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Overview

An acceleration wave is a singular surface prop-
agating through a material body across which
the particle acceleration experiences a finite dis-
continuity, or jump, but the particle velocity
and deformation gradient are continuous. Accel-
eration waves may propagate in 1-, 2-, or
3-dimensional material bodies. For purely elastic
materials and for heat-conducting elastic mate-
rials, and for many other materials, it is possible
to deduce an explicit expression for the squared
speed of acceleration waves. It is also possible to
deduce an explicit nonlinear equation (of
Bernoulli type) for the growth of acceleration
wave amplitude, for which exact solutions may
be written down. Acceleration wave theory is of
great interest in mechanics generally because it
furnishes some of the few exact solutions that are
available in nonlinear mechanics. Chen [1] has
given a full account of most aspects of accelera-
tion wave theory. Straughan [2, Chap. 4] also
has given an excellent account of acceleration
wave theory, concentrating largely on various

nonclassical theories of heat conduction rather
than on the classical theory considered here.

We model acceleration wave propagation
in an inhomogeneous heat-conducting rod as a
problem in one-dimensional wave propagation
(see [1]). As a further source of inhomogeneity,
we allow the rod to have a slowly varying cross-
sectional area which requires modification of the
original model (see [3]). The speed of accelera-
tion wave propagation is found to depend on the
material inhomogeneity but to be independent of
the changing cross-sectional area. However, the
growth of wave amplitude is certainly influenced
by the changing cross-sectional area. Increasing
cross-sectional area renders the acceleration
wave less likely to build up into a shock wave
after a finite distance of propagation, while
decreasing cross-sectional area renders the accel-
eration wave more likely to build up into a shock.

Introduction

In this entry, we consider the propagation and
growth of acceleration waves in a materially
inhomogeneous, heat-conducting, nonlinearly
elastic rod. We also allow the rod to have slowly
varying cross-sectional area. The region ahead of
the wave may be prestrained and is not assumed
to be in either mechanical or thermal equilibrium.
The rod is modeled as a one-dimensional contin-
uum with modifications to allow for the slowly
varying cross section. The wave then turns out to
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be a longitudinal plane wave whose speed of
propagation is unaffected by the varying cross
section but whose amplitude growth is so
affected.

In the next section, the third, we give the basic
equations and kinematic jump conditions, and in
the fourth section, we make the usual constitutive
assumptions concerning the Helmholtz free
energy and heat flux and derive some associated
jump conditions. In the fifth section, we introduce
the equations of momentum and energy balance
and are able to deduce an expression for the
squared wave speed.

In the sixth section, “The Growth Equation,”
we derive an equation for the growth of wave
amplitude which is of Bernoulli type as is com-
monly the case for acceleration waves. There
follows a detailed discussion of the precise role
of each of the eight terms appearing in the coef-
ficients (26) and (25) of the growth equation (24).

In the seventh and final section, we consider
the behavior of the solution of the growth equa-
tion as the distance of propagation increases.

Basic Equations and Kinematic Jump
Conditions

The rod occupies the material region X>0 and
has slowly varying cross-sectional area A(X), so
that the motion is essentially one-dimensional.
An acceleration wave is a singular surface prop-
agating with positive speed U such that the
motion x(X,f) and its first derivatives, namely,
the velocity x and the deformation gradient
F = 0x/0X, are continuous but some of the sec-
ond derivatives are discontinuous, for example,
the acceleration X. The superposed dot denotes
the material time derivative. We shall assume
that the wave is initiated at the end X = O of the
rod at time ¢ = 0. The temperature 6(X, ¢) is taken
to be continuous, and we shall prove that 0 and
the temperature gradient G = 96/0X are also
continuous. The jump in any quantity ¢(X, )
across the wave front is defined to be

[pl=¢ —¢" (1)

where the superscript © signifies evaluation just
ahead of the wave and the superscript ~ signifies
evaluation just behind the wave. The wave front
derivative 0/0X denotes the space derivative
moving with the wave front, and we have
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where we have used the fact that the wave front
derivative 6/0X and the jump operator []
commute:
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for any function ¢ (X, ¢).
Across an acceleration wave front, we have

=0 (3

and we denote the nonzero jump in acceleration
by a:

] =a 4)

Using (1)—(4), it is possible to deduce the
following kinematic jump conditions which are
independent of any constitutive assumptions and
the equations of momentum and energy balance:
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Equation (5), is obtained by putting ¢ = x in
(2), and using (3);, the fact that 9x/0X = F, and
(4). Equation (5), is obtained by putting ¢ = F in
(2), and using (3),, (5);, and (4). Equation (5); is
obtained by successively putting ¢ = X and
¢ = F in (2), and eliminating [F] between the
resulting two equations. Equation (6) is derived
similarly.

Constitutive Equations and Associated
Jump Conditions

We make the usual constitutive assumptions
concerning the specific Helmholtz free energy
and the referential heat flux Q:

W = lp(F’H’)_() 0= Q(FaHaG?Y)

|

which are both taken to be continuously differen-
tiable as many times as required. In addition, Q
vanishes identically in F, 0, and X if G = 0:

O(F,0,0,X) =0 8)

expressing the fact that heat flux vanishes in
the absence of temperature gradient. X denotes
the explicit dependence of quantities on X,
that is, the X-dependence due to material
inhomogeneity.

The energy balance equation, see (20) below,
forces

(0] =0 ©)

The second law of thermodynamics requires
the thermal conductivity to be nonnegative, but
we shall require it to be strictly positive, that is,
the material is a definite conductor:

90

—%>0 (10)

K =

This requirement, together with (9) and (6),
yields

a0
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Thus, 0 and its first derivatives are continuous
across an acceleration wave front in a definite
elastic conductor (see [4]). Such a wave is said
to be isothermal.

The Piola-Kirchhoff stress T and the specific
entropy 7 are given by

4

N
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where p,(X) is the mass per unit volume of the
rod in the reference configuration. Since Y is
a continuously differentiable function of its con-
tinuous arguments, taking jumps of (12) gives

(13)

We now take jumps of the material time deriv-
ative of (12) and use the jump conditions (5); and
(11), to obtain

(14)

in which the elastic modulus E and the tempera-
ture coefficient of stress f§ are defined by

or or

E=3F p=- 20 (15)

Itis a universal requirement of elasticity that £

be strictly positive, and for most materials, f§ is

observed to be strictly positive. In the subsequent

analysis, we insist that E >0 but f is
unrestricted.

Momentum and Energy Balance and the
Wave Speed

The integral form of the equation of momentum
balance appropriate to a one-dimensional contin-
uum with varying cross section is
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d X2 X2
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in which X; and X, are any two positions and
b(X,t) is the body force per unit mass (acting
along the rod in the direction of X increasing).
The point form of this equation is
O(TA)

PoAF = ——L 4 pyAb

X (17)

or equivalently

d
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poX = Z_X (18)

After writing OT/0X =EOF/0X — BG+0T/0X;
taking jumps of (18); assuming that b is continuous;
using (4), (5),, and (11);; and assuming that the
acceleration wave amplitude « is not identically
zero, we finally obtain an expression for the wave
speed:

poU? =E (19)

which has been obtained by all authors on accel-
eration waves. The condition £ > 0 ensures that
U is real. Equation (19) gives the wave speed in
terms of quantities which may be assumed known
on the wave front. It has the same form as when
thermal effects are neglected (except that here £
is temperature dependent). The wave speed is
unaffected by the varying cross section.

The appropriate integral version of the
reduced energy equation is

X, X»
| etimax = [ pyaax - 00ace)
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(20)

with corresponding point form
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where r(X,?) is the heat supply per unit mass of the
rod. The heat supply is assumed continuous
across the wave front. Taking jumps of (21) and
using (14),, (5)2, (111, (10), (11)3, and (9)
finally yield

a0

x =(0p-U" 1QF)

(22)

It can be seen from (8) that if the material is in
thermal equilibrium ahead of the wave, then
Qr = 0Q/OF vanishes identically in F, 6, and X.

The Growth Equation

We now derive an equation governing the growth
of the wave amplitude a of a plane acceleration
wave propagating along the rod. Take the mate-
rial time derivative of (18) and use (2), to obtain
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The modulus T /OF occurring in the first and
third terms of (23) is replaced by p,U? from (15),
and (19). Jumps are then taken of (23) assuming
that b is continuous and remembering that 0is.On
rewriting all the jumps in terms of a using (5) and
(22) and noting that [¥] no longer appears, on
account of (19), we eventually arrive at an ordinary
differential equation for the acceleration wave
amplitude. It is a Bernoulli equation of the form
usually encountered in acceleration wave theory:

oa 2
—tua+ya =0 24
Sy T Haty (24)
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and
Er PoEF
X)) = = 26
) =5 5 = (26)
The second-order moduli occurring are
defined by
OE OE
Er=— Ey=— 27
FToF 7' o0 @7)

The coefficients p(X) and p(X) may be
assumed known on the wave front.

Equation (24) is the growth equation for
acceleration waves propagating into a materi-
ally inhomogeneous nonlinearly elastic heat-
conducting rod of slowly varying cross section
which may be prestrained and need not be in
either mechanical or thermal equilibrium ahead
of the wave.

For the remainder of this section, we discuss
the coefficients y(X) and u(X) defined by (26)
and (25), respectively. The coefficient 7y
depends only on the material density and the
elasticities and not on the varying cross section
or on thermal effects (except that the elasticities
are temperature dependent). In the special
case of linear elasticity, the second-order mod-
ulus Er vanishes and so, therefore, does ). If y
vanishes then, of course, (24) reduces to a linear
equation.

Turning now to the coefficient u, we see that
the sixth and seventh terms are absent if either the
material is linearly elastic (since then Er and Ej
vanish) or the material ahead of the wave is
quiescent. The fifth term vanishes if the material
ahead of the wave is in a state of thermal equilib-
rium. The fourth term may be thought of as the
most important explicit effect of thermal conduc-
tivity since terms five and seven are absent if the
material ahead of the wave is in thermal equilib-
rium. The fourth term is intrinsically positive,
vanishing only if f does, since 6 >0 and
O<k<oo. If f vanishes identically in F at
a particular temperature, then the result
Eyg = —0p/OF shows that thermal effects are
entirely absent from the equation of growth at
that temperature since then the fourth, fifth, and

last terms of (25) vanish. We recall that the
vanishing of f is also the condition for the
uncoupling of mechanical and thermal effects in
the propagation of sinusoidal waves through
a prestrained thermoelastic solid [5].

We continue our discussion of the thermal
terms of (25) by considering the role of the
thermal conductivity x. For a nearly perfect con-
ductor (i large), the fourth and fifth terms are
negligible, and any spatial temperature varia-
tions may be expected to equalize out rapidly.
However, 0 need not be small (though it must be
spatially uniform), and so the last term of (25)
need not be negligible. In the limit ¥ — oo, the
fourth and fifth terms of (25) vanish, and the
spatially uniform temperature 6(¢) acts merely
as a parameter. If 6 is constant, we are left with
the growth equation of purely mechanical elas-
ticity, which is well known to be synonymous
with isothermal elasticity. On the other hand, for
a nearly perfect insulator (x small), we may
expect the heat flux Q and all its partial deriva-
tives to be in some sense small so that, in partic-
ular, Qf is small and, unless f vanishes, the
fourth term of (25) becomes large and positive,
predominating over all the others. Therefore, in
the limit k — 0, we find that u(X) — oo unless 8
vanishes. The growth equation (24) retains
meaning in this limit only if we insist that
a(X) — 0 as u(X) — co. We must therefore
take a(X) = 0 in the limit, that is, there can be
no isothermal acceleration wave in a one-
dimensional elastic nonconductor (k = 0) unless
f vanishes. However, in general, an acceleration
wave in a nonconductor is isentropic but not
isothermal (see [4]) (an acceleration wave is
said to be isentropic if the entropy and its first
derivatives are continuous across the wave
front). It is clear from [6, Eq. (2.4)] that a one-
dimensional isentropic acceleration wave can-
not also be isothermal unless f§ vanishes, as is
consistent with our conclusion above that there
can be no isothermal acceleration wave in a
one-dimensional elastic nonconductor unless
f vanishes. We return briefly to the isentropic
acceleration wave which propagates in a non-
conductor when we discuss growth estimates for
a(X) in the final section.



6 Acceleration Wave Propagation in Inhomogeneous Heat-Conducting Rods

The only effect of the varying cross section on
the growth equation (24) is through the third term
in (25) which we may interpret in terms of three-
dimensional acceleration wave propagation. In
his investigation of three-dimensional accelera-
tion wave propagation in elastic materials,
Wright [7, Eq. (3.12)] introduced a quantity a'/?
(in his notation) defined on the wave front and
equal to the area of a ray tube (which varies due
to geometric spreading). The coefficient of the
linear term in Wright’s equation of growth
[7, Eq. (4.13)] contains the term

1o

22 1/2
3 5Xln(a )

which we claim to be analogous to our term

16

5 glnA
in the growth equation for one-dimensional rods
with slowly varying cross section.

It remains to interpret the first two terms of
(25). The first clearly arises from any inhomoge-
neities in density, and the second contributes only
if the wave speed varies as the wave front moves.
This could happen because of varying F' and 6
ahead of the wave and because of material inho-
mogeneities. To make more explicit the effects of
material inhomogeneities, we use (19) to eliminate
the second term of (25) in favor of §(InE)/dX,
which is evaluated ahead of the wave using (2);.
The resulting alternative expression for u(X) is
given by

190 10 19
WX) =7 5 Inp g o InE + 5 < Ind
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200U 2pU%k  4p U2\ 0X U
+ .
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(28)

the first two terms of which now exhibit explic-
itly the dependence of u(X) on material inhomo-
geneity. Because E does not depend explicitly
on time, we may write 6(InE)dX in place of
A(InE)oX.

Solutions of the Growth Equation

On substituting b = a~! in the growth equation
(24), we obtain the first-order linear equation

= b =1
5X u 7

which may be solved using the integrating factor
exp{— [u(X")dX'} to obtain
o o e (= f w(x) ax”)ax’

b= exp( jo (X" dX’)

where by = b(0). On inverting this fraction, we
obtain the solution to the growth equation (24)

aoexp( fo (X" dX’)
1+ aop fo (X exp( fo (X" dX”)dX’
(29)

a(X) =

in which ag (= 1/by) is the initial amplitude a(0)
of the acceleration wave when it begins propa-
gating from the end X = O of the rod.

We return briefly to our discussion of
the limiting case of low thermal conductivity
(x small) to recall that the coefficient u(X) is
dominated by the large positive thermal term
now denoted by

0p*

‘= 2poUx

(30)

On substituting this into (29) and assuming
7(X) to be integrable for small X, we find that

aX) =ape ™ {1+0( "} as (— o0

(31)

Any isothermal acceleration wave that is ini-
tiated in a nearly perfect insulator is therefore
very rapidly damped out over the very short
length scale {~'. This bears out our conclusions
in the previous section on the nonexistence
of isothermal acceleration waves in one-
dimensional nonconductors.
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If thermal effects are absent and the region
ahead of the wave is quiescent, then the coeffi-
cient u(X) may be integrated exactly so that (29)
reduces to

~1)2
PXAXUK)
“0{ 7o (0)A0)T(0) }

a(X) =

- d d ! *1/2
5% o (X)AXYU(X)
o [ 0O Sy 4
(32)

The quantity p,AU is the rate of mass trans-
port across the wave front. If, in addition, the
quantities p,, U, and y are constant, then (32)
further simplifies to give the wave amplitude in
terms only of the varying cross section A(X):

. [“N) A(O)
a(X) = X/
A(X){l + ao\/A(0)y [, \/%}

(33)

Chen [1, Sect. 13] gives many asymptotic
results for (29) with u(X) and y(X) varying, but,
for simplicity, here we consider only u and y
constant.

We now investigate conditions under which
both u and 7y are constant. The acceleration wave
is assumed to be propagating into a rod of uni-
form density, but slowly varying cross section, in
a state of thermal and mechanical equilibrium, so
that the first term and last three terms of (25)
vanish. If body forces are absent, we may further
conclude, from (17), that

(34)

It follows that a rod of varying cross section
cannot be in both a state of homogeneous stress
and homogeneous strain (except for the state of
zero stress and strain). In fact, (17) also yields an
explicit formula for the change in deformation
gradient at the wave front:

OF " _
X

T d
Y

E dX (35)

We therefore insist that the material ahead of
the wave be unstressed and unstrained so that the

wave speed U is constant and, consequently, the
second term of (25) vanishes, while the fourth is
constant. We shall specify the cross-sectional
area of the rod in the form
A = A(0)e** (36)
where ¢ is a positive or negative constant, so that
u defined by (25) reduces to the constant
H=e+{ (37)
with { defined by (30). The conditions imposed in
this paragraph are sufficient to force y also to be
constant.

In the case of constant u and 7y, the solution
(29) reduces to

—uX
apt
Tam(l—e™)/u #0
a4 18 39
PR — = 0
1+ apyX g

The behavior of this solution has been
discussed in [8] in terms of varying the initial
wave amplitude g for fixed material constants
u and y. However, our present objective is to
focus attention on the effects of varying cross
section on a wave with fixed initial amplitude a,
and fixed material constants p and 7. Thus, p
varies only as the parameter ¢ in (36) varies.
From (36) and (37), we see that a rod with
a smaller value of u may be regarded as being
more rapidly narrowing (or less rapidly broaden-
ing) than a rod with a larger value of .

We now analyze the behavior of the solution
(38) for fixed ag, y, and { > 0 with u varying.
First, we note that if 7 = 0, then a(X) = ape ¥
and if agy = —pu, then a(X) = ay. For a nearly
perfect insulator (x small), we have { large so that
u— oo, and (38); gives a(X) — 0, as before.
All other possibilities are included in the three
cases set out below. In case 1, a(X) becomes
infinite at a finite, positive value of X, and
in the remaining two cases, a(X) remains finite
for all X, and asymptotic expansions are given for
large X.

o Casel: u>0, apy< —porpu<0,apy >—p



The solution a(X)/ag increases monotonically
in X becoming infinite at the finite, positive value
of X given by

Xoo(pt) = —lln<1 +-£ )

K aoy

(39)

We may interpret this blowup as the formation
of a shock at X = X .

If £ =0, then from (38), blowup occurs at
X = —1/agy, positive for apy<0. This may
also be obtained by taking the limit 4 — 01in (39).
o Case2: u>0, apy > —u

a()e_”‘X

~N—_— efﬂX
A

as X — oo

a(X)
o Case 3: u<0, apy< — u

a(X) ~ —%{1 +0(e™)} asX — oo

We are now in a position to discuss the effects
of varying cross section on acceleration wave
propagation. In case 1, we can show that X, (1)
is monotonically increasing so that a shock forms
quicker in the more rapidly narrowing (less rap-
idly broadening) rod. In case 2, we see that the
amplitude decay is faster in the more rapidly
broadening rod. In case 3, the wave amplitude
approaches a finite limit for large X which is
larger in magnitude for a more rapidly narrowing
rod. In summary, a broadening rod tends to
dampen out the wave, while a narrowing rod
tends to concentrate it.
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Synonyms

Acceleration waves

Overview

Nonlinear wave propagation is a topic of great
interest in continuum mechanics. In fact, from a
qualitative viewpoint, the evolution models
described by quasilinear first-order hyperbolic
systems can be validated through wave processes.
The mathematical theory of quasilinear hyper-
bolic systems is dominated by the concept
of characteristic hypersurface across which
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a continuous solution may exhibit jump discon-
tinuities in its first-order normal derivatives.
Such a solution is called acceleration wave
or weak discontinuity and the characteristic
hypersurface, which acts as transporter of these
discontinuities, may be interpreted as a propa-
gating wave front.

Wave propagation phenomena in solids are
interesting both theoretically and practically.
Since solid materials are currently employed in
engineering applications at high temperatures,
even near the melting temperature Ty, it is
here considered the continuum model proposed
by Sugiyama [1], which incorporates explicitly
the microscopic thermal vibration of constitu-
ent atoms. In fact, this model, derived statisti-
cally mechanically from a three-dimensional
anharmonic crystal lattice by adopting the con-
tinuum approximation, is valid in a wide tem-
perature range up to Ty, and it is confined
within isotropic solids. For such a model, both
linear and nonlinear wave propagations have
been investigated at high temperature even
near the phase transition point [2—4].

The propagation of an acceleration wave in
a stratified medium consisting of different isotro-
pic solids is here investigated. Such a medium is
one of the simplest examples of a composite
material and it covers a broad range of applica-
tions, including sandwich panels in aircrafts, sub-
marine coatings, electrical devices with sandwich
structure, etc.

The coefficients of the transmitted and
reflected waves through each interface are explic-
itly derived and the critical time is discussed. As
an illustrative example, a semi-infinite solid
embedded with a thin layer of another kind is
considered and two possible control methods for
the formation of a shock are presented.

Basic Methodology

Layers of Isotropic Solids: Model Assumption
We consider a half-space X > 0 which consists of
an arbitrary number of region S; defined as

Si={X,1): X; <X<X;,,t >0} i=0,1,2,...

and we denote by D, the straight line separating
S;and S;, inthe (X, ) — plane. Each region S; is
occupied by a different isotropic solid in contact
with one another. The basic equations, describing
the three-dimensional isotropic solid at a finite
temperature in plane symmetry, are obtained
from the general system proposed in [1] by
assuming that all the field variables depend only
on the position X and time ¢, as follows:

aV,' 0

pi’fﬁ_@ix(’ri”) =0
0 1, 0
Pnca<¢m+5"1) _6_X(Vz"Tn<1) = (1)
v,
o X

where the subscript i refers to the particular iso-

tropic solid occupying the region S;. Further-

more, we also have the following:

« vis the velocity.

Pes T, ¢, are, respectively, the mass

density, the Piola-Kirchhoff stress tensor, and

the internal energy density in the reference
configuration.

« F| = (g—;) is the first column vector in the
deformation gradient tensor F with x the posi-
tion vector in the current configuration.

All quantities are expressed in terms of
the dimensionless velocity q, the potential
energy density g, and the deviation of the dimen-
sionless temperature 7 from a reference equilib-
rium state

Q Q’
V:Eqa Tkl :?pIC(VFIG)

QO (3 (kT
¢K?<§(7+’>”)

In (2), Vyf = g—fv, Q and o~ ! are, respectively,
the microscopic frequency and microscopic
length characteristic of the solid occupying S;,
while D is the depth of the atomic pair potential
between the constituent atoms in the solid, kg is
the Boltzmann constant and 7 is the absolute
temperature at a reference equilibrium state
which we assume as a reference configuration.
The model under consideration explicitly takes

(2)
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into account microscopic thermal vibrations of
the constituent atoms through a symmetric tensor
g(F,r), which describes the deviation of the
atomic thermal vibration from a reference equi-
librium state, and it is related to F and r by the
following state equation:

ksT D
1+g)Veo=——(14+-—r|1
(1 +g)Vse 21)( kBTr> ®)

with 4 the dimensionless mean square displace-
ment of the thermal vibration of the constituent
atom at a reference equilibrium state, 1 is the
identity matrix.

In what follows, we adopt for o(F,g) the
following expansion form:

o(F.g) = o+ Buli + Boft + Bsla + Balrla + Bsly + Bl
+B4ls + BsI3 + Bol3 + Brole + Biils + Biolo
+Bishy+ Bralids + Bishily + Bilals+ Biol]
+Prslals + Brolals + Baoli1a + Bor I

(4)
where the basic invariants are defined by

L =gi, h=gigu, I3=8u&k&ji

I4=Bs—3, Is=(By—0g)(Bs— 0st)

I6 = (B — 8) (Bip — O1p) (Bps — Ops ) 117 = 85t (Bus — S15)
Is = gps(By — 051) (Bip — 01p), 1o = gip&ps(Byt — )

(5)

being B = FF! the left Cauchy-Green tensor.
The explicit expressions of the expansion coeffi-
cients 's, which depend on the temperature T
and on the material under investigation, have
been estimated in terms of the Morse-type atomic
pair potential [3].

Outline of the Wave Propagation Theory
Since we are interested to study the propagation
of acceleration waves in layers of isotropic
solids, we briefly summarize the main results
concerning the one-dimensional wave propaga-
tion theory for hyperbolic system. In continuum
theory, the physical conservation laws are usually
expressed as

oG’(U) N oG (U)
ot 19).¢

=0 (6)

where G° and G are N-components column
vectors depending on the field vector U € RV,
We suppose the system (6) to be hyperbolic in
the time-direction, namely, the eigenvalue
problem

(VuG — VVyG")d =0, 1(VyG — VVyG®) =0
(7)
has only N real eigenvalues (characteristic
speeds) V = V(U) and a complete set of linearly
independent right d and left 1 eigenvectors. If all
the eigenvalues are distinct, then the system (6)
is said to be strictly hyperbolic, whereas if V1)
has multiplicity »#, then n¢ linearly independent
eigenvectors d; and 1;, must correspond to 1428
For such a system, it is possible to consider
a particular class of continuous solutions,
usually known as weak discontinuities or
(in continuum mechanics) acceleration waves,
having a jump in the normal derivative across
a moving front X(r) of Cartesian equation

p(X, 1) =0:
e [3] e

[]= lim (-) — lim (")

p—0* p—0~

where the square brackets indicate the jump, U
and U; denote the known unperturbed field
ahead X(r) and the unknown perturbed field
behind X (#), respectively. In the one-dimensional
wave propagation, the following results hold [5]:
» The normal velocity is equal to a characteristic
speed evaluated at Uy, V(Up) =7,
C): 4X — y(Uy), is the associated charac-
teristic curve.
+ The jump vector IT belongs to the subspace of
the right eigenvectors corresponding to
V(U())i

m
=7 wd;(U) (8)
J=1
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« The amplitude coefficients 7/ satisfies
a system of n# Bernoulli equations [5] which,
if m/ = 1, reduces to only one equation for

TEl:TL'Z

d
T oy (VoV - d)y 7 + b(t)m = 0

dt
o0 = {ar (v -vun) G )

ol ),

where 4 =24 V(Uj)% stands for the time
derivative along the characteristic lines C(") and
the subscript “0” indicates the quantity evaluated
in the unperturbed field Uy. If the wave satisfies
the genuine nonlinearity condition, that is,
(VyV-d) #0, the discontinuity becomes
unbounded in a finite time #. (critical time)
when the weak discontinuity evolves into
a shock wave.

Wave Propagation Through a Stratified
Medium

Acceleration Wave Through a Layer

In order to study the propagation of an accelera-
tion wave through the stratified medium herein
considered, firstly we focus our attention on
a fixed layer §;, which, without loss of generality,
we suppose to be the first layer Sy. The model
under consideration (1), bearing in mind (2),
admits the hyperbolic conservative form (6)
with the field vector U = (q,F; )" and

G'(U) = (p2™'Qq; po Q347 +3 (% +7) +0)i 1)’
G(U)=—(p,a2Q*Vy,0; p.aQ’q-Vy,0; oc’qu)T
(10)

Therefore, the characteristic equation (7)
gives rise to three different kind of waves
whose dimensionless characteristic velocities

Vo= (&V) 5+ evaluated at the thermal equilib-

rium state U= (O,O,O,I,O,O,O)T, are given
by [3]

~2

Voo =4 (2(ﬁ6 +87)

IBi(a+b
—M) longitudinal waves
So

_ AB4(3B4+285)
(a+2b)

(a—Db)(a+2b)

‘705 =0 standing waves

~ 2042
Vor = (4ﬁ7 - s

a—

> double transverse waves
S

4 1
a5§ﬁ1+2ﬂnﬁ2+2;»ﬁ37 bE§ﬁ1+2)Lﬁ2
It turns out that

(=)

- ~+) _ ()
VOL

<V <0<V <V (11)
where () and (-) indicate that the corresponding
wave propagates in the positive and negative
X — directions, respectively. In particular, we
focus our attention on the fastest acceleration
wave, that is, a longitudinal acceleration wave

propagating with velocity ‘7402) in Sp. Since the
unperturbed field U is constant the coefficient

b(t) occurring in (9) vanishes and the amplitude
mo(¢) is given by [3]

To

no(t) = ———— 12
R ey .
V()L
where T, is the initial amplitude and

o=~V (VuVe, ~d§L>ﬁ. From (12) it is

. . ~t —
easy to ascertain that if (VU VoL 'd&)— 7o <0
U

holds, the critical time tf-o ) is

0) 1

0 _
t(' - ~ (13)
(VoVa ~dO+L)ﬁ 70 Qo

Associated to (13), we have the critical dis-
tance Xﬁ") , namely, the distance passed by the
acceleration wave before the shock formation,

X0 = 5510y Vi 1

c c

(14)

so that the interaction between the longitudinal
wave and the straight line D; (separating So
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from S) occurs if and only if the impact time #, is
less than tf.o >, that is, the thickness Ly of Sy must
satisfy the following condition:

()
VOL

Ly < — -
(Vi i) 7

From (13), (14) it follows that the behavior of
the critical time as well as the critical distance is

influenced by the term (VU \7(()2) -dép)ﬁ. In

Fig. 1, the temperature dependence of both the
dimensionless propagation speed V. and
Vu V, -d; evaluated at U are shown, for different
metals, up to the melting point. The numerical
results are consistent with the experimental data,
although the data available are those observed
at temperatures that are much lower than Tj,. In
the temperature range near the melting point
the present theory predicts that, as T tends to T,
from the low-temperature side, the propagation
speeds decrease rapidly but their values are, how-
ever, finite.

Reflected and Transmitted Waves at an
Interface

Now we investigate the propagation of the fastest
longitudinal acceleration wave generated at Py
through the next layers. Therefore we suppose
that in each region §;, the field variables are
continuous while its first derivatives suffer

jumps across the characteristic of the system (1)
and we assume that the impact time of the accel-
eration wave propagating in S; with the line D;
is less than the critical time in S;. This last
assumption means that the considered accelera-
tion wave does not evolve into a shock wave
before reaching the line D;.,, separating two
adjacent regions S; and S;+;. Such a situation
can be described by assuming that the coefficients
of the field equations are piecewise continuous
functions with discontinuities occurring across
Diy1. A general theory of quasilinear hyperbolic
equations with discontinuous coefficients was
first developed in [7-9] and later, more system-
atically, in [10].

Since the interface line D;; acts as a strong
discontinuity (shock line) for U, that is, it suffers
a jump across D;;|, the field variables are
connected by the Rankine-Hugoniot jump rela-
tions, which, for a general conservation system
(6), are as follows:

(5G"+G)p = (sG°+G),,

i+1

(15)

being s the shock speed.

Therefore, when the longitudinal wave propa-
gating in So meets the interface Dy, it splits into
reflected and transmitted waves that, owing to
the hyperbolicity of the governing system, prop-
agate along the characteristics. Since the shock
velocity is equal to the characteristic velocity
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Acceleration Waves in t a
Layers of Isotropic Solids
at Finite Temperatures,
Fig. 2 Propagation of an
acceleration wave through
a stratified medium.

Ci., Cj, are the
characteristic curves
associated, respectively, to
the longitudinal and
transversal waves
propagating in the layer S; \

‘e
%
.
.
0
.
*

.
.
.
.
v,
.

s = \70 =V, =0, it follows from (11) that the
evolutionary Lax conditions [11] are satisfied so
that the solution is physically meaningful. There-
fore we have two reflected waves along the char-

acteristic propagating with the velocities \A/Jéz),
f/g;) and two transmitted ones propagating with

the velocities ‘7(12), Vi;) (see Fig. 2).

The amplitudes of the reflected and transmit-
ted waves in terms of the incident one can be
determined by following the procedure given in
[10]. We denote by Uf)R) and UED the reflected
(in Sp) and transmitted (in S;) field vectors,
respectively, so that we have

R — R R
U(() '=U+ Mo, + HéL) wor, + H(()T) Cor

T _ 1 T T
U(1 '=U+ H(1L>‘P1L + H(1T)801T (16)

In (16), Iy, ng), Hg;) are the incident and
reflected discontinuity vectors transported along
the characteristics ¢, Yo, Por Propagating with
velocities 1732), 175)_) , \72;), whereas H(l?, H<1TT>
are the transmitted discontinuity vectors along

. . -
the characteristics ,;, ¢,7 with velocities Vi L>,
~(+ . . o
ViT). According to (8), the discontinuity vectors
are expressed as follows:

v

Mo = pdfy), Ty =y, df;)
e
;) = vudj;)

I = a1 a

where the coefficient y = my(#;) represents the
amplitude of the known incident discontinuity
and its expression is obtained from (12).
After differentiating (16) with respect to X and
taking into account (17), we obtain the
following:

— R - 1 1 2) 4(2
0 = ) )+ ) <
U = vt Pl 4

(18)

provided we choose, without loss of generality,
g _ Opq _ Yo _ dou _ Ooir _
X — X X X X

In order to characterize completely the trans-
mitted and reflected discontinuities, we need to
determine the amplitude coefficients involved in
(17). These, together with the acceleration of the
shock, are uniquely determined as solutions of
the algebraic system obtained by differentiating
the Rankine-Hugoniot relations (15) along the
shock line and by using (18) as follows:



14 Acceleration Waves in Layers of Isotropic Solids at Finite Temperatures

1 1 2
) = = = =0
oy eV
P =R ~(+)
Fo Vi + @ Vy
~
2[.1 \I"Oq)o VOL
R
— o)
o V
u=moln) = ( 5(+) OL —
0 (VU V d T o TTo L()
—2Q a—lQZ
q)o ( 72 3) II’() _ ( - 2)0
(pu2@), (27192%),
(19)

As a consequence of (19);, we notice that
neither transmission nor reflection is possible
along the characteristics corresponding to trans-
verse waves. Therefore, after interaction, we can
observe only one reflected as well as one trans-
mitted acceleration wave propagating with the
speed \7L so that, in what follows, we will drop
the subscript “L” in the coefficients of the
reflected and transmitted waves. The (19),
points out also that there is no acceleration
of the shock, as it is expected, being the interface
at rest.

Now, by means of an iterative approach,
we are able to investigate the reflection and
transmission of the incident wave across each
layer.

Let us consider the region S; and we specialize
the coefficients of the reflected and transmitted
waves at Piy = (Xiy1,ti41). Actually, the ampli-
tude 7; of the acceleration wave propagating in S;

and the corresponding critical time #.’ are as
follows:
Tli(ll')
m() = () (1)
+ (VU ViL 'diL )ﬁ Q,‘ﬂi,‘(l,‘)(l — l;)
) 1
() — ¢,
) = — -
( (VU szr) 'dg))ﬁ (7)€
oL
fivt =i +——, fo=0, Li=Xu1—X,
Q Vie
i=0,1,...

with 7;(¢;) = v; the coefficient of the transmitted
wave at D;. Therefore in order to have a critical
time greater than it would be in absence of inter-
action, we must require that the weak discontinu-
ity of the incident wave velocity decreases

" >] >0
(see [12]). The interaction between the accelera-

tion wave propagating in S; and the interface D,
is possible if the following condition holds:

through each layer, that is, {VU VI(Z

7,

d’(L+)>ﬁ TE,'([,')OC,’

L < — (21)

(Vv

so that under assumption (21), the acceleration
wave never evolves into a shock wave in the
region S;.

After a simple algebra, the reflection and trans-
mission coefficients, in each layer S;, are deter-
mined in terms of the initial amplitude 7y of the
incident acceleration wave in Sy as follows [6]:

7o 1 (Wi — @;0;)
Hiv1 = i
(1 — T Zkak> (‘Wi + @:6;)
k=0
Vil = il Xi,-H
(1 — T th)
k=0
where
(pl<a7293) i (OFIQZ) ]
O; = #7 [ ,17217
(P20 )i+1 («7'Q )i+1
~(+) ( . (+)) lL
V[L B VU dlL o
i ~(+) T () ’
Visir Vie
2
= 5/' ;¥
I 1
L J=0 \Pj + (I) 5 %o

An lllustrative Example

In order to show characteristic features of the
propagation of an acceleration wave in a stratified
medium, especially its peculiar temperature
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0 X. Xt

Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 3 A thin layer “1” of thick-
ness L; embedded at distance Ly in a semi-infinite solid
“0.” X! and X, are the critical distances in the solid “0”
with and without the thin layer “1,” respectively

dependence, we consider a semi-infinite solid
(denoted by “0”) in which a thin layer of another
kind of solid (indicated by “1”) is embedded at
a distance L as shown in Fig. 3. Furthermore, we
assume that the thin layer of thickness L, is per-
pendicular to the X — axis and that the longitu-
dinal acceleration wave (excited at X =0)
propagates through the layered solid in the posi-
tive X — direction.

The subsequent analysis will be devoted to
investigate the effects of the embedded thin
layer on the shock formation arising at the critical
time and consequently at the critical distance.
Actually, the critical distance X/ is related to
X., critical distance in the absence of the thin
layer, as follows:

Xﬁ- =X+ F(er - LO) + ALI (22)
where the dimensionless quantities I" and A are
given, respectively, by the following:

= ((prcVL)O 7 (pKVL)l)Z >0

4 (pzch)() (pKVL)l N
~2 ~ ~ ~
Vo (@oVor +%P0 Vi) (VVie - dur)
~3 ~
200 Vi (VVor - dor)

A=1

(23)

The quantity p, V; is well known as the char-
acteristic impedance of the medium, whose

[5x10*]
10 . . ;
= e Ag -
Al
L 2| 4
Ni | |
— Pb
0 l 1000 2000
T(K)

Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 4 Temperature dependence
of the characteristic impedance p,V; for Ag, Al, Cu, Ni,
and Pb up to the melting point [6]

temperature dependence is shown in Fig. 4 for
different metals. From (22) it is straightforward
to see that there are two dimensionless charac-
teristic quantities I and A which play an impor-
tant role in the determination of the critical
distance X/. Therefore, we show explicitly the
temperature dependencies of I" and A up to the
melting point for three representative pairs of
metals “Pb-Al,” “Pb-Ag,” and “Ag-Cu.” Fur-
thermore, we assume that the temperatures of
the two metals “0” and “1” are equal to each
other, so that from (23) it follows that tempera-
ture dependence of I', for a fixed pair of metals,
does not vary interchanging the position of the
materials.

Case Pb-Al. Temperature dependence of the
characteristic quantities I' and A is shown in
Fig. 5 (solid line) up to the melting temperature
of Pb, which is lower than that of Al. We notice
the following:

1. T" decreases monotonously with the increase
of the temperature and changes drastically as
the temperature approaches the melting point
of Pb (Fig. 5a).
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i 0:Pb

Tu(Pb)

. Metal Pb with thin layer of Al. A increases
monotonously with the increase of the temper-
ature, it is always positive and its value is
much larger than that of I' in the whole range
of the temperature up to the melting point of
Pb (Fig. 5b).

. Metal Al with thin layer of Pb. A is always
negative, it decreases monotonously with the
increase of the temperature and changes

5(I)0
T(K)

1000

Acceleration Waves in Layers of Isotropic Solids at Finite Temperatures, Fig. 5 Temperature dependence of the
characteristic quantities I" and A for the pair of metals Pb-Al (solid line) and Pb-Ag (dashed line)

drastically as the temperature approaches the
melting point of Pb. The absolute value of A is
much larger than the value of I" in the whole
range of the temperature up to the melting
point of Pb (Fig. 5¢).

Case Pb-Ag. Temperature dependence of the
characteristic quantities I' and A is shown in
Fig. 5 (dashed line) up to the melting temperature
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of Pb which is lower than that of Ag. We observe

the following:

1. I' increases monotonously with the increase of
the temperature and it changes drastically as
the temperature approaches the melting point
of Pb (Fig. 5a).

2. Metal Pb with thin layer of Ag. A is always
positive, it increases monotonously with the
increase of the temperature and its value is
larger than that of I" in the whole range of
the temperature up to the melting point of Pb
(Fig. 5b).

3. Metal Ag with thin layer of Pb. A is always
negative, it decreases monotonously with the
increase of the temperature and changes dras-
tically as the temperature approaches the melt-
ing point of Pb. The absolute value of A is
much larger than the value of I" in the whole
range of the temperature up to the melting
point of Pb (Fig. 5¢).

Case Ag-Cu. Temperature dependence of the

characteristic quantities I' and A is shown in

Fig. 6 up to the melting temperature of Ag

which is lower than that of Cu. We notice the

following:

1. T is not a monotonous function of the temper-
ature and it vanishes at the critical temperature
T. = 1,184 K, and it changes drastically as the
temperature approaches the melting point of
Ag (Fig. 6a).

2. Metal Ag with thin layer of Cu. A increases
monotonously with the increase of the temper-
ature, it is always positive and its value is
larger than that of I in the whole range of
the temperature up to the melting point of
Ag. In the temperature region near the critical
temperature 7., if L; < X, taking into
account (22) and the behavior of I'", we have
X! ~ X, (Fig. 6b).

3. Metal Cu with thin layer of Ag. A decreases
monotonously with the increase of the temper-
ature, it is always negative and changes dras-
tically as the temperature approaches the
melting point of Ag. The absolute value of A
is much larger than the value of I" in the whole
range of the temperature up to the melting
point of Ag (Fig. 5c¢).

Control of Critical Distance

The position at which a shock wave emerges
from an acceleration wave may be checked by
using the relation (22). In what follows, for the
sake of simplicity, we focus our attention on
a thickness L; negligibly small (L; < X;) so
that, for finite values of A, by using the dimen-
sionless length in the unit X,, the relation (22)
becomes

X, =1+T(1-Ly), (0 < Lo<1)

(24)

where )Zi =X//X. and Lo= Lo/X.. Therefore,
even when the thickness L; is negligibly small,
the critical distance X’C is, in general, greater
than the critical distance X.. As seen clearly
from (24), the critical distance may be con-
trolled through the dimensionless position L
(Method-) or through the characteristic quan-
tity I' (Method-f3).

Method-o. The temperature of the metal “1” is
assumed to be the same as that of metal “0” and
the critical distance X[, is controlled by changing
the position Ly of the thin layer. As illustrative
cases, we consider the pair of metals Pb-Al
and Pb-Ag, for which the characteristic quantity
I' is shown in Fig. 5. The linear relationship
between the critical distance )Zi and the position
Lo of the thin layer at several temperatures
is shown in Fig. 7a and b. In both cases, the
relative change of the critical distance X’C -1
by the change of the position L, is at
most ~15 % [6].

Method-f3. The temperature of the metal “0”
is fixed at a certain temperature, say at the
room temperature 7 = 300K and the position
Ly of the thin layer is fixed too. Therefore,
the critical distance is controlled through
I' by changing the temperature of the thin
layer. The three representative pairs of metals
previously considered (Al-Pb, Ag-Pb, Ag-Cu)
are analyzed.

Metal Pb with thin layer of Al and vice versa.
When the thin layers corresponds to aluminum,
the temperature dependence of I', shown in
Fig. 8a, is weak and the relative change of the
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Acceleration Waves in Layers of Isotropic Solids at Finite Temperatures, Fig. 6 Temperature dependence of the
characteristic quantities I" and A for the pair of metals Cu-Ag [6]

critical distance )Z:. —1 is around 10% so that X/
cannot be changed much by the temperature
change of aluminum. In the opposite case
(Fig. 8b), the temperature dependence of I' is
more strong than that in the previous case and the
relative change of the critical distance Xi —1is
less than 14 %. However, the critical distance X;
can be changed more drastically with respect to the
previous case by the temperature change of Pb.

Metal Pb with thin layer of Ag and vice versa.
As itis to see from Fig. 9, the dependence of I on
the temperature of the metal “1” is weak if the
thin layer is Ag, whereas it is stronger in the
opposite situation. Therefore, the critical distance
X/, can be changed more drastically by the tem-
perature change of Pb rather than Ag.

Metal Ag with thin layer of Cu and vice versa.
Figure 10 shows that I" increases monotonously
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Acceleration Wa~\/res in Layers of Isotropic Solids at Finite Temperatures, Fig. 7 Linear relationship between the
critical distance X, and the position L of the thin layer at several temperatures for: (a) Pb-Al, (b) Pb-Ag [6]
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Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 8 Dependence of the char-
acteristic quantity I" on the temperature of the thin layer
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for the pair of metals Pb-Al: (a) thin layer of Al; (b) thin
layer of Pb [6]
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Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 9 Dependence of the char-
acteristic quantity I" on the temperature of the thin layer
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for the pair of metals Pb-Ag: (a) thin layer of Ag; (b) thin
layer of Pb [6]
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Acceleration Waves in Layers of Isotropic Solids at
Finite Temperatures, Fig. 10 Dependence of the char-
acteristic quantity I" on the temperature of the thin layer

for the pair of metals Ag-Cu: (a) thin layer of Ag; (b) thin
layer of Cu [6]
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with the increase of the temperature of Cu,
whereas, if the thin layer is Ag, then I is not
a monotonous function. In both cases, the value
of I' is small, but in the second one, it vanishes
for a critical value of the temperature.

It is remarkable that, even in such a simple
situation studied here, nonlinear wave propaga-
tion phenomena exhibit the wide variety of their
interesting aspects depending on the tempera-
tures of solids as well as on the geometrical of
a stratified medium.

Acknowledgments The Figs. 1, 4, 6-10 are reprinted
from [6] with permission from Elsevier.
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Synonyms

Acceleration waves;
Thermoelasticity

Micropolar continuum;

Definition

By the term “acceleration wave”, we mean an
isolated geometric surface that moves relative to
the material points, across which the acceleration
is discontinuous but the displacement and
velocity are continuous. More generally, we call
an acceleration wave a propagating surface across
which second derivatives of some fields undergo
discontinuity jump. In the theory of the nonlinear
thermoelastic micropolar continuum (called also
Cosserat continuum), acceleration waves relate
with some jumps of linear and angular accelera-
tions as well as second derivatives of tempera-
ture. Acceleration waves are similar to sound
waves in solids; they also relate with the locali-
zation of deformations in solids.

Overview

Analytic solutions in the theory of the propaga-
tion of nonlinear waves are exceptional, and
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acceleration waves present one of the exceptions.
An acceleration wave (or a wave of weak
discontinuity of order 2) is a solution to the
motion equations of continuum that possesses
discontinuities in the second derivatives on
some surfaces that will be called singular. It
means that the acceleration wave is represented
by a traveling surface which is a carrier of
discontinuity jumps of the second derivatives of
a solution with respect to the spacial coordinates
and time, whereas the solution and its first
derivatives are continuous in some surface
neighborhood. From the mathematical point of
view, existence of acceleration waves closely
relates with hyperbolicity of the dynamic
equations or their ellipticity for the equilibrium
equations. Existence of acceleration waves in any
direction is equivalent to the fact that all
eigenvalues of an algebraic spectral problem for
the acoustic tensor are positive for any direction
of wave propagation.

From the physical point of view, the
hyperbolicity of the equations of motion is
a natural property of dynamics of elastic media
as well as ellipticity is a natural property of its
statics. The violation of hyperbolicity (or
elipticity) means that discontinuous solutions
may appear. Such solutions may model
shear-bands, phase transitions, interfaces, frac-
ture, defects, slip surfaces, and other phenomena.
So, the algebraic criterion for such phenomena is
important in mechanics of materials.

The investigations of acceleration waves in
nonlinear elastic and thermoelastic media are
performed in many works, see [1, 2]. Accelera-
tion waves in elastic micropolar media are con-
sidered in [3]. In a micropolar continuum, each
material particle has six degrees of freedom; they
are three translational and three rotational
degrees of freedom. Besides ordinary stresses
there are introduced couple stresses. This gives a
possibility to describe micro-inhomogeneous
media, for example, foams, cellular solids,
lattices, masonries, particle assemblies, magnetic
rheological fluids, and liquid crystals. A generali-
zation for elastic and viscoelastic micropolar
media is presented in [4]. The relation between
the existence of acceleration waves and the

condition of strong ellipticity of the equilibrium
equations was established in [5—7]. The relation of
the ellipticity to localization phenomena in
micropolar elastoplasticity is done in [8].

In what follows we use the tensor notations as
in [7, 9].

Motion and Thermoconductivity
Equations

The motion of a micropolar media is described by
two kinematic variables:

x=x(X,1), dx=dg(X,1), K=1,2,3

(1)

The vector x describes the position of
a material point in the actual configuration at
instant ¢, while X describes the position of the
material point in the reference configuration. dg
are called directors; they are attached to each
material point. dg describe the orientation of the
material particles in the actual configuration. For
micropolar media, dg constitute orthonormal
frame, and so d; - d,, = Oyn, Where Oy, is the
Kronecker symbol.

We introduce three orthonormal directors D;
in the reference configuration. For the sake of
simplicity, we choose D;(X) = d;(X,0). Next,
we introduce the proper orthogonal tensor
H = dx ® Dg, detH = 1, called microrotation
tensor, where () is the tensor product. H
describes relative microrotation of a particle
of the micropolar media. Kinematics of
a micropolar medium is depicted in Fig. 1.
Here N is the unit normal to the boundary of the
body in the reference configuration.

The linear velocity is given by the standard
relation v = x where the overdot denotes the mate-
rial derivative with respect to ¢. The angular veloc-
ity vector, called microgyration vector, is given by

m:—%(HT-H)X (2)

where the dot denotes the dot (inner) product and

(...)" — transposed. Symbol (.. .), stands for the
vector invariant of a second-order tensor, [7, 9].
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Acceleration Waves in Nonlinear Thermoelastic
Micropolar Media, Fig. 1 Deformation of a micropolar
body

In particular, for a dyad a®b we have
(a®b), =axb, where x is the vector (cross)
product. Relation (2) means that w is the axial
vector associated with the skew-symmetric
tensor H' - H, see [7, 9].

The equations of motion, which represent
the local balance of momentum and of moment
of momentum (the balance of angular momen-
tum) for an arbitrary part of the micropolar body
in the reference configurations, are [1, 7, 10],

Div T, + pf = pv

DivM, + (F-TL) + pm = pyo ®)
Here T, and M, are the first Piola—Kirchhoff
stress and couple-stress tensors; F = Grad x is
the deformation gradient; Grad and Div are the
gradient and divergence operators in Lagrangian
coordinates, respectively; p is the mass density in
the reference configuration; f and m are the
vectors of mass forces and mass couples,
respectively; and py is the scalar measure of the
rotational inertia of a particle.

In heat conductive media (3) are
supplemented with the Lagrangian heat
thermoconductivity equation [10]:

pOn = —Div q + ph 4)

where 0 is the temperature, 7 the specific entropy,
q the heat flux in the reference configuration, and
h the density of external heat source.

The constitutive equations of a Cosserat
thermoelastic continuum can be derived with the
use of the specific free energy = y(E, K, 0) as
follows:

T, :lepE7 M, :pH‘/jK
n=—¥y 4q=q(EK,0, Grad 0)
E=H" F-1 (5)

1
K=—Je: (H" - Grad H)

where E and K are the strain tensor and wryness
tensor, respectively, I is the identity tensor, and
= —I x I the permutation tensor, and the
double dot product : of two 3rd-order tensors
A, B represented in the Cartesian base i, is
defined as A :B = A Bl ®1,. Detailed
discussion on strain measures in the micropolar
continuum is given in [11].
In what follows we use the referential Fourier
law for q:
q = —k(0) - Gradf,

h-k(0)-h>0, Vh#0

(6)

where k is the positive definite thermocon-
ductivity tensor.

We assume i to be a twice continuously dif-
ferentiable function and vector function q to be
continuously differentiable. We use the follow-
ing notation:

_oy
" OE’

_ o
l//A,K _a—K7

_W

w,E lpﬁ_%a

Acceleration Waves

We consider motions of the continuum when
discontinuities of kinematic and dynamic quanti-
ties appear at a smooth surface S() that is called
singular (Fig. 2). For the quantities describing the
motion at S(¢), we suppose existence of unilateral
limit values. For the second derivatives of the
motion, the limits from each of both sides from
S(#) can differ, in general. A jump for a quantity
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Y+ [Y—
=lgf— )
|V
o———>
| N
S(1)

Acceleration Waves in Nonlinear Thermoelastic
Micropolar Media, Fig. 2 Singular surface

at S(¢) is denoted by the double square brackets,
for example, [y] =y —y~.

On the singular surface the following balance
equations must be valid:

pV[v] = —[T]-N
pyV[e] = —[M,]-N
pOVn] = [q] -N

(7)

where V is the intrinsic speed of propagation of
S(2) in the direction N and N is the unit normal
to S, see [10].

An acceleration wave (or weak discontinuity
wave or singular surface of the second order) is a
traveling singular surface S(f) at which the sec-
ond spatial and time derivatives of the position
vector r and of the microrotation tensor H have
jumps, while r and H together with all their first
derivatives are continuous. So on S(f) we have

[F] =0, [GradH] =0,

[v]=0, [w]=0

(8)

From (7) and (8) it follows [T.]-N =0,
[M,]-N=0.

Regarding the thermoelastic behavior there
are two types of acceleration waves. The first
one is the homothermal acceleration wave when
the temperature field and its first derivatives are
continuous at S(r):

[0] =0, [Grad] =0, M =0 (9

The second type is the homentropic (or
homocaloric) acceleration wave when the entropy
field and its first derivatives are continuous at S(t):

[[77]] =0, [[Grad 77]] =0, [[77]] =0 (10)

For the homentropic acceleration wave, the
Fourier condition holds: [q]] - N = 0.

Homothermal Acceleration Waves

Equations (8) and (9) imply continuity of the
strain measures E and K at S(¢): [E] =0,
[K] = 0. Hence, in view of the constitutive equa-
tions (5), it follows the continuity of the tensors
T, and M,, of the entropy density, and of the heat
flux vector:
[T] =0, [M]=0, [n]=0, [qf=0

Obviously the balance equations (7) are valid
on S(1).

In what follows we use Maxwell’s theorem
which states that, see [1, 2],

Theorem (Maxwell). For a continuously differ-
entiable field Y such that [Y] = 0, the following
relations hold:

[Y]] =-Vd, [GradY]=d®N

(11)

where & is the tensor amplitude of the jump of the
first gradient of Y; the tensor amplitude is a tensor
of the order equal to the order of Y.

Straightforward application of Maxwell’s the-
orem to the continuous fields of v, », T,., and M,
results in the system of equations at S(¢):

[v] = —Va, [Grad v]=a®N, [&]= —Vb,
[Grad ] =b®N, V[Div T,] = — [[TK]] -N,
V[Div M] = —[[M,]] - N

where a and b are the vectorial amplitudes of the
jumps in the linear and angular accelerations.

Using the motion and constitutive equations,
one can derive the following relations for a and b:

(Vg (N®H' -2)) N
+ (W gk -(N®@H" -b)) -N=V>H"-a,
(lrb,KE : '(N®HT~a)) N

+ (l//.KK"(N®HT-b)) ‘N =7V?H -b
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With matrix notation, we rewrite these in
a more compact form:

Q(N)-£€=V’B-£& (12)

where
£=(a,b)cIR®a =H" -a,b’ =H" - b, and

¥ ee{N} ¥ e {N}
¥ kei{N} ¥ {N}

Lo

For arbitrary fourth-order tensor G and vector
N that are represented in a Cartesian basis i
(k=1,2,3), we have used here the notation
G{N} = lemanNnik & lm

@(N) is the homothermal acoustic tensor in
the micropolar continuum. From the existence of
the free energy function v, it follows that @Q(N)
is symmetric. This provides that the squared
velocity of propagation for an acceleration wave
in an elastic micropolar continuum is real-valued.
The requirement that @Q(N) has to be positive
definite is necessary for existence of an accelera-
tion wave

@Q(N) =

)

£-Q(N)-£>0, VEA£0, VIN[=1 (13)

The inequality (13) coincides with the condi-
tion of strong ellipticity of the equilibrium equa-
tions for an elastic micropolar continuum [5]. The

condition can be represented in an equivalent form

d2
@W(E +7a’ @ N,K+ b’ @ N)| _, > 0,

UNIN| =1, a' #£0, b #0

Applying Maxwell’s theorem to ¢ and to
Grad 0, we get

V[Div q] = —[q] - N,
[(Grad 0)] = —Vg

[Grad Grad 0] =g ® N,

where g = gN is the vector amplitude of the jump
in the second gradient of the temperature which
satisfies the equation

gN-k(0) -N=py0(a" - gg - N+b"-y o -N)
(14)

Now, using again the matrix notation, we can
rewrite (12) and (14):
@y(N) - L= VB - L (15)

where { = (a’,b,g) € IR, @y, and 1By are
matrices with tensor components

[V ee{N} ¥ ex{N} 0
Qo(N)= | ¥ ke {N} ¥ kx{N} 0
L—poON-¥ gg —pgON-¥ gp N-k(6)-N
I 0 0
By= 1|0 I 0
0 0 O

Thus, an homothermal acceleration wave
exists only if (15) has nontrivial solutions and
the eigenvalues for the problem (15) are real
and positive.

Homocaloric (Homentropic)
Acceleration Waves

By the definition of an homentropic acceleration
wave, we have [n] =0. From this it follows
that [0] = 0. Applying again Maxwell’s theorem,
we introduce a scalar thermal amplitude ®
such that

Héﬂ — VO, [Grad0]=ON (16

If k is a positive definite, the thermal ampli-
tude is zero. This means that for a heat conductive
media, the acceleration wave is homothermal
one. For heat nonconductors, k = 0. This
assumption can be used if one neglects the heat
conductivity or considers very fast deformation
processes. In heat nonconductive media
a homocaloric acoustic tensor differs from Q, in
general.

In what follows, we will treat a heat conduc-
tive media only.
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Existence of Acceleration Waves

Acoustic tensor Q) is not symmetric, and 1B is not
positive definite, in general. However, the spectral
problem (15) has only real solutions. This statement
is analogues to Fresnel-Hadamard—Duhem theo-
rem in the nonlinear elasticity. But this theorem
does not guarantee existence of an acceleration
wave as problem (15) may have zero or negative
eigenvalues. For existence of acceleration waves,
all the eigenvalues of (15) must be positive for
any N. Thus, we should impose the additional
restriction on the constitutive equations
L-@(N)-L>0, VL#0, VN =1 (17)

Inequality (17) constitutes the strong elliptic-
ity condition for the thermoelastic micropolar
continuum.

Thus, the following theorem holds true.

Theorem. The condition for existence of a
homothermal acceleration wave for all directions
of propagations in a micropolar thermoelastic
continuum is equivalent to the condition of strong
ellipticity of the equilibrium equations of the
continuum.

Existence of acceleration waves in all the
directions and the condition of strong ellipticity
are local as they are defined at each point of the
continuum. In case of nonhomogeneous deforma-
tion, this means that the conditions can violate or
be valid in different parts of the medium.

As an example, we consider the physically
linear material which free energy has the form
of a quadratic function:

py = Wi (E) + W2(K)
2WH(E) = oy tr(E . ET) + op trE? + o5 tr 2E
+ ag(0 — 00) trE + c(0 — 0,)*
2W,(K) = B tr(K - K') + B, uK?* + B3 tr °’K
(18)
where oy, f, (k = 1,2, 3) are elastic constants, o
corresponds to the thermal expansion coefficient,

¢ is the specific heat capacity, and 6 is the refer-
ence temperature.

The acoustic tensor Q(N) is given by

Q,(N) 0
0 Q,(N)
pQ;(N) = Wige{N}
pQ,(N) = Wy kx {N}

Q(N) =

For constitutive equation (18), inequality (13)
implies

o0 >0, oy4+op+oa3 >0,
Bi+ B+ B3>0

Pr=0." )

If (19) are valid then the system of equations
for a physically linear material defined by rela-
tion (19) is strongly elliptic for any deformations.
Then the solutions of (12) are given by

o
Vip= - £, = (e12,0)
\/ p
Vi = /W’ £ =(0,N)

Vis = \/i7 45 = (e45,0)
Voo /PR g — o

where ey, e,, e4, €5 are arbitrary unit vectors in the
tangential plane to S(z) such that e, -e, =e;-
N=e,-N=0,e5-es=e,-N=e5- N=0.

Solutions (20), , describe transverse and lon-
gitudinal acceleration waves, respectively, while
(20)45 describe transverse and longitudinal
acceleration waves of microrotation. Vi in (20)
coincide with the limits of the phase velocities of
plane harmonic waves (acoustic waves) in linear
micropolar elasticity when the frequency of the
waves tends to infinity, see [10, 12].

(20)
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Synonyms

Acceleration waves

Overview

The theory of voids in nonlinear elastic materials
is outlined. This is a theory capable of describing
certain classes of porous media and is particularly
suitable for dealing with the motion of nonlinear
waves. This entry concentrates on the motion of
nonlinear acceleration waves in elastic materials
containing voids. A thermodynamic description
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is given of the theory of nonlinear elastic mate-
rials with voids, and then acceleration waves are
defined and it is outlined how to obtain the
wavespeeds and amplitudes. After this, more
involved theories of elastic materials with voids
are introduced which also allow propagation of
atemperature wave in addition to the usual elastic
and void waves.

Introduction

The object of this entry is to examine a class of
theory which is believed capable of describing
certain motions in porous media. This is the the-
ory of elastic materials containing voids devel-
oped by Nunziato and Cowin [1]. This theory is
particularly useful to describe nonlinear wave
motion and accounts well for the elastic behavior
of the matrix, being a generalization of nonlinear
elasticity theory. There are many studies involv-
ing the linearized theory of elastic materials
with voids; see, for example, the accounts in
Ciarletta and Iesan [2] or Iesan [3], but this
entry concentrates on wave motion in the fully
nonlinear theory.

The basic idea of including voids in
a continuous body is due to Goodman and
Cowin [4], although they developed constitutive
theory appropriate to a fluid. This they claim is
more appropriate to flow of a granular medium.
General descriptions of the theory of elastic
materials with voids and various applications
are given in the books of Ciarletta and Iesan [2]
and Iesan [3]. The topic of acceleration waves in
thermoelastic materials with voids is covered in
some detail in Chapter 7 of the book by Straughan
[5]1, pp. 291-330, and hence, this entry provides
an introductory account. Complete details may be
found in Straughan [5].

The potential application area for the theory of
elastic materials with voids is huge. In particular,
wave motion in elastic materials with voids has
many applications. Straughan [5], pp. 301, 302,
describes several application areas of immediate
interest including acoustic microscopy, produc-
tion of ceramics, and noise transmission through
buildings.
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Bodies and Their Configurations

Consider a body B deformed from a reference
configuration at time t = 0 to a current configu-
ration at time t.

Points in the reference configuration are
labeled by boldface notation X or indicial nota-
tion X, . In the current configuration X — x. The
mapping is thus

x =x(X,7) (1)
or
X = )C[(XA7[) (2)

The coordinates X, are material (or Lagrang-
ian) coordinates, whereas x; are spatial coordi-
nates (Eulerian coordinates).

In elasticity, one needs the displacement vec-
tor u of a typical particle from X in the reference
configuration to X at time ¢, S0

M[(XA,I) :X,'(XA,[) — X (3)

The velocity of a particle v; is

ax,'
Vi<XA7 t) = E |X constant
The deformation gradient tensor Fi4 is
defined by
axl-
Fiy =
AT X,

From expression (3), one finds the displace-
ment gradient to be determined as

Uis = 814[ - 8Xi
ATO0X,  OXa

—0ia = Fia — dia
Continuum Theory of Elastic Materials

with Voids

The balance equations for a continuous body
containing voids are given by Goodman and
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Cowin [4]. In this entry, use is made of the equa-
tions as given by Nunziato and Cowin [1] since
these are appropriate for an elastic body.

The idea is to assume that there is a distribu-
tion of voids throughout the body B. If (X, ¢)
denotes the density of the elastic matrix, then the
mass density p(X, ¢) of B has the form

p=vy (4)

where 0 < v <1 is a volume distribution func-
tion with v = v(X¢). Since the density or void
distribution in the reference configuration can be
different, we also have

Po = Voo

where p,,7,v0 are the equivalent functions
to p,y,v, but defined in the reference
configuration.

The thermomechanics of a body containing
a distribution of voids is governed by a system
of conservation laws. These are now outlined.
The balance of mass equation is

pldet F| = p,

Letting 7m4; denote the Piola-Kirchoff stress
tensor, the balance of angular momentum equa-
tion is

nF! = Fr!

The balance of linear momentum equation
may be written as

PoXi = Taia + pofi (5)

where f; is an external body force. A balance law
is required for the void distribution and this is
taken to be

Pk = hap + g + pol (6)

where k is a constant inertia coefficient, /4
is a stress vector, g is an intrinsic body force
(giving rise to void creation/extinction inside
the body), and ¢ is an externally supplied void
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body force. Finally, the energy balance equation
may be written as

Poé = Tai Fia +hava—gv —qaa +por  (7)

where ¢,¢g4 and r are, respectively, the internal
energy function, the heat flux vector, and the
externally supplied heat supply function.

A physical interpretation of equation (7) is
provided by Straughan [5], p. 303. One also
requires an entropy inequality. The Clausius-
Duhem inequality is employed, namely,

poi > — () ) +& (8)

where 7 is the specific entropy function and 6 is
the adiabatic temperature in the body.

An elastic body containing voids is defined in
Straughan [5] to be one which has as constitutive
variables the set

Y= {V07V7FiA70;0,A7V,A} (9)

supplemented with v. Thus, the constitutive the-
ory assumes

e=¢(Z,v), ma=m(Z,V), qa=qa(Z,V)
77277(2,")7 hA :hA(Z7"))a 828(27‘))
(10)

This is different from Nunziato and Cowin [1]
who regard 7n as the independent variable
rather than 6, and they also assume g4 = 0. The
Helmbholtz free energy function / is introduced as
normal by the relation

e=y +n0 (11)

Straughan [5] describes how the entropy
inequality (8) may be exploited using (9)—(11)
to deduce the relations

Y Fp(,04) (12)

hA = hA 7& hA(")v G,A) (13)

_ N
= Po av"A
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%4

Tai = Py m = ma # mai(v,04) (14)

W
a0

= n#n(r0a)
and then

e e(v,04)

To specify a material for an elastic body
containing voids, one needs to postulate a suit-
able functional form for = /(vo, v, Fia,0,v.4).
Such a form is usually constructed with the aid of
experiments. The functions g and g, still involve
v and this can lead to almost viscoelastic-like
behavior, cf. Nunziato and Cowin [1]. Other
writers, for example, Iesan [3] and Ciarletta and
Iesan [2], omit v from the constitutive list at
the outset. In this way, one deduces that g follows
as a derivative of the Helmholtz free energy,
Iesan [3], p. 7. However, it may be that some of
the desirable features of viscoelasticity are lost.
The wavespeeds of acceleration waves in this
case are derived in Iesan [3] and Ciarletta and
Iesan [2].

The system of equations which arises via the
above procedure results in what is effectively
a hyperbolic system for the displacement and
void fraction; however, the temperature equation
is essentially parabolic. Hyperbolic systems are
discussed in great depth in the book of Dafermos
[6]; see also the book by Whitham [7]. Therefore,
in the interests of clarity the first consideration is
of an acceleration wave in the isothermal case,
and in so doing one is able to see explicitly the
void influence.

Acceleration Waves

Assume now the temperature 0 = constant, then
from (11) and (12)

W = (vo,v,Fia,v ) (15)

Furthermore, to consider the propagation of an
acceleration wave in an elastic body with voids, it
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is sufficient to consider the momentum equations
(5) and (6) with f; = 0 and ¢ = 0. These equations
are thus

pO )C, = TEAl"A (16)

PokV =haa + g (17)

Definitions and properties of acceleration
waves in full generality may be found in the
books of Truesdell and Toupin [8], Truesdell
and Noll [9], Truesdell and Rajagopal [10],
Fabrizio and Morro [11], Chen [12], McCarthy
[13], and Straughan [5, 14]. A short but highly
illuminating article dealing with acceleration
waves is that of Varley and Cumberbatch [15].
This entry concentrates on an acceleration wave
in an elastic body containing voids. An accelera-
tion wave in an elastic body with voids in three
dimensions is defined as follows. The functions,
u; and v, are C! everywhere, but the second and
higher derivatives of u; and v are allowed to have
finite discontinuities across a surface S. Thus, an
acceleration wave is a surface S across which
Uj ey UitAs Ui ABy Ui ey WinA s UitAB s Ui ABC suffer at
most finite discontinuities, with the functions
and first derivatives u;, u;;, u; o continuous every-
where. The same continuity requirements hold
for v.

For a function A(x, r) which may be discontin-
uous across S, the values A" and 4~ are defined as
follows:

ht(x,t) = lin}S h(x,t) from the right

h™(x,t) = lirré h(x,t) from the left

X—

In particular, for a right moving wave, h* is
the value of 4 at S approaching from the region
which § is about to enter. The jump of % at S,
written as [A], is

[h]=h" —h" (18)

To proceed with an acceleration wave analy-

sis, general compatibility relations for a function

W(X,r) are needed across S. These may be
found in detail in Truesdell and Toupin [8], or
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in Chen [12]. Those required are now quoted. If
is continuous in IR> but its derivative is discon-
tinuous across S, then

W 4] = NaB, where B = [N®y z]  (19)

When ¢ € C'(IR?), then

[V 48] = NaN3C, where C = [N*NSy ]

(20)

In (19) and (20), N4 refers to the unit normal to
S but referred back to the reference configura-
tion. The relation corresponding to the Hadamard
formula in three dimensions is, cf. Chen [12]
(4.15),

(] = [¥] + UnB (21)

9
ot

where j = dy// Ot|x, Uy is the speed at the point
on S with unit normal N4 and B is defined in (19).

Upon expanding 74; 4 and h4 4 as functions of
their constitutive variables in equations (16),
(17), and taking the jumps across S, one finds
from equations (16) and (17)

.. on i on i
polii] = ﬁ [kl + 8vj( vkal (22
. oh oh
pok[V] = QT; [Xika] + 672 [v k4] (23)

Use of the Hadamard relation (21) leads to the
following relations between the jumps of the
second derivatives

Using these expressions in (22) and (23) and
defining the wave amplitudes a@; and b by

ai(r) = [,

one derives from (22) and (23)
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Po Nal Qn ar anAi NKNAb (24)
VK
Ooh
pokUrb = = NxNaa; + Qcb (25)

OF ik

where ;- is the (elastic) acoustic tensor
given by
Omg;
ir NkN, 26
0 K¥Na op (26)

and Q. is an “acoustic variable” associated with
the voids given by

oh
Qc—NKNAa—A
VK
Straughan [5], p. 307, shows that if

Ji = —poNaNg O*Y/Ov x OF s, then (24) and
(25) lead to the propagation conditions:

(poUxdy — Qij)a; = Jib

(pokUy — Q0)b = Jia;

(27)

(28)

As Straughan [5], p. 307, remarks, there are
various avenues to explore. For example, he
considers:

(a) a; = a(t)n;, alongitudinal wave.

(b) a; = a(t)s;, s; is a tangential vector to S,
a transverse wave.

(c) Body has a center of symmetry, then J; = 0.

In particular, in case (a), one deduces the
wavespeed equation as

.)2 =0
(29)

(poUx — Qininy) (pokUy, — Qc) — (Ui

This is a fourth-order equation for Uy. It
shows there are two waves: a fast wave and
a slow wave, each of which moves in the positive
and negative n; directions. Thus, there is essen-
tially an elastic wave and a wave associated with
the void distribution. This is seen clearly in case
(c) where the body has a center of symmetry for
then J; = 0, and equation (29) shows there are

two waves with speeds Uy = \/Q;nin; /po and
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Uy = \/Q./pok. The first of these is the elastic
wave whose speed is governed by the acoustic
tensor Q;, whereas the second is a void wave
whose speed is dictated by the void acoustic
variable Q.. In the general case, one may show
from (29) that there are two waves with
wavespeeds Uy = Uy, Uy = U,, and U; < Uy,
with U; and U, greater than or less than those of
the purely elastic or void cases which arise when
Ji=0.

By returning to equations (16) and (17) and
differentiating these with respect to time or with
respect to the variable X4, one may now proceed
to actually derive a Bernoulli equation for the
wave amplitudes a and b and solve this explicitly.
In certain cases, one finds a(#) and b(¢) blow up in
a finite time, a phenomenon associated
with shock wave formation, cf. Dafermos [6],
McCarthy [13], and Chen [12].

While one may consider the propagation of
acceleration waves in the non-isothermal case,
the above equations are not sufficiently general
to allow also propagation of a thermal wave.
Straughan [5] concentrates on three classes of
thermoelastic waves with voids, namely, those
corresponding to a Green-Laws-Lindsay theory
and those corresponding to Green-Naghdi theo-
ries of type II and type III. A general introduction
to thermoelastic bodies in these three theories and
in other situations capable of allowing the prop-
agation of a temperature wave may be found in
the book by Straughan [14]; see also the review
article by Hetnarski and Ignaczak [16].

Thermoelastic Waves with Voids

The object now is to consider a theory of voids as
developed by Nunziato and Cowin [1] but to also
allow for the possibility of propagation of a tem-
perature wave. Straughan [5] considers three such
possibilities based on thermodynamics of Green-
Laws-Lindsay and of Green-Naghdi type II and
type III. The first approach develops a thermo-
poroacoustic theory which allows for nonlinear
elastic effects and for the presence of voids, by
using the thermodynamics which utilizes a gen-
eralized temperature ¢ (6, 0) rather than just the
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standard absolute temperature 0, 0 being the
material derivative of 0.

The basic equations are those of balance of
linear momentum, void balance, and balance of
energy, and are, balance of linear momentum,

pXi = Taia + pF; (30)

void balance,

pki = hy s + g + pl (31)

and balance of energy,
P = —qaa+ TaiXia+ hava— gv+pr (32)

The thermodynamic development uses the
entropy inequality

o (aa
i ¢+(¢>,AZO

where 17 is the
¢ = ¢(0,0) (> 0) is a generalized temperature
function which reduces to 6 in the equilibrium
state. The Helmholtz free energy function ¥ is
now defined by { = ¢ — n¢.

Assuming the constitutive theory that

(33)

specific entropy and

lp,¢,ﬂ7ﬂAi,QA,hA,g (34)
depend on the variables
xi‘,Aavav,A707070,A (35)

the entropy inequality may be used to deduce the
relations

B : 0 1 9¢
¢*¢(0797V)77IA1*,08 /¢00
_p W (W09
ha 7p8v_,A’ §=7 (av 6v>
(36)
with the entropy given by
W 199
— /= 37
00 / 00 (37)
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Let, as in definition (18), [-] denote the jump
of a function across the singular surface S.
A void-temperature acceleration wave is defined
for equations (30)—(32) to be a singular surface
S across which x;,v and 0 together with
their first derivatives are continuous, but the
second and higher derivatives suffer a finite

discontinuity. If a;,B,C denote the wave
amplitudes,
a=1[], B=[, C=[] (38

then, expanding 74; 4, a4, and gu 4, using the
constitutive theory (34), (35), after some calcula-
tion, one shows from (30) to (32) that the ampli-
tudes satisfy the equations

8nA,
= UpyN,
M 50

(Qij = PURdi)a; c (39
Ohy

g

oh
)B NuNg =2 ¢

kUy — NaN,
<P AlNB 905

(40)

0
—ﬂNANBB

O, 0qa )
— Uy + NaN C=
(p('?@ ATB B ovp

80,
+ pUNNAd) % a;

(41)

where Q;; is the acoustic tensor, cf. (26), given by
(42)

After some calculation, cf. Straughan [5],
p. 313, it may then be deduced that there is
a plane wave whose wavespeed Uy satisfies the
sixth-order equation

(U~ Vi) 03~ U3
(VR ~ ORIV -

—- U7)
(Uy —U)Kr =0
(43)

In this equation the coefficients Ul%,,, U},, U %, K
and K are given by
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U2 = NANBVZ‘V' azilﬁ (44)
M I 8F5A(9Fj3
> NaNg 0%y
UP B k 8V’Avl3 (45)
NuNg 0%
U? = 46
T pymy 00405 (46)
RYP 2 2
K] :NANKVIV/ a lp a lp (47)
bymy  O0OF ;4 OOOF jx
K :NANBNRNS 0y Py (48)
2T kiymy  Ova00 95004

Straughan [5] interprets Uy, Up and Ur as
follows. Firstly, Uy, is the wavespeed of an elastic
wave in the absence of other effects. Next, Up is
the wavespeed of a wave associated with the void
fraction, while Uy is the wavespeed of a thermal
wave. One may then deduce that equation (43)
has three distinct real solutions Uy and three
distinct waves propagate.

A complete account of the amplitude behavior
is included in Straughan [5].

Straughan [5] also describes thermoelastic
void acceleration waves when one replaces 9,9
by 0 and o, where o is a thermal displacement
variable

t
o= / 0(X, s)ds + o (49)
to

where X is the spatial coordinate in the reference
configuration of the body with 0 being the abso-
lute temperature. In some ways, this is introduc-
ing the history of the temperature field into the
situation. This theory breaks down into two cate-
gories known as type II and type III depending on
whether o 4 is included in the list of constitutive
variables or not. If a4 is not included, one
arrives at a type II theory, whereas inclusion of
&4 leads to a type Il theory. In the case of type II
theory, one finds the possibility of three waves:
one due to the elastic displacement, one due to the
voids, and also one due to a temperature wave.
One can completely determine the wavespeeds
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and amplitudes. For type III theory, the situation
is more complex and in some ways resembles
classical thermoelastic voids theory where the
temperature equation is effectively parabolic.

Straughan [5] further describes a generaliza-
tion of the thermoelastic voids theory where
a microrotation vector is included, allowing for
rotation effects on the microstructure level. Here,
an acceleration wave analysis is possible, but the
analysis is surprisingly complex. Yet further
intricate features which may be necessary to
describe the intriguing effects being found in
nanomaterials are studied by Paoletti [17].
He develops a comprehensive nonlinear acceler-
ation wave analysis. Further recent articles
which are worthy of consideration dealing with
thermoelasticity and voids, and more exotic the-
ories based on these, are those of Aouadi [18],
Chirita and Ghiba [19], and Iesan and Scalia [20].
These articles deal with various aspects of
wave motion, and well posedness, including in
the now important situation where the elastic
tensor might not be positive definite. The last
mentioned area is very important in the study of
auxetic materials.
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Definitions

Aeroelasticity (AE) is the science which studies
the mutual interactions among inertial, elastic,
and aerodynamic forces acting on structural
members exposed to an airstream, and the influ-
ence of this study on design.
Aerothermoelasticity (ATE) is the science that
studies the mutual interactions among inertial,
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elastic, and aerodynamic forces acting on struc-
tural members under the combined effect of aero-
dynamic heating and loading.

Overview

The panel flutter is a form of dynamic aeroelastic
instability resulting from the interaction between
the motion of a high-speed aerospace vehicle’s
skin panel, typical of spacecrafts and missiles,
and the aerodynamic loads exerted on that panel
by air flowing past one side at supersonic or hyper-
sonic speed and to still air on the other side. Often
a skin panel encounters flutter and then a limit
cycle oscillation (LCO), which is an oscillation
bounded in amplitude. There have been many
incidents reported in the literature dating back to
the V-2 rocket of World War II, the X-15, the
Saturn launch vehicle of the Apollo program, and
continuing on to the present day [1-3].

One essential limitation of the linearized panel
flutter analysis is that it gives information only up
to the point of instability. Furthermore, the linear-
ized analysis is restricted to cases where the aero-
elastic response is small. Often this assumption is
violated before the onset of instability. Thus, to
study the behavior of aeroelastic systems in the
proximity of the instability boundary including the
postinstability region, the inherent nonlinearities
of structural and aerodynamic nature must be
accounted for. By using the Von Karman large
deflection plate theory combined with the linear
piston theory aerodynamics (PTA), one of the
most popular unsteady aerodynamic theories, it
was recognized that geometrical nonlinearities
due to moderate plate deflection, mainly creating
mid-plane stretching forces, can play an important
role in panel flutter [4]. The nonlinear panel
dynamic response, due to large deformations and
mutual interaction between the aerodynamic load-
ing and high order panel modes, despite the deter-
ministic nature of the panel equation, can be
oscillatory, quasiperiodic, limit cycle, or random-
like irregular chaotic [S]. Various nonlinearities
can influence differently the character of the
panel flutter boundary; these nonlinearities could
be of several origins, including structural or
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geometric, thermodynamic, aerodynamic arising
from flow characteristics, and material nonlinear-
ities. Furthermore, in the presence of thermal
effects, aerothermoelastic considerations have to
be considered in the design of space reentry vehi-
cles and high-speed aircraft, since theses effects
may produce deformations, stresses, and changes
in material properties that can dramatically affect
their aeroelastic behavior. In this sense, the struc-
tural panels of supersonic/hypersonic flight vehi-
cles can experience, among others, the thermal
flutter instability generated by the combined influ-
ence of the thermal field, unsteady aerodynamic
loads, elasticity of structures, and the dynamic
effects.

The effect of panel heating is twofold. First,
there is reduction in stiffness due to softening of
the panel material; second, thermal stresses are
generated due to mismatch in thermal expansion
coefficients of the panel and support structure.
These effects, in turn, affect the static and dynamic
behaviors of the panel [6]. The bulk of literature
dealing with flat and curved panels flutter is based
on the stress-strain equations including shear wall
and thermal effects [6—16]. In these works, quasi-
steady first-order or nonlinear piston theories and
Euler equations for unsteady aerodynamic have
been considered. Other aerodynamic models, per-
haps less computationally efficient, are also avail-
able and have been explored. In recent years,
viscoelastic materials, such as some composite
materials, have been widely used in the aerospace
industry partly due to their inherent properties to
reduce undesired vibrations.

Stability and vibration studies of plates and
shells with initial geometric imperfections are of
a significant importance in modern solid mechan-
ics. These structures are rather sensitive to small
deviations from their design shape. Experimental
and numerical studies conducted so far have
shown unambiguously that the basic cause of the
discrepancy between theory and experiment is
the initial deflections of the structure [7, 17, 18].
This means that generally, the influence of initial
deflections has to be studied within the frame-
work of large deflection theory, meaning
primarily dynamic instability (including flutter)
where imperfections play a vital part [18].
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Small deviations of the shell’s surface from its
idealized shape were also shown to drastically
reduce its resistance to panel flutter, a dynamic
instability of the shell, even though the deviations
were only on the order of one shell thickness or
less. Even the best manufacturing methods admit
this magnitude of imperfection in the fabricated
shell geometry [19]. Previous investigations
have suggested that detailed studies are needed to
better understand and explore the complex motions
that can be encountered in the presence of various
coupled nonlinearities. These studies are also
needed when it comes to system identification
and damage detection, since the vibration behavior
of the system needs to be clearly understood.

Aerothermoelastic Analysis
Methodology

Structural Modeling

To derive the aerothermoelastic governing equa-
tions of a curved panel, the geometrically
nonlinear theory of infinitely long two-
dimensional panels with some small initial cur-
vature is usually considered. The classical von
Karman nonlinear strain-displacement relation
for a general plate undergoing both extension
and bending in conjunction with the Kirchhoff
plate-hypothesis is adopted. The effects of ther-
mal degradation and Kelvin’s model of structural
damping can also be considered.

Let us consider an isotropic curved panel model
(Fig. 1) with a width a, infinity long length b,
thickness /2, maximum rise height H, and constant
radii curvature ¥, [20]. The thickness % is
small compared to the length a. In addition, b
is infinitely long as compared to a. The panel is
supported on the sides x = 0 and x = a. These
sides are fixed with respect to the longitudinal
displacements.

The displacements from the unstressed
state of the panel’s mid-plane surface in the x
and z directions are denoted by u# and w, and
the total transverse displacement of a given mid-
plane surface point after deformation is given by:

(1)

Wtotal(xa t) = W(X) + w(x, t)
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Herein w(x) indicates the initial undeformed
shape (initial geometric imperfection) of the mid-
plane surface, while w(x,¢) corresponds to the
transverse displacement of the mid-plane surface
relative to its undeformed configuration. The
strain ¢, of the mid-plane surface in the
x-direction and based on the von Karman
assumption is given by [4]:

1 .
& =Uy+ E (Wx)z + Waw, — W/%x

(2)

The subscript () , denotes the differentiation
with respect to x. The bending equation of motion
is given by [4, 21, 22]:

Mxx +Nx(w,xx+ l/éRx) +Pz =0 (3)
where N, represent the axial stress resultant,
M is the bending moment; furthermore,
M =DX where D is the panel stiffness
=ERr*/12 (1 —v?), E is the modulus of
elasticity, v is Poisson’s ratio, and R is the curva-
ture change of the mid-plane surface (= —w ).
The bending moment can be recast as:

M = —Dw. (4)
In (3), P, is the distributed load on the panel
and can be expressed as follows:

P. = —p,hwy + P} (x,1) + PI(x) + AB" (5a)

The first term in the (5a) corresponds to the
transverse inertial load, while the superscript (-)*
indicates an unsteady aerodynamic load and the
superscript (-)" indicates an initial static load.
BT is the thermal load defined as [8]:

hy2
J T(x,z) zdz

—h/2

(5b)

where o is the linear thermal expansion coefficient,
T(x,z) is the temperature increment from a free-
stress temperature T, and A in (5a) is the Laplace
operator. The material properties of the panel, £ and
o, are influenced by the thermal field as follows [7]:
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Fig. 1 Two-dimensional
panel with initial curvature
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E =Ey+ E\T = Eo(1 + e7T),

6a
oa=oy+oT =oo(l +orT) (62)

where

€T=E1/E()<O, OCT=O£1/OC() >0 (6b)

In (6b), er and oy are the coefficients associ-
ated with the thermal degradation. As a result of
the temperature dependence of the thermoelastic
material properties and of the spatially distrib-
uted temperature field, the thermoelastic coeffi-
cients of the material become functions of the
space variables, for example, £ = E(x) and
o = o(x). This implies that the structural panel
presents a certain level of nonhomogeneity [4].
Typical aerospace panel, such as a fuselage sec-
tion, wing and empennage panels, is usually sol-
idly connected to structural members of the
airframe. For this reason, it has been assumed
that o, — o, that is, the tangential stresses
act only in the x -direction. Physically, this stress
is generated by the constraint of the panel with
the members of the airframe. This condition
yields:

6. = Nofh = (EQ)/(1 =) (e, +ve,) = o
(7)

\

Moreover, when the flight vehicle travels at high
flight speeds regimes, due to aerodynamic heating,
the skin panel temperature could potentially reach
the high values of several hundred degrees. This
effect can result in a lower value of the flutter
instability boundary or in larger limit cycle ampli-
tude at the same dynamic pressure. This implies
that also the effect of the temperature should be
carefully considered for more accurate results. This
can be done including an in-plane tension o, act-
ing in the x -direction, due to the temperature [23]:

oy = —(E()/(1 = v))alx) T (3)

This implies that the total in-plane stress, in
the x -direction, can be expresses as:

Ox_total = Ox + UZ (921)
By substituting (2) in (7), assuming &, = 0,

and making use of (8) in (9a), the total in-plane
thermomechanical stress is obtained as:

Ox_total = (E(x)/(l - 02)

+ W W, — w/%x> —oa(x)(1+v)T (9b)
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Therefore, (3) becomes:
(D/M)W xxxx — Ox_totat(Wx + 1/Ry) = P./h =0
(10)
To evaluate the tangential stress component
Ox_rotal, ONE €Xpresses the average end-shortening
A, as[4,7]:

1 a
szaju(x,t)vdx (11)
0
Solving (9b) for u ., one obtains:
1
Uy = (1- 02)(va_t0tal/E(x)) ) (W.,X)Z
— W +w/Re +alx)(1+0)T (12)

In particular, the operator 1j )dx that

appears in (11) is applied to (12) for the particular
case of immovable edges x = (0,a), that is,
A, = 0, then the tangential stress 0y _yy yields:

1Cl
EJ(W‘X)ZdX
0
1 + [w oW cdx
R I 0 '
1—v?) [E(x)"d I
(1= fE) | |
0
— [or(x)(1+v)Tdx
L O d

(13)

Structural Damping Independent of Time
and Temperature

Structural damping for panels consists of both
material damping and frictional damping acting
at the panel supports. Support damping has not
been considered here, and therefore, conservative
results are likely to be obtained, that is, a lower
value of the flutter speed and larger LCOs than
the one would occur if this additional damping
component would be accounted for [24]. The
most widely used material-damping models are
the linear viscous and hysteresis models. It has
been proved that these damping models can sig-
nificantly influence the flutter boundaries and it’s

Aerothermoelastic Behavior of Flat and Curved Panels

extremely dependent on the type of model
employed. If only linear damping is considered,
the work by Ellen [25] provides a useful classifi-
cation of structural damping and showed which
classes are always stabilizing using spatial deriv-
atives arguments. The structural damping plays
an important role in the flutter stability with low
aerodynamic damping but would not affect sig-
nificantly the flutter boundary with high aerody-
namic damping. Fazelzadeh [22] showed that the
structural damping reduced the panel domain of
stability in linear analysis, whereas in nonlinear
simulation, damping can have a stabilizing or
destabilizing contribution.

From the mathematical point of view, struc-
tural damping independent of time and
temperature can be introduced into the system
by adding a term of the form (gu,d'w/0t0x)
to the Dbending terms of (10) and
(gm@'w/0tdx/) to the membrane terms of the
(13). Herein, g; is structural damping coefficient
and it is constant for viscous damping. gy, and g,
are bending and membrane damping coefficients,
respectively. In the following, it will be assumed
that these three damping coefficients are time and
temperature independent. Based on the Kelvin’s
model on elastic materials, E(x) is replaced with
the operator E(x)(1+ g,0/0r) [26, 27]. B
substituting (13) in (10), the aerothermoelastic
bending governing equations becomes:

0 0
D(l ""_gst) W oo — (1 +gsm@>

h
X

(1—v2) [E(x)" dx
0

e dx—i—jw W dx[ ~dx
y 0 0 0
—(1+4v) [a(x)Tdx
0
X (W,XX"' 1/R,) + pmhw,tt_P? (x,7) :Pimt(x)

(14a)

To improve accuracy and retain additional
physics into the model, one could consider a
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thermoviscoelastic problem. Hilton [28] described
the viscoelastic creep or relaxation functions and
how this should be used in the case of thermal
problems. Following Hilton one could recast the
thermoviscoelastic problem using the following,
general, constitutive equation:

t

ou(x,t) = J Eppl, 6,0, T, )] epn(x, 1) dF

t
- J El v, t,¢,T(x,7)] aT(x,7) d7
(14b)

where E* is the viscoelastic moduli, 7 is the
temperature function, and « is the thermal expan-
sion coefficient. The viscoelastic moduli can be
described by a Prony series [28]. The first integral
is the contribution of the stress from ordinary
strains, while the second integral is due to the
thermal stresses. Both integrals are hereditary
integrals meaning that a viscoelastic material
has memory. Following the development, one
could include this constitutive equation into the
model by re-deriving the panel stiffness, D.

Aerodynamic Modeling

The fluid-structure interaction model used here is
based on the nonlinear piston theory [29].
According to this theory, the radial aerodynamic
pressure p applied to the surface of the shell can
be obtained by analogy with the instantaneous
isentropic pressure on the face of a piston moving
with velocity v, into a perfect gas which is con-
fined in a one-dimensional channel; this pressure
is given by:

P60 oo = {1+ (7 = D[(y = 1)/2)(v-/es) )70
(15)

In the analogy, the local transverse piston veloc-
ity (downwash velocity) v, normal to the panel and
the undisturbed speed of sound c¢., may be
expressed in terms of the panel transverse displace-
ment w(x, ) in order to obtain the radial aerody-
namic pressure applied to the surface of the shell as
a consequence of the external supersonic flow:
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(16)

Herein poo, po, Ux,and y are the pressure, air
density, and air speed of the undisturbed flow and
the isentropic gas coefficient (y = 1.4 for dry air),
respectively. To study the nonlinear panel flutter,
in addition to the inclusion of geometrical non-
linearities, a nonlinear piston theory aerodynam-
ics (PTA) model is used. PTA is a popular
modeling technique for supersonic and hyper-
sonic aeroelastic analyses [4]. Retaining, in the
binomial expansions of (15), the terms up to and
including (v./cs)’ yields the pressure formula
for the PTA in the third-order approximation [7]:

VZ:W7r+UOC[W+W]’X; cic =YD/ Poo

P00 [poe =1+7(v:/co0)n
+h(r+ 1)/4][("2/500)77}2
+ O+ 1)/12)[(v/ o))

(17)

The linear term of this expression corresponds
to Ackeret’s formula for the quasi-steady pressure
on a thin profile in a supersonic flow field, whereas
the quadratic term is from Busemann’s formula for
My, >> 1. In (17), the aerodynamic correction
factor n = M /+/M?2, — 1 enables one to extend
the validity of the PTA to the entire low super-
sonic/hypersonic flight speed regime. Note that
PTA provides results in excellent agreement with
those based on the Euler solution and the CFL3D
codes and with the exact unsteady supersonic
aerodynamics theory [7]. Consider the flow only
on the upper surface of the panel U = Uy and
My = U /oo, that is, consider U =0 and
P~ = Pso; from (15) and (17), the aerodynamic
pressure difference can be expressed as:

Pf(x.t) =P — Do = 0Plpps =

= (2qu /M )n{ (1/U)w,
0+ W), [(1+9)/4)M
X [(1/Use)we + (7 +w) J°
+ [+ )/ 12M

X [(1/Usw, + i+ w), 1’}

(18)

where the undisturbed dynamic

qoo = PooUgo/Z-

pressure
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Thermal Loading
A linear temperature distribution 7' throughout
the panel thickness is considered:

(19a)

Note that this temperature distribution was
obtained via an exact analysis by Bolotin [21].
Using (5b) yields the thermal moment given by

1
Eah®T,./12(1 —v). A membrane temperature

distribution % (x), implying 71" (x) =0, will be
considered. This temperature distribution can cor-
respond to the steady-state flight regime of a high-
speed aerospace vehicle. Such a representation of

A _ 0 * _
Q{W,W(a:,z)} = (1 + gx;,Qoa—f) (1 + 5t,eTT(,.r>W,5¢5;

e —
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the temperature field is adopted here to reduce the
problem to an eigenvalue one [8]. Specifically,

0
T (x) is expressed as:

%(x) —T cos(m x/a) (19b)

#
where T is the temperature amplitude.

Aeroelastic Governing Equations

Substitution of (18) and (19) into (14a) and using
the nondimensional parameters, which are
presented in Appendix A, one can obtain the
geometrically  nonlinear  aerothermoelastic
governing equations of infinitely long curved
panels in the form of Q{W,W(&,7)} = 0, where

9
ot

Pstar

- 6em (1 + gstO
~~

bending resistance with thermal degradation effect

1 1
o ll/J 1 i dé] 12
0 (1 +(SE€TTL-,-)

0

pressure on plate

EllEN

1 1 ~
1 — 2 — __ __ h
? 3 J(W;) dé+ JW( W ed& — JWdfj| (W,éi + Z)
0

0

in—plane force due to length change

1

+ (sem (1 + gstU

1

1
] di} . 11 [J(Hamaw”)%dg]
+0,eTT.,) (1-v)

0

thermal degradation effect

Q S
dati Wit dae(We+We)+
_ h — M, 1+7y Q = 2
X |\ Weet+=| + n4W15 | M <5a2f7Wf+ dune(W e + Wi)) +1=0
h —— hpQ 4 M
inertia effect _ 3
1+ y Q o —
2 2M§C (5«3{@ Wi 0aze(We+Wpe) |
aerodynamic loads (31 PTA)
(20a)

A quick look at (20a) may suggest that
only the explicit terms in w have to be
included in order to obtain the equation of
motion which takes into account the effects
of imperfection [30]. Panels with sinusoidal
curvature, in nondimensional form, may also
be approximated by a sinusoidal function, in
this case:

4

= W/h = S{Xn:q,, sin(pmf)} (20b)

Herein, ¢, is the amplitude of geometric
imperfection. To identify the effects of geomet-
rical imperfection, edge movability, acrodynamic
and thermal terms, various tracers have been
adopted in the (20a) and (20b). The tracers J,
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and J, identify the terms associated with the
thermal degradation of the elastic modulus and
the coefficient of thermal expansion, respec-
tively. O.n, € [0, 1] identifies the degree of edge
movability, where J,,, = 1 indicates immovable
edges. Movable edges can be simulated by
assuming the panel is supported at the edges
¢ =0and ¢ = 1 by springs. In a later section of
this entry, discussion of dynamic degree of mov-
ability simulation, a progressive damage, will be
considered. The tracer & € [0,1] indicates the
implication of geometrical imperfection. The
tracer 04 has three indices: The first index (a)
identifies aerodynamic contribution, the second
index (j) identifies the degrees of linearity,
(1 = linear, 2 = quadratic, and 3 = cubic),
while the third index (k) represents the deriva-
tives of the W with respect to 7 or &.

Solution Methodology

In the present work, Galerkin’s method and direct
numerical integration DNIT will be considered to
solve the integro-differential equation (18) to
evaluate the structural response and the character
of the curved panel flutter boundary with
thermoelastic-elastic properties. For the simply
supported panels on & =0, 1, it is required that
W =W = 0. For these conditions, a solution
can be found in the form:

TEn=Yh06@ @

where n number of harmonic modes, n < oo;
qgj(é) are assumed orthogonal shape functions
and y;(#) are unknown generalized coordinates
that depend on time. The assumed functions
qgj(é) are chosen to satisfy the boundary condi-
tions. To fulfill such conditions, the mode
shape  functions qgj(é) =sin(4;¢)  and
Jj=jm, j=1,2,- - are considered. Cleary, the
assumed approximate solution is not exactly the
same as the unknown exact solution. Conse-
quently, (21) will not satisfy the partial dif-
ferential equations (PDE) (20a), that is,

0(&,1) = Q{W,ém@@} — Ro(&,7) #0,
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where R, (&, 7) is the residual function that results
from the use of the approximate solution. Multi-
plying the residual by the basic function
¢,(¢) = sin(rré) with r =1,2,...,n < oo and
integrating over the panel length, ¢ from O to 1,
and imposing the result to be 0, one obtains:

szf, N, (£)de = 0 (22)
0

As a result of (22), a set of nonlinear, simulta-
neous ordinary differential equations with respect
to the series in (21), and function of geometrical
imperfection (20b) can be obtained:

&y, | dy, :
b e B M, T) =0, jr=1,2,3,...
PR i (¥ ) Js7

(23)

The F,(Y;,M,T) functions can be
represented as:

Fl(l//]7MOC7T) = FED(I//],MOO,T) +F7(a)(l//]7Moo)

+F (Moo, T) + FP (), M)
(24)

where F ,(‘l)(t//j,Mm,T) are linear functions and
F W5 Mo), F™ (5, M) and F (0, M)
are functions including the aerodynamic, ther-
mal, and structural nonlinearities, respectively.

Panel Stability in the Vicinity of the
Flutter Boundary via Lyapunov First
Quantity

From the mathematical point of view, the benign
or catastrophic character of the flutter boundary
can be revealed via determination of the nature of
the supercritical or subcritical Hopf-Bifurcation,
as featured by the nonlinear aeroelastic system
[31, 32]. The system of governing equations
obtained from (22) is converted to a system of
four differential equations in state-space form
expressed generically as:
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dx; n . .
d_,tj = Zle a\Dx, + Pj(x1,x2,x3,%4); j=1,4
(25)
For the present case, the functions

P;(x1,x2,x3,x4) include both the structural and

Subcritical H-B
(Unstable LCO)

LCO Amplitude

Supercritical H-B
(Stable LCO)

] F

Aerothermoelastic Behavior of Flat and Curved
Panels, Fig. 2 Character of the flutter boundary in the
terms of LCOs amplitudes; H-B Hopf-Bifurcation
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aerodynamic nonlinear terms as well as the ther-
mal damage terms. Equation (25) can be
presented in a form that can then be used toward
the evaluation of the Lyapunov first quantity
(LFQ), that is, L(MF). Considering the solution
of the linearized counterpart of (25) under the
form x; = Aje“” , one obtains the characteristic
equation:
o* +pa® +qo’ +ro+s=0 (26)
As a reminder, for steady motion, the equilib-
rium is stable in Lyapunov’s sense if the real parts
of all the roots of the characteristic equation are
negative. Such an analysis can be done by apply-
ing Routh-Hurwitz’s criterion. For sufficiently
small values of the speed, all the roots of the
characteristic equation are in the left half-plane
of the complex variable, and the zero solution of
the system is asymptotically stable. On the same
boundary, the two roots of the characteristic
equation are purely imaginary and the remaining
two are complex conjugate and remain also in the
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Aerothermoelastic
Behavior of Flat and
Curved Panels,

Fig. 4 Effect of the

imperfections on the flutter

speed versus the curvature
ratio (Case #1)
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Fig. 5 Frequency
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left half-plane of the complex variable (Hopf- of the flutter boundary can be examined by the
Bifurcation conditions). The nature of the LCO nature of the Hopf-Bifurcation of the associated
that provides important information on the nonlinear aeroelastic system. Figure 2 presents
behavior of the aeroelastic system in the vicinity several pertinent scenarios; V = Vg defines the
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Aerothermoelastic 30 r r
Behavior of Flat and
Curved Panels,

Fig. 6 Flutter speed versus
(Sz'm

0 1 1

Without Thermal Degradation and Damping
Perfect Geometrically

1.0 0.8
Immovable Edges

flutter boundary that can be determined via
a linearized analysis. The nonlinear approach to
the problem enables one to determine the aero-
elastic behavior in the vicinity of the flutter
boundary. As a result of the nonlinear analysis,
one can determine the aeroelastic behavior of the
structure for a flight speed in the vicinity of the
flutter speed Vg. In this sense, curve 2 corre-
sponds to a stable LCO (supercritical Hopf-
Bifurcation (H-B)) and curve 3 to an unstable
LCO (subcritical Hopf-Bifurcation). In order to
identify the benign and catastrophic portions of
the stability boundary, it is necessary to solve the
problem of stability for the system of equations in
the state-space form in the critical case of a pair
of pure imaginary roots and to determine the sign
of the LFQ [32].

The flutter critical boundary is benign (i.e.,
yields stable LCO), or is catastrophic, yielding
unstable LCO, if the following inequalities,

L(Mp) <0, and L(Mp) >0 (27)

0.6 0.4 0.2 0.0

5em Movable Edges

are fulfilled, respectively. The combination of
effects from the structural and aerodynamic
nonlinearities, the thermal load and thermal
damage, significantly affects the character of
the flutter boundary. In the region of the benign
flutter boundary, one can slightly exceed the
flutter critical speed My without catastrophic
failure of the panel, and as a result, the amplitude
of the transverse deflection remains limited.
Conversely, in the region of catastrophic
flutter boundary, an explosive type of flutter
can occur.

Aerothermoelastic Behaviors of Panel

A number of numerical simulations are presented
in this section. A linear analysis is performed
first. The numerical simulation considers as
a test case study #1, an aluminum cylindrical
panel whose mechanical properties and

geometric parameters are: E =7 x 10" Pa,
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Behavior of Flat and
Curved Panels,
Fig. 7 Bifurcation
diagram of the
aerothermoelastic curved AE-3
panel (Case #2) with
respect to the variation of
flight Mach number and
static edge degree
movability (without B
thermal degradation and 2E-3
damping)
=
0 -
—2E-3
—4E-3 L L
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v=0.3,p,, = 3,000kg/m?, a=1m,R = 10m,
R/h = 1,000, P = 1.225kg/m?,
340.4m/s, y=14, n=1, P =0, 0 =1
and g; = 0. As a result, considering four modes,
and without thermal degradation, the Mach flutter
is Mp=4.2, and the flutter frequency is
wp = 3.7rad/s. Figure 3 reveals the implications
of the curvature ratio on the normalized flutter
dynamic pressure of the infinitely long cylindri-
cal panel and compares it with that of its finite
length counterpart, /g = 2¢g..a’/D. The results
obtained from the present analysis using four
and six modes are compared with the four mode
solution of Dowell [33, 34] and very good agree-
ments are reached.

In Fig. 4, the effects of the geometric imper-
fection on the flutter boundary are highlighted
along with the variation of curvature ratio.
The results reveal that the effect of the imperfec-
tions, represented in terms of g1, depends on the
curvature ratio and the symmetric or asymmetric
shape of the imperfection.

Coo =

3.5 4 4.5 5 5.5 6 6.5 7

M.,

To have a clear and accurate view of the
complex behavior of the aerothermoelastic
system, the nonlinear dynamic behavior has
been numerically simulated as a case study
#2 for a monolithic titanium (Ti-6Al-4V) panel.
A cylindrical panel whose mechanical properties
[35] (T =294.15 K) and geometric parameters

are Ep = 110.352 x 10° Pa, v=0.31,
oo = 4.8571073/c°, P, = 4,430kg/m?,
a=1lm, R, =10m, hr=00lm, p, =

1.225kg/m?, ¢, =340.4m/s, y =14, n=1,
P =0, Spn=1, er=—6.5764 x 1074/K,
ar = 3.07085 x 1074/K, q¢1 =0, gp, = gm =0
and the initial conditions are
W, =0.1, W, =W, =0 has been considered.
From these data, the following parameters are
obtained: = 0.01,7 = 0.001,H = a*/(8R,) =
0.0125m, H/h =125 Qy=~ 150 (1/s),
t=15s, p~3616, and T,, = 1.90 K. To inves-
tigate the effect of degree of edge movability on
the linear flutter Mach number for a system
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Aerothermoelastic Behavior of Flat and Curved
Panels, Fig. 8 Bifurcation diagram of the aerother-
moelastic curved panel (Case #2) with respect to the

without thermal degradation, damping, and
geometrically perfect, Figs. 5 and 6 show the
frequency coalescence, and the flutter speed for
selected J.,, respectively. It appears that the
flutter speed is obtained from the coalescence
of the two consecutive eigen-frequencies and
this speed increases when the degree of edges
movability increases, implying lower values of
Jem- The edge constraint effect can induce ear-
lier flutter. This is due to the reduction in the
in-plane forces, and to the panel curvature
effect.

M,

variation of flight Mach number and static edge degree
movability (without thermal degradation and damping)
under the effect of imperfections

For the dynamic analysis, the nondimensional
time integration was carried out from 7 =0 to
f~ 750 time units and only the last 50 units
have been retained for the bifurcation represen-
tation. The analysis was performed with no
damping on the system. The linear Mach flutter
(without thermal degradation) is Mg = 6.6, as
shown in Fig. 7. It is also shown that for static
partial degree of edge movability, for example,
Oem = 1;0.9;0.8; and 0.75, the flutter speed
increases, meaning that the system will exhibit
LCO at higher Mach numbers.
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Aerothermoelastic Behavior of Flat and Curved Panels, Fig. 9 (continued)
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Aerothermoelastic Behavior of Flat and Curved Panels, Fig. 9 Time histories and phase portraits of the
aerothermoelastic curved skin panel (Case #2) for different flight Mach number (g5 = ggn = 0, 00w = 1,¢1 = 0.005)

In the absence of structural damping and ther-
mal degradation, the nonlinear dynamic simula-
tion of the system exposed to geometrically
imperfect ¢; = 0.005 has been determined as
shown in Fig. 8 for different values of J,,
(1; 0.9 and 0.8).

Figure 9 shows the time histories (a, b, d, e, f,
h, and i) and phase portraits (c, g, and j) of the
considered system without damping for different
flight Mach number. Imperfection can increase
the LCO amplitude of the nonlinear oscillatory
skin panel motion as shown in Fig. 9c, j, g or

damp out as shown in Fig. 9d depending on the

fluid-structure interaction behavior and on 6,,,.
To consider the effect of heated panel, a wall

temperature has been computed as follows:

T=T,="Tx +Re[(1—7v)/2]M2, where
Ry = VPr~ 0.3 [16]. The maximum material
temperature was limited to T= T, ~ 810 K
[35] to prevent thermal buckling. Within this
constrain, in the case of heated panels, the time
simulation was interrupted at M, =54.
Figure 10 shows the bifurcation diagram when
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the thermal degradation has been considered. It @+ b, or in dimensionless form J,, =

clearly appears that the thermal degradation
reduces the flutter speed. Furthermore, limit
cycles appear at speeds as low as M, ~ 3.5 due
to the temperature-dependent material degrada-
tion effect, while unheated panel will exhibit
LCOs at M, > 6.6 (linear flutter Mach number).
In addition, in the case of heated panels,
LCOs with large amplitude are present, as com-
pared to the case of unheated panel, and are
growing at faster rate with jumps in amplitudes
above M, > 4.5. Decreasing the static partial
edge movable from immovable J,.,, = 1 toward
dem = 0 has a significant effect on the shifting
of the nonlinear flutter boundaries and the
LCO behavior.

Effect of dynamic partial edge degree mov-
ability on the behavior of the nonlinear aerother-
moelastic system (Case #2) is highlighted in
Fig. 11. Herein J,,, has been considered for lin-
ear, quadratic, and cubic variations with the time
simulation, that its J,, = a + bt, a + bt*, and

a+bi/Qy,a+b([/Q)?, and a+b(i/Q),
where a and b are constants. The analysis also
considers that the edge might start moving at
a predefined #( during the time simulation of the
nonlinear dynamic system. This simulates the
dynamic change in edge movability occurring
while the system has already exhibited an LCO.
The bifurcation diagrams with respect to the var-
iation of flight Mach number, assuming ¢; = 0,
gs» = 8m =0, to =0s, are presented in the
subsequent  figures. The values a=1,
b = —0.04(linear), b = —0.008(quadratic),
b = —0.0016(cubic) have been selected to repre-
sent the edge condition from immovable,
Oem = 1, to partially movable, J,,, = 0.8, in finite
time. In addition, the edge condition from partial
movable, Oem = 0.8, to immovable
Oem(linear) = 0.8 + 0.04¢ to reach ., =1 in
finite time has been considered as well, along
with the conditions 7y = 2.5 and 4.5 5. All these
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Aerothermoelastic Behavior of Flat and Curved
Panels, Fig. 11 Bifurcation diagram of the
aerothermoelastic curved panel (Case #2) with respect to

the variation of flight Mach number, degrees of movabil-

ity, and its starting time
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Aerothermoelastic Behavior of Flat and Curved
Panels, Fig. 12 Spacecraft on reentry mission. The
panels are exposed to high temperature field

selected conditions have been presented in
Fig. 1la—f), respectively. Comparing these
results with the one in Fig. 9 (case when
dem = 0.8), no significant change has been
revealed from Fig. 11a—c in the behavior of the
system or the amplitude of LCO when different
models of d,,, are implemented in the simulation.
In Fig. 11d, when the condition of linear variation
is from partially movable to immovable, the
nonlinear flutter boundary decreases with time,
up to M, ~ 3.6, significantly smaller in compar-
ison with M., =~ 4.3 obtained for the case of
static edge movability J,,, = 0.8. In addition,
different LCO behavior is obtained and it is evi-
dent from comparing Fig. 11a with Fig. 11d. For
the case when ¢ty = 2.5 (half of the simulation
time), the system exhibits an LCO behavior,
Fig. 1le, similar to the one shown in Fig. 11a.
However, as fy increases, there are changes in the
LCO behavior. When ty = 4.5 s (near the end of
the time simulation), the nonlinear flutter bound-
ary is significantly affected, evident from com-
paring results displayed in Fig. 11a, e, f. These
simulations show that the degree of edge mobility
is an important effect to consider in the flutter and
post-flutter behavior of high-speed panels, and
the amplitude of oscillations of the panel at the
time this structural change is triggered will
promote a different post-flutter behavior.
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Additional numerical simulations are presented
for a Ti-8 Mn [6] infinitely long thin-flat panel (see
Fig. 12).

Figures 13 and 14 depict the LFQ and in this
context, the benign and catastrophic post-flutter
scenarios are highlighted. In these plots, the
effects of the structural and aerodynamic nonlin-
earities considered in conjunction with that of the
temperature and the thermal damage on stable/
unstable LCO are emphasized. With the increase
of the thermal field, the transition from benign
boundary (L(Mr) < 0) toward catastrophic flut-
ter boundary (L(MF) > 0) occurs at lower values
of the flight speed (Fig. 13). This reveals that the
temperature exerts a detrimental effect not only
on the flutter boundary but on the character of the
flutter boundary as well. It also clearly appears
that the aerodynamic nonlinearities are, in gen-
eral, destabilizing. In addition, the effect of the
damage on the elastic modulus is prevalent
(Fig. 14), and, as a result, the occurrence of the
catastrophic flutter boundary is shifted toward
lower values of the flight speed.

Consideration About the
Aerothermoelastic Behavior of Panel

A number of results related to the dynamic sim-
ulation of infinitely long thin-walled circular
cylindrical panels featuring initial geometric
imperfections and taking into consideration the
thermal field and degradation due to its operation
at supersonic/hypersonic speed have been
presented. In this context, the implications of
structural and aerodynamic nonlinearities, on
the LCOs and on the character, benign or cata-
strophic of the panel flutter critical boundary,
have been examined. The static and dynamic
edge movability conditions simulating the prop-
agation of supports degradation have been con-
sidered to explore the effect produced on the
aerothermoelastic ~ system  responses. The
dynamic response is either suppressed or evolves
into an LCO, depending on the thermal degrada-
tion, imperfection, static or dynamic condition of
edge movability, as well as the time when the
edge constrain change is triggered. With the
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increase of the supersonic/hypersonic flight
speed, when the aerodynamic nonlinearities
become prevalent, the flutter boundary becomes
catastrophic, irrespective of the presence of struc-
tural nonlinearities. It was also shown that the
effect of temperature and thermal degradation are
invariably detrimental in the sense of reducing the
flutter speed and of rendering the flutter boundary
a catastrophic one. In addition, as a by-product of
this analysis, conclusions on the effects of the
temperature field coupled with those of the thermal
degradation on the eigen-frequency and flutter
boundary have been outlined.

Appendix A: Dimensionless Parameters

W=w/a

W= w/a

E=x/a

t=1Q

N N T
Q = Qa/cy,
h=h/a

h=h/R,

P3 = AP3“(x)a* /Doh

(continued)
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T.. = Do/Eha®oy

P = (Pm/Poc)
H~d*/(8R,)
=T /Te
T=1 cos(n&)
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Definitions

Aeroelasticity (AE) is the science which studies
the mutual interactions among inertial, elastic,
and aerodynamic forces acting on structural
members exposed to an airstream, and the influ-
ence of this study on design.
Aerothermoelasticity (ATE) is the science that
studies the mutual interactions among inertial,
elastic, and aerodynamic forces acting on struc-
tural members under the combined effect of aero-
dynamic heating and loading. The design of the
reentry space vehicles and high-speed aircraft
structures requires special attention to the
thermoelastic and aerodynamic instabilities that
might occur if the mutual interaction of these
forces is not properly accounted for. The com-
bined extreme aerodynamic heating and loading
that are present during high supersonic/
hypersonic flights, and acting on the vehicle air-
frame, produces complex interactions between
the flow, dynamics, structure, propulsion sys-
tems, and also control. Aerothermoelasticity con-
siders the effect of aerodynamic heating in the
framework of aeroelasticity. Similarly, the
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science considering the coupling of aerodynamic
force, elastic deformation of the host structure,
and control force is called aeroservoelasticity.

Overview

Strong interaction can occur between the flow
about an aerospace vehicle and its structural com-
ponents, resulting in several important aeroelas-
tic phenomena. These aeroelastic phenomena can
significantly influence the performance of the
vehicle. Moreover, the tendency to reduce
weight, increase structural flexibility and operat-
ing speed certainly increase the likelihood of the
flutter occurrence within the vehicle operational
envelope [1-7]. Aerospace systems inherently
contain complex interaction of structural and
aerodynamic nonlinearities [8]. These complex
aeroelastic interactions can be hazardous and
limit the performance of the flight vehicle
because an aeroelastic system may exhibit
a variety of responses that are typically associ-
ated with nonlinear regimes of response, includ-
ing flutter, limit cycle oscillations (LCOs), and
even chaotic vibrations [9]. Aerodynamic non-
linearities such as complex nonlinear flows with
shock waves, vortices, flow separation at high
angle-of-attack, and aerodynamic heating. Struc-
tural nonlinearities are subdivided into distrib-
uted nonlinearities and concentrated ones.
Distributed nonlinearities are spread over the
entire structure-like material and geometric
nonlinearity, but concentrated nonlinearities have
a local effect in a control mechanism or an attach-
ment of external stores. Most flight vehicles
(including generic missile, space shuttle, and
high-performance combat aircraft) may have
inherently concentrated structural nonlinearities
such as freeplay, friction, hysteresis, and preload
in the hinge part of their control surfaces and
folded sections, etc. Concentrated structural non-
linearities may be generated from a worn or loose
hinge connection of control surface, joint slippage,
and manufacturing tolerance. Multipurpose mili-
tary missile fin with folded mechanism may have
two-axial nonlinearities at both the folding fin axis
and pitch control axis. Concentrated structural
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nonlinearities are generally known to cause signif-
icant instabilities in the aeroelastic responses of
aero-surfaces. Among all these several nonlinear-
ities, the freeplay usually gives the most critical
flutter condition [10]. Aerothermoelastic loads
have a critical role in the design of the aero-
surfaces of the supersonic/hypersonic aerospace
vehicles and reentry vehicles since kinetic
heating at high Mach numbers can produce large
reduction in structural stiffness. Depending on the
temperature and initial conditions, the nonlinear-
ities can be hardening or softening spring type.
The strength of the metal is reduced after it has
been in a high-temperature environment for
a period of time.

Aerothermoelastic Analysis
Methodology

Structural Modeling

The structural model considered is of a
double-wedge two degrees-of-freedom (2-DOF)
plunging-pitching lifting surface. The model is
free to rotate in the xOz plane and free to translate
in the vertical direction as shown in Fig. 1. While
a linear model can be obtained considering linear
flexural and torsional stiffnesses, herein the
nonlinear restoring force and moment from bend-
ing and torsional springs accounting for freeplay
in both degrees-of-freedom have been consid-
ered. The nonlinear aeroelastic governing equa-
tions can be written as:

mh + S, + cph + F(h) = —L(1) (1)

Syl + Lo 4 co + G(a) = Mea(t) — (2)
where m is the airfoil mass per unit wing span, 4
is the plunging displacement at the elastic axis
(EA), positive in the downward direction, S, is
the static unbalance moment about the elastic
axis per unit wing span, o is the pitch angle,
positive rotation nose up, ¢ and ¢, are the linear
viscous damping coefficients in plunging and
pitching, respectively, L is the unsteady lift per
unit wing span, ¢ is the physical time variable, I,
is the cross-section mass moment of inertia about
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its elastic axis per unit span, Mgy is the unsteady
aerodynamic moment about the elastic axis per
unit wing span, and (), () are first and second
time derivatives. The cubic stiffness
functions (restoring force F(h) and moment
G(o)) [10-12] (as illustrated in Fig. 2) and can
be written as follows:

F(h)=F,4Fy+Fe; G(0) = Gy + G, + G.
(3)

Khh ) _Khhs ,
Fhy={ 0 . FHm=4{ 0 |,
Ifhh ) Kihs > (4)
Ki(h—hy)* h > hy
F‘(h) = 0 ) _hs g h S hs
Ki(h+h)',  h<-—h

where K, K, are linear stiffness coefficients in
plunging and pitching, respectively, K;, K, are
the nonlinear cubic stiffness coefficients in plunge
and pitch, respectively, and A, is the plunging
freeplay magnitude. Similar expressions for
G,, G, and G, can be expressed replacing the
plunging variable 4 with the pitching variable «.

Aerodynamic Modeling

To study the behavior of the nonlinear aeroelastic
system in supersonic/hypersonic aeroelastic ana-
lyses, a third-order expansion form of the piston
theory aerodynamics (PTA) [3] model is used:

V(VZ/COO)W
——

Linearterms of PTA

p(xvt) P =P

+ O+ D/ o)l +p (0 +1)/12)[(v:/ e )]’
Cubictermsof PTA

Quadratic terms of PTA
(5)

where oo is the free stream, p is the pressure, ¢ 1S
the speed of sound, and 7 is the correction factor.
Equation (5) can be used for low supersonic/
hypersonic speed (May, > 1.3) and for moderate
angles-of-attack (« < 20°). In (5) the local trans-
verse velocity (downwash velocity) v, normal to
the airfoil surface may be expressed for upper and
lower airfoil surface as follows [13, 14]:
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stiffness

— {h + (x — ba)a} + uso{—o + Afu(x)/0x};
Vo = {h + (x — ba)a} — us{—o + Ofi(x)/Ox}

Vou =

(6)
where fu(x)/0x =1 for — b < x< 0;
Ifu(x)/0x = =1 for 0 < x < b 9fi(x)/Ox =—1%
for —b < x<0; Ofi(x)/Ox =1for0 < x < b
In (6) a is the dimensionless offset between the
elastic axis and the midchord, b is the airfoil
semi-chord, f(x) is the function describing airfoil

surface, x being the coordinate in the chordwise
direction, x is the spatial coordinate and (),, (),
are the airfoil upper and lower surface, respectively.

Aerodynamic Heating

The minimum value of the effective torsional rigid-
ity stiffness (loss in the torsional rigidity) of instan-
taneously accelerated, double-wedge solid wings
of constant chord and finite span subjected to axial
stresses induced by aerodynamic heating is [15]:
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(Se /) i = 1 = 0.0456(E /G){ [T4)

-19] /%)

(7)

where § and Sz are the torsional rigidity at the
room temperature and the effective (apparent)
torsional rigidity accounting also for the addi-
tional torsional rigidity due to aerodynamic
heating, respectively. In (7), E and G are the
modulus of elasticity and torsional rigidity,
respectively; 7 is the airfoil thickness ratio,
Tfl(v)v) is the initial airfoil temperature at t=20
(initial flight Mach number Maoo) w is the
final temperature for >0 (final flight Mach
number Maoo) and oy, is the linear coefficient
of thermal expansion. In general, the adiabatic
wall temperature (the concept of adiabatic wall
temperature is used in the field of high velocity
aerodynamics) is given by:

Taw =To{1 + [r(y — )Md% 2]}  (8)

where 7 is the isentropic gas coefficient, (y = 1.4
for dry air), T, is the free stream temperature
at flight altitude and r is the temperature-
recovery factor and in case of a turbulent boundary
layer on a plate, r =v/Pr for Prandtl numbers Pr
close to 1. Substituting (8) into (7) with r =~ 0.9
and y = 1.4, the minimum torsional rigidity is:

(eﬁ/smm 1 — (000821)(Eoc,h/G)
et}

implying that the maximum reduction (in per
cent) in torsional stiffness depend on: (1) mate-
rial (Eoy/G); (2) geomet(rfy (3); (3) altitude
(To): and (4) velocity (Ma2?) — Ma?Y)). Notice
that the minimum torsional rigidity is not depen-
dent on the magnitude of the heat-transfer coeffi-
cient. The torsional frequency w, of cantilevered
beam can be written, including the loss in the
effective torsional stiffness, as follows:

(Sﬁﬂ/s)min xS

Wy = (n/ZLbeam) ]
o

(10)

where Lye,m represents the beam length.
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Aeroelastic Governing Equations
Using the following dimensionless form:

E=h/b, 1 =Uxt/b
Lo = Sa/(mb), r2 =1,/ (mb*)

wé = \/[T/}’n, Wy = 1/ Ka/lot
é’h = c,,/Z(K,,m)l/z, Ca = Cx/z(Koz[a)l/z

u*

u/(bwy), @ = we/wy,

nh = 16/1/1(117 rf]a = 161/1(917 :u = m/(4pocb2)
T =1,/b,& = hs/b

the system of governing equations of a
supersonic/hypersonic double-wedge airfoil fea-
turing plunging-pitching coupled motion can be
described as:

E'(x) + 2,0 (1) +20(@/u")E (x)

+ (@)U ) Fa(€)E(T) + (@/u" ) Fy (&)

+ (/U )F(O)[E (1) +3(=1)"&,E (1)
+38¢(0)+(—1)'E] =L(7)

(11a)

(2a/13)E" (1) + 0" (1) + (28, /u*)o (1)
+ (1/u?)Ga(@)a(z) + (1/u"*) Gy (o)
(o) [ (1) + 3(—1)" oy, ()
(—1)"0] = Ma(t)

+ (1/u?)G. (110)
+302a(1) +

where ¢ is the dimensionless plunging displace-
ment at the elastic axis location, 7 is the dimen-
sionless time, x, is the dimensionless distance
between the mass center of the airfoil section
and the elastic axis, {,, {, are the damping ratios
in plunging and pitching respectively, @ is
the dimensionless frequency ratio, u, u* velocity
and its dimensionless counterpart (reduced veloc-
ity) respectively, &, is the dimensionless plunging
freeplay magnitude, r, is the dimensionless
radius of gyration about elastic axis, oy is
the pitching freeplay magnitude, 7),, 7, are
the normalized nonlinear stiffness coefficients
in plunging and pitching, respectively, u is
the reduced mass ratio, p., is the air stream
density, ¢, is the airfoil half thickness, (), ()"
are the first and second time derivatives
with respect to T and
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1, =&
R =10 F@={ 0,
1, s s
M s ¢(r) > & =1
F(§)=1¢0, =&, <(r) <&
M s ¢(r) < =& =2

(12)

Similar expression for G's by replacing
&(t) < a(t). The unsteady aerodynamic lift and
moment appearing in (1la and 11b) can be
expressed as:

12(¢ —ad +a)
=3+ 1 inMa (o)
M (r+ 1) { (' —ad + )

X [(& —ao/ +0)* +322 + ()]}
(13a)

0

y() = M YQp, +Oni> — K —Kni) M Y(Qp; +Qnit — C
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[ 12 {aé’f (%Jraz) O(/+GO(:| ]
+3(y+ )Mo (& —2ad +a)
M5

1 —a(& —ad +a)

Mga(7) “ M2
o

X [(é’ —ao +a)’ —1—3%2]

+o [(5’ —ad +0)°

+22 —ad/ (¢ —aoc’—|—o¢)] }

(13b)

Solution Methodology

To perform the nonlinear aerothermoelastic anal-
ysis in time domain, (12) are transformed into
a state-space matrix form:

I )}y(‘c)—[o 0

) [RGEn)

(14)

&() 0

a(t) 0
where y(‘r) = é(‘c) , R(és-xs) Qf(17 1

a(t) 0r(2,1)

Herein y is the state vector and M is the mass
matrix. Ky and Kyy, in (14) represents the linear
and nonlinear stiffness matrices, while the aero-
dynamic damping and stiffness matrices Qny;
and Q. contain both uncoupling and coupling
nonlinear quadratic and cubic terms, respec-
tively. The matrices Qnz; and Qnz» include the
damping and stiffness aerodynamic linear terms,
respectively, R and Qf are the freeplay force/
moment vectors. Reference [16] gives the matri-
ces of (14) in detail. A numerical simulation
using the fifth to sixth Runge-Kutta Fehlberg
time integration scheme with step size control is

carried out for the system in (14). This numerical
integration technique provides both transient and
steady-state responses for prescribed initial
conditions.

Aerothermoelastic Behaviors of Lifting
Surfaces

To emphasize the importance of aerodynamic
heating on the nonlinear aerothermoelastic
behavior of the examined aeroelastic system
in the presence of an initial structural freeplay,
the influence of the loss in effective torsional
stiffness of a solid thin double-wedge wing
has been analyzed. Selected bifurcation dia-
grams are presented from the response ampli-
tude as a function of the flight Mach number,
see Fig. 3.
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Aerothermoelastic Behavior of Lifting Surfaces, Fig. 3 Bifurcation pitch diagrams
The baseline parameters of 2DOF plunging- 4. Airfoil physical parameters: y, = 0.25,
pitching airfoil are presented as follows: ry =0.5,(,,(, =0,a=-0.25.
Mechanical properties: titanium (Ti-6%Al- 5. Cubic stiffening: 7,7, = 0, 20.
4%V), mass density p = 4,420 kg/m>, TEC 6. Initial condition: &(t = 0) = &(t = 0) =
(0-100 C°) 8.8 x 10~ %/K, TEC (0-300 C%) 9.2 4(t=0)=0,a(t =0) =5°.
x 107°/K, modulus of elasticity E = 114 x 7. Initial freeplay: oy = 1.0°, &, = 0.01.

. Airfoil geometry parameters:

10° N/m?, modulus of rigidity G = 43.51 x
10° N/m?, Poisons’ ratio 9 = 0.31.

. Flight condition: height H = 5, 10 km,

P = 0.736, 04135 kg/m’, c, =317.07,
299.53 m/s, To, = 255.7, 223.26 K, n = 1.0,
y=14.

rectangular
shape, wing aspect ratio Ag =4.5,
b=0.25m,7=0.050.1,m =552 kg/m.

Three cases were performed to demonstrate

the complex nonlinear behaviors of the system.
Case #1 is for a system with no aerodynamic
heating and (7), =1, =0), such that linear
flutter Mach number Ma g = 15.2. Case # 2 is
for the system with aerodynamic heating and
1, =N, = 0 yielding Ma;r = 10.4. Because of
the symmetry in the pitch LCO amplitude only,
the positive side of the LCO curve is presented
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for Case #2. Case # 3 is for a system with aero-
dynamic heating and (7, = 0,7, = 20) and the
flutter speed is the same as Case #2. For this
case, for the sake of clarity, the negative side
of the pitch LCO is displayed. Note that the
simulations are restricted to cases where the
pitching displacement is within =+ 20° to remain
within the limits of validity of the proposed
model and approach. In Fig. 3a, where the alti-
tude is 10,000 m and 7 = 0.1, the aeroelastic
system exhibits a bifurcation behavior for all
three cases at Ma,, =~ 1.5 due to the presence
of coupling freeplays (in both plunge and pitch).
For the speed range (1.5 < Ma,, < 7), different
types of response behavior (periodic, quasiperi-
odic, or chaotic) will occur. Within the
speed ranges (7 < Ma,, < 14) for Case #l,
(7 < May, <10) for Case #2, and
(7 < Mas, < 11) for Case #3, a stable LCO is
experienced; its amplitude increases with the
increase of the flight Mach number. From
Fig. 3a, it appears that pitch LCO amplitude for
Case #1 is less than 12 deg for speed less than the
linear flutter speed. When considering Case #2,
the pitch amplitude is about 10° at Ma,, ~ 10,
while if the pitching stiffness nonlinearity is
considered, Case #3, the pitch amplitude

Flight Mach number

reaches 10° at Ma., ~ 11. This result reveals
that the flutter speed, as well as the LCO behav-
ior, is affected by the loss of the torsional stiff-
ness. The effect of varying the thickness ratio is
indicated in Fig. 3b. Herein, the altitude is
10,000 m and 7 = 0.05. A stable LCO is experi-
enced for all three cases. Although the system
accounts for freeplays, no chaotic behavior is
encountered. Decreasing the thickness ratio has
a significant effect on the linear flutter value.
This fact is evident in Fig. 3b where
May r = 7.2 for the same Case #1 of Fig. 3a but
with a smaller thickness ratio. In addition, the
linear flutter for Cases #2 and #3 decreases to
May g = 4.8. Although in Case #3 the pitching
stiffness nonlinearity is considered and contrib-
utes to decrease the amplitude of the LCO as
compared to Case # 2 (compare the value of
the pitching LCO amplitude at May, = 5.5),
there is certainly a detrimental reduction in flut-
ter speed as well as the amplitude of the LCO as
compared to the corresponding Cases #2 and #3
of Fig. 3a. Results for a flight altitude of 5,000 m
and T = 0.1 are also presented in Fig. 3c. The
three cases present a different behavior:
1.5 < Ma,, <3 (periodic LCO), 3 < Ma,, <4
(stable LCO), 4 < Ma,, <5 (chaotic behavior)
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for all three cases. For Ma,, > 5: Case #I,
5 <May <10 (stable LCO, Marr = 10.6);
Case #2 which accounts for the influence of
aerodynamic heating, 5 < Ma,, <8 (stable
LCO, Mayr = 8.3); Case #3 which accounts for
both aerodynamic heating and pitch stiffening
nonlinearity, 5 < May, < 10 (stable LCO,
May g = 8.3). In Fig. 4, the curves show how
susceptible this system is to loss of torsional
stiffness when aerodynamic heating is consid-
ered in conjunction with altitude, thickness
ratios. Case #1 (5,000 and 10,000 m) does not
include the aerodynamic heating; therefore,
there is no reduction in the effective torsional
stiffness. For flight Mach number Ma,, ~ 4,
Case #2 (10,000 m and 7=0.1), and #4
(5,000 m and 7 = 0.1) and Case #3 (10,000 m
and 7 = 0.05), which also included the aerody-
namic heating, present a reduction in torsional
stiffness of 5 %, 7 %, and 25 % of the original
value, respectively. Clearly, the thickness ratio
has a more detrimental role in the loss in tor-
sional stiffness and consequently in the flutter
speed and the LCO behavior of the examined
aeroelastic lifting surface.

Consideration About the
Aerothermoelastic Behavior of Lifting
Surfaces

Aerodynamic heating significantly influences
the nonlinear aerothermoelastic behavior of
lifting surfaces. A solid thin double-wedge air-
foil encountered all nonlinearities (structural-
freeplay and cubic stiffness, aerodynamic-third
order piston theory) in the supersonic/hyper-
sonic flight speed regime is considered in the
selected results reported under this section. The
results show how susceptible flutter speed,
as well as the LCO behavior, is to loss of tor-
sional stiffness when aerodynamic heating is
considered in conjunction with altitude and
thickness ratios. The thickness ratio has a more
detrimental role in the loss in torsional stiffness
and consequently in the flutter speed and the
LCO behavior of the examined aeroelastic
lifting surface.
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Synonyms

Aerothermoelasticity

Overview

The static and dynamic behavior of FGM panels
depends on their material, geometrical, and
structural properties. In this section, examples
for a wide range of nondimensional aerody-
namic pressure and panel curvature in conjunc-
tion with selected values of temperature fields
through the thickness and several panel volume
fraction indexes are presented. The transient
solutions are discarded in calculations and
steady-state data are used to distinguish panel
dynamic behavior. The variation of volume frac-
tion index makes different types of motions
including divergence, limit cycle oscillation
(LCO), and periodic and chaotic motions
possible.

Static Behavior of FGM Panels: Thermal
Divergence

The effect of the aspect ratio, the relative thick-
ness, in conjunction with the steady aerodynamic
pressure and the volume fraction index of FGMs
on thermal divergence of supersonic panels is
presented in [1]. A few characteristic results are

presented here. For such analysis, a mathematical
formulation based on the first-order shear defor-
mation theory was developed. The Galerkin
approach is used to reduce the system of PDE
into a set of ODEs which are then solved by
standard eigenvalue algorithm to determine the
critical temperature difference and divergence
boundary. The FGM used is composed of alu-
mina and aluminum. Young’s modulus,
Poisson’s ratio, and coefficient of thermal expan-
sion for aluminum are E,, = 70 GPa, v =0.3,
oty =23 x107%(1/°C) and for alumina
E.=380GPa, v=0.3, and o, = 7.4 x 107
(1/°C), respectively. The plate is assumed to be
simply supported on all of its four edges. The
critical temperature difference for functionally
graded plates and the influence of aerodynamic
pressure and temperature distribution are
presented in Figs. 1 and 2 which demonstrate
the divergence boundaries, 4 — AT, for several
design parameters. For all of the parameters, left
and right sides of these boundaries show the
stable and divergence regions, respectively. In
particular, the effect of the aspect ratio and vol-
ume fraction index on the divergence boundaries
is investigated in Fig. 2. A lower value of a/b
reduces the critical buckling temperature. There-
fore, stable regions are extended to the right for
a higher aspect ratio at the fixed volume fraction
index. The divergence boundaries of the square
plate, for several volume fraction indexes with
uniform and linear temperature distributions, are
shown in Fig. 3. Results indicate that the stable
regions are extended for the linear temperature
model. This is because the bending moments
generated by thermal loads in the linear temper-
ature distribution model tend to cause the plate to
remain flat before buckling.

One of the interesting results obtained in the
static instability regime is some snap-through
behavior that is due to small changes in the
nondimensional aerodynamic pressure. This is
due to the fact that in some physical parameter
intervals, there are two possible steady-state
motions coexisting, which one will occur depends
on the physical parameter or the initial conditions
[2, 3]. For the considered problem, the panel can
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buckle upward or downward and the numerical
simulation follows either one of the two,
depending on the initial conditions, as shown

in Fig. 4.

Dynamic Behavior of FGM Panels: Limit Cycle
and Chaotic Analysis of Flat Panels

A functionally graded flat panel with infinite
length in y-direction, an h/a = 0.01, and with
immovable simply supported boundary along the
y-direction is investigated [4]. A few characteristic

results are presented here. Different values of vol-
ume fraction indexes are considered to investigate
the effect on panel dynamic behavior. The numer-
ical study is carried out to supply information on
the nonlinear bending of the plates with different
combinations of loading conditions. To this end,
silicon nitride and stainless steel are chosen to be
the constituent materials of the FGM plate,
referred to as Si3N4/SUS304. Their material prop-
erties such as Young’s modulus and thermal

expansion coefficient are assumed to be
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temperature dependent and listed in [5]. The mass
density is: p. = 2370 kg/m? for Si3N4; and
P, = 8166 kg/m? for SUS304. Also, Poisson’s
ratio is assumed to be equal for both materials,
v = 0.28. Furthermore, in the numerical simula-
tion, the reference temperature, T,, is taken as
300 K and u/M., = 0.1. All the results, being
represented subsequently, are associated with the
dimensionless displacement (or velocity) of
a point located at ¢ = 0.75. This particular

location was selected because the maximum
panel displacement is approximately in this
point, Dowell [6]. The magnitude of the maximum
plate deflection for various volume fraction
indexes with respect to nondimensional dynamic
pressure is shown in Fig. 4. Herein bifurcation
diagrams of maximum panel deflection against
the dimensionless aerodynamic pressure for
different values of the volume fraction at
AT = 10 are provided. Because of plate response
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Aerothermoelastic Behaviors of Functionally
Graded Panel Structures, Fig. 3 Behavior of the
post-critical limit cycle amplitude of FGM panels verses
the non-dimensional dynamic pressure

symmetry, whenever AT = 0, only the positive
displacement values are presented. Increasing
the ceramic constituent of the FG plate increases
the critical dynamic pressures. In addition, limit
cycle amplitudes of maximum plate deflection
decrease. This improves the panel dynamic
behavior due to expanding the stability domain.
Under the compression caused by thermal load-
ing, and the low values of dynamic pressure, the
panel first experiences static buckling (diver-
gence). Due to stabilizing effect of aerodynamic
damping, after the divergence region, a stable
region is observed as the dynamic pressure
increases until the dynamic pressure reaches
the critical value at which LCO begins. Finally,
the system loses dynamic stability because of
high flow velocity. The size of the stable region
is wider as the ceramic constituent increases. On
the other hand, an increase in the volume faction
of the metal reduces the bending stiffness of the
whole plate. Therefore, the maximum displace-
ment of the plate increases as the metal volume
fraction increases. This results in moving
the bifurcation point to lower values of dynamic
pressure. The panel dynamic behavior in
terms of the bifurcation diagram, maximum
Lyapunov exponent, and Lyapunov dimension

of maximum panel deflection is shown in Fig. 5.
For computing the maximum Lyapunov expo-
nent and Lyapunov dimension, 200,000 data
points are taken directly from the deflection of
the plate. Both maximum Lyapunov exponents
and Lyapunov dimensions are employed to char-
acterize the onset conditions of chaotic motion
for a large deflection plate. In this sense, one can
see that for divergence and stable region, all
Lyapunov exponents are negative as shown in
these figures. When the largest Lyapunov expo-
nent is zero, the panel experiences limit cycles
and a positive Lyapunov exponent indicates
chaotic motion. It is worth remarking that the
Lyapunov dimension is equal to zero for diver-
gence and stable state, integer value for regular
motion such as LCOs and quasi-periodic oscil-
lations, and a positive noninteger value for cha-
otic flutter.

Dynamic Behavior of FGM Panels: Flutter and
Post-flutter of Curved Panels

Numerical study to supply information about the
nonlinear bending deformation of the curved
plates with different combinations of loading
and height-rise geometric conditions are pro-
vided in [7]. A few characteristic results are
presented here. Selected values of volume frac-
tion indexes of the FGM constituents are consid-
ered to investigate panel dynamic behavior. The
functionally graded materials consist of silicon
nitride and stainless steel, Si3N4/SUS304. The
mass density for Si3N4 is p, = 2370 kg/m? and
for SUS304 is p,, = 8166 kg/m?>. Poisson’s ratio
is assumed to be equal for both materials,
v =0.28. The other material properties are
assumed temperature dependent as per Reddy
and Chin [5]. In the numerical simulation, the
reference temperature is assumed to be 300 K.
Four bending modes are considered in the solu-
tion procedure. All the results, being represented
subsequently, are also associated with the dimen-
sionless displacement (or velocity) of a point
located at £ = 0.75. For a fully metal case with
isotropic property (k = 50), the accuracy of the
method for the nonlinear analysis is verified
against the results reported in [8] and good agree-
ment is obtained as shown in Fig. 6. Figure 7
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Aerothermoelastic Behaviors of Functionally
Graded Panel Structures, Fig. 4 Bifurcation diagram
of Poincaré maps of maximum panel deflection under

shows the maximum panel deflection in diver-
gence situation against panel height-rise values
and for a selected values of nondimensional aero-
dynamic pressure when a panel made only by
a ceramic constituent is considered. As expected,
by increasing the temperature value, the maxi-
mum panel deflection increases. It is also shown
that for lower values of nondimensional aerody-
namic pressure, higher displacements are
obtained for small curvature. The temperature
has certainly a dominant effect on the maximum
plate displacement with respect to the
nondimensional aerodynamic pressure especially

A

increasing non-dimensional aerodynamic pressure with
AT =10: (@) k=0,(b) k=5, (¢) k=50

when the plate has low height-rise values. Panels
with higher curvature are less sensitive to the
effect of temperature. The figure also shows the
presence of a snap-through typical of flat plates
(H/h=0,R — co) which occurs for the
nondimensional aerodynamic pressure A = 120
and temperature differential AT = 15 K. The
effect of panel curvature as well as volume frac-
tion indexes can be seen clearly. Different types
of motion are observed through variation of cur-
vature value. It should be noted that, in contrast to
fully ceramic constituent where the panel experi-
ences only divergence situation, for other volume
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Aerothermoelastic Behaviors of Functionally
Graded Panel Structures, Fig. 5 (a) Bifurcation dia-
gram of Poincaré maps, (b) Largest Lyapunov exponent

fraction indexes distinct behavior is observed
for different curvature values. A number of
switching occurs between divergence and peri-
odic motion. It is also evident that there are some
jumps in amplitude of limit cycle oscillation for
higher values of curvature as observed in the
figure. The effect of thermal loads due to temper-
ature changes along the curved panel thickness is
also studied in this figure. As was previously
mentioned, the influence of temperature on the
system dynamic behavior is more accentuated for
low curvature value. Results show that a dynamic
transition occurs from a divergence state to

10 15 20 25 30 35 40 45 50

AT

(c) Lyapunov dimension of maximum panel deflection
under increasing temperature gradient through thickness
direction with k = 1, A = 150

a regular or irregular motion with increasing the
temperature. Qualitatively, different behaviors
are observed by gradual change of curvature
parameter, going from periodic motion, to
a sequence of double periodic motions, to quasi-
periodic motions, and to a divergence state.
The panel dynamic behavior in terms of the
bifurcation diagram, maximum Lyapunov expo-
nent, and Lyapunov dimension of maximum
panel deflection is shown in Fig. 8. The panel
curvature parameter is the control parameter and
varies between H/h =0 and H/h=15. The
volume fraction index, k =1, is considered.
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Two temperature values, AT =0 K and
AT = 20 K, are investigated for each figure and
the aerodynamic pressure is assumed to be
A = 500. There are two instances when the larg-
est exponent sign becomes positive. These inter-
vals correspond to bifurcation of transition to
chaotic motion. Before going into the chaotic
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Aerothermoelastic Behaviors of Functionally
Graded Panel Structures, Fig. 6 SUS304 curved
panel (k= 50) amplitude as a function of the non-
dimensional aerodynamic pressure and for selected raise-
to-thickness ratios
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region, the curved panel undergoes quasi-
periodic motions. After the first region of chaotic
motions, there is a region of quasi-periodic
motions. As H/h increases, a second chaotic
regime occurs, and then a periodic motion is
observed. Maximum Lyapunov exponent is zero
for periodic motion while for a divergence state it
becomes negative. As shown in this figure, the
Lyapunov dimensions for divergence, periodic,
and chaotic motions are zero, integer, and
noninteger positive values, respectively. The
same dynamical behaviors are observed when
thermal loadings are applied to the panel. How-
ever, the temperature load triggers a chaotic
behavior at lower curvature values. Before
going into the chaotic region, multi-periodic and
quasi-periodic motion usually occur. It may be
noticed that for volume fraction indexes other
than zero value, there are some limit cycle
switching in higher curvature values. Although
not displayed here, when considering the case of
fully ceramic constituent, no switching in dynam-
ical system behaviors takes place. The effect of
aerodynamic pressure as a control parameter for
bifurcation diagram was also investigated in [7].
From results reported in [7], the panel first expe-
riences static buckling (divergence) followed by
a dynamic instability (flutter) and either regular
or chaotic behaviors are observed. The ceramic

H/h

Aerothermoelastic Behaviors of Functionally Graded Panel Structures, Fig. 7 Maximum plate deflection in
divergence situation under curvature gradient for k = 0, (a) A = 120 while (b) A = 200
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constituent delays the appearance of the bifurca-
tion on the panels. The maximum deflection of
the FGM curved panel decreases when consider-
ing a case with larger ceramic phase constituent.
This is because of the stiffness of the ceramic
which is higher than the stiffness of the metal.
When the temperature value increases, the bifur-
cation point moves to lower values of dynamic
pressure and maximum deflection value increases
in both divergence and flutter behaviors. Chaotic
regime may be detected in the dynamical behav-
ior of the curved panel due to thermal loading.

Consideration About the Static and
Dynamic Behavior of FGM Shells Under
Aerothermoelastic Loading Conditions

The critical thermal load and divergence of
panels are affected by the temperature distribu-
tion across the panel thickness. Numerical results
show that the stability regions decrease for
selected temperature distributions with the
increase in volume fraction index. The stable
region can be extended by increasing the aspect
ratio and/or the relative thickness. The influence
of nondimensional aerodynamic pressure on the
critical temperature difference is more significant
for lower aspect ratio a/b, thicker plate, and
higher volume fraction index k. The extent of
the stable region in the case of linear temperature
distribution is greater than for the case of uniform
temperature distribution, independent of other
design parameters. The stable region increases
as the FGM is richer in its ceramic constituent.
Snap-through is observed in the divergence
region by increasing thermal loading and aerody-
namic pressure. Increasing the ceramic constitu-
ent in the FG plate causes flutter to appear at
higher dynamic pressures, while decreases the
panel’s limit cycle amplitude. This is a natural
result as the metal is more ductile than the
ceramic, and the stiffness changes based on the
percent of each constituent; therefore, increasing
the % of ceramic constituent increases the panel
structural stiffness. Curved plates with different
volume fraction indexes present distinct dynam-
ical behavior. Under the same specific defined

parameters, divergence behavior is observed for
a single constituent ceramic panel, while chaotic
motion is observed in a single constituent
metallic panel. Temperature clearly affects the
plate dynamical behaviors, especially for low
height-rise panels. As the temperature increases,
chaotic dynamic phenomena might occur as the
height-rise values increase. Different dynamical
behaviors are observed by slowly changing the
aerodynamic pressure and bifurcations may
occur at specific values of the aerodynamic pres-
sure. These bifurcations can be delayed by
increasing the percentage of ceramic constituent.
Increasing the metal constituent will lead to
a chaotic motion at lower values of temperature.
Chaotic behaviors are also observed at higher
values of temperature accompanied by increasing
aerodynamic pressure. Changes from divergence
or stable state regime to periodic or aperiodic
regimes can be identified by the Lyapunov
dimension jumping from zero to an integer or to
noninteger values, respectively. Maximum
Lyapunov exponent and Lyapunov dimension
are compatible with the bifurcation diagrams.
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Overview

The interest toward the development and imple-
mentation of active control technology was
prompted by the new and sometimes contradic-
tory requirements imposed on the design of the
new generation of the flight vehicle that man-
dated increasing structural flexibilities, high
maneuverability, and at the same time, the ability
to operate safely in severe environmental condi-
tions. Designing reentry space vehicles and high-
speed aircraft requires special attention to the
nonlinear thermoelastic and aerodynamic insta-
bility of their structural components. The aerody-
namic heating effects are usually estimated from
the adiabatic wall temperature due to high-speed
airstreams. The thermal effects are important
since temperature environment critically influ-
ences the static and dynamic behaviors of flight
structures in supersonic/hypersonic regimes and
is likely to cause instability, catastrophic failure,
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and oscillations, resulting in structural failure due
to fatigue.

Active aerothermoelastic control strategies
provide solutions to a large number of problems
involving aerospace flight vehicle structures. To
prevent damaging phenomena produced by ther-
mal effects on both flutter boundary and post-
flutter behavior, linear/nonlinear active control
methods should be implemented. A serious loss
of torsional stiffness may induce the dynamic
instability; consequently, in the design process,
the loss of torsional stiffness that may be incurred
by lifting surfaces subject to axial stresses induced
by aerodynamic heating should be considered.

Active control can be used to expand the flutter
boundary and convert unstable limit cycle oscil-
lations (LCO) into the stable LCO and/or to shift
the transition between these two states toward
higher flight Mach numbers. The advances of
active control technology have rendered the
applications of active flutter suppression and
active vibrations control systems feasible in the
last two decades [1, 2]. A great deal of research
activity devoted to the aeroelastic active control
and flutter suppression of flight vehicles has been
accomplished. The state-of-the-art advances in
these areas are presented in [3, 4]. The reader is
also referred to a sequence of articles [5, 6] where
a number of recent contributions related to the
active control of aircraft wing are discussed at
length. In the next sections, the nonlinear
aerothermoelastic governing equations for the
control of lifting surfaces are presented [7, 8]
along with the solution methodology adopted
and the analysis of selected example cases.

Nonlinear Aerothermoelastic Control
Equations

The structural model considered is of a
double-wedge two degrees-of-freedom (2-DOF)
plunging/pitching lifting surface. The model is
free to rotate in the xOz plane and free to translate
in the vertical direction as shown in Fig. 1. While
a linear model can be obtained considering linear
flexural and torsional stiffnesses, herein the
nonlinear restoring force and moment from
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Aerothermoelastic Control of Lifting Surfaces, Fig. 1 Two degrees-of-freedom double-wedge airfoil geometry

bending and torsional springs accounting for
freeplay in both degrees-of-freedom have been
considered. The nonlinear aeroelastic governing
equations can be written as:

mh + S5 + cph + F(h) =

—L(6) (1)

Syl + Lo 4 cd + G(2) = Mea(t)  (2)

Herein m is the airfoil mass per unit wing span,
h is the plunging displacement at the elastic axis
(EA), positive in the downward direction, S, is
the static unbalance moment about the elastic
axis per unit wing span, o is the pitch angle,
positive rotation nose up, ¢ and ¢, are the linear
viscous damping coefficients in plunging and
pitching, respectively, L is the unsteady lift per
unit wing span, ¢ is the physical time variable, I,
is the cross-section mass moment of inertia about
its elastic axis per unit span, Mg, is the unsteady
aerodynamic moment about the elastic axis per
unit wing span, and (), () are first and second
time derivatives. The active nonlinear control
can be represented in terms of the moment M¢
in (1) as [7, 8]:

Mc = fo(t) + fr0 (1) (3)

where f1, f> are the linear and nonlinear control
gains, respectively. A third-order expansion form
of the PTA is used to study the behavior of the
nonlinear aerothermoelastic system in supersonic/
hypersonic aeroelastic analyses. The system of
governing equations of a supersonic/hypersonic
double-wedge controlled airfoil featuring plung-
ing/pitching coupled motion can be cast as [7]:

& (0)+ 1.9 (1)+20(@/U)E ()
+ (/U P20 +(@/UVFyE)
VRO ] (4a)
+(@/UFAQ[E @) +3(-1)6E()
386 +(-1)'E] =L
(/)2 (2) +'(2) + (26U ()
+ (1/U)G(2)a(e) + (1/U)Go()
+ (/UG (2) + 3(~1) 2,020
+ 302(5) + (= 1)"] = Miga (o)
~ (/U p(5) + 97 ()
(4b)

where ¢ is the dimensionless plunging displace-
ment at the elastic axis location, 7 is the
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dimensionless time, x, is the dimensionless dis-
tance between the mass center of the airfoil sec-
tion and the elastic axis, {;, {, are the damping
ratios in plunging and pitching, respectively, @ is
the dimensionless frequency ratio, u, u* velocity
and its dimensionless counterpart (reduced veloc-
ity), respectively, & is the dimensionless plung-
ing freeplay magnitude, r, is the dimensionless
radius of gyration about elastic axis, oy is the
pitching freeplay magnitude, 7, 7, are the nor-
malized nonlinear stiffness coefficients in plung-
ing and pitching, respectively, u is the reduced
mass ratio, p, is the air stream density, #;, is the
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airfoil half thickness, (), ()" are the first and
second time derivatives with respect to T and

1 ’ _ésa
Fu&)=40, F&)={ 0
1 ) és 9
; )
M, E(r) > n=1
F_f(i): 0 ’ _évéé(’[) Sév
7A7h ) é(q’-)<_éx ,1’122

Similar expression for G's by replacing &(t) <
(7). The unsteady aerodynamic lift and moment
appearing in (4a and 4b) can be expressed as:

L(t) = — 12]‘7/7[ . [12(5’ —ad + o) —3(y+ 1) iMoo (o)
(6a)
+ ML (r+ 1)772{(6’ —ad +0) [(f’ —ad o)’ 38+ (a’)z} }1
Mga(t) = m 12[aé’ — (% + az) o +ao] 4+ 3(y + 1)tnM oo (&' — 2a0! + ).
- M2 (y+ l)nz{% (o) —a(& — ad + a) [(6’ —ad +0)" +3% (6b)

+o [(f' —ao o)+ —ad (& —ad + a)} }1

The two normalized linear and nonlinear con-
trol gain parameters ¢;,y, are defined as

©1 = fi/Ky, ¢, = fo/K,, respectively.

0
(@) = [

M~ 1 QLzext + QNLZext — KL — KNL — Mcontrol)

oo

&) 0
where y(x) — »:8 R(Ea) = Qf(? )
i(x) Q1)

’ Mcontrol =

Solution Methodology

To perform the nonlinear aerothermoelastic anal-
ysis in the time domain, (4a, 4b) is transformed
into state-space matrix form:

I

4 y(t)
(QL1¢¢ + QNL1ey — C)

0 0 }
0 (1/U2) (01 +pp0 (1))
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Aerothermoelastic Control of Lifting Surfaces, Table 1 Baseline parameters of 2-DOF plunging/pitching airfoil

Material used: Titanium (Ti-6%Al1-4%V)

Mechanical properties p = 4,420 kg/m?; TEC (0-100 C°) 8.8%10~5/K; TEC (0-300 C°) 9.2%10~ /K

E = 114*10° N/m%; G = 43.51%10° N/m?; ¢ = 0.31

Flight condition: # = 10,000 m; p_, = 0.4135 kg/m3; Coo =299.53 m/s; To, =22326K;n=1;7=14
Airfoil geometry parameters: Section of rectangular wing, aspect ratio = 3; b = 0.5 m; T = 0.15; m = 331.5 kg/m
Airfoil physical parameters: y, = 0.25; r, = 0.5; {;,,{, = 0; a = —0.25; ® = 0.2135

Cubic stiffness nonlinearities

f, = 0; 7, = 10 a(t=0) =5°

where y is the state vector and M is the mass
matrix. KL and KNL in (7) represents the linear
and nonlinear stiffness matrices, while the
aerodynamic damping and stiffness matrices
QNL1,,; and QNL2,,; contain both uncoupling
and coupling nonlinear quadratic and cubic
terms, respectively. The matrices QL1 and QL2
include the damping and stiffness aerodynamic
linear terms, respectively, R and Q; are the
freeplay force/moment vectors. Mcontrol T€pre-
sents the active linear and nonlinear control
moment matrix. A numerical simulation using
the fifth to sixth Runge-Kutta Fehlberg time inte-
gration scheme with step size control is carried
out for the system in (7).

Aerothermoelastic Control of Lifting
Surfaces: Analysis

Before we apply any control and to emphasize
the importance of aerodynamic heating on the
nonlinear aerothermoelastic behavior of the
examined aerothermoelastic system, the influ-
ence of the loss in effective torsional stiffness of
a solid thin double-wedge wing under various
parameters such as flight condition, thickness
ratio, pitch freeplay, and pitching stiffness
nonlinearity has been analyzed. Unless otherwise
stated, the numerical simulations consider the
baseline parameters which are listed in Table 1.

A number of bifurcation diagrams were
constructed from the amplitude of the pitch
LCO as a function of the flight Mach number
for a plunging/pitching airfoil with a freeplay
structural nonlinearity in pitch, cubic pitch

Initial condition &(t = 0) = &(t = 0) = &(t = 0) = 0; Initial freeplay o = 1°;

& =0

structural nonlinearities subjected to supersonic/
hypersonic flow which induced also aerodynamic
heating are presented in Fig. 2. Because of sym-
metric pitch LCO amplitude and to have a better
graphical representation, some of the plots in
Fig. 2 have been presented in positive or in neg-
ative side of the LCO curve as shown later. In
Fig. 2a case #1 (positive side of LCO curve) is for
the system with no aerodynamic heating and
n, =10, =0, such that M;p = 17.4. Case #2
(negative side) is for the system with no aerody-
namic heating also, but 7, =0, 7, = 10 (hard
structural nonlinearities) and the flutter speed is
the same as case #1. Note that the simulations
are restricted to cases where the pitching dis-
placement is within + 20° to remain within the
limits of validity of the proposed model and
approach. The aerothermoelastic system exhibits
a bifurcation behavior for these two cases at
M, ~ 1.7 due to the presence of freeplay in
pitch  direction. For the speed range
(1.7 <My <7), different types of response
behavior (periodic, quasiperiodic, or chaotic)
will occur. Within the speed ranges
(7T <My, < 17) for case #1, (7T < M, <21) for
case #2, a stable LCO is experienced; its ampli-
tude increases with the increase of the flight Mach
number. At M, = 16, the case #1 exhibits a pitch
LCO with amplitude of about 9.9°, while the
case #2, the LCO has a pitching amplitude about
6.6°. It appears that cubic structural nonlinearities
significantly decrease the LCO amplitude, while
the linear flutter speed remains constant, besides
case #1 has maximum amplitude of (/13°) at
My, =~ 16.2 compared with (= 17°) at M ~ 21
for case #2. Figure 2b shows the effect of aerody-
namic heating. Case #1 in Fig. 2b is the same as
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nonlinearities



76 Aerothermoelastic Control of Lifting Surfaces

0.1 20 01 20

Mach = 2.58 Mach = 2.58 Mach = 4.0 Mach = 4.0
= § 7 $
§ 0.0 0.0 ﬁ 0.0
5 b
—0.1 -2.0 -2.0
15 ) > 60 8.0 10.0 > 60 8.0 10.0
o) t, (sec) t, (sec)
UncontrolledLCO,Mach =2.58 Uncontrolled LCO,Mach =4
7,=00,7,=100; &= 0.0 og = 1.0 deg ; N
K With aerodynamic heating ; Mg = 13.65 ," -
case #1 ’."
ok ¢1=00,9=00 ¥ l
=)
o) - o 1
° .
‘B’ Leet*" Case #5
E —_— ¢1=1.0, g =10.0 p;
s of e i
s g Y~ T
o
S
= case #2
2 - 040 10.0 case #3 |
& P =010, 92 =100 ¢4 ¢, =030, ¢, = 0.0 ¢,
-10F case #4 7
$1 =080, ¢ =10.0 ¢ ",
_20 'l 'l L L L L 'l L L L 1 L L L L
2 4 6 8 10 12 14 16
Flight Mach number
0.04 20 1.0E-4 20E-3
Mach = 8.0 Mach = 8.0 Mach = 8.0 Mach = 8.0
@ g G g
g 0.00 00 b@ 0.0E+0 0.0E+0
3 3
70.04_2 5 2 '2'%‘0 8.0 100 ~1OES Soe ZIDE;Z’OE’BG_U 8.0 10.0
o) t, (sec) w(o) t, (sec)
Uncontrolled LCO, Mach =8 Controlled LCO, Mach = 8 (case #4 and #5)

Aerothermoelastic Control of Lifting Surfaces, and phase portraits represent the uncontrolled and
Fig. 3 Pitch LCO amplitude versus flight Mach number  controlled system, respectively
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case #2 in Fig. 2a but in positive side. The result of
case #2 reveals that the flutter speed
(Myr = 13.65), as well as the LCO behavior, is
affected by the loss of the torsional stiffness. In
both cases, the pitching structural nonlinearities
are considered (7, =0, 7, = 10). Under pitch
active control, a considerable change in the ampli-
tude of the LCO is significantly observed in Fig. 3.
Case #1 is the same as case #2 in Fig. 2b but in
positive side and does not include any active con-

trol (p; =9, =0). Case #2 (¢, =0.1,
0, =10¢)), #3 (¢, =03,0, =10¢,), #4
(py =08, ¢, =10p), and #5 (p =1,

@, = 10¢p,) present a shift of the bifurcation
behavior to M, ~ 3.8, 8.0, 12.5, and 13.5,
respectively. The unstable LCO including the cha-
otic region in case #1 (until M, ~ 7) has been
suppressed as shown in case #3. Figure 3 also
shows the phase portraits and time histories for
various flight Mach numbers which represent the
uncontrolled (case #1) and controlled system (such
as case #4 and #5), respectively. Clearly, increas-
ing the linear pitch gain can extend the flutter
boundary and convert the unstable LCO into stable
LCO and/or shift the transition between these two
states toward higher flight Mach numbers with
suppression of LCO.

Flight Mach number

Figure 4 shows the effect of nonlinear active
control gain  with zero linear  gain
(p; = 0,9, # 0). It shows that increasing ¢,
alone (for case #2, ¢, =50 and for case #3,
@, = 100) is less effective in stabilizing the
aerothermoelastic system than for the linear
one. This leads to a practical application of the
control mechanism on actual and future genera-
tion aerospace vehicle lifting surfaces.

Consideration About the
Aerothermoelastic Control Behavior of
Lifting Surfaces

The influence of aerodynamic heating on the
nonlinear aerothermoelastic behavior of a solid
thin double-wedge airfoil encountered all nonlin-
earities (structural freeplay and cubic stiffness,
aerodynamic third-order piston theory) in
supersonic/hypersonic flight speed regime is
highlighted in the preceding sections. The
nonlinear aerothermoelastic analysis of aero-
surfaces is an important aspect of design. Linear
and nonlinear active control can extend the flutter
boundary and convert the unstable aerother-
moelastic behavior into stable one and/or shift
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the transition between these two states toward
higher flight Mach numbers with suppression of
LCO. Moreover, the analysis presented can
serve as a guideline for selecting appropriate
control gains to maximize performance. Active
control can be produced via a device behaving
similarly to a linear/nonlinear spring. The issue
of the design of the controller is not addressed
here. Only a theoretical analysis of the nonlinear
active control of aerothermoelastic phenomena
of a lifting surface at supersonic/hypersonic
flight speed regimes is presented. The applica-
tion of wvarious controllers using different
linear/nonlinear control theories such as
optimal control (LQR and others) for more
robust control strategy is an active area of cur-
rent research.
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Overview

This entry covers four distinct areas, namely, the
interaction in a closed loop system of designer
aerodynamics, of viscoelastic materials and
structures, and of controls. The presence of
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varying temperatures not only induces thermal
stresses but also strongly affects material proper-
ties. The effects of temperature on viscoelastic
material properties as well as on flutter velocities
and times to reach flutter conditions are
discussed. It is shown that optimized FGM distri-
bution can increase flutter velocities and lengthen
the time to when flutter will occur.

Introduction

The confluence of designer aerodynamics, of vis-
coelastic materials and structures, and of controls
in a closed loop dynamical system introduces
several distinct problems in each of the four con-
tributing areas as well as in their ensemble.

All functionally graded materials, or FGMs
for short, are from a fundamental mechanics
point of view nonhomogeneous materials where
the property distributions are prescribed during
the manufacturing phase. Such distributions may
follow continuous and/or piecewise continuous
functions. Other possible sources of inhomoge-
neities are dissimilar materials, composites, and
temperature distributions. A striking example of
artificially created dissimilar material FGMs
is illustrated in Fig. 1 where thin layers of
distinct materials are deposited in a prescribed
fashion on a plate [1]. A comprehensive formu-
lation (space limitations necessitate citing publi-
cations where expanded bibliographies can be
found) of viscoelastic FGMs may be found in
[2] and of aero-thermo-servo-elasticity with
FGMs in [3]. A treatment of the differences
and similarities between thermo-elasticity and
thermo-viscoelasticity is given in [4].

Linear viscoelasticity has become a mature
though not closed field [5]. However, much
research remains to be undertaken in nonlinear
viscoelasticity [6]. For a list of additional refer-
ences, see [7].

Tailored aerodynamics have been introduced
in publications on airfoil design such as [8—10],
where airfoil surfaces are analytically generated
to deliver prescribed performance characteristics
of low drag, high L/D ratios, etc. Modern airfoil
morphing reminiscent of the Wright brothers’

original plane also offers control possibilities as
seen in [11-14].

Aeroelasticity is a mature field and is covered
by a significant number of textbook starting with
the everlasting classic [15] and including but not
limited to [16-25]. Aero-viscoelasticity on the
other hand is still an emerging field starting with
[26] and [27] and at this time with no text books.
A comprehensive bibliography of the subject as
well as an analytical treatment of aero-servo-
viscoelasticity may be found in [28].

Elastic designer materials are first described in
[29] and viscoelastic ones in [30]. The formal
analytical formulation based on calculus of vari-
ations is presented in [31].

Analysis

Consider a Cartesian coordinate system
x = {x1,x2,x3} = {x;}, an FGM function F(x),
and a temperature distribution T (x, z). The linear
anisotropic viscoelastic constitutive relations can
be expressed as [4-6, 32]

t
/
7ii(x%,) = / Ejulx, 1,1, f(x),T(x,t’)]%df
— t 0[ T( ,)}
T . ) oT (x,1
- / Ejlet,d, F(x), T 0)] = 7==d

| 1)

or
t a J
EIJ(X,[): / Cij/cl[xvtvt/7f(x)7T(x’tl)]%dﬂ
o DT (1,1
, ol (x,rt
+ / ety F (), T, )] =5 7l

(2)

The fundamental difference between elastic
and viscoelastic constitutive relations is the fact
that the elastic ones are algebraic, while the vis-
coelastic relations belong to the integral-
differential species. Additionally, there remains
the most significant matter of the temperature
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Fig. 1 Five-layer
functionally graded ZrO,/
NiCoCrAlYcoating [1]

dependence of relaxation moduli Ej;; and creep
compliances Cjj;. When one eliminates all relaxa-
tion/creep influences at elevated temperatures from
Young’s modulus experimental measurements, the
remainder shows little variations of elastic moduli
with temperature [33—-35]. Viscoelastic metal and
polymer matrix relaxation moduli, on the other
hand, show extreme sensitivity to temperature
due to real material variations in viscosity coeffi-
cients of approximately one order of magnitude per
20 °C —see Fig. 2. The additional most significant
effect of this temperature dependence is to change
the kernel functions in the hereditary integrals from
E(x,t —71) to E(x,t,¢) = E[x,t,{, F(x), T(x,7)]
thus destroying the convenient properties of the
convolution integrals.

A large class of viscoelastic materials, known
as thermo-rheologically simple materials (TSMs),
has behavioral responses that admit the presence
of the WLF (also known as the Williams-Landel-
Ferry shift factor/function) material property shift
function a7 [36] empirically defined as

Ci(T —To)

C,+T-Tp ®)

log, [aT(t)] =

with T,y a conveniently chosen constant reference
temperature. It may, but need not, be equated to
the rest temperature at which the thermal expan-
sions T vanish. In this entry, the same T, is used.

An empirical well-working model for TSMs
defines an associated reduced time &(x, 1) as [37]F

0
a1y, @
- O/exp (Cg + T(x,s) — To> ds
& €0,00]

and reduces all relaxation moduli curves at
many diverse temperatures to a single master
relaxation curve for each TSM with
E(x,&) = Elx,t,7, F(x),T(x,)] versus ¢ By
the above definition, it follows that at T = T,
ar = 1and &(Ty) =+

Further, examinations reveal that

t
/ Ejaf 1.1, f(x%T(XJ')]%:’M)dﬂ

E(xr)
= / Ejulv. &(x,1) - é]a“"g(é Daz (5

and thus the convolution integrals are restored in
the £-space. However, any success at recapturing
an elastic-viscoelastic correspondence principle
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in the &-space is thwarted by the fact that the x;
derivatives acquire variable coefficients due to
the & transformations, to whit

9w o

Bxi 8x,~ 65 (6)
=Zi(x,1)
=Zi(x8)

The transformation into the ¢-space mandates
that

Eju(x, 1) = Eju(x, &)
i
= E;ﬁ,(x) + Z E@n (x)
n=1
E(x, 1)

000

x exp| —

(7)

Equation (5) should be preferentially used in
the governing relations as they simplify the “book-
keeping” and numerical solutions when used.

While the convolution integrals are restored in
the &-space, the variable coefficients generated
by the x derivatives negate any possibility of

applying the elastic-viscoelastic correspondence
principle (EVCP) in either real time ¢ or in
reduced time ¢&. Table 1 summarizes these
phenomena.

The FGM function can be expressed as a series
in the finite x domain, such as for instance

K

M N
f(x) = Z ZZAmnkxlln x; Xé (8)

—0 n=0 k=0
Then let

S= {517823"'78&} = {S/} (9)
L= 1727"'7‘9&

be the set of parameters (constants) representing
E,-jk,n,rgkln,Amnk, geometry, sizing, weight, cost,
etc., and in the case of composites fiber orienta-
tion, number of plies, volume ratios, stacking
sequences, etc., to be optimized.

Further, let u(x,#) be generalized displace-
ments representing rigid body motion, spanwise
and chordwise bending, torsion, etc., which leads
to sets of governing relations of motion in the
generating form
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Table 1 Elastic and viscoelastic thermal coupling

Material Temperature Modulus Convolution in #/&-spaces EVCP
Elastic T(x) Eolx, F(x)] no/no n/a
Elastic T(x, 1) Eolx, F(x)] no/no n/a
Viscoelastic T(x) Elx,t —1, F(x),T(x)] yes/yes yes
Viscoelastic T(x, 1) Elx,t,/, F(x),T(x,7)] no/yes no
0%u(x,t) In order to examine the stability behavior of
Lu(,1,8) =m o2 (10), it is advantageous to proceed in the follow-
— i .
—inerta (T)) Ing manner: ' o '
ou(x, 1) » Express the solution functions in terms of series
+ c :
ot M
————

= external mechanical damping (T5)

De(x, &)

¢ dg

—+ / DAk][X,é(X,t)_él; ]:(X)]

= internal viscoelastic restoring force (T3)

t AT y 8[077\"()(,5/)}
[ D - Fl

—00

ae

= internal thermal expansion force (T4)
= Fy (X oL )
N——

= vibratory force (Ts)

Fsc <x, t,u(x, t),M

o

=differential and integral servo control force (T¢)

Au(x,0)] O[ulx, t)]>
o o

+FA <x7 t7u(x7 t)v

=aerodynamic forces (T7)

(10)

where the ﬁkI and ﬁT are differential spatial
operators specific to the appropriate # component
for beam and plate bending, torsion, etc. For
instance, for Euler-Bernoulli beam bending, it is

2

Dml(x) = %{E[X, t, ]-"(x),T(x, t)}(f—x%}

1

u(x,t) = An(t)fyn(x) (12)
m=1
where each term f;:(x) satisfies the BCs.
» Apply Galerkin’s method and eliminate the x
dependence resulting in integral ordinary dif-
ferential equations of the type

d*U(t) d*U(t)
C37+(52+A2+C2) 7
=B,
dU(t
+(S1+4 +C) ﬁ
—_———  dt
=B,
+ So +Ap + Co U(I)
~
elastic
(13)
‘ .
. du(¢
s [ st - e

—00

viscoelastic including temperature dependence
t

+C1/U(1’)dt’ =0
—_—

integral controller
where
S,,S; = structural coefficients,
S, = mass coefficient
A,(V) = aerodynamic coefficients

C, = servo — control coefficients for

differential controllers

C; = integral controller coefficient
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The presence of temperature functions T'(x, )
or T(7), but not T(x), in the S;[¢(¢)] functions
precludes the possibility of  solutions
U(t) ~ exp[(d + 1 w)f]. Consequently, the cus-
tomary flutter criterion of simple harmonic motion
(SHM) when d(Vg, wr) = 0 no longer represents
an attainable flutter criterion. Instead an alternate
viscoelastic one must be enforced, such that

viscoelastic =

lim {u(x,t,V)} — oo
1—tr
V—=Vg
or (14)
. [Oulx,t, V]}
lim{——— % — ©
t—tp ot
V—-Vi

These instability conditions can be determined
from the solution’s non-converging series or from
a single unbounded amplitude in the solution
series or through limit cycle analyses when appli-
cable. In any case, (14) points to the fact that
under variable temperatures viscoelastic flutter
conditions are dictated by a combination of velo-
city (V) and critical time or time to flutter (¢z).

Figure 3 describes typical conditions according
to the stability prescription (14). The ultimate

2 3 4 5
NORMALIZED FLUTTER TIME

viscoelastic velocity that can be reached is in this
case the viscoelastic flutter velocity, and the graph
depicts its reduced value compared to the equiva-
lent elastic one. For a given lifting surface, both of
these values will, of course, vary with altitude,
trim angle, 7(¢), etc. The time #z is the time at
which the viscoelastic flutter velocity occurs, and
itis paired with a flutter velocity V., which in these
cases are not eigenvalues. For a constant 7, Fig. 3
would have roughly the same shape but different
values. In general an increase in temperature
decreases both V- and # shifting the curve toward
the origin. Conversely, a decrease in temperature
has an opposite delaying effect.

The designer material formulation is basically
that of an inverse problem solved through the cal-
culus of variations [31]. The optimization is subject
to prescribed constraints based on cost, weight, ¢,
VE, and some of the parameters S enumerated after
(9). Formally the constraints can be stated as

C(8)=0 (15)
where S is a subset of the entire ensemble S. After
(13) are solved for the U(¢), the temporal influ-
ence is eliminated by specifying ¢ and hence
U(tp), or any other convenient time, or an average
U,,. value, such as
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Fig. 4 Designer flow chart

Governing Eqs.
L,(S x,t)=0

—

Constraints
C,(S,x,1)=0

Solve for
u,,(1)

(16)

The next step is to solve the now remaining
algebraic relations for each §,, from

0

a5, LulS) +4C(S8)} =0

(17)

where A is a Lagrangian multiplier [38]. The
protocol is summarized in the flow chart of Fig. 4.

Discussion and Conclusions

Figure 5 depicts in a normalized fashion the
effects of constant temperatures on Vy and .
As can be expected, an increase in temperature
brings with it higher relaxation and creep rates
and, therefore, both decrease in value as the tem-
perature is elevated. The converse is seen as
cooling effects take place.

The control that can be exercised on flutter and
times to flutter at one constant temperature can be
seen in Fig. 6. From left to right, the first curve
representing a lifting surface with optimized
homogeneous viscoelastic properties yields the
shortest 7 and the lowest flutter velocities.

Lagrangian Multipliers
a

m

{u,(S) +1,C(5*)} =0

Solve for
parameters S,
(algebraic eqs.)

When designer FGMs are applied to the same
geometric surface, Vy s and ty s are increased
and flutter conditions are improved.

The use of FGM passive control principles is
extremely attractive for UAVs and MA Vs, where
the lifting surfaces are light weight and more
importantly highly flexible. Their limited mission
scope compared to a more complex fighter or
transport flight vehicle makes them ideally suited
for a priori built in FGM distributions.

Of course these designer material studies cre-
ate materials with hypothetical elastic or visco-
elastic optimize properties. The next step, not
part of these studies, is to develop manufacturing
techniques to produce such materials to designer/
tailored properties specifications. In [39], ana-
lyses are presented which relate material chemi-
cal structure to polymer properties. It offers
a partial path to the inverse manufacturing
quandary.

Finally, in [7], case analyses are developed to
extend the designer material concepts to the
entire vehicle. The possibility of carrying out
the solution of possibly some 800,000,000 simul-
taneous algebraic equations for an estimated set
of necessary parameters will materialize when the
University of Illinois at Urbana-Champaign NSF/
NCSA Blue Waters ™ sustained petascale super-
computer comes online in late 2012 [40, 41].
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Fig. 5 Temperature effects on viscoelastic flutter velocity
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Overview

The process of converting chemical energy,
contained in fuel, into thermal energy takes
place as a result of fuel combustion in power
boilers, which ensures the production of steam
of given parameters, mainly pressure and temper-
ature, with the required large expense. Despite
the relatively simple manufacturing process

technology (Clausius-Rankine cycle) carried out
in steam power plants, the equipment used in this
process is of a highly complex, sophisticated
design, with complex functional relationships
between elements [1, 2]. The high temperature
can contribute to premature failures of power
units and, as a consequence, exclusion from the
operation. The analysis of power units’ operation
[3] reveals that most loaded power unit elements
are the boiler and turbine. The share of boiler
failures requiring power block shutdown is
caused, in most cases, by damage to the boiler
pressure parts, that is, the evaporator and
superheater.

During operation of the boiler, the high flame
temperature in the combustion chamber, and the
exhaust gas boiler superheater, can cause an
overheating condition of steel, of which tube
exchangers are made.

In contrast to steady-state boiler operation,
completely different thermal and flow conditions
prevail in transient conditions, that is, during start-
up, shutdown, and rapid changes in boiler load.
In transient conditions, there are large fluctuations
in temperature, pressure, and mass flow rate of
coolant. This affects the rate of heating and
cooling criteria of thick boiler pressure parts.
Uneven and too rapid changes in temperature of
the wall give rise to thermal stresses, large enough
to cause damage in the form of cracks. These
cracks are visible, for example, in cylindrical pres-
sure vessel boiler tubes in areas of precipitation.
Therefore, boiler manufacturers put temperature
rate limits, defining the acceptable rate of heating
and cooling of boiler components. These elements
are called “critical” and determine the duration of
the start-up and shutdown processes.

Therefore, the correct start-up [2, 4—6], and the
stable ability of the boiler to produce steam for
a rating, is an essential element of operating
boilers. The optimization of start-up allows the
reduction in operation time of oil burners, so that
they only work for the necessary period to
achieve stable operation of the boiler at the begin-
ning of the boiler start-up. The rate of the initial
stages of boiler start-up is to provide a uniform
process of heating the boiler, because of the pos-
sibility of deformation of the structure, from
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uneven elongation under the influence of changes

in temperature. Starting procedures also depend

on the technical condition of the power boiler.

Owing to pressure and temperature, there are five

basic states of the boiler:

1. Cold state: (low-pressure boiler) the lack of
steam pressure in the drum, temperature of
below 80 °C, the open vent and drain valves
in the boiler superheater.

2. Hot boiler state: steam drum pressure about
0.5 MPa, the temperature above 80 °C, closed
drainage and venting.

3. Hot boiler margin: a state of the boiler equip-
ment at the ready movement by allowing
a planned power unit and the parameters of
saturated steam in the drum, with a value of
temperature 200 °C, pressure of 1.5 MPa.

4. Cold boiler margin: a state of the boiler equip-
ment at the ready movement for reaching the
planned power plant unit when starting from
cold.

5. Emergency shutdown of the boiler: it is
switched off owing to damage to the boiler,
or it is impossible to maintain the boiler equip-
ment in service in accordance with the instruc-
tions and rules of operation. This also includes
unscheduled boiler shutdowns.
Commissioning of the boiler being on and off

are processes that significantly determine the
consumption of boiler pressure parts and their
residual life [6—9]. During start-up and shutdown,
parts with complex shapes are subjected to exces-
sive stresses.

Proper design of the boiler pressure parts,
material selection, and properly carried out cal-
culations provide a low failure rate of the boiler.
This is important in the period in which improv-
ing the performance of power units is associated
with the construction of large units with super-
critical parameters, owing to the use of new
grades of steel with high strength, at high
temperatures.

The proper design of boiler components
subjected to thermomechanical loads is
possible by using the European standard EN
12952-3:2001. This standard was adopted
July 25, 2001, by CEN (Comité Européen
de Normalisation/European Committee for

Standardization) and was introduced, without
any changes, in all member countries of CEN,
as a national standard.

Fatigue Loads and Their Evaluation
According to EN 12952-3

It is assumed that the boiler components are
subjected to cyclic loads, when the boiler is
designed for more than 500 starts from a cold
state.

If you are given the size of the load, to which
boiler pressure parts are subjected — that is, the
number and types of transients, such as during
start-up or shutdown, and the load changes
adopted during the life of the calculation — the
calculation of fatigue damage is determined by
the hypothesis of linear accumulation Palmgren-
Miner damage. This summation can be
represented by the formula

k
ng ny np ny
Ko (24 + 2 1
2%, <N1+N2+ +Nk> o

where n; is the number of cycles with the same
alternating stress 2f,.x, medium stress variable
fvak, and the reference temperature #; and Ny is
the number of allowable cycles of load changes
for given load conditions. This sum, which is
a degree of exhaustion of the material, must not
exceed 1.0.

In the case of pressure elements working in
creep conditions, that is, at temperatures above
400 °C, calculating the total damage should also
consider the contribution coming from the creep
damage.

When they are not known to the boiler load,
then the calculations shall be 2,000 starts from
cold, with an increased margin of damage. Then,
the degree of exhaustion of the material shall be
less than, or equal to, 0.4:

1,0 for known load

IN

(2)
0,4 for the adopted

2000 stats form cold

=~

1
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The determination of the number of load
cycles and stresses is necessary to calculate the
total damage from the low cycle load, according
to (1). For this purpose, a stress analysis is
performed to calculate the damage derived from
thermal fatigue.

Stress Analysis

During operation, stresses arise on the thick-
walled pressure parts of boilers, as a result of
local changes in temperature and pressure. The
greatest stresses occur at the edges of the inner
surface, between the intersecting surfaces.
Usually, these are the edges of the holes created
by the surfaces of two cylinders, or a sphere and
a cylinder. Owing to the dynamic operation of the
boiler — that is, variations in temperature and
pressure — the stresses occurring in thick-walled
boiler components change over time.

Analyzing the simplest case of uniaxial load
(Fig. 1), the range of stresses in the cycle (3) can
be defined as the difference between the maxi-
mum and minimum value of the stress, and the
mean stress as the arithmetic mean (4):

2fva :f _f

In fact, for complex shapes in place of the
highest stress concentration — for example, on
the edge of the hole — there is a multiaxial stress
state described by equations

fl :ﬁang :flang,p +ftang,l (5)

2 =fraa = —p (6)
f3 :fax = —p (7)
where
f1 is shear stress on the base body and

tangential to the hole, caused by pressure
(frang.p — component of the pressure, N/mmz)
and the temperature difference in the wall
(frang.t — component temperature, N/mmz),
N/mmz;

Allowable Temperature Rates for Pressure Compo-
nents Using European Standards, Fig. 1 Schematic
course of changes in stress during the uniaxial stress
state [1]

/> is radial stress on the body of basic compensa-
tion of fluid pressure (p) on the inner surface of
the hole in the main body, N/mmz;

/3 is axial stress to compensate for the fluid pres-
sure (p) on the outer surface of the hole or
branching, N/mmz.

Using the hypothesis of maximum shear stress
can save time differences of principal stresses:

Ale :fl 7f2 :ﬁang +p (8)

©)

(10)

A =fH—-f=0
Afst = f3 —fi = —(fing + )
In this case, the extent of the stress cycle is

determined by the largest value from the strain
differences (11),

Afin— Ay
2fva = maxs Af,; — Afys (11)
Afs — A5

while the corresponding average stress range is
the average of the differences of principal stresses
(12):

- 1
f=

(Af = Af) (12)

NS

This means that during boiler cycling (temper-
ature and pressure change over time), the stresses
in the weakened hole pressure elements can be
defined as maximum stress A f |, minus minimum
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stress Af ,. If Af,, and Af, are above stresses,
the range of stress variation is
o =0y = A1~ A (13)
For the calculation of minimum and maximum
stress, the finite element method can be used, or
a simplified calculation with the relevant coeffi-
cients of stress concentration factors or notch.
For purposes of computing, the considered
load cycle was introduced in the reference tem-
perature cycle
' =0,75-14+0,25 ¢ (14)
where
t = max{ts,15} is the maximum temperature
at which the greatest stress occurs in the cycle,
f = min{ts, 15} is the minimum temperature
at which there is least stress in the cycle.
The reference temperature #* is also the tem-
perature at which all known temperature-
dependent material properties are determined.

Calculation of Minimum and Maximum
Stress

To determine the allowable range of stresses for
all the pressure components, fatigue diagrams of
steel are used.

By knowing the number of cycles at which
there is destruction of the item, or the projected
number of cycles, the difference between the
maximum and minimum stress 2f, during one
cycle can be determined from the graph of
fatigue. An example of the fatigue curve
described by (15), for different ferritic steels
(R,,), is shown in Fig. 2:

2f, =0.8-R, + (173150 — 0.8 - R;,) .N;0A547
(15)
In the case of calculations for an infinite num-

ber of cycles, (15) takes a simpler form:

2, =0.8-R, (16)

Since the fatigue curves described by (15) have
been developed, based on experimental data, they
do not include safety factors. These should be
taken into account by applying a safety factor to
determine the acceptable range of strain Sg = 1.5,
and the load cycles S; = 10. After taking safety
factors into account, and the adoption of the
design number of cycles Ny = N in (15),

2fus = 0.8 -R,, + (173150 — 0.8 - R,,) - N~ 3%
(17)

2 =0.8-Ry+ (173150 — 0.8 -R,,) - (N - 8.) ;>
(18)
can calculate the allowable range of stress (19):

2 as
2fr. =min¢ Ss

Zf al

(19)

The thick-walled pressure parts of boilers are
designed to work in fixed thermal conditions and
under specified pressure. The work of the same
elements in transient states, which occur during
the start-up and shutdown of the boiler, charac-
terizes variable pressure and temperature on the
large differences in wall thickness. There are also
large differences in temperature at the periphery
of the pressurized parts, especially where there is
a two-phase factor. This is not only the boiler
drum, where, by definition, there is a gas phase
and liquid, but this situation can also occur in the
elements, in which liquid is derived from the
condensation of steam during the boiler shut-
down or start-up. The steam condenses on
the inner walls of the cooler parts of the boiler
[10-12]. Therefore, further calculations, relating
to the proper determination of the range of
permissible stresses, are related to the properties
of the material of which the pressure elements
are made of. On the basis of the yield R, at the
reference temperature, (14) works whereby the
fatigue work pressure and an element of the stan-
dard EN 12952-3:2001 make further calculations
by introducing the concept of an authoritative
range of stresses 2f":
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lf |+ 2, <R (20) using fgrmula (21), except that the refluced
! 2 02/ value will be the average of the maximum

If fatigue occurs in the spring, which is
a reliable range of stresses 2f; as a function of
the corrected stress range 2f, , the corrected aver-

age value of equivalent stress range f;' can be
expressed by the formula

2 *
ofy = — T
- (&)

In terms of elastic plastic, for which the
inequalities are satisfied in (22) and (23),

(1)

2 K
I + S > Rpo2/r

| (22)

and
2fre < Rpooyre (23)
maximum stress f;’ is
[y = G xmax(|Afiaf, [Afsl, [Afn]) - (24)

where C; is the correction factor that takes into
account the effect of surface finish and welded
joints.

A meaningful range of stresses in the elastic—
plastic range is calculated as the elastic range

stress fp:

%

* 2 va
Jfor = Rpo2jr — > (25)

The corrected range of stresses 2f is

2f*
zf* . va

a \ 2
- (@)

In terms of art, when corrected stress range

(26)

2fvtl > 2Rp0.2[* (27)
ameaningful range of stresses 2f as a function of
yield strength is

% \2
2fa* _ (2 va)

— 28
2R 01 (28)

In this case, the average equivalent stress
range f,' can be assumed to be equal to zero.

The above relationships allow the calculation
of the corrected equivalent stress range 2f;,
depending on yield strength. They are:

For an elastic range,

2u =2 (29)
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For an elastic—plastic range,

R,02 R
2@2@.(?” ~op
Ry Ryoor [Rn\>
+if1—=2. L0
2f; Rm 2fa*

(30)

For a plastic range,

2 = /2 Rpoor - 2

Since all elements of the boiler, which are
essential for the conduct of unrest, and for
which we calculate operating at temperatures
above 100 °C, can then be calculated according
to formulas (29), (30), or (31), and adjusted for
equivalent 2fy, stress takes into account the
reduction in fatigue stress at temperatures above
100 °C, using a correction coefficient C .

Depending on the steel used for the element,
a pressure correction factor C,« is calculated from
formulas (31) or (33):

(31)

For ferritic steel, C» =1.03 — 1.5 - ¢

32
—15-107°.¢#2 (32)

For austenitic steels, C- = 1.043 —4.3-107% . ¢*
(33)

The dependence of C,~ computes the temper-
ature #* in the temperature range 100-600 °C, as
presented in Fig. 3.

Stress Concentration Factors and Notch

The simplification, by using the hypothesis of
maximum shear stress in the stress analysis,
which leads to the multi-axis stress state of the
main courses, requires the use of stress concen-
tration factors o, for cylindrical surfaces and o,
for spherical shells. In the case of the boiler drum,
it will be a factor o, for the cylindrical shells. If
the maximum stress in the cycle fi,.x is known,

then the operating pressure can be calculated
from formula (34),

(34)

where d,,; is the mean diameter of the drum and
ens the average thickness of the nozzle wall
(Fig. 4). If the load element is unknown, o, can
be seen from the graph (Fig. 4), depending on the
concentration ratio o, of the geometrical
parameters.

The stress concentration factor «,,, shown in
Fig. 6, is a function of the geometrical parameter
¢ for various wall thickness ratios, of the average
branching e, to the average thickness of the
main body e, and is described by equation

oy =2,2+¢* - &

é_ dmb / dms
dms 2. ems,

2
A= —1‘14<e’"”> 0892 1143

€ms €ms

(35)

where

2
B = 0,326 (‘“’”’) —0.59-" 1 108 (36)

emx ems

Similarly, the stress concentration factor for
spherical shells o, is used in the calculation of
steam piping components, such as tees and ball
valves for steam valve body. Stress concentration
factors o, and a, allow for proper calculation of
circumferential stress components, owing to
pressure. It should be noted, however, that
they relate to the equivalent stress in the middle
of the wall.

The values Af}; in (13) can be calculated using
the finite volume method (FEM). In both cases,
one can assume that the corrected stress extent
2fy, 1s

2fja =2 (37)

In case that the values of Afj, are calculated

taking account the stress concentration factors o,
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and oy,, the impact of micro-notches and the
structure of the surface and welded joints should
also be considered. Then, the corrected stress
extent of 2f;; is
20 = 2fa - Ci (38)
EN 12952-3 shows the correction factors Cyg,
taking into account the effect of notches on the
surface, caused by the mill scale and correction

factors, as well as taking into account the effect of
notches for welded joints, which, owing to notch
effects, have been divided into three classes. Con-
sidering it can calculate the adjusted extent of
stresses (38) and corrected mean stress cycle:
=G (39)
In the calculations of the second component
that comes from changes in temperature, the
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stress concentration factor is used and takes into
account the stresses arising in the areas of stress
concentration o, for cylindrical and spherical
shells weakened by holes for pipes, the tempera-
ture change agent.

In the calculations, it is convenient to use (40),
describing the change of thermal stress concentra-
tion coefficient o,, depending on the ratio of the
average diameter of the connector pipe to the aver-
age radius of the cylindrical and spherical vessel,

“hetr00 heiroo €Y

a,:{[z
1
2
+0,81-22}

where

h 42700 h / 2

7 =—
ms

QU

h — heat transfer coefficient, W/m’K.

Heat transfer coefficient h is taken depending
on the medium-pressure element:

h = 1,000 W/m’K for steam

h = 3,000 W/m’K for water

The temperature coefficient of stress concen-
tration o,, depending on the ratio of the average
diameter of the spigot to the average radius of the
cylindrical and spherical body, for water and
steam inner surface, is shown in Fig. 5.

Permissible Stress Ranges

The range of stress Af, changes, calculated using
(13), should be less than the allowable range of
stress in the cycle 2f,,,, which can be written in the
form of inequalities:

Afy < 2% (41)
The total stress extent Afi,, is calculated by

the hypothesis of the largest shear stress, the
stress intensity range as peripheral variables

from minimum ppj, to maximum pp,x pressure
in the cycle, and as for principal stresses,

Aftang - 2fva - (Pmin - pmax) (42)
and for the second principal stress,
Aftang = 2fva — (~Pmin + Pmax) (43)

The total range of stress on the peripheral edge
of the hole is a combination of stresses on the
main directions of the load from the pressure and
thermal stresses, resulting from the temperature
difference between the thickness of the weakened
wall of the pressure ring (44),

Aﬁang - Aftang,p + Aﬁang,t (44)
where Afang,p is the component of the pressure,
Afiang,; is the temperature component.

In special cases, when combined with connec-
tion, there is additional stress and influence of
stress on the inner surface, and the entire range
of admissible stress can diminish the value of
these stresses Afiang, -

During start-up and shutdown, large tempera-
ture differences occur in the cross wall of the
pressure elements. These temperature differences
are caused by different heat transfer coefficients
in water and steam regions.

The formation of a protective layer of mag-
netite Fe;0, is important for the operation of
pressure equipment and is a phenomenon that
occurs on the inner surface. Since the magnetite
layer is generated during operation of the boiler,
which is the period when the wall elements have
a high temperature, then during the cooling of
the boiler, stresses will occur in the layers close
to the inner surface compressive. In order to
prevent degradation of the protective magnetite
layer on the inner surface, the range of admissi-
ble stress fiang is narrowed by raising the lower
limit of 200 MPa, and the top is lowered by
600 MPa:

Fuang.po — 600MPa < fiang

< fiang.po + 200MPa  (45)
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This prevents damage to the protective inner
layer of magnetite, penetrating cracks and subse-
quent oxidation of the batch.

Circumferential Stresses on the Pressure

The pressure component Afiayg p, as part of the
allowable range of stress in the weakened periph-
eral element hole laden EU standard pressure p, is
defined (because of the large ratio of diameter to
wall thickness) as for thin-walled vessels:

m° dms . .
x - p for cylindrical shells

Afiang,p = 2. e
ms

(40)

sp ° dms .
Afiang,p = OCALP-T - p for spherical shells (47)

Signs in (46) and (47) are as in the previous
sections.

Thermal Stresses

The second component of the stresses inside the
hole, on the surface peripheral stresses Afiang,,
are derived from the temperature difference
between the wall thickness,

1 1 I L I Ll I ] I |
08 09 1

OC[ N ﬂLt* N Et*

Aﬁang,t = 11—y

- At (48)

where

P 1s the coefficient of linear expansion at the
calculation temperature #*, K

E is the module of elasticity at the calculation
temperature t*, MPa;

v is the number of Poisson;

o, is the coefficient of stress concentration on
the temperature difference.

The temperature difference Ar is defined as
the difference between the mean integral temper-
ature in the wall #,, and inner wall surface
temperature #;:

At=t, —t (49)

For the same range of pressure changes, for
which the stresses were calculated from pressure
Afiang,p, the extent of thermal stress can be
calculated

O([ ° ﬁLt* N Et*

Aﬁang,t = 1—v . (Alz — Al‘])

(50)

When the refrigerant temperature rises and
heats the inner surface of the pressure elements,
as follows from (49), the temperature difference
At; in the wall is reduced by adopting a
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negative sign. When an item is cooled, then the
difference At, is positive. In this way, the cal-
culated thermal stress is the second component
of the acceptable range of peripheral stress vari-
ables Afiang.

Determination of the Stress Boundary

The calculated total allowable extent of periph-
eral stress Afiane (45) takes into account the stress
from the pressure, the change of temperature and
stress condition, limiting the amount owing to the
behavior of the oxide layer on the inner surface.
The determination of the yield strength helps to
identify thermal stress, because stress from the
pressure is easy to calculate.

For components made of austenitic materials,
in contact with steam or water, and for compo-
nents made from other materials, in contact only
with water vapor, the maximum circumferential
stress on the inner surface of the hole is deter-
mined by (51), while the minimum allowable
circumferential stress on the inner surface hole,
according to (52), is

(51)
(52)

ftang,max :ftang,pmax + 8- Aftang,l

ftang,min :ftang,pmax — & Aftang,t

In the case of components made of ferritic or
martensitic steel, in contact with water, the max-
imum allowable stress on the circumferential
inner surface of the hole is determined by formula
(53) and the minimum by (54):

ftang,pmax + 8s Aflang,t

f;ang max = Min N (53)
ftang,po + Zoom
flang,pmax — &8s Aﬁang,t

ftang.min = max N (54)

flang,po - 600@

In (53) and (54), the symbol g, is the ratio
determining the share of thermal stresses within
the allowable stress on the surface of the inner
peripheral opening, at the beginning of with-
drawal, that is, when the pressure is highest and

1S Pmax - &5 factor can take values from O to 1
0 <g;<1). If g =0 then it is used by the
entire range of thermal stresses fiang, caused by
temperature changes at the pressure minimum
Pmin - In practice, the majority of boiler pressure
parts shall be a factor g; = 0.5. The result is that
the distribution of thermal stresses fiang ¢ iS Sym-
metrical between fiang pmax and fiang pmin for the
heating and cooling of the pressure element.

Permissible Heating Rate and
Temperature Differences in the Wall

The permissible rate of temperature changes in
boiler pressure parts can be calculated assuming
quasi-stationary state changes in temperature. As
defined by formulas (49) and (50), it allows the
use of the allowable temperature difference for
calculating the rate of temperature changes in the
wall (55),

Dy,
Ve = A[ . —[2
Yec " s

(55)
where
ﬁ is the metal temperature compen-
sation coefficient, m2/s;

ems 1s the average wall thickness of the body,
m;

V. 1s the ratio for an element of pressure.

The form factor for the ratio of outer diameter
d, to inner diameter d; of u, = % is equal to:
For tubular forms, I

(u% - 1) ‘ (3u3 - 1) — 41’ nu,
8(uz —1) - (u, — 1)

Yee = yc‘yl =
(56)
For spherical shells,

1
3

(“0 - 1)3

S P

Yee = Vsp =

] (57)

The calculation of temperature differences
in the boundary wall of the pressure elements,
during heating and cooling processes to be
carried out, assume a total not to exceed the
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permissible range of stresses. Using (51), (52),
and (50) limits for temperature differences can be
determined

ftang,min _ftang,p < At<ftang,max _ﬁang‘p (58)
w - w

where

_ % Pry  Ep

w
1—v

(59)

Using formulas (55) and (58), the limit values
can be calculated: the difference in temperature
and heating rate, taking the pressure p = p,in for
the beginning of start-up and p = pny.x for the
end of start-up. In the case of shutdown, the
beginning is assumed for p = p.x and the end
fOr p = Prain:

At the beginning of the start-up (p = ppin), the
limit values are:

Allowable temperature difference,

Af > ﬁang,min - Aﬁamg,pmin
1 =

- (60)

Allowable heating rate,

Vi = A[1 * Ve (61)
At the end of the run (p = pnyax), the limit
values are:
Allowable temperature difference,

AZI > ﬁang,min - Aftang,pmax
b= W

(62)

Allowable heating rate,

v = At} v, (63)
Similarly, sets of limit values for cooling

(p = pmax) are:
Allowable temperature difference,

Alz >ﬁang,max - Aﬁang,pmax

- (64)

Allowable heating rate,

v = At - v, (65)
At the end of shutdown (p = ppin), the limit
values are:
Allowable temperature difference,

ﬁang,max - Aﬁang,pmin
w

Aty > (66)

Allowable heating rate,

v = AL, v, (67)

Calculated in this way, the heating rate and the
permissible limit temperature differences in
thick-walled pressure parts of boilers are allowed
to run riot and are exempt from service, so as to
not exceed the allowable stress. This contributes
to improving the life of boiler pressure parts.

The Calculation of the Temperature
Difference, Heating Rate and Maximum
Stress on the Example of Drum Boiler
OP-230

In order to illustrate the methods of determining
the basic parameters during transient operation
using EN 12952-3, calculations were made for
the drum of the steam boiler OP-230. The OP-230
boiler is a natural circulation boiler with two
passes and is fuelled by pulverized coal. The
burners are located at the corners of the combus-
tion chamber.

Basic data on the efficiency of the boiler and
pressure and temperature of superheated steam
are listed in Table 1.

To perform the calculations necessary to
determine the geometrical dimensions ade-
quately (Table 2), the parameters of the pressure
element are analyzed (Table 3), as well as the
properties of the material of which the pressure is
part (Table 4).

Properties of the material, from which boiler
OP-230’s drum is made, are given for calculating
the temperature determined from (14).
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Allowable Temperature Rates for Pressure Compo-
nents Using European Standards, Table 1 Basic data
for boiler OP-230

Sn  The parameter name Value Unit

1. Maximum live steam output 230 t/h
(feed water temperature 205 °C)

2. Maximum sustainable yield steam 212 t/h
(feed water temperature 150 °C)

3. Maximum live steam output 253 t/h
(feed water temperature 205 °C)

4. Minimum live steam output 115 t/h

5. Steam pressure at the outlet from 13,5 MPa
the boiler

6.  Superheated steam temperature 540 °C

7.  Feed water temperature 205/150 °C

Allowable Temperature Rates for Pressure Compo-
nents Using European Standards, Table 2 Geomet-
rical parameters of the drum boiler OP-230

Sn The parameter name Symbol Value Unit

1. Outer diameter of the element d, 1.884 m

2. Average wall thickness of the e, 090 m
element

3. Average diameter A 1.792 m

4. Outer diameter of the branch d, 0415 m

5. Average wall thickness of the e, 0.064 m
branch

6. Average diameter of the dmp 0.351 m

branch

The Results of Calculations Allowable
Parameters for Heating and Cooling
of the Pressure Element

For drum boiler OP-230, allowable temperature
differences were calculated, such as the rate of
heating and cooling and permissible stresses dur-
ing start-up and shutdown of the boiler of the
movement. For the calculation of the drum geo-
metric dimensions given in Table 2, and the
operating parameters and material properties for
start-ups from cold state, as well as after 2 and
8 h of stopping, respectively, from Tables 3 and 4,
the calculations assume that the degree of
exhaustion of the material of the drum should
not exceed 0.4 at 2,000 actuations from a cold
state. Safety factors were Sg = 1.5 for the

stresses and S; = 10 for cycles. A summary of
the results is shown in Table 5.

A graphical presentation of the results given in
Table 5 is shown in Figs. 6 and 7.

The calculated limit of the drum wall temper-
ature difference for heating and cooling, as
a function of pressure (Fig. 6), shows that during
the start-up, with the increase of pressure, the
temperature difference in the wall can be
increased. The value of allowable temperature
difference is dependent on the state, which initi-
ated the process to run the boiler. For elements
with a higher initial temperature (less downtime),
the allowable temperature difference is smaller in
the wall.

Similar relationships are observed by analyz-
ing the allowable heating rate of thick, pressur-
ized boiler components (Fig. 7). With the
increasing pressure, the pressure element may
be heated at a faster rate. The rate of heating
depends on the initial wall temperature of the
pressure element, which is how long the boiler
standstill is triggered.

The calculated degree of wear of the drum (the
states of cold) for N = 2,000 cycles is 0.0872, the
states after 8 h. standstill is 0.0321, and the states
after 2 h. standstill is 0.0222.

Analysis of Thermal Strength Conditions
of the Drum Boiler OP-230 During
Heating

The results of calculations of the heating rate, and
the maximum allowable temperature differences,
were compared with measurements performed on
a real drum boiler OP-230, working in one of the
Polish conventional power plants. Metal temper-
atures were measured on the outer surface of the
drum in the positions shown in Fig. 8 (points 1-7).

The transient temperature distribution, in the
cross section of the boiler drum, was calculated as
the solution of the inverse heat conduction prob-
lem, with the cross section divided into the
control volumes. The calculated temperature his-
tories on the inner surface of the boiler drum are
presented in Fig. 9 and the temperature differ-
ences over the wall thickness in Fig. 10.
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Allowable Temperature Rates for Pressure Components Using European Standards, Table 3 Parameters of

drum boiler OP-230

Sn The parameter name Symbol
1. Design pressure Pe

2. Design temperature t,

3. Operation pressure Do

4. Minimum pressure cycle Pmin

5. The maximum pressure cycle DPmax

6. Minimum temperature cycle tmin

7. Maximum temperature cycle tmax

8. Reference temperature r*

Value Value Value
(from cold) (after 8 h) (after 2 h) Unit
14.9 14.9 14.9 MPa
343 343 343 °C
14.9 14.9 14.9 MPa
0.0 7.5 10.3 MPa
14.9 14.9 14.9 MPa
20 290 313 °C
353 353 353 °C
269.7 337.2 335.5 °C

Allowable Temperature Rates for Pressure Components Using European Standards, Table 4 Material prop-
erties of the drum (15NiCuMoNb5-6-4) at room temperature ¢ and computing #*

Sn  Parameter

Tensile strength at room temperature 7 = 20 °C
Yield strength at temperature r*

Coefficient of linear expansion at temperature ¢*
Young’s modulus at temperature #*

Metal diffusivity at temperature t*

ARl ol

Poisson’s ratio in #*

Value Value Value

Symbol  (from cold)  (after 8 h)  (after2h)  Unit
R, 627 627 627 MPa
Re(t*) 362 346 343 MPa
Pri 1.47E-5 1.54E-5 1.54E-5 %

E, 1.958ES 1.896E5 1.891E-5 MPa
Dy, 1.63E-7 1.509E-7 1.498E-7 mT
\Y 0.291 0.294 0.294 -

Allowable Temperature Rates for Pressure Components Using European Standards, Table 5 Summary of
allowable parameters of values for the drum of the boiler OP-230

Beginning of End of

Parameter Beginning of start-up  End of start-up shutdown shutdown
Starting from cold

Maximum temperature difference, K —-322 —116.5 322 116.5
Maximum rate of temperature change, K/s 6.3 23.0 —6.3 -23.0
Starting at 8 h standstill

Maximum temperature difference, K —47.8 —88.9 344 75.5
Maximum rate of temperature change, K/s 8.7 16.2 —6.3 —13.8
Starting at 2 h standstill

Maximum temperature difference, K —29.05 —127.47 34.5 60.1
Maximum rate of temperature change, K/s 10.0 14.7 —6.3 —10.9

The temperature differences are observed
between upper and lower part of the drum. The
reason is that at the bottom of the drum there
is water, which heats up more slowly. The

non-uniform heating of the boiler drum over
its circumference during start-up is caused by
the condensation of steam on the inner surface
of the drum in its steam space. The upper part of
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the drum is heated faster because of the high
value of the heat transfer coefficient resulting
from steam condensation. High differences in
temperatures between the upper and lower parts
of the drum leads to the high thermal stresses.
The result is not only a large temperature dif-
ference between points on the circumference of
7 and 1 but also generates large temperature
gradients in the thickness of the drum.

An analysis of temperature changes on the
drum wall thickness shows (Fig. 10) that, during
the start-up, the wall is heated ununiformly.
Periods of heating and cooling the inner wall
surface can be observed.

Calculated according to EN 12952-3 (Fig. 6),
the permissible temperature differences in the
wall were compared with values obtained during
the actual start-up of power plant (Fig. 9). This
comparison, as a percentage of the two charac-
teristic points (up and down the cross section of
the drum), is presented in Fig. 11. Stocking zy

Pressure, MPa

permissible temperature difference was calcu-
lated from formula (68),

Aty (p)

T = 100% - Ald(p)

-100%

(68)

where At,,(p) is the actual wall temperature dif-
ference for the pressure p, At,(p) is the allowable
wall temperature difference for the pressure p,
calculated from the equation of the characteristic
points of a straight start and end of heating and
cooling.

The periods for which the wall temperature
rises, the temperature difference r(T1-T1’) and
r(T7-T7) were negative. The values were
referenced to an acceptable temperature differ-
ence for heating (curve 2, Fig. 6), while the
wall was cooled, and the temperature difference
r(TI-TI') and r(T7-T7’) were positive for
the heating curve (curve 1, Fig. 6). The typical
temperature  difference  between  supply
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disturbances in relation to permissible value is
large, usually greater than 40 %.

The heating or cooling rate of temperature
changes in pressure elements can be vy, calcu-
lated using the moving average filter [6, 13]

_ daf 1 (

odt|,_,  693A:
11 Tfey + 162 +17Tfo + 162f:1
+ 117fiy2 + 42fi13 — 63fi14)

vr —63ﬁ_4 + 42ﬁ_3

(69)

where f; are medium or wall temperatures at nine
successive time points, with time step Az.

Calculated by (69), heating rate at points
located on the inner surface of the drum (1 and 7,
Fig. 8) are shown in Fig. 12 and are in the range
from —3 to 3 K/min.

A comparison of the heating rate with the
allowable values allows the assessment of

10
Pressure, MPa

12 14 16

Allowable Temperature Rates for Pressure Compo-
nents Using European Standards, Fig. 8 Tempera-
ture measurement location: /-7 on the outer cylindrical
surface of the pressure element, and the corresponding
points on the inner surface /-7
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whether the boiler drum was heated properly. Just
like stocks temperature difference, inventories of
heating rate can also be calculated (Fig. 13). As
shown, the supply is large, because in comparison
to the limit, the value was bigger than 60 %. It
should be noted that the manufacturers of boilers
for such thick drum parts, as presented, recom-
mend a very low heating rate of 1.5-2.5 K/min,
usually constant over the entire range of pres-
sures, for heating and cooling. In a few cases,
they permit cooling at a little more steady rate

after the pressure drops below 60 % of the nom-
inal pressure. In this case, even those measured
on the real object of heating rate would exceed
limit values.

Temperature distribution and stresses in the
boiler drum were determined based on the solu-
tion of the inverse heat conduction problem.
The calculated stresses are shown in Figs. 14,
15, and 16. Presented figures show the history of
circumferential (Fig. 14), longitudinal (Fig. 15),
and reduced (Fig. 16) stresses at the points
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Temperature transients, K/min

Fig. 12 Rate of change of
temperature at points / and 0
7’ located at the inner

surface of the drum

(1 and 7), on the inner surface at boiler drum,
during boiler operation. In addition, stress has
been shown in point No. 4 (Fig. 8), located in
the middle of the cross section of the drum.

Summary

High thermal stresses occur during the power
boiler operation in its thick-walled components,
especially during boiler start-up and shutdown.
The nonuniform heating of the boiler drum over

Point No. 1'
[ Point No. 7
-3 — 1 T 1 T 1 T T T T
10000 20000 30000 40000 50000 60000
Time, s

its circumference during start-up is caused by the
condensation of steam on the inner surface of the
drum in its steam space. Also filling the installa-
tion with freshwater in between the periods of
boiler operation causes the significant increase
in the thermal stress in the boiler drum, especially
over its circumference and in the region of the
boiler drum; downcomer intersection. Very high
thermal stress can occur during the injection of
cool water into the thick-walled component, as in
case of the attemperator. In some cases, the thick-
walled boiler components are subjected to the
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thermal shock, especially when the steam con-
densation occurs on their inner surface or fresh-
water of lower temperature is filled into the
installation [14].

Processes of conducting thick-walled boiler
components, as occurs in the start-up and shut-
down of boilers, are difficult processes and
require special supervision. Because the thick-
walled boiler components are subjected to the
irregular and fast temperature changes, it is nec-
essary to monitor the operation of the thick-
walled pressure components. For this reason,

criterial boiler components, such as boiler
drums, superheater chambers, and attemperator
chambers, or steam piping fittings, ought to be
monitored continuously. For proper monitoring
operation systems, there must be acceptable rates
for safeguarding the boiler pressure parts from
large thermal loads.

EU standard EN 12952-3 Water-tube boilers
and auxiliary installation, Part 3: Design and
calculation of pressure parts, is commonly used
to determine the allowable parameters, not only
in European countries.
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The presented calculations are based on the
cited norm, allowing the determination of per-
mitted variations in the walls of the pressure
elements: the heating and cooling rate limits,
the ranges of allowable stresses, and the degree
of wear. Usually, it is used for determining
allowable limits in on-line monitoring systems
of pressure components. However, it should be
noted that other procedures for determining
allowable temperature changes during start-up

and shutdown of the boiler, which can be used
for designing and operating large power boilers,
allow a step change in the temperature at the
beginning of the heating and cooling of the pres-
sure element, which is weakened by holes
[9, 12]. This is an advantage because it allows
the reduction of the boiler start time, without
degrading the pressure parts of boilers, enabling
faster connection of the power units to
electric systems.



106

References

10.

11.

12.

13.

. TRD 301

. European Standard, EN 12952-3, Water-tube boilers

and auxiliary installations, Part 2: Design and calcu-
lation for pressure parts. CEN (European Committee
for Standarization), rue de Stassart 36, B-1050
Brussels, 25 July 2001

Anlage 1: Technische Regeln fiir
Dampfkessel:  Berechnung auf Wechselbean-
spruchung durch schwellenden Innendruck bzw.
durch kombinierte Innendruck- und Temperaturan-
derungen. Carl Heymans, Koln, and Beuth-Verlag,
Berlin, Ausgabe 1986

. Taler J, Weglowski B, Zima W, Gradziel S,

Zborowski M (1999) Analysis of thermal stresses in
a boiler drum during start-up. Tran ASME J Pressure
Vessel Technol 121:84-93

. Tonti A (2010) Cyclic capability of steam generators,

EN12952-4, other codes and experimental results. Int
J Pressure Vessel Piping 87:650-655

. Osocha P, Weglowski B (2010) Optimization of

loads and geometry of thick-walled pipeline elements
operating in creep conditions. In: EngOpt 2010 -
International Conference on Engineering Optimiza-
tion, Lisbon, Portugal, 05—10 June 2010

. Taler J (1997) Analytical solution of the overdeter-

mined inverse heat conduction problem with an appli-
cation to monitoring thermal stresses. Heat Mass
Transfer 33:209-218

. Taler J, Zima W (1999) Solution of inverse heat

conduction problems using control volume approach.
Int J Heat Mass Transfer 42:1123-1140

. Taler J, Duda P (1999) A space marching method for

multidimensional transient inverse heat conduction
problems. Heat Mass Transfer 34:349-356

. Taler J, Lubecki S (2011) Optimization of steam

pipeline and T-pipe heating. J Thermal Stress
34:1021-1034

Weglowski B,Taler J, Zima W, Gradziel S,
Zborowski M (2000) Development and implementa-
tion of a computer based system for thermal stress
monitoring in thick walled boilers. In: Ninth interna-
tional conference on pressure vessel technology, Syd-
ney, Australia, 9-14 April 2000, Proceedings, vol 1,
pp 875-882

Taler J, Duda P, Weglowski B (2008) Thermal-
strength monitoring and remnant lifetime assessment
of pressure components of power steam boilers. In:
Diagnostics of new-generation thermal power plant.
PAN, Gdansk, pp 252-338 (Chapter 6)

Taler J, Dzierwa P (2011) A new method for optimum
heating of steam boiler pressure components. Int
J Energy Res 35:897-908

Taler J, Weglowski B, Sobota T, Jaremkiewicz M,
Taler D (2011) Inverse space marching method
for determining temperature and stress distribu-

tions in pressure components. Developments
in Heat Transfer, InTech, September 2011,
pp 273-292

Alternative Formulations

14. Weglowski B, Taler J, Zima W, Zborowski M (2000)
Development and implementation of a computer
based system for thermal stress monitoring in
thick walled boilers. In: Ninth international confer-
ence on pressure vessel technology — 9, vol 1, Sydney
Australia 9-14 April 2000, pp 875-882

Alternative Formulations

Alternative Formulations: Reciprocal Relations

Alternative Formulations: Reciprocal
Relations

Stan Chirita

Department of Mathematics, Alexandru Ioan
Cuza University of Iasi, Iasi, Romania
Octav Mayer Institute of Mathematics,
Romanian Academy, lasi, Romania

Synonyms

Alternative formulations; Linear theory; Recip-
rocal relations; Thermoelasticity

Overview

We give an alternative characterization of the solu-
tion to the mixed boundary—initial value problem
of linear thermoelasticity in which the initial con-
ditions are incorporated into the field equations. In
the classical elasticity, such characterization was
established by Ignaczak [8] (see also Gurtin [2, 3]).

We will use the alternative formulation of the
mixed boundary—initial value problem in order to
establish some reciprocal relations within the
framework of linear theory of thermoelasticity for
anisotropic and inhomogeneous materials. The
reciprocal relation is derived for a body of volume
region B and surface OB and represents an integral
relation over B and OB between body supplies,
surface traction and surface flux, and displace-
ments and temperature variations of two solutions
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of the mixed problem of the linear thermoelasticity,
namely, a solution of an actual problem and a
solution of an auxiliary or virtual problem.

The first reciprocal theorem in the classical
thermoelastodynamics is due to Ionescu—Cazimir
[9]. The proof is based on the assumption of null
initial data and systematic use of the Laplace
transform. Iesan [5] has established a reciprocal
theorem without using the Laplace transform.
The method of proof is based on a characteriza-
tion of the boundary—initial value problem in
which the initial conditions are incorporated into
the basic equations of motion. Later, Iesan [6, 7]
has established a new reciprocal theorem where
the proof avoids both the use of the Laplace
transform and the incorporation of the initial con-
ditions into the basic equations of motion.

Despite its long existence, the reciprocal theo-
rem was, until recently, not used extensively
to actually solve problems. A recent book by
Achenbach [1] presents, however, novel uses of
reciprocity relations for the actual determination of
elastodynamics fields. Various other applications
of the reciprocal theorems have been presented in
Tonescu—Cazimir [9] and Nowacki [10, 11].

Basic Formulation

We consider a body made by a thermoelastic
material, which at the time =0 occupies
the region B of the three-dimensional Euclidian
space E3 whose boundary surface is OB.
The fundamental system of field equations
consists of the equation of motion

Tjij + Qobi = Qoli (1)
the energy equation
20ToS = —gii + 0or (2)
the constitutive equations
oij = Cyexn — M;;0
p(]S = M,-je,-j + al
qi = —kij0,;
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and the geometrical equations

(4)

(uij + uj;)

N —

eij =

We assume here that the elasticity tensor Cjjy,
the stress—temperature tensor M;;, the conductiv-
ity tensor k;;, the specific heat ¢ = Toa, and the
density g are prescribed and that Cyj;, Mj;, and k;;
are smooth on B while a and g, are continuous on
B. Moreover, we assume that C iikl» M, and k;; are
symmetric.

The mixed problem P of the dynamic
thermoelasticity consists to find a thermoelastic
process [u;, e, 0,0, S, q;] corresponding to the
body force b; and the heat supply r that satisfies
the initial conditions

the displacement condition

u; =u; on XX [0,l0)

the traction condition

ojinj = Si on X)X [0, lo)

the temperature condition

0 =0 on Z3><[0,l0)

and the heat flux condition

©)

gini=q on X4 x[0,t)

where X, 2,, 23, and X4 are subsets of the
boundary OB such that X, U X, = X3 U X, = OB,
21NXZy,=23N22 = @, and Uy, Uy, and Sy and 0,
S, 9, and ¢ are prescribed functions. If such
a thermoelastic process exists, it is called a solution
of the mixed problem P.
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Alternative Formulations

In this section, we give another formulation of the
mixed problem P in which the initial conditions
are incorporated into the field equations. Such
alternative formulation was obtained in linear
thermoelastodynamics by Iesan [4] and consti-
tutes a generalization of a result established
by Ignaczak [8] for the classical linear
elastodynamics.

The operation of convolution between any two
functions u and v € C(B x [0, y)) is defined by

uxv(x,t) = J; u(x,t — 1)v(x,1)dr, (10)

(x,1) € B x [0,19)

For convenience, we recall the following
properties of the operation of convolution:
l. uxv=vxuforall u,v € C(B x [0,1)).
2.ux (vew) = (uxv)xwforallu,v,we

C(B x [0, 1)).
B ux(v+w)=uxv+uxw for all u,v,we
C(B % [0,1)))-
4. uxv=_0impliesu =0orv = 0.
We further introduce the functions:
20t =1
v (1)
i(ty =t, te]0,1)
and note that
t
Cxu(x, 1) = J u(x, 7)dt (12)
0
and
Pxu(x,t) =0 (Lxu)(x,1)
J J (x,7)dds (13)

forall u € C(B x [0,1))).

Let [u;,e;,04,0,S,¢;] be a solution of the
mixed problem P corresponding to the external
force system [b;,s;] and external thermal system
[, ¢]. We introduce the pseudo-body force field f;

Alternative Formulations: Reciprocal Relations

and the pseudo-heat supply field R defined
on B x [0,1y) by

fi(x,1) = @o(X)i * bi(x, 1) 4 0o (x)[11t0:(X) + 10i(x)]
R(x, t)— Qo )é*i(x 1) + 0¢(x)So(x)

(14)

Theorem 1. The thermoelastic — process

(i, e, 05,0, S, q] satisfies the Equations (1) and
(2) and the initial conditions (5) if and only if it
satisfies

Qolti = 1% 0ji j + f;

1 15
008 = —7l*xqi;i +R (13
To '
in B x [0, l()).
Proof. First of all, we observe that
t S
ix0;(x,1) = i; (x,7)dtds
o= | ixo »
- ui(xat) - [tlli(X,O) +ui(XaO)]
and
. t .
CxS(x,t) = J S(x,7)dt = S(x,1) — S(x,0)
0
(17)

Let us first suppose that the thermoelastic
process [u;, e, 05, 0, S, g;] satisfies the Equations
(1) and (2) and the initial conditions (5). Then, by
using (16) and (17), we have

i+ o0, 1) + 20(X)bi (%, )]
— oo, 0) — (i) + 1)
and
o(x) ,
_T—Oé*q,,(x t)+0T—O£*1(x,t) (19)
— 0y(%)[S(x.1) — So(x)]
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Thus, the relation (15) follows from the
relations (18) and (19).

Let us now consider that the thermoelastic
process [u;, ejj, 057, 0, S, ;] satisfies the Equation
(15). Then, by substituting (14) into (15) and by
using the relations (16) and (17), we can write

i* [O'ji.j(xvt) + 20 (X)bi(xv t)]
+00/(x) [fit0; (X) + uoi (X)] = x 0o (X)iiis(x,1)  (20)
+ 00 () [112:(x,0) + 1;(x,0)]

and
1
L g + 9 () 1 0y (050(0)
To ' Ty

= o(x)0 * S(x,1) + o (x)S(x, 0)
(21)

Further, we set r =0 into relation (20) to
obtain
uoi(x) = u;(x,0) (22)
and then we derive (20) and we set t = O into the
result in order to deduce
tioi (x) = i;(x, 0) (23)
Herewith, we set r = 0 into relation (21) to
obtain
SO(X> = S(Xa O) (24)
Moreover, if we use these results into relations
(20) and (21), then we obtain

i 01,1 (%,1) + 00 (X)Di (%, 1) — 0o ()i (x,1)| =0
TLZ * [—qii(x,1) + 0o (X)r(x,1) — 00(X)ToS(x, n]=0
0
(25)

In view of the properties of the operation of
convolution, from (25), we see that the
thermoelastic process [u;, e;j, 0y, 0, S, q;] satisfies
the Equations (1) and (2) and the proof is complete.

A direct consequence of the Theorem 1 is the
following result.
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Theorem 2. A thermoelastic process [u;,e;j,
0i;, 0,8, qi] is solution of the mixed problem P if
and only if it satisfies the Equation (15) and the
boundary conditions (6)—(9).

Remark 1. Let us denote by P, the problem P
when X, = JB. Then we can obtain an alternative
formulation of the problem Py in terms of the
components of the stress tensor and the tempera-
ture variation by substituting u; from (15) into
geometrical relation (4) and then the result into
the Saint—Venant compatibility conditions:

eiijj+ €jjii = 2eijij, (i, not summed)
Crrij + Cijrr = €jrir + Cirjrs (l 7&] 7& r 7& iv
not summed)

(26)

Such a formulation can be found in [4].

Reciprocal Relations

In what follows, we use the alternative formula-
tion described in the above section in order to
establish a counterpart of Graffi’s reciprocal the-
orem in the isothermal theory (see, e.g., Gurtin
[3D. To this end, we consider two thermoelastic

processes p<“> = {M,(y) ) 6,(,-“) ) 0,(]'&) ) 0" ) ) ) %@}

and o = 1,2, corresponding to the two systems
of given data:

D = {b, @, 5,074y iy 5}
(27)
o = 1,2, and introduce the notations:
£ 0,1) = 0o ()i b7 (x,1) + 00 () 1) (x) + ) (x)]
R, = 800 ) (9

(28)

and
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Theorem 3 (Reciprocal theorem). Suppose
that the conductivi tensor ky; is  sym-
metric. Let p*) = [uid),efja),ay),9(“),5(“)7%@]
be thermoelastic processes corresponding to the

given data D = {b§“>77'(“); L}E“),@(“), ém,c}(“);

“(()c;)v L"(()?vs((]“)}; and o = 1,2. Then

and

J 2 <b§‘> i~ L *9(2>>dv
B T()

+ (sl(l)*u,(z)—&—lé*q(l) *0(2)>da
B To
| oo ()il + iy — 5000 Y av
1
=1 Qo (b@*u,(»l)—K*r@)*e(l))d\»
B Ty

1
+J (sl(z)*ul(l)—&-—ﬂ*q(z)*0(l)>da
o8 Ty

1

+] e (w7 iy =700 Yav - (31)
B

In particular, when both thermoelastic
processes correspond to null initial data, then

J % (bﬁ” sul® — Ly, 9<2>>dv
B T()

+ (sm *u,@ +iﬂ*q(1) *0(2)>da
oB To

=1 9 <b§2) * ufl) — if *r@ % 0(1))dv
Ty

1
+ (s§2> sull) 402 q@ « e“))da (32)
oB To

Alternative Formulations: Reciprocal Relations

Proof. From the symmetry of C;;; and by using
the definition and the properties of convolution,
we have

Ciel) x eff = Ciiklez(]'z) sey  (33)
and
abV « 0¥ = ah® « oV (34)

Then, by means of the constitutive equations
(3), we obtain

[‘719) +M@/9<1>} rey) = [ v +Mlﬁi9(2)] vy
[QOS(I) —M,-jefjlq x0?) = [QOS(Z) —M,jel(jz)} 0
(35)
which further give
o1 s e — 981 %00 = 62w ell) — o5 4 )
(36)
If we set

Lp = J i * {a@ * e,(jﬂ) —00S™ % 0P | av (37)
B

ij
then (36) implies
(38)

Iy =1y

On the other hand, by taking into account the
constitutive equations (3), the geometric equa-
tions (4), and the Equation (15) and the symme-
tries of the thermoelastic coefficients, we obtain

Lp= J i* JE;‘) wuPay

1y

(39)

Finally, if we substitute (39) into (38), we are
led to the reciprocal relation (30).
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Note that the reciprocal relation (31) is a direct
consequence of the relations (30) and (15) and the
properties of the convolution and the identity:

Cx (X, 1) = ui(x, 1) — u;(x,0) (40)

Obviously, when the two thermoelastic pro-
cesses correspond the null initial data, the relation
(31) takes the form (32) and the proof is complete.

Remark 2. Suppose both thermoelastic processes
correspond the null initial data. Then the relation
(40) implies
u? (x, 1) = 050" (x, 1) (41)
i I - i I
and the reciprocal relation (32) takes the follow-
ing form:

J b(l) * b't@ —irm
B b T

) * H(ﬂ dv
0

+J s 1252) +—q" « 0% | da
OB i

= [b(z) sl — @ 0(1)]dv
B

V5«0 da  (42)

The reciprocal relation (42) was established
by Ionescu—Cazimir [9] by using the method of
Laplace transform.

Remark 3. We recall that the theory of
thermoelasticity based on the hypothesis that the
term M;;é;; can be neglected in the energy equa-
tion is known as the uncoupled theory of linear
thermoelasticity. By contrast, the general linear
theory is known as the linear theory of coupled
thermoelasticity. Let us suppose that p(!) is
a thermoelastic process corresponding to the
mixed problem associated with the linear coupled
thermoelasticity, while the thermoelastic process
p?) corresponds to the mixed problem associated
with the linear uncoupled thermoelasticity. That
means we have

Qos = a0 (43)
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Then we have the following reciprocal relation:
[
+| ix (sfl) %
B

_ (f,@ sulV) — xR 501 )
B

+ 1% (sl@ *U D
OB

esz)dv

2 _ xR 402 )

ul(z) +i€*q(l) * 0(2)>da
Ty

—|—L€*q(2) * 9(1)>da
Ty

(44)

— | Myix0W «
B

In the case when the both thermoelastic pro-
cesses correspond to null initial data, the recipro-
cal relation becomes

) % 9(2)) dv

J (bm * u(»z) — ié !
B\’ ' To
+Ti£ s g\ x 9(2)>da
0

+ (sfl)*ufz)
9B
L, @, 0
——0xr'9 %0 dv
Ty

—|—i€ g\ x 0(1))da
Ty

* e >dv

M,,H (45)
Further, if we use the relation (41), then we
can write (45) in the following form:

J (bl(»l) * I;ll(2> — i}’(l) * 0(2))dv
B Ty
1

- M,,@l xelldv

(46)

a relatlon found by Ionescu—Cazimir [9] by using
the Laplace transform.
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Overview

Application of mechanical prestressing could
be an effective means for achieving a

Alumina

failure-mode-shift-free “destructive ALT effect”
in electronic and photonic devices and micro-
electro-mechanical systems (MEMS). A simple,
physically meaningful, and easy-to-use analytical
(“mathematical”) predictive model has been
developed to assess the stresses in a bi-material
assembly subjected to the combined action of
thermal stresses and external (“mechanical”)
prestressing. The compressive prestressing is
applied to the assembly component that is
expected to experience thermal compression.
The model is an extension and a modification of
the author’s 1986 and 1989 “bi-metal thermostat”
models suggested as a generalization of the 1925
Timoshenko’s theory.

Introduction

The objective of the analysis is to indicate
the feasibility of using mechanically prestressed
test specimens, when there is a need to avoid
the “shift” in the modes and mechanisms of
failure in electronic, photonic, or MEMS assem-
blies subjected to thermal loading during ALT.
When planning and conducting ALT, there is
always a temptation to broaden (enhance) the
temperature range to achieve the maximum
“destructive ALT effect” in a shortest period
of time. There exists, however, one major
pitfall — a possible shift in the modes and
mechanisms of failure as a result of broadening
the temperature range. Enhanced ALT condi-
tions may hasten failure mechanisms that are
quite different from those that could possibly
occur in actual service. The likely pitfalls
include, but might not be limited to, the
change in material properties at high or low
temperatures; time-dependent strain due to dif-
fusion; enhanced creep at elevated tempera-
tures; brittle fracture at low temperatures;
generation and movement of dislocations
caused by an elevated thermal stress; occur-
rence of a bi-modal distribution of failures,
etc. Because of the possibility of such pitfalls,
it is necessary to establish the appropriate
narrow enough temperature limits in order to
prevent the distortion of the actual dominant
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failure mechanism(s). There is an obvious
incentive, therefore, for trying to find ways
of increasing the induced stresses without
broadening the ALT temperature range.

One way to enhance the “destructive ALT
effect” without compromising the acceptable
temperature limits is to mechanically prestress
the test specimens prior to conducting thermal
ALT. For instance, a low expansion silicon chip
attached to a high-expansion polymeric sub-
strate will experience thermally induced com-
pression, when the chip-substrate assembly
manufactured at an elevated temperature is sub-
sequently cooled down to a low (say, room)
temperature. This compression can be enhanced,
and the interfacial stresses will be increased,
if the chip is mechanically prestressed in
compression.

The objective of this entry is to present
a simple, easy-to-use, and physically meaning-
ful predictive model for the evaluation of the
thermo-mechanical stresses in a mechanically
prestressed bi-material specimen. The problem
of stress concentration and fracture in bi- and
multi-material assemblies has been addressed
for a long time and by numerous investigators.
The number of published work dealing with
this problem is enormous (see, e.g., the recent
review [1]). Let us indicate just some major
publications, which address prediction of ther-
mal stress in assemblies comprised of dissimi-
lar materials: general monographs (e.g., [2—6]);
pioneering work by Timoshenko [7] (who used
a strength-of-materials approach), and by
Aleck [8] (who used the theory-of-elasticity
concept that was later on extended in many
researchers (see, e.g., [9, 10]); numerous pub-

U (X) = —oAtx + A4

up(x) = —opAtx + 1y

S 5 O

[T —T(&)]dE + Kit(x)

T(&)dE — rot(x) + @w’ (x)
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lications in the electronics, photonics, and
MEMS systems [11-38], including fracture
mechanics-based analyses [15-18], thermal
fatigue in ductile metals [19-24], that is par-
ticularly important when there is a need to
assess the life-time of solder joint interconnec-
tions in electronics and photonics [23-32]);
thermal stress in thin films fabricated on thick
substrates [33-38], etc.

Our model is an extension of the models
developed earlier [11, 12] as generalizations of
the classical Timoshenko’s theory of bi-metal
thermostats [7]. The model predicts the magni-
tude and the distribution of the interfacial shear-
ing and peeling stresses in a bi-material assembly
subjected to the combined action thermal and
mechanical stresses.

Basic Equations

Let an elongated bi-material adhesively bonded
or soldered assembly be manufactured at an
elevated temperature, then cooled down to
a low (say, room) temperature, and then, prior
to ALT testing, subjected to mechanical com-
pression applied to the assembly component
with the lower coefficient of thermal expansion
(contraction), as schematically shown in Fig. 1.
It is this component that will experience com-
pressive thermal stress in actual operating
conditions.

The longitudinal interfacial displacements
ui(x) and u;(x) in the assembly components #1
and #2 can be evaluated, in an approximate
analysis, by the formulas of the type suggested
in [14]:

h
- jwﬁ (x)

2 2
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Analysis of a Prestressed Bi-Material Accelerated-
Life-Test (ALT) Specimen, Fig. 1 Bi-material assembly
subjected to the combined action of thermally induced and

where o; and o, are the coefficients of thermal
expansion (CTE) of the component materials, Af
is the change in temperature,

71—\)1
- Eh’

71—\)2

y) -
1 2=

(2)

are the axial compliances of the components, E;
and E; are Young’s moduli of the materials, v,
and v, are their Poisson’s ratios, /; and &, are the
thicknesses of the components, T are the external
“mechanical” compressive forces (per unit
assembly width) acting on the low expansion
component #1,

is the force acting in the cross-section x of the
component #2, [ is half the assembly length, 7(x)
is the interfacial shearing stress,

h
3G,’

hy

3 @

K1 = K2

are the longitudinal interfacial compliances of the
assembly components in the case of a long
enough and/or stiff enough assembly [11],

E,
2(1 + V]) ’

E,
2(1+ )

G G, = (5)

are the shear moduli of the materials, and
wi(x) and wy(x) are the component deflections.

A

compressive external forces applied to one of the assem-
bly components

The origin of the coordinate x is in the
mid-cross-section of the assembly at the inter-
face. The first terms in (1) are stress-free thermal
contractions. The second terms are evaluated
based on the Hooke’s law assuming that the
longitudinal displacements are the same for all
the points of the given cross-section. The third
terms are “corrections” to this assumption and
account for the fact that the interfacial longitu-
dinal displacements are somewhat larger
than the displacements of the inner points of
the cross-section. The fourth terms are due to
bending.

The condition of the compatibility of the
displacements (1) can be written as

1 (x) = 0 (x) — ot (x) (6)

where

_ o

-5 )

Ko

is the longitudinal interfacial compliance of the
bonding layer, A is its thickness,

Ey

Go=-——0
0 2(1 +vo)

(3)

is the shear modulus of the bonding material, and
Ey and v are its elastic constants. Introducing the
formulas (1) into the condition (6) we obtain the
following integral equation for the shearing stress
function, t(x):



Analysis of a Prestressed Bi-Material Accelerated-Life-Test (ALT) Specimen

h ,

() = (i + 22) [ T(€)de = w0 — vt
0

= —(AaAr + 2 T)x
(9)

where Ao = o, — o is the difference in the CTE
of the component materials, and

K =Ko+ K|+ Ko (10)
is the total longitudinal interfacial compliance of
the assembly. As evident from the (9), the “exter-
nal” thermal strain AaxA¢ can be enhanced, with-
out broadening the temperature range, by
mechanically prestressing one of the assembly
components. The (9) indicates also that such an
enhancement increases with an increase in the

axial compliance of the compressed component.
From (9) we find by differentiation:

€ () (1 + A2)T(3) — 2w () — 2w ()
= —(AaAr + i T)
(11)
e(0) = (i a)ele) — S () 2 () = 0
(12)
() — (i 22)7 ) — 2wt () — 2o () =
(13)

Treating the assembly components as elon-
gated rectangular plates we proceed from the
following equations of bending (equilibrium):

p(&)déde, = —Dywl (x) + %T(X)

—_—
Le—

|
L

— Dowll(x) - 27(x)

210 (14)

where p(x) is the interfacial peeling stress (i.e.,
normal interfacial stress acting in the through-
thickness direction of the assembly), and
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__El
C12(1 =3’

Exh3

D =22 _
! 12(1 —2)

(15)

2

are the flexural rigidities of the components.
From (14) we find by differentiation:

JMW&Hme+ﬁW)
]

2
=D () - 2o (16)
px) = D" () +5-7'(x)
=D () -2 ()

Solving the (17) for the fourth derivatives of
the deflection functions and substituting the
obtained expressions into the (13) we obtain the
following equation

Kt () =it (x) = —up(x)  (18)
that couples the interfacial shearing stress 7(x)
and the interfacial peeling stress p(x). In the
obtained equation,

A=+ +—+—
1+ 2+41+42

(19)
is the total axial compliance of the assembly
(with consideration of the effect of bending), and

hy hy

*=3%p, " 2D, (20)
is the factor of the peeling stress. As evident from
the formula (19), the total axial compliance of the
assembly increases with a decrease in the flexural
rigidities of its components. As to the factor (20),
it is the lowest for adherends with close flexural
rigidities and is the highest in the case of consid-
erably different rigidities.

It is assumed that the peeling stress is related
to the deflections w; (x) and w,(x) as

p(x) = K[wi(x) — wa(x)] (21)
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where K is the through-thickness stiffness of the
assembly. The formula (21) reflects an assump-
tion that no peeling stress could possibly occur in
the given cross-section, if the deflections wy(x)
and w,(x) are the same in this cross-section. In an
approximate analysis, by analogy with the longi-
tudinal interfacial stiffness (compliance), one
could assume:

1
K = (22)
=yl , (=) | (1—vo)h
31‘!;1l s R

This formula indicates that while the entire
bonding layer experiences stresses acting in the
through-thickness direction of the assembly, only
the inner portions of the assembly components,
that is, the regions adjacent to the interface, are in
the state of appreciable stress. From (21) follows

P ) =Ky ()~ ()] (23)

Solving the (17) for the fourth derivatives of
the deflection functions and substituting the
obtained expressions into the (23) we obtain an
equation that couples the interfacial shearing,
7(x), and the interfacial peeling, p(x), stresses:

P (x) + 4B*p(x) = uK (x) (24)
where
4/, D1+ Dy

is the parameter of the interfacial peeling stress.
The (24) indicates that the longitudinal gradient
of the interfacial shearing stress plays the role of
the external loading for the peeling stress. It is
noteworthy that the (24) has the form of the
equation of bending of a beam lying on
a continuous elastic foundation. In the engineer-
ing theory of such beams, this equation is being
written, however, for the deflection function, and
not for the peeling stress.

The (18) and (24) are the two basic equations
in the problem in question. These equations indi-
cate that the two types of the interfacial stresses
are coupled. Separating the functions 7(x) and

Analysis of a Prestressed Bi-Material Accelerated-Life-Test (ALT) Specimen

p(x) in the (18) and (24), it is found that these
two functions could be determined, in effect,
from the same equation:

TVI (X) _ kZ_L_IV (X)

2
4| n 12 :u_ D\D; o
+4p7 7" (%) kr(x)+K D1+D21x) =0
(26)
or
P~ B ()
2
4l e N 12 I D\D, _
a0 - o) + 1 S22 )] =0
(27)
Here
A
k=1/— 28
’ (28)

is the parameter of the interfacial shearing stress.
The solution to the (26) should be sought, how-
ever, in an anti-symmetric form and should con-
tain only odd functions, while the solution to
the (27) should be symmetric with respect to the
mid-cross-section of the assembly and should
contain, therefore, only even functions. This cir-
cumstance is reflected by the appropriate bound-
ary conditions.

Boundary Conditions

Since there are no external forces acting at the

ends of the component #2, the force T'(x) must be

zero at the end x = / of this component:

T(H=0 (29)

Since no concentrated bending moments act at

the assembly ends, the curvatures w/(x) and

w4 (x) must be zero at these ends:

wi(l) =wh(1) =0 (30)

As to the lateral forces, the following bound-
ary conditions have to be fulfilled:
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Diw() +Tw'() =0, wy' () =0  (31)
The first condition in (31) indicates that the
lateral projection of the external force T should be
equilibrated by the elastic force. Considering,
however, that a typical electronic or photonic
assembly is stiff enough, so that the angle of
rotation w'(I) is small, and, in addition, that the
external force T should be sufficiently low (actu-
ally, well below its critical value), one could
assume, in an approximate analysis, that the
third derivative w/’() of the deflection function
for the component #1 can also be put equal to
zero. Then the conditions (31) can be substituted,
with following conditions:
wi' (D) = wy' () =0 (32)
The peeling stress p(x) must be self-equili-
brated. This means that the following equilibrium
conditions are to be fulfilled:

p(&)dédé; =0 (33)

—_—

=
—
)
~—
QU
Y
I
=

L —_—

Le—x

The (11), considering the conditions (29) and
(30), results in the following boundary condition
for the shearing stress function:

AoAt+ T

Y(h) = - 250 (34)
The (12), considering (32), yields:
kt"(l) — (A1 + A2)t(l) =0 (35)

Note that the (14), considering the boundary
conditions (30), (32) and the second condition in
(33), is always fulfilled at the assembly ends.

Equation (16), taking into account the condi-
tions (32) and the first condition in (33), yields:

(l)=0 (36)

Then the formula (35) results in a zero bound-
ary condition for the second derivative of the
shearing stress function as well:
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(I)=0 (37)

As to the peeling stress, there follow from
(21), considering (30) and (32), the conditions:

p'(l) =0, p" (1) =0 (38)

Solutions to the Basic Equations

The interfacial shearing stress function 7(x) is
sought in the form:

7(x) = Cy sinhy;xcos y,x + C3 coshy,xsin y,x

+ Cs sinh yx
(39)
The differentiation leads to:
7(x) = (y;C1 + 7,C3) coshy x cos p,x+
+ (=7,C1 + 7,C3) sinh p,x sin p,x
+ yCs cosh yx (40)

?(x) = [(7] = 13)C1 + 27,7,C] sinhy x cos y,x+
+[(yf = 73)C3 — 29,7,C1] cosh y,x sin y,x

+ 92Cs sinh yx
(41)
(%) = [ (7 = 393)C1 =12 (73 — 37)C3]
coshy xcosy,x+ [1, (73 — 377)C1
+71(7] —373)Cs]sinhy xsinyyx
+73Cscoshyx (42)

() = (7 = 67173 +93)C1 + 4917207 — 23)C3)
sinhy,xcos y,x + [(V? — 6y%y% + yé)Cg
— 49172 (57 = 73)C1] cosh yx sin y,x
+ 9*Cs sinh yx
(43)

() = 0F = 109193 + 513)C
+72(35 — 109773 + 577)C3] cosh yyx cos ppx
+ =003 = 109193 + 591G
+71(51 = 109773 + 573)C]
sinh y;xsiny,x + 73Cs cosh yx

(44)
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TW(X):[( /2"’15/1}2 15,‘11))%)C1
+2717,(371 4375 — 10773)C3)
sinhy xcosy,x + [27,72(=3y] — 373 + 10y393)C;

+ (5 =25+ 159175 — 157193)C3]

coshy,xsiny,x + 7 5Cs sinhyx

(45)

Then the (26) results in the following three
equations for the factors y,, 7, and y:

75 — 95 + 15y]y3 — 159193 — kz(vl 6v175 +¥3)+

+4B [yt — 93 —K(1-9)] =

(46)
39T+ 393 — 10y7193 = 2K2(y; — 73) + 4% =0
(47)
— Kyt =4 4B (1 -0) =0 (48)
where
> DD
R

is the parameter of coupling of the interfacial
stresses. This parameter, as follows from the for-
mula (20), is very small if the assembly compo-
nents have close flexural rigidities.

Introducing new unknowns, ¢ and 7, as

E=91 =75 1=2nn (50)

the (46) and (47) assume the form:
E - -3+ A e+ I — 4 (1-6) =0
(51)

(sinh uy cos uy)Cy + (coshuy sinuy)C3 + (sinh u)Cs = 0
(uy coshuy cosuy — up sinhuy sinuy )Cy + (u coshuy cos up + uy sinh uy sinuy )Cs

AoAt + 1T

+ (ucoshu)Cs = —I -

[(3 — u3) sinh u; cos uy

+ [(u% — u%) cosh uy sinuy + 2uyuy sinh uy cos uz]C3 + (u2 sinhu)Cs = 0

— 2uyup sinh iy sin up|Cy
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7 =38 -2 + 4! (52)
Introducing the 7? value from the (52) into the
(51), the following cubic equation is obtained for

the unknown ¢&:

(k4 +4ph¢ %kzﬁ“é =0

(53)

E I+

After the ¢ value is found, the 7 value can be
determined from the (52), and then the y, and y,
values could be evaluated as

2
Y12 = §<i1+1/1+%> (54)

These values are close to each other, if the &
value is small, and the 7 value is large. In such
a case, as one could see from the (52), n = 2ﬂ2.
Note that the result (54) could be obtained, if the
(27) and the particular solution

p(x)

=Cocoshy xcosy,x+Cysinhy,xsiny,x
+C4coshyx

(55)

for the peeling stress p(x) were considered.

Constants of Integration

The constants Cy, C3, and Cs of integration in the
expression (39) for the interfacial shearing stress
can be found, based on the boundary conditions
(34), (36), and (37), from the following system of
equations:
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Here the following notation is used:

up =yl up =yl u =1l (57)

As to the constants Cy, C,, and C4 in the
expression (55) for the interfacial peeling stress,
p(x), they can be determined after substituting the
solutions (39) and (55) into the (18) or into the
(24) and comparing the expressions at the left and
the right parts of the obtained relationships. This
leads to the following formulas for the constants
Co, Ca, and C4 of integration:

K
Co=— [n07 =33 —K)C1 = 7,03 =31 +4)C]

K
Co= = [n07 =373 = K)Ca 7,05 =31 +49)C)]

K
Ca=—=7(2" = k*)Cs

u

(58)

Numerical Example
Input Data
Component #I1: Young’s modulus: E; =

12,300 kg/mm?; Poisson’s ratio: v; = 0.24;
CTE: o =22 % 10’61/°C; Thickness:
h;=0.5mm; External force: T = 8.0 kg/mm;

Component #2: Young’s modulus: E, =
2,000 kg/mm?; Poisson’s ratio: v, = 0.30;

CTE: o =132 x 107%1/°C;  Thickness:
hy = 1.5 mm,;

Bonding layer: Young’s modulus: Ep =
200 kg/mm?; Poisson’s ratio: vo = 0.40; Thick-
ness: by = 0.05 mm;

Change in temperature: Az = 100 °C; Assem-
bly length: 2/ = 20 mm

Computed Data

Thermal strain:  AoAr = (op — o)At = 11x

107% x 100 = 0.0011.
Axial compliances,

formulae (2):

as predicted by the

l—v,  1-024 »
A= - — 12358 x 10 k
'TEgy 12300 X 0.5 x 107 mm kg
|- 1-0.30
Jp = — 12— = 23333 x 10 *mm/kg

" Exhy, 2000 x 1.5
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Shear moduli, as predicted by the formulae (8)
and (5):

Eq 200 ,
T 2T +v) 2x14 g/mm
Ey 12,300 ,
- - — 4.960k
Gl =303y 2x 124 HO00ke/mm
E 2000
G, = 2 = 769 kg/mm?

2(1+v) 2x130

Interfacial shearing compliances, as predicted
by the formulae (7), (4) and (10):

he 005 e s
_ M P 500x 10 K
=G T T4 x 107 mm? /kg
I 0.5 e s
=M D9 3360 x 10 “mm’ /k
M1 =36, T 3 % 4960 x 107 mm?/kg
hy 15 e
_ — 6.5020 x 10~*mm’ /k
2736, T 3x 769 x 107 mm’/kg

K =Ko + K1 + K3 = 7.00 x 107* 4 0.3360 x 10~*
+6.5020 x 107 = 13.838 x 10 *mm? /kg

Boundary condition for the interfacial shear-
ing stress, as given by the formula (34):

o) = _ Dbt AT 0.0011 + 0.0009886
N Kk 13838 x 104
= —1.5093 kg/mm’

Note that because of the prestressing of the low
expansion component of the assembly, the inter-
facial stresses in the assembly increase by a factor
of 1.9. Flexural rigidities of the assembly compo-
nents (treated as elongated rectangular plates) are
evaluated on the basis of the formulae (15):

Eiid 12,300 x 0.5°
D; = - = 136.0k
'S ov) T 12x 00424 160.0ke/mm
Eid 2,000 x 1.5°
D, 2 ST X Y 618 1 kg/mm

T12(1—v3) " 12x0.9100

Total axial compliance of the assembly, as
predicted by the formula (19):
A=+ 4 +h—%+ﬁ— 1.2358 x 10™* +2.3333
AT T ap, Tap, :
x 107 +4.5956 x 10™* +9.1005 x 107*

= 17.2652 x 10~*mm/kg
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Parameter of the interfacial shearing stress, as
given by the formula (28):

k= \/Z =
K
Factor of the peeling stress, as given by the
formula (20):

17.2652 x 10—

o —1
13.838 x 104 _ A17mm

k05 15
K=3%p, 2D, 272 6181
= 18.382 x 107* — 24.268 x 10~*

= —5.886 x 10 *kg ™!

Through-thickness stiffness, as predicted by
the formula (22):

1

(1=vi)h (1=vo)h (
w toam

K=

)ho

1—vg

Eo
- 1
T 0.103 x 1074+ 1.750 x 10—+ + 1.500 x 104
= 2,982 kg/mm?

Parameter of the peeling stress, as predicted by
the formula (25):

.[. Dy +D, \/
=4 /K——— = 1/2982
b 4DD,

= 0.7441 mm™!

754.1
336246.4

Parameter of coupling of the interfacial
stresses, as predicted by the formula (49):

_ i DDy 34.6450 x 10~° 84061.6
T A Dy +Dy, 172652 x 10~* 754.1

=0.02237

0

Equation (53) for the unknown ¢ value yields

& — 1.24778 + 0.6957¢ — 0.004278 = 0

and has the following root: ¢ = 0.00615. Then
the (52) yields: n = 1.10047. From the formula
(54) follows:

7, = 0.74385mm™'; y, = 0.73970 mm !
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Note that the obtained two values are very
close to each other and to the f value. This is
because the 7 value turned out to be, in this
example, substantially larger than the ¢ value,
which is the case for adherends with not-very-
much-different flexural rigidities. The (48) for
the y value yields:

90— 1.2477y* — 1.22627)* 4 1.495788 = 0

Its root is y = 1.0165mm™~" and is not very
much different from the & value.

The parameters u; =7y,l, uy; =7y,/, and
u = yl, expressed by the formulae (57), are as
follows:

up =yl =0.74385 x 10 = 7.4385
uy = 9,1 =0.73970 x 10 = 7.3970
u =7yl =1.0165 x 10 = 10.165

These parameters are large enough, so that the
assembly can be treated as an elongated one. The
(56) for the constants Cy, Cs, and Cs of integra-
tion yield:

0.028876C; + 0.058733C3 +Cs =0
0.021609C; — 0.063992C; — Cs = 0.00011431
0.062380C; — 0.03110C3 — Cs =0

These equations have the following solutions:

C; = 0.0003488 kg/mm?
C3 = —0.0011520 kg/mm?
Cs = 0.00005759 mm?

The shearing stress in the region close to the
assembly ends can be computed by the formula:
t(x) = e 0780.0001744(cos 0.7397x)—
0.0005770(sin 0.7397x)]4+0.000028795¢~1:0165+,
which can be obtained from the solution (39). The
calculated stresses are shown in Table 1. At the
bottom line the stresses calculated using the sim-
plified formula [14]

AoA T
Tl(x):k%—i_}Ll
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Analysis of a Prestressed Bi-Material Accelerated-Life-Test (ALT) Specimen, Table 1 Calculated interfacial

shearing stresses

x,mm 8.0 8.4 8.5 8.75
7(x), kg/mm®  0.0813 02164  0.2584  0.2518
71 (x), kg/mm®  0.1441 02262 02530  0.3345

9.0 9.5 9.7 9.9 10
0.2313 0.1422 0.0894 0.0297 0
0.4422 0.7730 0.9665 1.2085 1.351

Analysis of a Prestressed Bi-Material Accelerated-Life-Test (ALT) Specimen, Table 2 Calculated peeling

stresses

X, mm 4.0 5.0 6.0 6.5 7.0 7.5
p(x), kg/mm? 0.0285 —0.0910 —0.1650 —0.3032 —0.4744 —0.6502
X, mm 8.0 8.25 8.5 9.0 9.5 10.0
p(x), kg/mm? —0.7670 —0.7719 -0.7179 —0.3467 0.5419 2.1439

are indicated. The calculated data indicate that
this formula can be used for conservative engi-
neering assessments. The interfacial peeling
stress, on the basis of the solution (55), is
given by:

p(x) = e %™8(—0.001150 cos 0.7397x
+0.002221 sin 0.7397x)

— 0.000014750¢1:01065x

The computed peeling stress is shown in
Table 2. These data indicate that this stress is
indeed self-equilibrated.
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Synonyms

Analytical method

Overview

Functionally graded materials (FGMs) are the
composite materials to express the desired func-
tions by the continuous or discontinuous changes
in the composition of the constituent materials.
FGMs are therefore the nonhomogeneous mate-
rials. The importance for FGMs is how to design
the material so as to express the desired functions,
how to fabricate the designed FGMs, and how to
evaluate the fabricated FGMs.

Material properties of FGMs are dependent on
position and temperature, since FGMs are the
nonhomogeneous materials. The governing equa-
tions for the temperature field and the associate
thermoelastic field of FGMs become of nonlinear
form in general. Then, analytical treatment is
difficult. There are mainly five kinds of analytical
methods to solve the governing equations of
FGMs: (a) direct method, (b) stress function
method, (c) potential function method, (d) lami-
nated composite methods, and (e) Green function
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Analytical Method of FGM

method. The direct method is that the governing
equations expressed by displacements are solved
directly. The laminated composite methods are
explained by Guo, and Green function method is
explained by Watanabe in the ETS. Then, stress
function method and potential method are
discussed in this entry.

Fundamental Equations for FGMs
The equations of motion of FGMs are
O'j,'J+Fl':p1:£.,' (1)

where ¢;; are stresses, p is density, F; are body
forces, u; are displacements, and the superscript
dot denotes the partial differentiation with
respect to the time. The density in FGMs is
defined as a function of the position, namely,
p(x1,x2,x3) because FGMs are nonhomogeneous
materials.

The  constitutive  equations for a
nonhomogeneous, isotropic body in consider-
ation of temperature change are

L()’](](51:]') + ocTé,-j (2)

1
&j = 5= (04 —
2G 14v

or
0ij = 2pe; + Aewdy; — PT0 (3)

where ¢; are strains, T is temperature change
from a reference temperature, G is shear modulus
of elasticity, v is Poisson ratio, « is coefficient of
linear thermal expansion, ;; is Kronecker delta, u
and 1 are Lamé elastic constants, and f is
thermoelastic constant. The material properties
in a nonhomogeneous body are defined as func-
tions of the position, namely, G(xi,x2,x3),
v(x1,x2,x3), and a(xy,x2,x3). The relationship
among the material properties holds as follows:

DG
(1+v)(1=2v) 1-2v’

E | vE

:1+v7/hi

oF X
#*Gaﬁ*m*“(MJrzﬂ)

2G

(4)
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where E is Young’s modulus which is defined as
a function of the position E(xy,xs,x3).
The strains ¢;; are defined by displacements u;:

(i + ) (5)

N =

Sl'j =

Substituting (3) into (1) gives the equations of
motion in terms of displacements:

Witi e + (A + Wi — PT; + Fi
+ [ (i + ) + 2 — BT = pii
(6)

Comparing with the equations of motion for
ahomogeneous, isotropic body, it is apparent that
the terms of the partial differentiation of the
material properties with respect to the position
are added to those for a homogeneous, isotropic
one in those for FGMs.

Basic Equations of Plane Problem

Let us consider a plane strain problem in which
the deformation in the long body is given by

e = (X, ), tty = uy(x,y), u: = g0z + &1 (7)

and a plane stress one in which a state of stress in
a thin plate is characterized by

Oxx = O-xx(xay)v Oyy = Oyy (xvy)

Oxy = O-xy(xa)’)a Oz = Oz = O3y = 0

(8)

The constitutive equations are common to
both problems, which are defined as

1 * *
Er = B (O — Viayy) +oT — g
1 * *
by = g (Oyy — Vo) + 0T — g

1
Exy = %O’xy (9)
O = (A" +2U)e0 + ATeyy — BT
Oy = (A" +2W)eyy + Mo — T

Oxy = 2UEy,



124
where
E v
E* = * = * = 1
o Ty T
=2, =P, & = veo
for the plane strain problem,
E'=E Vvi=v, a =a,
TSN T I (1)
= = & =
42’ J42u’ 0

for the plane stress problem.
The equations of motion of plane problems are
given by

00 n 00y, +F, = pi,
Ox Oy (12)
0oy n 0oy L F. = pii
Ox Oy » = Pl
The compatibility equation is
e Py 0%
XX Y _ 9 Xy 13
0y? * Ox? Ox0y (13)

The equations of motion of plane problems
(12) can be expressed in terms of displacements.

0 (Ou, Ou, oT
2 7% I Badecy I opr T ‘
uVu, + (4 +'u)8x<8x + 8y> p 8X—I—Fx
OA" (Ou,  Ouy ou Ouy
Ty 9 I
0x <8x+8y>+ Ox Ox
Ou (Ouy  Ouy opr.. .
+6y <8y 8)() 0x T'=pits
0 (Ou, Ou, oT
2 N % - _X _y _ *_ F
uVuy + (4 +'u)c'“)y(8x + 8y> p 8y+ )
92" (Ou,  Ou, Ou Ou,
9 s} 9 T Ty
" dy <8x+ 3y)+ dy Oy
ou (0, 0w op
Ox \ Ox 0Oy oy = Py

(14)

The plane problems for FGMs are how to
solve (14) with respect to displacements u,
and u,.

Analytical Method of FGM

Analytical Method for Plane Problems of
FGMs

Stress Function Method
We consider quasi-static problems without body
forces. Equations (12) reduce to

o Iop _,
Ox oy
9o 9oy _, "
Ox oy

We introduce the thermal stress function yx
that automatically satisfies the equilibrium
equations (15) and is related to stresses as
follows:

Oy O Py
T oy Ty =g 0o T  Oxdy

T (16)

Substituting (16) into the compatibility (13)
yields the basic equation of stress function y for

FGMs:
1 0* (14 &%y
2 Lo ) 07 oy
(o) o (%)
_F e\
ox2\  E* ) Oy? (17)

%y
OxQy

42 P (14
Ox0y \ E*
+V2('T) =0

where

V4 = v2v?

P &
- (@ ’ a—yz) (@ i
ot ot ot

“ac " avay Toy
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)

For homogeneous materials, (17) reduces to

V2V2y + o E*VAT =0 (18)
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It is difficult to solve (17) directly, since mate-
rial properties are dependent on the position.
As material properties of FGMs mainly change
in one direction, we assume material properties
are dependent on the position y:

E"=E"(y), v =v(y), " =a"(y) (19)
The governing (17) reduces to
1 Pl 1
ViVt o5 ]V2~
By PTarlEm]
0 1 0
+2— —(V?
8y[ *(y)} 3y( 7) (20)
L8 (L)
| E*(y) | ox?

+ V2 ()T] = 0

It is necessary to assume material properties as
function of the position to solve (20).

Noda and Jin [1-3] gave solutions of (20)
when material properties are expressed by expo-
nential functions of the position.

[Case 1] Young’s modulus is expressed by an
exponential function of the position.

When Young’s modulus is expressed by an
exponential function of the position, Poisson
ratio is constant and the linear thermal expansion
is arbitrary function of the position

E" = Egexp (0y), v' = vo(1 + &y) exp (0y),
ot =o' (y)
(21)

The governing equation (20) reduces to

VAVZy + 8V — 259 (V%) — (1 + v*)(s?@
- - Oy 077 x2
= —Egexp (3y)V? [ ()]

(22)

The general
expressed by

solution of (22) can be
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L= T+ Ap (23)

where y, and y,, are complementary solution and
particular solution, respectively,

0
V22 4+ 8°VPy, — 2587 (V1)

o (24)
x\ 2 c
— (1 +vp)o o =0
VAV, + 87V, — zaa—ay (V%)
* 2821P * 27 %
—(1+vg)o e —Eexp (0y)V-[a* (y)T)
(25)

By use of the separation of variables, the gen-
eral solution of (24) can be expressed by

w5 (”)) exp (o) (i = 1,2,3,4)

sin (sx)
(26)

where p; (i =1,2,3,4) are eigenvalues of an
eigenfunction:

428 + (8% — 252)p? + 2520
p P+ ( O)p p )

+ 52(s% +v5o?)

[Case 2] Young’s modulus and Poisson ratio
are expressed by exponential functions of the
position.

When Young’s modulus and Poisson ratio can
be expressed by exponential functions of the
position and the linear thermal expansion is
arbitrary function of the position,

E* = Ejexp (0y), vi = vi(1 + ey) exp (dy),
ot = o’ (y)

(28)
The governing equation (20) reduces to
0 &y
VIV — 26— (VPy) + 8 ==
1=205, VN TITE o)

= — Ejexp (3y)V2[or* (y)T]
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The complementary solution y,. of (29) is

o

>exp (o) (i =1,2,3,4)
(30)

where p; (i = 1,2,3,4) are eigen values of an eigen
function:

p* —20p° + (6% — 28°)p* + 25%0p + s*
= (1)2—517—s2)2 =0

Equation (31) has double roots, and the eigen-
values are

5 — /8 +4s?

D1 P2 = )

0+ VO +4s?
-2

(32)

Then, the complementary solution y,. of (29)
can be expressed by

e (TEN(mm) wee

(33)

Thermal Stresses in an Infinite Plate by
Stress Function Method

Let us consider steady thermal stresses in an
infinite plate with thickness a, when material
properties are expressed by

k = koexp (ey), E* = Ejexp (0y)
Vi =vo(1 + wy)exp (9y), o" = agexp (7y)
(34)

where k denotes thermal conductivity.
The steady heat conduction equation is

o (,0r o (,0r
5 (45) ()0

Analytical Method of FGM

When material properties are given by

(34), the heat conduction equation (35)
reduces to
oT
VT +e—=0 36
+e o (36)
The boundary conditions are
T=0ony=0
’ (37)

T=Tug(x) on y=a

The second boundary condition in (37) is
assumed to be g(—x) = g(x) for the sake of brev-
ity. Introducing Fourier cosine integral, g(x) can
be expressed by

glx) = Joo C(s) cos (sx)ds
. (38)
C(s) = 2 J 2(x) cos (sx)dx

The general solution of (36) can be

expressed by

o0

Ty = | A6 exp () + B exp (a2

0
x cos (sx)ds

(39)

where A(s) and B(s) are unknown constants, and

—&+ V2 + 452 &+ Ve? + 452
QD=7 (L =—"—F7F
2 2
(40)

The unknown constants A(s) and B(s) can be
determined by (37) as

i C(s)
Als) =-B(s) =Ta exp (q1a) — exp (¢24)

(41)
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Then, the temperature is determined as

© C(s)
fa J exp (914) — exp (424)
x [exp (q1y)—exp (ga2y)] cos (sx)ds
(42)

T(x,y) =

Next, we consider thermal stresses in the plate.
Taking into consideration of (34), the governing
(29) reduces to

5281

)
2v72
ViV 20 5

(Vo) +
%k 2 aT 2
— Egogexp [(6 +7)y] VT+2“/8 +yT

(43)
The boundary conditions are

Oy =0y =0 on y=0 (44)
Oy =05=0 on y=a

The general solution of (43) can be

expressed by

=] (@ esE)ex ()

+ (D2 + yE;) exp (pzy)} cos (sx) ds (45)

BT, Frexp 04+ ay
+ Faexp [(0 + 7 + q2)y]} cos (sx)ds

where Dy, D, E, and E, are unknown constants,
p1 and p, are given by (32), and F| and F, are

C(s)
exp (q1a) — exp (q2a)
qi — "+ 2yq1 +7*
2
(O+7+aq) =2 =00 +7+a)]
B C(s)
exp(qia) — exp(q2a)
a3 — 5+ 2yq2 +7*
2
{(5+V+612)2 — 52 —5(5-1—“/‘“12)}
(46)

Fi=—

X

X
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The thermal stresses are obtained as
PL_ " LD + B2y 4 72
7=, [D\p} + E1(2p1 + piy)] exp (p1y)

+ [szg + E>(2p2 +p§y)] exp (pzy)} cos (sx)ds

ag o =

+ET | {RiG+ a0 ew [0+ 7+ )

+F 047+ @) exp [(0+7+q)y ]}Cos (sx)ds

%y
O-yy = @ =

+ (D2 + yE) exp (sz)] 5% cos (sx) ds

[ @i )

~ £t | {Fiexp 07+ a]
0

+Foexp [(0+7+ qz)y}}sz cos (sx) ds
82X 00
7 = == | {Pwr+ B+ plexp )

+ [D2p2 + Ex(1 + pay)] exp (pzy)}s sin (sx)ds
BT | {Fo+r+a)ew [0+ + a0
0

+F2(0 + 7+ @2)exp [0+ + g2)y] pasin (sx)ds
(47)
Substituting (47) into the boundary conditions
(44) gives
Dy + Dy = — Eqog T (F1 + F»)
piDi+Er+paDy + By
— EqugTy [Fl((S +7+aq1)

+Fa(0+7 + 42)}
exp (11a)Ds + aexp (Pa)Ey
+ exp (p2a)D; + aexp (p2a)E,
— EqogTo{Frexp [(0 + 7 + q1)d]
+ Faexp [(0 +7 + g2)al}
prexp (p1a)Dy + (1 + pra) exp (p1a)E;

+ p2exp (p2a)Da + (1 + pra)

exp (17261)E2
_ Egocha{F1 G+7+q)

exp [(0 + 7+ q1)al.

+F2(0+7+q2)

exp [(0-+7+2)al}
(48)
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The unknown constants can be determined by
solving algebraic equations (48).

Potential Function Method

Tanigawa et al. [4—7] proposed new potential func-
tion method. When body forces are absent, inertia
terms are negligible, and material properties are
defined as functions of one variable, (14) reduce to

0 (Ou, Ou
2 Oy
uViu, + (2 +)a <8x+8y)
% Ou, Buy ﬁ or
Qy By Ox N
0 (Ou, Ouy
2 T2 49
WV + <;+>ay<8x+ay) (49)

07" (O, O\ | 0u O,
dy \Ox Oy dy Oy
0 e
—a—y(ﬁT)—O

We consider that shear modulus of elasticity
G, Lame constant 4%, thermoelastic constant 5,
Poisson ratio v, and coefficient of linear thermal
expansion o* are given by

) =00 =Go(1+) = (1+)"
v =5 (1+2)" 5 =iro)(1+2)" O
o =of ()

v=const.,
where a is a reference value of length, m is an
arbitrary parameter representing nonhomogeneity
of material, and subscript 0 means a reference
value of material properties at y = 0. The con-
stants Ay, B, and o) are defined as

. 2vGy 2(1 + V)OC()GO

)v* — o
0 =7y Po 1—2v (51)
oy = (14 v)og
for the plane strain problem,
. 2Go . 2(1+v)aGo
el

for the plane stress problem.

Analytical Method of FGM

The dimensionless quantities are introduced
by using the reference length a as follows:

_ X _ y _ U, _ Uy
=— =1 - Ly = —, =2 53
X avy +aa “y a ( )

Making use of the dimensionless quantities
(53), (49) reduce to

0 (Ou, OJu,
. - 54
oV ity +(io+,uo)ay<a, 6}7) (54)
m (Ou, O, m Oy
+/1 — (E-‘r 8,) +2,u0 7?
0

We introduce two new potential functions ¢
and  that are related to the components of dis-
placements if, and i, as follows:

Oy
the _ﬁ—’_ ox (55)
=252
y = ay

Substituting (54) into (55), the fundamental
equations for ¢ and i are obtained:

Ve + 3 % mob _ o (m+ 3)f ()T
-5 L
where
e (57)
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The parameter m is bounded for a range
m > 1 for the plane stress problem because of
the physical condition for Poisson ratio v of
0 <v <0.5. And the parameter m is bounded
within a range m > O for the plane strain prob-
lem. Because v* = v/(1 — v) holds for the plane
strain problem, the relation v =1/(2+m) is
assigned.

The components of strain and stress are
expressed by the two kinds of new potential func-
tions ¢ and ¥ as follows:

N _au"'_alz"_az_(ﬁ_i_—i
Y P T AR T
w0, Py
N R TR “
P fl 8”*4,% fl aﬁx+% ( )
Yo 2\0y  ox/) 2\o9y ox
Pp Py
==tV
0x0y O0xQy
(¢ m 10¢ Py oy
Or = 260y {W‘m—ﬁ;a—ﬁyw—a—y
m—1 o
S
P m 10¢ Py oy
o =200 G T e o
m—1 o
[ o)
PP O
O = 2Goy <8X{9y Yy 8xay)
(59)

Thermal Stresses in an Infinite Plate by
Potential Function Method

Let us consider steady thermal stresses in an
infinite plate with thickness a, when material
properties are expressed by

k(y) =k0(1 +§)17 u(y)=G(y) =Gy (1 +§)m7

y n
v=const., o* :af)(l +—>
a

(60)

where k denotes thermal conductivity.
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The steady heat conduction equation (29)
reduces to

o’T l or T
—+——+—=—=0 61
o " a(l+y/a) dy | 0 (61)

Equation (61) has an alternative form by
use of (53)

o1

Lot T
x>y oy

The general solution of (62) can be

expressed as

o= ()01 (2)(G6)

(63)

where /,(sy) and K,(sy) denote modified Bessel
functions of the first and second kind of order ¢,
respectively.

The boundary conditions are

T=0ony=0

64
T=Tug(x) on y=a (64)
Alternative form has
T=0ony=1
' (65)

T=T.g(x) on y=2

The second boundary condition in (65) is
assumed to be g(x) = g(—x) for the sake of brev-
ity. Introducing Fourier cosine integral, g(¥) can
be expressed by

g(x) = JOO C(s) cos (sx)ds
5 (0 (66)
C(s) = - Jo g(X) cos (sx)dx
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The general solution of (62) can be
expressed by

N&ﬂ=JmM@W%@ﬂ+B@WWA@ﬂ

0 (67)

x cos (sx) ds

where A(s) and B(s) are unknown constants.
The unknown constants can be determined
by (65) as

G = Ky(s)C(s)
Al) =Tz, [1,25)K, (s) — 1,(s)K,(25)] (68)
B(S) _ ICI(S)C(S)

Then, the temperature is determined.

o [ Kg(9)3 (s7) — 1, ()5K (s7)
Tww_nL”MQWNPWWQQH
x C(s) cos (sx)ds

(69)

We consider thermal stresses in an infinite
plate. The fundamental equations (56) for two
potential functions reduce to taking into consid-
eration of (60):

- 0
V2¢+@a—‘f’:a$(m+3)y‘"T
moy —m 19p  mm+3)_,,
Sk AU, it A R T
leer Oy m+13y2 0y % mr1l >
(70)

The displacement and thermal stresses are

0 O 0p | DY

iy = 8x+ 5 b= 8,+ya, (71)
[0  m 10p Py oy

ou =26 G L T

m—1
— |1 *—nT
[+Mm+m%“ }
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o [OPO m 10¢ (’)2111 oy
O'yyZZGOy A T o - a- Y am T a-
oy m+1y 0y oy Oy
1+ m—1 oapy'T
m(m+ 1)}
¢ 0%y
= 2Goy" y
Ty 0y (8}?0y+y 6X8y)
(72)
The boundary conditions are
Oy =0y, =0 o0n y=0 (73)
Oy =0y =0 o0n y=a
Alternative form has
Oy =0y =0 on y=1 (74)
Oy =0, =0o0n y=2

The general solutions of (70) can be

expressed by

¢:¢c+¢p7w:¢c+lpp (75)

where ¢, . and ¢,, , are complementary
solutions and particular solutions, respectively.

V¢+—a¢° 0, V¢+—8w° 0 (76)
y Oy
_ o¢ _
V2d>p + % 8—; = ay(m+3)y'T
mWy _ _m_ 10t dy) 4y
iz P TSy T mrly oy 77
OCO (+1)yn71T

The general solution of (76) can be expressed as

¢C('¥7y)7
= (1) (o) (o) ()
1—m
P=

(78)
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According to the symmetry of the problem, the
complementary solutions ¢, and ., of (76) are
given by

b = J::C [Dlyplp(sy) +DzyPK,,(sy)] cos (sx)ds

V. = J::C [EJPI,;(SSJ) +E2§pr(sy)] cos (sx)ds
(79)

where D1, D,, E; and E; are unknown constants.
When

I=2n+m+4,1#m (80)

the particular solutions ¢,,, 1, can be expressed by

¢, = J:O [DYY1,(sy) + D5yK,(sy)] cos (sx)ds
by = [ [V D)+ PRI )

+FP L4 (59) + ES K, 1 (s59)
+ FRF K1 (55) + FEVK 11 (59)] cos (s0)ds

(81)
where
Fp2 Fp2A+FI1)3A, Fp37Fp2B+Fp3B
F52:F12)2A+F12>3A, Fp3 FpZB_"_Fp%B
4o (m+3)
DY =—"0— =0 _A(
1 (lfm)(l+m72) (Y),
4ol (m+3)
Dy=-——""—"" B
2= T U myirm—2) )
£} = i B = +1D2’
A _ Bogsm(m+3)A(s)
(1=D(m+1)(I+m)(I—m)(I—m+2)’
B _ Bogsm(m+3)A(s)
DT =Dm+D)(+m—4)(I-m=2)(I+m—-2)’
F"ZA ogysm(m+3)B(s)

(1=H(m+1)(I+m)(I—-m)(l—m+2)’
8ogsm(m+3)B(s)

Fp2B
(1=-Dm+1)(I+m—4)(1-m—-2)(I+m-2)
A 4ogsm(m+3)A(s)
(1=Dm+1)(I—m+2)(+m)’
FoB dorgsm(m+3)A(s)
U (=Dm+D)(I—m=2)(1+m—4)’
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PA 4a3sm(m+3)B(s
T (=-Dm+ DI -m+2
B 4ocosm(m +3)B
+1H)(l-m-2

=

(14 m)

5)

(I+m—4)
(82)

o =

(1=D)(m

Then, general solutions ¢ and y are

b= | Do) + DKy
+ DY1,(sy) + D5¥K,(sy)] cos (sx) ds
b= | B0+ B )
i 1)7”1,,,1(5)7) -
szyl’[q,l(sy) +Fp2)7prfl( 7)
+ FD Ly (9) + YK 1 (s5) | cos () ds
(83)

+ D,
m

p—1(59)

Substituting (83) and (67) into (71) and (72)
gives displacements and thermal stresses as
follows:

_ [ 1 _ _ _
=7 {Dl L [Om e D) + 5311 (s9)]

0

1 -
Dy [+ DK s9) -

+ E1yly(sy) + E2 K, (sy)

+ D81, (sy) + D5K, (sy)

+ F3l, 1 (s9) + FS9K 1 (s9)

+ FD g1 (59) + FE5K 1 (59) fsin (s9)ds
(84)

SYKp—1 (sy )]

YK, (sy)

Uy =y D 1, D
w = [ D ipton 12t

+Ey [s31p-1(s7) — I (s7)]

— Ex [syKp-1(sy) +Kp(sy)]

+DYs[(p = @)(s5) 1y (s5) +Iyr (59)]

+D8s [ (p = @)(s5) Ky (s5) — Kymr(9)]

+FP[(p+q — 21 (s7) + 551 (s7)]

+FR[(p+q—2)K,1(s) — 5K, (s9)]
+FP (P — g = 211 (59) + 591, (s7)]

+F[(p—q- 2)Kq+1(sy)—squ(sy)}}COS (sx)ds

(85)
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00 2
9. =1— ) B B -

52

m 4
syl

t
(it

+ D>

7 L+ 2)K, (s7) = syKp- 1 (s)]
b (8y) +1,— 1( )]+E2s[syK (sy) — Kp—1(sy)]
4(sy)

- o) 163465 )]}

-‘rElS[

+DPs*{

+ D3 K s (0= )9 2K, 990,209

+ FPs{s51,1(s9) [<p+q—1><s> o (59) +14(59) |}
+ PP { 53K 1(59) + [0+ 0 = 1D)(9) Kyt (59) = Ky(59)] }
Sy (55) + [(p = g = 1)(s9)” q+1<sy>+1<sy>}}
K1 (59) + (0 = 0 = D) Ky (59) — Ky (s9)| }

o{o
{
A
s

+ o [1 +ml(nm7_+11)] x [A(s)y""1,(sy) + B(s)y"""K, (sy)]ﬂ cos (sx)ds

Ty _ giop r Dy (s) — Dy —— s (s9)
—= = ——yl,_1(sy) — s
226G, 0 ) [T me Yt m 10 K15y

+ Ers[—(m+ 1)l,-1(s3) + s31,(s7)] + Eas[(m + 1)K, (s9) + 5K (s7)]

)6 o) = () o)}

[(P ~q) (P —q—1- m’i 1) (s9) 7 + 1K, (s3) + m£nm++12)

() K69
59) "+ 59)lg-1(s9) — (m + 1)l (sy)

35) " 851K -1 (59) + (m + DK, (59) |

5) 7"+ 5711 (55) — (m+ Dl (s7)

y)  + syl

Ky (59) + (m+ DK (59) |

o [1 P TGy () +B(s)yq+"1<q(sy)]ﬂ x cos (s%)ds
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&:,*Iﬂ” > D 1 v vl (sy
26, =7 L { | +l[p-1(sy)+syp(sy)}

2 (K (59) = 53K, (59)]
+ E1s9l,1(s7) — E2s9K, 1 (s5)
+Dis|(p - q)(sy)*‘w) + 1 (9)]
+Dls | (p = )(s7) 'Ky (s5) = K1 (57)]
+FP[(p+q = Dlg1(s5) + 591,(s9)]
+FR[(p+q — 1Ky 1(s) — 55K, (59)]
+FP[(p = g = Digia(sy) + 591, (s9)]
PP [(p— g — DKqs1(s5) — 55K, (s5)] | sin (s7) ds
(88)

The unknown constants D, D, E;, and E, can

be determined by the boundary conditions (74).
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Definition

Functionally graded materials (FGMs) are het-
erogeneous and advanced materials in which the
elastic and thermal properties vary gradually and
continuously from one surface to another. FGMs
decrease the thermal stresses and hence are very
useful in nuclear, aircraft, and space engineering
applications. The application of this issue is
seen in geophysics, seismology, plasma physics,
magnetic storage elements, magnetic structural
elements, and measurement techniques of
magnetoelasticity. This entry presents the effect
of the magnetic problem of a functionally graded
(FG) hollow sphere subjected to mechanical and
thermal loads. An analytical solution for stresses
and perturbation of the magnetic field vector
were determined using the direct method and
the power series method. All of the material
properties varied continuously across the thick-
ness direction according to the power-law func-
tions of radial directions. The aim of this work
was to understand the effect of the magnetic field
on a FG hollow sphere subjected to mechanical
and thermal loads.

Overview

Abd-Alla et al. presented an investigation of
stress, temperature, and magnetic field in an iso-
tropic, homogeneous, viscoelastic medium with
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a spherical cavity in a primary magnetic field,
when the curved surface of the spherical cavity
was subjected to periodic loading [1]. Chen and
Lee worked on magneto-thermoelasticity by
introducing two displacement and two stress
functions [2]. The governing equations of the
linear theory of magneto-electro-thermoelasticity
with transverse isotropy were simplified. The
material nonhomogeneity along the axis of sym-
metry was taken into account and an approximate
laminate model was employed to facilitate the
deriving of analytical solutions. Dai and Fu
recently considered the magneto-thermoelastic
problem of FG hollow structures subjected to
mechanical loads. The material stiffness, the
thermal expansion coefficient, and the magnetic
permeability were assumed to obey simple
power-law variations through the structures’
wall thickness. The aim of their research was to
understand the effect of composition on magneto-
thermoelastic stresses and to design optimum FG
hollow cylinders and hollow spheres [3]. Dai and
Wang presented an analytical method to solve the
problem of the dynamic stress-focusing and cen-
tered-effect of perturbation of the magnetic field
vector in orthotropic cylinders under thermal and
mechanical shock loads. Analytical expressions
for the dynamic stresses and the perturbation of
the magnetic field vector were obtained by means
of finite Hankel transforms and Laplace trans-
forms [4]. Recently, Poultangari et al. studied
the nonaxisymmetric thermomechanical loads
on functionally graded hollow spheres [5].
Tianhu et al. reported the theory of generalized
thermoelasticity, based on the theory of Lord and
Shulman with one relaxation time, used to study
the electro-magneto-thermoelastic interactions
in a semi-infinite, perfectly conducting solid
subjected to a thermal shock on its surface when
the solid and its adjoining vacuum were subjected
to a uniform axial magnetic field [6]. They used
Laplace transform in the analysis. Maxwell’s
equations were formulated and the general-
ized electro-magneto-thermoelastic coupled
governing equations were established. Tianhu
et al. reported a generalized electro-magneto-
thermoelastic problem for an infinitely long
solid cylinder based on the theory of Lord and
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Shulman with one relaxation time [7]. Eslami
et al. presented a general solution for one-
dimensional, steady-state thermal and mechani-
cal stresses in a hollow, thick sphere made of
FGM [8]. The material properties, except
Poisson’s ratio, were assumed to vary along the
radius r according to a power-law function.
Lee recently considered the problem of 3D, axi-
symmetric, quasistatic coupled magneto-
thermoelasticity for laminated circular, conical
shells subjected to magnetic and temperature
fields [9]. Laplace transform and finite differ-
ence methods were used to analyze the problem.
He obtained solutions for the temperature and
thermal deformation distributions in a transient
and steady state. Maruszewski presented
nonlinear magneto-thermoelastic equations in
soft ferromagnetic and elastic bodies. The sym-
metry of couplings in these equations was also
investigated [10]. Wang and Dink studied the
transient responses of a magneto-electro-elastic
hollow sphere for the fully coupled spherically
symmetric problem [11]. By means of the sepa-
ration of variables technique and the electric
and magnetic boundary conditions, the dynamic
problem of a magneto-electro-elastic hollow
sphere under spherically symmetric deformation
was transformed to two Volterra integral
equations of the second kind about two functions
of time.

Heat Conduction Problem

Consider a hollow sphere of inner radius @ and
outer radius b made of FGM. The spherical coor-
dinates (r, 0, ¢) are considered. The heat conduc-
tion equation for two-dimensional transient FG
sphere is:

K(ry 2 1 cotd
Tt (S VT 4 27+ 2 =0
rt <k(r) + r) ot 2700 + 2 0

a<r<h,0<0<nm (1)
where k(r) is heat conduction coefficient. The

general thermal boundary conditions are consid-
ered to be:
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{xllT(a,O) +X12TA,‘(CI,0) ZFI(O) (2)
Xz]T(b7 9) + X22T7r(b, 9) = Fz(@)

By choosing suitable values for parameters
x;(i,j = 1,2), different types of thermal bound-
ary conditions including conduction, heat flux,
and convection may be considered for the sphere.
The material properties of sphere are assumed to
be graded along the thickness direction according
to the power-law function as [3]:

b= ()" )= l()”
k) = ko (5) ") = o (5)"

a

(3)

where Ey, o, ko, 1 are, respectively, the modu-
lus of elasticity, thermal expansion coefficient,
heat conduction coefficient, and magnetic perme-
ability and m;, m;, m3, my are the power-law indi-
ces. Since, most of the literatures are working
with power-law function, for comparison pur-
poses, it is decided to consider the power-law
function for FGM. Meanwhile, the solutions
obtained are simple in engineering problems.
The solution of temperature equation can be writ-
ten in the form of power series as:

+00

— Z (El,,r‘s‘" + Ez,,réz”)Pn (cos ) (4)
n=0

T(r,0)

where P, (cos ) is Legendre series. where

_mtl (m3 +1)°
2 4

+nn+1)
(5)

Constants E,, and E,,, are evaluated as follows
by substituting (4) into the thermal boundary
conditions.

51n.2n =

Stress Analysis

Let u and v, be the displacement components in
the radial and circumferential directions. Thus
strain—displacement relations are:
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Epp = Uy

1
Epp = ; (u + Vﬁ)
1
oo ;(u + vcot6)

& =

1(u_9+ V)

go==(—+v,—-
r0 A Y -

The Hooke’s law for two-dimensional hollow
sphere can be written as:

O = gy [ = V) v+ 15,
g

o = sy P+ (11 Vo + v
e

%o =117 VB;E';)_ 73y e+ Ve + (1 = ¥)e]
1(51(;2052(:)) T(r,0)

0= (1E (+r )v) o )

The variation of magnetic field with time or
transient magnetic field results in electrical field
and when the magnetic field is uniform, there is
no electrical field. When the electrical field
vanishes, then the coefficient connecting the
temperature gradient and the electrical current
as well as the coefficient connecting the current
density and the heat flow density like Thomp-
son effect can be ignored. Assuming that the
magnetic permeability, u, of the FG hollow
sphere is equal to the magnetic permeability
of the medium around it, and also the medium
is non-ferromagnetic and non-ferroelectric
and ignoring the Thompson effect, the
simplified Maxwell’s equations of electrody-
namics for a perfectly conducting -elastic
medium are [1, 6, 7]:
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J s electric current density vector, / is per-
turbation of magnetic field vector and H is mag-
netic intensity vector (A/m). Cubical dilatation is
as follows:

2 1 1
e=¢r+8go+Epp =, + U +;v73 +;vcot9
©)

Applying an initial magnetic field vector

H = (0,0,H,) in spherical coordinates (r, 0, ¢)
to (8) yields to:

—

U= (u,v,0), hy = —Hy(e)

1 de Oe

Oe , 1 Oe
f= (Hd’ a1 0)

Thus, Lorentz’s force is evaluated as follows:

(10)

2u 2u vy vV
= u(r)H 2 == w58
f = wHs (u” * o2 2
cotfv, cotOv u,y 2ug
r 2y r2
veg cotOvy (1 + cot>Q)v
2 2 2 0
r r r

(1)

The equilibrium equations of FG hollow
sphere, irrespective of the body force and the
inertia terms are:

1
al'r,r"'_ ; (Ur(?ﬂ + 261‘/‘ — 09

—0p, +0gcotB) +f.=0
P 0 ) +f (12)

1
Gro,+ (G00,0 + (000 — 0p)
cot0+3ag,9) +fo =0
Using (6)—(11) and (3), Navier equations in

terms of radial and circumferential displacements
are as follows:
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1 myv
uﬁ,,,.+(m1+2) u, +2<1 !

1
1>r—2u
1-2v\ 1
*(m)rz“w
1 —2v\ cotf 1 1
* (ﬁ) et (ﬁ) Ve
myv 3—4v\ 1
*(l_v*m)rz”’
3—4v>cot6

. 1 cotf N myv
— v, — —v
2-2v) r 1—v 2-2v) r2

Hy?uo(1 1-2 2 2
¢ MO( +V)( V)i‘”147m1 (ujl‘r‘k_uﬁr

E()(l*\)) _I”_zu
1 1 cot@ cotf
+ ~V ) — —v0+ -5V
;
1 "2
ey, P ) T

(13)

2-2v o\ 1
(ml + (m) (1 +cot 0)) r—2V
n 2—2v 2—2v\ cotf
1-2v r2 Voot 1-2v/) r2 Vo
+(1 2v)
4 1 2H 1o (1
Ey

(14 cot?0)
2

1
Vet (my +2);v7, -

1 cot0
r()+ M()+ V()()+

242
<1 + 2:) (xoa—mzrmzflT‘o

Vo—

For simplifying the Navier equations, it is
assumed that the two power-law indices, m; and
my are equal. Therefore, the solutions of Navier
equations are:

Zun
=S

n=0

(cos 6)
(14)
sin OP/ (cos 0)

where P/ (cos0) is differentiation of Legendre
series with respect to circumferential direction.
Using (14) and substituting into the Navier equa-
tions yields the following:
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1
U (14-A) o (m1 +2424) ], + [2(?’:“ —1—A)

—n(n+1) (;:iz)} ,.izuﬂ
+n(n+1)(ﬁ+A)]

vm;  3—4v 1
1 —A =,
alnt )<1—v 2-2v >r2v
(T+v)aga™™ _
T (1) [(my +ma)r™ VT, 41T

(15)

1—2v
1 1 1
+Bn(n + 1)]r—2vn - (1 —2v+B) ;u;

+4 4V+ZB 1
m 1—2v rzu"

v —I—(m1+2)1v — [n(n—l— )(M)erl

_ (2 'i(‘lzv)oéoc)l 2 rmz—lTn
— 2V

where

Hyup(1+0)(1=2)  2H (1 +)
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Substituting (17) into the left side of (15)
yields:

C{u(p—1)(14+A)+(m+2+2A)u
+12mv 224

—n(n+1) (11__2:) } +{ (n+1) <%+A)ﬂ

+n(n+1)<1nivv—§:jz—f\> }D_()
D{u(u1)+<m+2)un(n+1)f:§:m
Bn(n+1)}+C{,u(1_]2v+B>
(et
(18)

Equations (18) are a system of algebraic
equations that for obtaining their nontrivial
solution, their determinant should be equal
to zero and their four roots are evaluated as
follows:

A= B=
Eo(1—v) Ey Therefore,
(16)
Symbol (') denotes differentiation with Z Cyjrt v (r ZN,UC,,JI W (19)
respect to 7. The general solutions of (15) are: J=1
us(r) = Cr*,vé(r) = Dr* (17)  where
o A= DA+ (m 4 242A) 4 P82 24 —n(n+ 1) (15)
N n(n+1) [u(t5+A) +{2% - 35— A] (20)
j=(1,...,4)n#0

Particular solutions of (15) are assumed to be as
follows:

— Flnl‘m2+5l”+l +F2nl,m2+52n+l

(1)

_ F3nrm2+5|n+l +F4nl,mg+(32n+l

Substituting (21) into (15), the coefficients of
particular solution are evaluated from the

algebraic system of equations solved by Cramer’s
method.

Combination of the decoupled case for n = 0,
must be considered:

The general solution in this case is as follows:

2
S(r) = g a,r"
=1

(22)
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Mo

1 1
=—4 —
S

(1 =2v)(m; +2+24) (m +13: +2B) (
(1+A)(1+B(1—2v)) (1

npv - 23
A=) 1) (23)

And also particular solution for displacement of
decoupled case is:

— FlorWt27m3 +F20rn12+1

1 (r) (24)

That the constants Fo and F»( are evaluated
by Cramer’s method. Therefore, the solution of
Navier equations for two-dimensional hollow
sphere is obtained as follows:

+00 4 i
u(r,0) = 4 Y CopitFyyr™ 00

n=1 | j=1

+Fy, 2ot }Pn (cos )

2
+ E Cloﬂ’n’ 4 Fl()}‘n127m3 4 onrn1z+l
i=1

+00 4
v(r, 0) = Z {ZNnjcnjruw""F3nrmz-"_bl”-‘r1

n=1 | j=1

+F Mot } sin 6P, (cos 0)
(25)

Substitution of (25) in (6) yields to strains and
substitution of the results into (7) yields to
stresses.

Substitution of (25) into (8), the perturbation
of the magnetic field vector is obtained.

The von Mises stress is as follows:

g, = \/((7,»,» —a00)* + (

00— 04)" + (04 —0r)” +60,7 / V2
(26)

To determine the displacements and stresses,
four boundary conditions are required to evaluate
the four unknown constants C,; to C,s and
ao1, ap. The four boundary conditions may be
selected from the list of boundary conditions

given in (27). The procedure is continued by
expanding the given boundary conditions into
the Legendre series. These constants are calcu-
lated by solving the system of algebraic equations
formed by four boundary conditions in the fol-
lowing expressions:

u(a,@) = gl(e)v u( ) ) - g2(9)

V(a7 9) = 83(9)7 V(b’ 9) - 84(9)
orr(a,0) = gs(0), a,(b,0) = gs(0) @)
ar9(a,0) = g1(0), a+0(b,0) = gs(0)

where g;(0),(i=1,...
condition functions.

,8) are known boundary

Results and Discussion

The first example consist of considering the mag-
neto-thermoelasticity response in an FG hollow
sphere of inner radius (metal constituent) a = 1 m
and outer radius (ceramic constituent) b = 1.2 m
with the same material properties as given in the
first example. The evaluated power-law indices
are given in Table 1.

The temperature at the inner radius is zero
and at the outer radius is defined by
T(b,0) = 100cos0*/2 and the mechanical
boundary conditions are considered to be traction
free at both sides of the sphere. Figures 1-3 show,
respectively, the effect of magnetic field on radial
displacement, radial stress, and circumferential
stress of the FG hollow sphere, considering the
thermal load defined as above and for the evalu-
ated power-law indices indicated in Table and at
various 6. The left side figures correspond to the
effect without magnetic field and the right side
figures correspond to the effect with magnetic
field. It is to be noted that the radial displacement
due to thermal load with magnetic field is greater
in magnitude than the radial displacement due to
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Analytical Solution for Two-Dimensional Magneto-thermomechanical Response in FG Hollow Sphere,

Table 1 Material properties

Material properties
E;, = 66.2GPa

o = 10.3E — 6/°C
Ky = 18.1 W/mK

Power-law index

E,u = 117GPa my = 3.1236
Sous = T11E — 6/°C my = —2.0329
Ko = 2.036 W/mK my = —11.9839

a ol
x1073 s
e s W /?f?’;é’%%fw
ol
N -
E il }/%7’"%%@/){%?7//72*;%@/ -
A
Sy -
_12.25>,._ *Jr_?.’;’ G ?] 5 g
G gorvRl, . " 35
_. . 1.5
6(rad)
b

Analytical Solution for
Two-Dimensional
Magneto-
thermomechanical
Response in FG Hollow
Sphere, Fig. 1 Radial
displacement due to
thermal load (a) without
magnetic field (b) with
magnetic field
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Analytical Solution for a
Two-Dimensional
Magneto-
thermomechanical
Response in FG Hollow
Sphere, Fig. 2 Radial
stress due to thermal load
(a) without magnetic field
(b) with magnetic field

r(m)

thermal load without magnetic field. The varia-
tions of both cases of displacements are almost
the same. The radial stress due to thermal load
without magnetic field is smaller in magnitude
than the radial stress due to thermal load with
magnetic field. The variations of two cases are
completely different. At both inner and outer
surfaces, the radial stresses are equal in magni-
tudes. Circumferential stress due to thermal load

6(rad)

O(rad)

with magnetic field is greater in magnitude than
the circumferential stress due to thermal load
without magnetic field. The variations of the
curves for the sphere subjected to magnetic field
and the one without magnetic field are almost
the same.

In order to study the effect of power-law indi-
ces on the behavior of the second example FG
hollow sphere in Table at the presence of
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Analytical Solution for a
Two-Dimensional
Magneto-
thermomechanical
Response in FG Hollow
Sphere,

Fig. 3 Circumferential
stress due to thermal load
(a) without magnetic field
(b) with magnetic field

Ggo(MPa)

r(m)

Ggo(MPa)

magnetic field and thermal load, the power indi-
ces of material properties are considered to be
identical as m; = m, = m3 = m. For this case,
m is considered to be ranging from —1 to +3.
Figure 4 shows the temperature distribution
with various power-law indices. When the
power-law index (m) increases, the temperature
is decreased, since FG sphere gets cold faster.
Figure 5 shows the wvariation of radial

o(rad)

0(rad)

displacement due to thermal load and magnetic
field with various power-law indices. Since
increasing m, results in higher gravity of the
sphere, then, the radial displacement is
decreased. Figure 6 shows the variation of radial
stress due to thermal load and magnetic field
with various power-law indices. As can be
observed from the figure, the radial stress
becomes zero at the inner radius of the sphere,
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0=mn/4 r(m)

since there is no constrains at the inner radius. By
increasing the power-law index (m), the radial
stress is increased. Figure 7 shows the circumfer-
ential stress distribution due to thermal load and

magnetic field with various power-law indices.
In contrary to the effect on radial stress, the
circumferential stress is decreased by increasing
m. Figure 8 shows the shear stress distribution
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Analytical Solution for
Two-Dimensional
Magneto-
thermomechanical
Response in FG Hollow
Sphere, Fig. 6 Radial
stress due to thermal load
and magnetic field along
the thickness of FG sphere
with various power-law
indices at 0 = /4

Analytical Solution for
Two-Dimensional
Magneto-
thermomechanical
Response in FG Hollow
Sphere,

Fig. 7 Circumferential
stress due to thermal load
and magnetic field along
the thickness of FG sphere
with various power-law
indices at 0 = n/4

due to thermal load and magnetic field with
various power-law indices.
radial stress distribution, as m is increased,
the shear stress is also increased. Figure 9

o,(MPa)

Ggo(MPa)

Similar to the

1 1 1 1 1 1 1
106 108 11 112 114 116 1.18 1.2
r(m)

shows the perturbation magnetic field vector
due to thermal load with various power-law
indices. By increasing m, the perturbation is
decreased.
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Analytical Solution for 0.5 . . . . . . . . .
Two-Dimensional
Magneto-
thermomechanical
Response in FG Hollow
Sphere, Fig. 8 Shear
stress due to thermal load
and magnetic field along
the thickness of FG sphere
with various power-law
indices at 0 = /4

69(MPa)

2.5 1 1 1 1 .-I '.|> 1 1 1

1 1.02 1.04 1.06 1.08 1.1 112 114 116 118 1.2
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Analytical Solution for Two-Dimensional Magneto- thermal load along the thickness of FG sphere with vari-

thermomechanical Response in FG Hollow Sphere, ous power-law indices at 6 = n/4
Fig. 9 Perturbation of the magnetic field vector due to
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Conclusion

In this entry, the analytical solution for magneto-
thermomechanical response for FG hollow
sphere is presented. Analytical solution for
stresses and perturbation are determined using
power series method. The material stiffness,
thermal expansion coefficient, heat conduction
coefficient, and the magnetic permeability vary
continuously across the thickness direction
according to the power-law functions of radial
direction. Magnetic field results in decreasing
the radial displacement and circumferential stress
due to mechanical load, and has a negligible
effect on mechanical radial stress. Also, the mag-
netic field results in increasing the radial dis-
placement, radial and circumferential stresses
due to thermal load. By increasing power-law
index (m), the above-mentioned quantities due
to mechanical loads are all decreased. Increasing
the power-law indices at the presence of thermal
loads, result in increasing radial stress and shear
stress values, but has a reverse effect on temper-
ature, radial displacement, circumferential stress,
and perturbation of the magnetic field vector dis-
tributions. In general, the effect of mechanical
loads with magnetic field is more significant
when compared to the effect of thermal loads
with magnetic field.

Appendix

dy = (my + 61, + 1) (ma + 91,)(1 +A)
+ (my +2+24) x (my+ 01, + 1)

myv 1—2v
2( —1—A)— I
R nin+ )(2—2\))
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(1 + v)oga ™ (my + my)

2T T A0 -y
_ (m +2424)(2 + 2v)opa ™
(1 +A)(1 +B(1 — v))
. (1 + v)oga™™
T +A(1—v)
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Synonyms

Anisotropic

Definitions

Termination of pure elastic response to applied
loading to anisotropic structural materials, requires
formulation and calibration of appropriate limit
surfaces, that indicates initiation of yield or
failure. Composite materials are typical represen-
tatives of novel, anisotropic materials, constituents
of which, in general, establish temperature depen-
dent thermo-mechanical properties, both for matrix
and fiber/particles phases. The usually applied tem-
perature independent analysis may lead to errone-
ous estimations of limit surfaces. Mismatch of
thermo-mechanical properties, between the com-
posite constituents, results in high magnitude
residual stresses, which are built-in during the
cool-down from the elevated fabrication tempera-
ture, and affect initial limit surfaces. Apart from
classical limit analysis at the macro-level (compos-
ite), separate analysis of the level of constituents
(matrix/fiber), is required.
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Anisotropic Initial Yield and Failure Criteria Including Temperature Effect

Overview

General Case for Goldenblat and Kopnov's
Initial Yield or Failure Criteria

In the most general case of material anisotropy,
both elastic and inelastic, plastic or damage,
extension of common isotropic initial yield
and failure criteria can be done when single
stress invariants are replaced by common invari-
ants of the stress tensor and of the structural
tensor of plastic or damage anisotropy, as pro-
posed by Hill [1], Zyczkowski [2], Betten [3],
Sayir [4]

(I, o, Miuoiiow,

oW

ijtimn G ik Gmn,s - -

where II, I1;;, IT;;z; and 1, denote structural
tensors of plastic/failure anisotropy, and
Einstein’s summation of tensors holds, whereas
f() is an arbitrary scalar function of tensor
arguments of common invariants of the stress
tensor ¢; and structural anisotropy tensors,
e.g., oy, Mjnojon and Ijumnoiioom,. In
such cases, initiation of plasticity or failure is
governed not only by single material constants
ki (like in the case of isotropy), but also by
structural tensors of plastic or failure anisot-

ropy of various orders, ITP/f, Hg./f, Hf’/g,
Hz.gmn, ..., different for plasticity (p) or failure

(f) initiations. Equation (1) owns a general rep-
resentation, but practical application of it is
strongly limited by a large number of material
tests. Additionally, components of all the
above structural tensors are temperature depen-
dent, e.g., H(T), H,j/'(T), H,:]'kl(T), Hijklmn(T),
which makes identification of them much
more complicated. In a particular case, when
tensorial-polynomial representation was used,
Goldenblat and Kopnov [5], and later Sayir
[4], proposed the anisotropic plastic flow or
failure criterion in a dimensionless form

(Hijaij) "+ (szklﬂzjo'k/) b

+ (Hijk/mno-ijo-klamn)y +...—1=0 (2)
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where all structural anisotropy tensors IT;;, I,
IT;jtimn, etc., are normalized by the common
constant Il, where «, § and 7y are arbitrary
exponents of a polynomial representation.
Assuming a=1, f=1/2, y=1/3, (2) is
reduced to a simpler form, with the homogeneity
of the left-hand side polynomial components
assured, namely, cf. Goldenblat and Kopnov [5]

oy + (szklo'ljakl)l/z 3)

1/3
+ (Hijklnmo-ijaklo-mn) / —-1=0

Equation (3), when limited to three common
invariants of the stress tensor ¢;; and structural
anisotropy tensors of various orders: II; (2nd
order), Il;;; (4th order) and I, (6th order),
is not the most general one, in the sense of the so-
called representation theorems, which determine
the most general irreducible forms of the scalar
and tensor functions that satisfy the coordinate
invariance and material symmetry properties, cf.
Spencer [6], Rymarz [7], Rogers [8], etc. How-
ever, 2-nd, 4-th and 6-th order structural anisot-
ropy tensors, that appear in (3), are satisfactory to
describe basic transformation modes of the limit
surfaces due to plastic or damage hardening pro-
cesses: isotropic change of size, kinematic trans-
lation and rotation, as well as distortion (with
a curvature change), cf. Kowalsky et al. [9].

Initial Yield/Failure Criteria for Ductile Versus
Brittle Materials

Goldenblat and Kopnov’s equation (3), with
dimensional homogeneity assumed, is quite gen-
eral too, because of a large number of material
tests required for its calibration. Hence, for prac-
tical applications, further reduction is frequently
recommended. It is governed by a general obser-
vation that characterize two basic classes of
structural materials behavior, depending on
the nature of the dissipative phenomena respon-
sible for termination of pure elastic behavior:
ductile or brittle. In general, plastic yield initia-
tion refers to the majority of metallic materials
(metals, alloys, intermetallics), for which hydro-
static stress does not influence yield initiation
criterion. Additionally, strength differential
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effect, that is a different plastic/failure behavior
in uniaxial tension and compression, is usually
negligible k; ~ k., so that initial yield surfaces
are considered as cylindrical and convex. On
the other hand, failure or damage initiation
refers mostly to brittle materials (concrete,
ceramic materials, rocks, etc.), for which hydro-
static stress has an essential effect on the initial
damage mechanism. Obviously, the strength
differential effect is essential in this case
ki # kc, but usually the initial damage surfaces
remain convex.

As a consequence, when applied to ductile
materials, in the general Goldenblat and Kopnov
equation one can neglect first terms in (2-3)
dependent on the first stress invariant. By con-
trast, when the initial failure mechanism mani-
fests itself prior to other dissipative phenomena,
what happens in a majority of brittle materials, is
that the first stress invariant plays an essential
role, such that first (linear) terms in (2—-3) cannot
be omitted. Moreover, third terms in (2—3) which
are dependent on the third stress invariant, that
basically are responsible for limit surfaces distor-
tion, usually are neglected for the initiation of
dissipative phenomena. However, surface distor-
tion often accompanies consecutive hardening
phenomena when advanced plasticity and
damage response occurs, cf. Kowalsky et al. [9].
As a consequence, dimensional and dimension-
less forms of Goldenblat and Kopnov’s equa-
tions, (2-3), can often be reduced to the forms
independent of the third common invariant
ILjtimnGijOkiGmn, Where the stress components
are entered by quadratic and linear terms as
follows

(Hiigij)“ + (Hiiklo'ijgkl)ﬁ —-1=0 (4)

and whena =1, =1/2

oy + /Mjuojon —1 =0 (5)

When exponents o = § = 1 are assumed in
(4), we obtain another reduced, nonhomogeneous
form

Hijgij + Hl:jklo-ljo-kl —-1=0 (6)
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Equation (6) is known as the Tsai—~Wu aniso-
tropic initial yield/failure criterion, [10].

Thermal Effects in Composites

In the case of composite materials, one deals at
the level of microstructure with an artificial mate-
rial, composed of two or more components, such
that the new improved properties of a composite
material are achieved. Usually metal based-,
ceramic based-, or polymer based-composites
are used. Conventional polycrystalline metals,
such as: carbon steels, stainless steels, alumin-
ium-, titanium-, nickel-alloys, exhibit high
ductility, high tensile strength, and high damage
and fracture resistance. Simultaneously, they
suffer from limited high temperature resistance
(up to 2,000 + 3,000 K), low creep resistance,
relatively low wear surface resistance, high
thermal conductivity and thermal expansion
coefficients, low corrosion resistance, and
relatively high mass density. On the other hand,
pure ceramic materials, such as: metal oxides
(Al,03, ZrO,, TiO,), carbides (SiC, B4C, TiC,
Ti,C), and nitrides (TiN, CrN, Cr,N, WN, MoN,
ZrN) exhibit properties such as: extremely high
hardness, high compressive strength, good sur-
face wear resistance, high temperature resistance,
low thermal conductivity, thermal expansion
coefficients, good oxidation resistance, and low
mass density. Among the disadvantages, the
following can be listed: very poor tensile strength
ke < k., high brittleness, low fracture resistance
and porosity. A goal of applying a composite
material is to achieve improved properties of
a material at the macro-level by combining the
chosen most advantageous properties of compo-
nents (matrix and reinforcement properties).
Following the basic kinds of composites, with
respect to matrix material, are distinguished by
such as: metal matrix composites (MMC),
ceramic matrix composites (CMC) or polymer
matrix composites (PMC). The type and geome-
try of reinforcement determine properties and
group of symmetry of the composite at the
macro-level. With respect to reinforcement, two
classes of composites can be distinguished: par-
ticle reinforced composites (PRC) or fiber
reinforced composites (FRC). The PRCs, that
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are usually composed of isotropic component
materials (matrix and reinforcement), exhibit
the property of isotropy at the macro-level, as
well. The FRCs, and especially long fiber
reinforced composites LFRCs, show anisotropy
at the macro-level if geometry and orientation of
fibers exhibit a certain specific order. In particu-
lar, orthotropy or transverse isotropy assumptions
are frequently used for the LFRCs symmetry
group. In such cases, the Goldenblat and Kopnov
initial yield and failure equation, (3), should be
rewritten at the micro-level in a form

. . . . N 1/2
m,f _m.f m,f _m,f mf
H:» o;" + (Hijklazj/ Oy )

1/3
+ (M0 ol o) —1=0
(7)

where all common stress and material anisotropy
invariants are defined separately for matrix (m)
and fiber (f) materials.

All material anisotropy tensors discussed in
this section are, in general, functions of
temperature, e.g., Hg"f(T), Hg‘,j(T), H;‘Jmn(T).
This temperature effect cannot be ignored in the
case of metallic materials that exhibit strong
limitations with respect to their use-temperature.
The most common metallic materials, used as
matrix materials in composites, are aluminum-
based or titanium-based alloys. Aluminum
matrix composites have a use-temperature
upwards to 300°C, whereas titanium matrix
composites can be applied to 800°C
(cf. Herakovich and Aboudi [11]). On the other
hand, ceramic matrix materials can resist much
higher temperatures, up to 2,000°C, whereas
carbon/carbon composites can withstand temper-
atures up to 2,200 °C. Two approaches to limit
criterions are used: with temperature independent
or temperature dependent material properties.
In case of metallic materials, temperature
dependence of their properties cannot be
ignored, especially if either elevated or cryogenic
temperatures are considered.

In addition, composites are multi-component
materials, usually having essential mismatch of
thermo-mechanical properties between the
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constituents at the micro-level. This mismatch
results in strong residual stresses (sometimes up
to 2 GPa compressive stress in ultra-fine ceramic
films, e.g., used as thermal barrier coatings, for
example CrN, Cr,N etc.). Residual stresses are
built-in during the cool-down from the elevated
fabrication temperature, and frozen during con-
secutive mechanical loading conditions. The
mismatch effect is typical for both the long-
fiber reinforced anisotropic composites and the
particle reinforced isotropic composites. How-
ever, it manifests itself clearly in case of exis-
tence of material anisotropy, independently of
material isotropy of constituents at the micro-
level, or structural anisotropy of a composite at
macro-level.

The above discussed two thermal effects: due
to residual stresses, and due to temperature
dependent material properties, are in fact
coupled, but they are responsible for different
transformations of limit surfaces. Temperature
dependence of material properties basically
results in change of size or shape of limit surface,
whereas residual stresses frozen after a fabrica-
tion cooling-down process is done control the
kinematic effect of the limit surface. These
remarks hold for both limit surfaces of constitu-
ents (matrix and fibers or particles) and for the
resulting common intersection of both surfaces,
usually exhibiting corner points.

Basic Methodology

The Pariseau-Tsai-Wu Anisotropic Initial
Yield and Failure Criteria: Reduction and
Calibration

Equation (6) presented in a previous section
defines an anisotropic initial yield/failure crite-
rion, in which material anisotropy is character-
ized by two anisotropy tensors, the second-order
tensor I1;; and the fourth-order tensor IT;;;. This
equation may also be written in matrix notation,
when the symmetry conditions for both stress
tensors ¢;; = 0;, and structural tensors
ITy; = IT; and I = [y = [, = I; bold.
Hence, the number of material parameters that
define a 6 x 6 matrix [I1] and a 6 x 1 column
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matrix [n] is equal to 6 + 21 =27, when the
Voigt vector—matrix notation is applied to the
Tsai—Wu equation (6)

[m{o} +{o} M{c} —1=0  (8)

Although total number of material anisotropy
parameters in (8) is 27, only 24 of them are
essentially independent, since tensor Il must
also obey a tensorial transformation rule, involv-
ing three Euler angles. Both anisotropy matrices
in (8), [n] and [II] can explicitly be written as
follows

[n] = [nl’mvﬂs»m,ns,ﬂe]T
[T Il Iz Iy This e
Iy, Tlps Iloy Ilps Tpe
] = I3 I3y I35 I3
MMy Tlis Tl
IMss  Tlse
L Ies |

©)

Further reduction of independent material
parameters in (9) is possible if the invariance of
(8) with respect to change of sign of shear stress
components is consistently assumed. This
requirement is satisfied if matrix [r] is diagonal
and matrix [IT] is orthotropic

[r] = [nl,nz,ng,O,O,O]T

I, II, Iz O 0 0 T

11, TIly; 0 0 0

] = I3 O 0 0

IIys O 0

IIss O
L Ies |
(10)

If [z] and [I1] have the form (10), then the
reduced equation Tsai-Wu (8) is sensitive to
a change of sign of normal stress, but insensitive
to change of a sign of shear stress components.
The reduced form of structural tensors (10) is
defined by 3 + 9 = 12 independent material con-
stants. Hence, the complete tensorial form of the
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Tsai-Wu equation (8), that contains 12 indepen-
dent material constants (9 for [IT] and 3 for [r]), is
furnished as

0% + szﬁi + Ms307
+Iz00, + Ila30y0; + I310.0,
+ 1_144T§Z + HSSTsz + Héﬁriy

(11)

+ 7m0y + Moy + 130, —1=0

or

o) [y IOy, Iz O 0 0 7
oy Iy, II; O 0 0
0; II,3 O 0 0
Ty My O 0
Tox I1s5 0
Ty ) L e

Oy Oy ]

ay gy )

g, o, 3

X + —-1=0

Tyz Tyz 0

Tox Tyy 0

Txy Ty ) LO

(12)

If the next reduction of the criterion (11) and
(12) is done, to the case when only the second
order term {¢}" [[T]{c} is independent of hydro-
static pressure, the following 9-parameter
Pariseau-Tsai—-Wu equation is obtained, in
a partly deviatoric form (quadratic terms only),
after Chen and Han [13]

ai(oy — 0’2)2 +ay(o, — o’x)2

2

2 2 2
+az(0x — 0y)" + ast;, + ast;, + aeTy,

+ a70, +agoy +ago, — 1 =0

(13)

where following notation is used a; = —Ily;3,
ar = —Ili3, a3 = —Ilp, as =y, as = Ilss,
ag = Ilge, and a7 = my, ag = my, a9 = m3. The
above equation can alternatively be rewritten as
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o) [ar + a3 —as —as 0 0 07
oy az + a; —a 0O 0 O
o; ag+a 0 0 O
Tyz a 0 O
Toy as 0O
Txy ) L ae |

Oy Oy as

oy oy ag

X ’ + 7 @ —1=0

Ty, Tyz 0

Tox Toy 0

Ty Ty ) LO ]
(14)

where the matrix—vector notation (14) is used.
The above 9-parameter initial yield/failure crite-
rion (13, 14) was first suggested by Pariseau [12]
for anisotropic rocks and solids. Later, Tsai
and Wu [10] proposed an analogous criterion,
but they applied an additional condition of
full independence of hydrostatic pressure,
a9 = —(a7 + ag), so that the total number of
independent parameters was finally reduced to 8.
Assume further (after Chen and Han [13]) that
the plane (x,y) in (13), (14) is considered as the
transverse isotropy plane. Hence, the coefficients
in (13), (14) are not independent, but are
subjected to the constraints
as = as,

ag = az, ag =2(a; + 2a;3)

(15)
Substitution of (15) into (13) and (14), leads to

the reduced 5S-parameter Pariseau—Tsai—Wu
criterion.

a = day,

ai[(ay — 0'2)2 + (0. — O'X)Z] +as(o, — O'y)z

+ a4(r§Z + fo) +2(a; + 2513)‘5)2&V
+a;(0c+0y) +ags. —1=0
(16)

This equation was originaly used by Ralston
[14] for an ice crushing failure analysis. In order
to calibrate the 5-parameter Pariseau—Tsai—Wu
criterion (16), the following tests are to be
performed:

— Uniaxial tension and compression in the (x,y)
plane of transverse isotropy (e.g., x axis)

Oy =kyp;0y =0, =T, =T,y =7, =0
alkfx + a3k5\, + azky =1

0y = —key; Oy =0; = Tyy = Tox = Tzy = 0
alkfx + agkfx —arkey,, =1

(17)

— Uniaxial tension and compression along the
orthotropy axis (z axis)

0; = k;; 00 = Oy = Tay = Tox = Tzy = 0
2

2a1ktz + agktz =1

0, = k30, =0y =Ty =T =Ty =0
2

2611/{0: — a9kcz =1

(18)

— Simple shear in the plane of orthotropy (e.g.,
zx plane)

Tox 2: ko0, =0,=0.=717,=1,=0 (19)

a4kzx =1
where k; and k.; stand for tensile and compres-
sive strengths in corresponding directions
i=2x,z, and k, is the shear strength in the
orthotropy plane. Finally, the following formulae
for a; independent constants i = 1,3,4,7 and 9
are achieved

1 1 1
a) = ) as = T AL L
VT keke:n 7 kuke  2kike
1
as = E7 (20)
1 1 1 1
anrn = — — — adg = — — —
Tk kel O ke ke

The Hill Versus the Mises-Hu—Marin Initial
Yield Conditions: Limitation and Calibration
When only quadratic terms in the Goldenblat—
Kopnov criterion (6) are retained, the general
2]-parameter Mises yield/failure criterion
(H,‘jk] = Mijkl) is obtained
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Mijklgtjakl_ 1=0 (21)

In the case when the form non-sensitive to the
change of sign of the normal stress exclusively is
saved, (21) is reduced to the 9-parameter
equation

1‘/[116)2C + Mzzdi + 1‘433622
+2(M 20,0y + My36y0. + M310.0,)
+ M44’L'§Z + M55T§x + M66T§y —-1=0
(22)

If, additionally, transverse isotropy in the
(xy) plane holds, My =My, M3 = Moy,
My = Mss, Mgg =2M;; — My, and the 5-
parameter transversely isotropic Mises criterion
is obtained

My (a2 + 65) + M3302 + 2[M 20,0,
+ M13(O—,\'O—z + O—Zg)’)} + M44(T§z + T?x)
+ (M = M)ty —1=0
(23)

where My, M33, M2, M3, M44 are 5 indepen-
dent anisotropy parameters. The S5-parameter
Mises criterion (23) is more general than the
frequently used deviatoric Hill criterion, also
transversely isotropic in the (xy) plane, in
which the following holds: Hy, = H33 — 2H 14
and H;3 = H3;. Hence, the Hill criterion is
furnished as

Hll(af + o*i) + H33oz

+ (H33 — 2H, )00y, — H33 (Jxa_, + Jzay)

+ Hay (f; + rfx) + (4Hy — Hyp)T, —1=0
(24)

where only three parameters are independent,
e.g., Hyj,Hsz and Hyy, similarly as in (16),
where linear terms are neglected.

In order to calibrate the 3-parameter trans-
versely isotropic Hill criterion (24), two uniaxial
tension (or compression) tests along the x and z
axes, and one simple shear test in the zx plane
have to be performed:

Anisotropic Initial Yield and Failure Criteria Including Temperature Effect

0y =k;0y =0, =T, =7,=1,,=0

— Hy = 1/k;
0, =k;0,= Oy = Tox = Ty = Tyz = 0
5 (25)
—>H33 = 1//(Z
T = kox; 0 = Oy =0; = Tyy = Ty; = 0
— Hay = 1/k,

where k,, k, and k., stand for tensile (or compres-
sion) strengths in directions x, z and shear
strength in the orthotropy plane zx. Hence,
Hill’s criterion (24), can be rewritten as

(oy — GZ)zz;g(az —0)’ (1 1 )

2

x (0, — a,)" + (sz> -1=0

kZ}C

Alternatively, in the case of the 5-parameter,

transversely isotropic Mises—Hu—Marin criterion

(23), in order to identify five anisotropy modules,

the following conditions can be used: four tests,

namely, two uniaxial tensions along orthotropy

and isotropy axes z and x, a simple shear test in

the zx orthotropy plane and one biaxial (bulge)

test in the isotropy plane xy. This schematically is
shown in Fig. la, b

Oy =k;0y=0. =T, =175 =1,,=0

—>M11 - l/k)z(
0. =k;;0,=0,=1T4x=1T5, =71, =0
— Ms3 = 1/k

Tox = kzx; Ox =0y = 0; = Tyy = Ty; = 0

— My = l/kzzx

(27)

oe=oy| 0
—k 302 = Tox = Ty = Ty =
= A)

— 2M12 == 1//{(2”) —2/](3

where, additionally, the biaxial test symbol k(.
stands for strength measured in the bulge test in
the transverse isotropy plane x, y.

Bulge tests were used, e.g., by Jackson et al.
[15]. Additionally, one auxiliary condition in the
orthotropy plane Fig. 1a, b is postulated:
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Anisotropic Initial Yield and Failure Criteria Including Temperature Effect, Fig. 1 Auxiliary conditions in
biaxial bulge tests: (a) plane of transverse isotropy, (b) plane of orthotropy

o, = ky
o (T T T Ty =T = 0 (28)

— 2M3 = 1/(kik:)

Finally, the non-deviatoric Mises—Hu—Marin
criterion (23) is furnished as, cf. Ganczarski and
Skrzypek [16], which is a generalization of the
plane stress Hu-Marin concept, Hu and
Marin [17]

) (2)
2 a 2 R
2 k. 2, R

2
X 0.0 ot o) :I?)Gz + (2) -1=0

(29)

where four independent material parameters k,,
kz, kv and k., (biaxial bulge test) have to be
measured, with auxiliary condition (28) used.
Note that the Mises—Hu-Marin equation (29)
appears as a hydrostatic stress dependent one,
by contrast to the Hill equation, (26), which sat-
isfies hydrostatic stress independence. The above
alternative assumptions: applying the deviatoric
3-parameter Hill’s criterion (26), with three

classical tests (k,, k., k) used, or the 5-parameter
non-deviatoric Mises—Hu—Marin criterion (29),
with an additional one biaxial bulge test in the
isotropy plane xy and one auxiliary condition pos-
tulated in the ortho — tropy plane zx, are applied.
Hill’s criterion (26) holds for orthotropic materials,
however, the degree of orthotropy cannot be arbi-
trarily large. In the case of a high degree of
orthotropy, the Hill equation (24), admits the arbi-
trarily large stress states that do not result in yield-
ing (cf. Ottosen and Ristinmaa [18]). The following
inequality limits the range for Hill’s criterion

2 2 2 1 1 1

et Tee e tete G0
Xy yz Z X X y 4

In the narrower case of transverse isotropy
(ky = ky), condition (30) reduces to a simpler

form
1 /4 1
@(a‘p)>°
Substitution of the dimensionless parameter

R = 2(k./k,)* — 1, after Hosford and Backhofen
[19], leads to a simplified form of Hill’s criterion
restriction (31)

(31)
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Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Fig. 2 Transformation of
transversely isotropic Hill’s limit surface with respect to

k.
R > —0.5 or alternatively k_ >0.5 (32)

However, the key point is that we have assumed
the quadratic expression (24) and this expression
only allows the yield surface to be a closed surface
in the deviatoric stress space when (30) is fulfilled.
If the above inequality does not hold, elliptic cross
sections degenerate to two hyperbolic branches
and the lack of convexity occurs. The yield curves
in two planes: the transverse isotropy (oy, ¢,) and
the orthotropy plane (o, g,) for various R -values
are sketched in Fig. 2a, b, respectively. It is
observed that when R approaches the limit
R = —0.5, the curves change from closed ellipses
to two parallel lines, whereas for R< — 0.5, con-
cave hyperbolas appear (cf. Ottosen and Ristinmaa
[18]). The five parameter Mises—Hu—Marin crite-
rion is free from such restriction and can be used
for an arbitrarily large degree of orthotropy.

Effect of Thermal Residual Stresses on
the Initial Yield and Failure Surfaces in
the Unidirectional Composites

Key Herakovich and Aboudi Findings
The effect of residual stresses in unidirectional
composites on initial yield/failure surfaces was
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magnitude of Hosford and Backhofen parameter: (a)
transverse isotropy plane, (b) orthotropy plane

studied by Herakovich and Aboudi [11]. The
authors considered the unidirectional MMC based
on a Ti-15A1-3V matrix reinforced by SCS-6
silicon carbide fibers. Although both constituents
behave strictly isotropically, an essential mismatch
of thermo-mechanical properties between the con-
stituents at the micro-level introduces strong
anisotropy of the composite at the macro-level
(representative unit-cell). They investigated initial
yield surfaces of unidirectional lamina, composed
of any number of layers, but all SCS fibres are in
the same direction, the effective properties of
which satisfy the transverse isotropy (cf. Table 1).

The plane x =t,y =t, perpendicular to the
fiber direction, is the transverse isotropy plane,
whereas the direction of fiber z = a coincides
with the orthotropy axis (cf. Fig. 3). Symbols E,,
E.,G,, G, v,, v, Y,, Y, and oy, o, stand for axial and
transverse: Young modulea, Kirchhoff modulae,7
Poisson ratios, yield strengths and thermal expan-
sion coefficients, respectively. Figure 4a, c repre-
sents two families of yield surfaces referring
to the fabrication temperature T; = 575 °C and
the operating temperature (after cooling-down)
Tt = 20 °C. Following bi-axial states of stress:
combined axial and transverse normal (oy,a.),
combined transverse normal (oy,0,), and
combined out-of-plane orthotropic shear and
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Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Table 1 Components and
composite’s properties, after Herakovich and Aboudi [11]

Property Constituents SCS-6/
Fiber Ti-15 Ti-6 Ti-15
SCS-6  Al-3V  Al-4V  Al-3V
E, (GPa) 414 91 113.7 221
E, (GPa) 414 91 1137 145
Va 0.25 0.25 0.3 0.27
W 0.25 0.25 0.3 0.40
G, (GPa) 165.5 3.33 43.73 53.2
G, (GPa) 165.5 3.33 43.73 51.7
Y, (MPa) 3,500 758 900 1,517
Y, (MPa) 3,500 758 900 317
o, - 1070 (K~ 4.86 9.44 9.44 6.15
@ -107° (K™  4.86 9.44 9.44 7.90
z- SCS6
fiber
Ti-15A1-3V
matrix
1
:< :
I |
| |
T |
I |
I I
i l y=t
I I
//’— AN
i b
( /
plane of
transvese
x=t isotropy

Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Fig. 3 Transverse isotropy of
unidirectional long fiber composite SCS-6/Ti-15A1-3V

transverse normal (t,, ), are shown in Fig. 4a, c.
At the considered temperature change, no yielding
is observed during cooling-down, however, in the
case of larger temperature change, yielding during
cooling-down may be observed. Both translation
and distortion of limit surfaces are noticed. The
initial yielding/failure surfaces at the micro-level

155

3.0
2.0 20
.07 1=575°C
0.0 o,/ Y
-1.0
—2.0
-3.0 +
-3.0 2.0 -1.0 3.0
c,/Y
3.2
— 6,/Y
3.2
— o,/Y
575°C
-0.8
1.2 ; ; ; :
-12 -08 -04 00 04 08 1.2

Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Fig. 4 Initial yield surfaces
of transversely isotropic SCS-6/Ti-15A1-3V composite,
based on Herakovich and Aboudi [11]
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Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Fig. 5 Approximation of ini-
tial failure curves (T; =575°C) of Herakovich and

have to account for the effect of changing residual
stresses, which is different in the matrix and the
fibres. It is seen that subsequent limit curves are no
longer uniform ellipses but represent cross-sections
of two limit curves, referring to individual matrix
and fiber materials. The corners observed in
Fig. 4a, c result from the intersection of different
families of individual limit curves.

Modeling Unified Initial Limit Surfaces of
SiC/ Ti Composite by Hill's Versus Mises-Hu-
Marin’s Criterions

Assuming at the beginning that the initial yield
surface which corresponds to T; = 575 °C is free
from residual stresses, the classical Hill’s
approach ((26) for transversely isotropic mate-
rial) can be tried. Taking the following cross-
sections of the limit surface (26), we arrive at:
Isotropy plane (k, =Y, k, = 2.3Y)

o — 1.81lo0, + 0, = Y* (33)
Orthotropy plane (k, = Y, k., = 2.3Y)
a; —0.1890,0. + 0.18952 = ¥* (34)
Shear plane (k,, = 0.5Y,k, =7)
oL+ 41 =Y? (35)

Symbol Y stands for the yield point stress in
the plane of transverse isotropy k, = k, = Y. The
above cross-sections are shown in Fig. 5a, c.
Hill’s approximation fits well to orthotropy (a)
and shear (c) planes. However, in the isotropy
plane (b), fitting is non-satisfactory.
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(o]
T, /Y

Hill and
.~ Mises-Hu-Marin

Aboudi experiments [11] by Hill’s or Mises—Hu—Marin
criterions: (a) orthotropy plane, (b) isotropy plane, (c)
shear plane

An assumption is made, therefore, of
another approach based on Mises—Hu—Marin
equation (29), leading to (cf. Ganczarski and
Skrzypek [15]):

Isotropy plane (ky =Y, k(,) = 1.7Y)

oy —1.6540,0, + 0, = Y* (36)
Orthotropy plane (k, = Y, k. = 2.3Y)
o; — 0.4340,0. +0.18907 = ¥* (37)
Shear plane (k,, = 0.5Y,k, =7Y)
ol +4 =12 (38)

The Mises—Hu—Marin approach (36-38) is
compared to Hill’s approximation (33-35) in
Fig. 5a, c¢. The Mises—Hu—Marin approach much
better fits the Herakovich and Aboudi results in
the isotropy plane (Fig. 5a), thanks to an accept-
able mis-fitting in the orthotropy plane (Fig. 5b).
A worse fitting by Hill’s approximation in the
isotropy plane (Fig. 3a), when compared to
Mises—Hu—-Marin approach, results from the
influence of the magnitude of axial strength k.
disturbing condition in the isotropy plane (cf.
previous discussion referring to applicability of
Hill’s criterion (31)).

Modeling Temperature Effect During
Fabrication on Limit Surfaces by the
Pariseau-Tsai-Wu Criterion

As it was mentioned above, temperature
change during fabrication (cooling-down)
results in both residual stresses, different in
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Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Fig. 6 Cross sections of
SCS-6/Ti-15-3  failure surfaces: (a) orthotropy
plane, (b) isotropy plane, (c) shear plane,
0 —Ti =575°C, o—T; =20°C, experimental results
by Herakovich and Aboudi [11] vs. Pariseau—Tsai-Wu
approximation
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matrix and fiber materials, and a change of
material modules of both composite constitu-
ents. The appearance of residual stresses man-
ifests itself mainly in translation of limit
surfaces for matrix and fiber materials,
whereas temperature dependence of anisotropy
modules results in a change of size and
distortion of limit surfaces. Hence, instead of
the unified approach at the level of a
representative unit cell, cf. Herakovich and
Aboudi [11], the micro-approach should be
applied, for matrix and fiber materials sepa-
rately (7). The Pariseau—Tsai—Wu 5-parameter
criterion (16) combined with material con-
stants calibration (20), are used. This approach
allows the accurate approximation of two fam-
ilies of limit curves in considered planes,
referring to matrix and fiber materials at two
temperatures T; = 575°C and Ty =20°C,
where T; stands for initial fabrication temper-
ature, and Ty for final temperature after
cooling-down. At the initial temperature
T; = 575°C, this leads to (cf. Ganczarski and
Skrzypek [16]):

Isotropy plane X, = ¢,/Y, %, =g,/

(A) 0.505%7 — 0.445%,%, + 0.404%;
+0.560%, = 1
(B) 0.376%7 — 0.414%,%, + 0.376%;
— 0.408%, + 0.408%, = 1
(39)

Orthotropy plane (2, = ¢,/Y,%, = 0./Y)

(C) 0.530%) —0.251%,%. 4 0.1847
+0.361%, — 8.14- 107°%, = 1
(D) 0.541%5 —0.256%,%. + 0.188%2
—0.435%, +3.99-107°%, = 1
(40)

Shear plane X, = 0,/Y, 2., = 1.,/

(1) 0.9423% + 4.52732 =1 (41)
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Anisotropic Initial Yield [/ [GPa] Y [MPa]
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And, at final temperature Ty = 20°C, we
arrive at:
Isotropy plane X, = ¢, /Y, X, = a,/Y

(E) 0.500%7 —0.725%.%, + 0.8237
+ 1.000Z, — 2.130%, = 1

(F) 0.91237 — 0.866%,Z, + 0.596%;
—2.102%, + 0.921%, = 1

(42)
Orthotropy plane (Z, = 6,/Y,%. = 0./Y)
(G) 0.276%; —0.384%,%. +0.276X2
+0.935%, +4.92%, = 1
(H) 0.934% — 0.445%,%. +0.320%2
—2.01%, +0.65-107°%, = 1
(43)
Shear plane X, = 0./Y, 2., = 1.,/
1) 142632 +6.8522% —1.712%, =1
( ) X X (44)

(K) 1.065%%+1.7232% +0.746%, =

In the above, the upper case X; stands for
dimensionless stress components. The results

are shown and compared with Herakovich and
Aboudi findings [11] in Fig. 6.

Effect of Temperature Dependent
Parameters

In the above simulation, all material properties of
composite constituents were considered as tem-
perature independent. On the contrary, in a more
accurate analysis, the residual stresses, induced
during the cooling-down fabrication process, in
constituents result from a mismatch of the tem-
perature dependent properties of both phases:
matrix and fiber. Additionally, subsequent yield/
failure surfaces have to account for temperature
dependent properties: initial yielding of the metal
matrix, governed by an actual value of the yield
point stress of titanium matrix in the Ti-6Al-4V
system, cf. Fig. 7.

This effect can essentially change the
predicted initial yield curves of the composite,
as shown in Fig. 8, after Herakovich and Aboudi.
It is clearly visible, that neglecting temperature
dependence of properties, leads to non-
acceptable overestimation of a safety region of
the system considered at an elevated temperature
of 300°C, when compared to the more accurate
temperature-dependent analysis. This error basi-
cally results from the fact that the magnitude of
the yield point stress is twice as high at the room
temperature as at temperature 300 °C.
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Anisotropic Initial Yield and Failure Criteria Includ-
ing Temperature Effect, Fig. 8 Temperature indepen-
dent (TID) vs. temperature dependent (TD) yield
surfaces of SiC/Ti composite, following Herakovich and
Aboudi [11]

Acknowledgement This work was supported by
National Science Centre Poland grant Nr UMO-2011/03/
B/ST8/05132.

References

1. HillR (1948) A theory of the yielding and plastic flow
of anisotropic metals. Proc R Soc Lond
A193:281-297

2. Zyczkowski M (2001) Anisotropic yield conditions.
In: Lemaitre J (ed) Handbook of materials behavior
models. Academic, San Diego, pp 155-165

3. Betten J (1988) Applications of tensor functions to the
formulation of yield criteria for anisotropic materials.
Int J Plast 4:29-46

4. Sayir M (1970) Zur FlieBbedingungen der Plastizitats
Theorie. Ingenieurarchiv 39:414-432

5. Goldenblat II, Kopnov VA (1966) A generalized the-
ory of plastic flow of anisotropic metals (in Russian),
Stroitelnaya Mekhanika, 307-319

6. Spencer AJM (1971) Theory of invariants. In:
Eringen C (ed) Continuum physics, Academic Press,
New York, pp 239-353

7. Rymarz Cz (1993) Continuum mechanics. PWN,
Warszawa (in Polish)

8. Rogers TG (1990) Yield criteria, flow rules, and hard-
ening in anisotropic plasticity. In: Boehler JP (ed)
Yielding, damage and failure of anisotropic solids.
Mechanical Engineering Publications, London,
pp 53-79

9. Kowalsky UK, Ahrens H, Dinkler D (1999) Distorted
yield surfaces — modeling by higher order anisotropic
hardening tensors. Comput Mater Sci 16:81-88

10. Tsai ST, Wu EM (1971) A general theory of strength
for anisotropic materials. Int J] Numer Methods Eng
38:2083-2088

159

11. Herakovich CT, Aboudi J (1999) Thermal effects in
composites. In: Hetnarski RB (ed) Thermal stresses V.
Lastran Corporation, Rochester, pp 1-142

12. Pariseau WG (1968) Plasticity theory for anisotropic
rocks and solids, Chapter 10. In: Proceeding of 10th
symposium on rock mechanics, Austin

13. Chen WF, Han DJ (1995) Plasticity for structural
engineers. Springer, Berlin/Heidelberg

14. Ralston TD (1977) Yield and plastic deformation in
ice crushing failure. In: ICSI.AIDJEX Symposium on
sea ice-processes and models, Seattle

15. Jackson LR, Smith KF, Lankford WT (1948) Plastic
flow in anisotropic sheet steel. Am Inst Min Metall
Eng 2440:1-15

16. Ganczarski A, Skrzypek J (2011) Modeling of limit
surfaces for transversely isotropic composite SCS-6/
Ti-15-3. Acta Mech Autom 5(3):25-32 (in Polish)

17. HuZW, Marin J (1956) Anisotropic loading functions
for combined stresses in the plastic range. J Appl
Mech 22:1

18. Ottosen NS, Ristinmaa M (2005) The mechanics of
constitutive modeling. Elsevier, Amsterdam

19. Hosford WF, Backhofen WA (1964) Strength and
plasticity of textured metals. In: Burke J, Coffin L,
Reed N, Weisse V, Backhofen WA (eds) Fundamen-
tals of deformation processing. Syracuse University
Press, Syracuse, pp 259-298

Anisotropic Materials

Linear Thermoelastic Model

Anisotropic Shells

Temperature Profiles in Composite and Sand-
wich Shells

Anisotropic Thermoelastic Contact
Problems

David L. Clements

School of Mathematics, The University of
Adelaide, Adelaide, SA, Australia

Synonyms

Anisotropic


http://dx.doi.org/10.1007/978-94-007-2739-7_252
http://dx.doi.org/10.1007/978-94-007-2739-7_296
http://dx.doi.org/10.1007/978-94-007-2739-7_296
http://dx.doi.org/10.1007/978-94-007-2739-7_100023

160
Overview
There exists an extensive literature on

thermoelastic contact problems for isotropic
materials. For such materials the thermal and
elastic constants referred to a Cartesian frame
are identical for any orientation of the axes within
the material. In contrast for anisotropy the ther-
mal and elastic constants are not identical for all
orientations of a coordinate frame within the
material. As a result the mathematical equations
governing thermoelastic deformations of aniso-
tropic materials are considerably more complex
than for isotropic materials. This substantially
restricts the classes of problems for which usable
analytical solutions to contact problems can be
obtained

From the middle of the twentieth century to
the present, there has been a substantial increase
in the use of composite materials in applications.
From a macroscopic viewpoint, composites are
often satisfactorily modeled as homogeneous
anisotropic materials. Furthermore, in many
applications of composite materials thermal
effects are significant. This has led to an
increased interest in the analysis of anisotropic
thermoelastic problems. In the area of contact
problems the mathematical difficulties in
obtaining analytical solutions result in solutions
of such problems being restricted to particular
classes of anisotropic materials and/or restricted
geometries for the material and the region
of contact. Such restrictions may be relaxed
if numerical techniques such as the boundary
element and finite element methods are used
so that a more substantial class of such
problems may be solved by employing these
techniques.

Here, the linear mathematical model for
uncoupled rectilinear thermoelasticity is presented
for the wide class of problems which do not
involve inertia or coupling effects. The particular
classes of anisotropic materials and geometries for
which analytical solutions to contact problems
within this model may be obtained are identified
together with an outline of the analytical tech-
niques which facilitate these solutions. Also,
a boundary integral equation formulation of the
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solution of the equations of the mathematical
model is briefly discussed as a possible method
for the numerical solution of contact problems for
general anisotropy.

Governing Equations

Consider a Cartesian frame Ox{x,x3 in a homo-
geneous rectilinear anisotropic thermoelastic
material occupying a region Q with boundary
0Qin R3.

We wish to determine the steady state stress
induced in the body Q due to a specified distribu-
tion of temperature and displacement or stress
over the boundary OQ resulting from contact
with a second body.

Here, attention is largely restricted to the sub-
stantial class of contact problems which can be
satisfactorily represented by considering the case
when the body Q consists of a half-space bounded
by a plane surface [1].

Disregarding body forces and the coupling
of the deformation and temperature fields, the
steady state temperature distribution 7' (x1, x5, X3)
in an anisotropic material satisfies the heat con-
duction equation [2]

o*T
7¥ij 8)(1‘8)(]‘ =0 (1)
where A; = A;; are the coefficients of heat con-
duction and the repeated suffix convention (sum-
ming from 1 to 3) is used for Latin suffices only.
The flux across a boundary surface of the material
with outward pointing normal n = (ny, ny, n3) is
given by — P where

or
P = Mani (2)
]

If P is specified over the whole of the bound-
ary 0Q of the material, then it is explicitly
required that

LQ Pds =0 (3)
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The equation relating the temperature and
elastic displacement u; to the stress g in the
material takes the form

8uk
Tij = Ciki G~ BT (4)

where c;j; are the elastic constants and ﬁ,-j are the
stress temperature coefficients. These constants
satisfy the symmetry relations
Cijkt = Ciiij = Cjikl = Cijik; Bi=Bi (5
The stresses o;; given by (4) must satisfy the
equilibrium equations dg;;/dx; = 0 and hence,

82uk oT
Cijk/m ~Pigg T 0 (6)

Given a temperature distribution which sat-
isfies (1), the solution to (6) can be written as
a sum

)

w =1+ (7)

where u,il) is a displacement which satisfies the
nonhomogeneous system (6) and u/((z) denotes
a solution to the homogeneous system

82uk
A = 8
C/k/ axjaxl ( )

The stress corresponding to the displacements

u,({l) and u/({z) may be written as a sum in the form

0= al(jl) + o,(jz) 9)

(1)
into (4) while ¢

substituting u;, = u,((z)

where the stress o

Uy = MIEI)

is obtained by substituting
@)
ij

into ojj = c,-jklauk/ax/.

is obtained by

Three-Dimensional Problems

For general rectilinear anisotropy, (6) does not
readily yield useful analytical solutions to partic-
ular contact problems of interest. By restricting
attention to a particular class of anisotropic
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materials, it is possible to obtain solutions to
a number of significant contact problems.

In particular for transversely isotropic mate-
rials, representations for the displacements u;
satisfying (6) may be obtained in terms of three
potential functions. These representations lend
themselves to the use of integral transforms to
facilitate the solution of contact problems for
layers and half-spaces for which the boundary
surface(s) are transverse planes of the material.

For a transversely isotropic half-space occu-
pying the region x3 < 0 with the Ox3 axis normal
to the transverse planes, the nonzero coefficients
of heat conduction are A;; = Ay and Asz, and
hence, the equation for the temperature (1) may
be written in the form

2
T
VT + [(2?)—2 =0 where
X
o2 ;2 (10)
V="
ox} 0x3

and K? = A33/A;. Also, the stress temperature
coefficients are §;; = f,, and f33, and the non-
zero ¢y may be expressed in terms of five con-
stants ¢y, C12, €13, €33, and c44 as follows:

Clil = €02 = Ci1, €122 = Ci2, (1
C1133 = €2233 = (13

C1313 = 2323 = C44, (12)
cini2 = (e —¢12)/2, 3333 =33

Use of (11) and (12) in (6) provides

c 82141 +C11 —C12 821/{1 c 82u1
! ox? 2 03 “ Ox3
d [ci1+c12 Ouy Ous
S et i —2 (13
8x1 |: 2 8)(2 + (C13 + C44) 8)(3 ( )
or
—Bi=—=0
'8116)(1

c11 —c12 0% 62u2+ Pu,
—— 53 TS5 TCu—55
2 0 03 Ox2

0 [c11+c12 Oy Ouz oT

v, Hlenteu) gl =bugo=

8_)62 2 8X1 0
(14)
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Pus  0%us Ous
C44 [G—x% + 8—)%} €33 W
+ (€13 + ca4) 68 [gz: + gﬂ P ng 0
(15)
Let the displacements assume the form [3]
up = u/((l) + u,(f) (16)
with
D :g_)‘ﬁ, e :g—i, uy) = g;i (17)
=00 D )

where k and u are constants. For a given T the
displacements u,(cl) provide a solution to the inho-
mogeneous system (13)—(15) while the displace-
ments u,’ provide a solution to the associated
homogeneous system. Substituting (16)—(18)
into (13) and (14), it follows that these equations
will be satisfied if ¢ and y are solutions to the
equations

2 3¢
c”V ¢+[C44—|—k(()13 +C44)]W:0 (19)
A3
2 *y
eVt e+ plers +ea)l g5 = fuT =0 (20)
3

Also, (15) will be satisfied if ¢ and  are
solutions to the equations

2

0
[(c13 + caa) + kcaa] V2 + ke a—f =0 ()
3
) 2y
[(c13 + caa) + peaa] VY + piess P fssT =0
3
(22)
Set
caa+k(ci3+caa) kess =v (23)

i  (c13+caq) +keag
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Elimination of k from (23) yields the quadratic
for v

cricaav® + [cis(cis + 2caq) — crics)v

(24)
+ c33¢44 =0

Thus, (19)—(21) will be satisfied if ¢ is given by

2
{Vz—kwg—x%}d)%:O for a=1,2 (25)

where vy, v, are the roots of the quadratic (24).
The corresponding values of k obtained from (23)
are k; and k. Equations (16)—(18) thus yield

i =g (14 b2 )

. (26)
87)62((151 + ¢y + )
_(, 0P, O, 0¥
us = < 8 s + ky 8)C3 +,Llax3> (27)

and the stresses

0? ?
o= {Cugﬁ(d’l + oy +y) +012@(¢1 +dy 1)
P, 0, 0
+Cl3(k1 (9)(%1 +k 8 2+MW):| *ﬂ“T

(28)

> >
0 = |:C126—x%(¢1 + ¢y + V) +cn 8_x%(¢1 + ¢ +)

¢, P, | Py
O 2 +k; 8x§ ""ﬂa_x%)} - puT

(29)

+c13 (kl

82 82
033 = |:CI3W(¢1 +¢2+l//)+613ﬁ(¢1 + ¢y + )
1 2

2 2 2
+C33</<|8 i +k 0 ¢2+ M)} = PB3T

ad 12 THag
(30)
2
o1 = (e — Cn)m(% + ¢ +y) (31)



Anisotropic Thermoelastic Contact Problems

B PP, >,
013 = C44 [(1 -|-/<|)a s +(1 +k2)3x18X3
(32)
+ (1+p) 2y
# 8x18x3
> ¢, P,
023 = Ca4 [(1 +kp) D500, +(1+ k) Dxads
0y
1
+ ( + 'u) (9)(28)(3]
(33)

These representations are particularly useful
for the solution of contact problems if attention is
restricted to axially symmetric problems so that
in terms of cylindrical coordinates (r, 0, z), with
the temperature, displacement, and stress inde-
pendent of 0 (25), (20), and (22) can be written as

”# 190 5?
[8r2+ 8 + “az](bx 0 for a=1,2
(34)
& 10
‘i {ﬁ*’f _] W+ [cag + u(crs + caa)]
2 ror 35)
0y
ﬁ_ﬁllTZO
” 10
[(c13 + ca4) + pcaa] |55+~ o[V
ort  ror
2 (36)
+.UC33¥—,B33T:O

and the nonzero displacements and stresses are
given by

((f)l + ¢y + )
(37)

@IQv Q>|Qv

(k1) + kagpy + i)

2
o0 = {c11§7<¢1+¢2+w>+23<¢1+¢z+w>

2 82 82
+Cn<k1 a¢;1+k2 az(/;z-F _lﬁ)] BuT

(38)
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O'oo=[012 5 (@1 +dr+¥)+ (¢1+¢2+¢)
o 2 2
+C|3</<1 8;/;1+kzaad;2+ M)} puT

(39)

2
= |enges @1+ b2 4 )+ G+ )
02¢1 + ko 02€b2+ 82_‘#)] —[f33T

+ ¢33 (kl

0z2 o2 " Hon
(40)
¢, ¢,
O = {(1 + ki)caa 70z + (1 +k2)caa 40
2
+( +.U)C44(9 8]
(41)

Equations (10) and (34) admit solutions in the
form [4]

T(r,z) = J:O A(&)e Ko (&r) dé (42)
$u(r.2) = JOC Cu(Q)eEdo(Er)de, for a=1,2
(43)

where z, =z/\/v, and A(&) and C,(&) are
functions which are determined by the boundary
conditions for particular boundary value prob-
lems. Also, (35) and (36) admit solutions of
the form

o0

Wir.z) = j AQBE)e /¥ I(er) de (44)

0
provided B(&) and u satisfy the equations
_ BuK?(crs + cas) + Baz(cas — ciiK?)

— Briless — K2cas) — Paz(cis + cas)
(45)

Bri(c33 — caaK?) — Baz(cis + cas)
(cas — c11K?)(c33 — caaK?) + K2(c13 + Caa )’
(46)

526(6) _ K2
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The representations (42), (43), and (44) for the
solutions to (10), (34), (35), and (36) provide,
through the use of standard results for Hankel
transforms [4], the solution to a number of axially
symmetric contact problems for a transversely
isotropic half-space occupying the region z < 0
[5]. For example, Sharma [3] determines expres-
sions for A(&), C1 (&), and C,(€) for the case when
the boundary z = 0 is subjected to a constant
temperature over the region r < a while the
remainder of the surface is at zero temperature.
Substitution of these functions in (42), (43), and
(44) then provides T(r,z), ¢,(r,z), and ¥(r,z).
Equations (37)—(41) then give the stress and
displacement throughout the half-space. Also,
Grilitskii and Shelestovskii [6] consider the
thermoelastic effects resulting from the indenta-
tion of the boundary z = 0 of a transversely isotro-
pic half-space by an axially symmetric rigid punch
at a constant temperature with both the heat flux
and stress zero on z = 0 outside the contact region.

Generalized Plane Problems

For generalized plane problems, the temperature,
displacement, and stress depend only on two
Cartesian coordinates which, without loss of gen-
erality, may be taken to be x| and x;. In this case
(1) admits a general solution in terms of an arbi-
trary analytic function y(z) in the form
T(x1,x2) = 7(2) + 2(2) (47)
where the bar denotes the complex conjugate and
z = x1 + tx, where 7 is the solution with positive
imaginary part of the quadratic equation
M1+ 20T + Apt? =0 (48)
Since T is given by (47), we try for a particular
solution to (6) in the form [7]

1! = Cug(2) + Ci p(2) (49)
where the C; are constants and
¢'(z) = x(2) (50)
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where the prime on the analytic function indi-
cates differentiation with respect to the argument
in question. The displacement (49) will be
a solution to (6) if

Dy Cr =, (51)

where

Djx = citr1 — Ciogr + T(Citkr + Cikr)

) (52)
+tciu2 and y; = B + 1hp
Equations (51) serve to determine the con-
stants Cy. From (4), the stress field corresponding
to the displacement field (49) may be written in
the form

o) = (By— B;)d(2) + (Ey —By)d(2) (53)
where

Ejj = (cijur + tciis2) Ci (54)

The solution to (6) consists of the particular
solution given by (49) together with any solution
of the associated homogeneous system (8) which,
for generalized plane problems, has the general
solution [8]

(55)

3
u? = 2R [Z Ay (za)]
=1

where R denotes the real part of a complex num-
ber, f,(z,), @ = 1,2, 3 are arbitrary analytic func-
tions of the complex variables z, = x| + T,x2,
o = 1,2,3 where 1, are the three roots with pos-
itive imaginary part of the sextic in t
2
[cit + cianiT + CiaT + coet | =0 (56)
The A;, occurring in (55) are the solutions of
the system

(citk1 + Cor1T + CitiaTo + Cii2T2) Ay = 0
(57)
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Use of (55) in (4) provides a representation for

o

the form

in terms of the arbitrary functions f,(z,) in

3
a'(jz) =2R [Z Lijocf/oc (Z“)] (58)
a=1

where primes denote differentiation with respect
to the argument in question and

Lijy = (cijr1 + ToCijk2) Ara (39)

Thus, from (49), (53), (55), and (58) the solu-
tion to (6) may be written in the form

3
Z Akocfrx(za) + Ck¢(z)

=1

u = u](<1> + u,(\,z) =2R

(60)

M

(] 2)
ij

ij

> Linfi(z) + (Ej 5U)¢/(z)]

ojj=0; +o0

=2R

o=1

(61)

For a half-space occupying the region x, < 0,
the analytic functions y(z), ¢(z), and f,(z,) in
(47), (60), and (61) may be chosen to satisfy
given boundary conditions on x, = 0. In particu-
lar, the theory of complex analytic functions can
be employed to choose these functions for the
solution of various thermoelastic contact problems
for the half-space z < 0 while integral transform
techniques can be used to choose the functions for
the solution of classes of contact problems involv-
ing the half-space and also the slab — 4 < x, < 0.

For example, the integral representations

b(2) = jm Ay lexp(ip)dp  (62)
filz) = jw Cap)explip)dp  (63)

may be substituted into (50), (47), (60), and (61)
and the mixed boundary conditions on x, = 0 for
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the indentation of an anisotropic half-space by
a heated rigid punch applied to provide two equa-
tions for the unknown functions A(p) and C,(p).
The inverse Fourier transform then provides
explicit expressions for the functions A(p)
and Cy(p).

In using complex function theory to solve
plane contact problems, it is often advantageous
to use an alternative form of the representations
(60) and (61).

For example, if the temperature 7(x;,0) and
displacement u,(x;,0) are specified on the seg-
ment —a < x; < aof the boundary x, = 0 of the
half-space x, < 0 and the temperature and stresses
oi2(x1,0) are zero outside this interval, then
Cauchy’s integral formula yields the function y(z)

2(2)

! J T(0) (64)

T 2mi t—z

and integrating provides the function ¢(z) in the
form

b(z) = J, log(t—2)dr  (65)

2mi

To obtain the displacement and stress, it is
useful to define new analytic functions 6;(z) for
i=1,2,3by

Ja(z) = M,0:(2) (66)

where
3
Ot = Z LipoM (67)
a=1

Substitution of (66) into (60) and (61) yields

uk:2§R

3
Z Akonszj(Zoz) + Ck¢(z)] (68)
=1

3
o =2R [Z LijuM 01 (2,) + (Eij — ﬁzj)¢l(z)]

oa=1

(69)



166

In particular, on x, = 0 for the contact prob-
lem under consideration, (68) and (69) provide

—;
By (x1) + Byl; (x1) = gi(v1) for—a <x; <a

(70)
91/ (Xl) Jrgzl (X]) = 7(Eix - ﬁiz)(ﬁ/()ﬂ) (71)
for xy < —a and x; >a
where
3
By = Z AeM, (72)
a=1
and
gi(x1) = wi(x1,0) — 2R[Crp(x1)] (73)

The problem of determining the analytic func-
tion 0(z) thus reduces to a Hilbert problem for
which the solution is well documented [8].

Boundary Integral Equations

The analytical techniques so far outlined are only
applicable for restricted materials and/or geome-
tries. More general applicability may be obtained
by employing numerical techniques such as the
boundary element method. A number of boundary
element formulations for uncoupled thermoelastic
problems involve a thermal domain integral.
A formulation which removes the need to calculate
domain integrals and which may be employed for
the numerical solution of generalized plane contact
problems involves first using the standard bound-
ary integral equation [8] for the temperature field

AT (x0) + (Aqp) " LQ [P(x)®(x, Xo) (74

—T(x,x0)T(x)]ds(x) =0

where x = (x1,x2), A=1 if x9=(a,b) € Q,
0<A<1lifxg€ 0Qand® and I are given by

-1 A ]
o510 =5 (1 10803
+log(z—7)}
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oo M
U@xj " z—¢ zI-°¢

(76)

T(r1,x00,b) = A

where ¢ = a + tb and

_ -1 A1
M= PP ) (E) {hiny + Mony

+ (hany + Aponp)t}

Equation (74) provides a means for calculat-
ing numerical values for the real part of the func-
tion y(z) in (47) and also for calculating values of
the function P in (2) on the boundary 0Q.

The second step in the boundary element for-
mulation involves using this information to
obtain the imaginary part of the function y(z),
and then, in turn, equations (50) and (49) yield
the analytic function ¢(z) and the particular solu-
tion to the equilibrium equations (6). Let

1(2) = (T +iV) /2 (77)

The function T is available from (74) and V is
an unknown real function. The function V may be
determined as follows [9]. From (2), (47), and (48)

aT
ijaijﬂi
= 2?}%[(%11 + TXIZ)HIX/(Z)
+ (M1 + tha2)may (2)]
=2R[(—tn; + n2)(ha1 + tha2) ) (2)]
(78)

P(x1,x2) = A

Integrating (78) along the boundary 0Q yields

Al

JS P(q)dg = 2% I (M1 + thp) (—tn1 + m2)y/ (2)dq

S0 Jso

= 72%[(7\.21 + Th22) JZ X’(Z)dZ

2ROl + D) (1(2) — 2]
(79)

where sy is a fixed and s an arbitrary point
corresponding, respectively, to the points zg
and z on OQ. Let T = 7’ + it” where 7’ and t”
are real. Then using (77), it follows from (79)
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that the function V(s) is given at all points of
the boundary by

V(s) = (?"h) | (har + TR0)[T(s) = T(s0)]

+ J P(q)dq
S0
(80)
where V (sp) is taken to be zero. Then ¢(z) on the

boundary is given by

x(r)ydt forze0Q  (81)

where the line integral is taken along boundary
0Q from z to z. Also, for interior points Cauchy’s
integral formula provides

o1 z(t) dt
A(Z)iziﬂi,[ag -z

and integration gives ¢(z) in the form

forz e Q

-1
C 2mi

o(2) LQ y(t)log(t —z)dt forz e Q

(82)

Substitution of the equations (81) and (82) into
(49) provides a particular solution u,(<1> to the
equilibrium (6) with the corresponding stresses
agjl) given by (50) and (53). A solution u,(cz) to the
associated homogeneous system (8) can be added
to this particular solution to the equilibrium equa-
tions so that the total displacement and stress
satisfies the boundary conditions on 0Q. The
standard boundary integral equation [8] which
may be used to numerically calculate the desired
solution to the associated homogeneous equation
takes the form

M;-z)(xo) + LQ Pi(x)®y(x.%0) (83)

—Tyj(x.x0)u)” (x)] ds(x) = 0

where A = 1 if xg = (a,b) € Qand 0 < A < 1 if
X()EaQ,
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ou'?
Pi = Cij——n

o, (84)

1
(ka = %% ; Aerij IOg(Zg_ - CO() djm (85)

0Dy,
Iy = Cijkil —( 1

ox) (86)

where N, and ¢, (for « = 1,2, 3) are defined by

3
O = Z ANy and ¢, =a+1,b (87)

=1

The procedure outlined in this section provides
a boundary element method which may be used to
numerically solve generalized plane thermoelastic
contact problems for anisotropic materials. The
method makes use of the standard boundary inte-
gral equations for anisotropic thermostatics (74)
and anisotropic elastostatics (83) with the only
additional calculation required being the simple
boundary integrals in (80), (81), and (82).
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Overview

One of the most difficult parts in solving the
annular problem with doubly connected regions
is that the single-valued condition of the displace-
ments and the stresses must be satisfied. The
problem will become more complicated if singu-
larities or point heat sources reside in the annulus.
In this work, we first determine the temperature
distributions of the annular problem subject to
a point heat source and then solve for the thermal
stresses. In the derivation of the thermal field, the
strength of a point heat source must be properly
chosen. This is because that the condition of
energy balance between a point heat source and
the given prescribed temperature distributions
along the inner and outer boundaries must be
satisfied. Having the solution of the temperature
field, the thermal stresses in the annular region is
determined by the method based on analytic con-
tinuation theorem in conjunction with Laurent
series expansions. The undetermined coefficients
appearing in the series solution are solved using
the Fourier series expansions. Both the stress-free
and displacement-free conditions are considered
either on the inner boundary or on the outer
boundary. In the present analysis, we exclude
the case of the displacement-free condition con-
sidered on the inner and outer boundaries of the

Anisotropy

annulus. However, the method is easily extended
to solve the displacement-free boundary for
which the resultant force over an annular region
is not zero which must be determined after the
solution is obtained. The solution derived in the
present problem with a point heat source can be
used as a Green’s function which allows us to
derive the solution for the problem with distrib-
uted sources that is frequently encountered in
practical applications.

Formulation of the Annular Problem

For two-dimensional thermoelastic problems, the
resultant force and displacements can be
expressed in terms of two stress potentials ¢(z),
W(z) and a single temperature potential g'(z)
as [1]

—Y+iX = ¢(z) +2¢'(2) + Yz

~—

(1)

2u(u+ iv) = () — 2'(z) + Y 2)

vop [ ¢y )

where — Y + iX is the resultant force over an arc
of the boundary measured from some fixed point;
u and v are the displacements in the x-y plane;
k=3 —4v, f=(1+v)a for plane strain and
k=3—v/l+v, f=ua for plane stress with o
being thermal expansion coefficient and v the
Poisson’s ratio; u is the shear modulus; and z is
the complex coordinate: z = x + iy, and the bars
denote complex conjugation. The components of
stress in polar coordinate system are

oo =2[#+¢G] 6

o+ iTrO = ([),(Z) + (i)/(Z)
- E E—
-l@a+e @
Consider a circular annulus with inner radius a

and outer radius b which is subjected to a point
heat source with the strength ¢, located at the
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Fig. 1 Problem configuration for the annulus

point z = zy = roe' (see Fig. 1). For steady-state
heat conduction problem, the temperature poten-
tial g’(z) can be written as

g(z) = Z It (5)

n=—o0

Qo In(z — z)

where Q, = q,/2nk with k being heat conductiv-
ity and 4, are the unknown coefficients which
will be determined as the thermal boundary con-
dition is imposed. In the present analysis, the
temperatures at the inner and outer boundaries
of the annulus are denoted by T,(0) and T»(0),
respectively, i.e.,

=5 [¢0) + 5] =70
i (A, cosm0 + B, sinm0) on t = ae”
m=0
(6)
7= [¢0) +50) =720
= i (A, cosm0 + B',,sinmf) on t = be”
m=0

(7)
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On substituting (5) into (6) and (7) and apply-
ing the techniques of Fourier series, we find

Qo

do=A
0=4A0 =,

— 2arq cos(0 — 0y)]d0
(3)

27
X J In [a2 + ’,(2)
0

1 21
27r(b2”_a2’l)J0 {2(]7 Tz—a T])

— Qp [b"In(b* + 15 — 2brgcos(0 — 6p))]
a"In(a* + r§ — 2argcos(0 — 0y)) }

€7i”0d0 (l’l 7£0)
9)

and for consistency, we require

Qo
Alg=A) -2
0 0" 4n
21
X J In(a® + 1§ — 2arg cos(0 — 0y))
0
—In(b* + 1§ — 2brg cos(0 — bp))

(10)

It should be emphasized that the strength of
a point heat source must be chosen to satisfy (10)
such that the condition of energy balance
between a point source and the temperatures
prescribed at the inner and outer boundaries of
the annulus is ensured within the context of
steady-state heat conduction theory [2]. Mathe-
matically, the difference between A’y and A in
(10), which accounts for the net heat flow from
outside to inside the annulus, must be equal to
the integral term which accounts for the heat
generation due to the presence of a point heat
source. For the problem with the absence of
a point heat source, the temperature potential in
(5) is replaced by

g(z)=/"Inz+ Z InZ"

n=—00

(11)
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where the unknown coefficients A* and 1"/, can
be obtained from (8)—(10) by putting Q, = A*and
ro=0as

o AoAy , Avinb - Ayl 12
Inb—1Ina’ Inb—1Ina
and
(A, — d"A,) — i(B"By — d'B,)
n= P2 _ gon (}’l 7& 0)
(13)
, b, —a"A,) — i(b~"B'y — a"B,
Ap = ( b*ZZ’ — 572’7 ) (n#0)
(14)

Upon integration of (5) and (11), the temper-
ature functions become

8(2) = Qol(z = 20)(In(z — z0) — 1)]

+2-1Inz 4 g*(2) (15)
and
glzy=2z(lnz=1)+A_1Inz+g"(z) (16)
respectively, where
* _ - /17' n+1
8 (Z) - Z n4 IZ
n#—1

is analytic and single-valued everywhere in the
annulus.

Thermal Stresses in the Annulus

For the annular problem with a point heat source,
the stress functions can be written as [3]
¢(z) =Azlnz+Blnz+ ¢*(z)  (18)

Y(z) =Clnz +y*(z) (19)

Annular Problems with a Point Heat Source

where A is real constant and B, C are complex
constants which are related by the following
equations [3]:

( 4+ 1)Az + KB +C = —227515 ()], (20)
p_c- VXl (21)

2mi
where [f(2)], =f(r,0 +2n) — f(r,0) which

denotes the jump of the function f(z) when
enclosing the contour ¢ within the annulus.

Note that the singularity of the term
z In zappearing in (18) results from the logarith-
mic singularity of thetemperature function
induced by a point heat source. The two
holomorphic functions in (18) and (19), respec-
tively, can be expressed in a series form as

P"(z) = Z L,z y(z) = Z M,z (22)

n=—00 n=—00

where the constant coefficients L, and M, may be
determined asthe stress or displacement bound-
ary condition is imposed. The boundary condi-
tion on the innerand outer boundaries of the
annulus can be expressed, respectively, as

1(0) +1'(1) + (1) + 618(1) =£,(7)

H 3)

ont=ae

yp(r) + 19 (1) + (1) + 028(r) =£,(7)

. (24)
ont=ae'

where y; =y, =1, 61 =0, =0, f1(1) =f,(1) =
R(¢) for the stress boundary value problem with
R(f) being a known resultant force on
the inner and outerboundaries of the
annulus, while y, =9, = —k, 61 = 6, = —2uf,
1) =f,(t) = —2upD(t) for the displace-
mentboundary value problem with D(z) being
a single-valued displacementfunction. Since the
case of the displacement-free condition on both
the inner and outerboundaries of the annulus is
excluded from our analysis, the resultant force
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over the entiresystem becomes zero, and the
unknown coefficients A, B, and C appearing in
(18) and (19) can beobtained by substituting (15)
and (16) into (20) and (21) as

A= 2.“ﬂQo7 B—C— —2up(Ay — QOZO)’
1+x 1+x
for |zo| <z < b
(25)
AZ*M&%ﬂzngMM4’
1+x 1+x (26)

fora <z < |zg|

where Q, = —q,/2nk, Ry = 0 for the problem
with a point heat source and
Qy=Ry=1%,20=0 for the problem with
theabsence of a point heat source. Substitution
of (15), (16), (18), and (19) into (23) and (24)
results in

1@ (1) + 1™ (1) + Y7 (1) + 618"(1) = F1(1)
0

on t = ae'
(27)

1207 (1) + 197 (1) + Y7 (1) + 028" (1) = Fa(1)
0

ont=ae

2ufi_ t

2upR
up %41 +1n7) + 1

1+x
2/1[3/1_1 _
—— In¢
+ 14+x n

— 61Q0[(r — 20) In(z — 20)]
—01A_1Int+ 51QO(I — Z())

+K f

(29)
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and

Fa(1) = £(1)

s (iﬂﬁQo tInt + 2up(A-1 — Qpz0) In t>

K 1+«
2uB0,
1+x
2.“ﬁ</1_4— Qo%)
+—
1+x
2 1= _
+ P21 QoZO) In?
1+x

— 0200[(t — z0) In(t — 29)]
— 0A_Int+ 52Q(l‘ — Zo)

+1t

(1+1In7)

t
t

Compatibility Identity

Consider the annular region a < |z| < b by S and
the annuli, a’b~'|z| < a, b < |z| < b*a~! by S~
and ST, respectively (see Fig. 2). If we use the
continuation across each boundary, ¢ * (z) can
be extended from S into the annuli S~ and S* by
the definitions [4]

y 1
o =
1

X {zqﬁ*/(a;) + <a72> +51g*(z)}

forze S~

o= {as (5)+v(Z)+ azg*<z>}

forze ST

(32)

¢*(2) is thus holomorphic in the three regions
$§~, S, and S*. Notice that g*(z) is also
holomorphic and single-valued in S~ and S*
because there is no singularity or point heat
source located in the region S”and S*. If we
invert these continuations, we find
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Fig. 2 Analytic regions of the annulus

ve=-ne (L) -6’
o (%) .
forze S
v = (2) Lo
e (a;) (34)

forzeS

and hence ¢+(z) must satisfy the compatibility
identity

72(15*(

2
+6,8* <bT> — 018" (aT) =0 forzeS
zZ Ve

(35)

vl | S

z z

2 2 2
)—w(@)ﬂ T 5(2)

(¥}

On substituting (31) and (32) into the bound-
ary conditions (27) and (28), we obtain the fol-
lowing Hilbert problems:
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60— 7 (1) = /i IF1 (1) - 1(5"(0) — & ()]
ont—= aeie
(36)
6(0) — b7 (1) = %[m) — (g (1) — & ()]
ont= eia
(37)

where ¢*' (z) and ¢* (z) or (¢*"(z) and g* (2))
denote the limits on |z| = b and |z| = a of ¢*(z)
(or g*(z))in ST and S~ respectively. Since ¢*(z)
and g*(z) are holomorphic and single-valued in
§~, S, and ST, they may be represented by the
Laurent series:

= Z L2 (zeS7)
n=—00
P ()={ =D L' (z€S) (38)
= Z L (zeSh)
- /1; n+1
= Z P (zeS)
n=—00
n#—1
- i n_ i (ze€S)
g(z) = n=—oc
n#—1
N j’r-:_ n+1 +
= Z i’ (zeST)
n=—00
n# —1
(39)

Hence the boundary conditions (36) and (37)
take the form

n — ! o i0y —in0
a'(L,—L,) = pr Jo Fy(ae)e™""d0 w0
_i an(i”*l — j';71) (I’l # 0)
71 n
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21
b"(L, — L") = L J Fa(be)e ™00
8 277})2 0 (41)
S by — A7)
— =2 Tl #£0
’ p (n #0)

and substituting in the compatibility identity (35),
we obtain

P.b*'LT —y,a*'L, + (b* —a*)(2 — n)L,_,
A .
o L5 P o(n £ 0)

(42)

On eliminating the coefficients L," and L,~
from (40)—(42), the constants L, and 4, satisfy
the system of equations

(Vzbzn - Vlazn)Ln + (b2 - az)(z —n)Lay

+ (0,67 — 010" %

1 21 ) :
L L (BF> (be)
— b"Fy(ae))e=™0d0 (n # 0)

(43)

Similar to the previous approach, the coeffi-
cient M, associated with the stress function /" (z)
can be found from (33) or (34) which satisfy the
system of equations

(’/2b_<2n+l) - Vla_(2n+l>)l: + (b —a )M,

_ (52b—(2n+1) _ 51a—(2n+1)) }”*(nJrl)
n

1 21
0
—a "2F (ae®)]e™dh  (n #0)

(44)

Once we obtain the coefficients L, and M,,, the
stress functions ¢*(z) and y*(z) are completely
solved and the components of stress can be deter-
mined by substituting (18) and (19) into (3) and
(4). Since no analytical solutions for annular
problem with a point heat source are available
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in the literature, only special cases with the
absence of a point heat source are considered
here for demonstrating the use of the present
approach. We consider the case that the inner
and outer boundaries of the annulus are
subjected to angled temperature distributions,
ie, T =A,cosOonlzl =qgand T, = A, cos0
on |zl = b and from (8)—(10) and (29)—(30) we have

. , . bA'| —aA
A :O, /LOZO, A]Zﬁ,
21,2 A/ A )

/,{71: Clb2 A1 A1 A= ,LL[))A*ZO
a2 —-b"\'b a 14+x
B_o 2B _ 2B a0 (A A

1+x 1+xa2-—b*\ b a
. _2,[1[3/1,1 t _
(45)
-B
L2 n—O (1’1752)
2 AN
(“2J;b) (46)
—a b°B
M72_a2 ek M, =0 (;17&_2)

and the components of stress are

@\ (b
O pr(l - r_2) (r_2 — 1) cos 0

2b2 2 b2
ago = pr (a_4 + % — 3) cosO0 (47)
r r

2 2
a b .
Tr0 :pr(l _r_2) (r_z_ ]) sin 0

where

_oE  dB (A A/
P=aa=wpr—at\a b

which are exactly the same as those given by [5]
for a plane-strain condition.
Results and Discussion

For steady-state heat conduction problems, the
strength g, cannot be arbitrarily chosen once
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Fig. 3 Relationship between the strength of a point heat
source and the temperatures at the boundaries of the
annulus
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Fig. 4 Dilatation stress in the annulus for the stress-free
boundary condition at the inner and outer boundaries

the temperature 7T'; at the inner boundary and the
temperature T at the outer boundary are assumed
as known values. The effect of changing the
ratio T, /T and the wall thickness b/a on the
dimensionless strength gya/Tok (with the case
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Fig. 5 Dilatation stress in the annulus for the displace-
ment-free and stress-free boundary conditions at the inner
and outer boundaries, respectively

ro=(a+b)/2, 0o =0°C) can be evaluated
from (10) and shown graphically in Fig. 3. For
convenience of the calculation in (10), we assume
the temperature 7; and T, are kept at constant,
ie., Ag =T1,Ao’ = T from (6) and (7). Once A
and 6y = 0 are given, the dimensionless strength
qoa/Tok can be determined from (10) for differ-
ent wall thickness b/a. The result indicates that
the strength of a point heat source becomes
a positive (or negative) value as the temperature
at the outer boundary is lower or higher than that
at the inner boundary. It is then understood that
the condition T, < T (or T1 < T,) will accom-
pany with the presence of a heat source (or sink)
such that the energy balance within the annular
system is preserved. Furthermore, the strength ¢,
changes dramatically with the ratio T, /T for the
annulus with a relatively thin wall. The dilatation
stress g, + g, which is mainly responsible for
the result of material failure by fracture, is found
for three different cases of boundary value prob-
lems as displayed in Figs. 4-6. The conditions
T,/T\=3, b/a=2, ro/a= 1.5, and 6y = 0°C
are considered for all three cases, and the results
shown in Figs. 4-6 are based on the series solu-
tions up to the first 20 terms in (22) which are
checked to preserve a good accuracy. It is shown
that the maximum dilatation stress always occurs



Application of Boundary Integral Equation (BIE) Method in Thermoelastodynamic Problem

6.00 ~
I\ —r/a=1.0
i r/a=1.2
4.00 - A ----r/a=1.4
o Inl ---r/a=1.6
] iy -—-r/a=1.8
= I —-—r/a=2.0
g 2.00 A f \
™
+
b% 0.00 A
+\_
Gl
~2.00,
-4.00 T T T T T T |
0.00 90.00 180.00 270.00 360.00
0(degree)

Annular Problems with a Point Heat Source,
Fig. 6 Dilatation stress in the annulus for the stress-free
and displacement-free boundary conditions at the inner
and outer boundaries, respectively

at 0y = 180 °C, which is farthest away from the
position where a heat sink resides, for all three
cases. For the traction-free boundary condition at
both inner and outer boundaries of the annulus,
the maximum dilatation stress occurs at the inner
boundary with the lower temperature as shown in
Fig. 4. For the displacement-free condition (or the
traction-free condition) at the inner boundary and
traction-free condition (or displacement-free
condition) at the outer boundary, the maximum
dilatation stress is found to take place at the inner
boundary (or outer boundary) as displayed in
Fig. 5 (or Fig. 6).
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Definition

The boundary integral equation method (BIEM) is
one of the most effective numerical methods in
engineering analysis. The great advantage of the
BIEM is the reduction of dimensions in the formu-
lation for solution of boundary value problems
since the unknowns are localized on the boundary
instead of the whole analyzed domain. It should be
stressed that the dimensional reduction is achieved
only in problems when the fundamental solutions
of the governing equations are available. Recall
that the fundamental solutions are known only in
linear theory of thermoelasticity. The temperature
and displacement fields (the primary fields) are
represented in terms of boundary integrals of rel-
evant boundary densities (temperature, heat flux,
displacements, and tractions) and domain integrals
of known body sources. The integral representa-
tions of the derivatives of the primary fields are
expressed in terms of the same boundary densities
as in the case of the primary fields.

Overview

Since the fundamental solutions of the governing
partial differential equations are the cornerstone
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of pure boundary integral formulation for solu-
tion of any boundary value problem, we shall pay
attention to the fundamental solutions for tran-
sient uncoupled thermoelastic problems. This
class of thermoelastic 3-D problems has been
selected because of their practical applicability
(coupling can be often neglected in practical
problems) and sufficient generality (it includes
all special classes of uncoupled thermoelastic
problems). In case of homogeneous media, the
governing equations are given by partial differ-
ential equations (PDE) with constant coefficients,
and the fundamental solutions are available in
rather simple closed form for isotropic media in
both the formulations for Laplace transform and
the time-dependent fields. The boundary integral
representation of field variables means that these
fields are expressed in terms of complete set of
relevant boundary quantities without having the
need to know the solution at any interior point. In
a well-posed boundary value problem, only half
of the relevant boundary quantities are prescribed
by the boundary conditions. The unknown
boundary densities can be computed by solving
the boundary integral equations (BIE). In case of
uncoupled thermoelasticity, the thermal fields are
independent of the elastic ones, though the elastic
fields are influenced by the thermal fields. The
integral representations for the primary thermal
and elastic fields, as well as for their derivatives
will be presented and supplemented with the BIE.
Owing to the space limit, the details of the BIEM
formulation as well as the numerical implemen-
tation by using the boundary elements cannot be
discussed here, and we refer the reader to several
works. The list of references is not complete and
is restricted to works which are consistently
written with the present text.

Fundamental Solutions in Uncoupled
Thermoelastodynamics

In uncoupled thermoelasticity, the temperature
field is independent of elastic fields, and the
governing equation results from the energy bal-
ance assuming the heat transfer via heat conduc-
tion in continuous media. On the other hand, the
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elastic fields such as the displacements and
stresses are influenced by the temperature distri-
bution because of thermal expansion of elastic
media. The governing equations for elastic fields
result from the conservation of momentum. The
time variable is very important dimension of
transient problems as compared with the station-
ary ones. From the mathematical point of view,
the stationary problems are described by the
elliptic partial differential equations (PDE)
while the transient problems by the parabolic
and hyperbolic PDE. Applying the Laplace
transformation with respect to the time variable,
the latter are converted to the elliptic PDE
which can be solved for discrete values of the
transform parameter like the stationary problems.
Finally, the inverse Laplace transformation is
required in order to obtain time-dependent solu-
tions. The BIEM formulations will be developed
for both the time-dependent and the Laplace
transforms of the field variables in uncoupled
thermoelasticity [1].

Let us consider a homogenous, isotropic, per-
fectly elastic body. The governing equations for
uncoupled thermoelasticity are given as [2]

Pt e+ A+ )i — 70 i+ Fi = pii; (1)
CO—0=-0 (2)

where “u;” is the displacement vector; “0” is the
temperature change above the uniform reference
temperature “Ty” or “0 =T — Ty,” “F;” and “Q”
are the volume densities of external forces and
heat sources; “p” is the mass density; “C” is the
thermal diffusivity; “A” and “u” are the Lame
constants; and y = (2u + 34)o with o being the
coefficient of linear thermal expansion. The con-
stitutive stress-strain equations and the linear
expression for strains in terms of displacement
gradients are given as

1

5 (i j + 14.1)

(3)

gij = 2,ue,-j + ()Lekk —V@) 5[1',6,'(,' =

Subscripts following a comma denote the
partial derivative with respect to Cartesian
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coordinates of the vector “x.” Components of the
traction vector on a surface with the normal
“n;(x)” take the form

5i(X,t) = 0ji(X, 1) nj(x) = Tj(ny, Or) uj(x,1)

— yni(x) 6(x,1) “)

where

T,'j(l’lx7 (9)() = ,U(S,'j I’lk(X) 8k + ﬂnj(x) a,‘ + 2 I’l,(X) 8]
0

0](587)(](

(5)

Excluding the time variable by using the
Laplace transformation technique, we obtain

witigx + A4 W g i — 90, +Fi = pS* i
(6)
CO—S0=-0 (7)

where

Lﬂ&S):Jmf@Jﬁf”dt ®)

0

S is the Laplace transform parameter, and the
generalized body sources are given by

1“:,‘()(7 S)
0(x.5)

Fi(x,S) + p[Sui(x) 4 vi(x)]
J(x,S) + 0(x)

with #;(x), v;(x), and 6(x) being the initial values
of displacements, displacement velocity, and
temperature, respectively.

Let the body sources

0=d(x-y), Fi=0 ©)

determine the fundamental displacements U} and
temperature (/. The displacement vector can be
decomposed into the potential and solenoid parts as

Ul = d;,,i"‘gijk lpk,j (10)
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Then, the governing (6) and (7) are converted
into the system

_MSZ(}’_ﬁ@’:

Vzé'—%élz—éé(x—y)

Vz (2)/
(11)

Having solved this system, one obtains the
fundamental solutions generated by point heat
source

_ r m
ljil raS = - ’ =
( ) Crgl 81 47'[(/112—222)
1 . X N\ ;.
() )
r r
(12)
and
1 1
91! B == k]
(r,S) o8 & =)
Sz —qr Sz —Aar
[(ar-) et (o) ]
LI
47
(13)
where
A+2
m= )izv o= - o2 =t
pcy p p
r=x-y, r=1r, r;=-y)/r,
I =S8/C. 2> =(S/cr)’
(14)

The Laplace transform of the fundamental
traction vector “T}(y — x,S) ” is given as

Ti(y —x,8) = T,k(ny, dy) Ui(y — x,5)

—ym(y)0'(r,S) i}
= umi(y) [k Ul (r,8) + 0, Ui (r,S)]

+m(y) [A0c U (r,S) —y0'(r,5)]
15)

—~
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with
_ 1 [rr; 1
g Ui (r,8) =5 ey (0 =3rr) 81}
m )
_ /12 e—ilr - 287421‘
& 4n (}% - ),22) i ? )

(16)

The Laplace transform of the fundamental flux
is given by

a0 (r,s) _ rinm(y)
- 84,

on(y) Cr

(5
= \Ve™r )¢

As to the limit behavior when r — 0, we have

(17)

_ 1
(r,S) ~ 0(1),
(r,$) 4nCr (1) (18)
U/ (r,8) = gox+0(1)

20'(r,S) 9 1 -

out) " ant) ancr U )

l1(y —x,8) = 0(r")

The fundamental displacements ") (r,S) =
U;j(r,S) and tractions Tij(y — x,S) generated by
point sources F;(x,S) = 0;0(x —y), O(x,5) =01in
the uncoupled theory of themoelastodynamics are
given by

and

T,‘_/' ('I] — X, S) = - ﬂnk(n) [8/( U,‘,‘(l',S) + ai U](_/(I',S)]
— }’I,'('I]) i&kUk‘,-(r, S)

(21)
where
- Oij Tk
8kUij(r,S): ) (U2+U3)
+5ikr7j—&;5jkr7, U,
;
rirlj
+ )‘2"/ Uy (22)
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and

TN\ (23)
(=)
(6]
1 1 3 S s
Upy=—— st oo 1+—; e
dmp (|c,” S°r ¢ 24
¢t 822 c}
1 Sr\ _s
Us; = — 1 +— ‘ 25
’ 47zpcz2( +C2>e ’ (25)

1 1 Sr 15 Sr\ _s:
= | (6+22) + =142 )¢
U, 4np Lzz ( +62> +S2r2< +62)e 2}

_ 1 1 6+Sr + 15 1+Sr e,g
dnp ¢’ 1 S22 c

(26)

Boundary Integral Representations
and Boundary Integral Equations

Assuming the governing equations in weak sense
with taking adequate fundamental solutions for
the weight functions and making use of the Gauss
divergence theorem, one can derive the following
integral representations [6]:

h(x)0(x,5) = j 0(y.5) ¥ (x—yl.8)av,

|4

80("1,5) n'
+CMan<n> P(x=mls) @)
~0(n,) W} as,

h(X) uj (X7S)

= J [Fi(y,8) =70,i(y,8)] Uiy —x,S) aV,
\4

+ [{m )+ o) 0,5 Uym—x.9)
Sa
— (0, 8)Tij(n—x,5)}dS,
(28)
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Applying the inverse Laplace transformation
to the previous two equations, one obtains

h(x) 0 ”Q O(x —yl,t—1)dV,dr
JJ {80("17 9/ | 71_” ‘_ )dr
0 Sa
oty 20 (x =l 1 —7)
0(m,7) nn) ds,
(29)
h(x)uj(x,1)
= [[Fitv.0 =205 000y —x. - ) vy
oV
+ J J {[t,-(’r],r)—&—yn,-(n) 9(”‘]7‘5)] Uij(m—x,t—1)
0 Su
—ui(,7) Tyj(n —x,1 =) } dS,,dt
(30)
where
15 xeV
h(x) =4 h(), x=C€S, (31)
0, x¢ (VUS,)
W03 = | Tyn - Dy
Sa
and/or  h({) = — JLH’U —¢])ds
; on(m n

with  /#({) =0.5 on smooth boundary

Note that the kernels T;(n—{) and
90'(Jn — {|)/On(n) exhibit strong singularity
~2 — | — {| 2. Therefore, the strongly singular
boundary integrals in (27)—(30) for x ={ € S,
exist in the Cauchy principal value sense. Never-
theless, bearing in mind that the transient funda-
mental solutions exhibit the same singularity as
the stationary ones, one can easily regularize
[3-7] the integral equations by making use of
the integral representations of the coefficient
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h({) given in (31). According to the Gauss diver-
gence theorem, the temperature terms in (28) can
be rewritten into a volume integral as

—yJéi(y,S) Uij(y —x,8) dv,

—i—an, )0(m, S) Uij(n — x,S)dSs,

Sa
= [
\4

From (22), the term “U;;;(r,S)” can be
expressed as

(32)

(y —x,8)dv,

a,‘ ﬁij(l”,S) = % (Vz — g) U/j(l‘,S) (33)
with U/ (r,S) being given in (12). Inserting (33)
into the r.h.s. of (32) and utilizing the Gauss diver-
gence theorem, one obtains finally in view of (7)

’/J. 0(y,S) Uiji(y — x,S) dv,
Vv
= - J O(y,S) U'j(y —x,S)av
Vv
¢ [ i) 30 - .
Sa

- ‘?("175)0//(1] - X, S)} dSm 81/ = 8/8’71

and the integral representation of the displace-
ment field given by (28) can be rewritten into an
equivalent form as

h(x) ;(x,S)

~ [ 1R85 -x9 - 05,9 T - x5 v,

+ J (0.5 Uss(n — x.5) — (. 8) Ts(m — x.5)] dS,

¢ [ B8 mw o i -x.5)
Sa
- 9(1]73)0/;‘("1 - X,S)] dSn
(34)

where the domain integral involves only the pre-
scribed densities of body sources.
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Making use of the definition of the stress field
by (3) as well as the governing (1), after certain
lengthy derivation [6], one can obtain from (34)
the integral representation of the stress field

o1p(x,S) + ydy @(x7 S)

= Cipjr {J [F“,(y,S)B, U,-j(y — X,S)
Vv
- Q(yas)alljj,(y —X,S):Idvy

- J 7:(n,8)0, Uij(m — x,8) dS,
Sa
+QMJaﬂaﬁmn—x$d%
Sa

+p§tLMnJMMM)@Ky—&SﬁBU
Sa

~c [ [otms) ) %Gm - x.5)
Sa

—q(n,$)9. U (n = x,5)] dSn}

(35)
where ]Ez‘si :ﬁ;'s lii(”‘l,S),DA;s = nr(n) 82_
ns(m) 0,
8,' 8,. UII(I',S)
1
= ﬁ (I"‘/‘é[j + 1‘1[5/(/' + I‘\/é;k — 31‘,,1"]'1’)/() (gg + 3?)
1 3 g
IR e [g7 +; (gs + 2’—1)} )
m 3 —rh _ 33 =1
— ); 1 _ 2
a2 -2 et —Ze]
(36)

Approaching the field point x in (35) to the
boundary point { € S, and multiplying this equa-
tion by the normal vector 7, (), one can derive
the traction BIE with strongly singular integrals
being taken in the Cauchy principal value sense.
However, a more advanced regularized form of
the traction BIE is available too (see, e.g., [6]).

Finally, performing the inverse Laplace trans-
formation in (35) and (36), one obtains
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h(x) uj(x, 1)

t

= J{J {Fi(YaT) Uij(y —x,1—71)

0oV

—0(y,)U}(y —x,1 — r)} av,

+ J [ti(m,7) Uij(m — x,t — 1)
Sa
—ui(n,7) Tij(m — x,t —1)] dS,

+C J [9(1.,7:) ni(M) 0, Uj(m — X, — 1)
Sa

—q(n,7)U (M —x,1— r)} ds, ydr

+ pJ (u,-(x) % + v,-(x)) Uij(x—y,t)dVy

Vv

— JH(X) U/ (x —y,0)dV,
4

(37)

and

op(X, 1) + 905 0(X, 1)

= Cipjr {j |:Fi(y7 T)ar Uij(y — X, 1= T)
|4

- Q(y7 T)ar U]/(y — X, — ’L') dV}

- |6 03; Usn =1 = 00,
Sa
+ Ciske J krstat, Ukj(’n =X, - T) dSn
Sa

+ P J Mz("l: T) nz("l) Ut(n - le_ T) dS’q
Sa

- ¢ | o amma g ym-xt-o
Sa

~ 0, 99 Ujn —x.1 = 7)) dS,

+ J [p (u;(x) g + v,»(x)) 0, Uij(y — x,t — 1)

—0(x)0, Uj(y — x,1 — ‘c)} dVy}
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Future Directions for Research

Although the fundamental solutions are available
even for some special kinds of gradation of mate-
rial coefficients, they are not available in general
case of non-homogeneous media and/or for non-
linear problems. Nevertheless, having used the
fundamental solutions for simplified operators,
one can derive the boundary-domain integral for-
mulations in such more complex problems. The
domain integrals involving unknown fields occur
also in time-stepping techniques for solution of
transient problems. Such domain integrals, how-
ever, partially decrease the advantage of pure
boundary integral formulations. Note that there
are under development some approaches for treat-
ment of such domain integrals. Instead of
discretization of the analyzed domain with using
domain cells only, some additional interior nodes
are required [8—10]. Such sophisticated formula-
tions utilize the advantages of the BIEM for-
mulations without losing the universality of
formulation. Another extension of universality
and simplification of formulation consists in using
the integral equation formulations with mesh-free
approximations of field variables [11].
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Overview

Many problems to be solved by engineers and
researchers are dynamics or time-dependent sys-
tems. Dynamic systems mean that the solutions
of the problem change with time. In the heat
transfer, the heat conduction problems, which
describe the transfer of thermal energy between
regions of an object due to difference in temper-
ature, could become time-dependent due to an
imposed change in temperature at the object’s
boundary. This time-dependent heat conduction
may also occur when a source (or sink) of
heat is suddenly applied within the object and
subsequently causes change in the nearby
temperatures.

Solving time-dependent engineering problems
is not always simple. In practice or even in the
academic world, the engineers or researchers
often have to deal with engineering problems
whose equations involve multiple physics, and
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geometries are large scale if not complex. For
such problems, it is almost impossible to derive
analytical solutions to problems. Therefore, it has
become a common practice for engineers and
scientists to rely on numerical methods or com-
putational softwares to obtain the solutions.

Basic Concepts

Solving these problems numerically or computa-
tionally usually involves two major steps. Firstly,
the whole spatial domain of the problem,
as enclosed by the geometry, is broken into dis-
crete elements. These discrete elements are
interconnected between one another such that
their assembly represents the problem’s actual
continuous spatial domain. By doing so, one is
allowed to create elemental equations that approx-
imate the actual equation of the problem, given
enough discrete elements. This step, known as
spatial discretization, transforms the problem’s
actual equation (that is complicated due to its
nature of being partial differential) to a set of
ordinary differential equations that is easier to be
solved. A number of different spatial discretization
methods are available including finite element
method, finite difference method, finite volume
method, and boundary element method, to name
a few. When the problem is time dependent, the
resulting set of ordinary differential equations will
be time dependent. Some problems are dependent
on time to a first order, such as parabolic heat
conduction problems. Others are second order in
time such as hyperbolic heat conduction problems.

Once the problem’s equation is written as a set
of ordinary differential equations after use of any
spatial discretization method, the next step in the
numerical method is to solve such set of equa-
tions using a solver or method that can give the
solutions to the problem at each time level and
throughout the whole simulation period. Such
a method is called time integrator. To date,
there exist in the literature a variety of different
classes of time integrators for solving time-
dependent engineering problems, such as the so-
called linear multistep methods, sub-stepping
methods, Runge—Kutta type methods, and
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higher-order time-accurate methods. Of particu-
lar interest is a class of time integrators charac-
terized as a single-system and a single-solve
method. A single step means that the time inte-
grator requires solutions of only one previous
time level, while a single solve implies that the
method needs to solve only one system of equa-
tions. These characteristics of such class of time
integrators make it probably the simplest of its
kind, which subsequently require the least com-
putational effort. Due to such a convenience of
this class of time integrators, we have been focus-
ing much of our previous effort on its develop-
ment and improvement.

Looking at the big picture of time integrators,
under the class of single step and single solve, a
new design concept, namely, the notion of Algo-
rithms by Design, was first introduced for applica-
tions in linear structural dynamics problems [1, 2].
This relatively new design concept describes how
to design time integrators via a unified theory
which encompasses existing and new time integra-
tors under a generalized mathematical framework.
In this design procedure, one can a priori tailor
the design of a time integrator according to
predetermined desirable attributes of the proposed
time integrator. Extensions to nonlinear structural
dynamic systems also appear in [3]. This is in
contrast to classical design approach where one
a posteriori studies the time integrator’s properties
resulting from an “idea” which could physically
base interpretation or a mathematical representa-
tion of an assumed construct.

In these earlier studies, it was shown for linear
structural dynamic problems (second-order time-
dependent systems) that the Algorithms by
Design procedure successfully leads to the design
of a framework consisting of new and existing
generalized single-step single-solve time integra-
tors. This framework, formerly termed as GSSSS
but herein referred to as GS4-2 (where “2”
stands for second-order time-dependent system),
uniquely enables most existing linear multistep
(LMS) methods in the literature (for solving sec-
ond-order time-dependent problems) to be cast
into a single modular routine regardless of the
original approach of how those time integrators
were developed. These existing time integrators
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include the midpoint rule, Newmark average
acceleration [4], velocity-based scheme [5],
HHT-o method [6, 7], and WBZ method [8].
This framework also provides new and optimal
time integrators characterized by the underlying
algorithmic overshoot behavior [1, 2]. As aresult,
the framework offers a wide variety of time inte-
grator choices to the analyst.

For first-order time-dependent systems that
frequently arise in engineering problems, there
exist in the literature a number of time integrators
that are single step and single solve. The popular
and often used ones are those belonging to the so-
called O-family of time integrators including the
Crank-Nicolson [9], Forward Euler, Backward
Euler, and Galerkin methods. These time integra-
tors are to be distinguished according to the order
of accuracy in time discretization. An order of
accuracy represents the order in which conver-
gence to the exact solution of the ODE can be
obtained. Some of these time integrators are only
first-order accurate, such as the Forward Euler,
Backward Euler, and Galerkin methods. The
Crank-Nicolson method, although is second-
order accurate, is also well known to cause insta-
bilities or oscillations in the resulting solutions.
Such unrealistic behavior is due to the fact that
the Crank-Nicolson method is characterized by
a zero numerical damping property.

Numerical damping is an interesting attribute
of a time integrator that is artificially added in
order to obtain more stable solutions. The need
for numerical damping frequently arises in simu-
lation of fluid dynamics and flow transport prob-
lems especially those of turbulent flows. These
problems require robust and efficient computa-
tional methods that possess numerical damping
attribute to meet the strict needs in running simu-
lation of such problems for very long time periods.
Especially for fluid dynamics problems where the
equation is nonlinear, it has long been recognized
that the numerical damping of the time integrator
is of great interest to obtain physically meaningful
numerical solutions. However, because this
damping is artificially added into the system, it
may drain the energy out of the system leading to
physically incorrect dynamics of the systems for
long-term simulations. Therefore, while numerical
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damping is needed to suppress the numerical oscil-
lation, there is a crucial need to balance between
this need and the resulting amount of artifact
added into the system to ensure that the dynamics
of the system is correctly represented. Because of
this required balancing act, it is desirable that the
time integrator can produce acceptable solutions
with minimal amount of numerical damping. For
this reason, it is desirable that the numerical
damping attribute can be selectively controlled
by the analyst.

Controllable numerical dissipative methods
including optimal algorithm designs exist for inte-
grating second-order dynamic systems such as
elastodynamics problems and to a limited extent
have also been applied to first-order systems for
integrating the transient system of equations [1, 2,
10, 11]. Recently, a generalized single-system
single-solve computational approach has been
developed that permits order preservation with
second-order time-accurate features and uncondi-
tionally stability with zero-order overshoot behav-
ior for a family of time integrators in conjunction
with possessing a new feature of selective control
of high-frequency damping for the integration of
transient first-order parabolic systems such as the
heat-conduction type, termed as GS4-1 frame-
work [10]. Such a family of methods were devel-
oped by utilizing in a consistent manner the
Algorithms by Design procedure previously intro-
duced for second-order systems via a generalized
time-weighted residual approach [1, 2]. This
approach is introduced to the discretized system
of equations with free parameters, which are then
adjusted to suit the desired algorithmic attributes,
which are (1) second-order accurate, (2) uncondi-
tionally stable, (3) zero-order overshoot, and
(4) selective and controllable numerical dissipa-
tion. Detailed derivation of this new framework
can be found elsewhere [10].

The key feature in this framework is the incor-
poration of a spurious root (%), in addition to the
principal root (p..), to allow for selective and
more flexible control of the high-frequency
damping (for both the primary variable and its
time derivative, respectively) for a successful
simultaneous elimination of the numerical oscil-
lation associated with these variables. Such a
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design thereby yields a two-parameter (p,, and
p:.) family of methods with a more flexible user
control of high-frequency damping for the two
variables, respectively. By allowing the two
parameters to be equal (i.e., p, = p ), the
amount of the high-frequency damping for the
two variables is hence equal. However, the same
amount of damping may not be sufficient to sup-
press the numerical oscillation in the time-
derivative variable. This nonphysical instability
in the time-derivative variable can lead to phys-
ically incorrect dynamics of the system for long-
term simulations. This places a limitation. To
overcome this drawback, we allow a more flexi-
ble control of the high-frequency damping by
introducing different amounts of numerical dissi-
pation in the two variables which is inherent
in the present developments. Such a selective
control of the high-frequency damping would
allow simultaneous elimination of the numerical
oscillation associated with the two variables.
The GS4-1 computational framework that is
described here is designed for first-order systems
and encompasses algorithm designs with zero-
order overshoot with selective controllable
numerical dissipation in both the primary vari-
able and its time derivative and inherits features
that enable a family of second-order time-
accurate preserving algorithms and designs.

Governing Equation of Transient
Parabolic Heat Conduction

Before presenting the recently developed GS4-1
time integration solver, it would be useful to first
describe the specific physical systems to be
solved by the new solver. For this purpose, we
consider the transient heat conduction problem
defined by the following governing equation (for
materials with constant specific heat (c), density
(p), and conductivity (k)):

0T (x,1)
pe ot

=kVT(x,0) +Q, ¥Yx€QCRY >0
(1)

where T(x, ) represents the temperature field at
position x and time ¢, Q is the source or sink of heat
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introduced within the system, X = (x,x2,....,X4) 18
the vector position, d is the dimension of the prob-
lem, and Q is a bounded domain in R?. This
governing (1) is subject to the following condi-
tions on the boundary I':

T(x,t) =Tr(x,1) Vxel, (2)
kVT - =q(x) Vxel, (3)
r=r,+1» 4)

and initial conditions
T(x,t=0)=Th(x) ¥VxeQ (5)

where T is the boundary on Q, while Tr(x,?),
q(x), and T are known vectors of boundary and
initial conditions.

Spatial Discretization by Finite Element
Method

As previously mentioned, the first step in solving
the time-dependent problems numerically or
computationally is to transform the problem
continuous equation to a set of ordinary differen-
tial equations that is easier to be solved.
Employing the finite element method, the spatial
discretization can be done by applying the
method of weighted residuals to (1) as

oT(x,t
J W; (pc or(x,1) kV?T(x,t) — Q) o0 =0
Q) ot
(6)
where W; is the weighting function and Q) is the

domain for an element (e). We next apply
Gauss’s theorem to the diffusive term as follows:

J WiV AVT(x,1)00
o
:J W,(kVT(x,))-& oF  (7)
T

_ J VW (RVT(x,1)00
o
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where n is the normal direction at the boundary

Q) for this element. Substituting (7) into (6)
yields

J W, (pc o, ’))an +J VW, - (kVT(x,1))0Q
Q© ot Q@

_ J Wi(kVT(x, 1) - i OF
r©

(8)

We next approximate the primary variable
T(x, 1) as follows:

T(x,1) = N(x);T(1), ©)

where N(x); is the element shape function and
T(1) is the vector of nodal solutions of the ele-
ment at time ¢. Substituting (9) into (8) and
imposing the Neumann boundary condition
yield the following first-order time-dependent
ordinary differential equations:

MT + KT =F (10)

K=Y K9=%" J . (VWi kVN)) 0Q
e=1 =1 JQ

F=Y FO=%" L@ (Wig(x)) T
e=1 e=1

(11)

are the mass matrix, stiffness matrix due to dif-
fusion, and force vector due to the Neumann
boundary condition, respectively, while 7 is the
total number of elements used in the spatial
discretization. Equation (10) is a set of first-
order time-dependent ordinary differential
equations (after the summation over all ele-
ments). This completes the first step in the
numerical or computational procedure to solve
the problems.

As previously mentioned, the second step in
the computation procedure is to solve the
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resulting set of first-order time-dependent ordi-
nary differential equations using an appropriate
time integrator to give the solutions of the pri-
mary variable (7)) and its time derivative (T) at
each time level and throughout the simulation
period. In this work, we propose to perform this
step using the GS4-1 framework, a new family of
time integrators with optimal properties devel-
oped in this study. To show the improvement
offered by this framework via its selective control
features over the existing or current state of art,
we will solve the problems using the GS4-1
framework, with and without the selective con-
trol features, in which case the former represents
the new/present developments, whereas the latter
is representative of past developments. Results
are shown in section “Numerical Results”. It is
of great importance, however, to first present the
development of this new time integration frame-
work as described next.

Development of GS4-1 Time Integrator

We proceed in this section by introducing the
GS4-1 time integration framework for solving
the resulting set of first-order time-dependent
ordinary differential equations (such as (10))
from one time level (¢,) to the next time level
(ty+1). The GS4-1 time integration framework
can be derived by introducing a time-weighted
residual approach with arbitrary-weighted time
field W to the semi-discretized system of
Equations (10) as follows:

JAI WMT +KT -Fldt=0  (12)

0

The weighted time field, W, in (12) is assumed
to be a degenerated scalar polynomial function of
the form

W:1+W1F+W2F2 (13)
where I'=L and 7€ [0,A1], while Ar=
Iny1 — In.

The primary variable (T) and its time deriva-

tive (T) in (12) are then approximated using an
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asymptotic series type expansion, whereas the
load term, F, is approximated using Taylor series
expansion

L AT
TZT"+A6TIT (14)
. AT
T:TML/\L‘T,M-JFASET2 (15)
Fn+1 - Fn
F=F,+—— 16
T (16)
where
AT =T, -T, (17)

while Ag, As, and A4 are at this point free param-
eters. Substituting the approximations, (14)—(16)
into (12), dividing the resulting equation by

OA ! Wdt, and defining for convenience
At i
W(L) dt
Wi — 0 o (Al) (18)
, Wdt

yield the GS4-1 time integration framework in
form of free parameters as follows:

M(T, +AsW,AT] + K[T, + A;W At T,
+ AsWLAIAT] = (1 — W))F, + W\ F,4,
(19)

The above formulation can be represented as

MT + KT = F (20)

where
T =T, +AW AT (21)
T =T, + AW At T, +AsWL,AAT — (22)
F=F,+WF,. —F,) (23)
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The associated expressions for the updates are
chosen as

T, =T, + A T, Ar + 1sATA? (24)

Tout = T, +AT (25)

The above formulation is the GS4-1 time inte-
gration framework in generalized representation
(in form of free parameters). These free parame-
ters (AgW1, AsWs, AWy, Wy, A4, and /15) are
related to W;, A;, and /; that are contained in the
approximations for the primary variable, its time
derivative, and the load term in the design of the
integrator and updates. They uniquely define an
algorithm and serves as the discrete numerically
assigned (DNA) algorithmic markers which are
an algorithm’s signature. Utilizing the concept of
Algorithm by Design, a priori decide (wish list)
the desirable algorithmic properties and impose
those wish list to the generalized framework
to determine these free parameters. Such
a procedure has been presented in detail in
our previous exposition [10] and will not be
repeated here.

The desirable algorithmic attributes consid-
ered are (1) second-order accurate, (2) uncondi-
tionally stable, (3) zero-order overshoot
behavior, and (4) controllable numerical dissipa-
tion in both the primary variable and its time
derivative with selective control feature (i.e., the
numerical dissipation of these two variables can
be controlled separately). These algorithmic
properties are then imposed upon the generalized
framework to determine the free parameters.
These parameters are then expressed in terms of
the spectral radius for an infinite time step to
obtain a framework with strict control of high-
frequency damping. Because our goal is to
develop a method with a more flexible control
of the high-frequency damping in contrast to
limited control, we require that the high-
frequency damping of both the primary variable
and its time derivative to be expressed in terms of
two parameters: (1) a principal root (p. ) and
(2) a spurious root (p? ). These two parameters
separately control the high-frequency damping
of the primary variable (7) and its time



Application of GS4-1 Time Integration Framework to Linear Heat Transfer

derivative (T), respectively. Such an approach
would allow for different amounts of numerical
dissipation in T and T to obtain simultaneous
elimination of the numerical oscillations associ-
ated with these two variables. This is in contrast
to past developments which control the high-
frequency damping on the primary variable and
its time derivative indiscriminately, i.e., without
the selective control features.

For a small amount of dissipation that is desir-
able, the case without the selective control fea-
tures may result in a large error in T, although it
may yield an acceptable solution for 7. This
behavior can lead to physically incorrect dynam-
ics of the systems for long-term simulations.
Such a restriction hence places a limitation. On
the other hand, the selective control of the high-
frequency damping additionally featured within
the GS4-1 framework offers solutions that are not
only acceptable but also represent physically cor-
rect dynamics. Such a design thereby yields
a two-parameter (p, and p? ) family of methods
with a more flexible user control of high-
frequency damping for the primary variable and
its time derivative, respectively. Furthermore, by
allowing the two parameters to be equal (i.e.,
P = PL.), the amount of the high-frequency
damping for the two variables is hence equal. In
this case, the framework replicates both practices
without selective control and with limited control
of high-frequency damping.

By imposing this new feature, we can express
the algorithmic parameters (A¢W1, AsWs, AyW1,
W1, 44, and Zs) in terms of p, and p¥_ as follows:

34 Poo +P% — PocP

AW = (T ps)
1
AW =, v )
Mm:ﬁ%;mzﬁfﬁTM_h
%:L&&
(26)

For convenience, we rearrange (20) and sub-
stitute (26) to represent the GS4-1 time integrator
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in terms of p,, and p! for integrating the
resulting set of first-order time-dependent ordi-
nary differential Equations (10) as follows (i.e.,
for linear case).

Algorithm 1. GS4-1 Time Integrator for Solving
Linear Ordinary Differential Equations Describ-
ing Linear First-Order Time-Dependent Engi-
neering Problems

Consider linear first-order time-dependent
engineering problems of the following form
(after space discretization): MT + KT = F.
Given T,, and T,, , we can find T, ; and T,,+1
by first solving for T, from

34 P T P% — PP\ M 1
o] oFoo | 7 K Tn
{< 2(1+ p.) IYARNES .

34 Pos T P5 = PP\ M 1 }
= = <) — K Tn
{< 2(1+ py) [YARNEN

2(1 +psc)

)(FM F)

+F, +
! <1+pm

and followed by updating the time-derivative
variable as follows:

- <Tn+l - Tn

T =) (P ) i (20

Numerical Results

To illustrate the selective control feature of the
GS4-1 framework, the following transient heat
conduction problem is considered. The problem
is a two-dimensional rectangular slab with initial
temperature of unity which is uniform over the
entire domain. On the left boundary (x = 0), the
Dirichlet boundary condition for the temperature is
set to zero (cooled side), while all other boundaries
are insulated (zero heat flux). The physical prop-
erties of the material are p = 1.0 kg/ m3,
¢ =1.017/(kg°C), and k = 1.0 W/(m°C). The
domain of the problem is discretized using 64 quad-
rilateral elements using the finite element method.

The problem was solved using the GS4-1 time
integration framework, with and without the
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Fig. 1 Plot of analytical solutions 7 and T as a function of time for a specific node at (x = 0.25, y = 0.5)

selective control features, with a time step size cases, i.e., the GS4-1 framework with and with-
(Af) of 1 s and an end time of 20 s. While having out the selective control features as defined
two parameters (p,, and p? ) in the GS4-1 frame- above.

work has a certain appeal, we recall that our aim For analyses purposes, we compare the perfor-
is to simultaneously suppress the nonphysical mance of the GS4-1 framework, with and without
instabilities in both T and T to obtain solutions the selective control features, by first looking at
that are not only acceptable but also represent the  the solutions of T and T as a function of time for
correct dynamics of the problem. For this pur- a specific node. For this purpose, we chose p.
pose, we let p’_ in the case with the selective value of 0.4 and specific node at (x = 0.25,
control features to take a zero value regardless y = 0.5). The analytical solutions, as given in
of the value of p_ . Not only that this will ensure [12], are shown in Fig. 1. Meanwhile, the numer-
a successful elimination of the numerical oscilla-  ical solutions of T and T as a function of time for
tion associated with T, such an approach would this node generated by the two representations,
also allow for widest range of p_, to be tested i.e., with and without selective control features,
(due to the restriction that 0 < p, < p;,, < 1). are illustrated in Fig. 2, which illustrates the
Given this constraint on p’  value, the GS4-1 improvement in the numerical solutions of T
framework with the selective control features and 7 made by the GS4-1 framework with the
turned on has only one parameter left to be spec-  selective control features turned on (i.e., the case
ified (i.e., p,,). We also recall that the case with-  with p_, = 0.4, p5_ = 0), in contrast to the case
out the selective control features as in past without the selective control features (i.e., the
developments can be recovered in the GS4-1 case with p_ = pf = 0.4) for the same value
framework by defining p , = p¥ . For compari- of p, = 0.4. This difference in performance
son purposes, we choose p., for such case (i.e., between these two cases highlights the role
the case without the selective control features) to  played by the selective control feature, which is
take the same value as the p_, for the other case the key desirable feature of the new GS4-1 frame-
(i.e., the GS4-1 framework with the selective work not available in past developments.
control features). For p_ we choose values rang- For a complete investigation, we then compute
ing from O (i.e., maximal damping) to 1 (i.e., zero and compare the errors in 7 and 7T generated
damping) in increments of 0.1. For each p, by these two cases, respectively. An error is
value, we solve the problem using the two defined as
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Application of GS4-1 Time Integration Framework
to Linear Heat Transfer: Transient Heat Conduction,
Fig. 2 Plot of T and T as a function of time for a specific

Error = |Numerical — Analytical| (28)

Tables 1 and 2 compare the maximal and total
errors in the solutions of primary variable (7') and
its time derivative (T), respectively, as generated
by the two cases (i.e., the GS4-1 framework with
and without the selective control features) for all
P values considered. By looking at Table 1, it is
obvious that the error in T’ generated by these two
time integrators is very small. In other words, we
can say that both cases perform well to obtain
acceptable solutions of 7. On the other hand,

b
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‘~ -05¢
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node at (x =0.25, y =0.5) generated by (1) GS4-1
(py =0.4,p5, =0) and 2) GS4-1(p,, = 0.4,
pS, = 0.4),1.e., the case without selective control features

Table 2 shows that the errors in 7 (both maximal
and total) generated by the case without the selec-
tive control features are large with exception for
large amount of damping (0 < p,,, < 0.6) that is
less desirable. Interestingly, these errors are sig-
nificantly reduced by the GS4-1 time integration
framework when the selective control feature is
turned on. By looking at Table 2, therefore, we can
say that the GS4-1 time integrator with the selec-
tive control feature provides improvement over
the case without the selective control feature as
in past development in generating solutions for T.



190

Application of GS4-1 Time Integration Framework to Linear Heat Transfer

Application of GS4-1 Time Integration Framework to Linear Heat Transfer: Transient Heat Conduction,
Table 1 Comparison of error in T for the parabolic heat conduction problem between (1) the case without selective
control features (i.e., GS4-1 framework with p¥_ = p_ ) and (2) GS4-1 framework with selective control features with

pS, = 0 for p_, values ranging from 1 (zero damping) to 0 (maximal damping) in decrements of 0.1

Total error
Without selective control

Selective control

Max error

Poo Without selective control Selective control
1 0.0850 0.0850

0.9 0.0203 0.0101

0.8 0.0026 8.6609 x 1074
0.7 5.6841 x 1074 6.8083 x 1074
0.6 5.9327 x 107* 7.3724 x 1074
0.5 6.2957 x 1074 8.0159 x 1074
0.4 6.8459 x 107* 8.7569 x 1074
0.3 7.6622 x 1074 9.6192 x 1074
0.2 8.8666 x 1074 0.0011

0.1 0.0011 0.0012

0 0.0013 0.0013

0.3275 0.3275
0.1062 0.0479
0.0217 0.0156
0.0117 0.0138
0.0121 0.0150
0.0128 0.0163
0.0139 0.0178
0.0156 0.0196
0.0180 0.0216
0.0217 0.0241
0.0271 0.0271

Application of GS4-1 Time Integration Framework to Linear Heat Transfer: Transient Heat Conduction,
Table 2 Comparison of error in T for the parabolic heat conduction problem between (1) the case without selective
control features (i.e., GS4-1 framework with p¥_ = p_ ) and (2) GS4-1 framework with selective control features with
pS, = 0 for p, values ranging from 1 (zero damping) to 0 (maximal damping) in decrements of 0.1

Total error

Without selective control Selective control

226.9521 0.6587
24.6318 0.0843
48.7307 0.0091

0.1437 0.0018
0.0082 0.0014
0.0018 0.0015
0.0017 0.0016
0.0018 0.0017
0.0019 0.0019
0.0021 0.0020
0.0022 0.0022

Max error
Poo Without selective control Selective control
1 70.2769 0.1757
0.9 8.5440 0.0222
0.8 0.8102 0.0022
0.7 0.0561 1.5954 x 1074
0.6 0.0026 6.7106 x 1073
0.5 8.2366 x 1077 7.1950 x 1073
0.4 8.5200 x 1073 7.7475 x 1073
0.3 8.8950 x 107° 8.3826 x 1073
0.2 9.4064 x 1073 9.1198 x 1073
0.1 1.0097 x 1074 9.9841 x 1073
0 1.1008 x 10~* 1.1008 x 10~*
Conclusions

A two-parameter GS4-1 time integration frame-
work is presented for use in solving first-order
time-dependent engineering problems. A key
desirable feature of the new time integration
framework is that it allows for a more flexible
control of the numerical damping as compared to
existing/past developments. In this time integra-
tion framework, the two parameters separately
control the numerical damping of the primary

variable and its time derivative, allowing for dif-
ferent amount of damping for these variables.
This feature, termed as selective control feature,
is not available in the existing time integrators
for applications in first-order time-dependent
engineering problems.

The application of GS4-1 time integration
framework to a transient parabolic heat conduc-
tion problem was presented to illustrate the abil-
ity of the new solver to generate acceptable
solutions of both the primary and time-derivative
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variables using minimum numerical damping,
which is a key desirable attribute of the newly
developed GS4-1 time integration framework.
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Overview

Computational techniques, especially for proper
time integration of transient nonlinear heat trans-
fer and related applications, need to be not only
robust but also should possess controllable
numerical dissipative features to selectively con-
trol the high-frequency damping associated with
all relevant variables describing the problem
physics, should facilitate completion of the anal-
ysis, and should enable long simulation times. An
overview of existing time discretized operators
for transient first-order systems is described in
Masuri et al. (ETS entry “» Application of
GS4-1 Time Integration Framework to Linear
Heat Transfer: Transient Heat Conduction™ [1],
wherein the new GS4-1 computational frame-
work [2] is described. The new framework per-
mits order preservation with computationally
attractive numerical features and second-order
time accuracy with and without controllable
numerical dissipation. It additionally inherits
a new feature of selective control of high-
frequency damping for the relevant variables.
Such a selective control of the high-frequency
damping adequately permitted the simultaneous
elimination of the numerical oscillations associ-
ated with the variables of physical interest. In this
synopsis, we present the computational method-
ology with extensions to nonlinear first-order
transient systems from the basic linear transient
framework for application in a simple transient
nonlinear heat transfer problem, with particular
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illustration to nonlinear problem of heat conduc-
tion in a medium with temperature-dependent
velocity, to highlight the essential aspects of the
computational methodology that are needed to
correctly capture the problem physics.

The Governing Equations

From the equation of continuity in hydrodynam-
ics, one can derive for any time ¢ and any point
(x,y,z) of a solid, through which heat is flowing
but within which no heat is supplied at the point,
the temperature as a continuous function of x, y, z,
and ¢ satisfying [3]

(1)

o t\ox Ty "o

pe 8T+ <8fx afy 6f)
where p is the density, c is the constant specific
heat, while f,, f,, and f. are the components of the
heat flux vector at which heat crosses any plane of
the isotropic surface per unit area per unit time at
apoint. We consider, for purpose of illustration of
the proposed numerical methodology, the con-
duction of heat in an isotropic solid medium
whose temperature field is governed by (1),
while the medium is moving with a velocity
whose components are (uy,u,,u.). For such
a case, the heat flux components (fy, fy, and f7)
can be expressed as

ar
fr = —k—+ pcTu,

E® (2)

oT
fy= k%o

Dy + pcTuy

(3)

T
;= —ka— + pcTu,
0z

(4)
where k is the temperature-independent thermal
conductivity of the medium. The first term in the
expressions of the heat flux components (2)—(4)
represents the conduction part (i.e., the terms

— kI, — k9L, and — k9D), while the latter term
ly 2

represents the convective part (i.e., the terms
pcTuy, pcTuy, and pcTu;) of the respective heat
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flux components. Substituting (2)—(4) into (1),
the partial differential equation describing the
conduction of heat in the moving medium can
be expressed as

Cal+uaT+ 8T+ g
P Ty Ty T,

_[(PT, 0T 0T
o \ox2 T 0y2 022

If the velocity is dependent on the tempera-
ture, that is,

(5)

wy=ui(T),i =x,y,z (6)
the partial differential (5) becomes nonlinear,
that is,

8T 8T oT

4%;%;%)
ox2  Oy? 022

To evaluate the relative performance of the
present GS4-1 framework and the existing
method and to demonstrate the ability of the
proposed numerical methodology to solve such
nonlinear heat conduction problems, we consider
a one-dimensional heat conduction problem with

temperature-dependent velocity, in which the
partial differential (7) reduces to

oT
0z

(7)

aT 8T 0T

(8)
Consider the case where the velocity is defined

in terms of the temperature as
U, = oo + OC]T (9)
where the coefficient oy + o T could be regarded
as a temperature-dependent convection coeffi-
cient (where oy and «; are units of m/s and
m/s/K, respectively). The physical heat transfer
system that can be represented by such

a coefficient is the cooling of a small metal cast-
ing or billet in a quenching bath after its removal
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from a hot furnace [4]. Substituting (9) into (8)
yields the governing equation of the illustrative
problem as follows:

O*T

oT or
pc E-I—(OCQ—FOQT)— =k

Ox oxr’ (10)

VxeQCR,t>0

where Q is a bounded domain in R defined by
0 <x <L and where L is the length of the
one-dimensional domain. The physical problem
may be specified on the boundary, denoted I', by
the Dirichlet and/or the Neumann boundary
conditions

T=Tr Vxel, (11)
oT

k— = V. I 12
oy =4 XED (12)
Ir=Ir1+1I, (13)

where 9/0n denotes differentiation along the
outward-drawn normal to the surface I';, while
Tt and g are the known vectors of the prescribed
temperature and flux. Furthermore, a known ini-
tial temperature must be specified to complete the
problem description

Vx € Q (14)

Spatial Discretization by Finite Element
Method

We proceed in this section with the spatial
discretization of nonlinear problems of the
above type by employing the finite element
method. To discretize the described problem in
space using the standard Galerkin finite element
method, we apply the method of weighted resid-
uals to (10) (with the superscripts intentionally
dropped for convenience and simplicity of nota-
tion). The temperature field of an element with N
nodes is approximated by a linear combination
of time-independent element shape functions

lpn(n: 177N)
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N
T=Y T, (15)
n=1
The shape function v, is used as the weighting
function in the weighted residual equation. After
use of (15), we obtain the following nonlinear
ordinary differential equations

MT + P(T) + KT = F (16)
where T a vector of length N containing the nodal
temperatures T,,(n = 1, ....N), T is the time deriv-
ative of T, while M is the mass matrix of size
N x N and is defined as (p=1,...,N and
g=1,....N)

M(p.q) = L Yol d Q (17)

Furthermore, P(T) is a vector of length N
containing the nonlinear term and is defined as

@=1,....N)

N N
P(p) = L (Z Ty T %) V,d (18)
n=1 =1

In addition, K is the diffusion matrix of size
N x N and is defined as (p=1,...,N and
gq=1,...,N)

Ny, O
Kig) = | 25

and F is the force vector of length N resulting
from integration by parts of the diffusive term
in the governing equation. It is defined as
p=1,...,Nandi=1,2)

dQ (19)

F(p) = JQ 40,2 (20)

The ordinary differential equation (16) is
consistently assembled for all elements in the
domain to yield a system of nonlinear transient
ordinary differential equations to be solved
using specially tailored time discretization tech-
niques to effectively capture the problem
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physics (in contrast to following traditional
practices which fail to capture the problem
physics). This is described next.

Time Discretization by GS4-1
Framework via Normalized
Time-Weighted Residual Approach

The system of ordinary differential equations
given by (16) is nonlinear, which requires accu-
rate treatment of the nonlinear terms in the time
integration procedure to ensure satisfactory
convergence of the nonlinear iterations during
each time step. This can be achieved by
employing the so-called and well-known nor-
malized time-weighted residual approach
which is new; it has been previously shown to
provide significant improvement and also
explain how to provide proper and accurate
extensions to nonlinear structural dynamic
type problems [5-7] in contrast to traditional
practices. The idea behind the developed
normalized time-weighted residual approach
is to provide the necessary avenue to individu-
ally weigh and normalize each term in the
nonlinear semi-discretized equation of motion.
In contrast to the classical time-weighted
residual approach and counterpart, this new
approach is a general theoretical idea that inher-
ently enables the nonlinear terms in the equa-
tion of motion to be treated specifically and
consequently leads to a more appropriate treat-
ment of the nonlinear terms. This approach can
also explain and yields all possible treatments
of the nonlinear term for implementation in
a computational framework. For the nonlinear
heat transfer problem considered here, the nor-
malized time-weighted residual approach
yields only one type of nonlinear treatment.
Here, we illustrate the use of this treatment
with the GS4-1 framework employed as the
basic primitive time integrator to march the
solutions in time. Employing such a method,
the system of ordinary differential equations
(16) becomes

MT + P(T) + KT = F (21)
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where

T =T, + AW, AT (22)
T =T, + AW At T, +AsWo AIAT — (23)
F=F,+ W (F, —F,) (24)

and
AT =T, - T, (25)
In (21)—(25), subscripts (), and (), denote

the time levels ¢, and t,,4 | (where t,1| — t, = Af),
while the superposed () denotes the algorithmic
time level 7 between 7, and (i.e.,
t, < fS trz+1)-

In this framework, the expressions for the
update on the primary variable and its time deriv-
ative at the end of ¢, time level are chosen as

Int1

T,i1 =T, + AT, At + IsATA¢ (26)

T, =T, +AT (27)

In (22)-(27), the algorithmic parameters
/\6W1, A5W2, A4W1, W], )»4, and 15 can be
expressed in terms of the principal root (p.)
and the spurious root (p? ) as follows [2]:

34 Poc + Poe — PPl

AW, = ,
T 214 p) (T4 p5)
1
A5W2: 3
(1+p)(1+p5) (28)
AW L ow L
4W1 = ) 1= s A4 — L
14+ py (14 ps0)
1
hy =
1+p%

where p_, and p’ are the two, user-defined
parameters satisfying the following conditions [2]

0<pl <py <1

(29)

and defining the GS4-1 algorithm (i.e. the
algorithms in GS4-1 framework are usually
represented/defined as: GS4-1(py, P))-
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These two parameters, namely, p_ and p?_, rep-
resent the selective, controllable numerical dissi-
pative property of T and T, respectively, due to
high-frequency damping. That is [2],

* p. 1s associated with the numerical dissipa-

tive property of T.

P = 1 means that T is numerically non-
dissipative.
» p’, is associated with the numerical dissipa-

tive property of T.

ps. = 1 means that T is numerically non-
dissipative.

By introducing p?  in addition to p_,, we are
able to introduce selective control of the numer-
ical dissipation at high frequency for the two
variables (T and T) in the developed framework,
allowing for different amount of numerical
damping for these two variables. Such a feature
is necessary for obtaining acceptable solutions of
the two variables as often the time derivative
variable (T) would require more numerical
damping than that of the primary variable (T).
This selective control feature is a new desirable
feature not available in any existing methods to
date. More importantly is the fact that we are able
to introduce an important feature while preserv-
ing second-order accuracy (i.e., order-preserving
feature) resulting in a two-root system. This is in
contrast to the classical Trapezoidal family of
algorithms which is only a single root system.

Upon rearrangement, (22)—(27) can also be
represented as follows:

i /14 . A6W1 AT
T=[(1—-——AsW; | T, — — 30
( s 1) + s At (30)
~ A
T, + W2 0r (31)
As
F=F,+W(F,, —F, (32)
with the update equations
T, =T,+AT (33)
. 1 AT A\
Tn = 1 - Tn 34
i As At + ( /L5> ( )
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The two sets of equations, that is, (22)—(27)
and (30)-(34), represent two different forms of
the expressions for the algorithmic variables
(T and T‘) and the update expressions for the
variable at end of time step (Tn-H and T, ;).
The equations in the former set (i.e., (22)—(27))
represent the algorithmic variables in terms of the
increment of the time derivative variable (AT),
whereas in the latter set (i.e., equations (30) to
(34) the equations represent the algorithmic vari-
ables in terms of the increment of the primary
variable (AT). In the numerical methodology to
be described next, we will make use of these two
forms interchangeably as deemed necessary.

Numerical Methodology Via the GS4-1
Framework

In this section, we show how to use the GS4-1
computational framework with the midpoint rule
representation for the nonlinear term, described
in sect “Time Discretization by GS4-1 Frame-
work via Normalized Time-Weighted Residual
Approach,” in a general mathematical setting,
suitable for use in solving any nonlinear heat
transfer problems. For this purpose, because the
semi-discretized equation to be solved is nonlinear
(21), we now employ the Newton—Raphson
method to iteratively solve the equation at each
time level. The computational details follow next.

Given/knowing the solutions at previous time
level ¢, (i.e., T,, and Tn ), we seek the solutions of
the nodal primary variable and its time derivative
at the next time level ¢,. (i.e., T, and Tn+1 ).
At the beginning of #,,; time level, we initially
predict the solutions using known values at pre-
vious time level as follows:

T§+l =T,

- k - /14

T, =T, (1-2
n+1 ( /15>

where k is the nonlinear iteration counter. We

then calculate the algorithmic variables T and
~k
T in terms of the predicted (i.e., k = 1) values

(35)

Tf‘; 41 and T]:l 41 using (31) and (22), respectively,
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~k AsW.

T =T,+ ; Z(T];Hl T,) (36)
T =T, +AsWi (T, n+l -T,) (37)

We next enter the nonlinear iteration loop.

This is done as follows:

1. In this nonlinear iteration loop, we first calcu-
late the residual resulting from using the
predicted algorithmic variables at the kth iter-
ation. From use of (21), we have the residual at
the kth iteration as

R —MT 4P +KT -F  (38)

2. We next linearize the residual using Taylor
expansion, truncate after the linear term and
set the residual to vanish. This step yields the
following equation

8R

2 AT=-R (39)
0 T
where
AT=T" T (40)
and 2R, dR - is the Jacobian given by
a1
~k ~k
IR aT oP(T")
= — K
~k
AeWr \  OP(TY
=M K
<A5W2AZ‘> + arfk *

~k
The term ()ng )

in (41) is the derivative of

the nonlinear aVTector P ((18) in terms of the
algoﬂrﬁikthmic primary variable T ) with respect
to T. Because the evaluation of the P is
dependent upon the choice of the element
shape function (see (18)) and the type of ele-
ment used in the finite element spatial
discretization, a closed form equation for this
term will also be dependent upon these factors
and therefore will be given in section “Numer-
ical Illustrations” where we discuss the
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benchmark numerical example of the consid-
ered transient nonlinear heat transfer problem.

Equation (39) can be rearranged to the fol-
lowing form

~k\ —1
Tk+1 _ Lljk N ﬁk+
oT
3. We next impose the Dirichlet boundary con-
dition (if any) to (42), and this can 131? done

from the use of (36) by imposing that T takes
the following value

~k
mf,ﬁk) (42)
oT

AsW,

T =T, +—— 7 (Tr —T,) (43)
5

where Tr is the known prescribed temperature
at the boundary (se;ftk(ll 1)).

4. Wethensolve for T  from (42) after impos-
ing the boundary conditions appropriately.

5. Subsequently, we correct the time derivative
variable using (30) as follows:

+1
A6W1 ( _Tn)

~k+1
T = (1 - 24/\6W1>
/5

6. Upon obtaining the algorithmic variables at
the (k + 1)-th nonlinear iteration counter for
the #,,; time level, we have to check if con-
vergence is met

As W, At
(44)

T T = 101 (45)
where ol is the user-specified tolerance value.

We repeat the nonlinear iteration (i.e., steps
1 to 6 described above) until the solution is
converged (i.e., until (45) is satisfied). Upon
convergence, we update the variables at the
end of #,, time level as follows:

~k+1 /15
Ty =(T -T,
1= ) AW,

(Tn+l - Tn) T 14
ASalle R ST Y (5 I
JAr 75

+ Tn
(46)
T =



Application of GS4-1 Time Integration Framework to Nonlinear Heat Transfer

Numerical lllustrations

In this section, we illustrate the advantage of the
selective control features (i.e., by allowing
Pso 7 p3.) inherent within the GS4-1 framework
as compared to traditional practices without the
selective control features (i.e., p,, = p5 ) by
solving a one-dimensional case of the transient
nonlinear heat transfer problem governed by
(10). In the spatial discretization by the finite
element method, use 1D linear elements whose
element shape functions are given by

o037

where [ is the length of each element. We
discretize the spatial domain using 30 elements
such that the Galerkin FEM can be appropriately
used. These choices of the element type and the
element shape functions () result in the follow-
ing elemental nonlinear vector (P, defined in
(18)) for this particular problem

1| 2T} + T\ T+ T;
P=—_ 5 ; (48)
6 | —T? — T'T, + 273

(47)

where T; and T, are the values of the nodal
primary variable at node 1 and 2 of each element,
respectively. Using (48), we can find the deriva-
tive of this vector with respect to the primary
variable in a general form as follows:
1| 4N+ T T 421
- (49)
o 6| or, -1, —1, +41
Therefore, for the computation of the Jacobian
in the Newton—Raphson iteration method (see
(41)) we have

T, +2T)

197

where YN’]k and 7~"2k are the values of the nodal
algorithmic primary variable at node 1 and 2 of
each element, respectively.

As mentioned earlier, we have previously seen
in our earlier studies on transient linear first-order
systems that the GS4-1 framework with the selec-
tive control features yields physically accurate and
acceptable solutions for both the primary variable
and its time derivative with only minimal numer-
ical dissipation; this is sharp contrast to the case
without employing the selective control features
for which case numerical instabilities in the time
derivative variable were observed for such tran-
sient linear situations. Our objective in this synop-
sis is to demonstrate that indeed, for extensions to
transient nonlinear cases, the analogous algorith-
mic property of the recently developed GS4-1
framework with the selective control features
holds for the transient nonlinear cases as well.

Results lllustrating the Method’s Ability Via
the Selective Control Feature

For this purpose, we solve the problem using the
approach described and outlined above with
a time step size Af = Ss and an end time of 50 s.
We let the p?_ of the GS4-1 framework with the
selective control features to take on a zero value,
while the p_, values tested range from 1 (i.e.,
non-dissipative/zero damping) to O (i.e., maximal
damping) in decrements of 0.1. The parameter
defining the case without the selective control
features (p,,) will take the same value as the p
for the present case (i.e., with the selective con-
trol features) to enable valid comparisons
between the two cases, from which the ability
and advantage of the selective control feature
will be made transparent.

We first compare the performance of the
GS4-1 framework (employing the numerical
methodology described in section “Numerical
Methodology Via the GS4-1 Framework™) with
and without the selective control features, by
comparing the solutions of T and T generated
by these two cases as a function of time for
a specific node number 2 (x = 0.0333) using p,
value of 1 for illustration. The numerical
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solutions generated by the two algorithms (i.e.,
the case with and without selective control fea-
ture) are illustrated in Fig. 1. This figure shows
that for the solutions of the primary variable (T)
both cases (i.e., with and without selective con-
trol feature) yield good results. However, for the
solutions of the time derivative variable (T), it is
clear from the figure that the case without the
selective control features (i.e., p, = p) results
in large oscillations (it is to be noted that due to
the automatic scale generated by the plotting
routine employed, although not representative,
this oscillation makes the analytical solution sim-
ply appear as a straight line due to the different
ranges on the T solution values; see Fig. 1d;
alternately, the GS4-1 framework with the selec-
tive control features (i.e., p, # pl,, Wwith
p:, = 0) indeed yields good agreement with the
analytical solution with the same p_ value
(hence is capable to capture the analytical solu-
tion curve; see Fig. 1b. This is because the GS4-1
framework with the selective control feature is
able to successfully suppress the numerical oscil-
lations associated with T solution via such an
important and practically useful feature. That is,
by allowing the p?_ value to take on zero value,
regardless of the choice of p__, the GS4-1 frame-
work with the selective control features could
guarantee that sufficient numerical damping is
given to the time derivative variable (T) such
that the large oscillations are successfully elimi-
nated. Such a new feature is necessary as often
the time derivative variable requires more numer-
ical damping than the primary variable does. This
requirement, however, cannot be achieved without
the selective control feature as in the past practices
since the numerical damping of both T and T is of
limited control, often indiscriminately; hence,
a p value of 1 means a corresponding p?_ value
of 1 as well. However, with the selective control
features, the GS4-1 framework can enable algo-
rithm designs defined by p_, value of 1 and pf_
value of 0 and subsequently could satisfy the need
for larger numerical damping for the T variable
resulting in good agreement with the analytical
solutions for both the T and T variables. This
clearly indicates the significance and advantage
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of the GS4-1 computational framework with the
selective control features over the past practices
wherein such a feature is not inherent.

In general, for problems involving thermal
shock, the numerical solution of the primary var-
iable (T) will be oscillating, in which case numer-
ical damping for this variable is needed to obtain
physically representative solution. This type of
problem is considered in [2] where the GS4-1
framework with the selective control feature is
applied to solve linear transient parabolic heat
conduction problem. It is however, beyond the
discussion here since the problem considered in
this synopsis does not involve any thermal shock.
Our objective here is to demonstrate the ability of
the present numerical methodology via the GS4-1
framework with selective control feature to give
physically accurate and representative solutions
of primary variable and its time derivative, even
without having to impose numerical damping on
the primary variable (i.e., p, = 1). For illustra-
tion purpose only, we also show the solutions
when numerical damping is imposed. Figure 2
shows the results when p_, = 0.9 with time step
size of At = 5s. As suspected, the solutions of T
generated by the two cases (with and without
selective control feature) agree well with the ana-
Iytical solution (see Fig. 2a, ¢). The numerical
solution of T is acceptable for the case with the
selective control feature (see Fig. 2b) but is still
oscillating for the case without the selective con-
trol feature (see Fig. 2d) although the amount of
oscillation is reduced (as compared to Fig. 1d)
due to the effect of numerical damping into the
algorithm. When time step size is reduced to
At = 1s, the oscillation in T is still apparent as
seen in Fig. 3d although is less than that for the
case with Ar = 5s (Fig. 2d).

Further attempt is made to investigate the per-
formance of the algorithm without selective con-
trol feature (i.e., GS4-1 with p, = p? ) when the
numerical damping is further increased to
approach the maximal value (i.e. p, — 0). For
this purpose, we solve the problem using
Poo = 0.1 with a time step size of At = 1s and
show results of T and T generated by the two
cases (i.e., with and without selective control



Application of GS4-1 Time Integration Framework to Nonlinear Heat Transfer

a
1.1
1 -
09} —o— GS4-1(p,=1, po=0)
—— Analytical
& oost Y
2
z or)
0.6 |
0.5
0.4 *
0 10 20 30 40 50
Time
c
1.1
1 -
0.9 —— GS4-1(p..=1, po=1)
—— Analytical
£ ost Y
2
=
2 o7t
0.6 |
0.5¢
0.4 .
0 10 20 30 40 50
Time

Application of GS4-1 Time Integration Framework
to Nonlinear Heat Transfer: Heat Conduction in
Medium with Temperature-Dependent Velocity,
Fig. 1 Plot of T and T as a function of time for node

feature) in Fig. 4. Consistently and as expected,
the numerical solution of the primary variable
generated by the two cases agrees well with the
analytical solution as seen in Fig. 4a, c. Focusing
on the numerical solution of the time derivative
variable, Fig. 4d shows that the algorithm without
the selective control feature (i.e. p,, = pS, = 0.1
in this case) still results in numerical oscillation
in T. This numerical oscillation could only be
eliminated in this method by strictly imposing
maximal numerical damping to both T and T
(i.e., py, = p, = 0) as illustrated in Fig. 5. This
shows that even for this simple, illustrative
numerical example where thermal shock is not
involved, it is only when maximal damping to
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number 2 (x = 0.0333) and 47 = 5s generated by (a, b)
GS4-1(p,, = 1,p5, = 0) and (c, d) GS4-1
(ps = 1, p5, = 1), that is, the case without selective con-
trol features

both T and T is imposed that the existing method
without selective control feature could yield
physically representative and accurate solutions.
In this case, imposing maximal damping to T
means over-dissipating, since the numerical
solution of this variable can already/easily be
obtained with good accuracy without having to
impose any numerical dissipation even with rel-
atively larger time step size (see Fig. 1c). While
numerical damping is handy in one way if one
could control it smartly, but in another way over-
dissipation may also lead to physically incorrect
dynamics of the system due to the fact that
numerical damping is an artifact added into the
system to yield acceptable solutions; hence,
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caution has to be exercised. The GS4-1 frame-
work with selective control feature, on the other
hand, is capable of giving physically accurate and
representative solutions of primary variable and
its time derivative, even without having to
impose numerical damping on the primary vari-
able (i.e., p,, = 1) for this particular problem
without thermal shock, hence the clear improve-
ment and advantage of the present approach.
The next comparison between the two cases
(i.e., GS4-1 framework with and without selective
control features) is done by looking at the solutions
of both T and T for the whole spatial domain at
a specific time of t = 10s and using a time step size
of At = 1s. For this purpose, we show the results
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number 2 (x = 0.0333) and 4t = 5s generated by (a, b)
GS4-1(p,, = 0.9,p%, =0) and (c, d) GS4-
1(p,, = 0.9, p%, = 0.9), that is, the case without selective
control features

using p, value of 1 to consistently demonstrate
the ability of the GS4-1 algorithm with p_ =1
and p’ = 0. The numerical solutions of these
variables as generated by the two cases (with and
without selective control features) are illustrated in
Fig. 6, from which a comparison of the perfor-
mance between these two different algorithmic
structures can be made. We can see from this
figure that the same observations seen previously
in Fig. 1 are repeated here. That is, (1) that both
algorithms yield good agreement with the analyt-
ical solution for T, (2) that the case without selec-
tive control features results in oscillations for T,
and (3) that the GS4-1 framework with the
selective control features could suppress such
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oscillations and subsequently yields good agree-
ment with the analytical solution even with the
same p., value that was employed for the case
without selective control. For the T solution, it is
to be again noted that the oscillations generated by
the case without the selective control feature, due
to the scale of the plotting routine employed, make
the analytical solution appear as a straight line due
to the different ranges on the T solution values (see
Fig. 6d); alternately, the GS4-1 framework with
the selective control features (i.e., p, # p%,, with
p:, = 0) readily captures the proper physics as
seen in the analytical solution curve due to the
excellent agreement between the numerical results
and the analytical solutions (see Fig. 6b). These
observations consistently illustrate the importance
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number 2 (x = 0.0333) and AT = 1s generated by (a, b)
GS4-1  (pyy =09,p5,=0) and (¢, d) GS4-1
(ps = 0.9,p3 = 0.9), that is, the case without selective
control features

of and the significant role played by the new fea-
tures introduced within the GS4-1 computational
framework, which is its selective control of the
high-frequency damping for both T and T that is
not available in the existing methods to date, for
obtaining physically representative and accurate
solutions of both the primary variable and its
time derivative constituting the transient first-
order system.

For completeness of the comparisons between
the two cases (i.e., with and without the selective
control feature), we next compute and compare
the errors in T and T generated by these two time
integrators with time step size of Az = 1s and an
end time of ¢ = 10s, for a given set of p_, value
ranging from 0 (maximal numerical damping)
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to 1 (zero numerical damping) in a decrement of
0.1. The error is defined as

numerical — exact
Error =

(51)

exact

Table 1 shows the comparison of maximal and
total errors in the primary variable (T) within the
GS4-1 framework, with and without the selective
control features, for all p values considered. It
is clear from this table that the two cases yield
acceptable solutions of T. The focus is however
on the performance of the different time integra-
tors with and without selective control features in
computing the solutions of the time derivative
variables (T). The maximal and total errors in
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this quantity are shown in Table 2. From this
table, we can easily see that the GS4-1 framework
with the selective control features outperforms
the case without such features. The former yields
satisfactory results for all p_, values considered,
whereas the latter results in large errors as
the numerical damping is minimal (i.e., p,
approaches unity). Because our aim is to obtain
physically representative and accurate solutions
at minimal damping to preserve the system
dynamics and the associated physics, the GS4-1
framework with the selective control features is
clearly at an advantage, even without having to
introduce numerical damping to the primary var-
iable (i.e., GS4-1 with p =1 and p’ = 0).
Meanwhile, the large errors in T generated by
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Application of GS4-1 Time Integration Framework to Nonlinear Heat Transfer: Heat Conduction in Medium
with Temperature-Dependent Velocity, Table 1 Comparison of error in T between (a) the case without selective
control features with p, = p_ and (b) GS4-1 framework with selective control features with p_ = 0, for p_ values
ranging from 1 (zero damping) to 0 (maximal damping) in decrements of 0.1

Max error
Poo Without selective control Selective control
1 1.4140 x 1073 1.4140 x 1073
0.9 13079 x 1073 1.5227 x 1073
0.8 1.3782 x 1073 1.6533 x 1073
0.7 1.4687 x 1073 1.7917 x 1073
0.6 1.5407 x 1073 1.9365 x 1073
0.5 1.6224 x 1073 2.0891 x 1073
0.4 1.7381 x 1073 2.2476 x 1073
0.3 1.9009 x 1073 2.4082 x 1073
0.2 2.1218 x 1073 2.5630 x 1073
0.1 24128 x 1073 2.6966 x 1073
0 2.7793 x 1073 2.7793 x 1073

Total error

Without selective control Selective control

2.9509 x 1074 2.9509 x 107*
2.6847 x 1074 3.0655 x 107*
2.7631 x 1074 3.2925 x 107*
29170 x 1074 3.5601 x 107*
3.0553 x 1074 3.8484 x 107*
3.2198 x 1074 4.1525 x 107*
3.4530 x 1074 4.4687 x 107
3.7786 x 1074 4.7892 x 107
4.2193 x 1074 5.0986 x 107*
4.8008 x 1074 5.3665 x 107*
5.5342 x 1074 5.5342 x 1074

Application of GS4-1 Time Integration Framework to Nonlinear Heat Transfer: Heat Conduction in Medium
with Temperature-Dependent Velocity, Table 2 Comparison of error in T between (a) the case without selective
control features with p, = p . and (b) GS4-1 framework with selective control features with p_ = 0, for p_, values
ranging from 1 (zero damping) to 0 (maximal damping) in decrements of 0.1

Max error
Poo Without selective control Selective control
1 741.2217 0.0014
0.9 257.0124 0.0014
0.8 78.6596 0.0014
0.7 20.5530 0.0014
0.6 4.3676 0.0014
0.5 0.7013 0.0014
0.4 0.0764 0.0014
0.3 0.0058 0.0014
0.2 0.0010 0.0014
0.1 1.2102 x 1074 0.0014
0 0.0014 0.0014

the case without the selective control features
indicate that such a method is not capable of
eliminating the numerical oscillation associated
with T for the given minimal amount of damping.
Although such error can be greatly reduced by the
method as numerical damping is approaching its
maximal value (i.e., p,, approaches zero), such
over-dissipative algorithm is unnecessary when it
can easily be achieved by using the GS4-1 frame-
work with p_ =1 (i.e., non-dissipative for T)
and p’ =0 via the selective control feature
inherent in the GS4-1 framework.

Total error

Without selective control Selective control

1.6459 x 103 0.0341
570.8179 0.0332
174.7673 0.0331

45.7032 0.0332

9.7434 0.0335

1.5961 0.0338

0.2068 0.0342

0.0460 0.0348

0.0231 0.0356

0.0025 0.0367

0.0382 0.0382

Convergence Rate in Time of the Method

The developed GS4-1 framework is second-order
accurate in time. For completeness of the ana-
lyses, we explicitly demonstrate in this section
the rate of convergence in time of the GS4-1
framework employing the numerical methodol-
ogy described in section “Numerical Methodol-
ogy Via the GS4-1 Framework Numerical
Methodology Via the GS4-1 Framework™ for
the one-dimensional transient nonlinear heat
transfer problem considered in this synopsis.
For this purpose and for consistency, we show
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Fig. 7 Convergence plot of the GS4-1 algorithm with

the convergence plots of the algorithms used in
obtaining the numerical results shown in sec-
tion Results Illustrating the Method’s Ability
Via the Selective Control Feature,” namely,
(1) GS4-1 with (p,, pS,) = (1,0) and (2) GS4-1
with (p, p5) = (0.9,0). The set for the number
of time steps used to construct the plots is
N; = [10000, 500, 200, 100], and the end time at
which the solutions are evaluated is 5 s. In
constructing the convergence plots, we use the
standard convergence plot for T and the time
level aligned convergence plot for T (description
and discussion of these different ways of
constructing the convergence plot has been
discussed in [2] and will not be repeated here).
Figure 7 shows the convergence plots of T and T
generated by (a) the GS4-1 algorithm with (p_,
pi.) = (1,0) and (b) the GS4-1 algorithm with
(Poos PL) = (0.9, 0), respectively.

Concluding Remarks

For transient nonlinear heat transfer type appli-
cations dealing with first-order systems, a novel
computational methodology under the umbrella
of the so-called GS4-1 framework was presented.
The original transient linear algorithms and
designs under the GS4-1 framework were
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properly extended to an illustrative transient
nonlinear heat transfer application to satisfacto-
rily capture the problem physics. The GS4-1
computational framework naturally inherits fea-
tures with and without selective control of high-
frequency damping for both the primary variable
and its time derivative. This is extremely note-
worthy and significant. The numerical features
with selective control enable the optimal suppres-
sion of the numerical oscillations selectively for
each of the variables and thereby enable not only
the analysis of long-term system dynamics to be
satisfactory but also readily enable the capture of
the underlying physics. The current state of the
art do not permit such features and consequently
lead to physically incorrect dynamics of the sys-
tem. The simple illustration to a one-dimensional
transient nonlinear heat transfer application
wherein an analytic solution is available was
purposely chosen to highlight the essential
aspects and to demonstrate the significance of
the present developments in capturing the prob-
lem physics.
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Overview

Dynamic thermoelasticity involves generaliza-
tion of both the fields of heat conduction in solids
and continuum elasticity. The thermoelastic
behavior of solids and engineering structures

Application of Isochronous Integration Framework to Dynamic Thermoelasticity

has long been a subject of widespread research
activity and interest, and numerous publications
exist to date including a review article by Tamma
and Namburu [1], as the problem has a significant
number of general engineering applications in
mechanical, aerospace, chemical, civil, elec-
tronic, and nuclear engineering disciplines.
Therefore, an accurate understanding of the inter-
disciplinary thermal-structural interactions is of
utmost importance and concern especially in the
design and analysis stage. The complexity and
interdisciplinary nature of these structures signif-
icantly influences the response characteristics
and makes the combined modeling and analysis
a formidable and challenging task.

In this regard, numerical computational
methods play an important role for both the fields
of heat transfer and the associated structural
analysis especially due to the complex nature of
the structural components and configurations
encountered in engineering practice. Here, we
consider the classical model with particular case
of ramp-type surface heating known as the Stern-
berg-Chakravorty boundary condition [2] and
describe how the problem can be solved by the
isochronous integration (iIntegration) frame-
work. The framework is suitable for use in both
first- and second-order systems, such as the clas-
sical model of dynamic thermoelasticity problem
described in this synopsis, with optimal algo-
rithms, numerical, and order-preserving attri-
butes (in particular, second-order time accuracy)
as well. The principal contribution emanating
from such unified framework is the practicality
and convenience of using the same computational
framework and implementation when solving
first- and/or second-order systems without having
to resort to the individual framework especially
when there is a need to switch from one system to
another.

Governing Equations

For homogeneous and isotropic continuum, the
governing equations for the temperature and dis-
placement fields are the following coupled differ-
ential equations [3]:
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L u; _A'_Lu i)+ f
2(1+v) i, kk 1— 2y k, ki PJi (1)

EOCTO
1—2v

AT + 1 — pe,T — =0 (2)

where E is Young’s modulus; v is Poisson’s ratio;
u; and f; are the Cartesian components of dis-
placement and body force vector, respectively;
p is the mass density; o is the coefficient of linear
thermal expansion; T is the absolute temperature;
A is the thermal conductivity; r is the heat source;
¢, is the specific heat at constant strain; and T
is the reference temperature of the natural, stress-
free state. Meanwhile, superposed dots () and
commas ( ), denote time differentiation and
partial differential with respect to Cartesian
coordinates x;(i = 1,2, 3), respectively.

The equation of motion for the displacement
field (1) is a hyperbolic, second-order (in time)
system. Meanwhile, the governing equation for
the temperature field (2) is parabolic, first-order
(in time) system. Since the developed i Integra-
tion framework described in here is meant to be
used to solve first- and second-order systems,
such classical thermoelasticity = problems
governed by the above equations are well suited
for consideration here to truly illustrate the
method’s ability to solve first- and second-order
systems. Although nonclassical thermoelastic
models also frequently appear in technical litera-
ture, the governing equations for the displace-
ment and temperature fields in this nonclassical
category are both second order in time, hence are
not appropriate for consideration here. The dis-
cussion from here onward will therefore be
focused on the classical thermoelasticity prob-
lems involving first- and second-order systems.

In the theoretical studies as well as engineering
practice of thermoelasticity problems, simplifica-
tions to the above fully coupled equations are
usually made, from which adequate results can
be obtained relatively more easily. These simpli-
fications involve neglecting the inertia term in the
equation of motion (1) to arrive at a quasi-static
model and/or eliminating the coupling term from
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the heat conduction (2) to arrive at an uncoupled
model. Only the latter model is of interest here due
to the reason cited above. Furthermore, analytical
solutions to the uncoupled classical thermoelastic
model are available in literature [4], enabling the
validation of the developed numerical method.
For the uncoupled classical thermoelastic model,
the heat conduction (2) becomes

AT e + 1 — pCvT =0 (3)

We shall now consider particular dynamic
thermoelasticity problem described as follows:
Take a Cartesian coordinate system (x,y,z) and
consider a homogeneous, isotropic, thermoelastic
solid occupying the half-space x > 0. Suppose
that the solid is initially at rest, in stress-free
state, at a uniform temperature of T = T,. At
time t = 0", however, the temperature at bound-
ary of the solid (x = 0) is changed from T =T,
with a ramp-type surface heating (i.e., Sternberg-
Chakravorty Problem) to T = T according to

0 = 1o+ M) -1,

+ (Ty — To)H(t — o)

where H(¢) is the Heaviside unit step-function
and then is maintained steadily at T = T;. The
boundary is let to move without any restrictions
(i.e., is maintained stress-free). The temperature,
displacement, and stress fields after the sudden
heating can be expressed as

ue =uy(x,1), uy=0, u, =0, T=T(x,1)
(5)

= E(l_v) aux Eo
ST +v)(1—-2v) ox ~1-5,T~To) (6)
oy = z—livo‘X—IE_av(T—To) (7)

An observation of (6)—(7) indicate that the
determination of the temperature (7)), x-direction
displacement (u,), and normal stress (o) are of
interest for a complete analysis. From the value of
the temperature and normal stress, the stresses o,



208

and ¢, can be determined from (7). For this case,
and in the absence of body forces (f;) and heat
source (1), (1) and (3) can be expressed as

Puy  (1+v)(1=2v)p Pu, (1 +v)a IT
ox? (1—-v)E or 1—v Ox
(8)
O*T  pc, OT
oz ol ©)

To complete the description of the problem,
the associated initial and boundary conditions can
be expressed as follows:

u,(x,0) =0, %MX(JQO):O, T(x,0)=0 (10)

uy(x = 00,8) = 0, —u,(x— 00,t) =0,

Ox (11)

T(x— o00,t) = Ty

0:(0,1) =0,

T(0,0) =f(r)  (12)

The governing equation can be represented in
dimensionless form by assigning dimensionless
temperature, displacement, and normal stress as
follows:

0 T-To (I —=v)c
= I U= —"—""< -+ U,
Ty k(1 +v)aTy (13)
(1 —2v)
— .
EOCT() .

(1-Vv)E

1 1/2
pe. T {<1+v><1 —2v>p} ’

2
cx c°t . . .
¢ =—,17=— toyield (in concise form)
K K

where k=

W —i—0 =0 (14)
0 —0=0 (15)
o=u—0 (16)

the primes ()’ and superposed dots () denote
partial differentiations with respect to the
nondimensional variables ¢ and t, respectively.

Application of Isochronous Integration Framework to Dynamic Thermoelasticity

Likewise, the initial and boundary conditions can
be expressed in dimensionless forms as follows:
u(é,0) =0,

u(€,0)=0, 0(&0)=0 (17)

u(& —o00,7) — 0, (¢ — o0,7) — 0,

0(¢ — o00,7) = 0 (18)

9(0,7) =0, 0(0,7) =¢(r)  (19)

For simplification purpose, we suppose that
T, = 2Ty, in which case ¢(t) can be expressed
for the Sternberg-Chakravorty boundary condi-

tion as

() = [H(7) = H(z = 2)] + H(x —70)

(20)

Equations (14) and (15) indicate that the equa-
tion of motion describing the displacement field
is a second-order transient system, while the heat
conduction equation describing the temperature
field is a first-order transient system. Solving such
problem would require appropriate time integra-
tion solvers for both second- and first-order sys-
tems, respectively. Therefore, this illustrative
example serves well to demonstrate the applica-
bility of the present isochronous integration
framework. The descriptions of how this example
(or any problems involving first- and/or second-
order systems) can be solved effectively and
practically using the proposed iIntegration
framework will be presented in section Time
Discretization by iIntegration Framework where
we discuss the time discretization of such prob-
lems. In the next section, we first present the
spatial discretization procedures for the problem,
employing the Finite Element Method.

Spatial Discretization by Finite Element
Method

We now proceed in this section to describe how the
governing equations of interest can be discretized
in space using the Galerkin Finite Element
Method. Observation of the governing equations,
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namely, (14) and (15), indicates that the equation
of motion describing the displacement field (14) is
dependent on the temperature field that is to be
solved from the heat conduction (15). Therefore, in
the computational procedures to be described here-
after, we first discuss the heat conduction model,
followed by the discussion on the equation of
motion describing the displacement field.

Heat Conduction Equation for the
Temperature Field

To discretize the heat conduction equation using
the Galerkin Finite Element Method, we apply
the method of weighted residuals to (15). The
temperature field of an element with N nodes is
approximated by a linear combination of time-
dependent nodal temperatures 6,(n = 1,...,N)
and time-independent element shape functions

W,(n=1,...,N)

N
0= Z Gnlpn
n=1

The shape function ¥, is used as the weighting
function in the weighted residual equation. After
use of (21), we obtain the following linear ordinary
differential equation that is first order in time:

(1)

M0 + K0 = F (22)
where 0 is a vector of length N containing the
nodal temperatures 0,(n = 1, ....N), 0 is the time
derivative of 0, while M is the mass matrix of size
N x N and is defined as (p=1,...,N and
g=1,...,N)

M(p.q) = j Wb e (23)

Furthermore, K is the stiffness matrix of size
N x N and is defined as (p=1,...,N and
g=1,...,N)

by v

a a (24)

K(p,q) = JQ

Meanwhile, F is zero vector of length N. The
ordinary differential equation (22) is consistently
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assembled for all elements in the spatial domain
to yield a system of linear ordinary differential
equations that is first order in time, to be solved
using the specially tailored iIntegration frame-
work to effectively capture the problem physics.

Equation of Motion for the Displacement
Field
Employing the Finite Element Method to (14),
following the same procedure as done for the heat
conduction equation (section Heat Conduction
Equation for the Temperature Field), we obtain
for the displacement equation of motion the
following linear ordinary differential equation
that is second order in time:
Mii + Ku =F (25)

where u is a vector of length N containing
the nodal displacements u,(n =1,...N), i is
the time derivative of u, while M and K are the
mass and stiffness matrices of size N x N defined
by (23) and (24), respectively.

Meanwhile, for this model, F is the force vec-
tor of length N defined as (p =1,...,N and
g=1,...,N)

ay,

Flo) = (Lz d¢

where 0, is nodal temperature value at node p
(p=1,...,N) to be obtained from solving (22)
using the present iIntegration framework as
described in section Time Discretization by
i Integration Framework. The ordinary differential
equation (25) is consistently assembled for all ele-
ments in the spatial domain to yield a system of
linear ordinary differential equations that is second
order in time, to be solved using the specially
tailored /Integration framework to effectively cap-
ture the problem physics. This is described next.

wqdz) 0, (6)

Time Discretization by /Integration
Framework

The iIntegration framework, in its natural form, is
a time integration solver originally developed for
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second-order transient system, identical to the
VO-family of the GS4-2 framework previously
presented in [5]. It is described as follows:
Given u,, u,, and u,, one can find wu, |,
0,1, and u,, by first solving for Aii from

(AWM + AsW,ArC + A3 W3APK)Aii
= — Mii, —C(i1, +A4W;Atii,)
— K(u, + AW At +A,WoAR i)
+F,+ Wi (Fop — F)

followed by updating the variables as follows:

W1 =W, + A 0, AL+ Ay i, AP + J3AGAP (27)
U, 1 = U, +A40, At + }yinjAtz (28)
i, = i, +Ai (29)

where
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— Analytical
2
1.5
>
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g
= 05
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S
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T

GS4-1(p,, = pi, = 1), that is, the case without selective
control feature, and (¢, d) GS4-1(p,, = 1, p} = 0), that
is, the case with selective control feature

3 +pm1n +pmax pmmpmax
MW © T ) =1
T2 (e
1
AW, = 4 . =12
M=y 2T
1
AsWs3 =
T (4 o) (14 pm) (14 p3,)
) 1
Ny = ——
P20+
3 +pm1n +pmax pmmpmax
AW, = x Too )=
TR 4 pmin) (1 pman) 4
2
AsW, = 4
T ) (T e (T pn)
, 1
N =
R
A W _ 2+pm1n+pmax+péo pg‘gnpg‘:}axpoo
T W (1 e (4 )
3 min max min ,max
W, = 2P P PP

2(1 mm)(l +pmax)

(30)
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to Dynamic Thermoelasticity, Fig. 2 Plot of 6 and 6 as
a function of time for node 2 (¢ = 0.02) employing (a, b)

Meanwhile, M, C, K, and F are matrices of the
second-order system: Mii + Cu + Ku = F. The
user-defined parameters, p‘z‘,‘%‘y, pox, and p?,
are the two principal and spurious roots at the
high-frequency limit satisfying the following
relation:

0<pl, <pi <pi* <1 (31)

The above framework can also be used to
solve first-order transient system Mu 4+ Ku = F
by carefully adapting it for such purpose as fol-
lows, hence the name isochronous integration
(iIntegration) framework.

For the matrices:

» Assign M in the iIntegration as M in the first-
order system.

» Assign C in the /Integration as K in the first-
order system.

» Set K in the i/Integration to equal 0.

» Assign F in the iIntegration as F in the first-
order system.

05 1 15
T

GS4-1(p,, = p3, = 0.9), that is, the case without selec-
tive control feature, and (¢, d) GS4-1(p,, = 0.9, p3 = 0),
that is, the case with selective control feature

For the variables:

+ Treat il in the /Integration as u in the first-order
system.

 Treatuin the /Integration as u in the first-order
system.

+ Neglect u (i.e., dummy variable).

For the parameters:

+ Set p’_ in the iIntegration that controls u in the
first-order system.

+ Set p0™ in the iIntegration to equal 1.

+ Set p™™ in the iIntegration that controls u in
the first-order system.

and the above iIntegration framework results in the

original GS4-1 framework [6] originally devel-

oped for first-order system, whose algorithms are

defined by choice of the principal root (p,,) and

the spurious root (p? ), with or without the selec-

tive control feature (p,, # pS, or py = p5.,

respectively) satisfying 0 < p° < p_ < 1.
The heat conduction model results in a system

of ordinary differential equations that is first

order in time (see (22)). Therefore, we readily
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adapt the i/Integration framework for solving such
system as described above. This way, the original
GS4-1 framework described in [6] need not be
programmed directly, since the iIntegration
framework automatically adapts to first-/second-
order systems. Performing the assignment opera-
tions as described above, this framework is
recovered directly (from the iIntegration frame-
work). This demonstrates the practicality of the
framework, that is, it readily enables the use of
the same computational code to solve both first
and second-order systems.

We employ the iIntegration framework for
solving the heat transfer model as described
above using the nondimensional time step size
(A7) of 0.1 and nondimensional end time of

GS4-1(p,, = pi, = 0.8), that is, the case without selec-
tive control feature, and (¢, d) GS4-1(p,, = 0.8, p3 = 0),
that is, the case with selective control feature

T = 2. Additionally, we demonstrate the ability
of the selective control feature inherent in the
framework. Such a feature can be turned on by
choosing p‘;‘oi“ # p’, which is equivalent to the
GS4-1 framework with p_, # p’_. On the other
hand, when ho‘;‘j“ = p’, the framework recovers
the GS4-1 framework without the selective con-
trol feature as in the existing/past methods. The
advantage of this feature will be made apparent
by comparing the numerical results generated by
the two cases, that is, with and without the selec-
tive control feature. For this purpose, we let the
p:, of the GS4-1 framework with the selective
control feature to take on zero value, while the
p
nondissipative/zero damping) to 0 (i.e., maximal

values tested may range from 1 (i.e.,
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to Dynamic Thermoelasticity, Fig. 4 Plot of § and 6 as
a function of time for node 2 (¢ = 0.02) employing (a, b)

damping) in decrements of 0.1. The parameter
defining the case without the selective control
feature (pM" = pS ) takes on the same value as
the pTu" for the other case with the selective
control feature to enable valid comparisons
between the cases.

Figures 1 to 4 show the plots of 0 and 0 as
a function of time for node 2 (&£ =0.02)
employing the two cases, that is, GS4-1 frame-
work with and without selective control feature
for p ., values of 1, 0.9, 0.8, and 0.7. It can be seen
from these figures that the two cases yield good
results of 0. However, for the solutions of 9, the
case without the selective control feature results
in large oscillations. These oscillations can be

T

GS4-1(p,, = pS, = 0.7), that is, the case without selec-
tive control feature, and (¢, d) GS4-1(p, = 0.7, p5 = 0),
that is, the case with selective control feature

easily reduced when the selective control feature
is turned on (i.e., by choosing p? = 0). This
shows the advantage of the GS4-1 framework
with the selective control feature in contrast to
past methods without such feature.

We next solve the system of ordinary differ-
ential equations describing the displacement field
as given by (25) as follows:

Mii + Ku = F (32)

In this case, the system is second order in
time, and therefore, we employ the i Integration
framework in its natural form, in which case the
framework recovers the original VO-family of
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GS4-2 framework [5]. For this model, we
employ the UO — VOopima defined by GS4-2:
VO (pmin =0, pm=* =1, pS =0). Since the
computational procedure to solve this system
requires the solution of the heat conduction
model (the first-order system), we use the solu-
tions of 6 generated by the GS4-1 framework

with the selective control feature defined by

Po = 0.7 and p’ = 0. The numerical results
on the nondimensional displacement (x) and
stress (o) as a function of the spatial coordinate
¢ at T =2 are shown in Figs. 5 and 6 for At
values of 0.1 and 0.01, respectively. From
these figures, it can be seen that the numerical
solutions of these variables employing the
U0 — VOoptimar is satisfactory.
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Conclusions synopsis, with optimal algorithms, numerical,

In this work, we describe the significance and
also how the iIntegration framework can be
used to solve a dynamic thermoelasticity prob-
lem, in particular with ramp-type surface heating
(Sternberg-Chakravorty Boundary Condition).
The framework is suitable for use in both first-
and second-order systems, such as the dynamic
thermoelasticity problem described in this

and order-preserving attributes (in particular,
second-order time accuracy) as well. The princi-
pal contribution emanating from such unified
framework is the practicality and convenience
of using the same computational framework and
implementation when solving first- and/or sec-
ond-order systems without having to resort to
the individual framework especially when there
is a need to switch from one system to another.
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Application of Meshless Local
Petrov-Galerkin (MLPG) and
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Definition

The mesh-free or meshless methods are some of
the most effective numerical methods in engi-
neering analysis. In meshless methods, it is not
required to generate any mesh on the whole ana-
lyzed domain which can be considered as
the great advantage of meshless methods. The
governing equations of coupled thermoelasticity

Application of MLPG and GFD Methods

based on Green-Naghdi theory without energy
dissipation in thick hollow cylinder are solved
using two meshless methods including meshless
local Petrov-Galerkin (MLPG) and generalized
finite difference (GFD). In both methods, the
governing equations are discretized in matrix
forms in the temperature and displacement fields.
The boundary conditions are represented in
MLPG and GFD discretized forms of relevant
boundary densities (temperature, heat flux,
displacements, and tractions).

Overview

In many problems of thermoelasticity, the tem-
perature field is directly obtained from the first
law of thermodynamics and the temperature is
independent of displacements. Coupled problems
of thermoelasticity take into account the time rate
of the first invariant change of strain tensor in
the first law of thermodynamics. This causes
dependency between the temperature and dis-
placement fields and, thus, coupling between
elasticity and energy equations. This situation
happens when the time rate of change of thermal
boundary conditions is comparable with the time
rate of structural disturbances. When characteris-
tic times of structural and thermal disturbances
are of comparable magnitudes, the equations of
motion of an elastic body are coupled with the
energy equation. Green and Naghdi presented
a model in coupled thermoelasticity which is
called the GN theory of thermoelasticity [1].

The meshless local Petrov-Galerkin (MLPG)
method is based on local (symmetric or
unsymmetric) weak forms over intersecting
subdomains, which are distributed over an
analyzed domain of problem in both temperature
and displacement fields. Physically the consid-
ered problem is three dimensional though some
components of the physical fields are vanishing
and each physical field is dependent only on the
radial coordinate due to the axial symmetry and
independence on the axial coordinate.

In generalized finite difference (GFD)
method, the partial derivatives are linearly
approximated by Taylor series expansion on
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some nodes (center nodes) in the analyzed domain
such that each center node is surrounded by some
other nodes in both temperature and displacement
fields. Consequently, partial derivatives are
obtained at the rest of each center nodes and the
group of nodes with a center node and surrounding
other nodes is called a star in this method.

Green-Naghdi Coupled Thermoelasticity
in Thick Hollow Cylinder

Consider a thick hollow cylinder made of func-
tionally graded materials (FGMs) with inner
radius “r;,” and outer radius “r,,’~’°, which is
subjected to thermal shock loading. To find the
dynamic response of displacement field, the
coupled thermoelasticity governing equations
should be considered for the problem. In coupled
thermoelasticity, the time rate of the first invari-
ant change of strain tensor is employed in the first
law of thermodynamics. Consequently, this
causes dependency between the temperature
and displacement fields and, thus, coupling
between elasticity and energy equations. To find
the dynamic behaviors of displacement field, the
temperature field and elastic field should be
solved together as a coupled system of partial
differential equations. The governing coupled
thermoelasticity equations based on GN theory
without energy dissipation are given as:

V.o + pF = pii (1)
cT+9ToVeii = pg + V-(K'VT)  (2)

where “u” is the displacement vector, “T” is the
temperature change above the uniform reference
temperature “Ty”, “F” is the external force, and
“g” is the external rate of supply of heat. Both the
“F” and “g” are assumed to be absent in this
work. Furthermore, “p” is the mass density, “c”
is the specific heat, “A” and “u” are the Lame

constants and

y = (3142008 3)

where “f*” is the coefficient of linear thermal
expansion and “k*” is a material parameter of
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the GN theory. The dot over the symbol denotes
the time differentiation. The stress field can be
reached using following equation:

oij = O (A — 7T) + p(urj +upi)  (4)

The axisymmetry and plane strain conditions
are assumed for the problem to find natural fre-
quencies of FG thick hollow cylinder from
dynamic response of radial displacement. Conse-
quently, the following relations are taken into
account to calculate the parameters:

ug=0, u; =0, o, =2pu,, + (;”e - VT)a
ggg =2uu/r+ (Le—oT), 0, =471e—T,

0r) = 0= Orz; = 020, € = Uy + Mr/r

The governing equations (1) and (2) are
reduced to the equations:

uV>2u + (A + w)Vdivu — yVT + pF = pii (5)
cT + vy Todivii = p ¢ + k*V*T (6)

where “u” is the displacement vector, “T” is the
temperature change above the uniform reference
temperature “Ty”, “F” is the external force, and
“g” is the external rate of supply of heat that both
“F” and “g” are not considered in this work. “p”
is the mass density, “c” is the specific heat, “A”

and “u” are the Lame constants, and

y=0Bi+2m) (7)

where “f*” is the coefficient of volume expan-
sion and “k*” is a material constant characteristic
of the theory.

To analyze the problem, we use
nondimensional parameters as follows:

the

- 1(A+2
]_:’_7 l‘:Xl"Ij:—i(/L—’— 'u)],{

I I 1~ T, @)
_ T _ oy  _ a9
T:_7 Oy = ) =

Ty yTo yTo

where “I” is a standard length and “v” is a standard
speed. The governing equation and heat transfer can
be rewritten by using nondimensional parameters:
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C2V% + (C; - cﬁ) Vdivi — C,2VT = ii (9)
Cr2V*T = T+ &*divii (10)

where

Cz_;h+2ﬂ 2 _ K
p — ,0V2 ) T _CV27

(11)
cr_ b 7T
top c(A+2p)

We consider the axisymmetry and plane strain
conditions for problem. The governing equations
for axisymmetry and plane strain conditions can
be obtained as follows:

D% 1 du i
207U 2L0U (o 2\ H
Gt Gl g (G660 (12)
-C 28_T_ — i
"o
T 10T - Oii i
Crilast+=——a| =T+ | =+ = 13
! [8r2+r8r] e {8r+r] (13)
To solve the aforementioned governing

coupled thermoelasticity equations (12) and
(13), there are some numerical methods such as
finite element and other similar methods that are
needed to mesh generations and also numerical
methods based on mesh reduction or meshless
techniques. In this entry, we present two efficient
mesh-free methods, which are called meshless
local Petrov-Galerkin (MLPG) and generalized
finite difference (GFD) methods.

Meshless Local Petrov-Galerkin Method

The MLPG method is based on local weak forms
over some subdomains, which are distributed over
an analyzed domain of problem. In this problem,
the analyzed domain is an abscissa along the radial
coordinate of the FG cylinder. The analyzed
domain is assumed to be covered by small
subdomains in finite size line segments forms.
Nodal points are randomly distributed in the global
domain and each interior node 7 is surrounded by

Application of MLPG and GFD Methods

a subdomain (line segment) Q; = [, 711] on
which a local weak formulation for the set of
Green-Naghdi coupled thermoelasticity governing
equations (12) and (13) is considered. Using A(7)
and g(F) as the test functions, the local weak form
of the coupled thermoelasticity governing equa-
tions can be written over subdomain €; as:

O%u(r,1) 1 9u(r,1)
2 bl 2_ )
J {Cl’ or? +G Fooor
[
(o o)\ L OT(7,1)
(CP Cs ) 72 C or

- ﬁ(r,t_)}h(r)rdr_o

J {C% [6225271)4“%”;?)} _HG8)
o
[ e

} }g(r)rdr:O (15)

for all interior nodes I = 1, 2,..., n. Applying
the integration by parts to equations (14) and
(15), we obtain:

& (D 7)Y

m

710

| ™ ) —e*“(’”]g@rdf
, -
1o
T TR E) TG o
_ 2 P
7 CT( o + - e (r,r)
10
org(r)
o dr=0
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For the problem in this entry, we assumed the
test functions to be equal to Heaviside step unit
function:

1 at e Q

)=o) ={o o LS 08)

The local integral equations (16) and (17) are
simplified as:

all

Cz(aﬁ(r,t)+ﬁ( )

r or r

oz
+ gcﬁ — Cyz) ﬁ(';’t) +7ii (7, f)]dF =0
() eu |

g (20)

The radial basis functions are used to approx-
imate for the spatial distributions of functions
“u(r,t)” and “T(F,)” over a number of ran-
domly located nodes “7;”, I = 1,2,...,N. Con-
sequently, assuming the separation of the spatial
and temporal variables, the considered approxi-

mations take the form:
u(r,r) = RT(f)A(f)
T(r,1) :RT(f )B(t)

where “RT(7) = [R((F), Ry(F), ..., R,(F)]” is
the value of radial basis functions around “7;”,
and “A(7 )” and “B(f)” are vectors containing the
coefficients of “A;” and “B;”, I =1,2,...,N.
The radial basis function studied in this entry

is [2]:

Ri(F) = (|f—f,|2 +c2) (23)
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Form the interpolation equations (21) and (22)
for the radial basis functions, the following sys-
tems of linear equations for the coefficients
“A(f)” and “B(r)” are obtained:

RoA(f) = i(7) (24)
RoB(D) = 1) (25)

where
i (1) = [ (0), #(@),.... 0] (26)
') = 'O, T0)...T'0] @)

are composed of the time variable nodal values of
displacements “i (7)” and temperature “T" (7)”,
while “R(” is the matrix defined by nodal values
of the RBFs as:

Ri(F1) Ra(r1) . R.(71)
RI(FI) Rz(l_z) . Rn(fz)

Ry = : : (28)
R](.f,,) RZ(-’Tn) Rn(.’jn)

To calculate the vectors “A(f)” and “B(f)”,
we can write from equations (24) and (25):

A(f) =Ry a(7) (29)

B(7) =Ry ™' T(7) (30)

The approximated functions can be expressed
in terms of the nodal values and the shape func-
tions as:

a(7, 1) =R (F) Ry a(t) = T (F )i (7)

=Y # @) e
T(F,F) = R (F) Ry~ T(7) = &7 (7) 7(7)
®)

=3 O )
a=1
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where “¢“(7)” is the shape function associated
with the node a. The nodal shape functions are
given by:
o'(F) =R"(F)Ry " (33)
The local boundary integral equations (19)
and (20) for all subdomains yield the following
set of coupled equations:

zn:zz“(r){cf,(

a=1

+¢"

(35)

It should be noted that the essential boundary
conditions on “0€;” can be imposed directly
using the interpolation approximation (31) and
(32). In view of the considered spatial interpola-
tions, the discretized boundary conditions and the
integral equations on local subdomains can be
written in the matrix form as a system of ordinary
differential equations (ODEs) for the time depen-
dent nodal values of the displacement and
temperature.

Mb) + Ko} =11 (36)
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where

a'(r)] (37)

71O =[1'0), 7). T

~|
~—r

Once the coupled differential equations are
established, different numerical methods can be
employed to solve them in time domain such as
Newmark finite difference method or Laplace
transformation.

Generalized Finite Difference (GFD)
Method

In numerical methods that are needed to generate
mesh on the problem domain such as finite ele-
ment methods, the mesh generation takes a long
time during the solving process. In this section,
we develop the application of GFD method in
which there is no need for any mesh generation
for coupled thermoelasticity problem based on
Green-Naghdi theory for thick hollow cylinder.
In this method, the partial derivatives are linearly
approximated by Taylor series expansion on
some nodes (center nodes) in the analyzed
domain such that each center node is surrounded
by some other nodes. Consequently, partial deriv-
atives are obtained at the rest of each center nodes
and the group of nodes with a center node and
surrounding other nodes is called a star in this
method.

Consider the nondimensional radial displace-
ment at a center node to be “iy” and
nondimensional temperature to be “Ty” and the
terms “i#;” and “T;,” are the values of
nondimensional radial displacement and temper-
ature at the rest of surrounding nodes. The func-
tion values “i;” and “T;” can be approximated
using Taylor expansion as:

auo 28 Ug
h:
oF T ( o7 )+

i =iy + h; (38)
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and

T T
T: =Ty + b g 04 <h28 0

TR 82)+... (39)

The term “i” denotes the number of surrounding
nodes. The analyzed domain in the problem is
linear through radial direction on thickness of
cylinder. Consequently, the term “A;” can be
calculated as h; = r; — r,. The terms over second
order are ignored in equations (38) and (39) and the
linear approximation of second order can be
obtained for radial displacement and temperature.
To minimize the error in this method, the function
of norm should be minimized. The functions of
norm for radial displacement and temperature are:

Norm(u)

=3[ (m-aen e ed (RO o] O
(40)

and

Norm(T)

:ZN; (ro_r,-+hiaa (hZa;fT;‘))) (h-)]2

Et)

where “w(h;)” is the weight function. In this
entry, we assume that the weight function is
defined by:

1 1
hi = = —
) = e T

(42)

If the norms (40) and (41) are minimized with
respect to the partial derivatives, a set of linear
equations system is obtained as follows:

U Qi =& (43)

T T
Vo Qr =8, (44)
where the terms “y", > and “y”,” stand for 2 x 2
matrices in displacement and temperature fields,
respectively. The components of matrices “y¥/", ”
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and “y’,” and vectors “&,” and “é’,” are
obtained in the Appendix. The vectors “@,,”
and “@p,” are given, respectively, by:

diiy 0%iig)

Q2 = {8—1‘0’ (’)_rzo} (45)
0Ty PTo\"

Q= {8—}707 W—ZO} (46)

There are some methods to solve the system of
differential equations; one of them is Cholesky
method [3]. In Cholesky method, the symmetric
matrices “y",” and “y’,” are decomposed to
upper and lower triangular matrices. The first
and second derivatives are calculated as:

™

\Mz

—up + ;) hw(h)}

{,i

h 2
—ilp + ;) wz(hi)

(47)

and

Il
-

QD %
T
—N—
M=
|
~
=)

+
H
=
=
=
——
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where the coefficients “A;*”, “Ax"”, “B{"”,

“le,{ss’ “AlT”, “A2T79’ “B]T”, and “BZT” are
obtained in detail as follows:

()

Alu :AlT

(Snmem) () - (S0
(51)
At =A,T
(S (Breweon) - (Swon)
(52)
Bi“=B;"
(S ) (£tweim ) - (z—wuz))
(53)
B =B,"
: (o)
(Bweww) (o) - (Bm)
(54)

The derivatives of radial displacement and
temperature can be also rewritten in star forms
as follows:

ity N
oF —0g Uy + ;ﬁ%i u; (55)
where
N 5 N h~2
Al ;h, w 2 ;7
h;2 N
Al hi*w? (hy) — A”Twz(h,),(x():;oc;
(56)
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For second derivative of radial displacement,
we have:

6217() B N _
W = —ﬁo Uy + Z ﬁi Ui (57)
=1
where
N N )2
=B"Y h’ By -
i=1 i=1
2 hi* N
Bi= B w? () = Ba! S (). o= P
(58)

The temperature derivatives can be obtained
using the similar method:

dTo . X
= _1 T T
5 =T o+;v, ; (59)
where
T 2.2 T h12 2
VQ:AI ;h w (h[)_A2 ;7 (hl)7
T32. 2 Thi2 2 S
V,_Al ]’l w (/’l,)—A 7W (hl)7y0_zyz
i=1
(60)

For second derivative of temperature, we
have:

* Ty LN
77 z—wouo—l-zwiu,- (61)

i=1
where
Yo=Bi" ;hizwz(hf) _BZTZTWZ(;Z )

h2
wi:BlTh[2W2(h) B T 2
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Also, the second derivative of radial displace-
ment with respect to time can be approximated for
first derivative with respect to radius as follows:

9 g _ Voo
oF —0g Uy + Z: o Uj (63)

where the terms “o”” and “o;;”” were introduced in
equations (56). By substituting the obtained rela-
tions in star forms for first and second derivatives
in governing equations (12) and (13) at a center
node, the coupled thermoelasticity governing
equations can be obtained in new form based on
GFD method. In other words, the governing
equations should be valid at every center node

on analyzed domain.
% 1 Ou 71
¢ Ga G e (G C)
or Fo OF 7o (64)
-C 2%_ i
P o 0

N N
1
C,’ (—ﬁ0u0+ » ﬁ,u,«) +C,,2f— (—aouo+ > ociui)
p < Yoo+ E Vi ul) =u

(65)
(c2-c?) roiz} i
N 1
+ Z {C,,zﬁ,- +Cl— Oti} i + {C;VO} Ty
i=1

N
+> =G} Ti=io
i=1

1
{_ﬁo Cp—aCp? — —
ro

(66)
and also we have:
0*T 1 OT - Oly I
2[9To 0 [0 iy
Cr L‘)r? +;0 8r} To+ [8r+r0} (67)

N N
1 _ _
Cr? | —Yotto+ > Wit | +Cr*— | =y To+ > 9T
T < %MOJF. W1”>+ % ( Yo 0+i:1 Vi )
:fOJrs*{ocoqurE oc,u,}

iuo
l

(68)
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{—l//()CTz—“/oCT ?} +Z{ pz'ﬁ +Cr —VI}T
=f0+{ e o +— }M0+Z{8 o il

(69)

The following system of linear equations is
obtained for the distributed nodes on the analyzed
domain.

[M](N+l)*(N+l){¢} + K vy v 1@ v

= [f](NH)*l

(N+1)"1
(70)

where

Uy TN}T
(71)

{(f’}T:{ﬁo To iy T

i TN}T
(72)

Similar to the previous section, different
numerical methods can be employed to solve
the obtained differential equations in time
domain such as Newmark finite difference
(NFD) or Laplace transformation.

Future Directions for Research

Although the MLPG and GFD methods are
available to solve the governing equations
of coupled thermoelasticity even for some
cylinder, shells, and plates, they are not avail-
able in the general case of nonhomogeneous
media and/or for geometrically nonlinear
problems. Also the presented methods can be
developed for other coupled thermoelasticity
theories such as Lord-Shulman and Green-
Lindsay and for calculation of thermoelastic
damping in microscales and nanoscales of
media.
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Appendix

. u T
The componenti of matrices 5 and ¥, and
vectors &5 and &, are given as

N 3
v i) 3 3w ) (73)
u — 1= 1= 73
2 N 3 N 4
> w3 (hy) > IR
N
Z (71/7() -+ fﬁ[)h,-wz(h,-)
a=|4 2 (74)
> (—ito + —it;) 5w (hy)
i=1
N N s
SoRiwA(hi) YD Fw (i)

T _ |i=1 i=1 75
lpz N hj ) N N ﬁ ) N ( )
;2w(,) §4W(’)

N — —
S (=To + —T:)hiw? (k)
g= 5 2 (76)
> (—To + —T) % w*(hy)
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Synonyms

Coupled problem of thermoelasticity: Solution in
a series of functions form

Application of the Generalized Functions Method

Overview

We consider the piecewise-homogeneous bodies
consisting of the separate parts with dissimilar
physico-mechanical properties, which are con-
stant within each part. The accurate analysis of
thermal stresses in such structures presents a very
important problem for engineering and requires
effective approaches for its implementation.
One of such approaches (Kolyano and Popovych,
1975) is based on the use of the generalized
functions theory (the distribution technique)
for describing of such structures in a com-
prehensive whole and utilizing thermoelasticity
equations for nonhomogeneous bodies under
ideal thermomechanical contact of the interfaces.

A different method within the framework of
such approach has been suggested by Yu. M.
Kolyano, O. M. Kulyk, and R. M. Kushnir
in 1980. Its implementation involves the
mathematical formulation of the generalized cou-
pling problems for differential equations of
thermoelasticity for homogeneous bodies (simi-
lar formulation has been provided for the Cauchy
problem). For this purpose, the given and
unknown functions, and the coefficients of the
differential equations are extended by means of
the characteristic functions on the entire domain
occupied by the piecewise-homogeneous struc-
ture. Then the contact conditions on the interfaces
are satisfied (in the cases of both ideal and
nonideal contact). The partly degenerated differ-
ential equations of heat conduction and
thermoelasticity with discontinuous coefficients
arising in such problems for massive bodies and
thin-walled plates and shells of piecewise-
homogeneous structures are obtained. A proce-
dure for finding their solutions is proposed.

Modeling of the Piecewise-
Homogeneous Structures by Means
of the Generalized Functions

A characterization of a piecewise-homogeneous
body as a comprehensive whole can be performed
by making use of a characteristic domain func-
tion defined for the domain occupied by the body.
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In the case of one-dimensional nonhomogeneity,
this function can be given through the asymmet-
ric Heaviside function:

H_(x3) ={(1, x3 20) U (0, x3 <0)} (1)
Then, for instance, the thermostressed state of the

multilayer body (Fig. 1) can be described by
characteristic domain function in the form

n—1

p(x)=pi(x) + )

i=1

i1 (%) = pi(x)]H_(x3 — ;)

(2)

Here p(x) and p;(x) denote the unknown
(temperature, displacement-vector, and stress-
tensor components) and given (thermal and
mechanical characteristics, density of internal
heat sources, etc.) functions in the regions,
which are occupied by the multilayer body or its
ith layer, respectively; n is the number of the
layers; d;, i = 1, n are coordinates of interfaces;
X = (X1, X2, X3).

By making use of the representation (2), the
solution of the thermoelasticity problems for the
piecewise-homogeneous bodies can be reduced
to the solution of the corresponding partly
degenerated differential equations of heat con-
duction and thermoelasticity theories with dis-
continuous coefficients.

A Technique for Deriving of
Thermoelasticity Equations by Means of
the Corresponding Equations for
Nonhomogeneous Bodies

A technique for determination and investigation
of thermal stresses in piecewise-homogeneous
bodies by making use of the distribution tech-
nique has been proposed by Kolyano and
Popovych [1, 2]. This technique is based on
application of the representation (2) and
thermoelasticity equations for nonhomogeneous
bodies for derivation of the corresponding partly
degenerated differential equations of the heat
conduction and thermoelasticity theories with
discontinuous coefficients.
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Application of the Generalized Functions Method
for Analysis of Thermal Stresses in Piecewise-
Homogeneous Solids, Fig. 1 Scheme of the multilayer
body

Let us consider, for instance, how this tech-
nique can be applied for the above-considered
multilayer body (Fig. 1). For determination of
the nonstationary temperature field 7(x, ) in this
body, we employ the heat conduction equation

AT + k™' (x3) 03[k (x3) 05T
=1 )T — k(a3 w(x, 1)

for a body, which is nonhomogeneous with
respect to the coordinate x;. Here k(x3) and
Kk(x3) are the coefficients of thermal conductivity
and thermal diffusivity, w(x, ¢) is the density of
internal heat sources, A, =07+ 95 is the
Laplacian with respect to x; and x,, and 9; = d‘—z/

For the case of the multilayer body, the func-
tions T'(x, £) and w(x, f), as well as the coefficients
k(x3) and x(x3), appear in the form (2). By put-
ting them in an equation that is similar to (3) but
with generalized derivatives, followed by differ-
entiation with the following properties

F(3)o_(x3—d;)=f(d; —0)_(x3 — d;)
H_(x3—d;)0_(x3—d;)=0

H (x3—d)d _(x3—d;)=0

H_ (x3 —d/)é_(x3 —d;)

={(0,di <dj) U (0_(x3 —di), di > d)) }

4)

of the asymmetric Heaviside and impulse func-
tions and their products [3] in view, we can obtain
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the following partly degenerated differential
equations of the heat conduction:

n—1
AT = K*l(x3)T + Z (1 — K,'+1)83T,'+1 e (3,(X3 — d,‘)

i—1 3=d;

(5)

Here f(x3) is an arbitrary piecewise-continuous
function, A =97 + 05 + 07 is the Laplacian,
Kit1 = kiy1/ki, and 6_(x3) is the Dirac delta
function, which can be determined, along with
its derivative, as the generalized derivatives of
the asymmetric Heaviside function:

o (x3) =dS"H (x3) 1=0,1

Due to the fact that the derivatives in the heat
conduction equation (3) for a nonhomogeneous
body are used in a classical meaning and mean-
while the ones in the equation (5) for the multi-
layer body are used in generalized meaning, the
equivalence of the solutions of the mentioned
equations can be achieved under matching con-
dition for the classical and generalized deriva-
tives. This requirement yields the equivalence
conditions for the temperature and the interfacial
heat fluxes in the multilayer body. Consequently,
the partly degenerated differential equations of
the heat conduction (5) must be equivalent to the
system of equations

AT; = «;'T;—ki'w; i=T1,n (6)

at x3 =d;
(7)

which correspond to equation (3) for a homoge-
neous body within each of the parts of the multi-
layer body and to the conditions of the ideal
thermal contact on the interfaces that has been
shown in [3]. In accordance to the expression (2)
and the first contact condition, the equality
03T |X3: 4= 83T]x3: 4 holds. This condition
must be accounted in the right-hand part of
equation (5).

For obtaining of the corresponding equations
of the quasistatic thermoelasticity problem for

Ti=Tiy1 kiOsTi = kiy103T 41
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the multilayer body, we depart from the
thermoelastic equilibrium equations in terms of
displacements for nonhomogeneous body. By
putting the expressions for the Lamé coefficients,
Aand p, and the thermal expansion coefficient, o,
written in the form (2), into the aforementioned
equations and then providing the same mathemat-
ical treatment as in the case of derivation of the
heat conduction equation, we arrive at the system
of three partly degenerated differential equations
of thermoelasticity:

Au1 + [1 + (D)L(X3)]81€ = (JJ/;(X3)8]T

n—1
- Z 'ui_l (MH-I - ﬂi) (alul;rl + a31’#1-"_1) |x3:di
=1
X 5,()(3 — d,)
(ur,x1) = (u2,x2)
Ausz + [1 + w,(x3)]03e
n—1
= wp(x3)03T — Z 1 [(Rir — 2i)e
i=1
+ 21 — 1) 0313501 — (Biyr — Bi) Tivt ] =g,
X 5_()63 — dz)

(8)

with discontinuous coefficients for determination
of the components of the displacement-vector
components u = (u;, up, uz) for the considered
multilayer body. Here

n—1

o, (03) = yupy Y ety — v VH- (x5 — di)
i=1

y=4F e=01u + Oy + O3us
B =a(32+2p)

Note that for the case when the parts of the
multilayer body are made of the metals or
other materials with neighbor Poisson ratios v,
the coefficients of the differential operators
in the above system are constant due to
w(3)=w=(1-2v)".

Analogously to the case of the heat conduction
equation, it is shown that the system of three
equations (8) is equivalent to n systems of
the Lamé equations consisting of the three
equations for each part of the multilayer body
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along with the conditions of ideal thermome-
chanical contact on the interfaces. In accordance
to (2), the satisfaction of the later conditions

yields the equalities Blum“’ = Ot | y—g.»

x3=d;
I, m=1,3, Tisilyg, = T|X3:d7, which must be
taken into consideration in the right-hand side
parts of the equations (8).

The results of applications of this approach to
study of thermal fields and stresses caused by
them in massive and thin-walled bodies of piece-
wise-homogeneous structures are presented
in [1-6].

Generalized Coupling Problems for
Thermoelasticity Equations for
Homogeneous Bodies

In the above-considered technique for derivation
of the governing thermoelasticity equations for
piecewise-homogeneous bodies, the equations
for nonhomogeneous bodies were regarded as
the input ones, and the ideal thermomechanical
contact conditions were imposed on the inter-
faces. For simplification of the procedure for
derivation of the partly degenerated differential
equations of the heat conduction and
thermoelasticity theories with discontinuous
coefficients and application of the distribution
technique for determination of the thermal and,
consequently, the thermostressed states of the
piecewise-homogeneous bodies under more gen-
eral contact conditions, an alternative method has
been proposed by Kolyano et al. [7]. The basic
idea of this method is to obtain the governing
equations using the procedure of mathematical
statement of generalized coupling problem for
the thermoelasticity equations of homogeneous
bodies. The main stages of this method are the
following:

— According to representation (2), extend
the required and given functions to the
entire region occupied by the piecewise-
homogeneous structure.

— Take the connections between the generalized
and classical derivates into account along with
the conditions of nonideal contact at interfaces
between its homogeneous components.
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Let us consider an application of this method
for derivation of the heat conduction equation for
the above-mentioned multilayer body under
nonideal thermal contact on the interfaces
between the homogeneous layers.

As a result of implementation of this proce-
dure for mathematical statement of generalized
coupling problem, we can obtain the following
partly degenerated heat conduction equation:

n—1

AT = K_I(X3)T + Z {[83T][5,<X3 — d,)

i=1 (9)

+ [T),6' (x5 —dj) } — k™" (x3)w(x, 1)
with  discontinuous coefficients for the
laminated body under consideration. Here

[P]t = (Pi+1 _Pi) |x}:d[-

If the nonideal contact with thermal resistance
R; (the simplest condition of the nonideal thermal
contact) is assumed on the interfaces x3 = d;,
then the jumps of the temperature function and
its derivative, those occur in the right-hand side
of heat conduction equation, can be determined
as follows:

[T]l — Riki+]a3Ti+1 |)€3:d1

(10)
[83T]i = (1 — K,»+1)83T,-+1 |X3:d,'

Note that [T], =0 in the case of the ideal
thermal contact. Then the heat conduction
equation (9) coincides with equation (5).

In a similar manner, by means of the formula-
tion of the generalized coupling problem for
the system of thermoelasticity equations in
terms of displacements for a homogeneous
body, the corresponding partially degenerated
thermoelasticity —equations for piecewise-
homogeneous bodies can be obtained. In [§-11],
such equations are given for the quasistatic
thermoelasticity problems in multilayer bodies
under conditions of the nonideal thermal contact
in more general in comparison to (10) form, for
example, the conditions which account the heat
generation due the friction between moving
contacting layers or connection of the layers
through the thin intermediate layer.
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By means of this method, many quasistatic
problems for piecewise-homogeneous massive
bodies and thin-walled plates and shells and
plates with coordinate-dependent heat exchange
coefficients were solved and numerically verified
[8-19].

To construct the solutions of partly
degenerated thermoelasticity differential equa-
tions with discontinuous coefficients, a method-
based construction of a fundamental system of
solutions of the corresponding homogeneous
ordinary differential equations of arbitrary order
with discontinuous coefficients is developed
[3, 20]. The need to solve these equations arises
in the application of integral transforms to the key
equations of thermoelasticity or for construction
of the corresponding Green functions for
quasistatic thermoelasticity problems in multi-
layer bodies [16, 19]. The procedure for reducing
the above-mentioned partly degenerated differ-
ential equations for bodies with cracks and inho-
mogeneous inclusions to the boundary integral
equations is proposed in [14, 17].

Thermostressed State of a Piecewise-
Homogeneous Friction System

For example, we consider a friction system
modeled by two different elastic half-spaces
and sufficiently thick layer parallel to their
boundary surfaces with physico-mechanical
characteristics different from the characteristics
of the half-spaces. This one-dimensional
piecewise-homogeneous body is compressed
at infinity from both directions parallel to
the x3-axis by forces Py,. From an initial
moment of time, the intermediate layer begins
to move with a low velocity v relative to the
half-spaces. We determine the nonstationary
temperature field that arises as a result of the
contact interaction of the three-layer structure
from the frictional forces. On the basis of the
formulated one-dimensional generalized cou-
pling problem, similarly to (9) with specified
temperature jumps and derivative of the temper-
ature, the following heat conduction equation
[9] appears as
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T = k™ (x3)T

+i{(1

—f,-PoVk;l} o_ ()C3 -

Kiy1)03T ity g,

d;) + [Zki+1hf133Ti+1 |X}:d

d,-)}

n fl.Povhfl] & (x3—

(11)

and the initial and boundary conditions are

T(x3,0) =0 lim T(x3,£) =0

x3—+00

(12)

Here f; and h; are the coefficients of friction
between (i + [)-th and ith components and the
thermal conductivity of the contact surface
X3 = d;, respectively. We construct a solution of
the boundary-value problems (11) and (12) by
applying the Laplace transform. To simplify the
derivation of the governing equation, we set
Kx(x3) = K, that is, x; = x, i = 1,3, and d; = 0.
As a result, we obtain an expression for the trans-
form of the temperature function:

f(X3, s) = Cexp(x38)[1 — H-(x3)]
+[CO(x3) + O] (x3)|H_(x3)
+ { [Cd30(x3) + d30(x3)] . _,, O3 (x3)
+ ®g(x3)}H, (vs — db)
(13)

Here

) exp(—st)dt

o0
T(x3, s /Tx%
0

O(x3) = exp(x335) + 507 (x3)

0Y(x3) = — Fi(s) k7| sinh5(x3 — d;)

+ h; 'scosh5(x; — dy)]

O (x3) 1)s ' sinh5(x; — d;)

_ d,-)]

= [(Kijrll -

+ 2k,-+1hi’1 cosh 5(x3
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C=- [@? exp(5da) + ©,d309(x3) |X3:d2 + 62}

x [(2+@1s) exp(sa)+ O350, |

Fi(s) = F.Pov(s3) ™" ©) = —Fi(s) (ki + hi's)

—k

©; =5 (K — 1) + 2kl 5= \/s/x

For determination of the thermoelastic state of
the considered piecewise-homogeneous frictional
structures on the basis of the one-dimensional
quasistatic problem of thermoelasticity, the system
of equations (8) can be simplified and takes
the form

Puz = o(x3)[1 + v(x3)][1 — v(x3)] " 05T

+ 2 {ual =1 )1 =) 11

X 0_ (X3 — d,)
(14)

Note that the conditions for equality of dis-
placements u3(x3,f) and normal stresses
033(x3,¢) at the interfaces have been already
taken into account in this equation.

By substituting the expression (13) into the
Laplace transform of the equation (14) with
n =3 and integrating the result with the condition
033],, 400 = —Po in view, the expression for the
transform of the thermoelastic displacement
it3(x3,s) can be found in the form [10]

fis(x3,5) = Cy5~ {exp(ess) [1 = H_(x3)] +H_(x3) }

X3

4B (x3) / [CO(xs) + 0% (xs)]ds
0

+(Bs — B)H (s — do) / [CO(x)
dy
+ 09 (x3)]dxs + B3H (x5 — da)

X3

x / { [Cd30 (x3) + d30 (x3)]

,0i()

x3=

+ @‘2’(x3) }dX3 + Cux3

(15)
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Here
Cory = Cllxy + [ = Vs (x3)
+ [Cl(;) - Cf,z)} (x3 —dr)H _(x3 — d>)
Cz(j) = —(uyms)'Po ;= Ei2(1 + ;)]

m=2(1—v)(1—2v)""
Bi=ai(1+vi)(1—v)~"!

E; is Young’s modulus of ith component.

Due to the cumbersomeness of the expres-
sions (13) and (15), it makes sense to find the
originals of the unknown functions by applying
numerical inversion methods. In the considered
case, for instance, the original functions T (x3, f)
and uz(x3,f) can be found by using the
spectral method with Jacobi orthogonal polyno-
mials [10].

To illustrate this method, we consider its
numerical implementation for a three-layer
(steel-aluminum-steel) frictional system with
the following parameters: f| =f, = 0.3, h; =
hy =0.5-10* W/(m?- °C), Py = 0.5 MPa,
d] = 0, dz =0.2m.

In Fig. 2, the time dependences of the
contact temperature T4, for various velocities of
motion of interlayer with respect to the half-
spaces are shown.

We can observe that the contact temperatures
increase with the velocity of motion. It can be
shown [10] that the contact displacements have
a similar behavior. The temperature has jumps at
the interfaces due to nonideal thermal contact,
while the thermoelastic displacement is continu-
ous. The comparison of the temperature distribu-
tions T(xs,7) versus coordinate x; in the
considered structure to the temperature in a two-
layer (steel-aluminum) space for the same values
of t and v shows the redistribution and equaliza-
tion of temperature across the structure due to the
presence of the interlayer and the choice of the
materials of both half-spaces to be identical.
Since the contact temperature T, significantly
decreases, the temperature jump in the three-
layer structure at the interfaces x3 = 0 is smaller
than in the case of the two-layer structure.
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Overview

Understanding reliability of microelectronics
under thermal cycling stresses is an integral part
of implementation of advanced area array pack-
aging technologies, especially those considered
for high reliability applications. In the past, there
was always a ceramic version of a plastic package
for high reliability use, including the plastic-ball-
grid-array (PBGA) which has the analogous
ceramic-ball-grid-array (and column-grid-array)
(CBGA & CGA). Today, there are fewer ceramic
versions with time-delay of the latest technolo-
gies. In fact, under thermal stresses, even though
ceramic packages are individually more reliable
compared to their plastic BGA versions, they
may not always be the most reliable choice
when assembled onto polymeric board due to
generation of much larger coefficient of thermal
mismatch.

This entry discusses important parameter
affecting surface mount packaging and assembly
solder joint degradation due to thermal cycling
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fatigue stresses. The key parameters include
coefficient of thermal mismatches due to global,
local, and solder alloy. Specifically literature data
gathered for ceramic-ball-grid-array (CBGA)
and ceramic-column-grid-array (CCGA or
CGA) were classified into different sets to delin-
eate packaging and assembly parameters
influencing cycles to failure. It briefly discusses
various modeling approaches for predicting sol-
der joint reliability of microelectronics packag-
ing and assemblies.

Package/Assembly Under Thermal
Stresses

High Reliability Applications

Contrary to early development of microelectronic
technologies that aimed mostly at meeting high
reliability applications, however, in the past
decades, consumer electronics is driving the
trends for electronic packaging and assembly.
With that being the primary driver, materials
and processes are transitioned to Pb-free solder
alloy due to restriction of hazardous substances
(ROHS) implementation. While there is a drive to
develop new low-k dielectrics and advanced
organic substrate materials, the higher melting
temperature of these solder alloys is pushing the
limits of the reliability of these material sets.
High reliability industry now uses both specialty
electronics as well either adapted consumer elec-
tronics or their tailored versions for higher reli-
ability applications.

In the past, for high reliability applications,
there was always a ceramic version of a plastic
package, including the plastic-ball-grid-array
(PBGA) which has the analogous ceramic-ball-
grid-array (and column-grid-array) (CBGA &
CGA). Today, there are fewer ceramic versions
with time-delay of the latest technologies for
harsher environmental applications. In fact
under thermal stresses, even though ceramic
packages are individually more reliable com-
pared to their plastic BGA versions, they may
not always be the most reliable choice when
assembled onto polymeric board due to genera-
tion of much larger coefficient of thermal
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mismatch. Solder joint reliability under thermal
stress, especially thermal cycling, has become an
integral part of the microelectronic packaging
equation for overall system reliability, especially
those for high reliability applications discussed in
this entry [1-10].

Reliability for Package/Assembly
Reliability under thermal stress for package and
assembly depends on the reliability of constituent
elements and global/local interfaces (attach-
ments) [11]. Solders in surface mount are unique
since they provide both electrical interconnection
and mechanical load-bearing element for attach-
ment of package on PCB and often also function
as a critical heat conduit too. A solder joint in
isolation is neither reliable nor unreliable; reli-
ability has meaning only in the context of inter-
connections either within package or outside of
package on PCB. Solder joints are a key interface
element for BGA/CBGA/CGA package and
assembly on PCB. As schematically shown in
Fig. 1, three elements play key roles in defining
reliability for CGA, global, local, and solder
alloy. In CGA, solder columns also act as load
carrying element between package and boards
similar to metallic leads such as those for
CQFP. The characteristics of these three ele-
ments — package (e.g., die, substrate, solder
joint, underfill), PCB (e.g., polymer, Cu, plated
through hole, microvia), solder joints (e.g., via
balls, columns) — together with the use condi-
tions, the design life, and acceptance failure prob-
ability for the electronic assembly determine the
reliability of BGA/CBGA/CGA assemblies.

In other words, reliability is the ability of
a system (here microelectronics) to function as
expected under the expected operating conditions
for an expected time period without exceeding
the expected failure levels. However, reliability
is threatened by infant mortality due to workman-
ship defect and lack of sound manufacturing, and
reliability design. Designs for manufacturability,
design for assembly, design for testability, and
so on are prerequisite to assure the reliability of
the product. Only design for reliability can
assure that manufactured-to-quality product
will be reliable. The elements of the system

Global CTE
Mismatch

Local CTE
Mismatch

Area Array Package/Assembly Under Thermal
Stress, Fig. 1 Reliability under thermal stresses are
defined by: global, local, and solder alloy coefficient of
thermal expansion (CTE) mismatches

Electronic System

" Design for Reliability ™,

1
A

Area Array Package/Assembly Under Thermal
Stress, Fig. 2 System reliability achieved through
design for reliability (DfR), sound manufacturing, and
quality to packaging/device/PCB and interconnections

reliability are schematically shown in Fig. 2
which are comprised of device/package/PCB
and interconnections and also include consider-
ation of design for reliability prior to assembly
and subsequent manufacturing and quality assur-
ance implementation.

Package Reliability

Typical packaging build steps are schematically
shown in Fig. 3. After wafer processing and test-
ing, the wafer is generally sawed into die, which
are then packaged or used as chip-on-board flip
chip direct attachment. In wafer level packaging
(WLP), protection and testing are first performed
on the wafer and then dicing in preparation for
surface mount assembly (SMA). There is a great
contrast between processing at the chip and
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Area Array Package/
Assembly Under
Thermal Stress,
Fig. 3 Microelectronic
packaging steps
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package levels, including the defects created and
the reliability implications involved. Materials
and process steps involved may need to be mod-
ified in order to achieve reliable package for
application in a harsher environment including
extremely cold or extremely hot environments.
Packaging materials and structures are chosen
to meet the demands of device used in conven-
tional environments. Thus, metals are selected
according to how well they conduct current into
and out of chips, and encapsulants on their ability
to encase and protect the die over commercial
temperature ranges. In addition to their electrical
conduction function, metals are used in packag-
ing as mechanical supports, to conduct heat away
(heat sinks), and to seal the contents. Ceramics
like alumina also serve as containers for chips
and often the substrates for mounting semicon-
ductor devices. Polymers are used to hermetically
encase the chips and are employed in printed
circuit boards for mounting the packages.
Silicon of chip in package degrades under
thermal stresses. Most Si device degradation
mechanisms are thermally activated and the
device reliability is a strong function of tempera-
ture and operating voltage. The higher the

temperature, the greater are degradation mecha-
nisms such as inter-diffusion through intercon-
nection, latch-up, noise, and heat. For thermally
activated failure mechanisms, the relative
improvement in mean-time-to-failure (MTTF) is
proportional to a temperature-dependent term
expressed by the Arrhenius relation:

MTTF ~ exp(E,/KT) (1)
where E, is the activation energy of a given ther-
mal process, T is absolute temperature, and K is
Boltzmann’s constant. E, will typically range
between 0.3 and 1.2 eV. A lower value of E,
implies that the temperature effect is less signif-
icant for a failure mechanism than the one with
higher E,.

SMT Assembly Reliability

Majority of fatigue failures of solder joints in
surface mount assemblies are due to global CTE
mismatch induced damage while early premature
failure may be due to workmanship anomalies and
local interfacial integrity deficiencies [11]. The
global expansion mismatches result from differen-
tial thermal expansions of a package and the PCB
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assembly. These thermal expansion differences
stem from differences in the coefficients of ther-
mal expansion (CTEs) and thermal gradients as
the result of heat dissipation from functional die
within package. Global CTE mismatches typically
range from Ao ~ 2 ppm/°C (2 x 107°) for CTE-
tailored high-reliability assemblies to Aax ~14
ppm/°C for ceramic packages (e.g., CBGA/
CGA) on FR-4 PCBs. The shear strain representa-
tive of the global CTE mismatch due to thermal
excursion is given as follows:

v = (ac — o5)(Te — To)L/H = (Aa)(AT)Lp/H
(2)

Global CTE mismatches typically are the larg-
est, since all three parameters determining the
thermal expansion mismatch, i.e., the CTE
mismatch (Aa), the temperature swing (AT),
and the largest acting package length (Lp),
a.k.a., distance to neutral point (DNP), can be
large. In thermal cycling, this global expansion
thermal mismatch will induce cyclic stresses, and
thus fatigue the solder joints. The cumulative
fatigue damage will ultimately cause the failure
of one of the solder joints, typically a corner joint
in CBGA/CGA, causing permanent functional
electrical failure that initially may be intermit-
tent. The shear strain representing damage in
each cycle is proportional to Ax, AT, and Lp,
and inversely proportional to the package /PCB
separation height (H). For this reason, CGAs are
selected for higher package sizes and I/Os since
thermal strain is lower for higher column
height (H) than their CBGA counterparts; there-
fore, it is expected to show better thermal cycling
fatigue life.

The local expansion mismatch results from
differential thermal expansions of the solder and
the base material of the package or PCB assem-
bly. These thermal expansion differences result
from differences in the CTE of the solder and
those of the base materials together with thermal
excursions. Local CTE mismatches typically
range from Ao ~7 ppm/°C with copper to
~18 ppm/°C with ceramic. Local thermal expan-
sion mismatches typically are smaller than the
global expansion mismatches, since the acting
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distance, the maximum wetted area dimension,
is much smaller in the order of tens of mils, e.g.,
20 mils for a typical column diameter.

Solder alloy CTE mismatch covers micro-
structural changes as solder alloy is a mixture of
two or more elements. The grain structure of tin-
lead solder is inherently unstable. The grains will
grow in size over time as the grain structure
reduces the internal energy of a fine-grained
structure. This grain growth process is increased
by exposures at elevated temperatures as well as
strain energy input during cyclic loading. The
grain growth process is thus an indication of the
accumulating fatigue damage. Figure 4 illus-
trated grain growth near cracks for a CGA assem-
bly after 200 thermal cycles in the range
of —55°C to 100°C. For tin-lead solder, an inter-
nal CTE mismatch of ~6 ppm/°C results from the
different CTEs of the Sn-rich and Pb-rich phases
of solder. Internal thermal expansion mismatches
typically are the smallest, since the acting dis-
tance, the size of the grain structure, is much
smaller than either the wetted length or the com-
ponent dimension, in the order of mils.

Fatigue Models for SMT Reliability Prediction
Predicting solder joint fatigue failure under ther-
mal cycling stress has been one of the challenging
problems for microelectronic packaging and
assembly [12]. Early solder joint fatigue models
were developed based on experimental thermal
cycling tests using strain gauge; therefore, most
models are correlated to strains. As size of pack-
age decreased, finite element analyses (FEA)
become a more popular approach for estimating
strains in PBGA/CBGA/CGA assemblies. The
Coffin-Manson relationship perhaps the best
known and most widely used was developed for
aerospace metals and was considered for tin-lead
solder. The model relates the total number of
cycles to failure (CTF) to the plastic strain ampli-
tude and the fatigue ductility coefficient and
exponential.

In a previous investigation, the modified
Coffin-Manson relationship (a.k.a., Norris and
Landzberg) was applied to correlate thermal
cycle failure test data of CBGA assemblies from
different thermal cycle regimes and ramp rates [5].
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Fig. 4 Tin-lead solder
alloy phases and grain
growth in CGA after
thermal cycling
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This relationship is one of many numerous para-
metric modeling analysis methods that have been
proposed and used by industry for projection CTF
from one thermal cycle condition to a field appli-
cation. Table 1 lists a number of these models for
reliability extrapolation of tin-lead solder joint
attachments [10].

In the Coffin-Manson relationship, CTF is
inversely proportional to the creep strain. Its
modified version includes the effects of fre-
quency as well as the maximum temperature
and is given by:

(N1/N2) o< (Ayz/A%)ﬂ(fl/fz)K

(3)
exp{(1414(1/T, — 1/T>)}

» N;and N, represent cycles to failure under two
plastic strain conditions. f is the fatigue expo-
nential and is generally assumed to be equal to
1.9 [13].

e Ay is proportional to (DNP/h) Ao AT, where
DNP is the distance from the neutral point at
the center of the package, h is equal to the
solder joint height, Aa is the difference in the
coefficient of thermal expansion of the pack-
age and PCB, and AT is the cycling tempera-
ture range.

« f1 and f, are fatigue frequencies. x is the fre-
quency exponential varying from O to 1, with
value 0 for no frequency effect and 1 for the
maximum effect depending on the materials

and testing conditions. A value equal to 1/3 is
commonly used to extrapolate the laboratory
accelerated thermal cycles-to-failure data with
short duration (high frequency) to on/off field
operating cycles with long duration (low fre-
quency), i.e., a shorter field cycles-to-failure
projection.

e T, and T, are maximum temperatures (in
degrees Kelvin) under the two cycling
conditions.

Key Parameters Affecting CBGA/CGA
Assembly Under Thermal Cycles
Data on thermal cycles were gathered to illustrate
the effects of package and assembly parameters
(e.g., Aa, AT, Lp, H) for CBGAs and CGAs.
Table 2 lists cycles to failure for a number of
CGA and CBGA package assembly having dif-
ferent configurations, selected from the limited
data set reported in the literature [14—19]. Data
were chosen to illustrate the effects of only a few
key parameters on the reliability. The parameters
listed in the following were considered for tabu-
lating test data, even though in some cases spe-
cific information was not reported and missing.
o Thermal cycle range, ramp rate, dwell times
— For example, the CTS0%F (cycles-to-fifty
percent-failure) for the CBGA 361 over the
range of 0°/100°C was 4,535 cycles (Case
#2); it diminished to 1,190 cycles when
the temperature range was broadened
to —=55°/110 °C (Case #6)
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Area Array Package/Assembly Under Thermal Stress, Table 1
for plastic- and ceramic-grid-array packages

Model Reliability/life-prediction representation
Coffin-Manson Ny=2.277 x 1073 (Maxseqv)72'6'
Np=1.2938(Ateqy) °
Ny = 0.4405(Aeeqy) "¢
Ny=K(e, )
Ny = 0.5(Ay/2¢' )¢
Ny = 82.4(Dey,) %%

Summary of various reliability models developed

J.H. Lau

B.Z. Hong

K. N. Chiang, et al.
M. Farooq, et al.
Howieson, M., et al
Perkins, A., et al

Engelmai —1/e N11/8
ngelmaier Nf(x%):l 2 ok In(1 — 0.01x)]"/
2| F LpAaAT, In(0.5)
Norris-Landzberg A N, _ AT\ 1, 1/361 " 4(“““1&”7 o > S.Y. Teng
N, AT, A

100\ "* 1414 7L
Nso o, = (E) (J%)e <M ) (G)

G = (12439-70.1A—434B—1301C—930D

A. Perkins, et al

—272E+302CD);

A : substrate size, B : board and substrate CTE mismatch
C : substrate thickness, D : board thickness, E : ball pitch

Darveaux Ninit = Cl (Avvave)c2 3 da/dN = C3 (A‘/Vave)c4

Cy=13173,C; = —1.38t0 —1.45,C3 =1.72103.92, C4, = 1.12 to 1.15

SRS Ne2o | A=Ci(AW;,)@ € = —1
Ny = (AW)! (%)AD =59 %107 mm?

o Package size, thickness, materials, configura-
tion, and I/0s

— Comparing Case#2 to Case#3, a relatively

large reduction in CT50%F is shown when

the package thickness was increased from

J. Clech
Wong, T. E., et al

PCB - also improved the reliability. For
example, compare Case #6 to the Case #7
for the 361 I/O CBGA assemblies. The
CT50%F increased from 1,190 to 2,160
cycles for the HiCTE package.

0.8 to 1.2 mm (4,535 vs. 2,700 cycles). <« Die size and its relation to the package size
When the package thickness was further and ball configuration

increased to 2.9 mm, the CT50%F was —
further reduced, a reduction by 3.2 times
relative to the package with 0.8 mm thick-
ness. A similar reduction was observed for

The reliability effects of die size and pack-
age configuration (full vs. peripheral)
arrays were more pronounced for plastic
than for ceramic package assemblies.

the CGA 1657 I/Os when the package <« PCB thickness, pad definition, surface finish

thickness was increased from 1.5 to 3.7 -
mm (Case #13). The reliability decreases
by increasing the package I/O since the
distance to the neutral point has increased.
The CT50%F was reduced from 4,535
cycles to 2,462 cycles when the I/Os for
the 0.8 mm thick package increased from
361 to 625 (Case #2 vs. Case #5). The use
of higher CTE (HiCTE) ceramic materials —
to better match the ceramic CTE to the

The preferred thickness was defined as
2.3 mm in IPC-9701 [20] since plastic
packages assembled on thinner PCBs gen-
erally show higher cycles to failure. The
effect of board thickness for ceramic pack-
ages was not well established, but its effect
may be less critical for column-grid-array
assemblies than for plastic package assem-
blies, especially when the dominant failure
is the columns rather than solder joints.
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Area Array Package/Assembly Under Thermal Stress, Table 2 Cycles-to-failure data illustrating the effect of
a number of key variables

10

11

12

13

Package Pkg size (die size,
I/O-pitch mm)
CBGA-255- 21 x 21 (1 mm
1.27 substrate)
CBGA-361- 25 x 25 (substrate
1.27 0.8 mm thickness)
CBGA-361- 25 x 25 (substrate
1.27 1.2 mm thickness)
CBGA-625- 32.5 x 325
1.27 (substrate 0.8 mm
thickness)
CBGA-361- 25 x 25 (substrate
1.27 0.8 mm thickness)
CBGA-361- 25 x 25 (substrate
1.27- 0.8 mm thickness)
HiCTE
Substrate
CGA-361- 25 x 25 (substrate
1.27- 0.8 mm thickness)
Interposer
CGA-361- 25 x 25 (substrate
1.27-IBM 0.8 mm thickness)
CBGA- 425 x 425 x 1.85
1681-1.27-  (substrate)
HIiTCE
CBGA-625- 32 x 32 x 2.4 mm
1.0 (substrate)
CBGA937- 32x32x 1.5
1.0 (substrate)
32 x32x24
CGA1657- 42 x42 x 1.5
1.0 42 x 42 x 2.55
42 x 42 x 3.7
CGA 1657- 42.5 x 42.5 x 2.55
1.0 Cu

Thermal cycle
condition (ramp,
dwell, cycle/h)
0-100 °C (10, 5,
2 cycles/h)

0-100 °C
(3 cycles/h)

0-100 °C
(3 cycles/h)

0-100 °C
(3 cycles/h)

-55°Cto110°C
(2 cycles/h)

-55°Cto110°C
(2 cycles/h)

-55°Cto110°C
(2 cycles/h)

-55°Cto110°C
(2 cycles/h)

-25°Cto125°C
(1,9 min, 3
cycles/h)

0-100 °C

(2 cycles/h)
0-100 °C

(2 cycles/h)

0-100 °C
(2 cycles/h)

0-100 °C
(2 cycles/h)

Single side or double side, relative offset of

package on top and bottom
— Double-sided,

assemblies have

mirror-image
significantly

PBGA
lower

CTF compared to their single-sided ver-

sion. Ghaffarian
published in

in his
Chip  Scale

1999 article
Review

First
failure
1,980
1%
failure)

NA

NA

NA

890
(100
ppm)
1,310
(100
ppm)

1,350
(100
ppm)
1,080
(100
ppm)
613
(st
failure)

NA

NA

NA

1,660
(1Ist
failure)

Mean life
(63.2 %)

2,426 (Nso %)

4,535 (Nso %)

2,700 (Nso o)

2,462 (Nso o)

1,190 (Nso )

2,160 (Nso %)

2,320 (N50 %))

1,520 (Nso %)

1,142 (Nso o)

740 (Nso o)

1,860 (Nso )
1,310 (Ns0 )

1,530 (Nso o)
990
620

2,410 (Nso %)

Comments

PCB, 0.55 mm thickness
Ref. Burrnette [16]

Average solder paste vol 5,900
mil®

PCB, 1.57 mm thickness

Die 15 x 10 mm

Note: Increase from die thickness
0.8 to 1.2 and 2.9, reliability
reduction by 1.8 and 3.2 times
Ref [16]

PCB, 1.57 mm thickness

Ref [17]

PCB, 1.57 mm thickness
Ref [14]

Substrate CTE, 12.2 ppm
Ref [14]

NTK interposer CGA
PCB, 1.57

Ref [14]

Ref [14]

PCB, 93 mm thickness
Ref [18]

Ref [15]
IBM-2003

Reference M. Ref [15]

Ref [15]

Cu Column, solder paste 96.5
Sn3.5Ag
Ref [19]

Magazine reported that the mean time
to failure for mirror-imaged CSP assem-
blies in thermal cycling is 40-60 % less
than that observed for single-sided CSP
assemblies. The effect of mirror-image
assemblies on reliability for CGAs is
not presently known.
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Effect of Solder Volume on CBGA/CGA
Assembly Reliability

In contrast to PBGA assemblies, the reliability of
CGAs/CBGAs assemblies is significantly affected
by the amount of solder volume since contrary to
PBGAs, solder columns/balls do not melt during
reflow and remain intact. In fact, solder volume is
the most important key process variable affecting
the reliability of CGAs/CBGAs [13, 21]. As one
might expect, higher solder volume for CBGAs
increases the solder balls’ standoff height, which
affects reliability, but this is not the case for the
CGA assemblies where the effect is more complex
because column flexibility also plays a role in
reliability.

For CGA, as the volume increases, so does the
fillet height on the column. This increased fillet
height reduces the effective length of the flexible
column, thus making it stiffer. This effect — while
true for both cast and wire — is more pronounced
for the cast because it is stiffer in nature due to its
larger diameter. In a comprehensive investigation
performed for this category of packages, it has
been shown [19] that assemblies with a minimum
acceptable solder paste showed slightly higher reli-
ability than those with nominal and much better than
those with higher solder volume. To avoid inducing
opens however, the use of nominal rather than min-
imum solder paste volume is recommended.
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Overview

Heterogeneous materials like metal polycrystals
and metal matrix composites exhibit a size-
dependent mechanical elastoplastic and fracture
behavior. Generalized continuum theories can be
used for the constitutive behavior of each constit-
uent in order to predict such size effects.
Extended homogenization methods are then
needed to compute the effective properties of

239

composite higher-order materials. Higher-order
continua include the Cosserat medium for which
the material point is endowed with independent
translational and rotation degrees of freedom and
the micromorphic continuum which accounts for
the full microdeformation of a triad of directors
attached to the material point. An asymptotic
multiscale expansion method is used here to
derive the effective properties of heterogeneous
linear elastic micromorphic media. The type of
continuum theory representing the effective
medium is shown to be either a Cauchy, Cosserat,
microstrain, or full micromorphic model,
depending on the ratio between the characteristic
lengths of the micromorphic constituents and
the size of the heterogeneities. Applications
deal with fiber size effects in metal matrix com-
posites and with the grain-size effect in
polycrystals.

Introduction

The mechanics of generalized continua repre-
sents extensions of the classical Cauchy contin-
uum mechanics that incorporate some aspects of
the microstructure underlying the material point.
Directors can be attached to each material point
that evolve in a different way than the material
lines. They account for privileged physical direc-
tions existing in the microstructure like lattice or
fiber directions. In addition to the usual motion of
the material point, the associated directors can
rotate or even deform with straining. The
microrotation case corresponds to the Cosserat
continuum, whereas microdeformation is possi-
ble in the micromorphic continuum [6]. The
Cosserat and micromorphic media are examples
of higher-order continuum theories that are char-
acterized by additional degrees of freedom of the
material points. In the micromorphic continuum
designed by Eringen and Mindlin [7, 13], the
directors can also be distorted, so that a second-
order tensor is attributed to each material point.
Such higher-order media are sometimes called
continua with microstructure. This name has
now become misleading in the sense that even
Cauchy material models can integrate some
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aspects of the underlying microstructure as illus-
trated by classical homogenization methods used
to derive the effective properties of composites.
However, generalized continua incorporate
a feature of the microstructure which is not
accounted for by standard homogenization
methods, namely, their size-dependent material
response. They involve intrinsic lengths directly
stemming from the microstructure of the
material.

The links between the micromorphic contin-
uum and the behavior of crystalline solids have
been recognized very early by Eringen himself
[4]. Lattice directions in a single crystal can be
regarded as directors that rotate and deform. The
fact that lattice directions can be rotated and
stretched in a different way than material lines
connecting individual atoms, especially in the
presence of static or moving dislocations, illus-
trates the independence between directors and
material lines in a micromorphic continuum,
even though their deformations can be related at
the constitutive level.

The identification of a micromorphic contin-
uum from the discrete atomic single-crystal
model is possible based on suitable averaging
relations proposed in [3]. These works contain
virial formula for the higher-order stress tensors
arising in the micromorphic theory. This atomis-
tic-based approach can be used to predict phonon
dispersion relations; see for instance [4] for the
study of dispersion of waves in a dislocated
crystal.

If single-crystalline materials can be regarded
as micromorphic media, then polycrystalline
materials must be seen as a mixture of
micromorphic media. The effective behavior of
such materials can therefore be obtained by
means of homogenization methods well known
in the mechanics of heterogeneous materials
[16, 18]. Classical homogenization methods can
be used to account for the influence of the volume
fraction, distribution, and morphology of the dif-
ferent constituents of the heterogeneous material,
but they are not able to predict size effects. The
authors in [20] propose to incorporate intrinsic
length scales in the constitutive behavior of the
constituents by means of a strain-gradient theory
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of plasticity. Reasons for introducing generalized
continuum models in the mechanics of heteroge-
neous materials are twofold. Firstly, it is a natural
way to obtain an explicit dependence of the effec-
tive properties of composites or multiphase mate-
rials on the absolute size of the constituents
within a continuum model and to account for
size effects observed for instance in materials
strengthened by inclusions, fibers, or precipitates
[1]. On the other hand, generalized continua can
be used to limit strain localization phenomena
that may occur in one constituent when it exhibits
a strain-softening behavior [14]. If the constitu-
ents of a heterogeneous material are described by
a generalized continuum like second grade,
Cosserat, or micromorphic media, specific
homogenization methods must be designed to
derive its effective behaviour. The questions are
the following: Does a homogeneous substitute
medium exist? Under which conditions does it
still have a nonlocal character? What is the rela-
tion between the effective characteristic length
and that of the constituents? Bounds and esti-
mates of the overall properties of heterogeneous
linear couple stress media have been proposed for
instance in [17]. Although most physically rele-
vant applications deal with plasticity or damage
phenomena, a first step is to develop homogeni-
zation methods for generalized continua in the
case of linear elasticity [9]. These methods can
then be applied to nonlinear behavior by intro-
ducing some linear comparison solids.

In this entry, the attention is focused on the
case of heterogeneous micromorphic media with
periodic microstructure. For that purpose, asymp-
totic methods classically used for periodic het-
erogeneous materials [15] are applied to linear
elastic micromorphic constituents. The main
interest of asymptotic methods in homogeniza-
tion theory lies in the fact that it can provide the
form of the balance and constitutive equations of
an effective medium without any assumption
on their nature and form. In particular, the nature
of the effective medium for a mixture of
micromorphic media will not be assumed
a priori but rather will be an essential outcome
of the asymptotic analysis. Asymptotic methods
have been used in [2] to get solutions of higher



Asymptotic Analysis of Heterogeneous Micromorphic Elastic Solids

orders to the problem of the effective properties
of periodic heterogeneous classical media. In
contrast, the present analysis is restricted to the
first orders in the asymptotic developments, but
the method is applied to the case of periodic
heterogeneous micromorphic media.

Homogenization of Cosserat composites is
considered in the reference [9, 12, 19]. It is
a special case of the situation envisaged in
this entry. Note that this situation is different
from that of a classical heterogeneous Cauchy
material that can be homogenized into a Cosserat
continuum by suitable homogenization tech-
niques [11].

Regarding notatiosns, the tensor product of two
vectors is ® , with ® and ® respectively deliv-
ering the symmetric and skew—symmetric parts
of the tensor product of two vectors. A wide use
of the nabla operator V is made in the sequel. The
notation used for the gradient and divergence
operators are the following:

avV = aie,, a®V :ai,jgi@)gja a

where a, a and g respectively denote scalar, first-
and second-rank tensors. The (e;),_, ,  are the
vectors of an orthonormal basis of space, and the
associated Cartesian coordinates have been used.
Third-, fourth-, fifth-, and sixth-rank tensors are

respectively denoted by a (or a), a, a, and a.

Indices can be contracted as follows:
a:b=ajby
a:b=apubje, a:b=ajbue @ e,

a:A:b=a;Ajubu, ab= ajbi

Linear Elastic Micromorphic Media

The balance and constitutive equations of the
micromorphic continuum are recalled briefly in
the linear elastic framework. The motion of
a micromorphic body £ is described by two inde-
pendent sets of degrees of freedom: the displace-
ment # and the microdeformation y attributed to
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each material point. The microdeformation
accounts for the rotation and distortion of a triad
associated with the underlying microstructure
[6]. The microdeformation field is generally not
compatible. The microdeformation can be split
into its symmetric and skew—symmetric parts:

X=x+x (1)
that are called respectively the microstrain and
the Cosserat rotation. The associated deformation
fields are the classical strain tensor g, the relative
deformation e, and the microdeformation gradi-
ent tensor k defined by:

ux

=x®V  (2)

The symmetric part of e corresponds to the
difference of material strain and microstrain,
whereas its skew—symmetric part accounts for
the relative rotation of the material with respect
to microstructure. The analysis is restricted to
small deformations, small micro-rotations, small
microstrains, and small microdeformation gradi-
ents. The microdeformation gradient can be split
into two contributions:

:§S_|_’~Sa7 with ES:/N\/S®V7§LI:/N\/I®V

3)

The statics of the micromorphic continuum is
described by the symmetric simple stress tensor
o, the generally non-symmetric relative force—
stress tensor §, and the third-rank double stress
tensor m. These tensors must fulfill the local form
of the balance equations in the static case, in the
absence of body simple nor double forces for
simplicity:

AR

(0+35) V=0, V+5=0 onQ (4)

U3

The constitutive equations for linear elastic
centrosymmetric micromorphic materials read

(5)

\fh
S
Il
ux

re
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The elasticity tensors display the major
symmetries:
bijui = buij,

Ajjkl = Aklij, Cijkpqr = Cpgrijk

(6)

and g has also the usual minor symmetries. The
last constitutive law can be written in the form

(7)

S8 a:,.a
K+

U

Il
uN
ux

2
23

For the sake of simplicity, the tensors ¢* and ¢/

are supposed to fulfill the following conditions:

Cfikpqr = C;ikpql" C?ikpqr = 7671‘@61" (8)
thus assuming that there is no coupling between
the contributions of the symmetric and skew—
symmetric parts of & to the third-rank stress
tensor.

The setting of the boundary value problem on
body €2 is then closed by the boundary conditions.
In the following, Dirichlet boundary conditions
are considered of the form

u(x) =0, x(x) =0, vxeoQ (9)
where 0Q denotes the boundary of Q. The equa-
tions (2), (4), (5), and (9) define the boundary

value problem P.

Multiscale Asymptotic Expansion
Method

The multiscale asymptotic expansion method is
exposed in details in the case of heterogeneous
micromorphic media so that the reader will be in
the position of applying it readily to other similar
situations.

The heterogeneous material under study is
a mixture of micromorphic constituents, i.e.,
a heterogeneous micromorphic medium. One
investigates the nature of the resulting homoge-
neous equivalent medium by means of asymp-
totic methods. The multiscale asymptotic method
from [15] is especially adequate for this purpose
since the nature of the effective medium is not
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postulated a priori but rather is the result of the
analysis. The microstructure of the material is
assumed to be periodic. The heterogeneous mate-
rial is then obtained by space tessellation
with cells translated from a single cell Y’. The
period of the microstructure is described by three
dimensionless independent vectors (1_1171_12,43)

such that
l l
Y = X:xi4i7|xi|<§

where / is the characteristic size of the cell. We
call a b and c the elasticity tensor fields of
the perlodlc mlcromorphlc material. They are
such that

Vx € Q. Y(ny,n,n3) € Z%/x
+(na, + ma, + n3a;) € Q
d'(x) = d(x+(ma, + ma, + nza;))
(x + (n1b, + nab, 4 n3b;))
'(x) = ¢ (x+ (ma, + na, + n3a;))

Dimensional Analysis

The first step of a multiscale expansion analysis is
the dimensional analysis which is necessary to
identify the small parameters of the problem. The
size L of body Q is defined for instance as
the maximum distance between two points.
Dimensionless coordinates and displacements
are introduced:

£(x) =u'®V = g), (1)
X)) =u" @V —x" =e¢(x)
K'(x')=x" @V (x) (12)

with V¥ = ( )e = LV. Similarly,
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(13)

It is necessary to introduce next a norm of the
elasticity tensors:

b

A = Max (’al{jk,(;c)

bgju(lf) D

xeY!
s sl
= I}é?‘lx Cijkpqr('x)‘
a al
¢ = &g,x thikmr(J—C)‘

whereby characteristic lengths /; and /, can be
defined as C* = Al?7 Cct = Alfl.

The definition of dimensionless stress and
elasticity tensors is as follows:

g () =A"gx), §5(x)=A"s(x),

m"(x") = (AL)'m(x)

a(x)=A""d (), b'(x") =A""H (%),

() = (AB) ), () = (AR) ')

¢ are

Since the initial tensors @', b’ and
Y'-periodic, the dimensionless counterparts are

Y*-periodic:

1 1
Y* :IY,Y:{y:yit_li, yl|<2} (14)

Y is the (dimensionless) unit cell used in the
following asymptotic analyses. As a result, the
dimensionless stress and strain tensors are related
by the following constitutive equations:

o =dg, S=b

~

L\ .- A
’11*:<£> gs*:55*+(za> ’ga*:!ga*

The dimensionless balance equations read

e,

~

(15)

VX' e Q' (g +8) V= 0m -
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A boundary value problem P* can be defined
using equations (12), (15), and (16), complemented
by the boundary conditions:

Vx* € 0Q"  u'(x") =0, x"(x*) =0

~>

(17)

The Homogenization Problem

The boundary value problem P is treated here as
an element of a series of problems (Pg),., on Q".
The homogenization problem consists in the
determination of the limit of this series when
the dimensionless parameter €, regarded as small,
tends towards 0. The series is chosen such that

P =P
L
The unknowns of boundary value problem P,
are the displacement and microdeformation fields
u® and x* satisfying the following field equations

on Q*:

(18)

(@°+5) V=0, m -V +s5=0 (19

Different cases must now be distinguished
depending on the relative position of the consti-
tutive lengths /; and /, with respect to the char-
acteristic lengths / and L of the problem. Four
special cases can be distinguished for the present
asymptotic analysis. The first case corresponds
to a limiting process for which I/l and [,/]
remain constant when //L goes to zero. The
second case corresponds to the situation for
which /;/L and [,/L remain constant when //L
goes to zero. The third (resp. fourth) situation
assumes that [/l and I,/L (resp. I;/L and I,/
remain constant when //L goes to zero. These
assumptions lead to four different homogeniza-
tion schemes labeled HS1 to HS4 in the sequel.
The homogenization scheme 1 (resp. 2) will be
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relevant when the ratio //L is small enough and
when /i, [, and / (resp. L) have the same order of
magnitude.

Accordingly, the following tensors of elastic
moduli are defined:

Oy =8 (1y) (0)

22
2
<
S~—
I
122~}
*
—
I~
—
QS

=@, PO=0"¢w
@)

W =E" ), @) =0 "W
(23)

They are Y-periodic since @*,b* and ¢* are
Y*-periodic. Four different h§po?heses will be
made concerning the constitutive tensors of prob-
lem Pg:

o
G
)
S
3
=
)
=
l
P~
m
—
™
*
S—
Il
i~
=
—
m\
'y
*
SN—

Assumption 2 :g‘ (J_c*) = g(o) (eflJ_c*)
ge(x*) — 2(0) (6715*) and
ge(.x*) — g(2) (6_1.17*)

Assumption3 : g (x") = a (671 )

Assumption4 : g (x*)

Assumptions 1 and 2 respectively correspond
to the homogenization schemes HS1 and HS2.
Both choices meet the requirement that
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e—i = |a=a and = ! zc*
L IS & \L I

Assumptions 3 and 4 respectively correspond
to the homogenization schemes HS3 and HS4.
Both choices meet the requirement that

Eil = ae _ a* cse _ 15 2(,‘”
L ~ ~x &2 " \L) &

It must be noted that, in our presentation of the
asymptotic analysis, the lengths [, [;, [, and L are
given and fixed, whereas parameter € is allowed
to tend to zero in the limiting process. In the
sequel, the stars * are dropped for conciseness.

Multiscale Asymptotic Expansion of the
Fields

In the setting of the homogenization problems,
two space variables have been distinguished: x
describes the macroscopic scale and y is the local
variable in the unit Y. According to the method of
multiscale asymptotic developments, all fields
are regarded as functions of both variables x
and y. It is assumed that they can be expanded
in a series of powers of small parameter €. In
particular, the displacement, microdeformation,
and simple and double stress fields are supposed
to take the form

u(x) = uy(x,y) + €u, (x,y) + €uy(x,y) +
X(x) = X (x,y) + €X,(x,y) + €X3(x,y) +
o°(x) = oy(x,y) T €0, (x,y) + €0,(x,y) +

55(x) = s5,(x.y) +€5,(x.y) + € 5,(x,y) +
m®(x) =m (x,y) + em (x,y) +€m (x,y) +
where the coefficients  u;(x,y), gi(;c, y),

g,(x,y), 5,(x,y) and m,(x,y) are assumed to
have the same order of magnitude and to be
Y-periodic with respect to variable y(y = x/€ .
The average operator over the unit cell Y ‘s
denoted by
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o

As aresult,

<u*>=U,+e€U, +. and <,\/ =€5,+...

(24)
where U, = <u;> and £, = <y >. The gradient

operator can be split into partial derivatives with
respect to x and y:

1
V=Vt _V, (25)

This operator is used to compute the strain
measures and balance equations:

:e_luOéV —&—(uOéV,—FuléVy)
+ €(u,

€ _ _—1
¢ =€ ¢ ,tg

BV, +u2®V)

+eg71+...

=€ 'u,®V, +(y0®Vx+yl®V,—X1)
te(w @Vitu, oV, —x )+..

g‘:e IN_( + K, +ek+...

OV +(x, ®Vatx, ®V))

®VX,\/ ®V)

(26)

Similar expansions are valid for the tensors
k', k“. The expansions of the stress tensors are
then introduced in the balance equations (26), and
the terms can be ordered with respect to the
powers of €. Identifying the terms of same

order, we are lead to the following set of

equations:

eordere™', (a,+ s,) - Vy=0and r;nO-Vy:O

eorder€’, (a,+s,) Vi+ (o, +5,) V,=0and
S -V, +S “Vy+5,=0
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The effective balance equations follow from
the first above equation by averaging over the
unit cell ¥ and, at the order €°, one gets

V+8,=0
27)

—

where effective stress tensors are defined as the
following averages 3 = <g,>,§,= <s§,>
and Mo = <m0>.

Homogenization Scheme HS1

For the first homogenization scheme HS1 previ-
ously defined, the equations describing the local
behavior are

(28)

At this stage, the expansion (26) can be
substituted into the constitutive equations (28).
Identifying the terms of same order, one gets

o ordere !,

29
b<0)'e—b(0)'(u =0 @)
I Y,
o order €°,
gozg(()):go, Eozg(()):go7 m =0 (30)
* ordere
QIZQ(O) € QIZQ(O) €, m :Q(l)E'S
& & ~1 & =
(31)

The equation (21) implies that u, does not
depend on the local variable y:

uy(x,y) = Uy(x)
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At the order €, the higher-order stress tensor
vanishes, M =<m>= 0.

Finally, the fields (u u, X, o S ) are
solutions of the following aux1hary boundary
value problem defined on the unit cell:

£, = U, 0V, +u, 0V, ¢,=U, @V,
Tu @V —x
K =X,0V
go=a" e 5 =0 m=d"ik,
(gy+5) Vy=0, m -V, +5,=0
(32)

The boundary conditions of this problem are
given by the periodicity requirements for the
unknown fields. A series of auxiliary problems
similar to (32) can be defined to obtain the solu-
tions at higher orders. It must be noted that these
problems must be solved in cascade since, for
instance, the solution of (32) requires the
knowledge of U,. A particular solution x for
a vanishing prescribed U, é Viis x =0, é V..
It follows that the solution (u,, U, ® V - ) to

problem (32) depends linearly on U, ® V\, up to
a translation term, so that

€= Uy(x) +e(U,(x) + XV (y) : (U,2V)) +

u ~y =
(33)
a <1> N
X :UO®VX+§ (y):U,®V+ (34)
X
where concentration tensors X ) and X ) have

been introduced, the components of Wthh are
determined by the successive solutions of the aux-
iliary problem for unit values of the components of

s
U,® V. Concentration tensor X () is such that its
— U
mean value over the unit cell vanishes.

The macroscopic stress tensor is given by

3, =<0,>= <a" (é‘i’v ®X )>

(U, &) =

22}

) U, ®V)
(35)

(1
0
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Accordingly, the tensor of effective moduli
possesses all symmetries of classical elastic

moduli for a Cauchy medium: Aé}/)}d :Af]zlj

(1) (1)
AO]I/(/ - AOIjIk

The additional second-rank stress tensor can
be shown to vanish:

(36)

The effective medium is therefore governed
by the single equation:

3, V=0 (37)

The effective medium turns out to be a Cauchy
continuum with symmetric stress tensor.

Homogenization Scheme HS2

For the second homogenization scheme HS2, the
equations describing the local behavior are

(38)

The different steps of the asymptotic analysis
are the same as in the previous section for HS1.
We will only focus here on the main results. At
the order €', one gets

(2)5,5 =0
(39)

This implies that the gradients of u, and X,
with respect to y vanish, so that

u(x,y) =Uy(x),  x (x,y)=Z(x) (40)

The fields (u Uy, X0 Doyt 0) are solutions of the
two following aux111ary boundary
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value problems defined on the unit cell: micromorphic continuum governed by the bal-
ance equations (27).
S N
g, =U,@V,.+u oV,
e, =U,@Vi+u oV,-E, Homogenization Scheme HS3
— 40 . — p0 .
G =g 6 570 In the case HS3, the equations describing the
(@, + 8,) - Vy = local behavior are
K =20Vt xVy
o°=d"() 5 =000 €
— @ - 42
gl() - g '50’ ';”0 V)’ =0 gle _ 62g5(1)<x) gse + g3(2) (X)gae ( )
We are therefore left with two decoupled bound-
ary value problems: the first one w1th main At the order € !, one gets a© : £ | =
unknown u, depends linearly on U, ®V and .
1 b(O) e =0 @t =0
U,® V. — Iy whereas the second one with L R L~ :
unknown Xz is linear in 5, ® V.. The solutions This implies that the gradients of u, and J(l)
take the form with respect to y vanish, so that
. s uy(x,y) =Uy(x), xi(x,y)=2Z2{(x) (43
= Uya) + (U, ) + X0) (0, 8) o) =lolah - glxy) =ik (4)
+XP(y): (Uy@V - 5))+..., The fields (u,, X}, X3, X7 @y, 8,.m ;m ) are
— = XO()(E &V solutions of the following auxiliary boundary
X =5 e+ Nk W):(& @ V) + value problem defined on the unit cell:
(41)
€= Uy@V,+u, &V, ¢,U, @V,
where concentration tensors X <2),§ 2 and X® 0 +(; DV, — IW :0
have been introduced. Their components are 1@Vy TR T,
determined by the successive solutions of the K = Nsl ®V,, l;cil =EZ{®V, z(z ®V,
auxiliary problem for unit values of the compo— K= ®V
nents of U®VU®V E, and E @V, ~1 ”?) ! :
— ,0) . _ p(0) .
They are such that thelr mean value over the Oy =4 " €&, S — Q( “ €
unit cell vanishes. ] ) )
The macroscopic stress tensors and effective m = g“(z)'gg, m = gsm:b's_, + gs(z)i'w‘?
elastic properties are given by (g'o n 50) Y, =0, m v, =0,
3 =<a” (1 + V0 X)> (1,6 V) my Vot -Vt g =0
+ <g(°) (Vy® X 5,2 )>: (Uy@V -5 This complex problem can be seen to depend
s linearly on
Sy = <s,>=<b9: (v, 2 XV)>: (U, &V %
o B X,7)>: U®V) U, RV, U, ®— Z9and ¢ ® V. The solutions

+<L’(O) : (Vy®§i2>)> (Uy®V—-E)) take the form

None of these tensors vanishes in general,
which means that the effective medium is a full



where concentration tensors X' (), X® and X<3)
have been introduced. Their components are
determined by the successive solutions of the
auxiliary problem for umt Values of the compo-
nents of U, ®V U, ®V and Z{®V,.
They are such that the1r mean value over the
unit cell vanishes.

The macroscopic stress tensors and effective

elastic properties are given by

They must fulfill the balance equations (27).
Note that m  and therefore 4/10 are skew symmet-
ric with respect to their first two indices. The
averaged equation of balance of moment of
momentum implies that §, is symmetric. The
macroscopic degrees of freedom are the displace-
ment field U, and the symmetric strain tensor Z.
The found balance and constitutive equations are
therefore that of a Cosserat effective medium.
The more classical form of the Cosserat theory
is retrieved once one rewrites the previous equa-
tions using the axial vector associated to the
skew—symmetric tensor Z¢ [6].

Homogenization Scheme HS4

In the last considered case, the equations describ-
ing the local behavior are

=0 :

a=da"(y) : €,

(46)
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At the order €~ |

! one gets g(m ce =0,
Q(O) e =0,

This implies that the gradients of u, and L‘/l
with respect to y vanish, so that

gs(Z);L(s 1 -0

o ml) are

solutions of the followmg auxiliary boundary
value problem defined on the unit cell:

A

Theﬁelds( 17/\/ X XaN()as()’m

€=U, V,¥+y1évy7g0:U0®Vx
+y1®Vy—§‘i—,~r‘l’
K =X OV, K =T @V + x OV, K
=X, 0Vt x, @V,
o, =a" e, 5=b" ¢
m, =g, m = Uik + P
(ay+ 50) Vy=0,m -V, =0,m -V,
+m -Vy+5,=0

This complex Sproblems can be seen to depend
linearly on Uy®V,U;®V —Z| and Z1®V.
The solutions take the form

where concentration tensors X D¢ X . ) and X
have been introduced. Their components are
determined by the successive solutions of the
auxiliary problem for un1t values of the compo-
nents of U, ®V U, DV — and Z) ®@V,.
They are such that thelr mean value over the
unit cell vanishes.

The macroscopic stress tensors and effective
elastic properties are given by
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They must fulfill the balance equations (27).
Note that m, and therefore M are

symmetric with respect to their first two indi-
ces. The averaged equation of balance of moment
of momentum implies that §) = —<m > -V is
symmetric. The macroscopic degrees of freedom
are the displacement field U, and the symmetric
strain tensor Z.

Such a continuum is called a microstrain
medium [8].

As a conclusion, depending on the relative con-
tributions of the various intrinsic length scales of
the micromorphic continuum, different effective
media are obtained, as summarized in Table 1. The
effective medium can be of micromorphic,
microstrain, Cosserat, or Cauchy type. A similar
situation is found in the case of the homogeniza-
tion of heterogeneous Cosserat media. Depending
on the ratio between the Cosserat characteristic
length [, and the sizes [, L, the effective medium
will be a Cauchy continuum with body couples or
a full Cosserat continuum [9].

Applications

The approach is applied to two important classes
of materials, namely, composite and polycrystal-
line materials. The auxiliary problems evidenced
in the previous homogenization method are
solved by means of the finite element method
with well-suited boundary conditions.

Fiber or Particle Composites

The reinforcement induced by fibers and particles
embedded in a matrix material depends on their
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Asymptotic Analysis of Heterogeneous
Micromorphic Elastic Solids, Table 1 Homogeniza-
tion of heterogeneous micromorphic media: nature of the
homogeneous equivalent medium depending on the values
of the intrinsic lengths of the constituents

Homogenization  Characteristic Effective
scheme lengths medium

HS1 Iy~ 11, ~1 Cauchy

HS2 ly~L,l, ~L Micromorphic
HS3 ly~11, ~L Cosserat

HS4 Iy ~L,1, ~1 Microstrain

volume fraction and arrangement but also on
their size compared to the characteristic size
of the microstructure elements of the matrix.
The former effect is satisfactorily accounted
for by standard homogenization methods. The
latter can be described by considering that
both the matrix and inclusions are Cosserat
materials having different intrinsic length /,.
The effective properties of such a composite
are found by solving auxiliary problems of the
unit cell. The unit cell corresponding to a square
arrangement of fibers with a volume fraction of
0.4 is shown in Fig. 1. According to scheme
HS3, the displacement microrotation fields
are searched for in the following form in the
unit cell:

u(y) =E-y+v(y)
‘() =K y+£0)

>

The fluctuation displacement v and the skew—
symmetric microrotation fluctuation &° are
periodic. The macroscopic deformation E and
curvature K are prescribed to the unit cell. The
computati(;n of the mean elastic energy contained
in the deformed unit cell is used to identify the
microscopic elastic moduli. According to Hill-
Mandel’s lemma that can be derived from the
previous homogenization procedure, the macro-
scopic strain energy is the mean value of the local
one over the volume element:

2 E+

Z\E
Z\E

> (48)

ux

=<0:et+m

~
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Solids, Fig. 1 Solution of
the auxiliary problem in the
homogenization of
Cosserat fiber composites:
unit cell of the composite
material (fop right), simple
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Figure 1 shows how mean shear, relative rota-
tion, and curvature can be applied successively to
a unit cell.

Polycrystalline Materials

The previous homogenization method can be
extended, at least in a heuristic way, to nonlinear
micromorphic constitutive equations in order to
predict size effects in the plasticity of polycrys-
tals. The reader is referred to [5] for a detailed
presentation of such models and a more complete
description of polycrystal homogenization. The
computation of polycrystalline aggregates based
on standard crystal plasticity models follows
the rule of classical homogenization theory in
the sense that a mean strain is prescribed to
a volume element of polycrystalline materials

<0
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using suitable boundary conditions like strain-
based, stress-based, or periodic ones. The struc-
ture of the boundary value problem is modified if
a generalized continuum approach is used inside
the considered volume element. The grain bound-
ary conditions represent an important new feature
of the theory. At any interface of a micromorphic
continuum, there may exist some jump condi-
tions for the degrees of freedom of the theory
and the associated reactions, namely, the simple
and double tractions. As a first approximation,
however, the displacement vector and the
microdeformation tensor can be assumed to be
continuous at grain boundaries. As a result, the
simple and double tractions also are continuous.
The continuity of microdeformation is a new
grain boundary condition that does not exist in
classical crystal plasticity. It will generate bound-
ary layers at grain boundaries which are essential



Asymptotic Behavior in Time

for the observed size effects [5, 10]. In that way,
material parameters of the micromorphic model
can be identified in order to quantitatively
describe the well-known Hall-Petch relationship
which is a direct correspondence between
the overall stress and the grain size at a given
plastic strain.
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Synonyms

Decay rate; behavior in

thermoelasticity

Longtime

Overview

We are interested to study the longtime behavior
for a linear one-dimensional thermoelastic sys-
tem where the hyperbolic elastic system is joined
with the parabolic heat equation. By some results
in semigroup theory, we prove the exponential
decay of the solutions related to the associated
initial boundary value problem. For a detailed
study in more general cases, some references
are given at the end of this section.

A Simple Model in Thermoelasticity

The One-Dimensional Linear Thermoelastic
System

For T >0, we consider the following one-
dimensional linear thermoelastic system:

Uy — Oty +70, =0 in (0,¢) x (0,T) (1)

0, —kOy+yu; =0 in(0,¢) x (0,T) (2)

supplemented with initial conditions


http://dx.doi.org/10.1007/978-94-007-2739-7_100138
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u(x,0) = up(x), u(x,0) = uy(x) in (0,¢)
(3)
0(x,0) = Op(x) in (0, ) (4)

and Dirichlet boundary conditions at both ends

u(0,1) =0, u(l,t)=0 in(0,7) (5)
0(0,1) =0, 0(¢,t)=0  in(0,T) (6)
in the unknown variables u=u(x,1):

(0,£) x (0,T) = IR and 0= 0(x,¢):(0,£)x
(0,T) — IR. With regard to the physical mean-
ing of the variables in play, u represents the
longitudinal deflection of a bar of length ¢ with
unit reference density, while 6 actually arises
from the temperature variation with respect to
a reference value. Constants o, k€ IR and
7 € IR\{0} depend on the material properties.
Here and in what follows, the subscripts x and ¢
indicate partial derivatives.

For a detailed derivation of the modeling
under consideration, we refer, e.g., to [2, 4].

Solutions in appropriate Hilbert spaces will be
found by means of semigroup theory (see entry
“» Existence and Uniqueness: Solutions of
Thermoelastodynamics”). Without loss of gener-
ality, throughout this section, we choose o = 1.

Notation
Putting Q = (0, £), let us introduce the space

H = H)(Q) x L*(Q) x L*(Q)

with norm

1/2
)Gty Ol = (el + el + 1017)

where

1/2

loll = Uzw(x)ﬁdx]

is the L? norm in Q. Furthermore, we denote by
(-,)3 and (-,-) the inner products in H and L?,
respectively.

Asymptotic Behavior in Time

Formulation of the Problem

Setting v =u,, z = (u,v, H)T,
20 = (ug,u1,00)" € H, system (1)=(2) can be
rewritten as an evolution system in H of the form

and

7:(t) = Az(1), t>0 (7)

2(0) = 2o (3)

The operator A : D(A) C 'H — 'H is defined as

0 1 0
A= 10w 0 =0) 9)
0 _V()\ k()u

with domain

We can observe that A is a densely defined
operator from D(A) to H.

Useful Results in the Theory of Semigroups
We conclude this introductory part with
a necessary and sufficient condition for a Co-
semigroup being exponentially stable. For
a detailed exposition of the subject, the reader is
referred to, e.g., [9, 25, 30].

Theorem 1. Let S(t) = e be a Cy -semigroup
of contractions (i.e., a Co-semigroup S(t) = e
such that [|S(t)|| g < 1 for every t>0) on
a Hilbert space H. Then, S(t) is exponentially
stable if and only if

p(A) 2{if, peR}=iR  (10)

and
|ﬂlli?mH(iﬁI—A)*‘||L(H) < 400 (11)

hold.

Here p(A) denotes the resolvent set of A.
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Exponential Decay

The presentation of this section is essentially
based on [18, 19]. To study the exponential
decay of the energy associated to system
(1)-(6), we now analyze if the assumptions of
Theorem 1 are satisfied.

. p(A) 2 {if, fe R} = iR

(i) Recalling that 0 € p(A) (see entry “» Exis-
tence and Uniqueness: Solutions of
Thermoelastodynamics™) and by the contrac-
tion mapping theorem, it follows that for any

B € IR with [ < ||A7! ||7l, the operator
il — A = A(PIA™" — 1)

is invertible. Moreover, ||(ifl —A)™" I £y 18
a continuous function of f in the interval

( - HAAHZ(IH)’ AT H,C(IH)>'

(i) If [GBE = A) "] gy = M< + 00,

sup
1B1<IIA~" iz
then, by the contraction mapping theorem,
the operator

il — A = (Bl — A)
X [I+i(B— Bo)(iBol —A)']

with  |Bo] < HA’1H_1 is invertible for
|B — Bol < 4. It turns out that by choosing
|Bo| as close to ||A~
find that

IHZ(IH) as we can, we

- 1
{5 1< It 55} < ot

and ||(ipl —A)~" ”um
tion of f§ in the interval

- [T 1
<—HA =374 1”1:<1H>+M>

is a continuous func-

(iii)) By argument in (ii), it follows that if (10) is
not true, then there exists w € IR with
A~

IHZ(IH)S || < +o0 such that
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{ip: |l <lol} < p(4)

and

sup ||(ipl —A)”HL(H) = 400

IBI<leo|

It turns out that there exist a sequence f3, € IR
with , — o, |f,| < || and a sequence of com-
plex vector functions y, = (uy, vy, 0,) € D(A)
with [[ya[13= 10| + [lvall> + 6,]1> = 1 such
that

1B = Aally — 0. asn—+oc (12)

namely,
—v, —0

i,y in Hy(Q)

iByvn —

(13)

Upyy + P0p — 0 inL?(Q) (14)

iB,0, — kO +pvpe — 0 in L2(Q) (15)

Taking the real part of the inner product
<(iﬁn[ - A))’n’)’nm, we obtain

Re <(i[3,11 - A)ynayn>H = k”anHz —0 (16)

By (15)—(16) and the Poincaré inequality, it
follows that

kOpey — yvar — 0 in L2(Q) (17)
Integrating (17) from O to x, we find
k0, (x) — k6,(0) — yv,(x) — 0 in L*(Q)
(18)

The dependence on ¢ is omitted. Combining
(18) with (16), we have
k0,,(0) +yv,(x) = 0 inL*(Q)  (19)
From ||y,|l;, =1 and (13), we obtain that
[lVax|l is uniformly bounded with respect to n.
Then, from (17), we find that |6, is uniformly
bounded with respect to n. By the Gagliardo-
Nirenberg inequality (see, e.g., [6, 24]), we have


http://dx.doi.org/10.1007/978-94-007-2739-7_535
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100 (O)] < (100l ) < Coll Ol 1100l

(20)
+Co[0n ]| =0
From (19) and (20), we find
va(x) = 0 in L}(Q) (21)

Taking the inner product of (14) with u, in
L*(Q) and integrating by parts also yield
in L*(Q)

u,(x) — 0 (22)

Then (16), (21), and (22) contradict

[lyullz; = 1, and the proof is complete.

. lim H il —A)~ < 400

11— Hﬁ

We prove the second step by contradiction
argument again. Suppose that (11) is not true.
Then, there exist a sequence f5, with
|8,] — +0oo and a sequence of complex vector
functions y, € D(A) with ||y,||;, = 1 such that
(12) holds. Again, we have (16). Dividing (15)
by B, and using the Poincaré inequality, we get

konxx — VVax
B

—0  inL*Q) (23)

Dividing (13) by f,, and using (23), we find

kOI’l)CX
B

Since [[un|| < 1, (24) implies that H%

bounded. Multiplying (24) by u,, in L*(Q), it
follows that

<k0I‘IXX
Bn
An integration by parts gives
<k0nl‘X u > kOnA

ﬁﬂ T ﬁn

_ <ﬂ ‘ >
ﬂn s “nxx

in L*(Q) (24)

— iyu,, — 0

is

> il 0 (25)

kO,

- Upx
x:Z ﬁn x=0 (26)
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Dividing (14) by f, and using (16) and the

choice that ||v,|| <1, we obtain that ||“z=(| is

n

bounded. Then, from (16) and the Cauchy-
Schwarz inequality, it follows that

kenv
;aunxx —0
()

By the Gagliardo-Nirenberg inequality (see,
e.g., [6, 24]), we have

(27)

O 210l L 10l
<O 0] P+ Gy -0
‘ V1B o VB V1B
(28)
and
1
Unx < C1||14nx||1/2 I nw” +Cy lletn | <C

l

with C being a positive constant independent of #.
Thus, from (28)—(29), we have

Il = VBT TR

(29)

‘ O cttn 1Onxll (@) el
ﬁn L>(Q) B V |ﬁn| V ‘ﬁn'
(30)
Combining (30) with (25)—(27), we find
[[ttnil| — O (31)
Then, by (27), we get
Vinx . 2
3 -0 in L°(Q) (32)
Multiplying (12) by 3* in L?(Q), we find
. 2 unx
i|lvall” + <u,,x,—> —0 (33)
B
Therefore, by (31)—(33), we find
v, — 0  inL*Q) (34)
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Thus, (34), (31), and (16)
lvall = 1, and the proof is complete.

We can resume the analysis above on the
asymptotic behavior of the solutions of problem
(1)—(6) into the following theorem.

contradict

Theorem 2 (Exponential Decay). The semi-
group S(t) generated by the operator A defined
in (9) is exponentially stable, namely, there exist
two positive constants M and o, such that

IS(O)|| < Me™ V>0

Remark 1. In [1], by using the same above
approach, the exponential decay of the related
energy has been shown for the following different
boundary conditions:

w(0,0)=0, u(f,)=0  in(0,T)
0,(0,1) =0, 0,(6,1)=0  in(0,T)
or
ue(0,1) —y0(0,1) =0 in (0,T)
u(0,8) —y0(£,1) =0 i (0,T)
0(0,/)=0, 0(4,1)=0  in (0,T)
1,(0,1) — 90(0,6) =0 in (0,T)
u (0,8) —p0(£,1) =0 in (0,T)
0,(0,) =0, 0,(6,)=0  in (0,T)

Remark 2. In one space dimension, the longtime
behavior of the solutions is dominated by the
dissipation related to the variation of the
temperature, and the associated energy decays
exponentially as time goes to infinity (see, e.g.,
[7, 8, 10, 14, 15, 21, 26-29]). In general, for the
linear higher-dimensional thermoelastic systems,
we cannot expect to prove the exponential stabil-
ity of the associated energy, unless some
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assumptions are made on the domain and initial
data (cf., e.g., [16, 17]). For example, for mate-
rials that occupy the whole IR?, Dassios and
Grillakis [5] showed that the heat difference and
the curl free part of the displacement vector field
decay uniformly in time like /2, while the diver-
gence-free part conserves its energy. In the spe-
cial case of symmetrical solutions, when the
material has a spherical shape, it was shown in
[11, 13, 20, 23] that the total energy decays expo-
nentially. For bounded domain, Chirita [3]
proved the asymptotic equipartition of the mean
kinetic and strain energy and that the thermal
difference decays to zero, but no rate of decay
was obtained. In [22], Mufioz Rivera showed that
the curl-free part of the displacement vector field,
as well as the thermal difference, decays exponen-
tially to zero as time goes to infinity, while the
divergence free part conserves its energy. In fact,
there exist oscillations that are not damped to zero.

The list of references is quite long but does not
claim to be exhaustive, cf. [12] for further refer-
ences on different topics.

In particular, the references under further
reading section may be useful for those interested
in learning more about the asymptotic behavior in
time for the thermoelastic systems.
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Synonyms

Coupled thermoelasticity

Overview

Asymptotic expansions technique is a method
used to obtain approximately analytical solution
for the inversion of Laplace transforms valid for
short values of time. This method is based on
expanding the solution of the problem in Laplace
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transform domain in the Maclaurin series of
which the first selected terms then using the con-
volution theorem of the Laplace transform to
obtain the inversion transforms for the solution.

The inversion technique used is an analytical
one utilizing asymptotic expansions valid for short
values of time. It was found that [1] generalized
theories of thermoelasticity predict values quite
different from those predicted by the coupled the-
ories only when the time is small. For large values
of time, both the coupled and the generalized the-
ories differ numerically by very small amounts. It
was used successfully by Hetnarski [2, 3] to solve
problems in coupled thermoelasticity.

The advantages of using an analytical method
over a numerical one are evident. The numerical
program to find values of the functions is very
simple, easy to implement, and very fast in
execution.

The main advantage is that this method
enables us to find exact values for the locations
of the wave fronts and wave speeds associated
with the problem. These values are exact, though
the solution itself is approximate [4].

Sherief [5] and Sherief and Anwar [6] used this
method to obtain the fundamental solutions for
generalized thermoelasticity with one relaxation
time for the point and line sources of heat, respec-
tively. Sherief [7] used this method to obtain the
fundamental solution for thermoelasticity with two
relaxation times. The same method used by Sherief
et al. to solve some problems in theory of general-
ized thermoelasticity in Cartesian, spherical, and
cylindrical [8, 9] coordinate systems. The follow-
ing section is an application of using this method to
obtain the solution of a one-dimensional problem
in Cartesian coordinate.

Fundamental Equations

We shall consider a homogeneous, isotropic,
thermoelastic solid occupying the region x > 0.
We shall also assume that the initial state of
the medium is quiescent. The outer surface of this
the half space is assumed traction-free and subject
to a constant thermal shock. The equation of
motion in the absence of body forces is given by
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pui = (A + pujj + puig —Ti (1)
where A and p are Lamé’s constants, p is the
density, and T is the absolute temperature.

The constitutive equation is given by

Gjj = kekk&j + 2lJ-eij — “/(T — TO)Sij (2)

where vy is a material constant given by
v = B\ + 2wa,. o is the coefficient of linear
thermal expansion.

The energy equation has the form

KT = peg (T + toT) + yTo(éxk + Toéik) (3)
where k is the thermal conductivity, 7, is a con-
stant with the dimensions of time that act as
a relaxation time, cg is the specific heat at con-
stant strain, and T, is the temperature of the
medium in its natural state, assumed to be such
that |(T — Ty)/To| << 1. 7o is the relaxation
time, and e;; is given by

ejj = (uiAj + llj,i) (4)

N =

The dot denotes differentiation with respect to
time, while a comma denotes material. Deriva-
tives and the summation notation are used
throughout.

One-Dimensional Problem

For the one-dimensional problem, we assume
displacement components of the form

uy = u(x,t) u =u,=0 (5)

The cubical dilatation e is given by

_ou
C—ax.

Equations (1), (2), and (3), then, reduce to

(92u 0%u

oT
Poe =t 2u )W_

"{5 (6)
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c= O+t y(T-T) ()

0x
k‘{ﬂ, oT ’T
ax ot - o
e
”To(at“(’aﬂ) ®)

The governing equations can be put into

a more convenient form by using the
nondimensional variables
X =ci&x, U =ciéu, t =ik,
/ 2 Y(T — TO)
= e =
T = ¢i& o, O+ 20) (9)
I Gij
(A +2p)

where

c=vVQA+2p)/p,&=pce/k

Substituting from (9) in (6), (7), and (8) and
dropping the primes for convenience, we
obtain the following set of nondimensional
equations:

o*u  de 00
98 ~ox ox (19
c=e—0 (11)

0%0 0 07
W* (a‘f’ at2>(e+8€) (12)

where

e =7"To/[pce (A +2u)]

Applying the operator D =
of (10), we obtain

() on both sides

7o
ox2

oo
o2 9x2

(13)
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The boundary conditions are assumed to be

o(x, t),op =0, o(x, t)|,_, =0,for t>0
(14)

0(x, t)|,_o = 60, O(x, t)|,_o, =0,for t>0
(15)

Solution in the Laplace Transform
Domain

Introducing the Laplace transform defined by the
formula

f(p) = Jefptf(t) dt
0

to both sides of (11)—(13), we obtain

c=e—0 (16)
D0 = (p+10p?) (0 +¢¢) (17)
D0 = (D’ —p’)e (18)

The transformed boundary conditions (14) and
(15) become

6(X, P)lio = 0, (X, P)lyese =0 (19)

0(x, p)|,_o =— 0(x, p)|,_, =0  (20)

’U|CD

Eliminating € between (17) and (18), we get

{D*—[pP*+(1+¢) (p+1p*)]V
+p*(1 4+ 1p)0 = 0 (21)
The above equation can be factorized as
(V) -K)o=0 (22

where k; and k, are the roots with positive real
parts of the characteristic equation
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K [13)2 + (1+¢) (p+1op’)] K (23)
+p*(1+7p) =0

Since 6 must remain bounded as x — oo, the
solution of (22) is given by

0="> Akl —p’)e

i=1

(24)

where A and A, are parameters depending on p.

Similarly, eliminating 0 between (17) and
(18), we find that € satisfies an equation identical
to (21). Thus, we obtain the solution compatible
with (18) as

(25)

2
e = ZAik?eikix
i=1

Integrating both sides of (25) with respect to x,
we obtain

2
= Akie ™ (26)
i=1
Substituting from (24) and (25) into (16),
we get

From the boundary conditions (19) and (20), it
follows that

0o

Aj=—Ay=——0
T (K -K)

(28)

This completes the solution of the problem in
the Laplace transform domain.

Inversion of the Laplace Transforms

Let us now determine inverse transforms for the
case of small values of time (large values of p).
We note first that the roots k; and k, of the
characteristic equation (23) have the form
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k = {g[p+(1—|—8)(1 +70p)

+(p2 +2p(e — 1)(1 + Top) (29)

# 0+ }1/2

ky = {g[p +(1+e)(1 +1p)

_(p2 +2p(e — 1)(1 + top) (30)

T (e’ + rop)z)m} }1/2

Denoting q = p~ ', we have

ki = q'[fi(q)]"/* (31)

where

@ ={3[1+ 0+ w)

+(1+z(a1)(q+ro)+<1+8>2(q“">2>1/2}}

h@={31+ 00w

_(1+z e— 1)(q+10)+(1+8)2(q+m)2)1/z}}

Expanding f,(q) and f(q) in the Maclaurin
series of which the first four terms are retained,

we have
£7.(0)qg? fm'i 0)a3
fi(q) = £i(0) + £/1(0)q + 1(2>q N 1(6)q7
i=1,2

)

and we have

fi(q) = ajp + aiq + apq” + anq’ (32)

where
1
310:§[1+(8+1)‘50+A]
1 (e—1)+ (e + 1)1
=_ 1
ajg 3 e+ 1+ A

= a, = &
app = —ap = A3 a20
1
= 5[1 + (8—|— I)To — A}agl
1 (e—1)+(e+ 1)1
= — 1—
3 €+ A (33)

12
and A = [1 +2(e— )t + (e + 1)21(2)]

Next, we expand the expressions [f;(q)] 12 and

[£2(q)]"/* in the Maclaurin series, and retaining
the first three terms, we obtain finally the expres-
sions for k; and k, in the form

ki=q '{bo +buq+bpq’},i=1,2 (34)

where

bio = Vajpo
il
b =
T (35)
4ajoap — aj
bizz aoazz ag
&by,

Using similar expansion methods, we get

1
o @*{bo + biq + bsq® + bsq’} (36)
1K
where
1
b() :X
[(8— 1)—0—(8-1—1)2‘[?0]
by =—

A3
[(e?—de+1)+2(e—1)(e+1)°10

b= | 4 (e4+1)'1

AS
[(e—1)(e*—8e+1)+3(e+1)* (2 —de+ 1)

bi=| +3(E—D(e+1) %+ (e+1)'x

A7
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Stress Distribution

Let us substitute the expressions (28), (34), and
(36) in (27) to obtain

bo b by b
& =0, {p°+1+2+3}

p> p* p
—b12X
{exp(—bnx)exp(—blox)exp( ’ )
—bsz
exp(-bux) exp(~buns) exp 2 ) |
(38)

which can be written more concisely as

3
b; —b
o= Goe_b“x Z—pjil e_blox exp ( 12X>
p

=0
3
_ b; _ —b22X
—Bpbe Puxy e mbuXeyy <—)
jzzopﬁl p
(39)

In order to invert the Laplace transform, we
shall use the convolution theorem for the Laplace
transforms, namely,

t
L f(p) - 2p)) = | L @) L )iz

0

and the following three formulas from the table of
Laplace transforms [10]:

L' [p"e "] = 8™ (t — a)
L [eTP] e .
{pﬁl} = (£> J;(2V/at), Re(j) >—1,2>0

Ll[;ﬂ () L(2+v/at), Re(j)>—1,a>0

Using these formulas, (39) transforms to

3 o0
c = Ooe_b“" ij J S[t —biox — u]
=0
0
o \J2
(b10x> J; (2 blzxu>du
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3 o0
— Oobe_bﬂx Z bj J S[t — byox — Ll]
=0

RN
(_bmx) 1j(2/~bxxu)du

or

b10X i
b]OX

3
G =0pn(t — bygx)e > ij(

=0

JJ (2 bi2x (t — b]()X))

1X i b: b20X i
! b20X

j=0

— Bon(t — byox)b
I (2 “bmx (t— bzox))
or, written in full, we have
o =00 {n(t—bjx)e ™

t—box) 1/
|:b()J()(Zl)+bl( 10 )

b10X

Ti(21)+bs < blb“’x) To(21)+bs (

—n(t—baox)e * [b010(22) +bi (

me
t—byox /2
—bz()X

—byox t—byox 32
1 b I
—byox ) 2(Z2) + 3 ( —bzoX ) 3(22)

(40)

t—byox\ >
_IOX) T5(z1)

11 (22)+bs (t

where

zZ1 = 24/bx (t — b]()X)

41
7b22X (t - bz()X) ( )

22:2

In (40), n(x) denotes the Heaviside step func-
tion, and J,, and I,, are Bessel functions of the first
and second kind of order n, respectively.

Temperature Distribution

Substituting from (28), (34), and (36) in (24),
we get
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e:%{rm+ﬁﬁfﬁ+qﬂm
p P PP

C C C C
——{49-+-J§~+-J§-+-J§]e—bX}
PP PP

€03 A
1 (e+1)to—1
CZO—E{*1+ A :|
[e((e+1)T9+1)
Cli=C1= ] Al }
—el(e=2)]+(e+1)(2e+1)10
cn=cn=| +(e+1)’t
A5
[e[(e? —6e+3)+(e+1)(3e? —4e—5)10
ca=cn=| +(e+1)°GBe+ 1)+ (e+1)°7)
A7

(43)

Now, substituting from (34) and (42), we get

~ c c c
9—90{{ +L+£+ 13} exp(—biix)
p p» p p!

—b
exp(—byox) exp (TIZX>

C C C C
{ﬂ+%+”+f]
PP PP

o))

Performing the inverse Laplace transform,
using the general inversion formulas used before,
we obtain

exp(—byx) exp(—baox) exp(

3 i/2
t—bjox
0= 9()1’](t—b1()x —bux Z < 10 > Jj(Zl)

-0 b10X
3 i/2
tbzoX)J
G| ———— Li(z
joh<—MM i(z2)

where z, and z, are given in (41).

— 901’] (t — bgox)esz"‘

(42)
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Asymptotic Expansions in Coupled and Generalized
Thermoelasticity, Fig. 1 Temperature distribution
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Asymptotic Expansions in Coupled and Generalized
Thermoelasticity, Fig. 2 Stress distribution

Numerical Results

The copper material was chosen for purposes
of numerical evaluations. The constants of the
problem were taken as € = 0.0168 and ty = 0.05.

The computations were carried out for two
values of time, namely, for t = 0.05 and O.1.
The results are illustrated graphically in Figs. 1
and 2 for the temperature increment 0 and stress
component & distributions, respectively. The
dashed lines represent the case when t = 0.05,
while the solid lines represent the case when
t=0.1.

All the functions considered here have
two singularities at the points x = t/bjy and
X = t/byo. The locations of these singularities are
shown in Table 1. At these singularities, the
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Asymptotic Expansions in Coupled and Generalized
Thermoelasticity, Table 1 Location of singularities

t Singularity 1 Singularity 2
0.05 0.043459 0.222650
0.10 0.092914 0.440376

temperature and stress distributions are discontin-
uous. The first singularity in the temperature is
very small in magnitude and does not show in
the figures.

All the figures show that, as expected, the heat
and elastic effects propagate with finite speeds. It
was found that dimensionless speeds for the two
waves are v; = 0.999556 and v, = 4.474124. As
seen in the figures, the effect of the thermal shock
propagates into the medium with a finite speed.
For t = 0.05, for example, the wave front has
reached the location x = 0.22265. For t = 0.1,
the temperature has nonzero value only in the
region x < 0.440376 and is identically zero
everywhere else. This region expands with the
passage of time.

This is different from the cases in both the
uncoupled and the coupled theories of
thermoelasticity [2]. There, the effect of the ther-
mal shock fills the whole space immediately,
signifying an infinite speed of propagation for
thermal waves.
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Time
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Italy

Overview

The problem concerning the » partition of
energy in asymptotic form was first approached
in the 1960s (Lax and Phillips [1] and Brodsky
[2]). Afterwards, Goldstein [3, 4], applying the
semigroup theory, proved an equipartition theo-
rem asserting that the difference between kinetic
and potential energies vanishes as the time tends
to infinity. Later, using the Lagrange identity
method, Levine [5] proved in a simplified way
with respect to Goldstein [4] that asymptotic
equipartition occurs between the Cesaro means
of kinetic and potential energies. In the context of
linear elastodynamics, Day [6] established the
asymptotic equipartition between the mean
kinetic and strain energies. Such result has been
extended by Chirita [7] to the theory of linear
thermoelasticity.

On the other side, » backward-in-time prob-
lems were initially considered by Serrin [8], who
established uniqueness results for the Navier—
Stokes equations. In such a context, interesting
results have been obtained by Knops and Payne
[9], Galdi and Straughan [10], and Payne and
Straughan [11]. Subsequently, Ames and Payne
[12] introduced the study of the dynamical linear
theory for thermoelasticity backward in time, and
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in this regard, other important results have been
recently achieved by Ciarletta [13], Ciarletta and
Chirita [14, 15], Iovane and Passarella [16],
Passarella and Tibullo [17], and Passarella,
Tibullo and Zampoli [18]. In particular, the
asymptotic partition backward-in-time shown in
[15] is here reported, likewise with regard to
the contents but with an additional level of detail
in terms of mathematical description.

In the context of the linear theory of
thermoelasticity backward in time, a final-
boundary value problem is considered such that
the final data are assigned at time ¢ = 0 and the
extrapolation of the solution to the time interval
(—00,0) is performed. To this end and through
some auxiliary Lagrange-Brun identities (see
[19, 20]), the Cesaro means of various parts of
the total energy are introduced, and the relations
describing the » asymptotic behavior in time of
mean energies are established, provided that
some mild restrictions are imposed on the con-
sidered process.

Formulation of the Backward-in-Time
Problem

A bounded regular region of the physical space
E3 will be denoted by B, and OB will be its
piecewise smooth boundary surface; B is sup-
posed filled by an anisotropic and inhomoge-
neous thermoelastic medium. An orthonormal
system of reference is introduced such that all
vectors and tensors have components denoted by
Latin subscripts (ranging over 1,2,3). Summa-
tion over repeated subscripts and other typical
conventions for differential operations are
implied: a superposed dot or a comma followed
by a subscript will denote partial derivative
with respect to time or to the corresponding
Cartesian coordinate, respectively. Moreover,
regularity questions will be disregarded for all
involved functions, simply understanding
a degree of smoothness sufficient to ensure anal-
ysis to be valid. In the context of the linear
theory of thermoelasticity, a final-boundary
value problem will be considered in the time
interval (—oo, 0].
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Following [21] and neglecting supply terms,
the fundamental system of field equations can be
summarized as follows:

Equation of motion

Siij = pii; in B x (—0c0,0] (1)
Energy equation
ToMjéjj — gis = c0  inBx (—00,0] (2)
Stress—strain-temperature relation
Sij = Cijuen + M;0 inB x (—o00,0] (3)
Heat conduction equation

qi = —Kjg in B x (—o0,0] (4)

Strain—displacement relation

(uij + uj;) in B x (—00,0] (5)

| -

¢ij =

Thermal gradient-temperature relation

gi=20; in B x (—00,0] (6)

In the above system of equations, the follow-
ing notations have been used: §;; are the compo-
nents of the stress tensor, u; are the components of
the displacement vector, and 6 is the temperature
variation from the uniform strictly positive refer-
ence temperature To. Moreover, M;; are the com-
ponents of the stress-temperature tensor, e;;
are the components of the strain tensor, ¢; are
the components of the heat flux vector, Cjy
are the components of the elasticity tensor, Kj;
are the components of the conductivity tensor,
and g; are the components of the thermal
gradient vector. Furthermore, p (mass density)
and ¢ (specific heat) are assumed to be strictly
positive continuous functions of the position x
on B, and tensors Cjj;, M;;, and K;; are continuous
differentiable functions of the position x on B and
satisfy the following symmetry relations:

Ciw = Crijj = Cjiy (7)
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(8)
©)

The considered final-boundary value problem
P is thus defined by the relations (1)—(6), by the
final conditions

if(x, 0) = i(x)

withx € B

ui(x, 0) = u(x)

0(x,0) = 0°(x) 10

and by the homogeneous boundary conditions

ui(x,1) =0 on X x (—o0,0]
si(x ,t)=0 %, X (—00,0] (1)
0(x,t) =0 %3 X (—00,0]
q(x,6) =0 3y x (—00,0]
where uo, u;, and 0° are assigned functions and

si(x, 1) = Sji(x,1) nj(x) (12)
q (Xv [) = CIi(Xa t) I’Zi(X)

Moreover, n; are the components of the out-
ward unit normal vector to the boundary surface
and X, X, X3, X, are subsurfaces of OB such that
SIUZ,=33U%;=0B and I, NI, =33NZ4=0,
where the closure is relative to OB.

Through an appropriate change of variables
and referring to suitable notations, it is possible
to transform the considered final-boundary value
problem ‘P into an initial-boundary value prob-
lem P*. For each function depending on time
f(#), it is considered that f*(¢+*) =f(¢), with
t* = —t. Removing the star signs for the sake
of simplicity, the following set of equations can
be defined:

Sjij = pii in B x [0, 00) (13)
ToMyéjj+qii=cO  inBx[0,00) (14)
Si = Cjuen + M0 inBx[0,00) (15)

qi=—-Kjg  inBx[0,00) (16
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ej == (uij + uy) inBx[0,00) (17)

l\)l'—‘

gi=20; in B x [0, 00) (18)

To the previous equations, the following
initial conditions have to be added:

l;t,'(X, O) = M?(X)

0(x,0) =0°(x) withxeB
(19)
together with the boundary conditions
u;(x,0) =0 on X; x [0,00)
(x,1) =0 2, x |0,
si(x, 1) on X, x [0,00) (20)
0(x,6)=0 on X3 x [0,00)
q(x,t) =0 on X4 x[0,00)

A solution of the considered initial-boundary
value problem P* will be identified with an
ordered array 7 = [u;, e;,S;;,0, 8, q;] satisfying
(13)—(20) and with the following properties:

a. u, U, i, (”l}i + I/lj’,-)7 (I;Ii,/' + li_m’)
continuous on B x [0, 00)
b. e; continuous symmetric
tensor field on B x [0, 00)
c. S, S;i; continuous on B x [0, 00)
d. 6,00 continuous on B x [0, c)
e. g continuous on B x [0, c0)

f- gi,qi; continuous on B x [0, 00)

Some Auxiliary Integral Identities

It is now necessary to preliminarily establish
some auxiliary identities useful in order to
investigate the temporal behavior of the
solutions of the considered initial-boundary
value problem P*.

Lemma 1. Assuming thatz = [ui,eij,Sij, H,gi,q,-]
represents a solution of P*, then it results
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%/B [pl/'ti(l)l;li(l‘)+CUklei/(t)gkl(l)+Ti09([)2:| W

:%A |:p”.li(0)l’.li(0)+Cijkleij(0)€/d(0)+Ti;)0(0)2:| v

t
1
+f / K 5)g ()
0

forallz e [0,00)

(21)

Proof. Equations (7), (8), (13), and (17) imply that
pul(v)u,(v) = [Sj,(Y)M,(S‘)] J - S,‘j(S)é,‘j(S) (22)

and then, taking into account (14), (15), and (18),
it can be easily deduced that

gs{l {pu,( Jii(s) + Cijueij(s)ew (s )+ 0( ) H

— 516939+ 761009 —Tioqf<s>g,<s>

J
(23)

Substituting (16) into (23) and integrating the
result over B x [0, ], with the aid of divergence
theorem and in view of boundary conditions (20),
identity (21) is obtained and the proof is complete.

Lemma 2. Assuming that 7 = [u;,¢;,S;;,0,8:,4i]
represents a solution of P*, then it results

2 / pu;(t)u;(t)dv

& o o
:20//3{pu,-(s)u s

- {Cijk/e,-j(s)em(s) + Tioe(s)z] }dvds
+2 / pui (0)ii: (0)dv

o fooluess

forall t € [ ,oo)

- 9(0)] dvds
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Proof. Integrating over the interval [0, 7] the fol-
lowing identity

%[pu,-(s)u,(s)] = puii(s)it; (s) + pu;(s)ii;(s) (25)
it results

p pu;(0)i; (0)

ui (1)1t (1) =
oo

Now, considering (7), (8), (13), and (17), it is
possible to write

9+ pusis(s)lds >0

pui(s)iii(s) = [Sj,'(S)M,’(S)] J — S,-j(s)e,-j(s) (27)
and then, using (15), it can be seen that

pui(s)iii(s) =[Sji(s)ui(s)] . — Ciuei(s)ew(s)

J 28
—Mjey(s)0(s) @)

On the other side, (14) can be integrated over
[0, ] in order to obtain

t
1 c
Myes(t)= 7 [ auls)ds+1-00+n (29)
To Ty
0
where 1), is defined as follows:

= 0(0)

- (30)

My = Mije;;(0) —

So, taking into account (9), (16), (18), (28),
and (29), one can write

N

puu(s)i(s) = | Si(5h(s) +7-06) [ 21z

0 J
_ [C,-jkle,-j (S)ekl (S) + TL() 0(5‘)2]
—m0ls) + 7 Ksi) [ ge)e:

0

(31)

Substituting (31) into (26) and integrating the

result over B, identity (24) is achieved with the



Asymptotic Partition Backward in Time

help of divergence theorem and boundary condi-
tions (20). The proof can be completed underlining
that, through an integration by parts, it results

t N
1
—// Kijg[(s)/gj(z)dz dsdv
Ty Jp , )

t t T
1
= — K,j/g,(z)dz/gj(z)dz dv
To Js / )

s

_Tio/Bo/r Ki/g/(s)/gi(z)dz

0 _

dsdv (32)

where symmetry relation (9) has been used.

Lemma 3. Assuming that 7 = [u;,e;,5,0,8:,4;]
represents a solution of P*, then it results

2/3 pu;(t)u; (t)dv

_%OAKU/gi(Z)dZ/gJ(Z)dZdV
0 0
- / plus(20is(0) + i 20w (O)]av 3P

+0//Bv70[9(t+s)—0(t—s)]dvds

forallz € [0,00)

Proof. Integrating with respect to the variable s
and over the interval [0, 7] the following identity

%{p[uf(t—i—s)u,-(t— §)+ui(t+s)ui(t—s)]}
=plui(t—s)ii;(t+5) —ui(t+5)ii;(t —s)]

(34)

one can obtain

2pu;(t)it; (1) =p[u;(21)1;(0) + 1t (21)u; (0)]

t

+ [ plui(t+s)ii(t—s) (35)
/

—u;(t—s)it;(t+ s)]ds
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Furthermore, in view of (7), (8), (13), (15), and
(17), it can be deduced that

plui(t+ )i (t — ) —u;(t — s)ii; (¢ +5)]
= [Sji(l‘— s)u,-(l‘—l—s) —Sjl‘(l‘—FS)Mi(t— S‘)} j (36)
+ [S,-j(t—G—s)eij(z‘— S) —S,-j(t—s)e,’j(t—O-s)]

and then

Sij(t+s)e;(t—s) = Sij(t —s)e;(t+s)
=0(1+5)Mjie;j(t —s) — (1 — s)Mje;(t +s)

(37)

By means of (16), (18), and (29), the following
relation can be derived

Sij(t+s)ey(t—s) —Si(t—s)e;(t+s)
=1o[0(t+5) —0(t—s)]

+{Ti0 [0(r—s)/ q,-(z)dz—@(l—&-s)/ qi(z)dz}}

0

1 t+s t—.A
- [g,-v—s)m;f / 8i()dz— g (1)K, / g,«<z>dz]
(38)

and substituted into (36); the result has to be
placed into (35).

Integrating the obtained relation over B, iden-
tity (33) is proved with the help of divergence
theorem and boundary conditions (20). The proof
is then complete.

Corollary 1. Assuming that == [u;,e;;,S;7,0,8:,4i]
represents a solution of P*, then it results

2 0/’ /B {pu,-(s)u,-(s) - [C,-jkle,-j(s)eki(s)
#5067 favts = =2 [ pu@)in 0y
+ / Pl(20)i0) + is(20)u0)] dv

+f / Mol20(s) + 01 + )
0

—0(t — 5)]dvds for all t € [0, 00)
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Proof. Remembering (30), it is sufficient to note
that a combination of (24) and (33) implies iden-
tity (39). The proof is then complete.

Asymptotic Partition of Energy

In order to derive the relations that exhibit the
asymptotic partition of energy, M has to be iden-
tified as the set of all thermoelastic processes
T = [ui,eij,S,;/, Q,g,‘,q,‘] defined on B X [0, OO)
such that

[ f e

for all t € [0, c0)

5)gi(s)dvds <M
: (40)

and where M is a positive constant. The asymp-
totic partition in concern can be shown provided
that the considered thermoelastic process 7 is
constrained to lie into the set M.

Let 7 = [u;, ey, S, 0, 8i,qi| be a solution of
the initial-boundary value problem P*, and
let the following Cesaro means be associated
with it:

Kel(t 2t/ /Pu
f)Z% / /B Cieij(s)eu(s)dvds  (42)
0

s)dvds (41)

C(B)

A1

¢ (B)

= {V = (V]7V2,V3)7

and if meas X1 = O,then/ pvidv = /
B
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=3 / / )2dvds (43)
/ / | Ko c)dvzds
(44)

It will be convenient, in order to perform the
incoming analysis, to assume that meas X3 # 0,
also if the procedure that is going to be
shown could also be extended in theory to the
case when meas 23 = 0. It is noticeable that if
meas X1 = 0, then there exists a set of rigid
motions and null temperatures satisfying
(13)—-(18) and boundary conditions (20). It is
thus possible to decompose the initial data u?
and 11¥ as follows:

W = u + U} W =il +U)  (45)

where u} and i} are determined in such a way that

/pU?dV =0 /pglﬁ/kij/?dV =0
B B

(46)
/PU?dV =0 /Pglf/’kijl?dV =0
B B

where ¢ is the alternating symbol.
The following notations are now introduced:

vi€C'(B):vi=0 on X

peXxvidy = 0}

={yeC'(B):y=0 onZ;}

W, (B) is the completion of ' (B) by means of |||y,

W1 (B) is the completion of ¢! (B) by means of [|-[|y, 5
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where

C'(B) is the set of scalar functions continuous
and continuously differentiable on B

W,.(B) represents the familiar Sobolev space

W.u(B) = [W,(B)]’

It has to be underlined that the following
inequality

1
Z / C,:/‘k[ (Vi,j + Vj.’,‘) (Vk,l + vl,k)dv > ny / VI‘V,‘dV
B B
(47)

with m, suitable strictly positive constant and for
allve W, (B), holds in view of the fact that C;y
is a positive definite tensor (see [22]).
Moreover, taking into account that
meas X3 # 0 and that the conductivity tensor is
positive definite, the following Poincaré inequal-
ity holds in view of boundary conditions (20):

/K,-jy iV dv 2m2/y2dv
B ' B

with m; suitable strictly positive constant and for
all y € W(B).

If meas £, = 0, then it will be convenient to
decompose {u;, 0} as follows:

ui(X, 1) =

(48)

u; (x) + 1} (x) + vi(x, 1)
00x,1) = 7 (%1 )
where  {v,y} € W (B) x W (B)  represents

the solution of the initial-boundary value
problem P* in which initial conditions (19) are
substituted by

vi(x,0) = U?(x)
7(x,0) = 6°(x)

\'),-X,O:U?x
(x,0) 7() (50)
withx € B

Introducing the total energy associated with
the solution © = [u,-, eij, Sij, H,g,-,qi] as

U(t) :%/B {Pﬂi(f)ﬂi(f) +Cijueij(t)en(t) +Ti00(f)2

(51)
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then it is possible to derive the asymptotic parti-
tion in terms of the Cesaro means (41)—(44).

Theorem 1. Let ©n = [u,-,e,j,S,;,', G,g,-,q,-] be
a solution of the initial-boundary value
problem P* lying in the set M defined by (40).
Then, for all choices of the initial data
u’ € W, (B), u° € Wy(B), and 0° € Wy(B), it
results

lim Tc(t) =0

(52)
—0o0
Furthermore, it is possible to distinguish two
cases:
a. If meas X; # 0, then

,hm Kel(t) = tlim Sc(1) (53)
lim Dc¢(r) = 2 lim K¢ (1) — U(0)
1—00 tfoc (54)
= 2{11m Sc(t) —U(0)

b. If meas X1 = 0, then

lim ’Cc(t) = tlim Sc(t)

1—0o0

1
+= / pitidv (55)
2 Jp

lim De(r) =2 lim Ke(r) - U(0)

—00
1

— / pii'dy = 2 lim Sc(7)
2 B —00

1
—U(0) 4= / pii i dv
2 Jp
(56)

Proof. From Lemma 1 and (51), it follows that

[ 1
+O//BT—OKfjgi(s)gi(s)dvds (57)

fort € [0,00)

Taking into account (41)—(44) and (57), it is
possible to deduce that
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’Cc([)+SC(t)+Tc(l)

:%/{/B[pm(ﬂlli(s)
0

+Cimei(s)ewu(s) +Ti9(s)2] dvds
0

t

4]

0

t s
1 1
:L{(O)+—/-//—K,-jg,-(z)gj(z)dvdzds
t J s Ty

—U(0)+De(1)
forallz € (0,00)

U(0)+//BTLOK,'jg,‘(Z)gj(Z)dVdZ] ds
0

(58)

From (40), (43), and (48), it can also be shown that
1{1 t
Te(n) < % {T—Omach(x)} / /B 0(s)*dvds
0

[ 1
[mach(x)]O//BT—OK,-jg,'(s)gj(s)dvds

[maxzc(x)] forze (0,00)

1
<
— 2myt
M
<
— 2myt
(59)
So if ¢ tends to infinity, the condition (52) is
proved, and (58) trivially implies that

lim ’Cc(l) + IEIgSC(I) :U(O) + lim Dc(l> (60)

1—00 t—00

On the other side, taking into account (39) and
(41)—(43), it is possible to write

1

Ke(t)=Sc(t) =Te(t)=—5,

/Pui(O)d[(O)dv
B
+%/ /3770[20(5) +0(1+5) — 0t —5)]dvds

0

+%/Bp[ui(21)lli(0)+L'ti(2l)u,~(0)]dv forz € (0,00)

(61)

Asymptotic Partition Backward in Time

From (40), (51), and (57), it can also be con-
sidered that

/B ity ()i (s)dv < 2U(s) < 2[U(0) +M] (62)

and

2 Ty / ¢ 2
<9 -
/BH(S) dv < minge(x) /s To 0(s) dv
2Ty
< =9
~ mingc(x) us)
27,

<———[U0) + M|

~ mingc(x) (63)

Furthermore, using into (61) the Schwarz’s
inequality and (52), (62), and (63), it is easy to
prove that

tlim ’Cc(l) — t]il’l’l Sc([)

1
— lim — / pis(O)u(20)dv  (64)
t—’004l B

Case A.
(meas X1 # 0)

Since u € W, (B), from (40), (47), (51), and
(57), it can be deduced that

/B u;(s)u;(s)dv < iZ/l(s) < 2 [U(0) + M|
(65)

and using again Schwarz’s inequality, it results

1
lim — / pu;(0)u;(2t)dv = 0 (66)
t—o0 4t B

So (64) and (66) lead to (53), while (54)
follows from (53) and (60).

Case B.
(meas £; = 0)

From (46), (49), and (50), it is possible to
deduce that
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1 1
E/Bpui(O)ui(Zt)dv:E /Bpufu;‘dv
1 . 1
,o(u;f+U§’)v,-(2z)dv+E / pIi; i} dv
B

(67)

tal

On the other hand, from (40), (47), (51), and
(57), it is noticeable that

/B vi(sIvis)dv < 2-U(s) < - U(0) + M]

and so (67) leads to

1 1
lim—/pui(O)ui(Zt)dv:—/pu;‘u;‘dv (69)
B 2 Jp

t—o0 4t

Then, substituting (69) into (64), (55) is
obtained, while (56) follows from coupling (55)
and (60). The proof is then complete.

The performed analysis has to be concluded
underlining that the restriction (40), used in order
to establish Theorem 1, exists in connection
with uniqueness and » continuous dependence
results obtained by Ames and Payne [12] and
Ciarletta [13].
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Overview

Ultrashort laser pulses are cataloged for those
whose durations are in the range of femtoseconds
(1 fs = 107" s) to a few picoseconds
(1 ps = 107'? s), depending on the interacted
materials. Comparing with conventional laser
pulses that have a duration of nanoseconds
(1 ns = 1077 s) or longer, these laser pulses
have two exceptional features: (1) ultrashort
pulse duration and (2) extremely high laser
power, leading to a wide spectrum of application
in the fields of chemistry, physics, biology, med-
icine, and engineering. For example, ultrashort-
pulsed lasers have been used to observe chemical
bond formation and breaking [1, 2], generate
high-density plasma [3], image and manipulate
biological systems [4], deliver foreign gene into
cells in vitro [5], synthesize metal and semicon-
ductor nanoparticles [6], etc.

Over the past two decades, many efforts
have been stimulated to explore micro-/
nanoprocessing of solid thin films by ultrashort-
pulsed lasers. The ultrafast laser processing of
metal films can generally be categorized into
two main regimes: nanostructure fabrication and
ultrahigh-precision machining. The former is to
change film surface topography and controllably
generate nanostructures, such as nanojets and
nanobumps [7, 8], on a film surface; the latter is
to machine metal films through material removal
with minimal burr formation and collateral dam-
age [9, 10].

Atomic-Level Hybrid Modeling of Thermomechanical Stress Wave

Under the ultrafast laser irradiation, temper-
ature in a metal target can easily shoot up to
several thousand degrees and the strain rate up
to 10'°s7!. In addition, the interacted material
could exhibit a very different thermomechanical
behavior from those caused by conventional
pulse lasers. The behaviors of metal thin films
induced by ultrafast laser heating can be simu-
lated using an integrated numerical method cou-
pling the molecular dynamics (MD) for lattice
and the energy transport model for electron gas
(continuum). This atomic-level hybrid approach
vitally does not require a priori knowledge
of lattice thermomechanical properties at
extremely high temperature and strain-rate con-
ditions, which, however, are barely available
thus far.

Theory

When a metal target is irradiated by an ultrashort
laser pulse, the incident laser energy is first
absorbed by those electrons located within the
skin (optical penetration) depth. During this
short period of time, temperature (7,) of the
excited electrons can be very high due to
the extremely high laser energy density and the
small electron heat capacity, while the lattice
temperature (7)) basically remains unchanged.
Then, a portion of the electron thermal energy
diffuses, through electrons, into the deeper
region, while the other part of the electron ther-
mal energy transfers to the neighboring lattice via
collision between electrons and phonons. Even-
tually, a thermal equilibrium state (i.e., T, = T))
will be established, and the subsequent thermal
transport process can then be characterized by the
classical heat conduction theory. The above two-
step thermal process of ultrafast laser heating can
be described by a two-temperature model (TTM)

(e.g., [11])

ce%:vugvn) G -T)+S (1)
ar
Crg =VKNT) +G(Te=T))  (2)
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where C is the heat capacity, K is the thermal
conductivity, G is the electron-phonon coupling
factor, S is the volumetric laser heat source, ¢
represents time, and the subscripts e and / denote
the quantities associated with the electron and
lattice, respectively. The term G(T,—7; ) in the
two equations is the thermal energy exchanged
between the electrons and lattice. For a slow laser
heating, the thermalization time for electrons and
lattice to reach equilibrium is much shorter than
the lasing time, and thus, the equilibrium temper-
ature (T, = T)) is assumed for the entire heating
process. In that case, the above two-temperature
model can be reduced, by combining (1) and (2)
with T, = T}, to the classical Fourier heat conduc-
tion equation.

Since thermal expansion in lattice occurs in
such extremely short time (~ ps) when the lattice
is heated up, the rate of change of the lattice
dilation could be on the order of magnitude
same as that of the lattice temperature. For that
reason, the exchange of the thermal and mechan-
ical energy in the lattice should be accommo-
dated so that the temperature response can be
better described. Thus, (2) is modified to

T
C,—=L=V(KNT)+G(T.—T)

ot (3)

— (3% + 2p)aT i

where A is the Lamb constant, p is the shear
modulus, « is the thermal expansion coefficient,
and & is the time rate of change of the lattice
dilation with g;; denoting the sum of the three
normal Strains &, €,y, and €.

Because the dilation (&) of lattice is involved
in (3), the momentum equation of lattice should
also be considered for solving the displacement
field for the strains. For a metal material
subjected to ultrashort-pulsed laser heating, the
momentum equation of lattice is written in the
following form [12]:

. 2
pug = oy + 3 (CeTe),g (4)

where p is mass density of lattice, ii; are acceler-
ation components ({ = x, y, z), Gy are stress
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components (N = x, y, z), and the subindices
after “,” denote the first spatial derivative with
respect to the corresponding coordinate, respec-
tively. Deviating from the classical momentum
equation, the second term on the right-hand side
of (4) is the so-called hot-electron blast force [13]
that results from the electric kinetic pressure [12].
This hot-electron blast force could be quite sig-
nificant during the early nonequilibrium stage,
when both the electron temperature and its spatial
gradient are very high. The stresses in (4) can be
expressed in terms of strains and then displace-
ments. Hence, the above ultrafast thermome-
chanical model, including five equations in (1),
(3), and (4), can be solved for the five unknowns
T,, T}, uy, uy, and u, and subsequently the strains
and stresses.

The main challenges in solving the contin-
uum-based ultrafast thermomechanical model
include the following: (1) the temperature-
dependent thermal and mechanical properties of
lattice, such as thermal conductivity, heat capac-
ity, thermal expansion coefficients, and moduli,
under the extremely high temperature and strain-
rate conditions are barely available, and (2) the
progressive lattice deformation, e.g., crack for-
mation and propagation, is difficult to be accu-
rately described. The latter usually is
compounded by the former. To overcome these
predicaments, an MD model for the lattice can be
introduced to replace (3) and (4) since it has been
shown that MD is an efficient tool for modeling
ultrafast thermomechanical behavior of metal
materials [14-16]. In the MD simulation, the
lattice properties are characterized implicitly
through the interatomic potential. The lattice
temperature can be evaluated with the simulated
velocities of atoms, and the deformation can be
tracked and examined by the atom’s trajectory.

The classical MD equations of motion for the
lattice are given as follows [17]:

oU(ry)

d2r,- N
e T 2 S or; ®)
=i 9N

in which m; and r; are the mass and position
vector of atom i, respectively; U(r;) is the
interatomic potential between atoms i and j
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separated by a distance r;j; N is the total number
of atoms in the MD system; and the subscripts i
and j run over all the atoms in the system. To take
account of the thermal energy exchange between
the electron gas and atoms in the MD model, an
alternative form of the term G(T;_T, ) in (2) is
inserted into the MD equations [18],

D) _ et (6)

81',-]-

dzl',' N
m,‘ﬁ = — Z

=L

e Z_jl G(T,—T7)
Wy (7)

Ny R
> mi(v])
k=1

é:

The new symbols in (6) and (7) are explained
below. Equation 1 governs the electron tempera-
ture and can be solved numerically using an
explicit finite difference (FD) method. To couple
with the FD method, the entire MD model is
discretized into a collection of volumes
corresponding to the FD cells. The maximum
time step allowed for integrating the finite differ-
ence equations is determined by the von Neu-
mann stability criterion and typically is much
smaller than the time step employed in the inte-
gration of the MD equations of motion. There-
fore, the time step for the MD simulation should
be chosen to be multiple times that for the FD
simulation. The symbols in (6) and (7) thus are
defined as follows: V. is the volume of the FD cell
in which atom i exists, V,{is the velocity of an
atom k after subtracting out the center-of-mass
velocity of the atom group in V,, n is the number
of the total FD time steps in a single MD
time step, 77" is the electron temperature obtained
at the m-th FD time step, and Ny is the number
of atoms in the volume of V. Under this
manner, the lattice temperature of a FD cell is
computed by

NV T )

> My (Vk)

=" 8
! 3Nvkg (8)

with kg being the Boltzmann constant.
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Similar to the damping force converted for the
thermal energy exchange between electrons and
lattice, the hot-electron blast force, i.e., the last
term in (4), needs to be modified so that it can be
applied to the MD equations. By recalling the
discretion of the FD cells, the hot-electron blast
force B, exerting on an atom i in the volume V.,
can be computed by [14]

leading the MD equation of motion (6) to

dzl’i N aU(I‘,‘,‘) T
ml‘ﬁz _._ ' 'Ti»._émivi +Bl (10)
J=1j# J

The embedded atom method (EAM) potential
proposed by Daw and Baskes [19] can be
employed for the interatomic interaction between
atoms. For atom i, the EAM potential U; is
expressed as

U,-:F,(@,-)Jré Z by(ry) (1)

=L
N
;= > glry) (12)
=LA

in which g; is the electron density at embedded
atom i contributed from atom j with a distance 7;;
between the two centers, 0; is the electron density
at the atom i contributed from all other atoms, F;
is the energy function of atom i in an electron
density 0;, and ¢; is a short-range pair potential
function. The embedded function F; is universal
and does not depend on the source of the back-
ground electron density, the pair interaction term
¢, is purely repulsive, and the electron density g;
can be computed from the Hartree-Fock wave
functions [19].

The continuum-based energy and momentum
equations for lattice, (3) and (4), have been
replaced by the MD equations of motion (10)
with the additions of thermal energy exchange
between electrons and lattice and the hot-electron
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blast force. The temperature field, locations, and
stresses of lattice can be computed from the MD
results. On the other hand, the following temper-
ature-dependent material parameters C,, K,, and
G are employed to solve the electron temperature
from the energy balance equation (1) [12, 20, 21]:

(924 0.16)° (92 + 0.44)

Ke:X‘gc’ (13)
(924 0.092)' (92 + «))
A,
G = Ggr B_(TeJrT’)Jrl (14)
1
CgOTE’ T€<%
o x§—0n+%7 %§T€<% (15)
¢ Ndk3+%7 %ST€<TF
e
with
R YA AT
om0

In the above (13)—(16), y and x are material
parameters, 3, = T,/Tr and 9; = T;/TF with Tr
denoting the Fermi temperature, Ggr is the
electron-phonon coupling factor at room temper-
ature, A, and B; are material constants in the
characterization of electron relaxation time, C,,
is the slope of C, in the first range of T, < Tr /m,
and N, is the number density of atoms.

Numerical Analysis

Consider that a gold film is irradiated by a flat-
top, ultrashort laser pulse whose spot size is much
larger than the film thickness. The time period of
interest for the numerical simulation here is sig-
nificantly shorter than that for the outgoing lateral
stress wave to reflect back to the heated spot, due
to the assumption that the in-plane dimensions
are much larger than the thickness. Under these
conditions, the thermomechanical problem can
be treated as a case of one-dimensional (1-D)
thermal transport and uniaxial strain in the film
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thickness direction. Let the z axis be along the
film thickness direction. The 1-D form of (1)
becomes

or. o
C(’(Te) at _&
aT,
X (KeE> - G(Te - T[) +S

(17)

For a Gaussian beam with a FWHM (full
width at half maximum) duration ¢,, the 1-D
form of the laser heat source S in (17) is
described as

J abs
tpd

z t—2t,\>
X exp ———2.77( p) (18)
[ dy t

where J,,, is the absorbed laser fluence and d; is
the optical penetration depth. Equation 18 indi-
cates that the laser pulse is impinged on the front
film surface (z = 0). The lasing starts at = 0 with
the peak power occurring at ¢ = 2t,,. The laser is
assumed to be off at = 4¢, since the laser power
after then is very small and can be neglected.

The MD equations of motion are solved using
the Velocity Verlet algorithm. At time ¢ + At, the
acceleration a;, velocity v;, and position vector r;
of each atom i are updated by [15],

S(z,1) = 0.94

ri(t + At) = ri(t) + vi(t) At + % (Ar)*a;(r) (19)

\?, (r + At) =v;(t) + 5a,(t)Az (20)
N ougry) T
- > “al| —<mv; +B;
a (l‘—i—Al‘) _ J=1j#i Uttt
1 ml
(21)

1 1
vi(t+ Ar) =v; (t+§Az‘> +§a,-(t+ Ar)At

(22)
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Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Table 1 Thermophysical
parameters of gold

Parameter Value

Tr (K) 64,000 [12]

Coo Jm> K™ 71 [12]

Ny (m™) 5.9 x 10% [14]
Grr (Wm 3K} 2.1 x 10" [12]
A, (K2s7h 1.2 x 107 [20]
B, (K 's™h 1.23 x 10" [20]
d, (nm) 15.3[12]

x (Wm™' K1 353 [12]

K 0.16 [12]

The virial stress in atomistic simulations and
its potential part have been demonstrated equiv-
alent to the continuum stresses in either the
Eulerian or Lagrangian configuration [22]. The
thermomechanical stresses in the films can be
computed by the following equation [23]:

N,

1 VinVie
O‘T]::_VZ< 2 lg+ Z Ilnflﬂ) (23)

i=1

where v;;, and v;; are the momentums of atom 7 in
the m and ( directions, respectively; rjy, is the
component of the position vector r; between
atoms i and j in the n direction; f ;- is the compo-
nent of the force vector on atom i due to atom j
in the { direction; V is the current volume
corresponding to the FD cell; N, is the total num-
ber of atoms in the volume V; and N; is the
number of neighbor atoms to the atom i.

The MD system for the thin films
are created out of a bulk fcc gold crystal with
the [1 0 0], [0 1 0], and [0 O 1] crystallographic
directions along the x, y, and z axes, respectively.
The film surfaces normal to the z axis are free,
and periodic boundaries are applied in the x and y
direction. The two initial MD models have the
same length of 4.08 nm in each of the x and y
directions and different lengths of 99.96 nm and
499.8 nm in the z direction.

In the following numerical demonstration, two
thin gold films of thickness 100 nm and 500 nm
irradiated by a laser pulse of 7, = 150 fs
are considered. The electron temperature is
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Atomic-Level Hybrid Modeling of Thermome-

chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 1 Time histories of
lattice and electron temperatures at the irradiated surface
of the 100-nm film heated by the 150-fs laser pulse of

Jops = 175 Jm?
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Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 2 Hot-electron blast
force profiles along the thickness of the 100-nm film

calculated from (1) with the adiabatic boundary
conditions using the explicit FD method. The
total numbers of cells in the FD model are 100
for the 100-nm film and 500 for the 500-nm film.
The time step is 2.0 fs for the MD simulations and
0.005 fs for the FD calculations, giving n = 400
in (7). Before the laser beam is applied, the MD
systems are equilibrated at 298 K and zero stress
in both the x and y directions. The thermophysical
parameters of gold is listed in Table 1.
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Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 3 Distributions of
the electron temperature along the thickness of the
100-nm film
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Results

The simulated thermomechanical responses
shown in Figs. 14 are for the 100-nm gold film
heated by the laser pulse of J,5s = 175 J/m>.
Figure 1 shows the time histories of electron
and lattice temperatures at the irradiated surface.
It is obvious that the highly nonequilibrium ther-
mal state exists in the early stage of the heating
process as the significant difference between
electron and lattice temperatures illustrated in
Fig. 1. The maximum electron temperature is
14,494 K at t = 0.41 ps, while the lattice temper-
ature only raises 49 K to 347 K at that time
instant. The thermal equilibrium is established
at about + = 28 ps when the lattice and electron
temperatures becomes identical, about 1,150 K.
Figure 2 plots the hot-electron blast force profiles

a, b
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Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 4 Distributions of

normal stress o, along the thickness of the 100-nm film:
(a)t=2,6,10,and 16 ps, (b) r = 18, 22, 28, and 40 ps, (c)
t =56, 62, 66, and 70 ps
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Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 5 Distributions of
normal stress o, along the thickness of the 500-nm film

along the thickness direction (z axis) at different
time instants, where the normalized values of
z = 0 and 1 denote the irradiated and rear film
surface, respectively. The hot-electron blast force
reaches its maximum value of 2.74 x 10'” Nm
at about + = 0.4 ps and the normalized location
z = 0.095 and then quickly drops down due to the
fast decrease in the electron temperature and its
gradient, as shown in Fig. 3. Those kicks in Fig. 2
are because the electron capacity is assumed to be
a piecewise linear function of electron tempera-
ture (15).

Figure 4 presents the distributions of normal
stress G, along the z axis at various times. Ini-
tially, a compressive stress is generated in the
front film side. While the peak of the compressive
stress continues increasing, it also moves toward
to the deeper part of the film. The maximum
compressive stress is about 5 GPa occurring at

heated by the laser pulse of J ;55 = 175 J/m?: (@)t=2,4,6,
and 10 ps, (b) # =20, 60, 100, and 140 ps, (¢) t = 174, 200,
240, 290, and 346 ps

t = 16 ps and the normalized location z = 0.49.
Then, the stress wave becomes weaker and
weaker and, further, converts into tension. At
t = 40 ps, the peak of the tensile stress is
4.75 GPa, which is much larger than the ultimate
strength of gold at room temperature (1.24 GPa).
Afterward the stress oscillates like a standing
wave as the film vibrates like a free-free spring.
The distributions of ., in the thicker film of
500 nm induced by the same laser pulse of 150 fs
and J,, = 175 J/m? are shown in Fig. 5. Like-
wise, a compressive stress wave is first generated
in the region near the irradiated surface. How-
ever, it can be seen in the figure that a tensile
stress starts to emerge near the front film surface,
instead of the middle film depth in the 100-nm
film case. A twofold stress wave, comprising
compression and tension, is consequently formed
and propagates to the rear surface. As the twofold
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Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 6 Results of the laser
heating for the 500-nm thick film with J,;,, = 520 J/m>: (a)
distributions of .. along the film thickness (the stress
drop is marked by red arrow), (b) snapshots for atoms in
the region of normalized z = 0.0-0.16 at # = 30 ps
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Atomic-Level Hybrid Modeling of Thermome-
chanical Stress Wave in Metal Thin Films Induced
by Ultrashort Laser Pulses, Fig. 7 Results of the laser
heating for the 500-nm thick film with J;,; = 900 J/m>: (a)
distributions of o, along the film thickness, (b) lattice
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wave approaches the back surface, the leading
compressive stress wave reverses to tension
by the free surface reflection, and thereby
transforming the twofold wave into a tensile
stress wave. The superposition of the reflected
and incoming tensile stress waves eventually
results in the maximum tensile stress in the rear
side, with the magnitude close to that of the
maximum compressive stress initially generated
in the front film side. Subsequently, the twofold
wave appears again and travels back to the front
film surface with a leading tensile wave instead.
In this thicker film, the generation and propaga-
tion of the stress wave seems to be more conceiv-
able though the wave is in a twofold form.
Figures 6 and 7 illustrate the results for the
500-nm film heated by the two laser pulses
at higher absorbed fluences J,,, = 520 and
900 J/m?, respectively. It is observed in Fig. 6a
that a drop of the tensile stress ., suddenly takes
place at about ¢ = 54 ps in the region of normal-
ized z = 0.1. According to the snapshots shown in

Melting point of
bulk Au

Lattice temperature(10° K)

0.8 1
06 — 196ps
' — 200ps
0.4 4
0.2 T T T T
0.5 086 0.7 0.8 0.9 1
Time (ps)

temperature distributions along the film thickness, (c)
snapshots for atoms in the region of normalized
z = 0.824-0.944 at + = 180 ps, and (d) snapshots for
atoms in the region of normalized z = 0.078-0.22 at
t =60 ps
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Fig. 6b, the stress drop can be attributed to the
crack formation there. For the case of even higher
absorbed fluence 900 J/mz, as shown in Fig. 7a,
the tensile stress abruptly drops also at about
t = 200 ps in the region of normalized z = 0.88
and is accompanied by a sharp spike temperature.
Those rapid changes are attributed to the spall-
ation in the rear side of the film as found in
Fig. 7c. By comparing with the case of
Jps = 520 J/m>, this higher-fluence laser pulse
removes much more material in the form of solid
and nonsolid phases, as shown in Fig. 7d.

Future Research Direction

Ultrafast lasers have been demonstrated to be
a promising and powerful tool for micro-/
nanoprocessing of metal thin films. This work
shows the simulated ultrafast thermomechanical
response for gold films induced by ultrashort-
pulsed lasers using an integrated atomic-level
model. Future research should focus on multi-
scale modeling for the interactions with matter
in three-dimensional space with affordable com-
putational cost so that laser parameters could be
optimized for enhancing the micro-/nanomaterial
processing.
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Overview

In 1967, the theory of generalized
thermoelasticity with one relaxation time was
introduced by Lord and Shulman [1]. The moti-
vation behind the introduction of this theory was
to deal with the apparent paradox of infinite
speeds of propagation predicted by the coupled
theory of thermoelasticity introduced by Biot [2]
in 1956. The generalized equation of heat con-
duction is hyperbolic and hence automatically
ensures finite speeds of wave propagation. This
theory was extended [3] by Dhaliwal and Sherief
to anisotropic media. Among the contributions to
this theory are the proofs of uniqueness theorems
by Ignaczak [4] and by Sherief [5]. The state
space formulation for one-dimensional problems
was completed by Anwar and Sherief in [6] and
by Sherief in [7]. The state space formulation
for two-dimensional problems was done by
Sherief and Anwar in [8]. The boundary element
formulation was conducted by Anwar and
Sherief in [9]. Sherief and Anwar also solved
a two-dimensional problem of a thick plate with
a moving heat source on its boundary and a
two-dimensional problem for an infinite cylinder
in [10] and [11], respectively. Sherief and Hamza
solved a two-dimensional problem of a thick
plate under axisymmetric temperature distribu-
tion and discussed wave propagation for this
theory in [12].

The solutions of thermoelastic problems for
spherical regions are not as numerous as those
for Cartesian and cylindrical ones. Most of the
treated problems are either one-dimensional
spherically symmetric ones or axisymmetric
two-dimensional problems under simplifying
assumptions. Sternberg and Chakravorty [13]
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solved a thermal shock wuncoupled one-
dimensional problem. Hata solved a coupled
one-dimensional thermal shock problem for a
hollow sphere caused by rapid uniform heating
in [14]. The general solution for spherically sym-
metric problems with a heat source in generalized
thermoelasticity valid for short times was
obtained by Sherief in [15]. Axially symmetric
steady-state two-dimensional problems in spher-
ical regions were solved by McDowell and Stern-
berg in [16] and by Ignaczak in [17]. Ignaaak [18]
and Piechocki [19] solved dynamic problems in
thermoelasticity by assuming that the time vari-
able is harmonic, which tends to obscure the
transient nature of the problems considered.
Tanigawa and Kosako [20] solved a transient
coupled axially symmetric thermal stress prob-
lem for an infinite medium with a spherical cavity
by neglecting inertia terms in their solution.
Tanigawa and Takeuti [21] obtained the three-
dimensional solution to coupled thermoelastic
problems in spherical regions again by neglecting
inertia terms. Sherief and Hamza [22] obtained the
solution in spherical regions for two-dimensional
thermoelastic problems under axisymmetric
temperature distributions within the context of
the theory of generalized thermoelasticity with
one relaxation time. Sherief and Megahed [23]
did the same for thermoelasticity with two
relaxation times. Sherief and Saleh [24] obtained
the exact solution for a one-dimensional problem
for a spherical cavity.

Formulation of the Problem

We consider a homogeneous isotropic
thermoelastic solid under axisymmetric condi-
tions. We shall take the axis of symmetry to be
the z-axis and the origin of the system of coordi-
nates at the center of the sphere. By denoting the
spherical polar coordinates as (r,v, ) and the
time variable by #, we can take the axisymmetric
temperature distribution throughout the solid to
be T (r,¥,¢). The solution of the problem
requires the determination of the displacement
components # and v in the r — and 1} — directions,
respectively, together with the nonvanishing
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stress components o¢; in the region under
consideration.

We shall use the following nondimensional
variables:

i‘lzcmr,alzcma, M'=C177u, V,:CIUV»
_ (T —=Ty)
A+2u

’_ 2 L2 POy
r=cynt, 1y = cyno, 1:/*7,

where 7 is the relaxation time, a is a typical
length, and T, is a reference temperature chosen

such that ‘(T )l << 1, ¢ is the velocity of prop-

agation of longitudinal isothermal waves given
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by c; = , where A and p are Lame’s con-

stants and p is the density 7 is a constant given by
1 = p Cg/k, k being the thermal conductivity and
Cg is the specific heat at constant strain. 7y is
a material constant given by y = (31 + 2u) o,
where o, is the coefficient of linear thermal
expansion.

The strain tensor components are given
by [25]

Ou 1 0v n u
Cr =775 €99 = T 74 -
o T

(“)erl Ou B _0
€ry = 2 Y 199 v y Cro = €Yo =

The cubical dilatation thus has the form

—V t 9 “
ey, = —cot) +—
P Ty r

_@+2_u+ 1 O(vsind) (1)
e_ar r rsind 150}

The constitutive equations have the form

aW=2%94W—ay—ﬁw (2a)

o =2 05t 2 (- 2)e 0 (20)
GW_Zcotﬂv 2_u+(ﬁ 2)e—ﬁ2 (2¢)
Jrﬁ_av 10u v (2d)
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Orp =09, =0 (2e)
where % = (1 +2u)/u.

The equations of motion, after applying the
Laplace transform and using the homogeneous
initial conditions, can be written as [22]

0 _ 1 0 Ou
20 2 L O, 0u
Fole-0l+ Vi ZaL m]
. o2 (3a)
~ r2sind Orod [rv sin ] = B

1 0 v oo
;Zar[r ar}ﬂ”

The heat equation in Laplace transform
domain has the form

VO=s(1+15)(0+¢ee) (4a)

where & = >Ty/[pCr(A +2u)] and V? is

Laplace’s operator given by

1 0[a0], 1 0.0
v T2 or d or +r2sim9&9 sin? oY

Equations (3a) and (3b) can be combined
to give

(4b)
Eliminating e between (4a) and (4b), we get

V= [s"+(1+e) (s+105°)] V245 (1+705)] 0=
This can be factorized as

(V-8) (-B)i=0 (5

where kl-z, i = 1,2 are the roots with positive real
parts of the characteristic equation

K= [s*+ (1+¢) (s +10s%)] &
+53(1+15)=0
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The solution of (5) can be written in the form
0= 91 + 92
where 0;,i = 1, 2 is the solution of the equation

(V2=k7) 6;=0,i=1,2

Solving the above equation [22], we obtain

B 1 00 2
=— P, kl-z—s2
\/Z (u);( )

[Ani L1 2 (kir) + Bi Kyt 2 (ki) |

(6a)

Similarly, eliminating 0 between (4a) and
(4b), we get
(V- 1) (V= 8) e =0

The solution of this equation compatible with
(4b) and (6a) is given by

- 1 & 2

[Aui L1 2 (kir) + Byi K1 2 (ki) |

(6b)

In the above equations, I, and K, denote
the modified Bessel functions of the first and
second kinds of order n, respectively. P, is the
Legendre polynomial of degree n of argument
u = cos, and A,;,B,; are parameters depending
on s only to be determined from the boundary
conditions.

Using (1) to eliminate the last term in the
left-hand side of (3a),we obtain the following
equation satisfied by the displacement compo-
nent u:

200 2
V2ﬁ+;5 — ﬁzSz_
de 2e 00
=(1- [32)8— /325 (7a)

Substituting for e and 0 from (6a, b) into (7a),
we get

283
Vzﬁ—i—%% P
r3/2 ;P [Fur(r) +Fia(r)] (7b)
where

2
Au{ (K = Bs*) ki 130 (ki r)

i=1
+(n+2)kF = n 5] Lysy o (ki r)}

2
fua(r) = ZB,”-{—(kiz - ﬁzsz) kir Ky 3/2(kir)
i1
+ [(n+2)k — n 5] Koo (ki) }
In obtaining (7b), we have used the

following well-known formulas of the Legendre
functions [26]

dly 1o (kr) n+1/2
% = klyyap(kr) + / Lysaja(kr)
dK 412 (kr) n+l1/2
%?(:—k[(n%/z(kr)—k / Koi1/2(kr)

Solving (7b), we obtain the solution in the
form
(7¢)

U=up+up

where

I -

+nlyp(kir)] + Cn1n+1/2(5”)}

I :
n=1

i=1

+nKy1p2(kir)] + D, Kn+1/z(ﬂ”)}

where C, and D, are parameters depending on s
only. In obtaining (7b), we have used the
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following well-known formulas of the Legendre
functions [26]

i3 (kr) nt3/2

% =kl (kr) — / Lnyspa(kr)
r

dK,,. 32 (kr) n+1/2

+/~2(= —k K1 /a(kr) = / Koo (kr)

Substituting from (6b) and (7b) into (1), we
obtain

(v sin?v)

) kS

)+ 8n(r)]

(8)

gnl

where

2
gu(r)=n(n+1) ZAm' Ly1ja(kir)
i=1

+C, [(”+ D1 2(Bsr) +ﬁs”1n+3/2(ﬁ5”)]

2
(n+1)> By Kyeajp(kir)

+D,[(n4+ D)Kyi12(Bsr) — BsrKo i3 0(Bsr)]

gnZ (i') =n

For convenience, from now on, we shall write
simply P, instead of P, (u).

Integrating both sides of (8) with respect to u,
we obtain

©)

_ 1 = :uPn _Pn 1
Vi :}’372 {s1m9:| {ZnAmInJrl/Z(k r)
Psr
+ Cn |:[n+1/2(ﬁsr> +m1n+3/2(ﬁsr)

_ ,UP Pn 1 2
vz_f“ﬂz |: sind :| {iz;nBVliKnJrl/Z(kir)

+ Dn |:Kn+l/2(:[))sr) _%Kn+3/2(ﬁsr):| }
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In obtaining (9), we have used the following
integral relation of the Legendre polynomials [26]:

JP,,(#) du :Hpn(ﬂll?_l(u)

Although v contains sin ¥ in the denominator,
it can be shown that it is bounded as ¢ — O.

In fact lim v = 0.
¥—0

Substituting from (6a, b) and (7c) into (2a),
we obtain

O = Ol + Oy

(10)

where

— 2.2
Ol = 5/2 ZPIIZAI‘II{ ﬁ s

n=0 i=1
+2n(n—1)]Lyy1jo(kir) —4kir L3 (kir) }

2 o0
+’57 lencn [(ﬂ— 1)ln+l/2(ﬁs") +ﬁ5rln+3/2(ﬁsr)]

= 1 200 22: 2.2.2
O = r57 Pn Bni{ [[3 N
n=0 i=1
+ 2}1(}’1 - ])] Kn+1/2(ki I‘) + 4]{,' I”Kn+3/2(ki I‘) }

2 (o]
= > P.D,[(n
n=1

— BsrK,3(Bsr)]

)Kn+l/2 (ﬁS I‘)

Substituting from (6a, b) and (7c) into (2d), we
obtain
(11)

Or9 = 0191 + Orp2

where

Grol =

/2 s1m9 Zn

n=0

2
ZAH[ [(n — 1)],,+1/2(k,‘ r) + k,‘ 1’],,+3/2(ki r)]

=1

1 - (#Py — Pp1)
r5/2 sin ¥ ;C" n+1

[(ﬁZSZ - 2)1)1+1/2(ﬁs )”) -

+

1‘2 + 21’12 zﬁsr]n+3/2(ﬁsr)]
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_ 2 =
092 = m ;n(ﬂpn - Pnfl)

2

> Buil(n— DK, p(kir) = kir Kz (kir)]
i=1

1 > (,UP,,—P,,,l)
D
Jrr5/zsim9; a1

[(,82521‘2 +2n* — Z)K,,H/z([fs r) + 2fsr K,,H/z([fsr)}

The remaining stress components can be obtained
in a similar manner.

Equations (6a, b), (7¢), (9), (10), and (11) give
the general solution of the problem in the Laplace
transform domain in terms of the parameters A,;,
By, C,, and D,. These parameters can be
obtained from the boundary conditions of the
problem under consideration.

Application and Numerical Results

We consider a solid sphere of radius “a” with
center at the origin. For the present problem, we
keep in the solution only the terms with a suffix of
1 and discard those with a suffix of 2 that are not
bounded at the origin (i.e., we take 0 = 0,
u = uy,..,..). The surface of the sphere is assumed
to be traction free and is immersed in a medium
with Biot’s number L whose temperature F on the
surface of the sphere is a function of ¥ and .
The boundary conditions thus have the form

or=0atr=a (12)
o9 =0atr=a (13)
g=L(O—F)atr=a (14)

where ¢, is the component of the heat flux vector
in the radial direction. The generalized Fourier’s
law of heat conduction in nondimensional form
can be written as

yg Oar _ 90
T T o

Taking Laplace transforms of both sides, we
obtain
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o
1 + 198 Or

qr

Using the above relation, the boundary condi-
tion (14) takes the form

o0

5+(1+TOS)L(§—F) =0atr=a (15)

Expanding the function F(u,s) in a series of
Legendre polynomials, we obtain

Flus) =Y AP (160
n=0
where
A6 =" [ s Patw d - (160)

Using (6a), (10), (12), (15), and (16a), we
obtain upon equating the coefficients of Py(u)
on both sides the following two linear equations
in Ag; and Ap,

2
ZAO,» [B*s%al,jp(kia) — 4 k; I35 (kia)] = 0

i=1

2
> Aok = 57) [kil3p(kia) + L(1+108) I1 2 (Kia)
i=1

;L(l +108)vVafo(s)

Solving the above two equations, we obtain

Aot = —L(1 + Ti)//s)\/afo(‘y) [ﬁ2s2a11/2(kza)
—4ky I35 (koa) |
Ap = G T(:;)\/af()(s [ﬁ2s2a11/2(k1a)

- 4k1 ]3/2 (kla)]
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v :(k% — s2) [kz I35 (kpa) +L(1+ ros)ll/z(kza)]
[ﬁ2s2a11/2(k1a) —4ki I3 (kla)]
— (k2 —5%) [k I3 (kya) + L(1 4 os) I 2 (kya)]
[ﬁzszah/z(kﬂ) —4ky I35 (ka) |

For n > 0, using (6a), (10), (11), (12), (13),
(15), and (16a), we obtain upon equating the
coefficients of P,(u) on both sides a system of
three linear equations in the unknowns A,, A2,
and C,, whose solution gives

A L+ 105)a>2 £, (s) [@ B @]
" Q Moz M3
L(1 4 108)a>*f,(s) [my  my
AnZ = Q -
miz M3
c - —L(1 + 105)a>/? £, (s) {mn [@ B @]
Qmys mp3 M3

mpy  Mi2 myp My
myz  mp3

my; =[(B*s*a® + 2n* — 2n) 1,1 2 (ki)
—4](,‘0 [)1+3/2 (kfa) ]7 i= 1’ 2

myz =2 [(” - 1)1n+1/2(ﬁsa) + fsa Lisp (Bsa)]

my; =2n(n+1) [(n — 1) 1,11 )2(kia)
+ kia In+3/2 (k,»a)], 1 = 1, 2

my = [(ﬂ2s2a2 +2n* —2) 1,11 2(B sa)
—2fsal,y3/2 (Bsa)]

msi =(k; — %) [kial,3)2(kia)
Hn4aL(14108)} 10 (kia) ], i=1, 2

During subsequent calculations, the functions
F(9,t) will be taken in the form F (1, ) = sin®v
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Axisymmetric Generalized Thermoelasticity Prob-
lems in Spherical Regions, Fig. 1 Temperature distri-
bution against r

This gives F(19,s) = sin’?/s. It follows from
(16b) that

_?

fo(5) = 2, fals) = == and fi(s) = 0,i # Oor2

s’ 3s

The copper material was chosen for purposes
of numerical evaluations. The constants for the
problem were taken as ¢ = 0.0168, * = 3.5,
L =1,a = 1, and 79 = 0.02. The numerical
computations were carried out for three values
of time, namely, for t = 0.1 (dotted lines), t = 0.2
(dashed lines), and ¢ = 0.5 (solid lines).
A numerical method [27] was used to invert the
Laplace transform to obtain the temperature, dis-
placement, and radial stress distributions in the
physical domain.

The radial variation of the temperature 0, the
radial displacement component u, and the radial
stress ¢, on the plane ¥ =7/2, 0 <r <1 are
shown in Figs. 1, 2, and 3, respectively. The dis-
placement component v is identically zero on this
plane due to symmetry. Variation of 6, u, and v on
the surface of the sphere (r = 1,0 < 9 < m/2)is
shown in Figs. 4, 5, and 6, respectively. Of course,
on the surface ¢, = 0 from the boundary
conditions.

The computations were carried out also for the
coupled theory of thermoelasticity (tp = 0). It
was found that for large values of time, the
coupled and the generalized theories give close
results. The case is quite different when we con-
sider small values of time. The coupled theory



Axisymmetric Generalized Thermoelasticity Problems in Spherical Regions 287

Axisymmetric u
Generalized 0.10
Thermoelasticity
Prol?lems in Spherical 0.08
Regions, ]
Fig. 2 Displacement ]
distribution against r 0.06
0.04 -
0.02
0.00 +————+—1————— R
0 0.2 0.4 0.6 0.8 1 1.2
r
Gl’f
0.0
05
1.0
Axisymmetric -15 _:
Generalized g
Thermoelasticity ]
Problems in Spherical 204+—F—7F—7—FT———7 77— 7771
Regions, Fig. 3 Stress 0 0.2 0.4 0.6 0.8 1 1.2
distribution against r r
0
0.7
0.6
05
0.4
0.3
Axisymmetric 02 3
Generalized 0 3
Thermoelasticity i
Problems in Spherical E
Reaions 0.0 f—r—rr
glons, 0 20 40 60 80 100

Fig. 4 Temperature
distribution on the surface Y



288

Axisymmetric Generalized Thermoelasticity Problems in Spherical Regions

Axisymmetric u
Generalized 0.20
Thermoelasticity ]
Problems in Spherical ]
Regions, Fig. 5 Radial 0.15
displacement distribution g
on the surface ]
0.10
0054 __a====-
0.00 e - Y———7———
0 20 40 60 80 100
v
0.0003
~0.005
~0.010 4
~0.015 3
Axisymmetric -0.020 —f
Generalized ]
Thermoelasticity _0.025 ]
Problems in Spherical 3
Regions, ]
Fig? P —0.0300 L A S
displacement distribution
on the surface Y

predicts infinite speeds of wave propagation. This
is evident from the fact that the temperature, say,
is not identically zero for any value of time but
fades gradually to very small values at points far
removed from the surface [22]. The solution
obtained using the equations of generalized
thermoelasticity, however, exhibits the behavior
of finite speeds of wave propagation. For small
values of time, the solution is localized in a finite
region of space surrounding the surface and is
identically zero outside this region. This region
grows with increasing time. Its edge is the loca-
tion of the wave front. This region is determined
only by the values of the time ¢ and the relaxation
time 7y and is the same for all functions

considered. It is seen from Fig. 1, for example,
that for + = 0.1, the temperature predicted by
the generalized theory is identically zero for
r less than 0.285.
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Overview

In 1967, the theory of generalized
thermoelasticity with one relaxation time was
introduced by Lord and Shulman [1]. The moti-
vation behind the introduction of this theory was
to deal with the apparent paradox of infinite
speeds of propagation predicted by the coupled
theory of thermoelasticity introduced by Biot [2]
in 1956. The generalized equation of heat con-
duction is hyperbolic and hence automatically
ensures finite speeds of wave propagation. This
theory was extended by Dhaliwal and Sherief [3]
to include the effects of anisotropy.

Among the contributions to this theory are the
proofs of uniqueness theorems by Ignaczak [4]
and by Sherief [5]. Anwar and Sherief [6] and
Sherief [7] completed the state-space formulation
for one-dimensional problems. Sherief and
Anwar [8] conducted the state-space formulation
for two-dimensional problems. The fundamental
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solutions for the cylindrically symmetric spaces
were obtained by Sherief and Anwar [9].

The importance of axisymmetric problems
arises from the fact that they have many applica-
tions in industry. The most important one is in
the fabrication of vehicle brakes and other
machine components of cylindrical shapes.
Sherief and Hamza [10] have obtained the com-
plete solution to axisymmetric problems in gen-
eralized thermoelasticity with one relaxation
time and studied wave propagation.

Two-Dimensional Axisymmetric
Problems

We consider a homogenous isotropic
thermoelastic region initially quiescent. The con-
ditions of the problem are assumed to be
axisymmetric. We shall take the axis of symme-
try to be the z-axis. By denoting the cylindrical
polar coordinates as (r, i/, z) and the time variable
by ¢, we can take the axisymmetric temperature
distribution throughout the solid to be T(r,z,f).

We shall use the following nondimensional
variables:

¥ =cmr, Z =cnz, W = cyqu, W= cimw

Ojj _ (T —To)
A+2u

/ 2 ! 2 / L
t =cnt, Ty = N, O;; = —
1% 0 1 > Yij /“+2:u7

In terms of these nondimensional variables,
the governing equations take the form (dropping
the primes for convenience) [10]:

Viu + (ﬁ2 — l)grad divu — fgrad 0 = f*i
(1)

0 ?
V20 = (E+TOW> (0+8€) (2)

The constitutive equations have the form [10]:

2 0u

O =

(5 -2)

FE“F /32 e—0

(3a)
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2 u (/32 — 2)
Opy =——+—5—e—0 (3b)
vy ﬁ2 r ﬁZ
B2 —2
O-zz:%a_w 7([ 5 )6—0 (30)
p 0z B
1 (Ou Ow
where e is the cubical dilatation given by:
10 ow
e-dzvu-;a(iu)+g (4)

Solution in the Laplace-Hankel
Transform Domain

Taking the Laplace transform of both sides of
(1)—(4) and using the homogenous initial condi-
tions, we get:

Vi + (ﬁ2 — 1) grad divia — f*grad 0 = f*s*a

(6)

(V2 =5 — 1957)0 = &(s + 105%)@ (7)
Equation of motion (6) takes the form:

B* grad divi — curl curla — p* grad 0 = f>s*a
(8)

Applying divergence operator to both sides of
(8), we get:

(V2 —s*)e=V?0 (9)
From (7) and (9), we obtain:
[VH—{s* + (1 + &) (s + tos?) }V?

+ 57 (1 + 105)] g) =0
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Equation (10) can be factorized as:

@-@)w-g)(l) =0

where k,-z, i = 1,2 are the roots with positive real
parts of the characteristic equation:

k* — [sz +(1+e)(s+ Tosz)}kz +53(14105) =0

The solution of (11) for § can be written in the
form:

— 2 —
S
1
where 0; is the solution of the equation:

(V2 =k7)0; =0,i=1,2 (12)
We shall use the Hankel transform defined by
the relation [11]:

(o, z,8) =H[f(r,z,5)] = Jf(r,z, $)rJo(or)dr
0

where Jj is the Bessel function of the first kind of
order zero.

Applying the Hankel transform to both sides
of (12), we obtain:

(D? — o — k)0 (2,2,5) =0 (13)
where the operator D denotes partial differentia-
tion with respect to z.

The solution of (13) has the form:

(9,-*(oc, z,5) :(k,-2 — 52)(A1,-(oc,s)e“’z + Azi(o
i=1,2

,8)e” ),
(14)

where Ay;, A,; are parameters that depend on o,s
and y; is given by:

W= \//‘1‘2‘*‘0‘2
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Using (14) the solution of (11) can be written
in the form:

2
0 => (kK —5)(Aue" + Aye ™) (15)
i=1

In a similar manner, we can show that the
solution for e* compatible with (14)—(15) is
given by:

2
Z (A€ + Aye ™) (16)

Applying the inversion formula of the Hankel
transform to (15) and (16), we get:

o(or) (A€ + Ayie ™7 )do

i=1

2 (o)

i,z,s Z kas J
0

(17)

o(or) (A" + Age ™M )dua.

(18)

The components of (8) in the r- and z- direc-
tions, respectively, are:

o (0w Oa\ o, o0, -

g (8r az>+/3su—/3 5(6_9) (19)
10 ou ow 2 9 —
*5{(57 ar)}” w5 (e=0)

(20)

Using (5) and (19), (20), we get:

———[fzs u=

g(@ e+ f29) (21)

0 _
Vi — Bs*w _E((l — /5’2)?—1-/329) (22)
Introducing the function ¢, defined by the
relation,
)
u=— 23
“T o (23)
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into (21), integrating the resultant equation with
respect to r, we obtain:
Vih—B5d = (1 - f*)e+ 0

Taking the Hankel transform of both sides of
the above equation, we get:

(D> — i) = (1 - + 20 (24)
where 12 = 5% + o2

Using (15) and (16), we get the following
relation:

[32 ) (A e + Age )
(25)

Thus, the general solution of (25) has the form:

2
o= Arett + Are ™ + Z (Alie,u,z + Az,-e_”"z)

i=1

(26)

Applying the inversion formula of the Hankel
transform, namely [11],

f(r,z,s) = H'[f* (a, 2, 5)]
= Jf*(oc,z7 $)rdo(ar)da
0

to the above equation, we obtain:

Plr,z,8) = J afo(or) <A1e’“ + Aye
(27)

0
2
+Z (Alie“f‘"

+A2,.eu,2)>da
i=1

Differentiating both sides of (27) with respect

to r, we get upon using (23):

u(r,z,s) =— JocZJl(ocr) (Ale“z +Aye e
0 (28)

2
+Z(A1i€uiz +A2,‘€H’2)> do

i=1
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In a similar manner solving (22), we obtain:

w(r,z,s) ZToclo(ocr) {%Z(Aleuz — Ay )
° (29)

i=1

2
+ Z,u,«(Al,-e"'Z —Agie 1) }doc

Finally, to obtain the Laplace transform of the
stress components, we denote by F the quantity:

(K -2)
ﬂz

Taking the Laplace transform of both sides of
the above equation and substituting from (15) and

(16), we get:
F(r,z,1) :Z( 2k2)Tmlo(ai)
= 0 (31)

X [{A],‘@'uiz + Az,-e_“"z}]doc

F(r,z,t) = e—0 (30)

Using the Laplace transform of (3a, c, d) and
(30) together with (28) and (29), we obtain:

2 7 4 1 )
Gy =— J o’ L—Jl (or) — Jo(ocr)} {Ale"‘ + Aze ™
-

0

=

2
+Z (Alieﬂ‘z + Az,‘@ﬂl’z) }doc +F
i=1

(32a)

— 2 T 2 z —uz

0. =— | oao(or) (07 [Are!” + Aze ]
0

b (32b)

2
+Z M?(A“e#ﬂ + Az,-e"'z)> do+F
i=1

Oy = — % J O(2J1 (OCI‘) <(’u2 : 0(2) (Ale‘” — Azeiuz)
0

2
+ Z 2”,-(141,‘6‘“’2 — Az,'eﬂ’z)) do
i=1

(32¢)
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Example. We consider a thick plate composed
of ahomogenous isotropic thermoelastic material
of infinite extent and finite thickness. The upper
surface of the plate is subjected to an axisymmet-
ric temperature distribution and is traction free.
The lower surface of the plate is laid on a rigid
foundation, which is thermally insulating. The
region Q of the plate is defined by:

Q= {(r.2):0< 7 <o00,0<y<2m,
and —h<z<h

The boundary conditions in the Laplace trans-
form domain are:

u=0,w=0, @:O,forz:—h

% (33a)
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0,,=0,0,=0,forz=nh (33b)

0 =H(@)f(r), forz=h (33¢)
where f(r) is a known function of r.

From the boundary condition (33a, b, c) and
17, (28), (29), (31), and (32a, b, c), we get
a system of six linear equations in the unknown
parameters A1 s Az, A11 s A127 A21 and A22. Solving
this system completes the solution in the trans-
form domain.

Numerical Results

The copper material was chosen for purposes of
numerical evaluations. The material constants of
the problem are thus given by:

B> =4, p=28.954kg/m?, n = 8886.73s/m>, 19 = 0.02s, & = 0.0168,
cp = 381T/kg/c, k =386 W/m/c, i =7.76(10)""kg/m/s>, u = 86(10)'""kg/m/s>

The half-thickness / of the plate was taken
equal to 0.5. The computations were carried out
for three values of time, namely, t = 0.05, t = 0.1,
and ¢ = 0.15.

The inversion of the Hankel transform was
done using the inversion formula of the trans-
form. The inversion of the Laplace transform
was done using a numerical technique based on
Fourier expansion [12].

The temperature of the surface of the upper
plate is taken as:

90 ifr <1
flr) = { 0 otherwise

where 0 is a constant. This means that starting at
time ¢+ = 0, a circle of unit radius is suddenly
raised to a temperature equal to 6y and kept at
this temperature, while the rest of the upper sur-
face is kept at zero temperature.

This can be written more concisely as:

f(r)=00H(1—7) (34)
Taking the Hankel transform, we obtain:
(o) =6 JH(I —r)rJo(or)dr
0
1
— 0, JrJo(ocr)dr =M )
0

The constant 0, was taken equal to unity dur-
ing computations.

We evaluated the different functions along the
z-axis (r = 0) as functions of z. The results are
shown in Fig. 1 for the temperature and Fig. 2 for
the vertical displacement component w. The
radial stress components ¢, and the axial stress
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components ¢, are shown in Figs. 3 and 4,
respectively. The radial displacement component
u is identically zero along the z-axis. Solid lines
represent the case when ¢t = 0.05, dashed lines
represent the case when ¢ = 0.1 while dotted lines
represent the case when t = 0.15. The FORTRAN
programming language was used. The accuracy
maintained was five digits for the numerical
program.

The finite speed of wave propagation mani-
fests itself in all these figures. The upper surface
is sending thermoelastic waves into the region of
the plate. This is shown by the fact that the solu-
tion is not identically equal to zero for the value
of time ¢ = 0.05 when 0.12 < z < 0.5 for all the
functions considered. The solution is not equal to
zero for the value of time = 0.1 when —0.18 < z
< 0.5. For t = 0.15, the solution fills the whole
region of the plate.

We notice that the solution (for small values of
time) is nonzero only in a region of space
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adjacent to the surface. This region expands
with the passage of time to fill the whole region
of the thick plate.
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Synonyms

Anisotropic

Overview

Based on the theory of linear elasticity, thermal
stresses can be obtained from solutions of heat
conduction and equilibrium displacement equa-
tions. If the equations involve only constant coef-
ficients and the body of interest is simple, they
can be solved by many well-established methods,
both analytical and numerical [1]. Due to recent
advances in technologies, a modern design may
involve materials that have much more sophisti-
cated properties that cannot simply be modeled
by constants. Methods that could be used to solve
for some of those complex mathematical models
become more of a challenge. On the other hand,

Formerly School of Mechanical and Manufacturing
Engineering
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important system parameters in a heat generating
body may be changed by thermal effects and
stresses. A good design will need precise knowl-
edge of the temperature and stress fields.
A common example is in the design of miniatur-
ized electronic device in which very small elec-
trical current could induce large temperature
changes. Many electronic properties are sensitive
to both temperature and stress. All of these point
to the importance of thermal stress analysis in
modern system designs.

This entry is concerning with axisymmetric
thermal stresses in a finite and hollow cylinder.
Due to the axisymmetric assumption, both tem-
perature and displacement equations are two-
dimensional. Although within the framework of
linear elasticity where strains are linearly propor-
tional to stresses, nonconstant material properties
could introduce complexity to the mathematical
models such that the equations, even in two
dimensions, cannot be solved analytically. Over
the last 2040 years or so, those problems are
solved mostly by finite element methods [3, 5]
that have been implemented in commercial com-
puter packages for a large varieties of problems.
The limitations of those methods are due to the
fact that the approximation functions used have
not been optimized such that many grid points are
required in numerical simulations. In this entry,
the pseudospectral methods [4] are suggested as
preferred alternatives, as optimized series expan-
sions are used such that at least an order fewer
number of equations is required for the same level
of solution accuracy. A pseudospectral method,
known as the Lanczos-Chebyshev pseudospectral
(LCPS) method [2] that uses an optimized power
series, will be described in some details.

As a departure from common practice of
deriving the equilibrium displacement equations
for material with constant properties, a set of
equations for materials with nonconstant proper-
ties will be given. However, numerical examples
that may yield some insight into the importance
of thermal stresses in a design will still be
restricted to constant properties systems. An
additional example will be given to show how
a nonlinear problem could be solved by the
LCPS method.
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Mathematical Formulation

A linear thermal stress problem shares the
common mathematical formulation with linear
elasticity in that a solid body is studied of how it
would deform under prescribed loading inter-
nally or on the boundaries. In the case of thermal
stresses, the internal loadings come from the
thermal strains produced by the temperature
field. Throughout this entry, we consider the
plane problem of thermoelastics. For a circular
hollow cylinder with finite length, cylindrical
coordinates, r, 0, and z, are used in the analysis.
With an axisymmetric problem, the formulation
will not involve any 6-dependent terms
resulting in sets of simpler governing equations
as given below.

Geometric Equations (Strain-Displacement
Relations)

v 0w ow
i 0z Or
(1)

& = g=—, &=

or’ r P00

where u and w are the radial and axial displace-
ments. The above relations are based on so-called
engineering notation. In mathematical notation,
the strain—displacement equations are

€= % [Vu + (Vu)T} (2)

where € is the strain tensor and u is the displace-
ment vector. Obviously, the separated use of
these two notations will lead to a slightly differ-
ent set of field equations.

Thermal Strains

Temperature changes could cause strains. In
isotropic material, the induced thermal exten-
sional strains are equal in all directions, and
there are no shear strains. In the simplest cases,
thermal strains can be treated as being propor-
tional to temperature change in relative to
a reference temperature. The proportional con-
stant is called the coefficient of linear thermal
expansion. For anisotropic material, the linear
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thermal expansion coefficient could have differ-
ent values at different directions.

Generalized Hook’s Law (The Stress-Strain
Relations)

For anisotropic media, the symmetry of the stress
tensor ¢;; means that there are at most six differ-
ent elements of stress. Similarly, there are at most
six different elements of the strain tensor ¢;. For
elastic materials, Hooke’s law is

o= C:g (3)

where o is the Cauchy stress tensor and C is
the second-order stiffness tensor. The simplest
anisotropic case that of cubic symmetry has
three independent elements:

Ci Ch Ch O 0 O
C» Ch Cn O 0 0
Con— Co Cpp Cip O 0 0
=10 0 0 Cu 0 O
0 0 0 0 Cu O
0 0 0 0 0 Cu

The case of polar anisotropic (with 3-axis of
symmetry) has five independent elements:

Cii Cii—2Cs Ci3 0 0 O

Ci1—Ces Cii Cz 0 0 O
Cone Ci3 Ci3 Cyz 0 0 O
= 0 0 0 Cu 0 O
0 0 0 0 Cyug O

0 0 0 0 0 Cg

(5)

The case of orthotropic (the symmetry of
a brick) has nine independent elements:

C]1 C12 C13 O O 0
C12 C22 C23 O O 0
c._|C3 Cn Cx 0 0 0
=10 0 0 Cu 0 O
0 0 0 0 Css O
0 0 0 0 0 Ce
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The special isotropic case has elements
involving two independent material properties
K, the bulk modulus, and y, the shear modulus:

K+4u/3 K—2u/3 K—2u/3 0 0 0
K—2u/3 K+4u/3 K—2u/3 0 0 0

c_ |K=2u/3 K=2u/3 K+4u/3 0 0 0
= 0 0 0 w00
0 0 0 0uo0

0 0 0 00 u

—
~
~

For an axisymmetric problem with aniso-
tropic properties, there are only four nonzero
stresses: applying Voigt notation for tensor indi-
ces, the four elements of stress in cylindrical
coordinates are G;; = Oy, Oy = Gg, 033 = O,
and 055 = T,.

The Equilibrium Equations

The fundamental system of field equations for the
time-independent behavior of a linearly elastic
body consists of the strain—displacement rela-
tions, the stress—strain relations, and the equa-
tions of equilibrium. In the case of a plane
axisymmetric problem, the equations of equilib-
rium in the absence of body forces are

do, Ot,, 0,— 0y
=0
87 82 r (8)
Ou:  Oo: = _
or 9z r

Displacement Formulation for an
Axisymmetric Problem

Altogether, the above equations involve four
stresses, four strains, and two displacements
with four stress—strain relations, four strain—
displacement relations, and two equilibrium con-
ditions. All these equations could be combined to
give two displacement equations from which
the stresses could be found. First, the strain—
displacement (1) is substituted into (3) (Hooke’s
law) using as stiffness coefficients (5). The
strains, excluding the thermal strains, are then
eliminated to give:
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ou u ow
,=C Cp—-+0C —mT
e + 12r+ 1357 P
Ou u ow
Cl2a +Ci—+Ciz—piT
r 0z 9)
c8”+c5+ca— T (
13a 13 33a P2
ou Ow
TV_CM(E—FE)

where C1p = Cy; — 2Ce6, p1 = (C11+ C12)o: + Ci3
o, po = 2C13 + C33 «,, and o, and o, are the
coefficient of linear thermal expansion along the
radial and axial directions. Substituting (9) into (8)
gives the displacement equations (i.e., the equilib-
rium equations in terms of the displacements):

a 8 C]l 8 1(9C12
{E(C”E)—F r 81_‘_; or

w(r,z) = %(plT(r,z))

0 o\ o 0
{82 (C” 8r> or (C““ &)

10C1; Cay 9]
o +T&]”(”Z)

0 0 Cy 0 O 0
* [@ (C%) *75*@(C%ﬂ
0
=5 (P27 (r2))

The equations above are applicable for cases
in that the material properties are nonlinear
and/or position dependent. For material with con-
stant properties, these equations are simplified to

(10)

w(r,z)

19} Cpy 0 C11 o )
{Cllﬁ‘i‘ ; 87 ) +C4482 M(I,Z)

F (€4 C) Zwtr = 212
13 4488W"Z pl(’)r rz
9? Ci3+Cys O

CstCu 0 1
ooz - az}”(r’z) (1)
F  Cud
82 r or

{(CM +Ci3)
[C44 = 4+ Cx ;’2 ] wi(r,z)

0]
_pZET(raZ)
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For a finite and hollow cylinder of inner radius r;
and outer radius of r,,, and length of 4, the boundary
conditions associated with the displacement equa-
tions may involve specified stress components:

61"1‘;,1‘,, = [Gﬁ(z)]r,-,ru
T"Z|r,-./1, = [sz (Z)] rislo
on = [0 ]O,h

Tr2|(),z = [T?Z] 0,h

(12)

g,

Some of the stress conditions above could be
replaced by specified displacements or displace-
ment gradients.

Heat Conduction Equations
For isotropic bodies, the Fourier law states:
q= —kVT (13)
The steady-state heat conduction equation
then represents thermal energy balance:
Veq+0=0 (14)
where Q is the heat source. For an axisymmetric

problem in cylindrical coordinates, the above
becomes

20 2) Do

(15)

where k, and k, are the thermal conductivities in
the radial and axial directions. The heat conduc-
tion for a system with constant properties (k, and
k. are constant) is

[?% <,%> +k25_222] T(r,z)+Q(r,z) =0 (16)

Assume that the boundary conditions are
given as follows:

aT

pfnrn] =0
aT
L, — AT —T. =

{kk % + h.( L)]Oﬁé 0
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where the parameters 4, the heat transfer coeffi-
cient, and T, the coolant temperature, are to be
specified along the boundaries.

Solution Methods

In order to discuss solution methods in the sim-
plest possible way, only equations for systems
with constant properties are used here. The
cases with nonconstant properties are deferred
to a later section.

Conversion to Dimensionless Equations

For convenience in applications, it is useful to
reduce all the equations to dimensionless forms.
The following set of dimensionless variables will
be used:

7 _z
r=—; ZI=—
To To
- C;i w
Cll OCoToru OCuTora
_ Or _ ag
Or=—"ri 0)=
o,C11T, % CiiT,
. o _ T (18)
0; = 5 Tz = A~
O‘oCIITa aocllTo
T k. = 2
T=—; k.=--; Q:Qru;
T, Tk k,T,
_ pi2 - h
P1,2 O‘()Cll ho

where «,, T,, k, and h, are reference values of
linear thermal expansion coefficient, tempera-
ture, thermal conductivity, and heat transfer coef-
ficient. Substituting the above into all previous
equations and canceling all the common factors
will achieve the conversions. It should be noted
that all equations have retained exactly their
original forms and for simplicity all dimension-
less quantities will be written without an over-
head bar.

Pseudospectral Methods

Evolving from the well-known spectral methods
over the last two decades, pseudospectral
methods themselves have emerged as attractive
alternatives to better known computational
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procedures such as finite difference and finite
element methods. The notable strength of the
pseudospectral methods lies with their ability
to solve differential equations with nonconstant
coefficients such as in the particular displace-
ment and heat conduction equations developed
above.

The main idea behind all spectral approaches
is to approximate the solution as a truncated
series expansion in the most efficient way. For
this reason, many versions of pseudospectral
methods have been developed each with a set of
different approximation functions, consisting
mostly of orthogonal polynomials. The most
widely used one is the Chebyshev polynomials.
The use of orthogonal polynomials is a legacy
inherited from the spectral methods in that
orthogonal property of the approximating func-
tion is mandatory. It is quite different with the
pseudospectral methods in that solutions are
obtained by collocations at points specially
selected to give least possible errors. The only
conditions for the approximation functions to be
suitable are that each function must be unique and
the series is complete. With this freedom, users
who are not prepared to work through the many
complex mathematical properties of orthogonal
polynomials may find that choices of non-
orthogonal functions such as a power series are
their preferred alternatives.

The Lanczos-Chebyshev Pseudospectral
(LCPS) Method

The LCPS method uses power series as approxi-
mating functions and collocation at Chebyshev
points so that the solutions obtained are as accu-
rate as those based on the Chebyshev polynomial
series when both expansions use the same num-
ber of terms. Implementation of this approach is
best illustrated by showing how it can be used to
solve the thermal stress problems as prescribed
by the displacement and heat conduction
equations.

Reduction to Algebraic Equations

The pseudospectral approach is used to reduce
the governing differential equations to a set of
algebraic equations that could be solved by
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well-established numerical techniques. In the
case of a {r,z} rectangular 2D problem as
the one considered here, linear transformations
are used to rescale the domain into a square
[-1,1] x [—1, 1]. Recalling that the finite and
hollow cylinder considered has an inner radius
of r;, an outer radius of r, and a length from
0 to /; the new coordinates {R,Z} relate to {r,z}
through:

r=a,R+b,; a,=0.5(r,—r;); b,=0.5(r,+r;)
z=a,Z+b,; a,=0.5¢; b,=0.5¢
(19)

Converting the displacement equations, (11),
to the new coordinates to give:

ch®  Cu 0
a> OR*>  a,(a,R+b,)OR
2
_ Cu 5 %a_ u(R,Z)
(a,R+b,)* a2 022
Ci3+Cyu ? p1 0
et 9 Rz =L Rz
aya, GRBZW( ) a, OR (R.2)
2
Cyu+Ci3 0 Ci3+Cuy QM(R,Z)
ara; ORIZ a.(a,R+b,)IZ
fCu @, Cu O Cw 0
a> OR*> a.(a,R+b,)OR a*> 0Z?
_nd
w(R.2)="2 2R 2)
(20)

Converting the heat conduction equation,
(16), to the new coordinates to give:

)
az OR*> * a,(a;,R +b,) OR  a? 0Z*
T(R,Z)+Q(R,Z) =0

(1)

Similarly, all the associated boundary condi-
tions can be converted. Also affected are the
strain—displacement relations, (1), and the
stress—strain relations, (9). Working with any
equations, it is important to distinguish between
{R,Z} the computational coordinates and {r,z}
the physical coordinates. For example, solutions
are to be worked out on the physical coordinates
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while the computational coordinates are used in
the numerical simulations.

Within the computational domain, the dis-
placement and temperature fields may be approx-
imated by

M"N . .
uR,Z) =Y uR™'2Z7",
W

MN
w(R,Z) =Y wR™'Z™! (22)
i

M\N ) )
T(R7 Z) = Z ll'jR1712171
ij

Terms used in the temperature approximation
need not be the same as those for the displace-
ments. Using the same number of terms as in (22)
is purely for numerical convenience. The deci-
sion on the values for M and N are based on the
smoothness of the solutions. It is often possible
that 10-20 terms in each coordinate direction
could give solutions with relative errors in the
order of 107 or less.

Derivatives can be obtained from (20) using
term-by-term differentiation. For example,

ou MN L
—_—= Z (l — I)Ll,:,'Rlizzjil;
R~ 4

MN

P u . . i—37j—1
W:Z(l—l)(l—Z)uﬁR V4

ij

o @
— = Z (] — I)I/l,leileiz;
0z =
0tu X . i
ﬁZZ(I— 1)(j = 2uR™' 272

i

The collocation points are chosen from the
roots of the Chebyshev polynomials given by

M-22
2n—1mn
Z,,—cos<N_2 E)’ 1,2,...N =2
(24)
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Replacing at the collocation points all the vari-
ables and their derivatives by their series expan-
sions, the differential equations are reduced
to a set of simultaneous algebraic equations
with the series expansion coefficients as the
unknowns.

Treatment of Boundary Conditions
Differential equations cannot be completely
solved by themselves without considering the
boundary conditions. Having reduced the
governing differential to a set of simultaneous
algebraic equations, the collocation method is
applied also to the boundary conditions. In the
standard spectral approach, if the tau method is
adopted, extra unknown variables, the tau’s, are
added to the series expansions to cater for the
prescribed boundary conditions. It is the same
with the power series approach. The order of the
power series must be increased. In fact, these
extra terms have already been built in when (24)
is used. According to (24), the number of collo-
cation points is M — 2 in the R-direction and
N — 2 in the Z-direction, making up a total of
(M — 2) x (N — 2) interior collocation points. As
the series expansion has M x N coefficients, there
are already excess numbers for the boundary
conditions. For a boundary value problem-like
thermal stresses, each governing 2nd-order
partial-differential equation is associated with
4 boundary conditions, one each at the four
sides of the computational domain. Applying
the collocation method at the Chebyshev points
on each of the boundaries will produce 2 (M — 2)
+2 (N — 2) equations. Considering also that there
are 2 boundary conditions for each of the 4 cor-
ners will give a further 8 equations. The final total
number of equations is M x N + 4, that is, 4 more
than the unknown coefficients. The fact that there
are more equations than the unknowns is not
a problem with the numerical solution proce-
dures. A least-squares method could be employed
to give a best set of solutions.

Discontinuous Boundary Conditions

For 2D or 3D problems, specified boundary con-
ditions at the corners could be discontinuous and
these could be a problem for some numerical
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procedures. An example is in the case where the
constant temperatures specified on the two sides
of the corner are different. Physically, discontin-
uous conditions should not exist, although in
some systems rapid temperature variations near
the corners could be possible. If this is the actual
situation, the preferred alternative is to consider
a different model for the boundary condition. For
the conduction problem with heat removing by
a coolant, the preferred model is the conjugate
boundary conditions in that both heat and heat
flux are specified to be continuous across the
boundary. A general boundary condition that
includes of the function as well as the function
derivative could also avoid discontinuity at the
corner. Anyhow, it should be noted that the col-
location approach outlined above is applicable
even when conditions at the corners are modeled
as discontinuous. This is possible because the
equations are solved for their least-squares solu-
tions including the least possible error at the
discontinuous boundary point.

Implementation of the Reduction
Procedures

Using the heat conduction equation, (21), as an
illustrating example, the substitution of the power
series for the temperature as well as its deriva-
tives at the collocation points given by (24) leads
to (M — 2) x (N — 2) algebraic equations as
follows:

<X (i—1)(i—
2|\
ij rtm

G=D0=2)] 1,1
kLY T Ri-lg
+ “ a?Z’% m n
+ORm,Zy) =0, m=1,....M—2;
n=1,...N—2

2) i—1
ay (arRm + br)Rm

(25)

It should be noted that the division by Rm and
Zn in the equation above is just a convenient way
of making up the loss of power index through
differentiations. There is no other mathematical
implication.

Now, applying collocation to the boundary
conditions described by (17) and for R = —1
and R = 1 (corresponding to r = ri and r = ro)
gives 2 x (N — 2) equations:

M N r .

- k(i —1 i i
E :tfj _g"'hr(_lazn)} (_1)( I)qul
iof

a
:h"(_l,zn)Tm nzl,N—Z,
MN .

: k(i — 1 .
Dty eru,zn)} Z
Lo dr

=n(1,Z)T., n=1,...N—2

(26)
Similarly, for the boundary conditions at

Z = —1 and Z = 1 (corresponding to z = 0 and
z = h), there are 2 X (M — 2) equations:

M N r .
: k(-1 _
S _¥+h2(—l,Rm)} (—1)0Y
oL :

R = h(—1,R)T., m=1,....M—2;

M.N r .

y k_/ _

> o[ U k)|

iy L &%

R =n,(1,R)T., m=1,....M—2
(27)

There are eight equations from applying
collocation to the four corner points:

MN T .

: k/' _1 i .
Ztij - (la )+hr(_17_1):|(_1)( 1)(—1)-’ !
i L r

:h"(flvfl)Tzﬁ

MN .

: k(i—1 i
Zfzti - (la )+h,-(—1,1)}(—1)< 2

i L r

=h(—1,1)T;

MN [ /.

: ke (i—1 -
Zlij (la )+h,~(17—1)] (—1y 1

L9

:hl(17_1)T17

MN /-

, -1
Zhj k (la )+h,~(1,1)} = (1,1)T,

i r

(28)
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> |- ey
:'hz(—l,—l)TC;

S ] e

z

=h.(—
Z:,-, _kz(i:l)+hz(l,—l)] (-1~
=h.(1,—

S0 )| =hr,

a,

1,D)T,;

])Tc§

(29)

For the displacements, there are two variables,
u and w, in (22). Applying the same collocation
procedures will give twice as many equations as
in the case of the conduction problem. Both sets
of simultaneous equations, one for the tempera-
tures and the other for the displacements, could
be solved by routines for least-squares solutions.
Having determined the coefficients, the power
series in (22) could be used to find solutions at
any positions in the computational space, while
(19) could be used if conversion to the physical
space is required.

Numerical Example 1

For this example, dimensionless quantities based
on (18) are used. The chosen hollow and finite
cylinder has r, = 1.0, r; = 0.6, and £ = 2.0 with
material constants 1.0, 0.25, 0.25, 1.0, and 0.25
for C;;, C;2, Cq3, C33, and Cyy, respectively. The
values for o, and o, are 1.0 and 0.95. For the
stresses, the boundary conditions include zero
stresses at the curved surfaces and o, = 0 and
Ou/0z = 0 at the z = [ plane. Assuming symme-
try, the conditions at the z = 0 are w = 0 and
ow/dz = 0.

For the heat conduction problem, the system
parameters chosen are k, = k, = 1.0 and Q = 1.0.
The boundary conditions are given in (24)—(27). It
is chosen for this particular example that 7 = 0 at
r=r;ie,R=—-1,k.=0,h.=1and T. = 0);
OT/OR =0atr=r,(e,R=1,k.=1,h.=0and
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T.=0), 0T/OR=0 at z = 0 (i.e, at Z = —1,
k.=1,h,=0and T, =0); T=0atz=1(.e.,
atZ=1,k,=0,h,=1and T, =0). Using M = 10
and N = 20, the stresses obtained are shown
in Fig. 1.

Long Cylinder Solutions

From Fig. 1, it can be seen that the stresses over
a distance more than three times of the wall
thickness measured from the top end are no lon-
ger dependent of z. These stresses are known as
long cylinder solutions as z-dependency could be
discarded. Under an axially symmetric tempera-
ture field 7(r), axially independent boundary con-
ditions, and assuming plane strain and w = 0, the
radial displacement equation (The first of the two
equations in (11) without the z-dependent terms)
can be integrated analytically to give

r

1 A
ry=Pr- JT(r)rdr F A+ (30)
cur r

o

where A; and A, are integration constants that
could be found from the given boundary condi-
tions. The corresponding stresses for a displace-
ment field given by (30) are

JT(?‘)rd}’-f— (C11 +612)A1

To

— (11 —ci2)Ay/r?

JT(r)rdr + (c11+c12)Ay

To

_ _Picu—cn

g, =
C11 r?

P1 €11 —C12
op=——"——

11 r?

+(c11 —c12)A2 [ +pi <%— 1)T(")
(31)

There is also an axial stress,

0. =2c3A1 + (cispi/ent —p2)T + A5 (32)
where the constant A; is determined from the
condition that the axial resultant force is zero.
It is easy to obtain an analytical solution for the
temperatures from the axially independent form
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Axisymmetric Thermal
Stresses in an
Anisotropic Finite
Hollow Cylinder,

Fig. 1 Contours of thermal
stresses (x 100): (a) radial,
(b) hoop, (c) axial, and (d)
shear

of the heat conduction equation, (21). As it can
be seen from results plotted in Fig. 2, the long
cylinder solutions for the example used above
are the same as the numerical results at the same
locations. In fact, designs for long cylinders that
require considerations of thermal stresses are
often based on those analytical solutions. It is
also convenience to use them to investigate
various factors that could influence thermal
stresses, as it is done in the examples given
below.

Thermal Designs as a Stress Reduction
Strategy

It is obvious that thermal stresses could be
lowered by reducing temperature gradients. In
the previously solved numerical example, the
boundary condition at r, was set at 9T /Jr = 0.
(i.e., completely insulated). Simulation results
shown in Table 1 indicate that if more and more
heat is allowed to be removed from that bound-
ary, the maximum stresses could be lowered.

Effects of Anisotropic Properties

Using the long cylinder solutions for the numer-
ical example, results in Table 2 show that aniso-
tropic properties only have relatively small
influence on the stresses.

End Stresses
From Fig. 1, it could be seen that the stress fields
near the top are quite different to those at the rest
of the cylinder. As temperatures change rapidly
from the main body to comply with the thermal
boundary condition at the top end, the large tem-
perature gradients are responsible for higher
stresses in this end region. The effects on the
temperature and displacement fields can be seen
from the contour plots shown in Fig. 3a-b.
Designs of equipment involving heat trans-
fers need to consider end stresses as they may be
much higher than the long cylinder solutions. On
the other hand, the thermal gradients could be
changed by controlling the rate of heat leaving
the top end (i.e., by changing the heat transfer
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Axisymmetric Thermal 0.007 = 0.08
Stresses in an ]
Anisotropic Finite i
Hollow Cylinder, 0.006 e
Fig. 2 Comparison of long 7 0.06
cylinder analytical (points) i
and whole cylinder 0.005 e
numerical (lines) stress T
solutions at z = 0 3 7 0.04 %
£ o.004 1 J
o i >
S Ho02 &
g 0.003 . o
o« i Es
0.002 Jdo
0.001 i
-1-0.02
0
0.6 0.7 0.9 1

Axisymmetric Thermal Stresses in an Anisotropic
Finite Hollow Cylinder, Table 1 Maximum stress
reduction fractions due to thermal boundary condition
changes at r = r, (The first case is used as the reference)

h, 0,/(01) 50/(00), 0:/(02)
0 1 1 1

0.5 0.811 0.836 0.836

1 0.686 0.722 0.722

5 0.333 0.421 0.421

coefficient). Table 3 shows how end stresses
are reduced by lowering the heat transfer
coefficient.

Systems with Nonlinear Material
Properties

The displacement (10) has been derived from
linear elasticity. Throughout the body under con-
sideration, the linear stress—strain relations
should hold everywhere. However, the stiffness
coefficients or other material properties could be
temperature or stress dependent, such that (10) is
in fact a nonlinear problem. Numerically, the
pseudospectral methods could still be used to

Axisymmetric Thermal Stresses in an Anisotropic
Finite Hollow Cylinder, Table 2 Maximum stress
intensity comparisons for various combinations of aniso-
tropic properties (The first case is used as the reference)

Ci Crz Ci3 Cs; 0:'/(Gr)ref ‘79/(59);-ef ‘72/(‘7:)7~ef

1 025 025 1 1 1 1

1 025 025 09 1 1 0.911
1 025 025 1.1 1 1 1.089
1 025 03 1 1.033 1.033 1.009
1 025 02 1 0967 0.967 0.987
1 03 025 1 0.964 0.964 0.989
1 02 0251 1.031 1.031 1.011

reduce the differential equations into algebraic
equations that are now nonlinear. Numerical pro-
cedures for nonlinear problems are then needed to
solve the algebraic equations. There are many
different methods available with various degree
of efficiency. One method, the pseudo-transient
approach, is chosen and described below because
it is also being used for real transient problems.
During a temperature transient, maximum stress
level developed could be exceeding that of the
steady state. Although this entry will not deal
with transient stresses, it should be noted that
given the temperature field at any time instant,
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Axisymmetric Thermal a o
Stresses in an
Anisotropic Finite
Hollow Cylinder,

Fig. 3 Solution contours
for the numerical example:
(a) temperature, (b) radial
displacement, (c) axial 1.5
displacement, and (d)
temperature with partial
insulation at the top end

1.75

1.25

0.75

0.5

0.25

Axisymmetric Thermal Stresses in an Anisotropic
Finite Hollow Cylinder, Table 3 Maximum end stress
intensity factors for different heat transfer coefficients at
the top end (The long cylinder solutions are used as
references)

h: a/(o )ref oo/ (Uo)ref o./(o: )ref
100 2.777 0.909 0.781

10 2.164 0.948 0.828

5 1.771 0.976 0.867

1 1.026 1.086 0.943
100 (with temperature 2.127 0.875 0.757
dependent

conductivity)

the methodology of solving for the transient
stresses is the same as those described in this
entry. When the stress problems involve
nonlinear properties, the same principles used in
the temperature solutions, as described below,
could be employed to obtain a set of nonlinear
algebraic equations for the displacements.

The Pseudo-Transient Approach

Like many other boundary value problems, solu-
tions of the heat conduction equation could be
taken to be the stationary solutions of a transient
equation which need not be exactly in the same
form as the real transient heat conduction
equation. This is the reason why the term
pseudo-transient is used. After rearranging the
differentiation terms, the heat conduction equa-
tion (15) could be written as a pseudo-transient
problem where the variable ¢ does not represent

real time:
M— k 8_2_;,_12 _|_8er
o | "\or2 ror or or
P Ok, 0
+kzﬁ+55:|T(7‘,Z)+Q(F,Z)

=L(r,z,t, T)T(r,z) + Q(r,z)

(33)
where the operator L is written symbolically as
dependent of ¢ and T as thermal conductivity
could be temperature dependent.
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When applying the Lanczos-Chebyshev
pseudospectral spatial discretization formulation,
it is necessary to approximate the coefficients in
(33) by power series so that their values as well as
their derivatives are available at the collocation
points. For the pseudo-time term, the uncondition-
ally stable Crank-Nicholson formulation could be
used to reduce the equation to a discrete one:

i+l i
At

[L(r,z, T YT + L(r,2,d TT'] +Q

N —

where the superscript j refers to the pseudo-time
step. With the temperature field represented by
a power series and applying collocation method
at the Chebyshev points, (24) is reduced to a set of
nonlinear algebraic equations that could be
solved by be a stepwise manner until the station-
ary solutions are reached. The step size At should
be small enough to avoid the exponential growth
of truncation errors.

Numerical Example 2

The previous numerical example under the same
boundary conditions is chosen. All the system
parameters are the same with the exception that
the thermal conductivity is temperature dependent:

ke =k, =14+0.1T(r,z) + 0.1 T*(r,z)

The temperature solutions compared with
those of constant thermal conductivity are
shown in Fig. 4. From the temperature contours,
it can be seen that the higher conductivity
introduced by the temperature dependency has
decreased the temperature maxima and the
temperature gradients. At the top end, stress
intensities have also decreased as shown in
Table 3 (last row).

Concluding Remarks

As in the example of a hollow cylinder of
finite length and under a given axisymmetric



Axisymmetric Thermal Stresses in Disks

temperature field, the mathematical models to
predict thermal stresses could be derived from
basic geometrical relationships, heat, and force
balances. The models are a set of partial differ-
ential equations that could be too complex to
have analytical solutions. To overcome these
difficulties, reduction techniques could be used
to convert the governing equations to a set of
algebraic equations. Some mathematical diffi-
culties are still present in this set of equations
such as how to deal with nonlinearity. However,
procedures well established in numerical analy-
sis are available and could be used to give
solutions.

Areas within the theory of linear elasticity but
not covered by this entry include bodies of non-
rectangular shapes, layered structures, and three-
dimensional problems. The possibilities of using
domain subdivision to improve efficiency and
flexibility have not been explored in this entry.
However, the methodology described in this
entry could be further developed to include
these areas.

The potential to use the LCPS method for
stress analysis has been demonstrated in exam-
ples used in this entry. There are clear evi-
dences that solutions could be obtained with
a far smaller number of grid points than both
finite differences and finite element methods.
Further research is needed to develop the
LCPS method into a general purpose stress
analysis tool.
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Axisymmetric Thermal Stresses
in Disks

Naotake Noda
Shizuoka University, Hamamatsu, Japan

Overview

Mechanical and structural bodies are frequently
subjected to both mechanical loads and tempera-
ture changes. The mechanical and structural ele-
ments are three-dimensional bodies such as
rectangular bars, cylindrical bars, and spheres.
The analysis of three-dimensional bodies typi-
cally relies on displacement potentials, such as
Goodier’s displacement function, Papkovich-

Neuber functions, Michell’s function, and
Boussinesq’s functions.
Two-dimensional axisymmetric thermal

stresses in disks subjected to two-dimensional
temperature changes are considered in the
cylindrical coordinate system (r, z). Goodier’s
displacement function, Michell’s function, and
Boussinesq’s function are introduced. The tran-
sient thermal stress in an infinite disk with
thickness 2 /& is discussed. Next, the transient
thermal stress in a disk with radius a and thick-
ness 2 A is explained. In this case, the analytical
treatment is complex in order to satisfy the
boundary conditions on both the circular and
the flat surfaces.

Basic Equations in the Cylindrical
Coordinate System (r, 2)

The governing equations for axisymmetric

thermoelastic problems in the cylindrical coordi-

nate system (7, z) are summarized as follows [1]:
The equilibrium equations are

a rr zr o
o do o 009 I
or 0z r ( 1 )
801‘: + 80—:: + Oz +F. =0
or 0z r i
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where F, and F, denote the body forces in the r
and z axes, respectively. The strains are defined
by displacements u, and u,:

- ou, - U, o Ou,
/'r'—ar; 00 — r, 77 — Oz
1/0u, Ou,
r T A - s 6r) = 60z = 0 2
€ 2(62+8i‘> &r0 = &0z (2)
. ou, u, n Ou,
e =&y ¢ &7 = -
00 or r 0z

Hooke’s law is

( )+
&y == (0, —vogg — Vo) + 01
E 00
1
ego == (090 — V0 — VGy) + AT
E
: (3)
&z :E (Gzz — VO — VUOO) + ot
1
&z =550,
2G°

The alternative forms are

Gy = 2Ue + e — ft
oo = 2pegp + Le — Pt
Oz = 2,”'922 + e — ﬁ‘[

O = 28,

in which E, G, v, 2, u, « and  are Young’s
modulus, the shear modulus, Poisson’s
ratio, Lame’s constants, the coefficient of
linear thermal expansion, and the thermoelastic
constant (B=a(3L+2pn) =aE/(1 —2v)),
respectively.

Navier’s equation is

, Oe Pu,  Ou, ot
(/H_Zﬂ)E_'u(_ 0z2 8!‘82) _ﬂE—i_F" =0
(‘_|_2 )%_ 1%4__82”’"_%_1%
T e M\ e Tare: o v or
ot
*ﬁa‘i’F:—o

Navier’s equation, as expressed by (4), with-
out body forces can be solved by Goodier’s
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thermoelastic potential @ and Boussinesq’s har-
monic functions ¢ and :

oo 0 0
r —_+_SD+Z—W
3)’ ar 8}' (5)
ob  dp Oy
=— ——(3-4
or o tia ~ B
where the three functions satisfy:
1
Vo = - ot Vo=V =0 (6)
—v
2 _ 0 10 Jid
and V' =45+ 5 + 55
The stress components are
[0 14y e Py oy
=265 T e “ﬁ—”@]
1o T4y 10p zOW o
e P B L S
[0 14y e Py oy
o==205m T Yo T A1 )E}
820 P Py oy
= =20\ 55 Y oo o ares - (172 E}
(7)

The solutions of the Laplace equation (6) in
the cylindrical coordinate system are

(}rir) <i>’ (ffz ar > (ef;z(—ai)>
() (o) () i)

(3)

ar

,_\,_\
N\/\/

=

where Jo(ar) and Yy(ar) are Bessel functions of
the first and second kind, of order n, respectively,
Iy(ar) and Ky(ar) are modified Bessel functions
of the first and second kind, of order n,
respectively, a is an arbitrary constant, and

1

( 1 )(1) Inr
means
Inr z z

zIlnr
Here, Michell’s function M is related to

Boussinesq’s harmonic functions ¢ and :

M=— J (p + zp)dz 9)
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Michell’s function M must
equation:

satisfy the

V2V2M =0 (10)

The displacements and the stresses are

represented by

y _ 0% o*M
" aé?(; Oroz o (11)
e ==+ 2(1 = V)V'M —
za[azq) 1_“r+ (sz—G;TM)}
ou=20[ 20 e DL
S CR TR )
ar:ZG{gjiqtg{( )VZM—as—ﬂ}

(12)

The solutions of the bi-Laplace equation (10)
in the cylindrical coordinate system are

1 Jo(ar)
<)o) 1] ()
21y rYy(ar)
Jo(ar) Io(ar)
o) (0 )
rYy(ar) 4 rK (ar)

1 z Jo(ar) zexp(az)
( IJn()?ar)( e >Z cgs? cijr) ) <IZ(:EZE)(M)Z)COS az
(Yo(ar) ) ( zsinhaz ) ’ <K0(ar) ) (zsinaz )
(13)

We consider two problems:

[Case I] Transient thermal stress in an infinite
disk with thickness 2 A.

[Case II] Transient thermal stress in a disk with
radius a and thickness 2 /.
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[Case I] Transient Thermal Stress in an
Infinite Disk with Thickness 2 h

Consider transient temperature in an infinite cir-
cular disk with thickness 2 h. The governing
equation for the transient temperature without
internal heat generation is

10T T 18T+82 (14)
kOt O ror 02
The boundary condition is
or
— /la— = 4hp[T —Tp(r)] onz==xh (15)
z

where T,(r) denotes the surrounding temperature,

A is the heat conductivity, and &, denotes the heat

transfer coefficient on the flat surfaces.
The initial condition is

T=T;attr=0 (16)

We introduce the temperature change

T (=T — T;) from the constant initial temperature

T;. The governing equation, boundary conditions,
and initial condition reduce to

1ot 9t 10t 0* ,
ca—amtratar (W
—A%:ihb{r—[n(;) T} onz==+h (15°)
t=0attr=0 (16”)

Here, we introduce the method of separation
of variables to obtain the general solution of
(14’). When the temperature is expressed as

2(r,2,1) = F(1)g(2)h(1) (17)
three separation equations can be obtained by
substitution of (17) into (14°):

d};(t)+ K(s* +p*)h(t) = 0

a? 1d

e Ll =0 09)
2
it ()+pg() 0

d2
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The solutions of (18) are

f(r) =1, Ins for s =0
f(r)y=Jo(sr), Yo(sr) for s#0
g(z) =1, z for p=0
g(z) =cospz, sinpz for p#0

(19)

The general solution of (14”) for this problem
is expressed by

sJo(sr){A(s) coshsz
0

(.2) = |

3 An(s) cos pzexp[—k(s + p2 )] }ds
m=1

(20)

First, we express the surrounding temperature
T,(r) — T; by the Bessel integral:

Tp(r)—T; = JZC Tps(8)sJo(sr)ds (21)
where
Tps(s) = J;)O [Ty (r) — Ti|rJo(sr)dr (22)

Taking into consideration the boundary con-
ditions given by (15°), we can obtain that p,, are
the eigenvalues of the equation:

(hph/2) cos puh — pphsinp,h =0

and

(/’lhh/;»)Tbs (S)
(hph/2) cosh sh + shsinh sh

Als) =

Axisymmetric Thermal Stresses in Disks
The initial condition (16”) gives

Z Ap(s) cosppuz = —A(s)coshsz  (25)

m=1

Multiplying cosp,z on both sides of (25) and

integrating from O to &, we get

00 h

Z Ap(s) J COS Pz COS p,zdz
m=1 0 (26)

- [

cosh sz cos p,,zdz
0

Taking into consideration the integral results

h

COS Pz COS ppzdz
0
B { 0 m#n
a (cospyhsinpyh + pyh)/(2p,) m=n

cosh sz cos p,zdz

T2t [pn cosh szsinp,z + s sinh sz cos p,z]
s2+p?

A, (s) can be determined as

2Ty (s)pah”
[cos puh + puh/ sinp,h)(s2h* + p2h?)
(27)

An(s) = —

Then, the temperature change 7 is determined by

o0

sJo(s7)Tps(s)

“(r,2) = |

0
y hyh /)
(hph/2) cosh sh + shsinh sh
00 212
_9 Z P.mh
[cOS pmh + pmh/ sinpy,h](s2h? + p2 h?)

m=1

cosh sz

X €08 pz exp[—K(s + p2 )] }ds
(28)

Next, we consider the thermal stresses under
the boundary conditions

at z=+h  (29)

Oz;z =0z = 0
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Goodier’s thermoelastic function @ and
Michell’s functions M for this problem are:

O(r,z,1) =

1 o0 A
1 i’ Yy JO SJ()(sr){ zLj)zsinhsz

L A
- Z 1(;) cos ppzexp[—k(s® + p2 )] }ds

m=1 52 + %1
(30)
M(r,z) = J sJo(sr)[Co(s) sinh sz 4 Dy(s)z cosh sz]ds
0
(31)

Substitution of (30) and (31) into (11) and (12)
gives the displacements and thermal stresses as
follows:

u, = J 2Ty (sr) <sC0(s) cosh sz

0
+ Do(s)(cosh sz + sz sinh sz)

1+v s
—1_‘) {—Zsmhsz—z 5

m=1 +pm

X €08 puz exp|—K(s* + p2 )] }) ds

(32)

u, = J sJO(sr){ — Co(s)s2 sinh sz
0

+ Dy (s)s[2(1 — 2v) sinh sz — sz cosh s7]

1 A
+ i “ ﬂ(sinhsz + szcoshsz)
1—-v 2s

> prﬂArﬂ (S)
s2+p

sin p,zexp[—x(s* + p2)i] }a’s

m=1

(33)

o _ " So(sr) — -
2G—Jo s(Co(s)s [Jo(s7) rsjl(sr)] cosh sz

+ Dy(s)s* {2vJ0(sr) cosh sz

1
+ Jo(sr) — ;Jl (s7)](cosh sz + sz sinh sz)}
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Jo(sr)(2 cosh sz + sz sinh 5z)

N ‘

sz sinh sz

8

2
PmJ()(SI’) + Jl (Sl )}

+ D An(S) g

m=1 +pm

X €08 ppzexp|—k(s® + p2 )] })ds

(34)

* 1
% - Jo S<S3C0(S)SFJ1 (sr) cosh sz

+ 52Dy (s5)[2vJo(sr) cosh sz
1
+ —Ji(sr)(cosh sz + sz sinh sz)]
rs

1+v
1—v

oz{ f? [2Jo(sr) cosh sz

1 . -
+ s—r.ll (sr)szsinhsz] + ;Am (s)

52 1

—J1(s7)]

s>+ p2 sr

X €08 puz exp|—K(s* + p2 )] }) ds (35)

x [Jo(sr) —

;G =— L sJo(sr) <S3C()(S) cosh sz
— 5Dy (s)[(1 — 2v) cosh sz — sz
1 A
x sinhsz] + 1 i— :oc{—%sz
i(8)
x sinhsz + 0S Pz
Z §2 +pm Dm
x exp[—K(s? +p,2n)t]}>ds (36)
I _ JOO s2J1(sr) | s*Co(s) sinh sz
26 ),
+ sDy(s)(2v sinh sz 4 sz cosh sz)
1+v [A(s), .
1= oz{z—s (sinh sz + sz cosh sz)

> mAm .
+ pYz _H(;) sin p,,z exp[—x (s> —l—pfn)t]})ds

m=1 " m

(37)
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The unknown coefficients Co and D can be
determined by the boundary conditions given
by (29).

1l 2
sh[2v + (hph/ )] sinh sh
[s*h* — (hyh/A)(1 — 2v)] cosh sh
sinh sh cosh sh + sh

>~ Ap(s) cos puh
XD it e SPIRET H)

14+v [A(s)
2 —
s Do(s) = 7 _vcx{ 5
(hah/2) cosh sh + shsinh sh
cosh sh sinh sh 4 sh

explr(s* + 721}

(38)

sCo(s) = L+ va{@(l —2v)

—sh

+sh

" i Ay (s) cos pyh

s2h? + p2 h?

m=1

[Case Il] Transient Thermal Stress in
a Disk with Radius a and Thickness 2h

The governing equation for transient temperature
without internal heat generation is given by
(14) [2]. The boundary conditions are

or
_,15_

T
—ig— == hb[T — Tb(l’)] at z = +h
zZ

ho(T—T;) atr=a
(39)

where T,(r) denotes the surrounding temperature,
A is the heat conductivity, and A, and &, denote
the heat transfer coefficients on the circular and
flat surfaces, respectively.
The initial condition is
T=T;att=0 (40)
We introduce the temperature change 7
(=T — T;) from the constant initial temperature
T;. The governing equation, boundary conditions,
and initial condition reduce to

Axisymmetric Thermal Stresses in Disks

l@—&_’_l@_i_a_z‘[ (14’)
kot O ror 02
—i%: h,t onr=a
ot ’
a5 = ihh{r CTy(r) — T,-]} (397)
onz==h
t=0atr=0 (40°)

Using the method of separation of variables,
the general solution of (14°) for this problem is
expressed by

1(r,z) = Zfo(snr) {A,, cosh s,z
n=1

+ ZAnm COS Pz CXP[—K(Si +p§1)t} }

m=1

(41)

Taking into consideration the boundary con-
dition given by the first equation (39°), s, are the
eigenvalues of the equation

spal1(spa) — (hga/)Jo(spa) =0 (42)

We express the surrounding temperature 7,(r)

as the Bessel series:

Th(l‘) — T,‘ = Z Th,,Jo(S,,I’) (43)
n=1
where
2s2
Ton = — 22 2
J§(sna)[s2a® + (hea/2)"] (44)

X Ja [Ty (r) — Ti|rJo(sur)dr
0

and p,, are the eigenvalues of the equation that
satisfies the boundary condition (39°), i.e.,
z==h

(hph/2) cospuh — pphsinp,h =0  (45)
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and

Tpn(hoh/4)
(hph/ ) coshs,h + s,h sinh s, h

A, = (46)

Taking into consideration the initial condition

(40’), the wunknown constants can be
determined as
A _ 2p§1h2Tbn
" [cos pph + ph/ sin p,,h] ($2h* + p2,h?)
(47)

Then the temperature change 7 is expressed by:

o0

-5

Jo(snr) {An cosh s,z

7(r,z)

00
+ ZAnm COS Pz eXP[_K(fﬁ + pfn)r]}
m=1

ZJ T, (hph/2) cosh s,z
= Sl
OR%nT) % bn (/’lbh//t) cosh s,h + s,h sinh s,/

n=1

2~ [cos puh + pmh/ Smpmh] (sph? + pp,h?)

X COS Pz exp|—K (s> +P3y,)f]}
(48)

Next, we consider thermal stresses under the
following boundary conditions:

or=0,=0 on r=a

(49)

0, =0,;=0 on z==h (50)

Goodier’s thermoelastic function @, and

Michell’s function M for this problem are:

zsinh s,z
n

D(r,z,t) =

i‘

ocZJo Sul {

- COS Pz eXp|—K(s2 —|—p§1)t]}
}’l m

(51)
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M(r,z) = Egr’z + E,2°
+ Z Jo(sa7)[Cu(sy) sinh s,z 4+ D, (s, )z cosh s,z]

n=1
0

+ Z]o q;r)|E;sinh gz + E;z cosh g;z]
i=1

+ [Filo(vj
=

)+ Forly (vjr)] sinvjz

(52)

where g; and v; are the eigenvalues for Jo(g;a) =0
and sinvih = 0, respectively.

Substitution of (51) and (52) into (11) and (12)
gives the displacements and thermal stresses:

o0
u, = —2Egr + Z S 1 (8nr) (s,,C,,(s,,) cosh s,z

n=1
+ D, (sy)(cosh s,z + s,z sinh s,,2)

1 An(sn
_ +Va{ﬁ

zsinh s,z

1—v 25,
<A
nm 2 2
- cosppzexp[—x(s; +p )t}}
; Sa+ P o
o0

+ > a1 (air)|aiEi cosh gz
i=1
+ E;(cosh qiz + q;zsinh g;z)]
o0
— Z [v}?Fjll (vjr) + vajrlo(vjr)] cos vjz
J=1

=8(1—v)Eoz+6(1—2v)E,z

+ ZJQ(.Y,,I’) {-C, (s,,)si sinhs,z

n=1
+D,(s,)8[2(1 — 2v) sinhs,z — s,zcoshs,z]

1 A, (sn) , .
+ ioc (1) (sinhs,z+ s,zcoshs,z)
1—v 28,

pmAnm

2 2
m=1 Sn +pm

+ sinp,,z exp[—lc(si —l—pf,,)t] }

o8]
+ ZJo(q,-r) {—E:q?sinhg;z
i=1

+E;qi [2(1 —2v)sinhg,z — g;zcoshg;z]

o0
+ Y {VFilo(vir) +viF;[4(1 —

=1
+vrly (vir)]}sinvjz

o (vir)

(54)
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Oy _
26

+z(

+D, (vn){Zvv Jo(s,r)coshs,z

—2(1—2v)Eo+6VE,

1
salo(sar) *;Jl (s,7)]coshs,z

n

1
+si [Jo(sar) ——rjl (8n1)](coshs,z

n

+s,zsinhs,z)}

_1+va{An<sn>

= > Jo(snr)(2coshs,z+s,zsinhs,z)

_A,,(s,,)Jl (sa7)
2 Sul
+2Anm 2+p2 LDmJO(sn )

m=1

spzsinhs,z

2
+S—”J1 (sa7)] cospmzexp[—K(sg +p,2,,)l} })

Snl

o0
1
+ Z (E,-q? Jo(qir)— qI_-rJI (gir)]coshg;z

i=1

+E; { 2vq2Jo(qir) coshqiz
2 1 .
+q:o(qir) — EJI (gir)](coshg;z+ gizsinhg;z)

Z{ Fllo(s) 11

+v/2F;[(1 =2v))lo(vir) +virl (vir)) } cosvjz

) (55)
00 /

E = — 2(1 — ZV)E(] + 6VE0

o0

+ Z <s Ch(sy —]l(s,, ") cosh s,z

n=1

+ 82D,y (5,)[2vJo(s,7) cosh s,z

n

1
+ —Ji(syr)(cosh s,z + s,z sinh 5,,7)]

Sn

BETRENS

- 5 [2Jo(snr) cosh s,z

1
+ —J1(sy7)syz sinh s,z |
s,, r

+ ZAnm JO sn

+ cospuzexpl_r(s? +p51m}>

2

1
— Ty (s,r
2+pn1 Syl 1(S )]
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o0
+> (q?Ez (ir) coshg;z
i=1

+ qle; [2vJo(gir) cosh g;z

1 .
+ EJI (gir)(cosh g;z + ¢z sinh q,-z)])
1

- 1
— Z [vaj—ll Vir
=1 vir
+(1— 2v)ngFJ’-Io(v_,-r)] cos vjz (56)

O—ZZ /
6= 4(2—-v)Ey +6(1 —Vv)E,

— ZJO (Sur (s Cn(sy) cosh s,z
— 52D,y (5,)[(1 — 2v) cosh s,z — s,zsinhs,z]

1 An n .
+ +vot{— (2s )snzsmhsnz

I—v
+ i Sy cos pzexp|—k(s? + p? )t]}
m=1 S% +p3n " " "

- Z Jo(gqir) {q?Ei cosh ¢z
i=1
—q; 2E :[—(1 —2v) coshgiz + gz sinh q,-z]}
o0
+ Z {V;Fjl()(\/jr)
=1

+ V_%F}[Z(Z Wiy(vir) + virly (vir )]} cos vjz

(57)

2(} = Z S 1(8,7) (sicn(s,,) sinh s,z

+ $,D,(s,)(2vsinh s,z + s,z cosh s,2)
1 Ap(sy
L4y a{ An(sn)

(sinh s,z + s,z cosh s,z)

1—v 28,
00
PmAmm
212 sin p,z exp[—r (s +pfn)l]}>

+ Z qiJ1(qir)[qE; sinh ¢;z

i=1

+ gE,(2vsinh g;z + g;zcosh ¢,z)]
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+§:{VF11 V,

=1
+ V?F}[2(1 - (vir) + vjrlo(vfr)]} sinv;z
(58)
The boundary conditions given by (50) give
sflC,, (s,) cosh s, h

— 52D,y (5,)[(1 — 2v) cosh s,h —

_1+va A, (sy)
T l—v 2

s sinh s, h]

sph sinh s, h

-3 2 cosphexpln(s + i) |
m=1 S% +p72n " ! "

X siCn(sn) sinh s,h + 5,D,(s,)
(2vsinhs,h + s,h cosh s,h)

_l—l—vOC A, (sy)
T 1—v 25,

(sinh s,k + s,h cosh s,h)

pm nm

2+2

+Z

sin pph exp[—K(Si +pp)] }

(59)

4(2 = V)Ey + 6(1 — V)E,
o0
- ZJo(ql-r){q?E[ coshg;h
i=1
— ¢?E,[—(1 — 2v) cosh g;ih + g;z sinh ¢;h]}
+3 (-
=1

x [2(2 —

V{2 Filo(vir) + VIF;

Vo (vjr) + vl (vir)]} = 0
(60)

¢ E; sinh gih + ¢°E;(2vsinh g;h + gih cosh gih) = 0
(61)

The boundary conditions given by (49) give
—2(2 = V)Ey + 6VE,

1
+ Z < Jo(spa —Sn—aJl(s,,a)]C,,(s,,)Coshs,,z

+ D, (s,,){2vsnjo(s,,a) cosh s,z + sﬁ [Jo(sna)
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An(sn) J1(s00)

s,z sinh s,z

2 Spd
) 1 2
+ ZAnm 212 [pyJo(sa) + — /1 (sa)]
m=1

cos pz exp[—«(s; + p,)1] })

Y

i=1

| =

a)|q;E; cosh g;z

<

= la
/

+Eq;

i {v Fjllo(vja) —

J=1

—

cosh g;z + g;z sinh g;2)]
—1i(va)]

2v))lo(vja) + virli(vja)]} cos vz =0
(62)

2 !
+viF (1 —

o0
Z spJ1(spa) (siC,, (s,) sinh s,z
n=1

+ $,Dy(sx)(2vsinh s,z + s,z cosh s,z2)

3 14 va An(sn)
1—v 25,

I

m=1 I’I m

(sinh s,z + s,z cosh s,2)

pmAnm

5 sinpy,zexp[— K(s2 + an)f]}>

00

+ > J1(4ia)[¢E; sinh gz

i=1

+ q,-ZE;-(Zv sinh ¢;z + g;z cosh g;z)]

o0

+ Z V;th (vja)

=1
+VIF2(1 = ) (vja) + virlo(via)]} sinviz = 0
(63)
The unknown coefficients C,, and D,, can be
determined by (59). In order to determine the
unknown coefficients E, EO’, E;, E,-’, Fj, and F j’ in
(60)—(63), we expand the modified Bessel functions
to a series of Bessel functions Jo(g;7) as follows:

Io( Z GYJo(q;

=Gy + ZG1 Jolq

(64)

I ( v,
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as well as expand the hyperbolic functions as
a series of trigonometric functions as follows:

cosh(s,z) = Hyi + ZH" cos(v
zsinh(s,z) = Hy, + Z H,; cos(v

sinh(s,z) ZH sin(vjz)
zcosh(s,z) Z H;j sin(v

cosh(g;z) = Q4 + ZQU cos(vjz)

zsinh(g;z) = O + Z QO cos(v;z)

o0
sinh(g,z) Z ijs sin(v;z)
o0
zcosh(g;z) Z > sin(vjz)
cos(pnz) = F, + ZF;; cos(v;z)
sin(ppz) = ZF -sin(vjz)

Substitution of (64) and (65) into (60), (62),
and (63) gives simultaneous linear equations to
determine the unknown coefficients E, EO,, E;,
E/, Fj,and F;.

¢ E; cosh g;h — qizE;[—(l — 2v) cosh g;h
+gihsinhgih] = (=1 {FGY  (66)
=
FVIF 22 = v)GY + G} =0
¢ E;sinh g;h + q,.zE;(Zv sinh g;h + g;hcoshg;h) = 0

(67)

1
[fo(via) — — I (vja) v F;
V]r

+[(1 = 2v)Io(vja) + vjrli (via) Vi F;
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1
— EJI (Snd)]cn (8n )H;;

wn

—Z( Uo(sna)

+ Dy (sn){2vs2Jo (sna)H,;

1 = X
—+ Si [Jo (Sna) — a-’l (Sna)] (H;/L + S”Hf'(/)}

n

I Va{A"(S">J () (2H,

cc sc
nj +SI1H )

1—v 2

A, (sn) J1(sna)

2 Spa
o0

1
+ ZAnm m [pyZnJO(Sna)

m=1 n m

S2 o
+ 2l eoln(s; i) |

Sn

<1
— Ji(q:
+,§:1 7a 1(gia)lq

+Eq (05 + ¢:05)] =0

SC
spH,;

3 cc
i E; Qij

(68)

VIFiI (vja) + viF;[2(1 = ) (via) + virlo(via)]

Z 5ol (5.0) (52,0

+ 5,Dn(50) (2vHSS + s,,H”)

nj

1+v ” An(sy)
1—v 25,

(H3 + st

pmAnm S5
Sz +p2 Fm/ exp[—;c(si +p31)[]})

m— m

+ ZJI (9:a)0 EQ} + G E(2vQ}) + 4iQ)] = 0
i=1

(69)

Solving the simultaneous linear equations
(66)—(69), we can obtain the unknown coeffi-
cients E;, E,,F s andF Furthermore,

4(2 = v)Eo + 6(1 — v)E,

—3i-

=1

1Y {VF,GY +VviF2(2—v) (70)
X GJ(-)(? + ij}(?]}
2(1 —2v)Ey — 6VE,

n=1

1
n - n n\®n HFC
Jo(s a) = - a.ll(s a)|Cy(sn)Hyg

n
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+D, (s,,){2vsi]0(sna)Hf1’6
1 " .
+ slJo(sna) — U (sn@)|(Hyo + suH0) }

L4+v [Au(sa)
_ a{ ¢

- To(sna) CHzG + 5,H35)

An(sn) J1(sna) sc

s,H
2 Spd ntEn0

> 1
Anm— 2-] on
+,;1 T 2, o)
s ¢ 2 2
+ —”J1 (80a))F iy expl—r(s; + pi)1]
- Z —J1<q,a> (0% + 4:0%)]

(71)

10 +qz

Solving the simultaneous linear equations (70)
and (71), we can obtain the unknown coefficients
Eyand E, .

We finally obtain the displacements and stresses
by substituting these coefficients into (53)—(58).
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Axisymmetric Thermal Stresses in
Solid Cylinders

Naotake Noda
Shizuoka University, Hamamatsu, Japan

Overview

Mechanical and structural bodies are frequently
subjected to both mechanical loads and temper-
ature changes. The mechanical and structural
elements are three-dimensional bodies such as
rectangular bars, cylindrical bars, and spheres.
The analysis of three-dimensional bodies
typically relies on displacement potentials,
such as Goodier’s displacement function, the
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Papkovich-Neuber functions, Michell’s func-
tion, and Boussinesq’s functions.
Two-dimensional  axisymmetric  thermal
stresses in solid cylinders subjected to two-
dimensional temperature changes are considered
in the cylindrical coordinate system (r, z).
Goodier’s displacement function, Michell’s func-
tion, and Boussinesq’s function are introduced.
The transient thermal stress in an infinite solid
circular cylinder with radius a is discussed. Next,
the transient thermal stress in a finite solid circu-
lar cylinder with radius @ and length 2/ is
explained. In this case, the analytical treatment
is complex in order to satisfy the boundary con-
ditions on both the circular and the flat surfaces.

Basic Equations in the Cylindrical
Coordinate System (r, 2)

The governing equations for axisymmetric

thermoelastic problems in the cylindrical coordi-

nate system (7, z) are summarized as follows [1]:
The equilibrium equations are:

801’)‘ aazr Orr — 000 +F = 0

or 0z r ( 1)
06,, 00, + 02 LF =0

or 0z N

where F, and F, denote the body forces in the r
and z axes, respectively. The strains are defined
by displacements u, and u.:

8ur Uy auZ
rr =737 €00 =5 &z =
or 0= 0z
1 /0u, Ou,
r — ~ ! - 9 r0 = z = O 2
& 2(8z+8l”) o = o =
g+ 6 = Dry Mr | Ot
e = &y & &z = —
00 or r 0z
Hooke’s law is:
1 ( )+
&y = =0y —VOg) — VO ot
E 06
1
o) = — (0(.)9 — V0, — Varr) + ot
E
: 3)
b= (022 — Vo, — vagg) + ot
1
&z = == 0,2
2G
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The alternative forms are:

Gy = 2Uey + Ae — f1
oo0 = 209 + Ae — Pt
0., = 2Ue,, + le — ft
Gr; = 2Ué;;

(3)

in which E, G, v, 4, u, « and  are Young’s

modulus, the shear modulus, Poisson’s ratio,

Lame’s constants, the coefficient of linear ther-

mal expansion, and the thermoelastic constant

(p=a(34+2u) =aE/(1 —2v)), respectively.
Navier’s equation is:

aranion(-FE )

LI

(;L+z,,t)f; (4)
10u, O*u, 0O*u. 10u

‘”( o or o)

—ﬁE—FFZ:O

Navier’s equation, as expressed by (4), with-
out body forces can be solved by Goodier’s
thermoelastic potential & and Boussinesq’s
harmonic functions ¢ and :

where the three functions satisfy:

1
V20 = li—vocr, Vo=V =0 (6)
and V2 8r2 + r 0) + 872

The stress components are:

D 1+v Pyp Py Y}
o= 26| G g g P,
B 100 1+v 100 zOy o
700 = 2G[ or 1-— VO”: ror ror v 82}

Axisymmetric Thermal Stresses in Solid Cylinders

PO 1+v &
R
o oy
+z W —2(1 — )E
8Pd 9% e N
Or: = ZG{&'@Z oroz Z@r@z —(1=2) 9z
(7)

The solutions of the Laplace equation (6) in
the cylindrical coordinate system are:

(0 108 I

(o) Cower )

) (i)

(i) (i)

(3)

where Jo(ar) and Yy(ar) are Bessel functions of
the first and second kind, of order n, respectively,
Io(ar) and Ky(ar) are modified Bessel functions of
the first and second kind, of order n, respectively,
and a is an arbitrary constant.

Here, Michell’s function M is related to
Boussinesq’s harmonic functions ¢ and :

M=- j (p + 2)dz 9)

Michell’s
equation:

V2V2M =0

function M must

satisfy the

(10)

The displacements and the stresses are

represented by:

ov  *M
U = ———
B
—_— p— 2 p—
U = +2(1 =v)V°'M 92
26 PO 1+v 2 VZM—aZ—M
a1 or2
100 1+v 0 ,., 1OM
o0 =2G7 ror 1—v 8_< VM__E>]
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o2 :2G{{§7§)— Lty
2

-5 )

52D

oroz

9 2
l_vocr+£[(2—v)VM

+% [(1 - v)VZM—%‘ﬂ}
(12)

o, =2G {

The solutions of the bi-Laplace equation (10)
in the cylindrical coordinate system are:

1 Jo(ar)
Iny 1 Yo(ar exp(az
7 ) O )
Io(ar)
)(Zﬁfﬁﬁﬁ) o) | (o)
g rKy (ar)

ur) (5) i) Citan)

Jo(ar zcoshaz Iy(ar zcosaz

Y(())((ar; ) <zsinhaz> ’ (K(z)((ar)) > ( zsinaz )
(13)

Transient Thermal Stress in an Infinite
Solid Circular Cylinder with Radius a

Consider transient temperature in an infinite solid
circular cylinder with radius a. The governing
equation for the transient temperature without
internal heat generation is:

lalf@+lg+ﬂ (14)
kOt Ot ror 0
The boundary condition is:
—i?:hh[T—Tb(z)] onr=a (15)
r

where T},(z) denotes the surrounding temperature,
A is the heat conductivity, /;, denotes the heat
transfer coefficient on the circular surface, and
Ty(z) = Tp(—z) is assumed here.
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The initial condition is:
T=T; a t=0 (16)
We introduce the temperature change

T (=T — T;) from the constant initial temperature
T;. The governing equation, boundary conditions,
and an initial condition reduce to:

0t 0%t

1@ 10t

coor ror oz Y

ot
_’lgzhb{f—[Th(Z)—Ti]} ont=a (15)
t=0 at t=0 (16”)

Here, we introduce the method of separation
of variables to obtain the solution of (14”). When
the temperature change is expressed as:

(2, 1) = F()g()h(0) (17)

Three equations can be obtained by substitu-

tion of (17) into (14°):

%(tt) +x(s* +p*)h(t) =0

260, ,

TOLID =0 8)
ddg_z(zz) +s%g(z) =0

The solutions of (18) are:

h(t) =1, f(r)=Jo(pr), Yo(pr)

g(z) = coshpz, sinhpz fors® = —p?

h(t) =1, f(r) =1o(sr), Ko(sr)

g(z) =cossz, sinsz for p* = —s?

h(t) = exp[—x(s* +p?)t] fors® +p*#0
f(ry=1, Inr for p=0
f(r)=Jo(pr), Yo(pr) for p#0

gz) =1,z for s =0

g(z) = cossz, sinsz for s #0

(19)
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The general solution of (14”) for this problem
is expressed by:

t(r,z) = Eo cossz{A(s)Io(sr) + iAm ($)Jo(pmr)

m=1
x exp[—K(s* +p2 )] }ds

(20)

First, we express the surrounding temperature
T,(2)-T; by the Fourier cosine integral:

Tb(Z) — T,' = J:O Tbx(s) cos szds (21)

where

T;]cosszdz  (22)

(o) =2 [ 1ate) -

0

Taking into consideration the boundary con-
ditions given by (15°), we can obtain that p,, are
eigen-values of the equation:

(hha/)~)-]0 (pma) — pmaly (pma) =0 (23)
and
_ (hpa/2)Ts(s)
Als) = (hpa/)lo(sa) + sal;(sa) (24)
The initial condition (16’) gives:
iA”’ ($)o(pmr) = —A(s)Io(s7) (25)

m=1

Multiplying rJo( p,+) on both sides of (25) and
integrating from O to a, we get:

io:Am (s) J“ 1o (pmr)Jo(par)dr
m=1 0 (26)

= =) || Falpuria(srr

0
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Taking into consideration the integral results:

J (kr)J,, (mr)rdr

{ T (KT (mr) n+1(kr)

%

(KW i1 (mr)] k£

LI (kr) = ey (ki) g1 (k7)) k=m
J w(kr )T, (mr)rdr
0
,
e (kS (mr) sy (ki) + ml, (kr)J gy (mr)]
A, (s) can be determined as:
Ay(s) = — 2p2a* (hpa/2)Ths(s)
" (p2a? +s2a?)[p2a? + (hya/ 7)o (pua)
(27)
Then, the temperature change 7T is

determined by:
) _ o (hhd//l)Th_,v(S)
w(rz) = JO COSSZ{ (hpa/2)Io(sa) + sal | (sa)

> p2a*(hpa)2)Tps(s)
Z 1 (pa®+s2a?)pra® + (hpa/2)*)Jo(pma)

X Jo(pmr) exp[—rc(s? +pm)t]}ds

1 0 (SI’)

(28)

Next, we consider the thermal stresses under

the boundary conditions:

6,=0,=0 atr=a (29)

Goodier’s thermoelastic function ® and
Michell’s functions M for this problem are:

O(r,z,t) = 1 i_ ioc J:O cos sz{%r[l (s7)
x exp[—x(s* + p2)1] }ds
M(r,z) :JOC [Co($)o(s7) +Do(s)rly (sr)]sin szds
0
(31)
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Substitution of (30) and (31) into (11) and (12)

Oz
gives the displacements and thermal stresses as 26
follows:
u, = J Cos sz (— s2Co(s)I (sr) — s*Do(s)rlo(sr)
0
1+v (A(s
- v“{%%(m T2 E + (,%1)J1 (pur)
x exp[—x(s* +p2 )] })ds
(32) 0,~
u, = J sinsz (s2C0 ($)Ip(sr)
0
+5Do(s)[4(1 —v)Io(sr) +srli(sr)]

1l +va{@rh(sr)

l—v 2

SAn(s
_ Z i Jo(pmr) exp|—x(s? —b—pi)t] }) ds

(33)
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= Joo COS§z (S3C0 (s)Io(sr)

0
+5"Do(8)[2(2 = v)lo(sr) + s (s7)]

iirv { (25)[210(sr)+sr11(sl)] (36)
(s

pmm)

2+ 2 Jo(pmr)

m=1

x exp|—x (s +p,2,,)t]})ds

J sinsz (
0

+52Do(s)[2(1 = v)I (sr) + srlo(sr)]
i i_ Voc{@srlo(sr)

+ Z Mh )

4

()L, (sr)

(37)

m=1

x exp|—x(s® +p,2,,)t]})ds

The unknown coefficients Cy and D, can be
determined by the boundary conditions given

Orr :J cossz(—s Cols {10 sr)—%]l (s;)} by (29).
— Do (s)[(1 = 2v)Io (sr) + srTy (sr)] 3C (S)__Hv L@m— )
N { @U (5r)— st o) L
1—v 0 Hisr x [I1 (sa)ly(sa) — sal? (sa) +sal} (sa)]
p?
+Z 2+ 2 [v Jopnr) + ,,:”rjl (pmr)} —if:a%{ [2(1 —v)(s2a2+h§—ha)
xp[—r(s* +p2 )1 ¢ )ds
X exp[—K (s~ +p }) - 4 zhi ]11( a)
hpa
o 2 +2(1— L]I }
%:—J COS §z (S3C0(s)slll(sr) +sa[s @ F21-) A olsa)
0 r 0
+ 5°Do(s) (1 — 2v)Io(sr) X Zw%p[ﬂc(f +pp)1]
. +va{@1 (s7) 1;”:1 1 A(p)m
l—v 2 55) s*Do(s) = 1_: EG) 2 all§(sa) —I; (sa)]
+ZA’" [JO(p”’r 1j: Es(a) [h;’al (sa)+sa11(sa)}
Pm o0
Sl par l(pm’)} XZW@XP[K@ZH’M
m=1 m

x exp[—k(s +pfn)t]})ds

(38)
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where

E(s) = {s*a’ [} (sa) — [2(1 —v) + s*a*][} (sa)]} /sa

Transient Thermal Stress in a Finite
Solid Circular Cylinder with Radius a and
Length 2/

Consider transient temperature in a finite solid
circular cylinder with radius a and length 2/ [2].
The governing equation for transient temperature
without internal heat generation is given by (14).
The boundary conditions are:

—)va—T:hh[T—Tb(z)] onr=a
or
oT (39)
A—=0 on z = =+l
0z

where T),(z) denotes the surrounding temperature
on the circular surface, A is the heat conductivity,
and /; denotes the heat transfer coefficient on
the circular surface and T,(z) = Tp(—z) is
assumed here.
The initial condition is:
T=T; at t=0 (40)
We introduce the temperature change t (=7-T;)
from the constant initial temperature 7. The

governing equation, boundary conditions, and ini-
tial condition reduce to:

1ot &t 10t 0% ,
ko or rarter )
—)L@:hb{f—[Tb(z)—T,-]} onr=a
or )
5 (39)
AE:O onz =+l
7=0 at t=0 (40%)

Using the method of separation of variables,
the general solution of (14°) for this problem is
expressed by:

Axisymmetric Thermal Stresses in Solid Cylinders

00
t(r,z) = Z cos s,z{Anlo(snr)

n=0
00
+ Y Aundo(pur) expl—r(s; + pp,)]}
m=1
(41)

Taking into consideration the boundary con-
dition given by the second equation (39°), s, are
the eigen-values of the equation:

sins,l =0 . s, = nn/l (42)

First, we express the surrounding temperature

T,(z)—T; by the Fourier series:

Ty(z) —T; =T+ Y _Thncoss,z  (43)
n=1
where
1
T/,() = 7 J [T,,(r) — T,']dZ
0
2 [
Ton = 7 J [Tp(r) — Ti]cossyzdz n=1,2,3,..
0

(44)

Taking into consideration the first boundary
condition given by (39’), we can obtain that p,,
are eigen-values of the equation:

(hba/l)JO (pma) - pma-ll (pma) =0 (45)
and
o o (hbd/}v)Tbn
Ao = Tho, An = (hpa/N)lo(spa) + spaly(sya)
(46)

Taking into consideration the initial condition
(40), the unknown constants can be determined as:

- 2p% a*(hpa/2) Ty
(p2a? + 5242 [p2a? + (hpa/ 2)* )0 (pma)
(47)

Ay =
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where 5o = 0. Then the temperature change 7 is
expressed by:

= Z cossnz{A,llo(snr)

n=0

+ ZA,WJO (Pmr) exp[—x(s; +p,2n)f]}

hha To(sur)
T,
y) ”z(:) bn €08 Snz { (hpa/M)o(spa) + spal ) (spa)
_ Z“ 2p%aJo(pmr)

= (P2 + 530 [p2a? + (hya) 2) o (pma)
X exp[—)c(s% +p§1)t]}
(48)

Next, we consider thermal stresses under the
following boundary conditions:
Op = Oy = 0 on

r=a (49)

0,=0,=0 on z==+h (50)
Goodier’s thermoelastic function ¢ and

Michell’s function M for this problem are:

O(r,z,1) = 1_va;cosvn{ rly (s,r)
Z s hulpar) expl- k(s +p2) |
- (51)
M(r,z) = Egr’z 4 Ey2°

+ i sin(s,2)[Culo(su1) + Dyrly (su7)]

n=1
00

+ZJO qir)] E'sinhq,'z—kE;zcoshq,-z]
i=1

+ [Filo(vjr) + Firl, (vjr)] sinv;z
j=1

(52)

where ¢; and v; are the eigen-values for
Jo(gia) = 0 and sinv;/ = 0, respectively.

Substitution of (51) and (52) into (11) and
(12) gives the displacements and thermal
stresses:
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o0
u, = —2Egr — Z cos s,lz[siCnll (su7)

Gl‘l‘

2G

n=1

+ 52D, 1o (5,7)]

1
+ zxz COS Spz { "o (s,r)
Lo () expl—w(s® + 2]}
2+ 2 m

+ Z qi11(qir)|giEi cosh iz
=1
+ E (cosh g;z + gz sinh g;z)]
o0
- Z [V?Fjl] (vjr) + vaerO(yﬂ*)] Ccos vjz
=

(53)

= 8(1 — v)Eoz + 6(1 — 2v)E,z

+ Z sin s,z{s2C,lo(s,7)

n=1

+ 5D, [4(1 = Wo(sur) + 87T (s27)]}

1+v . A,
- n -l nl’
anE: sin s Z{ 5" 1(8a7)

- Z sz"+ 7 Jopnr) expl= K(s} +pp)i] |

+ ZJO(qu) {— Eiq; sinhg;z
i=1

+ E.q;[2(1 — 2v) sinh ¢;z — gz cosh g;z]

o0
+ Y {E L (vir) + viF[4(1 =)o (vjr)
=1
+virly (vjr)]} sin vz
(54)

= _2(1—2v)Ey+6VE,

= 1
- Z 085,2{52Cpullo(s,7) — ;Il (8a1)]

n=1

+52Dn[(] - ZV)I()(Sn ) + 8,1l (Sni‘)]}

1
+ aZcosan{ [Lo(sur) — s (s47)]
n=0

o0

: I’Im

m=1

2JO (Pm”)
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P2 2, 2
+ T3 (pur)] expl—k (s + py, )1}

:; 1

+ Z (Eiq? Jo(qir) — Ejl (gir)] cosh g,z
=1 i

+ E; {2vqi2J0(q,~r) cosh gz + qiz [Jo(gir)

1
— —Ji(qir)](cosh g;z + gz sinh g;z) })
qir

- i {va_,- [IO(V./") - ill (V./")]

m=1
+ v]zF]’- {(1 — 2o (vjr) + vl (vjr)} } cos vz
(55)

= —2(1—2v)E, + 6VE,

2G

0.

2G

- Z COSS,Z [s Co—1I1(s47)

n=1

+ sﬁDn(l - 2v)1()(s,lr)}

ozz COS Sz {
+ ZAnm [JO(pm’)

1+

o(sar)

rﬂ’
2+Pmpm Ji(p )}

x exp[—x<s3+pi>t1}

+Z{ E—Jl gir)coshg;z

i=1

+ qle; [2\)]0 (gir)coshg;z

1
+-—J1(qir)(coshgiz + gizsinh C]iz)] }
qir

O 1
%
= {VJ Tvir 1(5r)

+(1- ZV)V%F; Io(vjr)] cosvjz

=4(2—v)Eo +6(1 —v)E,

+ Z 085,2{5 Cplo(s,7)

n=1

+ 82D, [2(2 =)o (sa7) + 7Ty (547)] }
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1+v

T ocz COS )2 { —A?[Zlo(s,, )

n=0
—|—snr11(sn )]

_ Z]O (qir){q E; cosh g,z
i=1
?E'.[f(l — 2v) cosh gz + g;zsinh g;z] }

—|—Z{VF[0 Vj

+ v2F 22—

+

Pm nm

s2 +p2

Jopur) exp[—x(s} +p3)i] |

V)Io(vjr) + virTi (vjr)]} cos vz
(57)

J“ = Z sms,,z{s Culi(sur)
+ S2D [2(1 — V)ll (Sn ) + SanO(Snr)”

1
+ az sin s,z { " 5.1l (s,7)

>N SuPmA
£ BB () expl—w(s] )]
m=1 °n m

+ Z qiJ1(qir) [q?E,' sinh ¢,z
i—1

+ q,-E/‘(2v sinh g;z + ¢z cosh ¢;z)]

+Z{VFI| vir)

+ v2F 200 =)L (vir) + virlo(vir)]} sinv;z

(58)

The boundary conditions given by (49) give:

1
siCn [Io(sna) — nll(sna)]

n

+ 52D, [(1 — 2v)Io(s,a) + spaly(sna)]

14+v {An
= — s — lo(sya) — syali (spa
Ty )~ salsal o
~ A [
+ E |:S,1]0(pma)
A

+ p—'znafl (pma)} exp[*K(Sf +p3n)t]}

Pm
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S3Culy (5,0)+52D,[2(1 — V) (s,a) + spalo(s,a)]

1+v (A,
=1_ va{;snalg(s,,a)

Snpm nm
Z 2 _|_ 2 Jl (pma
P

X exp[—K(sn +p§7)t]}

(60)

—2(1 — 2v)Eq + 6VE,
1 A Aom
-, [70 + Z 2 (pt) exp(—Kp )

m=1 Pmd

1—v

[Eiq} cosh gz

5 e
- 1
+ E;q,2 (cosh gz + g;z sinh g;2)]
1
{V;Fj [Io(vja) - vj_-all(vja)
Fj[(1 = 2))o(vja)

+ vjal 1(V_/a)]} cosvjz =0

0

1

.
\‘N Il

_|_

(61)
i qiJ1(qia)[q;E; sinh gz
=1
+ qE;(2v sinh g;z + g;z cosh ¢;z)]
+ i {VFili(vja) (62)
=
+ vszj/-[2(1 — I (vja)

+ vjaly(vja)]} sinviz =0

The boundary conditions given by (50) give:

4(2—v)Eq+6(1 —v)E,

+ Z cos snl{siCnIo(s,,r)

n=1
+ siDn [2(2 =)o (su7) + surT1 (807)]}
+ Lt o N
I—=v n=0

pm nm
‘Zs2+ 2Jo(pmr)exp[—;c(s,i+p3,)t]}

A
cos s,,l{ 2" [21o(sp1) 4 $urT1 (s07)]
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=Y Jolqir){¢}Ei coshqil — ¢7E;[~(1
i=1

— 2v) cosh ¢;l + g,z sinh g;1]}

N
+ 3 (Bl + 3 P2
=1

= lo(vjr) + vjrli (vir)]} cos vl

=0 (63)

E;(Zv sinhg;l + g;lcoshg;l) =0
(64)

’E; sinhg;l+ g;

The unknown coefficients C,, and D,, can be
determined by (59) and (60). In order to deter-
mine the unknown coefficients Eq, E,/, E;, E/, F; s
and F / in (61)—(64), we expand both the Bessel
function and the modified Bessel functions to
a series of Bessel functions Jy(g;7) and J(g;) as

follows:

=Gy + ZGO Jo(q

1 (vir) = Gjg + ZG;I,'OJO(W)
i=1

Io(s,r) = H% + ZHOOJO
rly (s,r) = 8+ZH}HOJ0

rlo(s,r) = ZFOUI( i)
i=1
ZFfu I

=E% + Z E%Jo(q

Z Erlm‘ll q'

Jo(p,,,r

pmr

as well as expand the hyperbolic functions as
a series of trigonometric functions as follows:
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cosh(giz) = Q5 + ZQ cos(vjz)
z sinh(g;z) = Q5 + ZQU cos(vjz)
- (66)
sinh(g;z) = Z O} sin(v;z)
=1
z cosh(g;z) ZQU sin(vjz)

Substitution of (65) and (66) into (61), (62)
and (63) gives

—2(1—2v)Eq + 6VE,

. 1+v IE AOm 2
7—1 _VOC[ ) +;Pm Jl(Pma)exp( Kpml)} (67)
> J i CC ! cC sc
+ Z Laa) Eiq} Of + Eiq7 (05 +ai0}5)]
= i
J ! cc sc
Z 16(1 [E; ql +Eiq?(Q,j +qu}j )]
i=1
1 68
VR llo(a) -1y (v0)] (©8)
Vj(l
VP F[(1=2v)Io(va) +viai (via)] = 0
Y a1 (Ga) G EQy +4E (v} +i0;)]
i=1
+VIETL (via) +VIF;2(1 =) (va)
+vjaly(vja)] =0 (69)

4(2 = v)Eo + 6(1 — V)E,

+§:(—

+ szA[2(2 — v)G%) + ij;(?]}

= =S fscs

n=1

+ 2,22 — HY + 5,1}

l+v & A
~ > (=1 { = 2 RHY + s, H
an:O( ) 2 [ n0 +s nO]

Y {viFG

1—v

%) pzA
_ w2 p00 o o1 (82 42 t}
Z S% _|_pm m0 Xp[ K(Sn +pm) ]

(70)

Axisymmetric Thermal Stresses in Spheres

—q}Eicoshqil+q? ,[ (1—2v)coshg;l

+q;lsinhg;l +Z 3F G00
j=1
HVIF[202-v)GP+vG )}
==Y (=1 {sicuH?
s (71)

+52Da[2(2— v HI 45,11}

n

1+v & A An
——az<—1> { oo
n=0

PmAnm 00 2
Pubom g0 o1 (52 +pm>r1}
m= 18%4772

Solving the simultaneous linear equations
(64), (68), (69), and (71), we can obtain the
unknown coefficients E;, E/, F; J» and F Further-
more, we can obtain the unknown coefﬁments Ey
and E,’ solving the simultaneous linear equations
(67) and (70). We finally obtain the displace-
ments and stresses by substituting these coeffi-

cients into (53)—(58).
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Overview
Mechanical and structural bodies are frequently

subjected to both mechanical loads and tempera-
ture changes. The sphere is one of the important
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mechanical and structure elements. The thermal
stress analysis of three-dimensional bodies typi-
cally relies on displacement potentials, such as
Goodier’s displacement function and Boussinesq’s
function.

Axisymmetric thermal stresses in spheres
subjected to axisymmetric temperature changes
are considered in the spherical coordinate system
(r, 0, ¢). The steady thermal stress problems in
a hollow sphere and an infinite body with
a spherical cavity and the transient thermal stress
problem in a solid sphere are discussed. Goodier’s
displacement function and Boussinesq’s function
are introduced in analytical treatment.

Basic Equations in the Spherical
Coordinate System (r, 6, ¢)

The governing equations for three-dimensional

thermoelastic problems in the spherical coordinate

system (r, 0, ¢) are summarized as follows [1]:
The equilibrium equations are

86,7- +l ao'gr 1
or r 00

1
+ (20 — g9 — G4¢ + Gor cot0) +

(90'(1,,'
rsind O¢

F,=0

801‘0 +l 80’00 1 80-4)6
Or r 90 rsinf 9¢
1
+ ; [(60() - O'(p(p) cot0 + 30')_0] +Fy=0
00,4 +l 00y 1 Doy
or r 00 rsinf 0¢

1
+—(3Gr¢ + 2004) COtQ) +F¢ =0
-
(1)
where F,, Fy, and Fy denote the body forces in

the r, 6, and ¢ axes, respectively. The strains are
defined by displacements u,, 1y, and u4:

o O 10U
T T T 00
U, Uy 1 Ouy
o =— to— — —"
b0 =7 teo r +rsm9 oo}

(Lo Ouy _u
8"6_2 rod  or r

327
1 (1 Ouy ugp 1 Ou
n — __ v _ tO—
&9 2( 0 r T rsind 96
1 1 Ou. Oup uy
epr =5 | — — -
=2 \rsin0 9 or  r
e =&, + &po + &
814,» u, 1 (9 up 1 au(/)
= 2_ s ¢
or S R et ey 90
(2)
Hooke’s law is
& = E (O-rr — Vo) — VO'¢¢)) + ot
1
&0 :E (0'00 —VOgpp — VO',T) + ot
1 (3)
Epp = E (O’¢¢ — VG, — VO’()()) +oart
1 1
&0 =7570r0, € 00p, Epr =
072G 0 TG0 BT oGT
The alternative forms are
O = 20Uy + Ae — fT
o9 = 2uepg + e — Pt )

Ogp = 2lepg + Ae — fT
0r9 = 2UErg, Oop = 2UEy, Opr = 2UE,

where E, G, v, A, u, o, and f are Young’s

modulus, the shear modulus, Poisson’s ratio,

Lamé’s constant, the coefficient of linear thermal

expansion, and the thermoelastic constant

(p=a(34+2u) =aE/(1 — 2v)), respectively.
Navier’s equations are

G~ o)
—ﬂa—:JrF,:o
_ﬁlﬁ‘f'Fg:O
(A+ M)ﬁ%_%ﬁ{@_%}
islln968_;)+F¢ 0
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where
1 O(ugsin0)  Aug
= sin0 00 0¢
1 Ou, . ,0(ruy)
2rmn0[a¢ sin0 =5, ] (6)
1 O(rup) B Ou,
=0 " ar 00

When the body forces do not act on the body,
Navier’s equations, as given by (5) can be solved
by Goodier’s thermoelastic potential & and
Boussinesq’s harmonic functions ¢, ¥, and y:

0P 0Op 209 oy

. Frio 0"
o e e T
—(3—4v){ycosl
109 10¢ 2

+-—+ o
r 90 ' r 90  rtan6 ¢
(?;g + (3—4v)ysind
1 090 1 9p (%‘
u¢ = " -_— — 2si
rsin0 8¢ ' rsin0 ¢ 6r
cos 0 1 oy
r 00 tanf6 0¢

Uup =

+cos 0

-2

where Goodier’s thermoelastic potential @ is the
particular solution of the equation:

V2¢7ii_:oc‘c (8)
V278_2+%2+l3—2+;£
o2 ror 290> r2tan0 00

+ R
r2sin?0 d¢p*
and the three functions ¢, ¥, and ¥ must satisfy

the Laplace equation:

Vo=V =Vy=0 (10)

Basic Equations for Axisymmetric
Problems

When the spherical bodies are deformed symmet-
rically with respect to the coordinate axis z, the
basic equations (1) to (10) reduce to
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80—17 +l 80(),—
or r 00
1
+ - (20)'1' -
r

000 — Opp + Oor COtH) +F. =0

ao—r@ 1 8099
or +r 06
1
+; [(o0s — 0¢p) cot 0+ 3a,9] + Fg =0

(11)
The strains are
o ou, - u- 1 0uy
N T
u, up
. — t 9 —
Epd . + co .
_1(1 0Ou, +8149 U
b0 = 2\r 00 or r (12)
ou,
e=¢&y +&p+e&;= 2—
or
1 aug
tH— -—
+ r 00

Hooke’s law is

1
&y = 5 (0 — voge — Vagg) + 01
1
€00 =z (go9 — vagp — vO,) + 01
: (13)
e69 = (949 — VOr — Vvop) + o
1
&) = ﬁarﬁ

The alternative forms are

Oy = 2Uen + Ae — Pt
oo = 2uegy + Le — Bt

(14)
Opp = 2UEpp + Le — P
00 = 2Erg
Navier’s equations are
de  2u O(wgsinb) ot B
(/I_FZ#)E_isinG 00 _ﬁ5+F"_
1 de 2,u O(rmg) 1ot
(A+2p)- 50 o —ﬁ———i—F()—O
(15)
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where

(16)

s O(rup) B Ou,
=0 "o 00

When the body forces do not act on the
body, Navier’s equations, as given by (15)
can be solved by Goodier’s thermoelastic poten-
tial @ and Boussinesq’s harmonic functions

w and y:

b dp o
U =Gy Ty Treost, = (3~ dvicost
109 10p oy .
U= 50 "y ap eV T3 - dsind

(17)

where Goodier’s thermoelastic potential @ is the
particular solution of the equation:

1+v

28 —
Vdi—livocr (18)
P 20 1 02 1 0
20 20 100 1 0
v _8r2+r 8i‘+r2 90%  r2tan 00 (19)

and the two functions ¢ and ¥ must satisfy the
Laplace equation:

Vo=V =0 (20)
The stress comportments are

[0°® y
— — T
102 1—v
oy sin 6 Oy }

o = 2G

—-2(1 —v)00505+2v7%
10w 10 1
ror 290 1—v

1op 1 0% oy
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gy = 2G
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100

t0 0P 1+
a¢¢:2G[ ar_*_co o9 v

r2 69_1—vm

+ (cos O cot O + 2vsin ())’l g_l(ﬂ

>’ (D 0 /o
o =26 [8}‘80 (T) + 5,00 (1)

+ (1 —=2v) siné)(;—lf

cos 0 %}

oy
oral

+ cos 0

—2(1—-v) 90

(21)
Let us consider the general solutions of the

Laplace equation (20) in the spherical coordinate
system. Introducing a new variable defined by
pu=cosf (22)

Laplace equation (20) reduces to

Py 20p
r or

or?

e[k B

We assume that the potential function ¢ can be
expressed by a product of two functions.

o(r,u) =f(r)g(p) (24)
Substitution of (24) into (23) gives
2 (d> 2d
73 G 2
__Li 2 dg(#) _
B g(u)du[(l ) g } =l
(25)

where v is an arbitrary constant. Equation (25)
yields to

df(r)  2df(r) v(r+1)
dr? roodr 2

d 2, dg(w) _

dn [(1 — )W} +v(v+1)g(u) =0

1) =0
(26)
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Second equation of (26) is called Legendre’s
differential equation. The general solution of
(26) is

0= (50 ) s = (g1) e

where P,(u) and Q,(u) denote the Legendre’s
function of the first kind and second kind of
order v, respectively. The general solutions of
the two functions ¢ and \ are

e\ [ r P,(cos 0)
(6)= () (@i
Since axisymmetric problems are considered,
the arbitrary constant v reduces to integer n. The
Legendre’s function of the second kind Q,,(cos 0)
has a singular value when cosf =1 (6 = 0).
Then, the general solutions of the two functions

for axisymmetric problems in the spherical coor-
dinate reduce to

(i) - <r—’;n—1 )Pn(COSO) (n=0,1,2,...)
(29)

(28)

Steady Thermal Stress in
a Hollow Sphere

Consider a steady thermal stress in a hollow
sphere with inner radius a and outer radius b,
when the hollow sphere is subjected to the steady
temperature change.

The heat conduction equation is

Ler, 1ot
2 96>  r2tanf 90

O*T 20T

The boundary and initial conditions are
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The steady temperature T is

00
T =Ag+Bor ™' + Z (Aur" + B,r NP, (1)
n=1
(33)
where yt = cosf. We expand both the boundary

temperatures 7,(0) and T,(0) into the series of
Legendre polynomials

()= () + 2 (5 )t
() -2 (o) et

Substitution of (33) into (31) gives

(34)

Ay = (Tob™" = Ty ")/ (B — 1)

B, = a" B (Tl — Topd) /(B — a2
(n=0,1,2,...)

(35)

Therefore, the temperature change © (=T — T;)is

T=A0—T;+Bor™ '+ _ (A" + By~ )Py(u)

n=1

(36)

When the temperature change 7 is given by
(36), the particular solution of Goodier’s
thermoelastic potential @ in (18) is

O =

1+v r? r
Ap—T)= + Byt
Ty Ao =T)g+Boy

- 1

An 42
* ; e
I

*manﬂH]Pn(ﬂ)}

(37)

The general solutions of the Boussinesq’s har-
monic functions ¢ and  are

p=Co+Dyr" +> (C" + Dy " Py(p)

n=1

Y=Eg+For ' + > (B +Fr " )Pa(p)

n=1

(38)
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Substitution of (38) into (17) gives the radial
displacement i, in terms of ¢ and .

. Op ol
i, = E_H COSQE —(3—4v){cosb
=Dy 2+ Z [nC, !

n=1

— (n+ D)D" 1P ()
— (3= 4v)uEy — 4(1 — v)uFyr~!

+Z[n—3+4v)E; —(n+4—W)F,

n=1

—n— 1}

x m[(”ﬂL DPy1(p) + nPpy (1))

(39)

Equation (39) is not suitable to satisfy the
boundary conditions because it contains three
kinds of Legendre’s functions with different
orders n — 1, n, and n + 1 under the summation
signs. Therefore, we introduce new unknown
constants given by

C/n =C,—(n—44+4)E,,

D,=D,— (n+5—4)F,,

E,=Q2n+1)E, i, F,=Q2n+1)F,
(40)

The radial displacement &, in terms of ¢ and
reduces to

i, = — Dor=2 —2(1 — 2v)Eqr

o0

+Z{nC1”l (n+ 1)Dr"

(41)
+(n+1)(n — 2+ 4v)E,r"!

—n(n+3-— 4V)F,1r_”}P,, (u)

Then, we can get the displacements and ther-
mal stresses

1+v r o1
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" 17\)&{( 0 )3+ 0
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n Bn_ n Pn
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The boundary conditions are

o,=0,9=0 onr=a
' (48)
o,=09=0 onr=»~

Substitution of (44) and (47) into the boundary
condition (48) gives
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The unknown coefficients can be determined
by solving simultaneous equations (49) and (50).
Substitution of the coefficients determined by
(49) and (50) into (42)—(47) gives the displace-
ments and thermal stresses.

Steady Thermal Stress in an Infinite
Body with a Spherical Cavity

Consider a steady thermal stress in an infinite
body with a spherical cavity with radius a, when
the body is subjected to the steady temperature
change. The hollow sphere reduces to the infinite
body with a spherical cavity, when the ratio a/b in
the hollow sphere tends to be zero. Then, the
temperature in the infinite body is from (36)

t=—T;+Bor™' +> By " 'P,(u) (51)

n=1

where B, = T,,a""".
The corresponding displacements and thermal
stresses are given from (42) to (47)
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The boundary conditions are
Oy = 0rp = 0 onr=a (58)

The unknown coefficients can be determined as

1 1 1
DO = — + VO( (7T,*a3 7*3002)

1—-v \3 2
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Transient Thermal Stress in
a Solid Sphere

Consider transient thermal stress in a solid sphere
with a radius a, when the solid sphere is subjected
to the transient temperature change. The heat
conduction equation is

T 2or 1 o7 1 o 1o
o2 rOr 290> r?tanf 90 Kk Of
(60)

where t and x denote time and the thermal diffu-
sivity, respectively. The boundary condition and
initial condition are

T=T,0) onr=a (61)

T=T, a t=0 (62)

Then, the heat conduction equation and the
boundary and initial conditions for the tempera-
ture change 1 (=T — T;) reduce to

ot 20t 10 , 0t 1%t
o ?EJrr_za_u[(l_“)a_u]_EW (63)
1=T,0)—T; on r=a (64)
t=0 at =0 (65)

where 1 = cos 0. Here, we introduce the method
of separation of variables to obtain the general
solution of (63). When the temperature change is
expressed as

t(r,2,1) = f(r)g(w)h(1) (66)
three separation equations can be obtained by
substitution of (66) into (63):

d 2, dg (1) _
@{(1 —u )—} +n(n+1)gn) =0

2 7 r nin
d;rg)+§df;<r)+ (sz—( rj”)f(r) =0
dh(t) _
7Jr;cszh(t) =0

(67)
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where the second equation in (67) is called the
spherical Bessel’s equation. The general solu-
tions of (61) are

= (5)

100 = (70 ) w0 = hors =0 (69)

(68)

flr) = (jn(srﬂ) ), h(t) = exp(—xs*t) fors # 0
(70)

where j,(r) and y,(r) are the spherical Bessel
functions of the first and second kind of order #,
respectively.

The general solution of (63) for this problem is
expressed by

o0
T = ZA,J”P,,(,u)
n=0
0> Agal(ir)Pu(p) exp(—rsiit)
n=0 i=1
(71)
Taking into consideration the boundary con-
ditions given by (64), we can obtain that s,; are
the eigenvalues of the equation:
Jn(swia) =0 (72)

and
Av=Tw—T;, Ay=Tay/d" (n=1,2,....) (73)

where

T.(0) = Z TanPn(p) (74)
n=0
The initial condition (65) gives
ZA,,,;jn(smr) = —A,r" (75)
i=1
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Multiplying rzj”(s,,jr) on both sides of (75) and
integrating from O to a, we get

aﬂ

s}ljajn+1 (snja)
1

Snj@ins1 (Snj@)

A= =24,

= 2T, (76)

Then, the temperature change 7 is determined by

0 r n
T= TaO _T[+ZTan<;) P,,(,u)
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— P, (p) ex KS.t
an Swijne1 (5mid) (1) exp(— nz)

(77)

Next, we consider the thermal stresses under

the boundary conditions

Oy = Opp = 0 at r=a (78)

Goodier’s thermoelastic function @ and the

Boussinesq’s harmonic functions ¢ and i are
for this problem:

w=0 i=1 Sni
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nO:OO (80)
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Then, we can get the displacements and ther-
mal stresses:
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The unknown coefficients can be determined
from the boundary condition (78).
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