TUðyÞ

�½~UðyÞ�TAðDyÞUðyÞ
o
dy

¼ �
ð
S

n
½~PðDz; nÞ~UðzÞ�TUðzÞ

�½~UðzÞ�TPðDz; nÞUðzÞ
o
dzS

Theorems 9 and 10 lead the formulae of inte-

gral representations of regular vector in the

equilibrium theory of thermoelasticity with

microtemperatures for the domains O+ and O–.

Theorem 11. If U is a regular vector in O+, then
d1ðxÞUðxÞ ¼
ð
S

n
½~PðDz; nÞ~Gðz� xÞ�TUðzÞ

�Gðx� zÞPðDz; nÞUðzÞ
o
dzS

þ
ð
Oþ

Gðx� yÞAðDyÞUðyÞdy

ð20Þ
where
d1ðxÞ ¼
1 for x 2 Oþ

0 for x 2 O�

(

Theorem 12. If U is a regular vector in O–, then
d2ðxÞUðxÞ ¼ �
ð
S

n
½~PðDz; nÞ~Gðz� xÞ�TUðzÞ

�Gðx� zÞPðDz; nÞUðzÞgdzS
þ
ð
O�

Gðx� yÞAðDyÞUðyÞdy

ð21Þ

where
d2ðxÞ ¼
1 for x 2 O�

0 for x 2 Oþ

(

Equations (20) and (21) will be called the

representation formulae of Somigliana type in

the equilibrium theory of thermoelasticity with

microtemperatures.

Theorems 11 and 12 lead to the following

results:

Corollary 1. If U is a regular solution of the
homogeneous equation
AðDxÞUðxÞ ¼ 0 ð22Þ

for x 2 Oþ, then

UðxÞ ¼
ð
S

n
½~PðDz; nÞ~Gðz� xÞ�TUðzÞ

�Gðx� zÞPðDz; nÞUðzÞ
o
dzS
Corollary 2. If U is a regular solution of the

homogeneous equation (22) for x 2 O�, then
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UðxÞ ¼ �
ð
S

n
½~PðDz; nÞ~Gðz� xÞ�TUðzÞ

�Gðx� zÞPðDz; nÞUðzÞ
o
dzS
Corollary 3. The regular solution of the homo-

geneous equation (22) has continuous partial

derivatives of any order at an arbitrary point
not belonging to S.
Thermoelastopotentials

In this section, we present the basic properties of

the thermoelastopotentials and the singular inte-

gral operators.

We introduce the single-layer potential
Zð1Þðx; gÞ ¼
ð
S

Gðx� yÞ gðyÞdyS

the double-layer potential
Zð2Þðx; gÞ ¼
ð
S

½~PðDy; nðyÞÞGTðx� yÞ�TgðyÞdyS

and the volume potential

Zð3Þðx;f;O�Þ ¼
ð
O�

Gðx� yÞfðyÞdy

where g and f are seven-component vectors.

Remark 3. By Theorems 11 and 12, the regular

in O+ (or in O–) solution of (7) is represented by

sum of single layer, double layer, and volume of

potentials:

UðxÞ¼Zð2Þðx;UÞ�Zð1Þðx;PUÞþZð3Þðx;F;OþÞ
for x2Oþ

or UðxÞ¼�Zð2Þðx;UÞþZð1Þðx;PUÞþZð3Þ
�

ðx;F;O�Þ for x2O�
	

The basic properties of potentials are given in

the following theorems:

Theorem 13. If S 2 Cmþ1;a1 ; g 2 Cm;a2ðSÞ;
0 < a2 < a1 � 1; and m is a nonnegative

whole number, then
(a) Zð1Þð	;gÞ 2C0;a2ðE3Þ\Cmþ1;a2ð�O�Þ\C1ðO�Þ
(b) AðDxÞZð1Þ ðx; gÞ ¼ 0 for x 2 O�

(c) PðDz; nðzÞÞZð1Þ ðz; gÞ ¼ Ð
S

PðDz; nðzÞÞ
Gðz� yÞ gðyÞdyS is the singular integral for

z 2 S.
(d) PðDz;nðzÞÞZð1Þ ðz;gÞ

n o�
¼�1

2
gðzÞþPðDz;

nðzÞÞZð1Þðz;gÞ for z2 S

Theorem 14. If S 2 Cmþ1;a1 ; g 2 Cm;a2ðSÞ;
0 < a2 < a1 � 1; then
(a) Zð2Þð	; gÞ 2 Cm;a2ð�O�Þ \ C1ðO�Þ
(b) AðDxÞZð2Þ ðx; gÞ ¼ 0 for x 2 O�

(c) Zð2Þðz; gÞ ¼ Ð
S

½~PðDy; nðyÞÞGTðz� yÞ�T

gðyÞdyS is the singular integral for z 2 S.

(d) fZð2Þðz; gÞg� ¼ � 1
2
gðzÞ þ Zð2Þðz; gÞ for

nonnegative whole number m and z 2 S.

(e) fPðDz;nðzÞÞZð2Þ ðz;gÞgþ ¼fPðDz;nðzÞÞZð2Þ ðz;gÞg�

for the natural number m and z2S.

Theorem 15. If S 2 C1;a1 ; f 2 C0;a2ðOþÞ;
0 < a2 < a1 � 1, then

(a) Zð3Þð	;f;OþÞ 2C1;a2ðE3Þ\C2ðOþÞ\C2;a2ð�Oþ
0 Þ

(b) AðDxÞZð3Þ ðx;f;OþÞ ¼ fðxÞ for x 2
Oþ where Oþ

0 is a domain in R3 and

Oþ
0 
 Oþ:

Theorem 16. If S 2 C1;a1 ; suppf ¼ O 
 O�;
f 2 C0;a2ðO�Þ; 0 < a2 < a1 � 1; then
(a) Zð3Þð	;f;O�Þ 2C1;a2ðE3Þ\C2ðO�Þ\C2;a2ð�O�

0 Þ
(b) AðDxÞZð3Þ ðx;f;O�Þ¼fðxÞ for x2O�

where O is a finite domain in E3 and
�O
�
0 
O�:

Theorems 13–16 can be proved similarly to

the corresponding theorems in the classical the-

ory of elasticity and thermoelasticity (for details,

see [12], Chapters V and X). The proposition e) of

Theorem 14 is generalization of the Lyapunov-

Tauber theorem for the double-layer potential of

the classical theory of elasticity (see [12], Ch. V).
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We introduce the notation
B

Kð1ÞgðzÞ ¼ 1

2
gðzÞ þ Zð2Þðz; gÞ

Kð2ÞgðzÞ ¼ 1

2
gðzÞ þ PðDz; nðzÞÞZð1Þ ðz; gÞ

Kð3ÞgðzÞ ¼ � 1

2
gðzÞ þ Zð2Þðz; gÞ

Kð�ÞgðzÞ ¼ 1

2
gðzÞ þ �Zð2Þðz; gÞ z 2 S

ð23Þ

where � is an arbitrary complex number. By

virtue of Theorems 13 and 14, Kð1Þ, Kð2Þ, Kð3Þ,
andKð�Þ are the singular integral operators. Obvi-
ously, the operatorsKð1Þ andKð2Þ are adjoint with
respect to each.

Remark 4. For the definitions of a singular inte-

gral operator, a normal-type singular integral

operator, the symbol, and the index of operators,

see, e.g., Kupradze et al. [12]. The basic theory of

multidimensional singular integral equations is

given in Kupradze et al. [12] and Mikhlin [13].

In the sequel we need the following lemma:

Lemma 1. If L is a continuous curve on the

complex plane connecting the origin with the
point �0 and Kð�Þ is a normal-type operator for

any � ∈ L, then the index of the operator Kð�0Þ
vanishes, i.e.,

ind Kð�0Þ ¼ 0

Lemma 1 is proved in Kupradze et al. [12].

Theorem 17. If conditions (9) and (10) are sat-

isfied, then the singular integral operator KðpÞ is
of the normal type with the index equals to zero,

where p ¼ 1,2,3.

Proof. Let sðpÞ ¼ ðsðpÞlj Þ
7�7

be the symbol of

the operator KðpÞ ðp ¼ 1; 2; 3Þ. From (23) we

have

det sð1Þ ¼ det sð2Þ ¼ � det sð3Þ ¼ � 1

2
s1 s2

ð24Þ
where
s1 ¼ðlþ mÞðlþ 3mÞ
8ðlþ 2mÞ2

s2 ¼ 1

32 k26 k
2
7

ðk5 þ k6Þðk6 þ k7Þ

ð2k6k7 � k5k7 þ k4k6Þ

ð25Þ

Keeping in mind the relations (9) and (10)

from (25), we have s1 > 0 and s2 > 0: Obvi-

ously, from (24) we obtain
det sðmÞ < 0 det sð3Þ > 0 for m¼ 1;2

ð26Þ

Hence, the operatorsKð1Þ,Kð2Þ, andKð3Þ are of
the normal type.

Let sð�Þ and ind Kð�Þ be the symbol and the

index of the operatorKð�Þ, respectively. It may be

easily shown that det sð�Þ vanishes only at four

points �1, �2, �3, and �4 of the complex plane. By

virtue of (26) and det s1 ¼ det sð1Þ, we get

�l 6¼ 1 for l ¼ 1,2,3,4. By Lemma 1, we obtain

indKð1Þ ¼ indKð1Þ ¼ 0

Equation indKð2Þ ¼ 0 is proved in a quite sim-

ilar manner. ◊
Theorem 17 leads the following result:

Theorem 18. If conditions (9) and (10) are sat-

isfied, then Fredholm’s theorems are valid for the
following singular integral equation:

KðpÞ gðzÞ ¼ fðzÞ for z 2 S

where f is a seven-component vector function on

S and p ¼ 1,2,3.
Existence Theorems

In this section, we establish the existence of reg-

ular solutions of the basic BVPs ðIÞ�F;f and ðIIÞ�F;f
by means of the potential method and the theory

of singular integral equations.
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Obviously, by virtue of Theorems 15 and 16,

the volume potentials Zð3Þðx;F;OþÞ and

Zð3Þðx;F;O�Þ are the partial regular solutions of
(7) in O+ and O–, respectively, where

F 2 C0;a2ðO�Þ; 0 < a2 � 1; suppF is a finite

domain inO–. Therefore, further we will consider

problems ðIÞ�0;f and ðIIÞ�0;f .

Problems ðIÞþ0; f and ðIIÞ�0; f . The regular solu-

tion of problem ðIÞþ0;f is sought in the form of

double-layer potential
UðxÞ ¼ Zð2Þðx; gÞ for x 2 Oþ ð27Þ

where g is the unknown seven-component vector.

Taking into account the boundary property of

potential of double layer (see Theorem 14) and

boundary condition of problem ðIÞþ0; f , we obtain,
for determining the unknown vector g, the fol-

lowing singular integral equation:

Kð1Þ gðzÞ ¼ fðzÞ for z 2 S ð28Þ

On the other hand, the regular solution of

problem ðIIÞ�0;f is sought in the form of single-

layer potential

UðxÞ ¼ Zð1Þðx;wÞ for x 2 O� ð29Þ

where w is the unknown seven-component vec-

tor. On the basis of the boundary property of

single-layer potential (see Theorem 13) and

boundary condition of problem ðIIÞ�0; f , we obtain,
for determining the unknown vector w, the fol-

lowing singular integral equation:
Kð2Þ wðzÞ ¼ fðzÞ for z 2 S ð30Þ

On the basis of Theorem 18, the Fredholm’s

theorems are valid for (28) and (30). It is easy

to see that the homogeneous equations

Kð1Þ gðzÞ ¼ 0 and Kð2Þ wðzÞ ¼ 0 admit only triv-

ial solutions [19]. On the basis of the Fredholm’s

theorems, there exist solutions of singular inte-

gral equations (28) and (30). We have thereby

proved the following existence theorems:
Theorem 19. If S 2 C2;a1 ; f 2 C1;a2ðSÞ;
0 < a2 < a1 � 1; then a regular solution of
problem ðIÞþ0;f exists, is unique, and is

represented by double-layer potential (27),

where g is a solution of the singular integral
equation (28), which is always solvable for an

arbitrary vector f.

Theorem 20. If S 2 C1;a1 ; f 2 C0;a2ðSÞ;
0 < a2 < a1 � 1; then a regular solution of
problem ðIIÞ�0;f exists, is unique, and is represented
by single-layer potential (29), where ’ is

a solution of the singular integral equation (30),
which is always solvable for an arbitrary vector f.

Problem ðIÞ�0; f . We have the following result:

Theorem 21. If S 2 C2;a1 ; f 2 C1;a2ðSÞ;
0 < a2 < a1 � 1; then a regular solution of prob-
lem ðIÞ�0;f exists, is unique, and is represented by

sum of double-layer and single-layer potentials
UðxÞ ¼ Zð2Þðx; gÞ þ aZð1Þðx; gÞ
for x 2 O�

where a is an arbitrary positive number and g is

a solution of the singular integral equation
Kð3Þ gðzÞ þ aZð1Þðz; gÞ ¼ fðzÞ for z 2 S

which is always solvable for arbitrary vector f.

Theorem 21 is proved quite similarly as

Theorem 19.
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Synonyms

Beams
Overview

A beam is one of the most important members or

parts in machine structures. It is a long bar which

chiefly causes bending deformation. Bending

deformation in beams subjected to mechanical

loads is developed for addressing the relationship

between strain and curvature and so on. Bending

deformation in beams subjected to thermal loads

is also developed for addressing the relationship

among strain, curvature, thermal expansion, and

thermal stress.

Thermal stresses in beams are treated in

homogeneous beams, composite beams with

two and more homogeneous beams, and inhomo-

geneous beams whose material properties depend

on position. Temperatures which vary in the lat-

eral direction to the beam are treated so that only

the symmetry deformations are treated.

http://dx.doi.org/10.1007/978-94-007-2739-7_214
http://dx.doi.org/10.1007/978-94-007-2739-7_503
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Stresses in Beams Subjected to
Mechanical Loads

A beam is defined as a long bar which chiefly

causes bending by acting of lateral loads such as

concentrated load P, distributed load q, and/or

external moment M0 as shown in Fig. 1.

A beam also may be regarded as a mass of

longitudinal fibers, which are straight in longitu-

dinal direction. It is assumed that Bernoulli-Euler

hypothesis is valid, which means that a plane

section perpendicular to the longitudinal fibers

before loading remains a plane perpendicular to

the deformed longitudinal fibers after loading.

Now, we take out an element ABCD with

a minute width dx from the beam in Fig. 1 and

consider the shapes before and after the deforma-

tion as shown in Fig. 2. Although bending

moment M at an arbitrary cross section is

a function of position x, the moments induced at

both cross sections in an element with a minute

width dx are almost same as shown in Fig. 2b.

The element ABCD changes to the element

A0B0C0D0 after deformation. Longitudinal fibers
y

x

x dx

D

A

C

B

P

M0
q

Beams, Thermal Stresses, Fig. 1 Beams subjected to

mechanical loads

D

a

A

C

B

m n

dx

p qBeams, Thermal
Stresses,
Fig. 2 Deformation of

beam with a minute width

dx. (a) before deformation;

(b) after deformation
on the convex side A0B0 are extended, and the

fibers on the concave side C0D0 are compressed.

There must be a plane in which the elongation of

fibers is zero and the length of fibers is dx in the

beam. The plane is called the neutral plane (plane

m0n0 in Fig. 2b). Any fiber pq at a distance of y
from the neutral plane in the element changes to

the fiber p0q0. The bending strain e at the distance
y from the neutral plane after bending is
ð1Þ

wherer is theradiusofcurvatureat theneutralplane.
Hooke’s law gives the normal stress as follows:

s ¼ Ee ¼ E
y

r
ð2Þ

The normal stress s is called the bending stress. The
distribution of the bending stress is proportional to

the distance y from the neutral plane. If the axial

force is not applied to the beam, the equilibrium of

force and the equilibrium of moment on the plane

A0D0 give the following relations:
ð
A

sdA ¼ 0 ð3Þ

ð
A

sydA ¼ M ð4Þ

where dA is a small element area of cross section at

the distance y from the neutral plane. When the

material is homogeneous in the cross section,
D’

A’

C’

B’

m’ n’

p’ q’

O

dθ
ρ

y

M M + dM

b
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Young’s modulus is independent of the integral

with respect to the area. Therefore, the substitution

of (2) into (3) and (4) gives the following relations:
B

ð
A

sdA ¼
ð
A

EedA ¼E

r

ð
A

ydA ¼0 ð5Þ

M ¼
ð
A

EeydA ¼E

r

ð
A

y2dA ¼ E

r
I ð6Þ

where I is the moment of inertia of the cross section

with respect to the neutral axis and is defined by
I ¼
ð
A

y2dA ð7Þ

Equation (5) suggests that the neutral axis

passes through the centroid of the cross section.

Eliminating the radius of curvature r from (2)

and (6), the bending stress is expressed by
s ¼ My

I
ð8Þ
Thermal Stresses in Beams

When a beam is subjected to a temperature

change T and is unconstrained, it will expand

freely. The free thermal strain e is given as
e ¼ aT ð9Þ

where a is the coefficient of linear thermal expan-

sion. The bending deformation in beams subjected

to the mechanical loads is induced by the strain

which is a function of position y as shown in (1).

The beam subjected to the temperature change also

induces the bending deformation when the strain is

a function of position y in (9), i.e., the coefficient of
linear thermal expansion a and/or the temperature

change T are functions of position y. So the homo-

geneous materials have the bending deformation

only when the temperature change is a function of

position y, since thematerial properties are constant

in homogeneous materials. If the temperature

change is uniform in homogeneous materials, the

long bar just caused only the elongation or the
shrinkage. On the other hand, the uniform temper-

ature change can induce the bending deformation in

the inhomogeneous material beams or the compos-

ite beams, since the linear thermal expansion a is

a function of position y. We explain thermal

stresses in beams due to two causes: the tempera-

ture change and the material property difference.
Thermal Stresses in Beams Due to
Temperature Change

Let us consider the strain and stress in beams,which

consist of homogeneous materials, subjected to

thermal loads. When the beam is subjected to ther-

mal loads, it will be deformed. The deformation

will consist of axial elongation and of bending

when the thermal loads change along y direction.

We assume that the Bernoulli-Euler assumption is

valid also in the case of thermal loads as same as

mechanical loads. We take the neutral axis to pass

through the centroid of the cross section of the

beam. A fiber pq at a distance of y from the neutral

axis in the element elongates to p0q0 as shown in

Fig. 2. As a fibermn at the neutral axis elongates to

m0n0 due to the temperature change, the strain e at
the distance y from the neutral axis after deforma-

tion due to the temperature change is
ð10Þ

where r is the radius of curvature at the neutral

plane and e0 is the axial strain at the neutral plane.



B 368 Beams, Thermal Stresses
The strain e at a distance of y from the neutral axis

in the beam consists of the free thermal strain and

the strain due to the bending stress sx:
e ¼ aT þ sx
E

¼ e0 þ y

r
ð11Þ

Solving this equation for sx, we find
sx ¼ �aET þ e0Eþ E
y

r
ð12Þ

Since the beam is free from external forces,

the equilibrium of force and that of moment gives

the following relations:
ð
A

sxdA ¼ 0 ð13Þ

ð
A

sxydA ¼ 0 ð14Þ

where dA is a small element area of the cross

section at a distance of y from the neutral plane.

Substitution of (12) into (13) and (14) gives the

axial strain e0 and the curvature 1/r at the neutral

plane y ¼ 0 as follows:
e0 ¼ 1

EA

ð
A

aETðyÞdA ð15Þ

1

r
¼ 1

EI

ð
A

aETðyÞydA ð16Þ

where I is the moment of inertia of the cross

section. Then, the substitution of (15) and (16)

into (11) gives the thermal stress
sxðyÞ ¼ �aETðyÞ þ 1

A

ð
A

aETðyÞdA

þ y

I

ð
A

aETðyÞydA
ð17Þ

Equation (17) gives the general solution for

the thermal stress in the beam under thermal

loads. Now, we consider the boundary conditions

at the end of the beam on extension and bending:
the restrained extension in the axial direction

means that the axial strain is zero; the free exten-

sion in the axial direction means that the axial

strain is not zero and a finite value; the restrained

bending means that the curvature is zero; and the

free bending means that the curvature is not zero

and a finite value. The combination of these con-

ditions gives the four boundary conditions and

the thermal stresses:

(a) The thermal stress for the beam with per-

fectly clamped ends is
sðyÞ ¼ �aETðyÞ ð18Þ

(b) The thermal stress for the beam with free

extension and restrained bending ends is
sðyÞ ¼ �aETðyÞ þ 1

A

ð
A

aETðyÞdA ð19Þ

(c) The thermal stress for the beam with

restrained extension and free bending ends is
sðyÞ ¼ �aETðyÞ þ y

I

ð
A

aETðyÞydA ð20Þ

(d) The thermal stress for the beam with free

extension and free bending is given with (17).

Rectangular cross section is one of the most

commonly used cross-sectional shapes of the

beams. The thermal stress sx for the beam with

rectangular cross section of the height h and the

width b is
sxðyÞ ¼ �aETðyÞ þ 1

h

ðh=2
�h=2

aETðyÞdy

þ 12y

h3

ðh=2
�h=2

aETðyÞydy
ð21Þ

since the area dA and A and the moment of inertia

I are given as follows:
dA ¼ bdy; A ¼ bh; I ¼ bh3

12

We use homogeneous materials in almost

cases. Now we consider the case that the
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temperature change is constant and is not

a function of position y. Then the curvature 1/r
is zero from (16). The beam has no bending

deformation any more.
B

Thermal Stresses in Beams Due to
Material Properties Difference

Thermal Stresses in Composite Beams

We consider the thermal stresses in the composite

beams which consist of multiple homogeneous

beams with different material properties.

A simple example is two parallel beams clamped

at each end to rigid and non-heat-conducting

plates as shown in Fig. 3a. Each beam has differ-

ent cross section area Ai and temperature change

Ti (i ¼ 1, 2). The coordinate system is shown in

Fig. 3a. The origin of the coordinate y is taken at

arbitrary position between two beams, the origin

of the local coordinate yi is taken at the centroid of
the cross section of each beam, e denotes the

distance between the centroids of cross section of

both beams, and ei denotes the distance from y ¼ 0

to the centroid of the cross section of each bar.

The moments of the area of the cross section

for each beam are zero:
Ð
Ai
yidAi ¼ 0 ði ¼ 1; 2Þ ð22Þ

because the origin of the coordinate system

passes through the centroid of the section of

each beam.

When e0 and r denote the axial strain at y ¼ 0

and the radius of curvature at y¼ 0, respectively,
α1, E1, A1, T1

α2, E2, A2, T2

y

l

e

a

O

Beams, Thermal
Stresses, Fig. 3 Two

parallel beams clamped to

rigid plates at both ends.

(a) before deformation;

(b) after deformation
as shown in Fig. 3b, the strains exi at a distance of
y from the origin are expressed by the following

equation as same as (11)
exi ¼ aiTiðyiÞ þ
sxi
Ei

¼ e0 þ y

r
ði ¼ 1; 2Þ

ð23Þ

Then the stresses sxi may be expressed by
sxi ¼ Ei½e0 þ y

r
� aiTiðyiÞ� ði ¼ 1; 2Þ ð24Þ

The equilibrium of force and that of moment

given with (13) and (14) are valid since the beam

is free from the external forces. Using the rela-

tionship y2 ¼ y � e2 and y1 ¼ y � e1, we deter-

mine the normal strain e0 and the curvature 1/r at

y ¼ 0 to satisfy (13) and (14) as follows:
e0 ¼ PTIE2 �MTIE1
IE0IE2 � I2E1

1

r
¼ MTIE0 � PTIE1

IE0IE2 � I2E1

ð25Þ

where
IE0 ¼ E1A1 þ E2A2

IE1 ¼ e2E2A2 � e1E1A1

IE2 ¼ E1ðI1 þ A1e
2
1Þ þ E2ðI2 þ A2e

2
2Þ

PT ¼ PT1 þ PT2

PT1 ¼
ð
A1

a1E1T1ðy1ÞdA1
e1
x

e2

b

ε0

ρ

O
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two layers bonded together
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PT2 ¼
ð
A2

a2E2T2ðy2ÞdA2

MT ¼ MT1 þMT2 þ e2PT2 � e1PT1

MT1 ¼
ð
A1

a1E1T1ðy1Þy1dA1

MT2 ¼
ð
A2

a2E2T2ðy2Þy2dA2

Thus, the thermal stresses may be expressed by

sx1ðy1Þ ¼ �a1E1T1ðy1Þ
þ E1

PTIE2 �MTIE1
IE0IE2 � I2E1

þ ðy1 � e1ÞE1

MTIE0 � PTIE1
IE0IE2 � I2E1

sx2ðy2Þ ¼ �a2E2T2ðy2Þ
þ E2

PTIE2 �MTIE1
IE0IE2 � I2E1

þ ðy2 þ e2ÞE2

MTIE0 � PTIE1
IE0IE2 � I2E1

ð26Þ

We consider a beam of two layers, which has

different rectangular cross section b1 � h1 and

b2 � h2, respectively, bonded together and

subjected to temperature change Ti(y) as shown

in Fig. 4 as a special case of two parallel beams

clamped of to rigid plates at both ends in Fig. 3.

The cross sectional areas dAi and Ai and the

moment of inertia Ii and ei are given as follows:

dAi ¼ bidyi; Ai ¼ bihi; Ii ¼ bih
3
i

12
; ei ¼ hi

2

ð27Þ

Substituting (25) into (23), the normal strain and

the curvature 1/r at bonding surface are given as

follows:

e0 ¼ 2

D

�
2PTðE2b2h

3
2 þ E1b1h

3
1Þ

� 3MTðE2b2h
2
2 � E1b1h

2
1Þ
�

1

r
¼ 6

D

�
2MTðE2b2h2 þ E1b1h1Þ

� PTðE2b2h
2
2 � E1b1h

2
1Þ
�

ð28Þ
where
PT ¼
ð0
�h1

a1E1T1ðyÞb1dy

þ
ðh2
0

a2E2T2ðyÞb2dy

MT ¼
ð0
�h1

a1E1T1ðyÞyb1dy

þ
ðh2
0

a2E2T2ðyÞyb2dy

D ¼ðE2b2h
2
2 � E1b1h

2
1Þ

2

þ 4E1E2b1b2h1h2ðh1 þ h2Þ2

The thermal stresses are given with (24).

Now we consider the case that the temperature

changes in each layer are constant, i.e.,

T1(y) ¼ T2(y) ¼ constant. The curvature 1/r is

not zero in this case. The beam yields the bending

deformation and the thermal stresses. Bimetal is

one of such composite beam used as thermostat.

It consists of two different thin metal plates,

which are selected to yield large deformation

when it is heated by surrounding thermal field.

The large bending deformation may switch off

when the temperature exceeds the preset

temperature.

We consider an n-layered composite beam

with rectangular cross sections subjected to tem-

perature change Ti(y) as shown in Fig. 5. We take

the origin y ¼ 0 of the coordinate system y at the
upper surface of the composite beam.
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When e0 and r denote the axial strain at the

upper surface y¼ 0 and the radius of curvature at

y ¼ 0, respectively, the strains at a distance of y
from the origin are expressed by

ex ¼ aiTiðyÞ þ sxi
Ei

¼ e0 þ y

r
ði ¼ 1; 2; . . . ; nÞ

ð29Þ
Then, the stresses sxi may be expressed by
sxi ¼ Ei

�
e0 þ y

r
� aiTiðyiÞ

� ði ¼ 1; 2; . . . ; nÞ
ð30Þ

When external forces do not act on the layers,

the equilibrium of force and moment are given by

Xn
i¼1

ðyi
yi�1

sxibidy ¼ 0 ð31Þ

Xn
i¼1

ðyi
yi�1

sxibiydy ¼ 0 ð32Þ

where bi and hi ¼ yi � yi�1 denote the width and

the height of each layer, respectively, yi (i¼ 1, 2,

. . ., n) means the lower surface of the i-th beam,

and y0¼ 0. Substitution of (30) into (31) and (32)

yields the simultaneous equation on the normal

strain e0 and the curvature 1/r at y ¼ 0. Solving

the simultaneous equation, we obtain the normal

strain e0 and the curvature 1/r at y¼ 0 as follows
as same as (25). The thermal stresses may be

expressed from (30) as follows:
sxi ¼ Ei

"
PTIE2 �MTIE1
IE0IE2 � I2E1

þ y
MTIE0 � PTIE1
IE0IE2 � I2E1

� aiTiðyiÞ
#

ði ¼ 1; 2; . . . ; nÞ

ð33Þ

where
IE0 ¼
Xn
i¼1

Eibihi

IE1 ¼ 1

2

Xn
i¼1

Eibiðy2i � y2i�1Þ

IE2 ¼ 1

3

Xn
i¼1

Eibiðy3i � y3i�1Þ

PT ¼
Xn
i¼1

ðyi
yi�1

aiEiTiðyÞbidy

MT ¼
Xn
i¼1

ðyi
yi�1

aiEiTiðyÞybidy
Thermal Stresses in Inhomogeneous Beams

When the thickness of each layer hi in the multi-

layered composite beam is infinitely small, the

beam is regarded as one beam whose material

properties such as the coefficient of linear ther-

mal expansion a and Young’s modulus E depend

on position. The materials are known as inhomo-

geneous materials such as quenched steel, func-

tionally graded materials, and so on. We consider

the thermal stress in an inhomogeneous beam, in

which the coefficient of linear thermal expansion

and Young’s modulus are arbitrary functions of

position y as shown in Fig. 6.

We take the origin y ¼ 0 of the coordinate

system at the centroid of the cross section of the

beam. The relationship between the bending

strains is given by
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aðyÞTðyÞ þ sx
EðyÞ ¼ e0 þ y

r
ð34Þ

where e0 and 1/r denote the normal strain and the

curvature at y¼ 0, respectively. Solving (34), the

stresses sx may be expressed by

sx ¼ EðyÞ
�
e0 þ y

r
� aðyÞTðyÞ

�
ð35Þ

Since the beam is free from external forces and

moments, the equilibrium of force and moment in

(13) and (14) is also valid in this problem. The

normal strain e0 and the curvature 1/r are deter-

mined in the same expression in (25) to satisfy

(13) and (14):
sxðyÞ ¼ EðyÞ
�
PTIE2 �MTIE1
IE0IE2 � I2E1

þ y
MTIE0 � PTIE1
IE0IE2 � I2E1

� aðyÞTðyÞ
� ð36Þ

where
IE0 ¼
ð
A

EðyÞdA

IE1 ¼
ð
A

EðyÞydA

IE2 ¼
ð
A

EðyÞy2dA

PT ¼
ð
A

aðyÞEðyÞTðyÞdA

MT ¼
ð
A

aðyÞEðyÞTðyÞydA
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Overview

The classical body force analogy for static

problems of thermoelasticity is firstly stated.

Then we extended toward dynamic coupled

problems. We consider two dynamic prob-

lems, namely, a thermal problem without

body forces, but with a given distribution of

transient sources of heat, and a force problem

without sources of heat but with body forces.

Both problems are treated within the coupled

theory of thermoelasticity such that tempera-

ture must also be taken into account in the

force problem. We restrict our considerations

to the one-dimensional case, and we show

that, given suitable boundary and initial con-

ditions, a distribution of body forces can be

constructed such that the dynamic displace-

ments in both problems become equal. This

analogy is checked by means of illustrative

analytical examples. We also discuss the rela-

tions between the stresses and the temperature

in both problems, and we mention that

a similar analogy can be established, requiring

the temperatures in both problems to be equal.

In the end, extensions of the presented meth-

odology with respect to three-dimensional for-

mulations and with respect to the theory of

generalized thermoelasticity are briefly

presented.
Introduction

In statics, a well-known body force analogy does

exist, which dates back to Duhamel, and which

does not refer to stresses, but which refers to ther-

mal displacements. A contemporary discussion of

this Duhamel displacement analogy is given in the

comprehensive book on themathematical theory of

elasticity (see, e.g., Hetnarski and Ignaczak [1],

Noda, Hetnarski, and Tanigawa [2]). In its classical

form, it can be stated as follows. Consider the static

deformation of an isotropic linear thermoelastic

body under the action of a given temperature.

Then the thermal stresses can be obtained by addi-

tion of an imaginary pressure to the isothermal

stresses that follow by solving the isothermal

governing equations with certain imaginary body

forces and surface tractions (see [2] for

a contemporary proof). Moreover, the thermal dis-

placements due to the given temperature are iden-

tical to the isothermal displacements due to the

imaginary body forces and surface tractions. This

follows by comparing the thermal boundary-value

problem in hand with the imaginary isothermal

boundary-value problem introduced by the body

force analogy. We subsequently refer to the latter

result when talking about a body force analogy.

The question of a dynamic extension of the

aforementioned static body force analogy has

gained interest in connection with the compensa-

tion of force-induced vibrations in a linear elastic

body by smart actuation. This field is also known

as shape control in the literature (see, e.g., the

review papers by Irschik [3] and Ziegler [4] and

the literature cited therein). The actuating strains

that correspond to the physical effects are

denoted as eigenstrains [5]. In the context of

a transient actuation, it has been shown by Irschik

and Pichler [6, 7] that the vibrations induced by

transient forces in an anisotropic linear elastic

body can be exactly compensated when

a statically admissible transient stress is used as

actuation stress. Temperature required for dis-

placement compensation can easily be computed.

Conversely, assuming that the temperature is

given and reinserting the corresponding actuation

stress in the equilibrium equation and boundary

conditions for the statically admissible stress,

http://dx.doi.org/10.1007/978-94-007-2739-7_362
http://dx.doi.org/10.1007/978-94-007-2739-7_362
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imaginary body forces and surface tractions can

be computed such that the displacements due to

the temperature are exactly compensated.

This is not necessarily so, when coupling of

deformation and heating should be taken into

account in the heat conduction equation, which,

however, is often the case under dynamic condi-

tions. The deformations due to the forces then act

as a driving source in the coupled heat conduction

equation such that an additional temperature

arises, which enters the stress–strain–temperature

relationship. Nevertheless, the classical body

force analogy can be extended to the coupled

theory in the following sense. The thermal dis-

placements arising from an initial-boundary-

value problem of the coupled theory of

thermoelasticity are identical to isothermal

dynamic displacements due to suitable imaginary

body forces and surface tractions. The value of

the latter formulation lies in the fact that results

of the coupled theory can be checked by results of

the simpler isothermal theory. The drawback,

however, of such an imaginary type of analogy

is that it cannot be utilized directly in applications

because coupling, if it is of any practical impor-

tance, should be taken into account in both the

thermal problem and the force problem.

This entry is a complete extension of the clas-

sical static body force analogy to the coupled

theory of dynamic thermoelasticity [8]. We

restrict our considerations to the one-dimensional

case, and we show that, given suitable boundary

and initial conditions, a distribution of body

forces can be constructed such that the dynamic

displacements in both problems become equal.

This physical analogy is checked by means of

illustrative analytical examples. We also discuss

the relations between the stresses and the temper-

ature in both problems, and we point out that

a similar analogy can be established that requires

the temperatures in both problems to be equal.

Extensions of the presented methodology with

respect to three-dimensional formulations and

with respect to the theory of generalized

thermoelasticity (see, e.g., [9, 10]) are presented

shortly. Some technical books related to the gen-

eralized thermoelasticity have been published

(see, e.g., Ignaczak and Ostoja-Starzewski [11]).
The Classical Body Force Analogy for
Static Problems of Thermoelasticity

The basic equations are written as follows.

The strain–displacement equation:
E ¼ 1

2
ðHUþ HUTÞ ð1Þ

The equilibrium equation:
div Sþ b ¼ 0 ð2Þ

The energy equation:
-div qþ r ¼ c _y ð3Þ

The stress–strain–temperature equation:
S ¼ 2mEþ lðtrEÞ1� b y 1 ð4Þ

The heat equation:
q ¼ �kHy ð5Þ

Here, S stands for the stress tensor, andE is the

strain tensor. The r, l, m, b, c, and k are material

parameters, such that density, Lame’s constants,

thermoelastic constant, specific heat, and thermal

conductivity, which we take as independent of

temperature y. Sources of heat are denoted as r

and are assumed to be given. Once and for all we

assume that the fields introduced in (1)–(5) are

sufficiently smooth, in order that our mathemati-

cal operations appear to be justified. Hence, we

particularly exclude the presence of singular

surfaces.

Introduction of (5) into (3) yields the heat

conduction equation:
kH2y ¼ c _y� r ð6Þ

Introducing (4) into (2), we obtain Navier’s

equation:
mH2Uþ ðlþ mÞHðdivUÞ � bHyþ b ¼ 0 ð7Þ
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Navier’s equation (7) for thermoelasticity

become Navier’s equation for isothermal elastic-

ity if the gradient of temperature change is taken

as a body force. The generalized Hooke’s law (4)

can be rewritten in the form:
S ¼ S� � b y 1 ð8Þ

where
S� ¼ 2mEþ lðtrEÞ1 ð9Þ

Equations (9) correspond to Hooke’s law for

isothermal conditions. Substitution of (8) into (2)

leads to:
div S� þ b� ¼ 0 ð10Þ

where
b� ¼ b� bHy

This equation may be regarded as the body

force which contains the imaginary body forces

� bHy so that equilibrium equations (10) may be

considered as the equilibrium equations under

isothermal conditions.

This analysis shows that thermal stresses can

be obtained by addition of the pressure � b y to

the isothermal stresses S� which can be obtained

by solving the isothermal governing equations

with imaginary body forces and imaginary sur-

face tractions bHy .
The Body Force Analogy for Dynamic
Coupled Problems of Thermoelasticity

We consider two one-dimensional coupled

thermoelastic fields taken the coupling of the

strain to conduction of heat into account,

where the boundary conditions and initial con-

ditions for the displacement and temperature of

these fields are assumed equal. We denote

the displacement and temperature in the two

problems as U, y and �U, �y, respectively. The
basic equations of the first problem are written

as follows.
The equation of motion:
@s
@X

þ b ¼ r €U ð11Þ

The stress–strain–temperature relation:
s ¼ Yeþ yM ð12Þ

The strain–displacement relation:
e ¼ @U

@X
ð13Þ

The energy equation:
� @q

@X
þ r ¼ c _y� y0M_e ð14Þ

The heat equation:
q ¼ �K
@y
@X

ð15Þ

where s stands for the stress, and e is the strain.
The axial coordinate is denoted by X, and r, Y,M,

c, and K are material parameters, which we take

as independent of temperature y. Source of heat is
denoted as r and is assumed to be given. Note that

the coupling of the strain to conduction of heat is

taken into account by the last term in the energy

equation, (14), such that we deal with the so-

called coupled theory of thermoelasticity.

Once and for all, we assume that the fields

introduced in (11)–(15) are sufficiently smooth,

so that our mathematical operations appear to be

justified. Hence, we particularly exclude the pres-

ence of singular surfaces.

Introduction of (15) and (13) into (14) yields:
K
@2y
@X2

¼ c _y� y0M
@ _U

@X
� r ð16Þ

By introducing (12) into (11) and using rela-

tion (3), we obtain:

Y
@2U

@X2
þM

@y
@X

þ b ¼ r €U ð17Þ
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When we use same procedure and an analo-

gous notation, the basic equations of second

thermoelastic problem are:
K
@2�y
@X2

¼ c _�y� y0 M
@ �U

_

@X
� �r ð18Þ

Y
@2 �U

@X2
þM

@�y
@X

þ �b ¼ r �U
€ ð19Þ

We now assume that b ¼ 0 and �r ¼ 0. The

problem according to (16) and (17) will then be

denoted as the thermal problem, whereas the

problem stated in (18) and (19) will subsequently

be called the force problem as same as the case of

dynamical thermoelasticity problem. Then

the fundamental equations of the thermal prob-

lem are:
K
@2y
@X2

¼ c _y� y0 M
@ _U

@X
� r ð20Þ

Y
@2U

@X2
þM

@y
@X

¼ r €U ð21Þ

while the force problem reads:
K
@2�y
@X2

¼ c _�y� y0 M
@ �U

_

@X
ð22Þ

Y
@2 �U

@X2
þM

@�y
@X

þ �b ¼ r �U
€ ð23Þ

It is essential to note that the coupled theory of

thermoelasticity is taken into account in both the

thermal and the force problems.

We now introduce new notations:

U� ¼ U � �U

Y� ¼ y� �y ð24Þ

Subtracting (21) from (23) and (20) from (22)

yields the following equations:
Y
@2U�

@X2
þM

@Y�

@X
� �b ¼ r €U

� ð25Þ
K
@2Y�

@X2
¼ c _Y

� � y0 M
@ _U

�

@X
� r ð26Þ

To extend the classical body force analogy to

the coupled theory of dynamic thermoelasticity,

we seek the condition U� ¼ 0, that is, U ¼ �U.

Hence, we take the sources of heat, r, in (26) to

be given, and we seek for body forces �b in (25)

such that the displacements in the thermal and

force problems become equal.

The first step in our solution is as follows. We

assume that:
�b ¼ M
@Y�

@X
ð27Þ

Then (25) reduces to:
Y
@2U�

@X2
¼ r €U

� ð28Þ

which indeed has U� ¼ 0 as a solution because

the influent terms of temperature and body force

are disappear.

In the present context, the body force �b is

sought such that the displacements in the thermal

and force problems become equal. Therefore, an

equation for computing the body force �b is

needed. We suggest the following construction.

The differentiation of (27) yields:
@2Y�

@X2
¼ 1

M

@ �b

@X
ð29Þ

By use of (19), (16) becomes:

K

M

@ �b

@X
¼ c _Y

� � y0 M
@ _U

�

@X
� r ð30Þ

Further differentiation of this equation and

using (27) causes:

K

M

@2 �b

@X2
¼ c

M
_�b� y0 M

@2 _U
�

@X2
� @r

@X
ð31Þ

Hence, when we assume that U� ¼ 0, we

obtain the following partial differential equation

for the body force:



Body Force Analogy for Thermoelasticity 377 B

B

@2 �b

@X2
� c

K
_�b ¼ �M

K

@r

@X
ð32Þ

In other words, when we can guarantee that

U� ¼ 0 is the solution of (28), then (32) can be

used to compute a body force �b that equalizes the

displacements of the thermal problem due to the

sources of heat, r. To ensure a trivial solution of

(28), initial and boundary conditions must be

taken into account.

We state two cases for the mechanical and

thermal boundary conditions and initial condi-

tions, which indeed haveU� ¼ 0 as their solution.

Case 1.

Boundary condition U� ¼ 0;
@Y�

@X
¼ 0

Initial condition U� ¼ 0;Y� ¼ 0

ð33Þ
Case 2.

Boundary condition
@U�

@X
¼ 0;Y� ¼ 0

Initial condition U� ¼ 0;Y� ¼ 0

ð34Þ

In both cases, the mechanical and thermal

initial conditions of the force and the thermal

problem are taken as equal. At the boundaries,

either the displacements (case 1) or the stresses

(case 2) are equal in the force and the thermal

problems. Furthermore, either the temperature

(case 2) or the heat flux (case 1) must be equal

at the boundary. The two cases stated in (33) and

(34) thus cover a fairly wide range of problems

with possibly inhomogeneous boundary and ini-

tial conditions.

To compute a suitable solution of (32) that is

consistent with the preceding derivation, bound-

ary conditions and initial conditions are needed.

As will be seen in the subsequent analytical

examples, these conditions are provided by the

thermal conditions in (23) and (24).

We now turn to the stresses that are produced

in the force and thermal problems, assuming

the displacements to be equal. Subtracting the

stress–strain–temperature relation for the two

problems, we find from the stress–strain–

temperature relation (12):
s� ¼ s� �s ¼ Y�M ð35Þ

because the difference in strain vanishes. The

difference in temperature must then obey (27)

with U� ¼ 0.

Of course, one could have posed the analogy

in alternative setting. For example, one may ask

for a distribution of sources of heat so that the

displacements are equal in the force and displace-

ment problems, where this time the body forces

are given. The solution for this scenario follows

from (32), which can now be integrated directly

for r. Moreover, one might ask for body forces so

that the temperature in both problems becomes

equal. The displacements will then be generally

different. The strategy for solving this problem

can closely follow the preceding considerations.

One starts from (25) and (26), assuming the

temperature difference to be zero. One then elim-

inates the displacements to obtain a differential

relation for the body force. The problem of an

equal temperature, however, appears to be of

little practical relevance, because the temperature

associated with the force problem can be

expected to be small. Instead of writing down

the corresponding relations, we therefore turn to

an exemplary justification of the body force anal-

ogy for equal displacements.

First, we consider case 1 for one-dimensional

body with the region 0 � X � L, boundary con-

dition �b ¼ 0 and initial condition �b ¼ 0.
As an example, the source of heat r is taken as:
r ¼ r0 cos
pX
L

expð�atÞ ð36Þ

where r0 and a are arbitrary positive constants.

We put:
�b ¼ �b0 sin
pX
L

expð�atÞ ð37Þ

which is satisfied the boundary conditions. In

this case, it seems that the initial condition is

not be satisfied. In this case, Heaviside unit step

function that is discontinuous at t ¼ 0 is

omitted in order to avoid the difficulty in

differentiation at t ¼ 0. By substitution of
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(36) and (37) into differential equation (32), we

obtain the body force �b as:
�b ¼ �M

K

p
L

1

ðp=LÞ2 � ðc=KÞa r0 sin
pX
L

� expð�atÞ ð38Þ

When (36) and (38) are introduced into (25)

and (26), the following equations are obtained:
@2U�

@X2
� r
Y

€U
� þM

Y

@Y�

@X

¼ � 1

Y

M

K

p
L

1

ðp=LÞ2 � ðc=KÞa r0 sin
pX
L

expð�atÞ

ð39Þ

y0M
K

@ _U
�

@X
þ @2Y�

@X2
� c

K
_Y
�

¼ � 1

K
r0 cos

pX
L

expð�atÞ
ð40Þ

We take the solutions of differential equations

(39) and (40) to be:
U� ¼ A sin
pX
L

expð�atÞ ð41Þ

Y� ¼ B cos
pX
L

expð�atÞ ð42Þ

to satisfy the boundary condition U� ¼ 0,
@Y�
@X ¼ 0 and initial condition U� ¼ 0, Y� ¼ 0.

Then we obtain the displacement and

temperature:
U� ¼ 0 ð43Þ

Y� ¼ 1

K

1

ðp=LÞ2 � ðc=KÞa r0 cos
pX
L

expð�atÞ

ð44Þ

From (38) and (44), assumed relation (27) is

proved and expected equation (43) is also

obtained. Equation (44) shows that the difference

of temperature between the thermal and force
problems of coupled thermoelasticity is coinci-

dent with that of decoupled thermoelasticity.

Furthermore, to have an independent proof,

we insert (37) into (22) and (23) and seek the

solution, which must then be equal to the solution

of (20) and (21) with (36).

Inserting (36) into (22) and (23) and subse-

quent treatment similar to the aforementioned

procedure provides the following particular solu-

tions (not taking into account the initial

conditions):
�U ¼ � 1

K

M

Y

p
L

1

D
r0 sin

pX
L

expð�atÞ ð45Þ

�y ¼ 1

K

M

Y

p
L

� 	2 y0M
K

a
1

ðp=LÞ2 � ðc=KÞa
1

D
r0 cos

pX
L

expð�atÞ
ð46Þ

where
D ¼ p
L

� 	2
� c

K
a

� �
p
L

� 	2
þ r
Y
a2

� �
� y0M

K

M

Y

p
L

� 	2
a

ð47Þ

Apply the same procedure to (20) and (21)

with (36) produces:

U ¼ � 1

K

M

Y

p
L

1

D
r0 sin

pX
L

expð�atÞ ð48Þ

y ¼ 1

K

p
L

� 	2
þ r
Y
a2

� �
1

D
r0 cos

pX
L

expð�atÞ

ð49Þ

From these equations, we obtain, for the par-

ticular solutions:

U� ¼ U � �U ¼ 0 ð50Þ

Y� ¼ y� �y

¼ 1

K

1

ðp=LÞ2 � ðc=KÞa r0 cos
pX
L

expð�atÞ

ð51Þ

Hence, if the initial conditions are the same for

U and �U, then the total solutions for
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displacements are equal. Equations (50) and (51)

are coincident with (43) and (44), respectively;

therefore, the justifications of (43) and (44) are

reconfirmed.

Next we consider case 2, (34). From (30), the

boundary condition becomes:
@ �b

@X
¼ �M

K
r ð52Þ

and the initial condition is:
�b ¼ 0 ð53Þ

We take the example that:
r ¼ r0 sin
pX
L

expð�atÞ ð54Þ

Then the boundary conditions reduce to
@ �b
@X ¼ 0 at the boundaries X ¼ 0 and X ¼ L, so

the solution of differential equation (32) is:
�b ¼ M

K

p
L

1

ðp=LÞ2 � ðc=KÞa r0 cos
pX
L

expð�atÞ

ð55Þ

Equation (25) with (55) and (26) with (54) are

represented as follows:
@2U�

@X2
� r
Y

€U
� þM

Y

@Y�

@X

¼ 1

Y

M

K

p
L

1

ðp=LÞ2 � ðc=KÞa r0 cos
pX
L

expð�axÞ

ð56Þ

y0M
K

@ _U
�

@X
þ @2Y�

@X2
� c

K
_Y
�

¼ � 1

K
r0 sin

pX
L

expð�atÞ
ð57Þ

Applying the same procedure to case 1

produces:

U� ¼ 0 ð58Þ
Y� ¼ 1

K

1

ðp=LÞ2 � ðc=KÞa r0 sin
pX
L

expð�atÞ

ð59Þ

In accordance with case 1, the individual solu-

tions are obtained as follows:
�U ¼ 1

K

M

Y

p
L

1

D
r0 cos

pX
L

expð�atÞ ð60Þ

�y ¼ 1

K

M

Y

p
L

� 	2 y0M
K

a
1

ðp=LÞ2 � ðc=KÞa
1

D
r0 cos

pX
L

expð�atÞ
ð61Þ

U ¼ 1

K

M

Y

p
L

1

D
r0 cos

pX
L

expð�atÞ ð62Þ

y ¼ 1

K

p
L

� 	2
þ r
Y
a2

� �
1

D
r0 sin

pX
L

expð�atÞ

ð63Þ

where D is expressed as (47). Then, (58) and (59)

are reconfirmed by the use of these equations.
The Classical Body Force Analogy for
Generalized Thermoelasticity

The basic equations for generalized theory of the

first problem are written as follows:
E ¼ 1

2
ðHUþ HUTÞ ð64Þ

div Sþ b ¼ r €U ð65Þ

-div qþ my0tr _Eþ r ¼ c _y ð66Þ

S ¼ 2mEþ lðtrEÞ1þm y 1 ð67Þ

qþ t�0 _q ¼ �kHy ð68Þ

Here, S stands for the stress tensor, andE is the

strain tensor. The r, l, m, m, c and k are material

parameters, which we take as independent of y.
Sources of heat are denoted as r and are assumed
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to be given. Note that the coupling of the strain to

conduction of heat is taken into account by the

last term in the energy equation, (66) and the

relaxation time t�0 is included in the heat equation,
(68), such that we deal with the theory of gener-

alized thermoelasticity called as Lord and

Shulman’s theory [12]. Once and for all, we

assume that the fields introduced in (64)–(68)

are sufficiently smooth, in order that our mathe-

matical operations appear to be justified. Hence,

we particularly exclude the presence of singular

surfaces.

Introduction of (68) and (64) into (66) yields:
kH2y ¼ c _yþ t�0€y
� 	

� y0m H _Uþ t�0H€U
� �� r þ t�0 _r

� �
ð69Þ

Introducing (67) into (65) and using the rela-

tion (64) and assuming that b ¼ 0, we obtain:

mH2Uþ ðlþ mÞHðdivUÞ þ mHy ¼ r €U ð70Þ

When we use same procedure and an analo-

gous notation, the basic equations of second

thermoelastic problem are:
kH2�y ¼ c _�yþ t�0
€�y

� 	
� y0m H _�U þ t�0H �U

€
� 	

ð71Þ

mH2 �Uþ ðlþ mÞHðdivUÞ þmHyþ b ¼ r �U
€

ð72Þ

where we assume that �r ¼ 0. The problem

according to (69) and (70) then will be denoted

as the thermal problem, while the problem stated

in (71) and (72) will be called the force problem

subsequently.

We now introduce new notations:
U� ¼ U� U

Y� ¼ y� �y ð73Þ

Subtracting (70) from (72) and (69) from (71)

yields the following equations:
mH2U� þ ðlþ mÞHðdivU�Þ þmHY� � b ¼ r U�

ð74Þ

kH2Y� ¼ c _Y
� þ t�0 €Y

�� 	
� y0mH _U

� þ t�0 €U
�� 	

� r þ t�0 _r
� �

ð75Þ

In order to extend the classical body force

analogy to the generalized theory of

thermoelasticity, we seek the condition U� ¼ 0.

Hence, we take the sources of heat r in (75) to be
given, and we seek for body forces �b in (74), such

that the displacements in the thermal and in the

force problem become equal.

The first step in our solution for the body force

analogy stated in the previous Section is as fol-

lows. We assume that:
�b ¼ mHY� ð76Þ

Then (74) reduces to:
mH2U� þ ðlþ mÞHðdivU�Þ ¼ r U� ð77Þ

which indeed has U� ¼ 0 as a solution. In the

present context, the body force �b is sought such

that the displacements in the thermal and the

force problem become equal. An equation for

computing the body force �b is therefore needed.

We suggest the following construction. The dif-

ferentiation of (76) yields:
H2Y� ¼ 1

m
H�b ð78Þ

By use of (78), (22) becomes:
k

m
H�b ¼ c _Y

� þ t�0 €Y
�� 	

� y0mH _U
� þ t�0 €U

�� 	
� r þ t�0 _r
� �

ð79Þ

A further differentiation of this equation and

using (76) causes:
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k

m
H2�b ¼ c

m
ð _�bþ t�0

€�bÞ � y0mH2ð _U
� þ t�0 €U

�Þ
� Hðr þ t�0 _rÞ

ð80Þ

Hence, when we assume thatU� ¼ 0, we obtain

the following partial differential equation for �b:
H2�b� c

k
_�bþ t�0

€�b
� 	

¼ �m

k
H r þ t�0 _r
� � ð81Þ

In other words, when we can guarantee that

U� ¼ 0 is the solution of (75), then (81) can be

used to compute a body force �b which equalizes

the displacements of the thermal problem due to

the sources of heat r. The remaining procedures

are omitted here.
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Synonyms

Boundary element method
Definitions

Body force method (BFM) is a numerical

stress analysis method based on the superpo-

sition of a series of closed-form fundamental

solutions, which is usually a stress field due to

an isolated point force acting in an infinite

elastic body. Essentially, BFM is similar to

the boundary element method (BEM), but

BFM has clearer physical meaning than the

latter. In BFM, the solution process of an

elastic problem is as follows: (a) starting

from solution of point force, so the equilib-

rium condition and compatibility condition are

satisfied; (b) after superposing point forces,

determine the distribution of point force so

as to satisfy boundary condition. The super-

posed elastic field is the solution of the given

problem, because the solution of elastic prob-

lem is unique.

In the early stage of the progress of the

method, it was mainly applied to elastostatic

problems for calculating the stress concentra-

tion factors of notches and the stress intensity

factors of cracks. In recent decades, the

method was extended so as to be applicable to

the elastic–plastic problems, the elastodynamic

problems, the thermoelastic problems, and the

inverse problems of cracks. Also, the method

was used to study the theoretical problems

of stress analysis such as the linear notch

mechanics and the effect of elastic constants

on stresses.
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Overview

Nisitani and Chen have made great contributions

to the development of body force method. The

body force method was originally proposed by

Nisitani [1] in 1967 as a versatile method of

numerical stress analysis, and Chen expanded the

research fields of BFM. In the early stage of the

progress of the method, it was mainly applied to

elastostatic problems for calculating the stress

concentration factors of notches and the stress

intensity factors of cracks [2–6]. In the 1980s and

1990s, the method was extended so as to be appli-

cable to the elastic–plastic problems [7, 8], the

elastodynamic problems [9–11], the thermoelastic

problems [12], and the inverse problems of cracks

[13, 14]. Also, the method was used to study the

theoretical problems of stress analysis such as the

linear notch mechanics [15, 16] and the effect of

elastic constants on stresses [17, 18].

Comparing to the more popular numerical

methods, such as the finite element method

(FEM) and the finite-difference method (FDM),

which can be classified as the domain methods,

the BFM distinguishes itself as a boundary

method (similar to the boundary element method,

BEM), meaning that the numerical discretization

is conducted at reduced spatial dimension. For

example, for problems in three spatial dimen-

sions, the discretization is performed on the

bounding surface only, and in two spatial dimen-

sions, the discretization is on the boundary con-

tour only. This reduced dimension leads to

smaller linear systems, less computer memory

requirements, and more efficient computation.
Basic Methodology

The framework and basic methodology of the

BFM are well summarized in [19, 20], and some

of the following contents are recited from them.

BFM is a method based on the principle of

superposition. An unknown elastic field can be

expressed by superposing some specific known

elastic fields with some unknown weight magni-

tudes because the elastic fields are superposable.

That is as follows [20],
elastic field

under inverstigation
¼
X specific known

solution

of elastic field

�
unknown weight

magnitudes

ð1Þ

So, the solution of the given problem could be

transformed to solve the unknown weight magni-

tudes. In BFM, the fundamental solutions are the

elastic fields due to a point force and/or

a discrepancy. By using these fundamental solu-

tions, the given problem is treated as if it exists in

an infinite body, where the point forces and/or

discrepancies are continuously distributed along

an imaginary boundary.

As shown in Fig. 1, an arbitrary elastic body is

subjected to a given surface force tnIi ðQÞ; Q 2 G,
and could be simulated by the elastic field caused

by the point forces continuously distributed along

the imaginary boundary G, with a density of

’�ðQÞ, in an infinite body. The displacement

and stress in the domain OI are obtained by

superposition of the displacement and stress due

to all the point forces acting in the infinite body as

follows [20]:
uiðPÞ ¼
ð
G
uiðP;Q�Þ’�ðQÞdGðQÞ ðP 2 OIÞ

ð2Þ

sijðPÞ ¼
ð
G
sijðP;Q�Þ’�ðQÞdGðQÞ ðP 2 OIÞ

ð3Þ

where uiðP;Q�Þ and sijðP;Q�Þ are the i-direction
displacement and the stress sij at a point P due to

the �- direction unit point force acting at a point

Q respectively.

The unknown density ’�ðQÞ of point forces in
(2) and (3) can be determined from the displace-

ment or stress boundary condition equation.

When we get the value of ’�ðQÞ, we could cal-

culate the stress at an arbitrary point P;P 2 OI

from (2) and (3).
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Fig. 1 Elastic field

simulated by one in an

infinite body, in which

point forces are distributed

along an imaginary

boundary
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Fig. 2 Elastic field

simulated by one in an

infinite body, in which

discrepancies are

distributed along an

imaginary boundary
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Similarly, if the fundamental solution is the

elastic field due to a discrepancy, the elastic field

under investigation could be transformed to solve

the unknown density,c�ðQÞ, of the discrepancies
distributed along the imaginary boundary in an

infinite body, as shown in Fig. 2.

Thus, the displacement and stress in the

domain OI are expressed as follows [20]:
uiðPÞ ¼
ð
G
u�i ðP;Qn

�Þc�ðQÞdGðQÞ ðP 2 OIÞ
ð4Þ

sijðPÞ ¼
ð
G
s�ijðP;Qn

�Þc�ðQÞdGðQÞ ðP 2 OIÞ
ð5Þ

where u�i ðP;Qn
�Þ and s�ijðP;Qn

�Þ are the i-direction
displacement and the stress sij at a point P due to

the � -direction unit concentrated discrepancy of
facets, whose normal vector is of the n-direction,

acting at a point Q, respectively.
In (4) and (5), the unknown is the density of

discrepancies c�ðQÞ, which can be solved from

the boundary condition equation for displace-

ment or traction, as in the case of ’�ðQÞ being
the unknown in (2) and (3).

In a more general case, as shown in Fig. 3,

both of the elastic fields due to point forces and

that due to discrepancies can be used as the fun-

damental solutions at the same time; the elastic

field in the domain OI could be expressed by

a sum of those due to the point forces and the

discrepancies. The displacement and stress in the

domain OI are written in the following form [20]:

uiðPÞ ¼
ð
G
ui P;Q�

� �
’�ðQÞdGðQÞ

þ
ð
G
u�i ðP;Qn

�Þc�ðQÞdGðQÞ ðP 2 OIÞ
ð6Þ
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Fig. 3 Elastic field

simulated by one in an

infinite body, in which

point forces and

discrepancies are

distributed along an

imaginary boundary
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sijðPÞ ¼
ð
G
sij P;Q�

� �
’�ðQÞdGðQÞ

þ
ð
G
s�ijðP;Qn

�Þc�ðQÞdGðQÞ ðP 2 OIÞ
ð7Þ

When solving the two unknowns, ’�ðQÞ and
c�ðQÞ, in (6) and (7), one of them could be

assumed arbitrarily, and the other one is deter-

mined from the boundary condition equations,

which are obtained from (6) or (7) by moving

the observation point P to the boundary G.
In BFM, the stress field in the domain OI is

simulated by the stress field in the subdomain OI

in an infinite body, so that the fundamental solu-

tions, which are the elastic fields due to point

forces and/or discrepancy in an infinite body,

can be used. It could be proved that the densities

of point forces and/or discrepancies in (2)–(7) are

existent and the stress field under investigation is

fully equivalent to that caused by the point forces

and/or discrepancies with the solved densities

[20]. In the process of proving, an auxiliary

domain OE is needed. Its shape is defined as

an infinite body with a cavity, which has the

same shape as the boundary of the domain

under investigation. The auxiliary domain OE is

assumed to subject to an arbitrary surface force

tnEi ðQÞ; Q 2 G on the boundary and an arbitrary

body force f Ei ðQÞ in the domain, which result

in a displacement uEi ðQÞ on the boundary.
There will be a gap between the domain OI and

the auxiliary domain OE because the boundary

displacement of these two domains is inconsistent.

In order to prevent the disturbing of the stress field

in domain OI, the gap could be simply treated as

discrepancies distributed along the boundary G of

the auxiliary domain OE. After this inserting, we

could obtain a perfect infinite body.

The whole process implies that the elastic field

in the domain under investigation can be obtained

simply by a superposition of all the actions

applied in the infinite body, which includes the

body force acting on both domains, the point

force acting along the imaginary boundary, and

the discrepancies distributed along the boundary.

More detailed process of the proving could be

seen in [20].
Key Research Findings

Stress Analysis

Stress Concentration Factor Calculation

The BFM was used to calculate stress concentra-

tion factors by Nisitani and Noda [21]. The stress

concentration problem of a cylindrical bar with

a circumferential groove (Fig. 4) is mainly

concerned in designing of shafts, and many

fatigue test specimens are also fabricated with

V-shaped circumferential groove. In solving

this problem, the stress fields due to ring

forces in an infinite body, as shown in Fig. 5,
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V-shaped circumferential groove [21]
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Body Force Method, Fig. 5 Fundamental solutions for

bending problems in BFM [21]
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are used as the fundamental solutions [21].

Figure 6 shows the stress concentration factors

of a 60� V-shaped notch under bending. As

a result of the systematic calculations, it has

been found that the stress concentration factors

obtained by Neuber’s trigonometric rule used

currently have nonconservative errors of about

10 % for a wide range of notch depths.

Singular Thermal Stress Calculation

Nisitani and Chen studied the singular thermal

stress problems using BFM [19]. This problem is

shown in Fig. 7; an infinite plate contains an

inclusion and the temperature changes from T to

T þ DT, where G1; v1; a1 and G2; v2; a2 denote
shear modulus, Poisson’s ratio, coefficient of

thermal expansion for the infinite plate, and the

inclusion, respectively.
Based on BFM, Nisitani and Chen found that

the singular thermal stress field near a corner tip

caused by the thermal mismatch of different mod-

uli (Fig. 8d) is equivalent to the singular elastic

stress field caused by body forces, applied at

points on the interface with a density of

fT ¼ 4G2ða2�a1Þ
k2�1

DT, where k2 ¼ 3� v2ð Þ= 1þ v2ð Þ
for plane stress and k2 ¼ 3� v2 for plane strain.

This finding enables us to obtain the stress inten-

sity factors of a singular thermal stress field from

the available data on the stress intensity factors

of a singular elastic stress field caused by point

force [19].

Crack Problems

The BFM has an obvious advantage in dealing

with crack problems. The singular stress field
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a 60�V-shaped notch under
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Body Force Method, Fig. 7 Thermoelastic problem of

an infinite plate containing an inclusion for a temperature

change from T to T þ DT [19]
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near the crack tip could be well simulated by

using BFM. In the body force method, force

doublets are used in place of the discrepancies

because the discrepancy can be caused by force

doublets. In two-dimensional crack problems, the

definition of force doublets used in the body force

method is given in Fig. 9 [20], from which it is
seen that a unit tension-type force doublet acting

in xixi -direction would cause an i-direction dis-

crepancy acting on an i-direction facet and hav-

ing a magnitude of CD, which could be expressed

as [20],
CD ¼ k � 1ð Þ
G jk þ 1ð Þ ð8Þ

and a unit shear-type force doublet acting in xixj -
direction would cause an i-direction discrepancy

acting on an j-direction facet and having a mag-

nitude of [20]
CD ¼ 1

G
ð9Þ

where G and v denote the shear modulus

and Poisson’s ratio, respectively, and

k¼ 3� vð Þ= 1þ vð Þ for plane stress and

k¼ 3�4v for plane strain.
In BFM, the crack problem could be

transformed to solve the unknown densities

x�xðQÞ of force doublets, which are acting on

the imaginary crack surface Gcrack in a body with-

out crack. Concerning the force balance condi-

tion on the imaginary crack surface, we can get an

integral equation which could be solved by using
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Body Force Method,
Fig. 9 Force doublets for

two-dimensional crack

problems. (a) Tension-type

force doublets. (b) Shear-

type force doublets [20]
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Body Force Method,
Fig. 10 A crack in an

infinite plate subjected to

a uniform tension and shear
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numerical method. The imaginary crack surface

is divided into several elements, and in each

element, the density of the force doublets is

assumed to be constant. After this approximation,

the integral equation is transformed into a system

of linear algebraic equations and could be solved

easily. A quite accurate solution could be

obtained even when the division number of the

crack surface is not large (e.g., the division num-

ber is 50) [22].

Stress Intensity Factors for 2D Crack Problem

As the simplest case, Fig. 10 shows a two-

dimensional crack in an infinite plate under

remote mechanical load. When this problem

is analyzed by BFM, a series of tension-type

force doublets and shear-type force doublets

are assumed to distribute along the imaginary

crack line in an infinite plate. The tension-

type force doublets are acting in x2x2 direc-

tions, and the shear-type force doublets are

acting in x1x2 directions. For the problem

of Fig. 10, the densities of these force dou-

blets can be obtained in a closed form as

follows [20]:
x22 x1ð Þ ¼ k þ 1ð Þ2s122
2 k � 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
x12 x1ð Þ ¼ ðk þ 1Þs112

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
8>><>>: ð10Þ

where a is the half length of the crack and x1 is

the distance measured from the crack center

point.

Note that both x22 x1ð Þ and x12 x1ð Þ could be

expressed in the form of (constant) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
.

We can define a basic density function of the

force doublets ’ x1ð Þ, expressed as [20]
’ x1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x21

q
ð11Þ

And (10) could be changed to the form [20],
x22 x1ð Þ ¼ W2 x1ð Þf x1ð Þ
x12 x1ð Þ ¼ W1 x1ð Þf x1ð Þ

(
ð12Þ

Another advantage of using basic density

functions is that the intensities of the singular
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Fig. 11 A crack in the

neighborhood of an

inclusion under

thermomechanical

loads [22]
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Body ForceMethod, Fig. 12 Interaction of crack and inclusion under thermomechanical loads is transformed to three

simple problems [22]
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stress field can be directly obtained from the

values of the weight functions at the crack

tip, W1ðaÞ and W2ðaÞ, by the following

expressions [20]:
KI ¼ 2 k � 1ð Þ
k þ 1ð Þ2

ffiffiffiffiffiffi
pa

p
W2ðaÞ

KII ¼ 2

ðk þ 1Þ
ffiffiffiffiffiffi
pa

p
W1ðaÞ

8>>><>>>: ð13Þ
Interaction of Crack and Inclusion Under

Thermomechanical Loads

Chen Yong studied the effects of nonmetallic

inclusion of Al2O3 on the SIFs in FGH 95 PM

superalloys (similar to Rene95 PM superalloy)

under the coupling of remote mechanical loads

and thermal loads by using BFM [22]. The prob-

lem is described in Fig. 11.

As shown in Fig. 12, to use the principle of

superposition, the inclusion and crack interaction
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Fig. 13 Normalized stress

intensity factors for Al2O3/

FGH95 under combined

thermal loads and

mechanical loads at

different distances d/R

from the crack tip A to the

interface [22]
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problem under thermomechanical loads is

transformed to three simple problems, which are

as follows: (a) a plate with an inclusion under

remote mechanical loads, (b) a plate with an

inclusion in a uniform temperature field, and (c)

a plate with an inclusion and a series of force

doublets acting on the imaginary crack line.

Figure 13 shows normalized SIFs for Al2O3/

FGH95 under different combined thermal and

mechanical loads (different values of r and the

definition of r can be seen in [22]) at different

distances d/l from the crack tip A to the interface.
Compression thermal stresses (r ¼ �0.1) lead to

slightly decreasing SIFs, which means the crack

was slightly stabilized when it is propagating

toward the inclusion. But the reduction amount

of SIFs is very small. Thermal stress has little

effect on the SIFs, so the SIFs under combined

loads are dominated by the mechanical load.

Elastic–Plastic Problems

Calculation of Welding Residual Stress

Body force method can be extended so as to be

applicable to elastic–plastic problems. The basic



Body Force Method,
Fig. 15 Procedure for the

replacement of the plastic

strain epij by a force doublet

of magnitude Ti j. (a)

Elastic–plastic body. (b)

Extraction of yielded

element without changing

stresses. (c) Replacement to

elastic element. (d)

Compensation of element

shrinkage. (e) Partially

replaced body [23]
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principle of analysis is the same as in the case of

elastic problems. That is, the problem is

replaced by an infinite body without any plastic

zone and the solution of the problem is obtained

by superposition of the fundamental elastic

fields. We can transform the problem to

a problem of an infinite body by inserting the

domain under investigation into an auxiliary

domain. Therefore, the key point for analyzing

the elastic–plastic problems is how to replace

the plastic zone by an elastic element. Saimoto

and Imai’s research result could be shown here

as an example [23].

Saimoto and Imai studied the problem of ther-

mally induced residual stress under plane-strain

constraint based on BFM [23]. As a numerical

example, a simple problem of limited plasticity

due to a uniform strength of transient line heat

source of finite width, which is applied to

a surface of a semi-infinite solid for a short dura-

tion of time, was considered.
Figure 14 shows a simplified welding model.

A transient line heater of uniform strength and of

width “w” is applied to a surface of a semi-infinite

medium for a short duration of time with a chosen

strength so that the total heating energy delivered

from the heater resembles the one expected

under actual welding of stainless steel. Residual

stress in the out-of-plane (z) direction becomes

significant.

Figure 15 shows the process of replacement of

the plastic strain by a force doublet. For more

information of the transforming procedure,

please see ref. [23]. And Fig. 16 shows the Resid-

ual stress after cooling.

According to ref. [23], it was found that the

residual stress in the out-of-plane direction szz
can be estimated independently of the in-plane

residual stress components sxx and syy. It was
also found that the proposed method provides an

effective and efficient scheme for treating

a problem of limited plasticity.
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Body ForceMethod, Fig. 17 Two penny-shaped cracks

in an infinite body subjected to torsional and tensile

impact [20]

Body Force Method, Fig. 16 Residual stress after
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B 392 Body Force Method
Elastodynamic Problem

The body force method can also be extended to

elastodynamic problems. The procedure of using

BFM dealing with elastodynamic problems is sim-

ilar to that of dealing with elastic–plastic problems.

Consider an elastodynamic problem in

a domain OI which is subjected to a given body

and surface force; both of them vary with the

time. In order to construct an integral equation

expressing the elastodynamic field under investi-

gation, we insert the domain under investigation

OI into an auxiliary domain OE as in the case

of the elastostatic problem. In this case, however,

the gaps between domainsOI andOE change with

the time. Therefore, the density of distributed

discrepancies to be embedded along the imagi-

nary boundary is a function of time. For more

information, please see ref. [20].
Figure 17 shows two penny-shaped cracks in

an infinite body subjected to torsional and tensile

impact. And Figs. 18 and 19 show the variation of

dynamic stress intensity factors with time for

torsional and tensile impact, respectively.
Future Directions for Research

BFM has the advantage of reduced dimension

that leads to smaller linear systems, less computer

memory requirements, and more efficient com-

putation. But the applications of BFM to solve

theoretical and engineering problems are very

limited. Partly because the fundamental solutions

of point force acting in an infinite body are not

easy to obtain. This situation leads to the lack of

software platform support. So, one direction

of BFM research is the collection and integration

of all kinds of basic solutions to build a database

and support numerical calculation software
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platform. On the other hand, the utilization of

BFM in nonlinear and dynamic problems should

be strengthened.
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Thermoelasticity

Akihide Saimoto
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Nagasaki University, Nagasaki, Japan
Overview

The body force method (BFM) is a numerical

technique for stress analysis, originally proposed

by Professor Hironobu Nisitani in 1967 [1]. The

essence of BFM is to transform a given elastic

problem to an equivalent problem of infinite

domain in which body forces are embedded.

That is, a solution of given elastic problem is

expressed by a superposition of elementary solu-

tions called fundamental solution. As a funda-

mental solution to be superposed, stress fields

due to an isolated point force acting in an infinite

plate (for 2D problems) [2] or an infinite solid

(for 3D problems) [3] are preferably used.

According to the ordinal classification, BFM is
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considered as an indirect boundary element

method as the stress and displacement at

a reference point is expressed in terms of densi-

ties of body force. In BFM, density of body force

is an unknown function to be determined through

boundary conditions. If boundary condition is

satisfied exactly, it means that an exact solution

is derived by BFM. In thermoelastic analysis, not

only the elastic field due to point force but also

a thermoelastic field due to point heat acting in an

infinite domain is used as a fundamental solution.
Basic Concept

Based on the principle of BFM, any elastic prob-

lem is transformed into a problem of a complete

infinite domain without any hole or crack. That is,

a boundary of given problem is replaced by an

equivalent imaginary boundary along which

body force or body force doublets are embedded.

Let us consider a problem shown in Fig. 1. The

given problem (left of Fig. 1) is replaced by

a problem of an infinite domain (right of Fig. 1)

without an oval notch but with distributed point

forces. In this figure, O is a region corresponding

to the given problem. Oc is an auxiliary region

introduced to produce a perfect infinite domain.

The body force is embedded along the periphery

ofOc, which is referred as an imaginary boundary

G. The reference point P is an arbitrary point in

a region O, and the source point Q lies on G. In
BFM, stresses and displacements at a point P can

be calculated by
given problem

y
P

Body Force Method for
Thermoelasticity,
Fig. 1 Basic concept of

body force method (tension

of infinite plate with oval

notch)
sijðPÞ ¼ s1ij ðPÞ þ
ð
G
skijðP;QÞfkðQÞdG ðP 2 O;Q 2 GÞ

ð1Þ

for stress components and

uiðPÞ ¼ u1i ðPÞ þ
ð
G
uki ðP;QÞfkðQÞdG ðP 2 O;Q 2 GÞ

ð2Þ

for displacement components. In (1) and (2),

a summation convention is taken account. That

is, i and j are free indices, and k is a dummy index

which takes either of (x, y) for 2D and (x, y, z) for

3D problems.

In these equations, skijðP;QÞ and uki ðP;QÞ are
the fundamental solutions. For instance,

syxxðP;QÞ is a sxx component of stress at

a reference point P due to a unit magnitude of

point force of y direction acting at a source point

Q in an infinite medium, and uxyðP;QÞ is a y

component of displacement at a reference point

P due to a unit magnitude of point force of x
direction acting at a source point Q in an infinite

medium. fxðQÞ and fyðQÞ are the unknown den-
sity functions of body force to be determined so

that the boundary conditions are satisfied.

Concrete Forms of Fundamental Solutions

for 2D Elasticity

The simplest and the most frequently used fun-

damental solution in 2D analysis is a stress field

due to a unit magnitude of an isolated point force

acting in an infinite plate (Fig. 2). The complete
Γ

Ω

s s

problem of infinite domain

x x

P

PΓ

Ωc

imaginary
boundary

Q

yyyy
∞ ∞
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Body Force Method for Thermoelasticity, Fig. 2 The

fundamental solutions for 2D problems

x

y

z

P(x,y,z)

Fx

Fz

Fy
Q (ξ,η,ζ)

Body Force Method for Thermoelasticity, Fig. 3 The

fundamental solutions for 3D problems
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expressions of set of fundamental solutions for

2D problems [2] are as follows:
sxxxðP;QÞ ¼ � x�x
2pðkþ1Þ

k
r2 þ 3ðx�xÞ2�ðy��Þ2

r4

h i
sxyyðP;QÞ ¼ x�x

2pðkþ1Þ
k
r2 � ðx�xÞ2þ5ðy��Þ2

r4

h i
txxyðP;QÞ ¼ � y��

2pðkþ1Þ
k
r2 þ 3ðx�xÞ2�ðy��Þ2

r4

h i
9>>>>=>>>>;
ð3Þ

syxxðP;QÞ ¼ y��
2pðkþ1Þ

k
r2 � 5ðx�xÞ2þðy��Þ2

r4

h i
syyyðP;QÞ ¼ � y��

2pðkþ1Þ
k
r2 � ðx�xÞ2�3ðy��Þ2

r4

h i
tyxyðP;QÞ ¼ � x�x

2pðkþ1Þ
k
r2 � ðx�xÞ2�3ðy��Þ2

r4

h i
9>>>>=>>>>;
ð4Þ

and

uxxðP;QÞ ¼
1

2pGðkþ 1Þ klog
1

r
þ ðx� xÞ2

r2

" #

uyxðP;QÞ ¼ uxyðP;QÞ ¼
1

2pGðkþ 1Þ
ðx� xÞðy� �Þ

r2

uyyðP;QÞ ¼
1

2pGðkþ 1Þ klog
1

r
þ ðy� �Þ2

r2

" #

9>>>>>>>>>=>>>>>>>>>;
ð5Þ
where ðx; yÞ are the coordinates of reference point
P and ðx; �Þ are the coordinates of source pointQ.
k is Kolosov’s index defined as k ¼ 3�n

1þn for plane

stress and k ¼ 3� 4n for plane strain, in which n
is Poisson’s ratio. G is a shear modulus of the

material, and r is a distance between P and Q so

that r2 ¼ ðx� xÞ2 þ ðy� �Þ2.

Concrete Forms of Fundamental Solutions

for 3D Elasticity

The simplest and the most frequently used fun-

damental solution in 3D analysis is a stress field

due to a unit magnitude of an isolated point force

acting in an infinite solid (Fig. 3). The complete

expressions of fundamental solution for 3D prob-

lems [3] are as follows:
sxxxðP;QÞ ¼ � x�x
8pð1�nÞ

1�2n
r3 þ 3

ðx�xÞ2
r5

h i
sxyyðP;QÞ ¼ x�x

8pð1�nÞ
1�2n
r3 � 3

ðy��Þ2
r5

h i
sxzzðP;QÞ ¼ x�x

8pð1�nÞ
1�2n
r3 � 3

ðz�zÞ2
r5

h i
txyzðP;QÞ ¼ � 3

8pð1�nÞ
ðx�xÞðy��Þðz�zÞ

r5

txzxðP;QÞ ¼ � z�z
8pð1�nÞ

1�2n
r3 þ 3

ðx�xÞ2
r5

h i
txxyðP;QÞ ¼ � y��

8pð1�nÞ
1�2n
r3 þ 3

ðx�xÞ2
r5

h i

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

ð6Þ
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syxxðP;QÞ ¼ y��
8pð1�nÞ

1�2n
r3 � 3

ðx�xÞ2
r5

h i
syyyðP;QÞ ¼ � y��

8pð1�nÞ
1�2n
r3 þ 3

ðy��Þ2
r5

h i
syzzðP;QÞ ¼ y��

8pð1�nÞ
1�2n
r3 � 3

ðz�zÞ2
r5

h i
tyyzðP;QÞ ¼ � z�z

8pð1�nÞ
1�2n
r3 þ 3

ðy��Þ2
r5

h i
tyzxðP;QÞ ¼ � 3

8pð1�nÞ
ðx�xÞðy��Þðz�zÞ

r5

tyxyðP;QÞ ¼ � x�x
8pð1�nÞ

1�2n
r3 þ 3

ðy��Þ2
r5

h i

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

ð7Þ

szxxðP;QÞ ¼ z�z
8pð1�nÞ

1�2n
r3 � 3

ðx�xÞ2
r5

h i
szyyðP;QÞ ¼ z�z

8pð1�nÞ
1�2n
r3 � 3

ðy��Þ2
r5

h i
szzzðP;QÞ ¼ � z�z

8pð1�nÞ
1�2n
r3 þ 3

ðz�zÞ2
r5

h i
tzyzðP;QÞ ¼ � y��

8pð1�nÞ
1�2n
r3 þ 3

ðz�zÞ2
r5

h i
tzzxðP;QÞ ¼ � x�x

8pð1�nÞ
1�2n
r3 þ 3

ðz�zÞ2
r5

h i
tzxyðP;QÞ ¼ � 3

8pð1�nÞ
ðx�xÞðy��Þðz�zÞ

r5

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;
ð8Þ

and
uxxðP;QÞ ¼ 1
16pGð1�nÞ

3�4n
r þ ðx�xÞ2

r3

h i
uxyðP;QÞ ¼ uyxðP;QÞ ¼ 1

16pGð1�nÞ
ðx�xÞðy��Þ

r3

uxzðP;QÞ ¼ uzxðP;QÞ ¼ 1
16pGð1�nÞ

ðz�zÞðx�xÞ
r3

9>>>>=>>>>;
ð9Þ

uyxðP;QÞ ¼ uxyðP;QÞ ¼ 1
16pGð1�nÞ

ðx�xÞðy��Þ
r3

uyyðP;QÞ ¼ 1
16pGð1�nÞ

3�4n
r þ ðy��Þ2

r3

h i
uyzðP;QÞ ¼ uzyðP;QÞ ¼ 1

16pGð1�nÞ
ðy��Þðz�zÞ

r3

9>>>>>=>>>>>;
ð10Þ

uzxðP;QÞ ¼ uxzðP;QÞ ¼ 1
16pGð1�nÞ

ðz�zÞðx�xÞ
r3

uzyðP;QÞ ¼ uyzðP;QÞ ¼ 1
16pGð1�nÞ

ðy��Þðz�zÞ
r3

uzzðP;QÞ ¼ 1
16pGð1�nÞ

3�4n
r þ ðz�zÞ2

r3

h i
9>>>>>=>>>>>;
ð11Þ
where ðx; y; zÞ are the coordinates of reference

point P and ðx; �; zÞ are the coordinates of source
point Q. r is a distance between P and Q so that

r2 ¼ ðx� xÞ2 þ ðy� �Þ2 þ ðz� zÞ2. When the

reference point P approaches to the source point

Q, stress solutions designate a singularity of order

Oðr�1Þ for 2D and Oðr�2Þ for 3D problems.

Therefore, in case if P approaches to the imagi-

nary boundary G, a special consideration for

a boundary integral is required.
An Example: A Circular Hole Problem

Solution of Stresses in Terms of Boundary

Integrals

Consider an infinite plate with a circular hole of

radius a and is subjected to a uniform tensile

stress s1yy at infinity. Let the origin of coordinate
system coincide with a center of circular hole

and express the coordinate of the source point

Qðx; �Þ onG by means of circumferential angle y
such that x ¼ acosy and � ¼ asiny. Then, the
components of stresses and displacements at

a reference point Pðx; yÞ can be written as

follows:
sxxðx; yÞ ¼
þ
fsxxxðx; y; x; �ÞfxðyÞ
þ syxxðx; y; x; �ÞfyðyÞgady

syyðx; yÞ ¼ s1yy þ
þ
fsxyyðx; y; x; �ÞfxðyÞ

þ syyyðx; y; x; �ÞfyðyÞgady

txyðx; yÞ ¼
þ
ftxxyðx; y; x; �ÞfxðyÞ

þ tyxyðx; y; x; �ÞfyðyÞgady

ð12Þ

In these expressions, dG (an infinitesimal

length measured along the imaginary boundary)

is replaced by ady, and the integral is evaluated as
a contour integral.

The Boundary Condition

In the limit of P approaching to G from interior of

O, since the circular hole is considered as free of

traction, the following boundary conditions are

imposed:
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lim
P!PG

tiðPÞ ¼ lim
P!PG

sijðPÞnjðPGÞ ¼ 0 ðP 2 O;PG 2 GÞ

ð13Þ

where PG is an arbitrary point on G and njðPGÞ is
a j -th component of unit outward normal at PG. In

more concrete expression, the following two con-

ditions are held irrespective to the angular coor-

dinate of reference point ’ with which the

coordinates of reference point are assumed as

x ¼ ðaþ eÞcos’ and y ¼ ðaþ eÞsin’.
txðPGÞ ¼ lim
e!0;e>0

fsxxðx; yÞcos’þ txyðx; yÞsin’g ¼ 0

ð14Þ

tyðPGÞ ¼ lim
e!0;e>0

ftxyðx; yÞcos’þ syyðx; yÞsin’g ¼ 0

ð15Þ

Substituting (12) into (14) and (15), a set of

boundary integral equations for the determination

of unknown density functions fxðyÞ and fyðyÞ
are obtained. It should be noted that integral

included in the right-hand side of (14) and (15)

have to be examined before taking a limit e ! 0,

otherwise the boundary integral may yield an

improper result. This fact is caused by

a presence of the singularity in the point force

solution.
Introduction of the Basic Density Function

In order to compute unknown density functions

fxðyÞ and fyðyÞ numerically, G is divided into N

segments G1;G2; 	 	 	 ;GN , and value of density

function on each segment is assumed to take

some designated variation. If G (an imaginary

circle) is equally divided into N segments,

then n-th segment Gn has a shape of circular

arc and is described by an angular extent

2p n�1
N < y < 2p n

N . In this discretization scheme,

it is expected that the approximation is improved

with increase of division number N; however,
increase in N also causes increase of memory

consumption and calculation time. In order to

overcome this problem, the concept of basic den-

sity function is introduced [4]. Introduction of the

basic density function is a unique strategy which

greatly improves the efficiency of numerical

analysis in BFM. In a circular hole problem, the

basic density function is chosen as a component

of unit outward normal at Q on G. Then density

function to be determined is replaced by

a product of basic density function and unknown

weight value such that
fxðyÞ ¼ cosy�Wn
x ; fyðyÞ

¼ siny�Wn
y ðn ¼ 1; 2; 	 	 	 ;NÞ ð16Þ

As a result, (12) can be rewritten as
sijðx; yÞ ¼ sij1ðx; yÞ þ
XN
n¼1

Wn
x

ð2pn
N

2pn�1
N

sxijðx; y; a cos y; a sin yÞ cos y� ady

þ
XN
n¼1

Wn
y

ð2pn
N

2pn�1
N

syijðx; y; a cos y; a sin yÞ sin y� ady

ð17Þ
Therefore, there are 2N unknown weights

W1
x ;W

2
x ; 	 	 	 ;WN

y are to be determined. These

unknowns uniquely determined from condition

of free of traction at N of representative reference

points. In usual analysis, these representative

points are set at a middle point of each divided

segment. In this manner, the integral equation is

transformed into a form of simultaneous equa-

tions for the determination of unknown weights.
It should be noted again when the reference point

exists very near to the segment where body forces

are acting, a special care is required to ensure the

accuracy of boundary integral.

Extension to Thermoelasticity

In thermoelastic analysis, the given temperature

conditions are satisfied by superposing a temper-

ature field due to an isolated heat source acting in
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Fig. 4 Thermoelastic field due to point heat acting in an

infinite plate
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an infinite domain first [5]. Then, the isothermal

mechanical problem is solved considering the

influence of distributed heat sources. In case of

a transient thermal stress analysis, fundamental

solution depending on time variable is employed.

For instance, thermoelastic fields due to an iso-

lated point heat acting in an infinite plate (Fig. 4),

which can be used for stationary thermoelastic

problems, are as follows:
Tðx; yÞ ¼ � q

2pl
ln r ð18Þ

sxxðx; yÞ ¼ bEq
8pl

(
2 ln r � ðx� xÞ2 � ðy� �Þ2

r2

)

syyðx; yÞ ¼ bEq
8pl

(
2 ln r þ ðx� xÞ2 � ðy� �Þ2

r2

)

txyðx; yÞ ¼ � bEq
4pl

ðx� xÞðy� �Þ
r2

ð19Þ

where q is a magnitude of point heat per thick-

ness, l is thermal conductivity, E is Young’s

modulus, and b is thermal stress constant defined

by b ¼ a for plane stress and b ¼ a
1�n for plane

strain in which a is a coefficient of linear expan-

sion. ðx; �Þ is a coordinate at which point heat
acts, and ðx; yÞ is a coordinate of reference point.
r is a distance between source and reference

points r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xÞ2 þ ðy� �Þ2

q
as defined

previously.

The fundamental thermoelastic fields shown

in (18) and (19) are brought as follows. Consider

an infinite plate of homogeneous thermoelastic

property whose thermal conductivity is l. When

point heat source of magnitude q per thickness B

is applied at the origin, corresponding tempera-

ture field is symmetric so that the temperature is

a function of distance from the origin r alone. In

such situation, the equation of energy balance

ignoring the heat dissipation from the surface of

plate can be finally deduced in polar coordinate

system as [2]
d2T

dr2
þ 1

r

dT

dr
¼ 1

r

d

dr
r
dT

dr


 �
¼ 0 ð20Þ

It should be noted that this equation is valid

except the origin where heat source is applied.

The general solution of (20) is
TðrÞ ¼ C1ln r þ C2 ð21Þ

whereC1 andC2 arearbitraryconstants.Apparently,

C2 corresponds toauniformtemperature rise.Onthe

other hand, C1 is determined from the condition

that the total heat passing through a cylindrical area

of radius r and a thickness B is constant at

� l dT
dr � 2prB ¼ qB. Therefore, C1 ¼ � q

2pl is

concluded. Under the presence of thermal strain,

theHooke’s law for plane theory of thermoelasticity

in the polar coordinates system becomes
er ¼ sr � nsy
E

þ aT; ey ¼ sy � nsr
E

þ aT; gry ¼
try
G

ð22Þ

Due to the symmetry of the problem, the strain

components er and ey are the function of radial

displacement u alone, and gry is simply zero so that
er ¼ du

dr
; ey ¼ u

r
; gry ¼ 0 ð23Þ
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Therefore, stress components are expressed

using displacement function uðrÞ and tempera-

ture function TðrÞ as
sr ¼ E

1� n2
du

dr
þ n

u

r
� ð1þ nÞaT

� �
sy ¼ E

1� n2
u

r
þ n

du

dr
� ð1þ nÞaT

� � ð24Þ

Then, the equation of equilibrium,
dsr
dr þ sr�sy

r ¼ 0, becomes
d2u

dr2
þ 1

r

du

dr
� u

r2
¼ ð1þ nÞa dT

dr
ð25Þ

Substituting dT
dr ¼ � q

2pl
1
r , particular solution

of (25) is

u ¼ ð1þ nÞa 1
r

ð
TðrÞrdr

¼ �ð1þ nÞaq
4pl

r ln r � 1

2


 �
ð26Þ

Substitution (26) into (24), the corresponding

thermal stresses are
sr ¼ aEq
8pl

2 ln r � 1ð Þ

sy ¼ aEq
8pl

2 ln r þ 1ð Þ
try ¼ 0

ð27Þ
It should be noted that (27) is a thermoelastic

solution for plane stress problems. By examining

a stress transformation from polar coordinate sys-

tem to Cartesian coordinate system, (19) is

obtained from (27).

Based on the principle of BFM, problem shown

in Fig. 5 is treated in the following manner. In

a first step, a point heat source is distributed con-

tinuously along an imaginary boundary G with

unknown density rðyÞ. Then, the components of

heat flux qx ¼ �l @T
@x and qy ¼ �l @T

@y at arbitrary

point ðx; yÞ, ðx2 þ y2 > aÞ are expressed as
qxðx; yÞ ¼ 1

2p

þ
rðyÞðx� acosyÞady

ðx� acosyÞ2 þ ðy� asinyÞ2
ð28Þ

qyðx; yÞ ¼ q1y þ 1

2p

þ
rðyÞðy� asinyÞady

ðx� acosyÞ2 þ ðy� asinyÞ2

ð29Þ

where a is a radius of an imaginary circular

boundary along which thermally insulated condi-

tion is imposed. The unknown density of distrib-

uted heat source rðyÞ is determined from the

condition that the heat flux that flows perpendic-

ular to the boundary of an imaginary circular

boundary is zero; therefore,
lim
e!0þ

fqxðx; yÞcos’þ qyðx; yÞsin’g ¼ 0 ð30Þ
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(30) should be held for arbitrary angular coordi-

nate ’ (0 � ’ � 2p) when x ¼ ðaþ eÞcos’ and

y ¼ ðaþ eÞsin’. That is, (30) is a boundary inte-
gral equation for the determination of unknown

density of heat source rðyÞ. After the determina-

tion of density of heat source, the corresponding

thermal stress field is calculated from (19). In

general, the obtained thermal stress field

corresponding to the temperature rise does not

satisfy the given mechanical boundary condi-

tions. Therefore, the appropriate body force solu-

tion (the isothermal elasticity solution) is

superposed so that the given mechanical bound-

ary condition is totally satisfied.
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Overview

The thermal stresses induced by an insulated hole

in an isotropic medium was first studied by Flor-

ence and Goodier [1, 2]. The same problem was
solved by Chen [3] for an orthotropic medium

containing a circular or elliptic hole. Hwu [4]

studied the thermal stresses in an anisotropic

body under uniform heat flow disturbed by an

insulated elliptic hole using the Stroh formalism

[5]. Following the Lekhnitskii complex potential

approach, Tarn and Wang [6] found the thermal

stresses in anisotropic bodies with a hole or

a rigid inclusion. Recently, Kattis and Meguid

[7] gave a solution of thermoelastic problems of

an elastic curvilinear inclusion embedded in an

elastic matrix where all singularities are located

in the matrix. In this study, we aim to provide

a general solution to the elastic inclusion problem

subjected to a point heat source or a uniform heat

flow. A point heat source considered in this note

resides either outside or inside the circular inclu-

sion. The analysis is based upon the complex

variable theory and the method of analytical con-

tinuation which allows us to express the general

solutions of the temperature and stress functions

in a compact form. Some special examples are

solved in closed form and are compared with

existing analytical solutions, such as a point

heat source in the circular disk and an infinite

matrix with a circular elastic inclusion under

a remote uniform heat flow.
Problem Formulation

Consider a circular elastic inclusion perfectly

bonded to an infinite matrix subjected to a point

heat source located either in the matrix (including

infinity) or in the inclusion and a uniform heat

flow applied at infinity. The regions occupied

by the elastic matrix (|z| > a) and the inclusion

(|z| < a) will be referred to as regions S1 and S2,

respectively, and the quantities associated

with these regions will be denoted by the

corresponding subscripts (see Fig. 1). A point

heat source in the system or a uniform heat flow

at infinity causes a thermal stress distribution as

a result of the different thermoelastic properties

of the two phases. For a two-dimensional heat

conduction problem, the resultant heat flow Qj

and the temperature Tj can be expressed in terms

of a single complex potential gj
0ðzÞ as
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subjected to a point heat source outside the inclusion.
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Qj ¼
ð
ðqxjdy� qyjdxÞ ¼ �kj Im½gj0ðzÞ� ð1Þ

Tj ¼ Re½gj0ðzÞ� ð2Þ

where Re and Im denote the real part and imag-

inary part of the bracketed expression, respec-

tively. The quantities qxj, qyj in (1) are the

components of heat flux in the x and y-direction,

respectively, and kj stands for the heat conductiv-

ity with j¼ 1 for S1 and j¼ 2 for S2. Once the heat

conduction problem is solved, the temperature

function gj
0ðzÞ is determined. For a two-

dimensional theory of thermoelasticity, the

components of the displacement and traction

force can be expressed in terms of two stress

functions fjðzÞ, cjðzÞ and a temperature function

gj
0ðzÞ as
2mjðuj þ ivjÞ
¼ kjfjðzÞ � zfj

0ðzÞ � cjðzÞ þ 2mjbj

ð
gj

0ðzÞdz
ð3Þ

� Yj þ iXj ¼ fjðzÞ þ zfj
0ðzÞ þ cjðzÞ ð4Þ
where mj is the shear modulus, and

kj ¼ ð3� vjÞ=ð1þ vjÞ, bj ¼ aj for plane stress

and kj ¼ 3� 4vj,

bj ¼ ð1þ vjÞ aj for plane strain with vj being

the Poisson’s ratio and aj the thermal expansion

coefficients. Primes denote differentiation with

respect to z and a superimposed bar denotes the

complex conjugate. For the condition that both

the stresses and displacements are single-valued

either in the matrix or in the inclusion, the stress

functions fjðzÞ, cjðzÞ must take the form

fjðzÞ ¼ Ajz ln zþ Bj ln zþ fj
�ðzÞ ð5Þ

cjðzÞ ¼ Cj ln zþ cj
�ðzÞ ð6Þ

where Aj is a real constant and Bj, Cj are complex

constants which are related by the following

equations
ðkj þ 1ÞAjzþ kjBj þ Cj ¼
�2mjbj
2pi

I
cj

gj
0ðtÞdt

ð7Þ

Bj � Cj ¼ 0 ð8Þ

where cj is any surrounding contour within

the region Sj ( j ¼ 1, 2). Note that the singularity

of the term z ln z appeared in the stress functions,

(5), results from the logarithmic singularity of the

temperature function induced by a point heat

source. The two holomorphic functions fj
�ðzÞ

and cj
�ðzÞ in (5) and (6), respectively, can be

expressed in a series form as
f1
� ¼

X1
m¼1

Lmz
�m; c1

� ¼
X1
m¼1

Mmz
�m ð9Þ

f2
� ¼

X1
m¼1

Nmz
m; c2

� ¼
X1
m¼1

Pmz
m ð10Þ

where the constant coefficients Lm, Mm Nm and

Pm may be determined from the interface conti-

nuity conditions.
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Temperature Field

Consider a point heat source is located outside the

inclusion (see Fig. 1), the temperature functions

in the matrix and in the inclusion, respectively,

can be written as
r=α

S2 (inclusion)

t k1

l

x

Bonded Circular Inclusions in Plane
Thermoelasticity, Fig. 2 A bonded circular inclusion

subjected to a remote uniform heat flow.

y

g1
0ðzÞ ¼ g0

0ðzÞ þ g1
0ðzÞ ð11Þ

g2
0ðzÞ ¼ g2

0ðzÞ ð12Þ

where g00ðzÞ represents the function associated

with the unperturbed field which is related to

the solutions of homogeneous media and is

holomorphic in the entire domain except a

singular point under a point heat source, and the

points at zero or infinity. g01ðzÞ (or g02ðzÞ) is the
function corresponding to the perturbed field of

matrix (or inclusion) and is holomorphic in

region S1, (or S2.) except some singular points.

In the present study, the temperature function

g00ðzÞ is given as [8]
S1 (matrix)
g0
0ðzÞ ¼ � q

2pk1
lnðz� z0Þ ð13Þ

for a point heat source with the strength q located
at the point z ¼ z0 in the matrix, and
heat source

z0
r=α

S2 (inclusion)

xO

Bonded Circular Inclusions in Plane
Thermoelasticity, Fig. 3 A bonded circular inclusion

subjected to a point heat source inside the inclusion.
g0
0ðzÞ ¼ te�ilzz ð14Þ

for a remote uniform heat flow with the constant

temperature gradient t directed at an angle lwith
respect to the positive x-axis (see Fig. 2). g01ðzÞ
and g02ðzÞ in (11) and (12), respectively, will be

determined from the interface continuity condi-

tions, i.e., T1 ¼ T2 and Q1 ¼ Q2 along the inter-

face z ¼ s ¼ aeiy. Using the above boundary

conditions and applying the method of analytical

continuation, we obtain the final results as
g1
0ðzÞ ¼ g0

0ðzÞ þ k1 � k2
k1 þ k2

g00
a2

z


 �
ð15Þ

g2
0ðzÞ ¼ 2k1

k1 þ k2
g0

0ðzÞ ð16Þ
If a point heat source is located inside the

inclusion (see Fig. 3), the temperature functions

can be written as
g1
0ðzÞ ¼ �q

2pk1
ln

z

a
þ g1

0ðzÞ ð17Þ
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g2
0ðzÞ ¼ �q

2pk2
ln

z

a
þ g0

0ðzÞ þ g2
0ðzÞ ð18Þ

where g00ðzÞ is given by
g0
0ðzÞ ¼ �q

2pk2
lnða� az0

z
Þ ð19Þ

Using the interface continuity conditions as

mentioned above and the method of analytical

continuation, the final expression for the temper-

ature functions becomes
g1
0ðzÞ ¼ �q

2pk1
ln

z

a
� q

pðk1 þ k2Þ lnða�
az0
z
Þ

ð20Þ

g2
0ðzÞ¼ �q

2pk2
lnðz� z0Þ� ðk2�k1Þq

2pðk1þ k2Þk2 lnða�
az0
z
Þ

ð21Þ
Thermal Stress Field

Having the temperature functions as derived pre-

viously, the general solutions for the stress and

displacement fields can be obtained in terms of

the complex potentials given in (5) and (6) in

which the constant coefficients Aj, Bj, and Cj

may be determined from (7) and (8) while the

two holomorphic functions fi
�ðzÞ and ci

�ðzÞ will
be obtained from the interface continuity

conditions.

We now consider a heat source located in the

matrix for which the temperature functions

g01ðzÞ, g02ðzÞ have been given in (15) and (16),

respectively. Substituting (15) and (16) into (7)

and using (8), one obtains
A1 ¼ m1b1q
pk1ð1þ k1Þ ; B1 ¼ �m1b1qz0

pk1ð1þ k1Þ
for zj j > z0j j

ð22Þ

A1 ¼ B1 ¼ 0; for a < zj j < z0j j ð23Þ
And
A2 ¼ B2 ¼ 0; for zj j < a ð24Þ

Since the inclusion and the matrix are assumed

to be perfectly bonded along the interface, the

displacements and surface tractions at the inter-

face must be continuous, i.e., u1 þ iv1 ¼ u2 þ iv2
and � Y1 þ iX1 ¼ �Y2 þ iX2 along the interface

z ¼ s ¼ aeiy. Using the above boundary condi-

tions and applying the method of analytical con-

tinuations, the constant coefficients appeared in

(9) and (10) are obtained as
Lm ¼ � 2m1m2b1
m1 þ m2k1

bm ð25Þ

N1 ¼ �2m1m2ðb2c1 � b1a1Þ
ðk1m1 þ 2m2 � m1Þ

ð26Þ

Nm ¼ � 2m1m2
m2 þ m1k2

ðb2cm � b1amÞ; for m � 2

ð27Þ

M1 ¼ ½2N1 � A1ð1þ ln a2Þ�a2 ð28Þ

M2 ¼ N2a
4 � B1a

2 ð29Þ

Mm ¼ ðm� 2Þa2Lm�2 þ a2mNm; for m � 3

ð30Þ

Pm ¼ a�2mLm � ðmþ 2Þa2Nmþ2 ð31Þ

Having the solutions in (25)–(31), the

final expression of the stress functions can

then be determined by substituting (9)–(10) and

(22)–(24) into (5) and (6).

If a heat source is located in the inclusion, the

constant coefficients in (5) and (6) can be deter-

mined by substituting (20) and (21) into (7) and

(8) as

A1 ¼ m1b1q
pk1ð1þ k1Þ ; B1 ¼ 0 for zj j > a ð32Þ
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A2 ¼ m2b2q
pk2ð1þ k2Þ ;B2 ¼ �m2b2qz0

pk2ð1þ k2Þ
for z0j j < zj j < a

ð33Þ

And
A2 ¼ B2 ¼ 0; for zj j < z0j j ð34Þ

By using the interface continuity conditions

and the method of analytical continuation, we

finally obtain
Lm ¼ � 2m1m2
m1 þ m2k1

ðb1em � b2hmÞ ð35Þ

N1 ¼�ðm2A2�m1A2Þð1þ lna2Þ�2m1m2ðb2f1�b1d1Þ
ðk2m1þ2m2�m1Þ

ð36Þ

N2 ¼ � 2m1m2
m2 þ m1k2

b2f2 �
m2B2 � m1B2

ðm2 þ m1k2Þa2
ð37Þ

Nm ¼ � 2m1m2
m2 þ m1k2

b2fm; for m � 3 ð38Þ

M1 ¼ ½2N1 þ ðA2 � A1Þð1þ ln a2Þ�a2 ð39Þ

M2 ¼ N2a
4 þ ðB2 � B1Þa2 ð40Þ

Mm ¼ ðm� 2Þa2Lm�2 þ a2mNm; for m � 3

ð41Þ

Pm ¼ a�2Lm � ðmþ 2Þa2Nmþ2 ð42Þ

With the results in (35)–(42) the general solu-

tions for the stress functions can then be obtained

by substituting (32)–(34) and (9)–(10) into (5)

and (6).
Examples

As our first example, we consider a circular elas-

tic inclusion perfectly bonded to a matrix which
is subjected to a uniform heat flux with the tem-

perature gradient T directed at an angle k with

respect to the positive x-axis (see Fig. 2). The

solution of temperature functions can be easily

obtained by substituting (14) into (15) and (16) as
g1
0ðzÞ ¼ te�ilzþ tðk1 � k2Þ

ðk1 þ k2Þ eil
a2

z
ð43Þ

g2
0ðzÞ ¼ 2k1t

ðk1 þ k2Þ e
�ilz ð44Þ

Applying the formulae given in Section 4.1,

the final solutions for the stress field can be

given by
f1ðzÞ ¼
�2m1b1t
ð1þ k1Þ

ðk1 � k2Þ
ðk1 þ k2Þ a

2e�il ln z ð45Þ

c1ðzÞ ¼
�2m1b1t
ð1þ k1Þ

ðk1 � k2Þ
ðk1 þ k2Þa

2e�il ln z

� m1m2t
ðm1k2 þ m2Þ

2k1b2
ðk1 þ k2Þ � b1


 �
a4eil

1

z2

þ�2m1b1t
ð1þ k1Þ

ðk1 � k2Þ
ðk1 þ k2Þ a

4eil
1

z2

ð46Þ

f2ðzÞ ¼ � 2m1m2t
m1k2 þ m2

2k1b2
ðk1 þ k2Þ � b1


 �
e�ilz2

ð47Þ

c2ðzÞ ¼ 0 ð48Þ

The interfacial stresses along the inclusion

boundary can be performed by using field solu-

tions of the matrix or inclusion as
srr ¼� 2m1m2t
ðm1k2þm2Þ

2k1b2
ðk1þ k2Þ�b1


 �
acosðy�lÞ

sry ¼� m1m2t
ðm1k2þm2Þ

2k1b2
ðk1þ k2Þ�b1


 �
asinðy�lÞ
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ðsyyÞ1 ¼
��8m1b1tðk1� k2Þ
ð1þk1Þðk1þ k2Þ þ

2m1m2t
ðm1k2þm2Þ

� 2k1b2
ðk1þ k2Þ�b1


 ��
acosðy�lÞ

ðsyyÞ2 ¼� 12m1m2t
ðm1k2þm2Þ

2k1b2
ðk1þ k2Þ�b1


 �
acosðy�lÞ

When the inclusion is assumed to be an insu-

lated and traction free hole, the hoop stress along

the hole boundary can be obtained by letting

k2 ¼ 0 and m2 ¼ 0 as
syy ¼ � 8mbt
ð1þ kÞ a cosðy� lÞ

which is in agreement with the result of Florence

and Goodier [1, 2]. For a special case of k1 ¼ k2,

m1 ¼ m2 and b1 ¼ b2, the solutions of the

corresponding homogeneous problem is trivially

given as
fðzÞ ¼ cðzÞ ¼ 0 ð49Þ

This is expected that there is no thermal

stresses induced by a homogeneous body under

the condition of free expansion.

As a second example we consider the inclu-

sion subjected to a point beat source acting at the

origin. The temperature functions can be

obtained by putting z0 ¼ 0 into (20) and (21) as
g1
0ðzÞ ¼ � q

2pk1
ln

z

a
� a

pðk1 þ k2Þ ln a ð50Þ

g2
0ðzÞ ¼ � q

2pk2
ln z� ðk2 � k1Þq

2pðk1 þ k2Þk2 ln a ð51Þ

A direct application of the formulae given in

Section 4.2, the stress functions can be

obtained as
f1ðzÞ ¼
m1b1q

pk1ð1þ k1Þ z ln z ð52Þ

c1ðzÞ ¼ M1=z ð53Þ
f1ðzÞ ¼
m1b1q

pk1ð1þ k1Þ z ln z ð54Þ

c1ðzÞ ¼ M1=z ð55Þ

where N1 and M1 are
N1 ¼ q

k2m1þ 2m2�m1

�
m2b2ðm1�m2Þð1þ lna2Þ

pk2ð1þk2Þ
�m1m2

p

�
b2
k2

þðk1� k2Þb2 lna
ðk1þ k2Þk2

�b1
k1

ð1þ lnaÞþ 2b1 lna
ðk1þ k2Þ

��

M1 ¼2N1a
2þ q

p

�
m2b2

k2ð1þk2Þ
� m1b1
k1ð1þk1Þ

�
ð1þ lna2Þa2

Note that, the stresses would not be

bounded either at zero or at infinity due to

the presence of the singular term z ln z

appeared in the stress functions induced by

a point heat source. Nevertheless, the solu-

tions are useful as the outer boundary of

a body remains finite.

Consider a circular disk where the boundary

surface is assumed to be free of traction and

remain zero temperature. The corresponding

temperature function and stress functions, respec-

tively, can be obtained by letting k1 ¼ 1 in (51)

and m1 ¼ 0 in (54) as
g0ðzÞ ¼ � q

2pk
ln

z

a
ð56Þ

fðzÞ ¼ mbq
pkð1þ kÞ z ln

z

a
� mbq
2pkð1þ kÞ z ð57Þ

cðzÞ ¼ 0 ð58Þ

Accordingly, the stress components are

given by

srr ¼ 2mbq
pkð1þ kÞ ln

r

a
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syy ¼ 2mbq
pkð1þ kÞ ln

r

a
þ 2mbq
pkð1þ kÞ

sry ¼ 0

which is the same as the results obtained by

Parkus [9] essentially by guessing.
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Overview

Many generalizations to the equations of the

coupled theory of therrnoelasticity due to Biot [1]

are presently available. The first to appear is the

theory of generalized therrnoelasticity with one

relaxation time introduced by Lord and Shulman

[2]. In this theory, a modified law of heat conduc-

tion including both the heat flux and its time deriv-

ative replaces the conventional Fourier’s law. The

heat equation associated with this theory is hyper-

bolic and, hence, automatically eliminates the par-

adox of infinite speeds of propagation inherent in

the coupled theory of therrnoelasticity. This theory

was extended [3] by Dhaliwal and Sherief to

include the effects of anisotropy. The uniqueness

of solution of these equations was proved by

Ignaczak [4] and by Sherief [5]. The boundary

element formulation was conducted by Anwar and

Sherief in [6]. The fundamental solution was

obtained by Sherief [7] for the spherical case and

by Sherief and Anwar [8] for the cylindrical case.

The second generalization to the coupled

theory, known as the theory of therrnoelasticity

with two relaxation times, was obtained by Green

and Lindsay [9]. In this theory, the classical

Fourier law of heat conduction is not violated
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when the body under consideration has a center of

symmetry. The uniqueness of solution for this

theory was proved by Green [10]. The fundamen-

tal solution was obtained by Sherief [11]. The

boundary element formulation was conducted

by Anwar and Sherief in [12].

The boundary integral equation method (BEM)

has been applied successfully in many branches of

applied mathematics. The reason for this is its

simplicity, efficiency, and ease of implementation

compared to other numerical methods based on

domain discretization such as the finite element

method. Sladek and Sladek [13] set up the BEM

formulation for coupled thermoelasticity.

In this work, a formulation of the boundary

integral equation method for thermoelasticity

with both one and two relaxation times is given.

Fundamental solutions of the corresponding

differential equations are obtained. A reciprocity

theorem is derived. An outline of the

implementation of the boundary element method

is discussed for the solution of the above

boundary equations.
The Mathematical Model

We shall consider a homogeneous isotropic

thermoelastic solid occupying the region V and

bounded by a smooth surface S. We shall also

assume that the initial state of the medium is quies-

cent. Throughout thiswork, a commadenotesmate-

rial derivatives and the summation convention is

used. The governing equations for thermoelasticity

with one–two relaxation times consist of [9]:

1. The equations of motion:

m ui;kk þ ðlþ mÞuk;ki þ rFi � g T;i þ u
@T;i
@ t


 �
¼ r

@2ui
@ t2

ð1Þ

where l, m are Lamé constants; r is the den-

sity; t is the time variable; T is the absolute

temperature of the medium; ui is the displace-

ment component in the xi-direction; Fi is the

component of the body force per unit mass in

the xi-direction and g¼ (3l + 2 m) at, at being
the coefficient of linear thermal expansion;
and v is a constant with the dimensions of

time that acts as a relaxation time.

2. The equation of heat conduction:

wT;ii ¼r cE
@

@ t
þ t0

@2

@ t2


 �
T þ 1þ a t0

@

@ t


 �
g T0 _e� rQð Þ

ð2Þ
where w is the thermal conductivity of the

medium, e is the cubical dilatation, cE is the

specific heat at constant strain, T0 is

a reference temperature assumed to be such

that T�T0
T0

��� ��� << 1, t0 is another relaxation time,

andQ is the strength of the applied heat source

per unit mass. For Lord-Shulman theory u¼ 0,

a ¼ 1 and for Green-Lindsay theory, a ¼ 0.

3. The constitutive relations:

sij ¼ 2meij þ ledij � g T � T0 þ n
@T

@t


 �
dij ð3Þ

where eij are the strain components given by

eij ¼ 1

2
ðui;j þ uj;iÞ and e ¼ eii ¼ ui;i ð4Þ

Let us introduce the nondimensional variables
x�i ¼ c � xi; u�i ¼ c� ui; t
� ¼ c2� t;

t�0 ¼ c2 � t0; u� ¼ c2 � u

s�ij ¼
sij

lþ 2m
; y ¼ gðT � T0Þ

lþ 2m
;

Q� ¼ rQ
w T0�2c2

; F�
i ¼

rFi

�cðlþ 2mÞ

where c2 ¼ lþ2m
r is the square of the velocity of

longitudinal waves and � ¼ r cE
w · In terms of these

variables Equations (1–3), respectively, take the

following forms (dropping the asterisks for

convenience):
ui; kk þ ðb2 � 1Þuk; ki þ Fi � b2 y;i þ u
@y;i
@t


 �
¼ b2

@2ui
@ t2

ð5Þ
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y;ii ¼ @y
@ t

þ t0
@2y
@ t2

þ E
@

@ t
þ a t0

@2

@ t2


 �
e

� 1þ a t0
@

@ t


 �
Q ð6Þ

sij ¼ ðb2 � 2Þ e dij þ 2eij � b2 yþ u
@y
@t


 �
dij

ð7Þ

where b2 ¼ lþ2m
m and E ¼ T0g2=rCEðlþ 2mÞ.

The boundary conditions of the problem will

be taken as follows:

1. Mechanical condition: The traction pi ¼ sijnj
is specified on a part S1 
 S while the

displacement u, is specified on S� S1
2. Thermal conditions: The temperature increment

y is specified on a part S2 
 Swhile the normal

derivative @y
@n is specified on S2 
 S, where n(r)

is the outward normal to the surface S. The

above conditions can be stated as

sijnj ¼ pi0ðr; tÞ on S1 ð8Þ

ui ¼ ui0ðr; tÞ on S� S1 ð9Þ

y ¼ y0ðr; tÞ on S2 ð10Þ

y;n ¼ y0;nðr; tÞ on S� S2 ð11Þ

Using (4) and (7), the traction pi(r, t) can be

written as

piðr; tÞ ¼ ðb2 � 2Þuj;j � b2 yþ n
@y
@t

� �� �
ni

þ ðui;j þ uj;iÞnj
ð12Þ
Formulation in the Laplace-Transform
Domain

The Laplace transform of a function f (t) is

defined by
f ðsÞ ¼
ð1
0

e�stf ðtÞ dt
Applying Laplace transform to both sides of

(5)–(7) and using the homogeneous initial

conditions, we obtain
ui;kk þ ðb2 � 1Þuk;ki þ Fi � b2 ð1þ n sÞy;i
¼ b2s2ui ð13Þ

y;ii ¼ s ð1þ t0 sÞ yþ ð1þ at0sÞ ðe s uk;k � QÞ
ð14Þ

sij ¼ ðb2 � 2Þ uk;k dij þ 2ei j � b2 ð1þ n sÞ y dij
ð15Þ

Using the following Helmholtz decomposition

for the displacement and body forces
ui ¼ ’;i þ eijk cj;k ð16Þ

Fi ¼ X;i þ eij k Yj; k ð17Þ

Equations (13)–(15) yield
b2 =2 � s2
� �

’þ X ¼ b2ð1þ n sÞ y ð18Þ

ð=2 � b2 s2Þci ¼ � Yi ð19Þ

ð=2 � s ð1þ t0 sÞÞ y� e s ð1þ at0sÞ=2’

¼ �ð1þ at0sÞQ ð20Þ
Fundamental Solutions in the
Laplace-Transform Domain

We shall consider two cases. The first is that of an

instantaneous concentrated heat source acting at

the point x ¼ y in the absence of externally

applied body forces. The second case is that

when there is no heat source acting inside the

medium with an instantaneous concentrated

body force acting in the direction of one of the

coordinate axes.
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Case 1

We take
Q ¼ dðx� yÞ dðtÞ; Fi ¼ 0

The fundamental solutions corresponding to

this case will be denoted by primes. Substituting

the above values in Equations (18–20), we get
H2 � s2
� �

’0 ¼ ð1þ n sÞ y0 ð21Þ

=2 � b2s2
� �

c
0
i ¼ 0 ð22Þ

ð=2 � s ð1þ t0 sÞÞ y0 � e s ð1þ at0sÞ=2’0

¼ �ð1þ at0sÞ d ðx� yÞ
ð23Þ

Equation (22) immediately yields

c
0
i ¼ 0 ð24Þ

while (21) and (23) give, upon elimination of

y0; the following equation satisfied by ’0

=4� s2þsð1þt0 sÞþEsð1þnsÞ½ �=2þs3ð1þ

t0 sÞg’0 ¼�ð1þnsÞ ð1þat0sÞdðx�yÞ This equa-
tion can be factorized as
ð=2 � k21Þð=2 � k22Þ’0
¼ �ð1þ n sÞ ð1þ at0sÞ dðx� yÞ ð25Þ

where k21 and k
2
2 are the roots of the characteristic

equation
k4 � k2 ðs2 þ eðsþ t0 a s2Þð1þ n sÞ þ ðsþ t0 s2Þ
� �

þ s3ð1þ t0 sÞ ¼ 0

The sum and product of the roots of this equa-

tion satisfy the relations
k21 þ k22 ¼ ðs2 þ eðsþ t0 a s2Þð1þ n sÞ
þ ðsþ t0 s2Þ ð26aÞ
k21: k
2
2 ¼ s3ð1þ t0sÞ ð26bÞ

Using Helmholtz equations in space [14],

namely,
1

=2 � k2
½dðrÞ� ¼ �1

4p r
e�k r

the solution of (25) takes the form
’0 ¼ ð1þ n sÞð1þ at0sÞ
4p rðk21 � k22Þ

e�k1 r � e�k2 r
� � ð27Þ

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxi � yiÞðxi � yiÞ
p

From (16), (24), and (27), it follows that
u
0
iðr; sÞ ¼

�ð1þ n sÞ ð1þ at0sÞ
4p r2ðk21 � k22Þ

r;i

ðk1r þ 1Þe�k1r � ðk2r þ 1Þe�k2r
� �

ð28Þ

where r,i ¼ (xi–yi)/r

From Equations (21) and (27), we obtain
y0ðr; sÞ ¼ 1

4p r ðk21 � k22Þ
ðk21 � s2Þe�k1r � ðk22 � s2Þe�k2r��

ð29Þ

The Laplace transform of the traction vector

can be obtained from (15) as
p
0
lðr; sÞ ¼ ðb2 � 2Þu0

k;k � b2ð1þ n sÞy0
h i

nl

þ ðu0
l;k þ u

0
k;lÞnk

It can easily be seen from (28) that
u
0
i;j ¼

ð1þ n sÞ ð1þ at0sÞ
4p r3ðk21 � k22Þ

� r;ir;j f1 þ ð2r;ir;j � dijÞf2

 � ð30Þ

where
f1 ¼ðk21r2þ k1rþ1Þe�k1r�ðk22r2þ k2rþ1Þe�k2r
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f2 ¼ ðk1r þ 1Þe�k1r � ðk2r þ 1Þe�k2r

Using the above expressions, the traction vec-

tor takes the form
p
0
lðr; sÞ ¼

ð1þ n sÞ ð1þ at0sÞ
4p r3ðk21 � k22Þ
ðb2 � 2Þð f1 � f2Þ � b2r2f3
� �

nl


þ2 r;lr;kð f1 þ 2f2Þ � dlkf2½ �nkg

ð31Þ

where
f3 ¼ ðk21 � s2Þe�k1r � ðk22 � s2Þe�k2r

The expression for @y
0

@n will be used later on in

this entry. This is obtained from (29) as follows:

@y
0

@n
¼ �y

0

;i ni ¼
r;i ni

4pðk21 � k22Þ r2
f4 ð32Þ

where
f4¼ðk21� s2Þðk1rþ1Þe�k1r�ðk22�s2Þðk2rþ1Þe�k2r
Case 2

We take

Q ¼ 0; Fi ¼ F
ð jÞ
i ¼ dij dðtÞ dðx� yÞ

The fundamental solutions in this case will be

denoted by a superscript (j).
The governing equations for this case take

the form
b2 =2 � s2
� �

’ð jÞ þ X
ð jÞ ¼ b2ð1þ n sÞ yð jÞ ð33Þ

ð=2 � b2 s2Þci

ð jÞ ¼ � Yi
ð jÞ ð34Þ

ð=2 � s ð1þ t0 sÞÞ y ð jÞ � e s ð1þ at0sÞ=2’ð jÞ ¼ 0

ð35Þ
The scalar and vector potentials in (17) have

the forms

X ¼ Xð jÞ ¼ �1

4p
1

r


 �
;j Yi ¼ Y

ð jÞ
i ¼ �1

4p
eilj

1

r


 �
;l

ð36Þ

Eliminating y
ð jÞ

from (33) and (35) and

substituting in the resulting equationsfor Xð jÞ

given in (36), we get
ð=2 � k21Þ ð=2 � k22Þ’ð jÞ

¼ 1

4pb2
=2 � sð1þ t0 sÞ
� � 1

r


 �
;j ð37Þ

To solve this equation, we make the change of

variable ’ð jÞ ¼ g;j to arrive at

g ¼ 1

4pb2ðk21 � k22Þ
=2 � sð1þ t0 sÞ
� �ðF1 � F2Þ

where Fi is the solution of the equation
ð=2 � k2i ÞFi ¼ 1

r
; i ¼ 1; 2

The solution of these equations bounded both

at the origin and at infinity is givenby
Fi ¼ 1

k2i r
e�kir � 1
� �

; i ¼ 1; 2

Collecting the previous results and using

(26a, b), we arrive at
’ð jÞ ¼ r;j

4pb2s2r2
� 1þ 1

k21 � k22
ð1þ k1rÞf

�
ðk22 � s2Þe�k1r � ð1þ k2rÞðk21 � s2Þe�k2r

��
ð38Þ

Substituting from the second of (36) into (34)

and using the substitution
c
ð jÞ
i ¼ EiljG;l
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we get as before
cl

ð jÞ ¼ 1

4pb2s2r2
elmjr;m ð1þ bsrÞe�bsr � 1

� �
ð39Þ

Substituting from (38) and (39) into (16) and

using the relation
r;ij ¼ dij � r;ir;j
r

we get
u
ð jÞ
i ¼ 1

r
U1dij þ U2 r;ir;j
� � ð40Þ

where
U1 ¼ 1

4pb2s2r2

(
ð1þ bsrÞe�bsr

þs2
X2
n¼1

ð�1Þn�1Anð1þ knrÞe�knr

)

U2 ¼ �1

4pb2s2r2
�
(
ð3þ 3bsr þ b2s2r2Þe�bsr

þs2
X2
n¼1

ð�1Þn�1Anð3þ 3knrþk2nr
2Þe�knr

)

where

An ¼ k2n � sð1þ t0sÞ
k2nðk22 � k21Þ

; n ¼ 1; 2

Finally, to obtain the temperature function in

this case, it can easily be checked that
y
ð jÞ ¼ �e s

b2ð1þ n sÞ u
0
j ð41aÞ

This equation together with (28) give
y
ð jÞ ¼ e s ð1þ at0sÞ

4p b2r2ðk21 � k22Þ
r;j f2 ð41bÞ
Equation (41b) leads to

@y
ð jÞ

@ n
¼ e s ð1þ at0sÞ ni

4pb2r3 ðk21 � k22Þ
dijf2 � r;ir;j f5
� � ð42Þ

where
f5 ¼ ðk21r2 þ 3k1r þ 3Þe�k1r � ðk22r2 þ 3k2r

þ 3Þe�k2r

The Laplace transform of the traction vector

for this case can also be obtained from (15) as

p
ð jÞ
l ðr; sÞ ¼ ðb2 � 2Þ uð jÞk;k � b2ð1þ n sÞyð jÞ

h i
nl

þ 2 u
ð jÞ
l;k þ u

ð jÞ
k;l

h i
nk

From (40), we obtain
u
ð jÞ
k;l ¼

1

r2
U3dkjr;l þ U2ðdklr;j þ djlr;kÞ þ U4r;jr;kr;l
� �

ð43Þ

and
u
ð jÞ
k;k ¼

1

r2
U3 þ 4U2 þ U4½ �r;j ð44Þ

where

U3 ¼ r @U1

@r � U1 and U4 ¼ r @U2

@r � U2

Substituting from (43) and (44) into the

expression for p
ð jÞ
l ðr; sÞ, we get

p
ð jÞ
l ðr; sÞ ¼ 1

r2
ðb2 � 2Þ U3 þ 4U2 þ U4½ � þ 2U2

�
þð1þ n sÞf2� r;jnl þ ðU3 þ U2Þr;lnj
þ ðU3 þ U2Þ þ 2U4r;jr;l
� �

r;knk

ð45Þ
Reciprocity Theorem

This section is devoted to the derivation of

a reciprocity theorem that shall be used later in

this entry to obtain integral representations of the

displacement and temperature distributions in

terms of the boundary values of the problem.
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Assume we have two systems of causes (heat

sources and body forces) (Q, Fi) and (Q’, Fi). Due

to the application of these causes, we get the

effects (displacements and temperature) ðui; yÞ
and ðu0i; y0Þ, respectively. Multiplying both sides

of (15) by e
0
ij and integrating over the volume V,

we obtain
ð
V

sij e
0
ijdV ¼

ð
V

2eije
0
ij þ ðb2 � 2Þe e0

h
�b2ð1þ n sÞ y e0

�
dV

Subtracting this equation from its counterpart

obtained by interchanging the two systems, we

get upon using (4) and integration by parts
ð
S

sij u
0
i � s0ij ui

h i
njdS�

ð
V

sij;j u
0
i � s0ij;j ui

h i
dV

¼ b2ð1þ n sÞ
ð
V

y
0
e� y e0

h i
dV

Using the transformed equations of motion in

nondimensional form sij;j ¼ b2s2ui � Fi and

s0ij;j ¼ b2s2u0i � F0
iwe obtain
ð

S

sij u
0
i � s0ij ui

h i
njdSþ

ð
V

Fi u
0
i � F

0
i ui

h i
dV

¼ b2ð1þ n sÞ
ð
V

y
0
e� y e0

h i
dV

ð46Þ

Multiplying both sides of (14) by y
0
and

following the same procedure as above, we get
ð
S

y
0
y ;n � y y0 ;n

h i
dS ¼ �1þ at0s

�

e s
ð
V

y
0
e� y e0

h i
dV �

ð
V

y
0
Q� yQ

0h i
dV

8<:
9=;
ð47Þ

Eliminating
Ð
V

y
0
e� y e0

h i
dV between (46)

and (47), we get
e s ð1þ at0sÞ
ð
V

Fi u
0
i � Fi

0
ui

h i
dV

þ b2ð1þ n sÞ
ð
V

Q
0
y� Q y

0h i
dV

¼ b2ð1þ n sÞ
ð
S

y
0
y ;n � y y0 ;n

h i
dS

� e s ð1þ at0sÞ
ð
S

sij u
0
i � s0ij ui

h i
njdS

ð48Þ

Boundary Integral Equations

In order to obtain integral representations for

the transformed displacement and temperature

distributions, we shall take the causes and effects

(Q, Fi) and (ui,y) of the previous section to denote
those of a given distribution under consideration.

The second system of causes and effects will

be first taken as those obtained above in Case 1,

i.e., we take

Q0 ¼ dðx� yÞdðtÞ; F0
i ¼ 0 where y 2 V [ S

The corresponding transformed displacement

ui and temperature y0 are given by

Equations (28) and (29). It follows from (48) that

ð1þ n sÞDðxÞ yðx; sÞ ¼ ð1þ n sÞð
S

y
0
y ;n � y y0 ;n

h i
dSþ ð1þ n sÞ

ð
V

y
0
QdV � e s ð1þ at0sÞ

b2

ð
S

sij u
0
i � s0ij ui

h i
njdSþ

ð
V

u
0
iFidV

8<:
9=;

ð49Þ

where DðxÞ ¼
1 if x 2 V
0 if x =2V [ S
1
2

if x 2 S

8<:
Next, we take second system of causes and

effects to denote those of Case 2, i.e., we take

Qð jÞ ¼ 0; F
ð jÞ
i ¼ dijdðx� yÞdðtÞ where

y 2 V [ S***
The corresponding transformed displacement

ui
ð jÞ and temperature y0

ð jÞ
are given by (41) and

(40). It follows from (48) that
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e s ð1þ at0sÞDðxÞ ujðx; sÞ ¼ e s ð1þ at0sÞÐ
V

u
ð jÞ
i FidV þ Ð

S

sij u
ð jÞ
i � sð jÞij ui

h i
njdS

( )

�b2ð1þ n sÞ Ð
V

y
ð jÞ
QdV þ Ð

S

y
ð jÞ
y;n � y y;

ð jÞ
n dS

( )
Substituting from (41a) into the above equation,

we get
ð1þ at0sÞDðxÞ ujðx; sÞ ¼ ð1þ at0sÞð
V

u
ð jÞ
i FidV þ

ð
S

sij u
ð jÞ
i � sð jÞij ui

h i
njdS

8<:
9=;

þ
ð
V

u
0
j Q dV þ

ð
S

ðu0
jy;n � y u

0
j;nÞ dS

ð50Þ

Using the convolution theorem of the Laplace

transforms [15], namely,

L�1 f 1ðsÞf 2ðsÞ
� � ¼ ðt

0

f1ðzÞf2ðt� zÞdz

together with (49) yields

DðxÞ 1þ n
@

@t


 �
yðx; tÞ ¼

ðt
0

ð
S

@yð�; zÞ
@nð�Þ

�

�yð�; zÞ @

@nð�Þ
�

1� n
@

@z


 �
y0ðx� �; t� zÞdSndz

þ
ðt
0

ð
V

Qðy; zÞ 1� n
@

@z


 �
y0ðx� �; t� zÞdVydz

� e

b2

ðt
0

ð
V

Fiðy; zÞ @

@z
� at0

@2

@z2


 �
u

0
iðx� y; t� zÞdVydz

� e

b2

ðt
0

ð
S

sijð�; zÞ @

@z
� at0

@2

@z2


 ��

u
0
iðx� �; t� zÞ � uið�; zÞ @

@z
� at0

@2

@z2


 �
s

0
ijðx� �; t� zÞ

�
njdSndz

ð51Þ
Similarly, inverting the Laplace transforms in

(50) gives***
ð1þ at0sÞDðxÞ ujðx; sÞ ¼ ð1þ at0sÞð
V

u
ð jÞ
i FidV þ

ð
S

sij u
ð jÞ
i � sð jÞij ui

h i
njdS

8<:
9=;

þ
ð
V

u
0
j Q dV þ

ð
S

ðu0
jy;n � y u

0
j;nÞ dS

DðxÞ 1þat0
@

@t


 �
ujðx; tÞ¼

ðt
0

ð
S

@yð�;zÞ
@nð�Þ �yð�;zÞ @

@nð�Þ
� �

u
0
jðx��; t� zÞdSndzþ

ðt
0

ð
V

Qðy;zÞu0
jðx�y; t� zÞdVydz

þ
ðt
0

ð
V

Fiðy;zÞ 1�at0
@

@z


 �
u
ð jÞ
i ðx�y; t� zÞdVydz

þ
ðt
0

ð
S

sijð�;zÞ 1�at0
@

@z


 �
u
ð jÞ
i ðx��; t� zÞnjdSndz

�

�
ðt
0

ð
S

�uið�;zÞ 1�at0
@

@z


 �
sðiÞij ðx��; t� zÞnjdSndz

� �
ð52Þ

Equations (51) and (52) can be written more

concisely as
DðxÞ 1þ n
@

@t


 �
yðx; tÞ ¼ W1ðx; tÞ ð53Þ

DðxÞ 1þ at0
@

@t


 �
ujðx; tÞ ¼ W

ð jÞ
2 ðx; tÞ ð54Þ

where W1(x, t) and W
ðjÞ
2 ðx; tÞ are the right-hand

sides of (51) and (52), respectively.

The solutions of these equations have the

forms:

DðxÞyðx; tÞ ¼ 1

n
e�t=n

ðt
0

ez=nW1ðx; zÞdz ð55Þ
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DðxÞujðx; tÞ ¼ 1

at0
e�t=at0

ðt
0

ez=at0 W
ð jÞ
2 ðx; zÞdz

ð56Þ

Letting x ! x 2 S in (55) and (56), we obtain
yðx; tÞ ¼ 2

n
e�t=n

ðt
0

ez=nW1ðx; zÞdz ð57Þ

ujðx; tÞ ¼ 2

at0
e�t=at0

ðt
0

ez=at0 W
ð jÞ
2 ðx; zÞ dz ð58Þ

Equations (57) and (58) together with the

boundary conditions (8)–(11) and (31), (32),

(42), and (45) can be used to set up the system

of linear equations of the boundary integral

equation method.
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Overview

The boundary element method (BEM) can be con-

sidered as an interesting alternative to other general

numerical techniques like finite volume method,

finite difference method, or finite element method.

All these techniquesarecapableofsolvingboundary

value problems, including heat conduction ones.

The boundary element method can be seen as

a particular version of the method of weighted

residuals [1]. BEM equations can be obtained by

weighting the residual of the governing equation

with a so-called fundamental solution and integrat-

ing twice by parts over the domain. As a result, an

integral equation is obtained, which in many cases

contains boundary integrals only. This can be

interpreted as “reducing” dimensionality of the

problem by one. The word reducing has been put

into apostrophes since the physical field (e.g., tem-

perature) still varies with the original independent

variables but the object which needs to be

discretized, i.e., contour line (in 2–D computations)

or surface (in 3–D computations), has one dimen-

sionless than the physical problem itself.

http://dx.doi.org/10.1007/978-94-007-2739-7_100042
http://dx.doi.org/10.1007/978-94-007-2739-7_100053
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In the next sections, the fundamentals of the

boundary element method are briefly described

for both steady state as well as for transient

heat conduction problems. Presented material

generally consists of several major steps which

are schematically summarized in Fig. 1. The

first step is to convert the primary boundary prob-

lem into an integral equation. This equation is

then discretized, and after substitution of

boundary conditions, a system of algebraic

equations is obtained. Solution of this system

offers all unknown quantities along the bound-

ary. Solution at internal points (if needed) is

calculated from the boundary values. This pro-

cedure involves only simple matrix operations.
More details can easily be found in main BEM

textbooks, e.g., [2–10].

Formulations discussed within next two sub-

sections refer generally to linear heat conduction.

Nonlinear problems of all types (material, bound-

ary, geometry, and/or body force nonlinearities)

can also be tackled with BEM, although

resulting equations require additional operations/

transformations to possess the boundary-only

character. General information on the application

of BEM to nonlinear heat conduction can be found

in many textbooks, e.g., [4–8].
Integral Equations of BEM for Stationary
Heat Conduction

Steady-state temperature field TðrÞ in a domain

with heat sources _qv ðrÞ is for linear heat conduc-
tion governed by Poisson equation

kH2TðrÞ þ _qv ðrÞ ¼ 0 ð1Þ

where k stands for the heat conductivity.

According to weighted residuals method [1],

the residual of this equation weighted with fun-

damental solution T� and integrated over the

domain produces zero:
ð
V

T� ðkH2T þ _qvÞ dV ¼ 0 ð2Þ

Making use of the reciprocity theorem, which

holds for any two temperature fields acting within

any domain V with boundary S, i.e.,
ð
V

T H2T� � T� H2T
� �

dV ¼
ð
S

T
@T�

@n
� T� @T

@n


 �
dS

ð3Þ

Equation (2) is transformed into following

form:
ð
V

T H2T� dV þ
ð
V

T� 1

k
_qv dV

¼
ð
S

T
@T�

@n
� T� @T

@n


 �
dS

ð4Þ
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Fig. 2 Global ðx; yÞ and local ðx; �Þ coordinate systems

for calculating fundamental solution T�
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Since there is no limitation regarding temper-

ature field T�, the most convenient choice is to

demand that it satisfies the following differential

Equation [2, 11]:
H2T�ðp; rÞ ¼ dðp; rÞ ð5Þ

with the right-hand side being the Dirac’s delta

function d depending on source point p and field

point r.

The function T� varies with two parameters:

coordinates of source point p and coordinates of

field point r, at which one observes the effects

of the source. Positioning the local coordinate

system at point p (cf Fig. 2) makes the problem

symmetric. As a result, the fundamental solu-

tion T� can be expressed in a local coordinate

system only in terms of a distance r between

points p and r:
T� ¼
1

2p
ln r 2--D problems

1

4p
1

r
3--D problems

8><>: ð6Þ

Differentiating temperature fields T and T�

along the outward normal, the normal compo-

nents of the boundary heat fluxes q and q� are

obtained:
q ¼ �k
@T

@n
ð7Þ

q� ¼ �k
@T�

@n
ð8Þ

Substituting (5), (8), and (8) into (2), one

arrives at the following expression:
ð
V

T�ðp; rÞ 1
k
_qv ðrÞ þ TðrÞ dðp; rÞ

� �
dVðrÞ

¼
ð
S

TðrÞ @T
�ðp; rÞ
@nðrÞ � T�ðp; rÞ @TðrÞ

@nðrÞ
� �

dSðrÞ

ð9Þ

The integration as well as the differentiation in

(9) is performed with respect to the coordinates of

field point r which is emphasized by the appro-

priate argument of those operations.

Taking into account the filtering property of

Dirac’s delta function and after performing sim-

ple algebra manipulation, the following equation

is obtained:
k cðpÞ TðpÞ þ
ð
S

q�ðp; rÞ TðrÞ dSðrÞ

¼
ð
S

T�ðp; rÞ qðrÞ dSðrÞ

�
ð
V

T�ðp; rÞ _qv ðrÞ dVðrÞ

ð10Þ

where the free coefficient cðpÞ is dependent on

the location of source point p. If this point lies

outside the domain V, the coefficient cðpÞ ¼ 0.

For all points located inside the domain V, the

coefficient cðpÞ ¼ 1. If point p belongs to the

boundary S, this coefficient is equal to the internal
angle the boundary makes at point p [2–10].

Thus, for a smooth boundary, the value

cðpÞ ¼ 0:5 is obtained.

For the sake of notation simplicity, the tem-

perature at point p will be denoted as Ti whereas

coefficient cðpÞ will be replaced by ci from now

on. Simultaneously, the arguments of the
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integration and differentiation operations will be

dropped. Thus, (10) takes the following form:
Sn

V

k ci Ti þ
ð
S

q� T dS ¼
ð
S

T� q dS�
ð
V

T� _qv dV

ð11Þ

It should be noticed that (11) is an integral

equation with respect to temperature T and heat

flux q. It is an integral representation of the solu-

tion of the primary boundary value problem (1).

If the domain under consideration does not

contain any internal heat sources, the above equa-

tion is simplified further to the following form:
Boundary Element Method in Heat Conduction,
Fig. 3 Geometrical model of the region using boundary

elements
k ci Ti þ
ð
S

q� T dS ¼
ð
S

T� q dS ð12Þ
Discretization of the BEM Integral Equation

Analytical solutions of (11) and/or (12) are

restricted to very simple geometries only. There-

fore, for a general case, the integral equation is

discretized and solved numerically.

Because (12) does not contain any domain

integrals, only the boundary needs to be

discretized. The first step is to divide it into N
segments. These segments (appropriately small)

are then replaced by so-called boundary elements

Sn. In the simplest situation, boundary elements

are straight line segments. This is schematically

shown for a 2–D case in Fig. 3. However, higher

order elements are also available like quadratic,

cubic, and splines. Special elements like

segments of circle, ellipse, and segments of

sphere offer high accuracy while modeling

objects built of those geometrical primitives.

Once the boundary elements are generated,

changes of temperature and heat flux within each

boundary element are related to their nodal values

through the shape functions. Depending on the

approximation made constant, linear, quadratic,

etc., elements can be utilized. These three main

possibilities are schematically shown in Fig. 4. In

matrix notation, approximations of temperature

and heat flux for each boundary element can be

expressed by the following general system:
T ¼ FT Tn ð13Þ

q ¼ FT qn ð14Þ

with Tn and qn being the vectors referring to nth

boundary element and containing nodal values of

temperature and heat flux, respectively. The row

matrix FT contains the local shape functions.

The dimension of this matrix depends on the

type of boundary element: equal to 1 for constant

elements and equal to 2 for linear ones, while it

takes the value 3 for quadratic elements.

It should be noted that a temperature field

modeled using constant elements cannot be

continuous. Only higher order elements are capa-

ble of representing continuous (but not smooth)

variations of temperature. However, even these

elements generally do not guarantee continuity in

heat fluxes. It results from the fact that the deriv-

ative of temperature along an outward normal is

not continuous at any corner. Thus, flux continuity

can only be forced along smooth faces; otherwise,

a jump of flux occurs (points A and B in Fig. 5).

Because of this, also B-splines have been used to

account for higher order interelement continuity.

Influence Matrices

Discretization of the boundary S into boundary

elements allows one to replace the integrals
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in (12) by the summation of integrals, each one

along a particular boundary element Sn:
k ci Ti þ
XN
n¼1

ð
Sn

q� T dSn ¼
XN
n¼1

ð
Sn

T� q dSn

ð15Þ

Considering now approximations (13) and

(14), one can express the (15) in the following

form:

k ci Ti þ
XN
n¼1

ð
Sn

FT q� dSn

� �
Tn

¼
XN
n¼1

ð
Sn

FT T� dSn

� �
qn ð16Þ

Integrals over boundary elements Sn are calcu-

lated numerically in the local coordinate system.

This involves the Jacobian of the transformation

between global and local coordinate systems. For

each boundary element, row matrices hin and gin
are produced with the number of elements

matching the dimension of matrix FT :

hin ¼
ð
Sn

FT q� dSn ð17Þ
gin ¼
ð
Sn

FT T� dSn ð18Þ

Because the fundamental solution depends on

the distance r between the source point p (called

also observation point) and the field point r,

some of the integrals become singular. It hap-

pens when the source point and field point both

belong to the same boundary element, cf Figs. 6

and 7. While regular boundary integrals are

computed accurately enough using standard

Gauss quadratures [12], singular integrals

require special treatment. Among others, trans-

formations like Telles’s transformation [13] are

applicable. They generally cancel the singular-

ity by making the Jacobian tend to zero at the

same time that the distance r approaches zero,

and simultaneously, they group the integration

points in the vicinity of singularity. Thus, high

accuracy of integration can still be achieved.

Alternatively, singular integrals can be deter-

mined from the rigid body condition. For more

details, the reader is referred to BEM mono-

graphs [2–10].

Introducing (17) and (18) into (16), the fol-

lowing relationship is obtained for each source

point:
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Fig. 5 Changes of

temperature and heat

flux along the boundary

for different types of

boundary elements:

(a) constant elements,

(b) linear elements,

(c) quadratic elements

Boundary Element Method in Heat Conduction,
Fig. 6 Integration along regular element

Boundary Element Method in Heat Conduction,
Fig. 7 Integration along singular element

B 420 Boundary Element Method in Heat Conduction



Boundary Element Method in Heat Conduction 421 B

B

k ci Ti þ
XN
n¼1

hin Tn ¼
XN
n¼1

gin qn ð19Þ

There are no limitations regarding the location

of source point i. However, when generating the

BEM equations, it is of common practice to

locate it subsequently at all boundary nodes.

This means that the number of generated equa-

tions of type (19) matches the number boundary

nodes.

Since the sought temperature field is usu-

ally continuous, the next step is to assemble

this system of equations with respect to nodal

temperatures. This step is required only for

elements other than constant and involves

the collection of appropriate entries of matrix

hin to form so-called temperature influence
matrix H. The reason is that all extreme tem-

perature nodes belong at the same time to all

adjacent elements. Thus, all neighboring ele-

ments contribute during integration to these

entries of H matrix which are associated

with the common node. The assembling pro-

cedure also forms the global vector of nodal

temperatures T.

According to Fig. 5, heat fluxes are generally

not continuous. So, they are not being assembled

at this stage. They only form a global Q vector,

but still, discontinuity at extreme points is pre-

served. As a consequence, so-called flux influence

matrix G also remains not assembled. The num-

ber of its columns matches exactly the size of

vector Q and is equal to 2N for linear elements

and to 3N for quadratic ones.

Finally, the following discrete form of the

integral equation is obtained:
HT ¼ GQ ð20Þ

This equation is a direct relationship between

temperatures and heat fluxes along the boundary.

Because of that, the boundary element method is

very convenient when solving inverse thermal

problems.

It is clear that in order to solve the system,

additional information has to be provided from

boundary conditions.
Handling Boundary Conditions

It is important to notice that boundary conditions

are usually formulated for the particular faces.

For constant elements, the nodes are located at

the center of each element. As a consequence,

prescribed values directly refer to nodal values.

If higher order elements are used, the situation

is more complicated since they share the extreme

nodes. If the boundary is smooth at a considered

node, fluxes “before” and “after” the node are the

same, unless they are prescribed as different.

Thus, independently on boundary condition,

only one unknown exists at such a point, either

unique flux or temperature.

Corners need special treatment. This proce-

dure is out of the scope of this book and will not

be discussed here. The interested reader should

refer to BEM textbooks. Nevertheless, system

(20) can easily be rearranged to form a set of

linear equations:
Ax ¼ f ð21Þ

Its right-hand side is obtained by multiplica-

tion of the appropriate columns of the influence

matrices by values known from boundary

conditions.

Components of the vector of unknowns x as

well as components of the main matrix A

depend on the boundary condition at the con-

sidered node as well as on the type of boundary

element. For example, for constant elements,

one obtains
Ain ¼
� Gin for Dirichlet’s boundary condition

Hin for Neumann’s boundary condition

Hin � hGin for Robin’s boundary condition

8><>:
ð22Þ

xn ¼
qn for Dirichlet’s boundary condition

Tn for Neumann’s andRobin’s boundary conditions

(
ð23Þ

where h stands for the heat transfer coefficient.

For linear and quadratic elements, the formulae

have a similar structure, although they are more

complicated.
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It is worth stressing that the main matrix A is

nonsymmetric and fully populated. Solution of

the system (21) is obtained employing classical

methods, e.g., Gauss elimination. Problems with

a high number of degrees of freedom may require

the use of a block solver which operates only on

part of matrixA. The size of the block depends on

the memory available.

Solution at Internal Points

Once the system (21) is solved and the distribu-

tion of temperature and heat flux along the

boundary becomes available, one can solve for

the temperature at any internal point. This proce-

dure consists of considering a new source point i
in (16), but no domain discretization is required.

It involves one integration along the boundary,

this time to form the integrals for the internal

point. It should be noticed that all such integrals

are regular ones, although some of them might

be “nearly singular,” i.e., when the internal point

is near the boundary. In that case, it is

recommended to treat them in a similar way as

purely singular integrals.

By generating the internal influence matrices

Hint and Gint and keeping in mind that for each

internal point coefficient ci is equal to 1, a vector
of internal temperatures Tint can be obtained by

simple matrix multiplications, i.e.,
Tint ¼ �Hint TþGint Q ð24Þ

It is easy to recognize that matrix Hint is

a rectangular one. The number of columns is

equal to the number of boundary nodes, but the

number of rows is equal to the number of consid-

ered internal points. Columns of matrix Gint

remain unassembled like in the case of matrix G

for boundary nodes.

Problems with Internal Heat Sources

For boundary problems with internal heat sources

(either real or fictitious), the (11) instead of (12)

must be considered, and because of the domain

integral, its discretization is no longer restricted

to the boundary S only. In early BEM works,

integrals of this type have been calculated

by domain discretization. If heat sources are
a known function of space only, the domain inte-

grals do not introduce any new unknowns.

Subdivision of the domain into cells is, however,

cumbersome and time-consuming, and particu-

larly, in three dimensions, this is a difficult task

even when automatic mesh generators are avail-

able. Moreover, the integration over the whole

domain has to be performed as many times as the

total number of nodes. This noticeably affects the

efficiency of the method and causes the BEM to

lose its main advantage which is the boundary –

only formulation of the problem.

In many practical situations, the domain inte-

gral occurring in (11) can be transformed into its

equivalent boundary form using the dual reci-
procity method (DRM) [14] or multiple reciproc-

ity method (MRM) [15]. Full details of these

techniques can also be found in monographs

[16] and [17].
BEM for Transient Heat Transfer
Problems

BEM equations for transient heat conduction

problems can generally be derived similarly to

the procedure presented in previous section.

The essential differences consist of one more

integration required due to dependence of

temperature field on time and application of

different fundamental solutions. While the fun-

damental solution for steady-state problems is

defined by (5), for transient heat conduction, it

results from
H2T� þ 1

k
@T�

@t
¼ � 1

k
di dðt� tÞ ð25Þ

where k stand for thermal diffusivity. The time-

dependent fundamental solution, being a temper-

ature field at any point under consideration at

time t due to spontaneous heat source acting at

point i and at time t, is of the form [11]
T� ¼ 1

4 pk ðt� tÞ½ �ðd=2Þ
exp � r2

4 k ðt� tÞ
� �

Hðt� tÞ

ð26Þ
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where r stands for the distance between source

and field points, d is the number of spatial dimen-

sions of the problem, and Hðt� tÞ denotes

Heaviside function.

The time-dependent fundamental solution

defined by (25) and (26) leads to the following

integral equation describing the solution of tran-

sient heat conduction:
ci;t Ti;t ¼ k
k

ðt
0

ð
S

q� T dS dt

� k
k

ðt
0

ð
S

T� q dS dt

þ
ð
V

T0 T�jt¼0 dV

ð27Þ

where T0 is the initial condition, i.e., temperature

field within the domain V at time t ¼ 0.

It should be noted that in integral (27), both

boundary as well as domain integrals occur.

Though, discretization of this equation involves

subdivision of the boundary S into boundary

elements, subdivision of the volume V into

cells, and finally subdivision of time variable

into M time intervals. The latter discretization

can employ constant, linear, etc. variation of

temperature with time [2–10]. Discretization

with respect to space results in the system of

linear equations:
XM
k¼1

HM
k Tk ¼

XM
k¼1

GM
k Qk þ B0 T0 ð28Þ

For time constant elements, integration with

respect to time can be performed analytically

producing the following formulae:
HM
k


 �
ij
¼ 1

2
dij dkM

� 1

2p

ð
Sj

1

r
exp � r2

4k½tM � tk�1�

 �

@r

@n
dS

þ 1

2p

ð
Sj

1

r
exp � r2

4k½tM � tk�

 �

@r

@n
dS

ð29Þ
fGM
k gij ¼ � 1

4pk

ð
Sj

Ei
r2

4 k½tM � tk�1�

 �

dS

þ 1

4pk

ð
Sj

Ei
r2

4 k½tM � tk�

 �

dS

ð30Þ

where Ei stands for exponential integral and di;j is
the Kronecker symbol.

Once the boundary conditions are applied, one

can solve system (28) for unknown boundary

quantities.

When the initial condition satisfies the

Laplace equation, domain integral in (27) can

be converted to the boundary by introducing

a new variable which is a difference between

temperature T and initial temperature T0. Then,

integrating with respect to time always from

initial time equal to zero, domain integration

can be omitted. However, because formulation

(28) consists of summation relevant to the num-

ber of time steps, it becomes less and less effi-

cient when the process proceeds in time, i.e.,

more terms in (28) are required to represent

solution. Therefore, more recently, alternative

approaches of solving transient processes have

been proposed. The dual reciprocity method and

the multiple reciprocity method both apply the

time-independent fundamental solution and

treat the temporal derivative of temperature as

fictitious heat sources, i.e.,
k ci Ti þ
ð
S

q� T dS ¼
ð
S

T� q dSþ k

k

ð
V

T� _T dV

ð31Þ

Domain integral occurring in the above equa-

tion can be transformed into equivalent boundary

integrals either by DRM [16] or by MRM [17].

Then, the final integral equation is discretized and

converted into the set of algebraic equations.

Coefficients in this set are expressed in terms of

boundary influence matrices H and G.

Formulation (31) offers a considerable reduc-

tion in computing effort. It is also interesting to

point out that such an approach is equivalent to

an assumption that the transient problem has

already reached a regular regime in which



B 424 Boundary Element Method in Inverse Heat Conduction Problem
temperature field is practically controlled by

boundary conditions only. The influence of the

initial condition has become so weak that it can

simply be neglected. In practice, the combina-

tion of both formulations seems to be the most

advisable.
Final Remarks

The previous sections contain only fundamental

and rather classical BEM formulations for the

linear heat conduction problems. It should be

stressed however that two already mentioned

techniques, i.e., dual reciprocity method and mul-

tiply reciprocity method can be applied not only

to problems with internal heat sources but also to

the heat conduction problems with all types of

nonlinearities. Details can be found in mono-

graphs [16] and [17].

More recent ideas, including the fast multipole

BEM, are also worth studying, e.g., [18]. Reader

interested in open-source BEM software can also

visit some WEB pages, e.g., [19] or [20].
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Overview

The essence of the boundary element method

consists in transformation of a partial differen-

tial equation with given conditions into the

form of an integral equation. This transforma-

tion may be achieved, for example, by using

the weighted residual method followed by inte-

gration by parts method or by using the Green’s

second identity [1–3]. A result of the transfor-

mation mentioned above is an integral

connected with differential operator which by

using a fundamental solution is reduced to an

unknown function. If the differential equation

has non-zero right hand side then as a result of

the transformation of the differential equation

into the integral equation appears a domain

integral which may be transformed into

a boundary integral [4, 5]. In order to deter-

mine the value of the boundary integrals

a boundary discretization and an interpolation

of integrand are made which in the end leads to

the problem of solving a system of linear

algebraic equations.

The first advantage of the boundary element

method is carrying out the boundary

discretization which simplifies considerably a

generation of the grid on the boundary and setting

boundary conditions. The dimension of a matrix

connected with a vector of unknowns is signifi-

cantly smaller in the boundary element method

when compared with the finite element method

(in the first case this matrix is a dense one, and in

the second – a sparse one).

The second advantage of the boundary ele-

ment method is connected with the use of the

fundamental solution which improves the accu-

racy of the solution and enables considering the

boundary conditions in infinity. To the contrary,

in the finite element method, considering the

boundary conditions in infinity requires a huge

number of elements.

The third advantage results from the appear-

ance of the unknown function and its derivative

in boundary integrals of the domain. Both the

functions are interpolated with the same accuracy

which allows to obtain better approximation of

temperature and its gradient.
The fourth advantage of the boundary element

method is the possibility of using discontinuous

elements (taking into account discontinuity of

heat flux while passing from one element to

another).

The boundary element method is more diffi-

cult to implement than the finite element method.
Boundary Element Method for
Helmholtz’s Equation

Since many heat conduction problems may be

reduced to the problem of solving the

Helmholtz’s equation, thus we will discuss the

boundary element method on the example of this

typical equation.

Let us consider a heat conduction equation in

the form of
rc
@T x; tð Þ

@t
¼ div kHT x; tð Þð Þ þ p x; tð Þ

x ¼ x1; x2; x3ð Þ; t > 0; x 2 O
ð1Þ

Since the domain O is very often irregular

in order to find a solution under given condi-

tions we use the numerical methods to both

the spatial variables and time variable.

Applying backward difference quotient for-

mula to approximate partial time derivative

we have
@T x; tð Þ
@t

� T x; tð Þ � T x; t� Dtð Þ
Dt

and the (1) will take the approximate form
div kHT x; tð Þð Þ � r 	 c
Dt

	 T x; tð Þ

¼ � r 	 c
Dt

	 T x; t� Dtð Þ � p x; tð Þ
ð2Þ

Now, assuming that the parameter k, r, c are

constant, the (2) can be written as follows
DT x; tð Þ � b2T x; tð Þ ¼ �b2Q x; tð Þ ð3Þ



ΓB : − λ
∂n
∂T = g

Ω

n
→
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b2 ¼ � r 	 c
k 	 Dt ; Q ¼ T x; t� Dtð Þ þ Dt

r 	 c 	 p x; tð Þ

Here, in the (3) time t plays the role of param-

eter as well. Let us notice that for b ¼ 0 the (3)

describes a stationary distribution of temperature

modelled by the equation
ΓA : T = f
ΓC : − λ

∂n
∂T = α (T − T fluid )

Boundary Element Method in Inverse Heat Conduc-
tion Problem, Fig. 1 Calculation domain
DTðxÞ ¼ � 1

k
pðxÞ; x ¼ x1; x2; x3ð Þ 2 O ð4Þ

We can transform the (3) to the boundary

integral equation with the boundary conditions

of the three possible forms, Fig. 1

1. Dirichlet’s type boundary condition
TðxÞ ¼ f ðxÞ; x 2 GA ð5Þ

2. Neumann’s type boundary condition
qðxÞ ¼ �k
@T

@n
¼ gðxÞ; x 2 GB ð6Þ

3. Mixed type boundary condition
�k
@T

@n
¼ h TðxÞ � Tfluidð Þ; x 2 GC; h > 0 ð7Þ

The first step to formulate the boundary element

method is the transformation of the (3) to an inte-

gral equation. Multiplying the (3) by the test func-

tion T* and integrating over the domain O we have
ð
O

DT � b2T þ b2Q
� �

T�dO ¼ 0 ð8Þ

Since
div T�HTð Þ ¼ HT�HT þ T� 	 DT
div T 	 HT�ð Þ ¼ HT 	 HT� þ T 	 DT� ð9Þ

thus for the first term in (8) on the basis of (9) and

Gauss’ theorem we have
ð
O

DT 	 T�dO ¼
ð
O

div T� 	 HTð ÞdO

�
ð
O

HT�HTdO ¼
ð
O

div T� 	 HTð ÞdO

�
ð
O

div T 	 HT�ð ÞdOþ
ð
O

T 	 T�dO

¼
ð
G

T� 	 HT 	~ndO�
ð
G

T 	 HT� 	~ndO

þ
ð
O

T 	 DT� 	 dO

ð10Þ

Therefore the (8) may be transformed into the

form
ð
O

T DT� � b2T�� �
dO ¼

ð
G

T
@T�

@n
� u�

@T

@n


 �
dG

� b2
ð
O

Q 	 T� 	 dO
ð11Þ

The integral on the left hand side (11) is

reduced to the function T if the test function T*

satisfies the fundamental equation
DT� � b2T� ¼ �d x; xð Þ ð12Þ



x2
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If it is so, we have
x1 = ξ1 + ε cos Θ
x2 = ξ2 + ε sin Θ

ξ
ε

Θ1

Θ2

Θ

Γ−

Γε x

→n B
ð
O

TðxÞ 	 d x; xð ÞdO ¼ TðxÞ; x; x 2 O ð13Þ

The possible explicite forms of the function T*

and its derivative q� ¼ T�
i 	 ni are as follows

[3, 5], with the distance r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xið Þ xi � xið Þp

– For Laplace’s equation for the 2D case
x1

Boundary Element Method in Inverse Heat Conduc-
T� x; xð Þ ¼ � 1

2
	 ln r; q� x; xð Þ ¼ � xi � xið Þ 	 ni

2pr

– For Laplace’s equation for the 3D case

tion Problem, Fig. 2 Boundary G augmented by Ge
T� x; xð Þ ¼ 1

4pr
; q� x; xð Þ ¼ � xi � xið Þ 	 ni

4p 	 r3=2

– For Helmholtz’s equation for the 2D case
T� r; bð Þ ¼ 1

2p
	 K0 brð Þ;

q� r; bð Þ ¼ � b
2p

	 K1 brð Þ

– For Helmholtz’s equation for the 3D case
T� r; bð Þ ¼ exp brð Þ
4pr

;

q� r; bð Þ ¼ � 1� b 	 rð Þ 	 exp brð Þ
4pr2

	 @r
@n

Taking into account the property (13) in (11)

we obtain
T xð Þ ¼
ð
G

T� 	 q� T 	 q�ð ÞdG

þ b2
ð
O

Q	T�dO; q ¼ @T

@n
; x 2 O

ð14Þ
If temperature T distribution and heat flux q
on the boundary G are known then the tempera-

ture distribution within the domain O may be

determined from the (14). To obtain an equation

including only data on the boundary G in (14)

one should approach with the coordinate x to the
boundary G. The equation obtained in such

a way is called a boundary integral equation

(BIE). Because of the singularity of the funda-

mental solution T* and the derivate q*, if

x ! x 2 G one should make a boundary transi-

tion. In order to do that we divide the integration

boundary into two G� Ge and Ge, Fig. 2, and

split the integral disjoint over G into two bound-

ary integrals
ð
G

q�TdG ¼
ð

G�Ge

q�TdGþ
ð
Ge

q�TdG ¼ I1 þ I2

ð15Þ

Introducing the polar coordinates in the

domain bounded by the arc Ge we have
q� ¼ � 1

2pr
	 @r
@n

¼ � 1

2pe
; x 2 Ge;
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therefore
I2 ¼
ð
Ge

q�u 	 dG ¼ � u xð Þ
2p

ð
Ge

1

e
e 	 dY

¼ � u xð Þ
2p

ðY2

Y1

dY ¼ � u xð Þ
2p

Y2 �Y1ð Þ
ð16Þ

The integral
Ð
G
T� 	 q 	 dG is a weakly singular

one and is equal to zero over the arc Ge for e! 0.

Thus, for x ! x ∈ G the boundary integral

equation has the form
c xð Þ 	 T xð Þ ¼
ð
G

T�q� T 	 q�ð ÞdG

þ b2
ð
O

Q 	 T�dO; x 2 G
ð17Þ

c ¼
1 x 2 O
0 x =2 O

1þ lim
e!0

Ð
Ge

q�dG; x 2 G

8><>: ð18Þ

and for the 2D case
lim
e!0

ð
Ge

q�dG ¼ 1�Y2 �Y1

2p
ð19Þ

For the boundary G ∈ C1 , in the 2D case

Y2 �Y1 ¼ p, then c ¼1/2, and by analogy for

the 3D case, c ¼ ¼.
Discretization of Boundary

Approximation of the boundary G is done by

dividing it to elements G(1), G(2),. . ., G(NE) with

a disjoint interiors, NE is the number of boundary

elements. Each of elements may possesses one or

more nodes, Fig. 3.

The boundary G can be approximated by

straight segments, Figs. 4 and 5 or curved ones

for the 2D case and plain or curved surfaces for

the 3D case. Figure 4 shows the subdivision of the
boundary into the straight segments which

imposes the interpolation of temperature T and

heat flux q by the piecewise linear function.

Namely
T �ð Þ ¼ Ti 	 ’1 �ð Þ þ Tiþ1 	 ’2 �ð Þ ¼ ’f gT Tf g
q �ð Þ¼ qi 	 ’1 �ð Þ þ qiþ1 	 ’2 �ð Þ ¼ ’f gT qf g

’1 �ð Þ ¼ 1� �; ’2 �ð Þ ¼ �; � 2 0; 1h i

9=;
ð20Þ

dG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1i � x1;iþ1

� �2 þ x2i � x2;iþ1

� �2q
	 d� ¼ Dsi 	 d�:

We can use the discontinuous approximation

of temperature and heat flux to the boundaries

with corners or in polygonal domains.

Introducing a discrete form of the solution

(20) to the boundary (18) we obtain
c xð Þ 	 T xð Þþ
XNE
i¼1

Dsi

ð
GðiÞ

q� x; �ð Þ 	 ’ xð Þf gT 	 d� 	 Tf g

¼
XNE
i¼1

Dsi 	
ð
GðiÞ

T� x; �ð Þ 	 ’ xð Þf gTd� 	 qf g

þ b2
ð
O

T� x; xð Þ 	 QðxÞ 	 dO

ð21Þ

For subsequent collocation points xk, k¼ 1,. . .,
N equal to the number of nodes (piecewise con-

tinuous linear approximation) after discretization

the solution (21) takes the matrix form
H½ � Tf g ¼ G½ � qf g þ P½ � Qf g ð22Þ

dim H½ � ¼ dim G½ � ¼ N � N; dim P½ � ¼ N � NQ

In case of discontinuous approximation

(Fig. 6) the number of unknowns and collocation

points is equal to 2 N.
Boundary Conditions

Separating from the dependence (22) matrices

connected with the boundaries GA, GB and GC,

we may write this dependence in the matrix form



a

Γ(i+1)

Γ(i+1)

Γ(i+1)

Γ(i+2)

Γ(i)

Γ(i)

Γ(i)

Corner

Corner

Corner

b

c

Boundary Element
Method in Inverse Heat
Conduction Problem,
Fig. 3 Division of the

boundary into elements:

(a) collocation points

coincide with nodes, (b) the

collocation point is

removed from the node

(a single corner),

(c) collocation points are

inside the element

Boundary Element Method in Inverse Heat Conduc-
tion Problem, Fig. 4 Linear approximation of tempera-

ture and heat flux in element G(i)

Boundary Element Method in Inverse Heat Conduc-
tion Problem, Fig. 5 Linear continuous approximation

of temperature

Boundary Element Method in Inverse Heat Conduction Problem 429 B

B

HA;HB;HC½ �
TAf g
TBf g
TCf g

8<:
9=; ¼ GA;GB;GC½ �

qA
qB
qC

8<:
9=;

þ P½ � Qf g
or equivalently

HA½ � TAf g þ HB½ � TBf g þ HC½ � TCf g ¼ GA½ � qAf g
þ GB½ � qBf g þ GC½ � qCf g þ P Qf g½ �

ð23Þ

Now taking into account the conditions

(5)–(7) we obtain



Boundary Element Method in Inverse Heat Conduc-
tion Problem, Fig. 6 Segmental discontinuous approx-

imation of temperature
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�GA;HB;HC þ h

k
GC

� � qAf g
TBf g
TCf g

8><>:
9>=>;

¼ �HA;� 1

l
GB;

h

k
GC

� � ff g
gf g

Tfluid

8><>:
9>=>;þ P½ � Qf g

ð24Þ

or, in a compact form
HS½ �
qAf g
TBf g
TCf g

8<:
9=; ¼ GS½ �

ff g
gf g

Tfluidf g

8<:
9=;þ P½ � Qf g

Premultiplying both sides by the matrix [HS]-1
qAf g
TBf g
TCf g

8><>:
9>=>; ¼ HG½ �

ff g
gf g

Tfluidf g

8><>:
9>=>;þ HP½ � Qf g

ð25Þ

For determined temperature distribution {TC}

(25) we have qC ¼ � @T
@n ¼ h TC � Tfluidð Þ k= , thus

the vector of temperature {T} and heat flux {q}

on the entire boundary G is known. Therefore the

temperature distribution at a given point x∈ O is

represented by the dependence (17), which may

be written in the following form c ¼ 1 (G ∈ C1)
T xð Þ ¼ HU xð Þf gT qf g þ GU xð Þf gT Tf g
þ PU xð Þf gT Qf g; x 2 O

ð26Þ
Perturbed temperature T(x) for perturbed data

T + dT, q + dq, Q + dQ on the basis of the

dependence (26) is represented as follows
T xð Þ þ dT xð Þ ¼ HU xð Þf gT qþ dqf g
þ GU xð Þf gT T þ dTf g þ PU xð Þf gT Qþ dQf g

ð27Þ

Subtracting the dependence (26) from the (27)

one,weobtain a temperature error at the pointx∈O
as the function of a perturbed value (data error).
dT xð Þ ¼ HU xð Þf gT dqf g þ GU xð Þf gT dTf g
þ PU xð Þf gT dQf g

ð28Þ

Having considered the boundary conditions

represented by the vector (25) we may write the

dependence (26) in the form
T xð Þ ¼ HUAf gT ; HUBf gT ; HUCf gT
 � qAf g
qBf g
qCf g

8><>:
9>=>;

þ GUAf gT ; GUBf gT ; GUCf gT
 � TAf g
TBf g
TCf g

8><>:
9>=>;

¼ SHf gT
qAf g
qBf g
qCf g

8><>:
9>=>;þ SGf gT

ff g
gf g

Tfluidf g

8><>:
9>=>;

¼ SHf gT HG½ �
ff g
gf g

Tfluidf g

8><>:
9>=>;þ SGf gT

ff g
gf g

Tfluidf g

8><>:
9>=>;

þ SHf gT HP½ � Qf g ¼ SAf gT ff g þ SBf gT gf g
þ SCf gT Tfluidf g þ SPf gT Qf g

ð29Þ

For each x value the vectors {HU}, {GU} and
{PU} have to be determined from scratch.
Calculation of Domain Integral

An appearance of the integral IO ¼ Ð
O
Q 	 T�dO is

a certain inconvenience in the boundary element

method. A domain integral can be determined by
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tion Problem, Fig. 7 Division of the domain O into

finite elements
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using the finite element method or by reducing it

to a sequence of boundary integrals (it is partic-

ularly useful if the domain O is unbounded) [5].

Figure 7 shows the discretization of the

domain O with the use of the simplest possible

finite elements [3]. For better approximation of

the boundary (with the same number of boundary

nodes) we can use curvilinear elements.

The second approach consists on transformation

of the integral IO into the boundary integrals [6].

To determine the integral IO we will use the

fundamental solution u∗ of n-th order for which

the following equality occurs
Dnu� ¼ T� hence Dnþ1u� ¼ DT� ¼ d

and Dn�ju� ¼ D�ð jþ1Þd; n >1
ð30Þ

Therefore n + 1 times using the integration by

parts we have

IO ¼
ð
O

Q 	 T�dO ¼
ð
O

Dnþ1Q 	 u�dO

þ
Xn
j¼0

@

@n
DjQ
� � 	 Dn�ju� � DjQ

�
� 	 @

@n
Dn�ju�
� �� 	 dG

where Dn�ju� ¼ D�ðjþ1Þd and
D�ðjþ1Þd¼

1

2
	 r2jþ1

2 2jþ1ð Þ! ; r¼ x�xj j; 1D case

1

2p
	 r2j

2 j 	 j!ð Þ2 	
Xj
k¼1

1

k
� lnr

 !
; 2D case

1

4p
	 r2jþ1

2 jþ1ð Þð Þ! ; 3D case

8>>>>>>><>>>>>>>:
ð31Þ

Similarity, for the 2D case [4]
ð
O

Dnþ1Q 	 u� 	 dO
������

������ � max Dnþ1Q
�� ��� �

p 	 22ðnþ1Þ nþ 1ð Þ 	 n!ð Þ2

	 1

2 nþ 1ð Þ þ
Xn
k¼‘

1

k

 ! ð32Þ
Inverse Problem

The well posed problems for the heat conduction

(1) require: knowledge of temperature coefficients

l, r, c and the source function, the determination of

the domain O, the initial condition and the bound-

ary conditions. If one of these data is missing then

from the physical point of view it can be completed

by the temperature measurement in the interior

points of the domain O [7]. The problem stated in

such a way and called an inverse problem is ill

posed in Hadamard’s sense. It means that a small

perturbation of data may lead to huge perturbation

in solving the (1). To minimize this negative

phenomenon a regularization of the inverse prob-

lem is used.

The inverse problems mentioned above may

be one of the following types: initial (unknown

initial temperature distribution), boundary

(unknown boundary condition on a part of the

boundary), coefficient (unknown coefficient l, r
and c), geometric (the shape of a part of the

domain’s boundary is unknown).

One of the problems which most often appears

in practice is an inverse boundary problem for

which a distribution of temperature T ¼ f on the

boundary GA, Fig. 8, is sought after. Let the

number of measuring points on the interior

boundary Gw be denoted by Nw while the number

NT of nodes on the boundary GT be NT � Nw.



xw,k

ΓB

Γw

ΓA : T = f = ?

Tw

ΓC

Ω

Boundary Element Method in Inverse Heat Conduc-
tion Problem, Fig. 8 Calculation domain with interior

temperature measurement points
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In order to find the unknown distribution of the

function f in the nodes of the boundary GA we use

the dependence (29), that is
T xw;k
� � ¼ SA xw;k

� �
 �T
ff g þ SB xw;k

� �
 �T
gf g

þ SC xw;k
� �
 �T

Tfluidf g þ SP xw;k
� �
 �T

Qf g
¼ SA xw;k

� �
 �T
ff g þ Rk, k ¼ 1; 2; . . . ;Nw

ð33Þ

We obtain the discrete distribution of the func-

tion f from the minimization of the distance in the

least squares sense between the measured

temperature Tw,k, k ¼ 1,2,. . ., Nw and the one

determined from the solution (33). Namely the

error-functional, is represented as follows:
I ff gð Þ ¼
XNw

k¼1

T xw;k
� ��Tw;k

� �2
¼
XNw

k¼1

SA xw;k
� �
 �T

ff gþRk �Tw;k

� 	2
¼ AA½ � ff g� TRf gk k2; AAif gT ¼ SA xw;i

� �
 �T
TRi ¼ Tw;i�Ri

ð34Þ

The minimization of the functional (34) is

equivalent to solving the system of linear equation

AA½ � ff g ¼ TRf g hence ff g ¼ AA½ �þ TRf g ð35Þ

where [AA]+ is a pseudoinverse matrix.
The influence of the data error dTR on the

solution f results from the dependence (35), that is
dff g ¼ AA½ �þ dTRf g ð36Þ

If small changes in dTRk k produce huge changes
in dfk k then the inverse problem requires regulari-

zation [7]. After making regularization in the

Tichonov’s sense the functional (34) takes the form
Ia ff gð Þ ¼ AA½ � ff g � TRf gk k2

þ a2 B½ � f � f0f gk k2; a > 0
ð37Þ

where B is called the regularization matrix (in the

special case B ¼ I) while {f0} is the approxima-

tion of {f} (in many cases {f0} ¼ {0}).

Theminimization of the functional (37) is equiv-

alent to solving the overdetermined system of linear

algebraic equations in the least squares sense
AA½ �
a B½ �
� �

¼ TRf g
a f0½ �

� �
or AAa½ � ff g ¼ TRaf g

ð38Þ
Thus
ff g ¼ AAa½ �þ TRaf g ð39Þ

A number of methods to determine the opti-

mum value of the parameter a is shown in the

paper [8]. A solution of a non-stationary inverse

problem with the use of the fundamental solution

dependent on space and time variables is

presented in the paper [9].
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4. Frąckowiak A, Ciałkowski M (2005) Explict estima-

tion of an integral in a domain by the multiple



Boundary Integral Equations for Notch Problems 433 B

B

reciprocity method with the use of inverse operations.

Task Quart 2:235–244

5. Nowak AJ, Brebbia CA (1989) The multiple reciproc-

ity method. In: Aliabadi MH, Brebbia CA (eds)

Advanced formulations in boundary element methods.

Computational Mechanics Publications, Southampton,

Chapter 3

6. Tang W (1988) Transforming domain into boundary

integrals in BEM. A generalized approach, vol 35,

Lecture notes in engineering. Springer, Berlin/

Heidelberg

7. Alifanov OM (1994) Inverse heat transfer problems.

Springer, Berlin/New York

8. Louis AK (1989) Inverse und schlecht gestellte

probleme. Teubner Studienbuecher, Stuttgart

9. Białecki R, Divo E, Kassab A (2006) Reconstruction of

time-dependet boundary heat flux by a BEM-based

inverse algorithm. Eng Anal Bound Elem 30:767–773
Boundary Integral Equation Method

▶Application of Boundary Integral Equation

(BIE) Method in Thermoelastodynamic Problem

▶Boundary Element Method in Generalized

Thermoelasticity
Boundary Integral Equations for
Notch Problems

Ching-Kong Chao

Department ofMechanical Engineering, National

Taiwan University of Science and Technology,

Taipei, Taiwan, Republic of China
Overview

Themagnification of stresses at geometric disconti-

nuities is of great importance in engineering design.

In particular, local stresses may be highly enhanced

in notched materials arising from abrupt changes of

shape. This would result in a substantial decrease of

the load-bearing capacity of structural members.

Variousmethods of calculating stress concentration

factors have been developed for two-dimensional

elasticity problems. Using a series expansion

method, Ling [1] solved elastic problems with dif-

ferent types of notches. Bowie and Freese [2]
analyzed the notch problem by using complex var-

iable theory in conjunctionwith the conformalmap-

ping method. Nisitani [3] used the method of body

force (or Green’s function) to solve the notch prob-

lem in a semi-infinite plate or in a strip.

An alternative method for solving notch prob-

lems may be formulated in terms of a system of

boundary integral equations. This method has clear

advantages in solving the problem by applying

a numerical treatment. In the derivationof boundary

integral equations, the selection of the auxiliary

function determines whether the kernels have

weak or strong singularities. The kernel with

Cauchy-type singularity has been widely used to

solve many crack problems [4]. On the other hand,

the integral equation with a logarithmic kernel has

been proved to easily perform the numerical com-

putation byCheung andChen [5]. Thismethodwith

weak singularity has been used to solve some crack

problems associated with an elastic half-plane

medium [6], two bonded half-plane media [7], and

a circular inclusion perfectly bonded in an infinite

matrix [8].Basedon the earlier derivation,Chenand

Cheung [9] reformulated a new boundary integral

equation to deal with the notch problem in plane

elasticity. We aim to further extend the aforemen-

tioned method to solve notch problems in plane

thermoelasticity. In the derivation of singular inte-

gral equations, instead of using the components of

heat flux and the components of stress, the resultant

heat flow Q and the resultant force � Y þ iX are

used to formulate the boundary conditions along the

notch surface. This would result in singular integral

equations with a logarithmic kernel instead of

a Cauchy-type kernel. Three different types of

notches in an infinite medium under a remote uni-

form heat flow are considered as our examples to

illustrate the use of the approach. Some available

exact solutions are provided to compare with the

calculated numerical results to demonstrate the

accuracy of the study.
Formulation of Integral Equation:
Thermal Field

For the two-dimensional steady-state heat con-

duction problem, the temperature function, which

http://dx.doi.org/10.1007/978-94-007-2739-7_724
http://dx.doi.org/10.1007/978-94-007-2739-7_724
http://dx.doi.org/10.1007/978-94-007-2739-7_830
http://dx.doi.org/10.1007/978-94-007-2739-7_830
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satisfies the Laplace equation, can be expressed

in terms of a single analytic function yðzÞ. With

this function, both the temperature T and the

resultant heat flow Q are written as
T ¼ Re yðzÞ½ � ð1Þ

Q ¼
ð

qxdy� qydx
� � ¼ �kIm yðzÞ½ � ð2Þ

where Re and Im denote the real and imaginary

parts of the bracketed expression, respectively.

The quantities qx and qy in (2) are the components

of heat flux in the x and y directions, respectively,

and k is the heat conductivity. Consider a remote

uniform heat flux approached from the negative

x-axis obstructed by the presence of an insulated

notch or hole in an infinite medium. The current

problem can be treated as a sum of the

corresponding infinite medium problem without

notches and a corrective term. The solution asso-

ciated with the former problem can be easily

expressed as
Q0ðzÞ ¼ qIm z½ � ð3Þ

with q being the strength of heat flux applied at

infinity. On the other hand, a corrective solution

associated with an infinite medium with a single

notch can be obtained by assuming a continuous

distribution of dislocations with the density b0(s)

placed along a given contour L as
yðzÞ ¼ � i

2p

ð
L

log z� tð Þb0ðsÞds ð4Þ

The resultant heat flow across the notch sur-

face can be obtained by substituting (4) into (2) as
QðzÞ¼ k

4p

ð
L

�
log z� tð Þþ log z� tð Þ

�
dsþ c0; z2 L ð5Þ

where a bar will be used to indicate a conjugate

complex quantity and c0 is a constant to be deter-
mined. Based on the superposition principle, the

boundary integral equation for an infinite

medium containing an insulated notch is then

established as follows:
k

2p

ð
L

log z� tj jð Þb0ðsÞdsþ c0 ¼ �qIm z½ �; z 2 L

ð6Þ
In addition, the single-valued condition of the

temperature must be satisfied, i.e.,
ð
L

b0ðsÞds ¼ 0 ð7Þ

Equation 6 together with (7) constitutes

a boundary integral equation for solving the

unknown function b0ðsÞ. Once the function

b0ðsÞ is determined, the temperature function

yðzÞ in (4) will be obtained accordingly.
Formulation of Integral Equation

For a two-dimensional thermoelastic problem,

the components of the displacement and the trac-

tion force can be expressed in terms of two ana-

lytic functions, fðzÞ and cðzÞ, and a temperature

function yðzÞ as [10]
2m uþ inð Þ ¼ kfðzÞ � zf0ðzÞ �CðzÞ

þ 2mb
ð
yðzÞdz ð8Þ

� Y þ iX ¼ fðzÞ þ zf0ðzÞ þCðzÞ ð9Þ

where m is the shear modulus,

k ¼ 3� vð Þ= 1þ vð Þ and b ¼ a for plane stress,

and k ¼ 3� 4v and b ¼ 1þ vð Þa for plane

strain, with n Poisson’s ratio and a the thermal

expansion coefficient. The stress functions asso-

ciated with an infinite medium containing

a single notch can be obtained by assuming

a continuous distribution of edge dislocations

with densities b1ðsÞ and b2ðsÞ placed along

a given contour L as
fðzÞ im
p 1þ kð Þ

�
ð
L

b1ðsÞ þ ib2ðsÞ½ � log z� tð Þds ð10Þ
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cðzÞ ¼ �im
p 1þ kð Þ

ð
L

b1ðsÞ � ib2ðsÞ½ � log z� tð Þds

� im
p 1þ kð Þ

ð
L

b1ðsÞ þ ib2ðsÞ½ �t
z� t

ds

ð11Þ

Substituting (10) and (11) into (9) yields
�Y þ iX ¼
ð
L

K1 t; t; z; zð Þ b1ðsÞ þ ib2ðsÞ½ �ds

þ
ð
L

K2 t; t; z; zð Þ b1ðsÞ � ib2ðsÞ½ �ds
þ c1 þ ic2; z 2 L

ð12Þ

where
K1 t; t; z; zð Þ ¼ 2im
p 1þ kð Þ log z� tj j ð13Þ

K2 t; t; z; zð Þ ¼ im
p 1þ kð Þ

t� z

z� t
ð14Þ

For the traction-free condition along the notch

surface, we now have the boundary integral

equationð
L

K1 t; t; z; zð Þ b1ðsÞ þ ib2ðsÞ½ �ds

þ
ð
L

K2 t; t; z; zð Þ b1ðsÞ � ib2ðsÞ½ �
dsþ c1 þ ic2 ¼ 0

ð15Þ

Furthermore, the single-valued condition of

the displacement must be satisfied, i.e.,ð
L

b1ðsÞ þ ib2ðsÞ½ �ds�
ð
L

b
ð
b0 xð Þdx

� �
ds ¼ 0

ð16Þ

Equation 15 together with (16) constitutes

a boundary integral equation for solving the

unknown functions b1ðsÞ and b2ðsÞ. Once these

two functions are determined, the stress functions

fðzÞ and cðzÞ in Eqs. (10) and (11), respectively,
will be obtained accordingly.
Numerical Results and Discussion

The dislocation functions b0ðsÞ in (6) and b1ðsÞ
and b2ðsÞ in (15) together with the subsidiary

conditions (7) and (16) will be solved numerically

using the appropriate interpolation formulas. For

performing the numerical calculation, the contour

L is replaced by a polygon of N line segments.

The interpolation formulas for line segments in

local coordinates sj 1 � j � Nð Þ are taken as [9]

bi sj
� � ¼ bi;j

dj � sj
2dj

þ bi;jþ1

dj � sj
2dj

� i ¼ 0; 1; 2ð Þ ð17Þ
where dj 1 � j � Nð Þ are the half-length for each

line segment and bi;j 1 � j � Nð Þ are the unknown
coefficients to be determined. If the preceding for-

mulas are used, the boundary integral equation (6)

together with the subsidiary condition (7)

can be carried out to yield N þ 2 algebraic

equations for solving N þ 2 unknown

coefficients b0;0; b0;1; b0;2; . . . ; b0;N; c0
� �

. Simi-

larly, the boundary integral equation [Eq. (15)]

together with the subsidiary condition (16) can

be arranged to yield 2N þ 4 algebraic

equations for solving 2N þ 4 unknown

constants b1;0; b1;1; . . . ; b1;N; b2;0; b2;1; . . . ; b1;0; c1; c2
� �

.

Once the stress functions are determined, the tan-

gential stresses or hoop stresses along the notch

surface may be evaluated by
si ¼ 4Re f0ðzÞf g;
z 2 L

ð18Þ
Circular Hole

As our first example, an insulated circular hole in

an infinite medium under a remote uniform heat

flow is considered. For performing the numerical

technique, the contour of the circular hole is

replaced by a polygon of N line elements

discreted with a number of N points expressed by

xi ¼ a cos
2 i� 1ð Þp

N

� �
; yi ¼ b sin

2 i� 1ð Þp
N

� �
i ¼ 1; 2; . . . ;Nð Þ

ð19Þ
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The calculated hoop stresses and the

corresponding exact results are displayed in

Fig. 1. It can be seen that the calculated numerical

results agree very well with the corresponding

exact solutions with the number of line segments

N ¼ 48.
Elliptic Hole

As our second example, we consider an insulated

elliptic hole with the semiaxes a and b ¼ a=2
under a remote uniform heat flow. Similar to the

preceding approach, some discreted points along

the elliptic hole are expressed by
xi ¼ a cos
2 i� 1ð Þp

N

� �
; yi ¼ b sin

2 i� 1ð Þp
N

� �
i ¼ 1; 2; . . . ;Nð Þ

ð20Þ

The calculated hoop stresses and the

corresponding exact results are displayed in
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Fig. 2. It shows that the error between the

numerical results and exact solutions is

within 2 % with the number of line segments

N ¼ 72.
B

Square Hole

As our third example, the notch problem of

square hole with round corners is considered

and shown in Fig. 3a. In the following numerical

analysis, the choice of N1 points is selected along

the straight portions, whereas the choice of N2 is

selected along the round corners. The exact

results and numerical hoop stresses of two cases

with N1 ¼ N2 ¼ 2 and N1 ¼ N2 ¼ 4 are

displayed in Fig. 3b. Good accuracy is also

observed for the square hole problem with

N1 ¼ N2 ¼ 4.
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Overview

The theory of thermoelasticity has many applica-

tions in various problems of engineering, envi-

ronment, and biology, for example, problems of

aircraft, chemical and mechanical engineering,

and geothermal effects, and in the different situ-

ations where the heat effects cannot be neglected.

This is true, in particular, in conductors of elec-

tricity, where the contribution of Joule heat can-

not, in general, be disregarded.

A model that lends itself easily to treatment

within the boundary integral methods is that

of static, uncoupled linear theory of

thermoelasticity for isotropic media. This is due

to the fact that the differential operators in the

governing equations can be dealt with through the

Laplacian operator, and the solutions can be

expressed in terms of harmonic functions.

This model excludes any temperature depen-

dence of the material constants of the medium.

Moreover, the heat problem is totally indepen-

dent of the mechanical parameters and may be

solved separately, as a first step towards the com-

plete solution of the thermoelastic problem. In

what follows, we shall present a boundary inte-

gral formulation of this model.

An extensive literature exists on the subject

of uncoupled, linear thermoelasticity and on the

various analytical and numerical techniques

adopted for the solution of different problems

[1]. Classical analytical methods of solution

have been widely used to tackle problems with

relatively simple geometries to get exact or

approximate analytical solutions. Alternatively,

the numerical methods based on finite differ-

ence or on finite element techniques have

become more popular in the recent years.
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Although successful in dealing with problems

with complex geometry, the numerical methods

necessitate laborious calculations and high-

capacity computing machines in order to

discretize the field equations in the bulk and

the boundary conditions on the boundary and

to deal with the problems of convergence, sta-

bility, and computing time saving. In compari-

son, the boundary methods have some

advantages: First, they rely on well-established

theoretical results of existence and uniqueness

of solutions of integral equations. Second, the

tackling of the problem is carried out in two

consecutive stages, during which the unknown

functions are first computed on the boundary of

the domain of solution, then in the bulk by

quadrature, which means saving of computing

time. Third, the involved computational aspects

are simpler than for numerical methods and

usually produce good approximate solutions,

with no drastic limitations on the shape or con-

nectivity of the boundary. A thorough exposi-

tion of boundary integral methods and their

applications in potential theory and in

elastostatics may be found in [2].

For the case under consideration, the Theory

of Potential provides us with the necessary tool,

in the form of a boundary integral representa-

tion of harmonic functions. This is recalled in

Appendix A in different forms convenient for

our purposes. Applications of the Theory of

Potential to problems of elasticity may be

found in [3]. For conciseness, we shall restrict

further considerations to plane problems of

thermoelasticity. The notations and analysis

follow those of [4] and [5]. The basic equations

and boundary conditions are quoted without

proof. Details may be found in relevant

textbooks.
Problem Formulation

Consider an infinite cylinder of a thermoelastic,

isotropic medium acted upon by thermal sources

in the bulk and surface forces on the lateral

boundary. The setting is such that there is no

dependence of the solution on the z-coordinate
measured along the axis of the cylinder, with

respect to a system of orthogonal Cartesian coor-

dinates (x, y, z) with center O in the body. The

unit vectors along the axes are denoted i, j, and k.

It is required to find the distribution of tem-

perature in space and the deformations and

stresses occurring in the body.

Let D be the normal cross section of the cyl-

inder containing the origin O. Region D is

assumed simply connected and bounded by

a sufficiently smooth contour C with parametric

representation
x ¼ xðsÞ; y ¼ yðsÞ; 0 � s � s1 ð1Þ

at each point of which the unit outwards normal n

is uniquely defined. Here, s denotes the arc length

as measured on C in the usual positive sense

associated with D, from a fixed point Q0 to

a general boundary point Q. Let t be the unit

vector tangent to C at Q in the sense of increase

of s. One has
t ¼ _xðsÞ; _y ðsÞð Þ; n ¼ _y ðsÞ;� _x ðsÞð Þ ð2Þ

and the “dot” means derivative with respect to s.
Thermal Problem

The general equations of linear thermoelasticity

are well established and may be found in [1]. In

what follows, we shall quote these equations

without proof, to be used throughout the text.

In the steady state, the temperature y as mea-

sured from a reference temperature y0 satisfies

Poisson’s equation
Dy ¼ � q

k
ð3Þ

where q(x, y) is a given function representing the

rate of heat supply per unit volume arising from

heat sources present in the region occupied by the

medium and k is the constant coefficient of heat

conduction.

The temperature function y solving equation

(3) is represented as



Boundary Integral Formulation of the Plane Problems of Thermoelastostatics 439 B

B

y ¼ yH þ yp ð4Þ

where yH is a harmonic function and yp is any

particular solution of (3). This latter function can

be taken in the form of Newton’s potential
ypðx; yÞ ¼ 1

2p

ð ð
D

qðx0; y0Þ
k

ln
1

r
dx0dy0 ð5Þ

where r is the distance between the two points

with coordinates (x, y) and ðx0; y0Þ inD. In the case
of a constant heat supply q0,
yp ¼ � q0
4k

x2 þ y2
� � ð6Þ

Three cases are considered for the thermal

boundary conditions. For each of them, we shall

show how to obtain the functions yHðx; yÞ and

ycHðx; yÞ in �D, as this information is needed for

the solution of the thermoelastic problem.

Dirichlet Problem

The temperature on the boundaryC of the domain

D is a given continuous function y�ðsÞ. The

Dirichlet problem can be formulated as follows:

to find a solution to (3) which belongs to the class

C2ðDÞ \ Cð �DÞ and which is equal to the pre-

scribed function y� on the boundary:
yðsÞ ¼ y�ðsÞ; 0 � s � s1 ð7Þ

The harmonic function yHðx; yÞ is expressed

on the boundary in terms of y�ðsÞ as
yHðsÞ ¼ y�ðsÞ � ypðsÞ ð8Þ

where ypðsÞ denotes the restriction of the function
ypðx; yÞ to the boundary C. Substituting (8) into

(54) for f(s), the boundary function ycHðsÞ is found
to satisfy the following Fredholm integral equa-

tion of the first kind:
þ
C

ycH gt0 ds
0 ¼ p½y�ðsÞ � ypðsÞ�

�
þ
C

½y�ðsÞ � ypðsÞ�gn0 ds0
ð9Þ
From the solution of (9), using (8), (49) and

(52), one then obtains the functions yHðx; yÞ and
ycHðx; yÞ in D. This determines completely the

temperature function yðx; yÞ.
The Dirichlet problem for Laplace’s equation

has not more than one solution. For definiteness,

a specific value can be assigned to the function ycH
at any chosen point in �D without affecting the

solution. In case this point is in D, the condition

may be transformed into a boundary integral

relation by means of (52).

Neumann Problem

The normal derivative of the temperature on the

boundary, which represents the heat flux on the

boundary C of the domain D, is a prescribed

continuous function y�nðsÞ. The Neumann prob-

lem can be formulated as follows: to find

a solution to (3) which belongs to the class

C2ðDÞ \ C1ð �DÞ and which has a normal deriva-

tive equal to the prescribed function y�n on the

boundary:
@y
@n

ðsÞ ¼ y�nðsÞ; 0 � s � s1 ð10Þ

Equation (4) yields
@

@n
yHðsÞ ¼ y�nðsÞ �

@

@n
ypðsÞ ð11Þ

Substituting this into (54) yields the following

Fredholm integral equation of the second kind for

the unknown function yHðsÞ:

yHðsÞ � 1

p

þ
C

yH gn0 ds
0 ¼ � 1

p

þ
C

½y�nðs0Þ

� @

@n0
ypðs0Þ�g0 ds0

ð12Þ

The solution of this equation produces the

boundary function yHðsÞ. Now substitute this solu-

tion and (11) into (56) to get ycHðsÞ. As for Dirichlet
problem, functions yHðx; yÞ and ycHðx; yÞ are

obtained in D from (49) and (52). This determines

the temperature function yðx; yÞ in �D.
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The solution of Neumann problem for

Laplace’s equation is uniquely determined up

to an additive arbitrary constant. Thus, one can

specify the values of yH and ycH, each at an

arbitrarily chosen point in D. If the point is in

D, then the corresponding condition may be

transformed into a boundary integral relation

using (49) and (52).

Robin Problem

The normal derivative of the temperature is

related to the temperature on the boundary C by

a relation of the form
@y
@n

ðsÞ ¼ �Bi

k
½yðsÞ � yeðsÞ� ð13Þ

where Bi is Biot constant and yeðsÞ denotes the
external (ambient) temperature on the boundary

C. In other words, the heat flux is proportional to

the difference of temperatures on both sides of

the boundary C. The ambient temperature ye is

assumed continuous on the boundary C. The

Robin problem can be formulated as follows: to

find a solution to equation (3) which belongs to

the class C2ðDÞ \ C1ð �DÞ and which has a normal

derivative satisfying condition (13) on the

boundary.

The radiation condition may be reformulated

in terms of yHðsÞ with the help of (4) to read
@yH
@n

ðsÞ ¼ �Bi

k
yHðsÞ þ ypðsÞ � yeðsÞ
� �� @yp

@n
ðsÞ
ð14Þ

Substituting this expression into (54) yields

the following Fredholm integral equation of the

second kind for the function yHðsÞ:
yH � 1

p

þ
C

yH gn0 þ Bi

k
g0


 �
ds0 ¼ y��ðsÞ ð15Þ

where
y��ðsÞ ¼ 1

p

þ
C

Bi

k
yp � ye
� �þ @yp

@n

� �
g0 ds0
Substituting (14) and the solution of (15) into

(56) yields ycHðsÞ at once. Finally, functions

yHðx; yÞ and ycHðx; yÞ are obtained in D from

(49) and (52) as before. This determines the tem-

perature function yðx; yÞ in �D. As for Dirichlet

problem, one can specify the value of ycHðx; yÞ at
a chosen point in �D.
Mechanical Problem

In the absence of body forces, the equations of

equilibrium are automatically satisfied if the

identically nonvanishing stress components are

defined through the stress function C by the

relations
sxx ¼ @2C
@y2

; syy ¼ @2C
@x2

; sxy ¼ � @2C
@x@y

ð16Þ

The generalized Hooke’s law reads
sxx ¼ nE
ð1þ nÞð1� 2nÞ

@u

@x
þ @v

@y


 �
þ E

ð1þ nÞ
@u

@x
� aE
ð1� 2nÞ y

ð17Þ

syy ¼ nE
ð1þ nÞð1� 2nÞ

@u

@x
þ @v

@y


 �
þ E

ð1þ nÞ
@v

@y
� aE
ð1� 2nÞ y

ð18Þ

sxy ¼ E

2ð1þ nÞ
@u

@y
þ @v

@x


 �
ð19Þ

where u and v are the Cartesian components of

displacement and E, n, and a are Young’s modu-

lus, Poisson’s ratio, and the coefficient of linear

thermal expansion, respectively, for the consid-

ered elastic medium.

Besides the local equilibrium conditions, the

global equilibrium conditions of the body must

also be satisfied. This requires that the resultant

force and the resultant couple applied to the

boundary of the body must vanish. This, evi-

dently, will put some restrictions on the external
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agents, whether mechanical or thermal or of any

other origin, affecting the body.

The compatibility condition for the solution

of (17)–(18), viewed as first-order partial

differential equations in the displacement com-

ponents, leads to the following nonhomogeneous

biharmonic equation for the stress function C:
D2C ¼ aEq
kð1� nÞ ð20Þ

The stress function C solving (20) may be

represented as
C ¼ xfþ yfc þ cþCp ð21Þ

where f and c are harmonic functions belonging

to the class of functions C2ð �DÞ and Cp is any

particular solution of (20). Without loss of gen-

erality, this function may be taken as any partic-

ular solution of Poisson’s equation
DCp ¼ � aE
1� n

yp ð22Þ

since such a solution is also a particular solution

of (20) and will differ from any other particular

solution of this equation by a harmonic function

that could be incorporated into the harmonic

function c in (21).

The particular solution Cp may be expressed

in the form of Newton’s potential

Cpðx; yÞ ¼ 1

2p
aE

1� n

ð ð
D

ypðx0; y0Þln 1
r
dx0dy0

ð23Þ

For constant heat supply,
Cp ¼ aEq0
64 k ð1� nÞ x2 þ y2

� �2 ð24Þ

The components of the mechanical displace-

ment are easily obtained [4] as

E

1þ n
u ¼ � @C

@x
þ 4ð1� nÞfþ E

1þ n
uy ð25Þ
and

E

1þ n
v ¼ � @C

@y
þ 4ð1� nÞfc þ E

1þ n
vy

ð26Þ

with
uy ¼ a 1þ nð Þ
ðM
M0

yH dx� ycH dy
� � ð27Þ

and

vy ¼ a 1þ nð Þ
ðM
M0

ycH dxþ yH dy
� � ð28Þ

The line integrations are taken along any path

inside the region �D joining an arbitrarily chosen,

fixed point M0 2 �D to the general field point

M 2 �D where the functions uy and vy are evalu-

ated. The Cauchy-Riemann conditions for yH
ensure that both line integrals are path indepen-

dent. Consequently, if pointM0 lies on the bound-

ary C, the integrals can also be taken on boundary

segments. In any case, the given representation

provides single-valued displacements.

The problem now reduces to the determination

of four harmonic functionsf,fc,c, andcc on the

boundaryC as a first step, then in the bulk through

the use of the boundary representation of har-

monic functions. Although function cc does not

appear in the expressions given above for the

stress and the displacement components, it will

be involved in the formulation of the boundary

conditions as explained below.

The available relations to achieve our goal are

thus the boundary representations of the four

harmonic functions, together with two boundary

conditions, applied either on stress or on dis-

placement components. This requires the expres-

sion of the stresses and displacements in terms of

the harmonic functions f, f,c and c. One has
sxx ¼ x
@2f
@y2

þ 2
@fc

@y
þ y

@2fc

@y2
þ @2c

@y2
þ @2Cp

@y2

ð29Þ
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syy ¼ x
@2f
@x2

þ 2
@f
@x

þ y
@2fc

@x2
þ @2c

@x2
þ @2Cp

@x2

ð30Þ

sxy ¼ �x
@2f
@x@y

� y
@2fc

@x@y
� @2c
@x@y

� @2Cp

@x@y

ð31Þ

from which one obtains

sxx þ syy ¼ 4
@f
@x

� aE
1� n

yp ¼ 4
@fc

@y
� aE
1� n

yp

ð32Þ

Thus, the derivatives @f
@x and @fc

@y must be

univalued functions in �D. As for the function c,
it has univalued second derivatives as appears

from relations (29)–(31).

The mechanical displacement components are

rewritten as
E

1þ n
u ¼ ð3� 4nÞf� x

@f
@x

� y
@fc

@x

� @c
@x

� @Cp

@x
þ E

1þ n
uy

ð33Þ

and

E

1þ n
v ¼ ð3� 4nÞfc � x

@f
@y

� y
@fc

@y

� @c
@y

� @Cp

@y
þ E

1þ n
vy

ð34Þ

In fact, other conditions are still required to

eliminate the possible rigid body motion and the

arbitrariness of solutions inherent to the solution

of plane problems of elasticity in stresses. Such

additional conditions depend on the type of the

mechanical boundary conditions and have been

investigated in [4]–[6].

For the above formulae for the stresses and the

displacements to be useful in completing the

boundary formulation of the problem, the first

and the second derivatives appearing in them

must be expressed through derivatives taken

along the boundary. The way to achieve this is

explained in Appendix B.
In what follows, we consider two main

boundary-value problems of elasticity.

First Fundamental Problem of Elasticity

The external force distribution f per unit length of

the boundary is specified.

Let
f ¼ fxiþ fy j ¼ fstþ fnn ð35Þ

Then, at a general boundary pointQ, the stress

vector satisfies
sn ¼ f

or in components
sxxnx þ sxyny ¼ fx; sxynx þ syyny ¼ fy

Substituting for sxx, sxy, and syy in terms of the

stress function C and for nx and ny, the last two

relations yield
fxðsÞ ¼ @C
@y


 ��
ðsÞ; fyðsÞ ¼ � @C

@x


 ��
ðsÞ

ð36Þ

The upper “dot” to the right of the bracket

means derivative of the quantity between

brackets along the direction of the tangent to the

boundary. This derivative may be calculated with

the help of (21) and the results of Appendix B.

One can also find expressions for the normal and

the tangential components of the applied force on

the boundary.

It is important to notice that the solution of the

first fundamental problem may include a rigid

body motion, and one may want to eliminate

this by imposing conditions to prohibit the

motion of an arbitrarily chosen point in �D, as
well as the rigid body rotation around this point.

Such conditions may be transformed into bound-

ary integral relations and added to the previous

set of boundary relations. For example, the rigid

body motion can be prevented if the following

three conditions are enforced at the origin of

coordinates O 2 D:
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u ¼ v ¼ @u

@y
� @v

@x
¼ 0
B
Second Fundamental Problem of Elasticity

The mechanical displacement d on the boundary

C is specified. In this case, relations (33) and (34)

directly provide the required boundary relations.

Written in terms of the tangential and the normal

displacements ds and dn, these relations read

E

1þ n
ds ¼� x _f� y _f

c � _c

þ ð3� 4nÞ _xfþ _yfcð Þ
� _Cp þ E

1þ n
ðuyÞs

ð37Þ

and
E

1þ n
dn ¼y _f� x _f

c � cc

þ ð3� 4nÞ _yf� _xfcð Þ � @Cp

@n
þ E

1þ n
ðuyÞn
ð38Þ

where ðuyÞs and ðuyÞn may be calculated from the

relation
ðuyÞs tþ ðuyÞn n ¼ uy iþ vy j ð39Þ

In the second fundamental problem of elastic-

ity, the rigid body motion is automatically

prohibited.

Uniqueness of Solution of the Mechanical

Problem

Even if the rigid body motion is eliminated

from the elastic solution, some indeterminacy

will still persist in the solution. This is due to

the fact that one can still force the stress func-

tion C and its first derivatives to have

predetermined values at an arbitrary point in
�D without affecting the values of stresses and

displacements in the body. Also, function cc

may be given a predetermined value at any

boundary point. Thus, a total of four condi-

tions can still be imposed on the solution. For

points in D, these conditions can be
transformed into boundary integral relations

using (49) and (52), to be added to the set of

integral relations.
Example

As an illustration of the proposed scheme and to

put in evidence the necessity of recurring to

numerical treatments, we present here below the

solution of one of the few problems of

thermoelasticity that can be handled analytically,

namely, the problem of a circular elastic cylinder

subjected to a uniform heating in the bulk and to

a thermal radiation condition, together with

a uniform external pressure on the lateral bound-

ary. Let the normal cross section be a circle of

radius a centered at the origin of coordinates, and
let q0 be the constant heat supply in the bulk and

p0 the uniform pressure on the boundary. The

usual polar coordinates ðr; ’Þ defined in the

plane of the cross section will be used. The para-

metric equations of the contour are
xð’Þ ¼ a cos’; yð’Þ ¼ a sin’; 0 � ’ < 2p

and the arc length on this curve is given by

s ¼ a’.

For simplicity, the ambient temperature is

taken as
yeð’Þ ¼ T2 cos 2’ ð40Þ

The particular solution yp in (5) is

yp ¼ � q0
4k

r2 ð41Þ

In view of the above choice for the ambient

temperature ye, a solution for the harmonic part of

the temperature on the boundary is assumed in

the form
yHðyÞ ¼ K1 þ K2 cos 2’ ð42Þ

To calculate the constantsK1 andK2, it is imper-

ative to evaluate the kernels appearing in the inte-

gral equation (15) for yH. The distance R between

two points ðr; ’Þ and ðr0; ’0Þ on the boundary is
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R ¼ r2 þ r02 �2rr0 cosð’0 � ’Þ
h i1=2

ð43Þ

so that
g ¼ lnR

¼ ln r2 þ r02 �2rr0 cosð’0 � ’Þ
h i1=2 ð44Þ

The normal and the tangential derivatives of g

on the boundary mean the derivatives with

respect to r0 and to ’0, respectively, taken at the

boundary point ðr0; ’0Þ. Inside the integrals, one

further substitutes r ¼ r0 ¼ a. The following

formulae are finally obtained:
g0 ¼ ln 2 sin
’0 � ’

2


 �
ð45Þ

gn0 ¼ 1

2a
; gt0 ¼ 1

2a

sinð’0 � ’Þ
1� cosð’0 � ’Þ ð46Þ

This information is now substituted into the

integral equation (15) for yH. Equating the singu-
lar parts on both sides of the equation and using

the well-known integral [7]
ðp
0

ln sinðxÞ cos½2mðx� pÞ�dx ¼ � p cos 2mp
2m

one finally obtains
K1 ¼ q0a
2

4k
1þ 2

B


 �
; K2 ¼ B

2þ B
T2;

with B ¼ aBi

k : Inside the domain,

yHðr; ’Þ ¼ K1 þ K2

r

a

� 	2
cos 2’

ycHðr; ’Þ ¼ K2

r

a

� 	2
sin 2’

yðr; ’Þ ¼ K1 þ K2

r

a

� 	2
cos 2’� q0

4k
r2

Next, one proceeds to the determination of the

functions uy and vy in (27) and (28). The integra-
tion path may be taken along the radius starting at

the origin O and ending at the general field point

Mðr; ’Þ. One obtains
uy
að1þ nÞa ¼ K1

r

a

� 	
cos’þ ¼ 1

3
K2

r

a

� 	3
cos 3’

vy
að1þ nÞa ¼ K1

r

a

� 	
sin’þ 1

3
K2

r

a

� 	3
sin 3’

Turning now to the mechanical problem, the

particular solution Cp to (22) is
Cp ¼ aEq0
64kð1� nÞ r

4

The restrictions of the harmonic functions f
and c on the boundary are sought for in the form:
fð’Þ ¼ F0 þ F1 cos’

fcð’Þ ¼ F1 sin’

cð’Þ ¼ E0 þ E1 cos’

ccð’Þ ¼ E1 sin’

hence inside the domain,
fðr; ’Þ ¼ F0 þ F1

r

a

� 	
cos’ ¼ F0 þ F1

x

a

fcðr; ’Þ ¼ F1

r

a

� 	
sin’ ¼ F1

y

a

cðr; ’Þ ¼ E0 þ E1

r

a

� 	
cos’ ¼ E0 þ E1

x

a

ccðr; ’Þ ¼ E1

r

a

� 	
sin’ ¼ E1

y

a

and
Cðr; ’Þ ¼ E0 þ aF0 þ E1ð Þra cos’þ aF1
r
a

� �2
þ aEq0

64kð1�nÞr
4

These relations clearly satisfy the boundary

integral equations representing the harmonic

functions f and c. To satisfy the boundary con-

ditions (36) for the first fundamental problem of

elasticity, substitute the above solution into these

two boundary conditions to get, after lengthy

manipulations,
F1 ¼ � a

2
p0 þ bE

4ð1� nÞ

 �
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where

b ¼ aq0a2

4k

For convenience of calculations, we have

invariably used both types of coordinates (x, y)

and ðr; ’Þ.
We are now in a position to write down the

displacement components everywhere inside the

circle and on the boundary. The remaining con-

stants F0, E0, and E1 may be determined from the

conditions of elimination of the rigid body

motion and the additional conditions stated

above. It is easy to show that the relation

ð3� 4nÞF0 � E1

a
¼ 0

guarantees the vanishing of the displacement

components u and v at the center of the circle,

thus preventing any rigid body displacement, in

which case one gets

1

1þ n
u

a
¼ 2ð1� 2nÞ F1

aE
� b
4ð1� nÞ

r

a

� 	2� �
x

a

þ 1

1þ n
uy
a
;

1

1þ n
v

a
¼ 2ð1� 2nÞ F1

aE
� b
4ð1� nÞ

r

a

� 	2� �
y

a

þ 1

1þ n
vy
a

One also verifies that there is no rigid body

rotation around the center of the circle. Finally,

we impose the conditions of vanishing of the

stress function and its first derivatives at the

point ðr ¼ a; ’ ¼ 0Þ on the boundary:
Cða; 0Þ ¼ @C
@r

ða; 0Þ ¼ @C
@’

ða; 0Þ ¼ 0

This completes the determination of the

constants:
E0 ¼ � a2

2
p0 � bE

8ð1� nÞ

 �

; F0 ¼ ap0
4ð1� nÞ ;

E1 ¼ 3� 4n
4ð1� nÞ a

2p0
Taking in consideration a sign error in the

expression for Cp in [5], the present results are

identical to those given therein.
Conclusions

1. The plane problem of static, linear uncoupled

thermoelasticity for isotropic media has been

uniformly formulated in stresses within

a boundary integral procedure in terms of

three harmonic functions and their harmonic

conjugates, subject to thermal and mechani-

cal boundary conditions.

2. No limitations were imposed on the shape of

the boundary or on the given boundary con-

ditions, except smoothness.When the bound-

ary is not smooth enough, for example, if it

includes corner points, the contour must be

rounded off properly at those points.

3. The present approach can be integrated

within the extensive literature on harmonic

function representations in different coordi-

nate systems to provide practical series solu-

tions of the boundary integral equations.

4. The arising boundary integral equations have

kernels with removable singularities. A way

to treat the singularities for numerical solu-

tion may be found in [4].

5. There is well-established Theory of Integral

Equations to deal with the arising boundary

integral equations, in what concerns exis-

tence, uniqueness, and stability of solutions.

6. When the shape of the contour is simple

enough (e.g., circle, ellipse), one may try to

find an analytical solution to the problem.

From a computational point of view, when no

analytic solutions are possible, the contours are

partitioned in the usual way, and the boundary

integral equations lead to rectangular systems

of linear algebraic equations in the values of

the harmonic functions at the nodal points.

7. For numerical calculations, it is important to

carry out careful evaluation of the matrix

entries generated by the removable

singularities.

8. Numerous experiments have indicated that

accurate calculation of the first and the
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second boundary derivatives of functions and

of the possibly existing Newton’s potentials

is necessary, in order for the method to per-

form efficiently.

9. The induced errors caused by the partitioning

procedure can usually be kept low, and the

obtained solutions are acceptable approxi-

mate solutions to difficult boundary-value

problems of plane, linear thermoelasticity of

isotropic media.

10. When the parameter in the equations of the

contour is different from the arc length, the

above formulation needs to be changed. This

may be noticed from the outset as (2) will

assume different forms.

11. More general boundary formulations can be

used to treat other models of continuous

media.
A. Boundary Integral Representation of
Harmonic Functions

We list here below some useful variations of the

boundary integral representation of a harmonic

function. We denote by R the distance between

a general point P x; yð Þ 2 D and the current inte-

gration point Qðs0Þ on the boundary C of D. For

the sake of conciseness, we introduce the follow-

ing notations for the function ln R and its deriv-

atives along the normal and the tangent directions

on C at the point Qðs0Þ:
g0 ¼ lnR; gn0 ¼ @

@n0
lnR; gt0 ¼ @

@s0
lnR:

It is important to note that the following

relations remain invariant if the variable R in

the logarithm is replaced by R
‘, where ‘ is

a characteristic length of the problem. This

remark is based on an important property of

harmonic functions, according to which the

contour integral of the normal derivative of

a harmonic function on the boundary

vanishes.

Let f 2 C2ð �DÞ be harmonic in D, and let fc

denote its harmonic conjugate. The following

Cauchy-Riemann relations take place:
@f

@n0
¼ @f c

@s0
;

@f

@s0
¼ � @f c

@n0
ð47Þ

In these notations, the boundary integral rep-

resentation of function f reads
f ðx; yÞ ¼ 1

2p

þ
C

fgn0 � @f

@n0
g0


 �
ds0 ð48Þ

or using integration by parts together with the

Cauchy-Riemann conditions:
f ðx; yÞ ¼ 1

2p

þ
C

fgn0 þ f cgt0ð Þds0 ð49Þ

The harmonic conjugate of (48) is
f cðx; yÞ ¼ 1

2p

þ
C

f
@Y
@n0

� @f

@n0
Y


 �
ds0 ð50Þ

where
Y ¼ tan�1 y� yðs0Þ
x� xðs0Þ ð51Þ

Replacing f by f c in (48), one obtains
f cðx; yÞ ¼ 1

2p

þ
C

f cgn0 � @f c

@n0
g0


 �
ds0 ð52Þ

or in the equivalent form,

f cðx; yÞ ¼ 1

2p

þ
C

f cgn0 � fgt0ð Þds0 ð53Þ

When point ðx; yÞ tends to a boundary point

QðsÞ, relations (48)–(50) and (52)–(53) yield,

respectively,
f ðsÞ ¼ 1

p

þ
C

fgn0 � @f

@n0
g0


 �
ds0 ð54Þ

f ðsÞ ¼ 1

p

þ
C

fgn0 þ f cgt0ð Þds0 ð55Þ

f cðsÞ ¼ 1

p

þ
C

f
@Y
@n0

� @f

@n0
Y


 �
ds0 ð56Þ
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f cðsÞ ¼ 1

p

þ
C

f cgn0 � @f c

@n0
g0


 �
ds0 ð57Þ

and
B

f cðsÞ ¼ 1

p

þ
C

f cgn0 � fgt0ð Þds0 ð58Þ
B. Derivatives of Boundary Functions

Let f 2 C2ð �DÞ be harmonic in D. It is required to

find the first-order derivatives of f with respect to

ðx; yÞ in terms of the derivative of f taken along

the boundary C of D. One has

_f ¼ Hf 	 t ¼ @f

@x
_xþ @f

@y
_y ð59Þ

and
@f

@n
¼ Hf 	 n ¼ @f

@x
_y� @f

@y
_x ð60Þ

Therefore,
@f

@x
¼ @f

@n
_yþ _f _x ¼ _f

c
_yþ _f _x ð61Þ

and
@f

@y
¼ _f _y� @f

@n
_x ¼ _f _y� _f

c
_x ð62Þ
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methods like the finite element method and the

finite difference method in which the entire

domain needs to be discretized, the boundary

integral method (BIE) requires only the

discretization of the boundary alone. Here and

below are considered two classical problems of

the two-dimensional theory of elasticity: the first,

when tractions are prescribed at the boundary,

and the second, when displacements are

prescribed at the boundary. These problems

are reduced to regular integral equations in

regions with a smooth boundary.
Introduction

Recall that there are different ways for reducing

boundary value problems to integral equations.

One of them, usually used in practice, is based on

the direct formulation, that is, the formulation

directly dealing with the primitive variables

(displacement or traction) prescribed at the

boundary. For basic elastic problems, this method

leads to singular integral equations of the first

kind. Of course, if the posed problem has the

zero index [2], it can be regularized and reduced

to a system of Fredholm second-kind equations,

but its discretization leads to an ill-conditioned

system of linear algebraic equations. Therefore, it

is desirable to use second-kind equations for

solving basic elastic problems, since the resulting

system of linear algebraic equations is well

conditioned. We use here an indirect method,

based on introduction of a fictitious and

nonphysical double-layer density, fitting to

solve a boundary value problem. It is natural

to ask yourself whether it is possible to write the

system of regular equations for the given problem

without using the procedure of regularization.

In the three-dimensional isotropic elasticity, it

is known as the so-called antennae, H. Weyl’s

potential [1], whose application immediately

leads to regular integral equations for basic

three-dimensional problems of the isotropic

theory of elasticity. It was noted in [3] that it

corresponds to a solution of an elastic problem,

obtained by superposition of solutions, loaded

at the surface by a concentrated force (the
Boussinesq solution). In the two-dimensional

elasticity, it is known as the similar solution [4]

of the static isotropic traction problem. The com-

plex system of second-kind regular integral

equations, advanced by D. I. Sherman [5] to

solve the traction anisotropic elastic problem, is

well known in the two-dimensional elasticity.

In reality that author studied its modification

consisting in assigning at a boundary first-order

derivatives of the stress function. This modifica-

tion has been considered recently by this author

by means of a new approach [6]. The author’s

effort to perform the limiting transition to an

isotropic material using his equations was

useless. Therefore, this author has undertaken

an effort to produce the correct derivation of

required potentials. It was successful; it turned

out that the difference of complex parameters of

an elastic material was absent in Sherman’s

equations in the denominator, forbidding

the limiting transition to an isotropic

case. His equations are simply a result of

a guess. The system of equations of the two-

dimensional theory of elasticity has two pairs of

distinct complex characteristics; this author have

shown [4, 6, 7], and [8] that simplicity of charac-

teristic roots essentially simplifies the procedure

of reducing an anisotropic elastic boundary value

problem to the system of integral equations. It is

adequate to the considered boundary value

problem. Moreover, this approach lets us use

minimum assumptions on smoothness of

a boundary and boundary data. In distinction to

the approach based on the knowledge of the fun-

damental solution, which reduces the considered

problem to the system of singular integral

equations, this approach immediately reduces

the problem to the system of regular equations

for regions with a smooth boundary. This author

also wants to add that the explicit construction of

the required potentials is a nontrivial computa-

tional problem, even in the simplest case of an

orthotropic material, when reducing a considered

boundary value problem to singular integral

equations. The limiting transition to an isotropic

material can be performed without any difficulty.

A large number of works are devoted to the

deformation of anisotropic cylinders with various
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symmetry properties of the material. In this entry

we study the plain strain problem when the

material is homogeneous and has a plane of

elastic symmetry, normal to the axis of cylinder.

Let Q be the cross section of the cylinder.

Throughout this entry a rectangular Cartesian

coordinate system Oxkðk ¼ 1; 2; 3Þ is used.

The coordinate frame is chosen such that the

x3-axis is parallel to the generators of the

cylinder. We shall employ the usual summation

and differential conventions. Latin subscripts

(unless otherwise stated) are understood

to range over integers (1, 2). In this entry we

consider the linear theory of elastostatics for

anisotropic bodies [13]. It was S. G. Mikhlin

[13] in 1936, who initiated the study of plane

anisotropic elasticity in Russia. Up to now there

are no correct set-ups of boundary value

problems for anisotropic elastic solids. Some

work for isotropic solids was done by authors

of [12] and [14].
Preliminaries

The constitutive relations are

e11 ¼ a11s11 þ a12s22 þ a16s12
e22 ¼ a12s11 þ a22s22 þ a26s12

2e12 ¼ a16s11 þ a26s22 þ a66s12

where

eij ¼ 1

2

@ui
@xj

þ @uj
@xi


 �

are strains, si;j are stresses, and u1,u2 are

displacements. The positive definiteness of the

compliances’ matrix ðaijÞ; i; j ¼ 1; 2; 6 is

assumed. Here and below, all considered func-

tions are defined in Q. Excluding displacements

u1,u2 by differentiation of strains, we derive the

equation of the strain’s compatibility:
@2e11
@x22

þ @2e22
@x21

� 2
@2e12
@x1@x2

¼ 0
Now, substitute into this equation strains from

the constitutive relations and represent stresses as

second order derivatives of a function u(x1,x2):
s11 ¼ @2u

@x22
; s22 ¼ @2u

@x21
; s12 ¼ � @2u

@x1@x2

In the absence of body forces, the equilibrium

equations are identically satisfied, and the stress

function u(x1,x2) satisfies the elliptic fourth-order

equation:
LðuÞ ¼ L
@

@x1
;
@

@x2


 �
uðx1; x2Þ ¼ a22

@4u

@x41

� 2a26
@4u

@x31@x2
þ ð2a12 þ a66Þ @4u

@x21@x
2
2

� 226
@4u

@x1@x
3
2

þ a11
@4u

@x42
¼ 0

ð1Þ

Following Lekhnitskii [9], associate with

equation (1) the (characteristic) equation
a11m4 � 2a16m3 þ ð2a12 þ a66Þm2 � 2a26mþ a22 ¼ 0:

It has two pairs of complex conjugate

roots (in terms of Lekhnitskii, complex parameters

of an elastic material) mk ¼ ak þ ibk; bk > 0;

�mk ¼ ak � ibk; k ¼ 1; 2, since (1) is an elliptic

equation with real coefficients. Write u(x1, x2)
as the sum uðx1; x2Þ ¼ w1ðx1; x2Þ þ w2ðx1; x2Þ.
Here wk(x1,x2) is a quasi-harmonic function, that

is, a solution of a “quasi-harmonic” equation
ðb2k þ a2kÞ
@2wk

@x21
� 2akbk

@2wk

@x1@x2
þ @2wk

@x22
¼ 0

as the change of independent variables

y1 ¼ x1 þ akx2; y2 ¼ bkx2 reduces it to Laplace’s

equation. The quotation marks at the term

“quasi-harmonic” below are omitted. In a simply

connected region, any quasi-harmonic function

wkðx1; x2Þ; k ¼ 1; 2 can be represented as the real

part of a holomorphic function of the (complex)

argument zk ¼ x1 þ mkx2, wkðx1; x2Þ ¼ Re’kðzkÞ.
As result, the general solution of (1) is
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uðx1; x2Þ ¼ Ref’1ðx1 þ m1x2Þ þ ’2ðx1 þ m2x2Þg

Here and below, prime denotes differentiation

with respect to the argument in parentheses.

Let Q be a simply connected, bounded, counter-

clockwise-oriented plane region with a Lyapunov

boundary @Q, that is, it is assumed that @Q has

a uniformly Hölder continuous inward normal

field nðzÞ ¼ ðn1; n2Þ. It means that the functions

xkðsÞ specifying the shape of a region are contin-

uous and continuously differentiable, and, more-

over, there is a positive a, 0 < a < 1, such that
jx0kðsÞ � x0kðs0Þj < cjs� s0ja

Here s is the arc-length parameter, and CkðQÞ
and Ckð �QÞ are, respectively, the spaces of real

functions that are continuously differentiable up

to the order k in Q and �Q. C0;að �QÞ and C0;að@QÞ
are, respectively, the spaces of real continuous

functions satisfying in �Q and ∂Q a uniform

Hölder condition with some exponent

a; 0 < a < 1. Ck;að �QÞ is the subclass of Ckð �QÞ
consisting from functions u such that

Dnu 2 C0;að �QÞ; jnj ¼ k. Here n is the multi-

index n ¼ ðk1; k2Þ:
Dnu ¼ @nu

@xk11 @x
k2
2

; k1 þ k2 ¼ n

The spaces Cl;að@QÞ are defined in a similar

way. It is also assumed that the origin

of coordinates lies inside the region. Let

u1ðx1; x2Þ; u2ðx1; x2Þ be the displacements in the

anisotropic elasticity; they can be written as
u1 ¼ Re½b11F1ðz1Þ þ b12F2ðz2Þ� þ ax2 þ d1
u2 ¼ Re½b21F1ðz1Þ þ b22F2ðz2Þ� � ax1 þ d2

ð2Þ

Here FkðzkÞ ¼ ’0
kðzkÞ, terms ax2 þ d1; and

�ax1 þ d2 answer for a rigid displacement of an

elastic body:
b1k ¼ a11m2k þ a12 � a16mk
b2k ¼ a12mk þ a22m�1

k � a26
ð3Þ
Then stresses sij; i; j ¼ 1; 2 are then rewritten

as derivatives of the analytical functions

FkðzkÞ; zkx1 þ mkx2; k ¼ 1; 2 as
s11 ¼ Re½m21F0
1ðz1Þ þ m22F

0
2ðz2Þ�

s22 ¼ Re½F0
1ðz1Þ þ F0

2ðz2Þ�
s12 ¼ �Re½m1F0

1ðz1Þ þ m2F
0
2ðz2Þ�

ð4Þ

Consider the integral equation

f ðsÞ þ l
ðb
a

Kðs; s0Þ f ðs0Þ d s0 ¼ gðsÞ

where l, a, and b are real parameters and

f ðsÞ; gðsÞ;Kðs; s0Þ are real functions. The function
Kðs; s0Þ is defined in the plane (x, s) in the square

a < s; s0 < b. According to the definition of

S.G.Mikhlin [10], the equation above is aFredholm

equation of the second kind for the function f(s), if

g(s) andKðs; s0Þ are square integrable in the square
a < s; s0 < b. Recall that Fredholm assumed con-

tinuity of the kernel Kðs; s0Þ in the same square. If

a boundary of a plane region is a Lyapunov curve,

then the kernel of the integral operator
1

pi

ð
@Q

f ðsÞ d t
t� z

where f(s) is a real function,

t ¼ tðsÞ ¼ x1ðsÞ þ ix2ðsÞ;
d t ¼ ðx01ðsÞ þ ix02ðsÞÞ d s; z ¼ x1 þ ix2

is a kernel with a weak singularity, that is, it can

be written as a fraction

Kðs� s0Þ ¼ aðs; s0Þ
js� s0ja ; 0 < a < 1

where aðs; s0Þ is a bounded function. It can be

proved (Mikhlin [11]) that if a kernel of an inte-

gral operator has a weak singularity, all iterated

kernels, beginning from some, are bounded.

Hence, the equations with weakly singular

kernels are Fredholm.
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The Traction Boundary Value Problem

Let n ¼ ðn1; n2Þ; n1 ¼ �x02ðsÞ; n2 ¼ x01ðsÞ be the
internal normal vector to a rectifiable Jordan

boundary ∂Q of length L > 0 of a simply

connected region Q in the plane R2 with

a boundary of the class C1;lð0; LÞ; 0< l< 1. In

another words, it is assumed that the functions

x1ðsÞ; x2ðsÞ, defining a boundary, are continuous

and continuously differentiable, their derivatives

satisfy the Hölder condition. Assume (without

loss of generality) that the origin of coordinates

belongs to a region Q. Tractions are written at

a boundary as
s11n1 þ s12n2j@Q ¼ g1ðsÞ
s12n1 þ s22n2j@Q ¼ g2ðsÞ

ð5Þ

where s is the arc-length parameter. Put

tkðsÞ ¼ x1ðsÞ þ mkx2ðsÞ; k ¼ 1; 2; prime sign

below denotes the derivative with respect to s.

If stresses sij; i; j ¼ 1; 2 are square integrable

in Q, the solution of the traction problems (1)

and (5) is unique up to a rigid displacement.

Indeed, the volume strain energy
2aðu; uÞ ¼
ð
Q

a11s211 þ 2a12s11a22 þ 2a16s11s12



þa22s222 þ 2a26s22s12 þ a66s212
�
dx

is positive defined and as a consequence there is

a positive constant C > 0, such that
aðu; uÞ �C

ð
Q

@2u

@x21


 �2

þ @2u

@x22


 �2
(

þ @2u

@x1@x2


 �2
)
d x1 d x2

If uðx1; x2Þ is a solution of the homogeneous

problem, stresses and strains vanish inside

a region.

On the other hand, the proof of the uniqueness

of a solution of problems (1) and (5), given

above, uses only a piecewise smoothness of
a boundary; it means that the Fredholm alterna-

tive is true for regions more general than bounded

regions with a Lyapunov boundary. Boundary

conditions (5) can be rewritten as
Ref�m1t
0
1ðs0ÞF0

1ðt1ðs0ÞÞ�m2t
0
2ðs0ÞF0

2ðt2ðs0ÞÞg
¼ g1ðs0Þ;
Reft01ðs0ÞF0

1ðt1ðs0ÞÞþ t02ðs0ÞF0
2ðt2ðs0ÞÞg¼ g2ðs0Þ

ð6Þ

Here tkðs0Þ ¼ x1ðs0Þþmkx2ðs0Þ;k¼ 1;2.Write

the functions F0
1ðz1Þ;F0

2ðz2Þ as Cauchy-type

integrals with unknown densities bkðsÞ;k¼ 1;2:
F0
kðzkÞ ¼ 1

pi

ð
@Q

bkðsÞðtkðsÞÞ�1ds

tk � zk
; k ¼ 1; 2

Densities bkðsÞ; k ¼ 1; 2 are determined from

the simple system of equations
�m1b1 � m2b2 ¼ f1ðsÞ; b1 þ b2 ¼ f2ðsÞ ð7Þ

Here the functions fkðsÞ; k ¼ 1; 2 are real. As

result, the first-order derivatives are rewritten in

terms of variables z1; z2 in the required form.

These computations can be done only if the

inequality m1 � m2 6¼ 0 is satisfied. The latter

inequality is equivalent to the condition of

Ya. B. Lopatinskii. Having solved it, we shall

get that
F0
1ðz1Þ ¼ � 1

piðm1 � m2Þ
ð
@Q

ð f1 þ m2 f2Þ½t01ðsÞ��1dt1
t1 � z1

F0
2ðz2Þ ¼ 1

piðm1 � m2Þ
ð
@Q

ðf1 þ m1f2Þ½t02ðsÞ��1dt2
t2 � z2

ð8Þ

Recall the formulae of Sokhotski-Plemelj [2]
lim
zj!tj

1

pi

ð
@Q

’ðsÞ dtj
tj � zj

¼ ’ðs0Þ þ 1

pi

ð
@Q

’ðsÞ dtj
tj � tj0

ð9Þ
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if z 2 Qi, and
lim
zj!tj

1

pi

ð
@Q

’ðsÞ d tj
tj � zj

¼� ’ðsÞ þ 1

pi

ð
@Q

’ðsÞ

� d tj
tj � tj0

if z 2 Qe. Here Qi ¼ Q, and Qe is the region,

external toQ, tj0 ¼ tjðs0Þ. Of course, it is assumed

that ’ðsÞ 2 C0;lð@QÞ. It follows that
skjðuðx; fÞnjÞiðs0Þ � skjðuðx; fÞnjÞeðs0Þ
¼ 2fkðs0Þ; k ¼ 1; 2

Here skjðuðx; fÞnjÞiðs0Þ is the limiting value of

the traction vector inside a region, and, corre-

spondingly, skjðuðx; fÞnjÞeðs0Þ is its limiting

value outside a region, and uðx; fÞ is the vectorial
simple-layer potential defined below by formulas

(12) and (13).
f1ðs0ÞþRe
m1t

0
1ðs0Þ

piðm1�m2Þ
ð
@Q

ð f1þm2 f2Þ½t01ðsÞ��1dt1
t1� t10

þ

�Re
m2t

0
2ðs0Þ

piðm1�m2Þ
ð
@Q

ð f1þm1f2Þ½t02ðsÞ��1dt2
t2� t20

¼ g1ðs0Þ

ð10Þ

f2ðs0Þ�Re
t01ðs0Þ

piðm1�m2Þ
ð
@Q

ð f1þm2 f2Þ½t01ðsÞ��1dt1
t1� t10

þRe
t02ðs0Þ

piðm1�m2Þ
ð
@Q

ðf1þm1f2Þ½t02ðsÞ��1dt2
t2� t20

¼ g2ðs0Þ

ð11Þ

Here tk0 ¼ x1ðs0Þ þ mkx2ðs0Þ; k ¼ 1; 2

Existence Results

Therefore, these mutually adjoint systems are

Fredholm solvable. Now, for solubility of sys-

tems (10) and (11), it is necessary and sufficient

that right-hand sides of equations (10) and (11) be

orthogonal to all solutions of (12) and (13), and

vice versa. Therefore, it is necessary to require

vanishing of the principal vector and the principal

vector of acting forces. In other words,
ð
@Q

gkðsÞ d s ¼ 0; k ¼ 1; 2

ð
@Q

ðx1ðsÞg2ðsÞ � x2ðsÞg1ðsÞÞ d s ¼ 0

It is easy to verify its fulfillment. Indeed, mul-

tiply equations (10) and (11) on ds0 and integrate

the result with respect to s0, bearing in mind thatð
@Q

t0k0 d s0
tk � tk0

¼ �pi

Then left-hand sides of (10) and (11) become

zero and we obtain two first equalities. In a similar

way,multiply thefirstequationonx1ðs0Þ, thesecond
onto �x2ðs0Þ, change the order of integration, and
integrate with respect to s0. Then you shall get the

third equality in the previous formula. Hence, these

equalities are necessary for solubility of these equa-

tions. The solution of the traction problem is given

by the simple-layer potential, which is written as

u1ðx1; x2; f Þ ¼ Re
b11

piðm1 � m2Þð
@Q

ðf1 þ m2 f2Þ lnðz1 � t1Þds� Re
b12

piðm1 � m2Þð
@Q

ðf1 þ m1f2Þ lnðz2 � t2Þds

ð12Þ

u2ðx1; x2; f Þ ¼ Re
b21

piðm1 � m2Þð
@Q

ðf1 þ m2 f2Þ lnðz1 � t1Þds� Re
b22

piðm1 � m2Þð
@Q

ðf1 þ m1f2Þ lnðz2 � t2Þds

ð13Þ

Fix, for example, the principal branch of log-

arithm. Consider in more detail properties of the

simple-layer potential. For existence of integrals

(14) and (15) is sufficient continuity of f1; f2; then

u1; u2 are continuous in the whole plane but have

the logarithmic growth at infinity. Now,
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Lemma 1. The simple-layer potential with

a continuous density f ¼ ðf1; f2Þ, satisfying the
equation ð

@Q

fi d s ¼ 0; i ¼ 1; 2

satisfies also the estimates

juiðx; f Þj< c

jxj ;
����@ui@xj

����< c1

jxj2 ; i; j¼ 1;2; jxj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þ x22

q
:

Indeed, consider the typical integral, entering

into (14) and (15):
ð
@Q

f ðsÞ lnðzk � tkÞ d s

Here f (s) is any density. Write it as

a derivative:
f ðsÞ ¼ d

ds

ðs
0

f ðsÞ d s
0@ 1A ¼ d

ds
tðsÞ

After integration by parts we shall get that
ð
@Q

dt
ds

lnðzk � tkÞ d s ¼ tðsÞ lnðz1 � t1Þj@Q

�
ð
@Q

tðsÞ d tk
tk � zk

The first summand in the right-hand side

vanishes if tðLÞ ¼ 0, and the second summand

is a single-valued Cauchy-type integral. The

equality tðLÞ ¼ 0 means that conditions of the

lemma are satisfied. Other assertions are obvious.

Therefore, functions v1ðx1; x2Þ; v2ðx1; x2Þ are also
single valued. Put f ¼ ðf1; f2Þ. Introduce now

a short notation for a simple-layer potential: put

uðx; fÞ ¼ ðu1ðx; fÞ; u2ðx; fÞÞ;

uiðx; fÞ ¼
X2
j¼1

ð
@Q

GijfjðsÞ d s; i ¼ 1; 2
understanding by Gij; i; j ¼ 1; 2 kernels of inte-

gral operators in (10) and (11). Or, quite

shortly, put
uðx; fÞ ¼
ð
@Q

Gðx� yÞf d s

where G(x) is the matrix ðGijðxÞÞ; i; j ¼ 1; 2

Lemma 2. The system of integral equations (10)

and (11) has exactly three linearly independent
solutions:
f1 ¼ ð1; 0Þ; f2 ¼ ð0; 1Þ; f3 ¼ ð�x2ðsÞ; x1ðsÞÞ

Indeed, if it is not so, then the system of

equations (12) and (13), adjoint to (10) and (11),

would have more than three linearly independent

solutions ’kðsÞ; 1 � k; k > 3. To any of them

answer a simple-layer potential vðx; fkÞ, satisfy-
ing conditions sijðvðx; fkÞnj ¼ 0 at the boundary.

Let there be one more solution f4ðsÞ, linearly
independent from others; then

f ðsÞ ¼ f4ðsÞ �
X3
j¼1

cj fjðsÞ

where cj; j ¼ 1; 2; 3 are arbitrary real constants, is

also a solution of the homogeneous system of

equations (10) and (11). Write up simple-layer

potentials:
uðx; f4Þ; uðx; fjÞ; j ¼ 1; 2; 3

As solutions of homogeneous boundary

value problems, they are rigid displacement

vectors and so
uðxÞ ¼ uðx; f4Þ �
X3
j¼1

uðx; fjÞ

is a rigid displacement vector. Now choose con-

stants c1; c2; c3 to satisfy the conditions

uð0Þ ¼ 0;
@u2
@x1

� @u1
@x2

¼ 0
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But then vk satisfies the system

@ui
@xj

þ @uj
@xi

¼ 0; i; j ¼ 1; 2

Rewrite these conditions as
X3
j¼1

cj

ð
@Q

Gðx2Þ’jðsÞ d s ¼
ð
@Q

Gðx2Þ d s

X3
j¼1

cj

ð
@Q

G0ðx2Þ’jðsÞ d s ¼
ð
@Q

G0ðx2Þ d s

where
G0ðx2Þ ¼ @G2

@x2
� @G1

@x1

The determinant of this system is different from

zero by linear independence of ’j; j ¼ 1; 2; 3.

Solve this system with respect to cj; j ¼ 1; 2; 3.

Then uðx1; x2Þ ¼ 0; ðx1; x2Þ 2 Qi. Continuity of

a potential in the whole plane implies that

uðxÞ ¼ 0 at ∂Q. As uðx;Þ satisfies conditions of

the lemma 1, then at infinity
juðx1; x2Þj < cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p ; jsijðuðxÞÞj < c1
x21 þ x22

and so uðx1; x2Þ ¼ 0; ðx1; x2Þ 2 Qe. But then

according to the Sokhotski-Plemelj formula, the

jump of the traction vector is equal zero at the

boundary and then f4 ¼ 0. This is a contradiction.

Denote a solution of the internal boundary

value problem by ðI;QiÞ and the solution of the

external by ðI;QeÞ. Then

Lemma 3. The problem ðI;QiÞ has unique solu-
tion (up to a linear combination) c1’1 þ c2’2þ
c3’3, where
’1 ¼ ð0; 1Þ; ’2 ¼ ð1; 0Þ; ’3 ¼ ð�x2; x1Þ
Functions ’k; k ¼ 1; 2; 3 are a complete set of

solutions of the system
@vi
@xk

þ @vk
@xi

¼ 0; i; k ¼ 1; 2

Its proof follows from the integral identity
ð
Qi

sijðvÞeijðvÞ d x ¼
ð
@Q

sijðvÞvinj d s

Here n is the external normal vector of Qi. For

functions v, with properties

jvj � c; j @vk
@xi

j � c

jxj2 ; i; k ¼ 1; 2 ð14Þ

for large |x| and satisfying the homogeneous

system of elastic equations in the unbounded

region, Qe holds the integral identity
ð
Qe

sijðvÞeijðvÞ d x ¼ �
ð
@Q

sijðvÞvinj d s ð15Þ

The last equality is obtained from the previ-

ous integral identity for a bounded region.

Indeed, consider the region lying between the

boundary ∂Q and the circumference of suffi-

ciently large radius R, with a center lying inside

Qi. The previous equality holds for this region.

The integral, taken along the external circum-

ference, tends to zero, when R ! 1. Hence,

equality (15) follows from the given above

assertion and the absolute convergence of the

integral with respect to Qe. This implies the

following lemma.

Lemma 4. The solution of the problem ðI;QeÞ in
the class of functions, subject to (1.13), is unique

up to a constant vector, and if u ! 0, when

jxj ! 1, then it is unique.Notice that the system
of equations (10) and (11) can be modified to

make it uniquely solvable. Indeed, introduce to

equation (10) summands
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� Re
m1

2piðm1 � m2Þ
t01ðs0Þ
t1ðs0Þ

ð
@Q

ð f1 þ m2 f2Þ d s

� Re
m2

2piðm1 � m2Þ
t02ðs0Þ
t2ðs0Þ

ð
@Q

ð f1 þ m1f2Þ d s

� Re
1

4pi
�m1

@

@s0

1

t1ðs0Þ � m2
@

@s0

1

t2ðs0Þ
� �

M

and equation (11) by summands
� Re
1

2piðm1 � m2Þ
t01ðs0Þ
t1ðs0Þ

ð
@Q

ð f1 þ m2 f2Þ d s

þ Re
1

2piðm1 � m2Þ
t02ðs0Þ
t2ðs0Þ

ð
@Q

ð f1 þ m1f2Þ d s

� Re
1

4pi
@

@s0

1

t1ðs0Þ þ
@

@s0

1

t2ðs0Þ
� �

M

Here M is a real constant. As
ð
@Q

dtkðs0Þ
tkðs0Þ ¼ 2pi; k ¼ 1; 2

(the origin of coordinates is inside a region), it

follows that
ð
@Q

fkðsÞ d s ¼
ð
@Q

gkðsÞ d s; k ¼ 1; 2

M ¼
ð
@Q

ð�x2ðsÞg1ðsÞ þ x1ðsÞg2ðsÞÞ d s

It is clear that if the principal vector and

the principal moment of applied forces are

equal to zero, the system of equations with these

applied summands is equivalent to the system

of equations (10) and (11). It is necessary to

assume that gkðsÞ 2 C0;lð@QÞ; k ¼ 1; 2. Then

fkðsÞ 2 C0;lð@QÞ; k ¼ 1; 2. Moreover, it is not

quite obvious that it is the system of regular

equations. Rewrite equations (10) and (11) as
f1ðs0Þ þ Re
t01ðs0Þ
pi

ð
@Q

f1ðsÞ ½t
0
1ðsÞ��1dt1
t1 � t10

þ Re
m2

piðm1 � m2Þ
ð
@Q

ðf1 þ m1f2Þ
(

t02ðs0Þ
t2 � t20

� t01ðs0Þ
t1 � t10

)
ds ¼ g1ðs0Þ

ð16Þ

f2ðs0Þ þ Re
t02ðs0Þ
pi

ð
@Q

f2ðsÞ ðt
0
2ðsÞÞ�1dt1
t2 � t20

þ Re
1

piðm1 � m2Þ
ð
@Q

ð f1 þ m2 f2Þ
(

t01ðs0Þ
t1 � t10

� t02ðs0Þ
t2 � t20

)
ds ¼ g2ðs0Þ

ð17Þ

Therefore, it is the system of regular equa-

tions. Formulate now the principal result of the

previous investigation.

Theorem 1. Assume that
gkðsÞ 2 C0;lð@QÞ; k ¼ 1; 2; @Q

2 C1;lð0; LÞ; 0 < l < 1:

Under the given above assumptions, equality

to zero of the principal vector and the principal

moment of applied forces is the necessary and

sufficient condition for existence of the solution

of the system (10) and (11) belonging to

C0;lð0; LÞ. Then ukðxÞ 2 C1;lðQÞ; k ¼ 1; 2:

Indeed, let us seek the solution as a single-layer

potential u ¼ ðu1ðx; fÞ; u2ðx; fÞÞ. Then density

f ¼ ðf1; f2Þ satisfies systems (10) and (11). As two

pairs of adjoint integral equations (10) and (11) and

(12) and (13) are Fredholm solvable, the system of

equations (10) and (11) is solvable if and only if

the vector function g ¼ ðg1; g2Þ is orthogonal

to all solutions of the homogeneous system



B 456 Boundary Value Problems in Two-Dimensional Elastostatics of Anisotropic Solids
(12) and (13). By lemma 2 the general solution

of the homogeneous system (12) and (13) is a

linear combination of the three vector functions

’ðxÞ ¼ c1ð1; 0Þ þ c2ð0; 1Þ þ c3ð�x2; x1Þ. Condi-
tions (1.10) are conditions of orthogonality of

a solution of a homogeneous system (10) and (11)

to the vector function g ¼ ðg1; g2Þ, and so they

guaranty the existence of the system of (10) and

(11). Necessity follows from Betti’s formula.

Indeed, we have the conditions

0 ¼
ð
@Q

sijnj’i d s ¼
ð
@Q

gi’i d s

which coinciding with the equilibrium condi-

tions. It is not hard to see that smoothness of

solution grows up according to the growth of

a boundary and boundary data. Now,

Theorem 2. Assume that
gkðsÞ 2 Cl;lð@QÞ; k ¼ 1; 2; @Q

2 Clþ1;lð0; LÞ; 0 < l < 1; l � 1:

Then Clþ1;lð �QÞ. It follows immediately from

the properties of the Cauchy-type integral (see

theorem 1.10 from [11]).

The Case of an Isotropic Material

For an isotropic material,
a11 ¼ a22 ¼ 1

E
;a12 ¼�n

E
;a66 ¼ 1

G
;a16 ¼ a26 ¼ 0

Here E is the Young’s modulus, G is the shear

modulus, and n is the Poisson’s ratio. The limiting

transition, when m1; m2 ! i, is easily performed.

As a result, we get the system of equations for an

isotropic material:
f1ðs0Þ þ Re
t0ðs0Þ
pi

ð
@Q

f1ðsÞ½t0ðsÞ��1dt

t� t0

þ Re
1

2pi

ð
@Q

ð f1 þ if2Þ ð
�t� �t0Þdt� ðt� t0Þd�t

ðt� t0Þ2

¼ g1ðs0Þ

ð18Þ
f2ðs0ÞþRe
t0ðs0Þ
pi

ð
@Q

f2ðsÞ½t0ðsÞ��1dt

t� t0

þRe
i

2pi

ð
@Q

ð f1þ if2Þð
�t��t0Þdt�ðt� t0Þd�t

ðt� t0Þ2
¼ g2ðs0Þ

ð19Þ

Here z ¼ x1 þ ix2; t0 ¼ x1ðs0Þ þ ix2ðs0Þ. It is
clear that this system can be reduced to

one (complex) equation with the respect to

the complex density oðsÞ ¼ f1ðsÞ þ if2ðsÞ. In the

complex notation it is equivalent to the system of

equations from [5]. Denote by u11ðxÞ; u12ðxÞ
displacements for an isotropic material. Then
u11ðxÞ ¼ Re

(
2

E

1

p

ð
@Q

f1ðsÞ lnðz� tÞdsþ 1þ n
E

1

pð
@Q

f1ðsÞ ið� � x2Þ
t� z

ds

�
þ Re

�
1� n
E

1

pð
@Q

if2ðsÞ lnðz� tÞdsþ 1þ n
E

1

p

ð
@Q

f2ðsÞ ið� � x2Þ
t� z

ds

)
ð20Þ

u12ðxÞ¼Re

(
1� n
E

1

pj

ð
@Q

f1ðsÞ lnðz� tÞds

�1þ n
E

1

pi

ð
@Q

f1ðsÞ ið��x2Þ
t� z

ds

#
þRe

"
2

E

1

pi

ð
@Q

if2ðsÞ lnðz� tÞds�1þ n
E

1

pj

ð
@Q

if2ðsÞ ið��x2Þ
t� z

ds

)

ð21Þ

Here x ¼ x1ðsÞ; � ¼ x2ðsÞ
The Displacement Boundary Value
Problem

Here we discuss (in short) the displacement

boundary value problem. As in the previous

section, consider a bounded simply connected

region Q with the boundary ∂Q of the Lyapunov

class and prescribe displacements at the
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boundary. Consider the boundary value problem

of determination of the stress-strain state when

displacements
B

Re b11F1ðz1Þ þ b12F2ðz2Þf g ¼ g1ðs0Þ
Re b21F1ðz1Þ þ b22F2ðz2Þf g ¼ g2ðs0Þ

gkðs0Þ 2 C0;að@QÞ; k ¼ 1; 2

are prescribed at the boundary. First-order

derivatives of displacements should be square

integrable in the closed region �Q, as otherwise

a solution of this problem is non-unique.

Introduce the functions FkðzkÞðk ¼ 1; 2Þ as

Cauchy-type integrals
FkðzkÞ ¼ 1

pi

ð
@Q

okðsÞdtk
tk � zk

k ¼ 1; 2

where tk ¼ x1ðsÞ þ mkx2ðsÞk ¼ 1; 2.

Let fkðsÞðk ¼ 1; 2Þ be two real functions.

Solve the system of equations:
b11o1þb12o2 ¼ f1ðsÞ; b21o1þb22o2 ¼ f2ðsÞ

Put
u1j@Q ¼ g1ðsÞ; u2j@Q ¼ g2ðsÞ;gkðsÞ 2C0;að@QÞ
ð22Þ

FkðzkÞ ¼ 1

pi

ð
@Q

okðsÞ d tk
tk � zk

k ¼ 1; 2

Write ’kðzkÞ; k ¼ 1; 2 as Cauchy-type inte-

grals with complex densities mkðsÞ:
’kðzkÞ ¼
1

pi

ð
@Q

okðsÞ d tk
tk � zk

; k ¼ 1; 2

Just as for the traction problem, by means of

the Plemelj formula, we obtain the system of

linear equations mkðsÞ; k ¼ 1; 2,

b11o1 þ b12o2 ¼ g1; b21o1 þ b22o2 ¼ g2 ð23Þ
and solve it by the Cramer’s rule. Its determinant is
d ¼ m1 � m2
m1m2

½m1m2ða11a22 � a212Þ � a22a66�

and it is distinct from zero if m1 6¼ m2. Put

d ¼ xðm1 � m2Þ. Here x depends only on the

symmetric functions of roots of the characteristic

equation and, therefore, on elastic coefficients. It is

assumed further that x 6¼ 0. It is always different

from zero in elastic problems by positivity of the

stress energy. For example, for an orthotropic

material ða16 ¼ 0; a26 ¼ 0, it is equal to
x¼ðg1g2Þ�1 ða11a22�a212Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a22a�1

11

q
þa22a66

� �
and it is always positive, as
a11a22 � a212 > 0; a11 > 0; a22 > 0; a66 > 0

For an isotropic material x ¼ ð1þ nÞ
ð3� nÞE�2, where E is the Young’s modulus

and n is the Poisson’s ratio.
Hence, ukðx2; x2Þ; k ¼ 1; 2 can be written as
u1ðx1;x2Þ¼Re
1

pi

ð
@Q

f1ðsÞd t1
t1� z1

þRe
b12
pid

ð
@Q

ð�b21f1ðsÞþb11f2ðsÞÞ d t2
t2� z2

� d t1
t1� z1


 �

u2ðx1;x2Þ¼Re
1

pi

ð
@Q

f2ðsÞd t2
t2� z2

þRe
b21
pid

ð
@Q

ðb22f1ðsÞ�b12f2ðsÞÞ d t1
t1� z1

� d t2
t2� z2


 �

As a result, we arrive to the system of regular

integral equations:

f1ðs0ÞþRe
1

pi

ð
@Q

f1ðsÞdt1
t1� t10

þRe
b12
pid

ð
@Q

ð�b21f1ðsÞ

þb11f2ðsÞÞ dt2
t2� t20

� dt1
t1� t10


 �
¼ g1ðs0Þ

ð24Þ



B 458 Boundary Value Problems of Elastostatics of Hemitropic Solids
f2ðs0ÞþRe
1

pi

ð
@Q

f2ðsÞdt2
t2� t20

þRe
b21
pid

ð
@Q

ðb22 f1ðsÞ

�b12 f2ðsÞÞ dt1
t1� t10

� dt2
t2� t20


 �
¼ g2ðs0Þ

ð25Þ
The Case of an Isotropic Solid

Now, in the limiting transition to an isotropic

material due to the presence of the factor

m1 � m2 in the denominator d, the difference
1

ðm1 � m2Þ
d t2

t2 � z2
� d t1
t1 � z1


 �
tends in the limit to the difference
x01ðsÞðx2ðsÞ � x2Þ � x02ðsÞðx1ðsÞ � x1Þ
ðt� zÞ2

and the limiting values of displacements are

expressed as
u01 ¼Re
1

pi

ð
@Q

f1ðsÞd t
t� z

�Re
i

pi
1þ n
3� nð

@Q

ðf1þ if2Þx
0
1ðsÞðx2ðsÞ� x2Þ� x02ðsÞðx1ðsÞ� x1Þ

ðt� zÞ2 ds

u02 ¼Re
1

pi

ð
@Q

f2ðsÞd t
t� z

�Re
1

pi
1þ n
3� nð

@Q

ðf1þ if2Þx
0
1ðsÞðx2ðsÞ� x2Þ� x02ðsÞðx1ðsÞ� x1Þ

ðt� zÞ2 ds

where the superscript 0 refers to the field

of displacements in an isotropic material. We

get the formulae and the integral equation of

D. I. Sherman for an isotropic material. The

author sincerely thanks the editor, Professor

Dorin Iesan, for careful editing of this entry.
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Overview

Classical elasticity associates only the three

translational degrees of freedom to material

points of the body, and all the mechanical char-

acteristics are expressed by the corresponding

displacement vector. On the contrary, micropolar

theory, by including intrinsic rotation of

a material particle (a structural unit of the

medium), provides a rather complex model of

an elastic body that can support body forces and

body couple vectors as well as force stress vectors

and couple stress vectors at the surface.

Consequently, in micropolar theory, in the course

of deformation, not only a displacement but also

a rotation takes place, and all the mechanical

quantities are written in terms of the displace-

ment and microrotation vectors.

The origin of the rational theories of micropolar

continua goes back to the outstanding French

scholars, the brothers Eugène Maurice Pierre

Cosserat and François Cosserat [3, 4], who gave

a development of the mechanics of continuous

media in which material points are considered as

oriented particles and have the six degrees of free-

dom defined by 3 displacement components and

3 microrotation components (for the history of the

theory of micropolar elasticity, see [5, 8, 13], and

the references therein).

A micropolar solid which is not isotropic

with respect to mirror reflections (i.e., inversion)

is called hemitropic, noncentrosymmetric, or

chiral. Materials may exhibit chirality on the

atomic scale, as in quartz and in biological

molecules – DNA – as well as on a large scale,

as in composites with helical or screw-shaped

inclusions, certain types of nanotubes, bone,

fabricated structures such as foams, chiral

sculptured thin films, and twisted fibers.

Refined mathematical models describing the

hemitropic properties of elastic materials have

been proposed by Aero and Kuvshinski [1, 2] (for

historical notes, see also [5, 6], and the references

therein). In the mathematical theory of elasticity for

hemitropic continua, there are introduced the asym-
metric force stress tensor and couple stress tensor,

which are kinematically related with the asymmet-

ric strain tensor and asymmetric torsion tensor.
The governing equations in this model

become very involved and generate 6� 6 matrix

partial differential operator of second order.
Field Equations

Denote by u¼ðu1;u2;u3Þ> ando¼ðo1;o2;o3Þ>
the displacement vector and the microrotation

vector, respectively. Note that the microrotation

vector o in the micropolar elasticity theory

is kinematically distinct from the macrorotation

vector 1
2
curl u.

In the linear theory of micropolar elasticity,

the asymmetric strain tensor upq and asymmetric

micro-strain (torsion-flexure) tensor opq are

defined as
upq ¼ @puq� epqkok; opq ¼ @poq; p;q¼ 1;2;3

ð1Þ

while the force stress tensor spq and the couple

stress tensor mpq read as follows (the constitutive

equations):
spq ¼ ðmþ aÞupq þ ðm� aÞuqp þ lukkdpq
þ ðkþ nÞopq þ ðk� nÞoqp þ dokkdpq

¼ ðmþ aÞ@puq þ ðm� aÞ@qup þ ldpqdiv u

þ ðkþ nÞ@poq þ ðk� nÞ@qop

þ d dpqdivo� 2aepqkok

ð2Þ

mpq ¼ ðkþ nÞupqþðk� nÞuqpþ dukkdpq

þðgþ eÞopqþðg� eÞoqpþbokkdpq
¼ ðkþ nÞ@puqþðk� nÞ@qupþ ddpqdivu

þðgþ eÞ@poqþðg� eÞ@qopþbdpqdivo

� 2neqpkok

ð3Þ

where summation over repeated indices is meant

form one to three, @ ¼ ð@1; @2; @3Þ, @j ¼ @=@xj,

dpq is the Kronecker delta, epqk is the permutation

(Levi–Civitá) symbol, and a, b, g, d, l, m, n, k, and
e are the material constants [1, 2, 5].
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The components of the force stress vector sðnÞ

and the couple stress vector mðnÞ, acting on

a surface element with a normal vector

n ¼ ðn1; n2; n3Þ, read as
sðnÞq ¼
X3
p¼1

spqnp;

mðnÞq ¼
X3
p¼1

mpqnp; q ¼ 1; 2; 3

Let us introduce the generalized stress

operator (6� 6 matrix differential operator)
Tð@; nÞ ¼ Tð1Þð@; nÞ Tð2Þð@; nÞ
Tð3Þð@; nÞ Tð4Þð@; nÞ

" #
6�6

;

Tð jÞ ¼ Tð jÞ
pq

h i
3�3

; j ¼ 1; 4

ð4Þ

where
Tð1Þ
pq ð@;nÞ ¼ ðmþ aÞdpq@nþðm� aÞnq@pþ lnp@q

Tð2Þ
pq ð@;nÞ ¼ ðkþ nÞdpq@nþðk� nÞnq@pþ dnp@q

� 2aepqknk

Tð3Þ
pq ð@;nÞ ¼ ðkþ nÞdpq@nþðk� nÞnq@pþ dnp@q

Tð4Þ
pq ð@;nÞ ¼ ðgþ eÞdpq@nþðg� eÞnq@pþbnp@q

� 2nepqknk

Here @n stands for the normal derivative. Then
ðsðnÞ; mðnÞÞ> ¼ Tð@; nÞU for U ¼ ðu;oÞ>

Basic equations of dynamics in the linear

micropolar theory of elasticity have the form

@pspqðx; tÞþRFqðx; tÞ¼ R €uq ðx; tÞ; q¼ 1;2;3

@pmpqðx; tÞþ eqlrslrðx; tÞþRGqðx; tÞ¼ J €oq ðx; tÞ;
q¼ 1;2;3

where t is the time variable, F ¼ ðF1;F2;F3Þ>
and G ¼ ðG1;G2;G3Þ> are the body force and
body couple vectors, R is the mass density of the

elastic material, and J is a constant characterizing

the so called spin torque corresponding to the

microrotations (i.e., the moment of inertia per

unit volume).

Using relations (2)–(3), the above dynamic

equations can be rewritten in terms of the dis-

placement and microrotation vectors,
ðmþ aÞDuðx; tÞ þ ðlþ m� aÞgrad div uðx; tÞ
þ ðkþ nÞDoðx; tÞ þ ðdþ k� nÞgrad divoðx; tÞ
þ 2a curloðx; tÞ þ RFðx; tÞ ¼ R €uðx; tÞ
ðkþ nÞDuðx; tÞ þ ðdþ k� nÞgrad div uðx; tÞ
þ 2a curl uðx; tÞ þ ðgþ eÞDoðx; tÞ
þ ðbþ g� eÞgrad divoðx; tÞ þ 4n curloðx; tÞ
� 4aoðx; tÞ þ RGðx; tÞ ¼ J €oðx; tÞ

where D � Dð@Þ ¼ @2
1 þ @2

2 þ @2
3 is the Laplace

operator.

If all the quantities involved in these

equations are harmonic time dependent,

i.e., uðx; tÞ ¼ uðxÞ exp �ittf g, oðx; tÞ ¼ oðxÞ
exp �ittf g, Fðx; tÞ ¼ FðxÞ exp �ittf g, Gðx; tÞ ¼
GðxÞ exp �ittf g, with t 2 E1 and i ¼ ffiffiffiffiffiffiffi�1

p
,

we obtain the steady state oscillation equations:
ðmþ aÞDuðxÞ þ ðlþ m� aÞgrad div uðxÞ
þ ðkþ nÞDoðxÞ þ ðdþ k� nÞgrad divoðxÞ
þ 2a curloðxÞ þ R t2uðxÞ ¼ �RFðxÞ

ðkþ nÞDuðxÞ þ ðdþ k� nÞgrad div uðxÞ
þ 2a curl uðxÞ þ ðgþ eÞDoðxÞ
þ ðbþ g� eÞgrad divoðxÞ þ 4n curloðxÞ
þ ðJ t2 � 4aÞoðxÞ ¼ �RGðxÞ

Here u,o, F, andG are complex-valued vector

functions, and t is a frequency parameter.

If t ¼ t1 þ i t2 is a complex parameter with

t2 6¼ 0, then the above equations are called the

pseudo-oscillation equations, while for t ¼ 0

they represent the equilibrium equations of
statics:
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ðmþ aÞDuðxÞ þ ðlþ m� aÞgrad div uðxÞ
þ ðkþ nÞDoðxÞ þ ðdþ k� nÞgrad divoðxÞ
þ 2a curl oðxÞ ¼ �RFðxÞ

ðkþ nÞDuðxÞ þ ðdþ k� nÞgrad div uðxÞ
þ 2a curl uðxÞ þ ðgþ eÞDoðxÞ
þ ðbþ g� eÞgrad divoðxÞ þ 4n curloðxÞ
� 4aoðxÞ ¼ �RGðxÞ

ð5Þ

Introduce the matrix differential operator

corresponding to the equilibrium system (5):
Að@Þ :¼ Lð1Þð@Þ Lð2Þð@Þ
Lð3Þð@Þ Lð4Þð@Þ
� �

6�6

where
Lð1Þð@Þ¼ðmþaÞI3Dþðlþm�aÞQð@Þ
Lð2Þð@Þ¼Lð3Þð@Þ¼ ðkþ nÞDI3þðdþk� nÞQð@Þ

þ2aRð@Þ
Lð4Þð@Þ¼½ðgþ eÞD�4a�I3þðbþ g� eÞQð@Þ

þ4nRð@Þ

Here Rð@Þ ¼ ½�ekjl@l�3�3
, Qð@Þ ¼ ½ @k@j �3�3

,

and Ik stands for the k � k unit matrix.

The operator Að@Þ is formally self-adjoint

Að@Þ ¼ ½Að�@Þ�> and strongly elliptic.

Due to the above notation, (5) can be rewritten

in matrix form as
Að@ÞUðxÞ ¼ FðxÞ U ¼ ðu;oÞ>;
F ¼ ðFð1Þ;Fð2ÞÞ> ¼ ð�RFðxÞ;�RGðxÞÞ>
Green’s Formulae

For real-valued vectors U :¼ ðu;oÞ>; U0 :¼
ðu0;o0Þ> 2 ½C2ðOÞ�6, the following Green

formulae hold
ð
O

U0 	 Að@ÞU þ EðU0;UÞ½ � dx

¼
ð
@O

U0 	 Tð@; nÞU dS

ð
O

U0 	 Að@ÞU � Að@ÞU0 	 U½ � dx

¼
ð
@O

U0 	 Tð@; nÞU � Tð@; nÞU0 	 U½ � dS

ð6Þ

where O 
 E 3 is a bounded domain with

a smooth boundary manifold @O, O ¼ O [ @O,
n is the outward unit normal vector to @O, a · b
denotes the usual scalar product of two vectors

a; b 2 Em: a 	 b ¼Pm
j¼1

aj bj and Eð	; 	Þ is the so

called energy bilinear form

EðU0;UÞ ¼ EðU;U0Þ ¼
X3
p;q¼1

f ðmþ aÞu0pq upq

þ ðm� aÞu0pq uqp þ ðkþ nÞðu0pqopq þo0
pq upqÞ

þðk� nÞðu0pqoqp þo0
pq uqpÞ

þðgþ eÞo0
pqopq þ ðg� eÞo0

pqoqp

þdðu0ppoqq þo0
qq uppÞ þ lu0pp uqq

þbo0
ppoqqg

ð7Þ
Sylvester’s theorem gives the necessary and

sufficient conditions for positive definiteness of

the quadratic form E(U, U) with respect to the

variables (1) [7]
m> 0; a> 0; g> 0; e> 0; lþ 2m> 0;

mg�ϰ2 > 0; ae� n2 > 0; ðlþmÞðbþ gÞ
� ðdþÞϰ2 > 0; ð3lþ 2mÞð3bþ 2gÞ
� ð3dþ 2Þϰ2 > 0; m ½ ðlþmÞ ðbþ gÞ� ðdþϰÞ2 �
þ ðlþmÞðmg�ϰ2Þ> 0; m ½ ð3lþ 2mÞ ð3bþ 2gÞ
� ð3dþ 2Þϰ2 � þ ð3lþ 2mÞ ðmg�ϰ2Þ> 0

If in addition the inequality 3lþ 2m > 0 is

fulfilled, which is very natural in the classical
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elasticity, then the above conditions are equiva-

lent to the following simultaneous inequalities:

m > 0; a > 0; g > 0; e > 0; 3lþ 2m > 0;

m g� ϰ2 > 0; a e� n2 > 0

ðmþ aÞðgþ eÞ � ðϰþ nÞ2 > 0;

ð3lþ 2mÞð3bþ 2gÞ � ð3dþ 2Þϰ2 > 0

From (7) and (1) it follows that
EðU;U0Þ ¼3lþ2m
3

divuþ3dþ2k
3lþ2m

divo

 �

� divu0 þ3dþ2k
3lþ2m

divo0

 �

þ1

3
3bþ2g�ð3dþ2kÞ2

3lþ2m

 !
ðdivoÞðdivo0Þ

þm
2

X3
k; j¼1;k 6¼j

@uk
@xj

þ @uj
@xk

þk
m

@ok

@xj
þ@oj

@xk


 �� �

� @ u0k
@xj

þ@ u0j
@xk

þk
m

@o0
k

@xj
þ@o0

j

@xk


 �� �
þm
3

X3
k; j¼1

@uk
@xk

�@uj
@xj

þk
m

@ok

@xk
�@oj

@xj


 �� �
� @ u0k

@xk
�@ u0j
@xj

þk
m

@o0
k

@xk
�@o0

j

@xj


 �� �
þ g�k2

m


 � X3
k; j¼1;k 6¼j

1

2

@ok

@xj
þ@oj

@xk


 ��

� @o0
k

@xj
þ@o0

j

@xk


 �
þ1

3

@ok

@xk
�@oj

@xj


 �
� @o0

k

@xk
�@o0

j

@xj


 ��
þa
�
curlu

þ n
a
curlo�2o

	
	

� curlu0 þ n
a
curlo0 �2o0

� 	
þ e� n2

a


 �
curlo 	 curlo0

In particular,
EðU;UÞ¼3lþ2m
3

divuþ3dþ2k
3lþ2m

divo

 �2

þ1

3
3bþ2g�ð3dþ2kÞ2

3lþ2m

 !
ðdivoÞ2
þ m
2

X3
k; j¼1; k 6¼j

@uk
@xj

þ @uj
@xk

þ k
m

@ok

@xj
þ @oj

@xk


 �� �2

þ m
3

X3
k; j¼1

@uk
@xk

� @uj
@xj

þ k
m

@ok

@xk
� @oj

@x


 �� �2

þ g� k2

m


 � X3
k; j¼1; k 6¼j

1

2

@ok

@xj
þ @oj

@xk


 �2
"

þ 1

3

@ok

@xk
� @oj

@xj


 �2
#
þ e� n2

a


 �
ðcurloÞ2

þ a curl uþ n
a
curlo� 2o

� 	2

Theorem 1. Let U ¼ ðu;oÞ> 2 ½C1ðOÞ�6 be
a real-valued vector and EðU;UÞ ¼ 0 in O.
Then U ¼ ðu;oÞ> is a generalized rigid

displacement vector with
uðxÞ ¼ ½a� x� þ b; oðxÞ ¼ a; x 2 O

ð8Þ

where a and b are arbitrary three-dimensional

constant vectors.
If U ¼ Uð1Þ þ i Uð2Þ is a complex-valued

vector, where UðjÞ ¼ ðuðjÞ;oðjÞÞ>; j ¼ 1; 2; are

real-valued vectors, then due to the positive

definiteness of the energy form for real-valued

vector functions, we have
EðU;UÞ� c0
X3
p;q¼1

ðuð1Þpq Þ
2þðuð2Þpq Þ

2þðoð1Þ
pq Þ

2
h

þðoð2Þ
pq Þ

2
i

where c0 is a positive constant depending only on

the material parameters, and u
ðjÞ
pq and oðjÞ

pq are

defined by formulae (1) with uðjÞ and oðjÞ for u
and o.

From the positive definiteness of the energy

form Eð	; 	Þ with respect to the variables (1), it

easily follows that there exist positive constants

c1 and c2 such that for an arbitrary real-valued

vector U 2 ½C1ðOÞ�6,
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BðU;UÞ ¼
ð
O

EðU;UÞdx

� c1

ð
O

X3
p;q¼1

½ð@puqÞ2 þ ð@poqÞ2�
(

þ
X3
p¼1

ðu2p þ o2
pÞ
)
dx

� c2

ð
O

X3
p¼1

ðu2p þ o2
pÞ dx

i.e., the following Korn’s type inequality holds
BðU;UÞ � c1 jjUjj2½H1
2
ðOÞ�6 � c2 jjUjj2½H0

2
ðOÞ�6

where jj 	 jj½Hs
2
ðOÞ�6 denotes the norm in the Bessel

potential space ½Hs
2ðOÞ�6.

By standard approach, Green’s formula (6)

can be extended to Lipschitz domains and to the

case of vector functions U 2 ½W1
2ðOÞ�6,

Að@ÞU 2 ½L2ðOÞ�6, and U0 2 ½W1
2ðOÞ�6
ð

O

U0 	Að@ÞUþEðU0;UÞ½ �dx¼ U0; Tð@;nÞUh i@O

ð9Þ

where 	; 	h i @O denotes the duality between the

Bessel potential spaces ½H2

1
2ð@OÞ�6 and

½H2
�1

2ð@OÞ�6, which extends the usual L2-inner

product. The functional Tð@; nÞU 2 ½H2
�1

2ð@OÞ�6
is determined by the relation (9).
Boundary Value Problems and
Uniqueness Theorems

LetOþ 
 E3 be a bounded domain with a smooth

boundary manifold @O+ and O� ¼ E3 n Oþ.
Denote by n the outward unit normal vector to

@O+. The symbols ½	�� denote the interior and

exterior limits on @O� from O�.
In the hemitropic elasticity, the basic bound-

ary value problems of statics are formulated as

follows. Find a solution U 2 ðu;oÞ> to the

differential equation
Að@ÞUðxÞ ¼ FðxÞ in O� ð10Þ

satisfying one of the following boundary condi-

tions on S ¼ @O�:
Problem (I)� (the Dirichlet-type problem)
½UðxÞ�� ¼ f ðxÞ; x 2 S ð11Þ

Problem (II)� (the Neumann-type problem)
½Tð@; nÞUðxÞ�� ¼ FðxÞ; x 2 S ð12Þ

Problem (III)� (a mixed-type problem)
½UðxÞ�� ¼ fDðxÞ; x 2 SD ð13Þ

½Tð@; nÞUðxÞ�� ¼ FNðxÞ; x 2 S ð14Þ

Problem (IV)� (the Robin-type problem)
½Tð@; nÞUðxÞ�� � wðxÞ ½UðxÞ�� ¼ FðxÞ; x 2 S

ð15Þ

where SD and SN are two open disjoint parts of S

and SD [ SN ¼ S, and w(x) is a given smooth

nonnegative function on S that does not vanish

identically.

In addition, in the case of exterior problems,

the following decay conditions at infinity should

be satisfied
uðxÞ¼Oðjxj�1Þ; @juðxÞ¼Oðjxj�2Þ; j¼ 1;2;3

oðxÞ¼Oðjxj�2Þ; @joðxÞ¼Oðjxj�3Þ; j¼ 1;2;3

ð16Þ

as jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22 þ x23

p
! þ1.

In the case of regular setting,

U 2 ½C1ðO�Þ�6 \ ½C2ðO�Þ�6 and the vector
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function F and the boundary data f and F belong

to some Hölder spaces

F2 ½C0;aðO�Þ�6; f 2 ½C1;aðSÞ�6; F2 ½C0;aðSÞ�6;
0< a� 1

while in the case of weak formulation,

U 2 ½W1
2ðOþÞ�6 or U 2 ½W1

2; locðO�Þ�6 and the

data belong to the corresponding Sobolev–

Slobodetskii or Bessel potential spaces
f 2 ½H1
2

2ðSÞ�6; F 2 ½H�1
2

2 ðSÞ�6; fD 2 ½H1
2

2ðSDÞ�6

FN 2 ½H�1
2

2 ðSNÞ�6; F 2 ½L2ðE3Þ�6

where suppF is compact.

Note that in the case of weak setting, the

differential equation (10) is understood in the

distributional sense, and the Dirichlet-type con-

ditions (11) and (13) are understood in the usual

trace sense, while the Neumann-type conditions

(12) and (14) and the Robin-type condition (15)

are understood in the functional sense with

½Tð@; nÞU�� 2 ½H�1
2

2 ðSÞ�6 defined in (9).

Theorem 2. The homogeneous versions of the

BVPs (I)�, (II)�, (III)�, and (IV)� have only the

trivial solution in the space of regular vector
functions satisfying the decay conditions (16),

while the homogeneous problem (II)+ has the

vector (8) as a general solution.
The same uniqueness results hold also true for

Lipschitz domains and for weak solutions

U 2 ½W1
2ðOþÞ�6 or U 2 ½W1

2; locðO�Þ�6 satisfying

the decay conditions (16).
Fundamental Matrix and Potentials

The fundamental matrix G(x) of the differential

operator Að@Þ reads as follows [7]:
GðxÞ ¼ Gð1ÞðxÞ Gð2ÞðxÞ
Gð3ÞðxÞ Gð4ÞðxÞ

�����
�����
6�6

;

GðmÞðxÞ ¼k GðmÞ
kj ðxÞ k3�3; m ¼ 1; 4
where
Gð1Þ
kj ðxÞ¼� 1

4p
gþ e
d1

1

jxjþ
X2
l¼1

k2l c1l
e�kl jxj �1

jxj

" #
dkj

(

� @2

@xk@xj

lþm
mðlþ2mÞ

jxj
2

�
þ
X3
l¼1

c1l
e�kl jxj �1

jxj

#

þ
X3
l;p¼1

c2l ekjp
@

@xp

e�kl jxj �1

jxj

)

Gð2Þ
kj ðxÞ¼Gð3Þ

kj ðxÞ¼� 1

4p
� kþ n

d1

1

jxj
��

þ
X2
l¼1

k2l c3l
e�kl jxj �1

jxj

#
dkj

þ @2

@xk@xj

X3
l¼1

c3l
e�kl jxj �1

jxj

þ
X3
l;p¼1

c4l ekjp
@

@xp

e�kl jxj �1

jxj

)

Gð4Þ
kj ðxÞ¼� 1

4p
mþa
d1

1

jxj
��

þ
X2
l¼1

k2l c5l
e�kl jxj �1

jxj

#
dkj

� @2

@xk@xj

X3
l¼1

c5l
e�kl jxj �1

jxj

þ
X3
l;p¼1

c6l ekjp
@

@xp

e�kl jxj �1

jxj

)

Here
c1l ¼ cl
d1

ðk2l � k23Þ ½ ðgþ eÞ k2l � 4 a � ðk2l � l21Þ



þ4 n d3 k2l
�

c2l ¼ cl k
2
l

d1
ðk2l � k23Þ ½ d3 ðgþ eÞ � 4 n � k2l þ

16 a2 k
d1

� �
c3l ¼ cl k

2
l

d1
ðk2l � k23Þ ½ ðk2l � l21Þ ðkþ nÞ � 2 a d3 �

c4l ¼ cl k
2
l

d1
ðk2l � k23Þ ½ 2 a ðk2l � l21Þ � d3 k

2
l ðkþ nÞ �

c5l ¼ cl k
2
l

d1
ðmþ aÞ ðk2l � k23Þ ðk2l � l21Þ;
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c6l ¼ cl d3 k
4
l

d1
ðmþ aÞ ðk2l � k23Þ; l ¼ 1; 2

c13 ¼ � ðdþ 2 kÞ2
4 a ðlþ 2 mÞ ; c33 ¼ � dþ 2 k

4 a ðlþ 2 mÞ2 ;

c53 ¼ � 1

4 a
; c23 ¼ c43 ¼ c63 ¼ 0

cq ¼ 1

k4q ðk2qþ1 � k2qÞ ðk2qþ2 � k2qÞ
; q ¼ 1; 2; 3

k1 ¼ k2; Re k1 > 0; k21 þ k22 ¼ 2 l21 � d23 ;

k21 k
2
2 ¼ l41; k4 ¼ k1; k5 ¼ k2

d1 ¼ ðmþ aÞðgþ eÞ � ðkþ nÞ2 > 0;

d2 ¼ ðlþ 2mÞðbþ 2gÞ � ðdþ 2kÞ2 > 0

d3 ¼ 4 ðm n� a kÞ
d1

; l21 ¼
4 a m
d1

; k23 ¼
4 a ðlþ 2 mÞ

d2

The matrix Gðx� yÞ solves the distributional

equation Að@ÞGðx� yÞ ¼ I6 dðx� yÞ, where dð	Þ
is Dirac’s delta distribution. Note that

Gðy� xÞ ¼ ½Gðx� yÞ �>.
With the help of the relations
X3
l¼1

cl k
2
l ¼ l�4 k�2

3 ;
X3
l¼1

cl k
2m
l ¼ 0

for m ¼ 2; 3;
X3
l¼1

cl k
8
l ¼ 1

X3
l¼1

c1l k
2
l ¼ � bþ 2 g

d2
þ gþ e

d1
þ lþ m
m ðlþ 2 mÞX3

l¼1

c3l k
2
l ¼ � dþ 2 k

d2
þ nþ k

d1
;

X3
l¼1

c5l k
2
l ¼ � lþ 2 m

d2
þ mþ a

d1

it can be checked that for sufficiently large jxj and
for arbitrary multi-index s ¼ ðs1; s2; s3Þ, the

following asymptotic relations hold
@s GkjðxÞ ¼

Oðjxj�1�jsjÞ for k; j ¼ 1; 2; 3;

Oðjxj�2�jsjÞ for either k � 4

or j � 4;

jsj ¼ s1 þ s2 þ s3

8>>>><>>>>:
The corresponding single-layer and double-

layer potentials and the Newton-type volume

potential read as
Vð’ÞðxÞ ¼
ð
S

Gðx� yÞ’ðyÞdSy; x 2 E3 n S

Wð’ÞðxÞ ¼
ð
S

½Tð@y;nðyÞÞGðy� xÞ �>’ðyÞdSy;

x 2 E3 n S
NOðcÞðxÞ ¼

ð
O
Gðx� yÞcðyÞdy; x 2 E3

ð17Þ

where Tð@; nÞ is the generalized stress operator

given by (4), ’ ¼ ð’1; 	 	 	 ; ’6Þ> is a density

vector function defined on S ¼ @O, while

a density vector function c ¼ ðc1; 	 	 	 ;c6Þ> is

defined on O 2 fOþ;O�g.
The layer potentials introduced above, and

generated by them, boundary integral operators

have the following jump and mapping properties

(for details see [10] and [12]).

Theorem 3. Let U 2 ½W1
2ðOþÞ�6 with

Að@ÞU 2 ½L2ðOþÞ�6. Then the following integral

representation formula holds
Wð½U�þÞðxÞ � Vð½TU�þÞðxÞ þ NOþðAð@ÞUÞðxÞ

¼
UðxÞ for x 2 Oþ

0 for x 2 O�

(

Theorem 4. Let S 2 Ckþ1; a where k � 0 is an

integer, 0 < a � 1, and let 0 < b < a. Then the

operators
V : ½Ck; bðSÞ�6 ! ½Ckþ1; bðO�Þ�6;
W : ½Ck; bðSÞ�6 ! ½Ck; bðO�Þ�6

ð18Þ

are continuous.

For any g 2 Ck; bðSÞ and any x 2 S
½VðgÞðxÞ�� ¼ VðgÞðxÞ ¼ H gðxÞ ð19Þ
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½Tð@x; nðxÞÞVðgÞðxÞ�� ¼ ½�2�1 I6 þK� gðxÞ
ð20Þ

½WðgÞðxÞ�� ¼ ½�2�1I6 þK� � gðxÞ ð21Þ

½Tð@x; nðxÞÞWðgÞðxÞ�þ ¼ ½Tð@x; nðxÞÞWðgÞðxÞ��
¼ L gðxÞ

ð22Þ

where
H gðxÞ : ¼
ð
S

Gðx� yÞ gðyÞ dSy

K gðxÞ : ¼
ð
S

Tð@x; nðxÞÞGðx� yÞ gðyÞ dSy

K� gðxÞ : ¼
ð
S

½ Tð@y; nðyÞÞGðy� xÞ �> gðyÞ dSy
L gðxÞ : ¼ lim

O�3z!x2S
Tð@z; nðxÞÞWðgÞðzÞ

The operators V andW in (18) can be extended
to the continuous mappings

V : ½H�1
2

2 ðSÞ�6 ! ½H1
2ðOþÞ�6

½H�1
2

2 ðSÞ�6 ! ½H1
2; locðO�Þ�6

h i
W : ½H1

2

2ðSÞ�6 ! ½H1
2ðOþÞ�6

½H1
2

2ðSÞ�6 ! ½H1
2; locðO�Þ�6

h i
The jump relations (19)–(22) on S remain

valid for the extended operators in the

corresponding functional spaces.
Denote by XOfLð1Þ;Lð2Þ; 	 	 	 ;Lð6Þg the linear

span of vectors of generalized rigid displace-

ments in a region O, where, for definiteness, we
assume that
Lð1ÞðxÞ ¼ ð0;�x3; x2; 1; 0; 0Þ>

Lð2ÞðxÞ ¼ ðx3; 0;�x1; 0; 1; 0Þ>

Lð3ÞðxÞ ¼ ð�x2; x1; 0; 0; 0; 1Þ>

Lð4ÞðxÞ ¼ ð1; 0; 0; 0; 0; 0Þ>

Lð5ÞðxÞ ¼ ð0; 1; 0; 0; 0; 0Þ>

Lð6ÞðxÞ ¼ ð0; 0; 1; 0; 0; 0Þ>

ð23Þ
The restriction of the space

XOfLð1Þ;Lð2Þ; 	 	 	 ;Lð6Þg onto the boundary

S ¼ @O we denote by XSfLð1Þ;Lð2Þ; 	 	 	 ;Lð6Þg.
The system fLðjÞðxÞg6j¼1 is basis in the space

of generalized rigid displacement vectors

defined by (8).

Theorem 5. Let S, k, a, and b be as in Theorem 4.

Then the operators
H : ½Ck;bðSÞ�6 ! ½Ckþ1;bðSÞ�6

½H�1
2

2 ðSÞ�6 ! ½H1
2

2ðSÞ�6
h i

K : ½Ck;bðSÞ�6 ! ½Ck;bðSÞ�6

½H�1
2

2 ðSÞ�6 ! ½H�1
2

2 ðSÞ�6
h i

K� : ½Ck;bðSÞ�6 ! ½Ck;bðSÞ�6

½H1
2

2ðSÞ�6 ! ½H1
2

2ðSÞ�6
h i

L : ½Ckþ1;bðSÞ�6 ! ½Ck;bðSÞ�6

½H1
2

2ðSÞ�6 ! ½H�1
2

2 ðSÞ�6
h i

are bounded. Moreover,

(a) H, � 1
2
I6 þK, � 1

2
I6 þK�, and L are

elliptic pseudodifferential operators of

order �1, 0, 0, and 1, respectively;

(b) � 1
2
I6 þK and � 1

2
I6 þK� are mutually

adjoint singular integral operators of normal

type with index equal to zero. The operators

H, 1
2
I6 þK, and 1

2
I6 þK� are invertible.

The inverse of H
H�1 :½Ckþ1;bðSÞ�6 ! ½Ck;bðSÞ�6h
½H1

2

2ðSÞ�
6

! ½H�1
2

2 ðSÞ�
6 i
is a singular integro-differential operator.

The null space of the operator � 1
2
I6 þK�

is XSfLð1Þ;Lð2Þ; 	 	 	 ;Lð6Þg;

(c) L is a singular integro-differential operator

and the following equalities hold:
K�H ¼ HK; LK� ¼ KL
HL ¼ �4�1I6 þ ðK�Þ2
LH ¼ �4�1I6 þK2
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(d) The operators –H and L are self-adjoint and

nonnegative elliptic pseudodifferential oper-
ators with positive definite principal symbol

matrices and with index equal to zero.

Moreover, �Hh; hh i
S
� c0 k h k

½H�1
2

2
ðSÞ�6

for

all h 2 ½H�1
2

2 ðSÞ�6 and g;L gh i
S
� 0 for all

g 2 ½H1
2

2ðSÞ�
6

with equality only for
g ¼ ð½a� x� þ b; aÞ> ð24Þ
where a; b 2 E3 are arbitrary constant vec-

tors; here < 	; 	>
S

denotes the duality

between the spaces ½H1
2

2ðSÞ �6 and ½H
�1

2

2 ðSÞ �6;

(e) a general solution of the homogeneous

equations ½� 1
2
I6 þK�� g ¼ 0 and L g ¼ 0

is given by (24), implying that the

operators L, � 1
2
I6 þK�, and � 1

2
I6 þK

have six-dimensional null spaces.
Existence Results

From the mathematical point of view, without loss

of generality, it can be assumed that F ¼ 0 in (10),

since corresponding particular solutionsU
ð0Þ
� can be

written explicitly as volume potentials (see (17))
U
ð0Þ
� ðxÞ :¼ NO�ðFÞðxÞ ¼

ð
O�

Gðx� yÞFðyÞ dy;

x 2 O�

Let
S ¼ @O� 2 Ck;a; f 2 C1; bðSÞ; F 2 C0; bðSÞ;
0 < b < a � 1; k � 2

ð25Þ
Theorem 6. Let S and f be as in (25) with k ¼ 2.

Then Problem (I)+ with F ¼ 0 is uniquely

solvable in the space of regular vector functions.
Moreover, the solution belongs to the space

½C1; bðOþÞ�6 \ ½C1ðOþÞ�6, and it can be

represented by the double-layer potential
UðxÞ ¼ WðgÞðxÞ; x 2 Oþ

where the density vector g 2 ½C1; bðSÞ�6 is defined
by the uniquely solvable singular integral

equation

2�1I6 þK�� �
gðxÞ ¼ f ðxÞ; x 2 S
Theorem 7. Let S and f be as in (25) with k ¼ 2.
Then Problem ðIÞ� with F ¼ 0 is uniquely

solvable in the space of regular vector

functions satisfying the decay conditions (16).

Moreover, the solution belongs to the

space ½C1; bðO�Þ�6 \ ½C1ðO�Þ�6, and it can

be represented by a linear combination of the
single and double-layer potentials
UðxÞ ¼ WðgÞðxÞ þ VðgÞðxÞ; x 2 O�

where the density vector g 2 ½C1; bðSÞ�6 is defined
by the uniquely solvable integral equation

�2�1I6 þK� þH� �
gðxÞ ¼ f ðxÞ; x 2 S
Theorem 8. Let S and F be as in (25)with k ¼ 1.

Then Problem ðIIÞ� is uniquely solvable in

the space of regular vector functions.
Moreover, the solution belongs to the

space ½C1; bðO�Þ�6 \ ½C1ðO�Þ�6, and it can be

represented by the single-layer potential
UðxÞ ¼ VðhÞðxÞ; x 2 O�

where the density vector h 2 C0; bðSÞ is defined by
the uniquely solvable integral equation
2�1I6 þK� �
hðxÞ ¼ FðxÞ; x 2 S
Theorem 9. The interior Neumann problem

ðIIÞþ is solvable if and only if
ð
S

FðxÞ 	 LðjÞðxÞ dS ¼ 0; j ¼ 1; 6
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where LðjÞ are defined in (23) and solutions can
be represented by the single-layer potential
UðxÞ ¼ VðhÞðxÞ; x 2 Oþ

where the density vector h 2 C1; bðSÞ solves the

integral equation

�2�1I6 þK� �
hðxÞ ¼ FðxÞ; x 2 S

A solution vector U is defined modulo a rigid

displacement, while the generalized stress vector

TU is determined uniquely.
Similar existence results hold also true for

weak solutions in smooth and Lipschitz domains

(see [9–11], and [12]).
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Moreover, we consider the uncoupled problem of

thermoelasticity, the problem of the quasi-static

theory, and the problem of the equilibrium

theory.

Our analysis is based on the works by

Truesdell and Noll [9], Truesdell [10], Nowacki

[8], Carlson [4], Eringen [5], and Hetnarski and

Eslami [7]. The history of the thermoelasticity is

fully discussed by Truesdell [10] and Hetnarski

and Eslami [7] (see also the reference list of the

work by Carlson [4]).
Boundary–Initial Value Problems

In this work, we consider a thermoelastic material

which at time t0 ¼ 0 occupies the region B of the

three-dimensional Euclidian space E3, whose

boundary is the smooth surface @B. In the follow-

ing, the configuration of the body at the initial

time t0 ¼ 0 is considered as the reference

configuration.

Throughout this chapter, Latin subscripts

take the values 1; 2; 3, and summation is carried

out over repeated indices. Typical conventions

for differential operations are implied such as

a superposed dot or comma, followed by a sub-

script to denote the partial derivative with

respect to time or to the corresponding Carte-

sian coordinate, respectively.

We refer the configurations of the body to

a fixed system of rectangular axes. In the rest of

this chapter, x denotes the position vector with

the components ðx1; x2; x3Þ of a generic point P of

the domain B.
Let us consider a fixed time interval ½0; t1Þ,

where t1 > 0 can be infinite. Considered two

positive integers M and N, we say that

a function f defined on B� ð0; t1Þ is of class

CM;N if the functions
@mf ðnÞ � @m

@xp@xq	 	 	@xk

@nf

@tn


 �
m 2 f0; 1; . . .Mg; n 2 f0; 1; . . . ;Ng
mþ n � maxfM;Ng
exist and are continuous on B� ð0; t1Þ.
We denote by T0 the absolute temperature in

the reference configuration, and we suppose that

T0 is a prescribed positive constant. We also

suppose that in the natural state, the body is free

of initial stresses and entropy.

We assume that the components ui of the dis-

placement vector are of class C2 on B� ð0; t1Þ,
while we assume that the variation of temperature

y is of class C2;1 on B� ð0; t1Þ and continuous

together with _y and y;i on B� ½0; t1Þ.
In the linear theory, we suppose that u ¼ eu0

and y ¼ ey
0
where e is a constant small enough to

have en ’ 0, for n � 2, and u
0
and y

0
are indepen-

dent of e. We consider the components of the

infinitesimal strain tensor eij given by

2eij ¼ ui;j þ uj;i ð1Þ

In the following, we denote the stress tensor

and the heat flux by sij and qi, respectively.

Moreover, we will use the following notations:

i) r0 is the mass density of the continuum at the

initial time.

ii) S is the entropy per unit mass.

iii) b is the body force per unit mass.

iv) r is the heat supply per unit mass.

The equations of the linear theory of

thermoelasticity consist of (see [4])

– The equations of motion
sji;j þ r0bi ¼ r0€ui ð2Þ

– The energy equation
r0T0 _Sþ qi;i ¼ r0r ð3Þ

– The constitutive equations
sij ¼ Cijklekl �Mijy

r0S ¼ Mijeij þ ay

qi ¼ �kijy;j

ð4Þ

– The geometrical equations

eij ¼ 1

2
ðui;j þ uj;iÞ ð5Þ
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The constitutive coefficients Cijkl;Mij; kij; r0
and a are depending on the spatial variables

x1; x2; x3, and they have the following properties

of symmetry:
Mij ¼ Mji Cijkl ¼ Cklij ¼ Cjikl ð6Þ

and
kijy;iy;j � 0 ð7Þ

To these equations, we must adjoin boundary

conditions and initial conditions. The boundary

conditions can be of Dirichlet type or of Neumann

type, or we can have mixed boundary conditions.

The initial conditions have the following

form:
uiðx; 0Þ ¼ u0iðxÞ
_uiðx; 0Þ ¼ _u0iðxÞ

Sðx; 0Þ ¼ S0ðxÞ; x 2 B

ð8Þ

and, in the case of the mixed problem, the bound-

ary conditions are
uiðx; tÞ ¼ ûiðx; tÞ; on S1 � ½0; t1Þ ð9Þ

siðx; tÞ ¼ sjiðx; tÞnj
¼ ŝiðx; tÞ; on S2 � ½0; t1Þ ð10Þ

yðx; tÞ ¼ ŷðx; tÞ; on S3 � ½0; t1Þ ð11Þ

qðx; tÞ ¼ qiðx; tÞni
¼ q̂ðx; tÞ; on S4 � ½0; t1Þ ð12Þ

where Ss ðs ¼ 1; . . . ; 4Þ are subsets of the bound-
ary @B so that S1 [ S2 ¼ S3 [ S4 ¼ @B,
S1 \ S2 ¼ S3 \ S4 ¼60, n is the unit outward

normal to the boundary, and u0i; _u0i, S0, ûi, ŝi, ŷ,
and q̂ are prescribed fields.

In the linear theory of isotropic materials, we

have only five constitutive coefficients l, m, m, k,
and a so that the constitutive equations (4)

become
qi ¼ �ky;i ð13Þ
sij ¼ lerrdij þ meij � mydij
r0S ¼ merr þ ay

ð14Þ

Here, the scalars l and m are called Lamé

moduli, m is the shear modulus, m is the stress–

temperature modulus, and k is the conductivity

coefficient assumed to be positive.

We assume that the constitutive coefficients

are of class C1 on Bwhile r0 and a are assumed to

be continuous on B and r0 > 0.

We also suppose that the prescribed data are

given so that [4]:

i) bi and r are continuous on B� ½0; t1Þ.
ii) u0i, _u0i, and S0 are continuous on B.

iii) ûi are continuous on S1 � ½0; t1Þ.
iv) ŝi are smooth functions on S2 � ½0; t1Þ and

continuous as functions of time.

v) ŷ is continuous on S3 � ½0; t1Þ.
vi) q̂ is smooth on S4 � ½0; t1Þ and continuous as

function of time.

By an admissible thermoelastic process, in the

linear theory of thermoelasticity, we mean an

ordered array ½ui; eij; sij; y; S; qi� with the proper-

ties [4]:

i) ui are of class C
2 on B� ð0; t1Þ.

ii) ui; _ui; €ui; ui;j; _ui;j are continuous on

B� ½0; t1Þ.
iii) eij are the components of a symmetric ten-

sor, continuous on B� ½0; t1Þ.
iv) sij are the components of a symmetric ten-

sor, of class C1;0 on B� ð0; t1Þ.
v) sij and sji;j are continuous on B� ½0; t1Þ.
vi) y is of class C2;1 on B� ð0; t1Þ.
vii) y; y;i; _y are continuous on B� ½0; t1Þ.
viii) S is of class C0;1 on B� ð0; t1Þ.
ix) S; _S are continuous on B� ½0; t1Þ.
x) qi are of class C

1;0 on B� ð0; t1Þ.
xi) qi and qi;i are continuous on B� ½0; t1Þ.
The following remark is an immediate conse-

quence of the above definitions and linearity of

field equations.

Remark 1. Carlson [4] Let ½ui; eij;sij; y; S; qi�
and ½~ui; ~eij; ~sij; ~y; ~S; ~qi� be thermoelastic processes

corresponding to the external force systems ½s; f�
and ½~s;~f�, respectively, and to the external ther-

mal systems ½q; r� and ½~q; ~r�, respectively.
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If a and ~a are scalars, then ½aui þ ~a~ui; aeij þ ~a~eij;
asij þ ~a~sij; ay þ ~a~y; aSþ ~a~S; aqi þ ~a~qi� is a

thermoelastic process corresponding to the exter-

nal force system ½asþ ~a~s; af þ ~a~f� and to the

external thermal system ½aqþ ~a~q; ar þ ~a~r�.
The above remark proves that the set of all

admissible thermoelastic processes may be orga-

nized as a linear space endowed with natural

addition and scalar multiplication.

By a solution of the mixed boundary–initial

value problem, we mean an admissible

thermoelastic process which satisfies the (2)–(5)

and the conditions (8)–(12).

Let us introduce the relations (4) and (5) into

(2) and (3). Then, we can formulate the bound-

ary–initial value problem in terms of displace-

ment ui and temperature variation y only. Thus,

we have the differential system
ðCijkluk;lÞ;j � ðMijyÞ;j � r0€ui ¼ � r0bi

ðkijy;jÞ;i � T0Mij _ui;j � c _y ¼ � r0r
ð15Þ

with the initial conditions
uiðx; 0Þ ¼ u0iðxÞ
_uiðx; 0Þ ¼ _u0iðxÞ

yðx; 0Þ ¼ y0ðxÞ; x 2 B

ð16Þ

and the boundary conditions
uiðx; tÞ ¼ ûiðx; tÞ; on S1 � ½0; t1Þ ð17Þ

ðCijkluk;l �MijyÞðx; tÞnj
¼ ŝiðx; tÞ; on S2 � ½0; t1Þ ð18Þ

yðx; tÞ ¼ ŷðx; tÞ; on S3 � ½0; t1Þ ð19Þ

kijy;jðx; tÞni ¼ q̂ðx; tÞ; on S4 � ½0; t1Þ ð20Þ

In the above relations, we have used the spe-

cific heat c ¼ T0a, and we have introduced the

notation:

ay0 ¼ r0S0 �Miju0i;j ð21Þ
If the body is homogeneous, then the system of

partial differential equations (15) reduces to
Cijkluk;lj �Mijy;j � r0€ui ¼ � r0bi

kijy;ji � T0Mij _ui;j � c _y ¼ � r0r
ð22Þ

Moreover, if the body is homogeneous and

isotropic, then the equations are
mui;jj þ ðlþ mÞuj;ji � my;i � r0€ui ¼ � r0bi

ky;ii � T0m _uj;j � c _y ¼ � r0r

ð23Þ

Concerning the solution of the mixed bound-

ary value problem, we have the following unique-

ness result [4]:

Theorem 1. Suppose the elasticity tensor Cijkl is
positive semi-definite and the specific heat c is

strictly positive. Then the mixed problem has at

most one solution.
Sometimes in applications, the boundary con-

dition for the heat flux is considered in the form of

the following convection condition:
q 	 n ¼ hðT � TeÞ on @B ð24Þ

where T is the temperature of the solid’s bound-

ary, Te is the ambient temperature and h is the

convection coefficient. The last two quantities, h
and Te, are determined by experiments. Other

types of boundary conditions for the heat flux

can be found in the books [3, 7, 8].

Up to now, we have formulated forward in

time problems. In the last part of this section,

we formulate the boundary–final value problem

known as the backward in time problem. We

consider the boundary–final value problem of

the linear theory of thermoelasticity on the inter-

val ð�t1; 0�, where t1 > 0 may be infinite. All the

quantities have the same significations as in the

formulation of the forward in time problem

defined above.

In terms of displacement ui and temperature

variation y, the boundary–final value problem is

defined by the equations
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ðCijkluk;lÞ;j � ðMijyÞ;j � r0€ui ¼ �r0bi

ðkijy;jÞ;i � T0Mij _ui;j � c _y ¼ �r0r; in B� ð�t1; 0Þ
ð25Þ

the final conditions
uiðx; 0Þ ¼ u0iðxÞ
_uiðx; 0Þ ¼ _u0iðxÞ

yðx; 0Þ ¼ y0ðxÞ; x 2 B

ð26Þ

and the boundary conditions
uiðx; tÞ ¼ ûiðx; tÞ; on S1 � ð�t1; 0� ð27Þ

ðCijkluk;l �MijyÞðx; tÞnj
¼ ŝiðx; tÞ; on S2 � ð�t1; 0� ð28Þ

yðx; tÞ ¼ ŷðx; tÞ; on S3 � ð�t1; 0� ð29Þ

kijy;jðx; tÞni ¼ q̂ðx; tÞ; on S4 � ð�t1; 0� ð30Þ

where Ss ðs ¼ 1; . . . ; 4Þ are subsets of the bound-
ary @B so that S1 [ S2 ¼ S3 [ S4 ¼ @B,

S1 \ S2 ¼ S3 \ S4 ¼ ;, n is the unit outward

normal to the boundary, and u0i; _u0i, S0, ûi, ŝi, ŷ,
and q̂ are prescribed fields.

The backward in time problems lead to

ill-posed problems. By means of the change

t � −t we can transform the above boundary–

final value problem into a boundary–initial

problem defined by the equations
ðCijkluk;lÞ;j � ðMijyÞ;j � r0€ui ¼ �r0bi

ðkijy;jÞ;i þ T0Mij _ui;j þ c _y ¼ �r0r; in B� ð0; t1Þ
ð31Þ

the initial conditions
uiðx; 0Þ ¼ u0iðxÞ
_uiðx; 0Þ ¼ _u0iðxÞ

yðx; 0Þ ¼ y0ðxÞ; x 2 B

ð32Þ
and the boundary conditions

uiðx; tÞ ¼ ûiðx; tÞ; on S1 � ½0; t1Þ ð33Þ
ðCijkluk;l �MijyÞðx; tÞnj

¼ ŝiðx; tÞ; on S2 � ½0; t1Þ ð34Þ

y ¼ ŷ; on S3 � ½0; t1Þ ð35Þ

kijy;jðx; tÞni ¼ q̂ðx; tÞ; on S4 � ½0; t1Þ ð36Þ

We remark the energy equation is changed by

this transformation, while the first three equations

have the same form as in the case of final value

problem. This class of problems was first consid-

ered by Ames and Payne [1] (see also the book by

Ames and Straughan [2]).
Uncoupled Problems

In the study of certain materials, it has been

observed that in the energy equation (15)2, the

term T0Mij _ui;j can be neglected, and the

corresponding predicted results are in concor-

dance with the experiments. In such a case, the

energy equation (15)2 is replaced by

kijy;j
� �

;i
� c _y ¼ �r0r ð37Þ

and the mixed problem becomes high simplified.

In fact, the mixed problem leads to the separate

study of two boundary–initial value problems. The

first is concerned with the above equation together

with the initial and boundary conditions for the

temperature variation y, a problem relating only

the temperature variation. Assuming solved this

problem for the temperature variation y, the sec-

ond boundary–initial problem consists of the dif-

ferential system (15)1 with the initial and

boundary conditions in terms of the displacement

ui in which the temperature variation is assumed

prescribed. This last boundary–initial value prob-

lem represents a boundary–initial value problem

of the linear elastodynamics in which the compo-

nents of the body force vector are
bi � 1

r0
ðMijyÞ;j ð38Þ
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and the stress boundary condition is
B

siðx; tÞ ¼ ~siðx; tÞ þMijyðx; tÞnj ð39Þ

This last case is called the uncoupled theory of

the thermoelasticity. The coupled theory con-

cerns the studies of the interaction between the

deformation of elastic materials and the thermal

field. Thermoelasticity gives the tools to investi-

gate the stresses produced by the temperature

field and to calculate the distribution of tempera-

ture due to the action of internal forces.

In the uncoupled theory, the function y vanishes
when r; y0; ŷ, and q̂ are zero. In the coupled theory,
this is not true: there is a variation of the tempera-

ture due to the mechanical deformation. This vari-

ation also produces a mechanical deformation.

Sometimes the inertial terms are not taken into

account. Then, the (2) is replaced by
sji;j þ r0bi ¼ 0 ð40Þ

In such a case, we obtain the so-called quasi-

static theory of thermoelasticity. Then the basic

equations of the quasi-static theory are (40) and

(3)–(5).

Let us consider now the equilibrium theory.

Then the fundamental system of field equations

consist of

– The equations of equilibrium
sji;j þ r0bi ¼ 0 ð41Þ

– The energy equation
qi;i ¼ r0r ð42Þ

– The constitutive equations
sij ¼ Cijklekl �Mijy

r0S ¼ Mijeij þ ay

qi ¼ �kijy;j

ð43Þ

– The geometrical equations
eij ¼ 1

2
ðui;j þ uj;iÞ ð44Þ
To these equations, we must adjoin boundary

conditions which can be of Dirichlet type or of

Neumann type, or we can have mixed boundary

conditions.

In the case of the mixed problem, the bound-

ary conditions are

uiðxÞ ¼ ûiðxÞ; on S1 ð45Þ

siðxÞ ¼ sjiðxÞnj ¼ ŝiðxÞ; on S2 ð46Þ

yðxÞ ¼ ŷðxÞ; on S3 ð47Þ

qðxÞ ¼ qiðxÞni ¼ q̂ðxÞ; on S4 ð48Þ

where Ss ðs ¼ 1; . . . ; 4Þ are subsets of the bound-
ary @B such that S1 [ S2 ¼ S3 [ S4 ¼ @B,

S1 \ S2 ¼ S3 \ S4 ¼60, and ûi, ŝi, ŷ, and q̂ are

prescribed fields.

We suppose that the prescribed data are given

so that [4]:

i) bi and r are continuous on B.
ii) ûi are continuous on S1.

iii) ŝi are smooth functions on S2.

iv) ŷ is continuous on S3.

v) q̂ is smooth on S4.

Let us remark that the above system is

uncoupled in the sense that the temperature can

be found by solving the heat flow problem

given by
ðkijy;jÞ;i ¼ � rr; in B

yðxÞ ¼ ŷðxÞ; on S3

qiðxÞni ¼ q̂ðxÞ; on S4

ð49Þ

From the above problem, we can remark that

the mechanical deformation does not influence

the variation of the temperature. In the following,

we can suppose that the temperature field is

already determined.

By an admissible state, in the linear equilib-

rium theory of thermoelasticity, we mean an

ordered array ½ui; eij; sij� with the properties [4]:

i) ui are of class C
2 on B.

ii) ui and ui;j are continuous on B.

iii) eij are the components of a symmetric tensor,

continuous on B.
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iv) sij are the components of a symmetric ten-

sor, of class C1 on B.
v) sij and sji;j are continuous on B.

Thus, the equilibrium problem consists in

finding an admissible state which satisfies the

problem defined by the (41), (43), and (44) and

the boundary conditions (45) and (46), where y is
a known function. We also have that the set of all

admissible states may be organized as a linear

space endowed with natural addition and scalar

multiplication.

Regarding the equilibrium problem, we have

the following uniqueness theorem [4]:

Theorem 2. Let the elasticity tensor Cijkl be

positive definite. Then any two solutions of the
mixed equilibrium problem are equal modulo

a rigid displacement. Moreover, if S1 is

nonempty, the mixed problem has at most one
solution.

In the equilibrium problem, let us consider

that S2 ¼ @B. So, we know the surface traction

on entire boundary of the body. For this problem,

we intend to give a formulation of the problem

only in terms of the stress tensor.

We assume that the tensor Cijkl is invertible.

From the constitutive equations (43)1, we have

that there exists a tensor Aijkl so that
eij ¼ Aijklskl þ aijy ð50Þ

where
aij ¼ AijklMkl ð51Þ

We assume that Aijkl and aij are of class C2 on

B and that the domain B is simply connected. In

view of the compatibility conditions (see [6]), it

follows that the stress tensor sij, of class C2 on B,

corresponds to a solution of the equilibrium prob-

lem if and only if it is solution of the problem

defined by the equations
sji;j þ r0bi ¼ 0

epimeqjnðAijklskl þ aijyÞ;mn ¼ 0; in B
ð52Þ
and the boundary condition
sijnj ¼ ŝi; on @B ð53Þ

where eijk is the alternating symbol.
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Overview

Thermoelastic shock waves are generated and

then propagate only in nonlinear media. Discon-
tinuities in such main fields as stresses, strains,

velocities, and temperature take place along the

shock wave front, while displacements remain to

be continuous. But distinct to the surfaces of

strong discontinuities propagating in linear

media, normal velocities of the shock waves

depend on the discontinuities in the stress and

temperature fields. Moreover, in the general

case of the shock wave propagation, for the

values experiencing discontinuities, it is impos-

sible to obtain transport equations which could

describe the evolution of these discontinuities.

The reason is that the velocity and the strong

discontinuity surface of the shock wave are

a priori unknown, and they should be determined

during solving the problem.

However, for acceleration waves propagating

in nonlinear media, the evolution equations exist

but, contrary to linear media, in the form of the

nonlinear partial differential equations.

A solution of these equations subjected to certain

conditions for the discontinuities at the initial

instant of time allows one to describe such

a phenomenon as the transition of a weak wave

into a shock wave, which is called as the wave

breakdown.

The transport equation could be obtained also

for weak shock waves assuming that the magni-

tudes of the relevant discontinuities across the

shock wave front are small. It has been shown

[1] that ignoring the products of jumps across the

shock wave front, the propagation condition

of “linear weak shock waves” could be obtained

(▶Propagation of ShockWaves in Thermoelastic

Solids in View of Singular Surfaces).

For solving the boundary-value problems

of the linear isotropic or anisotropic

thermoelasticity with due regard for a finite

speed of heat propagation, the ray method

(▶Ray Expansion Theory, ▶Ray Method for

Solving Boundary-Value Problems of Aniso-

tropic Thermoelasticity with Thermal Relaxa-

tion) was developed by Rossikhin [2, 3],

Gonsovskii et al. [4], and Rossikhin and
Shitikova [5, 6]. It has been shown that the

jumps of strong and weak discontinuities propa-

gating with constant velocities arise in a

thermoelastic medium as a result of instantaneous

variations in temperature or heat flow on the

boundary surface or as a result of combined sub-

jection (thermal and mechanical).

The ray method for nonlinear elastic and

nonlinear viscoelastic media without regard for

thermal effects has been devised, respectively, by

Rossikhin and Shitikova [6, 7] and Burenin and

Rossikhin [8]. One-dimensional boundary-value

problems on shock subjection upon the medium

boundary surface have been solved, resulting in

the propagation of one or three shock waves (one

longitudinal wave and two quasi-transverse

waves) in the medium depending on whether the

nonlinear medium under consideration was

unstressed or prestressed at the moment of

shock subjection. Independently of Rossikhin

and his collaborators, Prasad [9] has suggested

a similar ray method for solving certain nonlinear

partial differential equations, considering the

problem of a piston moving with a constant initial

speed through a polytropic gas as an example.

The ray method developed for nonlinear elas-

tic media has been generalized in [10] to unidi-

mensional, plane, and spatial boundary-value

problems on instantaneous thermal and mechan-

ical subjection upon the boundary plane of a

nonlinear thermoelastic half-space, wherein heat

propagates with a finite speed. By the action of

initial and boundary conditions, two types of

finite amplitude shock wave propagate in such

media: quasi-thermal wave (fast wave) and

quasi-longitudinal wave (slow wave). Behind

the wave fronts, the solution for the desired func-

tions is constructed along the rays in terms of

power series (ray series), the coefficients of

which are the discontinuities in various orders

partial derivatives of the functions to be found

with respect to time, but a variable value is the

time needed for a disturbance to propagate along

the ray from the point under consideration up to

the wave front; in so doing the power of the

variable value corresponds to the order of partial

time derivative of the desired function (▶Ray

Expansion Theory).
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Governing Equations

The nonlinear isotropic thermoelastic half-space

X3 > 0 is considered, wherein heat propagates

with a finite speed. The motion of such

a medium in Lagrangian variables in the rectan-

gular Cartesian coordinate system is described by

the following set of equations:
Lij; j ¼ r0 _vi; vi ¼ _ui ð1Þ

Lij ¼ r0
@U

@ui; j
; U ¼ UðK1;K2;K3; SÞ ð2Þ

K1 ¼ eii; K2 ¼ eijeji; K3 ¼ eijejkeki;

2eij ¼ ui; j þ uj;i þ uk;iuk; j
ð3Þ

�r0T
@S

@eij
_eij þ @S

@T
_T


 �
¼ Qk;k; T ¼ @U

@S

ð4Þ

t0 _Qi þQi ¼ AijT; j; Aij ¼ Aijðemn; TÞ ð5Þ

where r0 is the density in the initial state; ui and
vi are the components of the displacement and

velocity vectors, respectively; ui ¼ xi � Xi; xi
and Xi are the Eulerian and Lagrangian coordi-

nates of medium particles, respectively; Lij 6¼ Lji
are the Lagrangian stress tensor components; eij
are the Green finite strain tensor components;

K1;K2, and K3 are the strain tensor invariants; U
is the internal energy; S is the specific entropy; T

is the body’s absolute temperature; Qi are the

components of the Lagrangian vector of heat

flow per unit square of the surface; t0 is the

thermal relaxation time; Aij are the thermal con-

ductivity coefficients; an overdot denotes a time

derivative; a Latin index after a point indicates

a derivative with respect to the corresponding

spatial coordinate; and the Latin indices take on

the values 1, 2, and 3.

The set of (1–5) involving the equations of

motion, the generalized Hooke’s law, relations

between displacements and strains, the energy con-

servation law, and the generalized Fourier law is

the closed system of twenty six equations in twenty

six unknown values: ui; vi; eij; Lij; T; S;Qi.
The thermodynamic inequality
� xi;kQkT;i � 0 ð6Þ

what results from the second law of thermody-

namics, should be added to (1–5).

In further consideration we assume that the

values ui; j, y ¼ T � T0, where T0 is the medium

temperature in the initial state, and S are small

values. Let us represent the internal energy

UðK1;K2;K3; SÞ, Helmholtz free energy

FðK1;K2;K3; TÞ ¼ U � TS, as well as the tensor

components Aij by its Taylor series expansions in

the vicinity of the natural state:
r0U ¼ 1

2
lSK2

1 þ mSK2 � kSK1S� kS1S
2

þ lS1K1 þ lS2K1K2 þ lS3K3 þ . . .
ð7Þ

r0F ¼ 1

2
lTK2

1 þ mTK2 � kTK1y� kT1y
2

þ lT1K1 þ lT2K1K2 þ lT3K3 þ . . .
ð8Þ

Aij ¼ k0dij þ 1

2
kijpq up;q þ uq;p

� �þ kijyþ . . .

ð9Þ

where the upper indices S and T denote that the

corresponding coefficients are referred to the adia-

batic and isothermic state, respectively; l and m are

Lamé’s constants; l1; l2, and l3 areMurnaghan coef-

ficients; k and k1 are certain constants defining the
thermoelastic process; k0 is the thermal conductiv-

ity; dij is Kronecker’s symbol; kij ¼ k1dij;
kijpq ¼ k2dijdpq þ k3ðdipdjq þ diqdjpÞ; and k1; k2,

and k3 are some constants of the medium.

Look up the relation between the coefficients

with the S and T indices. For this purpose, we use

the formulas

sij ¼ r0
@U

@eij


 �
S

; sij ¼ r0
@F

@eij


 �
T

ð10Þ

where sij are the Kirchhoff stress symmetric

tensor components associated with Lij by the

relation Lij ¼ xi;ksjk, as well as the expression

S ¼ �@F=@T that gives us with (8) taken into

account:
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r0S ¼ kTK1 þ 2kT1y ð11Þ

Substituting (7), (8), and (11) into (10) yields

two expressions for sij:

sij ¼ lTK1dijþ2mTeij�kTðr0S�kTK1Þ
�ð2kT1 Þ

�1
dijþ3lT1K

2
1dij

þ lT2 ð2K1eijþK2dijÞ
þ lT3 ðekjeikþ ejkeikþ ekjekiÞþ . . .

sij ¼ lSK1dijþ2mSeij�kSSdijþ3lS1K
2
1dij

þ lS2ð2K1eijþK2dijÞ
þ lS3ðekjeikþ ejkeikþ ekjekiÞþ . . .

ð12Þ

the comparison of which results in the required

relationships between the coefficients:

lS ¼ lT þ ðkTÞ2ð2kT1 Þ
�1
;

mS ¼ mTlSi ¼ lTi ði ¼ 1; 2; 3Þ;
kS ¼ r0k

Tð2kT1 Þ
�1
; kS1 ¼ r20ð4kT1 Þ

�1

ð13Þ

Using the formulas (13) and considering (11),

we obtain the following formula to define the

internal energy (7):
r0U ¼ 1

2
lK2

1 þ mK2 � kK1y� k1y
2 þ l1K

3
1

þ l2K1K2 þ l3K3 þ . . .
ð14Þ

where it is designated

l ¼ lT � ðkTÞ2ðkT1 Þ
�1
; m ¼ mT ; k ¼ 2kT ;

k1 ¼ kT1 ; li ¼ lTi ; ði ¼ 1; 2; 3Þ
Shock Waves

Let the shock wave SðtÞ be generated in

a nonlinear thermoelastic isotropic half-space,

the dynamic behavior of which is described by

the set of (1–5), as a result of external subjection

on its boundary X3 ¼ 0 and then propagate with

the normal velocity G. Hereafter the shock wave

SðtÞ will be interpreted as a limiting layer of the

width h at h ! 0, within which the desired values

Lij, ui; j, vi, Qi, and T change monotonically and
continuously from the magnitudes Lþij , u
þ
i; j, v

þ
i ,

Qþ
i , and Tþ on the layer’s forward boundary to

the magnitudes L�ij , u
�
i; j, v

�
i , Q

�
i , and T� on the

layer’s reverse boundary.

To derive the relations connecting the values

to be found on the shock wave, consider that on

the wave surface

@

@Xi
¼ d

dn
ni þ gab

@

@ya
Xi;b;

@

@t
¼ �G

d

dn
þ d
dt
ð15Þ

where ni are the components of the normal vector

to the wave surface, ya are the curvilinear coordi-
nates on the surface SðtÞ, gab is the contravariant
metric tensor of the wave surface, d=dn is the

derivative with respect to the normal to SðtÞ,
Xiðya; tÞ are the Cartesian coordinates of the sur-

face, Xi;b ¼ @Xi=@y
b, d=dt is the time derivative

along the normal to the wave surface [11], and

Greek indices take on the values 1 and 2.

Note that at h ! 0, the second terms in (15) can

be disregarded in comparison with the first ones.

Then substituting formulas (11) and (14) into (1–6)

and replacing the partial derivatives with respect to

coordinates and timeby their expressions (15), upon

integrating of the resulted relations with respect to

the normal to the surface from � h=2 toh=2 and the

transition to the limit at h ! 0, we obtain
9Lij0nj þ r0G9vi0 ¼ 0 ð16Þ

9Lij0¼ loG�1þk9T0
� �

G�19vi0nj�dij�uþi; j
� 	

þkG�1 Tf g9vi0njþlG�1 1

2
G�19vk09vk0dij



�9vk0nluþk;ldij� 9vi0njuþk;k

	
þm9Aij0 uþi;l�G�19vi0nl

� 	
�mG�1Aþ

lj 9vi0nlþm9Aij0

�mG�1 uþk; j9vk0niþuþk;i9vk0nj
�

�G�19vk09vk0ninj
��3oG�1l1 2uþl;l�oG�1

� 	
dij

þ1

4
l29Akm0 2Aþ

kmþ 9Akm0
� �

dij

� l2G
�1 Aþ

ij þ 9Aij0
� 	

oþ l2u
þ
k;k9Aij0

þ3

4
l3 9Aik0Aþ

jk þ 9Aik09Ajk0þ 9Ajk0Aþ
ik

� 	
ð17Þ
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� k1G9T0 2Tþ þ 9T0
� �þ 1

2
k<T>

� 9vk0 nk � G�1vþk � 1

2
G�19vk0


 �
� 9Qk0nk ¼ 0

ð18Þ

t0G9Qi0 ¼ 9T0 k0 þ k1 Tf g þ 1

2
k19T0



�k2G

�1<vk > nkÞni
� k3G

�1 <vi > nk þ<vk > nið Þnk9T0

ð19Þ

where 9 f 0¼ f�� fþ; <f>¼ fþþ 1
2
9 f 0;

fTg¼ Tþ�T0; o¼ 9vi0ni; Aþ
ij ¼ uþi; jþuþj;i
9Aij0 ¼ �G�1 9vi0nj þ 9vj0ni
� � ¼ 9ui; j0þ 9uj; i0

¼ u�i; j þ u�j;i � uþi; j þ uþj;i
� 	

¼ A�
ij � Aþ

ij

To find the equations defining the shock wave

velocities, we substitute the values 9Lij0 from (17)

into (16) and multiply sequentially the resulted

equations by ni and Xi;a. To these three equations,

one more equation is added which results after

eliminating the values 9Qi0 from (18) and (19).

Thus, we obtain

r0G
2 � lþ 2m� k9T0� kfTg þ aþ

� �
 �
oG

¼ 1

2
l w2 þ 1

2
ðmþ 3lÞo2 þ bþij niXj;dw

dG

þ k9T0G2 1þ uþi; jninj
� 	

ð20Þ
r0G

2� m�k9T0�kfTgþ loG�1� luk;k
� �
 �

wg

¼G k9T0� loG�1
� �

uþi; jnjXi;gþBouþj;injXi;g

ð21Þ
1
k1t�1

0 G�1 þ k1G

 �

9T0
2

2

þ k4G
�2t�1

0 vþn þ 1

2
o


 ��
�kTt�1

0 G�1 þ 2k1GTþ � 1

4
ko 1� vþn G

�1
� �

þ 1

8
kG�1 o2 þ w2

� ��
9T0

� 1

2
kTþ o 1� vþn G

�1
� �


� 1

2
G�1 o2 þ w2

� �g ¼ 0

ð22Þ
where aþ ¼ puþi;iþ2p1u
þ
i; jninj; bþij ¼ðl2þ 3

2
l3ÞAþ

ij

þðlþmÞuþj;iþmuþi; j; p¼ lþ6l1þ2l2; p1 ¼ lþ3m

þ2l2þ3l3; B¼ mþ l2þ 3
2
l3; m¼�3 2l1þ l2þð

1
2
l3Þ; l¼�ðlþ2mþ l2þ 3

2
l3Þ; vþn ¼ vþi ni;

wa ¼ 9vi0Xi;a; k4 ¼ k2þ2k3; kT ¼ k0þ k1fTg;
w2 ¼wawa

If we restrict ourselves only by linear terms in

(20–22) and put the coupling coefficient k equal

to zero, then we are led to the known

velocities for three linear waves: thermal

wave cT ¼ k
1=2
0 ð2k1T0t0Þ�1=2

, longitudinal

wave cl ¼ðlþ2mÞ1=2r�1=2
0 , and transverse wave

ct ¼ m1=2r�1=2
0 .

In the subsequent discussion, we assume that

external actions give rise exclusively to the two

types of the shock waves: quasi-thermal wave S1

and quasi-longitudinal waveS2 (in the linear case,

at k ¼ 0 these waves go over into the thermal and

longitudinal waves, respectively), in so doing the

quasi-transverse wave is weak ðwg ¼ 0Þ and its

contribution to the intensity of the shock waves

can be disregarded.

Moreover, for definiteness sake, we assume

that the quasi-thermal wave is the faster of the

two waves and propagates in the constrained

medium, i.e., ahead of its front Tþ ¼ T0,

uþi; j ¼ vþi ¼ 0. Then in the zone I between the

wave surfaces S1 and S2 (Fig. 1), the half-space

material will be in the stressed-strained state

which is defined by the intensity of the quasi-

thermal wave oT ¼ ojS1
, i.e., all the values to

be found in the zone I up to the wave surface S2

are expressed in terms of oT .

Once the desired functions are calculated

within the accuracy of the magnitudes of the

second order of infinitesimal when solving

boundary-value problems, then in the zone II

immediately ahead of the quasi-longitudinal

wave front, the functions Tþ, uþi; j, and vþi may

be represented as the linear expansions in terms

of oT , since these functions have been multiplied

by the magnitudes of the first order of infinitesi-

mal in (20) and (22) (from the foregoing no

consideration has been given to (21)) that is

Tþ ¼ T0 þ T10oT ; uþi; j ¼ �oTG
�1
1 ninj;

vþi ¼ oTni
ð23Þ
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Boundary-Value Problems Resulting in
Thermoelastic Shock Wave Propagation,
Fig. 1 Scheme of the wave front location (this figure is

taken from [10] with the permission from Taylor &

Francis)
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where T10 is the constant coefficient to be deter-

mined, the lower index T denotes that the given

value corresponds to the quasi-thermal wave, and

G1 is the velocity of the quasi-thermal wave in

the linear thermoelastic medium ðk 6¼ 0Þ [12].

The second relation in (23) is obtained from the

Hadamard condition of compatibility:

9ui; j0 ¼ �G�19vi0nj ð24Þ

with due regard for 9vi0 ¼ oni, since the values

wg ¼ 0 on the quasi-thermal S1 and quasi-

longitudinal S2 waves.

We seek the solution to (20) and (22) on the

quasi-thermal wave in the form
GT ¼ G1 þ a1oT ; 9T0T ¼ T10oT þ T11o2
T

ð25Þ

but on the quasi-longitudinal wave, in view of

expansion (23), as
GP ¼ G2 þ a0oT þ a2oP;

9T0P ¼ T20oP þ T21oToP þ T22o2
P

ð26Þ
where G2 is the velocity of the quasi-longitudinal

wave in the linear thermoelastic medium [12], a0,
a1, a2, T10, T20, T11, T22, and T21 are constants to
be found, and the lower index P indicates that

the given values are taken on the quasi-

longitudinal wave.

Substituting sequentially the assumed solu-

tions (25) and (26) into (20) and (22) and equat-

ing terms at equal powers of oT and oP, we

determine all constants involved:
G1;2 ¼ r1þ r2� rð Þ1=2; r¼ ðr1� r2Þ2þ r23

� 	1=2
r1 ¼ k0ð4k1t0T0Þ�1þk2ð8r0k1Þ�1;

r2 ¼ðlþ2mÞð2r0Þ�1; r23 ¼ k2ðlþ2mÞð4r20k1Þ
�1

a0 ¼
n
a�b�½2ðr1� r2Þ

� ðaþbÞ� c�ð2rÞ�1
o
T10ð2G2Þ�1;

a¼ðk1T0� k0Þð4k1t0T2
0Þ

�1

b¼ kð2r0Þ�1; c¼ k3ð4k1r20Þ
�1
;

a1;2 ¼ðG1;2C1;2R1;2þD1;2R13;23Þa�1
1;2

C1;2 ¼ 1

2
mþ3

2
l�kT10;20G1;2;

R1;2 ¼ 2k1T0G2
1;2� k0t�1

0 ; D1;2 ¼kG2
1;2;

a1;2 ¼ 2ðG1;2B1;2R1;2þR12;22D1;2Þr0G1;2

R11;21 ¼R1;2þ4k1T0G2
1;2;

R12;22 ¼R11;21T10;20ð2r0G1;2Þ�1�kT0ð2r0Þ�1

R13;23 ¼�1

2

�
ðk1t�1

0 þ2k1G2
1;2ÞG1;2T

2
10;20

þðk4t�1
0 �1

2
kG2

1;2ÞT10;20þ
1

2
kT0G1;2

�
B1 ¼ðr0G2

1þlþ2mÞð2r0G1Þ�1;

B2 ¼ðr0G2
2�l�2mÞð2r0G2Þ�1þG2�kr�1

0 T20

T10;20 ¼ðr0G2
1;2�l�2mÞðkG1;2Þ�1;

T11;22 ¼ 2ðB1;2R13;23�C1;2R12;22Þr0G1;2a
�1
1;2

T21 ¼ a0 r0þðlþ2mÞG�2
2

� �

þG1G

�1
2 r0�ðlþ2mÞG�2

1

� ��
k�1

ð27Þ

When solving the boundary-value problems of

nonlinear thermodynamics connected with the

shock wave propagation, checking for the fulfill-

ment of the thermodynamic inequality (6), which

on the shock wave front takes the form [13]
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r0G9S0� 9Qi=T0ni � 0 ð28Þ

is the mandatory condition for the validity of the

results obtained.

The inequality (28) may be rewritten, in view

of (18), as
1

2
ko

1

2
oG�1 � uþi; jninj � 1


 �
þ 2k1G9T0

þ k0 þ k1 fTg þ 1

2
9T0


 ���
�k4G

�1 vþn þ 1

2
o


 ��
Tþðt0GÞ�1 þ Qþ

n

�
9T0

� Tþ þ 9T0
� ��1 ðTþÞ�1 � 0

ð29Þ
where Qþ

n ¼ Qþ
i ni

Assume that the compression wave propa-

gates in the medium. In this case, the values

o and vþn are negative, but the values uþi; j, Q
þ
n ,

Tþ, fTg, 9T0, and G are positive. Considering

that such material’s constants as k, k1, t0, k0,
k1, and k4 are positive as well, we are led

to the conclusion that on the compression

wave, the inequality (29) is fulfilled

automatically.
Problem Formulation and Method
of Solution

Let beginning from the moment of time t ¼ 0 the

values v3ð0; tÞ and yð0; tÞ be given at the

thermoelastic half-space boundary X3 ¼ 0,

which can be expanded into Maclaurin series

with respect to time t:
v3ð0; tÞ ¼
X1
k¼0

1

k!
gkt

k;

y ¼ T � T0 ¼
X1
k¼0

1

k!
mkt

k

ð30Þ

where gk ¼ gkðX1;X2Þ and mk ¼ mkðX1;X2Þ are
known functions of the X1 and X2 coordinates.

Hereafter we anticipate that the duration of the

dynamic subjection on the half-space boundary is
reasonably small, so we can restrict ourselves by

two first terms in the expansions (30).

Assume that as a result of the objection of the

boundary conditions (30), the two shock waves,

quasi-thermal and quasi-longitudinal waves

described in detail above, propagate in the half-

space. The problem is reduced to the construction

of the solution behind the shock wave fronts (the

zones I and II in Fig. 1) up to the boundary plane,
such that the solution should fulfill both the

boundary conditions (30) and relations (20) and

(22) on the shock wave fronts.

As the investigative technique, we use the ray

method [6, 7] (▶Ray Expansion Theory) to

the effect that the solution behind the wave front

S1 in the zone I is constructed in terms of the

ray series:

v
ðIÞ
3 ¼

X1
k¼0

1

k!
9v3;ðkÞ0T jt¼ZT

t� ZTð Þk H t� ZTð Þ

yðIÞ ¼
X1
k¼0

1

k!
9y;ðkÞ0T jt¼ZT

t� ZTð Þk H t� ZTð Þ

ð31Þ

but the solution in the zone II, i.e., behind the

wave front S2 up to the boundary plane, is

written as
v
ðIIÞ
3 ¼ v

ðIÞ
3 þ

X1
k¼0

1

k!
9v3;ðkÞ0Pjt¼ZP

t�ZPð Þk H t�ZPð Þ

yðIIÞ ¼ yðIÞ þ
X1
k¼0

1

k!
9y;ðkÞ0Pjt¼ZP

t�ZPð Þk H t�ZPð Þ

ð32Þ

where v3;ðkÞ ¼ @kv3=@t
k, y;ðkÞ ¼ @ky=@tk,

ZT;P ¼ Ð s
0
G�1

T;P ds, s is the arc length along the

ray, andH t� ZT;P
� �

is the unit Heaviside function.

In formulas (31) and (32), a distinction is not

made between the rays issued out of one point of

the boundary plane and directed perpendicular to

the corresponding wave surfaces S1 and S2 at

every instant of time, since, as it has shown in

[10], the divergence of these rays may be

http://dx.doi.org/10.1007/978-94-007-2739-7_940
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neglected as the magnitudes of the third order of

infinitesimal. However, the curvature of rays,

which is characterized by the value

dni=dt ¼ �gabXi;bG;a, has, as exemplified by for-

mulas (25) and (26), the first order of smallness

and it should be taken into consideration.
Defining the Divergence of the Rays

Let us show following [10] that the divergence

of the raysDSa has third order of infinitesimal and

it may be neglected. To do this, we use the rela-

tion [11]

dXi=dt ¼ Gni ð33Þ
and expand the values entering in it into a power

series of t restricting by the linear terms

ni ¼ n0i þ
dni
dt


 �0

t

GT ¼ G1 þ a1o0
T þ a1

doT

dt


 �0

t

GP ¼ G2 þ a0o0
T þ a2o0

P

þ a0
doT

dt


 �0

þa2
doP

dt


 �0
( )

t

ð34Þ

Substituting (34) into (33) and considering

that

dni
dt


 �0

¼ �ðgabÞ0ðG;aÞ0ðXi;bÞ0

after integrating (33), we obtain for the coordinates

of two rays the following expressions accurate up to

the magnitudes of third-order infinitesimal:

ðXiÞT ¼ G1þa1o0
T

� �
tn0i þG1ðdni=dtÞ0 1

2
t2þðXiÞ0

ðXiÞP ¼ G2þa0o0
T þa2o0

P

� �
tn0i

þG2ðdni=dtÞ0 1
2
t2þðXiÞ0

ð35Þ

where ðXiÞ0 are the coordinates of the pointM0 on

the boundary plane from which the rays (35)

emerge (Fig. 1).
The divergence DSa is calculated as
DSa ¼ DXiXi;a ¼ DXi ðXi;aÞ0 þ ðdXi;a=dtÞ0t
n o

ð36Þ

where DXi ¼ ðXiÞT � ðXiÞP
Substituting (35) into (36) and considering

that
ðdXi;a=dtÞ0 � ðG;aÞ0n0i
yield
DSa � ðG1 � G2Þt2ðG;aÞ0 ð37Þ

Reference to (37) shows that the value DSa
actually has the third order of infinitesimal.

Thus, considering the above reasoning on the

half-space boundary, i.e., at s ¼ 0, there are two

series in (32) take the form
v3ð0; tÞ ¼
X1
k¼0

1

k!
9v3;ðkÞ0T þ 9v3;ðkÞ0P
� 	

jt¼0t
k

yð0; tÞ ¼
X1
k¼0

1

k!
9y;ðkÞ0T þ 9y;ðkÞ0P
� 	

jt¼0t
k

ð38Þ

A comparison of the two terms of the series

(30) and (38) yields
9v30T þ 9v30P
� �jt¼0 ¼ g0;

9y0T þ 9y0P
� �jt¼0 ¼ m0

ð39Þ

9a30T þ 9a30P
� �jt¼0 ¼ g1;

9 _y0T þ 9 _y0P
� 	

jt¼0 ¼ m1

ð40Þ

where ai ¼ _vi is the acceleration of medium par-

ticles, 9y0 ¼ 9T0, and 9 _y0 ¼ 9 _T0.
The system of (39) after substituting the

values 9T0T and 9T0P from (25) and (26) allows

one to find the initial intensities of the quasi-

thermal and quasi-longitudinal waves o0
T ¼

oT jt¼0 and o0
P ¼ oPjt¼0 in terms of the known

functions g0ðX1;X2Þ and m0ðX1;X2Þ.
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Let us show now that the set of (40) permits to

find the initial values doT=dtð Þ0 ¼ doT=dtjt¼0

and doP=dtð Þ0 ¼ doP=dtjt¼0 in terms of the

given functions g1ðX1;X2Þ and m1ðX1;X2Þ and

in terms of the initial intensities o0
T and o0

P

found on the preceding step. For this purpose,

above all it is to be shown that the discontinu-

ities 9a30T;P and 9 _y0T;P are expressed in terms of

the values oT;P and do=dtð ÞT;P . To do this, we

write (1), (4), and (5) in discontinuities and

apply the condition of compatibility [6]

(▶Ray Expansion Theory) to the resulted

relations
9f ;iðkÞ0 ¼� G�19f ;ðkþ1Þ0ni

þ G�1
d9f ;ðkÞ0
dt

ni þ gab9f ;ðkÞ0;aXi;b

ð41Þ

where f is a certain function, a Greek index after

a point denotes a covariant derivative with

respect to the corresponding curvilinear coordi-

nate on the wave surface, and a Latin index in

brackets after a point defines a time derivative of

the corresponding order.

As this takes place, formulas (16–19) are taken

into account, as well as the relation
9ai0 ¼ Oni þWgXi;g ð42Þ

which is the decomposition of the acceleration

vector discontinuity in terms of three orthogonal

vectors: normal vector and two tangential vectors

to the wave surface.

As a result, on each shock wave, we obtain the

system of three equations of three unknown

values: O, Wd ¼ Wgggd, and 9 _T0, the solution of

which has the form
O ¼ � Fi þ Fþ
i

� �
Gni þ F1

M þ F2

ð43Þ

Wd ¼ DdD�1 ð44Þ

9 _T0 ¼ �x�1 ð45Þ
where
FiniG ¼ B9vk09vjk0nj � ðlG� poÞ9vkk0
þG9Li0ni � r0Go

dG
dt

þ kG9 _T0 1�oG�1
� �

� d9vk0
dt

�
lþ 2mþ ð2lþmÞoG�1



þr0G

2 � k9T0
�
nk þ lG�19vk0g

Fþ
i niG ¼ ðlþ 2l2Þvþi; jninj þ ðp� l2Þvþk;k

� 	
o

� d9vk0
dt

nk þG9vkk0

 �

ðlþ 2l2Þuþi; jninj

� p
d9vk0
dt

nku
þ
k;k � 6l1G9vkk0uþk;k

þ 9vk9 lvþk; j þ l2 _A
þ
k; j

� 	
nj

� uþk; j ðlþ l2Þ d9vk0
dt

nj þG9vkj0

 ��

þl2
d9vj0
dt

nk þG9vjk0

 ��

þ 9vk0 mvþk; j þ
3

4
l3 _A

þ
j;k


 �
nj

� mþ 3

4
l3


 �
d9vk0
dt

Aþ
k;i � 9vk0 _A

þ
k;i


 �
ni

�
þuþk; jnj



d9vk0
dt

þ d9vi0
dt

nink

�G9vik0ni
�
�o _A

þ
kj njnk

�
� ni

d9vj0
dt

nk þG9vjk0

 �

muþi;k þ
3

4
l3A

þ
i;k


 �
nj

�o mvþi;k þ
3

4
l3 _A

þ
i;k


 �
nknj

� uþj;knj mþ 3

4
l3


 �
d9vi0
dt

nink

�
þ3

4
l3
d9vk0
dt

þG mþ 3

4
l3


 �
9vik0ni

�
þ kG 9 _T0uþi; j þ 9T0vþi; j

� 	
ninj

� k o _T
þ �fTg d9vi0

dt
ni


 �
M ¼ lþ 2mþ ð3lþmÞoG�1

� r0G
2 � 2kfTg þ aþ

Fa ¼ f
ðaÞ
1 Y2

2 � f
ðaÞ
2 Y2

1

� 	
gg1

n
þ f

ðaÞ
2 Y1

1 � f
ðaÞ
1 Y1

2

� 	
gg2gMgD�1

Mg ¼ mþ 3

4
l3


 �
uþj;k � luþk; j

� �
njXk;g

http://dx.doi.org/10.1007/978-94-007-2739-7_940
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f
ð1Þ
d ¼ l2þ3

4
l3


 �
o�mG

� �
9vk0;dnk

þG9Li0Xi;dþ mþ3

4
l3


 �
9vk09vk0;d

� mþr0G
2þ loG�1�k9T0

� �d9vi0
dt

Xi;d

þo lvþi; jþ l2 _A
þ
ij

� 	
njþ6l1v

þ
k;kni

n o
Xi;d

� d9vk0
dt

nkþG9vkk0

 �

luþi; jþ l2A
þ
ij

� 	
nj

n
þ6l1u

þ
k;knigXi;d�ðlþ l2Þd9vi0dt

uþk;kXi;d

� l2G9vj0;dnjuþk;k� mþ3

4
l3


 �
� d9vk0

dt
Aþ
ik� 9vk0 _A

þ
ikþ

d9vi0
dt

uþk; jnknj


 �
Xi;d

�
þGuþk; jnj 9vk0;dþgab9vi0;aXk;bXi;d

� �o
� d9vj0

dt
nkþG9vjk0


 �
muþi;kþ

3

4
l3A

þ
ik


 �
nj

�
�onk mvþi;kþ

3

4
l3 _A

þ
ik


 �
þ mþ3

4
l3


 �
uþj;knjnk

d9vi0
dt

�
Xi;d

�Guþj;knj mþ3

4
l3


 �
gab9vi0;aXk;bXi;d

�
þ3

4
l39vk0;d

�
þkGXi;dnj 9 _T0uþi; jþ 9T0vþi; j

� 	
þkfTgd9vi0

dt
Xi;d

f
ð2Þ
d ¼ ðlþmÞuþi;knkþBAþ

iknkþ6l1u
þ
k;kni

n o
Xi;d

D¼ Y1
1Y

2
2 �Y2

1Y
1
2 ;

D1 ¼f1Y
2
2 � f2Y

2
1 ; D2 ¼ f2Y

1
1 � f1Y

1
2

fd ¼ f
ð1Þ
d þOf ð2Þd

Ya
d ¼ � mþ loG�1�k9T0�r0G

2þðlþ l2Þuþk;k
n

þ 2mþ3

2
l3


 �
uþk; jnknj�kfTg

�
gad

�ggaXk;gXi;dA
þ
ki mþ3

4
l3


 �
x¼G�2 k� þ k3 Aþ

ik þ 9Aik0
� �

nk

 �

�2k1t0 Tþþ 9T0
� �
�¼G�2t�1
0 9T0 k0þ k1 fTgþ1

2
9T0


 ��
�k4G

�1 vkh i�
þG�1 k�G�1 d9T0

dt
þk3 Aþ

ik þ 9Aik0
� �

ni

�
� 9T0;agabXk;bþG�1 d9T0

dt
nk


 �
þ k09T0� k2oG�1
� �

nkT;
þ
k þk39Aik0niT;þk

�
� t0 G�1 d9Qi0

dt
njþgab9Qi0;aXj;b

�
� 2k1 _T

þþ1

2
kvþj; j


 �
9T0

�1

2
kG�1 Tþþ 9T0

� � d9vi0
dt

ni� 9ai0niþG9vii0

 �

�1

2
kTþG�1

�
d9vi0
dt

nk�½ai�nkþG9vik0

 �

� uþi;k�G�19vi0nk
� 	

� 9vi0vþi;knk
io

k� ¼ k0þ k1 fTgþ 9T0
� �

þ k2 uþi; jninj�oG�1
� 	

9Qj0¼�ðt0GÞ�19T0
��

k0þk1 fTgþ1

2
9T0


 �
�k2G

�1 vih ini
�
nj

�k3G
�1 vj
� �

nkþ vkh inj
� �

nk
�

9vij0¼ gab9vi0;aXj;b

9Li0¼ gab G9Lij0
� �

;aXj;b; _A
þ
ij ¼ vþi; jþ vþj;i

When employing formulas (42–45), it is neces-

sary to take into account that immediately ahead

of the quasi-thermal wave front the conditions

Tþ ¼ T0, u
þ
i; j ¼ vþi ¼ vþi; j ¼ _T

þ ¼ 0 are fulfilled,

but immediately ahead of the quasi-longitudinal

wave front relations (23) are valid. As to the

values _vi; j and _T
þ
, then they can be disregarded,

since these values are present only in terms of the

second order of infinitesimal in formulas (42–45).

From formulas (42–45), as well as from relations

(25) and (26), it is seen that the values 9ai0 and
9y0 ¼ 9 _T0 are expressed ultimately in terms of o
and do=dt.

Let us put t ¼ 0 in (42–45) and introduce an

upper zero index to denote the initial magnitudes
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of the values. As a result we obtain on the quasi-

thermal wave
9a30T jt¼0 ¼ a11o0
T þ a12ðdoT=dtÞ0

9 _y0T jt¼0 ¼ b11o0
T þ b12ðdoT=dtÞ0

ð46Þ

where
a11 ¼�kk0T10t�1
0 ðlþ2m�r0G

2
1Þ’1�k2T0t0


 ��1

a12 ¼� k 2k0T10þ t0kG1T0ð Þf
�’1G1 lþ2m�r0G

2
1

� �g
� G1 lþ2m�r0G

2
1

� �
’1�k2T0t0

� �
 ��1
;

’1 ¼ k0G
�2
1 �2k1T0t0

b11 ¼ðk0T10� t20kG1T0a11Þðt0G1’1Þ�1

b12 ¼ 2k0T10þ t0kT0G1ð1�a12Þf gðG1’1Þ�1

and on the quasi-longitudinal wave
9a30Pjt¼0 ¼ a21o0
P þ a22ðdoP=dtÞ0

9 _y0Pjt¼0 ¼ b21o0
P þ b22ðdoP=dtÞ0

ð47Þ

where
a21¼�kdG2T20t�1
0 ’2þ2k1t0Tþ

0

� �
�f lþ2m�r0G

2
2�wo0

TG
�1
1

� �
’2�k2t0Tþ

0 d
��1

a22¼�
kd�2G2T20 ’2þ2k1t0Tþ
0

� �
þkt0Tþ

0 d�þ �m�3lþkT10G1ð Þo0
TG

�1
1

�
�l�2m�r0G

2
2

�
’2

�
�fðlþ2m�r0G

2
2�wo0

TG
�1
1 Þ’2�k2t0Tþ

0 d
��1

b21¼ ’2þ2k1t0Tþ
0

� �
G2T20t�1

0



�kt0Tþ

0 a21dg’�1
2

b22¼
(
2G�1

2 T20

"
k0þk1T10o0

T

�1

2
k4o0

T G�1
1 þG�1

2

� ��þkt0Tþ
0 1�a22ð Þd

)
’�1
2

d¼1�o0
TG

�1
1 ;

Tþ
0 ¼T0þT10o0

T ;

w¼2sþpþkT10G1

’2¼G�2
2 k0þk1T10o0

T�k4o0
TG

�1
1

� ��2k1t0Tþ
0

Substituting expressions (25) and (26) into the set

of (39) and relations (46) and (47) into the set of

(40), and dropping nonlinear terms, we arrive at

two systems of linear equations in o0
T , o0

P,

ðdoT=dtÞ0, and ðdoP=dtÞ0:

o0
T þ o0

P ¼ g0; T10o0
T þ T20o0

P ¼ m0 ð48Þ

a12ðdoT=dtÞ0 þ a22ðdoP=dtÞ0 ¼g1 � a11o0
T

� a21o0
P

b12ðdoT=dtÞ0 þ b22ðdoP=dtÞ0 ¼m1 � b11o0
T

� b21o0
P

ð49Þ

Knowing the values o0
T;P and ðdoT;P=dtÞ0, the

approximate solution of the problem can

be constructed in the zones I and II in terms of

the two-term ray expansions (31) and (32),

respectively. Really, the discontinuities 9v30, 9y0,
9a30, 9 _y0, the velocities GT;P, and eikonals ZT;P
entering into the two-term ray expansions (31)

and (32) are expressed, as it has been shown

above, in terms of the functions oT;P and

doT;P=dt, but these functions, due to smallness

of the time, can be expanded in a power series of

t, in so doing restricting by the magnitudes of the

first order of infinitesimal, i.e.,
oT;P ¼ o0
T;P þ doT;P=dt

� �0
t;

doT;P=dt ¼ doT;P=dt
� �0 ð50Þ

Substituting the values o0
T;P and ðdoT;P=dtÞ0

found from (48) and (49) into formulas (50), and

then substituting the resulted relations into the dis-

continuities 9v30, 9y0, 9a30, 9 _y0, the velocities GT;P,

and eikonals ZT;P, we determine all enumerated

functions at an arbitrary instant of the time. Thus,

the approximate solution is written as in the zone I
v
ðIÞ
3 ¼ o0

T þ doT=dtð Þ0 ZT
n
þOT jt¼ZT

ðt� ZTÞgHðt� ZTÞ
yðIÞ ¼ T10 o0

T þ doT=dtð Þ0 ZT
� 	n

þT11ðo0
TÞ

2 þ 9 _y0T jt¼ZT
ðt� ZTÞgHðt� ZTÞ

ð51Þ
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the dimensionless (a) stress s� and (b) temperature y� (this
figure is taken from [10] with the permission from Taylor

& Francis)
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in the zone II
v
ðIIÞ
3 ¼v

ðIÞ
3 þ o0

P þ ðdoP=dtÞ0ZP
n

þOPjt¼ZP
ðt� ZPÞgHðt� ZPÞ

yðIIÞ ¼yðIÞ þ T20 o0
P þ ðdoP=dtÞ0ZP

� 	n
þT21o0

To
0
P þ T22ðo0

PÞ
2

þ9 _y0Pjt¼ZP
ðt� ZPÞgHðt� ZPÞ

ð52Þ

where

ZT ¼ l�1
1 ln 1þ l1s

G1 þ a1o0
T


 �
;

ZP ¼ l�1
2 ln 1þ l2s

G2 þ a0o0
T þ a2o0

P


 �
l1 ¼ a1ðdoT=dtÞ0ðG1 þ a1o0

TÞ
�1
;

l2 ¼ a2ðdoP=dtÞ0ðG2 þ a0o0
T þ a2o0

PÞ
�1

The arc lengths ST;P of two rays perpendicular
to the corresponding wave surfaces S1 and S2 are

defined by the formulas

ST � ðG1 þ a1o0
TÞt;

SP � ðG2 þ a0o0
T þ a2o0

PÞt
ð53Þ

in so doing the magnitude s changes from SP to

ST and from 0 to SP in the zones I and II,

respectively.
Formulas (53) have been derived in [7] with

the help of relations (35) considering that

ST;P ¼
ðt
o

ð _XiÞT;Pð _XiÞT;P
� 	1=2

dt

Note that carrying out similar reasoning

another boundary-value problem can be solved,

where instead of the boundary conditions (30),

the following conditions are assigned:

s33ð0; tÞ¼
X1
k¼0

1

k!
dkt

k; y¼ T�T0 ¼
X1
k¼0

1

k!
mkt

k

ð54Þ
and the temperature and stress can be obtained as

the functions of X1, X2, X3, and t using the ray

expansions (31) and (32).

As an example, we present in Fig. 2 the solu-

tion of the following boundary-value problem:

yð0; tÞ ¼ m0 ¼ const, and s33ð0; tÞ ¼ 0. In this

case, the rays issued out from one point do not

diverge and remain straight, and the wave front is

plane one. Reference to Figs. 2a, b shows the

dimensionless coordinate X� ¼ X3cl2k1T0k�1
0

dependence of the dimensionless stress

s� ¼ s33ðkTm0Þ�1
and the dimensionless tem-

perature y� ¼ ym�1
0 at t� ¼ tc2l 2k1T0k0 ¼ 0:15.

During calculations the elastic and thermoelastic

constants for iron were taken as in [10]. It can be

seen from Fig. 2 that the stress and temperature
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have discontinuities at two points what corre-

sponds to the location of the quasi-thermal and

quasi-longitudinal wave fronts.

Hence, in the case when heat propagates with

a finite speed, the solution has pure wave charac-

ter, and the nonlinear ray method proposed in

[10] allows one to solve the boundary-value prob-

lem under consideration. But in the case when

heat propagates with an infinite speed, the solu-

tion contains both wave and diffusive terms, so

the ray method is unsuitable.
Cross-References

▶ Propagation of Shock Waves in Thermoelastic

Solids in View of Singular Surfaces

▶Ray Expansion Theory
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Synonyms

Brakes
Definition

A mechanical friction brake is a technical device

that serves to slow down or stop a moving body,

or for keeping it at rest. When a brake is acting,

the kinetic energy is converted into heat energy

via friction.

The main components of the friction brakes

are friction elements. In braking, a rotating body

or system of bodies (e.g., disks) are in contact

with fixed friction elements.
Overview

Thermal and thermoelastic analyses of the fric-

tion brakes are performed with the aim of

http://dx.doi.org/10.1007/978-94-007-2739-7_1013
http://dx.doi.org/10.1007/978-94-007-2739-7_1013
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understanding a number of associated phenom-

ena, which are listed in Introduction. Typical are

different length and time measures, so that the

analyses show a different degree of complexity

and require different approaches and computa-

tional efforts.

The thermal bond among the friction elements

is described by contact conditions (1)–(3). The

analyses become clearly simple if the heat field

of friction elements is solved separately, assuming

that the distribution of the heat removal from the

contact surface follows (4). It is appropriate to use

an analytical approach (see (5)–(17)) for determin-

ing the peak surface (flash) temperature, or the

mean surface temperature, as it eliminates the

necessity to consider 3D geometry of the whole

elements. If the problem is to fix the bulk temper-

ature (see Figs. 8–10), the finite element method is

used, which also enables consideration of the

dependence of the material parameters on temper-

ature, to solve nonlinear problems and to cover the

heat removal both via convection and radiation.
Brakes, Thermal and
Thermoelastic Analysis,
Fig. 1 Charts of friction

brakes basic types. Brakes

classified with respect to

the structural arrangement

of the brake elements
A more complex description of the braking

action assumes a mutual relationship between

the mating parts of the braking system. This

allows, for example, the determination of the

heat removal from the contact surface more accu-

rately. Thermal deformation of the friction ele-

ments can cause nonuniform distribution of

contact pressure and consequently also

nonuniform distribution of frictional heat gener-

ation. This mutual feedback at high sliding veloc-

ity can imply▶ frictionally excited thermoelastic

instability.
Introduction

The brakes are classified with respect to the

arrangement of the brake elements. The charts

of the basic types of brakes are given in Fig. 1.

The first three types of brakes of the figure are

characterized by intermittent contact. That is,

each point of the contact surface of the rotating

http://dx.doi.org/10.1007/978-94-007-2739-7_145
http://dx.doi.org/10.1007/978-94-007-2739-7_145
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body is in contact with fixed friction segments

only for a limited part of the revolution period.

If the temperature passes beyond a certain

critical limit in breaking, undesired effects such

as brake fading, hot judder, premature wear,

material degradation, and thermal cracks [1, 2]

can appear. Apart from macroscopic cracks that

usually arise as a consequence of repeated

thermomechanical loading, the origin of the

cracking network on the friction surface can be

observed. Yet the origin is not satisfactorily

explained, due to the competition of fretting,

thermomechanical, and also material effects [3].

Let us mention, by way of example, some very

different brakes. The energy dissipated by the

disk brake when stopping a passenger car

weighting 1,500 kg from a speed of 100 km/h

makes 0.15 MJ. But each 10-disk brake of

a Boeing 777 passenger aircraft must be capable

of absorbing up to 144 MJ [4]. The most com-

monly used material for producing current auto-

mobile brake disks is cast iron, while in the other

case, carbon-based composites are used.
Brake Thermal Analysis

Modeling of Friction Element Contacts

From a microscopic point of view, contact with

friction between the two bodies 1 and 2 is a very

complex effect, which is affected by the surface

roughness, composition of the materials used,

their wear, and tear, and so on. We further ideal-

ize the reality, and only macroscopic physical

entities will be taken into account. We assume
Brakes, Thermal and
Thermoelastic Analysis,
Fig. 2 Charts of two

bodies with a slipping

contact
that both bodies are homogenous and isotropic

and that their contact surfaces are smooth with

perfect contact. That is why we, in addition to

this, assume equal surface temperatures of both

bodies on their contact area (see Fig. 2), that is,
T1 x; y; 0; tð Þ ¼ T2 x; y; 0; tð Þ; t > 0 ð1Þ

If we denote the sliding velocity of these bod-

ies by V, normal contact pressure by p, and the

friction coefficient by m, then the heat produced

by their friction per time unit applied to a unit

area will be
q ¼ mpV ð2Þ

(neglecting the heat due to surface wear). The

quantities q, p, and V may depend on time t. Let
us further denote the heat flux removed from the

contact surface to the body i by qi, i¼ 1,2, and the

associated temperature fields Ti(x,y,z,t) according
to Fig. 2. It holds that
q ¼ q1 þ q2; q1 ¼ k1
@T1
@z

; q2 ¼ �k2
@T2
@z

ð3Þ

where ki stands for the thermal conductivity coef-

ficient of the material of body i. The problem of

determining the temperature fields T1 and T2 will

be substantially simplified if we solve the prob-

lem of heat conduction through bodies 1 and 2

separately. In such a case we assume the follow-

ing distribution of respective flows from the con-

tact area to be
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Table 1 Orientation values of parameters of some mate-

rials in use. k – thermal conductivity, k – thermal diffu-

sivity, E – elastic modulus, a – coefficient of thermal

expansion, r – density

k W/

(mK)

k.106

m2/s

E

GPa

a.106

1/K

r kg/

m3

Cast iron 54 12.98 125 12 7,100

Friction

material A

5 3.57 1 10 4,000

Friction

material B

1.2 0.52 8 15 3,000

Composite

C/SiC

40 22.2 30 0.5 2,300
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q1 ¼ q 1þ A2

A1

k2
k1

ffiffiffiffiffi
k1
k2

r
 ��1

q2 ¼ q 1þ A1

A2

k1
k2

ffiffiffiffiffi
k2
k1

r
 ��1
ð4Þ

where k is thermal diffusivity. It holds thatA1¼ A2

for full contact andA1 6¼A2 for intermittent contact,

where Ai denotes the size of the corresponding

contact area of body i. The relation (4) holds rigor-

ously in case of a slip of two half-spaces with equal

temperatures to infinity. It has been derived using

the formula for the transient temperature of the

semi-infinite body with constant unit heat flux

q(t)� 1 from contact plane z¼ 0 (see, e.g., [5])
YIðz; tÞ ¼ Y0 þ 2
ffiffiffiffiffiffi
k t

p
k

ierfc
z

2
ffiffiffiffiffi
k t

p

 �

z � 0; t > 0

ð5Þ

whereY0 is a constant initial temperature. Further

we have ierfcð�Þ ¼ 1ffiffi
p

p expð��2Þ� � ð1� erfð�ÞÞ,
for � > 0 with the error function

erfð�Þ ¼ 2ffiffi
p

p
Ð �
0
expð�z2Þdz.

For a contemporary automobile brake with

disks made from cast iron with the friction

material A of pads from Table 1 and with the

value A2/A1 ¼ 7, approximately 98 % of the

produced heat goes into the disk.

Contact Surface Temperature: 1D

Approximation

The Péclet number is defined as
Pe ¼ Va

2k
ð6Þ

where 2a is the full length of the contact

(of the pad). The one-dimensional approximation

is useful for Pe > 10 [6, 7]. Let us consider the

following 1D problem:

@Tðz; tÞ
@ t

¼k
@2Tðz; tÞ
@ z2

; 0 � z � H; t> 0;

�k
@Tð0; tÞ

@z
¼QðtÞ; k

@TðH; tÞ
@ z

¼ 0; Tðz;0Þ¼Y0

ð7Þ
which describes the problem of heat removal

from a given point of the body contact surface.

For a disk, the symbol H denotes a half of its

thickness, while for a drum, the symbol H

means its full thickness, as is the case with the

pads. In other words, under intensive braking, the

heat removal from the surface due to convection

and radiation is small in comparison with the

friction heating. If the unit flux Q(t) � 1 is the

case, we receive, using Laplace transform, solu-

tion of the problem (7) following [5] in the form

YIIðz; tÞ¼Y0þ2
ffiffiffiffiffi
k t

p
k

X1
n¼0

�
ierfc

2Hðnþ1Þ� z

2
ffiffiffiffiffi
kt

p

 �

þ ierfc
2Hnþ z

2
ffiffiffiffiffi
kt

p

 ��

ð8Þ

Since the flux Q(t) may be time dependent, we

receive the general solution of the problem (7)

using Duhamel’s theorem [5, 8]. After Özisik [8],

it holds that
Tðz; tÞ ¼
ðt
0

YIIðz; t� tÞ dQðtÞ
dt

dt

þ
X
j; tj�tB

YIIðz; t� tjÞDQðtjÞ ð9Þ

if the functionQ is smooth in the intervals (tj,tj+1)
and has a jump point DQ(tj)¼ Q+(tj)� Q�(tj) to
the magnitude at the time points tj. Let us further
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Fig. 3 Time behavior of

heating at a fixed point of

the contact surface of

a rotating body (brake

disk), situation for

intermittent contact, and

deceleration braking
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consider two model cases of braking. In the first

case, when V(t) ¼ V0, 0 � t � tB, the subject is

continuously braking, that is, preventing

unwanted acceleration, for example, while driv-

ing downhill. The braking time is tB. The other

case is deceleration braking or emergency brak-

ing, and the important matter is the fast slowing

down of the vehicle or setting it to the rest, that is,

V(t) ¼ V0.(1�t/tB). At full contact, by analogy,

Q(t)¼ q0, orQ(t)¼ q0.(1�t/tB) if both the contact

pressure p and friction coefficient m are constant.

In the first case, (9) the solution yielded is

Tðz; tÞ ¼ YIIðz; tÞ q0 for 0 < t � tB, and

Tðz; tÞ¼ fYIIðz; tÞ�YIIðz; t� tBÞgq0 for t > tB.

The first approximation of the surface tempera-

ture for emergency braking is the Fazekas known

formula [7, 9]
Tð0; tÞ � Y0 þ 2q0
ffiffiffi
k

p
k
ffiffiffi
p

p ffiffi
t

p
1� 2t

3tB


 �
;

0 � t � tB

ð10Þ

(we takeYIIð0; tÞ � Y0 þ 2
ffiffi
k

p
k
ffiffi
p

p ffi
t

p
in (9)). Full con-

tact can be assumed in the problem of pad heating.

For intermittent contact, the flux Q(t) is posi-
tive only if we consider passing a given contact

point under the friction pad having 2a in width

size. In Fig. 3, we have the function Q(t) for

emergency braking with a contemporary disk

brake. Potential cooling of the surface has not

been considered.
Let us consider, by way of example, heating of

the brake diskwhen braking from the initial sliding

velocity V0 ¼ 11.2 m/s (which corresponds to the

automobile velocity of 100 km/h), braking time

tB ¼ 4.2 s, and initial heat flux q0 ¼ 8.4 W/mm2.

The length of trajectory of a given point under the

friction pad is 2a¼ 112mm, while its trajectory in

full revolution is L ¼ 780 mm. The half thickness

of the disk isH¼ 13.2 mm. The disk is considered

to be made from cast iron and the pads from the

friction material A as presented in Table 1.

We have high Pe0 ¼ 24,160 at the beginning of

the braking. The trends in the behavior of the

temperatures at the points differently distant from

the surface are depicted in Fig. 4.

If the Péclet number is great, the rise DT in

temperature can be evaluated directly using (8)

when the point is passing under the friction pad,

which takes the time t¼ 2a/V. For z¼ 0, only the

member with n ¼ 0 dominantly contributes to

the sum for this very short time interval in the

corresponding series since ierfcð1Þ ¼ 0. Since

ierfcð0Þ ¼ 1ffiffi
p

p , we also receive (cf. [5, 6])
DT � q
2
ffiffiffi
k

p
k
ffiffiffi
p

p ffiffi
t

p ¼ 2qa

k
ffiffiffi
p

p ffiffiffiffiffiffi
Pe

p ð11Þ

The rise in temperature depends on the dis-

tance r of a given point from the rotation axis in

a brake disk. If the pad holds a central angle ’,

then 2a ¼ r’. Since V ¼ ro, q ¼ mpro,
a straightforward conclusion follows from (11)
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Fig. 4 Time variation of temperature at selected points

of a rotating body in intermittent contact. (a) Point at

contact surface, (b) point 1.5 mm under surface, (c) point

in the half thickness position of the body (disk), (d) the

mean surface temperature

Brakes, Thermal and Thermoelastic Analysis,
Fig. 5 Moving region (body) under immovable thermal

source. (a) Half-space, (b) unfolded drum or half of a disk
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that the dependence DT � rm p 2
ffiffi
k

p
k

ffiffiffiffiffiffiffi
oj

p
on

radius r is linear.

Vernersson [10] puts a relation more general

than (11) if railway tread braking is the case.

Moreover, it takes into consideration both the

influence of tread cooling and heat transfer from

the wheel to the rail during their mutual contact.

Yevtushenko and Kuciej [7] have found an

analytical solution of a problem more general

than (7) using the Laplace transform method. It

presents a solution for frictional heating during

braking in a three-element tribosystem in full

contact. An analytical solution has also been

found, for example, for the influence of

convective cooling at the outer surface of the

friction pad.

As a matter of course, the problem set in (7)

can be tackled using numerical procedures such

as the finite element method. What is more, it is

possible to take into consideration temperature-

dependent material parameters, it is possible to

differentiate the vented part of the disk, and it is

possible to consider a surface of a two-layer cover

strap and to cover cooling of the contact surface.

Achieving satisfactory accuracy of the numerical

solution calls for a sufficiently dense mesh in the

neighborhood of the point z ¼ 0 (i.e., near the

contact).
2D Unfolded Model

If a quantity of heatW per unit length is instanta-

neously liberated at time t¼ 0 along the y-axis on
the surface of a half-space z � 0, then the tem-

perature distribution at t is (see [5, 11])
Yðx; z; tÞ ¼ W

2p k t
exp ð� x2 þ z2

4k t
Þ ð12Þ

if the initial temperature Y0 ¼ 0. Let us further

imagine that the coordinate system (x, z, y) is

fixed and that this half-space moves with

a velocity V(t) in the direction of the x-axis. In
addition, let us consider an immovable heat

source q(t) as Fig. 5a shows and which now acts

within the band –a � x � a parallel to axis y.
Using (12) and the procedure outlined by

Carlslaw and Jaeger [5] or Johnson [11], we get

the relation

YIIIðx;z; tÞ¼ 1

2pk

ðt
0

qðtÞ
t� t

�
ða
�a

exp �ðx� s�dðt; tÞÞ2þ z2

4kðt� tÞ

 !
dsdt

ð13Þ
for the unknown temperature field after the time

interval t measured from the beginning of the

braking. Here, dðt; tÞ ¼ Ðt
t
Vð�Þ d� is the distance

which the body travels between the time points
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t and t. We perform the integration indicated

in expression (13) with respect to the spatial

variable s, and we write down the result in the

dimensionless form
Y�
IIIðx�; z�; t�Þ ¼

ffiffiffiffiffiffiffiffi
Pe0

p
4

ðt�
0

q�ðt� � t�Þffiffiffiffiffi
t�

p exp � z�2

4t�


 �
:

: erf
x� þ 1� 2t�Pe0Dðt�Þ

2
ffiffiffiffiffi
t�

p

 ��

�erf
x� � 1� 2t�Pe0Dðt�Þ

2
ffiffiffiffiffi
t�

p

 ��

dt�

ð14Þ

Y�
III ¼ YIII

Tr ; Tr ¼ 2q0a
k
ffiffi
p

p ffiffiffiffiffiffi
Pe0

p ; x� ¼ x
a ; z� ¼ z

a ;

t� ¼ kt
a2 . Here D � 1, q�� 1, if V(t) � V0, and

Dðt�Þ ¼ 1 � t�=t�B þ t�=t�B, q�ð�Þ ¼ 1 � ��=t�B
if VðtÞ ¼ V0ð1 � t=tBÞ, qðtÞ ¼ q0ð1 � t=tBÞ.
The reference temperature Tr has been selected

with respect to relation (11) comparably with the

rise in temperature DT.
In the case of an unfolded model of a friction

rotating body, it is necessary to determine the

temperature field T for a finite region, which is

shown in Fig. 5b. Let us introduce two other

dimensionless numbers L
� ¼ L

a and H� ¼ H
a .

First of all, it is necessary to satisfy the periodic-

ity condition
T� L�

2
; z�; t�


 �
¼ T� � L�

2
; z�; t�


 �
ð15Þ

@T�

@x�
L�

2
; z�; t�


 �
¼ @T�

@x�
� L�

2
; z�; t�


 �
for

0 � z� � H�; 0 < t�

and the conditions for the zero heat flux through

the plane z ¼ H
@T�

@z�
ðx�;H�; t�Þ ¼ 0 for�L�

2
� x� � L�

2
; 0< t�

ð16Þ
The dimensionless solution has the form

T�ðx�;z�; t�Þ¼
X1

m¼�1

X1
n¼0

fY�
IIIðx� þmL�; 2ðnþ1ÞH�

� z�; t�ÞþY�
IIIðx� þmL�; 2nH� þ z�; t�Þg

ð17Þ

over Tðx; z; tÞ ¼ Tr T�ðx�; z�; t�Þ þY0. The sum

of the series involving the subscript n guaran-

tees that condition (16) has been met, and it

represents the changeover from the solution

in a half-space to the solution for a band. The

sum of the series involving the subscript m

leads to fulfilling periodicity condition (15).

The dimensionless temperature of the contact

surface for the above mentioned example of

braking is presented in Fig. 6 for some selected

time points.

Finite Element Models

The geometry of the rotating body of a brake can

usually be expressed by an axisymmetric model.

The vented part of the disk can be regarded as

anisotropic material with recalculated values of

material parameters. If we want to calculate the

flash temperature at least approximately (the accu-

racy depends on the elements mesh size), it is

necessary to specify the heating curve Q(t,r) simi-

lar to that shown in Fig. 3 at the contact area. Now,

it also depends on the node position, that is, on its

radius r. If only establishing the mean surface and

body temperatures will suffice, we specify the rat-

ing curve in the formQ(t,r)¼ q(t,r)A2/A1. Figure 9

presents an example of the temperature field for

disk Ø312 mm.

In the case of a 3D problem, it is usually

possible to make use of the cyclic symmetry

of the rotor and to perform the finite element

discretization just for the necessary reference

segment, in as far as we do not calculate the

flash temperature (see Fig. 10). We then spec-

ify the condition of periodicity in the planar

sections defining the segment – the equality of

temperatures and normal heat flows in the

pairs of boundary nodes which have equal

radial and axial coordinates. If the half of

the reference segment can be limited by the

planes of symmetry, then we specify the



Brakes, Thermal and
Thermoelastic Analysis,
Fig. 6 Dimensionless

temperature T*(x*, 0, t*) of
contact surface with the

parameters Pe0 ¼ 24,160,

tB
* ¼ 1.738 � 10�2, and

L* ¼ 13.93, H* ¼ 0.2357.

Temperature variation for

¾, 7¾, 14¾, 21¾, 28¾, and
29¾ of disk rotation

measured from the

beginning of the braking

Brakes, Thermal and Thermoelastic Analysis,
Fig. 7 Scheme of disk brake 2D model. 1 – pads;

2 – disk; Gc – contact surface; G1, G2 – cooled surfaces;

Gp – section with periodicity condition
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adiabatic conditions as boundary conditions of

this semi-model.

In the case of long-standing or repeated brak-

ing, it is necessary for the FEM model to also

cover the cooling of the brake surfaces by con-

vection and radiation. The rate of heat dissipation

into the environment is related to the nature of

the coolant (air) flow and is influenced by the

arrangement of the space around the brake. The

computer-aided simulation of heating and

cooling of the brake consequently constitutes an

element of the demanding CFD calculations

as well.

The temperature analysis of a brake becomes

a great deal more strenuous if we require accurate

fulfilling of the interface conditions (1)–(3). Let

us mention by way of example an “unfolded” 2D

model of a disk brake from Fig. 7 (see similarly

[12] for a multidisk clutch). Temperature fields

Ti(x,z,t) within the regions i meet the equations
ciri
@Ti
@t

þVi
@Ti
@x

¼ @

@x
ki
@Ti
@x


 �
þ @

@z
ki
@Ti
@z


 �
; i¼ 1;2

ð18Þ

where V2 ¼ V(t), V1 ¼ 0 and next, they fulfill

boundary conditions (1)–(3) on Gc, k2
@T2
@z ¼ 0 for

z¼H, �ki
@Ti
@ni

¼ aiðTi � T1Þ on Gi, i¼ 1,2. Here

ni denotes a vector normal to the boundary of the
region i, T1 environment temperature, and ai
the corresponding heat transfer coefficient.

Furthermore, the condition of periodicity

T2ðx; z; tÞ ¼ T2ðxþ L; z; tÞ;
@T2
@n2

ðx; z; tÞ ¼ � @T2
@n2

ðxþ L; z; tÞ

must be satisfied for all ðx; zÞ 2 Gp and t> 0. The

initial condition is Tiðx; z; 0Þ ¼ Ti0ðx; zÞ for ðx; zÞ
from the region i. The Galerkin finite element

discretization method is unstable with this prob-

lem, owing to the Péclet number value. This

difficulty can be removed using the Petrov-

Galerkin method (see, e.g., [13]). A calculated

temperature field corresponding to the example

of Fig. 4 can be seen in Fig. 8.

The solution of the equations (18) in complete

3D geometry is extremely calculation tough for
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Thermoelastic Analysis,
Fig. 8 Heating and

stressing of brake 2D

model. FEM results for the

example of Fig. 4. (a)

Temperature field at time

point 3 s; (b) stress sxx at
time point 3 s

Brakes, Thermal and
Thermoelastic Analysis,
Fig. 9 Heating and

stressing of a brake disk. (a)

Example of the bulk

temperature field, (b) the

corresponding

circumferential stress field,

enlarged distortion
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large Péclet numbers. The effect of the surface

heating is restricted to a thin skin adjacent to the

surface (e.g., see Fig. 8). Consequently, it is nec-

essary to use very fine finite element mesh near

the surface. That is why Floquet and Duborg [14]

proposed a new hybrid FFT-FEM method that

combines Fourier transformation techniques and

a finite element method for the axisymmetric

problem of a rotating body. Additional references

present Yevtushenko and Grzes [9].
Uncoupled Thermal Stress
and Distortion Analysis

A particular solution to the thermoelastic equa-

tion can be obtained in the form of a strain poten-

tial (see, e.g., [15, 16])
2G u ¼ HF ð19Þ

where the scalar potential function F satisfies the

equation

H2F ¼ 2Gð1þ nÞa
1� n

T ð20Þ

Let us here denote the displacement vector as

u ¼ (ux,uy,uz), T a temperature field previously

calculated, a coefficient of thermal expansion, n
Poisson number, andG ¼ E

2ð1þnÞ is the shear mod-

ulus with Young’s modulus E. As first we want to

evaluate the stress acting on the surface and on

the thin surface layer due to heating that just takes

a short time (the time interval needed for

a surface point to pass under the friction pad or

duration of one rotation under full contact with

a large Péclet number). As we have already seen,
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Thermoelastic Analysis,
Fig. 10 Heating and

stressing of a brake disk,

results of FEM calculation

for a 3D model. (a)

Example of the bulk

temperature field, (b) the

corresponding von Mises

stress field
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it is then possible to judge the temperature field as

a function of only one space variable z (formulae

(5), (8), (9)). Then it holds that sxx ¼ syy ¼ @2F
@z2 ,

szz ¼ 0, and sxy ¼ syz ¼ szx ¼ 0 for the three

normal components of the stress tensor (Barber

[15]). Brief heating of an intensity q over a time

intervalDt, which causes a rise to the temperature

DT from the relation (11), brings about

a compressive stress of the surface z ¼ 0
�sxx ¼ �syy � � 2Ea
ffiffiffi
k

p
ð1� nÞ k ffiffiffi

p
p q

ffiffiffiffiffi
Dt

p
ð21Þ

(we obtain a value of this stress caused by heating

with DT ¼ 63.2 �C to be �126.4 MPa at the first
passage under the friction pad in the example

presented in Fig. 4).

Johnson [11] suggests how to find the thermal

distortion of the surface due to the moving heat

source (a situation corresponding to Fig. 5a). He

discloses that the difference of normal displace-

ments of the surface at the trailing edge (x ¼ a)

and at the leading edge (x ¼ �a) is

D �uz � �2c q a2=Pe ð22Þ

for a large Péclet number where c ¼ ð1þ nÞ a=k
is the distortivity of the material. (If we

consider the example from Fig. 4, we have

D �uz � �0:6 mm in the first revolution).



B 496 Brakes, Thermal and Thermoelastic Analysis
The method of evaluating stress and deforma-

tion of the surface due to purely mechanical load-

ing, that is, due to normal pressure p and shear

forces, suggests, for example, Barber [15] and

Johnson [11]. The loading by shear forces is

associated with the potential danger of causing

the phenomenon known as fretting fatigue.

It is insufficient for putting a value on the

influence of bulk temperature on stressing of the

friction segment to use only the mentioned partic-

ular solution by way of the potential function F
from (19), (20). That is to say, the displacements

ux and uy from (19) are zero in case of F ¼ F(z),
although we may regard them as free at the end of

the friction element. It is possible to exercise the

procedure presented in the book fromTimoshenko

and Goodier [16] applied to the free plate of

a thickness H for the initial evaluation. We obtain

sxxðzÞ¼syyðzÞ�� aE
1� n

yðzÞþ 1

Hð1� nÞ
ðH
0

aEyðsÞds

þ 12ðz�H=2Þ
H3ð1� nÞ

ðH
0

aEyðsÞðs�H=2Þds
8<:

9=;;

yðzÞ¼ TðzÞ�Y0

ð23Þ
where, in case that z¼H is a plane of geometrical

and physical symmetry (e.g., brake disk), we put

to zero the last addendum, removing the total

bending moment, that is, {. . .} ¼ 0.

Finally, the thermoelastic stress states and defor-

mation of 2D and 3D models of friction elements

can be determined in a satisfactory manner using

the finite element method if the corresponding tem-

perature fields are known. The examples of such

results are presented in Figs. 8–10. A great deal of

attention has been paid both to undesired deforma-

tions as well as, for example, the rotor coning of the

disk plate due to thermal loading and structural

loading events (see, e.g., [17]).
Coupled Thermal and Distortion
Analysis

The analysis, which aims to cover the tempera-

ture and mechanical contact of mating frictional
elements of a brake as accurately as possible,

must take into consideration their mutual cou-

pling. That is to say, the temperature deforma-

tions of these elements cause nonuniform

distribution of the contact pressure which,

according to (2), leads subsequently to

nonuniform heating, which is the agent of these

thermal deformations. Moreover, the contact

conditions may change during the braking. It

was, for example, Dufrénoy [18] and Day et al.

[19] who came along with the analysis of such

complex behavior of brakes. They also consid-

ered the tribological actions such as wear and the

coefficient of friction variations. Computer-aided

modeling of thermoelastic wear problems is even

more developed (see e.g., Mróz and Páczelt [20]).

Frictionally Excited Thermoelastic Instability

The mutual coupling thermal deformation –

contact pressure – frictional heat generation

leads to the rise of macroscopic hot spots and to

the associated hot judder at a high sliding velocity.

Barber [21] described the frictionally excited

thermoelastic instability as the cause of the phe-

nomenon that is of critical importance in the

design of brakes and clutches. The stability analy-

sis showed that the amplitudes of natural modes of

perturbation of temperature and contact pressure

grow exponentially as exp(bt). The growth param-

eter b depends on sliding velocity V, perturbance
wavelength, friction coefficient, and also on

material parameters of the friction elements

(see Table 1) and their geometry. Barber [22] and

Al-Shabibi [23] are important reviews in this field.

Some circumstances, more or less unsatisfac-

torily quantified up to now, contribute to stopping

this exponential growth in real braking. First of

all, it is a value of friction coefficient decreasing

with the temperature growth and a change to the

values of material parameters, localization of the

contact, and possible origin of plastic deforma-

tions or major wear.
Cross-References

▶ Frictionally Excited Thermoelastic Instability

(TEI)

http://dx.doi.org/10.1007/978-94-007-2739-7_145
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Synonyms

Perovskite is a calcium titanium oxide mineral

species composed of calcium titanate, with the

chemical formula CaTiO3.It lends its name to the

class of compounds which have the same type of

crystal structure as (XIIA2+VIIB4+X2�3)
Overview

The use of modern ceramics, such as perovskites

or transformation-toughened zirconia, calls for

more detailed data than those provided by the

conventional strength or crack-resistance charac-

teristics. After studying the deformation behavior

of brittle materials, a new parameter called brittle-

ness measure (w) was proposed. If w¼ 1, ceramics

obey Hooke’s law, and their mechanical behavior

is similar to that of glass. At the same time, the

behavior of these materials under loading may be

similar to that of concrete, which cannot be

described by the elastic-solid model (w < 1). It

has been found that aluminum oxide and silicon

nitride ceramics are characterized by w ¼ 1, while

silicon nitride with silicon carbide and corundum

refractory with zirconium dioxide are character-

ized by w < 1. Being inelastic, they have an rising

R-curve and show insignificant differences in the

critical stress-intensity factors for specimens with

a notch and sharp crack. The evaluations of such



EE

su

S
tr

es
s 

s

a

eel eu
o

TE

B 498 Brittleness Measure of Ceramics
ceramics should be based on the proportionality

limit rather than on the ultimate-strength values.

Thermal-shock-resistance criteria should take into

account the true values of ultimate strain. The

experimental data reveal that the evaluation of

the performance and mechanical behavior of brit-

tle materials should not disregard their deforma-

tion behavior that may affect the reliability of the

results. It is shown the brittleness measure w and

ultimate strains may be regarded as important

mechanical characteristics of ceramics.

Strain e

Brittleness Measure of Ceramics, Fig. 1 Stress–strain

diagram: su – ultimate stress; eel – elastic ultimate strain;

eu – actual ultimate strain; EE and TE – elastic and total

fracture energies, respectively
Introduction

The selection of structural ceramics for specific

applications is usually based on their strength and

crack-resistance characteristics. Less attention is

usually given to their deformation capabilities. As

a result, these materials are assumed to be linearly

elastic and obeyingHooke’s law [1], that is, similar

to glass. This assumption is fair for certain kinds of

ceramics, for example, single-phase dense alumina

or silicon nitride ceramics. In many cases, how-

ever, the ceramics exhibit inelastic behavior. For

instance, the transformation-toughened zirconia-

based ceramics happen to be in many respects

similar to metals and are sometimes, not without

a reason, called “ceramic steel” [2]. In other words,

their mechanical behavior is somewhat similar to

that of concrete, that is, these materials are

inelastic. Thus, some ceramics cannot be described

as linearly elastic [3], and the linear elastic fracture

mechanics [3], which underlies the evaluation of

strength and crack resistance of the materials, may

not be directly applicable to those ceramics. There-

fore, possible errors in the engineering evaluation

of such materials can be excluded by using addi-

tional data on their mechanical behavior, such as

deformation characteristics.
Brittleness Measure

Studies of ceramics and other brittle materials

show [4, 5] that they should be classified according

to their deformation performance: (a) linearly

deformative up to fracture (called “brittle”) and
(b) nonlinearly deformative after reaching the

elasticity limit (called “relatively brittle” in

contrast to ductile metals). For this purpose, the

brittleness measure w has to be introduced [6]. It

equals to the ratio of the elastic energy (EE in

Fig. 1) stored in ceramics to fracture to the total

strain energy (ТЕ) spent to fracture. It represents

energy characterizing the deviation of the actual

deformation of ceramics from the Hooke’s law.

The parameter w can be determined in four-

point flexure tests by measuring the load on and

deflection of the rectangular-beam specimen and

calculating the stress and strain [7]:

w ¼ s2u

2E
Ðeu
0

sde
; ð1Þ

where su is the ultimate strength, E is the elastic

modulus, eu is the ultimate strain, and s is the

stress at the current strain value e.
Thematerial is linear elastic ifw¼1or inelastic if

w<1.Tounderstandwhathasbeenstatedabove, it is

expedient to discuss the experimental tests data for

elastic and inelastic, single-phase and composite,

and transformation-toughened ceramicmaterials.
Methods and Materials

All the experiments were conducted using a

homemade universal loading fixture “Ceramtest”
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a b Loading rod

Deflectometer

LVDT

Replaceable
support
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AE sensor

Load cell

Specimen
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Brittleness Measure of Ceramics, Fig. 2 Schematic of four-point flexure test (a) and the three-point test jig with the

deflectometer (b)

Brittleness Measure of Ceramics, Table 1 Properties of ceramics

Ceramic

Brittleness

measure w
Density r,
g/sm3

Strength

su, MPa

Strain

eu, %
Elastic modulus

E, GPa
Stress intensity

KI
R, MPa	m1/2 References

ZTA 1.00 3.70 314 0.097 336 3.50 8

Y-PSZ 1.00 6.02 713 0.385 185 4.80 8

Y-TZP 1.00 6.02 1021 0.494 205 5.60 7

Mg-Al-ZrO2 0.72 4.82 170 0.160 134 3.00 8

Syalon + 30%BN 0.70 2.62 160 0.160 137 3.80 8

Cordierite 0.60 2.26 40 0.096 76 1.93 8

Mg-PSZ 0.44 0.41 506 0.460 204 12.0 8

Al2O3 + 6%ZrO2 0.36 0.36 23 0.720 88 1.17 8

La0.2Ca0.8CoO3 0.25 0.25 140 0.240 148 2.25 12
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with a rigid load cell and off-line measuring

systems (Fig. 2), whichwas installed on a conven-

tional universal testing machine. Its jig (Fig. 2b)

has rollers that are free to roll in order to elimi-

nate frictional constraints when the specimen

surface expands or contracts during loading [8].

The high accuracy of measurements provided by

this jig is due to not only the free movement of

the specimen surfaces along its axis during the

loading but also the symmetry of the force-

application points about the loading axis and the

uniformity of the bending moment in the pure-

bending zone. For four-point flexure, the loading
rollers are located with an inner span of 20 mm and

an outer span of 40mm. For three-point flexure, the

distance between the support rollers is set at 20mm.

The deflection of the specimenwasmeasuredwith

a special precision LVDT with a resolution of

approximately 1mmpermmof deflection.A semi-

conductor transducer was used to analyze acoustic

emission (AE) signals.

Eachmaterial was tested at ambient conditions.

The load on the specimen was recorded until

fracture as a function of deflection. The resulting

curve was used to calculate the brittleness

measure with formula (1) and to determine the
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ultimate strain and static modulus of elasticity.

Such tests were also conducted at high and low

temperatures using a different testing fixture [9].

The specimens were rectangular beams with

dimensions 3 � 5 � 50 mm3, which were

ground longitudinally with the edges rounded

(they were placed on the supporting rollers with

a side of 5 � 50 mm2). The crack resistance

of ceramics [10] was evaluated on the same

specimens in three-point flexure, but the distance

between the load-application points was 20mm. In

this case, the specimen was placed on the support

rollers with a side of 3 � 50 mm2, and the critical

stress-intensity factors (fracture toughness) KIc

were calculated in accordance with [11].

The following materials were tested: zirconia-

toughened alumina, ZTA, with 16 mol % ZrO2

(Central Institute of Physics of Solids and Mate-

rials Science, Germany), zirconia ceramics par-

tially stabilized by magnesia Mg-PSZ (NILCRA

Incorp., Australia), La0.8Ca0.2CoO3 perovskite

(Norwegian University of Science and Technol-

ogy, Norway), as well as other ceramics produced

in the USSR. The characteristics of the materials

are summarized in Table 1.
Results and Discussion

The test data, for example, for ZTA and Y-PSZ

(Fig. 3) suggest that these are linearly elastic

materials with the brittleness measure w ¼ 1.

The same has been observed for dense single-

phase silicon nitride and carbide, yttria, alumina,

and many other ceramics [12]. Unlike the above,

the multiphase SiAlON + 30% BN, refractory

ceramics Al2O3 + ZrO2 as well as transforma-

tion-toughened Mg-PSZ and Mg-Al-PSZ

ceramics exhibit nonlinear deformation behavior

(w< 1). In the latter case, the stress–strain curves

also displayed residual deformation after

unloading (Fig. 4a) and a continuous acoustic

emission, which accompanied the loading of the

specimen (Fig. 4b).

In heating [13], brittle ceramics (w ¼ 1), such

Y-TZP, became inelastic, like glass at a certain

temperature (Fig. 5a). By contrast, with increase

in the test temperature, the ceramics with w < 1
first became more elastic and then exhibit

decreasing inelasticity (Fig. 5b). The temperature

dependence of the deformation behavior of

ceramics can conveniently be represented by the

brittleness measure versus temperature curve

(Fig. 6). It is also important to know the temper-

ature dependence of the ultimate strain, eu, shown
in Fig. 6b. These data are interesting because they

indicate the presence of temperature ranges

where the ceramics may be more sensitive to

cyclic and long-term loading. Normalized brittle-

ness measure ( jw) may appear useful for evalua-

tion of the change in the deformation behavior of

brittle materials with change in test temperature

[7] (Fig. 7):
jw ¼ wT � w
w

100% ð2Þ

where wT is the brittleness measure at set

temperature.

The fracture of ceramics with w < 1 differs

substantially from ceramics with w ¼ 1. These

materials exhibit different sensitivity to the stress

concentration, which is demonstrated by the

SENB and SEVNB test data (two substantially

different U- and V-shaped stress concentrators

in fracture-toughness specimens) collected in

Table 2. It can be observed that, when w ¼1, the

values of KIc obtained with the SENB method are

much greater than those obtained with the

SEVNB method (the lesser the value of w, the
lesser the difference between the values of KIc).

Therefore, the ratio ’ ¼ KIc
SEVNB/KIc

SEPB was

introduced in [10] to identify the deformation
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behavior of materials (the greater this ratio, the

more inelastic the material is). This ratio is inter-

esting because it is calculated from tests

performed on a simpler test fixture than that

used for brittleness measure tests (there is no

need to measure the deflection of the specimen).
The brittleness measure values can be used

for rough estimation of the crack-growth resis-

tance of ceramics (R-curve effect [3]). Such

curves are usually linear for elastic ceramics

(w ¼1) such as Y-PSZ and nonlinearly increas-

ing for relatively brittle ceramics (w< 1) such as

Mg-PSZ (Fig. 8). This is of great practical

importance because it is very difficult to plot

R-curves with LEFMmethods in a standard test-

ing laboratory.

The foregoing concerns structural ceramics,

that is, ceramics bearing mechanical loads dur-

ing their use. However, evaluation of the defor-

mational behavior of these materials is also

important for ceramic products subjected to

thermal loading [13]. Considering the refractory

ceramics resisting tensile thermal stresses, we

may presume that the greater their ultimate

strain eu (all other conditions being the same),

the higher their resistance to thermal deforma-

tion. This statement presents the basis for the

first criterion of thermal-shock resistance [14]:

R’ ¼ su/Ea, which involves the ultimate elastic
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strain eel, calculated in accordance with Hooke’s

law (eel ¼ su/E) and the linear thermal expansion

coefficient a. However, if a ceramic material

is inelastic, then the smaller its brittleness
measure w, the greater the difference between

eel and the actual ultimate strain eu (Fig. 1). For

reliable evaluation of the fracture resistance of

brittle materials under thermal loading, this
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thermal-shock-resistance criterion should be for-

mulated as R1
r ¼ eu/a [8]. The second (energy)

criterion [15] is expressed asRlv¼ gE/su
2, where g

is the effective surface energy [3]. With the defor-

mation behavior of the material in mind, it

becomes clear that the smaller its brittleness

measure, the larger the error of the stored energy

(su
2/E). Hence, for reliable evaluation of the frac-

ture resistance of materials under thermal loading,

this criterion is given by Rr ¼ g/eusu [8]. These

new thermal-shock-resistance criteria are also

useful for the selection of various industrial
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refractories for specific thermal conditions [16].

The above informationmade it possible to conclude

that the brittlenessmeasure can be used for thermal-

shock-resistance evaluation: the less the brittleness

measure (under otherwise equal conditions), the

better the ceramics resist thermal loads.

The deformation behavior of ceramics and

refractories should be taken into account when

determining the thermal-shock resistance by

water quenching using the residual bending

strength [16, 17]. According to this method, the

test bars are suspended in a vertical tube furnace,

heated to the target temperature, and dropped

into a water bath [18]. After quenching, the

strength of the samples is measured in four-

point flexure. The resistance of a material to

thermal shock is estimated by maximum ther-

mal-shock temperature difference DTc, which it

can withstand without its residual flexure

strength being significantly affected. If the

material is elastic, it is sufficient to determine

its residual strength after quenching (Fig. 9а),
which is usually done [19] and substantiated in

[20, 21]. If the material is inelastic (w < 1), the

situation is essentially different (Fig. 9b) [8]

because DTс cannot be a reliable characteristic

of the material. In these cases, as the quenching

intensity increases, the structural damage of the

material increases continuously, and, hence, the

residual strength decreases. For this type of

ceramics, the valueDTf is of importance because

it presents a difference between the furnace and

quenching-bath temperatures at which the mate-

rial structure begins to fail. This is manifested as

decreasing ultrasonic velocity in the material

and increasing deformability of the specimen

[8, 22].
Conclusion

It has been shown that, for reliable evaluation

of the mechanical behavior of ceramics, it is

necessary to take into account their deforma-

tion behavior. The brittleness measure and

ultimate strain should be considered as the

important mechanical characteristics of

ceramic materials.
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Synonyms

Buckling
Overview

Plates/panels and shells are the major load bear-

ing structural elements in advanced aerospace,

naval, advanced tactical fighters, automobiles,

and civil engineering structures. These structural

elements are often subjected to hostile environ-

mental conditions. In addition to mechanical

loading (in-plane and transverse), these structures

in service are often subjected to hygroscopic as
well as destabilizing thermal loadings also. The

structural components of high-speed aircrafts and

spacecrafts are subjected to thermal loading due

to aerodynamic pressure and solar radiation

heating. Aerodynamic heating causes high tem-

perature, which results in thermal gradient across

the thickness and causes very high thermal

stresses. A reentry space vehicle encounters

hygrothermal loading conditions. Plate structures

have reserve strength even after the buckling. The

structural elements such as highway pavements,

runways, navigation tanks, structural foundations

(mat type), machine foundation, launching pads,

and supporting system of offshore structures are

some of the examples of structures supported on

elastic foundation. Examples of footings, mat

foundations, ship and bridge structures,

etc. constitute an adequate idealization for

plates/panels resting on an elastic medium. In

order to predict some realistic and accurate

response of the laminated composite plate struc-

tures subjected to different loading conditions,

the nonlinear behavior of plates cannot be

ignored, especially for structures where the

deformations are significantly large. The large

deformations of the plate elements in comparison

with the plate thickness produce significant sup-

plementary strains and stresses in the middle

plane of the plate. These additional in-plane

stresses in turn cause resistance to bending of

the plate, and consequently deflection is less

than estimated by linear theory; hence, geometric

nonlinearity should be incorporated in the math-

ematical model for better estimation of the

strength of the structural member. It is observed

that thermal loading greatly affects the transverse

normal deformation because at elevated temper-

ature, in addition to reduction of stiffness,

bending-stretching coupling is enhanced due to

the highly anisotropic thermal expansion behav-

ior, which results in nonlinear response of the

laminated composites. It resulted in the investi-

gation of new structural configuration concepts

and new fabrication concepts. Hence, the

nonlinear analysis of laminated composite plates

has become the topic of interest in structural

mechanics not only due to their widespread appli-

cations but also as the challenging problem with
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http://dx.doi.org/10.1007/978-94-007-2739-7_474
http://dx.doi.org/10.1007/978-94-007-2739-7_484
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interesting behavior. Nonlinear post-buckling

analysis is required to fully exploit the load car-

rying capacity of the laminated composite plate

for optimal and economical design.
Introduction

Buckling of laminated composite plates

subjected to in-plane mechanical and thermal

loadings has been the interest of many

researchers in the past, and even today the elastic

and thermoelastic stability analysis is of impor-

tance to the researchers due to the fact that the

interest they stimulate as classical problems in

instability. However, unlike columns, the plate

structures resist the in-plane loading with

increased deformation beyond initial buckling

and in most of the cases represent hardening

type of nonlinear behavior in post-buckling

range. Hence, it is quite advantageous to study

the post-buckling characteristics of the laminated

composite plates in order to estimate their reserve

strength for economical design. Accurate predic-

tions of the post-buckling response of the lami-

nated composite plate structures are required for

efficient and optimal use of the materials in

all practical applications. Therefore, the

post-buckling response study of the laminated

composite rectangular plates has invited the

attention of the researchers and scientists.

The light weight feature of the composite mate-

rials is one of themost important reason for its wide

spread use in almost all high-performance engi-

neering structures mainly in aerospace structures.

The structural elements made of laminated com-

posite plates/panels in aerospace structures are usu-

ally thin to moderately thick and are subjected to

in-plane mechanical loading which consist of uni-

axial, biaxial, shear, and a combination of these

loadings. In addition to mechanical loading, these

are often subjected to thermal and hygroscopic

loadings and their combinations. The induced

stresses and deformations due to the aforemen-

tioned loadings play a significant role in their

design. Moreover, plates/panels become unstable

and may buckle in elastic region even at

a relatively smaller in-plane compressive loading.
Thus, buckling is one of the major criteria for

design of the plate structures subjected to in-plane

compressive loading. The accurate prediction of

the post-buckling response of the composite plates

is a complex task as compared to conventional

single-layered metallic plates because of coupling

effects such as bending-stretching, bending-

twisting, and weak transverse shear rigidities.

Bending-stretching coupling in unsymmetrically

laminated plates results in transverse deformation

even under the action of pure in-plane loading.

Consequently, the existenceof bifurcationbuckling

becomes questionable, and the problem has to be

treated as that of a plate with initial imperfections,

which may be due to erroneous fabrication process

or eccentric in-plane loading. The increased appli-

cations of advanced composite and other high-

performance engineering materials in structural

components, especially in aerospace industry,

have stimulated interest of engineering community

in the accurate prediction of the buckling and

post-buckling response characteristics of fiber-

reinforced laminated composite plates/panels.

Employing a perturbation technique Shen [1]

presented the thermal post-buckling analysis for

a simply supported shear deformable laminated

composite plate and resting on elastic foundation

subjected to a uniform temperature rise,

incorporating temperature-dependent material

properties. Nath and Shukla [2, 3] presented the

post-buckling of angle-ply and cross-ply laminated

plates subjected to in-plane uniform and parabolic

temperature. Singh et al. [4] and Thankam et al. [5]

obtained the thermal post-buckling response of

laminated composite plates, using the finite ele-

ment method. A nonlinear finite element method

to study the post-buckling response and first-ply

failure of thin laminated composite plates under

uniform temperature was used by Srikanth and

Kumar [6]. Shen [7] investigated the post-buckling

response of shear deformable laminated composite

plates subjected to mechanical or thermal loading

using higher-order shear deformation theory and

two-step perturbation technique. Based onReddy’s

higher-order shear deformation theory and von

Karman’s nonlinearity, thermomechanical post-

buckling analysis of antisymmetric angle-ply and

symmetric cross-ply laminated plates under
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uniaxial compression combined with a uniform

temperature rise has been carried out by Shen [8],

using a perturbation technique. Shukla and Nath

[9, 10] presented analytical solution for buckling

and post-buckling of laminated composite plates

subjected to thermomechanical loading employing

Chebyshev polynomials. Adopting Galerkin pro-

cedure and using Newton–Raphson iterative

procedure, Girish and Ramachandra [11] presented

the thermomechanical post-buckling analysis of

composite plates with imperfections. In recent

years, considerable amount of work on the post-

buckling behavior of laminated composite plates

subjected to mechanical, thermal, or thermome-

chanical loadings has been carried out by the

researchers, but relatively lesser attempts are

made to study the effect of hygrothermal environ-

ment on buckling and post-buckling response of

laminated composite plates incorporating moisture

and temperature-dependent properties. Utilizing

classical laminated plate theory, Sai Ram and

Sinha [12] presented the buckling of laminated

composites plates under hygrothermal loading

using first-order shear deformation theory (FSDT)

and linear kinematics, employing finite element

method. The effects of moisture and temperature

on critical load are presented for simply supported

and clamped antisymmetric cross-ply and angle-

ply laminates using reduced lamina properties at

elevated moisture concentration and temperature

incorporating macro-mechanical model. Shen [13]

studied the influence of hygrothermal effects on

the post-buckling response of simply supported

shear deformable laminated plates utilizing

Reddy’s higher-order shear deformation plate the-

ory and employing perturbation technique. In most

of the works, results are confined to uniaxial com-

pression with hygrothermal loading and estimation

of buckling load employing linear kinematics and

macro-mechanical model for evaluating lamina

properties at increased moisture concentration

and temperature.
Problem Definition

The mathematical formulation of actual physical

problem of laminated composite rectangular plates
subjected to hygrothermomechanical loading and

supported on elastic subgrades, e.g., Winkler- and

Pasternak-type elastic foundations including foun-

dation nonlinearity is presented. The governing

differential equations of motion along with bound-

ary conditions and initial conditions are presented

for ready reference to the subsequent chapters of

nonlinear analysis of moderately thick laminated

composite rectangular plates. Based on macro- and

micro-mechanics model, the expressions for evalu-

ating temperature- and moisture-concentration-

dependent elastic and hygrothermal properties are

also presented.

The governing equations of motion of lami-

nated composite rectangular plate resting on

nonlinear elastic foundation undergoing moder-

ately large deformation under the influence of

hygrothermomechanical loadings are derived. It

is assumed that perfect bonding exists between

the layers of the laminated composite plate.

Kirchhoff’s classical plate theory neglects

transverse shear strain, underpredicts deflections,

and overpredicts natural frequencies and buckling

loads. The errors in deflections, natural frequen-

cies, and buckling loads are even higher for plates

made up of advanced composites like graphite-

epoxy and boron-epoxy because of very high

modulus ratio (the ratio of elastic modulus to

shear modulus of these advance composites is of

the order of 25–40, instead of 2.6 for conven-

tional isotropic materials), and hence, the effect

of transverse shear stresses cannot be ignored.

Even thin plate behaves as a thick plate in higher

modes of vibration and buckling; hence, an ade-

quate theory is required, which must take into

account the effect of transverse shear strains.

Noor and Burton [14] presented an assessment

of the different shear deformation theories for

multilayered composite plates. Varadan and

Bhaskar [15] presented an overview of the differ-

ent laminate theories and critically examined their

relative merits vis-à-vis the three-dimensional

elasticity approaches. The necessity of obtaining

the response of laminated composite plates with

reasonable accuracy has resulted in the develop-

ment of a variety of two-dimensional shear

deformation theories, which are either on stress-

based approach or displacement-based approach.
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These theories can be grouped in two general

categories: (1) theories based on replacing the

laminate by an equivalent single-layer anisotropic

plate and introducing global displacement and

strain and/or stress approximation in the thickness

direction, and (2) discrete layer theories based on

layer-wise approximations in the thickness direc-

tion. The first-order shear deformation theory

based on the assumed stress and linear distribution

of the in-plane displacement in the thickness direc-

tion is due to Reissner [16] and Mindlin [17]. The

first-order shear deformation theory yields

a constant value of the transverse shear strain

through the thickness of the plate and thus requires

shear correction, which is incorporated by a factor

known as shear correction factor. The shear cor-

rection factors are dimensionless quantities intro-

duced to account for the discrepancy between the

assumed constant state of shear strain and actual

parabolic variation of transverse shear strain

across the thickness of the plate. The problem of

ad hoc estimation of shear correction factor in

first-order shear deformation theory was elimi-

nated in higher-order shear deformation theories.

The higher-order shear deformation theories

assume higher-order polynomials for displace-

ment through the thickness and, in general, lead

to better results. The results obtained by three-

dimensional theory of elasticity are recognized as

the most accurate results. In the present work,

higher-order shear deformation theory (HSDT)

with cubic variation of in-plane displacements

through the thickness and constant transverse dis-

placement is used, which takes into account the

effect of transverse shear. It does not require sep-

arate ad hoc estimation of shear correction factors.

The displacement field at a point in the lami-

nated composite plate is expressed as [18]:
Uðx;y; z; tÞ
Vðx;y; z; tÞ
Wðx;y;z; tÞ

8><>:
9>=>;¼

u0ðx;y; tÞ
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8><>:
9>=>;þ z
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0

8><>:
9>=>;

þ z2
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v1ðx;y; tÞ

0

8><>:
9>=>;þ z3

fxðx;y; tÞ
fyðx;y; tÞ

0
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ð1Þ
In order to predict realistic and accurate

response of laminated composites, the nonlinear

behavior of composites cannot be ignored, espe-

cially for thin to moderately thick structures

where the deformations are significantly large

under severe loading conditions. Also to predict

the post-buckling response of laminated compos-

ite plates, geometric nonlinearity is incorporated

in the mathematical model. Hence, the nonlinear

analysis of laminated composite plates has

become the topic of research in structural

mechanics not only due to their widespread appli-

cations but also as the challenging problem with

interesting behavior. It has been brought out in

the literature that there is no significant difference

in the response of moderately thick laminates

obtained utilizing von-Karman’s nonlinearity

and generalized nonlinearity [19, 20]. Shukla

[21] also studied the effect of generalized

nonlinearity on nonlinear dynamic response of

moderately thick laminated composite rectangu-

lar plates employing first-order shear deforma-

tion theory (FSDT) and concluded that both the

formulations, i.e., one based on generalized

Green’s strain tensor and other based on von

Karman’s nonlinear kinematics, produce nearly

same results with insignificant difference. How-

ever, due to the complexities involved in the for-

mulation and large computational efforts involved

in the solution, the generalized nonlinearity

becomes unattractive to use. The governing differ-

ential equations become highly nonlinear in case

of generalized nonlinearity. Therefore, it pre-

cludes any effort to obtain the solution using con-

ventional analytical technique. Hence, in the

present work von Karman’s nonlinear kinematics

is used for the study of nonlinear response of

moderately thick laminated composite plates

undergoing moderately large deformations.

The elastic and thermal properties of the com-

posite material are dependent on the temperature.

With increase in the temperature, these properties

changes considerably reducing the stiffness of the

material. It becomes important to consider the

temperature-dependent properties of the compos-

ite material to study the response of the laminated

composite plate in thermal environment. For the

analysis with temperature-dependent elastic and
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thermal properties, the following mathematical

model is used in the present work, according to

which the properties are assumed as linear func-

tions of temperature change DT [1]:
B

EpðTÞ ¼ E0
pð1þ E1

p DTÞ ð2Þ

apðTÞ ¼ a0pð1þ a1p DTÞ ð3Þ

Here EP refers to E11, E22, G12, G23, G13, and

aP refers to a11, a22. Superscripts “0” refer to the
values at reference temperature and “1” refer to

the constant coefficients which are as follows:

E1
p ¼ �0:5� 10�3; a1p ¼ 0:2� 10�3

For hygrothermal analysis, the material prop-

erties are evaluated utilizing micro-mechanics

model. Since the effect of temperature and mois-

ture is dominant in polymer-based matrix mate-

rial, the degradation of the composite material

properties is estimated by degrading the matrix

property only. The matrix mechanical property

retention ratio is expressed as [22]:
Fm ¼ Tgw � T

Tgo � To


 �1
2

ð4Þ

Where T ¼ To þ DT and T is the temperature

at which material property is to be predicted, To is
the reference temperature, DT is the increase in

temperature from reference temperature, and Tgw

and Tgo are the glass transition temperatures for

wet and reference dry conditions, respectively.

The glass transition temperature for wet mate-

rial is determined as [23]

Tgw ¼ 0:005C2 � 0:10Cþ 1:0
� �

Tgo ð5Þ

where C ¼ Co þ DC is the weight percent of

moisture in the matrix material, Co ¼ 0 wt.%

and DC is the increase in moisture concentration.

The elastic constants are evaluated from the

following equations [24]:

E11 ¼ Ef1Vf þ FmEmVm ð6Þ
E22 ¼ ð1:0� ffiffiffiffiffi
Vf

p ÞFmEm þ FmEm

ffiffiffiffiffi
Vf

p

1:0� ffiffiffiffiffi
Vf

p
1:0� FmEm

Ef2

� 	
ð7Þ

G12 ¼ ð1:0� ffiffiffiffiffi
Vf

p ÞFmGm þ FmGm

ffiffiffiffiffi
Vf

p

1:0� ffiffiffiffiffi
Vf

p
1:0� FmGm

Gf12

� 	
ð8Þ

n12 ¼ nf12Vf þ nmVm ð9Þ

where “V” is volume fraction and subscripts “f”

and “m” are used for fiber and matrix,

respectively.

The effect of increased temperature and mois-

ture concentration on the coefficients of thermal

expansion (a) and hygroscopic expansion (b) is
opposite from the corresponding effect on strength

and stiffness. Hygroscopic expansion coefficients

for fibers are taken as zero ignoring the effect of

moisture on the fiber. The matrix hygrothermal

property retention ratio is approximated as
Fh ¼ 1= Fm ð10Þ

Coefficients of thermal expansion are expressed

as [25]
a11 ¼ Ef1Vfaf1 þ FmEmVmFham
Ef1Vf þ FmEmVm

ð11Þ

a22 ¼ af2Vf þ VmFham þ VfVmz1z2
E11

ð12Þ

where z1 ¼ nf12FmEm � nmEf1ð Þ, z2 ¼ af1 � Fhamð Þ
Similarly, coefficients of hygroscopic expan-

sion are expressed as [26]
b11 ¼
Ef1Vfbf1 þ FmEmVmFhbm

E11

ð13Þ

b22 ¼
VmFhbm½ 1þ nmð ÞE11 � n12EmFm�

E11

ð14Þ

The nonlinear elastic foundation is considered

as Pasternak type with foundation nonlinearity. It

can be modeled as a nonlinear spring and a shear
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layer. The upthrust due to nonlinear elastic foun-

dation (Pasternak type) can be expressed as [27]

R ¼ K1Wþ K2 W
3

� K3

@2W

@x2
þ @2W

@y2


 �
ð15Þ

where K1, K2, and K3 are Winkler, nonlinear, and

shear foundation parameters, respectively.

The governing equations of motion and

proper boundary conditions are derived using

Hamilton’s principle:

La þ Lb þ Lcð Þ dþ Q� R ¼ Le d ð16Þ

Where

La ¼ La1

@2

@x2
þ La2

@2

@y2
þ La3

@2

@x@y

þ La4

@

@x
þ La5

@

@y
þ La6

Lb ¼ Lb1

@2

@x2
þ Lb2

@2

@y2
þ Lb3

@2

@x@y

Lc ¼ Lc1

@2

@x2
þ Lc2

@2

@y2
þ Lc3

@2

@x@y

Le ¼ Le1

@2

@t2

d ¼ u v w cx cy u1 v1 fx fy

h iT
Q ¼ 0 0Q0 0 0 0 0 0½ �T

R ¼ 0 0R 0 0 0 0 0 0½ �T

where Q represents nondimensional transverse

pressure and R is the nondimensional elastic

foundation parameter (Pasternak type with foun-

dation nonlinearity).

The choice of an accurate and cost efficient

computational model depends upon the geometry

and loading conditions of the structural elements.

The computational power of numerical methods,

especially finite element method, is well

established for complicated loading and geome-

try. FEM is employed as a necessity because it is

extremely difficult to solve analytically, highly
coupled nonlinear differential equations of lami-

nated composite plates subjected to different

loading conditions. On the other hand, the results

obtained by numerical techniques are also

required to be validated before being used for

the design purposes, and hence, there is a need

to develop and explore the possibility of using

some analytical or semi-analytical techniques for

the solution of nonlinear problems of laminated

composite plates, particularly in the absence of

experimental data. The wide spread availability

of powerful digital computers suggests examina-

tion, evaluation, and improvement on the existing

methods and development of the new approaches

to solve the complicated problems. The most

commonly employed analytical solutions in rect-

angular domain are based on Fourier series and

power series approximations of the spatial func-

tions. In spite of their poor convergence proper-

ties, these methods are extensively used for the

analysis of plates even today. Fast converging

finite double Chebyshev polynomials is used to

find out the analytical solutions of the laminated

composite plate under different loading condi-

tions and having different boundary conditions

that can serve as benchmark solutions.
Results and Discussions

The plate is assumed to be subjected to in-

plane mechanical, thermal, thermomechanical,

and hygrothermomechanical loadings. In-

plane mechanical loading consists of uniaxial,

biaxial (compression-compression, compression-

tension), shear loadings, and their combinations.

The temperature-induced loading is due to either

uniform temperature or a linearly varying temper-

ature across the thickness. The moisture concen-

tration is assumed to be uniformly constant

throughout the plate. The degradation in material

properties due to moisture and temperature is

taken into account using micro-mechanics

model, and the importance of temperature- and

moisture-dependent thermal andmechanical prop-

erties on the stability of the composite plates is

well elaborated. The elastic foundation is modeled

as shear deformable with cubic nonlinearity.
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Fig. 2 Convergence study

of the buckling load and

post-buckling response of

clamped, square,

antisymmetric angle-ply

[45/-45/45/-45], laminated

composite plate subjected

to in-plane uniaxial

compression
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An incremental iterative approach is adopted, and

load/temperature is incremented in small steps.

The criterion of sudden jump in characteristic

parameter “central deflection” (Wc) due to small

increment in the marching variable (loading/

temperature) or convergence failure in the itera-

tive procedure at a step is adopted as estimation

of the buckling/critical load/temperature. This is

very well demonstrated in Figs. 1, 2. Transverse

deflection at various points in midplane of the

simply supported, laminated composite [0/90]

square plate (a/h ¼ 10) subjected to in-plane
uniaxial compression is obtained and shown in

Fig. 1, just before and after the buckling. A clear

jump in the deflection is noticed indicating the

onset of instability/buckling. This gives fair idea

of the buckling load/temperature. In order to facil-

itate the buckling of plates, a small perturbation in

form of transverse pressure (Q ¼10�5) is applied

in all the cases.

In order to show the stability and accuracy

of the present solution methodology, the

convergence study for the post-buckling

response of a four-layered antisymmetric,
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angle-ply, clamped (CCCC), square, moderately

thick (a/h ¼ 20), laminated plate subjected

to in-plane uniaxial compressive loading is

carried out and depicted in Fig. 2. It is clear

that 9–10-term expansion of each variable in

finite double Chebyshev series gives quite good

convergence of the post-buckling response.

Hence, in the present work 9-term expansion

of the variables in Chebyshev series is taken in

the analysis.
Figure 3 shows thermal post-buckling load-

deflection curve of ½ð�45Þ2� laminated square

plate for four different cases of thermoelastic

properties along with the results due to Shen [1].

The results obtained are well compared with the

results due to Shen [1]. TD-E represents that

elastic constants are temperature dependent, but

thermal coefficients are temperature indepen-

dent, whereas TD-a represents that thermal coef-

ficients are temperature dependent, but elastic
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constants are temperature independent. It is

noted from the figure that buckling/limiting tem-

perature decreases and reserve strength reduces

significantly when temperature-dependent prop-

erties are taken into consideration.

It is also observed that effect of thermal expan-

sion coefficient when considered as varying with

temperature on stability of the plate is more pro-

nounced as compared to that of elastic moduli.

The effect of temperature-dependent properties

on buckling and post-buckling response is mainly

due to thermal expansion coefficient.

Figure 4 represents effect of classical and

nonclassical boundary conditions on the post-

buckling response of 4-layered, antisymmetric,

angle-ply, moderately thick (a/h¼ 20), laminated

composite, square plate subjected to uniform
temperature. It is noted that decrease in degree

of fixity reduces the buckling/limiting tempera-

ture; i.e., buckling strength of all edges clamped

(CCCC) plate is greater than buckling strength of

three-edge clamped and one simply supported

(CSCC) followed by two-edge clamped and two

simply supported (CCSS and CSCS) and one-

edge clamped and three simply supported

(CSSS). The buckling/limiting temperature of

all edges simply supported (SSSS) plate is lowest.

Figures 5–7 present the influence of Winkler

foundation parameters (k1), foundation

nonlinearity parameter (k2), and shear layer

(Pasternak) foundation parameter (k3), respec-

tively, on the post-buckling response of

4-layered, antisymmetric, angle-ply, simply

supported, square, laminated composite plate
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(a/h ¼ 10) subjected to in-plane uniform temper-

ature. It is observed that increase in foundation

parameters (k1 and k3) increases the buckling

load as well as post-buckling strength of

the plate, whereas increase in foundation

nonlinearity parameter (k2) increases the post-

buckling strength of the plate only without affect-

ing the buckling strength indicating herein that

for the accurate evaluation of the reserve strength
of the elastically supported plate, the foundation

nonlinearity should be considered. It is also

noticed that the effect of shear layer (Pasternak

foundation) on the stability of the plate is rela-

tively more than that of Winkler foundation.

The thermoelastic post-buckling response of

laminated composite plates subjected to in-plane

uniaxial compression and uniform temperature or

transverse temperature gradient (linearly varying
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temperature across the thickness of the plate) is

studied. Temperature-dependent material proper-

ties are considered. Figure 8 depicts the effects of

uniform temperature and transverse temperature

gradient on post-buckling response of clamped,

square, moderately thick (a/h ¼ 20), symmetric

cross-ply [0/90/90/0] and antisymmetric angle-ply

[45/�45/45/�45], laminated plates subjected to

in-plane uniaxial compression. There is decrease

in buckling strength of the plates when subjected

to uniform in-plane temperature-induced loading

along with in-plane edge compressive loading, but

in case of transverse temperature, the effect is

insignificant. It can also be observed that the

post-buckling strength of symmetric cross-ply

laminate is more than antisymmetric angle-ply

laminate under in-plane uniform temperature as

well as transverse temperature gradient.

The effect of moisture and temperature on the

buckling load and post-buckling equilibrium path
of a clamped, square, symmetric, cross-ply,

laminated plate under uniaxial compression is

shown in Fig. 9. It is observed that there is

decrease in nondimensional buckling load and

post-buckling strength with increase in moisture

and temperature. The decrease in the buckling

load and post-buckling strength is more pro-

nounced at higher moisture concentration and

temperature. The buckling load and post-

buckling strength is considerably reduced at

T ¼ 150 and C ¼ 1.5 % as the working temper-

ature (171
�
C) is closer to the lowered glass tran-

sition temperature (183.563
�
C) at increased

moisture concentration (C ¼ 1.5 %). The buck-

ling load is reduced by approximately 26.1 %

when the plate is subjected to moisture concen-

tration of 1 % and temperature increase of 100
�
C

in comparison to the buckling load of the plate

without hygrothermal loading. The reduction in

the buckling load is 62.2 % at increased moisture
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concentration of 1.5% and temperature of 150
�
C.

It clearly demonstrates the detrimental effect of

the increased moisture concentration and temper-

ature on the stability of the plate. It is also seen

that the effect of hygroscopic condition on the

stability of the plate becomes more significant in

presence of the thermal loading.

The hygrothermal effects on the stability of the

symmetric, cross-ply, laminated, square plate

subjected to combinations of in-plane uniaxial

and biaxial edge compressive loading along with

in-plane edge shear loading are shown in Fig. 10. It

can be observed that the buckling load is lowest

when edges have biaxial loading combined with

shear loading and highest for in plane uniaxial

loading. It is also noted that the buckling load is

almost same for biaxial loading and uniaxial load-

ing combined with shear loading, but the post-

buckling strength under biaxial loading is higher.
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