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                                  This book is intended to be read by teachers, researchers in education, mathematicians, 
and anyone else who is curious about what educational research has to say about the 
teaching of mathematics. It centers around a set of lessons on rational and decimal 
numbers. The lessons came into existence to validate the Theory of Situations, a basic 
tenet of which is that children can best learn a mathematical concept by being put into 
a very carefully designed situation where achieving some goal requires them to invent 
or discover the concept, and their prior knowledge enables them to do so. 

 The core of the book is the day-by-day journal of a fi fth grade class in which the 
teacher reports every stage of what she presented in 65 lessons on rational and deci-
mal numbers, and what happened with it. The journal was originally produced to 
enable two parallel classes to reproduce the lessons. The lesson sequence was con-
ceived in 1972–1973 and was considered stable by 1975–1976. Enriched by various 
observations made by succeeding teachers, the sequence was offi cially reproduced 
every year in two parallel classes until 1999. 

 This lesson sequence is one of a number realized in the COREM  ( Centre 
d’Observations et de Recherches sur l’Enseignement des Mathématiques ), a school 
set up specifi cally for observation supporting mathematics education research. A 
description of the school and its functioning can be found in Chap.   3    , while Chap.   4     
provides the origins of its conception as a research necessity. The lessons carried out 
there played a central role in the development of  Didactique  – a program of scien-
tifi c research in mathematics education whose structure is unique to France, but 
whose contributions are valid and valuable everywhere that mathematics is taught. 

 Untangling the web of ideas, experiments, discoveries, hypotheses and proofs 
involved in a new teaching project is a long, perilous and debatable task. What we 
have to tell is thus the tale of three adventures. 

 One is the adventure of researchers opening up a new territory. It is certainly 
interesting, but it is complex and breaks with too many concepts and venerable 
habits of thought to be easily accepted without the support of the observations that 

    Chapter 1   
 Why These Adventures? 
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provide its experimental foundations. Some of the many research results produced 
in a variety of fi elds:

•    Elementary school students are able to construct, understand and practice funda-
mental mathematical concepts, using the modern mathematical and epistemo-
logical organization of those concepts.  

•   Factors that cannot be formally and directly evaluated, such as things left unsaid  
and knowledge that cannot be expressed or has not been decided, play an essen-
tial role in the elaboration, manifestation, learning and teaching of recognizable 
knowledge. Methods that eliminate the action of such factors are less effective: 
when they are used, only the students who are capable of fi lling in on their own 
what was left unsaid in the texts that are taught can make progress.  

•   Radical constructivism does not work as a general model: Institutionalization  is 
indispensable.    

 The adventure of the researchers constitutes Chap.   4    . 
 The second adventure is that of the teachers, recounted in Chap.   3    . It is also cap-

tivating. They threw themselves into a scientifi c episode that was fascinating for 
them, but strange to them and very much of a disruption of their standard work as 
teachers. To appreciate that adventure, the reader needs to bear in mind that the 
teachers whose actions are being directed and recorded in the tale that follows were 
stepping from a familiar and comfortable terrain into a completely new teaching 
world in which many of the familiar landmarks had been removed or disguised. 

 But above all we are eager to introduce the reader to the adventures of the students 
as they took part in the classes, recounted in Chap.   2    . What were the conditions in 
which they produced and learned some diffi cult mathematics? In what ways were 
their mathematical activities closest to the activities of mathematicians? To know that 
we had to make the conditions of their work explicit, with precision , as they were 
planned and as they were realized by the teachers. Likewise we had to make their 
reactions clear – the signifi cant ones that made it possible to pursue the process. The 
“didactical  fi les” that we have translated provide the best mechanism for following the 
adventure step by step from the point of view of the students. They were established 
in order for teachers – the original ones or their successors – to be able to reproduce 
the lessons. They were reproduced at least 50 times with completely similar results. 

 The texts that we present or describe in Chap.   2     were thus carefully designed to 
enable the lessons exactly as described to be reproduced in their original context. 
On the other hand, they were not designed for the lessons to be exported. They were 
carried out in an institution that was specifi cally created to permit this kind of exper-
iment to be carried out in conditions that were secure for the teachers and for the 
students. This is especially true in that the options we chose were not those that we 
would recommend for development. They absolutely do not prefi gure a curriculum 
to be developed in ordinary classes. Their sole objective was to provide scientifi c 
answers to some essential questions. 

 If this does not provide a model that can transfer directly into the day-to-day life 
of a teacher, what does it offer? It offers encouragement and hope, by directly dem-
onstrating forms of teaching and learning that mathematics educators and 

1 Why These Adventures?
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philosophers have been trying for two centuries to promote. We hope it will encour-
age all the people who aspire to improve teaching itself, which is currently suffering 
seriously from the increasing divergence between society’s requirements for educa-
tion and its obstinate refusal to call into question obsolete ideologies and inappro-
priate scientifi c practices. Yes, students can learn mathematics, and learn it well, by 
taking part in mathematical activity. Not only that, but they can thoroughly enjoy 
doing so. What else is at the heart of all of our endeavors? 

    A Few Words by the Anglophone Author 

 The content of this book is completely international. The activities of the children, the 
decisions of the teachers and the explorations of the researchers are part of a fabric of 
mathematics education that increasingly is spreading worldwide. However, a certain 
amount of the background for the teaching project that is central to the book is unfa-
miliar to most readers outside of France, and knowing the background of the book 
itself may help enrich the reading of it, so as a lead-in to a book that is very much a joint 
effort we will present a few paragraphs that are specifi cally a Warfi eld production. 

    First an Introduction to All Three Authors 

 Guy Brousseau has had a long and notable career in mathematics education research, 
for which the most telling evidence is probably his having been awarded the fi rst 
Felix Klein Award from the International Commission on Mathematics Instruction, 
in recognition of “the essential contribution Guy Brousseau has given to the devel-
opment of mathematics education as a scientifi c fi eld of research, through his theo-
retical and experimental work over four decades, and [of] the sustained effort he has 
made throughout his professional life to apply the fruits of his research to the math-
ematics education of both students and teachers.” 1  His background, determination 
and refl ections, combined with some favorable circumstances, led him to conceive 
of, create and sustain both a wide-ranging program of coherent, fl exible and scien-
tifi cally based research and the necessary institutions, including a school, to carry 
out and develop that research. The program has been successful thanks to the help 
of numerous collaborators whom Brousseau managed to interest in his projects, and 
to the encouragement and support that he was given. In particular, it was at the 
school he helped create that the curriculum here described was taught for many 
years, starting in the early seventies. 

 Nadine Brousseau’s career was in elementary school teaching, and she was 
among the initial teachers in the research school. This was ideal for two reasons: she 
was able to confer with her husband long and deeply about the intentions and plans 
for the lessons, and the results and implications of what happened when she taught 

1      http://www.mathunion.org/icmi/other-activities/awards/past-recipients/the-felix-klein-medal-for-2003/      
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them. Her contribution was irreplaceable and decisive. In addition, she kept 
extremely good records, both of the proposed lessons (including the elements added 
when the two Brousseau’s continued their discussions long after their fellow 
researchers and teachers had gone home) and of the class response to them. Her 
notes became the functional memory of the project, and her present memories 
enhance and enrich the recorded ones. 

 This author (Virginia Warfi eld) came onto the scene considerably later. In the 
course of a career that combined mathematics and interesting ways to teach it at 
both elementary and university levels, I had become increasingly interested in math-
ematics education as a fi eld. A fortunate sequence of events led me to the work of 
Guy Brousseau and to the discovery that it was very little known in the English 
speaking world. My fi rst work was with Nicolas Balacheff who, with translating 
and co-editing by Martin Cooper, Rosamund Sutherland and myself, published 
Brousseau’s  Theory of Didactical Situations in Mathematics  (Brousseau,  1997 ). 

 My work on that book resulted in a partnership with Brousseau himself from 
which so far a number of articles and talks have emerged, as well as a small introduc-
tory book. Four of the articles were a series in the Journal of Mathematical Behavior 
(Brousseau, Brousseau, & Warfi eld,  2004 ,  2007 ,  2008 ,  2009 ), covering separate parts 
of the Rational and Decimal Number curriculum under discussion here. Eventually 
we decided that the articles needed to be assembled and expanded into a book. 

 As should be clear, this thoroughly asymmetrical set of positions leads to some 
variation in the meaning of the word “we”. Since, on the other hand, the variation 
produces no ambiguities, we (in this case all three authors) have decided to leave it.  

    Next the Background of the Teaching Project Itself: 
How and Why It Came to Exist 

 Part of that background begins in the 1960s, when a substantial international group 
of mathematics education researchers agreed to the need for more serious, coordi-
nated, collaborative research. In France, part of the response to this need was the 
establishment of a number of IREM ’s – Research Institutes for Mathematics 
Teaching. Guy Brousseau was an enthusiastic supporter of this development, and 
was instrumental in bringing a very early IREM to the University of Bordeaux, 
where he was on the faculty. He felt, though, that although an IREM was necessary, 
it was not suffi cient for the level of scientifi c focus he envisioned. To achieve that 
level, he spent a lot of time and a huge amount of energy which jointly paid off in 
the creation of the COREM  (Center for Observation and Research on Mathematics 
Teaching). This center took the form of a school, the École Michelet, which was a 
regular public school in a blue collar district on the edge of Bordeaux equipped with 
a carefully constructed set of research arrangements. On the physical side, the 
arrangements consisted of an observation classroom in which classes would occa-
sionally be held – often enough so that the students found them routine. The class-
room was equipped with a multitude of video cameras and enough space for 
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observers to sit unobtrusively. Other arrangements were far more complex, involv-
ing an extra teacher at each level and an agreement among the teachers, administra-
tors and researchers setting out the responsibilities and rights of each. Nothing 
involving that many humans could possibly glide smoothly through the years, but 
the fundamental idea proved robust, and the École Michelet functioned as a rich 
resource for researchers for two and a half decades. 

 Another part of the background has roots that can be traced back through the 
generations, but came to the foreground in the 1960s under the title of constructiv-
ism. The title stems from the underlying tenet that knowledge is constructed in the 
human mind rather than absorbed by it. Applications of that tenet range from the 
radical constructivist  belief that absolutely no information should be conveyed to 
students directly, to the naïve conviction that having children manipulate some 
physical objects that an adult can see to represent a mathematical concept will result 
in the children understanding the concept itself. Guy Brousseau had studied many 
of them, but while he found many interesting points, he felt that so far there was a 
serious lack of solid research in support of the theory itself. With his fellow research-
ers he therefore set himself the goal of taking some serious piece of mathematics 
and proving that in certain conditions the children – all the children, together – 
could create, understand, learn, use and love that mathematics. Accompanying that 
goal was the goal of studying the conditions themselves. 

 Clearly the mathematics to be used for this experiment had to be both signifi cant 
and challenging. After some consideration he made a choice that will resonate with 
elementary teachers worldwide: fractions, or more properly, rational and decimal 
numbers. He had, in fact, some reservations about whether rational numbers should 
be taught at all, but they were fi rmly part of the national. They had a further virtue: 
the experimental curricula he had in mind for the very youngest classes introduced 
them to numbers in such a way as to permit the construction of all the epistemo-
logical and mathematical bases of the fundamental numerical structures. Part of the 
objective was to prepare them for much later studies – refl ective, mathematical and 
formal studies starting at the fi rst year of the secondary level aimed directly at 
mastering basic symbolic, algebraic and analytic instruments. The study of rational 
and decimal numbers provided a point of articulation between these two projects. 

 Having made this choice, he then spent a lot of energy and time doing research 
into the different mathematical aspects of both the rational numbers and the decimal 
numbers, as well as possible ways of generating them. He also looked into the his-
tory of how each has been taught in different cultures and historical contexts. One 
of his conclusions was that a major source of learning diffi culty is that although 
rational numbers are used in several very distinct ways – among others as measure-
ment (3/5 cm), as a proportion (this thing is 3/5 as long as that thing), and as an 
operation (take 3/5 of this quantity) – they are generally taught as if all the meanings 
were equivalent. The result is that the student must accept many things simply on 
the basis that the teacher says so, and in the long run has no coherent foundation for 
the concepts. This conclusion led to the mathematical structure of the curriculum 
presented here. By way of a roadmap, we will sketch the resulting order here. 
A more mathematical description will be found in Chap.   3    . For a considerably more 
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detailed description of both the background and the decision procedure, see Chap. 
  4     of the Theory of Didactical Situations in Mathematics (Brousseau,  1997 ). 

 The fi rst lessons are taken up entirely with commensuration 2   and its conse-
quences. The children fi rst work with different thicknesses of paper and realize that 
even though they cannot measure a single sheet, they can distinguish the papers by 
specifying how many sheets it takes to make up 2 cm, or alternatively how thick 50 
sheets are. Deep familiarity with that idea paves the way for developing an under-
standing of equivalence  and the basic operations. That understanding is solidifi ed 
with some work generalizing the results to measuring weights of nails, volumes of 
glasses  and lengths of carefully selected strips of paper. 

 The following set of lessons works with decimal numbers. In a series of chal-
lenges to fi nd smaller and smaller intervals around some rational number, the class 
discovers the virtues and some of the working principles of using numbers whose 
denominator is a power of ten. Once they are secure with that, they begin to use 
decimal notation for these convenient objects. 

 With their grasp of rational and decimal numbers as measurements now reason-
ably solidifi ed, the students then progress to a more active aspect, using them fi rst 
to enlarge a tangram-like puzzle , then to enlarge and reduce a variety of items. The 
rest of the curriculum is devoted to deepening mathematical connections, broaden-
ing applications and enlivening problem-solving using these concepts. 

 The remaining element of background concerns the format for the learning 
adventure itself. Brousseau, in the course of teaching elementary school for several 
years, reading voraciously and maintaining on-going lively discussions with an 
array of people that included teachers, university professors, psychologists, lin-
guists, teacher educators, administrators and even a priest had developed his own 
take on constructivism, which took the form that he eventually called the  Theory of 
Situations . His idea was that for children to learn a concept they should be put into 
a Situation (a very carefully orchestrated classroom situation or sequence of situa-
tions) in which in order to resolve some problem or win some game they would 
need to invent the concept in question. He was strongly committed to this theory, but 
had an equally strong commitment to the principle that before people were asked to 
accept it they should be presented with solid research validating it. This pair of com-
mitments helped fuel his drive to create the COREM . Once it was created, his fi rst 
goal was to design research to test the theory. At the heart of that research was the 
curriculum that provided the adventure of Chap.   2    . 

 One fi nal note: this curriculum is suffi ciently enticing, both mathematically and 
pedagogically, to give the impression that it should and could be simply picked up 
and transplanted into other classrooms. This was not Brousseau’s intention in pro-
ducing it, and he warns repeatedly and vigorously against that illusion. It does 
indeed illustrate a wonderful kind of teaching and learning, and it provides thought- 
provoking insights and ideas with direct or indirect application to the classroom. On 
the other hand, the many iterations of successful use of the curriculum itself were all 

2    Commensuration is the measurement of things in comparison to each other rather than in terms of a unit.  

1 Why These Adventures?
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carried out with the extraordinary support provided by the COREM, and Brousseau 
feels strongly that an attempt to use it without that support would be likely to have 
disastrous consequences.   

    Introductory Remarks by Guy Brousseau 

 I am very grateful to Virginia Warfi eld, who has worked hard – and made me work 
hard – for 20 years to make accessible to the American public the texts of one of our 
most sophisticated instruments of research. It has the most innocent of appearances 
as a curriculum – the chronicle of an adventure, programmed down to its details, 
that the students and their teachers lived and above all that others succeeded in reliv-
ing identically. An adventure for the students in the sense that the curriculum gives 
them the sense of having a lot of space for initiatives, experiments and personal 
reasoning with goals that seem to them objective and that they are able to believe the 
teacher does not know … but an adventure also for the teachers who always wonder 
whether the Situations, even though minutely calibrated and reproduced year after 
year, will really once again permit them to achieve the desired results: the learning 
in common of a common mathematical culture shared by all of the students in the 
class. The cost of the apparent freedom of the students is a no less apparent drastic 
reduction in the freedom of the teachers. 

 This curriculum was not made to be used in other classes. The sole purpose of the 
reproducibility was to consolidate the scientifi c observations that we needed in order 
to test certain hypotheses. The lessons had above all the property of making apparent 
the enormous complexity of the acts of teaching: that of the conception, to be sure, but 
even more that of the carrying out of the lessons. The fact that teaching is a complex 
activity and passably mysterious is accepted in theory by our societies – but they don’t 
really know what that means! They absolutely do not take the complexity into account 
when it comes to studying the work of teaching. They intervene authoritatively in the 
educational system on the basis of grossly erroneous conceptions. They are not even 
capable of identifying the specifi c fi eld of science: the need is to understand a phenom-
enon and they look only at the actors. The consistency and validity of the concepts in 
question need to be verifi ed, and instead they look only at their use and market value! 

 The COREM  that we called our “Didactron” was a center for anthropological 
observation: with their consent, we observed as anthropologists the life of a tribe of 
teachers. Believe me, this is not an easy approach, even for those taking part in it. 
One among the collaborators and teachers of the COREM was my wife Nadine 
Brousseau née Labesque, who played an important role in all the steps of the proj-
ect. She helped me as a collaborator to study didactical  versions of the Situations, 
and as a teacher to present them with her colleagues to the pupils in the school 
Michelet de Talence for 14 years before her retirement. She also helped with the 
work of redaction of the script prepared in common and the transcription of remarks 
and observations. She wrote the fi rst stage of our manual “Rationnels et décimaux 
dans la scolarité obligatoire” (Rationals and Decimals in Basic School) published 
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by the IREM  of Bordeaux. This text, which was produced in 1985, was reserved for 
researchers in  Didactique . More than 2,000 copies were sold. 

 Another invaluable collaborator was Denise Nedelec (known as Denise Greslard), 
who experimented with the curriculum protocol from 1987 to 1999 with great care 
and dependable success, and made many fi ne observations. 

 We thought the teachers would want to eliminate these lessons after 2 or 3 years, 
as soon as we had suffi ciently observed the phenomenon of the obstacle. Among 
many challenges was the fact that the least interaction with the students obligated 
the teachers to interpret their declarations, put out in the system of commensura-
tions, by translating them into the teacher’s own knowledge system, that of frac-
tions, and then make reciprocal translations to continue the lesson. Knowing that 
even though the results are the same the proofs are often different in the two systems 
it is easy to see that the mathematical exercises produced a lot of stress for them and 
made the role of the culture in mathematical activity palpable, often cruelly so. Our 
observations in this context largely confi rmed what we had seen of the diffi culties 
of students as they pass from one system to the other. 

 We were therefore extremely surprised at the end of the experiment when the 
teachers expressed their desire to keep these lessons in the curriculum despite these 
diffi culties. This reaction led us to understand that in certain cases jumps in com-
plexity can be highly effective. The classical approach is to deconstruct material to 
be learned so as to keep the amount of information delivered by each lesson more or 
less constant and optimal. Our experiments demonstrated that in certain particular 
circumstances this rule can be violated to very good effect. Most of the rules of 
teaching as practiced are only valid in the absence of deeper and more specifi c 
knowledge about the conditions of teaching. 

 I hope that this gives our reader an idea of what we are offering in this work. I 
ask them to extend us some credit and to search for good questions before searching 
for answers. Video recordings of some of these 65 lessons, realized in the course of 
the 25 years of the COREM , are collected at the ViSA site (Vidéos de Situations 
d’enseignement et d’Apprentissage   http://visa.inrp.fr/visa    ) to which researchers 
have access. In addition, all the homework and exercises of all the students from 50 
realizations of these lessons can be consulted at the University Jaime 1 de Castillon 
(Spain) which can make copies of them (made anonymous). 

 Our curriculum presents a wide variety of types of lessons. Each one has its role 
and its necessity. But there is absolutely no pedagogical, didactical  or epistemologi-
cal message hidden in them – only questions and occasions to refl ect and make 
discoveries yourself. Try! These are not riddles. Sometimes I give my answers. 
Compare them to your experiences. The curious could, if they like, launch them-
selves into a study of the Theory of Situations. So if something astonishes you, ask 
yourself questions, whether it has to do with the conception, with the conduct of the 
lesson or with the result of the lessons. Ask us your questions, and we will think 
about them with you.        

1 Why These Adventures?
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                                  Before taking the reader into the classroom, we need to introduce the children who 
will be found there. Other chapters introduce the school in which the classroom was 
located and the teachers who carried out the lessons, but here we are focusing on the 
students in a particular classroom. Who were they? The fi rst key piece of informa-
tion is that since the school was an essential element of the COREM (Center for 
Observation and Research on Mathematics Teaching) admissions were emphati-
cally not selective. The school was the public school for a blue collar neighborhood, 
and its students were the ones who lived around it. Parents were kept informed 
about the unusual aspects of the teaching, but there were no special requirements or 
requests of them. On the other hand, the lessons we visit took place in the fi fth grade 
with students most of whom had been at the school since age three or four, so all of 
their expectations for what would happen in a mathematics class were built around 
the kind of activity and responsibility we see in action. They needed no persuasion 
to involve themselves. 

 Enjoy joining them! 

    Chapter 2   
 The Adventure as Experienced by the Students 
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    Module 1: Introducing Rational Numbers as Measurements 

    Lesson 1: Measurement of the Thicknesses of Sheets 
of Paper by Commensuration  

 The objective of the fi rst set of lessons is to have the students invent a way to mea-
sure something so thin that their previous methods of measurement cannot be 
applied. The challenge is to fi nd the thickness of a sheet of paper, which they clearly 
can’t do directly with the usual measuring devices. They discover that “repeating 
the thickness” – that is, stacking the sheets of paper – provides suffi cient thickness 
for their rulers to give a reading. 

    The Set Up 

 On a table at the front of the classroom are fi ve stacks (or half-boxes) containing 
200 sheets each of paper. All the paper is of the same color and format, but each box 
contains paper of a different thickness from the others (for example, card stock in 
one, onionskin in another, etc.) The boxes are set up in a random order and labeled 
A, B, C, D, E. Some of the differences should be impossible to determine by touch 
alone. The teacher needn’t know the exact measurements, since there is no “good 
measurement” to be discovered.

     

 –      On another table at the back of the classroom are fi ve more stacks or boxes of the 
same papers, in a different order, which will be used in phase 2.  

 –   Each group of fi ve students has two slide calipers (a device for measuring thick-
ness, standard in French elementary classrooms)  

 –   The ends of the room are screened from each other in some way – a curtain or a screen.     

    The Search for a Code  

     (a)    The teacher divides the class into teams of four or fi ve students and presents the 
situation and their assignment:     
 “Look at these sheets of paper that I have set up in the boxes A,B,C,D,E. Within 
each box all of the sheets have the same thickness, but from one box to another 
the thickness may vary. Can you feel the differences?” 

 Some sheets from each box circulate, so that the students can touch them and 
compare them. 

 “How do businesses distinguish between types?” (weight) 

2 The Adventure as Experienced by the Students
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 “You are going to try to invent another method to designate and recognize these 
different types of paper, and to distinguish them entirely by their thickness. You are 
grouped in teams. Each team must try to fi nd a way of designating the thicknesses 
of the sheets. As soon as you have found a way, you will try it out in a communica-
tion  game. You may experiment with the paper and these calipers.” 

 The students almost invariably start by trying to measure a single sheet of paper 
in order to obtain an immediate solution to the assignment. This results in com-
ments to the effect that “It’s way too thin, a sheet has no thickness” or “it’s much 
less than a millimeter” or “you can’t measure one sheet!” 

 At this point there is frequently a moment of disarray or even discouragement for 
the students. Then they ask the teacher if they can take a bunch of sheets. Very 
quickly then they make trial measurements with fi ve sheets, ten sheets – until they 
have a thickness suffi cient to be measured with the calipers. Then they set up sys-
tems of designation such as:

   10 sheets 1 mm  

  60 sheets 7 mm  

  or 31 = 2 mm 1     
 In this phase, the instructor intervenes as little as possible. He makes comments 

only if he observes that the students are not following – or have simply forgotten – 
the assignment. 

 The students are allowed to move around, get more paper, change papers, etc. 
 When most of the groups have found a system of designation (and the children 

in each group agree to the system or code) or when time runs out, the teacher pro-
ceeds to the next phase: the communication  game – going on even if not every group 
has found a system.  

    The Communication  Game 

 “To test the code you just found, you are going to play a communication  game. 
In the course of the game you will see whether the system you just invented actually 
permits you to recognize the type of sheet designated. Students on each team are to 
separate themselves into two groups: one group of transmitters (two students) and 
one of receivers (two or three students). All the groups of receivers go to one side of 
the curtain, and the groups of transmitters to the other. The transmitters are to choose 
one of the types of paper on the original table, which the receivers can’t see because 
of the curtain. They will send to their receivers a message which should permit them 
to fi nd the type of paper chosen. The receivers should use the boxes of paper set out 
on the second table at the back of the classroom to fi nd the type of paper chosen by 
the transmitters. 

1    This use of the equal sign is incorrect. The teacher will mention it during the discussion time.  

 Module 1: Introducing Rational Numbers as Measurements
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 When the receivers have found it and checked it with the transmitters, they 
become transmitters. Points will be given to the teams whose receivers have cor-
rectly found the type of paper chosen by the transmitters.” 

 At the beginning of the game, the teacher puts the curtain in place. Then he

 –    Passes the messages from the transmitters to the receivers  
 –   Receives the responses of the receivers  
 –   Checks whether this response corresponds to the choice of the transmitters and 

announces the success or failure to all of the team.    

 All of the messages are written on the same sheet of paper, which we can call the 
“message card” (see Fig.  2.1 ), which the teacher carries back and forth between the 
transmitters and receivers on the same team, marking whether the receivers 
have selected the correct paper (“success”) or not (“missed”). The team’s number is 
written on the card. In addition , the transmitters write the type of paper that they 
have chosen on another sheet of paper – the “checking card” – which they keep.

   Clearly, the teacher does not introduce superfl uous formalism or vocabulary . 
If certain teams have not arrived at any way of sending effective messages, the teacher 
could send them back to considering a code together (same assignment as in the fi rst 
phase). On the other hand, in the fi rst eight identical trials of this material, that never 
happened. The students always managed to play two or three rounds of the game. 

 During this game, there are three different strategies  commonly observed:

   Some choose a particular number of sheets and always measure that number.  
  Some choose a particular thickness and count how many sheets it takes to make that.  
  Some look randomly at a thickness and a number of sheets.    

 The children predictably prefer to choose the sheets of extremes of thickness, 
either the thinnest or the thickest, to make the job easier for their partners.  

Group number
First game
message sent

I
T:  10 = 1 mm 1st game

I
1  D

Reply R:  D success 3rd game 3  A
Second game:
message sent T:  21 = 1 mm

Checking card

Reply R:  B success

Third game:
message sent

T:  8 = 2 mm

Reply R:  A success

Message card

     Fig. 2.1    Cards for the communication game       
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    Result of the Games and Comparison of the Coding Systems 

 For this phase, the students go back to their original places in teams of 5, as for the 
initial phase. The teacher prepares a chart with group names down the side and 
paper types (A, B, C, D, E) across the top. 

 Taking turns, each team sends a representative who reads the messages out loud, 
explains the code chosen and indicates the result of the game. The teacher keeps a 
record of the groups’ messages (and their success) as the reports are made. 

 The different messages are compared and discussed by the students. Since they 
are frequently very different, the teacher requests that they choose a common code. 

 Example: 10; 1 mm 
 VT (for Very Thin) 
 60; 7 mm 

 After discussing these, the class chose: 10; 1 mm and 60; 7 mm. 
 The children rewrite their messages and present them successively in no particu-

lar order on the blackboard. Immediately there are spontaneous remarks like “That 
can’t be!” and “That one’s OK”, etc. 

 For example: “Group 2 said 30 sheets of paper C were 2 mm thick, but Group 4 
said the same number were 3 mm thick. That can’t be!” 

 The teacher announces that if there are disagreements the groups in question 
should carry out their measurements again. 

 The session ends with a request to arrange the chosen messages all on the 
same chart.  

    Different Types of Inconsistencies 

 The students’ measurements are collected on a chart such as the following (1977)

 Type of paper  Group 1  Group 2  Group 3  Group 4 

 A  19 s; 3 mm  10 s; 2 mm  20 s; 4 mm 
 B  19 s; 3 mm  4 s; 1 mm  15 s; 2 mm 
 C  19 s; 2 mm  30 s; 2 mm  100 s; 8 mm  30 s; 3 mm 

 15 s; 1 mm 
 20 s; 2 mm 

 D  19 s; 2 mm  100 s; 9 mm 
 E  9 s; 4 mm  13 s; 5 mm 

 7 s; 3 mm 

 Module 1: Introducing Rational Numbers as Measurements
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   Students look for and discuss the inconsistencies. By the end of the session, they 
have identifi ed categories of errors among the following:

    1st category:     

 If the sheets are of different types, the same number of sheets should not correspond 
to the same thickness. 

 Example:

   

19 s; 3 mm Type A
“That can’t be!”

19 s; 3 mm - Type B   

      2nd category:     

 If the sheets are of the same type, the same number of sheets should correspond to 
the same thickness. 

 Example:

   

30 s; 2 mm - Type C

“That can’t be!”
30 s; 3 mm - Type C   

      3rd category:     

 If there are twice as many sheets of the same type, it should be twice as thick. 

 Example:

   

30 s; 3 mm - Type C

“That can’t be!”

15 s; 1 mm - Type C   

  and the students add: “It should be

   

30 s; 2 mm 15 s; 1 mm
and because ´2 ´2

15 s; 1 mm 30 s; 2 mm   

      4th category:     

 A difference in the number of sheets shouldn’t correspond to the same difference in 
thickness. 

 Example:

   

19 s; 3 mm “That doesn't work, because  one sheet can't be a
millimeter thick!”20 s; 4 mm

}
  

2 The Adventure as Experienced by the Students
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    The teacher makes no explicit reference to the formal use of the concept of pro-
portionality, and does not ask it of the students either. On the contrary, she favors the 
explanations given by the students to whatever extent they are understood, but does 
not at this stage correct the ones that are not understood.  

 Didactical Results 
 At the end of this fi rst sequence, all of the students know within this specifi c 
set-up

   How to measure the thickness of a certain number of sheets of paper  
  How to write the corresponding ordered pair   
  And to reject a type of paper that does not correspond to an ordered pair  given 

to them (if the difference is large enough.)    

 Most of them are thus able to analyze a chart of measurements to point out 
inconsistencies making  implicit  use of proportionality. 

 Those who can’t do so seem to understand those who do it. 

 Order: The children know how to fi nd equivalent  pairs. They know how to 
compare the thicknesses of sheets of paper (many by two different methods). 

 This knowledge is suffi cient to undertake (understand the goal and resolve) the 
situations that follow.   

    Lesson 2: Comparison of Thicknesses and Equivalent  
Pairs (Summary of Lesson) 

 The fi rst step is a review of the chart produced in the previous lesson. Students fi rst 
study it silently and make individual observations, then discuss these observations 
as a class. The chart is corrected either by universal agreement, or, where that agree-
ment doesn’t occur, by a re-measurement. This process serves to bring out the idea 
of augmenting the number of sheets counted in order to distinguish between papers 
of highly similar thicknesses as well as to exercise further the implicit use of pro-
portionality to determine consistency of representations of the same paper. 

 Working in (non-competitive) groups, students then fi ll in any empty slots on the 
chart by counting sheets and then comparing their results with those of other groups. 
As a confi rmation and celebration, they play one more round of the communication  
game from the previous session, discovering that they are now equipped to handle it 
even if a couple more types of paper are tossed in. This fi nishes the second session. 

 The children must refer with precision  to a number of new objects: physical sizes – 
the thickness of a stack of sheets, the thickness of a single sheet; the  numerical 
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expressions  for these thicknesses: a number of sheets and a number of millimeters 
for the fi rst, the two numbers combined for the second; some  generic terms  for these 
denominations: “number”, “pair”, “ordered pair ”, etc. This vocabulary  is not sup-
posed to be taught with formal lessons. Only the accuracy of the thinking counts. 
The teacher is faced with the diffi cult task of helping the use and formulation of 
these concepts move forward without disturbing the expression of the thought 
 processes. This produces a fragile equilibrium to be maintained and developed.   

 Results   The children know how to adapt the number of sheets chosen to meet 
the needs of discriminating between their thicknesses (increasing the number 
if the thicknesses are too close). They know how to fi nd, by calculating, which 
ordered pairs correspond to the same type of paper. All of them now know 
how to use proportionality to analyze a chart. Some of them are able to use the 
relationship of proximity between the pairs. Many of the children have been 
led to make judgments about statements and to make arguments themselves. 

    Lesson 3: Equivalence  Classes – Rational Numbers 
(Summary of Lessons) 

 In the following session the completed chart is once more the center of attention, 
and the central topics are equivalence and comparison. After getting the students to 
focus on the chart, the teacher presents some other pairs of numbers and asks which 
kind of paper each pair represents, then has the students invent other representa-
tions, listing all of the accepted ones in the same column on the chart. This provides 
the occasion for introducing the term “ equivalent”  . 

 “50 s; 4 mm and 100 s; 8 mm are two names, corresponding to different stacks of 
sheets of the same paper and the thickness of these stacks. We introduce these 
stacks to identify  the same  object , the thickness of one sheet . Since they desig-
nate the thickness of the same sheet, the pairs are  equivalent . 50 s; 4 mm is 
equivalent to 100 s; 8 mm.” 

 The teacher then produces a new chart with a single name for each kind of paper 
(the class chooses the name) and the students are told to fi gure out the order of the 
papers, from thinnest to thickest. Students work individually, and then discuss their 
results and their reasoning. 

 Once an order is agreed on, the teacher introduces another type of paper (fi c-
tional this time) and the students fi gure out where in the ordering it belongs. 

 As a fi nal step, the teacher returns to the chart with columns containing equiva-
lent  ordered pairs for each type of paper and introduces the standard notation a/b to 
designate the thickness and differentiate it from the varied ways, with a variety 
of stacks of sheets, they have been using to determine the thickness of one sheet. 
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The teacher points out that this not only makes it possible to designate the entire 
class of equivalent pairs, but also gives a designation for the thickness of a single 
sheet of paper. Thus,  a  s;  b  mm designates a stack of sheets and its thickness,  b/a  mm. 
is the thickness of each sheet. 

 The teacher uses the words “ordered pair ” and “fraction” without giving a defi ni-
tion for distinguishing the type of notation required. There are many fractions that 
designate the same thickness. 

 The lesson fi nishes with some opportunities for the students to practice the use 
of this new notation and its connection with types of paper.    

 Results   The children know how to fi nd equivalent  pairs. They know how to 
compare the thickness of sheets (many by two methods). They have a strategy  
for ordering the pairs, using these comparisons. They know how to use a fraction 
to designate the thickness of a sheet of paper and how to fi nd equal fractions. 
They do not know how to check the equality of two fractions in the general case. 

 They know how to do all these things within a situation. At this particular 
moment it is not possible to detach a question from the situation and pose it 
independently. Hence these results cannot yet be built on as knowledge that 
has been acquired and identifi ed as such by the student .  

 Module 1: Introducing Rational Numbers as Measurements
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    Module 2: Operations on Rational Numbers as Thicknesses 

 The next fi ve lessons constitute the second module, which deals with operations in 
the context of the sheets of paper. 

    Lesson 1: The Sum  of Thicknesses (Summary of Lesson) 

 By way of motivation for introducing operations, the teacher asks students to consider 
individually and then discuss with each other the issue of whether the “rational thick-
nesses” they invented in the previous lessons are numbers. In general the conclusion 
is that if you have 8/100 the 8 and the 100 are numbers, but 8/100 is two numbers. The 
teacher points out that we might be able to regard them as numbers if we could do the 
same things with them that we do with numbers, and asks what those things are. 
Responses generally include “count objects with them”, “put them in order” and “do 
operations like addition,  subtraction, multiplication  and so on with them.” Quietly 
tabling the fi rst of these for the moment, the teacher presents the suggestion that to 
decide whether these are numbers they need to try to do some operations with them. 

 The fi rst project is to make “cardboard” by sticking together (or rather pretend-
ing to do so) a sheet of type A paper (thickness 10/50 mm) and a sheet of type B 
paper (thickness 40/100 mm.) “How thick do you think the resulting sheet of card-
board will be?” Students agree that that thickness will be 10/50 + 40/100 mm, and 
most agree that the result will be 50/150 mm, though a few have some doubts about 
that. After a short discussion, whatever its outcome, they set out to verify the results. 
The teacher has them count out 50 A sheets and 100 B sheets and begins gluing (that 
is, pretending to glue) them in pairs, continuing until students realize that a problem 
is developing and stop the process. Offered an opportunity to correct their proposed 
solutions, most go immediately to the correct solution. Most are, in fact, so confi -
dent that they declare verifi cation unnecessary, but the teacher does it for the sake of 
the others, counting out 50 more sheets of type A paper and combining the resulting 
piles. The stack may measure 59 mm or 61 mm, but this they have already learned 
to deal with. 

 They then practice by adding some other pairs and triples of fractions, and 
observe that they are now capable of adding any fractions they want. 

    Remarks on This Step: The Choice of Values 

 To offer at this particular moment the sum  of two fractions with like denominators 
would be a didactical  error. Certain teachers have tried it with the hope of obtaining 
an immediate success for everyone. They wanted to avoid having students have the 
double diffi culty of having to decide to reduce to the same number of sheets and 
doing it in such a way that the sum of the numerators, that is, the thicknesses, would 
make sense. Doing so gives the children justifi cations which are easy to formulate 
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and learn, which facilitates the formal learning of the sum of two fractions 
(we know how to add two fractions whose denominators are the same, so what is 
left for us to do in the general case is to reduce it to having the same denominators 
before performing this addition ). 

 But this method gives inferior results. Only the students capable of comprehending 
simultaneously and immediately both the general case and the reasons for the appar-
ent ease of the particular cases were able to avoid diffi culties in developing a correct 
concept of the sum  of two fractions. They were then able to reason directly or make 
rapid mental calculations . The rest were distracted by the apparent ease of carrying 
out the action from the pertinent questions (such as why the denominators can’t be 
added) and the efforts necessary to conceive of and validate the concepts. They were 
invited to learn a method in two stages, with the possibility of some false justifi cations 
for the fi rst stage (if I add three hundredths and fi ve hundredths that makes eight hun-
dredths, just the way three chairs and fi ve chairs make eight chairs.) They fi rst learn 
that it is possible to add fractions which have the same denominator, and how to do it. 
They also learn that it is not to be done, or can’t be done, if the denominators are dif-
ferent (you can’t add cabbages and wolves!) Then they learn to solve the other cases 
by turning them into the fi rst case, not because of the meaning of this transformation, 
but because it works. The economy of this process is strictly an illusion, because there 
is no representation to support the memorization. It will furthermore require a large 
number of formal exercises to make the process stick and to make it possible to dis-
tinguish it from other calculations. Some students never do get it fi gured out. 

 Using different denominators, on the other hand, all the children are able to come 
up with the concept and solidify their representations with experimentation and 
verifi cation in a way that makes any formal teaching unnecessary. 

 Delaying the introduction of algorithms  can, at times, be of considerable benefi t 
to the development of concepts.    

 Results   All the children know how to fi nd the sum of two or more fractions 
if they represent paper thicknesses and if the conversion to the same number 
of sheets is “obvious” (one denominator is a simple multiple of the others). 
Many would be able to work out a strategy  in the case of any two fractions, 
but no method has been formulated, much less learned. 

    Lesson 2: Practicing the Sum  of Thickness. What Should 
We Know Now? 

 The next session comes in two sections which look similar but have quite different 
functions. Each contains a series of problems. Those in the fi rst section are designed 
to let the children make use of what they have fi gured out in Lesson 1, both in order 
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to solidify that knowledge and to extend the range of mathematical activities it can 
be used for. The fi rst problems are strictly review. The teacher writes up several 
pairs or trios of fractions to add, walks the class through the fi rst one, speaking in 
terms of thicknesses of the two papers, and turns them loose on the rest. The next 
problem is to fi nd the thickness of a sheet obtained by gluing together one of thick-
ness 4/25, one of 18/100 and one of 7/50. Following that, they work on 8/45 + 5/30. 
The last in this set returns to asking the question in terms of the sheets themselves: 
“A woodworker is making a collage for a piece of furniture. He glues together three 
pieces of wood of different thicknesses: 40/50 mm, 5/25 mm and 6/10 mm. List 
these woods in order of thickness, then say how thick the resulting sheet will be.” 

 In each case, the problem or problems are to be solved individually, then to be 
presented to the class for discussion and validation. Included in the discussion is the 
possibility of having several correct routes to the same solution. 

 The object of this phase is to permit the children to make use of the procedures 
they discovered in the previous session, to generalize them and make them more 
effi cient. That is, to let them evolve. 

 This session is thus neither a drill  nor an assessment . The teacher does not pass 
judgment on the value of the methods used, nor at any moment say which solution 
is correct. 

 For each exercise, she organizes and facilitates the following process:

   Individual effort but for collective benefi t  
  Collection of results  
  Comparison of methods  
  Discussion and validation by the students    

 A method is accepted if it gives a correct solution (thus becoming an “acknowl-
edged” and correct method), rejected if not. Among the methods that have been 
accepted, remarks on length or facility of execution, which the teacher solicits, do 
not become judgments of value that the child can confuse with judgments of valid-
ity. On the contrary, the teacher sees to it that the child takes part in the debate, has 
a result to offer, is able to discuss his methods and state his position relative to his 
own knowledge. 

 The immediate collective correction and rapid discussion of the problems is thus 
indispensable. It enables the teacher to know each child’s stage of assimilation and 
what she is having diffi culty with. The whole class can take part in each student’s 
effort. 

 The second phase of the session is a set of individual exercises for drill  and 
assessment . It has a classic didactical  form: written questions to be answered indi-
vidually and turned in for correction (outside of class) by the teacher. The problems 
represent each of the levels of operation with fractions thus far obtained – ordering 
of fractions with unlike denominators, addition  of fractions with denominators 
which are like, or one of which is a factor of another, or which require a common 
multiple. 

 This frequently results in some rather poor papers, especially since part of its 
function is to accustom students to the as yet unfamiliar task of producing mathe-
matics for which they have no immediate feedback.   
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    Lesson 3: The Difference of Two Thicknesses (As Measure) 

 The next session proceeds to the subtraction of two thicknesses. It requires more 
types of paper, with thickness ranging up to that of heavy card stock, but only one 
sheet of each of them (for demonstration purposes.) 

 The lesson starts with a rapid discussion of the problems handed in the day before. 
Only the ones where errors were made need be mentioned, and the teacher needs to 
restrain herself fi rmly from letting the discussion of the common denominator in the 
last problem result in one of the methods taking on the status of Offi cial Method. 

 The next stage begins with a swift return to the initial situations: what does 8/50 
mean? (The thickness of a sheet of paper such that you have to have a stack of 50 of 
them to measure 8 mm.) And what does 8/50 + 6/100 mean? (The thickness of a 
sheet made by gluing together an 8/50 thick sheet and a 3/50 thick sheet.) 

 Remark: It is often useful to insert a reminder like that of preceding situations, for 
two essential reasons:

   In the fi rst place to allow children who have some diffi culties or are a little slow to 
be more thoroughly involved in the present lesson;  

  Furthermore to allow children who have been absent to understand what happened 
in the previous lessons and be able to participate in the following one.    

 The teacher then writes on the board

  8 50 6 100/ /-    

and asks the class what that might mean and how to carry out what it says to do. 
 This launches a discussion that starts with a predictable set of misinterpretations 

and arrives fairly swiftly at the realization that it is the card stock that is the very 
thick one, and it is made up of the thin one glued to one of unknown thickness. With 
a drawing on the board to represent this combination of sheets and the equation 
6/100 + ______ = 8/50 beside it, the students are turned loose to work individually on 
fi nding just what that unknown thickness might be, and how to verify their results. 

 Results   This lesson gives lots of opportunity for the exercise of mental 
 calculations  with two digit numbers (double, half, triple, multiply by 7). 
All the children know how to organize and formulate their method for fi nding 
the sum of several fractions. They start by trying to reduce them to the same 
denominator (though the term itself has not been introduced.) 

 The search for a common multiple has been practiced in many ways 
(despite the rarity until this moment of occasions for doing so.) Many of the 
students have begun to work out strategies  for a systematic search, such as 
listing the multiples and comparing the lists, or in the case of small numbers 
even multiplying the denominators. 

 Not one of these strategies  has been identifi ed as stable, much less learned. 
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    Lesson 4: The Thickness of a Piece of Cardboard Composed 
of Many Identical Sheets: Product of a Rational Number 
and a Whole Number 

 This lesson requires ten sheets each of four highly distinguishable types of paper, 
each with a known thickness. Students are set up in groups and each group is 
assigned a single type of paper. 

 They are to determine the thickness of a sheet made up by gluing 3 sheets of their 
own paper together, then 5 sheets, then 20, 100 and 120. Each group fi gures out the 
thickness for each stack of their own sheets, then writes the results on the black-
board. Each group then checks one other group’s results and either signifi es agree-
ment or supplies an alternate answer. Enough students are solidly in control of the 
material so that the ensuing discussion produces a general agreement, and the chart 
of values can be successfully corrected. 

 Examples of the students’ debates.

 For the fi rst question, group 1 answered  While group 2 wrote 

 3/19 × 3 = 9/57  3/19 × 3 = 9/19 
 Their calculation is based on the 

following schema: 

3/19

9/57

´ 3 ´ 3

    

 Discussion: Group 2 answers that the thickness of 
the cardboard can be found by addition 

 3/19 + 3/19 + 3/19 = 9/19 
 They support their result with the following schema 

which is standard for them at that point: 

 A student comments that 3/19 and 9/57 
are equivalent , so the thickness is the 
same! It hasn’t been multiplied by 3   

3/19 9/19

¥ 3

    

 The resulting discussion includes many variations, a number of them correct. 
Students who have not succeeded give the results they got and say whether they are 
too large or too small. 

 Next the class interprets and solves 4/15 − 1/15. 
 The problem 4/50 − 3/40 is launched by getting the class to state the need for a 

common denominator, then left for individual work. Then for a fi nal problem, 
worked individually, they take on 12/8 − 2/5.   

 Results   Once again the reduction to the same denominator has given rise 
to the search for a common denominator. The children still do not know a 
systematic way of doing it, but are making progress in the sense that more of 
them recognize more swiftly at what moment it needs doing, and regularly 
use speedier methods: mental calculation, products of denominators, intuitive 
searching for the least common denominator. 
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 Results   The children have learned to multiply a fraction by a whole number 
and to distinguish between this operation and the calculation of an equal frac-
tion. The comprehension of this distinction is essential for what follows. 
When the children begin to make frequent and varied calculations in more 
complex problems they will tend on their own to automate their procedures. 
The initial distinction enables them to do so without losing track of what they 
are doing and hence to correct the errors that are bound to turn up. Many have 
begun to envisage the comparison of fractions with natural numbers, a ques-
tion to which they will soon return. Certainly all of this remains connected to 
the representation of the fractions by thicknesses of paper. 

   The fi nal phase of this session is a comparison of the thickness of the various 
cardboards with 1 mm. The teacher chooses one of the thicknesses in the chart, for 
instance 57/35, and asks the students whether they have any idea how thick that card 
really is. Is it thicker or thinner than 1 mm, or equal to it? 

 In groups of two or three, students set to work. A lot of them take out their rulers 
to have a more precise idea of a millimeter. Some work out elaborate approxima-
tions , many point out that 35 sheets would make up exactly a millimeter, so 57 of 
them must be thicker than that (“but not 2 mm thick!”) and a few are completely 
bewildered. After a certain amount of discussion of this particular thickness, the 
assignment becomes: “Look at the chart and see what else you can say about the 
thicknesses.” This gives rise to a lively discussion and a lot of joy in discovery. 

 Remark: This last part proceeds informally and spontaneously, for the pleasure of 
exchanging and discussing ideas without any pressure from the teacher. The teacher 
listens to the remarks and says nothing unless the students ask him to clarify or 
explain something. 

 It is essential to emphasize the fact that the teacher has not set out any contract of 
learning or acquisition. Some children may take the analysis of the situation a huge 
distance and make subtle, profound remarks. Others have intuitions which they are 
unable to communicate. These “discoveries” meander a bit, but it doesn’t matter – the 
jubilation of the ones who have found something wins over the ones who listen, approve, 
look at them in incomprehension or contradict them. Anyone can advance a notion or 
even say something that proves to have a major glitch. The teacher restricts himself to 
making sure people take turns, without interfering with the order or the choice of speak-
ers, in order to maintain the group’s pleasure in this game. To do that, he has to register 
his own pleasure, but make sure that his pleasure is not the children’s goal. 

 He takes note of errors and diffi culties without trying to correct them right away. 
If no one notices them, then in general an explanation at that point would do no 
good. The teacher has to consider it as an obstacle which needs to be taken up later 
in a prepared didactical  activity. 

 Frequently after a moment a student notices the error and the debate revives. 
 Obviously, it has to be clear that the teacher’s silence doesn’t indicate either 

acceptance or rejection. And it’s not enough to  say  it – he has to  do  it.   
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 Students work in groups of 2 or 3, then share their results. Since two of the most 
accessible solutions are multiplying the numerator and denominator by 3 and mul-
tiplying them both by 9, the resulting discussion is likely to include a brief furor 
until somebody observes the equivalence of 12/63 and 4/21. 

 The fi nal activity is to work individually on (13/5) ÷ 9, fi rst giving it a meaning, 
then calculating the result. Students tend to bypass the former and work on the lat-
ter, which means the teacher has to lean on them to write the sentence in question. 
After 5 min or so, the teacher stops the work and sends one or more students to the 
board to write up their solutions. By and large they multiply by 9/9 and then divide 
the numerator by 9. Only occasionally does somebody observe that the only thing 
that has happened is that the denominator has been multiplied by 9, and the level of 
generality of this observation remains undiscovered.   

    Lesson 5: Calculation of the Thickness of One Sheet: 
Division  of a Rational Number by a Whole Number 

 First, the students remind themselves how to multiply by fi guring the results of gluing 
together 5 sheets each 3/9 of a millimeter thick. Then they are presented with:

  “I’ve glued 9 equally thick sheets of paper together and the resulting card is 18/7 mm thick. 
What could we ask about it? (the thickness of each sheet.) Can you fi gure out the thickness? 
If so, write it in your notebook.” 

   Individual work very swiftly produces the correct result and reasoning.     

 This requires a little delicacy in handling, since they only know for sure that divi-
sion  is defi ned between whole numbers, but the idea certainly needs confi rming, 
especially after students observe that the operation here can be successfully inverted 
with a multiplication  by 9. 

 The major point to emphasize is that it is the whole fraction (the thickness) which 
is to be divided, not just the numerator or denominator. This becomes clearer with 
the next situation:

  “Now I’ve glued 9 other equally thick sheets together and made a new card. This 
one is 12/7 mm thick. Can you fi nd the thickness of each of the sheets I glued 
together?” 

   Students know how to divide whole numbers. They want to apply the same tech-
nique to divide rational numbers by whole numbers. The teacher points out that it 
might not be the same operation, but accepts it after they compare the properties. 

 Two out of fi ve groups give the following two-stage response:     

18/7 2/7

÷9

18/7 2/7
´ 9

12/7

108/63

´ 9 ´ 9
108/63 12/63

÷ 9
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 Results   Even though most of the children have carried out the operations 
brought up in this lesson, and have understood the meaning of their work at 
the moment and in the particular case, there is no guarantee that they will 
know afterwards how to divide a fraction by a number. But they will fi nd simi-
lar situations often enough to develop their methods of calculation, refi ne 
them, become confi dent with them, and hence learn them. 

 This lesson will enable them to take on these new situations and to under-
stand them without calling forth a reduction to a procedural technique. 

    Lesson 6: Assessment  

 The module fi nishes with a set of problems for a summative evaluation :

    1.    Put the following thicknesses in order from thinnest to thickest

   35/100 mm; 3/5 mm; 62/97 mm; 5/25 mm      

   2.    Find the sums of the following thicknesses:

   15/100 + 22/100 + 62/100  
  7/25 + 14/50 + 45/100  
  3/12 + 1/4 + 2/3  
  5/8 + 13/88      

   3.    A piece of cardboard is made by gluing together fi ve identical sheets of paper, 
each 3/25 mm. thick.

    (a)    How thick is the cardboard?   
   (b)    Is this cardboard thicker or thinner than a millimeter?   
   (c)    How many sheets would it take to make it thicker than a millimeter?       

   4.    A piece of cardboard is 7/25 mm thick. It is made of eight identical sheets of 
paper glued together. How thick is a single one of those sheets?   

   5.    Find two fractions equal to 3/18    

  Note: The fractions are sometimes written with a horizontal fraction bar and some-
times with a slanted one.   
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    Module 3: Measuring Other Quantities: Weight, Volume 
and Length 

 The third module (three 1 hour sessions) extends the students’ thinking beyond 
sheets of paper, with the objective of giving them enough similar experiences to 
make generalization plausible and legitimate. The students use the method of com-
mensuration  for three different amounts: volume, mass and length (Fig.  2.2 ).

      Lesson 1: Making Measurements 

 The fi rst lesson requires a considerable collection of materials:

   To measure weight, a balance beam  and fi ve different categories of nails;  
  To measure volume, fi ve small glasses  of different sizes, one colored glass to serve 

as a unit and two (largish) test tubes, one of them with a sticker on it so that they 
can be distinguished [Note that it is better to do these measurements with fi ne 
sand than with water!];  

  To measure length, strips of construction paper  of equal width but different lengths, 
a single strip of gray cardboard (same width, yet another length) to serve as the 
unit and a big piece of poster paper to work on.    

 The glasses , the nails and the strip lengths need to be chosen in such a way that none 
is an integer multiple or divisor of the unit. For instance, seven nails of one sort might 
have the same mass (balance on a scale) as eleven of another. If the fi rst serves as a 
unit, the second weighs 7/11 unit. Similarly, if the content of three “unit” glasses emp-
tied into one tube comes to the same height as the content of fi ve glasses A emptied 
into the matched tube, then glass A holds 3/5 of a unit. The lengths of the paper strips 
are between 3 and 30 cm, but they are not any exact whole number of centimeters. 

 The unit chosen is neither the largest nor the smallest of the available objects. 
The problem of approximation  and precision  has to be solved by student agreement 
with the help of the teacher. An example of how 3/5 of a unit appears for each of 
these measurements is shown in Fig.  2.3 . 

Instruments for comparison Quantities to be expressed Units

Weight

Volume

Length

     Fig. 2.2    Materials for measuring weight, volume, and length       
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    The Situation 

 For a class of 24, the teacher sets up 12 stations – for each of the categories of mate-
rial, two pairs of stations. The class is divided into six teams, one team for each pair 
of stations. Each team then splits itself between its two stations, which are at some 
distance from each other. At their stations, they label each size of object, with the 
unit having the label U. They then work on fi guring out a way to designate the mea-
sure of each size of object and on writing a message to indicate the measure of one 
particular object. When both halves of the team have produced a message, they 
exchange their messages and try to interpret the message they have received. Then 
they meet to ascertain the success or failure of the communications and to discuss 
the best form of communication . 

 At the end of one such cycle, the team moves on to a different category of object. 
Each team thus needs to carry out three cycles in order to explore all the types of 
material. Since each cycle has three parts (inventing a message, interpreting a 
 message and discussing the result) the lesson presents a considerable challenge to 
the teacher. He must adapt to the students, stimulate them without imposing 
tedious reproductions, get them to work seriously, with a focus on the task at hand 
and on the understanding needed to accomplish it. Creating and maintaining the 
enthusiasm and focus require an exceptional pedagogical performance on the part 
of the teacher: great rigor to keep the activity rapid and effi cient and great fl exibility 
to keep from requiring the completion of tasks that are no longer of interest. 

 In point of fact, there is no need for every experiment to be carried out by every 
child. The similarity of the methods swiftly leads the students to re-use commensu-
ration  with the glasses  and the nails. As the lesson progresses, they get more and 
more interested in what happens with the length measurements, for which the stu-
dents soon want to proceed in a different way, but don’t know how to write the 
procedure because it is not a commensuration! The students have no mathematical 
diffi culty with the measurement of mass and volume and do not measure all of the 
quantities available. The rhythm accelerates. The last cycle is abbreviated. All of the 
students are set to take an interest in the next day’s lesson on measurement of lengths 
and the comparison of commensuration with subdividing the unit.

Volume

Mass

Length 3/5

X

X

X

  Fig. 2.3    X is 3/5 of the unit        
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       Conclusions 

 The class concludes that their codes  for commensuration  can be used to measure 
weight, capacity and length. The session fi nishes with some practice questions, 
e.g. “What does it mean that this glass has a capacity of 3/4 of the unit? that this 
paper strip is 17/25 as long as that one? that this nail weighs 20/75 of a unit?”   

    Lesson 2: Construction of Fractional Lengths: 
A New Method Appears 

 In the previous session, the children attached numbers to sizes (they designated a 
measurement). In this session, they construct objects whose measurement in terms 
of a unit is given (i.e., they realize a size). The class deals only with lengths. One 
reason is that it is diffi cult to construct volumes and masses of a desired size starting 
with a random unit. But there is another reason: the teacher wants to get the students 
to discover another way of defi ning fractions. 

 The students have already known for a couple of years how to use the usual 
method for measuring length in the metric system. In this system the method of 
measurement always consists of comparing the length to be measured with a whole 
number of smaller units. To increase precision , one switches to a unit that is ten 
times smaller. And for practicality, rather than re-measuring the whole length, one 
measures only the piece that sticks out beyond the part that could be measured with 
the previous unit, as one does with the remainder in division. 

 The method we want to induce consists of (for instance) realizing 5/4 by fi rst 
“partitioning ” the unit strip by folding it in quarters, then repeating the resulting 
quarter-length strip fi ve times.

   Materials: Strips of construction paper , all the same width (around 2 cm)
   12 unit strips (gray) 20 cm.     

  Four identical sets of six strips (green) whose lengths are respectively:
   5 cm (1/4 unit), 10 cm (1/2 or 2/4 unit), 15 cm (3/4 unit), 30 cm (3/2 or 6/4 unit), 
35 cm (7/4 unit), and 45 cm (9/4 unit)     

  Four identical sets of six strips (blue) whose lengths are respectively
   4 cm (1/5 unit), 8 cm (2/5 unit), 16 cm (4/5 unit), 24 cm (6/5 unit), 28 cm 
(7/5 unit), and 36 cm (9/5 unit)     

  Four identical sets of six strips (yellow) whose lengths are respectively
   2.5 cm (1/8 unit), 5 cm (2/8 unit), 12.5 cm (5/8 unit), 17.5 cm (7/8 unit), 22.5 cm 
(9/8 unit), 27.5 cm (11/8 unit)     

  Strips of poster paper 50 cm long and 5 cm wide
   Long strips of construction paper , all 2 cm wide  
  Scissors.       

2 The Adventure as Experienced by the Students



29

 The unit strip should be clearly distinct from the strips to be measured, because 
since measurement by commensuration  consists of laying multiple copies of one 
strip beside multiple copies of the other, the strips are treated identically in that 
process. The students naturally tend to confuse 4/5 and 5/4 at fi rst. That is one of the 
inconveniences of commensuration. 

    Communication  Game and Building Lengths Corresponding to a Pair 

   Assignment 

 The class is divided into 12 groups of 2 or 3 children. Each group has 1 unit strip 
and 1 set of 6 strips of the same color.

  “Each group is to fi nd fractions representing the lengths of their six colored strips 
using the (gray) unit strip and write all of them on the same message pad. So each 
group starts off as a message-sender. 

 Each group will receive a message from another group. At that point you all 
become message-receivers. You are to cut strips of white paper in the six lengths 
indicated on your message. 

 Next, each receiver-group will meet with the group that sent the message they 
decoded and verify together (by superposition) that the white paper strips are indeed 
identical to the ones used to produce the message. If they are identical, the message-
senders are winners.” 

   For convenience, it is the teacher who passes the messages. Groups need to 
receive messages from other groups whose strips are of a different color (and hence 
a different set of lengths). 

 Strips of white paper and scissors are given out at the same time as the other 
strips.  

   Development 

 Initially, students use the method that was inaugurated with thicknesses and gener-
alized to masses and volumes. To realize a length of 5/4 of the unit they lay fi ve 
units end to end and then try to divide the result in four. 

 For that they make a guess at an approximate length, repeat it four times and 
compare it to the length of fi ve units. If the result is too long, they snip off a bit and 
try again. Some of them observe that the strip they are trying should be shortened 
by a quarter of the extra length. 

 They verify that their message was well written and well read and that the con-
struction requested was correct, by superimposing the resulting strip on the original. 
This method calls for a good mastery of the defi nition and a certain mental fl exibil-
ity in applying it, but the students have used that a lot in concrete operations. 

 When the process of using commensuration  results in multiples that take too 
much space, some of the students think of using the method of dividing the unit. 
They think of it particularly readily when the natural numbers in the ordered pairs  
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are simple – 2, 3 and 4 – and the denominator is 2 or 4 (a power of 2): for example 
the lengths of 3/2 or 3/4 inspire them a bit better than 2/3 or 4/3. They fold the unit 
strip in two or in four. And they can express those measurements orally by halves or 
quarters using references to everyday life. 

 Once they have launched the idea with powers of 2, they progress to other 
denominators, like 5.               

 But they can’t justify the length directly, with their initial defi nition. They can 
only do it by putting fi ve copies of Strip X beside three copies of the unit strip and 
showing that the lengths are the same, that is demonstrating their equivalence . This 
will be the subject of the next lesson. Until then, all they can do is write the length 
of A (1/5) and use multiplication (which they have already encountered): 1/5 × 3 = 3/5, 
trusting to the similarity in writing to carry them through.    

    Lesson 3: Comparison of Methods, and Demonstration 
of Equivalence 

    Summary of the Lesson 

 This session begins with a follow-up discussion in which by use of the solutions 
written on the board by the children and a process of observations (by students) and 
(student-proposed) verifi cations the teacher guides the class to a conviction that this 
method of “intermediate units” provides a general solution. For instance, the stu-
dents can prove step by step that subdividing the unit gives the same result as com-
mensuration  because they can write the steps (see Fig.  2.4 ).   

  Fig. 2.4    Examples with 3/5       

Strip A
Unit strip

A measures 1/5
Strip A' A' measures 3/5

Strip X X measures 3 x1/5= 3/5

New method: breaking up the unit to produce an intermediate unit that can be
used in the familiar way

X is 3/5 unit long

Unit strip X

Initial method: commensuration 
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    Lesson 4: Fractions of Collections 

 The follow-up is a pair of problems to be worked on individually and then 
discussed:

   A cloth merchant sells fi rst half of a piece of velvet cloth and then a quarter of the 
same piece.  

  What fraction of the piece is left at the end of the day?  
  The piece was originally 24 m long. What is the length of the remaining piece?    

 Claude has a bag of marbles. In the course of a game he loses fi rst 2/3 and then 
2/9 of his marbles. 

 What fraction of his marbles has he lost? 
 What fraction of his marbles does he still have? 
 At the beginning of the game, he had 63 marbles in his bag. How many does he have 

at the end of the game?     

 We expected the problem with the marbles to be a good deal more diffi cult for 
the children than the one with the cloth, because it combines a variety of diffi culties 
(it requires adding losses; the number is too large for commensuration  to be real-
ized; etc.) We observed moreover that in this situation the children didn’t recognize 
the defi nitions of fractions that they had previously used with continuous quantities. 
They especially had diffi culty conceiving of the bag of marbles as the unit. But 
manipulation of discrete quantities eventually enabled them to establish a corre-
spondence with long division that they knew. 

 This lesson completed the study of fractions as measurements.    
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 Results of This Portion of the Sequence of Lessons 
 The children can fl uently use ordered pairs  of numbers to express measure-
ments. In fact, they have solved the practical problems of manipulation, mea-
surement, comparison of sizes, evaluation of sums , equalities, multiplication  
by a whole number, etc. 

 The culture at large makes use of an imposing vocabulary  to conceive of 
and express fractions. Three heavy-duty diffi culties for the teachers are:

   Limiting their vocabulary  to terms that have been defi ned and understood  
  Limiting their explanations to ones made possible by previous lessons  
  Avoiding analogies  and metaphors .    

 One question was raised every year: Are there commensurations that will 
never work? That is, are there pairs of objects for which no amount of repeti-
tion of each one will ever result in the exact same measurement for the two? 

2 The Adventure as Experienced by the Students



33

    Module 4: Groundwork for Introducing Decimal Numbers 

 The fi rst three lessons in module 4 are review lessons, so we present only the fourth 
and last lesson. 

    Lesson 4: Whole Number Intervals Around a Fraction 

    First Phase: Introduction to the Game 

     (a)    Instructions and game 
 “We are going to learn a game that is to be played by two teams. But to under-
stand the rules well, fi rst we will have two students play it at the board in front 
of the whole class. 

 Player A will chose a fraction that is somewhere between 0 and 10 (without 
saying it out loud). She will write it on a piece of paper which she will put in her 
pocket. 

 Player B will try to bracket  player A’s fraction between two consecutive 
natural numbers. To do that, he will ask questions. For example: ‘Is your frac-
tion between 7 and 9?’ A can only reply with ‘Yes’ or ‘No’. B will keep asking 
questions until he has found two consecutive whole numbers that the fraction is 
between. At that point, A will show her paper and the whole class will compare 
her fraction with the interval B found. 

 After that you’re all going to play the game, but this time the players will be 
two teams each made up of half of the class” (and the teacher swiftly creates 
two teams).   

   (b)    The playing of the game 
 Now each team chooses a fraction that all the students on that team write in 
their notebooks. The students choose a representative to play at the blackboard 
for them. It is the representatives of each team who take turns posing and 
answering questions. As they do, they can get help from their team by a discus-
sion between rounds. The fi rst team to bracket  the other team’s fraction in an 
interval of length 1 wins.     

 Remarks

    1.    The intervals chosen by the two representatives should be written on the board. 
Note that the class has a previously established convention that intervals are 
closed on the left and open on the right. 

 The board is divided in half, one for each team. 
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 For example, if Team B has chosen 25/30 and the representative of Team A 
asks “Is your fraction between 0 and 7?”, he writes:  

   TEAM A
[0,7)

  

  and then after Team B has replied, adds:

   TEAM A
[0,7)    yes

  

    If the student then asks “Is your fraction between 5 and 10?”, then when the 
 opposing team says “No”, he puts a line through the interval:

   

TEAM A
[0, 7) yes
[5, 10) no   

    The convention that intervals are closed on the left and open on the right gives 
rise to the following:

   If the fraction chosen is 25/5, then the interval of length 1 containing it is [5, 6), 
and if this interval is chosen the opposing team answers that it is “trapped”, 
because it is the left hand end-point of the interval.  

  If the fraction chosen is 30/5 and the interval requested is [5, 6), then opposing 
team says “no”.  

  If a team brackets the other team’s fraction, it scores one point.  
  If a team traps the other team’s fraction, it scores two points.      

   2.    There is an appearance of strategies  in the choice of the intervals. This fi rst game 
between the teams gives them a chance to develop interesting strategies in their 
choices of intervals. By and large on the fi rst round the representatives tend to 
ask questions randomly, often overlapping intervals in ways that make their 
teams lose. 

 Example: First question: “Is your fraction between 5 and 9?” Second question: 
“Is your fraction between 3 and 9?” 

 This produces some lively discussions within the team. Often already on the 
second round they make use of the binary nature of the situation. For example: 
“Is it between 0 and 5?” If the representative of the other team says “No”, they 
avoid asking “Is it between 5 and 10?”, as they often do in the fi rst round. Often 
after three or four rounds the students manage to locate the fraction with a mini-
mal number of questions.     

  Remarks 

    1.    If the instructions, which are long, are not well understood, the team game gives 
the teacher a chance to explain them better, to check that all students know how 
to write intervals and that they know how to play the game.   
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   2.    The team game needs to be restarted a number of times in order for all of the 
students to understand the rules (there may well be three or four rounds.)   

   3.    The choice of the fraction at the beginning of a round always produces interest-
ing discussions because students often propose a fraction that is not between 
0 and 10. Team mates that disagree, if they want to reject the fraction proposed, 
have to prove to the rest that it is not between 0 and 10,   

   4.    The students swiftly get to the point of avoiding choosing fractions that can be 
“trapped”, because they don’t want their opponents to get two points.    

      Second Phase: Playing Two Against Two 

     (a)    Presentation 
 After three or four rounds of the game in large teams, the teacher puts the stu-
dents in groups of four, so that they play two against two.   

   (b)    Playing the game 
 Each pair keeps notes on a piece of paper both of the fraction it has chosen and 
of the intervals they have asked about for locating their adversary’s fraction. 
The teacher does not intervene except to settle confl icts or supply clarifying 
information requested.      

    Third Phase: Collective Synthesis 

     (a)    Presentation     
 During the previous phase the teacher has put the following table on the 
blackboard

 Trapped fractions  Bracketed fractions 

 Fraction chosen  Interval requested  Fraction chosen  Interval requested 

   She interrupts the game played in teams of four after 4–8 min and asks the 
students:

   “Who trapped a fraction?”  
  “Who bracketed a fraction?”  

  She writes up the trapped and bracketed fractions along with the intervals in 
which they were placed. All the students check these results as they are written 
up, under the guidance of the teacher.        

 Results   At the end of this session all of the students know how to play the 
game, and almost all are able to locate fractions in intervals of length one. 
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    Module 5: Construction of the Decimal Numbers 

    Lesson 1: Bracketing a Rational Number with Rational 
Numbers: Chopping up an Interval 

    First Phase 

     (a)    Presentation of the problem and review of the game in the previous session. 
 “During the last class we learned how we could locate a fraction by fi guring out 
which whole numbers it was between. Do you think it could be useful to know 
which whole numbers a fraction is between? Why?” 
 Sample answers:

    1.    Bracketing lets us say whether the number is large or small. 
 Comparison with whole numbers is useful in measurement and in 
evaluation .   

   2.    Is bracketing useful for comparing two fractions? 

 For example, 156/7 and 149/6. 
 First method of comparison: give them the same denominator. 
 Second method of comparison: bracket  them between two whole numbers. 
 Which method is shorter?   

   3.    Bracketing also makes it possible to estimate the sum  of several fractions. 
What interval can one give to the sum when one knows the interval for each 
fraction?       

   (b)    Instructions. 
 “We are going to play yesterday’s game again. Teams A and B will each choose 
a fraction and designate a representative who will go to the board and ask 
questions.”   

   (c)    Playing. 
 The game is played exactly as before until the fractions are bracketed or trapped. 
But while the fractions are still hidden the teacher interrupts the game.      

    Second Phase: The Search for a Smaller Interval 

     (a)    Presentation and instructions 
 “You just bracketed the fractions in an interval of length 1 (for example, [3, 4)). 
Do you think the fraction you were looking for is the only one in that interval? 
Find some others!”   

   (b)    Development 
 The teacher lets the students search individually or in pairs for a minute or two. 
Then he asks them to come write on the board (or writes himself) the fractions 
they have found that are in the interval. 
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 The children observe that there are many, and that the interval of length 1 that 
they found doesn’t let them give a precise location for the fraction being 
searched for. They thus understand – some even say it – that they are going to 
have to fi nd a smaller interval.      

    Third Phase: Search for Smaller and Smaller Intervals 

     (a)    Instructions 
 “We are going to add a new rule to the game: to win, you have to bracket  the 
fraction in the smallest interval you can. So you’re going to have to try to fi nd 
smaller intervals and designate them.”   

   (b)    Development     
 Students work in groups of 2 or 3 (there will be 4 or 5 groups per team). Some of 
the groups have the idea of writing the end-points of the interval as fractions (for 
example 6/2 and 8/2 if the interval is [3, 4)) But it also happens at times that a lot 
of students don’t think of it and have diffi culties. To avoid discouraging them, the 
teacher may suggest it to them after a few minutes, which revives their interest. 

 As soon as they have found and designated a smaller interval, they gather again 
into their two large teams A and B in which each group proposes the interval it has 
found. The children on the same team then discuss and agree on which among the 4 
or 5 intervals proposed they judge to be the smallest. 

 Then one of the two representatives of the teams comes back to the board and the 
game continues:

   “Is your fraction between 6/2 and 7/2?” (for example)  
  To answer the question, the students generally request to get back together as a team.    

  Remarks 

    1.    To answer the question they often call for help from the teacher, because they 
can’t fi nd the answer or can’t agree on it. Some of them think of putting all three 
fractions (their original fraction and the ones being proposed as end-points of the 
interval) over the same denominator, others give random answers. 

 To sustain the pleasure of the game and the desire to continue, the teacher can 
aid them by giving a few hints (suggesting a common denominator, for instance, 
if they haven’t thought of that.)   

   2.    It is rare for them to be able in the course of this session to propose more than 
two intervals. Indeed, the big calculations (which they have not yet really mas-
tered) take a lot of time, because they must:

•    Find smaller intervals and designate them  
•   Check to see whether their fraction is in these intervals, which requires 

 common denominator computations that are often complicated  
•   Finally, to see which team has won, compare the last two intervals designated.    

 Few of the students are capable, at the end of this fi rst session, of easily reducing 
the intervals or of saying whether a fraction is inside of a given interval.    
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  Some strategies  observed

    1.    It rarely happens that in the course of the fi rst game all of the children write the 
limits of the intervals with denominators 10, 100, 1,000,… That’s why the calcu-
lations are long and diffi cult. In fact, one time in a fi rst session a group proposed 
the interval [6/40, 7/40) to bracket  a fraction that was between 0 and 1. And since 
that fraction was 12/37, it is easy to understand why the children ran into diffi -
culties in calculation!   

   2.    In the course of one fi rst session, one of the teams (A) designated their intervals 
with factions of denominator 64 because they made binary subdivisions: a group 
of 2 in this team had initially cut the interval in 2, and then in 4 in designating it. 
When the team got together the other children said “But we could make the 
intervals even smaller by continuing to cut them in half!”, and they tried succes-
sively cutting in 8, then 16, then 32 and stopped at 64, convinced that their inter-
val would be smaller than the other team’s.    

  At the same time, the other team (B) proposed intervals designated by frac-
tions with denominator 1,000. Why? Because a group of two girls on this team 
had fi rst marked the interval from one to ten (to look like their rulers, they said!) 
Then, still working like their rulers, they designated intervals in hundredths, and 
then in thousandths. Their calculations were done very swiftly! 

 When the team got together for discussion, the three other groups, who them-
selves had made subdivisions of 10, 4 and 2, immediately adopted the subdivi-
sion into thousandths. 

 When the representatives of the two teams went to propose their intervals, the 
children in team A were able to respond very quickly. On the other hand, the ones in 
team B, who were asked questions about intervals in sixty-fourths, had to make 
long, diffi cult calculations, which made them say to the others at the end “Next time 
choose something easier. Ask us easy questions like ours!” The teacher stepped in 
to ask why it was easier to answer the questions Team B asked than those that Team 
A asked. Everybody understood that for fractions with denominators 10, 100, 
1,000 … the calculations were much easier, and of one accord they requested to 
play again the next day. During the second session the two teams chose subdivi-
sions of 100, 1,000, 10,000 … but that day one team chose the fraction 14/10, 
(which was swiftly trapped) and the other 83/9!  

 Results 
 At the end of this session, the children understand:

   That it is possible to locate a fraction in an interval of length less than 1  
  That in that interval there are many fractions  
  That that interval can be reduced.    

 But depending on the choice of intervals or fractions, more or fewer of the 
children master the calculations and are able easily to fi nd a smaller interval. 
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  Note  

 If the game as described is too diffi cult and too long (which happens in some 
classes), it is simpler to have the teams play one after the other:

   Instead of having to pose questions and simultaneously respond to questions posed 
by the opposing team, one team chooses a fraction (team A, for instance). The 
other (team B) asks questions that will allow it to fi nd the fraction chosen by A. 
Team A answers these questions.  

  Thus one team has only to fi nd intervals, and the other only to answer questions.  
  In this case, it is necessary to fi x the number of questions for each team (3–5, for 

example) and to compare the last intervals given. Then the game starts over with 
B choosing a fraction and A proposing intervals.      

    Lesson 2: Bracketing a Rational Number Between Rational 
Numbers, Shrinking the Intervals, and Observing Decimal 
Filters  

    First Phase: Return to the Game from the Previous Session 

     (a)    Instructions 
 The instructions from the previous session are used.   

   (b)    Development 
 The game proceeds in the same way. (If the two fractions chosen during the 
previous session have not yet been caught, the children want to continue that 
same game.) 

 We need to distinguish between the cases where the students have divided 
the interval into tenths, hundredths, thousandths, etc. and those where they are 
still using fractions with a random collection of denominators.     

 Case 1: Decimal intervals. The game develops more rapidly, and is therefore more 
engaging because the calculations can be made very quickly and are not an impedi-
ment to the development. That makes it possible to play several rounds. There are 
still two cases:

•    The fraction chosen is a decimal fraction. In this case it will swiftly be trapped 
and the children will want to stop the game and start another round.  

•   The fraction is not a decimal fraction. The children, who are beginning to master 
the calculations, ask for smaller and smaller intervals (in general they get as far 
as 1/10,000 without losing impetus.) But at that moment the team that is looking 
for the fraction begins to wonder a bit and make some remarks (the other team 
celebrates.)    
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 This is what happened for the fraction 83/9 mentioned in the previous section, 
which never got trapped in spite of very small intervals being used. The children 
said “It must be that it doesn’t have a denominator with zeros, so it should be 7 or 8 
or 9!”, and they wanted to stop and see the fraction – which produced a very ani-
mated discussion. Some said it couldn’t ever be trapped “because 10, 100, 1,000,… 
aren’t multiples of 9.” Others held out for the contrary, saying fi nding shorter and 
shorter intervals would surely make it all work out. 

 The problem remained open. 
 The children’s reactions were exactly the same the previous year when one of the 

fractions chosen was 22/9. 

 Case 2: Non-decimal subintervals. If neither team has yet thought of producing 
subintervals in tenths, hundredths, etc. (which happened one time) the game quickly 
becomes slow and messy. Before the children lose interest (or become understand-
ably disheartened) it is a good idea for the teacher to stop the game and suggest to 
the whole class that they think a bit about another strategy . For example, she sug-
gests fi nding questions (for designating intervals) that make the calculations speedy. 
After a little time for thinking and collective discussion, if nobody has proposed 
subdividing in tenths and hundredths the teacher might propose another game in 
which she herself plays against the whole class:

 –    Either she is the one who chooses a fraction and writes it behind the board and 
the students propose intervals (which each one writes in his notebook)  

 –   Or the students choose one together, writing it in their notebooks, and the teacher 
asks the questions.    

 In the former case, she asks several children, writes the proposed intervals on the 
board and only responds to those who have chosen decimal intervals. In the second 
case, she herself proposes the intervals, and uses only those with denominators of 
10, 100, etc. 

  Remarks  

 The children’s pleasure in the game is renewed and they notice very quickly that the 
teacher is specializing in certain intervals. They generally remark on it with a com-
ment to the effect that “All you have to do is add zeros!” They see that the game is 
faster, and hence more interesting. 

 To keep up the children’s interest, one can use other variations, such as having 
them play one against one and then two against two. 

 It often happens that the fraction proposed is a decimal fraction like 990/100. 
Children who fi rst bracket  it in intervals of tenths fi nd 99/10. The fraction is trapped, 
but it is not the one that was chosen. So the children say “It’s trapped, but it’s not the 
one!” The representative, with the help of his team, then proposes equivalent  frac-
tions until he fi nds the required form.    
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    Lesson 3: Representation  on the Rational Number Line  

 First game:

    (a)    Instructions 
 “Today I’m the one who is going to choose a fraction, and I will write it behind 
the blackboard. You are to catch the fraction by proposing intervals. I will only 
say “yes” or “no”.   

   (b)    Development 
 The teacher chooses a fraction (145/100, for example), and writes it in a hidden 
place. The children work in groups of 2 or 3 and write the fi rst intervals in their 
notebooks. Once the teacher is sure that all the groups have chosen an interval, 
he asks them one at a time. 

 The children ask: “Is    it between 0 and 5? between 0 and 3?" and so on until 
they have found an interval of length 1 (in this case, [1, 2)). 

 The teacher draws a line on the blackboard, represents the different subdivi-
sions and asks a child to come show where the fraction is found:

     

    She draws this interval [1, 2) in color. Then she asks the children to fi nd 
shorter intervals. At each step, the children indicate the length of the interval (at 
the request of the teacher). 

 The game continues until the interval [145/100, 146/100) is proposed, at 
which point the teacher says “Trapped!”   

 Results 
 At the end of this session, all the children understand the necessity of choosing 
intervals in tenths, hundredths, thousandths. They easily manage

 –    Either to trap the fraction (if it is a decimal)  
 –   Or to bracket  it in very small intervals (of the order of ten thousandths or 

hundred thousandths).    

 Finally, they have become conscious that there are some fractions that are 
easy to trap and others that are not. Some of them even spontaneously list 
them. 

 Depending on the diffi culty of the fractions and of the intervals chosen by 
the children, it is almost always necessary to carry the game over into a sec-
ond session (at the request of the children, in fact.) 
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   (c)    Many strategies  emerge 
 The students propose intervals in hundredths right off, for example [100/100, 
150/100), and then progressively [100/100, 125/100) until they get to [145/100, 
146/100) 

 They start with intervals in tenths. For example:

   [10/10, 15/10) bracketed  
   [10/10, 13/10)  the teacher puts a line through it  
   [13/10, 14/10)   
  [14/10, 15/10) bracketed.    
 At that point they propose hundredths. 

 Each time the children propose a new subdivision, the teacher has them 
come to the board and write the division  points as fractions:

     

    At this stage, the students realize that they are going to have a hard time 
drawing the division  of the interval [14/10, 15/10) into ten equal parts. They 
propose an enlargement of the interval which they will cut into ten equal pieces. 
At that point a student will come up and mark both the end points and the inter-
mediate points in hundredths:

     

    They make new proposals:

    [140/100, 142/100) ;  
   [142/100, 144/100) ;  
   [144/100, 145/100) ;  
  [145/100, 146/100) trapped!        

 Placement on a line

    (a)    Instructions 
 “We are going to suppose that this fraction, 145/100, represents the length of a 
ribbon that we are going to trace in red. So if I put this ribbon along a line 
marked off from 1 to 10, 145/100 marks the point on the line where the end of 
the ribbon will be. We are going to put this point on exactly.”   

   (b)    Development 
 This is a collective phase. The activity takes place very quickly in question-and- 
answer form. On the line drawn on the board, a student comes up and  colors the 
interval [0, 1) in red, then proposes to divide the interval [1, 2) into ten parts, 
which is also done (either by the teacher or by the student). The endpoints are 
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marked with fractions as they were in the fi rst phase. He extends the red line to 
14/10 and then says “We have to cut it in 10 again to have hundredths.” The 
teacher asks what has to be cut in ten. The student shows the interval [14/10, 
15/10) and marks the fraction 145/100. He fi nishes by marking in red the inter-
val [140/100, 145/100).         
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10
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100

145
100

 The teacher then asks:

  “To measure this ribbon, how many units do we need? How many tenths beyond 
the 1? How many hundredths?” 

   And she writes on the board:

 Number of units  1 
 Number of 1/10  4 (so 4/10) 
 Number of 1/100  5 (so 5/100) 

   Then she says: “Here is what we measured:”

  1 4 10 5 100+ +/ /    
and asks a student to come to the board and carry out the addition . 

 The student writes:

  100 100 40 100 5 100 145 100/ / / /+ + =    

  Remark: The children often say “We took the fraction apart!” 

 Second game

    (a)    The teacher proposes that they play another time. For this game the fraction 
chosen should be a bit different, for example 975/1000. 

 The game develops exactly as before – the fraction is placed on the line, and 
then decomposed:

  9 10 7 100 5 1000/ / /+ +    

  900 1000 70 1000 5 1000 975 1000/ / / /+ + =    
      (b)    The teacher next asks the children to take apart the fractions that were trapped 

in the previous activity, for instance 99/10. Everyone writes in their notebook:

  99 10 90 10 9 10/ / /= +    

  9 9 10+ /    
and puts 99/10 on the line. 

 Module 5: Construction of the Decimal Numbers



44

 Remark: Some of the students notice that the fraction 83/9 that was also chosen 
in the previous activity can’t be placed on this line marked off in 1/10, in 1/100, 
1/1000, …     

 Third game

    (a)    Instructions 
 “Do you think now we could guess a fraction very quickly by asking questions 
about its decomposition? You’re going to try to fi nd those questions!”   

   (b)    Development 
 One student plays against his classmates. He leaves the classroom while the 
others choose a fraction that they write in their notebooks (243/100, for 
example). 

 The child returns and tries to ask his classmates, one at a time, questions that 
will help him fi nd the fraction very quickly. After a bit of trial and error, he asks 
(sometimes helped by the teacher) “How many units are there?” “How many 
tenths?”, “How many hundredths?”, etc. 

 His classmates should tell him when he has trapped the fraction. Then he 
should write it on the board (with the help of the answers he got) and put it on 
the line.   

   (c)    Remarks 
 The children note down the information they receive in very different ways. 
Here are some examples of notations they have used:

 Unit rods  2 
 1/10 rods  4 
 1/100 rods  3 

 or 

 2 units 
 4 tenths 
 3 hundredths 

 or 

 2 
 4/10 
 3/100     

 The teacher does not intervene in this game. It is the students who protest 
from their seats if the answers given are not correct or if the student who is look-
ing for the fraction makes a mistake. 

 The game can be re-played two or three times – the students stay engaged. 
It’s generally the end of the class hour that puts a stop to this game. 

 The teacher keeps a list of the fractions chosen by the students in this game, 
because they are going to be needed in the next activity.   
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    Lesson 4: From Writing Decimal Rational Numbers 
as Fractions to Writing Them as Decimal Numerals 

    Starting a Table 

     (a)    Instructions 
 The same instructions as before.   

   (b)    Development 
 A student goes out, her classmates chose a fraction that she is supposed to fi nd 
by asking the same questions as in the previous activity. 

 But then the teacher proposes that the information given be marked in the 
table below (Table A), which will serve for every game. 

 Table A.

 Values of the Intervals  1  1/10  1/100  1/1000  1/10000 

   For example, if the fraction chosen is 239/1000, the child who is asking the 
number of units, tenths, hundredths, etc. puts 0 in column 1, 2 in the column 
1/10, 3 in the column 1/100, 9 in the column 1/1000 and writes the fraction 
found in the last column: 

 Table A.

 Values of the intervals  1  1/10  1/100  1/1000  1/10000 

 0  2  3  9  –  239/1000 

   One or two more children can play and put their information and the resulting 
fraction in Table A.      

 Results   The students have learned how to put decimal fractions  on a number 
line . Many know how to place them quickly and surely. Some still have 
diffi culties. 

 They are aware that some fractions can’t be put on a line subdivided in 
powers of ten. 

 At the end of this activity, they all know how to decompose a decimal fraction 
and give the number of units, tenths, hundredths, etc. 
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    Writing Fractions in Table A 

     (a)    Instructions 
 We’re going to put the fractions you chose and guessed in the previous session 
onto Table A.   

   (b)    Development 
 The teacher sends several students to the board in turns to write the fractions 
from the previous game in table A. Then he has them mark other fractions cho-
sen either by the children or by himself (for example 325/100, 1240/10, 
85/10000, etc.)     

 Remark: This phase is collective. All the children participate, either by going to the 
board, or by making remarks, or by protesting if the one at the board makes a mis-
take. It should happen quickly like a game. 

 Other examples are then done individually. The teacher dictates the following frac-
tions which the students put in the copy of Table A they have made in their notebooks:

  7345 7345 7345 7345/ , / , / , , / , / ,100 7345 10 10 000 100 1 000    

      Passage to Decimal Notation 

     (a)    Information provided 
 The teacher writes on the board (away from Table A)

   7345  
  7345  
  7345  
  7345   

and asks the class whether they are all the same number. The students reply that 
written like that, not in Table A, they are all the same number, even though writ-
ten in Table A they were different numbers. After discussion with the children 
about the possible means of distinguishing these numbers, the teacher intro-
duces the decimal point. 

 73.45, 734.5, 0.7345, 7.345 

 They immediately note that it is always placed after the units (intervals of 
length one).   

   (b)    Reading these numbers 
 The teacher tells the students how these numbers are read: “73 point 45” or “73 
units, 45 hundredths” and has them read several.   
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   (c)    Individual exercises for drill  and verifi cation 
 The teacher proposes the following exercises which are done individually and 
corrected at once. That way she can immediately spot any students who are still 
having diffi culties and help them.

    1.    Write the following fractions as decimal numbers:

  245 100 48 1000 2 100 10/ , / , / , /7259    
      2.    Write as fractions:

  2 5 145 75 13 525 3 7425 0 1 0 01. , . , , , . , . , .                 

 Results   Almost all of the children understand and can write decimal frac-
tions  as decimal numbers and vice versa. When the number is written as a 
decimal number they can say the number of units, tenths, hundredths, etc. 
This activity gives them hardly any trouble. 
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    Module 6: Operations with Decimal Numbers (Summary) 

 In the fi rst four of the lessons above, decimal numbers were always written as decimal 
fractions . In the last one and its immediate sequel, re-writing them in decimal nota-
tion becomes the occasion for various exercises in transcription in both directions, 
and provides the opportunity for them to make most of the common errors arising 
from transcription and correct themselves using their knowledge of decimal frac-
tions (Lessons 5.4 and 5.5). 

 Following that, in Module 6 it is time to “redefi ne” addition  for decimal numbers 
written as what the students call “numbers with a decimal point”. After addition and 
subtraction, multiplication  of a measurement number (a concrete number) by a nat-
ural number scalar (an abstract number) is easy to understand and carry out, espe-
cially making use of techniques of multiplication and division  by 10, 100, 1,000. 
This cycle of six lessons is a welcome one for the students because it takes them back 
to a domain that they recognize as a familiar one. The many exercises they are given 
are much easier to carry out and understand, and the classical errors that normally 
turn up when the operations are carried out mechanically are easy to fl ush out with 
the aid of the knowledge they have developed in the previous activities. Students who 
spent the previous lessons following along on a route being forged by the class that 
they could not have forged for themselves fi nd that they fi nally have some material 
they can handle on their own. It is a joy to discover all at once that the operations are 
so easy that they can really handle the reasoning to justify them. They credit the relief 
to the introduction of decimal notation, in which the operations on the rational 
numbers can be expressed.  
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    Module 7: Brackets and Approximations (Summary) 

 Division  of decimal numbers by a whole number always stops with the units of the 
quotient. The students only know how to calculate it exactly in the form of a frac-
tion, so that the result is no longer expressed as a decimal number. The next two 
lessons therefore deal with systematically extending the bracketing of rational num-
bers between natural numbers and honing the notion of approximation . 

 At the end of the two lessons, the students try to bracket  as tightly as possible the 
rational number 4319/29. First they extract the whole numbers by a classical divi-
sion  procedure: the fraction is located between 148 and 149 and there remains 
27/29. To bracket this number between two successive tenths, they need to know 
how many 29/290ths (that is, tenths) there are in 270/290 (that is, 27/29). So they 
divide 270 by 29. This gives them that the fraction 4319/29 is between 148.9 and 
149. And they proceed in the same way. They cut the interval [148.9,149) in ten and 
check how many 29/2,900ths there are in 90/2,900ths, etc. 

 When they put together on the board in an organized way the sequence of opera-
tions that they had scribbled all over their notebooks the children remark that the 
sequence of successive divisions looks just like a single division  that has been 
extended. There is a small debate before they accept the idea of giving the name 
“division” to this new operation that enables them not only to bracket  a fraction but 
to determine the “approaching” decimal number resulting from dividing one whole 
number by another. 

 The fi nal session is devoted to a mathematical study of the decimal fractions  
obtained by approximation  (i.e., by division ) and comparison with fractions. Are all 
fractions decimals? Do all divisions come to an end? etc. In the course of this les-
son, the students carry out multitudinous divisions, but with an eye to studying their 
properties, not simply as formal exercises “to learn how”. The discovery of periodic 
sequences produces a passionate interest in these instruments for approaching the 
infi nitesimal.   

We have now traversed the fi rst seven modules of the Manual. Where have we 
arrived? On a mathematical front, we are at a point that demonstrates with 
extreme clarity an aspect of teaching on a constructivist  model that opens it to 
criticism by those who either are unfamiliar with it or in disagreement with it. 
In terms of institutionalized  knowledge – knowledge that could be put on a 
written test with a reasonable expectation that any student who has been 
 paying adequate attention will be able to answer most or all of the questions – 
the volume is not particularly impressive. Certainly the students can handle 
basic rational number operations (all the arithmetic operations with the excep-
tion of division  by a rational number) very comfortably. A notable strength 
relative to what one commonly observes is that they are equally adept with 
proper and improper fractions, On the other hand, in terms of making use of 

(continued)
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rational numbers, their knowledge is still limited to the context of measurement. 
Similarly for decimal numerals, they can dependably carry out all of the basic 
arithmetic operations with the exception of division by a decimal numeral, 
and they can convert back and forth between fractions and decimal numerals, 
provided the decimal numeral in question is a terminating one. They can also 
make use of decimal numbers, but again only in the context of measurement. 
If that really represented the whole of their knowledge, then complaints about 
the paucity of that knowledge would be entirely legitimate.

What an individual, paper-and-pencil test cannot reveal is the depth of their 
knowledge and their degree of ownership. Also not susceptible to testing, but 
nonetheless both impressive and valuable is their level of “community under-
standing” – the body of knowledge that is accessible when they work as a 
group, as a result of partial understanding by many students and the capacity 
of all of them to listen to each other and explore each other’s thinking. Thanks 
to those “invisible” forms of knowledge, they will be enabled in the following 
modules to expand their individual, institutionalized  knowledge dramatically 
and at considerable speed. They will be able to invent and re-invent the con-
cept of a rational number as a linear  mapping until they internalize it, to 
assemble a collection of observations and partial  understandings into some 
very solid knowledge about division  and to use both rational numbers and 
decimals in most of the standard contexts. To a large extent this knowledge 
will be institutionalized and testable, though there will, of course, be some 
speculations and queries left to fuel future exploration.

The remaining two sections of the book will summarize and discuss the 
modules of the manual covering this last stage in the learning of rational and 
decimal numbers.

(continued)
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    Module 8: Similarity 

    Lesson 1: Enlargement of a Puzzle  

 The fi rst situation put to students for study of fractions as linear  mappings  is the 
following. 

 Instructions: 

 Here are some puzzles (Example: Fig.  2.5  below). You are going to make some 
similar ones, larger than the ones I am giving you, according to the following rules:

    The segment that measures 4 cm on the model must measure 7 cm on your 
reproduction.  

  When you have fi nished, you must be able to take any fi gure made up from pieces 
of the original puzzle  and make the exact same fi gure with the corresponding 
pieces of the new puzzle.  

  I will give a puzzle  to each group of four or fi ve students, and every student must 
either do at least one piece or else join up with a partner and do at least two.    

 Development: 

 After a brief planning phase in each group, the students separate to produce their 
pieces. The teacher puts (or draws) an enlarged representation of the complete puz-
zle  on the chalkboard. 

    Strategies and Behaviors Observed 

    Strategy 1: Almost all the students think that the thing to do is to add 3 cm to every 
dimension. Even if a few doubt this plan, they rarely succeed in explaining them-
selves to their partners and never succeed in convincing them at this point. The 
result, obviously, is that the pieces are not compatible. Discussions, diagnostics – the 
leaders accuse the others of being careless. They don’t blame the plan, they blame 
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  Fig. 2.5    The puzzle       
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its execution. They attempt verifi cation – some students re-do all the pieces. They 
need to submit to the evidence, which is not easy to do! The teacher intervenes only 
to give encouragement and to verify facts, without pushing them in any direction.  

  Strategy 2: Some of them try a different strategy : they start with the outside square 
and try adding 3 cm to each of the segments in it. This produces two sides of length 
17 cm and two of length 20 cm – not even a square. This is perplexing for the stu-
dents, who begin to get really skeptical about the plan and often say, “It must be we 
shouldn’t add 3!”  

  Strategy 3: Another strategy  often tried, either spontaneously or after #1 and #2 have 
failed, is to multiply each measurement by 2 and subtract 1, since they observe that 
4 × 2 − 1 = 7. This gives a puzzle  that is very similar to the original. Only a few pieces 
don’t fi t well. So occasionally the students work their way out of the situation by a 
few snips of the scissors here and there. Even if most of them are aware that they are 
fudging, a few are convinced that they have found the solution. The teacher, invited 
along with the other groups of students to confi rm success, in this case suggests that 
the competitors use the model to form a fi gure with some of the original pieces (such 
as Fig.  2.6 ) that cannot be reproduced with the pieces they have produced (Fig.  2.7 ).

9

5

5

9

4
2  2

  Fig. 2.6    A fi gure made from 
pieces of the original puzzle       
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  Fig. 2.7    An attempt to 
produce the same fi gure after 
enlarging by ×4-1       
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       To help them see what happened, they can calculate:     

 Results   All the children have tried out at least one strategy , and most have 
tried two. By the end of the class, they are all convinced that their plan of 
action was at fault, and they are all ready to change it so they can make the 
puzzle  work. But not one group is bored or discouraged. At the end of the 
session they are all eager to fi nd “the right way”. 

    Lesson 2: The Image of a Whole Number 

  Assignment  :  “The different procedures you tried out yesterday weren’t right, 
because you couldn’t make the corresponding models with the results. You found 
out that adding 2 or multiplying by 4 and subtracting 1 didn’t give the right mea-
surements. Today you are going to try to fi nd the right measurements that will let 
you make the puzzle  right. 

  Development:  

 To make things easier, the teacher (or sometimes a student who succeeded with the 
activity the day before) puts the lengths up as a table:     

 Right off the bat somebody always asks for the image of 8 (which is of no use, 
but which they nonetheless add to the table)     

 This proposition, which is not rejected, may be what leads to the almost instan-
taneous appearance of another one: “We need the image of 1!” 

  Remarks : (a) For a variety of social and intellectual reasons, there is a general resis-
tance to the idea of reconsidering the initial procedure. Classes often get quite 
worked up – lively disputes, accusations, threats – but rarely discouraged. 

 (b) Occasionally a group succeeds in fi nding the right process and produces the 
correct puzzle . The whole class and the teacher take note of the success, but the 
procedure is examined in the following lesson.    

2 + 2 = 4

(2´2-1) + (2´2-1)  ≠  2´4 –1

4 7
5

6
2
9
7

8 14
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 “Yes, that would let us fi nd all the others” 
 The teacher then adds 1 to the table and tells the students to fi nd the measure-

ments. The students work in groups of 2 or 3, all of them having copies of the table 
in their notebooks. As before, the teacher goes from group to group, encouraging 
them and answering questions, but does not take part. 

 Some of the procedures observed:

    1. 

    

4 7 = 70/10

70/40  =  35/20  =  175/100  =  1.75

÷4 ÷4
1

      

   2. 

    

4 7
÷2 ÷2

2 3.5     

 Here they are not actually performing a division . They are using cultural 
knowledge  that they have acquired and their explanation is

  “Half of 6 is 3 
 Half of 1 is 1/2 or 0.5 
 3 + 0.5 = 3.5” 

   From there they continue in the same vein:

   

2 3.5 = 35/10

÷2 ÷2
1 35/20 = 175/100 = 1.75  

        3.    An alternative for the last step: 

 2 —–> 3.5, which they write as 3.50. 

 To fi nd the image of 1, they write: half of 3 is 1.50, and to that they add half 
of 50 hundredths, or 25 hundredths. 1.50 + .25 = 1.75;     

 To fi nd the other measurements, they use either of the following procedures: 
 Either they multiply the image of 1 successively by 5, 6, 7 and 9 
 Or they add the image of 1 to the image of 5 to get that of 6, the image of 

4 and that of 2 to get that of 6, and so on. 

  Observation : 
 One of the children, after having correctly found the image of 1, went on to make 
all of her calculations using 1.7. When the teacher asked her “Why did you multiply 
by 1.7 after you had found 1.75?” she replied, “Because I can’t measure 1.75 with 
my ruler because it only goes up to millimeters.” 

 The rest of the class broke in to protest: “Yes, you can! If your pencil is good and 
sharp you can get very close to halfway between two millimeters.” This convinced 
her, so she didn’t do the puzzle  with the measurements she had found, and therefore 
never observed the inaccuracy that would result. 

  Remark : For many children, measuring 12.25 cm or 15.75 cm gives a lot of trouble that 
teachers often don’t register, but that they ought, in fact, to take into consideration. 
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 Comparison of methods and realization of the puzzles:

   As soon as all the groups have found the measurements, they compare and discuss 
their methods.  

  The teacher then has them make the pieces and reconstitute the puzzle . (The stu-
dents would ask to do it themselves in any case.)    

 Remark: This phase is essential, because for the children it is the only proof that is 
valid and convincing. But above all, it is source of pleasure and enthusiasm for 
them: their effort is repaid and they have succeeded.   

 Results   All the children know that the image of a whole number can always 
be found, and almost all of them know how to fi nd it. 

    Lesson 3: The Image of a Fraction 

 First phase: review of the two previous activities: 

  Assignment : “We enlarged a puzzle . To do that, we had a model on which we knew 
all of the measurements and we had some information about one of the new mea-
surements: we knew that what corresponded to 4 was 7.     

 What did you look for?” 

  Development:  The children briefl y recall the activity and the teacher provides a 
quick overview of all the techniques used. What they needed was the image of 1.     

 She runs swiftly through some other examples: “If 9 goes to 11, what does 1 
go to?” 

 The teacher can send one child to the board or ask them all to work it out on 
scratch paper.     

 (They often need to review division  here, which they do collectively.) 

4 7

9 11 = 11/1
÷9 ÷9

1 11/9

4 7
1 ?
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  Remark : It is essential for the teacher to pull the class together on a regular basis to 
remind them where they are: recall or have them recall what problem was posed and 
what questions that problem gave rise to. They absolutely must know what it is they 
are trying to solve. The teacher can even occasionally remind them in the course of 
an activity. The fact is that many children, in the process of working out the interme-
diate steps of a problem, forget why it is they are carrying out their calculations. 

 Second phase: Image of a fraction 

  Assignment : “Now you know how to fi nd the image of any whole number. You also 
know that you can designate a measurement by a fraction – what did you do that for? 
(constructing paper strips). Today you are going to try to fi nd the image of a fraction.” 

 The teacher puts 5/7 in a table of measurements:     

  Development : 
 First she asks the students to think a bit and make sure they all understand the prob-
lem posed. 

 Spontaneously the children suggest adding 1 into the table of measurements, 
which the teacher does. She then asks them to fi nd the image of 1.     

 One of the students comes to the board and writes this image of 1, which gives 
one more rapid review. The new table of measurements now reads     

  Remark  :  The operator  11/4 is not, and should not be, identifi ed. 11/4 is just a 
measurement. 

 At this point, for this particular piece of the problem, the students work in groups 
of two or three. 

  Behaviors observed :

    1.    Many students transform the fraction 11/4 into a decimal numeral: 
11/4 = 275/100 = 2.75, then stop because they don’t know how to multiply 5/7 by 2.75.    

4 11

1 11/4

5/7 ?

4 11

5/7 ?

4 11

1 ?

1 11/4  =  2.75
×5/7 ×5/7

5/7 2.75 x 5/7
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      The majority “trap” 5/7 by doing what they did before 2      

2    Some expressions used spontaneously by the children to make themselves understood – either by 
the teacher or by the other children – are adopted by the whole class and accepted by the teacher. 
Some terms are thus used that are not necessarily “mathematical” but only serve temporarily for 
dealing with particular situations. They are not institutionalized , and are therefore later forgotten. 
Examples: “trap” and “in-between number”  

 But there again they bump into calculations that they don’t know how to carry 
out: the multiplication  of two fractions: 11/4 × 5/7. 

 We should point out that a certain number of them do actually write out the 
 correct result: 11/4 × 5/7 = 55/28 purely by intuition. Obviously, the result can’t be 
accepted, because they can’t justify it at all. 

 Another frequent event is that they write 4, 11 and 1 as fractions:

  4 4 1 11 11 1 1 1 1= = =/ / /    
and are stuck there. 

 The teacher goes from group to group, asking questions, giving encouragement. 
This activity is diffi cult for children of their age, and they need to be helped along 
with questions like “What would you do to trap 5/7?” and “What do you think might 
be another in-between number?” 

 Fruitless efforts. They remain stuck. So she organizes a collective discussion. 

 Third phase: the search for an in-between number 

  Assignment : The teacher fi rst asks the students to look closely at the table of 
 measurements from before:

1 11/4  

×5/7 ×5/7

5/7

  She poses the question: “What would make it easy to do the trapping? Think about 
the calculations you would have to do.” 

 Development: A phase of collective refl ection starts up fi rst. The children think 
silently, then propose things out loud. The proposals are immediately put to the test 
while the whole class watches. 

 A certain number of them lead nowhere: a proposal to put 1 in the table in the form 
7/7 or 1/1 which makes no progress on the problem because they don’t know how 
to get from 7/7 to 2/7, or from 1/1 to 5/7. 

 Others, for instance 5 or 1/7, do lead to a possible answer to the question the 
teacher asked. 

4 11

1 11/4

5/7 ?
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 Examples of attempts to check the last two, made at the blackboard by a student or 
the teacher: 

 First attempt, using 5: 
 First 5 is converted to a fraction: 5/1. 

  Remark : At this point it is once again generally useful to review division  by having 
them quickly carry out small calculations like 25/3 ÷ 9 = 25/27;   13/9 ÷ 5 = 13/45; 
81/13 ÷ 9 = 9/13 etc. 

 (A few students know and recall that they can multiply the denominator by 7 to 
make the fraction 7 times smaller.) 

 Second attempt, using 1/7:     

 The children return to their groups of two or three and get back to work on the 
solution they were working on in the second phase. 

 Strategies observed: 
 All the groups make one or the other of the following tables: 

 Either     

 depending on which of the two proposals they adopt. 

  Remark : Not all the groups get to the end of the calculations, because the children 
make mistakes. They have forgotten the techniques they developed during the les-
sons about operations on fractions. This is perfectly normal, and the teacher should 
neither worry nor blame the children. On the contrary, this is exactly the moment to 
re-use the processes they discovered quite a while ago, put them to work and let the 
children see what the processes are good for. 

×5
1/7 5/7

4 11
1 11/4

5
5/7

4or 11
1 11/4

1/7  x
5/7 y
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    Collective Synthesis of Methods 

 First the teacher asks them which groups didn’t succeed. She asks them to try to say 
what messed them up and why they didn’t get any result. The children mostly know 
very well what happened to them: they made mistakes in the multiplication  or divi-
sion  of a fraction by a whole number – that’s the principal cause of errors. 

  Remark  :  Because this is a regular proceeding, the children are perfectly comfortable 
discussing their mistakes. This is benefi cial to the whole class, since exploration of 
errors can often contribute just as much to understanding as observation of correct 
procedures. 

 After that discussion, the teacher sends some students to the board to describe the 
methods they used:      

    Exercises for Practice 

 The teacher adds two more fractions to the table of measurements and the students 
calculate their image individually 

 They discuss their solutions rather than turning them in. 

  Final step : The teacher inquires: “Does every fraction have an image?” 
 After some refl ection, the children conclude that you can always fi nd the image of a 

fraction because you can always multiply and divide a fraction by a whole number.    

 Results   At the end of this session, the children understand that you can fi nd the 
image of any fraction at all provided you know the image of one whole number. 

 They have also all grasped that you have to fi gure out the image of 1 and 
of some “in-between number”. 

 On the other hand, they haven’t all mastered the sequence of calculations, 
and can’t all get to the result. 

  Remark : We emphasize here that this is normal and the teacher shouldn’t 
worry. It would be a serious error to stop and drill  the students, because the 
up-coming activities let them re-use these notions and progressively master 
them (each child at his own rate.) 

41) 11
1 11/4
5/1
5/7

55/4
55/28

42) 11
1 11/4
1/7
5/7

11/28
55/28

4 11
1 11/4

7/9  ?
6/7 ?
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3    The drawing should be prepared before class, either on the board or on paper.  

    Lesson 4: The Image of a Decimal Number 

 Problem situation: construction of a tessellation  

 Materials: 3 or 4 cardboard pieces similar to the fi gure piece marked (1) in Fig.  2.8  
or the same fi gure drawn on the board before the lesson.  

  Assignment : We are going to make a decorative panel for our classroom. It will be 
made up of pieces like the one you have, put together like this 3 :     

 To do that, each of you will make one piece by enlarging the model so that 1 cm 
on the model corresponds to 3.5 cm on the piece you make. 

 1 cm —–> 3.5 cm 

  Development : The children work in groups of three. They start off looking for ways 
to fi nd the measurements for the piece 

   1 —–> 3.5 
 2.5 —–> 
 1.6 —–> 
 4.8 —–> 

 Strategies observed:

    1.    The most common strategy  is to convert the decimal numbers to fractions 

    1 —–> 35/10 
 25/10 —–> 
 16/10 —–> 
 48/10 —–> 

  Fig. 2.8    Tesselation to enlarge       
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 Then by referring to the previous activity they calculate the images and add 
them to the table, fi rst calculating that the image of 1/10 is 35/100 and then 
 multiplying by 25, 16 and 48 respectively.   

   2.    Another common strategy  is to do the calculations by taking apart the decimal 
numbers as follows:

   For the image of 2.5:  

  First fi nd the image of 2 by doubling the 3.5.  
  Next fi nd half of 3.5 by fi nding half of 3 and then half of 0.5  
  Then add up all three results.  
  For the image of 1.6, add the images of 1, 0.5 and 0.1  
  For the image of 4.8, add the images of 4 and 0.5, plus 3 times the image of 0.1        

  Remark : This last method is generally used by the children who are very good at 
mental calculations . Many of the calculations described above are invisible – only 
the results appear. At the request of the teacher (who goes from group to group and 
keeps on saying “But how did you get that?”) the children consent – often with bad 
grace – to write them (at times in a highly disorderly way.) 

    Phase 2: Comparison of Methods 

 The groups that have found the numbers take turns at the board explaining their 
method. This gives the ones whose numbers didn’t work out a chance to fi nd out 
what went wrong. When children don’t succeed with the activity it is always because 
of errors in calculation. 

  Conclusion : As at the end of the previous activity, the teacher asks, “Does every 
decimal number have an image?” Needless to say, the children respond in the 
affi rmative.  

    Phase 3: Making the Pieces 

 Each child makes one or more pieces out of colored paper. As happens with the 
puzzle  activity they are again faced with measurements: 5.6 cm, 8.75 cm, 16.8 cm 
They also have to use a T-square to make their lines, which adds a second interest to 
this session: construction of geometric fi gures.    

 Results   This activity gives the children a chance to re-use procedures worked 
out in the previous session. It enables many of them to master some diffi cult 
calculations that they have previously been unable to carry all the way out. 

 Module 8: Similarity
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    Lesson 5: Division of a Decimal Number by 10, 100, 1,000, … 
(Summary) 

 Still using the set-up of 1 → 3.5, the teacher turns the class loose on fi nding the 
images of 1/10, 1/100 and 1/1,000. This presents no diffi culties, and very soon the 
teacher is able to put a collectively produced table on the board. She then writes up 
the problems and results, including some intermediate problems that the students 
have produced:

   3.5 ÷ 10 = 0.35  
  0.35 ÷ 10 = 0.035  
  3.5 ÷ 100 = 0.035  
  0.035 ÷ 10 = 0.0035  
  0.35 ÷ 100 = 0.0035  
  3.5 ÷ 1,000 = 0.0035    

 The students contemplate this and make observations, checking against different 
entries: “It’s just the reverse of multiplication ”; “You have to move the decimal 
point backwards”, etc. 

 The teacher then leads them to formulate the rule: When you divide by 10 or 100 or …, 
you have to move the decimal point as many places to the left as there are zeros in 
the number. 

 By way of solidifying the rule and pushing the students a little farther, the teacher 
gives them some exercises, which are done individually and immediately corrected:        

139.2 ÷ 10 =
4750 ÷ 100 =
25785 ÷ 10000 =
0.08 ÷ 100 =
0.08 ÷ 1000 =

4457 × = 485.7
0.129 × = 129
130  × = 13000
1675 × = 16.75
5.45 × = 5450

45.87 ÷ 1000 =1) 2) 135.9 × = 1359

 Result   As was the case for multiplication  of a decimal number by 10, 100, 
etc., even though the children understand, they make a lot of mistakes with the 
placement of the decimal point. As a result, it is absolutely necessary to keep 
on regularly giving them exercises (corrected immediately) so that they 
 master these calculations swiftly, because they are going to need them for lots 
of other activities. 
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    Module 9: Linear Mappings 

     All of the sections of Module 9 revolve around reproductions of the drawing above. 
It was chosen because not long before the time the lessons were given, the class had 
had a whole month in which after a morning in school, they spent every afternoon 
together at a sailing school near-by on a boat called the Optimist. This annual event 
was a source of great pleasure and of great class bonding as well. The basic drawing 
is on card stock and has the dimensions listed below. In addition  there are 11 repro-
ductions also on card stock, with specifi ed ratios of enlargement or reduction. 

    Lesson 1: Another Representation of the Optimist  
(Lesson Summarized) 

 After introducing the drawing and having the children help her label the parts of it, 
the teacher puts on the board the list of dimensions:

 Height of mast  17.7 cm  Length of boom  14 cm 
 Height of pennant  1.7 cm  Height of hull  3.4 cm 
 Side of pennant  4 cm  Length of stem  5.2 cm 

   She then puts up, beside the original, the reproduction that has a ratio  of 1.5 to 
the original. The children observe and make comments: “That one’s bigger”, “It’s 
not twice as big – it’s less than that”. They often ask: “Are all the measurements the 
same?” by which they mean, “Were all the measurements enlarged the same way?” 
Sometimes they say: “Is it proportional ?” 

 The teacher tells them that they can fi nd that out themselves if they fi nd the mea-
surements of the reproduction. Then she asks: “Would you know how to fi nd the 
measurements if it were proportional ? What information would you need to do it?” 
The children generally tell her that one is enough. 

Optimist
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 She sets them up in groups and announces that each group must request in writ-
ing the one measurement that it wants. They are then to use that to predict what all 
the other measurements will be if the enlargement is proportional . Once the calcula-
tions are fi nished, they are to take their rulers up to the reproduction and check the 
measurements. If all of the actual measurements correspond to their calculated ones 
they will have the answer to their question. 

 The groups work together fi rst to fi nd the procedure that will give them the mea-
surements. Then they divide up the measurements – one does the mast, another the 
boom, etc. As soon as they are done they check their results by measuring. Standard 
comments: “Yes, it is proportional ” or “We blew it! Our measurements aren’t the 
same”, in which case they go back to their places and start over. (In one sad case a 
group that had asked for the measurement of the mast proceeded to add 8.55 to all 
the measurements, because 26.55 − 17.5 = 8.55.) 

 When they are done, they have a collective discussion. First the ones who have 
had trouble describe where the trouble arose, then the groups that succeeded come 
to the board and present their methods (one presentation per method). 

 Some of the methods presented by the children: 
 First strategy  – measurement requested was the length of the boom

 The students noticed that 14 + 7 (half of 14) = 21. 
To fi nd each measurement of the reproduction, 
they added half of the measurement on the original 
to the measurement itself 

 14  21 

 3.4 = 3 + .04  3.4  3.4 + 1.5 + 0.2 = 5.1 
 5.2 = 5 + 0.2  5.2  5.2 + 2.5 + 0.1 = 7.8 
 17.7 = 17 + 0.7  17.7  17.7 + 8.5 + 0.35 = 26.55 

   Second strategy  – again starting with the boom     

14 21

1 1.5
÷14 ÷14

 So the image of 1 is 1.5. 
 For the side of the pennant, then:     

4 6

1 1.5
× 4 × 4

 For the height of the pennant, they write 1.7 as 17/10, then work with the image 
of 1/10     

1 1.5

1/10 0.15

17/10 2.55

÷ 10 ÷ 10

× 17 × 17
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 The same strategy  was used by some groups who started with the measurement of 
the side of the pennant. One such group began by calculating the image of all the inte-
gers: 17, 3, 4, 5 and 17 and the image of 0.7, 0.4 and 0.2 and adding appropriately. 

 A third and fourth strategy  were developed by groups who started with the height 
of the mast. One was to multiply both sides fi rst by 10, so as to have whole numbers 
to deal with. Another was to convert 17.7 to 177/10 and then divide both sides by 
177. Both strategies  then match those of the second strategy.   

 Commentary   Like any other lesson that involves making actual measurements 
and comparing them with the results of computations, this one brings up issues 
related to approximation . The teacher needs to establish very gradually over 
the course of all such lessons an understanding within the class of how to treat 
values arrived at by measuring and those arrived at by calculation. Questions 
of how large a discrepancy is acceptable should be treated case by case, with 
student opinion always underlying the decision so that they never think the 
answer is handed down from on high. Eventually error intervals and the algebra 
thereof should work their way in, but not as a topic in themselves, always as a 
means of dealing with a particular situation. 

    Lesson 2: (Summary of Lesson) 

 The next lesson is highly similar to the fi rst. The only difference is that the new 
reproduction is the one with proportionality factor 1.4. As soon as the students see 
it they notice that the fi rst procedure above won’t work. They settle down and 
swiftly work out the new lengths using one or another of the other procedures. After 
the solutions have been duly discussed, they discuss which one they found the most 
effective and institutionalize  it as the one to be used in the following activities (gen-
erally the one that starts by turning everything into a whole number.)  

    Lesson 3: Lots of Representations of the Optimist 
(Summary of Lesson) 

 This is followed by a very challenging lesson that uses a bunch of the reproductions 
and poses a new problem. 

 The teacher holds up fi ve of the reproductions, some larger than the original, 
some smaller, and some very close in size. First she has the class put them in order 
by size and labels them A, B, C, D, E, and M for the model. She sets up a table with 
the letters across the top, starting with M, and the six elements of the boat whose 
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measurements they have been working with down the side. She fi lls in the column 
of measurements for the model, then the row of stem measurements for all of the 
reproductions (which settles whether they got the order right.) 

 Then she says, “I will tell you that one of these has mast length 13.275. Can you 
fi gure out which reproduction I’m talking about?” 

 This is a real challenge to the students, because it is not obvious to them how to 
attack it – how to identify the relevant variables. For instance, one tactic would be 
to calculate the ratio  of 13.275 to 17.7 (mast length of the model), then calculate the 
ratio of each of the stem lengths to 5.2 (stem length of the model) and see which 
one matched. Another would be to calculate the lengths of all of the masts and see 
which one comes out to be 13.275. Or then again, one could calculate the stem 
length of the unknown boat and compare it with the given lengths.  

 Remark   Some of the children simply can’t get their hands on the problem. 
This is the kind of situation in which the teacher must fi rmly resist temptation. 
If she reduces the scope of the problem by pointing out which numbers are 
relevant and what to calculate, she will take all the interest out of it. The 
object of the lesson isn’t to accomplish a task, but to determine what it is. 

 Left to their own devices, the children make remarks like: “The image is smaller 
than the model, because the mast is 13.275 instead of 17.7” “But not much smaller…” 
“It can’t be E, because E is bigger.” This strategy  of reducing the fi eld of possibili-
ties provides the opportunity for some good work with ratios: “It’s not A, because A 
is much smaller – the stem is less than half as long as the one on the model.” 

 This way they whittle the possibilities down to two or three. Then “to be sure”, 
they decide to do some calculations. But which ones? What’s going to tell them 
which boat that mast belongs to? 

 They think it over a while, and after some hesitations and tentative efforts, one of 
them comes to the board and writes:     

Model Reproduction

17.7 13.275

5.2

 The children work it out in groups of two, and the teacher chooses one to write 
the correct process on the board. The standard mode of calculation produces a stem 
length that matches that of boat C. 

 As a follow-up, the class does a series of problems individually, so that each 
child can fi gure out whether he actually understands, and whether he knows how to 
fi nd whatever measurement he needs. 
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 The rest of the lesson is a swift activity aimed chiefl y at the motivation and 
introduction of a new notation. The original drawing and the six reproductions 
labeled A through F are still posted on the board. [Note: this lesson write-up is 
based on a report from a different year from the previous one. In the interim a spare 
reproduction of the Optimist  seems to have turned up!] The teacher brings out four 
more. One at a time she gives a single measurement from each of them, and the 
class quickly tells her where to put it. In a short, almost playful time, all 11 are lined 
up on the board.     

A B C MD FE

 Question: “What are we going to call these new ones? We need to be able to talk 
about them.” Many of them suggest A, A 1 , A 2 , B, etc. The teacher says she has 
another one that goes between A 1  and A 2 , after which the class realizes that letters 
are not going to suffi ce. They set to work fi nding an alternative method. Often one 
of them will suggest using the image of one, since that way they can tell whether it 
is enlarged by a little bit or a lot. If none of them thinks of that possibility, the 
teacher suggests it, and asks them to verify that it provides the information needed. 
It should (a) let them fi nd the image of any of the measurements and (b) let them put 
any enlargement she gives them in the right place. 

 She then has students go to the board to show where to put something enlarged 
by 1.35, by 1.87, by 0.72 (i.e., shrunk), by 0.29, etc. Then she has them reverse the 
process and fi nd enlargements to go between ones that are already up there. This 
they do on their own, on scratch paper. Meanwhile the teacher writes under each 
reproduction the corresponding image of 1:     

A B C MD FE

0.25 0.67 0.75 0.940.3 0.5 1.25 1.4 1.5 2.1

 Enlargements, reductions, 0 or 1? 
 Next comes a rapid class exchange, launched by the teacher:

  “What do you notice about the numbers labeling the reproductions?” 
 “They’re in order from smallest to largest” 
 “The bigger the enlargement, the bigger the number” 
 “One of them doesn’t have a number – it’s the original model.” 
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   They decide it ought to have a number, and the class splits between those who 
propose 0 and those who propose 1.

  “All the ones that get smaller have numbers less than 1” 
 “The numbers bigger than 1 all give enlargements” 
 “M is in between, so it ought to have a 1.” 
 The teacher steps in with: “If I make a reproduction using 1, what will I get?” 
 “A reproduction “equal” to the model. It doesn’t get smaller and it doesn’t get larger.” 
 “That’s just it! It does nothing. Enlarging by nothing should mean zero!” 

   Teacher: “With our convention we have to put 1, but what would a 0 reproduction give?”     

1 0
2 0 etc.

 “Nothing!” “A point!” … 

 With that settled, the teacher goes on to another point: “Do you know how to tell 
whether the reproduction 0.84 is an enlargement? And 1.10? and 0.01? What would 
you mean by an enlargement by 2?” 

 The students answer:  1 2    

 “How about a reduction by 2? Or an enlargement by 1/2? Is that a contradiction?” 

 Conclusion: It needs to be called a reproduction  1 2   , because the number is 
all it takes to tell us whether it enlarges or shrinks.   

 Remarks   This lesson is in “Socratic” form – questions and answers. Rather 
than setting up a Situation of communication , like the ones with which ratio-
nal numbers as measurements were introduced in Module 1 the teacher con-
tents herself with talking about communication, because here the issue is 
familiar to the students and nothing new would come of such a Situation. 

 Students’ internalization of the types of Situation that justify the means 
proposed for managing knowledge is part of the epistemological construction 
that the teacher is responsible for. This internalization saves time later without 
losing any of the meaning of the knowledge being created. 

    Lesson 4: Good Representations, Not So Good Representations 

 This one requires some special preparation. The teacher needs to make a special 
transformation of the model that enlarges the model with a horizontal ratio  of 1.2 
and a vertical ratio of 1.5. The resulting reproduction will be called Z. 
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 As usual, the lesson starts with a review of the preceding lessons, including in 
this case listing on the board the images of 1 they found for all 11 of the reproduc-
tions. This leads up to having the children articulate what constitutes a reproduction 
that is an enlargement or reduction:

  “You take a model. 
 You measure its dimensions. 
 You enlarge or shrink all of its dimensions the same way 
 You get a bigger or smaller picture.” 

   The teacher then divides the class into four groups, with four different tasks. Three 
of them start with the original model and apply the following three mappings:

    1.     

× 2.2
1 2.2      

   2.     
+5

1 6      

   3.     
×2 + 3

1 5        

 Question: “Do these mappings give you enlargements?” 
 The fourth group gets the new reproduction, Z. Their question is then “Is this an 

enlargement of the model?” 
 After the fi rst question is asked, murmurs are audible: “Yes, they’re enlarge-

ments.” There are nevertheless a few who bring up the enlargement of the puzzle : 
“When we added 3 it didn’t work!” From then on the term “enlargement” has some 
ambiguity for the children, but not all of them can quite say why. 

  Development : The children in the fi rst three groups decide to calculate all the dimen-
sions using the proposed directions and make the corresponding design with the 
resulting dimensions. They decide who is to calculate which dimension, then settle 
down and do it. 

  Observation  :  In the course of this phase of the lesson, the children in the groups that 
were given mappings # 2 and 3 become rather noisy (everybody accuses everybody 
else of calculating badly): “It’s impossible! Our design doesn’t look a bit like the 
model!” “It’s not a boat! It’s a jam jar!” “The pieces just don’t fi t!” 

 They want to quit, and usually call the teacher, who de-dramatizes the situation 
by smiling and telling them it’s OK not to go on with the design. 

  Class discussion : When they are all done, the teacher has the fi rst three groups put 
all of their numbers on the board, and the class checks them. Looking at the designs, 
the children are completely satisfi ed that #1 gives a proper reproduction. Some of 
them say “It looks proportional  to the model.” On the other hand, the designs that 
correspond to the other two create a lot of laughter. The line segments intersect at 
weird places, or don’t intersect at all. It’s impossible to reproduce the shape of the 
Optimist  and use the numbers resulting from the operations in question. 

 The fourth group has had some problems: their reproduction looks a lot like the 
Optimist , but they couldn’t fi nd a consistent image for 1. Using the mast, they 
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 computed the image of 1 to be 1.5, but one of them noticed that the reproduction 
looked a bit elongated, so they checked the boom. Using 1.5 as the image of 1, the 
calculated the image that the boom on Z ought to have, and got 21 cm. Then they 
measured it and got 16.8 cm. They went back and checked all their calculations, but 
they were all right. 

 The teacher suggested that they calculate the image of 1 using the boom, so they 
did that and found 1.2 – not the number they got before! The child who had noticed 
that the design seemed elongated suggested that they should fi nd the image of the 
hull with the new image for 1, so they did and it checked out with their measure-
ments. When they presented this to the rest of the class, someone wondered whether 
all the vertical enlargements might be the same. So the teacher immediately encour-
aged them to calculate the image of 1 fi rst using the height of the hull and then the 
height of the pennant. The students noted, “It ought to be the same as for the mast!” 

 They do a batch of computations and everything works as predicted. Now they 
know for sure: there is more than one image for 1. 

 To fi nish up, the teacher gives them a swift introduction to linearity . She points 
out that the height of the boat is the height of the mast plus the height of the hull, 
and writes all three of those measurements on the board. Then she has them com-
pute the images of all three under each of the fi rst three mappings. The fi rst one duly 
gives images that add up properly, but adding 5, or multiplying by 2 and then adding 
3 both give non-matching images. The students remark that it’s just like the puzzle  
situation – you don’t get a good reproduction unless you just multiply. Addition just 
messes things up! 

  Presentation of information:  The teacher confi rms their conclusion by telling them 
that if the sum  of the images is equal to the image of the sum, then we say that  the 
mapping is linear  , or that  the numbers are proportional   .  

  Game:  Invent some reproductions that aren’t proportional. Some examples might 
be:   

    Lesson 5: Change of Model 

 The whole fl ock of reproductions is still on the board. The teacher reminds the class 
of all they have learned working with the puzzle  and the boat reproductions. 
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  Assignment:  “Do you think we could start with a different model? For instance, 
 suppose I chose C as my model rather than M. Would I be able to designate the 
enlargement that gives F by the same number? Could you fi nd a number that desig-
nates this enlargement?” 

  Development  :  The children and the teacher work together – the teacher poses ques-
tions and the children answer them. 

 “We saw that we could get F from M by the enlargement 1      1.5. If I take C as 
the model, will 1      1.5 still work?” 

 To make the comparison, the students propose to calculate the respective lengths 
of the same piece of the design. They choose the boom measurement, which is easy 
to work with. Some (re-) calculate the image of 1 in F starting from M, thus con-
fi rming that it is 1.5. Others calculate the image of 1 in F starting from C, and fi nd 
that the mapping that takes C to F is 1      2 

 Students often comment that “It’s reasonable for the enlargement to be bigger, 
because C is smaller than M, so you have to enlarge it more to get F!” 

    Conclusion 

 If you change the model, for each fi gure you can still fi gure out the image of 1, but 
it’s different than before. 

 You can’t represent a fi gure by a number unless you indicate the corresponding 
model. It can be represented by as many different numbers as there are models to 
choose from. 

  Reproduction : the action and the image. 
 “Since we can have different models for the same fi gure, we can’t just put the 

number that designates the enlargement or reduction under the reproduction. It has 
to be put between the model and the reproduction in order to designate the map-
ping.” The resulting example is the familiar list of 11 fi gures, with a curved arrow 
going from M to each of the others and the image of 1 on the arrow. They are the 
numbers of the reproduction-action, not of the reproduction-image.  

    Calculations with Other Images 

  Assignment : “If we take as a model the reproduction we used to call 0.5 and repro-
duce it so as to make 1      3, which fi gure will we get?” 

 Since the boom on the reproduction in question measured 7 cm, the new one will 
measure 21 cm, which is the boom of reproduction F. 

  Next assignment : “What is the mapping that takes us from A, used as the model, to C?” 
 The teacher gives the boom lengths for both fi gures and the children compute as 

they did before. It turns out to be the same as the mapping that took us from the 
former 0.5 to F. 
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  Another assignment:  “If I use the enlargement 1    5, I get F. Which one was the 
model? What table could we set up to fi nd it?” 

 The teacher and the children exchange propositions, and then the children calcu-
late individually. They use the ratios in F to fi nd the measurements in the model:     

Model F

1 5
÷ 5 ÷ 5

1/5 1

× 21 × 21
21/5 21

 On the model, the boom length is thus 21/5 = 4.2. That’s the reproduction 
 formerly known as B.  

    Images and Reproductions 

 To determine a proportional  representation, how many reproductions do you have to 
show? Two, the model and its image. For sure, the same proportional reproduction 
can make each model correspond to a different image. For example, in the fi rst two 
of the three questions we just worked on we saw the mapping 1      3 fi rst taking 
0.5 to F, then A to C. 

 “Are there any other pairs of designs that share a reproduction-action? How can 
we fi nd all the enlargements realized in our collection of fi gures?” 

  Development  :  The students just sit down and start calculating random enlargements. 
The teacher holds out for a system that represents each and every reproduction. She 
puts a grid on the board with all of the images designated down the side as models 
and across the top as images, and gets the students to fi ll it in. This can be a skill exer-
cise, or an effort of a small group armed with a calculator, or a little competition: 
“Who can fi nd the smallest? The largest? One between this number and that?” 

 The formulations are not simple, but the children manage to master them, and to 
laugh at the apparent contradictions that they produce. 4  They fi nish by putting them 
all in order, from smallest to largest and checking out the effects of various of them.    

4    “The more you pedal less hard, the less you go forward”, as a child once explained to a fl abber-
gasted psychologist.  
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    Lesson 6: Reciprocal Mappings 

    Presentation of the Problem 

 “When we took M as a model, we found that the enlargement 1    1.25 produced E 
as a copy. Now we want to know what would happen if we took E as a model and 
M as the copy. Every length on E corresponds to a length on M. Is it a good (propor-
tional ) reproduction? And if so what is the enlargement factor?” 

 Protest from the class: “It can’t be an enlargement! It’s a reduction!” 

  Assignment : “Since you are sure it’s a reduction, let’s fi nd it!” 

  Development : This proceeds via an exchange of remarks, propositions and objec-
tions between the teacher and the children (and among the children themselves.) 

 The teacher writes up the beginnings of a table, with E and M at the top, and the 
children immediately propose to put in the corresponding measurements, starting 
with what 1 (in E) maps to in M. This one they calculate very swiftly, and fi nd that 
the mapping in question is 1→0.8. But they still have to verify that this reduction 
stays the same for all the measurements. This they do individually, though a lot of 
them think it’s unnecessary. Why? “It’s just gotta be!” – but they can’t articulate a 
reason. The teacher refrains from making objections. 

  Information from the teacher: 
  “The mapping that takes E to M is the mapping reciprocal  to the one that takes 

M to E. (She writes “reciprocal mapping” on the board.) Do you think that every 
proportional  reproduction that we have seen has a reciprocal? If so, would you 
know how to calculate it? They will also be proportional reproductions.” 

    Exercise : What is the mapping reciprocal  to 1→5/4? 
 Some of the students have to re-do the tables and calculations. The result is either that 

the reciprocal  mapping is 1→4/5 or 1→0.8, depending which tactic the student used. 

  Challenge : “See if you can fi nd a mapping that is equal to its own reciprocal .” 

  Results : This activity is relatively simple for all the children. It develops rapidly as 
a game (question and answer.)    

 Remark   This lesson can be omitted for fi fth graders, but it demonstrates very 
nicely the need to distinguish between the mapping that produces the reproduc-
tion and the image that it produces. Students can get by with thinking of enlarge-
ments as operations or the result of operations without being required to make a 
formal distinction, but the moment the problems start getting complicated, the 
teacher is left without any way to explain things to the students who are the least 
competent at constructing their own models. Teachers then have recourse either 
to teaching algorithms  (the traditional solution) or waiting until the questions can 
be presented formally (current solution). In either case, there is no negotiation and 
no teaching of the meaning. The diffi culty is not resolved, it is just disguised. 
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    Module 10: Multiplication by a Rational Number 

    Lesson 1: Multiplication by a Rational Number 

 The process starts with a review of everything the class knows about fractions, 
bringing back into focus the original construction of fractions as a measurement.

  “We constructed fractions, what did we do with them?” 
 “We put them in order” 
 “We added them,” 
 “We did some subtraction problems” 
 “We converted them into decimal numbers” 
 “What else do you think we could try to do with them?” 
 “Multiply them!” 

 “We have already calculated the products of two fractions, but we didn’t recognize it. We 
did some calculations that we could have written as one fraction times another fraction. We 
are going to see if we can fi nd which calculations they were. 

 We’ll need to fi gure out what it is that lets us put the x sign between two fractions. Why 
do we have the right to write that when it’s a different multiplication  from the one we know?”    

 Remark   To justify the use of the + sign on fractions the students contented 
themselves with verifying that the material operation they carried out, on 
lengths, for instance, corresponded well with what they were in the habit of 
associating with addition . 

 Here the meaning of the product of two fractions is quite different from 
that of the product of two natural numbers. The only really legitimate way to 
accept the sign “multiply” would be a detailed examination of the formal 
properties of the new operation and comparison with the known properties of 
multiplication . We think that such an exhaustive examination is inappropriate 
with children of this age, but that it is indispensable to have them inventory a 
certain number of properties

   Either that are conserved (for example distributivity  over addition ),  
  Or that change (for example the fact that the product of two whole numbers 

is equal to or greater than each of the two)  
  And, of course, to construct a new meaning for multiplication .    

 Defi nition of the product of two fractions.
  “We know that 3 × 2/5 is 2/5 + 2/5 +2/5, but is there an addition  problem that 

could replace the operation in 3/7 × 2/5? As you might suspect, we need to look at 
enlargements and reductions and not at additions to construct this new multiplica-
tion . We will proceed in three steps. 

  First step : Let’s see if we can fi nd an enlargement in which we might be led to 
write 3/7 × 2/5” 
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   The teacher gives the students a few minutes to think about it and possibly write 
something on a small piece of paper and put it on the corner of her desk. 

 At the end of this fi rst short period of refl ection (2 or 3 min) the teacher doesn’t 
ask the students for their answer. They will fi nd out whether they were right in the 
course of the class research.

  “Do you know an enlargement that we could call ‘× 4’? Up to now we haven’t 
put a × sign in front of numbers that designate an enlargement. But people often do 
put that × sign. See if you can understand why.” 

   The expected response is: “1 on the model corresponds to 4 on the reproduction” 
As soon as she gets it, she writes it on the board as a conclusion:     

Model Reproduction

1 4

 “Why can we call this enlargement x 4?” And he adds the following measurements:     

Model
1

Reproduction
4

5
3.5
3/5

 A student comes to the board and fi lls in the list of reproductions with 5 × 4, 
3.5 × 4 and 3/5 × 4, and often gives the result of the multiplication . 

 “We can call this enlargement “× 4” because the image of a number is calculated 
by multiplying the number by 4. Would you know the same way what an enlarge-
ment × 5 or × 7 would be?” 

  Second refl ection step : “Now are there some of you who can write in their note-
book how they might wind up writing 3/7 x 2/5 in the course of an enlargement?” 

 The teacher lets them think a few minutes, but doesn’t call for the answers. If 
some of the children, sure that they have found it, put on too much pressure, the 
teacher can invite them to “deposit” their answer on another little piece of paper on 
another corner of her desk (so that both they and the teacher can know at the end of 
the process at what point they knew how to defi ne the product.) At the end of this 
second period of refl ection, the teacher poses a new question: 

 “On the same principle, what would be an enlargement that we could call ‘x 
0.25’?” She follows the same procedure as for the fraction. 

 At the end she introduces a new notation: 
 “We will write the name    of the enlargement on top of the arrow, like this:”     

× 0.25
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  Third step: 
  “Now can you fi nd the circumstances in which we could write 3/7 × 2/5?” 

   And she waits until they give the answer

  “1 on the model corresponds to 2/5 on the reproduction 
 3/7 on the model corresponds to 3/7 x 2/5 on the reproduction.” 

   She can either take answers from the students if she thinks enough of them have 
it right or give one more piece of information and ask: “If we use the enlargement 
“× 2/7”, what are the images of the following?     

Model Reproduction

× 2/7
1
2
5

 Is it an enlargement or a reduction?” Students write their answers in their 
notebooks. 

  Fourth step :  Calculating the product of two fractions.  

  Assignment : “Now can you fi nd what we can do to decide what 3/7 × 2/5 means? 
Do you know how to calculate the result   ?”     

1 2/5

×  2/5

×  2/5

3/7

 The students work in pairs. They try to reactivate the techniques they discovered 
in the activity from Module 8, Lesson 3. 

  Strategies observed:  
 The students calculate by using either 7 or 3 as an in-between number, and get (in 
either case) the image 6/35. 

  Comment : Every year some children write directly 

 3/7 × 2/5 = 6/35. 

 The teacher, who goes from group to group during the working phase, expresses 
astonishment and asks how they got it. They tell her they multiplied the two numer-
ators and the two denominators. “Why?” “It’s just what you’re supposed to do!” 

 The teacher tells them that she can’t accept a step if they can’t prove it’s right. 
The children then solve it with one or the other of the strategies  above. 

  Collective correction:  The children who found it come to the board to demonstrate 
their strategies . It’s a rapid reminder since they did these calculations many times in 
the course of the previous module. Many observe and affi rm that you can do it by 
multiplying numerators and then denominators. 
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 The teacher agrees to check out this method, which she baptizes with the name 
of the student who proposed it. 

  Study of the method:  
 
 

  “Do you think this rule always works, no matter what the fractions are?” 

   The children hesitate and ask the teacher to give them another product. So she 
gives them 5/7 × 4/3. The children set out to calculate it both ways, and the teacher 
helps the ones who are having a little trouble. In the end they discover with pleasure 
that the rule works for this one, too, and enthusiastically endorse the “rule” because 
it worked again. 

 But the teacher points out that they only tried two examples and if they are going 
to adopt it (“institutionalize ” it) it has to work  all  the time, on any pair of fractions. 
So she proposes a new form of verifi cation in the form of a game. 

 Verifi cation of the rule 

  First game: 

    1.    The teacher asks the children to choose a number corresponding to these letters: 
a = , b= , c= , d= . Each child writes on scratch paper.   

   2.    Calculate (a + b): “Are you all going to get the same thing? Why?”   
   3.    Calculate (c + d): “Are you all going to get the same thing?” 

 “No!”   
   4.    Calculate (a + b) + (b + c)

   Then a + b + c  
  Then (a + b) + (b + c) − b       

  What do you notice? 
 The result is written on the board:

  
a b b c b a b c+( ) + +( ) = + +−

   

  Why? 

  Remark  :  The children love this activity. Most of them have seen older children cal-
culating with letters and they say so: “It’s just like 6th grade!” 

  Second game: “ What does a/b × c/d mean? 
 The teacher has a student come to the board while the others look on and com-

ment. The students sets up the usual format     

Product of numerators

Product of denominators

× c/d
1

× c/d
a/b

 With a little help from the teacher, the student works through the whole pattern, 
getting (a × c)/(b × d) 

  Conclusion:  The teacher points out that just the way it was in the fi rst game, the 
letters could represent any numbers at all, so the rule they discovered holds true.  
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    Lesson 2: Multiplying by a Decimal (Summary of Lessons) 

 The next day’s lesson repeats roughly the same process as Lesson 10-1, but with 
decimal numbers: a search for an example giving rise to 1.25 × 3.5 and calculations. 
Clearly it’s a question of calculating the length of the image of 1.25 in an enlarge-
ment that takes 1 to 3.5. The calculation is carried out initially by expressing the 
decimal numbers as decimal fractions , then directly, after a rediscovery of the way 
moving the decimal point represents the denominator. The algorithm  is recognized 
and practiced and given the status of something to be memorized, as it would be in 
the classical methods. 

  Results  :  All the children understand the algorithm  and the meaning of this multipli-
cation . But it is interesting to note that it gives them great satisfaction to be able at 
last to multiply two decimal numbers. 

 In fact, they have invariably long since been asking the teacher, “Why aren’t we 
learning yet how to multiply two decimal numbers, because we would know how to 
do it!” The pressure is particularly heavy in the course of the activity about the 
Optimist  (Module 8, lesson 7) because at that point there are always one or two 
students (either repeating the class or coming in from other schools) who calculate 
the images of the measurements in the Optimist (whole or decimal numbers) directly 
by multiplying them by the enlargement or reduction factors. 

 Since the teacher doesn’t take this procedure into account, and doesn’t exhibit it 
when the class does its collective correction these children feel ill treated and ask 
why their solution hasn’t been considered. Often there is one whose response to the 
teacher’s “Because we haven’t learned multiplication  of two decimals and you don’t 
know what it means” is that he does know – he has learned it. 

 In that case, the teacher has no choice but to have a collective clearing-up ses-
sion. She reminds the students of the meaning of the different multiplications that 
they have already dealt with: 

 4 × 125 means 125 + 1,125 + 125 + 125 
 4 × 2.5 (where 2.5 may be the length of a stick or the price of an object or the 

capacity of a container) means 2.5 + 2.5 + 2.5 + 2.5. 
 But what does 1.7 × 0.94 or 4.128 × 3.67 mean? 
 Obviously, the children then realize that there exist multiplications whose mean-

ing is different from those that they know, and they all agree that these calculations 
can’t be used at this point in the progression. 

 It’s easy to understand the relief they feel and express during this session, and 
their desire to do and use this long-awaited calculation!  

    Lesson 3: Methods of Solving Linear  Problems 
(Summary of Lessons) 

  Introduction (for the teacher)  The examples that follow will permit us to describe 
the typical progression of the study of a problem and to indicate how the teacher and 
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students draw conclusions from it that are explicit but defi nitely not learned by heart. 
We will also indicate as many as possible of the conclusions and remarks that the 
children may make as they master different methods of solution, different types of 
questions, different uses of linear  functions, etc. In order to avoid presenting a multi-
tude of problems we will concentrate all these conclusions slightly artifi cially on a few 
examples. In any case, from the moment that the students start solving the problems 
the teacher ceases to exercise control over the details of the means of coming to the 
conclusions, and focuses on keeping the class engaged and with its eye on the goal. 

 The teacher demonstrates as an example what questions it is worthwhile asking 
oneself in the course of solving the following problem, while explaining step by 
step the solution of the problem: 

  The children collected the cream from 2 l of whole milk and got 32 cl of cream. They 
also collected the cream from 5 l of low-fat milk and got 40 cl of cream. Can you 
answer the following questions:     

How much cream would you get from 50 l of milk? 125 l of milk? 250 l of milk?   
   How much milk would you need to get 4 l of cream? 2 l of cream? 10 l of cream?     

 The students discuss the problem and end up asking the teacher to remove the 
ambiguity of the questions. This helps prepare them to construct problems 
themselves. 

 The teacher makes comments and indicates how to present the givens, how to 
express the results (in the solution) and how to check the use of numbers and func-
tions. Then he asks the children to recall the different ways they have encountered 
to solve linear  mappings .  

    Lesson 4: The Search for Linear  Situations 
(Summary of Lessons) 

 In this lesson the teacher sets up a “tournament of problems  ”. On a regular basis, 
students are to come up with problems that involve solving a linear  mapping. The 
problems can be invented or taken from a book, but in any case the student who 
presents a problem must be able to give a solution if asked. 

 The tournament will be open until the end of the year. From time to time the class 
will spend a few minutes “judging the problems” the way pictures are judged at a 
painting exhibition: which is the most interesting, the most beautiful, the most origi-
nal, the most trivial – but it is not the students who are being judged, it is the prob-
lems. Only the teacher knows which student proposed which problem. 

 The primary goal of this activity is obviously technical: it develops in the stu-
dents a knowledge and culture of problems. By trying to classify them: problems 
about sales, about representations (in the ordinary sense), about relations between 
physical sizes, about percentages, etc., they observe their similarities and differ-
ences and varied characters. They will know them much better than if they were 
using the teacher’s choices. This is not the place for a standardized classifi cation! 
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It’s the activity that matters more than its result. And the traps and counterexamples 
stand out without it being necessary for a certain number of students to fall victim 
to them. The discussions, of course, point up ways to look for more examples. 

 The second goal is in effect psychological. This set up provides a nice safe zoo 
where they can approach the wild beasts to which they often fall victim.   
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    Module 11: The Study of Linear  Situations in “Everyday Life” 

  Remark to the teachers : In this initial paragraph, we will fi rst familiarize the chil-
dren with the designation of linear  mappings  using the vocabulary  of fractions. 

 The problems and the examples should thus be chosen appropriately. For exam-
ple, in the problem:

  “The 25 students in a fourth grade class go to the swimming pool every week. 
At the end of the year, 4/5 of the students know how to swim. How many students 
is that?” 

   The fraction 4/5 is a  ratio   between two sizes: the number of students knowing 
how to swim and the total number of students. It does not correspond to a  linear   
 mapping : we are not talking here about a rule for determining how many swimmers 
some other class should have. In fact, one might expect to compare the ratios. 
On the other hand, problems that correspond to “rules” – conventions or logical 
necessities – do furnish examples of linear mappings . 

 Examples of “rules”: 

 Composition of a food product (milk, bread, coffee, etc.) and transformations of it: 
coffee loses 1/7 of its weight in roasting; making fi g jam requires a weight of sugar 
equal to 3/4 of the weight of the fruit, etc. 

    Lesson 1: Fraction of a Magnitude 

     (a)    Introduction: Assignment    

 Weight of fruit in kilograms  Weight of sugar in kilograms 

 2        1.5 
 12        9 
 8        6 
 5        3.75 

   Is this table produced by a linear  mapping?

    (b)    Development:    
  Students verify it by the methods available to them: 

 Is the weight of sugar corresponding to the sum  of two weights of fruit equal 
to the sum of the weights of sugar corresponding to the two weights of fruit?

   First method: Some students suggest comparing the weight of sugar (15 kg) 
corresponding to 12 + 8 kg of fi gs with that corresponding to 4 × 5 kg of fi gs 
(4 × 3.75 = 15), but they are already assuming that the mapping is linear . Here 
this method provides no verifi cation.  
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  Second method: Is it true that if we multiply each weight of fruit by some par-
ticular number we will have to multiply the corresponding weight of sugar by 
the same number to fi nd the new amount of sugar? 

 The children verify that 2 × 6 = 12, does indeed correspond to 1.5 × 6 = 9, and 
2 × 4 = 8 to 1.5 × 4 = 6. Then they realize that they are going to have to do an 
awful lot of verifi cations (16, or at least 6). So some suggest working out 1 and 
using it to verify the rest.  

  Third method: Do you get the weight of the sugar by multiplying the weight of 
the fruit by a constant?  

  To fi nd this number, the children look for the image of 1, then carry out the 
multiplications 12 × 0.75; 8 × 0.75, etc.    

 Conclusion: the mapping is linear . 

  Note:  The children already know these different methods, and use whichever is 
the most effi cient in a given situation. They will be inventoried and institutional-
ized  a little later.

    (c)    Summaries of the table    

  “How can we summarize this table in a short recipe?” 
 The students propose their standard method using the image of 1:

  “You have to multiply by 0.75”, swiftly corrected to 
  “You have to multiply the weight of the fruit by 0.75 to fi nd the corresponding 
weight of sugar.” 

    The teacher has them convert to fractional notation and simplify the fraction 
to 3/4. 
 75/100 = 150/200 = 15/20 = 3/4 
 Then he reformulates it as

   “You have to multiply the weight of the fruit by 3/4 to fi nd the corresponding 
weight of the sugar.” 
  “You have to apply x 3/4 to the weight of the fruit to fi nd the corresponding 
weight of the sugar.” 

   He tells the class: “You will often fi nd this said with expressions like 
 The weight of the sugar is 3/4 the weight of the fruit. 
  To fi nd the weight of the sugar, you take 3/4 of the weight of the fruit, or you 
calculate 3/4 … 

 What you have just done here is to  calculate a fraction of a number.  
 Notice that in the table we fi nd opposite the number 4 (in the weights of the fruit) 

the number 3 (in the weights of the sugar). The weight of the sugar is 3 when the 
weight of the fruit is 4; the ratio  of the weight of sugar to the weight of fruit is 3–4. 

 Careful! The ratio  of the weight of fruit to the weight of sugar isn’t the same! 
What is it?” 
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    Exercises in Formulating Fractions in Terms of Linear  Mappings 

     (a)    Assignment: Here are some situations formulated in this way. 
 Translate them into the linear  mapping schema. 
 Then pose some questions, if necessary fi lling in needed information.

    1.    A merchant wants her profi t to be 2/5 of her purchase price.   
   2.    Wheat gives 4/5 of its weight in white fl our.   
   3.    Draw a rectangle whose width is 2/3 of its length.   
   4.    To buy on credit at a store, you have to deposit 3/8 of the selling price at the 

time of purchase.       

   (b)    Development: Recognition of the mapping designated by a fraction and search 
for a schema. 

 The children know for example that the fi rst situation has to do with a × 2/5 
mapping, and they can represent it by

   1 2/5
× 2/5

  

    For them, the problem is to know where to put the price and the profi t. 
 Often, if the reference situation is well known, outside information comes in 

to indicate the solution, for example, in the case where one is taking a part of a 
whole. Example (not true for this particular case) an image that is smaller than 
the original quantity… if you take two fi fths, then 5 can’t correspond to 2, so 2 
must correspond to 5. 

 Here the “semantic” information was intentionally rendered inoperative. The 
merchant could wish to make a profi t of 5/2 of her purchase price, because the 
profi t is not part of the purchase price. Also the situation is not well known to 
the children. In this case, the formulation itself must be consulted: the expres-
sion “2/5  of  the purchase price” shows that 2/5  is not  the purchase price – that 
the purchase price is what you’re taking 2/5  of.  

 So we have

   1 2/5
× 2/5

Purchase price

  

  and it must be that what we get to is the profi t. 
 Here the students go back over the formulations they have already encountered:

   For a purchase price of 1, the profi t is 2/5  
  When the purchase is 5 the profi t is 2 means that the profi t is 2 for [a purchase of] 5  
  The profi t is [2 per 5] (purchase price)    

 Two fi fth is the profi t; you have to multiply it by 5 to get 2 times the purchase 
price:

   

1 2/5

5 2
× 5 × 5
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    In response, students produce schemas such as

   

× 2/5Purchase price profit

Weight of wheat Weight of white flour
× 4/5

Sale price deposit
× 3/8

Length of rectangle Width of rectangle
× 2/3

  

    Remarks for the teacher:

    1.    The starting number multiplied by the number determining the mapping is 
equal to the ending number. Since we can get the starting number by divid-
ing the ending number by the fraction, distinguishing the starting and ending 
numbers is closely linked to the understanding of the product of two frac-
tions or of two numbers.   

   2.    The children should interpret the formulations directly. They must not be 
formally taught “algorithms ” for getting the right answer. Numerous exer-
cises and translations among the different formulations, accompanied by 
arguments of every sort (most of them particular to a specifi c example and 
thus not generalizable) will enable them to make sense of the cultural formu-
lations that they will run into (of which a few are pretty illogical.) In any 
case, this study will be resumed in Module 14, where, with the composition 
of mappings, it will be possible to get back the traditional meaning (3/4 
means divide by 4 and multiply by 3.)       

   (c)     Development (continued):  Formulation of questions and problems; search for 
necessary complementary information. 
 The students propose, for each of the above situations, several problems obtained 
by adding questions. For example (for the second situation), they might ask

•    The weight of fl our that you get  
•   The weight of grain that was necessary.    

 But this then requires that one know the weight of the grain in the fi rst case 
and the weight of the fl our in the second.     

 The children have no diffi culty in posing these questions thanks to their familiar-
ity with the tables. Nonetheless, this activity brings up interesting remarks on the 
relevance of information and questions. 

 Example: “A car has gone 100 kilometers and its tank is 3/4 empty.” 

 If we add that the tank was full at the start, then we can ask how many more kilome-
ters it can go:     

3/4 of a tank

1/4 of a tank (100 ÷ 3)  kilometers

100 kilometers
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 Since 1/4 of a tank is left, it can go 33 km. 

 But if instead of the information that the tank was full we say that 20 liters of gas 
are left, then what we can ask is the capacity of the tank:     

4/4 or a full tank

1/4 of a tank

20 × 4 = 80 liters

20 liters

 (and in this case the number of kilometers is useless.) 

 Further remarks for the teacher:

    (i)    Students often have diffi culties in identifying the three elements of the 
mapping:

    (a)    The domain set – the thing you are “taking a fraction of”, which is at the 
front of the schema with the arrows , but often named after the fraction is 
named, as it is in all of the examples above, and at times diffi cult to 
identify. 

 Examples: 

“The reservoir is 3/4 empty” 
 “A worker earns a certain amount and saves 3/40 of it.”   

   (b)    The correspondence: the way of fi nding the image of a given number. 
Classically, 3/4 describes the operation “multiply by 3 and then divide by 
four” (or possibly vice versa), which we will describe in module 12. Here 
the student says that 1 corresponds to 3/4, without making reference to 
some operation for getting from the 1 to the 3/4. This way we avoid vari-
ous diffi culties linked to

 –    The impossibility of actually making the division  being envisaged  
 –   Too concrete a representation (taking fourths of a sum !)  
 –   Or the complexity of the concrete operations envisaged.    

 But this makes the a priori identifi cation of the image set all the more vital   
   (c)    The image set of the values that are “a fraction” of another one is at times 

all the more diffi cult to distinguish in that the French language 5  permits a 
constant confusion between an operation and its result, a mapping and its 
image, an action or fact and the state that is its consequence (the marriage 
took place on such and such a date and lasted 20 years!) 
 The language of fractions assumes that it is obvious how to carry out a 
linear  mapping.       

   (ii)    We assume that the schema can be made by the students they before know the 
question posed and independently of it, using only the language of the repre-
sentation of the situation of reference. We assume next that the question can be 
represented before and independently of the solution to be produced.   

5    As well as the English one!  
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   (iii)    The students are thus invited to pose questions and to inventory the possible 
questions:

•    The search for the image (a fraction of a quantity)  
•   The search for the object (the quantity of which we know a fraction)  
•   The search for the mapping (the fraction taken – or the ratio  of the two 

magnitudes)    

 Questions provide the justifi cation for the rest of the lesson.   
   (iv)    The students comment that they “can’t calculate anything” if they don’t know 

the quantity or the number of which they are “taking a fraction”, but they can 
make the table, just as they could draw a rectangle whose width is two thirds 
of its length.     

 Calculations with “fraction-mappings”

    (a)     Calculating the image:  The teacher presents the following problems:

    1.    You buy 6 kg of fruit to make jam. This kind of fruit gives 2/3 of its weight 
in juice. You need to add a weight of sugar equal to the weight of the juice. 
How much sugar should you buy?   

   2.    Cotton shrinks when it is washed: it loses 2/9 of its length. If a piece of cot-
ton fabric measures 6.75 m, how long will it be after washing?   

   3.    4/25 of the volume of milk is cream. How much cream would you get from 
3/4 of a liter of milk?    

      (b)     Mathematization    with the children:  
 The teacher invites the children to make mathematical remarks about the prob-
lems they have just done. Some of them comment that they have calculated a 
fraction of a whole number, then a fraction of a decimal number, and fi nally a 
fraction of a fraction. 

 The teacher requests more precision : “What operation did you do to take 2/3 
of a number?” 

 “We multiplied the number by 2/3.” 
 “So what operation can we use to describe the mapping ‘take 2/3’?” 

 By similarity to Activity 10.1 (product of two fractions), the children propose: 

    

1 2/3

1 2/3
× 2/3  

 

   

is multiplication by 2/3!

 

 The teacher then puts a frame around    

Taking a fraction of something means multiplying by that fraction.

   (c)    Calculating a number of which a fraction is known. 
 For a holiday dinner, you buy a 3.6 kg roast. When it is deboned and cooked, 
this meat loses 2/9 of its weight. 

2 The Adventure as Experienced by the Students



87

 If you want to have to have 2.1 kg of meat after cooking, how many kilograms 
do you need to ask the butcher for?

   

Weight before cooking

Weight before cooking

× 2/9

× 2/9

2/9

2/91

29
× 9 × 9

Weight lost

Weight lost

1

Weight after cookingWeight before cooking
× 7/9

9 7

21

× 3

2.1

÷ 10

× 3

÷ 10

27

2.7
× 7/9

  

    The teacher asks what operation corresponds to this mapping:

   

9 7

1 7/9

× 7/9
  

             Summary of the Remaining Paragraphs and Sections 
of Module 11 

 The rest of Lesson 1 takes up the reformulation in terms of fractions of the 
mappings that they already know: enlargements, etc. Simplifi cation of fractions is 
recognized as the search for smallest whole number correspondences. The students 
study  different ways of realizing certain fractions of squares or of dividing a 
segment into any number of parts using a supply of equidistant parallel lines. 
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 Lesson 2 is dedicated to the study of percentages. Lesson 3 presents the corre-
spondences of the same magnitudes (scales). The determination of the length of a 
segment that is out of their reach leads the students to surround it with a rigid fi gure 
and make a reduced model of it. The issue is to show a simple use of scales. 
By studying the correspondence between different magnitudes, the teacher leads 
the students to the use of non-scalar linear  coeffi cients like the price per meter or the 
pounds per unit of volume. 

 While the second two modules in this section will provide students with occa-
sions for addressing the often hidden diffi culty of distinguishing between problems 
involving ratios and those involving linear  mappings , at this stage the original man-
ual simply presents the teacher with a warning of that diffi culty.    

 The Problem-Statement Contest (Commentary 2008) 
 The curriculum on which we ran our experiments from 1973 to 1980 intro-
duced different aspects of rational and decimal numbers by following new 
mathematical pathways. It consisted of the modules 1–11 and module 14. 
Teachers completed it with a classical exploration of the offi cial program – 
the metric system and application problems – with the standard organization. 
We were interested, among other research subjects, in evaluating the impact 
of our new introduction on the performance of the students in these well 
known domains. Starting in the late 1970s the study of the  didactical    contract  
led us to study problem solving. 

 The contest of problem statements, introduced in Module 10.4 of the man-
ual, recounts the fi rst endeavors of this program, which continues to be carried 
out today. 

 Developing on the ideas of Polya , who suggested making students experts 
in the solution of problems by teaching them methods and heuristics , we 
wanted the students to stop thinking of problems as tests or as individual chal-
lenges and instead to develop a culture made up not just of tasks observed, 
techniques, and known results, but also of knowledge under construction and 
of emotions. Heuristics can be a useful tool, but if they are taught as skills to 
learn and apply, they become nothing but bad theorems. 6   Analogy  is likewise 
a helpful but fl awed tool: we have shown, among other things, how the abuse 
of “analogy” raised to the rank of a teaching principle resulted in an augmen-
tation of students’ failures. 

6    We have shown that if the teaching of “problem-solving methods” follows the classic conceptions 
relative to knowledge and learning, the teaching will lead to uncontrollable metadidactical slip-
page  and to failure. [Metadidactical slippage is discussed in Chap.   5    .]  

(continued)
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7     Connaissances  and  savoir  both translate to “knowledge”, but they are used very distinctly. A good 
working defi nition is that  connaissance  is general knowledge and  savoir  is reference knowledge. 
For a more nuanced defi nition, see Chap.   5    .  

 The object of the  Contest of Problem Statements  is to improve students’ 
learning by leading them to consider classes of problems and solutions and 
not just types of problems, to examine what constitutes them, to discuss them. 
Above all, it is to change the psychological, didactical  and social conditions 
of the students’ activity by changing their position in the didactical situation . 

 Instead of the usual pattern of using the problems to judge the students, 
here the students judge and determine the value of the problems. Thus, as is 
done for works of art at a showing, the students themselves award prizes 
among the problems presented to them: a prize for the longest, the most inter-
esting, the most diffi cult, the most annoying, the most original, etc. 

 Ordinarily, problem statements are presented by the teacher. In our project, 
the students choose some and above all produce some themselves and discuss 
them with each other and with the teacher. 

 For teachers and society, problem solutions are regarded as a source of 
 knowledge about the students. Here the solutions become knowledge of the 
student about mathematics and about the problems. 

 Thus the search for and making of “original” problems can become a chal-
lenge for the students, a motive and instrument for recognition, comparison 
and classifi cation of problem statements, on condition, clearly, that the focus 
remain their mathematical solution. 

 The most important point concerns the status of the  connaissances   that 
appear and are formulated by the students or the teacher  in the Situation,  and 
their evolution toward the status of  savoirs   .  7  

 In this process, the students learn to analyze these texts, to pose questions, 
to distinguish the givens. Statement and solution form, in fact, defi nitions and 
theorems. The teacher must thus know their grammatical and logical compo-
nents. It is essential that he not teach them as  savoirs   and especially that he 
not explain them. The teacher’s situation is similar to that of parents of a 
young child who is learning her language, in that the parents must get her to 
respect phonetic rules without explaining them. The classifi cations the chil-
dren come up with are  connaissances   not  savoirs . To take this knowledge as 
a piece of  savoir  constitutes a metadidactical slippage  (teaching the meta-
object in place of the object) which generally leads to other slippages. 

(continued)
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    Module 12: More on the Problem Statement Contest 

    Lesson 1 

    Phase 1: Research 

     (a)     Assignment : “We will continue our problem statement contest (cf. Module 10, 
Lesson 4).     

 Today you are to propose problems that lead to doing a division . You will 
 write the problem statement  and simply  carry out the operation , but you should 
prepare the justifi cation for the operation in your head so that you can give it 
orally to your classmates. You may start with simple examples or ones we have 
encountered before. Don’t get complicated – introduce the dividend and divisor 
with a sentence and ask for the quotient. What we are interested in is the occa-
sions for doing division. 

 On the other hand, do try to put as many decimal numbers or improper frac-
tions as you can in the statements and the solutions PROVIDED THE PROBLEM 
STILL MAKES SENSE. 

 The session continues. Students present their problem statements and verify 
under the teacher’s guidance that the statement is correct (givens and question) 
and plausible, and that the solution offered is right. They inventory a certain 
number of diffi culties: confusion between the means of calculating (example: 
division ) and the statement or the means of checking (example: multiplication ), 
classifi cation by a partial calculation, etc.  

    Phase 4: Production of New Problems and Use of the Criteria 

     (a)     Examples: creation of a category      

 The students propose to put the following two problems into the same category:

  “Evelyn divides a 1.50 meter long ribbon into two equal parts. How long is each 
piece?”, and 
 “Three brothers share a sum  of 375 francs equally. How much does each 
one get?” 

    T: “Why do you think they are alike?”  
  S: “Because something is being divided in equal parts.”  
  T: “Still, there are some differences?”  
  S: “Yes, in this one it’s ribbon and in that one it’s money.”  
  T: “And can you divide up ribbon the same way as money?”  
  S: “??? No, but for numbers it’s the same.”  
  T: “Find an ‘intermediate’ problem that shows the similarity: for example, 
replace the givens from one with the givens from the other one.”    
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 The students propose the problems:

  “Three brothers share a sum  of 1.50 francs equally. How much does each one 
get?” and 
 “Evelyn divides a 375 meter long ribbon in 3 equal parts. How long is each piece?” 

   The teacher accepts the similarity provisionally – this will be a category of 
“divisions” – but brings the number problem back up.

    (b)     Creation of criteria     

   T: “So, changing the numbers doesn’t change the problem?”    

 The students are ready to think that changing the numbers does not lead to 
changing the operation.

   T: “Let’s take the same problem statement and change the numbers. What’s 
going to happen?”    

 The remarks that follow can make it possible to clarify the effect of the mag-
nitude of the numbers:

   Some numbers are plausible and others are not (value of the givens): a 375 m ribbon 
is unusual, but a 375 km ribbon is impossible.  

  If Evelyn divides up a 1.523712 m long ribbon the problem is plausible, but the 
precision  is ridiculous (representation of the givens.)  

  If the number of brothers were the decimal number 3.2, the problem would make no 
sense (nature of the numbers.)     

 The Classifi cations of Problems (Commentary 2008) 
 We classifi ed problems about division  of rationals using the following criteria:

   Classifi cation according to the material or symbolic manipulations carried out: 
long division  of natural numbers, then decimal or rational numbers, measure-
ments, exchanges, successive approximations, equal or unequal shares,…  

  Classifi cations according to special vocabularies
   Arising from practical or professional activities (scales, percentages, rates)  
  Arising from applications (speed, physical density, etc.)  
  Arising from some cultural vestiges (fractional measurements)     

  Classifi cation according to problematics 8   

  Classifi cation according to mathematical concepts,
   Either classical (types of operations, fractions, ratios, proportions),  
  Or more current (order, topology, algebraic laws and structure, measure, 

scalar, function, …) which are the criteria maintained in the course.       

8    A  problematic  is something that constitutes a problem or an area of diffi culty in a particular fi eld 
of study [Oxford English Dictionary] The French use problematics more specifi cally to refer the 
set of questions posed in a science or philosophy with respect to some particular domain.  

Module 12: More on the Problem Statement Contest



92

 In Lesson 2, the fi rst problems to classify are those that are familiar to the stu-
dents. They arise from the conception of long division . 

 The next paragraph brings up the review of long division  based on manipula-
tions: sharing, partitioning , attribution and distribution lead to different strategies  
according to regular or irregular conditions (leading to the equalization of parts, for 
instance.) The term “division” unites certain of the conceptions, but not all (such as 
the search for a remainder.) 

 Following that, classifi cation according to problematic leads to envisaging the 
calculation of the unknown term of a product or that of a component of a product 
measurement. Each conception leads to different manipulations which themselves 
bring up different modes of calculation. Classical teaching requires that children 
recognize division  “naturally” as the concept common to these varied conditions 
and at the same time that they support this recognition with concrete arguments! 

 The extension of long division  to division of decimal numbers happens naturally 
with the method of successive subtractions, which makes it possible to rediscover 
the reasoning and establish the algorithm  for bracketing a number [see Module 5.] 

 The use and comprehension of division  of decimal numbers are facilitated by its 
similarity to long division in the natural numbers. This is a recognized fact. But it is 
important to note that this facility hides a diffi culty that is easy to observe, which 
itself hides an epistemological and didactical  obstacle that is fundamental for the 
passage from the use of natural numbers to that of rational and real numbers. 

 Long division  is based on the idea of measuring something using something 
smaller as the unit. If by considering only the whole number parts of the dividend 
and the divisor the student can conceive of the long division that solves the problem 
next door to the problem required, he can simply extend the algorithm  by the calcu-
lation of decimal parts. For example, 17.4 ÷ 3.62 is understood fi rst in the sense of 
17 ÷ 3, the rest is a matter of the algorithm. This conception collapses if the long 
division indicated has no meaning. More explicitly, if the divisor is greater than the 
dividend, or if the dividend is less than two. The operation 0.4 ÷ 0.62 is the case that 
gives rise the most diffi culties. 

 Modules 14 and 15 make it possible to surmount this diffi culty in conceptualiza-
tion by means of a deep comprehension of the structure of rational and decimal 
numbers.    
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    Module 13: New Division  Problems in the Rationals 

 The fi rst lesson continues the inventory of problems that was undertaken in module 
12. The issue is fi rst to have the classifi cation completed by adjoining new problems 
where the division  is defi ned by a rational linear  mapping (i.e., one with a rational 
coeffi cient) expressed in any way. 

 The class should fi nd there the notions studied in the preceding modules, and can 
make an inventory of them: a measurement divided by a scalar, a measurement divided 
by a measurement of the same type or of a different type, a scalar divided by a scalar, 
etc. The class can recall that a division  also consists of fi nding a decimal expression 
(exact or approximate) for a fraction (module 7). This uses the idea that the result of 
a division expresses the measurement of the dividend if the divisor is taken as the unit: 
for example 12 ÷ 3 expresses that if we measure 12 with 3 as a unit, the result is 4. 
Measuring 3 with 4 as a unit gives a result of 3/4, like dividing 3 into 4 parts, … and if 
the numbers are measurements in meters, then the result is __ meters. 

 This leads the students to understand that a fraction is the indication of a division  
that one neither can nor wants to carry out, but about which one can calculate.

    (a)    But they may also discover that the mappings sometimes pose diffi culties. An 
example of these diffi culties: the students know how to fi nd the result of divid-
ing one fraction by another as long as the fi rst is the measurement of the thick-
ness of a piece of cardboard and the second expresses the thickness of a sheet 
of the paper that makes up the cardboard. But what does 3/4 ÷ 2/5 mean in 
general, in particular when the result is not a whole number? Interpreting this 
operation with the general idea that division  is partitioning  does not furnish a 
practical procedure. The equivalence  of commensuration  and partitions of unity 
always presents diffi culties.   

   (b)    Since problems often disguise the distinction – well known to our students – 
between ratios and linear  mappings , the teachers propose problems of the nature 
of the following example – which does not fi gure in the 1985 Manual: 

 “A father is 5 times as old as his son. How old is the son if the father is 35 
years old? How old will that father be when his son is 10 years old?” For the 
students, the issue is to recognize that the ratio  between the age of the father and 
that of his son does not determine a linear  function between their ages: the father 
will not be 50, but only 38. There is indeed a function, which fools the children, 
but it is a translation (+28). Clearly if the question had been the age of the father 
when the son is 35 years old the error would have been easier to detect.   

   (c)    The study continues with the inventory of the roles of division  in the study of a 
linear  mapping: fi nding the correspondent (the image) of 1 when the coeffi cient 
is known, fi nding the ratio  between the two values, calculating the coeffi cient of 
the mapping when one original and its image are known, calculating the origi-
nal when the mapping (the coeffi cient) and the image are known, etc. The num-
bers are decimals or fractions.    

Module 13: New Division Problems in the Rationals



94

  At this stage, the students conceive of all linear  mappings  as multiplications 
(for example, × 3/4). 

 Lesson 2 has them study linear  mappings  that are read as “divisions” and that 
will be understood as the reciprocal  of multiplication  by a number. 

    Lesson 2: (Extract) Division as Reciprocal  Mapping 
of Multiplication  (The Term Is Not Taught to the Students) 

 The session proceeds in the form of a sequence of problems that the students carry 
out rapidly. These problems provide the occasion for posing some mathematical 
questions. The teacher needs to make clear the distinction that he makes between 
these mathematical questions and the problems. The mathematical questions are the 
real object of challenges proposed to the students, the occasion for debates, and 
the real goal the teaching is aiming for. Problem statements, whether proposed 
by the teacher or by the students, are there only as means of treating those mathe-
matical questions, or as applications of knowledge newly acquired or discovered. 

    Division (by a Number), a Linear  Mapping 

     (i)     First problem statement:  “A movie ticket costs 35 francs. The total receipts of 
a theater are:    

 3,325 F on Monday  5,250 F on Friday 
 4,480 F on Wednesday  6,125 F on Saturday 
 3,675 F on Thursday  6,230 F on Sunday” 

    First question:  How many paying customers were there on each of the days of the 
week? 

 The students make a table in which they place the results of their divisions by 35. 
The teacher asks if it is the result of a linear  mapping. Students: “If we add up the 
receipts and divide that by 35 we ought to get the sum  of the numbers of tickets” “If 
there is twice as much money it is because there are twice as many customers.”  

    Division by a Fraction: Calculation of the Image 

 The issue is to fi nd out how to divide by 3/8. To support their reasoning, the students 
must think of a problem. For example: 

 “I have to divide by 3/8 if I am looking for the number of 3/8 mm sheets it takes 
to make different given thicknesses, for example 6 mm, 9 mm, etc.
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    (a)    Reasoning by an assumption contrary to fact:
   If the sheets were 1/8 mm thick, we would need eight sheets to make a thickness 
of 1 mm, so we would need 48 sheets to make 6 mm. But the sheets are 
3 × 1/8 mm, so these are three times thicker, so we need three times less (than 
48) to make a 6 mm cardboard. So 6 ÷ 3/8 = 48/3 = 16.      

   (b)    Reasoning by equivalence :
   6 mm is 48/8 mm, so the reasoning above produces  
  48/8 ÷ 3/8 = 48 ÷ 3 = 16.      

   (c)    Using the reciprocal :     
 The reasoning that leads to a search for the unknown term of a product leads to 
sentences like: “If I had 3 sheets of 3/8 mm, they would have a thickness of 
9/8 mm – there have to be more. 10 sheets → 30/8 – that’s a little more than 
3 mm – we need still more. It’s 16, because 16 × 3/8 = 48/8 = 6 mm”, which the 
teacher translates: “So we have to look for the number that you can multiply by 
3/8 and get 6.  ___ × 3/8 = 6” and he draws the schema     

÷ 3/8
6 ?

× 3/8

 With, admittedly, some effort, the teacher can then obtain a recollection of 
 module 9.6: to fi nd the object, you have to fi nd the image of 6 by the reciprocal  
of × 3/8. 

 The reciprocal  of × 3/8 is × 8/3, so     

× 8/3
6 48/3 = 16

× 3/8

 From these three methods, one can retain that each time, the student has multi-
plied the numbers whose image he wanted by 8, then divided by 3.  

 Division by a fraction is the reciprocal  of multiplication  by that same 
fraction (2008 Commentary) 
 Continuing studies of this nature with other examples was tried, but it is clear 
that this ambition is not very practicable without a veritable teaching of rules, 
without intense training with lots of exercises. Even if certain students are able 
to answer questions of this kind once – and most cannot – the reasoning is 
uncertain and painful. We explained this diffi culty by the complexity and variety 
of material operations that concretize them and are necessary for verifying them. 
The solution of this problem is the object of the two modules that follow. 

(continued)
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 Lesson 3 brings up various methods of getting the students to consider propor-
tional mappings . A “portrait game” trains the students to recognize and characterize 
them. A display – the “tapestry of proofs” – helps the students during collective dis-
cussions. It enables them to follow and to determine, at any moment of a debate, 
who claims what and who is supposed to prove what. The aim is to help the teacher 
to lead the class progressively to distinguish logical argumentation from purely rhe-
torical exchanges. This design, which was too complex and had insuffi cient a priori 
study, never led to any lesson projects that were satisfactory enough to be realized. 

 The students, with the teacher, pull together and summarize what they now know.  

    Extracts from the Original Text 

 Remark: Not every student can achieve a level of comprehension of these questions 
suffi cient to be able to produce individually the proofs sketched below. The proofs 
should not be required as skills to acquire. Furthermore, the “rules” proposed by the 
students should not immediately be institutionalized . They should remain in doubt – 
that is, something to be verifi ed, either by a calculation that uses the representations 
used in the proofs, which might not be general, or by previously established results. 

 Conclusions drawn with the students:

    1.    “We are going to make an inventory of the different ways of writing a linear  
mapping and of writing its reciprocal .     

 We have seen that we do the same thing no matter what the numbers are, so let’s 
choose some numbers to work with. 

 To illustrate the diffi culty of stating general principles, we report the following 
observation: 

 The students noticed that a multiplication  a × b = c could give rise to two 
divisions: c ÷ a and c ÷ b. But when one of the numbers is a measurement and 
the other is a scalar (a ratio  or a coeffi cient) one of these divisions may not 
correspond to a mapping, especially not a familiar mapping. 

 Example: rate x principal = interest. The mapping principal → interest (rate 
fi xed) and its reciprocal  are more frequently envisaged than the mapping rate 
→ interest (principal fi xed).   At the end of this activity, a lot of the students can 
answer the question: “One student says ‘the reciprocal  of (× 7/13) is (÷ 7/13)’. 
Another one says ‘No! The reciprocal of (× 7/13) is (× 13/7)!’ Which one is 
right?” But very few can “prove” it with a calculation. 

(continued)
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 The linear  mapping is given by an ordered pair :     

14 27

 If we want to express it as a multiplication , the mapping is × 27/14 
 The reciprocal  mapping is given by the ordered pair , 

  27 14     which is the mapping × 14/27. 

 If we want to use division  to express     

14 27

 we fi nd the division  by looking at the reciprocal  expressed as a multiplication . The 
reciprocal is the mapping × 14/27, so the original mapping is ÷ 14/27. 

 Let us present these results in a table, with a and b being two random numbers.” 

 Different ways to designate a linear  mapping :

 Linear mapping  Reciprocal mapping 
 a      b  b      a 
 1      b/a  1      a/b 
 × b/a  × a/b 
 ÷ a/b  ÷ b/a 

   To summarize this table, all we have to remember is that

   
× b/a = ÷ a/b

  

      1.    Shrinking and enlarging by multiplying and by dividing:

   (a)  “We found some mappings that shrank and some that enlarged, all of them 
expressed as multiplications. Can you give me some?”       

  The students talk about this apparent paradox, which they encountered in 
the lessons on the “Optimist ” (Module 9), and which surprised them consid-
erably. At that time they had remarked that “Up to now we thought that mul-
tiplying always made things bigger, because the only numbers we knew about 
were numbers bigger than 1!” 

 They propose mappings (which the teacher writes on the board), at the 
same time classifying them into two categories: those that enlarge and those 
that shrink (the teacher might add a few, too.) 
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 × 2/5; × 1/2; × 12/7; × 4/4; × 7/5; × 1; × 1/4; × 1.4; × 0.95; × 2.75; …

 The ones that enlarge  The ones that shrink 

 × 12/7; × 7/5; × 2.75; × 1.4;…  × 2/5; × 1/2; × 1.4; × 0.95;… 

   That leaves × 1 and × 4/4, which call for a reminder from the “Optimist ” sec-
tion: “We saw that if we made a reproduction using × 1 we got the original 
back!” 

 Conclusion: the teacher has them explicitly express the conclusion: “The 
mappings that shrink things are expressed as multiplication  by a number less 
than 1.”

   (b)    By dividing:    

  “We just recalled that we can shrink a model using a multiplication . Is it pos-
sible to enlarge a model using division ?” 

 To increase their comprehension, the teacher suggests that the students 
fi nd a translation like the one they are in the habit of using in such cases: 
looking for the image of 1. 

1 7
÷ ?

1 7
÷1/7

 What is the mapping that is expressed as a division  and lets us multiply by 
7 (or enlarge 7 times)? 

 The students suggest writing x 7, but that doesn’t answer the question that 
was asked. To help them, the teacher asks, “What can we divide 1 by to get 7?” 

 “It’s a number less than 1, because when we divide 1 by it we have to get 
back to 7. So it must be 1/7.” 

 The teacher writes:1 5/2
÷ ?

 and then asks, “Can you 
fi nd some more mappings?” But using the same system, the students only 
fi nd divisions of the form ÷ 1/n. So the teacher asks them to fi nd a division  
mapping that takes 1 to 5/2: 

 As before, they fi rst say “It’s × 5/2!” “How can we write it as a division ? 
See if you can fi nd other ways of writing this mapping.” The students remem-
ber that they had just learned that × 5/2 is the same as ÷ 2/5 (they give the 
proof: “The reciprocal  of × 5/2 is   × 2/5, and the reciprocal  of × 5/2 is ÷ 5/2. 
So × 2/5 is the same as ÷ 5/2”) 

1 7
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 Commentary 
 It might be useful to recall that history has attempted to make of the concept 
of fraction the universal instrument of measurement and of treatment of pro-
portionality. But in the end this attempt has failed. Today the concept is a 
mosaic of a plethora of particular expressions in an environment of metaphors  
that are neither general, nor well adapted to the physical manipulations that 
they claim to represent, nor well adapted to a general mathematical treatment. 
An ambition of the reforms of the 1970s was to erase this obstacle a little, but 
it still holds a major position in our cultures and our practices. 

 A visit to the fi eld of applications of proportionality traditionally occupied 
a major part of the program of mathematics. In the 1970s this fi eld was greatly 
reduced in the curricula of the period. Not wanting to lose any of this essential 
educational project, we tried to obtain equivalent  knowledge with the students, 
but with fewer lessons specifi c to different fi elds and more mathematical 
refl ections, and with a small dose of meta-mathematical and heuristic refl ec-
tions, on condition that they be formulated by the students and not set up as 
methods. We would encounter the terms of proportionality on occasion, but we 
would replace them with the mathematical terms introduced in the lessons. 

 We knew already that our curriculum (modules 1–11, 14 and 15) brought 
real improvements to the teachers’ and students’ possibilities for dealing with 
applied problems. We also knew already that with the usual conceptions and 
didactical  practices the use of arrows  that we had introduced risked provoking 
a formalist drift and a metadidactical slippage  if that use expanded beyond the 
terrain of the experiment. We then wanted to know what the effect of our 
mathematical introduction (modules 1–11) would be on problem solving, 
before the homogenization (the identifi cation of a/b with x a/b.) So we put a 
fi rst exploration of problems (modules 12 and 13) before the last two mod-
ules, which we continued to teach as we had before. Note that this study itself 
constituted a metadidactical slippage that had to be closely monitored (we 
expand on this notion in Chap.   5    .) 

 The additional modules were optional. That was a part of the experimental 
plan. To study the effects of our variations, it was important to maintain the teaching 
conditions that characterize the whole process under study. It was fundamental to 
our research plan that rather than the usual practice of evaluating how much 

(continued)

 As in the activity before, the teacher has them produce a collection of map-
pings expressed as divisions and classify them by whether they enlarge or 
shrink. This they do, observing also that ÷ 4/4 does not change the model. 

 Conclusion: the teacher has them explicitly express the conclusion: “The map-
pings that shrink things are expressed as division  by a number greater than 1, 
and those that enlarge are expressed as division by a number less than 1.”  
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 Modules 14 and 15 return to and complete the mathematical study suspended 
since the end of Module 10. The students unify the conceptions of multiplication  
and division  of fractions and rational numbers that they have learned, by putting 
them back into the multiplicative group of the rational numbers.    

material it was possible for the students to learn, we set a fi xed goal in terms of 
the content and then compared the efforts and time spent by the teacher and the 
students to surmount the diffi culties within that content. It was thus necessary to 
let them react to the diffi culties, whether by reasonable supplementary effort or 
possibly by giving up, and these would constitute our indicators. 

 It was possible for studying and classifying problems to come too early. 
The study benefi ted as in the preceding design from the good mathematical 
knowledge developed in the fi rst 11 modules. But the questions of proportion-
ality had become more diffi cult to collect and master because of local singu-
larities that appeared there. We observed that augmenting the collection of 
classical problems presented in different environments resulted in an increase 
in the volume of the vocabulary  and metaphors  brought into play and an 
improvement in the execution of algorithms , but also in a diminution of the 
students’ capacity to verify and explain their calculations. 

 The phenomenon seemed all the more marked in that we had taken a lot of 
care to get students to use manipulations, formulations and explanations that 
were more precise and better based on their actions. Classical knowledge 
about fractions passes for “concrete”. In fact, it consists of metaphors , verbal 
connections and cultural habits often stripped of real concrete meaning, unlike 
the knowledge that we developed. The complexity of the concept comes from 
its roots in the culture, the explosion of the collection of meanings and the 
absence of a suffi cient use of unifying instruments. 

 Later on the teachers did not always maintain the insertion of the classifi -
cation of problems before the last two modules, but it did make the last two 
appear to be a clarifi cation necessary for the teachers and for the students. 

 Owing to a shortage of researchers and observers, the complementary ses-
sions on the study of problems could not be undertaken with the normal and 
necessary scientifi c environment of the COREM . The effects of these modules, 
when they were carried out, therefore could not be collected and analyzed. 

(continued)
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    Module 14: Composition of Linear Mappings 

    Lesson 1: The Pantograph 

 Materials 9 

   One pantograph for every pair of students (the pantographs have different scales)  
  At least 4 sheets of unlined paper per pair of students  
  Tape to stick the paper to the desk  
  One eraser per pair of children    

 The pantographs are distributed before the lesson begins (Fig.  2.9 ).

9    This activity can take place in the context of a Social Studies class – a drawing, for example.  

  Fig. 2.9    Th e pantograph       
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      Introduction of the Pantographs 

     (a)    Instructions: “These gadgets are pantographs. Some of you may have seen them 
or even used them. They let you reproduce designs. So you are going to make a 
design on one of your sheets of paper and reproduce it on the other one.”   

   (b)    Development: The children work in pairs. There is always a moment of hesita-
tion (as is often the case when children are confronted with a new situation or 
an instrument that they have never used.) But very soon they organize them-
selves, make a design and fi gure out how to use the pantograph: the pivot 
mustn’t move, nor the paper (which is taped down), the pointer follows the 
model, the pencil draws the image.     

 As soon as they have produced a few designs they ask to modify the form of the 
pantographs, and the teacher says they may. They modify the scale, start drawing 
again, are surprised by some of the modifi cations and amused by others. 

 This free manipulation of the pantographs can hold their full attention for 30 or 
45 min. 

 Discussion of observations 

 After this playful phase, the teacher gathers them to make a collection of obser-
vations based on the designs and their reproductions.

    (a)    Instructions: “What did you notice?”   
   (b)    Process: The children make remarks and hypotheses:

•    You can enlarge or shrink by exchanging the pencil and the pointer.  
•   The shape of the image doesn’t change no matter how you set up the 

pantograph.  
•   The “enlargement” or “shrinkage” varies with the scale of the pantograph.  
•   The numbers beside the holes indicate the amount of enlargement or shrinkage.        

 This remark is immediately verifi ed by the children who made it: they display 
their model and its reproduction, measure a segment on the model and the corre-
sponding segment on the reproduction and write the measurements on the board.     

Design (cm) Reproduction (cm)

3.2Example: 5.4

 And calculate 3.2 × 1.5 (if 1.5 is the number by the hole on the pantograph) 
 3.2 × 1.5 = 5.25! 
 General astonishment! “They made a mistake!” The teacher suggests that all the 

students check the operation – notebooks, calculations … it really is 5.25! 
 So there is a 1.5 mm error! 
 The children make comments: “It’s not a big error!” “It’s bound to happen, 

because the pantograph isn’t very precise.” Many of them then want to check 
whether their own reproduction was better realized, and by pairs they verify using 
the above procedure. They get quite competitive: each one hopes to have succeeded 
better than the others! 
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 If the pantograph isn’t set up as a parallelogram, the image is deformed. 
 It always happens that one group sets up its pantograph without paying attention 

to the numbers by the holes. When the time comes to share their results they are a 
little embarrassed to present their designs because sometimes they haven’t fi gured 
out what caused the deformation. The class often gets a good laugh out of the repro-
ductions, which can be bizarre shapes. 

 Others who fi gured it out in the phase of free manipulation come to the aid of 
their comrades by saying that the same thing happened to them, but they noticed 
that the scales were badly set up and fi xed them.    

 Results   All the children know how to use the pantograph. They also all 
understand the remarks that were made and know thereafter how to get what 
they want out of a pantograph. 

    Lesson 2: Composition of Mappings: First Session 

    Materials 

 Two pantographs per group of two or three students, one set to enlarge by a factor 
of 3, the other by a factor of 1.5 

 Three sheets of paper of different colors per group and for the teacher.  

    Presentation of the Situation 

 “On the back of this    white piece of paper I made a design. Then, with this panto-
graph I reproduced the design on the blue sheet of paper. Then fi nally I reproduced 
the design on the blue paper on this yellow paper using this pantograph.” 10  (The 
designs are on the backs of the pages, so the students don’t see them.)

    1.    Qualitative predictions    
  “What can you guess about these designs? What can you say without seeing them?” 

 The teacher can count on the following answers: “They will look like each other” 
“They will be enlarged or shrunk”, “You have to see how the pantograph is set up.” 

 So the teacher demonstrates where the pointer and the pencil are on the two 
 pantographs. The children then say “The designs are enlarged. The yellow one is 
the biggest.”

10    The teacher’s pantographs are also set to scale factors of 3 and 1.5.  
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    2.    Quantitative predictions     
 “In a moment you are going to do the same thing: you will make a design on the 
white paper, reproduce it on the blue paper with the fi rst pantograph, then 
reproduce the one on blue on the yellow paper using the other pantograph. 

 But fi rst, I am going to give you two dimensions of my model:     

4
2.5

 (The teacher writes these measurements on the board.) 
 Can you predict the corresponding dimensions on the yellow paper?” 
 The students say that they need more information and request either by how 

much the pantographs enlarge or a corresponding dimension on the yellow paper.  

    Presentation of a Game: First Try 

     (a)    Assignment: “You are going to play a game: in your notebook you are to write the 
information that you want. I will give it to you. After that it is a matter of making 
predictions: you choose some numbers that designate measurements on the model 
and you predict the lengths of the corresponding segments on the yellow sheet. 

 You must write these numbers in a table. 

 Example:

   

4

2.5

3   

    When you have predicted the corresponding measurements, you can verify if 
your prediction is right by using the pantographs.

   If you choose a whole number and the prediction is right, you get one point.  
  If you choose a decimal number and the prediction is right, you get three points.      

   (b)    Development: 
 The children work in groups of two or three. The teacher suggests, if they 
haven’t thought of it, that each one calculate a measurement (because the points 
can be added up). That way they can have more because in the groups the chil-
dren have a tendency to calculate the same measurement together, which slows 
the calculations and at the same time limits their number. 

 While the students are making their predictions, the teacher prepares the fol-
lowing table:

 Predictions  Correct predictions  Points 

 Whole  decimal 

 Group 1 
 Group 2 
 Group 3 
 Group 4 
 Group 5 
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       (c)    Verifi cation, done in two parts:

    1.    First collectively for 4 and 2.5: the teacher has one child from each group 
come to the board. 

 One of the children draws a 4 cm line on a white paper; another uses the 
pantograph to make the fi rst image on blue paper; another does the second 
image on yellow paper. Finally still another measures the images and gives the 
results to the teacher, who puts them on an enlarged representation on the board:

   4 12 18  

    The teachers asks, “Who got these measurements?” Often there are errors 
caused by the pantograph, which gives rise to discussions. A consensus is 
established: predictions that are within three tenths will be accepted: for 
example, if they predicted 18 and came out with 17.7 or 18.2 their prediction 
would count as correct.   

   2.    For the other predictions, verifi cation is done in each group with  pantographs. 
A child from a concurrent group comes to check. If the activity takes too 
long (because the children are still not very adroit at using the pantographs) 
the teacher can switch to a simple collective verifi cation like the ones for 
4 and 2.5.         

 The teacher collects the results in the prepared table and scores the points.  

    Game: Second Try 

     (a)    Instructions: “You saw that it was possible to predict the measurements of the last 
image with calculations, some slow, some fast. You are going to try a second time. 
You will discuss with your group how to fi nd the speediest way to calculate the 
results, so that you can make the most predictions possible. Here is a list of numbers. 
You are to choose the numbers on this list that you want – as many as possible of 
them. You can even add some if you are very swift and if you want to.”

   

4

2.5

6

2

5.1

14.6

2.25   
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        (b)    Development: The children continue to work in groups, dividing up the work.     
 Collective synthesis: correction of results, inventory of methods

    (a)    Correction of results. The teacher takes the results the children have found and 
puts them on the board, correcting them in the process, then gives out the points 
in a way that lets the children know which team won. After that the class makes 
an inventory of the methods they used:   

   (b)    Inventory of methods: One child from each team comes to the board to explain 
his method. Clearly not all will come, because after each demonstration, the 
teacher asks who else used the same method. 
 First method observed: Calculation of intermediate values by linearity 

   
× 2

4

2.5

2 6

7.5

3

12

9

11.25

4.5

18

1
×2.5

÷4 ÷4÷4

×2 ×2 
2

× 2.5 × 2.5

  

    Second method: Calculation of intermediate values as a product:

   

4 12 18

2.5 7.5 11.25

× 3

× 3

× 1.5

× 1.5

  

    Third method: No intermediate calculations:

   

4 18

2.5 11.25

× 4.5

× 4.5

  

    Obviously, the children who used the third method were able to calculate all 
the results quickly, while those who used the two others, especially the fi rst, 
didn’t often get to the end of the list. They recognize that the last method is the 
fastest, but there are always a few who ask: “Why did you multiply by 4.5?”, to 
which some answer “Because 3 + 1.5 = 4.5” and others say “What we did was to 
multiply 3 by 1.5”. The latter is generally not accepted, however, because the 
children can see immediately without calculating anything that 3 + 1.5 = 4.5, 
whereas to multiply 3 × 1.5 they have to carry out a calculation (even if it is a 
mental one.) The problem therefore stays open. 
 The teacher writes on the board the following conclusion: 
 (× 3) F (× 1.5) = (× 4.5), where the F stands for “Followed by”   

   (c)    Open problem: “Can you predict what enlargement you’ll get from two panto-
graphs set to 3.5 and to 2? Think about it and give your answer next time.”     
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 A very anarchical discussion takes off among the children: some think it is 5.5, 
others disagree. The teacher doesn’t take part, and tells them to think about it for the 
next day and above all to fi nd a proof that what they are saying is true. The session 
ends in a state of suspense that excites the interest of the children and sets them up 
for the next activity.    

 Results   The children have composed two linear mappings. They have anticipated 
the result, found several methods, and chosen the shortest. They have discovered 
that they can cut down on calculations by replacing two linear mappings by some 
linear mapping, but they don’t know yet how to calculate it. 

    Lesson 3: Composition of Linear Mappings: Designation 
of Composed Mappings 

 Search for a solution to the open problem and validation

    1.    Review of preceding activity by the teacher. 
 “Last time we enlarged a model with the pantograph set to 3. Then we enlarged the 
fi rst image with a pantograph set to 1.5. We saw that the enlargement that would let 
us go straight from the original to the second image was (× 4.5) and we wrote that 

 (× 3) F (× 1.5) = (× 4.5)   

   2.    Open problem

    (a)    Instructions: “At the end of the last class, I gave you the following assignment: 
I used the pantograph to make the enlargement (× 3.5) F (× 2) and I asked 
you what linear  mapping could replace these two mappings. If you found a 
solution, write it in your notebook.”   

   (b)    Development: The children write an answer. After two minutes, the teacher 
asks what answers they wrote in their notebooks, and writes them on the 
board. There are always two: 

 (× 3.5) F (× 2) = (× 5.5) 

 (× 3.5) F (× 2) = (× 7) 

 So they proceed to a collective verifi cation.   
   (c)    Verifi cation: “How can we know which one is the right answer?” 

 The children propose to verify the mappings with whole numbers or 
decimals. 

 Verifi cation on a whole number measurement, for example 8:

   

8 28 56

× 3.5 × 2

× 7   
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    The mapping that gives 56 as the image of 8 is indeed × 7. The teacher 
then has the students calculate what the image of 8 would be under the 
mapping × 5.5. That one gives 44, which doesn’t correspond to what they 
got using intermediate steps. The students thus see clearly that 

 (× 3.5) F (× 2) = (× 7) 

 Verifi cation on a decimal number, for example 1.5 
 The students fi rst calculate the values using the two steps × 3.5 and × 2. 

Then the teacher has them calculate 1.5 × 7 and 1.5 × 5.5, and again the 
former corresponds to the image found and latter doesn’t. This solidifi es the 
conclusion that 

 (× 3.5) F (× 2) = (× 7).   

   (d)    Rule of composition for two mappings         

 The teacher has them formulate the rule that they found after these two 
verifi cations: 

 “To fi nd the linear  mapping that replaces two linear mappings , you have 
to multiply the mappings.” 

 Verifi cation on a very simple measurement: 1 
 The teacher asks the children if they couldn’t verify the same thing but 

avoid messy calculations where they might make mistakes. 
 “What’s the really simple measurement that you could start with and 

verify that the mapping you found is right?” 
 A few children suggest 1 (if nobody thinks of it, the teacher suggests it) 

and they try it right away. One of the students who proposed it comes to the 
board and writes:     

 Verifi cation of the rule for any sequence of enlargements or reductions 

  a)  Instructions:  “Now you know how to fi nd a mapping that lets you replace two 
successive mappings. But does that work if you have more than two mappings? 
 To know that, you are going to calculate a lot of examples that I am going to 
write on the board and after that you can say whether the rule is general.” 

 Examples: 

 (× 1.75) F (× 1) F (× 0.5) 
 (× 3) F (× 2.5) F (× 1.75) 
 (× 0.125) F (× 5) F (× 1.5) F (× 2) 
 (× 4.5) F (× 0.2) F (× 0.7) 
 (× 2.7) F (× 4.52) F (× 0) F (× 0.425) 

1 3.5 7

× 3.5 × 2

? × 7
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 Development: The children do the calculations in groups of two or three. The 
teacher assigns one or two series of mappings to each group, who are to 
replace the series by a single mapping, proving that it is correct. 

 c) Collective correction: 
 One student from each group goes to the board to show she has done, under 
the critical eye of the others, who follow the calculations attentively. They 
choose 1 as the measurement to start with. 

 First example: (× 1.75) F (× 1) F (× 0.5) = 0.875     
 The rest of the examples are done the same way. The teacher takes the 

opportunity offered by this correction process, which gives the students no 
trouble at all, to get the students to discover the properties of these composi-
tions of mappings: commutativity, associativity, the role of 1, the role of 0, etc. 
(Many of the children, in fact, start in on long, complicated calculations before 
noticing that there is a (× 0) in the course of the mappings.) 

 The teacher points out that no matter what the mappings are (enlargements 
or reductions), and no matter how many of them there are, they can always be 
replaced by a single mapping by multiplying them all together. 

 She points out to the children that these multiplications are different from 
the ones they already knew (cf. Module 8, activities 2-4 – fi nding the image of 
a measurement under a decimal number mapping.) 

 Individual exercises:     

 In the course of correcting these the teacher takes note of the methods. 
There are still children who carry out the intermediate calculations, thus making 
mistakes and proceeding much less swiftly than those who go directly to the 
mapping (× 3.5 × 1.5 × 4). This then provides an occasion for the children 
to become conscious of the utility of replacing several linear  mappings  with 
a single one and of making use of the rules that they learned in the course of 
the activity.   

13.4 (× 3.5) F (× 1.5) F (× 4)

25.86 (× 3.5) F (× 1.5) F (× 4)

11 (× 3.5) F (× 1.5) F (× 4)
?

?

?

1 1.75 1.75

× 1.75 × 1

× 0.875

0.875

× 0.5
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    Lesson 4: Different Ways of Writing the Same Mapping 

 Materials 
 One pantograph 
 Review of the rule of composition for mappings

    (a)    Instructions: Here is a sequence of linear  mappings : 

 (× 1.5) F (× 2) F (× 2.5) F (× 3) F (× 4) 

 Can our pantograph make that enlargement? If so, what linear  mapping 
could one substitute for the sequence of enlargements?   

   (b)    Development: The children work on their own in their scratch notebooks, work-
ing as fast as possible. The teacher invites them to fi nd the fastest possible 
calculations.   

   (c)    Correction: After 3 min, there is a collective correction. For that, the teacher 
sends one student to the board to write 

 (× 1.5) F (× 2) F (× 2.5) F (× 3) F (× 4) = 1.5 × 2 × 2.5 × 3 × 4.     

 The child explains how he did it and very often the others propose various 
solutions from their places:

   “What I did was to do everything in my head that I could:

   2 times 1.5 makes 3  
  3 times 3 makes 9  
  9 times 4 makes 36     

  and all that’s left is to multiply 36 by 2.5, and you can do that in your head, too:

   2 times 36 makes 72; half of 36 is 18, 72 plus 18 makes 90!”       

 Another one says “I started off with 3 times 4, that makes 12, then 2 times 
12, that makes 24. 24 multiplied by 1.5 makes 24 + 12 = 36, and all that’s left is 
36 times 2.5” 

 This goes on until all the procedures have been stated. This development lets 
all the students discover all the possible methods of doing the calculation and 
fi nd the fastest.

   At the end, someone writes on the board  

  (× 1.5) F (× 2) F (× 2.5) F (× 3) F (× 4) = (× 90).    

 Results   This activity presents no diffi culties at all. It not only gives the 
 children a chance to multiply some decimals and rediscover the meaning of 
this multiplication , but permits them, thanks to the rules discovered, to save 
some calculations and to design new mappings. 
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 Different ways to write the same mapping

    (a)    Presentation of the problem and instructions: 
 “What can the pantographs that you have been using do? (They can either 

enlarge a model or shrink a model). You have already used these different pos-
sibilities. So you should be able to give the meaning of:

   ‘Shrink by 3’.    
 Would you know how to do that with this pantograph and write in your note-

book what this mapping does?”   
   (b)    Development     

 The teacher gives the children a moment to think and then asks two of them to 
come an carry out with the pantograph, in front of all the class, a reduction by 3. 

 They set the pantograph to 3 and put the pencil between the point and the 
pivot, helped if necessary by remarks from other children. Then the teacher has 
them draw a 9 cm line segment on a piece of paper which she then tapes to the 
board and with the help of the pantograph they have set up, they draw the image 
of the segment. The class makes comments out loud:

  “The image is 3 cm long because it should be 3 times smaller than the model. Maybe it’s 
not quite exact on the design…” 

   The teacher reminds them of the last question he posed: “Would you know 
how to write in your notebook what this mapping does?” and lets the children 
think about it a minute or two. Then one of them comes to the board and writes:     

 The teachers adds some measures and asks the students to complete the 

following table:     

 He proceeds to a rapid collective correction and detaches the last pair on the 
board:     

9 3

÷ 3

6 2
3 1
1 1/3

9 3

÷ 3

1 1/3

 “How could we designate the mapping that takes 1 to 1/3?” 
 The children spontaneously answer “(× 1/3)”     

× 1/3

1/31
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 But they have to check that it really is the same mapping, if it works also with the 
preceding measurements: 6, 3 and 9, which a child promptly does:         

 It gives the same images as the mapping (÷ 3). So we can write (÷ 3) = (x 1/3) 

    Conclusion 

 The teacher says: “This mapping is called “dividing by 3” or “multiplying by 1/3”. It can 
be written as “divide by 3” or as “multiply by 1/3”. There are lots of ways to write it. 

  Other names for the mappings ÷4 and ÷2 

    (a)    Instructions: “We are going to try to write some other mappings in a bunch of 
ways. What reductions can we make with our pantograph using only whole 
numbers?

 –    You can shrink by 4 or by 2    

 “How can we write what those mappings do? Who knows how to fi nd several 
ways to write what they do?”   

   (b)    Development: The children work on it a moment in their scratch notebooks. 
Each one makes it a point of honor to fi nd a different name. The teacher pro-
ceeds quickly to a collective correction so as to keep the interest lively. 

 Children take turns coming to the board to write:

  

× 1/4

1/41     

 The mapping is (× 1/4) 

  

÷ 4

14     

 The mapping is (÷4) 

   “Could we fi nd another one by replacing the fraction 1/4 by a decimal number?” 
 The children calculate quickly in two different ways: 
 First way (most often used): 1/4 = 25/100 = 0.25 
 Second way: by division  1 ÷ 4 = 0.25   

   (c)    Validation of the names    

  Instructions: “We just found three different names: (÷ 4), (× 1/4) and (× 0.25) 
 Now we need to check whether they really are the same mapping. So we are 
going to apply them to some other numbers: 2.5, for instance.” 

× 1/3

6/3 = 26

× 1/3

9/3 = 39
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 Development The teacher suggests that the class divide up the tasks to save 
time: one row calculates with (÷ 4), one with (× 1/4) and the third with (× 0.25). 

 Correction: One child from each row comes to the board and writes the calcula-
tion for their row’s mapping of 2.5. All fi nd 6.25. 

 So the mappings really are all the same, because they give the same image. 
So we can write: 

 (÷ 4) = (× 1/4) = (× 0.25) 

 This equation is written up and left on a corner of the board or on another board. 
 The teacher goes through all the same steps for reduction by 2, getting (÷ 2), 

(× 1/2), and (×0.5), and having them check by applying all three to 7.8. 
 He writes beneath the previous equation:

   (÷ 2) = (× 1/2) = (× 0.5)    

 Other examples: generalization

    (a)    Instructions: “If you had a pantograph that shrank things by 5, or 6, or 9 do you 
think you could fi nd other names for those mappings?”   

   (b)    Development: The children work in their scratch notebooks. Some of them, by 
analogy, immediately write     

 (÷ 5) = (× 1/5) = (× 0.2) 

 Others still need to calculate the long way:         

 When it comes to (÷ 6) = (× 1/6) = ?, they hesitate because they observe that “It 
doesn’t come out right!” The teacher decides with them that they will write it as 

 (× 1/6) = (× 0.1 6  …) 

 Use of the different names 

 To fi nish up, the teacher organizes a brief session of mental calculation. 
He writes on the board the following operation: 

 4 × 0.25 = 

 and gives them 20 seconds to fi gure it out without writing it in vertical format. 
 The students hesitate, start the multiplication  mentally and protest when the 

teacher stops them after 20 seconds. Only one or two have found the answer. 

÷ 5

15

÷ 5

1/51

× 1/5
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The teacher points out the equalities that are still written on the board: nobody 
had thought of replacing (x 0.25) by (÷ 4) 

 4 ÷ 4 = 1. 

 The students catch on and ask for some more calculations to do. The activity 
fi nishes up as a real game. 

 18 × 0.5 = ? 
 25 × 0.2 = ?    

 Results   The students know several ways to write the same mapping. 

    Lesson 5: Rational Linear Mappings 

    Presentation of the Problem 

     (a)    Instructions: “What are the whole number linear  mappings  you can do with our 
pantograph?” 

 The teacher writes on the board, as directed by the students, 

 (× 2) (× 3) (× 4) 
 (÷ 2) (÷ 3) (÷ 4) 

 “I’m going to take the pantograph that enlarges by 3 and draw an image with 
it. Then with the pantograph that shrinks by 2 I will shrink the image I got and 
make a second image. Do you know how to write what I did?” 

 The class answers: “You multiplied by 3 and then divided by 2.” And one of 
them is invited to write these two successive mappings on the board:

   

× 3 ÷ 2

  

       (b)     Problem posed: “Can we combine these two linear  mappings  to get a fractional 
or decimal mapping?”

   

× 3 ÷ 2

?   

        (c)     Development: This is done collectively with the teacher. The children suggest 
taking a number and naturally choose 1 (because that is the number that has 
always had priority.)      
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    The Teacher Writes 

× 3 ÷ 2

1

     and asks a child to come to the board and complete the diagram, putting in the inter-
mediate numbers:     

× 3 ÷ 2

1 3 3/2
× 1/2

× 3/2

(÷ 2) is replaced by (× 1/2)

the mapping is (× 3/2)

 The teacher writes up the conclusion: (× 3) F (÷ 2) = (× 3/2) = (× 1.5), the last 
having been rapidly calculated by the children. 

 It is thus possible to replace two whole number linear  mappings  with a fractional 
or decimal linear mapping.  

    A search for all the rational linear  mappings  the pantograph can produce 

     (a)    Instructions: “Use the same method to fi nd everything else that we could do 
with our pantograph by combining all the whole number mappings.”   

   (b)    Development: The students work a little while in their scratch notebooks. After 
5 min, the teacher asks them to come write on the board what they have found. 
This gives a sequence of mappings:         

× 3 ÷ 3

× 3 ÷ 4

× 2 ÷ 2

× 2 ÷ 3

× 2 ÷ 4

 etc.  
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    Making a Table 

     (a)    Instructions: The teacher suggests making a double entry table to avoid missing 
anything or duplicating anything.

 × 2  × 3  × 4  ÷ 2  ÷ 3  ÷4 

 × 2 
 × 3 
 × 4 
 ÷ 2 
 ÷ 3  x 2/3 
 ÷ 4 

   He tells the children to complete the table, checking their results each time. 

 Example: (× 2) F (÷ 3)

   

(× 2) (÷ 3)= (× 1/3)  

1
2

2/3

× 2/3   

        (b)    Development: The children work individually. They complete the table they 
have drawn in their scratch notebooks and don’t write in a result until they have 
checked it as before. 

 Remarks: While they are fi lling in their tables they often make comments 
out loud:

   “You don’t always get a fraction!”  
  “You get some things we already learned!”    

 (They are talking about (× 4) F (÷ 2), for instance, which they saw at the 
beginning of the year in an activity on functions corresponding to operations 
on natural numbers.)   

   (c)    Correction: After 5–8 min of individual work, the teacher organizes a collective 
correction. The children take turns coming to the board to fi ll in the table that 
the teacher has drawn for them.     

 In the course of doing it they make more comments like

   “If you do (× 3) F (÷ 3) or (× 4) F (÷ 4) it’s as if you did (× 1) or (÷ 1)”  
  “If you do (× 3) F (÷ 2) = (× 3/2) it’s the same thing as if you did (÷ 2) F 

(× 3) = (3/2)”    

 This way they discover the commutativity of mappings. They verify that it is 
true for all cases, using the usual format. 
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 After checking all of the entries, the students formulate the rule for composition 
of mappings:

  “Any decimal or fractional linear  mapping can be gotten by doing two whole 
number mappings in a row. The number that is multiplied is always on top, and the 
number that is divided is on the bottom.” 

      Application exercises, done individually in mathematics notebooks 

 Instructions:

    1.    Find the rational and decimal linear  mappings  when it can be done, to replace 
two whole number mappings:

   Example: (× 7) F (÷2) = (× 7/2) = (× 3.5)  
  (÷ 5) F (× 4) =  
  (× 8) F (÷ 5) =  
  (× 4) F (÷ 5) =  
  (× 12) F (÷ 12) =  
  (÷ 5) F (× 5) =      

   2.    Find the mapping that is missing in each of these:

   (× 5) F ( ) = (× 5/3)  
  (÷ 4) F ( ) = (× 7/4)  
  ( ) F (× 2) = (× 2/9)  
  ( ) F (× 3) = (× 1)  
  (÷ 5) F ( ) = (× 1)            

 Results   This activity gives the students no trouble at all. They all under-
stand and know how to do the individual exercises. There will, however, be 
some errors to correct. The activity fi nishes with a collective correction (which 
can be done at the beginning of the next session if time runs out.) 
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    Module 15: Decomposition of Rational Mappings. 
Identifi cation of Rational Numbers and Rational Linear 
Mappings 

    Lesson 1: Decomposition of Rational Mappings 

 In this activity the teacher asks questions that have not been directly addressed, but 
for which the students can almost instantly fi nd an answer (Socratic  maieutique ) 

   Decomposition of a Rational Mapping into Natural Number Mappings 

 Teacher: “I want to carry out a 3/4 enlargement (which is a diminution) but I don’t 
have a pantograph that does × 3/4. With the pantographs we have would we be able 
to do the enlargement?” 

 The teacher takes care not to have his request confused with an “enlargement by 
3/4”, in the sense of adding 3/4, which would in fact be × 7/4. 

 When the students propose their answers orally the teacher writes them on the 
board using arrows , as was habitually done since the reproductions of the Optimist  
(Module 9). 

 For example:     

1
÷ 4 × 3

× 3/4

 “Without arrows  we could write (÷4)F(× 3)”, which she reads “divide by 4 and 
then multiply by 3” 

 She continues with similar questions: “× 7/12”, “take 3/5 of something”, then “× 
3.67” The children hesitate a moment and them some shout out (instead of writing) 
“You have to change the 3.67 into a fraction!” 

 3.67 = 367/100 → (× 367).(÷100)  

   Decomposition of the Reciprocal  

   “To get from a model to its image I used the pantograph × 4/7. How could I do 
the reciprocal  mapping with whole number pantographs?” 

   The solution is obvious materially, because pantographs are invertible. The stu-
dents  explain the action  and invert it by replacing the multiplications by divisions. 
It’s not enough to reverse the arrows !     
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 The students rediscover a result they already knew in another context. The 
teacher reminds them of this method of representing measures and operations on 
those measures:     

× 4/7

× 4 ÷ 7

÷ 4 × 7

× 7 ÷ 4

or × 7/4

1

÷4

1/4

× 7

7/4

×  4/7

× 4/7

× 7/4

4/7  

÷ 4

1/7

× 7

1

 “You can fi nd the reciprocal  of a fractional linear  mapping by decomposing it, 
taking the reciprocals and recomposing it.” 

 The teacher then studies in the same way the reciprocal  of a ratio :
  “Kafor coffee is a mixture: 4/7 of its weight is made up of Arabica coffee. What 

operation would let us fi gure out how many pounds of Kafor coffee we could make 
with various different weights of Arabica?” 

   Decomposition of the mapping x1; inverse mappings 

3 3

2.5

4/7 4/7

2.5

 “Here is a mapping. What is it?”     
 “It’s the mapping (×1).” 
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 “Can we decompose it?” 
 First reaction from the student: “Can’t do it!” 
 The teachers pushes them: “There isn’t any pair of mappings that can be replaced 

by ×1?” 
 Students: “Oh, yeah! You can enlarge by 3 and shrink by 3…” 
 The teacher illustrates their suggestion with     

÷ 3× 3

× 1

 After a few more illustration she poses the question: “There is a report that the 
number of accidents has increased 5 % over last year. By how much they decrease 
this year in order for next year’s number to be the same as last years?” 

 Some of the students fi rst try to use the arrows  directly:     

÷ 5%

× 5%

 But when they carry out the calculations they discover that decreasing by 5 % 
doesn’t work. So they pose 1 + 5/100 = 1 + 0.05 = 1.05 and represent the calculations 
to carry out as         

× ?× 1.05

× 1

 Results   The students become familiar with new vocabulary  and situations. 
For many of them, handling compositions of mappings seems easy but risks 
becoming formal, and too quickly escaping from the control that the students 
need to exercise by verifying the meaning. 

 Thus for the teacher this is not the moment to institutionalize  these new 
ways of calculating and still less to require mechanical reproduction of them. 
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    Lesson 2: The Meaning of “Division  by a Fraction” 
(Summary of Lessons) 

 “Would you know how to give a meaning to the operation 4 ÷ 3/5?”, asks the teacher. 
 What the students need to do is 
 First interpret the formula by a real situation like the ones they have encountered 

in solving problems. For example:

 –    You divide a 4 m long ribbon into parts that are 3/5 of a meter long  
 –   You buy 3/5 of a meter of ribbon for 4 francs. What is the price of a meter of 

ribbon?  
 –   A rug with area 4 m 2  has width 3/4 m. How long is it?    

 Then with the help of their schemas on quantities, relations and mappings they 
fi gure out the operations to carry out. 

 The teacher collects the problem statements they are trying to invent and helps 
them pull their ideas together, then organizes a discussion among the students about 

 Important Remark, 2008 
 This warning to the teachers was essential and needs to be explained to today’s 
reader to avoid misunderstanding the nature of the teaching and of the prac-
tices described here. Up until this moment, the arrows  have been used exclu-
sively to designate mathematical objects: either correspondences (not 
necessarily numerical ones), or natural relationships between numbers in the 
same set of measures (for example natural differences or later natural ratios, 
but never both at the same time). Later they were used to indicate rational 
linear  mappings  (horizontal arrows for the enlargement x 1.75, etc.) Now they 
are used in showing that natural ratios like (x3) or (÷3) can be replaced respec-
tively by (÷1/3) or (x1/3). But they have remained a free means of expression 
and have not been the object of any teaching or any evaluation . In Module 15 
the study of compositions of mappings gives them a new status. They become 
an instrument of analysis, of calculation and even of proofs, and thus also an 
object of study and discussion. Their disposition may change – but they do 
not have the properties of a good model. It is therefore essential that the 
teacher not treat them as a piece of mathematical knowledge, that he not teach 
them lest he launch a metadidactical slippage  that would be diffi cult to con-
trol. They should be used only as a means of expression, a prop for reasoning 
whose validity the student checks by reference to the actual meaning. It 
should be well noted that formal operations, their representations by arrows 
and the reasoning presented in these chapters  are not pieces of formal 
knowledge to be taught in the classical sense.  
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the statements they have come up with. A statement may be interpreted in a variety 
of ways. The teacher tries to get them to reformulate each of the possible interpreta-
tions of the givens as measure, then as linear  mapping. 

 This type of activity is organized by a didactical  schema known as a “tournament 
of problem statements”, which is described in Module 12. A few examples of simi-
lar questions lead the students to be interested in the interpretation of the value 
being sought as a ratio  of amounts or as a linear  mapping. 

 In this lesson the products of fractions are fi nally conceived as products, that is, 
compositions of direct or inverse linear  mappings  that make it possible to ask ques-
tions like: What linear mapping does 7/9 ÷ 3/5 represent?     

× 7/9 ÷ 3/5

?

 The decomposition of (× 7/9) into (× 7) followed by (÷9) is one they know well     

× 7/9 ÷ 3/5

× 7 ÷ 9

 Then (÷ 3/5) is the reciprocal  of (× 3/5)     

× 7/9 ÷ 3/5

× 3/5

 And that in turn can be decomposed into (× 3) followed by (÷5)     

× 7/9 ÷ 3/5

× 3÷ 5
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 Their reciprocals can also be calculated:     

× 7/9 ÷ 3/5

÷ 3× 5

 Thus the sequence of calculations is established as (× 7)(÷9)(× 5)(÷3), and since 
the order of linear  mappings  can be modifi ed, we get × 7 × 5 ÷ 9 ÷ 3 = 35 ÷ 27   

 Commentary 
 This “proof” calls for some details about the development of the lesson:

    1.    No, it was not a response given individually by each child in response to a 
test question or an individual exercise.   

   2.    The teacher offered the exercise for students to refl ect on individually for 
a while, then collected the students’ suggestions. Everyone achieved the 
fi rst step, and the second was routine.   

   3.    The third step gives no diffi culties to certain students, but although they 
respond with “÷ 3 followed by x 5” it is for bad reasons that they can’t 
justify: they broke up the fraction as they would have done with x 3/5, 
inverting the last sign. The teacher says nothing, but other students express 
concern. The class is not in the habit of calculating without knowing what 
they are doing.   

   4.    The teacher guides the discussion: “You don’t know how to decompose 
÷3/5?” Some of the students recall recent calculations about this kind of 
linear  mapping by taking numbers.   

   5.    The teacher suggests that they know how to decompose the reciprocal . The 
 students then develop the method. Each step is a sort of rapid individual 
exercise.     

 So here is a matter of a sequence of “exercises”. This would be a problem 
for students who wanted to solve it by themselves. Certain of them, stimu-
lated by challenges from others, could get there by themselves, but at what 
price and for what profi t (for themselves or the others)? The solutions of the 
steps are exercises that the teacher rapidly proposes and checks. 

 This problem is not a lesson and its solution is not a piece of knowledge to 
be learned. It is simply an occasion for using the knowledge that is in process 
of being learned and making it more familiar and more easily available. Not 
every student solves every exercise, but they will see a certain number of them 
again. 

 Module 15: Decomposition of Rational Mappings. Identifi cation of Rational Numbers…
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    Lesson 3: Division of Decimals 

   A Mapping For the Calculation of Decimal Numbers 

     (a)    Assignment: “Would you know now how to fi nd a meaning for this division : 
 1.38 ÷ 4.15 ?” (the operation is written on the board.)   

   (b)    Development: This phase proceeds like the preceding one: First, time for the 
students to refl ect and try things out in their scratch-notebooks. Then an alterna-
tion of individual and collective refl ections in the course of which the teacher 
has them explain the meaning of this division : “We have to fi nd the image of 
1.38 under the mapping ÷ 4.15”, and has someone write on the board (or writes 
herself):

   1.38 ?
÷4.15

  

    The children, who by this time are well trained on this kind of exercise, suggest 
writing 4.15 as a fraction: 415/100     

 First step:     

1.38 ?
÷415/100

 Referring to the activity of 15.2.1, the teacher asks: “What mapping can we 
replace ÷ 415/100 by?”, and writes the mapping (or has a child write) 

 ÷415/100 = × 100/415 

 Second step:     

1.38 ?
× 100/415

 Third step:         

?1.38

× 100/415

÷ 415× 100

1.38

× 100/415

÷ 415× 100

138 138/415

2 The Adventure as Experienced by the Students



125

 The children calculate 138/415 in their scratch notebooks      

1.38

× 100/415

÷ 415× 100

138 0.332…

   Conclusions and Installation of the Algorithm  

 The teacher asks what calculations they had to make to fi nd 1.38 ÷ 2.14. “We had to 
multiply by 100 fi rst (138) and then divide by 415.” 

 The teacher calls the students’ attention to this new method of “division ” with a 
different meaning from the one they knew before (see modules 12 and 13), which 
they can now calculate rapidly no matter what the numbers (without writing the 
successive subtractions or fi nding the intervals by trial and error.) 

 With a few remarks connecting what they have just learned with the notation and 
format they used previously, this concludes the curriculum.         

 Module 15: Decomposition of Rational Mappings. Identifi cation of Rational Numbers…
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                                  In Chap.   2     we presented an adventure in the learning of fractions and decimal 
 numbers, with our perspective being that of the students who were doing the learning. 
In this chapter we step back and have another look at the same adventure. We will 
fi rst set out the context: when and why the curriculum was created, the research ques-
tions underlying it and the school and research environment in which it was embed-
ded. With that in hand, we will look again at the adventure itself, this time from the 
perspective of the teachers. In Chap.   4    , we will take one further step back and exam-
ine the mathematical context and the reasoning behind the mathematical choices 
made in constructing the curriculum from the perspective of the researchers. 

    Background of the Project 

    Two elements of the background that were described in Chap.   1     are suffi ciently 
pertinent to this chapter that we will start by reproducing them: The lessons 
described in Chap.   2     took place at the COREM   ( Center for Observation and 
Research on Mathematics Teaching), which was a regular public school in a blue 
collar district on the edge of Bordeaux equipped with a carefully thought out and 
agreed to set of research arrangements. On the physical side, the arrangements 
consisted of an observation classroom in which classes would occasionally be 
held – often enough so that the students found them routine. The classroom was 
equipped with a multitude of video cameras and enough space for observers to sit 
unobtrusively. Other arrangements were far more complex, involving an extra 
teacher at each level and an agreement among the teachers, administrators and 
researchers setting out the responsibilities and rights of each. Nothing involving 
that many humans could possibly glide smoothly through the years, but the funda-
mental idea proved robust, and the École Michelet functioned as a rich resource for 
researchers for two and a half decades. 

    Chapter 3   
 The Adventure as Experienced by the Teachers 
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 On the theoretical front, the background has roots that can be traced back through 
the generations, but came to the foreground in the 1960s under the title of construc-
tivism. The title stems from the underlying tenet that knowledge is constructed in 
the human mind rather than absorbed by it. Applications of that tenet range from the 
radical constructivist  belief that absolutely no information should be conveyed to 
students directly, to the naïve conviction that having children manipulate some 
physical objects that an adult can see to represent a mathematical concept will result 
in the children understanding the concept itself. In the interest of providing some 
solid research in support of the theory itself, the researchers set themselves the goal 
of taking some serious piece of mathematics and proving that in certain conditions 
the children – all the children, together – could create, understand, learn, use and 
love that mathematics. Accompanying that was the goal of studying the conditions 
themselves. 

 Clearly the mathematics to be used for this experiment had to be both signifi cant 
and challenging. After some consideration they made a choice that will resonate 
with elementary teachers worldwide: fractions, or more properly, rational and deci-
mal numbers. They had, in fact, some reservations about whether rational numbers 
should be taught at all, but rational numbers were fi rmly part of the national require-
ments, and likewise fi rmly a heavy-duty challenge for teachers and students, so they 
met the criteria. 

 The remaining element of background concerns the format for the learning 
adventure itself. All of the researchers were strongly committed to the Theory of 
Situations – in particular to the hypothesis that children could learn mathematical 
concepts by being put into carefully designed Situations in which they would need to 
construct them – but had an equally strong commitment to the principle that before 
people were asked to accept it they should be presented with solid research validat-
ing it. This pair of commitments helped fuel the drive to create the COREM . Once it 
was created, the fi rst goal was to design research to test the theory. At the heart of 
that research was the curriculum that provided the adventure described in Chap.   2    . 

 We will postpone until the next chapter a discussion of some of the mathematical 
choices and how they relate to the more common structure for the teaching of this 
topic. Our next goal is rather to set the stage for the reader to re-examine the adven-
ture from the vantage point of the teacher. To do that, however, requires a deeper 
understanding of the philosophy behind the Theory of Situations and some of its 
practical consequences. 

 Public opinion in the sixties was exerting pressure for the mathematics taught in 
schools to resemble as much as possible, and as early as possible, the mathematics 
practiced and produced by mathematicians. Some even felt that from pre-school to 
university everything could be taught in a unique “defi nitive” form. However uto-
pian the idea may appear today, at the time it didn’t seem impossible to meet that 
challenge, or at least to study it seriously. 

 To do so required that the activity of mathematicians be modeled ,  and then that 
conditions be imagined that were realizable by the teacher and would lead the 
students to produce on their own, by a similar activity, some current mathematical 
knowledge. In point of fact, there is no such thing as a “mathematical activity” that 
does not depend on its objective, and the historical genesis of any mathematical 
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concept is so complex and so much wrapped up in its history that it defi es repro-
duction by any isolated modern individual. Furthermore, understanding a notion 
like that of rational or decimal number implies that at the end of the learning pro-
cess a subject has at her disposal a collection of widely varied, logically interlinked 
pieces of knowledge. Thinking in terms of this end organization leads to an order-
ing of teaching based on logical relations, for example a locally or completely 
axiomatic ordering. This is the thinking that dictated the classical didactical  
methods. 

 But mathematical concepts are constructed in the course of a far richer story 
involving questions, problems and solutions, where a much wider collection of rea-
sons comes into play. The researchers’ idea was to realize a process of construction of 
rational and decimal numbers simulating that sort of genesis. That is, a process mak-
ing minimal use of pieces of knowledge imported by the teacher for reasons invisible 
to the students. This type of project was subsequently labeled constructivist . 
  The initial objective of the experiment was thus an attempt to establish an “exis-
tence theorem”:

•     Would it be possible to produce and discuss such a process?  
•   Would the students – all of the students – be able to engage in it?  
•   Could the result of the process be, for each of the students, a state of knowledge 

 at least equal  to that obtained by current, standard methods?    

 The realization of the process made no sense unless simultaneously each lesson 
was conceived, studied, corrected and criticized with the most severe of theoretical, 
pragmatic and methodological instruments. These instruments were mostly derived 
from the Theory of Situations, but they were heavily modifi ed in the course of the 
experiment. Another goal was thus that the instruments should progress.  The second 
objective was to clarify and complete the Theory of Didactical Situations.  

 On the other hand, there was no question of relying on imagination and fantasy 
and then waiting to see if the results were satisfactory. Children are not laboratory 
animals. The methodological and deontological principles were very different from 
those in use today in that domain. In this real experiment, we set both minimal 
objectives in terms of success rates relative to median results at other schools, and 
time limits. If the method we used had not made it possible to achieve the results 
normally attained by classical methods in the specifi ed amount of time, we would 
have had the teachers follow some alternative activities – if necessary using other 
methods. The comparison between two methods was thus made  on equal results on 
curricular objectives , by comparing

•    the time and effort required to achieve this result,  
•   various differences in results that were not evaluated and were often impossible 

to propose as objectives, of which we will speak later,  
•   certain qualitative differences, some of them affective: pleasure and motivation, 

for the students and the teacher.    

 The third objective was essentially to know if the use of activities similar to those 
of mathematicians would give the scholastic knowledge of students different quali-
ties from that obtained by the standard teaching methods of the period. 

 Background of the Project
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 How then were the activities set up to simulate the ways in which mathemati-
cians generate a concept? One aspect will undoubtedly have struck the reader in the 
course of Chap.   2    : a great deal of mathematical progress is made communally, by 
mathematicians bouncing ideas around, building on each others’ thinking (possibly 
over the course of decades, but that’s another story!) Correspondingly, in this cur-
riculum a lot of class time is spent with students working together towards some 
mathematical goal. Given the current teaching culture, in which the expectation is 
that each teacher should be constantly monitoring the state of knowledge of each 
student and fi xing up any individuals who are lagging, this can be disconcerting. A 
sports metaphor is perhaps the most useful tool for illuminating the situation: 

 How do children learn to play rugby in England (or America or Aquitaine?) 
Children watch the game being played and have an idea of what is going on. People 
run around with a funny shaped ball that if you drop it clearly doesn’t do anything 
you want it to. After watching a bunch of kids playing for a while, a new kid asks to 
join in. They let him know that if he wants to be accepted he has to run in a particu-
lar direction and that he needs to throw the ball to somebody else before he gets 
trapped with it, that he shouldn’t knock down or sock an adversary, nor cry when 
somebody else gets the ball. The rest of the game he learns as he plays. After a while 
he will even be dealing with subtleties like playing a particular position, but he 
doesn’t need those subtleties either to enjoy the game or to make a genuine contri-
bution to his new-found team. And if he and his team stick together for a period of 
time, taking on various other neighborhood teams and profi ting from some low- 
pressure coaching, they will all learn from each other and develop both individual 
and team strengths. On the other hand, if someone were to break into this process 
and attempt at regular intervals to measure how “good” each child is at rugby, or just 
which skills each one has mastered, the effort would be not only futile, but damag-
ing to the whole team’s progress both individually and collectively. 

 In the same way, the class  does  mathematics, with everything that that necessi-
tates and all the satisfaction it produces. Each student participates and does certain 
things, personally and according to her lights. What she does visibly makes a con-
tribution to a group task, even if she doesn’t fully understand every aspect of it 
herself. At many stages, individuals would be disconcerted and the collective 
rhythm would be broken if the teacher were to cut in with a form of assessment  that 
implied that everyone ought to be able to answer some particular collection of ques-
tions. Nonetheless, as the process goes along, the whole class is developing both 
individual and collective understandings that lead ultimately to the knowledge in 
question, complex though it be. 

 Looking more deeply into the nature and structure of these activities requires a 
brief preparatory excursion into what appears at fi rst to be a simple semantic issue, 
but defi nitely is not (it took Warfi eld several years to accept that it was not simple, 
and she is still grappling with its complexities.) In the place where the English lan-
guage has a single verb: “to know” and a single noun: “knowledge”, the French 
language has two verbs: “ savoir”  and “ connaître”  and four nouns:  “savoir” , 
“ savoirs   ”,  “ connaissance   ”,  and  “connaissances   ”.  After numerous unsuccessful 
efforts to bend or dragoon the English language into conveying what we wanted it 
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to we fi nally agreed that we needed simply to leave the words in French and clarify 
for our readers what they were saying.  Savoir,  then, deals with the kind of knowl-
edge implied in the statement “I know that for a fact.” This is not to say that each 
 savoir  is actually a fact. It can be a procedure, or a connection, or some other nugget 
of knowledge. What characterizes the knowing or the knowledge is that it is solid 
and certain and that it is or can be shared. In more formal terms, a  savoir  is reference 
knowledge. A  connaissance , on the other hand, is more landscape than landmark. It 
is the feeling that the current situation is similar to a previous one whose results 
might be useful, or the suspicion that that tempting tactic might be a trap. It might 
be a little vague, or even occasionally incorrect, and furthermore it may be so unar-
ticulated that a person is unaware of having it, but it is what gives meaning to the 
 savoirs . Without a landscape, landmarks do not have much of a function. 1  

 For the many occasions when this distinction is needed for understanding the 
issues under discussion we will use the appropriate French term. When it is not, and 
especially when the distinction is a distraction, we will stick with the English.  

    The Relationship with the Theory of Situations 

 With these distinctions in hand, we are equipped to take a closer look at Situations and 
how Guy Brousseau’s theories play out in this particular curriculum. Structurally, it is 
easiest to think in terms of the slightly oversimplifi ed model of a small number of 
general Situations in which more limited Situations are embedded (we use capital let-
ters to distinguish these from the everyday situations that are part of the happenstance 
of normal life.) A general Situation would be, for instance, the exploration of com-
mensuration  that results from measuring the thickness of sheets of paper, or the explo-
ration of the ordering of rational numbers that results from bracketing them with 
intervals. Such Situations are not teaching objectives, nor even problems that students 
must learn to recognize in order to answer them by repeating some algorithm . They 
are many-faceted adventures that pull together a whole conglomeration of  connais-
sances   that will be provoked, activated, invented, used, modifi ed, and verifi ed, around 
a project of a mathematical nature dealing with an essential mathematical notion. 
Within these general Situations are sequences of more limited Situations, again not 
focused on some specifi c learning objective but rather on the progression of the gen-
eral adventure. Nonetheless, they are reproduced with a high enough density to be 
recognizable and to provoke, justify and accompany the learning, at least implicitly, of 
answers that suit the particular need (not necessarily immediately correct and appro-
priate ones.) Before long the students’ answers arrive at a level of maturity such that 
they can be identifi ed (recognized as stable, identical and useful), named, and some-
times made explicit by the teacher and/or the students themselves. This begins the 
production of  savoirs  , though at this point most are of only temporary use and value. 

1    This distinction is discussed further in Chap.   5    .  

 The Relationship with the Theory of Situations
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 Future learning depends strongly on the  set  of these results of an activity: the 
knowledge of the general Situation (the adventure) and of simpler and more identifi -
able Situations,  connaissances   that can be produced, improvised or manifested but 
only within the Situation, formulations that may be provisional and opportunistic, 
and of course  savoirs   that are recognized, verifi ed, practiced, certifi ed, detachable 
and exportable by analogy. 

 These  savoirs   constitute the only part that can be more or less formally evalu-
ated, and as a result they tend to be regarded by some people as the only objective 
of teaching. Evaluation  of  savoirs  alone, however, is totally inappropriate as a global 
instrument of evaluation and especially disastrous for making decisions about 
teaching (thus in particular for decisions by the teacher). To take the manifestation 
of these  savoirs  as the daily indicator, unique objective and unique criterion for suc-
cess engages the teacher in a paradigm of extremely closed and not very productive 
didactical  choices. Essentially it results in reproduction of the conditions of the 
evaluation, with a few variations and explanations to attempt to extend the useful 
domain of the required answer. 

 In reality, the teacher needs to take into account and manage the evolution of all 
the forms of knowledge constituting a given  connaissance  . She can only do it with 
powerful, attractive Situations where many different pieces of knowledge are at 
work at the same time, in a learning process with many repercussions, like the ones 
that result from the real mathematical Situations  proposed here. This does not mean 
that learning fl ows “naturally” from the students’ encounter with a few assignments. 
No Situation could possibly lead the students to the institutionalized  knowledge that 
remains the essential, effective and contractual objective of teaching. The teacher 
has an on-going responsibility to keep up the level of interest of the students and the 
production of  connaissances   and  savoirs   of all sorts that the students themselves 
perceive as the results of their efforts. 

 What we are talking about here is a collective adventure that produces many bits 
of spontaneous learning that would swiftly evaporate if the process did not give the 
teacher and the students the possibility of unceasingly realizing the steps of a recog-
nized didactical  process. Situations do not relieve the teacher of professional 
responsibilities and obligations. What they provide is an opportunity for the teacher 
to give a meaning, a context and an objective for the knowledge the Situation gives 
rise to. They also allow the teacher to escape the pressures and paradoxes created by 
the pedagogical stance of teacher as authority and student as obedient absorber. 

 We have just distinguished several forms of “a” piece of knowledge. The Theory 
of Situations analyzes the conditions of evolution of the sets of these forms of 
knowledge that are at the disposition of teachers. We need to say a word about how 
these different sets of knowledge are determined by the position of those who are 
using them. The organization of  connaissances   and  savoirs   by the scientifi c com-
munity serves as a reference, but knowledge that the teacher wants and needs to 
teach is necessarily a transposed version. And cognitive psychology shows us 
unambiguously that student knowledge differs considerably from student to student 
and consequently also differs from what the teacher wants or believes himself to be 
teaching. Does that mean that the teacher ought to adapt himself to all those indi-
vidual differences and make them the object of his work? 
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 The videotapes of these lessons show us that the explicit object of knowledge, the 
one the teacher and students are working on, is the one defi ned by the Situation. The 
propositions or responses of the students are taken up only insofar as they are intel-
ligible and useful for the advancement of the adventure. This position completely 
changes the relationship of the students to the knowledge that is in the course of 
being collectively constructed, and extends that change to all aspects of the process. 

 The students do not lack occasions for individually exercising their capacities. 
They have, in fact, more such occasions than in many traditionally taught courses. 
These occasions give the teacher a chance to follow the progress of the students’ 
work without making each exercise into a blunt and decisive test calling for an imme-
diate didactical  response from the teacher. The pressure on the ones who are falling 
behind to catch up with the group is collective, and it is all the stronger for that. 

 Before we progress to the teacher’s perspective on this learning adventure, let us 
take another, deeper look at the knowledge that the teacher is managing. In the 
Theory of Situations, and indeed for any thoughtful teaching, every lesson is built 
on various types of prior knowledge. An effective lesson modifi es the knowledge, 
transforms it, completes it. But only a small portion of the knowledge at work in the 
course of a lesson attains, by the end of that particular lesson, a state that permits the 
students to formulate it and fully understand it (and thus to be able to write it down 
as a response to a standardized (decontextualized) question). 

 In general, before it can emerge as a  savoir  and be exported out of the situations 
in which it has made its original appearance, knowledge must progress as a  connais-
sance   in hidden forms through different lessons, often numerous and widely dis-
persed. A  connaissance  is initially tightly attached to specifi c situations and limited 
by the role it plays in those situations. To be detached from them and take its place 
as a  savoir  it must be recognized, formulated and analyzed. That can be a long pro-
cess, one that constitutes a genesis of that  savoir . In every lesson several notions are 
under construction, often in different stages. Thus the teacher manages (teaches, 
provokes, sustains, rectifi es, etc.) a whole bundle of different  connaissances   and 
 savoirs   in varying stages of development. The means of managing each one is a 
Situation – or rather the role that a Situation makes that knowledge play by provok-
ing or justifying its use, its transformation or its replacement. The teacher must thus 
add or deepen Situations and the means of resolving them and also fi nd within them 
the questions that keep the process unfolding. 

 On the other hand, at a given moment, even if the Situation being worked on as 
well as the knowledge needed to resolve it are common to all the students, the rela-
tionships that individual students have with the Situation and the knowledge are all 
different. The maturing of a piece of knowledge is frequently spread over several 
lessons. The behaviors of the other students form part of the didactical  Situation, 
and consequently it is not possible to synchronize all of the didactical events among 
all of the students. At any given moment the teacher must be able to deal with left-
over, undigested bits and forms of knowledge as well as newly arising ones. That 
does not mean that she needs to prolong the process in order to keep addressing the 
old forms, but that she must not make it impossible to progress if the knowledge is 
still a bit imperfect. In order to do that, she must constantly assess both the state of 
knowledge of the class as a whole and that of each individual student. This provides 
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a totally different kind of information from that provided by an examination using a 
pre-set collection of questions. With this information she is able to make and carry 
out a continuous sequence of didactical decisions. 

 The teacher is dealing at the same time, without confusing them, with class 
knowledge and each student’s knowledge. These are different forms of knowledge, 
and are differently manifested. Hence the knowledge that reaches maturity in the 
course of a given lesson does not show up in the same way for all of the students. 
The process must make it possible for the knowledge that is indispensable for com-
munity use to be shared as swiftly as possible by the whole class, while leaving 
some leeway for less immediately crucial knowledge to be developed at different 
paces by different students. 

 To consider the objectives and results of a lesson exclusively from the point of 
view of certain  savoirs  , focusing especially on which ones have not been acquired 
(which in effect is the normal tactic) is insuffi cient for managing and conducting a 
learning process and in the long run dangerous. The minimal objective of a lesson 
should be to make it possible to approach the next lesson in good condition. The 
results of a lesson are represented by the number of lessons that can be taken up 
after doing it that couldn’t have been taken up if it had not been done. 

 A particularly clear illustration of a Situation where class knowledge and indi-
vidual knowledge tend to diverge and require a lot of managing is the sequence in 
which the decimal numbers are motivated and introduced by using intervals to 
bracket  a fraction [Modules 4 and 5], about which there will be further discussion 
later in the chapter. These lessons make unusually heavy use of class knowledge as 
distinct from individual knowledge. Certainly by the end of the sequence, the indi-
vidual knowledge of all (or essentially all) of the class includes the forms and uses 
and management of decimal numbers, and furthermore a well internalized notion 
that they resolve some messy problems with rational numbers. On the other hand, at 
many of the intermediate stages the process depends almost exclusively on a more 
general form of shared knowledge, where everyone is engaged, and everyone has 
enough partial knowledge to play a genuine part in developing the Situation, but 
very few if any have the whole picture in their heads. The results in terms of depth 
of conceptual understanding are well worth the effort, but there is no denying that 
the process is extremely challenging for the teacher!  

    The Perspective of the Teacher 

 Let us move on, then, to the perspective of the teacher. The adventure of these stu-
dents was also – and above all – that of the teacher. What decisions did he need to 
make, based on what indications? Our look at the adventure from the student per-
spective does not tell in what ways the teacher was free to adapt his lessons to the 
results of the students. There seems to be a great discrepancy between the complex-
ity of the lessons and knowledge that the teacher was responsible for and the appar-
ent simplicity of the knowledge – that of an ordinary class – ultimately provided and 
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formally verifi ed. What is the meaning of phrases like “All the students took part in 
the activity and fi nished it”, “The students understood that …” or, “After that the 
students knew that …”? What was the fi nal result? Why do there seem to be so few 
formal “learning exercises”? It is the adventure of the teacher that we will try to 
describe here to respond to these questions. 

 The teachers who had to manage this curriculum had a high density of aid from 
a team of researchers and advisors who explained the design, tried to understand the 
diffi culties encountered, and attempted to respond to them. The teachers took part in 
fi guring out the concepts their advisors were using and understood them very well. 
We will be speaking of the teachers here in their role as instruments of the work. But 
these teachers were solely responsible for what the students did. They had not only 
the right but the duty to refuse any suggestion that seemed to them not to be good 
for the students, and to put an immediate stop to any activity that got out of their 
control. Very swiftly, by reproducing the same curriculum each year, they familiar-
ized themselves with the profound modifi cations required in the ways of managing 
class, and adapted themselves marvelously to it. This is why, in this chapter where 
we want to look at the adventure from the spontaneous point of view of the teachers, 
we must anticipate the following chapter and mention some theoretical concepts. 

 In circumstances where testing plays a heavy role in the evaluation of teachers, 
schools and even the whole system, teachers are under pressure to focus on results 
that can be observed by means of standardized tests. Most of their decisions then 
depend on this ultimate step of the teaching process, and most of the techniques that 
are considered acceptable are based on the corresponding type of formalized refer-
ence knowledge, or  savoir . The present curriculum offers an alternative by working 
with all of the  connaissances   – general knowledge in all its forms and stages of 
development – that preceed and accompany  savoirs   without themselves being either 
 savoirs  or scholastic objectives. These  connaissances  are picked up in encounters 
and dealings with appropriate situations. They play the same role that the family 
environment plays in the learning of native language. 

 In the course of the process of teaching that we are presenting, a  connaissance   
evolves and changes form, use and meaning. In this way it becomes more precise 
and complete and ends up being known in the canonical form that the culture assigns 
it, as a  savoir . This  savoir  results primarily from living with these  connaissances   in 
many forms. All of them contribute more or less to the moment when it is suddenly 
obvious that “Everybody knows that…”. Knowing how to recite the rules of the 
road requires much more effort and is less effective than knowing them because one 
has practised them assiduously and knows the reasons for them. 

 The success of each step depends on the previous ones and more or less conditions 
the possibilities for the ones after it. The collection of these steps constitutes the pro-
cess of teaching and learning of a  savoir . In the course of each step, a number of  con-
naissances   are engaged, each at a different stage of development and evolving towards 
a different  savoir . The same  connaissance   presents itself in diverse forms: decision, 
formulation, explanation, which appear and evolve in appropriate situations. 

 The teacher does not evaluate  connaissances   like  savoirs  : it is how the activity 
itself works out that indicates how the project is advancing. The importance of 
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having each student participate and do what she has to do is not the result of an 
abstract educational intention, it is a necessity – like talking, sharing a culture or a 
project – a piece of evidence for the students and the teacher. That way the students 
participate in the development of the curriculum. That is what they call “doing math-
ematics” as opposed to “learning mathematics” (which they also need to do at times). 

 Carrying out such a process is at once more complex, more demanding of the 
teacher in terms of engagement, and less alarming for all parties. 

 A metaphor  might help: the teacher braids a rope whose strands are evolving 
 connaissances  . A particular  connaissance   may appear and develop and wind itself 
in with some other  connaissances,  then disappear from sight, only to reappear fur-
ther along the rope as a new strand that develops in perhaps a different direction and 
winds itself in with yet another set of  connaissances.  The thicker the resulting rope, 
the stronger the knowledge that it represents. 

 The art of the teacher resides in the possibility of observing each stage of the 
progression of the curriculum and associating with it the decisions most favorable 
to the stages that follow. Sensitive observations and reliable models for decisions 
are essential conditions for obtaining chains of decisions – though not the only 
conditions. 

 We will fi rst turn our attention to the basic question:

   How does the teacher manage the progression of the Situations and the learning of the 
whole class? How does she continually assess each student’s behavior along the way 
towards appropriating some mathematical concept, and how does she deal with possible 
divergences from the intentions of the curriculum?  

   The accuracy of the curriculum and the intimate knowledge of it that the teacher 
acquires in successive reproductions of it are helpful and reassuring. But a closer 
look reveals a wide array of possible accidents, detours and divergences. The suc-
cess of the curriculum and of the students is a result of constant vigilance over cer-
tain variables, of constant exercise of subtle choices of judicious decisions, and of 
clever corrections to prevent the students from losing interest, scattering and 
giving up. 

  For simplifi cation, the teacher distinguishes four major types of lessons: 

    1.    Lessons introducing a concept    
  These are lessons that introduce the students to an important new mathemati-

cal notion: the Thickness of a Sheet of Paper (Module 1, Lesson 1), the Puzzle  
(Module 8, Lesson 1), the Enlargement of the Optimist  (Module 9, Lesson 1), the 
Pantograph (Module 14, Lesson 1). These lessons are fundamental ones, which 
we were able to conceive in such a way that they almost invariably produce the 
desired behavior from the students. The role of the teacher is far from negligible, 
but it consists entirely of predicting and preventing any accident from messing 
up or slowing down the dynamic of the game, of directing the didactical  phases 
with spirit and conviction, of discretely encouraging perseverance on the part of 
some whose energy is fl agging, of welcoming student involvement with interest 
even when it is slightly off track and leaving the Situation to make any necessary 
corrections to these indispensable contributions.
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    2.    Intermediate Lessons    
  The students invest their fresh, new knowledge in intermediate Situations to 

solve known problems in slightly unfamiliar conditions. The teachers found 
these lessons to be the easiest to manage. It is always a matter of resolving a 
mathematical question. The students discover new knowledge in problems that 
make them use and use again the reasoning and calculations that are becoming 
familiar, but are not yet frozen into scholarly conventions. 

 For example, Module 8, Lesson 4, the Image of a Decimal, is a typical transi-
tion lesson. The introduction of the Situation appears to be the same as that of the 
Puzzle which immediately precedes it, but the measurements are in decimal 
numbers, not integers. The children have just fi nished constructing decimal num-
bers as a means of comparing and ordering fractions, but these decimal numbers 
are not yet objects of  savoir  , directly usable in a canonical manner. Sometimes 
they function almost like whole numbers (for ordering and operations), some-
times the students have to go back to their fractional form to fi gure out their still 
somewhat astonishing behavior. The teacher has not yet established one of the 
different modes of calculating fractions as a canonical method, which would 
have transformed the whole Situation into an exercise. 

 The proposed Situation, like that of the Puzzle, has the capacity to reject a fair 
number of the incorrect answers without the teacher having to intervene. On the 
other hand, its mathematical objective is considerably more modest than that of 
the Puzzle, which is designed to produce the discovery of a whole new property. 

 The students work in groups of three, but each student has the responsibility 
of producing a piece identical to that of his neighbors, which must fi t with theirs 
to produce a tessellation . This task gives rise to observations that are not an 
objective of the sequence, but do serve to maintain the interest of the students. 
For example, some of the groups set about to calculate the eight segments of the 
perimeter independently, but observation of symmetries enables others to see 
that they can get by with just three calculations. They point it out to their team-
mates, which brings out some questions and explanations. 

 The teacher circulates among the desks and observes the progress of the oper-
ations. She might intervene if something of no specifi c importance interferes with 
the work of the students, but not to suggest or correct the reasoning or realizations 
of the students. Only if an error is manifestly sterile, blocking, and incapable of 
fulfi lling its role of pointing students in the right direction does she step in. 

 Decimal measurement to the nearest millimeter is one of the results of a pre-
ceding phase that is built on 3 years of familiarity with the ruler. But it is not an 
objective of this lesson, especially since an error in the measurement of the 
model would only surface very late in the process. The teacher has two students 
measure the sides and write their measurements on the board for everyone to use. 
The work of the students deals with the method of calculation and the calculation 
itself. The teacher insists on having students carry out the calculations individu-
ally before comparing the results with others in the group. But it is acceptable to 
help a comrade with one or two of the calculations, and to discuss which method 
to choose. There is absolutely no obligation for all the members of the group to 
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use the same method. However, a member of a group is allowed to insist on 
understanding what another member did. 

 Students are thus motivated to use methods that others can understand or at 
least reproduce so as to make their own calculations. But they are also motivated 
to have several methods available if possible, so as to present them for their 
classmates and the teacher to admire in the presentation phase of the lesson. The 
teacher permits this goal but doesn’t encourage it much, in order to avoid the 
proliferation of equivocal propositions that could soak up a lot of everybody’s 
time and energy. 

 No explicit reference is made to the procedures used in the previous lesson. 
The students do not have to reproduce what they did the day before, just to use it 
for inspiration without losing sight of what they are now doing. That makes an 
implicit rule for the teacher, who must avoid saying, for instance, “Just do what 
we did yesterday!” That would be a purely didactical  argument. This Situation is 
different and should offi cially be examined independently. The similarities are 
the student’s responsibility. To be sure, the expectation is that the student will use 
or try to use what he did the day before, but of his own volition. 

 Since the numbers are the same for everybody, it is hard to maintain the 
uncertainty. It is absolutely necessary that the individual part be respected and be 
required for the making of the pieces. The teacher needs to verify that each stu-
dent has had to carry out by herself some calculations similar to the ones from 
the lesson before. If it is needed, the teacher gives different groups projects with 
different dimensions. 

 This lesson is close to being a classical exercise. The children do carry out 
similar calculations over and over, but here it is in a completely different spirit. 
These calculations are justifi ed by a collective task, not by a personal project of 
perfectionism required by a monitor. Knowledge is made evident by its use in a 
new “adventure”; it is going to become familiar, with or without the aid of formal 
description, which will not turn up until it is needed for the development of fur-
ther knowledge. In this process, the pressure to turn the scholarly activity into an 
individual formal learning project is minimal. The engine is the participation in 
the construction of a collective and individual culture.

    3.    Terminal lessons     
 The following lesson (Module 8, Lesson 5) proceeds just the same way, but it 

is a different type: it provides a conclusion and an institutionalization . It looks 
like a continuation of the preceding one – it takes up the same  milieu   and it is still 
about a fi xed enlargement: 1 → 3.5. But the questions are very different and not 
“motivated”. The teacher asks for the images of a bunch of numbers that are 
clearly of a particular kind: 1/10, 1/100, 1/1,000, etc. In the process of carrying 
out the calculations, the students come to the realization that they can now 
deduce from what they already know a new (for them) rule for division of a deci-
mal number by 10, 100, 1,000, and that they can say it, prove it, practice it on 
demand, and require other people to understand them without having to repeat 
their demonstrations. It is just a question of recognizing what they already know 
how to do and nailing it down with rules and words that express what they 
already think and know. The numerous calculations that they have to make are 
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justifi ed by a goal held by the community of students, but it is a knowledge goal 
that they can see approaching and that they achieve. 

 This looks exactly like a classical lesson, except that it is the students who are 
supposed to guess and establish the  savoir   that is to be learned in order to resolve 
the situation proposed. It would be only an exercise if the method had been laid 
out in advance. It is completely simple to solve, and the students work individu-
ally. The question is different and arbitrary, but the answer is known (not for 
sure, but it can be guessed.) 

 The numerous individual attempts are not repeated exercises. They are 
attempts, more or less successful and more or less appreciated by the others. The 
goal is to be able to continue taking part in the common adventure with the other 
students, to be able to present one’s ideas and bring in one’s work. It is not the 
pursuit of a personal egocentric goal supported only by the undependable satis-
faction of adults. 

 The formulation of the rule for dividing decimal numbers by 10, 100 and 
1,000 is stated by the students at the request of the teacher, accepted (i.e., insti-
tutionalized ) as a  savoir   and immediately applied in exercises that are promptly 
corrected. This is the normal method, and it has the usual results. Many of the 
students understand, all of them make some correct calculations and many make 
mistakes. The teacher is not expected to hold out for an immediate, defi nitive, 
and general success on this important question. Because it is used frequently, 
they will be reminded of it often and the teacher can follow the individual prog-
ress of the students until they get it. The goal of Situations of institutionalization  
is for the students to know that they have a common repertoire of objects, terms 
and  savoirs  , which can be best understood in exchanges with others if they use 
the conventional solutions, terms and explanations.

    4.    The process of generating a concept    
  The most complex lessons for the teacher are those where for an extended 

period she must manage provisional, uncertain knowledge in order to bring out 
different aspects of a concept. Ambiguities are only gradually resolved, nothing 
is formalized but nothing should be forgotten. 

 The best example of this type of process is the sequence of Situations leading 
up to the construction of the decimal numbers (Module 4, from Lesson 1 to 
Lesson 4). In this type of sequence the teacher and the children use and evolve 
 connaissances   that cannot be set up as  savoirs  . Every Situation prepares for the 
one that follows as much by the questions it raises as by the answers it provides. 
The most important thing for the children is remembering not the specifi c out-
comes of the adventure but the things they have encountered along the way –  intervals, 
end-points, interval lengths, the search for a strategy  for reducing the interval of 
uncertainty, etc. Nothing is to be learned in fi nal form, but all the calculations they 
have made contribute to an incomparable familiarity with the rational and decimal 
number line , and with the calculation and location    of those numbers. 

 These lessons have to do with the order and topology of the rational and deci-
mal numbers. They come close to reproducing an almost historic and scientifi c 
development, but the objectives and real signifi cance of the sequence remain 
obscure to the students until quite late. It’s a matter of comparing the size of 
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fractions, fi nding an interval around them, estimating them, ordering them, 
improving on the intervals, and the like. At the end of the route, after Module 8, 
Lesson 5, the students invent a method that could be called a division, but that for 
them is just the method of fi nding a decimal expression for a fraction by locating 
it in successively smaller decimal number intervals. 

 In the opinion of the teachers, the fi rst lessons of this sequence were the most 
diffi cult ones to manage in the whole curriculum. Nonetheless, they were suc-
cessfully reproduced every year for 25 years with the same results. 

 Within the lessons, whatever the type, the teacher must make choices based on 
the state of knowledge of the students, which brings us to our next question:

   What are the manifestations of student mathematical activity with respect to a 
connaissance   ?  

   In the course of carrying out a Situation, the teacher must keep track of the func-
tioning and evolution of many forms of  connaissances   related to the  savoirs   that she 
wants her students to acquire. 

 A major mathematical  connaissance   makes its appearance in the curriculum as 
an initiative of the student in different roles and conditions, and generally roughly 
in the following forms and order: 

    Observable Aspects of Connaissances  

•     Student decisions. For these the  connaissances   need only be adequate for deci-
sion making, whatever the form in which they are conceived (Action Situations )  

•   Formulations that may be improvised but must be intelligible (Formulation or 
Communication Situations  )  

•   Proofs that it are valid, and consistent with what is already known. The proofs 
must be recognized as valid by peers (Validation Situations )  

•    Savoirs  extracted from their context and offered in a situation where there may 
be doubts about their pertinence or utility, but not about their validity.    

  Savoirs  follow a different route, since their status as reference knowledge needs 
direct action from the teacher. They nonetheless need to be kept track of.  

    Manifestation of Savoirs  

•     As a reference: its defi nition or certain of its properties, expressed in a canonical 
fashion, are declared or recognized by the teacher as personal, interpersonal or 
cultural references (Institutionalization  Situations)  

•   Explicit investment of these references by the students in problems or exercises 
and in proofs.  

•   Casual use as references or implicit knowledge in new uncertain situations 
(Action Situations)    
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 Although the succession is not arbitrary, it is also not a formal necessity. It can be 
adapted and be responsive to the possibilities and necessities of the curriculum, which 
itself is subject to many other constraints. In this curriculum, all unnecessary steps 
and digressions have been eliminated. Some Situations produce a rapid evolution 
while in other cases several Situations are necessary to achieve a single step. Different 
 connaissances   are involved in the same Situation, in different forms and roles. They 
may advance all together or separate themselves in conjectures or reasoning. This 
process simulates as authentically as possible a genuine mathematical activity. 

 We will not detail here the tangle of  connaissances   and  savoirs   that turn up 
together in the course of each lesson, each evolving in a specifi c way under the 
infl uence of successive Situations in the course of the curriculum. The teacher must 
stay conscious of the dependences that come into play among these  connaissances  
in the course of the different steps. The reader can follow the twists and turns of the 
adventure in Chap.   2    . Here the issue is to understand the action of the teacher while 
the adventure is in progress. 

 Teaching a mathematical subject presents a teacher with two essential and dis-
tinct types of diffi culties: those connected to carrying out each episode (a whole 
lesson or a particular phase: assignment, exercise, correction, assessment , etc.) and 
those connected to the total trajectory: choice of successive episodes and the pas-
sage from one episode to another (or from one lesson to another.) The former have 
to do with the actual activities of the students moment by moment, and the latter 
with the possibility that these activities can succeed in producing a coherent culture, 
and a capacity among the students for undertaking new activities. Concretely, in the 
second case, for the teacher it is a matter of evaluating the possibility of undertaking 
the next phases of the curriculum based on the earlier ones. 

 In terms of Situations, the result of a particular episode consists of all the 
Situations that can be taken up thereafter with a good chance of success but could 
not have been before it, and of all the ones that will not have to be revisited at the 
end of the teaching sequence thanks to having done it. 

 In the curriculum that we are presenting, the principal instrument of regulation at 
the disposition of the teacher is the choice of the moment of institutionalization . In 
supporting autonomous activities of the students, the Situations bring out questions, 
convictions, declarations, arguments,  connaissances   that are justifi ed only by their 
temporary use in the students’ thought process and in this particular Situation. The 
cultural value of these  connaissances  – their actual validity, their canonical formula-
tion, their place among  savoirs   – is not something the students can deduce from 
their role in the Situation. Furthermore in the course of the Situation events turn up 
that are known to only one student or group of students or even to the whole class, 
and the students don’t know their value and may suspect that they are temporary, 
since the Situation itself may modify them. 

 Institutionalization is an act or process that causes a fact or  connaissance   to pass 
from one sphere to a larger one. For example, the teacher tells the whole class about 
something done by a student or group of students, or summarizes the session from 
the day before and the state of the question being studied, or describes a result that 
everyone can now count on, or confi rms that a conclusion conforms to the truth and 
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is recognized by science or society, indicates that a result was the objective of the 
lesson, etc. 

 Institutionalization has a slightly ambiguous status. The  connaissance   or con-
vention in question is certainly precise and well determined, but the affi rmation that 
everyone will henceforth know it, practice it without opposition, and use it as means 
and reference is a convention and above all a gamble. The fact that no one is sup-
posed to be ignorant of a law does not turn that law into a sure practice. The fact that 
not everyone respects or is able to respect the law is not a reason to give it up. 

 Institutionalization of  connaissances   is a Situation in the course of which the 
teacher recognizes as valid and accepted by society the  connaissances  that the stu-
dents have come up with in the course or conclusion of a Situation or series of 
Situations and that they propose as a reference. This event concludes the phase of 
quest for  connaissances  on the part of the students and determines the  savoirs   that 
they can take as certain. 

 Normally institutionalization  signifi es that thereafter each student will be autho-
rized to refer to this  savoir  to support an opinion, and is assumed to be capable of 
producing it with precision  and confi dence and using it correctly. The teacher guar-
antees that this  savoir  is exportable and recognized outside of the classroom by soci-
ety as a whole. Clearly nobody in the class but the teacher can give this guarantee. 

 So the question is how to determine the moment at which institutionalization  can 
be made to have the best chance of succeeding with all of the students. Done prema-
turely and suddenly it would isolate the few students who were the fi rst to be able to 
understand it and submit to it and would tend to make the rest appear to be rebelling 
against a communal law. Not only that, it would make the latter submit to a servile 
relationship with  savoir , to learn and apply a rule that they do not understand and 
that they can only acquire by procedures foreign to their understanding. At the other 
end of the scale, an excessively scrupulous institutionalization would wait until each 
and every student understood and could put the rule into practice. Waiting that long 
would cause an excessive delay in pursuit of acculturation to other  savoirs  . 

 Institutionalization can apply to  connaissances  , but also to Situations. When the 
development of the Situation becomes confused, the reactions and the various more 
or less true or false “ connaissances”  diverge. Nothing more can be understood the 
same way by the whole class in the natural course of the actual Situation. These 
differences make the pursuit of the proposed communal activity impossible. The 
teacher must then pull everyone together with “What has happened so far? What 
was the Situation we started with? What did some of you do? What did others of 
you do? Where are we now with the problem?” This re-framing of the Situation 
informs all of the students what is in question, what deserves to be noticed and what 
remains the object of the action, which can then resume its course (unless the essen-
tial part of what was of interest in the Situation has had to be revealed). 

 This approach to institutionalization  contrasts sharply with the curricula (such as 
the daisy-chain programs) that are reduced to a sequence of institutionalizations. 
Each lesson, each exercise and each  savoir  presented is considered to be both neces-
sary and suffi cient for proceeding to the following step. Every question is consid-
ered to be equally key and defi nitive and the only  connaissances   considered are 

3 The Adventure as Experienced by the Teachers



143

 savoirs   and errors. At every step the student is supposed to make an effort suffi cient 
to succeed in completely acquiring a given, indispensable  savoir . 

 Institutionalization marks the separation between things that are of the order of 
 connaissances   – temporary, personal, in question – and things that are accepted as 
defi nitive, agreed to, common and sure. 

 In making decisions, teachers must be conscious of the whole structure of the 
curriculum, which brings up the question: What are the dependencies between les-
sons and between things learned? 

 How does the progression of one lesson depend on that of the preceding lessons? 
What are the indicators of good progress in the process? What are the possibilities 
for intervention by the teacher if something goes off track or fails? What constitutes 
a failure and what is just an episode? All these questions are tightly linked. 

 How a lesson develops can depend on how the previous one developed. The sec-
ond one can depend on the  savoirs   learned in the course of the fi rst. Sometimes the 
students cannot do, say, understand or learn what they are supposed to because they 
cannot use the necessary  savoir  because they did not learn it beforehand. 

 The precaution of never using a single word or property that has not previously 
been defi ned or demonstrated is the basis of the general, deductive organization of 
mathematics. This organization is often used as a model for the teaching of science 
and even for the acquisition of all scholarly knowledge. The teacher wants to be able 
to report that he has made available to the students all the necessary elements and 
the only possible cause for failure of his lesson would be failure of previous teach-
ing or inability of the students to understand the construction under way. But before 
 connaissances   can be defi nitively cast in the bronze of organized  savoir  they must 
be established by complex processes very different from this fi ction. In this curricu-
lum we try to have the students reproduce or simulate such a process. 

 To this end, we have installed at the heart of the lessons Situations that are steps 
in an adventure. A Situation exists independently of the actions and modifi cations 
of the protagonists. 

 Two successive Situations are linked if what is produced in the fi rst conditions 
what can be produced in the second. We distinguish at least two types of 
dependence:

    1.    Two lessons may be linked because the second (in time) uses or resumes use of 
 connaissances   that have been  established  in the fi rst. They are connected by a 
structural relationship of  savoir : for example the second lesson studies the corol-
laries of a statement established in the fi rst. 

 The reality of the learning sequence does not necessarily follow the order of 
an exposition of  savoirs  . It is not indispensible for the students to have fully 
understood and learned everything that has been defi ned or demonstrated for 
them. The study of the consequences, extensions and “uses” of taught  savoir  is 
indispensible to explore, know and understand a defi nition (which furthermore is 
often the result of a concentrated result of a complex process.) Otherwise stated, 
the appropriation of a  connaissance  , even presented in a strict axiomatic order, 
depends as much on the lessons that follow it as those that preceded it. The pro-
cess must be considered as a whole.   
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   2.    Two lessons can also be linked not by the relationship of the  savoirs   that they 
offer for learning, but by the questions that these  savoirs  are supposed to answer. 
The result of an unresolved Situation can be a new question that gives rise to a 
new Situation which itself may make it possible to resolve the initial problem. 2    

   3.    A lesson can obviously be linked to a previous one both by questions arising from 
the previous one and by the consequences of the  connaissances   established in it.     

 For example, when the teacher asks, “Are the measurements of thickness num-
bers?” he introduces a natural sequence of lessons (i.e., one that the students could 
practically run themselves) sparked by the questions “What do we do with the natural 
numbers that we may or may not be able to do with the measurements of thickness?” 
And certainly also new  connaissances   are established using the preceding ones.  

    What Then Are the Causes of Learning and the Reasons 
for Knowing? 

 Having an individual reproduce the same task is the antique means of having him 
learn it and execute it more easily in all circumstances. The learning can be observed 
through the progress of the student in the perfection of execution (reliability, speed, 
precision ). The link between the successive steps is essentially the state of the stu-
dent. One cannot pass from one task to a more complex one unless the student has 
satisfi ed certain required conditions. If there is a connection between the things 
learned, a progression in the complexity of the tasks, only the teacher responds to it. 
Thus it is the state of the student that is the link between two steps of the learning 
process. The student reproduces calculations in order to know how to do them. And 
if learning makes no progress he has only himself to blame, his characteristics, qual-
ities or faults. The teacher and society reinforce the blame and question the proper-
ties and virtues of the individuals who are recipients of the keys to perfect learning. 

 The learning process with which we were experimenting here is completely dif-
ferent. This formal (and universal) learning process has only a marginal place in it. 
The repetitions of “exercises” are not motivated by a direct desire to enrich oneself 
by knowing how to do them. They are steps in the realization of a task that has its 
own signifi cance and interest and that is a goal shared with others. The Situations 
proposed are not solely destined to be the causes for learning for individuals, they 
are fi rst of all destined to determine the reason for some  savoir  to exist, the role that 
it plays in people’s relationship with each other and the world, and the role that 
humans play in society thanks to that  savoir.  

2    An experiment that we carried out demonstrated how a sequence of Situations each issuing from 
the previous ones by questions produced by the students was able to generate the discovery of 
limits of frequencies and of measures of events without the teacher’s ever proposing a Situation 
beyond the initial one or supplying information or a personal solution – and without the notion of 
chance ever being mentioned! (Brousseau, Brousseau, & Warfi eld,  2002 )  
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 There are large moral, cultural and epistemological differences between repro-
ducing a calculation in order to advance a common task and reproducing a calcula-
tion simply to know how to do it oneself. 

 Finally, the conduct of the lessons and of the sequences they formed depended 
heavily on the observation by the teachers of a certain collection of indicators, on 
the verifi cation that a certain number of appropriate and expected corrections were 
resulting from the combined impact of the Situations and the teacher’s interventions 
in these Situations.   

    How Does the Teacher Use Assessment  of and Within 
the Curriculum? 

 The teacher assesses the Situation under way, the  savoirs   in action and the students. 
These assessments are subordinate to the possibilities for action that are available to 
the teacher and depend on the assessment . 

  The purpose of assessing the Situation  is to determine moment by moment 
whether it is best to let the Situation proceed or whether it is time to intervene and 
either to redirect its course or to interrupt it. For example: Is some additional com-
mentary on the assignment needed so that all of the students have some project for 
action (whatever it may be) that will let them get into the problem? On the other 
hand, at what point would supplementary information make the necessary efforts 
useless? 

 The decision depends on the expected profi t from the amount of additional time 
accorded to the intervention. It is diffi cult to describe in a few lines all of the factors 
that need taking into account: the fatigue or loss of interest of the students, the 
amount of useful information that can be harvested (not just plain success.) 
Sometimes teachers content themselves with one correct proposition (the success of 
one student or group). Sometimes it is important that each participant obtain a prop-
osition to present to the other students. 

 This assessment  applies simultaneously to reality – to facts – and to their mean-
ing, that is, the possibilities for interpreting them offered by the Situation. Sometimes 
making each and every student experience all of the diffi culties and their solutions 
is completely superfl uous. Students may be able to benefi t by proxy from the experi-
ence of others. Sometime simulations are suffi cient, while other events need to be 
really experienced. Deciding to organize a Situation in such a way as to produce the 
discovery of the properties of a mathematical notion is a non-trivial decision. 
It takes what might be a considerable amount of time for the sake of what might be 
a trivial signifi cance. Any time that that is possible the Situation needs to be reduced. 
Often a short defi nition followed by an illustration of examples and counterexam-
ples is the best solution if that defi nition is useful in the project in progress. Often a 
simulation can be worth more than an actual heavy realization. 

 In general, Situations defi ne and at the same time more or less dissemble certain 
 connaissances   that the student is supposed to make use of to accomplish a proposed 
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goal. Certain Situations have the objective of determining whether the student has 
available, directly, the  connaissance   for the solution. By defi nition they do not offer 
the students who do not already have this  connaissance  the possibility of answering. 
They are assessments for the student, but they are thus not in principle didactical . 
They answer a question, but say nothing about others that might connect to it. 

 Others, on the other hand, have the (didactical ) property of inducing the produc-
tion by the student of a  connaissance   that he did not previously have available (in 
the form of a  savoir ), but that he can conceive (guess, construct, comprehend, etc.), 
formulate, prove valid and fi nally “learn” at his own pace. 

 When a teacher must intervene in order to promote the evolution of a didactical  
Situation, one of the principal diffi culties consists of monitoring the informative 
value of his interventions. In an effort to stimulate or re-launch the activity of the 
students he might bring in information that reduces the Situation to the obvious, or 
on the other hand he might complicate the work of the students by throwing in 
superfl uous intentions or requirements. 

  Didactique  is, for the teacher, the art of showing and hiding his intentions in such 
a way as to permit the student to discover as a personal response to objective condi-
tions the thing that the teacher wants to teach but cannot reveal without depriving 
the student of the possibility of doing it himself. 

 Making  connaissances   contribute to the learning of  savoirs   so as to approximate 
the real cultural, social and psychological functioning of mathematical thought 
presents some very real risks: fi rst, the risk of wasting time and energy, next the risk 
of accidently producing the learning of  connaissances  that are false, or badly estab-
lished, or badly formulated, inappropriate or culturally unacceptable. 

 It is very important to know how to interrupt a Situation that is becoming ambig-
uous, or that doesn’t guarantee that the emerging  connaissances   will have a reason-
ably strong and simple impact. One must not hesitate then simply to state the 
canonical solution being sought. This danger is eliminated in the curricula that only 
consider established  savoirs  , as visible objectives and/or as means. 

    The Assessment  of Students and Groups of Students 

 The goal of assessing students is to predict whether they are going to be able, 
together or individually, to take on the rest of the curriculum. This is of interest 
exclusively in the case where it is possible to choose and manage the curriculum on 
the basis of the results of the assessment . 

 Naturally the progression of the Situations permits the teacher to adapt a Situation 
to the possibilities and varied talents of the students. This continuous adaptation is 
easier than the choice of appropriate exercises and problems. But once a Situation 
has come and gone, once an adventure has been lived, for better or for worse it can’t 
begin again. Moreover, the construction of  connaissances   and their meanings is 
common to all, and there is no royal road. 
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 It is at the moment of institutionalization  that it seems one must discriminate 
between those who understand and those who have not gained from the curriculum 
the resources needed for the proper acquisition of  savoirs   .  Then all that is left is 
classical resources, explanation and repetition. These possibilities must not be 
neglected. Institutionalization does not put an end to the process of learning. Really 
useful  connaissances   should be revisited often enough to permit a party of students 
to rejoin the troop. What a Situation has made the students live, what has been per-
ceived, communicated and explained is not a required object of  savoir . People from 
the same society live and communicate with highly varied repertoires.  

    The Types of Situations That Appear in the Lessons 

 We made a distinction above among types of lessons, distinguishing them by their 
function in different stages of the learning process. Another perspective on the 
teacher’s role comes from a dichotomy that is deeply rooted in the Theory of 
Situations:  didactical    Situations  and  a-didactical Situations. 

•    In  didactical    Situations , the teacher maintains direct responsibility for all stages 
of the lesson. She tells the students her intentions, what they will have to do, and 
what the results should be. She intervenes freely to keep the class traveling on the 
desired route. In our curriculum the reader can spot these completely classical 
phases. They were carried out in the classical manner.  

•   In  a-didactical    Situations  it is the students who have the initiative and the respon-
sibility for what comes of the Situation. The teacher thus delegates part of the 
care for justifying, channeling and correcting the students’ decisions to a  milieu   
(a problem statement, a physical set-up, a game, an experiment).    

 The former tend to produce the learning of reference knowledge, either perma-
nent ( savoirs   )  or temporary (assignments, rules, etc.). The latter tend to bring into 
play  connaissances   corresponding to the  savoirs  being taught.  Connaissances  man-
ifest themselves in responses (actions, choices, expressions, trying things out) in 
circumstances where they seem necessary and adequate. 

 In didactical  Situations, the students’  connaissances   do not develop and are only 
manifested in the course of applications, and thus after the presentation and acquisi-
tion of the necessary  savoirs  . The teacher demonstrates that the expected answer 
has been given in the preliminaries, or convinces the student that it is his responsi-
bility to deduce it from what he has been given. But in fact  connaissances  can 
appear before the student has the corresponding  savoir  available in appropriate cir-
cumstances. Thus it is possible not just for  connaissances  to follow from the acqui-
sition of  savoirs  but for them to precede and justify that acquisition. 

 These  connaissances   correspond to a  savoir , but they may well differ from it (for 
example they may be true or false, or consist of beliefs, or be questions.) They may 
also differ from student to student, because they are often individual. They are simi-
lar in the sense that they tend to be opportune and adequate in the same 
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circumstances. They are fl eeting and cannot be directly evaluated by classical tests. 
But they are the only means by which students can participate in the adventure of 
their own learning. 

 Classical curricula also combine didactical  and a-didactical phases, but in this 
curriculum their roles and relationships and the proportion of time allocated to one 
or the other are profoundly modifi ed. Our aim was that the  connaissances   be also 
the means by which the students participated in the epistemological adventure of 
 savoir  and of their own personal  savoir . The curriculum presented in Chap.   2     devel-
ops  connaissances  that precede, accompany and follow  savoirs  , as happens in the 
natural exercise of mathematics. 

 But this ambition complicates the work of the teachers a lot. What is that work, 
then?  

    The Types of Didactical  Situation and How They Are Conducted 

 Many didactical  Situations were classical and were (and are) in use in all schools. 
But the reader may also note some didactical Situations of a new type: 

    Situations of Institutionalization  

 These were discussed above, but we will expand slightly on them 3 : The teacher 
directs a session that consists of observing that almost all the students understand 
 this  and know how to do  that . He has the students put this  savoir  in order by present-
ing it himself. He makes the defi nitions, algorithms  and theorems precise and 
declares that henceforth he is counting on the few students who are still hesitant to 
look into these questions in order to be able to continue to work with the others. 
These are the didactical  Situations in which the students learn that certain of the  con-
naissances   that they formed in the course of preceding a-didactical Situations  can be 
organized, formulated and thus proved. They learn that henceforth they need to know 
them for communication  and for reference. These are lessons of institutionalization . 
They take on a particular importance because of the importance given to the a-didac-
tical Situations for developing  connaissances  before putting them in defi nitive form. 

 These lessons are delicate. Only the teacher can judge the best moment to activate 
this phase of learning. If it is done too late the children will have developed and become 
entrenched in ill-conceived ways of doing things, inappropriate ways of saying things 
and fallacious reasons for knowing things –  connaissances   ensconced as  savoirs  , but 
badly built and diffi cult to abandon. If it is done too early the  connaissances  will not 
be suffi ciently familiar to support a precise and solid formalization. A large majority 
of the students must be able to make the change without effort in order for the 

3    See also Chap.   5    .  
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challenge to be met by those who need to make use of the following encounters with 
this  savoir  to fi nish learning it and need to do some exercises to make it familiar. 

 Institutionalization in this case deals with  connaissances   and produces  savoirs   
that are durable and if possible defi nitive. It can also deal with provisional condi-
tions such as the rules of a game. It is often easier to learn the rules of a game while 
playing it than it is to learn them in advance. The operation is only interesting if the 
rules are simple, if the game is reasonably easy to repeat, if the student can notice 
for herself the causes of any diffi culties and correct them and if the  connaissances  
thus produced are both interesting and useful for the learning being aimed at. In this 
case, the rules are part of the solution  savoir .  

    Situations of Devolution  of an A-didactical  Situation 

 Students are only willing to enter into an a-didactical  Situation in the hope of fi nd-
ing pleasure and profi t. They must have the hope that they will be able to fi nd on 
their own the essential parts of the solution, and that the search itself will be exciting 
and intriguing, that it will be reproducible (though an occasional serendipitous vic-
tory produces a kind of satisfaction and should be accepted.) Otherwise stated, the 
“games” chosen must present specifi c real qualities and notably feed-back that per-
mits the student to check the value of her actions and understand the reasons for it. 

 This does involve a didactical  Situation because the teacher must teach the rules, 
but his role consists principally of indicating to the student that he has no obligation 
to tell her what he wants to teach her. The teacher must let the student know that he 
ardently hopes she will play, but he cannot force her to do so, and that he hopes not 
so much that she will win as that she will understand and learn something that will 
enable her to win. 

 Conducting such a lesson is a diffi cult art. The teacher must show a great interest 
in the game itself and give encouragement to all the players, but he must respond 
indistinguishably to successes and to errors or stupidities, and initially treat discov-
eries as diffi culties. It is the students who must judge what is good to know, true and 
useful. The teacher must be able to encourage the students and help the weak or the 
suspicious – but not too much. 

 These Situations are not made for judging the students but for developing and 
judging  connaissances   .  For that the teacher must supervise numerous parameters: 
what it costs the students to participate, the speed of their progress, how ideas spread 
through the class. He must calm fears and also excessive enthusiasm. If the Situation 
is not well calibrated he will have to make concessions, but he will have to hide 
them as much as he can. 

 The a-didactical  Situations that permit this devolution  cannot be improvisations.  

    Situations of Evaluation   

 In the traditional system what is evaluated is essentially the students, indirectly the 
knowledge acquired, and secondarily the teachers. But this type of summative 
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evaluation gives only partial information, insuffi cient for making decisions in the 
course of learning. This information is subject to superfi cial interpretations pro-
duced by reductionist pedagogical ideologies that use them for inappropriate deci-
sions. To be able to negotiate more effective teaching the teachers and students must 
develop a culture of evaluation by a communal practice of  Situations of evaluation  
in the course of teaching. They are the times for the teacher and the students to take 
stock, to look together over what has been done, what that means and what it would 
be best to do next. They are the instrument for transmitting a very necessary episte-
mology and scholarly  didactique . We cannot describe how the teacher conducts this 
type of Situation until after we examine the conduct of a-didactical  Situations.   

    The Types of A-didactical  Situation and How They Are 
Conducted 

 The objective of a-didactical  Situations is to induce manifestations of  connais-
sances   such as decisions (if possible adequate ones), formulations (effective whether 
or not correct), and/or convincing proofs characteristic of the notion to be taught. 
They take place before the phases of exposition of  savoir . That way the  savoirs   
become a conclusion that the students can draw, after some preliminary work that 
bears more resemblance to motivated research than to free exploration of a theme. 
This approach thus precedes (but note that it does not exclude) the classical presen-
tation that proceeds from the study of a text to be learned and known (defi nitions, 
fundamental theorems…) to formal teaching, then to its applications. 

 The goal of these a-didactical  Situations is to facilitate the learning of the corre-
sponding  savoirs   by fi rst making familiar and intelligible what it is that they mean, 
which is what the students ultimately need to acquire as canonical knowledge. The 
formal classical learning comes in as a supplement, after phases of intense use of the 
 connaissances  , motivated by other projects. This type of Situation must be distin-
guished from classical “discovery situations” in which the teacher has the students 
visit various aspects of a notion borrowed from a text that is already there. 

 The teacher must concentrate her efforts and those of her students on the ques-
tions posed and the tasks to be carried out and thus avoid creating a direct didactical  
tension about the  means  of accomplishing these tasks (the  savoir ). Learning is a 
spontaneous consequence of the activity .  The  connaissances   are thus the means and 
not the offi cial goal of the Situations. At the same time, they are also one of their 
consequences. 

 Once a  connaissance   becomes suffi ciently familiar it is time to recognize its 
importance and its place. The students then may well be willing to make an extra 
effort in the form of exercises “to make it stick” in order to make their use of this 
recognized  savoir  easier and more fl uid. Learning snippets of knowledge under con-
struction head-on and without relevance in order to apply them in conditions as yet 
undiscovered – the classical method – has its points, but it requires of the students a 
great deal more confi dence, attention and good will. 
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 The choice to teach the use of the  connaissances   before making them the objects 
of  savoir  to be learned voluntarily is a positive one. It relieves the students of the 
tension created by the obligation to regard everything presented at any moment in 
class as equally indispensible and decisive and hence in need of instant learning. 
Each lesson is thus the occasion to make progress with some  connaissances  and 
among them to recognize some and institutionalize  them, and to exercise others that 
have already been institutionalized . 

 This choice requires of the teacher both sophisticated methods of evaluation  and 
complex decision strategies . 

    Situations of Validation  (or Proof) 

 These are the ones that make the mathematical reasoning of the students most visi-
ble, as they produce arguments addressed to their peers with the goal of convincing 
them. It’s a matter of inciting the students to become skeptical about some precise 
mathematical notion and of giving them a motive and the means not just to check 
the validity but beyond that to convince the other students. 

 These Situations develop the capacity to produce, appreciate and judge argu-
ments and in the end to distinguish and reject incorrect rhetorical methods and prac-
tices. In organizing debates, the teacher also teaches progressively more formal 
rules. On the other hand, it is essential not to lose sight of the fact that the important 
thing is the declaration and its proof. This type of initiation rests principally on the 
cleverness of the teacher, whose interventions must be attuned to a variety of indices 
in order to optimize the interest and participation of all the students. This cannot be 
judged solely on the number of participants, nor on the speed with which the solu-
tion is given and established. 

 She can for instance, organize debates fi rst in very small groups and then in larger 
groups to bring up alternatives. Whatever the format, the game must be worth the 
time and effort required for it. The interval between too obvious and too complicated 
can be a very narrow one. If the whole argument depends on an abstract demonstra-
tion, the discussion may degenerate into a debate among two or three “champions” 
without benefi t to the most of the class. Speeding up or slowing down the process, 
maintaining the engagement and pleasure of each student, avoiding traps posed by 
individuals, cutting it short or waiting patiently – only a report of the discussions of 
the debriefi ngs of the teachers and the researchers could do justice to the subtlety of 
conducting this kind of lesson, often halfway between reality and simulation, and to 
their infl uence on the enthusiasm of the students when they were successful.  

    Situations of Formulation  

 In order for a Situation of validation to function, the students need to have understood 
the object of the debate and thus to be capable of formulating the elements of it. Some 
specifi c Situations lead to this result by challenging the students to communicate 

The Types of Situations That Appear in the Lessons



152

some real information to a partner, either using a known vocabulary  or by creating a 
repertoire or even a provisional specifi c language like the one for designating the 
thickness of the sheets of paper or of the enlargements. This type of Situation where 
actual communication  is organized requires particular set-ups and materials for the 
class and thus must not be trivialized. But conducting them is much less of a burden 
on the teacher. The times and results are easier for the teacher to regulate and the 
students to evaluate. Furthermore the students rapidly acquire suffi cient knowledge 
about communication for the teacher to be able simply mention it without actually 
realizing it, and save actual communications for the cases that merit it.  

    Situations of Action  

 Formulations only make sense through their meaning in terms of decisions in a 
specifi c conditions. Thus the whole construction is founded on the possibility of 
giving each mathematical notion to be taught a meaning that is simultaneously sig-
nifi cant, correct and fruitful. This meaning is traditionally given by the linguistic 
means offered by the culture: verbal defi nitions, explanations and proofs – essen-
tially by texts. The teaching of mathematics is thus reduced to the study of a text 
with the aid of texts that may be illustrated by a discourse. These means appear 
economical because they facilitate the communication  of the text of the  savoir  . But 
in reality they are not economical for the students, who grasp concepts better by 
their function in the course of an action in a situation and by the decisions that it 
calls for than by descriptions and intellectual proofs. Action Situations, in the large 
sense, are thus the foundation of the whole edifi ce for all of the students. 

 Carrying out an action Situation was fairly easy because it had been well con-
ceived. The teacher had to restrict herself to being satisfi ed with the fi rst successes. 
She was not supposed to approve them or spread them around. With the complicity 
of the students who had found an answer (which they thought was right, or knew it 
was because it obtained the desired result) she encouraged each of the students to 
try to fi nd it. And she received them all equally, whether they had been invented or 
inspired by an auxiliary peek at a fellow student’s work. The essential thing was that 
the student adopted a production as his own. Who remembers how and from whom 
he learned the words and most of the knowledge that he uses? 

 The principal diffi culty for the teacher in conducting an a-didactical  lesson is 
maintaining a fragile equilibrium between what is said and not said, what is desired 
and what assumed, what is suggested and what required. 

 For the students, the  connaissances   thus emerge from a story resulting from a 
mixture of truth and fi ction. The story told at the end of the adventure by the stu-
dents and by the teacher assembles these pieces and becomes not just the reality of 
a class but the legend of the birth of a notion or a concept. The important thing is 
that that adventure be intriguing and fascinating, that it be possible to engage in it 
with one’s strengths and weaknesses, and above all that it have a meaning and an 
epistemological and didactical  value such that the quality of what is gained justifi es 
and recompenses the efforts, the disappointed hopes, and the vain attempts. 
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 And what happens when for one reason or another the miracle does not happen? 
Sometimes because of a detail, a fault in the preparation or execution of a delicate 
sequence of actions produces a fi asco: the materials refuse to follow what appears to 
be their natural law, damp paper compresses and eliminates all precision  of measure-
ment, the water spills (predictably!) over the side of the bowl, the pantograph does not 
work right or a bird fl ies into the classroom … everything gets muddled and nobody 
understands anything, or worse understands the reverse of what was hoped for. 

 Nothing is lost and often the students not only imagine and understand anyway 
what was supposed to happen, but sometimes even understand it better than if they 
had gotten it without the complications. And depending on her personality, the 
teacher repairs the thread of the story they are in the midst of in her own way, and 
admits that, like her students, she cannot always get everything right. 

 By frequently putting the teacher and the students under the obligation of coop-
erating to make the current action succeed, Situations stimulate, facilitate and guar-
antee a large part of the learning of the goal knowledge. 

 Situations of action , formulation  and proof  (or validation) proceed in principle 
without the teacher intervening directly in the course of their solution. They are 
called a-didactical : in them the teacher is not directly teaching any knowledge. But 
they should most often be proposed by the teacher, who ought at least to “teach” the 
rules of the game as instructions – the students should simply learn to play, not take 
the rules as  savoir  to be learned. The teacher  informs  the students and  prescribes  an 
activity for them. (He introduces the rules to be followed and an objective to aim for 
as a provisional institution – a convention – in the class.) 

 At other moments the teacher may intervene to  comment  on the progress of the 
lesson and to  report  with the students the state of the adventure and its results. 
Recognizing, organizing, presenting, explaining and leading an evaluation of the 
 savoirs   aimed at, drawing conclusions from these reports in terms of decisions for 
following lessons are types of didactical  Situations (because what is taught passes 
through the formulation of the didactical will of the teacher).    

    Presentation of the Rules of the Game 

 The teacher transmits the rules of the game, but these rules are means of learning, 
not  savoirs   to learn. They may be forgotten, but in fact they leave a trace in the form 
of the conditions of the fi nal  savoir . The teacher proposes the Situations, which are 
in charge of advancing the class knowledge. She must present the materials, desig-
nate the players (individuals or teams), indicate the goal of the action of the stu-
dents, the starting position, the activities permitted or not permitted, the fi nal state 
being sought for and the states that indicate a failure. She might offer a reward – a 
purely symbolic one – or designate the number of rounds to be played. 

 If the students are to undertake an action that might bring them some additional 
information they must envisage a  basic strategy  , which the teacher might possibly 
suggest. In general, this basic strategy is not the one that is supposed to be found. 
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It won’t work fully, or it is long and messy, and it should swiftly be clear that it 
needs to be avoided. It simply makes it possible to take the fi rst steps. 4  Note that one 
must accept as a success – as mathematicians do – the blind trial of all possible 
cases, or even the presentation of a good solution when the student is unable to 
explain how he got it. It is enough to show that the solution is valid and suffi cient. 
The rest (commentaries, explanations, etc.) is a legitimate requirement, but it is 
didactical . 

 Except for exercises and classical problems, the teachers almost never simply set 
out the instructions for Situations in a form that had been written up for them. They 
needed, for example, to play a couple of trial rounds so the students could under-
stand the rules. The ratios between the time spent explaining the rules, the time the 
students needed to solve it, and the importance of the knowledge that they needed 
to use to do so were clearly decisive criteria. 

 The teachers must above all pay attention to the time required for a Situation. If 
the “Situation” under discussion is such that the students could fi nd the strategy  and 
answer without actually playing a round, then it is just a question and should be 
treated as such. It is better not to use a game if:

•    The rules are harder to teach and understand than the solution  
•   The solution cannot be found in a reasonable time (then it is just a riddle), or  
•   It does not require that the student invent an interesting and instructive strategy  

(then it is just a pastime).     

    Evaluation  in A-didactical  Situations 

 A-didactical  situations mobilize knowledge that the students are in the process of 
learning. Thus they constitute an opportunity for the teacher to evaluate the acquisi-
tion of that knowledge. But this evaluation  is not summative, it is formative. The 
student carries on without thinking about it if he succeeds. If not, he simply notices 
that things are not working and either fi xes it himself or calls on the teacher, who 
can record the fact, but with no immediate consequences. The teacher also goes on 
some indications that the student is unaware of: what the latter does and says must 
be interpreted. The student’s knowledge evolves differently from that of students in 
situations where the learning is parceled out and the evaluations match the parcels. 
Nadine Brousseau’s excellent descriptions that keep us in contact with the students 
in the class in Chap.   2     could not include the mass of individual and collective obser-
vations that she collected and decoded instantaneously to understand the state of the 
Situation and evaluate its consequences in order to decide whether to intervene 
immediately, or delay intervening, or not intervene at all. 

4    This method is comparable to the attempts to prove Fermat’s conjecture before the twentieth cen-
tury. Working with a fi xed, particular value of  n  was clearly not going to advance the general solu-
tion at all, but there was always the hope that the examples would provide some useful refl ections.  
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 The precision , quality and dependability of the Situations made it possible to 
reduce evaluation  to observation of how they actually developed and the participa-
tion of each student. This development was reproduced regularly each year with the 
same results, which contributed greatly to reducing the fears of both the teachers 
and the students to an acceptable level.  

    Obsolescence  

 Situations, whatever they are, are adventures for the students each new year, but for 
the teachers they tend to become rituals. The teachers’ memories lead them to con-
struct a simplifi ed and stereotyped image of the development of the Situation. 5  They 
are then unable to respond in a differentiated and opportune way to the actual events 
that occur, or even to let them occur. The Situation becomes a classical lesson that then 
loses its suggestive properties and thus becomes far too heavy for a minimal profi t. 

 In trying unconsciously to have the students reproduce a stereotyped develop-
ment, the teacher tries to prevent the diffi culties observed in the years before. She 
intervenes more and more directly in the behavior of the students and the Situation 
becomes purely didactical . She tends to transform high level objects (for example 
those corresponding to high levels in Bloom’s taxonomy) into algorithms . For the 
student, the situation loses its suggestive qualities and becomes the execution of a 
sequence of instructions, a simple task. 

 The relatively unpredictable character of a-didactical  Situations helps the teacher 
fi ght this tendency. Nonetheless, Nadine Brousseau notes that she had to make an 
effort to maintain her capacity to deal with diverse but equivalent manifestations of 
the same knowledge. For example, she feels that it was in the end a good thing that 
she had to accept and monitor reasoning about fractions and also commensurations, 
which were fairly unfamiliar to her. It is important to distinguish between what is 
justifi ed for the students and what is obvious to the teacher. 

 The complexity of the evaluation , interpretation and management of the 
a- didactical   phases of the acquisition of knowledge may explain the evolution of the 
practices towards exclusively didactical methods as the pressure of evaluations 
mounts. A heavy tendency has been observed since the 1970s to replace the phases 
of acquisition of  connaissances   – which by defi nition should always precede the 
teaching of  savoirs   and the evaluation of the ensemble (which had developed greatly 
in the previous century under the infl uence of great pedagogues) – by direct instruc-
tion of answers to questions on standardized tests. Nicely aligned with naive popu-
lar beliefs, this practice greatly simplifi es didactical  decisions (start over, increase 
the pressure, eliminate comprehension in favor of reproduction, discriminate among 
the students, individualize, formalize, etc.), the knowledge needed to make those 
decisions and their justifi cation with the population. But no observable improve-
ment in results of teaching has resulted. As standard evaluation becomes more and 

5    This phenomenon is being studied under the name of “Obsolescence of Situations.”  
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more present, with higher and higher stakes, it tends to produce the progressive 
disappearance of all the activities that traditionally preceded or accompanied the 
construction of knowledge. 

 Even though they cannot be evaluated in a standard way,  connaissances   are none-
theless indispensible. They should always accompany the teaching of  savoirs   and 
their evaluation. Training for standardized tests by giving standardized tests (teach-
ing by worksheets) destroys the coherence both of the mathematics and of the class.  

    Isolated Evaluation  of  Savoirs   and Constant Evaluation; 
the Necessity of the Uncertain and the Implicit 

 The evaluation of  savoirs  , the kind whose outcome is known to both the teacher and 
the students, is only justifi ed in the case where one or the other of the protagonists 
has available not just the means of judging the results but also the possibility of 
using this outcome as a basis for worthwhile decisions. Otherwise it is simply a 
question of unjustifi ed and unhealthy pressure, by defi nition unproductive. 

 The evaluation that plays an essential role in the playing out of the lessons is the 
one that the teacher and students engage in separately. It takes the ambiguous form 
of assessments, encouragements, questions, funny faces, etc., using a complex and 
delicate system of communication .  

    The Play of the Real and the Fictional 

 The curriculum gives the teachers the canvas and the means to make present a story 
that constitutes a sort of epistemology of each notion. But if they apply the program 
of work without discernment they will devote a considerable amount of time to epi-
sodes that are of no interest to the students and/or not productive of much learning. 
One means of regulation at their disposition is the passage from real mode to fi c-
tional mode and vice versa. Students can understand a lot of information without its 
having to be imbedded in an actual action on their part and a fortiori in a situation 
that can be complex and diffi cult to put in action. When a Situation that demands a 
certain intellectual and material investment has its effect, the students suddenly 
understand the notion sought for. They imagine the possibilities of what follows, 
anticipate the didactical  intentions of the teacher, and often negotiate with the teacher 
to abandon the action phase. Their relationship with the Situation becomes imagi-
nary. The imaginary mode makes it possible to save a lot of time – but if the students 
have made a mistake there is none of the feedback that a real Situation would have 
given them. Explanations may then be long, tangled, delicate and hazardous. 
Actually checking things out physically frequently meets with resistance from the 
students; re-checking an idea in a real Situation meets with even stronger resistance. 
The students ask the teacher to hand them the answer. That is why real, costly 
Situations must be rare, fascinating and productive of emotions, questions, etc. 
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 For that, the teacher absolutely must retain control over the passage from one to 
the other: the real mode is slower but surer and the imaginary mode is faster and 
more productive. They are alternately indispensible. The teacher must maintain an 
optimal balance between a reasonable speed and a reasonable comprehension by the 
set of students. 

 In this dilemma the teacher needs the consent of all of the students. Those who 
have found a solution or think they have should wait until the others have had a 
reasonable time to carry out their own actions; those who are having trouble should 
feel pushed to do it right by the fact that the others are waiting. The acquisition of 
knowledge is a collective effort, like a culture. Individualism makes the work of the 
teacher and the students very diffi cult. Emulation stimulates but does not help, 
while cooperation helps, especially when the work of some depends on the work of 
others.  

    The Inexpressible, the Said and the Unsaid  

 The conduct of Situations is much more sensitive than classical lessons to the main-
tenance of a suitable equilibrium between what is or should be said and what is not, 
or should not be. Knowledge and invention or learning are the means of reducing 
the uncertainty presented by the Situations. The teacher must at all times monitor 
the part of the help that he offers the student to help her advance and the part that he 
leaves for her. In this paradoxical relationship where the teacher must say every-
thing about what he wants to teach except for the most important thing: what he 
wants to teach the student to do and think herself, the unsaid and complicity play a 
considerable role. Any attempt to clarify everything and require immediate describ-
able and measurable results like those in a notary’s contract immediately condemns 
the teaching and learning project to irremediable failure. Furthermore it is abusive. 
A-didactical  Situations let the teacher stand beside the student and follow her 
efforts, leaving to the Situation itself the task of criticizing them. And students 
accord far more importance to things they have fl ushed out themselves than to 
things procured for them without any effort on their part.  

    Further Aspects of the Teachers’ Adventures  

 This chapter presents only the didactical part of the adventure of the teachers 
engaged in this COREM project. Other aspects would also have been of interest, 
among them the work of the teacher: the preparation of ordinary lessons, that of 
“experimental” lessons, lesson development as a team, diffi cult lessons, evalua-
tions, commentaries at the moment, seminars, mathematical training, relations with 
other disciplines, their point of view about the students, and also especially their 
relations with the students and their parents, and the authorities, also their relations 
with the other teachers. 
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 Their roles as teachers and educators were complicated terribly by the requirements 
of the research: having always in “their” classroom two colleagues with whom they 
had to share the attention, the obedience and the affection of the children; the obli-
gation to coordinate with and thus to explain to the colleagues the intentions and 
results of the lessons; the intrusive attention of the researchers, the hide-and-seek 
game with what needed to be understood of their intentions, their implicit or explicit 
requests and what they could not say because knowing that a result is anticipated 
makes it almost impossible to avoid intentionally or unconsciously working towards 
it. The subtlety of these relationships created and was sustained by intellectual 
complicity. 

 The teachers had the responsibility of defending the interest of their students. 
They had the last word whenever that was an issue. Researchers and teachers strove 
to conceive at all costs situations that would teach what was necessary for the stu-
dents, but the designs were such that the scientifi c conclusions were never at any 
time based on failures of the students. 

 Each experimental lesson was an adventure for the whole community, students, 
teachers and researchers, and there was no need to add to the hazards supplementary 
recompense or a fortiori sanctions. The quantity of observations on the complex set 
of scientifi c questions in course was abundant for everyone. The community appro-
priated them and kept them available for the next adventures. So-called “ordinary” 
lessons might equally well harvest the most obvious and certain conclusions of the 
current research or be directly and narrowly inspired by the most down-at-the-heels 
pedagogical or didactical models. What was called a “basic lesson” was composed 
in the most classic manner of: mathematical terms, presentation, text, examples, 
exercises, explanations, problem, applications. But starting early on the teams of 
teachers often had to modify them to benefi t from the opportunities created by the 
experimental lessons. They had that liberty, and felt free to exercise it on the basis 
of lines that they found solid and practical. And the researchers in their turn exer-
cised a certain vigilance. But not one ideological or systematic slippage, not one 
hasty generalization based on one or two “successes”, not one general rule had the 
right to be indulged. Filmed observations are a cruel threat to that kind of slippage. 

 Also of interest is how the teachers accustomed themselves to a new vocabulary 
for concepts that they already knew, and for new concepts sometimes behind the 
same vocabulary, and also how it was necessary to fi ght against “didactical perme-
ability”, that is, the uncontrolled and regrettable penetration of scientifi c didactical 
(or psychological, or other) vocabulary into the exchanges of the teachers with their 
students. 

 And also, how did one get into this establishment? Teachers, researchers –– who 
was chosen, or rejected, and why? How were things worked out? How could the 
administration accept such a singular teaching environment? Did it cause any diffi -
culties? These adventures are part of the same story, but they would need another 
book! 

 In any case, to this day no one has done justice to these teachers for the treasures 
that they inventoried and put at our disposal. The adventures that this book describe 
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were hose of all the members of a unique institution. In the course of 25 years it 
involved more than 250 adults and nearly 2000 students.  

    The Mathematical Organization of the Curriculum 

 We have now looked at the curriculum from the perspective of the students and the 
teachers. One important vantage point that remains is that of the mathematical foun-
dations on which the whole sequence is constructed. The mathematical plan under-
lying the curriculum is that of a rigorously mathematical construction of the positive 
rational numbers in the modern sense: it is axiomatic and based on formal mathe-
matical structures. But this plan is also subject to a complementary set of conditions 
of epistemological and didactical  origin. Thus in  Part One  (the fi rst three modules) 
the positive rational numbers are introduced as a set of numbers designed to mea-
sure lengths, masses and volumes using an arbitrary unit, and to provide, by a cal-
culation, the results of the physical operations of addition , subtraction, and 
multiplication , and of division by a whole number. 

 In the  second part  (Modules 4–7) the children become conscious of the diffi cul-
ties of effectively putting fractions in order, of estimating their differences, of locat-
ing them and of keeping up the habits developed in dealing with the natural numbers 
for all the customary operations of measurement. And it is they themselves who 
choose what mathematicians call the  decimal number fi lter  to “represent” the ratio-
nal numbers, or more accurately, to approximate them with a manageable precision . 
The game they play gives this search the meaning of “fi nding a decimal number as 
close as is necessary to represent a given fraction.” They end up having available the 
remaining necessary operation – successive divisions of natural numbers – as a 
unique operation that looks like division but will only be recognized as such after 
some other adventures. The repetition of the operations and of the reasoning about 
calculations gives the students, even the less swift ones, a chance to carry out a 
number of useful and instructive operations. 

 Classical curricula treat the decimal environment as an obvious extension of the 
practices of natural measurement and are content here to teach algorithms  without 
mathematical content, as simple conventions. In these curricula the mathematics 
appears after the fact, simply as a commentary, or else as a refi nement that breaks 
with the previously inculcated practices. In those conditions it can only strike most 
students as casual remarks of no particular interest. 

 The  third part  (Modules 8–11) introduces rational numbers as functions and as 
scalar ratios. The lesson on the Puzzle  makes this introduction the object of a new 
adventure on the conditions for the conservation of ratios. They thus defi ne linearity  
by a non-mysterious criterion: the image of a sum  needs to be the sum of the images, 
in contrast to the traditional reference to proportionality, which is more mysterious 
and always gives some students trouble. The study of geometrical forms swiftly 
provides the occasion for extending the practices they have been using with rational 
and decimal numbers as measurements to a set of functions. Working on putting the 
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enlargements in order makes them revisit rational and decimal numbers and think 
about changes of unit and reciprocal  mappings. The structure thus constructed is 
that of fractions as scalar operators. 

 Next, in the  fourth part  (modules 12 and 13) the search for new uses for linear  
mappings  leads the students to rediscover the everyday uses of fractions (percent-
ages, scales, taxes, etc.) as well as the translation of operations and the raft of spe-
cialized vocabularies associated with them (for example “taking a fraction of 
something” as a way of saying to multiply by it.) This swiftly leads to the study of 
external linear mappings, that is, mappings between quantities that are of different 
natures, and hence accompanied by a dimensional equation. Some of them the stu-
dents already know well (price/quantity), others are new (distance/fuel consump-
tion, speed, density, debt, etc.). We include the classic use of these visits in their role 
of review, of illustration and enrichment of concepts, of learning exercises, and of 
initiation into the ordinary use of elementary mathematics. 

 The competition of problems posed by the students gives them a chance to pose 
problems and discuss what is interesting about them (and not just to answer them). 
We try to develop their interest in problems and the culture of problem-setting. 
This is an occasion for revisiting all the interpretations of division. 

 The  fi fth part  leads the students to consider, use and calculate compositions of 
linear  mappings , their decomposition into natural mappings, and their inverse map-
pings (they had already encountered reciprocals). They can thus express all of the 
interpretations of rational numbers – as measurements, ratios and linear mappings 
– with the same symbols, those of fractions. 

 A  sixth part  was prepared, but it was never possible to experiment with it, because 
it would have had to take place in the fi rst or second year of middle school. It con-
sisted fi rst of symmetrizing the additive group by creating negative rational numbers 
and completing the construction of the fi eld of rational numbers. The introduction 
of algebraic symbols then made it possible to formalize the defi nition of certain use-
ful meta-mathematical terms and of the proofs produced spontaneously in primary 
school.  

    Mathematical Commentary on Chap.   2     

 Even reduced to its mathematical structure the curriculum presents numerous points 
that may appear strange and even diffi cult to accept, both for teachers and for math-
ematicians. The former may be suspicious of the mathematical quality of notions 
brought up so differently from the normal presentation, and the latter may contest 
them in the name of the didactical  culture they remember from their childhood. For 
example, it is well known that the use in primary school of algebraic notation like 
3 + 4 = 7 does not give students the meaning of an equality. It has been demonstrated 
that this practice develops in the children an erroneous comprehension and use of 
the = sign that perturbs the mathematical practices of students all the way up to the 
university (where they are seen to understand and prove the same equation 
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differently depending on the order in which the two members of it are written.) But 
an attempt to replace this notation with 3 + 4 → 7 would give rise to great protests 
from different people for different reasons. 

 Elementary mathematics is frozen into practices that we are in the habit of 
regarding as untouchable. 

 Here is a description in scholarly mathematical language of the activity proposed 
in Module 15 of the curriculum to these 10-year-old students: they have equipped 
the set of rational linear  mappings  with their multiplicative, commutative group 
structure, distributive over the additive semi-group of natural numbers. It is a jolt to 
see it written this way, because it gives the impression that the students are going to 
have to learn this vocabulary . This is not the case. But it makes it possible for the 
teacher to verify whether among the exercises proposed all of these properties have 
indeed been used and justifi ed – which does not in the least necessitate any meta- 
language beyond ordinary language or any other explicit proof than the comprehen-
sion of what one has done. This gives a legitimacy to ulterior defi nitions (the way 
language justifi es the study of grammar). 

 Whether or not to teach meta-mathematical terms to students is a much debated 
question. 

 We have picked out a few of the singularities that solid mathematical and/or 
didactical  reasons have led us to prefer to more classical practices, and we will give 
an elementary mathematical justifi cation for the teachers that the mathematicians 
can easily verify. 

    The Temporary Replacement of Fractions 
by Commensurations  

 A stack of T identical sheets of paper has a (whole number) thickness E. (T,E) is an 
ordered pair . The students fi rst posit that two ordered pairs (T,E) and (T′,E′), each 
consisting of identical sheets of paper, both consist of sheets of the same thickness 
of paper if there exists a number a such that T′ = aT and E′ = aE. This condition is 
suffi cient but not necessary. A necessary and suffi cient condition is that there exist a 
and b such that (aT, aE) = (bT′, bE′). (aT, aE) = (bT′, bE′) is equivalent to aTbE′ = aEbT′, 
and thus to TE′ = T′E. This will be used explicitly and even proved (without algebra) 
by the students when they get to commensuration  of lengths (module 3). 

 The ordered pair  (7,4) indicates that a stack of seven sheets has a total thickness 
of 4 mm. The thickness of a sheet is expressed by the commensuration  4/7 or by the 
fraction 4/7. The words commensuration and fraction are synonyms and share the 
same symbolic notation. The conceptions are not. 

 Commensurations use only operations that can be conceived, realized and car-
ried out materially or by calculations in the known domain of the natural numbers. 
Fractions make it possible to go back to the familiar model of the natural numbers 
by using an intermediate unit, but one must assume the prior existence of unit 
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fractions, that is, fractions of the form 1/n, which cannot always be easily con-
structed. Historically, fractions are the concept that has been retained in all 
cultures. 

 The concept of commensuration  could not arise from the manipulation of con-
crete lengths long enough to permit the use of a sub-unit obtained by folding and 
repetitions. Hence our use of a unit that is essentially indivisible for children: the 
millimeter, and of a length for them to measure that is smaller than the unit. This 
artifi ce having rendered the use of fractions improbable, the students were able to 
invent an original solution to a completely concrete problem and thus undertake the 
exploration of a necessary mathematical knowledge before being able to name it, 
justify it and recognize it as a familiar concept. 

 2. Introducing the topology of decimal and rational numbers as we do in the 
second part of the curriculum looks as if it were an ambitious and useless 
enterprise. 

 Tradition offers students an amalgam of various vague structures mingled under 
the name of “number”. We will point out four.

•    Natural numbers. They are more or less correctly understood, but the disappear-
ance of analogical instruments of measurement has caused the disappearance of 
a powerful means of teaching the topology of the natural numbers which served 
as a basis for that of the decimal and rational numbers.  

•   The algebraic structure of the positive rational numbers is taught, even though 
they have been profoundly scarred as a result of hesitations and accidents in their 
history. Students distinguish them easily from natural numbers because they are 
written in the form of “fractions”, and calculations with fractions are studied. On 
the other hand, comparisons, the concept of intervals, and complete ordering are 
ignored. Thus their dense topology, the fi rst simple reason for their existence 
because they provide a means of attributing a distinct value for every distinct 
measurement, is neither practiced nor even envisioned.  

•   To top off this gap, students use the notation of positive decimal numbers, but the 
way they implicitly conceive of the set of these numbers leads them to make 
errors in their subsequent mathematical studies. They reason as if there existed a 
unique natural number  n  such that if all decimal numbers were multiplied by 10  n   
they would all become whole numbers (Such a structure is called D n .) 
Topologically, thus, they are still just the whole numbers.  

•   The real decimal numbers are all the rational numbers of the form  m /10  n  , and 
thus the set of all of them is the union of all the D n . They can approximate as 
closely as desired not only any rational number, but also any algebraic or 
 transcendental real number. They lend themselves to algebraic calculations like 
the rational numbers and to comparisons and ordering like the natural numbers.  

•   Students and sometimes even teachers use the term decimal number to designate 
any  decimal expression  of a rational number, be it a decimal rational number like 
0.3 (3/10), or a non-decimal rational number like 0.333… (1/3) or even the deci-
mal approximation  to an irrational real number like 3.14 for π.  
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•   These mathematical delusions do not prevent the students from being disconcerted 
when suddenly the division  of two well-behaved natural numbers sets out to pro-
duce a sort of monstrous number, made up of a visibly infi nite sequence of digits.    

 Part 2 of our curriculum therefore shows the students the coherent project of 
replacing the antique fractions, inappropriate for analysis and calculation, with dec-
imal numbers that can easily generate the real numbers. The properties of one and 
another can thus be established by an authentic and instructive mathematical adven-
ture that they will perhaps recognize later on in more sophisticated guise if they 
study mathematics. 

 The students compare and calculate a large number of decimal numbers and 
intervals, imbedded or not, and rapidly develop an expert  connaissance   of the real 
line, a  connaissance  that the exclusively numerical apparatuses in their environment 
no longer show naturally. 

 In Part 3, the three fundamental objects represented in the course of the story by 
fractions or by decimal numbers remain distinct:  measurement of sizes, ratios,  and 
 functions.  The operations on these mathematical objects are conceived differently, 
and the names for each, depending on their particular uses, proliferate. The problem 
of change of the unit in the reproductions of the Optimist  poses an apparently diffi -
cult problem for the students. Clearly, as before, the procedure that they will be using 
and that will work is not taught to them. The students know very well that they will 
not have to reproduce them alone and in other conditions. What they are doing has a 
mathematical identity that can be expressed in more advanced terms in later mathe-
matical programs. The issue is not anticipating these advanced  savoirs  , but justifying 
the use of the necessary instruments that one wants them to learn by a mathematical 
problem that gives these notions their meaning and their mathematical use. 

 In Part 4, using the composition of functions in order fi nally to defi ne multiplica-
tion  and division  of two fractions appears a new challenge to caution and reason. 
This new case of division gives rise to a cohort, nonetheless already numerous, of 
different interpretations. In all of the curriculum, divisions are the quick-change art-
ists of this adventure: they keep reappearing in new guises, for apparently similar 
(or inverse) uses. But the fi nal identifi cation of all these appearances gives the stu-
dents a very satisfying sense of accomplishment. A cycle of study is achieved, pro-
ducing a sentiment of simultaneous completion and unity.         
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                                  This chapter, originally conceived as a discussion of the research intentions behind 
the lessons in Chap.   2    , how the research was carried out, and what results were 
developed, underwent a major expansion and enrichment. These resulted from the 
fact that in going back to produce this discussion, Brousseau became conscious of a 
degree of complexity that was more apparent in retrospect than in the process of 
living it. Delving into that complexity broadened and deepened the discussion. 

    Warfi eld Introduction Concerning the History of and Voice 
in Chapter   4     

 Our original image for this book had three parallel chapters, all centered around the 
curriculum on rational and decimal numbers that was at the core of the Theory of 
Situations, and a foundation stone for the whole research fi eld of  Didactique . The 
idea was to start from a students’ eye view with the lessons themselves and some of 
the commentary written at the time about students’ responses, augmented by Nadine 
Brousseau’s memories from having taught them. In this we were aided by the fact 
that we had published many of the lessons and a lot of the commentary in a sequence 
of articles in the Journal of Mathematical Behavior. The following chapter was to be 
the teachers’ eye view of the curriculum and the process of preparing and teaching it. 
This proved to be slightly more complex than we had anticipated, because the setting 
was so important and so totally different from a “regular” school – French or not – 
that it needed a lot of explaining. Again, the Brousseau’s put their heads together, and 
eventually developed a chapter that covered the basics in a clear and honest way. 

 Then came the fi nal chapter, the researchers’ eye view. The writing of it has 
proved to be a major and also highly rewarding challenge. The challenge stemmed 
basically from the fact that as he began to describe the researchers’ view, Brousseau 
realized that in fact he was describing a piece of the history of a research fi eld which 
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had never been published and which only he actually knew. From this realization 
grew a determination, strongly supported by his co-authors, to get this history down 
on paper and make it available. Doing so proved to involve an enormous amount of 
work and sometimes frustration. Repeatedly he read what he had written and, feel-
ing that some major aspect had been omitted, in effect started over. This process 
lasted for many months until fi nally he felt that all of the essentials had worked their 
way in. I then had the privilege (and task) of assembling the results of all this labor 
into a coherent whole. In this I was hampered by the fact that I was unwilling to 
eliminate any pieces, because each piece provided at least one insight that was fas-
cinating and quite new to me despite 20 years of working closely with Brousseau 
and his work. My hope is that readers will be as fascinated as I, and correspondingly 
excuse some slightly awkward transitions. 

 As should be clear, the chapter also escaped our earlier intention to avoid the fi rst 
person singular. It is the story of the personal efforts of one person, strongly sup-
ported by a multitude of others. Those efforts led to the establishment of a whole 
fi eld of mathematics education research, whose value was ultimately attested to by 
Brousseau’s reception of ICMI’s fi rst Felix Klein Award for Lifetime Contributions 
to Mathematics Education. The rest of us have the privilege of hearing the story 
directly from that person – it would make no sense at all to attempt to disguise that 
fact. The rest of this chapter is fi rmly in the voice of Guy Brousseau himself.  

    Brousseau Introduction to Chapter   4     

 After describing the adventure of the students and then that of the teachers, I thought 
it would be easy to present the principal results of our research as an adventure of the 
researchers. This turned out to be impossible. Too many observations took part at the 
same time on too many concepts engaged together in too many concomitant experi-
ments. To describe and explain each step would require the description and explana-
tion at that moment of all the other concepts in evolution and the effect of each event 
on all these concepts, and why progress on one point sometimes disrupted all the rest. 

 All of my efforts to explain at a distance of 50 years the emergence of the princi-
pal concepts that today make up the Theory of Situations have failed. Each attempt 
led to some new sort of exposition, much more detailed than the preceding, of the 
set of concepts created, constructed according to the normal rules of scientifi c expo-
sition: defi nitions, statement of results, proofs, consequences, uses, … I never stop 
reorganizing and completing “a complete exposition” of the Theory of Situations 
and its extensions and metamorphoses. But invariably this exposition presents gap-
ing holes resulting from uncompleted research projects, concepts that outside of 
their original conditions have defi nitions that fl oat, or incomplete proofs, … 

 As a reader accustomed to scientifi c reports I thought that my diffi culties arose 
essentially from the confusion of my ideas, increasing with age. But that is perhaps 
not the only explanation. As I revisited certain of the episodes from this adventure 
on the teaching of rational and decimal numbers I suddenly rediscovered a diffi culty 
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that I had experienced vividly without ever having brought it to the surface and 
straightened it out. 

 The objects of the Theory of Situations have a composite origin, and they are held 
in “logics” that are locally irreconcilable. There is what one wants to do and what 
one sees or thinks to have seen. For example a  didactical    situation  is conceived as a 
means of realizing a certain didactical project. In this case, it is organized as a func-
tion of an end goal; the connections between the designs are themselves the reasons 
for the designs; the objects presented are assumed to be observable and realizable; 
the causalities are assumed to be true in the name of a previously established ratio-
nality. But the observations of an episode 1  must be interpreted. The elements of the 
study must be extracted, based on the observation,  independently of the initial model,  
of the teacher, the students, the knowledge, the actions, the words spoken, … The 
gaps between the actuality and the elements of the model will only be noted later. 
Reasons can no longer be invoked but must be proved. Using the same terms in the 
two cases produces the risk of confusing the two objects. For the people carrying out 
the teaching and the research confusion was impossible. It was prohibited by the 
context. The theoretical concepts of situation, of a teaching project, and of observa-
tion of a phase of a lesson, even though spoken about with the same terms were 
necessarily different objects. But when they were discussed, these distinctions dis-
appeared without our noticing it, and made the discourse diffi cult to decode. 

 With concepts like that of the didactical  contract, the confusion was between the 
occurrences observed and the interpretations of them, and their technical and theo-
retical models. For some concepts, people were reduced to total confusion because 
of this multiplicity of statuses. 

 Scientifi c practice would have one consider the models as direct representations 
of observation, with the researcher charged with rejecting the model in the case of a 
recognized divergence. But that image is simplistic. Each science has the obligation 
of insuring the basis of the relationship of its discourses with a certain set of circum-
stances. The theory of situations was a method, a justifi cation and a guide for the 
teachers and their counselors; for the researchers it was a hypothesis, a model that 
might be disproved and rejected. 

 The constant contact and blending with our object of study obligated us to take 
into account ethical considerations: not to use designs that risked producing unnec-
essary diffi culties for the students; not to base our research on the interpretation of 
errors that we could avoid; to stay conscious of the effects on the system that would 
be produced by publication of the errors we observed; and fi nally to advance criti-
cisms publicly only with not only a conception of their correction but also the real 
and practical possibility of avoiding them. 

 I fi nally gave in to the evidence after numerous attempts that invariably led me 
to revise each preceding explanation of the origins of the concepts of  Didactique  
of mathematics, clarifying it or correcting it: my attempts at an exposition 

1    Alain Mercier judiciously proposed that the name “episode” be used for an object of observation 
that permits the hope of identifying a situation and its evolution.  
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suffered especially from a fundamental and insurmountable error, from a crucial 
misunderstanding: 

 At the time that the events we are reporting occurred, students and teachers 
formed perfectly identifi able entities. On the other hand, researchers didn’t exist. 
The very idea that one could carry out specifi c scientifi c research on the teaching of 
a mathematical concept was inconceivable for the majority of scientists, fi rst for the 
mathematicians themselves and also for elementary and secondary teachers. 
Journals that could publish the texts we produced did not exist, at whatever stage we 
presented them. The few rare documents that remain from the period are islands, 
peaks emerging from an undersea mountain range. There were no researchers in the 
sense in which we would understand them today. Describing the development of the 
science of  Didactique  as an adventure of researchers would have been a misrepre-
sentation if it had been possible. It was not possible. 

 Our adventure took place at a time when  Didactique  did not exist, and no one 
knew what would constitute a “result” of  Didactique . There were no journals that 
could publish the preparation of a “lesson”, with its expected techniques and tech-
nologies, and at the same time a report on its observation accompanied by scientifi c 
references. The general ideas that supported didactical  techniques and their obser-
vation were (or claimed to be) “new”, but they would have had to be suffi ciently 
sure, and thus already accepted, to make of these observations scientifi c results. In 
fact, they were radically different from classical professional concepts and from 
those imported from existing disciplines. 

 Every participant in the COREM  nourished the communal knowledge by bring-
ing in his or her observations, questions and problems. They learned thus what 
interested the others. No one had the total vision of what was happening, but each 
possessed a part of the truth that might call into question all the ideas, all the proj-
ects, and all the hypotheses. In the course of the weekly seminars all the participants 
studied or explained the works under way. But to act, each one had to be able to 
ignore, voluntarily or otherwise, things that might hinder their work. A teacher who 
waited too long, wanting to understand the behaviors of his students or perfect his 
explanations, might let the principal object of his action escape. A councilor or 
researcher who explained in too much detail the alternatives left open by her project 
took the risk of seeing the teacher derail during a lesson and take one of the options 
that had been studied and rejected. 

 The experiments were thus inscribed in the knowledge of the community without 
anyone possessing the whole of the necessary information, and the recognition of 
this knowledge was the beginning of putting them under study. The various types of 
diffi culties or successes were thus experienced, recognized, then taken into consid-
eration and fi nally studied in the collective functioning of the COREM . 

 The concepts, or their rough forms, had their roots in the work of the teachers. 
But the interpretations that the teachers made of them were oriented towards an 
indispensible rapid decision. And for that, these interpretations rested on principles, 
reasoning and observation that called forth objections and doubts. Not too many! 
Teachers could not be paralyzed by doubting their own judgment. Objections could 
thus appear only in the form of counter-propositions and the explanations they 
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required. They had to be received and understood by everyone interested. The 
advantage of not having the status of researcher was that everyone had room for 
refl ection, the rhetoric of reasoning, and experimental or at least empirical proof. 

 The researcher in  Didactique  in the years ′64–′80 is a mythical being, a dream, a 
projection. I am the author, the inventor and one of the organizers of the system that 
I am attempting to describe, but each and every member of the system was also a 
researcher, a producer and an actor in this movement as much as I was. We were the 
idea-men, the authors, the organizers of the scene and the midwives for this mythi-
cal being: the researcher in  Didactique.  

 Our model was Bourbaki . 2  Bourbaki was very probably, after Euclid, the most 
powerful “researcher” in didactical  engineering of mathematics. He never estab-
lished one new theorem; rather, he reorganized the known mathematics of his time. 
But his goal was to constitute a sort of new reference, a fundamental dictionary of 
mathematics unifying vocabularies in order to simplify its proofs, its learning, and 
its use. 

 He was also our foil. The virtues of this work enchanted those who had dealt with 
mathematics earlier. But newcomers saw classical mathematics suddenly becoming 
more distant – and for some even disappearing – behind a barrier of fundamentals 
destined, it was thought, to seat a future effi ciency on a fl awless rigor. Illusory effi -
ciency and rigor. The diffusion of the foundations of mathematics seemed to put the 
encounter with its primary objects at an great distance. There were nonetheless 
many new ideas behind this apparent classical rigor. But they were not expressed. 
This engineering rested on an epistemology that was in the midst of evolving and 
not well incorporated. 

 Attempting to use the new axiomatic organization to reform the teaching of ele-
mentary mathematics could appear an extreme challenge and absurd gamble. But no! 
All of the conditions were indispensible to truly studying what could be the founda-
tions for the ambition of teaching mathematics and discovering beyond the universal 
genetic development the causes, the effects and the laws of didactical efforts. 

 But if there were no researchers, who were the authors of the research? And how 
was it done? Driving the principal actor off the stage doesn’t seem a good way to 
facilitate the presentation of a play… unless one considers, as is the case, that the 
story one is telling is primarily that of the ideas and events. 

 On the other hand, although the neat parallels between adventures of students, 
teachers, and researchers proved illusory, there is a good deal about the background 
of the research adventure that could contribute to an understanding of the adventure 
as a whole. In particular, it seems worthwhile to shine some light on the researchers 
themselves. What were their motives? What did they get out of the experience? 
What did they learn from it that was of interest to Didacticians and teachers? 

2    As defi ned by WIKIPEDIA: “ Nicolas Bourbaki  is the collective pseudonym under which a 
group of (mainly French) twentieth-century mathematicians wrote a series of books presenting an 
exposition of modern advanced mathematics, beginning in 1935. With the goal of founding all of 
mathematics on set theory, the group strove for rigour and generality.” For more details, see   http://
planetmath.org/NicolasBourbaki.html      
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 Our ambition is to render intelligible not just the results of our work, the ones 
that could be communicated in a directly accessible form, but also their genesis and 
their history, which were far richer than we have been able to communicate. This 
history will permit a better understanding of our results, their origin, their range, 
and the enthusiasm that enabled a small community to form and to furnish the 
efforts necessary for the realization of a project that was born at the end of the 1950s 
and continues today. 

 The fi rst part of what follows shows how the main ideas for reforming the teach-
ing of mathematics emerged: the search for modes of learning that permit students 
to recognize and develop the practice and knowledge of mathematical concepts 
before they can even formulate, defi ne and explain them; the search for processes of 
reciprocal acculturation for mathematicians and teachers; the conception of organ-
isms and designs that were capable of realizing the necessary research but that we 
did not have to develop into curricula that could be diffused. 

 The second part returns to the description of the COREM , this time from the 
point of view of the researchers: origins; objectives; types of research and methods 
of analysis; how and why this arrangement resulted in the appearance and testing of 
questions, concepts, phenomena, convictions and proofs related to a variety of 
aspects, in particular the mathematics of teaching.  

    Prelude (1960–1970) 

    The Sources 

 In the course of the nineteenth century the development of mathematics in all direc-
tions took a new turn: in a variety of areas the classical approaches ran into diffi cul-
ties that called into question old practices and beliefs. The crisis of the foundations 
of mathematics was the most radical because it endangered the consistency of the 
whole structure. It led to an attempt early in the twentieth century to redefi ne and 
reorganize all of known mathematics. The hope that it would remain confi ned to the 
role of metamathematics, a description and redefi nition of known mathematical 
objects, eventually died. The richness of this “language” and of the points of view 
attached to it led rapidly to its inclusion in a unifi ed mathematics as the necessary 
expression of its objects. This then led to the question of how to give students of 
mathematics access to the mathematics of the period without losing too much time 
in the labyrinth of the old organization. At what level should the new foundations be 
taught? After the  licence  3 ? Then in every specialty – Linear Algebra, Topology, 

3    An academic level at the time very roughly equivalent to an American bachelors degree with a 
mathematics major.  
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Statistics,… – every professor would have to start with a course on fundamental 
structures! Absurd. In response, in 1956 the University of Paris inaugurated a course 
for fi rst year students based on Pisot and Zamanski’s  book,  General Mathematics.  

 In the autumn of 1957 I was called away from the classroom where I had been 
teaching to do my military service. While awaiting deployment to Algeria I was a 
sub-lieutenant at Fort Bicêtre, close to Paris, where my duties sometimes left me a 
bit of free time. I made use of it to enroll in the course to renew my contact with 
mathematics. Revisiting from a more advanced point of view the mathematics I had 
previously worked on was a pleasure for me. When I had to leave this mathematical 
interlude for less agreeable occupations I began refl ecting on the possibilities for 
introducing traditional basic mathematics – the teaching of numbers and operations 
– which I had been practicing for 4 years, by basing it on this new defi nition. I began 
to understand the origin of some of Piaget ’s works (on which I had had to write a 
paper in the course of my training as an elementary school teacher.) 

 After 27 months of military service, 12 of them in Algeria, I rejoined my wife, 
my son whom I had barely met, and my class of 10-to-14-year-old students. I was 
able to carefully carry out the lesson projects I had been cogitating. The backbone 
of elementary applied arithmetic is proportionality exercised by cross-multiplication. 
Without mentioning the word “functions”, I began to have them identify the values 
involved in a problem, and draw rectangles in which they could either write the 
given values or indicate the unknown values with a square (red for the value being 
sought.) Connecting lines indicated corresponding values. This correspondence 
frequently showed up as the possibility of carrying out an operation to fi nd the 
number corresponding to a known number. Thus the notions of set and function 
were themselves introduced by their use, without the necessity of naming or identi-
fying them for the moment. Manipulation of the numbers and of the units of 
measurement were designed to facilitate explanations and learning. I could only 
very partially touch on the idea of recognizing typical graphs for a problem, which 
could have introduced algebra, but it took me years to fi gure out why. 

 At that period, the ideas of Célestin Freinet  were beginning to seduce teachers. 
They appeared to unite the propositions of the modern pedagogues by favoring stu-
dent activity (Dewey ), the grouping of activities around signifi cant centers of inter-
est (Decroly ), respect for the liberty of the student and adaptation to the  milieu   
(Vygotsky .) Nothing specifi c to mathematics was to appear. For example, Freinet 
proposes only that there be a folder where the student is to fi nd statements of prob-
lems which he is to solve on his own before going to look at the solution. When he 
thinks he understands it he undertakes a test paper that the teacher corrects herself.  

    The Adventure of “Modern Mathematics” 

 At about this point (1960?) an article in the journal  Sciences et Avenir (Sciences and 
the Future)  revealed that in a course for future pre-school teachers Professor Papy  
had proved a theorem of advanced algebra (Bernstein’s Theorem) using graphs. 
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This article brought to the attention of the public at large a movement known as 
“modern mathematics” whose goal was to revolutionize teaching. The journal cited 
the work of Lucienne Félix , “Modern Mathematics – Elementary Teaching”. I sent 
Lucienne Félix my lesson plans for classes in which I had experimented with a 
number of her suggestions. She had me invited to a meeting of the CIEAEM 
( Commission Internationale d’Études et d’Amélioration de l’Enseignement des 
Mathematiques  4 ) in Switzerland where I met the principal European promoters of 
renovation of the teaching of mathematics, successors to Choquet  and Gattegno  
(among them Papy , Servais , Pescarini , E. Castelnuovo ). Following this, I returned to 
my studies of mathematics at the University of Bordeaux and at the same time wrote 
a curriculum project for fi rst grade. With no recourse to specifi c terms available, this 
pseudo-textbook was a 60 page book without words. It would have taken more than 
80 pages of exposition to explain the mathematical notions taught or used, at least 
three times that in pages of methodology to describe to teachers what they should or 
should not do with it, and more than 1,000 pages to explain to them why they should 
and how they could try to change their practices without abandoning those that were 
indispensible. The publisher Dunot , at the instigation of the Academician 
Lichnerowicz  to whom Lucienne Félix  had introduced me, consented in 1964 to 
publish this emblematic, but practically unusable, work. 

 Professor Lichnerowicz  directed my atypical course of university study. I fi lled it 
out with participation in the audacious activities of a young linguist, René La 
Borderie , director of the CRDP ( Centre Régionale de Documentation Pédagogique ) 5  
of Bordeaux, who organized seminars with a parade of top-fl ight speakers (like 
Cristian Metz, specialist in the Semiology of Cinema, or A. Moles.) Thanks to this 
participation, and under the aegis of Professor Colmez , my Analysis professor, I 
was able thereafter to organize contacts and then professional development actions 
with the help of mathematics teachers from the region’s Écoles Normales. 

 In 1964 I had made a lot of progress in my studies, but I still had a pretty heavy 
program in psychology with P. Gréco , and in Science of Education, and in 
Sociology,… and in every direction I looked. It was a Renaissance epoch, when all 
of Europe shook with exchanges and revelations in all domains. 

 It was at this point that Lichnerowicz suggested to me one day: “You ought to 
study the limiting conditions for an experiment in pedagogy  of mathematics.”  

    The Subject of the Studies Proposed by Lichnerowicz  

 I thought at fi rst that he was asking for a sort of report and perhaps a catalogue of 
suggestions with a view to the reform movement which at that point was fi nally 
being widely accepted. That could have been a natural response on his part to my 
comments on the dangers and diffi culties that I foresaw and that I talked to him 

4    International Commission for the Study and Improvement of the Teaching of Mathematics.  
5    Regional Center of Pedagogical Documentation. This center existed for the purpose of producing 
documents for use in teaching.  
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about, and to the solutions I envisaged. But the mathematical formulation of his 
request called rather for a deeper refl ection and more precise justifi cations. 

 This request was the point of departure of the adventure of the didacticians that 
we want to cover in this chapter. But my questions were not of the type of “How 
many experimental and model classes should the administration set up, and what 
would be the budget for that?”, but rather how to reconcile the fl exibility necessary 
in order to adapt the project to a class with a respect for conventional conditions 
common to a whole cohort of schools – which notions were indispensible and how 
to make them accessible. 

 I had no intention of launching myself, like a visionary, into one of those exer-
cises of Prospective so much in vogue at the time. Nor was there any question of 
immediately producing an elegant academic study, nor of enumerating theoretical 
conditions on which I had begun to refl ect in which to set up my own attempts in 
classrooms. To discover the conditions of an experiment and experience the choices 
that would be required, the best thing was to prepare one and realize it. 

 But what  is  an experiment “in the pedagogy  of mathematics”? It can only be the 
submission of an affi rmation – expressed in a codifi ed language subject to the 
requirements of a theory that guarantees its consistency – to an experimental pro-
cess and to methods of questioning that could disprove it. 

 The conclusions that I arrived at fairly swiftly could have discouraged someone 
who expected short term results for immediate questions. But curiously I perceive 
now that I always acted as if while it was essential to work swiftly on avoiding pre-
dictable errors, it was necessary to take all the time needed to avoid going astray, 
and as if I had ahead of me … eternity, or in any case 45 years, to do it all. 

 I therefore launched myself with youthful enthusiasm in the conception and the 
progressive, meticulous and relentless construction of a potentially Herculean proj-
ect. I had to begin to realize it in order for the circumstances to be able to impose on 
me the reductions to the essential: the initial conditions. Their realization would 
then permit the opening up of a process that would lead to the installation of institu-
tions, the adequate training of personnel, and the elaboration of methods of study 
and knowledge necessary to the establishment of a science capable of framing a 
respectful reform of the object of its studies. 

 The work to which I progressively assigned myself was not that of a mathemati-
cian, nor that of an innovator, of a teacher or even of a researcher in the classical 
sense. It was more like that of a nineteenth century engineer who wanted to imagine 
and create an enterprise that he knew would be required in order to launch an appa-
ratus that didn’t yet exist – a fl ying machine, for instance.  

    The Background of the Future Research 

 Until the 1960s, the majority of mathematicians thought that the renovation of the 
vocabulary  and fundamental concepts of mathematics could only be of interest at 
best to students who had already advanced well into mathematics. The most auda-
cious wanted to extend the project to all students of mathematics at the universities 
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and in particular to those who were beginning upper level studies. This state of 
affairs was rather abruptly reversed in 1961. Because many high school students 
have the ambition of being admitted to one of the highly prestigious Grands Écoles, 
the extremely challenging entrance examinations for them strongly infl uence high 
school curricula. In 1961, in response to the increasing interest in “modern mathe-
matics”, the committee responsible for those examinations put out a radically 
revised set of test-preparation manuals. Secondary education had no choice but to 
respond. Various textbook authors thus engaged immediately in this effort with col-
lections that began basic set theory already at the fi rst year of high school (C. Bréard, 
G. Papy), and a sort of race to modernity took place among various protagonists – 
among publishers, among private schools, among public schools, etc. The resulting 
rupture with elementary education became apparent, and stood as a challenge. 

 Could this reform go further down the education system? The principal obstacle 
was clearly the language and its use. The modes of defi nition of mathematical 
notions and establishment of knowledge seemed incompatible with the age of the 
students and the culture of elementary school teachers. The use of set theory resulted 
simultaneously on the one hand from the choice of very simple representations and 
on the other from the paradoxes and logical diffi culties that this representation 
brought out. Teaching it incautiously would combine all the disadvantages. 

 The exercises of “modern mathematics” that could be conceived in accordance 
with the principles of the methodology of the period fi rst put in an appearance as 
amusing additional activities without visible use for the acquisition of the tradi-
tional basics, to which they also added nothing. On the other hand, the work of 
Piaget  showed children spontaneously acquiring mathematical structures with no 
need for knowledge of the terms describing them, or of explanations, or even of the 
essential organization of the mathematical discourse. 

 It seemed to me it was impossible to imagine that teaching primary school stu-
dents could be done in the way chosen for secondary. Some people, later on, hoped 
to explain the fundamental terms to them and invent illustrative exercises, but what 
could be said to teachers absolutely could not be said to students. Others proposed 
metaphors and graphic representations and others fi nally suggested introducing 
6-year-olds to symbolic logic. Attempts to make things explicit immediately put 
into play diffi culties and paradoxes from which it was already clear to me that the 
teachers would not be able to extricate themselves. But the movement was too 
strong to avoid this obstacle. It needed to be channeled as quickly as possible. 

 The crucial questions, it seemed to me, were the following:

    (a)    Could fundamental mathematical concepts be taught to young students directly, 
as practices, without any formal verbal explanation being necessary?   

   (b)    Would these concepts then be operational, that is, usable and useful and not just 
reconstitutable as isolated pieces of knowledge?     

 Other questions followed, such as:

    (c)    Would teachers be ready to practice this teaching spontaneously after a training 
reduced to reorganization of mathematical content? If not, would it be possible to 
give teachers training that would enable them to practice this form of teaching?   
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   (d)    Would the  connaissances  thus acquired be usable for the early acquisition of 
corresponding  savoirs  6 ? Would these conditions in the end ameliorate the ulti-
mate acquisition of the mathematical knowledge, classical or modern, that was 
or might be taught? Could the practices thus introduced subsequently be cor-
rectly formulated? Spontaneously? Or only in certain conditions? Could the 
practices of notions and their formulation be learned correctly, without justifi ca-
tions and without proofs? At what moment could these diverse forms of justifi ca-
tion be united, and coincide? Could children use and learn a formal system 
without recourse to verbalizing it and making it explicit in the vernacular? I had 
already tried out and succeeded with a number of non-verbal lessons; I had even 
prepared a complex non-verbal program dedicated to the calculation of fractions 
(as linear mappings) which I fortunately never tried to use. Where could this type 
of process lead? Many other questions and many other speculations came up.     

 The reader will understand that my conclusions could only be very pessimistic … 
but still… 

 Still it seemed to me that this research deserved to be carried out, not with an eye 
to immediate development or action-research, but because of its scientifi c impor-
tance. This type of study was thus indispensable to prepare for the future. People’s 
enthusiasm could be put to good use to create a scientifi c organism, or some scien-
tifi c organisms, dedicated to the study of these questions. A center for research on 
the teaching of mathematics could open the door to a specifi c institute by preparing 
the research instruments and personnel. 

 This was the sense of the conclusions I presented in 1968: the need was for the 
creation of an Institute for Research for the Teaching of Mathematics. What mate-
rial means would this project necessitate? Given the issues and conceptions of the 
period, adding a few teaching posts and supplemental support personnel did not 
seem excessive. The alternative was the retraining of all secondary teachers – a mas-
sive expense if undertaken.  

    Experimentation: How and in What Form? 

 At the time, the experimentation that was in vogue was of a very different nature 
from what I envisioned. It tended to consist of a lesson or a curriculum, an organiza-
tion or some material or other, put into action in real conditions for experimental 
purposes. If the design was found satisfactory, it was likely to be adopted directly or 
at least to be shown as an example, diffused and reproduced. The essential elements 
were the novelty of the design and the fact that it was ready to be put widely to use 
as it was or with minor improvements. At the time, this was the principal accepted 
means of attempting to improve teaching methods. To accomplish the reform of 
teaching, the only route envisaged consisted of asking confi rmed teachers to learn 

6    For a discussion of the distinctions between  savoirs  and  connaissances , see Chap.   5    .  
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the new mathematical concepts themselves and then to conceive of ways to teach 
them and demonstrate their value experimentally. This conception was in fact a 
fools’ market: the diffusion depended on outside factors and the success of a trained 
and convinced teacher offered no guarantee of the success of his emulators. 
Moreover, our ignorance of the conditions of reproduction of a design or even a 
teaching sequence, the label of “reference practice” attached to practices that are in 
fact heterogeneous, and above all the irrational importance assigned to the innova-
tive character of the propositions being studied led me to suspect grave faults in this 
process, faults which were indeed subsequently to become evident. 

 The classic schema for carrying out this experimentation included some or all of 
the following steps: Prior  theoretical considerations  (1) making it possible to envisage 
an  original didactical    realization  – book, material or curriculum (2), which then 
required  training of the teaching personnel  (3) who were to take on the responsibility 
of  carrying out this project, the teaching itself  (4). The  observation  (5) of this teaching 
then made it possible to obtain “results” (6), and report them to the  methodology  (7) 
of teaching which could subsequently furnish the facts for  theoretical refl ection  (1). 

 These steps arose from six principal domains:  The discipline ,  pedagogical theo-
ries, teaching practices, teacher knowledge, methodology  and  methods of observa-
tion and evaluation.  Each of these evolved independently, each with its own dynamic 
of evolution. An essential element of their progress was borrowing results or tech-
niques imported from other domains such as philosophy or psychology, the imports 
often being of dubious value, because their original discipline did not have the 
means to guarantee the conditions of adaptation to teaching phenomena, and 
because conclusions about the resulting developments were impossible to draw. 

 This kind of experimentation made it possible to observe the results and report 
them, but in conditions that included numerous choices that the experimenter had 
made in each of the domains, with each result conditioned by all of the choices. No 
general conclusion was possible. An experimentation of this nature chained together 
the choices in every domain and thus furnished a complete “product”, to be judged 
globally and reproduced, without its being known whether the product was in fact 
reproducible and if so under what conditions. Effective experimentation requires a 
consistency that the collection of independent sources of decisions could not supply. 

 An alternative was the  spiral method   ,  consisting of a sequence of experiments 
conducted  by the same team  in such a way as to permit each repetition to use the 
consequences of the previous experiments to  improve on the elements of each 
domain that contributed to its composition.  It was a familiar format for the teachers, 
who were accustomed to presenting the same notions to their students repeatedly in 
the course of their schooling in order for the students to make progress on each one, 
profi ting from their progress in others. But this time it was applied to the activities 
of the teachers and researchers and not to the students themselves. A repeated 
experiment conducted by the same team of researchers should create a much stron-
ger relationship with the domains in use. Thus the spiral method could improve the 
product. But could it also improve the domains that had contributed to setting it up 
and thus contribute to the improvement of knowledge about teaching within these 
domains? For that it was necessary, but probably not suffi cient, to insure at each step 
a collaboration of the experimenters with the specialists in each domain to compare 
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the results from each other’s points of view. This was the model that we retained for 
the functioning of the teams of the COREM . 7  

 This could only function on condition that each time around the spiral worked 
well and provided actual progress in each domain visited. This empirical and prag-
matic optimism was encouraging, but it had nothing to say about the nature of the 
efforts to be made on each sector of the spiral. If the successive experiments were 
not carried out by the same teams of teachers and observers everything depended on 
the quality of their capacity to communicate their conclusions. It seemed to us that 
the obligation to describe signifi cant events without a new means of communicating 
them could only diminish and delay the progression up the spiral. 

 Later on we carried out experiments that demonstrated that teachers had diffi cul-
ties in describing their activities precisely to their colleagues. This confi rmed our 
views. Ordinary vocabulary  lends itself to highly diverse interpretations. Repetition 
by the same actors would permit a considerably livelier rhythm of discoveries. What 
was needed was thus experiments repeated by the same teams at a rapid rhythm and 
continuing for a long time. Furthermore the premature diffusion of the observations 
outside of the circle of the research teams would be very likely to be fatal to the 
continuity of the initial conditions. The experimentation thus needed to be as dis-
crete as it was ambitious. 

 I was able to put together a composite group (university faculty members, high 
school and elementary school teachers, administrators) who were to constitute the 
core of an organism that would make it possible to carry out original but adminis-
tratively supported experimentation. It was necessary at the same time to organize, 
make functional, and describe the rules for the intended organization. In 1967 this 
led to the creation of a Center of Research  for  the Teaching of Mathematics (CREM), 
whose offi cial mission was to be an organism for documentation for the teachers. 
This realization responded in part to Lichnerowicz ’s request (administration, orga-
nization, functioning, staff and personnel to get it started, orientation and meth-
ods,… 8 ) It was accompanied by actual propositions for trials, preparatory research, 
research projects, methods, projections of methods, and elements of theory that 
would permit the proposed research organization to function. They were revealed in 
1969–1970 in the fi rst theoretical presentations.  

    Our Experiments 

 In contrast to the experimentation aiming directly at practice and the preparation 
of new developments, our aim was emphatically that of  studying  a phenomenon. 

7    The reader will fi nd a description of the application of the spiral method in the organization of our 
research at   http://faculty.washington.edu/warfi eld/guy-brousseau.com/fi les/possib711.pdf      
8    Readers will fi nd the founding text of this organism at   http://guy-brousseau.com/le-corem/
le-crem-projet-de-lirem-de-bordeaux-et-du-futur-corem-1967/      
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This is a completely different challenge. Studying a phenomenon requires that it be 
identifi ed, determined, and given a form, and then that it be questioned, seen to vary 
systematically or made to do so, with the help of observed or commanded variables. 
There was thus a need for a “theory”: a sequence of defi nitions and declarations, 
methods for construction and aggregation of new statements, etc. 

 Next we had to produce some questions, and imagine designs that would make it 
possible to test these questions. In fact, the designs only existed thanks to the choice 
of a considerable number of conditions and hypotheses, organized into coherent pos-
sible models. But I also had reasons to doubt our capacity to examine the activities of 
teaching and learning without being prisoners of  a priori  justifi cations insuffi ciently 
concerned with reality. It was a matter on the one hand of the utilitarian approach 
(notably the requirements of promoters, publishers, politicians, etc. dependent on the 
short term affects on opinion) and on the other hand of the intellectual approach: 
each discipline had many legitimate propositions and conditions to validate, but 
combining them risked ultimately constituting only an insurmountable obstacle to all 
realization and all refl ection on the object itself, which were our objectives. 

 To avoid all these obstacles I enlarged the spiral method  to a scientifi c project, 
with the theoretical episodes connected through real activities. It was a matter of 
reconciling what was realizable with what was conceivable at that time and later. 

 The philosophical and epistemological bases of my approach seemed to me 
simultaneously natural and very novel. It was only far later that I had access to the 
original texts behind the popularized versions from which I was working. 9   

    From Experiments to Theories: And a Science? 

 The pragmatic route was easy to conceive, if not to set up, but envisaging  scientifi c  
experiments, in the sense of the period, as I believed Lichnerowicz  had suggested, 
brought up interesting diffi culties: no serious researcher in any domain would have 
dared to envisage the problem that way without being instantly discouraged, as 
much by the diffi culties attached to each envisigeable angle of attack as by the opin-
ions and objections that he would have to face from each discipline. 

 But why not apply to experimental research the principles of empirical experi-
mentation? Why not envisage a spiral process for the development of a science that 
didn’t yet exist? It would suffi ce to repeat in each sector of the principal spiral the 
cycles of work forming the sub-spirals. For example, one could begin by using light 
statistical methods to prepare for more sophisticated ones on better chosen observ-
ables, with more stable lessons. 

9    For example, I only discovered Wittgenstein’s  Tractatus Logico-philosophicus  well after its trans-
lation into French (1961) while my positions – so close to his – were already strongly involved in 
my experiments. The same applies to Bachelard’s notion of epistemological obstacle. I think that 
the necessity of conserving the logic of my approach led me to delay searching for the confi rma-
tions that I would have been able to fi nd from more prestigious authors.  
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 We determined a model to describe or envisage the activities of the students and 
the teacher in our experiments. This model permitted us to check whether the experi-
ment was of interest for developing lessons and relevant for the study of their results, 
and to test our capacity to use them, analyze them, and possibly reject them. The 
principle was to start with the elements available to us and substitute new ones for 
them as they became available. If we had not yet succeeded in making certain experi-
mental lessons satisfactory for use with students at the moment when they had to be 
given, they were simply replaced by classical lessons that were easier to prepare. Thus 
no method, pedagogical or other, was excluded in a general way. Only a priori and a 
posteriori analyses established the conditions and events associated with the lessons. 

 Otherwise stated, it was a matter of preparing teaching experiments on simple 
but specifi c questions, based on rudimentary but appropriate theoretical conceptions 
that furnished plausible criteria and methods for learning from the experiment. It 
was above all necessary that these experiments generate on the one hand new infor-
mation and questions in order to pursue the process, and on the other hand improve-
ments of each of the components of the spiral. The fi rst question needed to call for 
the following ones. 10  The fi rst realizations needed to permit the improvement of the 
functioning of the system, to teach the participants in the process (the teachers and 
the researchers), to sharpen the theoretical and experimental instruments – all in a 
way that would be convincing for the institutions that supported the system.  

    The Framework 

 From 1964 to 1970, the study of the questions listed above consisted chiefl y of cre-
ating “frameworks” for principal elementary mathematical knowledge that could be 
envisaged for elementary school. These studies corresponded well with the mis-
sions of information and coordination for which the administrative organism that 
housed us (the CREM) was responsible. 

 A framework consisted fi rst of an exposition that was purely classical mathemat-
ics, but complete, of the reference knowledge that was to be taught, in an order that 
prefi gured the defi nitions, the theorems, the proofs, and their relative positions. 
Next came drafts of a series of fundamental lessons that would constitute the frame-
work of the curriculum, completed by that of certain intermediate lessons. 

 Every lesson draft was characterized, more or less precisely

•    By its  mathematical subjects : an inventory of the notions involved in the lesson 
(defi nitions, properties, statements)  

•   By  general intentions : what the students were to understand, to learn, to learn to 
do, to learn to say, … which would become more precise in the course of the 
preparation,  

10    Subsequently I often used the following test when a student proposed a subject for study: What 
question do you wish to pose? Do you have reasons for doubt about every possible response? What 
will you do with the response? (Let’s assume that the experiment has been carried out and that the 
answer is known – what are the consequences?)  

 Prelude (1960–1970)



180

•   By an inventory of the  didactical    status  of each of these notions before the les-
son, ranging from an  implicit notion already encountered but not identifi ed  to a 
 notion that will serve as a reference in the course of the fi nal learning  or a  famil-
iar notion already acquired but revisited.   

•   By an inventory of the hoped-for modifi cations to these statuses in the course of 
this lesson (a before and after pair for each status)  

•   By the type of lesson envisaged: classic (title, presentation, examples, questions, 
explanations, exercises, a problem), introductory or discovery lesson, review, 
game, etc.    

 This vocabulary  is that of the period, but it was swiftly replaced by other terms: 
sequences of Situations articulated according to a process, questions spontaneously 
connected by a process: a logical thread (ascending or descending deduction) or a 
poïetic one (a spontaneous story as a function of the events.)

•    By the place and role assigned to each of the notions relative to others that pre-
cede or follow it in the curriculum, and that this lesson cause to evolve.    

 We studied many frameworks at the same time for the same sector of mathemat-
ics. We gave ourselves the liberty of breaking with classic routes in order to exam-
ine them. 

 Nor did we hesitate, within the same curriculum, to break with the traditional 
discursive order to try to skirt or skip intermediate steps, or to invert the purely 
deductive order (which later led to “complexity jumps” (Brousseau,  1997 , 
pp. 86–104, 174–176) and the notion of obstacles.) 

 These frameworks could have different rationales: classical or modern  mathe-
matical order  (that is, the order of proofs and deductions) as in Chap.   2    , or “poïetic 
order” (the order of a story, generated by questions) as in the introduction of statis-
tics and probability (Brousseau, Brousseau, & Warfi eld,  2002 ). Statistical analysis 
of sequences of student results would then permit subsequent study of the charac-
teristics of the lessons and their sequences. 

 In this way we began in that period to study a variety of rather original frame-
works for the introduction of the designation of objects and collections and their 
enumeration, then for counting, numeration and the arithmetic operations. Logic, 
decimal numbers, measurement, rational numbers and geometry were to follow. 

 The fi rst experiments that I undertook before 1969 were about the ergonomics of 
numerical calculation. My experiments allowed me to show the benefi t of modify-
ing the methods of calculating multiplication  and division  to improve the results and 
shorten the time required to learn them. 

 A framework makes it possible to make studies a priori and detect diffi culties, 
inconsistencies, errors, and impossibilities, and to organize the experiments and 
studies that it might be most useful to undertake. These programmation processes 
were in no way original relative to the practices of the industries of the period. What 
was original was using these methods in the teaching domain and pushing them 
closer to the action of the teacher and students – also pointing out the doubtful points, 
the questions on which future realizations depended, the subjects of our studies, the 
provisional choices, etc. We were able to organize our progression in a spiral.  
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    Observation 

 Can a lesson be considered by an observer as a ready-to-be-observed phenomenon? 
Class observation was practiced ordinarily only for training teachers or for the moni-
toring of their work by inspectors. Our prior conception was that class could be the 
seat of phenomena in the domain of different sciences: linguistic or psychological or 
social phenomena, or some other, or a combination, but not that it would itself be a 
phenomenon. That was a task! The fi rst observations with a scientifi c experimental 
goal appeared at the beginning of the 1970s in the area of linguistic or social psy-
chology studies (Flanders,  1976 ), but it was always a matter of studying a phenom-
enon defi ned by another science, studied in scholastic conditions. But what 
phenomenon was the teaching itself? The idea of carrying out anthropological obser-
vations of classes was inaugurated, I think, after the initial conception of the CREM 
(1967–1970), at the time when the COREM  was getting started in 1972–1973.  

    Refl ections on This Ambitious Project 

 Work done within the CREM did not result in scholarly articles, but it permitted us 
to go right into action from the moment of creation of the IREM  in 1969 (see Part II 
below.) The bases of the Theory of Situations were presented in 1970 with an exam-
ple of a framework (Brousseau,  1970 ). And we set to work to fi nd a school to create 
a real center for research and observation of mathematics teaching: the COREM, 
with its school and its materials and its network of correspondents. This phase took 
us 3 years of efforts but from the very fi rst year of functioning of the Jules Michelet 
School of Talence we were able to put into experimentation there curricula issuing 
from the best of our frameworks on natural numbers and on rational and decimal 
numbers, and in 1973 on probability and statistics. 

 I have been asked to explain the kind of incredible confi dence with which a 
simple elementary school teacher could pursue for 10 years a project that was so 
ambitious and so much above his condition. Without going into details about what 
in this marvelous period made it possible to realize this small miracle, I would say 
that I had two advantages. 

 The fi rst was my position itself. I never had to aspire to the offi cial positions that 
would have seemed to others to be necessary in order to make decisions indispensi-
ble to this project. I always had the good fortune to fi nd generous and attentive scien-
tifi c and administrative leaders who were able to understand my projects, to support 
them and to make the necessary decisions that I asked of them. Some people might 
think that I was particularly adept at convincing or at attracting, but that was not the 
case. This success was due to the intelligence and devotion to the public cause of all 
those leaders, and to the fact that there were none of the obstacles of personal ambi-
tion or fear of perilous adventures. The project was ambitious, attractive and adven-
turous, but no one could doubt that it was altruistic, and no one, especially not myself, 
could achieve any career or fi nancial benefi t from this communal adventure. 
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 The second is more singular. I had a sort of model. I had in my head  Les Souvenirs 
d’une Vielle Tige  11  (Odier,  1955 ), a book of memories written by Antoine Odier , an 
engineer who had participated in the development of fl ight from 1908 on, of whom 
the builder Gabriel Voisin says that he was “one of those admirable utopians full of 
ideas, full of realizations, full of dreams, full of realities, capable of conceiving of a 
machine to explore time.” This astonishing book described with great verve differ-
ent aeronautical experiments, but also the spirit and adventures of the pioneers of 
aviation. And I compared the situation of what was to become  Didactique  with that 
of the beginning of aviation, drawing from it ideas, optimism and precious informa-
tion. Basically it was a matter of simultaneously following the route of the Wright 
brothers that allowed them to resolve methodically, alone, before anybody else, all 
the practical problems of aviation, and avoiding reproducing the social isolation that 
in the end led them (like Clément Ader) to a sort of dead end. It was also a matter of 
avoiding falling back on the empiricism of technique – that is, letting the availability 
of a technique infl uence our choices when we needed to focus more on our goals. 
We needed to fi nd someone who would do for Didactique what Eiffel  had done for 
early airplane designers, pointing out design weaknesses and the consequences of 
some of the technical choices.   

    The Foundations (1970–1975) 

    The IREM  [Instituts de Recherches pour l’Enseignement des 
Mathématiques] 12 ; the Bordeaux IREM 

 The fi rst of the IREMs were created in 1969. Paris, Lyon and Strasbourg opened in 
January, Bordeaux in October. The “R” offi cially signifi es “Research”, but the prin-
cipal activity, or at any rate the one that could be immediately launched and was the 
most in demand was that of professional development of teachers to prepare them 
for the new basis of mathematics. The government allocated to this task many “sup-
plementary hours”. This created some debate. Teaching the teachers to teach the 
new mathematics required for university admission consisted, for all of the IREMs, 
of teaching them, or at least those of them who could follow it, in the classic univer-
sity format, and leaving it to them, as a friend of mine put it, the work of “setting it 
to music”, that is adapting it to their own classes. 

 However this project, theoretically conceivable with a homogeneous class of 
well trained teachers, failed to take into account the actual capacity of some among 

11    The Association of “Vielles Tiges” was a group of pilots whose fl ights had been offi cially recog-
nized before 1914, and who thus participated in the take-off of French aviation.  
12    Research Institutes for Mathematics Teaching.  
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them to carry out the proposed updates. 13  On top of that, the available textbooks, 
which took no account of the pedagogical and didactical  conditions to be satisfi ed, 
could not be used. The “R” in “IREM” was interpreted by the unworthy term 
“Retraining”. 

 In addition, others took it as indispensible that the IREM take on the work of the 
pedagogical adaptation of the intended mathematical program and hence that they 
reserve some of their means for the study and diffusion of appropriate forms of 
teaching at every level. 

 Among that set, there were still two trends. One consisted of thinking that 
groups of teachers and young mathematicians together would have suffi cient 
knowledge for the construction of courses that were appropriate for students and 
correct from a mathematical perspective. The boldest among them dreamed of add-
ing to these groups a psychologist or a linguist. For this group, the “R” in IREM 
did indeed signify “Research”, but in fact this term referred not to any precise 
method, but rather to an intention. For example, groups of the IREM of Lyons (one 
of the fi rst three IREMs created) essentially supported the production of manuals 
for the students and gave information to the teachers in an ambiance of creation of 
mathematical texts destined for the development of an updated mathematical cul-
ture. The IREM of Strasbourg undertook epistemological (G. Glaeser ) and  statistical 
(F. Pluvinage ) research on teaching. Each IREM added some particular thing or 
other to the panoply of communal actions. In Paris, the IREM had the means to 
engage itself in all directions. An Institute of  Didactique  of the Sciences created at 
the University of Paris 7 interested itself in the teaching of logic and in its use in the 
analysis of student errors. 

 The other trend was the one I proposed to the IREM of Bordeaux, which sup-
ported it. Without declaring it too openly, the IREM of Bordeaux had the ambition 
of preventing the predictable excesses by an effort of rigor in its actions and by the 
development of authentic research. 

 The more one approached the teachers’ actual practices in an ambiance of indi-
vidual innovations, the greater was the danger of seeing an expanding tide generated 
by all sorts of utopias, educational, epistemological or something else, that neither 
administrators of education nor the IREMs would be able to stem. There was no 
way to prevent this fl orescence. What had to be done was to forestall some of the 
excesses by providing suggestions and examples and by developing debates. The 
debates would require that critiques have substance and consistency, thus work of a 
theoretical nature. They would also foster coherence by having exchanges that were 
open to all. 

13    The project ran afoul of the actual sociological composition of the set of teachers. At every scho-
lastic level, primary and secondary, adapting to the consequences of the war and to the needs of the 
revival of the economy and to the budget reserved by society for education had led to the opening 
up of a large proportion of teaching positions to teachers who had good qualities, but had not 
received the expected theoretical training in mathematics.  
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 The IREM of Bordeaux thus committed itself

•    Not to innovations (which were known to be of temporary character) even 
accompanied by demonstrative experiments (which always succeeded but whose 
replication and generalization almost never did)  

•   Nor even to “scientifi c” research on “development” which had no direct relation-
ship with the actions associated with it (because it always dealt with questions 
raised by excessively theoretical ideas) and which would collapse as soon as it 
was imported and set against the realities of school,  

•   But by undertaking research that was simultaneously fundamental and experi-
mental, not in order to settle the question of this reform, but to accompany the 
development of a genuine science of the diffusion of knowledge, based on the 
specifi c requirements of the knowledge taught. This could only be a personal 
project. It was essential that the program not be exposed beyond the small group 
of people who were directly involved. Each action undertaken needed to be justi-
fi ed on the basis of the knowledge of the period and starting with its actual imme-
diate and short term usefulness. But that is the project that is at the heart of all my 
actions. It was only several years later that the set of concepts that I introduced 
in 1970 at a conference of APMEP (Association des Professeurs de Mathématiques 
de l’Enseignement Public) was identifi ed under the name of Theory of Situations.    

 Contrary to the habits of the period, “the” theory was not designed to be accepted 
as true and to be used to guide practical realizations to be diffused immediately in 
all classrooms. On the contrary, it was a model designed to be faulted by “closed” 
experiments and by debates and replaced by a less fragile model, until in turn new 
facts or arguments destroyed that one. The scientifi c advantages of this approach 
and its disadvantages with regard to the media leap to the eye, but its richness cannot 
be doubted. It made it possible to create a genuine scientifi c cooperation in a new 
fi eld by focusing on the precise conditions observed or realized and leaving some-
what in the background the usual debates on education. 

 The enormously inconvenient aspect of this method was the following: The rapid 
advance of results and options isolated the fi rst researchers from the new candidates 
for research. To anyone who had not followed the thread of the experiments, their 
results appeared to be ideas that were interesting, but fragile and diffi cult. Their 
coherence quickly imposed on new arrivals a work of initiation that was intense, 
painful and ultimately dissuasive. To be convinced, one need only consult the pro-
gram of theoretical and practical courses required for a DEA in  Didactique  of 
Mathematics from Bordeaux, a degree created in 1975. On top of which there was 
all the work of experimentation at the COREM ! We will give an idea of some of the 
concepts brought out and taught in Chap.   5    . 

 Thus the team had prepared itself since 1965–1966. The Center for Research on 
Elementary Mathematics Teaching of the CRDP of Bordeaux assembled regularly 
and by contract more than 50 people who devoted to the project some part, small or 
large, of their free time or of their regular job (of teaching at elementary, secondary 
or post-secondary level, tutoring students or training teachers, among others.) 
Preparation began as soon as the IREM was created with the group assembled at the 
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CREM of the CRDP. It took 2 years to be able to create the required conditions. In 
1972, the Jules Michelet School was able to open its doors to children in a blue col-
lar neighborhood whose families had been displaced from the center of Bordeaux 
by gentrifi cation. The agreement of collaboration of the National Education and the 
University of Bordeaux and with the minister to make the COREM offi cial was 
never signed, but it was respected and fi nanced by all parties for 25 years. Six exper-
iments among the frameworks prepared over the years were immediately put into 
action: two at the pre-school and kindergarten level on the identifi cation of objects 
and collections and the construction of a “code” to designate some of them, and on 
counting; two at the second and third grade on the calculation of arithmetic opera-
tions; and two at the fourth and fi fth grade level, one on the introduction of decimal 
and rational numbers and the other on the introduction of statistics and probability. 
The system of observation, analysis and research that we will describe in more 
detail later was put in place in this period. 

 This project led me to create simultaneously an organism focused on the realiza-
tion of experiments and research and a system of organisms and relations adequate 
and indispensible to guarantee its existence and survival. I had to:

•    Supply the different groups – those doing training and those doing research – at 
the different IREM s with suggestions and texts ready to be used from their par-
ticular perspective and to their benefi t;  

•   Attract complementary collaborations;  
•   Carefully reduce divergences, etc.;  
•   Do enough different forms of research to give credibility to the ones that we 

would suggest but not carry out;  
•   Do enough experiments to nourish refl ections that would not turn into 

dogmatism,…    

 This part of my work, which I thought of as subordinate, was the most adventur-
ous, the one that asked the most of me in efforts, in volatile inventions, in hazardous 
gambles, in disappointments and successes, and that brought me the most joy. I 
can’t possibly give the details of it, but I still have the feeling of having been right 
in wanting only to do what logic and necessity required.

•    Take the teaching of mathematics not only as a scientifi c fi eld explored by differ-
ent sciences according to their own methods (the position of my friend and 
accomplice the psychologist Gérard Vergnaud  14 ) but above all as an autonomous 
body of concepts supported by mathematics, in some ways a science itself.    

 The experimental curricula (among them the one on rational and decimal num-
bers) were the essential instrument of this approach, and the COREM and the Jules 
Michelet School were my Galapagos Islands, if I may be excused the audacity of the 
reference.  

14    Thanks to whom our works were able to progress and to be funded by the CNRS (National 
Center of Scientifi c Research), and with whom I had the good fortune and the pleasure of collabo-
rating for many years.  
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    The COREM  (1973) 

 In the previous chapter we presented, from the perspective of the teachers, the most 
important and original piece of the COREM entity: the Michelet School. But on the 
part of the researchers the originality of the arrangement and the enthusiasm of the 
participants was no less. The organization of the steps of each piece of research and 
of each piece of experimentation was precise and complex, but not rigid. The rule 
was a sort of tempered pragmatism. Each project unrolled in a precise order:

•    Study of the different mathematical options,  
•   Translation of the “progression” into a framework,  
•   Study of the fundamental Situations that could generate the critical steps,  
•   Possibly, development and experimentation of certain of the choices made,  
•   Experiments “out of context” on precise important points when it was possible,  
•   Comparison of properties: the advantages and diffi culties produced by the frame-

work from all of the points of view (students, experimenters, teachers,…) and 
drafting of the curriculum,  

•   Carrying out and observation of a preliminary draft,  
•   Preparation of the didactical  notes (precise description of the scenario for the 

lesson, texts of the propositions, expected reactions, etc.),  
•   Preparation of the teams for observation and recording of the class, of the behav-

iors of certain groups of students, and of the students,  
•   Collection and analysis of the documents produced by the students,  
•   Tests  
•   Evaluation  and statistical analysis of the results of two classes.    

 The team responsible for each of these steps was composed in part of researchers 
who followed all the steps of the process, in part of specialists or people responsible 
for a step or a part of the process, in part of “moderators” external to the research 
whose job was to support the teachers in their ordinary work and in their debates 
with the researchers when there were any. Each function had its rules, and nothing 
was supposed to abuse the advantages conceded to the research. The sessions of 
observation and analysis gave rise to seminars, to lesson or project plans for sharing, 
and possibly to courses if there was an interest. 

 This way of functioning was respected for long enough to create habits that sur-
vived outside events: arrival of “new researchers in training” present for a short 
time, restriction of means, etc.   

    Further Developments over Time 

    The Diplôme d’Études Avancées de Didactique des 
Mathématiques (DEA) 1975 

    The “amateur” researchers who constructed the theoretical, experimental and meth-
odological bases of research in  Didactique  conceived and led by mathematicians 
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(with the collaboration of various other specialists) needed to train new research-
ers. 15  The means were given to them in 1975 by the authorization of three of the 
IREMs  (Paris, Strasbourg and Bordeaux) to award a DEA (Diplôme d’Études 
Avancés – roughly the equivalent of a Masters degree) of  Didactique  of Mathematics 
to people who had received a DEA in Mathematics while following complementary 
studies within their Mathematics Department. At Bordeaux, the two degrees were 
soon combined.  

    The Doctorate of Didactique of Mathematics, 
Part of Mathematical Sciences 

 The sequel seems natural. The fi rst doctoral theses in  Didactique  were presented in 
1982 by young DEA recipients in mathematics who recognized their ability to carry 
out respectable mathematical work and also to teach mathematics to certain math-
ematics students at the university level. This type of thesis sanctioned theoretical 
and experimental work in  Didactique  of Mathematics and entitled the author to 
apply for jobs for researchers and teachers at the universities … once the mathema-
ticians were willing to give jobs to people with those credentials. 

 This measure crowned our efforts – those of my companions in the adventure 
and mine. Very few of us organized these experiments, this research, and this train-
ing with the intention of making a career of it themselves. The others were inter-
ested, like me, in the students, their teachers, and their harmonious acculturation to 
mathematics. I considered therefore that the task I had assigned myself 20 years 
before, and for which I had been given so much help and so many marks of confi -
dence, had been accomplished. The moment (1979–1980) was a turning point 
for me. 

 At no point had I anticipated myself engaging in the career whose birth I had 
prepared. I thought of myself only as someone very knowledgeable about teaching 
practices, a “didactical  engineer”, able to set up the experiments the researchers 
needed, a good explorer of the territory that others had the legitimacy and power to 
organize. I didn’t satisfy the requirements that I had set up. At the urging of my 
companions and my “students”, whose affection and aid manifested themselves 
forcibly, I ended up agreeing to join them and continue to work with them, and to 
deal with the inconveniences of a position that many would regard as false. I had 
tried, twice over, to put together some of my work as a thesis, fi rst with Pierre Gréco  
on the learning of natural numbers and operations (Psychology), then with H. 
Touanet  (Statistics) and P.L. Hennequin  (Mathematics) on the teaching of probabil-
ity and statistics. But feeling that the work did not contain what I felt to be essential 
I had abandoned those projects. I took up the route again with the encouragement of 
B. Malgrange  and in 1986 presented a somewhat composite but acceptable thesis.  

15    A graduate degree in  Didactique  of Mathematics.  
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    Documentation 

 Most of the observations that illustrated and supported the ideas that I had before 
1970 were made between 1970 and 1975. Few personal publications remain from 
them. After 1975 the traces of my personal work can be found in the production of 
my “students” and are reduced to suggestions for research, refl ections, extensions, 
repetitions and critiques. I am making as much of my written work as possible avail-
able at my web site:   www.guy-brousseau.com    , which is mirrored in English at 
  http://faculty.washington.edu/warfi eld/guy-brousseau.com/index.html.     

 Copies of student and teacher papers from the COREM can be found at a center 
set up for them in Castellon, Spain, the CRDM-Brousseau of the IMAC of Castellon 
(  http://www.imac.uji.es/CRDM/index.php    ). Finally, although our choice of “home” 
movie cameras to cut the costs of fi lming our lessons and our work sessions resulted 
in the irremediable loss of more than 400 hours of records from the period between 
1975 and 1988, there are nonetheless many video sessions available through ViSA 
(Vidéos de Situations d’enseignement et d’Apprentissage   http://visa.inrp.fr/visa    ).  

    Research Organizations in Didactique of Mathematics 

 Some structures have evolved over the years as  Didactique  has developed:

•    The National Seminar of  Didactique  of Mathematics, held every 3 months, and 
a place for debate for all the teachers and researchers in this new domain,  

•   The  Association pour la Recherche en Didactiques des Mathématiques  (ARDM). 
This young scientifi c society brings together professional researchers in this new 
domain and their students. It devotes itself to the legitimacy and means of auton-
omous action on all subjects relative to its domain,  

•   Summer Schools in  Didactique  of Mathematics every second year, a place for 
deeper exchanges among the researchers and teachers interested by our efforts. 
Organized at the beginning with the help of the IREM  and the minister of educa-
tion, they evolved into a highly decentralized system that functioned and evolved 
autonomously under the responsibility of the ARDM.  

•   In France, the researchers are trained and chosen by Mathematics Departments, 
but their work is carried out in various composite laboratories 16  depending on the 
university.     

16    French universities have a structure that differs somewhat from that of American universities. 
While the arrangements for carrying out the teaching function of the university are carried out by 
departments organized by fi eld (for instance, a department of mathematics), there is an almost 
independent grouping by research focus. These groups, or laboratories, may be subsets of a par-
ticular department, but can also cross departmental boundaries.  
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    The Current State of Didactique of Mathematics 

 The development of  Didactique  is currently blocked at the level of training of 
researchers. This training has become too short to transmit the results of 40 years of 
specifi c research. Various diffi culties have dried up the supply of teachers, of diverse 
personnel and of organizations that held and supported the work. The work is tend-
ing to fragment and to align itself with methodological practices imported from 
other sciences and ill adapted to our subject. 

 Finally this science furthermore has no utility, because after years of an agony 
deliberately organized by a succession of governments, the specifi c training of 
young teachers has fi nally been offi cially eliminated from university teaching in 
France. Today, amidst general silence, school is the fi rst fi eld of battle and the fi rst 
victim of the fi ght for power and for profi t. 

 In all of these foundations, I was only one actor amongst many, too numerous to 
be cited here. But I feel the failures of this adventure as personal failures, even 
though they should be understood and explained by other factors.   

    Further Commentary on Professor Lichnerowicz ’s Challenge 

 What exactly did the subject Professor Lichnerowicz gave me mean? I have actually 
never ceased in the course of my career to learn new necessary conditions for the 
existence of an experiment in mathematical “pedagogy ”. An “experiment” requires 
a “conjecture”, that is, an “alternative”, submitted to a confrontation with a deter-
mined actuality through use of a precise experimental design. In teaching materials 
for mathematics, the combination of a precise and heavily structured text of knowl-
edge and rationally established didactical  principles left little place for alternatives. 
The uncertainty of the system was essentially restricted to the behaviors of the stu-
dents and the teacher. And since an acceptable behavior or a correct answer gave no 
handle on the situation, all research seemed to be condemned to focus on predicting, 
inventorying, and explaining errors. This left the option of studying either the stu-
dent or the teacher, and fi nally psychology for the former or misapprehensions 
about psychology for the latter. 

 The subject that Professor Lichnerowicz had proposed for me involved in fact – 
as I was swiftly to discover – conceiving of the teaching of mathematics as a new 
and real fi eld of scientifi c research. The development of this project as such was to 
occupy more than 40 years of my life. 

    Institutional Diffi culties 

 Until the 1970s, projects of experimentation on teaching in France ran into an obsta-
cle of scale. Every citizen of age 6–14 was required to be educated on what served 

 Further Commentary on Professor Lichnerowicz ’s Challenge



190

as the common base for relations of all citizens, and the government was to see to it 
that each of them had available the necessary means, that is, a teacher. 17  The govern-
ment was responsible for guaranteeing the equity and effectiveness of the teacher’s 
service. The former was obtained by making a teacher available to each student and 
imposing on that teacher detailed and uniform instructions, programs and sched-
ules. The latter was attested to by the fact that a some of the students in each class 
achieved honorable success in the following class. If a large portion of the class had 
learned to read, then those who hadn’t managed to do so simply hadn’t taken advan-
tage of opportunities that had indeed been procured for them. The only way forward 
was through regulated, executively declared texts. In other words, any modifi cation 
had to be something that could be included and applied immediately and uniformly. 
The only concession to the art of teaching was that teachers were allowed to choose 
among a variety of theoretically unrestricted textbooks, but they remained respon-
sible for the conformity of their work, so only books that were “consistent with the 
instructions” could be sold in quantity.  

    Diffi culties in Experimentation 

 Experimental designs were practically all based on the supposed superiority of cer-
tain general educational principles like favoring the autonomous activities of stu-
dents or individualization of teaching, or on more particular techniques. Global 
“successes” or “failures”, even the spectacular ones, could never be attributed to 
precise isolated causes, so that the failures could never be “explained”.  

    Possibilities for Experiments 

 Presenting a teaching sequence as an “experiment” in the pedagogy  of mathematics 
required that one conceive of a hypothesis and a  reproducible  experimental design 
presenting at least two possible outcomes among which at least one contradicted the 
hypothesis and another would be compatible with it. But teaching is chock full of 
such occurrences, and the play of intentions and afterthoughts of the protagonists 
makes the methods of the “hard sciences” a priori illusory. Between the general con-
ceptions and the precise observations are interposed a multitude of conditions and 
possibilities that are apparently impossible to make precise, to fi x, and to reproduce. 

17    Translator’s note: This is a place where English lacks a nuance: French has a separate word for 
an elementary school teacher: “ instituteur   ” , which carries with it the implication of instituting 
children into a society and not simply supplying them with academic knowledge. Currently, 
according to Brousseau, this aspect appears to be sliding into eclipse, but historically it is key.  
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 Furthermore, the only possibility for slipping an experimental episode into an 
ordinary school was to reduce it to one or two sessions and place it judiciously in 
the midst of the course. Could one conceive of scientifi c experiments in these condi-
tions, and if so which ones? In mathematics, the attempts had chiefl y to do with 
materials favoring representations, manipulations and explanations. Piaget ’s designs 
offered interesting perspectives from this point of view, on condition of bypassing 
Piaget’s objectives for the designs.  

    A New Conception of What It Means to Teach 

 Of what does a didactical  action consist? The following defi nition was proposed by 
the psycholinguist M. Brossard  to students of the DEA of  Didactique  in 1975: “A 
social project of causing a student to appropriate a  savoir   that is constituted or in the 
process of constitution.” This clever defi nition is one that at the time – and undoubt-
edly also today – could be most easily agreed to by all interested parties. The choice, 
for example, of “appropriation” allowed equally for a Piaget ian assimilation- 
accommodation and a classical teaching method, or even a behaviorist process. 
 Savoir  “in the process of constitution” presents a diffi culty: how could it be legitimate 
to teach in a social project a  savoir  that would not yet be accepted as a reference? This 
defi nition was to be cited for a long period in my texts, but with a certain reluctance. 

 Because starting in 1970 I presented the object of my research as “a process of 
mathematization  of the spontaneous activities of the students.” Otherwise stated, it 
was a matter of provoking the spontaneous evolution of practices, uses of terms and 
modes of argumentation toward the corresponding mathematical activities. To be 
sure, this defi nition did not aim to describe directly my research at the period, which 
dealt with the teaching of basic knowledge to students too young to identify, desig-
nate and use the mathematical reference knowledge that corresponded to their 
actions and their learning. 

 Later, after having included situations of the teaching of mathematics at all levels 
as the object of modeling and research, and especially after fi nding in an article by 
Thurston ( 1994 ) a confi rmation of my interpretation of mathematical activity, the 
defi nition became “a social project of acculturating students to the mathematical 
practices of a society.” This new defi nition encompasses not only the teaching of 
reference mathematics,  savoirs  , but also the practice of their human and cultural envi-
ronment: the search for questions, the questions, the treatment of  connaissances   and 
of conjectures, etc, a propos of the different aspects of the mathematical sciences.  

    Conception of Teaching 

 The classical conception of teaching is a formidable obstacle to its experimental 
study: it determines an ideal that is almost impossible to change: the Good. Failures 

 Further Commentary on Professor Lichnerowicz ’s Challenge



192

are errors or insuffi ciencies: the bad. Alternatives are judged and received only as 
remedies relative to this absolute “good”. Scientifi c study of this conception itself 
requires that one be able to construct detailed credible alternatives that can support 
hypotheses and their negation at the same time.  

    Construction of Alternatives 

 The classical construction of teaching (of all knowledge by and for all humans) 
rationalized by Comenius , developed in the eighteenth century, and institutionalized 
in the nineteenth century as a fundamental social function, appeared to be an undis-
putable, system, the ideal, the good, to which practical realizations were simply 
more or less defective approaches, suffering from ills inherent to this imperfect 
world. Any alternative ran immediately into a wall of objections. Failures could 
only be due to insuffi ciencies of the participants, fi rst the student, then the teacher, 
knowledge very superfi cially (the foundational social reference of teaching 
depended only on the necessities of the discipline and certain rhetorical or didactical  
arrangements.) Timid attempts focused on the identifi cation of diffi culties and fail-
ures resulting from the standard practices, and offered only local rearrangements 
or radical utopias. Finding general alternatives to this system seemed impossible 
because they were imagined to be things that could be rapidly put into action and 
immediately diffused. 

 Now, the works of Piaget  furnished this alternative: the development of knowl-
edge of a child is a solid counterexample to classical didactics.  

    The Contributions of Piaget  

 A negligent reading of Piaget’s theories induced some educators to await from a 
hypothetical spontaneous development of their students the fundamental learning 
that they hoped to obtain. But how could one believe that it would suffi ce to leave 
the young human brain alone in its current environment in order for it to acquire a 
culture and knowledge that appeared in exceptional circumstances in the course of 
centuries of patient work and chance events, 1,000-year hesitations, accidents, 
unconsidered choices and all kinds of alterations? The human brain does not have 
the power to imagine and recreate, alone, what humanity has created in the course 
of a long history – that is, its culture. What is transmitted at best are certain faculties 
for adaptation and resistance to adaptation in the face of unexpected conditions. 

 On the other hand, the experimental designs imagined by Piaget, directly inspired 
by his exchanges with the mathematician Gonseth , showed how experiments could 
directly reveal the presence or absence in the child of certain precise pieces of 
knowledge of a mathematical nature, in the absence of any teaching. But Piaget 
studied spontaneous development, and for that reason kept as far as possible from 
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reference knowledge and school teachings. So it seemed to me that it would be 
possible to offer  situations  that could fairly directly provoke students to learn or 
correct knowledge by designs of this type appropriately modifi ed. And I was even 
convinced that the study of these situations, be they carried out either spontaneously 
or systematically by the teachers or conceived as experiments, was a completely 
indispensible and nonetheless totally new object in the fi eld of research. I could see 
very well what limited Piaget in the production of designs aimed at revealing funda-
mental structures in children’s knowledge: it was consciousness that the designs – 
including the observer or teacher – had to be the primary objects to be analyzed 
systematically from the mathematical point of view.  

    The Notion of Situation 

 The notion of “Situation” generalizes and make more precise the classic one of 
“problem”. It takes into consideration the fact that the student is interacting with an 
“objective” milieu  that gives her part of her information (possibly in non-verbal 
form) and reacts to her decisions in a way that is independent of the interventions of 
the teacher, that is, following a (non-didactical ) logic of its own. A Situation can 
thus model cases where certain conditions and certain responses are intentionally 
left implicit. 

 The notion of Situation also covers that of “design” in Piaget ian language. The 
latter describes only what the experimenter has laid out. It is also necessary to be 
able to analyze the conditions of fortuitous happenings, of spontaneous learning 
situations. The use of Situations enabled me in particular to envisage interventions 
with students too young to use the language corresponding to their mathematical 
actions, and earlier than one thinks them capable of being instructed by a discourse. 
Or again to suggest to teachers exercises whose statements would have had to make 
use of knowledge the teachers didn’t have or couldn’t use (cf. Brousseau (1965)). 

 Replacing “problem” or “lesson plan” by “situation” thus led to replacing the 
classic conception of teaching with another. The classic plan consisted of the teacher 
maintaining a  teaching-discourse-for-the-teaching-of-a-(mathematical)-savoir  . 
Otherwise stated, he had to set up a (didactical ) discourse on a (mathematical) dis-
course on the mathematical world and in short on the world. The new concept of 
“situation” made it possible to envisage  organizing for the student a certain direct 
mathematical experience of the world . 

 This point of view was moreover made necessary by the fact that the verbal form 
of mathematical knowledge was totally impracticable in a class of young students, 
which prevented any specifi c commentary on the part of the teacher. The fact that 
the mathematical discourse at the time was new in the culture and dealt with the 
foundations of mathematical thought themselves offered an historic occasion for 
reinventing the bases of teaching mathematics that would not soon recur. 
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 We had then to imagine situations that would cause a mathematical thought to be 
 born  even though it could not yet be formulated either by the student or the teacher. 
We had to imagine situations capable of making this thought  evolve  if it was incorrect 
by having it reveal itself to the student as inadequate in the situation for which she 
was responsible only for the procedure and the ending. The object thus identifi ed and 
determined within a situation could then be  named  without having to be immediately 
defi ned and bounded verbally by a context that was still too narrow. Testing out this 
knowledge at the same time in its source, in its relationships with others and in its 
uses then became possible. This approach made it possible to conceive of a reorgani-
zation of relationships among the different elements of the cognitive function: the 
learning of a new behavior and its formulation, and its  constitution as knowledge  
inserted into the midst of other pieces of knowledge. And this reorganization could 
be studied systematically, realized and modifi ed. Beyond that, it made it possible to 
put each of these elements into a relationship with specifi c types of situations: of 
actions , of communications , of justifi cations , and of reference , and thus to conceive 
of modalities of learning differentiated according to these types of interactions. 

 These conditions explain the sentiment that there was no other way to go except 
to study these situations, spontaneous or organized, but always generators of math-
ematics. These situations opened up a route towards early knowledge, and carrying 
out a kind of very early teaching that I judged to be indispensible and possible. At the 
beginning I called these situations “didactical  situations” as a contraction, because 
they were in fact “mathematical situations designed for didactical use”, derived from 
mathematical situations which themselves had no didactical intention. It was only a 
little later that the ambition to study these models and their relationships in a system-
atic way led us to consider them as drafts of “a theory of situations”. 

 Now in order for an alternative to be instructive, it was essential to examine its 
consistency in detail: examine the particular  savoir   that is the object of this exact 
exercise, in what precise circumstances; envisage its role and its alternatives; con-
sider the functions of this  savoir  for every student; envisage its role in outside acqui-
sitions, …. It was necessary at the same time to give ourselves the theoretical 
instruments for this precise examination. In this system every attempt at a general 
explanation had to be embodied in an intelligible concrete alternative of the situation 
suffi ciently precise to make it possible to set up another similar and realizable one. 

 The  systemic approach  thus made it possible to isolate a reasonable number of 
coherent conditions and oppose them with an alternative system of conditions.  

    First Questions 

 The questions that were at the origin of my research were at fi rst constructed on the 
same model and concerned all mathematical knowledge: 

 Is it possible to teach, or teach better, the subjects of primary school [logic, num-
ber, numeration and arithmetic, algebra, statistics, geometry, measure],  using,  and 
 staying as close as possible   to  current mathematics? The teaching I had been 
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practicing felt to me like a museum of the errors of humanity in the construction of 
its mathematics. 18  

 How could students benefi t from the new organization and recent progress in 
mathematics and various other domains (like genetic epistemology and linguistics)? 
What objectives could be assigned to that progress? What diffi culties might present 
themselves? What limiting conditions must the educational system realize to allow 
the success of different types of reform of the practices of teaching mathematics? 

 The two questions that seemed essential to me were:  What situations should one 
offer the children to obtain a reasonable appropriation of mathematical concepts? 
At what age is it advantageous to begin this teaching?  

 I suspected that my conception of the teaching of mathematics to young children 
was coming up against a completely erroneous ancient conception. Rather than 
following the example of the fi rst learning of language, parents wanted schools 
to follow an academic and falsely rational path. For instance, that of the teaching 
of foreign languages in my childhood, where the languages were taught like Latin, 
by teachers who didn’t speak them (or refrained from teaching them until they had 
taught their grammar and lists of words or irregular verbs.) 

 It soon appeared to me that these questions, fairly common at the period, rested 
on illusions and metaphors . Still, these two questions were direct consequences of 
the works of Piaget  and his students. They spread throughout the teaching world, 
but they were interpreted in a variety of ways.  

    A Child and a Concept 

  Let us return to our two principal questions: what situations? And at what age?  
 Knowing at what age one can begin the teaching of a mathematical reference 

concept is not a subject for simple research. First one must have a concrete defi ni-
tion, or at least a model of “knowing a concept”. One must be able to model the 
manifestation of a concept in the behavior of an individual or a collection of indi-
viduals (are there latent concepts?), and undoubtedly also have a model or an idea 
of what a concept is.  

    Models of a Genesis 

 Next one must have a model of the genesis of the concept, that is a double chain: 
 A  chain of pieces of knowledge  linked by  logical relationships  that establish the 

mathematical necessity of the concomitant (in a defi nition) or successive (in a proof) 

18    I like museums and monuments, but not living and raising children there!  
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presence of certain pieces of knowledge (statements) constituting the genesis of a 
terminal (new) piece of knowledge. 

 A  chain of situations , of circumstances in which the pieces of knowledge deter-
mined by the chain of pieces of knowledge manifest themselves successively. In the 
traditional minimal schema, the sole objective of the situations is to establish the 
presence and permit the exercise of the successive pieces of knowledge. But I 
wanted in addition to have the situations make it possible systematically to illustrate 
and test the adequacy of the pieces of knowledge constituting the mathematical 
genesis. Otherwise stated, to have the situations introduce a different type of neces-
sity from logical necessity for the pieces of knowledge: the type of necessity that 
guides mathematicians before they have established and made completely explicit 
the mathematical relationships that they are trying to establish and prove. 

 The double chain of pieces of knowledge and situations is indispensible for the 
reproduction and learning not of a text but of a transposed but active mathematical 
development. 

 The knowledge stages play a role in this of instantiation and functionalization of 
pieces of knowledge, that of reference, and that of accompaniment, whether one wants 
it or not, and of their succession. The curriculum is not an exposition, but a genesis. 

 The progression is made by logical necessity and/or by necessity produced by 
actual results. 

 This notion of double chain is at the base of my experiments on long processes 
at the period. 

 One could imagine that it is then possible, at least theoretically, to identify in this 
double chain a piece of knowledge and a situation that constitute the threshold that 
the child has reached in her development. And in the wake of this thought, to imag-
ine that if all the children follow the same genetic chain, one could determine

•    In the case of a spontaneous genesis, the average age of students who achieve 
this step  

•   In the case of a didactical  curriculum, the cost of success, distinguishing two 
cases: that in which the speed of the progression is imposed and that in which it 
is “free”, One could then observe the time necessary to obtain some fi xed success 
rate for each step.    

 Clearly each of these hypotheses is a fi ction. But, with refi nements that conceal the 
fundamental error, they underlie popular reasoning as well as most of the assessment 
enterprises. Could they lead to a scientifi c development, even if only one of study?  

    The Standard Presentation of Mathematical Concepts 

 The classic example of modeling of a piece of mathematical knowledge is that of 
the standard textbooks of mathematics, of which the reader will pardon me for giv-
ing a more precise description: 

 Knowledge is presented there in the general order “defi nition, theorem, proof”. 
It is accepted that the only knowledge that appears there is recognized and held to 
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be  true  in the light of today’s mathematics. The manner of establishing them it is 
codifi ed: statements that appear there are constructed with the help of permitted 
constructions and of statements previously established. It is a fractal type order, to 
be applied to isolated statements and to groups of statements. With the result that 
every written statement is true – except for those made in the course of a proof by 
contradiction – and thus may be used as a  reference.  In reality, the text of mathe-
matics presents a whole graduated variety of types of reference: defi nitions, funda-
mental theorems, lemmas, corollaries, examples, exercises, problems,… Similarly, 
the mathematical text is generally accompanied by two other sorts of text that, with 
it, constitute the “mathematical discourse”:

•    The meta-text of terms like “defi nition, theorem,…”, line or statement numbers, 
the name of a mathematician recognized as the author of a theorem, etc.  

•   References to other scientifi c texts, commentaries, notes: connections with other 
parts of the text, counterexamples, historical remarks, etc. These carry an essen-
tial role that is not recognized as such, because it is at this level that the visible 
didactical  efforts take refuge. The most important are nonetheless in the organi-
zation of the set making up the chain of pieces of knowledge.     

    Connaissances  and Savoirs  

 These texts present what is considered to be the sum of the references to which 
mathematicians are held to refer in order to establish both the truth and the original-
ity of their results. They thus institute “the  Savoirs” –  the reference knowledge of 
the community of mathematicians. 

  Connaissances  are the traces of some relationship between a subject or a popula-
tion and some object (material object, living being, entity, idea, etc.).  Savoirs  are the 
 connaissances  accepted as references by a subject or by a population. Different 
individuals or populations share certain  connaissances  and accept certain common 
references but diverge on others, sometimes without knowing it. Exchanges of  con-
naissances  are much easier than sharing references. In mathematics, the references 
– the  savoirs  – are the statements held to be true by the community of mathemati-
cians, and the means of expressing these statements. They are reputed to be verifi -
able by anyone who has the necessary competences. In fact, there exist a whole 
gradation of “savoirs” determined by or attributed to a variety of populations, but 
not necessarily recognized by others. The  savoirs  are thus a very limited part of the 
 connaissances.  

 Traces of any relationship of a subject with mathematics could be  connaissances : 
fi rst the specifi c objects of the mathematical language specifi c to the community of 
mathematicians: isolated signs, incomplete expressions, terms, well formed expres-
sions, whether closed or open, true or false, theorems, whether references or not. 
But also metamathematical languages, the specifi c elements of mathematical and/or 
didactical  discourse, the jargon of mathematicians and of different specialized 
professionals. 
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 Next this enumeration must be extended to objects that make reference to the 
knowledge of mathematicians but as they present themselves in other communities 
of society. 

 We are interested in mathematical knowledge in the forms defi ned above and 
which teachers may fi nd themselves confronting, but above all we are interested in 
the functioning of this knowledge in the process of acculturation of their students. 
We must therefore interest ourselves in what is the object of the teacher’s work: 
developing the  savoirs  of their students and the functioning of the  connaissances  
that nourish them. 

 In any process of creation or learning of mathematics it is indispensible to favor 
the play of  connaissances  that contribute upstream to the formation of  savoirs  
before disappearing or being transformed. The process of learning is no other than 
this transformation, this specifi c debate, this dialectic between the known and the 
unknown. 

 The belief that only true statements participate in the mental process of produc-
tion of knowledge seems to me contrary to observations. Reducing the production 
of  savoirs  to an arrangement of established  savoirs  is traditionally the avowed goal 
of classic teaching, but the goal of my theoretical research was to know whether this 
arrangement was optimal. I was dubious. 

 My way of expressing the process of acculturation of a student to mathematics 
followed a long route and went through many variations, hesitations, and modifi ca-
tions of language and point of view, but the object remained the same: the process 
of mathematization  of the knowledge of the students in the course of mathematical 
and didactical  situations.  

    The Place for Connaissances : The Types of Mathematical 
Situation s and Theories 

 For 10 years I concentrated on ways of favoring the development of conditions for the 
functioning of three manifestations of  connaissances :  implicit models    of action – 
connaissances  that operate in a situation independently of the possibility of formulat-
ing or proving them –  formulations  and  arguments.  Each manifested itself in a 
different model of situation, following different modes of acquisition. During this 
time I deliberately set aside the study of a type of situation that I later called a Situation 
of Institutionalization , by which the teacher introduced or established known  savoirs  

•    Either because he revealed, posed or transmitted them himself, for example by 
assigning an activity, or in a classic “lesson” by defining and naming the 
elements which thus became provisional or defi nitive references,  

•   Or because he identifi ed them, among those proposed by the students in the 
course of an activity, as being the expected result or  connaissance  , the canonical 
form, the reference for the pursuit of the quest and the production of new means 
and new  connaissances.     

4 The Adventure as Experienced by the Researchers



199

 It seemed to me essential to distinguish the principal object of our research: the 
functioning of situations that simulated and stimulated an activity of mathematics 
itself, from those by which the mathematician, like the teacher, must communicate 
her results and let the community share them. 

 I did not try to analyze the latter, but I believed I knew them well enough. Which 
is not to say that I rejected the use of them. Very much to the contrary, the standard 
organization of lessons was recommended to the COREM  for lessons that were 
not the object of experimentation and that we used as an emergency procedure in 
case an attempt was considered to have failed. Every didactical  situation that has 
ever existed and been used has a domain of conditions in which it is optimal, if not 
it would not have existed. None is optimal in every situation. Thus quarrels based on 
general principles are sterile and dangerous. 

 Much later, I separated the  Theory of Didactical    Situations , resulting from my 
1980 refl ections on the paradoxes of the didactical contract , from the  Theory of 
Mathematical Situations used Didactically  that I am in the process of describing. 
Comparing these situations with the functioning of the society of mathematicians I 
ventured to fi nd them very close to each other, and I boldly rebaptized the latter the 
“Theory of Mathematical Situations ” .  My hope is that this somewhat provocative 
title will generate both discussion and study.         
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                                  In this chapter, we have chosen a few of the concepts and issues of  Didactique  that 
we feel are worth a somewhat more detailed discussion than we were able to able to 
give them in the previous chapters. This is neither an encyclopedic list of concepts 
nor a maximally deep discussion of any one of them, but rather an attempt to clarify 
a few key ideas for the reader. 

    Connaissances  and Savoirs  

 An important characteristic of this curriculum is its handling of the two essential 
forms of knowledge: it distinguishes between the acquisition of  connaissances  and 
the acquisition of  savoirs , and respects the roles that these two forms of knowledge 
play with respect to each other. 

 Events in class have the effect of provoking students to react, make declarations, 
refl ect, and learn, all of these manifesting their intellectual activity. This activity 
reveals their  connaissances : what they do, their intentions, their perceptions, their 
decisions, their beliefs, their language, their reasoning. 

 Only one part of this set of  connaissances  is recognized as expressible, and 
expressed, whether by the student, by other students, by the teacher, or by society. 
These  connaissances  are recognized with the help of a repertory of  reference con-
naissances : custom, language, rules of orthography, established defi nitions and 
theorems, logic, communal beliefs, culture, etc. These are the  savoirs. Savoirs  are 
the indispensable means of recognizing and expressing  connaissances , just as meta- 
languages are the means of talking about languages. One student’s repertory of 
 savoirs  may not coincide with that of another student, with that of the class, etc., but 
in communications  the repertory needs to be common. All  savoirs  are accompanied 
by an environment of  connaissances  that make it possible to use them.  Connaissances  
that are not connected to any  savoirs  swiftly disappear. 

    Chapter 5   
 Expansions and Clarifi cations 
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 Learning, whether that of a student or that of a class, manifests itself in the 
appearance of new  connaissances  and of new  savoirs . Their systems of functioning 
are very different. 

  Connaissances  may be correct or false, approximate or dubious, conscious or 
unconscious. They control the decisions and consents of the protagonists: teacher 
and students. Only those identifi able with the aid of  savoirs  can be exchanged. But 
all can be modifi ed and corrected by all sorts of causes and means, some of which 
operate on the  connaissances  (modifying their relationships), others directly on the 
 savoirs  (defi nition, demonstration, etc.) 

 For the same user, the status of “connaissance ” and of “savoir” of the same state-
ment can vary according to circumstances. For example, a theorem can be a  savoir  
in the context of a course, but in another context be just a  connaissance  until the 
pertinence of using it in the new circumstances has been established. 

 Learning thus manifests itself also by transformations of status:  connaissances  
become  savoirs ; the negation of a false  connaissance   can become a  savoir  or the 
 savoirs  can be enriched and invested in new conditions and support new 
 connaissances.   

    Didactical  Situations 

 Before we delve more deeply into this essential concept, we need to make a nota-
tional clarifi cation: for a number of years after we began our joint work, in both that 
work and Warfi eld’s independent work any technical reference to a Didactical 
Situation was capitalized. At the time, it seemed important to make it clear that we 
were not referring to a funny thing that happened on the way to the blackboard, but 
rather to something serious and deeply important. Over the years, as  Didactique  has 
become increasingly familiar to Anglophone educators, this cumbersome device 
has seemed increasingly unnecessary, and we have been phasing it out. Since this 
book contains a mixture of older writings revisited and new writings, it also con-
tains a mixture of the two notations. What follows, however, is newly written, so it 
will be without the capitals. 

 Underlying the idea of a didactical situation  is that of a mathematical situation . 
This is an essential element, because the whole theory is based on replacing the 
prevailing classroom view of mathematics as a collection of facts and procedures 
with that of mathematics as an activity involving both  connaissances  and  savoirs . 
Early on, before constructing the whole theory, Brousseau developed the hypothesis 
that causing the evolution of the imperfect or even erroneous knowledge – the 
“implicit models ” – developed by the students could frequently be more effi cient for 
a larger number of students than the direct teaching of formal reference knowledge. 
This evolution could only occur in response to a mathematical situation. In this 
context, he made the following defi nition: 

 A  mathematical situation   is a set of specifi c conditions in which a determined set 
of mathematical  connaissances  (stated or belonging to the  milieu  ) permit a subject 
to realize a declared project by the exercise of appropriate mathematical 
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 connaissances , known or original. Note that this description applies not only to 
students but also to mathematicians. 

 The earliest defi nition of  didactical situation   was simply “a mathematical situa-
tion used didactically (serving to teach.)” As the theory progressed, it became clear 
that more specifi cs were needed. This need brought about the defi nition of an 
 a-didactical situation  . A-didactical situations occur in the classroom, and have the 
goal of reproducing the conditions of a real mathematical activity dealing with a 
determined concept: i.e., a mathematical situation . In the course of an a-didactical 
situation the students are supposed to produce a correct and adequate action or 
mathematical text without receiving any supplementary information or infl uence. 

 With this defi nition in hand, a  didactical situation   can be defi ned as the actions 
taken by a teacher to set up and maintain an a-didactical situation  designed to allow 
students to develop some goal concept(s). In particular, the teacher sets up the 
 milieu  , which includes the physical surroundings, the instructions, carefully chosen 
information, etc. The  milieu  may or may not include a material element (for exam-
ple Cabri geometry ), and other cooperating or concurrent students, etc., but it does 
at the least include the  savoirs  of the subject and certain of her current  connais-
sances.  It is essential that the  milieu  be a design that obeys only “objective” neces-
sities, and that the student be convinced of that fact. Once that design is in place, the 
teacher’s mandate is limited to making sure the students focus on the  milieu  and not 
on the teacher. 

 Within the category of didactical situation , there are three notable subcategories, 
chosen because they correspond to models of completed mathematics or because 
they have an important place in the genesis of a concept.  Situations of action   reveal 
and provoke the evolution of models of action without the student’s needing to for-
mulate them. The student can, immediately or later, learn to identify them, to for-
mulate them in  situations of formulation   (expression or communication ) and to 
justify them in  situations of proof   (validation or argumentation.) There is a tight 
correspondence between (a) the composition and organization of the  milieu   (game, 
communication, debate) ,  (b) the nature of the interactions of the subject with the 
 milieu  (action, formulation, proof), (c) the type of knowledge these relations call 
forth (implicit models  of action, languages, mathematical  savoirs. ) 

 A fourth type of situation is that of  institutionalization  , which we will discuss 
further in the next section.  

    Institutionalization 

 At the level of the class, the act by which a  connaissance   becomes a  savoir   is  insti-
tutionalization   .  Institutionalization modifi es the rules for using the knowledge: for 
example by validating the solution to a problem. The student can then consider this 
knowledge as his  savoir  and use it in the solution of another problem. But in the 
didactical  relationship, it may have to remain a  connaissance  if the student is not 
authorized to refer to it in the course of demonstrating the solution to another prob-
lem. The teacher attempts to increase the students’ capacity to solve problems, but 
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defi nes the repertory of reference theorems that they are allowed to use in their 
demonstrations. They are free to use their  connaissances , but must not confuse them 
with their  savoirs . 

 Institutionalization can be projected or realized as a didactical act or even 
declared, without in fact being effective. The fi nal result of institutionalization  is the 
appropriation of the  savoir  and its pertinent  connaissances  as obvious, as direct and 
commonplace expressions of thought. 

 The  mathematical connaissances  developed by the students in certain circum-
stances favor, in others, the acquisition of the corresponding  scholarly savoirs , and 
vice versa. The conception and carrying out of a curriculum demands a rigorous 
respect for these interactions. The solidity and rapidity of learning depends on a 
day-to-day management that distinguishes meticulously what is said, seen, attested 
to, shown or hidden, agreed to and known. Teachers must be able to treat in the long 
term what it is at each instant that must be said, can be said, should not be said but 
can be given to understand, and shouldn’t be said at all. 

 The scheme of things that situations of action  have caused to be discovered, situ-
ations of formulation  then cause to be expressed, situations of validation  cause to be 
demonstrated, and other situations cause to be taken as a reference, to be institution-
alized, to be studied and if necessary to be practiced. Finally yet others cause it to 
be considered as practicable by everyone and no longer needing to be said.  

    Didactical Contract  

 One of the concepts that was articulated early in the research efforts of  Didactique  
and penetrated the language barrier just enough to cause a great demand for transla-
tion is that of the didactical contract. It has now been discussed in various English 
language articles, most notably the Case of Gaël in the Journal of Mathematical 
Behavior (Brousseau & Warfi eld,  1999 ). Herewith a somewhat compact description 
and discussion: 

 The  didactical contract  is the set of teacher behaviors expected by the student and 
the set of student behaviors expected by the teacher during a didactical situation  – 
and in particular those specifi c to the knowledge to be taught. 

 Many questions arise when one focuses on this contract. Can these two sets of 
expectations be reconciled – be clearly formulated and negotiated? Are there diver-
gences between the expectations that are in fact irreducible? Do expectations exist 
that cannot be expressed? What are the specifi c roles of what cannot be expressed, 
of what is said, of what is not said, and of what cannot be said to the student in the 
teaching relationship? 

 The situation is further complicated by the presence of a third partner, the client – 
the parent or society – who anticipates particular behaviors and particular results from 
the student and from the teacher. 

 These questions initially arose in research on the possibility of enabling a 
 mathematical situation  to take the responsibility for managing elements that the 
teacher could not say or the student could not yet understand. Two specifi c contexts 
brought them to the fore: 
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 The case of Gaël: Gaël was an 8-year-old who kept answering mathematics ques-
tions in the manner of a very little boy. The researchers determined that the source of 
his behavior was not developmental delay, but rather a habit of avoiding risk by refus-
ing any responsibility for what he said. As soon as lessons with “games” were 
included where the boy could take a risk and see the effects of his decisions and where 
he could get involved in betting – without a big risk – on the validity of his answers, 
the experimenters observed a rapid and radical change in his attitude and the disap-
pearance of his diffi culties. A new “didactical contract” with him had been created. 

 The Age of the Captain: The researchers from the IREM of Grenoble gave the 
following assignment to 8-year-old students: “There are 26 sheep and 10 goats on 
the boat. How old is the captain?” 76 out of 97 students answered “37 years old.” 
This research caused general uproar. Either the teachers were accused of making 
their students stupid or the researchers of setting a stupid trap for the students. In a 
letter to the experimenters G. Brousseau suggested that it was in fact a typical effect 
of the didactical contract and that it was neither the teachers’ fault nor the students’. 
The researchers verifi ed this with a follow-up question to the students:

  What do you think about this problem? 
 It is stupid! 
 Why did you answer? 
 Because the teacher wanted us to answer! 
 And if the captain were a 50-year-old? 
 The teacher didn’t give us the right numbers. 

   An experiment with qualifi ed teachers produced similar results: for various rea-
sons such as the hope of provoking an explanation, the subjects produced the answer 
the least incompatible with their knowledge, even when they saw very clearly that it 
was wrong. 

 The use of tacit didactical contracts is as old as mathematics itself. In particular 
it allows construction of mathematics before looking for its foundation. This is why 
its importance and our ignorance on the subject became apparent at the time of the 
attempt to reform “modern mathematics”. But, in response, the launching of explicit, 
naïve and vigorously imposed “contracts” (High Stakes Testing) reduced the sensi-
tivity to the implicit contract, which only increased the diffi culties. 

 The didactical contract manifests itself mainly when it is broken. Its experimental 
and theoretical study became crucial because the constituents’ decisions no longer 
seem to be based on suffi ciently appropriate scientifi c and/or cultural knowledge.  

    Connaissances  and Epistemological Obstacles  

 The experiment that we describe in this book helped to bring epistemological obsta-
cles  to light and to study their affect of on learning. An epistemological obstacle in 
mathematics is a  connaissance   (not the lack of a  connaissance ) or even a  savoir   that 
has the following properties: it is valid and appropriate in a certain domain, but 
becomes inappropriate outside of this domain, generally without the inappropriacy 
being noticed by the person who wants to use it; it causes errors of unsuspected 
origin; it appears to resist all attempts to adapt or improve it locally; furthermore, 
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even when a new and valid  connaissance  has been substituted for it, the epistemo-
logical obstacle recurs unpredictably and creates incomprehension or errors, which 
makes it essential that the obstacle be identifi ed and that its consequences be 
acknowledged. We have proved (Brousseau,  1983 ) that epistemological obstacles  
 inevitably  appear in the historical and psychological genesis of knowledge. There 
are numerous examples in the form of famous errors such as Cavalieri’s generaliza-
tion of indivisibles, or Lagrange’s error on the simple convergence of continuous 
functions. The solution for the diffi culties that they produce depends on a number of 
factors of the culture. 

 Epistemological obstacles make an appearance also in teaching, where they 
unavoidably get in the way of some necessary passages. The most astonishing but 
also the most obvious is that of the natural numbers. They are inevitably the founda-
tion of mathematical learning and nevertheless they form an obstacle to some other 
 connaissances.  In particular, the fact that every number has a next number, or that 
the product of two numbers is greater than or equal to either factor needs to be aban-
doned when numbers are extended to include rationals. Another obstacle that is 
pertinent to our experimentation involves division : students understand division in 
the natural numbers as expressing sharing in equal parts. Implicitly, the divisor and 
the quotient are necessarily smaller than the dividend. “Division” of two decimal 
numbers, even though its interpretation is different, is initially conceived on the 
same model. Students interpret 37.5 ÷ 6.3 by analogy with 37 ÷ 6. But since division 
by 0 has no meaning and division by 1 not much more, students have diffi culty 
conceiving of 19 ÷ 0.8, or even of 19 ÷ 1.8. Much of the diffi culty of rational num-
bers comes from the fact that the divisor can be greater than the dividend. The dif-
fi culty reaches its maximum with the interpretation of operations like 0.30 ÷ 0.80. 
The models introduced with the natural numbers interfere in numerous errors even 
with advanced students, in particular in the study of Analysis. 

 But necessity or didactical  fantasy can give rise to new, purely didactical obsta-
cles. We consciously introduced fractions by commensuration (the search for a 
common unit permitting a comparison of two quantities) and we demonstrated that 
it did indeed constitute a (didactical) obstacle to the more classical comprehension 
of fractions as measures with a sub-unit. We were able to observe how the dominant 
conception could be imposed and how the students were able to use one or the other 
more easily depending on the case (but not both at the same time.) 

 The curriculum that we present is entirely conceived to treat or defl ect the vari-
ous obstacles created by “natural” conceptions to the comprehension and use of 
rational numbers.  

    Metadidactical Slippage 

 In case of diffi culties or failure, the teacher is expected to intervene. Some of these 
interventions consist of continuing to make use of the situation under discussion 
without much change in the structure (furnish some information, ignore or correct 
an error, accept a weak response, etc.). Others break into the process: they cause the 
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action to be abandoned in favor of another, different or similar (give a partial exer-
cise subdividing the situation or the knowledge in question or a similar exercise in 
a different environment, revert to the explanations prior to the failure, etc.) Between 
these two modalities is another that consists of commenting on, explaining, discuss-
ing and studying the situation that is causing diffi culties. This arrangement is sup-
posed to insert itself like a parenthesis in the situation under discussion, suspending 
it long enough to obtain some useful information before the moment of returning to 
the original situation. But in fact it really is a new situation: its rules and means are 
different. The fact that the fi rst situation and the knowledge that might resolve it 
become an object of study necessitates a repertoire for  identifying  and  writing  some 
of its components and properties (some, but not all – for example, the non- expressible 
knowledge of the children cannot be included.) This repertoire, itself made up of 
 connaissances   and  savoirs   ,  plays a role on this occasion comparable to that of a 
meta-language with respect to the knowledge in the initial situation. The situation 
itself is a meta-situation : its  milieu   is the initial situation and its rules are a priori 
specifi c. There exist a large number of types of meta-situations, for example:

•    Those that can be classifi ed by their objective: addressing the cause of the diffi -
culties as being the student, the conditions or the  savoir  in question  

•   Those that can be classifi ed by the means mobilized: the forms of argumentation 
(explanation, clarifi cation, representation), the types of rhetorical device (meta-
phors , metonymy, etc.) of words, of thought or of discourse.    

 It can happen that this meta-situation  fails and the initial situation cannot be 
resumed. When this happens, a new “meta-meta-situation” may appear to be a rea-
sonably economical choice to save the whole activity, while abandoning the activity 
seems a pure loss. 

 In spontaneous intellectual activity, the passage from action  in  the situation to 
study  of  the situation is frequent, rapid and diffi cult to distinguish. In teaching, the 
distinction arises between the phase of problem-solving by a student and that of the 
study of the problem where the students and teacher cooperate. Teachers have a 
tendency to take all mathematical activity as an object of study and of teaching, 
which often leads them to intervene and replace an initial mathematical situation  
that would have permitted an authentic activity on the part of the students by a study 
of the mathematical circumstances and a lesson about that. We call the replacement 
of a situation (in particular a mathematical one) by one of its meta-situations a  meta-
didactical slippage . Such a slippage tends to replace a  connaissance   by a  savoir , 
which can be more easily monitored, and is assumed to be more certain (for exam-
ple an algorithm) , more general (a principle, a heuristic), or of a superior order (an 
axiom, a theorem). Alternatively, it may simply enrich the environment of a  con-
naissance  (its conceptual map) by examples and analogies . 

 This replacement may or may not be favorable, depending on the circumstances. 
We must therefore distinguish between the slippages that make it possible to return 
to the initial situation and solve it and those that do not. By a recursive process, the 
latter may open up a chain of uncontrolled successive metadidactical slippages that 
form a serious digression. 

 Metadidactical Slippage
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 Clearly, meta-slippage is not restricted to didactical situations. It is even one of 
the fundamental elements of the construction of  connaissances  and the organization 
of  savoirs . 1  On the other hand, within education, the lack of understanding of this 
slippage causes serious diffi culties, sometimes within the classes themselves, 
depending on the culture of the teachers, but especially in macro-social didactical 
processes. Misjudgments and erroneous decisions follow from a lack of conscious-
ness and understanding of the didactical nature of the phenomenon. 

    Various Examples of Uncontrolled Chains of Metadidactical 
Slippages  

 A recent and spectacular example was given by the representation of logic using set 
theory, then of set theory by naïve set theory, then of naïve set theory by Venn dia-
grams, then of Venn diagrams by function graphs mapping set to set, with a whole 
array of nomenclature, conventions and properties. Another example is that of substi-
tuting heuristics based on the works of Polya for the teaching of problem solving itself. 

 But all the chapters of mathematics are sprinkled with traces of this phenome-
non. For example, the arithmetic resolution of linear problems to adapt to various 
constraints generated, in the course of history, very rich vocabularies, methods and 
algorithms . Their diffi culty and variety resulted in a collection of mnemonic tech-
niques like cross multiplication and topic-specifi c algorithms that let students apply 
the methods without understanding them. 

 Periodically swept out of mathematics by inventions – like algebra – they persist 
and unfortunately continue to increase and to weigh down teaching. They are 
imposed by the pressure of the social milieus that consider them to be cultural trea-
sures necessary for civilized mathematics.  

    The Slippages Studied in This Curriculum 

 The present curriculum was conceived in the early 1970s, in perfect innocence with 
respect to this concept of slippage, but with attention paid to the relationships 
between that which was taught: the  savoirs   ,  and the means of understanding and 
learning it: the  connaissances  . At the time, they were treated in contrasting pairs: 
non-verbal decisions and schemas; languages and formulations; proofs and reper-
toires of validation. Our attention was swiftly drawn to the control of recursive 
faults and how they led off-course. The use of function graphs had already been 
removed from the national programme, that of representations by arrows  had been 

1    Piaget’s theory of “equilibration” maintains that all learning occurs by chains of (not necessarily 
didactical) meta-situations.  
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confi ned without derogation to diagrams (ratios of natural numbers and functions). 
The students imitated their teachers, who used these arrows without comment or 
specifi c lessons. The use of arrows was never the object of any course, or discourse, 
or testing, only, occasionally, of corrections. Using them was a private decision, the 
expression was expected to remain mathematical or “concrete”. We were able to 
demonstrate that it was possible to use the arrows as rhetorical arguments on condi-
tion that they not be made objects of teaching. But we were also able to observe that 
it was impossible to produce this usage among the teachers and to avoid having the 
arrows give rise to metadidactical slippages, because normal teaching practices had 
established fi rm habits in the teachers. This research and others led us to examine 
the implicit didactical contract and its paradoxes. 

 It was only after discerning this phenomenon that we introduced the lessons we 
called “supplementary sessions”, set up in two ways for the study of metadidactical 
slippage: the introduction of the classifi cation of similar problems and a use of 
arrows  between points of the plane (thus not in a diagram of the sort previously 
used.) Along with direct objectives that were very positive for the students, these 
lessons presented some dangers, but they were intended to permit us to study exper-
imentally the conditions of a specifi c resistance of teachers to the sequence of slip-
pages. As we have stated elsewhere, circumstances unfortunately did not permit us 
to pursue this study as we would have liked.   

    Evaluation s 

 We have pointed out repeatedly the gap that exists between different views of what 
constitutes the results of a lesson: on the one hand, something that makes it possible to 
tackle situations and knowledge that would have been impossible to tackle before the 
lesson, and on the other something that can be evaluated by way of students’ answers 
to precise questions, standardized or not. This difference can clearly be explained by 
the  connaissances   which, by defi nition, are not easily exportable outside of their origi-
nal situation. We frequently made the experiment of comparing the answers of stu-
dents to the same questions according to the situation in which the questions were 
posed, and we established – as is well-known – the importance of the conditions of the 
questioning: the status of the person asking the question, the formulation, etc. 

 Assessments  – formal or not – were very dense. The teachers gave their opinions 
and proposed decisions that seemed to them to be required to improve the results. 
We only retained situations where successful results could be obtained without 
appreciably more effort than was needed for success in regular classrooms. We were 
allowed to make use of anonymous evaluations provided by the inspectors, and we 
responded immediately if results were poor. 

 Evaluations were considered to apply to teaching situations proposed or realized 
and not to teachers or even individual students. We did, however, occasionally take 
students in diffi culties out for special sessions (as we did for Gaël, for example 
(Brousseau & Warfi eld,  1999 )). 

 Evaluation s
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 These studies allowed us to make, in 1978, a prognosis about the effects of 
 abusive use of unconsidered diffusion of information about the school system. Not 
only the results of automatic massive evaluations, but also work on the schools con-
ducted in inappropriate scientifi c domains to prove the legitimacy of their infer-
ences in the didactical  domain, reached populations who had every right to be 
interested, but used the information to reach ill-founded conclusions. 

 We denounced as consequences the concentration on  savoirs   to the detriment of 
 connaissances  , the underestimation of the capabilities of the students, the prolonga-
tion of studying time, the mincing up and multiplication of secondary didactical 
objectives, the individualization of teaching, and the use of tests as means of learn-
ing and then of teaching and then as an object of teaching and fi nally as a represen-
tation of knowledge itself.        
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