
Chapter 3
Functional Diversity Indices

Abstract Functional diversity may be summarized using indices based on trait
values and species importance in the community, like abundance, cover and
biomass. This chapter includes taxonomy of the indices based upon the informa-
tion they used and the output they offer. For each index we have included its
definition, the information needed to estimate it, their statistical and ecological
properties, and some reference to explore its application to real cases. To facilitate
the comprehension of all indices and diversity measures we used homogeneous
notation.

Keywords Single-trait indices � Weighted diversity indices � Multiple-trait
indices � Taxonomic biodiversity indices � FDiversity software

3.1 About Functional Diversity Indices and Measures

In this chapter, several indices and their definitions will be introduced. To avoid
redundancy, Box 3.1 shows the notation used in this and other chapters. When
deviations from this notation occur, it will be made clear in the text. The code
name for the indices, as well as the author’s reference will be mentioned in each
definition. Even though we are focused on functional diversity and functional
diversity indices, Sect. 3.2 has a brief presentation and one example of species
diversity indices. We include the most commonly used indices and those that are
often compared with functional diversity indices.
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Box 3.1: Notation

Variable Meaning

ij Used as subscripts to identify species; i, j = 1, …, S
t Used as subscript to identify traits; t = 1, …, T
S Number of species
T Number of traits
ai Absolute abundance of the ith species (with units; i.e. m2 for cover)
wi

Relative abundance of the ith species; wi ¼ ai

�PS
i¼1

ai

xti tth trait value of ith species; for single-trait indices the subscript t is not necessary

There are single-trait metrics and indices that include some measurement of
abundance to load the contribution of each species to the diversity aspect to be
summarized. For example, the community weighted mean (CWM) reflects the
functional mean of the trait, the functional divergence (FDvar) reflects the variance
of the trait, while the functional regularity index (FRO) measures the functional
evenness (Fig. 3.1). The classification criterion in Sects. 3.3 and 3.4 is if the metrics
are single-trait or multi-trait. CWM is included as single-trait measure, although
there is a fundamental difference between the CWM and the diversity indices: there
is not any ecological principle to propose that the CWM of one trait would
have any correlation with the functional diversity definition of the community.

Fig. 3.1 Index classification with reference to sections in this chapter
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Undoubtedly, CWM is a measure that allows knowing the best value to represent
the state of a trait in the community; it is a metric of functional composition.
Definitions and examples of single-trait indices are presented in Sect. 3.3.

The indices based on multi-trait profiles, may or may not take into account
species abundance. In the last decade of the twentieth century, Faith (1996) pro-
posed a functional diversity index based on the application of the index of envir-
onmental diversity (ED) to a functional space constructed using phylogenetic
information, and Walker et al. (1999) defined a functional diversity index by
identifying the number of different combinations of trait values (FAD1). Most of
the later approaches are based on dissimilarity among species in trait space, the
T-dimensional space defined by the T traits (Fig. 3.1). In Sect. 3.4 we define the
indices and present an example. The multi-trait indices that may be estimated
without abundance information are based only on presence/absence data; to esti-
mate the other multi-trait indices it is needed to incorporate species abundances.
There is some controversy in current literature about how the impact of summar-
izing functional diversity and its relationship with the variable is used to measure
abundance. Posed questions focus on the relative contribution of abundance upon
the functional diversity components, like the functional richness, the functional
evenness and the functional divergence (Schmera et al. 2009; Poos et al. 2009;
Mouchet et al. 2010).

To estimate an index we used abundance-trait profiles corresponding to the
species present at the community or assemblage. This profile includes one value
for each trait and one value for each variable used to quantify the relative con-
tribution of each species to the pool. At least values of one trait by species are
needed to compute single-trait indices and values for two or more traits to compute
multi-trait indices. Nevertheless, it is analytically possible to calculate some multi-
trait indices with values for only one trait. For example, the FD (Petchey and
Gaston 2002) diversity index (Sect. 3.3.1) may be calculating with species values
for one trait.

3.2 Species Diversity Indices

Richness (S): richness is the total number of species in a community. It is the most
simple biodiversity index and it does not take into account any characteristic of
species or their relative abundance. Several estimators to avoid bias due to unseen
or unrecorded species are currently used like those proposed by Chao et al. (for
details see for example Magurran 2004). In a functional diversity context it is
common practice to include enough species to account for near 80% of the
abundance (Grime 1998). This approach does not need to adjust observed species
number because functional diversity is not affected by rare species.

Shannon Index (H): this index assumes that heterogeneity depends on both, the
number of species in a community and their proportional abundances. Con-
ceptually, it is a measure of uncertainty degree related to a random selection of
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individuals from the community. In a homogeneous community with S species,
in which only one is dominant (highly abundant), the uncertainty degree of
selecting a given species is lower than if all species would have the same abun-
dance. When species abundances are uneven, the probability that a random indi-
vidual taken from the population belongs to the dominant species approximates
one; conversely, in a heterogeneous community any randomly drawn individual
has the same probability (1/S) to belong to any species. The Shannon index is one
of the biodiversity measures most widely used.

The Shannon index assumes that individuals are randomly sampled from an
‘‘indefinitely large’’ (i.e., an effectivelly infinite) population. The index also
assumes that all species are represented in the sample. It is calculated from the
equation (Shannon and Weaver 1949)

H ¼ �
XS

i¼1

wi ln wið Þ:

Eveness (E): the maximum of Shannon index is attended when all the species
has the same relative abundance, and it reduces to

Hmax ¼ ln Sð Þ:

Based on this maximum it is possible to derive an evenness index, using the
maximum as reference for the actual value (Pielou 1975) as the ratio

E ¼ H=Hmax;

where E is the evenness index.
Simpson Index (D): Simpson index of biodiversity equals the probability of

drawing without replacement two individuals of different species from a given
collection. There is more than one form to express the index. The expression
widely used offers the index as a measure of dominance

D ¼ 1�
XS

i¼1

w2
i ;

where w2
i is the squared of the proportion of the ith species (Simpson 1949).

3.3 Single-Trait Metrics and Indices: Properties
and Estimation

3.3.1 Community Weighted Mean

Community weighted mean (CWM) is a good indicator to represent the expected
functional value of one trait in a random community sample. Also defined as
aggregate values of plant traits by Garnier et al. (2004) it is extensively used as
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community weighted mean (Díaz et al. 2007; Lavorel et al. 2008). As CWM is
based on single-trait, each trait has its CWM value in the assemblage. To calculate
it we need one trait value to represent each species, so if we have 10 species and
we want to calculate CWM of specific leaf area (SLA) we need 10 SLA’s values
(xi in Box 3.1). We also need one variable representing the contribution of each
species to the community. Suppose that for each species we have evaluated the
cover in square meters (ai in Box 3.1) then we may express the cover in relative
form (wi in Box 3.1). The community weighted mean is

CWM ¼
XS

i¼1

wi xi: ð3:1Þ

It is strongly recommend following standard protocols to assign trait values to
species (Cornelissen et al. 2003). Depending on the trait variability it could be
necessary to measure 5–10 representative individual for each species. After having
the data set for the whole community the mean value for continuous variables or
median for discrete ones may represent each species in the index calculation.
There are several categories already defined in the literature for particular traits
like flammability (Cornelissen et al. 2003; Jaureguiberry et al. 2011), or nodule
type for nitrogen-fixing species (Cornelissen et al. 2003).

To apply the formula (3.1) to the example in Box 3.2 we have to calculate the
relative contribution of each species from the cover data in its original scale
divided by the total coverage, in this case it is 10,042 m2, doing so we obtained the
values of the relative cover column. Having all the data in the appropriate scale,
we multiply each SLA value by the corresponding relative value and sum all
results to obtain the CWM. In the example its value is 19.01 mm2 g-1. This value
is greater than the arithmetic mean (18.26 mm2 g-1) because it incorporates a
loaded factor that in this case favors the sp2 and sp8 with greater SLA values. To
summarize community performance related to ecosystem processes the CWM
represents the best single value to link with other variables and look for rela-
tionships with a given ecosystem service.

Box 3.2: Trait profiles for ten species used to estimate CWM

Species SLA
(mm2g-1)

Cover
(m2)

Relative
cover

Species SLA
(mm2g-1)

Cover
(m2)

Relative
cover

sp1 19.30 245 0.0235 sp6 13.81 312 0.0300
sp2 19.53 2540 0.2439 sp7 9.94 780 0.0749
sp3 15.64 34 0.0033 sp8 21.93 3545 0.3405
sp4 18.44 2045 0.1964 sp9 31.65 108 0.0104
sp5 17.37 35 0.0034 sp10 14.98 768 0.0738
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3.3.2 Functional Divergence

Functional divergence index (FDvar) is essentially the variance in the attribute
values of the species present at a site, with the squared residuals weighted by the
abundance of the species involved (Mason et al. 2003). It is defined as

FDvar ¼
2
p

arctan 5Vð Þ ð3:2Þ

where 5 is a scaling factor used to define the index over a range of 0–1; V is the
weighted variance of trait X, expressed as:

V ¼
XS

i¼1

wi ln xi � ln x
� �2

: ð3:3Þ

This index considers one trait at a time and used the relative abundance of each
species (wi) to load its contribution to the variability in the community (Box 3.1).
The mean of ln xi is weighted by the abundance as

ln x ¼
XS

i¼1

wi ln xi: ð3:4Þ

Using data from Box 3.2 the FDvar is 0.15 and this index has no units because
the trait values, originally expressed in squared millimeters of leaf area divided by
dry weight in grams has been transformed to a logarithm scale and expressed in the
range zero–one. So this value of 0.15 corresponds to a small variability for SLA.
If we interchange in Box 3.2 the cover of species sp7 and sp8 but keeping the SLA
values and recalculate the FDvar, we obtain FDvar = 0.30. This is twice the first
estimation, and it is the consequence of assigning a cover of 3,545 m2 to sp7 with
SLA = 9.94 mm2 g-1 (one of the smallest values for SLA). The variability of this
trait increases due to that more abundant species now bear the more extreme
values for SLA (9.94, 19.53 and 18.44 mm2 g-1).

This index has also been defined to handle more than one value of the trait by
species (Mason et al. 2003) using the character values (xi) and the abundance of
these values in all the species of the community. For this functional divergence
formulation the sum is over the total possible values of the trait under consideration.

3.3.3 Functional Regularity

Functional regularity index (FRO) has been defined for one trait with only one
value of the trait by species, like the mean or the median. FRO was introduced to
capture a neglected aspect of functional diversity as is the regularity or evenness of
the trait values in the observed range (Mouillot et al. 2005). As the other single-
trait indices it also used the relative abundance of each species. The procedure to

32 3 Functional Diversity Indices



calculate the index needs to sort the observations. It is as follows: (a) the species
are ranked by increasing values of the trait (xi); (b) we calculate the weighted
difference EWi;iþ1

� �
of trait values of two consecutive species loaded by the

abundance difference as

EWi;iþ1 ¼
xiþ1 � xij j
wiþ1 þ wij j ð3:5Þ

where wi is the relative abundance of the ordered ith species; (c) with these values,
we calculate the percentage of the weighted difference (PEWi;iþ1) in trait values
for the pair of species as

PEWi;iþ1 ¼
EWi;iþ1PS�1

i¼1 EWi;iþ1

; ð3:6Þ

and (d) the FRO index results from the summation of all S� 1 pair comparison,
choosing the minimum between the percentage of the weighted difference and the
equally probable space 1= S� 1ð Þ

FRO ¼
XS�1

i¼1

min PEWi;iþ1;
1

S� 1

� �
: ð3:7Þ

The maximum of FRO is obtained when each pair of nearest neighbors equals
1= S� 1ð Þ and each species has the same abundance, case of maximum functional
regularity and FRO = 1. In all other cases FRO is less than one; and quantifies how
the observed community differs from other communities with the same richness,
where all species have the same abundance, and its trait values are regularly dis-
tributed resembling to the outcome of the uniform probability distribution.

Using the data of Box 3.2 we obtained a FRO = 0.39 (Fig. 3.2a), approxi-
mately one third of a community where the ten species have equal abundance and
its trait values are uniformly distributed in the range of SLA (9.94 to
31.65 mm2 g-1). Suppose that due to human modification or to environmental
process the relative abundance of each species is near 0.10 (Fig. 3.2b). In this case
the FRO increase to 0.60. FRO may also increase if the trait values are more
evenly distributed. If we interchange abundance of species sp7 and sp8, and also
between sp9 and sp10, we obtained FRO = 0.47 (Fig. 3.2c).

All these changes in FRO have happened with the same set of trait values, but
with modifying the matching between trait value and the relative abundance. The
index may also be affected by changes in the trait values. For example, if the
species sp1, sp5 and sp10 change their values to 29.30, 27.37 and 24.98 mm2 g-1,
the FRO with the observed abundance would be 0.65; and if we considered all
species with the same abundance it would be 0.89, closer to one, due to a very
uniformly distribution of equally abundance trait values (Fig. 3.2d).

Even though FRO is defined for one trait at a time, the authors (Mouillot et al.
2005) suggested two options to extend the index to multiple traits. One is to
estimate FRO for each trait and then take the mean value to represent the
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community; this mean value may be weighted by trait importance if desirable. The
second one is to compute a Principal Component Analysis on the S� T matrix and
use the principal components to compute T values of FRO and then sum using
eigenvalues or standard deviation of eigenvectors as weights to compute the
overall functional regularity (OFRO)

OFRO ¼
XT

t¼1

SDt � FROt;

where SDt the standard deviation and FROt the functional regularity for each
principal component.

3.4 Multi-Trait Indices: Properties and Estimation

3.4.1 Functional Attribute Diversity

The index FAD (Functional Attribute Diversity, Walker et al. 1999; Walker and
Langridge 2002) has two expressions. FAD1 is the number of different attribute
combinations that occur in the community and it is always less than or equal to
richness. When traits are in a continuous scale it always coincides with richness

Fig. 3.2 Relative abundance for specific leaf area (SLA) trait values of species in Box 3.2.
a Original data, corresponding to FRO = 0.39; b species with the same abundance (relative cover
0.10), corresponding to a FRO = 0.60; c interchange abundance values between sp7 and sp8, and
between sp9 and sp10, corresponding to FRO = 0.47; d change the SLA values of sp1, sp5 and
sp10 to 29.30, 27.37 and 24.98 mm2g-1 with the same species abundance (0.10), corresponding
to a FRO = 0.89. Note y-axis scale in a and c is different from y-axis scale in b and d. Horizontal
line is at relative cover 0.10 in the four plots
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and its use is not recommended. When the traits are categorical, with few levels it
may resume a crude functional richness; even though, there are more appropriate
functional indices as further described.

The second expression (FAD2) is the sum of the standardized distance between
all pairs of species in the trait space. The authors recommend expressing the trait
values in a five-point scale. As an ecological distance (ED), they use the Euclidean
distance between two species. The sum over all pairs of species gives the FAD2.
The ecological distance between species ‘i’ and ‘j’ may be expressed as (Eq. 1a,
from Walker et al. 1999)

EDij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1

xtj � xti

� �2

vuut

where T is the total number of attributes, and xti and xtj are the values of the tth
trait of species ‘i’ and ‘j’. Using EDij; which is the Euclidean distance between two
species, FAD2 is defined as

FAD2 ¼
XS

i¼1

XS

j [ 1

EDij

in a community with S species.
In an attempt to make FAD2 comparable among communities with different

number of species, the authors propose to standardize the index dividing by the
number of interspecies comparisons. With S species the total number of distances
among a pair of species is S� ðS� 1Þ=2; and the index for each community to be
compared may be transformed to comparable scales using

FAD2 Zð Þ ¼
FAD2

SðS� 1Þ=2
;

being FAD2(Z), the standardize expression.
MFAD is another modified version of FAD2 proposed by Schmera et al. (2009)

to overcome the violation of monotonicity criteria. For a given assemblage with S
species and T traits they first defined the so called functional units. The number of
functional units results from combining the species with exactly the same trait
profiles into only one functional unit. The number of entities in the data matrix will
be reduced from S to N (N B S), and dimensions of the distance matrix will be
reduced from S 9 S to N 9 N. N itself is a measure of functional richness, already
proposed by Walker et al. (1999) as FAD1.

To calculate MFAD, the dissimilarity metric must be defined in the range [0; 1],
and the authors proposed the use of the Marczewski-Steinhaus index (Marczewski
and Steinhaus 1958) or a distance defined in the same interval, like Gower distance
(Gower 1971). The index is estimated as:
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MFAD ¼
PN

i¼1

PN
j [ 1 dij

N
;

where dij is the dissimilarity between functional units ‘i’ and ‘j’, and N is the
number of functional units.

MFAD measures the dispersion of species in the trait space in comparable
scales if the set of traits are the same. So it provides a simple numerical tool to
compare several communities. Several authors have claimed that its contribution
to functional diversity approach is not significant due to high correlation with
richness (Mouchet et al. 2010; Pavoine and Bonsall 2011).

3.4.2 Functional Diversity Based on Dendrograms

There is a family of functional diversity indices based on dendrograms. The first
one was proposed by Petchey and Gaston (2002) and has been used in functional
ecology as ‘the’ index. Even a decade later this index and its code name FD is one
of the most used in applied functional ecology. Several adjustments have emerged
from scientific controversy between Petchey and Gaston (2002, 2006, 2007) and
Podani and Schmera (2006, 2007); others from the inclusion of abundance to
weight the relative contribution of each branch tree to the index (wFD, Pla et al.
2008; Casanoves et al. 2008, 2011).

FD is the total length of the branches of the dendrogram constructed from
information on species functional traits (Petchey and Gaston 2002). Different
measures of dissimilarities, and different strategies used to define the dendrogram
lead to different values of FD. As in the hierarchical clustering algorithm several
linking strategies can be used and the number of distance measurement can be
calculated to quantify the distance between species, Mouchet et al. (2008) have
proposed iteratively select the best combination of linkage and distance to
reproduce the original distance between the species pool. The selection is based on
the cophenetic correlation and the index is known as generalized-FD (GFD).

The first definition of FD (Petchey and Gaston 2002) proposed to make a single
dendrogram for the so-called ‘regional community’, with all the species that have
been observed in any sample of the study area. Based on this maximum value for
FD, any particular sample of the study area will have its own FD resulting from the
sum of branch length of the species present at the considered sample, required to
connect these species to the root of the dendrogram. This expression was criticized
because the index does not equal zero when only one species is present. It is zero
only when no species is present (Podani and Schmera 2006).

These authors have proposed to recalculate the dendrogram for each sample,
but in doing so the desirable property of ‘set monotonicity’ does not hold. That is,
the index may be greater for a community after one (or more) species is lost; and
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conversely the FD may be smaller for a community which has gained one or
more species.

The second definition of FD as the sum of lengths of all branches of the
dendrogram made by Petchey and Gaston (2006) addresses the lack of mono-
tonicity that arises when using a particular dendrogram for each sample as Podani
and Schmera had proposed. To calculate FD in each sample of the community, this
version of FD sums the lengths of the branches on the dendrogram needed to
connect the present species, no including the length of the branch to get to the root
(Petchey and Gaston 2007).

Both versions of the FD are based on a single trait value per species. However,
it is possible to incorporate intraspecific variability in the estimation when trait
values are available at individual level. This functional diversity index incorpo-
rates intraspecific variability and it is less correlated with richness (iFD,
Cianciaruso et al. 2009). The authors claim that important ecosystem processes
operate at individual level, like competition for resources, niche occupancy and so
natural selection. A particular value taken by the trait is an attribute of the indi-
vidual; within a species the trait may show different attributes along environmental
gradients or through time, or among different land use practices.

One way to avoid subjectivity in the selection of the distance measurement and
the linkage strategy is to compare the ultrametric matrix computed to make the
dendrogram with the distance matrix calculate from the functional trait profiles.
Even though, no clustering procedure perfectly fits data distribution in multi-
dimensional space. Mouchet et al. (2008) propose a systematic procedure to cal-
culate combinations of distances (Euclidean and Gower) and several cluster
linkages: single linkage, complete linkage, UPGMA (unweighted pair group
method using arithmetic averages), WPGMA (weighted pair group method using
arithmetic averages), UPGMC (unweighted pair group centroid method), WPGMC
(weighted pair group centroid method) and Ward’s method; and then, build the
consensus tree that optimally represents the clustering methods.

This index is called Generalized FD (GFD) and the selection of the best
combination is based on the comparison between dissimilarity matrix and
cophenetic matrix. The cophenetic matrix is an S 9 S symmetrical matrix that
quantifies the distance between species in the dendrogram. The less difference
between the corresponding elements of these two matrices, the better the cluster
procedure resembles the diversity in trait space. The authors used the cophenetic
correlation (Pearson correlation computed from pairs of distances) to select the
combination that best fits. If the cophenetic correlation is large, the distance
portrayed in the dendrogram is a good representation of distances between species,
in the trait space. R script may be downloaded from Ecolag author’s site (http://
www.ecolag.univ-montp2.fr) and FDiversity software also calculates it from the
same information used for the other functional diversity indices.

Further discussion about dissimilarity measurements, cluster strategies and
comparison among communities can be found in Petchey et al. (2004) and Petchey
and Gaston (2007), the response of Podani and Schmera (2007) and Poos et al. (2009).
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FDiversity team1 (Pla et al. 2008; Casanoves et al. 2011) proposed using abun-
dance to quantify species contribution to the community when a hierarchical
clustering approach is used for functional diversity (wFD, Sect. 3.4.5).

3.4.3 Convex Hull Hyper-Volume

The dispersion of species in the trait space is a crude multivariate representation of the
functional diversity in a community. Cornwell et al. (2006) proposed to synthesize
this dispersion by quantifying the best shape hyper-volume with an appropriated
volume model. Among the candidates are hyper-cube or hyper-sphere models, but
these do not reduce the amount of empty space. A better option is to use the convex
hull, defined as the smallest convex set enclosing the points (Barber et al. 1996).

A convex hull hyper-volume (CHull) in a multivariate space is defined, based
on the irregular form yielded by species occupancy in the trait space. Taking two
species from one community, any third species with traits inside the range of traits
is included in the CHull. If only two traits are involved, the CHull may be
represented with a surface in 2D (Fig. 3.3a–c); when there are three traits the
CHull is a volume in 3D (Fig. 3.3d), and with four or more traits CHull is a
hypervolume. The convex hull is a multivariate measure of the range of trait space
(trait values that may be found in a given assemblage). The sequence from
Fig. 3.3a–c shows increasing trait ranges; the three graphs have the same units
because the trait values were standardized to have zero mean and unit variance.
T3, the third trait has the widest range, so the combination T3–T2 has the highest
surface, all expressed in standard deviations from the corresponding mean.

3.4.4 Quadratic Entropy

Functional diversity may be expressed as the average of the species differences
when some measurement of pairwise differences between species and relative
frequency data are available. The index proposed by Rao (1982) is derived from
entropy theory and is expressed as a quadratic form using the matrix of distances
among species and the vector of relative abundance of species. To compute the
index it is necessary to calculate the Euclidean distance between species in the trait
space as

dij ¼
XT

t¼1

xtj � xti

� �2

1 FDiversity team is integrated by the authors of this book and is the developer team of
FDiversity, statistical software to calculate functional diversity with extended capabilities
(Di Rienzo et al. 2008).
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and estimate Rao index as (Rao 1982)

Rao ¼
XS�1

i¼1

XS

j [ 1
dij wiwj ¼

1
2

w0 D w

where dij is the distance between species ‘i’ and ‘j’. In matrix notation, D is a
distance matrix with elements dij; and w is a column vector with the relative
abundances.

Botta-Dukát (2005) has suggested using Euclidean distance divided by the
number of traits used to define it. To be compared, functional diversity indices has
to be evaluated over the same set of traits, so all the distances are calculated over
the same number of traits and this adjustment has no effect for comparison among
samples or communities. The new expression is the original divided by a constant.

The Rao index may also be seen as the expected value of the conflict among
species (Ricotta and Szeidl 2006). As the species abundances are expressed as

relative values, it sums to one
PS

i¼1 wi ¼ 1 and the frequency of any species may

be expressed as 1�
PS

j6¼i wj: So, the conflict between species ‘i’ and the remaining
(Cd wið Þ) may be express as

Fig. 3.3 Convex hull (CHull) in two and three dimensions. The data are for three traits and five
species; a surface delimited by the outer species in plane T1-T2 (CHull = 1.140), b surface in
plane T1-T3 (CHull = 2.941), c surface in plane T3-T2 (CHull = 4.947), d volume in the three
dimensional space T1-T2-T3 (CHull = 0.462); sp5 has intermediate trait values and it is identify
within the surfaces and also within the volume. Data are standardized and CHull values showed at
the top of each graph. A similar limit for x–y axes of the first three graphs allows visual
comparison among CHull values. Trait values were standardized by trait
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Cd wið Þ ¼
XS

j6¼i

dijwj:

The functional diversity is then

Rao ¼
XS

i¼1

wi Cd wið Þ ¼
XS

i¼1

wi

XS

j 6¼i

dij wj

" #
;

the second summation equals
PS

j¼1 dij wi; since the distance of a species with itself

is zero, dii ¼ djj ¼ 0: This expression proves that the Rao index is also a measure
of the conflict among species (Ricota and Szeidl 2006).

The unbiased estimator of Rao when the abundance of species is expressed as
number of individuals is

Râo ¼ n
n� 1

2
XS

i [ j

dij

ninj

n2
; Râo ¼ 2

XS

i [ j

dij

ninj

n n� 1ð Þ;

where ni is the number of individuals of species ‘i’ and n ¼
PS

i¼1 ni is the total
number of individuals. If the sample is big enough the correction term n=ðn� 1Þ is
almost one and the index may be calculated without correction. The variance of
Râo may be estimated as (Shimatani 2001)

VarðRâoÞ ¼ 4
SðS� 1Þ

ð3� 2SÞ 2
XS

i [ j

dij

ninj

n2

 !2

þ

þ ðS� 2Þ
XS

i;j;k

dijdik

ninjnk

n2
þ
XS

i [ j

dij

ninj

n2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

The variance is useful with large samples and when differences between com-
munities have to be tested based on one sample for each community. The dis-
tribution model for Rao index is not known and depends on the distance measure
thus, non parametric estimation may be preferred to build confidence intervals and
to test hypothesis.

Useful information may be extracted from the symmetric matrix
Q ¼ diag wð ÞD diagð Þw; where ‘diag’ states for diagonal matrix with relative
abundances of each species. This matrix has dimension S 9 S and its ijth element
is qij ¼ dij wiwj; its main diagonal is zero, and it is known as the species con-
tribution matrix. The absolute species contribution for each species may be
evaluated summing along the columns of the contribution matrix, and a relative
expression of this contribution is obtained dividing these values by 29Rao index
(Box 3.3). The reference must be twice the index because each distance, between
two species, counts twice, one when sum is over the column for the first one of the
pair and the other when the sum is over the second.
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Box 3.3: Distance matrix and abundance vector used to estimate Rao index

Both, absolute and relative contributions of each species are highly related to
abundance. To explore the effect of species contribution upon the index, the partial
derivative of the species contribution matrix (Q) with respect to the ith species
contribution (nj) may be computed as

oQ�
onj
¼ 2

n

XS

i¼1

dij

ni

n
� Rao

 !
:
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If
PS

i¼1 dijni

.
n is greater than Q, a small increment of species ‘j’ increases the

Rao diversity index (Shimatani 1999). This is because the first term is the average
distance from an individual of species ‘j’ to all the others (see numerical example
in Box 3.4), and the second term is the average distance over all the pairs; so, if the
species ‘j’, has a greater average and its frequency increases, the overall average
increases accordingly. On the other hand, if a species with very small contribution
increases its relative abundance the index may decrease due to a negative differ-
ence between the species average distance and the overall average distance that is
the Rao index.

Box 3.4: Species relative abundance changes affect the Rao index

The partial derivative is useful for understanding graphics of changes in
diversity when one species is virtually removed from the assemblage. The index
may increase or decrease in relation to the average distance of the removed species
with the overall average distance.

The expression of quadratic entropy as an absolute value is not useful when the
comparisons have to be done between communities with very different numbers of
species or when different sets of traits were used to define the distance matrix.
To get a relative expression the maximum has to be estimated from the data. The
distance matrix does not depend on the abundance of species and is fixed for a given
set of species, but changes in the relative abundance of these species may lead to the
maximum diversity index (Raomax). There are two types of abundance vectors that
define two subclasses of maximum: (a) weak maximization, when some of the wi

abundances that maximize Raomax are zero; and (b) strong maximization, when all
the wi values that maximize Raomax are positives.
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The maximization process relies on the dissimilarity matrix and on any ultra-
metric matrix that belongs to the strong subclass (Pavoine et al. 2005). The
drawback arising from having only some species to maximize the Rao’s quadratic
index when dissimilarity between species are based on functional traits is the
absence of distance measures that guaranty the ultrametric condition and then
ecological meaningful expression of the functional diversity using relative Rao
index. Taxonomic or phylogenic dissimilarity trees may have ultrametric distances
and give a maximum value of Rao that relies on total abundance distributed among
all the species presents.

In the ade4 software, also available as an R library, the sentence ‘divc’ may be
used to calculate this index. The algorithm return Rao when absolute value is
required (scale = FALSE), and the relative value (scale = TRUE) in the range
[0, 1] when scaling is required. With FDiversity software both expressions may be
obtained simultaneously.

3.4.5 Extended FD

The FD proposed by Petchey and Gaston (2006) is based on a dissimilarity matrix
computed with one mean value by trait and species and no importance measure to
weigh the species abundance in the community. It is possible to load each entry of
this dissimilarity matrix with a relative measure of abundance (frequency, cover-
age, biomass, basal area, or other) before performing the dendrogram. If dij denotes
the dissimilarity measurement between species ‘i’ and ‘j’, and wi and wj denote the
relative abundance of each species, the weighted FD (wFD) is computed from a
matrix with entries d0ij ¼ dij

ffiffiffiffiffiffiffiffiffiffi
wi wj
p� �

: The resulting weighted dissimilarity matrix is
symmetric with zeros in the diagonal. The wFD is computed as the total branch
length of the functional dendrogram derived from this symmetric matrix (Pla et al.
2008, Casanoves et al. 2008, 2011). The scaled form of wFD multiplies the sum by
the total number of species to put it in the same metric as FD.

As in the FD case, the dendrogram may be computed only with the set of
species present in each plot (wFDp plot based), or may be derived from one
dendrogram including the species community pool (wFDc community based).
With equi-abundance wFD equals FD. In case study 1 in Sect. 4.2 we compare FD
and wFD to show how changes in these indices can be used to explore the rela-
tionship between functional diversity and changes in abundance and trait values.

3.4.6 Functional Richness, Evenness, Divergence
and Dispersion

Villéger et al. (2008) argued that functional diversity cannot be summarized by a
single number because it has to include components of richness, evenness and
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divergence taken into account the trait values and their abundance. They proposed
a framework where functional diversity comprises three components: functional
richness, functional evenness, and functional divergence. The three independent
components provide more detail in examining the mechanisms linking biodiversity
to ecosystem functioning. Mason et al. (2005) were one of the first to call the
attention about the importance of these three facets of functional diversity to
understand its relationship with ecosystem processes and ecosystem services.
Villéger et al. defined FRic (functional richness), FEve (functional evenness) and
FDiv (functional divergence) using multiple traits.

To complement these three measurements of functional component Villéger
et al. (2010) have proposed an index of functional specialization (FSpe) that
quantify the relative positions of species respect to the gravity center calculated
from the regional pool of species. The index is based on Bellwood et al. (2006)
relative distance of a species from the centroid of the principal component space
account for at least 85% of the variability observed.

Functional richness (FRic): FRic represents the trait space filled by the com-
munity. In the one trait case it is represented by the range (maximum–minimum),
but with more than one trait it is represented by the volume filled by the com-
munity in the trait space. The procedure is like the convex hull hyper-volume
(Cornwell et al. 2006). The algorithm identifies the extreme species and then
estimates the volume in the trait space. It is recommended to standardize the traits
to avoid scale effects. To calculate FRic the number of species must be greater
than the number of traits and the species must not relay on a line. The maximum
value of FRic in a T dimensional trait space is attained when 2T species have a
combination of extreme trait values.

An option to estimate FRic when the number of species is less than the number
of traits is to synthesize the trait space using a multivariate technic to reduce the
dimensions. If all the traits are in a quantitative scale principal component analysis
may be applied and the resulted component used as new ‘trait synthesis’. The
number of components retained depends on the proportion of variability explained
and are limited to the number of species minus one. With categorical or nominal
traits the reduction may be derived using principal coordinate analysis (also known
as classical multidimensional scaling) and retained the appropriate coordinate
values. In the R-scrip of FD-library written by Laliberté and Legendre (2010) to
perform this calculation, this procedure is used by default. In FDiversity, there are
two separate indices, one for Convex Hull (equal to FRic when S [ T, and no
values when S B T or at least two species are distributed in a line) and other for
FRic calculated using linear combination of traits resulted from ordination
technics.

Functional evenness (FEve): FEve measures the regularity of spacing between
species in the trait space as did the univariate FRO and also the evenness in the
distribution of the species abundance. The authors do not use the overall FRO
proposed by Mouillot et al. (2005, see Sect. 3.3.3) because the method depends on
ordination techniques and some information may be lost. Villéger et al. (2008)
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used the minimum spanning tree (MST) to transform a multidimensional space to a
distribution on a single axis. The MST links points in the T-dimensional space
with the minimum sum of branch lengths. As in FRO this new functional evenness
index measures both the regularity of branch lengths in the MST and the evenness
in species abundances. There are a total of S� 1 branches in the MST of S species
and each of the b branch length is divided by the sum of the abundances of the
species linked

EWb ¼
d ij

wi þ wj

;

where EWb is the weighted evenness, dij is the Euclidean distance between species
i and j, those involved in the branch b, and wi and wj are the relative abundance of
these species.

In case of perfect regularity of abundance all weighted evenness would be
equal, but otherwise it is useful to compute the partial weighted evenness PEWb

dividing by the sum of the EWb across the S� 1 branches

PEWb ¼
EWbPS�1

b¼1 EWb

:

When the PEWb value differs among branches, the final index will decrease.
To quantified the discrepancy they compared PEWb with 1=ðS� 1Þ; the index is

FEve ¼
PS�1

b¼1 min PWEb;
1

S�1

� �
� 1

S�1

1� 1
S�1

with an standardization similar to that suggested by Bulla (1994).
This index does not correlate with species richness and ranges from 0, complete

unevenness, to 1, complete evenness and it is independent of the convex hull.
At least three species have to be present in the sample to enable the calculation
because at least three points are needed to define the MST, no matter the number
of traits. The index value decreases when relative abundance of species is less
evenly distributed and when distances among species are irregular.

Functional divergence (FDiv): FDiv quantify how the trait values are spread
along the range of a trait space. For only one trait Mason et al. (2003) have defined
FDvar (see Sect. 3.3.2) but when there are more than one trait the linear range is
replace by a multidimensional range, like the convex hull. So functional diver-
gence is related to how abundance is distributed within the volume of functional
trait space. The first step in index calculation is defining the gravity center of the V
species that form the vertices of the convex hull Gv ¼ g1; g2; . . .; gTf g; being

gt ¼
1
V

XV

i2Sv

xti

3.4 Multi-Trait Indices: Properties and Estimation 45



where Sv is the subset of all the V species forming the vertices of the convex hull,
xti is the coordinate (trait value) of species ‘i’ on the ‘t’ trait, T is the total number
of traits, and gt is the coordinate of the gravity center for trait ‘t’. Knowing the
coordinate of gravity center, we compute Euclidean distance of each species from
this point as

dGi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1

xti � gtð Þ2
vuut

and the mean distance dG of the S species to the gravity center is

dG ¼ 1
S

XS

i¼1

dGi:

These distances are computed only with trait values and do not include the
species abundance, so they reflect the shape and the volume of the convex hull. To
take the abundance into account it is necessary to compute the abundance-weighted
deviances Ddð Þ and the absolute abundance-weighted deviances D dj jð Þ as

Dd ¼
XS

i¼1

wi � dGi � dG
� �

and

D dj j ¼
XS

i¼1

wi � dGi � dG
		 		

being wi the relative abundance of species ‘i’. The functional divergence index is
then

FDiv ¼ Ddþ dG

D dj j þ dG
:

Adding dG to the numerator and denominator makes that the index belongs to
interval 0 to 1, because dGi are Euclidean distance and so are positive or zero, thus
Dd is bounded between dG and D dj j:

Functional dispersion (FDis): Functional dispersion (FDis) is a multi-
dimensional index based on multi-trait dispersion (Laliberté and Legendre 2010).
FDis is the average distance of individual species to the centroid of all species in
the community trait space taken into account the relative abundances of species by
computing the weighted centroid. It is calculated from the ‘species 9 trait’ matrix
as

c ¼ c1; c2; . . .; cTf g
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where the vector c has the coordinates of the weighted centroid in the
T-dimensional space, and ct for t ¼ 1; . . .;T, is estimated for each dimension (trait)
as

ct ¼
XS

i¼1

wi xti

being wi the relative abundance of species ‘i’, and xti the value of the ‘t’ attribute
of species ‘i’. This formulation implies that xð:Þ represent a quantitative trait, but
the authors generalize the distance measure to include semi-quantitative and
qualitative traits through principal coordinate analysis (PCoA).

FDis, the weighted average distance �z from each species to the weighted
centroid c, is then computed as

FDis ¼
XS

i¼1

wi zi

where wi is the abundance of species ‘i’ and zi is the distance of species ‘i’ to the
weighted centroid c. This procedure essentially shift the position of the centroid
towards the more abundant species and weigh distances of individual species to
this weighted centroid by their relative abundances. It has been suggested that
communities with only one species should have FDis = 0, but there is no upper
limit for this index.

Functional specialization (FSpe): Functional specialization is defined using the
multidimensional trait space of the regional pool of species and quantifying how
apart the species are from the gravity center. To estimate the index for each plot
the distance is loaded by the relative contribution of each species.

The first step in index calculation is defining the gravity center of the S species
in the T-dimensional space of the traits G ¼ fg1; g2; . . .; gTg; being

gt ¼
1
S

XS

i¼1

xti

where xti is the coordinate (trait value) of species ‘i’ on the ‘t’ trait, T is the total
number of traits, and gt is the coordinate of the gravity center for trait ‘t’. Knowing
the coordinate of gravity center, we compute Euclidean distance of each species
from this point as

dGi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS

i¼1

xti � gtð Þ2
vuut :
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If the traits are standardized the gravity center has coordinates (0, …, 0). The FSpe
is computed at plot level (or local level) as the weighted sum of the dGi of species
present at the plot using its relative abundance (wi) to load

FSpe ¼
XS

i2plot

dGi � wið Þ:

3.5 Ability of Indices to Detect some Ecological Processes

The assembly process is one of the ecological mechanisms that model the way how
species coexist in a community. Even though the set of species that form a given
community depends on available species, it is also strongly affected by the main
assembly process that operates during early stages. The pattern generated combine
environmental stress and biological competition that operates on interactions
among species and between species and the environmental conditions. The com-
bination may affect morphological, physiological and functional properties that
characterize the species in the community. These properties can be grouped to
associate with an environmental ecological service or process. Several authors
have studied patterns of assembling species assuming that the traits are phylo-
genetically conserved (Kraft et al. 2007; Mouchet et al. 2010): limiting similarity
(MacArthur and Levins 1967) to produce a uniform dispersion of traits values
(Stubbs and Wilson 2004), habitat filtering (Zobel 1997) to produce cluster of
traits values (Perez-Neto 2004) and neutral assembly (Gotelli and Graves 1996) to
produce random scattering.

The functional diversity indices have different abilities to reflect these pro-
cesses, and their dependence on species richness varies. Ideally, functional
diversity indices have to be able to reflect other aspect of community than crude
richness in order to be useful to link trait expression to functional performance.
Changes in trait community weighted mean may be used to associate community
function to a given ecological services; for example, wood density (wd) is
associate to carbon sequestration: as wd-CWM increases the expected amount of
carbon sequestered in vegetal tissues increases. Shifts in CWM for key traits may
be combining with functional diversity indices to trace changes in community
succession, for example restoration after fire events (Ricotta and Moretti 2011).

Mouchet et al. (2010) examined the performance of several functional diversity
indices using increasing richness (from 10 to 100 species with intervals of 10) and
simulation data set using three assembly processes (limiting similarity, environ-
mental filtering and neutral or random). They compared five indices that do not
include abundance (FAD2, MFAD, FD, GFD and FRic) and three indices
including abundance (Rao, FDiv and FEve). Spearman correlation coefficient was
not significant between FEve and FAD2, among the others the correlations were
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highly significant. Using this set of indices the authors identified four groups of
indices related to the three orthogonal functional components.

The functional components (Villéger et al. 2008) have also been referred as
facets of functional diversity in the single-trait approach (Mason et al. 2005) and
have to be interpreted as properties emerging of the set of species in a given
community. The facets or components of functional diversity are not associated to
species, it is not the sum of species attributes. They are community characteristics
that depend on the interaction among species, and between species pool and the
environment. The main facets or components of functional diversity are: functional
richness, functional evenness and functional divergence.

The four groups were identified using the algorithm K-means based on principal
component axes calculated with indices values in the communities. Two of these
groups were identified with functional richness and include FAD2, MFAD, FD,
GFD and FRic. The functional divergence is associated with FDiv and also with
Rao, and functional evenness is associated with FEve.

The ability of indices to differentiate assembly processes showed that FRic,
FEve, FDiv and Rao are much more sensitive than FAD2, MFAD, FD and GFD.
Indices with values higher than expected by chance are associated to limiting
similarity and with values lower than expected by chance are associated to
environmental filtering. Whichever the index selected, relationship of functional
diversity to community assemblage processes has to be investigated comparing the
observed value with that expected by random. When no evidence is found to reject
the random process, both environmental filtering and the competition may be
operated sequentially or simultaneously. The best subset of indices includes FRic,
FEve and FDiv because each is able to reflect one component of functional
diversity. We have to mention that in this work FDis, the one proposed by
Laliberté and Legendre (2010) to complement the other three was not included;
neither the FSpe proposed by Villéger et al. (2010).
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