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Chapter 1
Introduction

Abstract Functional diversity is an increasing used concept to address changes in
biodiversity. It is an emerging concept which summarizes key properties of
ecosystems of special interest in global climate change studies and in the evalu-
ation of the effects of land management in the preservation of ecosystem services
for human wellbeing. In this chapter we introduce the main notions associated with
functional diversity approach, including definition of functional diversity,
ecosystem processes, and ecosystem services and linking these concepts to species
traits. We highlight the importance of functional diversity approach using some
examples to show the relationship between ecosystem services with species traits.

Keywords Ecosystem services � Functional traits � Functional diversity
assessment � Millennium ecosystem assessment � Functional ecology

1.1 Functional Diversity Approach to Quantify
the Biodiversity

Functional ecology establishes principles and tools to forge links between the
characteristics of communities, and ecosystem functions and services (Cornelissen
et al. 2003; Lavorel et al. 2007). For example, the energy and materials flow
through the biotic and abiotic components of an ecosystem is directly related to
productivity, while resistance and resilience are measures of the ability of a system
to respond before the disturbance or adapting to change (Díaz and Cabido 2001).

The functional approach allows simplify the floristic complexity and the effects of
vegetation to understand the responses, in terms of key ecological processes.
It also provides tools to identify and monitor global change effects and other con-
sequences of human activity, emphasizing ecosystem services (ES). This functional

L. Pla et al., Quantifying Functional Biodiversity, SpringerBriefs in Environmental
Science, DOI: 10.1007/978-94-007-2648-2_1, � The Author(s) 2012
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approach transcends the descriptive analysis. It can be done in a relatively easy,
inexpensive and standardized way, allowing the comparison among communities
and between community properties and environmental variables.

According to Grime (1998) three groups of species may be identify related to its
contribution to the community performance: dominants, subordinates and tran-
sients. Dominant species are the most important species as determinants of
ecosystem properties such as productivity, carbon sequestration, water relations,
nutrient cycling and storage, litter quality and resistance and resilience to per-
turbations. Ecosystem functions are likely to be closely predictable from the most
abundant species, those which contribute highly to the total plant biomass. This is
known as mass ratio hypothesis (Grime 1998). The contributions to ecosystem
functions are dictated by the laws of physics and chemistry. They state that the
greater the effects of large autotrophs within the ecosystem, there will be a greater
participation in processes like photosynthesis, resources inputs, nutrient cycling,
and hydrology cycle, among others. This implies that ecosystem properties should
be determined mainly by dominants species and some subordinates, and much less
by transients’ species.

Application of the mass ratio hypothesis is restricted to autotrophs in ecosystem
processes. In animals, when attention is turned to trophic elements, like parasites,
herbivores, and predators, impact on ecosystem functions is less related to abun-
dance (Grime 1998).

Functional diversity approach using plants is based on the most abundant
species, which implies the inclusion of all the species necessary to account for the
80% of the total biomass. When species’ biomass is not available, other measures
like cover, basal area or abundance may be used as surrogate for biomass (Díaz
et al. 2007a; Lavorel et al. 2008). The protocols applied for the functional char-
acterization comply with this recommendation discarding the less represented
species in the community.

Ecosystem services are the benefits that humans obtain from ecosystems for
support their survival and quality of life. The benefit may be directly associated to
survival like food production or to effects indirectly related to quality of life, like
energy provision (MEA 2005). ES are also used to link the ecological concept of
functional diversity with the social concept of social actor strategies (Díaz et al.
2011). Going deeper into the links among biodiversity, ES, and social actors it is
necessary to consider the contributions that biodiversity provides to an ES, the
social actors perception, their needs, access, and management capability of the ES
(Carpenter et al. 2009).

The ecosystem services depend on ecosystem properties which in turn are
determined by ecosystem functions and ecosystem processes. For example, soil
fertility (as service that ecosystem provide) depends on textural composition,
organic matter accumulation and nutrient cycling. Not all ES depend directly upon
ecosystem processes; some are associated to aesthetic or spiritual value of species
(Díaz et al. 2007a; de Bello et al. 2010). For example, the aesthetic value of
flowers from Rafflesia arnoldii, a parasitic species, with flowers up to more than
1 m, the largest in the world, growing in Sumatra (Beaman et al. 1988), or the

2 1 Introduction



presence of a relic species of dolphins, Lipotes vexillifer, in the Yangtze river in
China (Zhou et al. 1998), which is threatened by the dam harbor the largest
hydropower plant in the world (López-Pujol 2008).

The ecosystem functions are determined by the role of different species in
maintaining ecosystem processes. Changes in species composition and changes in
the relative abundance have a direct implication over ecosystem structure in terms
of community dynamics. Ecosystem properties related to ES would be referred as
a function or process. As emphasis of functional diversity is placed on the services
that an ecosystem can provide, we will use ecosystem properties to describe
collectively the ecosystem processes and functions.

1.2 Functional Diversity Assessment

Functional diversity is defined as the value, range, distribution and relative
abundance of the functional characteristics of organisms in a community (Chapin
et al. 2000; Loreau and Hector 2001; Hooper et al. 2005). In contrast to the
taxonomic biodiversity, based only on the relative abundance of species in the
community, functional diversity summarizes various aspects of the biological
composition and hence the role of populations in the community. Functional
diversity may be linked directly to the ecosystem services (Díaz et al. 2007c).

As functional diversity states for characteristics of individuals of species in the
community, a set of characteristics has to be evaluated. A trait is a well-defined,
measurable property of organisms, usually measured at the individual level and
used comparatively across species. A functional trait is one that strongly influences
organismal performance in the community (Lavorel and Garnier 2002; Cornelissen
et al. 2003; Violle et al. 2007). Trait values influence growth, reproduction and
survival of organisms, and affect relationship among organisms of different
species. These, in turn, drive the properties and services that ecosystem may
provide (Luck et al. 2009).

The best subset of traits are those that provided the most complete information
related to an ecosystem service under study and that, simultaneously, may be
easily measured with the least sample effort and at a low cost. For example, to
study photosynthesis capacity, measurement of area and weight of leafs may be
used to estimate specific leaf area, meanwhile, maximum high or diameter at
breast height registered at two or more times may be used to study growth rate.

There is empirical evidence that specific leaf area is positively correlated with
photosynthetic potential and hence growth rates, recruitment and mortality, and
negatively correlated with longevity and investment in defenses. For example,
Garnier et al. (2004) found that the 58% of variation (r2 = 0.58) of specific above-
ground net primary productivity (g kg-1 d-1) in 12 plots of vegetation in south
France may be estimated using specific leaf area (m2 kg-1). Also, leaf dry matter
content, and leaf tensile strength are negatively correlated with photosynthetic
potential and hence growth rates, recruitment and mortality, and are positively

1.2 Functional Diversity Assessment 3



correlated with longevity and investment protection and defenses (Almeida-Cortez
et al. 1999).

There is international consensus around the importance to follow a protocol to
measure traits and there are international efforts to have information on traits
values for as many species as possible. The project TRY (www.try-db.org) is an
effort to collate existing plant functional trait data set into a communal repository
(Kattge et al. 2011a). This initiative have now three million trait records for about
69000 plant species and about 50 scientific projects are using plant trait data via
TRY. There are some guidelines to make your own data base part of TRY (Kattge
et al. 2011b) and also to use data base from TRY. You may learn more about the
data sharing policy within TRY going to the web page.

1.3 Classification of Ecosystem Services

According to the Millennium Ecosystem Assessment (MEA 2003) ecosystem
services may be classify in four main groups. The classification differentiates
among provisioning services, regulating services, cultural services and supporting
services. Production of food, availability of fresh water, provision of fuel-wood,
fiber, biochemical and genetic resources are provisioning services. Regulating
services refer to the benefits obtained from regulation of ecosystem properties, like
climate regulation, disease regulation, water regulation, water purification, polli-
nation. Cultural services join those nonmaterial benefits obtained from
ecosystems. Spiritual and religious services, recreation and ecotourism, aesthetic,
inspirational, educational, sense of place and cultural heritage are examples of
cultural ecosystem services (MEA 2003).

Supporting services, those necessary for the production of all other ecosystem
services, like soil formation, nutrient cycling or primary production were con-
sidered as the fourth group in Millennium Ecosystem Assessment classification.
Some ecosystem services included in this group are nowadays considered as part
of the regulating services, or as ecosystem properties like primary production,
oxygen production and nutrient cycling (Carpenter et al. 2009; Díaz et al. 2011;
Polania et al. 2011).

1.4 Selection of Traits According to Ecosystem Service

To evaluate functional diversity at a community or assemblage, traits associated to
main ecosystem properties has to be identify. Several studies identify the traits that
have more prediction capability of ecosystem properties. For example, primary
productivity, carbon accumulation in vegetation, soil carbon accumulation and
decomposition rate are used to evaluate climatic regulation through carbon
sequestration. To evaluate these properties we use traits like growth form and
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growth rate, plant height, plant longevity, wood density, dry matter, lignin, leaf
nitrogen content, leaf longevity, toughness of leaves, specific leaf area (SLA) and
leaf mass per area (LMA), potential decomposition rate of leaves, and stems and
specific root length (Lavorel and Garnier 2002; Díaz et al. 2004, 2009; Wardle
et al. 2004; De Deyn et al. 2008).

Ecosystems may provide services to control water erosion. This service
depends on water retention in soil and sediment, litter and standing vegetation, and
balance between infiltration and runoff, properties that may be evaluate consid-
ering traits like growth form and growth rate of the plant, plant longevity, crown
architecture, clonality, longevity of leaves, dry matter, lignin and nitrogen content
in leaves, potential decomposition rate of leaves and stems, root architecture and
deep and underground stems (Brauman et al. 2007).

Production of forage for herbivores like livestock, wild species or symbolic
species is an ecosystem process associated with food provision. Traits associated
with food provision are growth form and growth rate of the plant, plant longevity,
plant high, regrowth, position of the buds of renewal, longevity of leaves, dry
matter, lignin and nitrogen content in leaves, phosphorus and active toxic com-
pounds in leaves, leaf toughness, specific leaf area (SLA) and leaf mass per area
(LMA), symbiosis with nitrogen fixer microorganisms or insects (Wright et al.
2002; Díaz et al. 2007b; Quétier et al. 2007).

1.5 Functional Diversity Quantification

There are several methods to quantify functional diversity, the preference for one
or another relays on type of available information and is related to the aims of
research. All methods are based on data of functional traits measured, at least, at
species level. The following chapters focus on methods to quantify functional
diversity, how to relate functional diversity with environmental variables and its
relation with ecosystem services. Numerical examples are analyzed using a free
specialized software: FDiversity (Casanoves et al. 2011), which can be down-
loaded from www.fdiversity.nucleodiversus.org.

One option to quantify functional diversity is to estimate the number of func-
tional groups in the community. This is a measure of functional richness.
A functional group is a subset of the species present at the assemblage that shared
similar trait profiles. Composition of functional group in a given community may
vary according to the service being investigated. Functional groups are identified
by cluster analysis of trait’s profiles. In Chap. 2 we present this methodology and
use one example to defined plant functional groups and other to define bird
functional groups (guilds).

Functional diversity may also be summarized using functional indices. These
indices are based on traits’ values evaluated at species level. They may also
incorporate weights by some measure of the species importance in the community.
Chapter 3 is entirely dedicated to functional indices definitions. We included
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taxonomy of the indices based upon the information they used and the output they
offer. For each index we will include its definition, the information needed to
estimate it, it’s statistical and ecological properties, and some reference to explore
its application to real cases.

The last chapter of the book, Chap. 4 is a tutorial to estimate the indices using
FDiversity (Di Rienzo et al. 2008). Three step by step examples are presented. For
each one we calculate the functional diversity indices and compare results from
several communities to determine statistical differences among them, or explore
the relationship with environmental variables. The data sets and key detailed
output of the analysis are available at Springer’s Extra Materials website:
http://extras.springer.com/.

References

Almeida-Cortez JS, Shipley B, Arnason JT (1999) Do plant species with high relative growth
rates have poorer chemical defences? Func Ecol 13(6):819–827

Beaman RS, Decker PJ, Beaman JH (1988) Pollination of Rafflesia (Rafflesiaceae). Am J Bot
75:1148–1162

Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem
services: an overview highlighting hydrologic services. Annu Rev Environ Resour 32:67–98

Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries R, Díaz S, Dietz T, Duriappah A,
Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A
(2009) Science for managing ecosystem services: beyond the millennium ecosystem
evaluation. Proc Natl Acad Sci USA 106:1305–1312

Casanoves F, Pla L, Di Rienzo JA, Díaz S (2011) FDiversity: a software package for the
integrated analysis of functional diversity. Methods Ecol Evol 2:233–237

Chapin FS III, Zavaleta ES, Eviner VT, Naylor R, Vitousek PR, Reynolds HL, Hooper DU,
Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Functional and societal
consequences of changing biotic diversity. Nature 405:234–242

Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB,
Ter Steege H, Morgan HD, Heijden MGA, van der Pausas JG, Poorter H (2003) A handbook
of protocols for standardised and easy measurement of plant functional traits worldwide. Aust
J Bot 51:335–380

De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP,
Cipriotti P, Feld CK, Hering D, Marins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J,
Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and
services via functional traits. Biodivers Conserv 19:2873–2893

De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon
sequestration in contrasting biomes. Ecol Lett 11:516–531

Di Rienzo JA, Casanoves F, Pla L (2008) FDiversity, Software to estimate functional diversity.
RDNDA, Argentina Register Number 702841

Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem
processes. Trends Ecol Evol 16(11):646–655

Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G,
Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G,
Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA,
Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M,
de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E,

6 1 Introduction

http://dx.doi.org/10.1007/978-94-007-2648-2_4
http://dx.doi.org/10.1007/978-94-007-2648-2_4
http://extras.springer.com/


Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P,
Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg
Sci 15:295–304

Díaz S, Lavorel S, De Bello F, Quétier F, Grigulis K, Robson M (2007a) Incorporating plant
functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA
104:20684–20689

Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skarpe C, Rush G,
Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007b) Plant trait
responses to grazing a global synthesis. Glob Change Biol 13:313–341

Díaz S, Lavorel S, Stuart Chapin F, Tecco PA, Gurvich DE, Grigulist K (2007c) Functional
diversity—at the crossroads between ecosystem functioning and environmental filters.
In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world.
Springer, New York

Díaz S, Hector A, Wardle DA (2009) Biodiversity in forest carbon sequestration initiatives: not
just a side benefit. Curr Opin Environ Sustain 1:55–60

Díaz S, Quétier F, Cáceres DM, Trainorc SF, Pérez-Harguindeguy N, Bret-Harted MS, Finegan B,
Peña-Claros M, Poorter L (2011) Linking functional diversity and social actor strategies in a
framework for interdisciplinary analysis of nature’s benefits to society. Proc Natl Acad Sci
USA 108:895–902

Garnier E, Cortez J, Bille0s G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A,
Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture
ecosystem properties during secondary succession. Ecology 85(9):2630–2637

Grime JP (1998) Benefits of plant diversity to ecosystems: immediate filter and founder effects.
J Ecol 86:902–910

Hooper DUF, Chapin S, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM,
Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005)
Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol
Monogr 75:3–35

Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P et al (2011a) TRY—a global database of plant
traits. Glob Change Biol 17:2905–2935

Kattge J, Ogle K, Bönisch G, Díaz S, Lavorel S, Madin J, Nadrowski K, Nöllert S, Sartor K,
Wirth C et al (2011b) A generic structure for plant trait databases. Meth Ecol Evol 2:202–213

Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem
functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

Lavorel S, Díaz S, Cornelissen JH, Garnier E, Harrison SP, McIntyre S, Pausas J, Pérez N,
Roumet C, Urcelay C (2007) Plant functional types: Are we getting any closer to the Holy
Grail? In: Canadell JG, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world.
Springer, New York

Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F,
Thébault A, Bonis A (2008) Assessing functional diversity in the field—methodology
matters!. Func Ecol 16:134–147

López-Pujol J (2008) Impactos sobre la biodiversidad del embalse de las Tres Gargantas en
China. Ecosistemas 17:134–145

Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity
experiments. Nature 412:72–76

Luck GW, Harrington R, Harrison PA, Kremen C, Berry PM, Bugter R, Dawson TP, de Bello F,
Díaz S, Feld CK, Haslett JR, Hering D, Kontogianni A, Lavorel S, Rounsevell M,
Samways MJ, Sandin L, Settele J, Sykes MT, van den Hove S, Vandewalle M, Martin Zobel M
(2009) Quantifying the contribution of organisms to the provision of ecosystem services.
Bioscience 59:223–235

MEA: Millennium Ecosystem Assessment (2003) Ecosystems and human well-being: a framework
for assessment. World Resources Institute, Island Press, Washington

MEA: Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: Biodiver-
sity Synthesis. World Resources Institute, Washington

References 7



Polania C, Pla L, Casanoves F (2011) Diversidad funcional y servicios ecosistémicos.
In: Casanoves F, Pla L, Di Rienzo JA (eds) Valoración y análisis de la diversidad funcional
y su relación con los servicios ecosistémicos. Serie Técnica 384, CATIE, Turrialba

Quétier F, Thebault A, Lavorel S (2007) Plant traits in a state and transition framework as
markers of ecosystem response to land-use change. Ecol Monogr 77:33–52

Violle C, Navas M, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept
of trait be functional. Oikos 116:882–892

Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in
contrasting long-term chronosequences. Science 305(5683):509–513

Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry
and nutrient-poor habitats has different consequences for leaf life span. J of Ecol 90:534–543

Zhou K, Sun J, Gao A, Würsig B (1998) Baiji (Lipotes vexillifer) in the lower Yangtze River:
movements, numbers threats and conservation needs. Aquat Mammals 24(2):123–132

8 1 Introduction



Chapter 2
Functional Groups

Abstract The set of species co-existing in a given community constitute a functional
group if they have similar functional characteristics related to one ecosystem service.
This dependence on ecosystem service is defined by theoretical framework or by
empirical evidence. Functional groups in vegetation science are known as plant
functional types and in animal science as guilds. Functional groups may be defined
externally using categories for key traits or generated from several traits using cluster
techniques. In this chapter we show how to identify functional groups, selecting the
appropriate measures to evaluate species similarity based on trait profiles, and
choosing linkage algorithms to conform the functional groups. Changes in the relative
abundance of each group in a sample may be used to interpret the relationship of
community composition with environmental conditions.

Keywords Cluster analysis � Number of functional groups � Distance measures �
Similarity measures � Trait types

2.1 Selecting Trait and its Relation
With Ecosystem Services

Because a functional group is a collection of organisms with similar suites of
co-occurring functional attributes they have similar responses to external factors
and/or effects on ecosystem processes (de Bello et al. 2010). A functional group is
often referred as plant functional type (PFT) in vegetation sciences or as a ‘guild’
when referring to animals. Ecosystem properties or processes determine the ser-
vices an ecosystem provides. These properties are associated to functional attri-
butes of individuals (or population): the traits. Thus, the PFTs or the guilds are
defined based on sets of species traits useful to explain ecosystem properties.

Several species of organisms within a trophy chain or trophy network with similar
feeding types have the same function and are considered as a guild. Several plant

L. Pla et al., Quantifying Functional Biodiversity, SpringerBriefs in Environmental
Science, DOI: 10.1007/978-94-007-2648-2_2, � The Author(s) 2012
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species within an assemblage with similar photosynthetic strategy and foliar nutrient
content (N and P) are considered as a PFT, possible related to wood density, which in
turn affect the carbon sequestration service. Both, guild and PFT are associated to
ecosystem services which make more suitable the human existence.

The idea of creating functional groups is to obtain a set of species having the
same role in the ecosystem. These clusters of species are performed using a set of
traits directly related to the ecosystem service. Several authors have summarized
the relationship between traits and ecosystem services (MEA 2005; Carpenter
et al. 2009; Lavorel et al. 2011; Polania et al. 2011).

The selected traits may include quantitative (continuous and discrete) and/or
qualitative (nominal and ordinal) variables and the clusters are obtained by mean
of a hierarchical algorithm. Hierarchical techniques are based on a dissimilarity
matrix between species and a join procedure known as linkage strategy. The
resulting hierarchy may be represented by a dendrogram, which allows grouping
the species taking into account the level of the hierarchy and the aim of the study.

2.2 A Guide for Data Arrangement

The usual way to store data for further statistical processing is to arrange them in
an S 9 t data table, where S represents the number of cases (in this context
species) and t the number of traits. The traits may be continuous variables like leaf
area, discrete quantitative variables like number of leaflets by leaf, or qualitative
variables. If traits are qualitative, we should recognize if they are present-absent
variables like evergreen or not, if they have more than two categories, or if they are
ordinals. Additionally we should recognize if the categories are exclusive or not.

To calculate a dissimilarity matrix from a set of mixed type of traits it is
convenient to express all of them in such a way that can be treated as quantitative.
So the problem is how to re-express categorical variables. If a trait is categorical,
having k exclusive categories, we may represent it as a set of k - 1 dummy
variables (Box 2.1). To include the trait Reproductive system we have to use the
two variables: Rep_Monoic and Rep_Dioic, which include all the information in
the pairs (1,0) for Monoic, (0,1) for Dioic, and (0,0) for Hermaphrodite.

Box 2.1: Example of dummy transformation for an exclusive categorical trait

Species Reproductive system Rep_Monoic Rep_Dioic

sp1 Monoic 1 0
sp2 Dioic 0 1
sp3 Dioic 0 1
sp4 Hermaphrodite 0 0
sp5 Hermaphrodite 0 0
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When categories are not exclusive, like dispersal type (hydrochory, autochory,
dispersed by mammals, etc.) we may represent the trait as a set of indicator
variables (equals 1 if the category is present or 0 in contrary case), one for each
observed category (Box 2.2). In future analysis we include the resulted four
variables, in this example Hydrochory, Autochory, Zoochory and Wind.

Box 2.2: Example of indicator variables to identify nonexclusive categorical
traits

Species Dispersion Hydrochory Autochory Zoochory Wind

sp1 Hydrochory,
Autochory,
Zoochory

1 1 1 0

sp2 Hydrochory,
Autochory

1 1 0 0

sp3 Autochory,
Zoochory

0 1 1 0

sp4 Zoochory,
Wind

0 0 1 1

sp5 Autochory,
Wind

0 1 0 1

Ordinal variables can be numerically codified by a sequence of integers which
relate to the rank of the categories they represent. For example canopy strata in a
forest with four layers may be codifying as: 1, 2, 3, 4; this codification is equiv-
alent to apply rank transformation to a quantitative variable. However, if the
assumption that categories are representing equally spaced points of a scale do not
hold, the numerical coding using a sequence of integers could be discarding
important biological information about the trait expression. In that case it should
be preferable to represent those traits through indicator variables as in the case of
non-exclusive categorical variable, coding the category observed and all ones
below it in the ordinal scale as present (Box 2.3). See for example, that a species of
the highest strata has a one in all the categories; while sp3 from lowest strata has a
one only in the lowest or sp2 belonging to the medium strata has ones in lowest
and in medium variables. The three variables Lowest, Medium and Highest should
be used to represent the ordinal variable in further analysis.
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Box 2.3: Example of indicator variables to identify non equidistance ordinal
categorical traits

Species Strata Lowest Medium Highest

sp1 Highest 1 1 1
sp2 Medium 1 1 0
sp3 Lowest 1 0 0
sp4 Highest 1 1 1
sp5 Lowest 1 0 0

In some cases it is possible to recover the original quantitative scale. Resear-
ches should avoid the use of categorical variable when a quantitative trait is
possible to measure, even when the precision of the measure is not quite well. For
example the layers in the forest canopy can be defined as: lower layer from 0 to
10 m, middle layer from 10 to 30 m, high layer from 30 to 40 m, and emergent
layer from 40 to 60 m. In this case coding as 1, 2, 3 and 4 indicates the relative
order of altitude of layers, but this coding is based on the assumption of equi-
distance between layers. It should be better to take the mean point of each layer to
represent the strata and represent the layer by 5, 20, 35 and 50 m. If the higher
strata were defined as ‘more than 40 m’, there is not a mean value to represent the
layer unless an estimation of highest species is available.

After having all variables in an appropriate numerical scale, the data-table will
be S 9 k where k will be equal or greater than t because of coding. Moreover the
data table will only contain numerical representations of the traits in such a way
that a common procedure can be applied to the whole table in order to obtain a
dissimilarity matrix between species.

2.3 Statistical Procedures to Define Functional Groups

2.3.1 The Selection of a Dissimilarity Measure

The selection of dissimilarity measures depends on the type of variables in the data
set. If all the traits have been measured in continuous or discrete scale, Euclidean
distance will be appropriated to represent differences between pair of species. In case
of dichotomous variables (0–1 variables) there are several similarity measures that
can be used to derive a dissimilarity matrix. The most widely used are Jaccard
(1908); Simple matching (Sokal and Michener 1958) and Dice (1945) (Box 2.4).

Cluster algorithms are usually based on dissimilarity measures, so when like-
ness between species is obtained from similarity measures, they must be trans-
formed into dissimilarities. There is more than one way to convert similarities into
dissimilarities, but when similarity ranges in the interval [0,1], the simplest one is
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to calculate dij (the dissimilarity between species i and j) as dij = 1-sij, were sij is
the corresponding measure of similarity. Some specialized software like InfoStat
automatically select the best (or most widely used) transformation for a given
similarity measure.

When the data set has quantitative and qualitative variables the Gower
similarity is one of the options (Gower 1971). This measure combines Euclidean
distance with Jaccard similarity in a new similarity measure which can be
converted into a dissimilarity using an appropriate transformation.

Box 2.4: Similarity measures for categorical variables

Another alternative to handle data sets with continuous and qualitative variables
is to perform multidimensional scaling methods to summarize the qualitative
variables in a set of new continuous variables (principal coordinates). In this case,
it is possible to apply Euclidean distances to the set of continuous variables plus
principal coordinates. One of the advantages using principal coordinates to sum-
marize categorical traits is the possibility to use a multivariate analysis of variance
or a cluster based mean comparison method (gDGC, Valdano and Di Rienzo 2007)
to determine significance among resulted groups.

2.3.2 Standardization

Generally the traits values are expressed in their original scale of measurement,
as for example: biomass (kg), leaf area (cm2), wood density (mg cm-3), maximum
height (m), leaf carbon content (%), number of leaflets by leaf. When dissimilarity
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measure is involve into the analysis, the scale and unit of measure will affect the
results. Those variables having the largest scale will have the greatest impact on
dissimilarity calculation. Standardization is the usual way to avoid the scale effect.
Statistical software offers options to standardize data before performing analysis
which are affected by the scale, like cluster analysis. Standardization can be also
useful even when all the traits are expressed in the same units, because some traits
can have more variance than others.

When the data set has mixture of quantitative and qualitative variables, pre-
viously transformed to zero–one variables, other options to avoid scale effects can
be considered. For example, transform the variables to map the values into the
zero–one interval [0, 1]. Thus, the minimum value in the original scale will be zero
and the maximum will be one in the transformed scale.

2.3.3 Choosing the Linkage Algorithm Method

Widely used linkage clustering methods for cluster analysis are average linkage,
single linkage, complete linkage and Ward, among others. Which of these methods
is the best has not an easy answer. Although it depends on the purpose of clustering,
the experience shows that the average linkage and Ward are the preferred methods.
Average linkage is a linkage algorithm that maximized the cophenetic correlation.
This means that the resulting hierarchy preserves in the best way possible the
original dissimilarity structure. On the other hand, Ward method produces more
clearly defined clusters which facilitate the definition of functional groups.

2.3.4 Assessing the Number of Functional Groups

Despite the existence of several proposals, Calinski and Harabasz (1974), Hartigan
(1975), Sarle (1983), Kaufman and Rousseeuw (1990), Tibshirani et al. (2001),
Pollard and van der Laan (2005), Fraley and Raftery (2002, 2006), Valdano and Di
Rienzo (2007) and Pollard et al. (2009), to assessing the number of clusters in a data
set, there are not statistical procedures or generally accepted rules to determine that
number. Some times the number of clusters depends on the aim of the study, and it
is determined by a heuristic criteria. For example if the main ecosystem property
under study depends on acquisitive or conservative strategy of plants, two groups
will be enough for the purpose of defining the corresponding PFTs. On the other
hand, if the purpose of the research was to evaluate the effect of altitude on the
composition of functional groups, a larger number of groups will be necessary.

As previously stated, each species in the data-set is represented by a single row-
vector of traits values. Thus, no replicates are available at species level. This limit
the use of assessing-number-of-clusters algorithms to those which do not need
replicates. Within this class of algorithms, an approach to assessing the number of
clusters in a data set is the comparison of the resulting clusters. This idea was
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explored by Calinski and Harabasz (1974), who defined the number of clusters on
the maximization of the between/within-cluster, of a generalized sum of squares
ratio. Also Hartigan (1975), used the ratio between the within-cluster generalized
sums of squares of k and (k ? 1) clusters suggesting the selection of k C 1 as the
minimum k for which the ratio is lesser than 10. A model-based approach to the
determination of the number of cluster is found in the MCLUS algorithm by Fraley
and Raftery (2002, 2006). Unpublished simulation results (Di Rienzo, personal
communication) shown that MCLUS is the best choice when no replicate are
available. It must be warning that the same simulation study also shown that all
algorithms tend to underestimate the true number of clusters in the data. Previous
discussed procedures for assessing the number of clusters assume that traits are
continuous variables, and in case of MCLUS, that they follow a normal-multi-
variate distribution. When variables are categorical or a mixture of continuous and
categorical, the previous methods could not be appropriate.

The analysis of molecular variance (AMOVA) was introduced by Excoffier
et al. (1992).The method implements a multivariable analysis of variance like
analysis for haplotypes data which are usually coded as 0–1 variables. Hypothesis
testing is based on the permutation test principles. Because the method operates on
a distances matrix, it is ease to extend its application to more general cases
provided a distance matrix can be derived from the original data. Another
approach, based on similar ideas is the analysis of similarities (ANOSIM). This
method provides a way to test statistically whether there is a significant difference
between two or more groups of sampling units (Clarke 1993).

2.4 Functional Characterization of Coastal Sandy Plain
Vegetation in Southeast Brazil

Coastal sandy plain vegetation (Restinga) grows on sandy plains along the Brazilian
coast. Because its proximity to the sea and flat to undulate plains, it is a preferential
zone to human occupation and it is being degraded rapidly in the last two decades.
To illustrate the functional group definition, we use a data set collected in 2010 by
Dra. Leda Lorenzo in Ilha do Cardoso State Park, SP, Southeast Brazil. Foliar traits
were selected because they are related to plant strategies of acquisition and use of
resources. These traits are associated to services such as provision of fruits and
medicinal plants, soil formation and fertility (that may leads to a more complex
ecosystem in some centuries or decades), land fixation and control of sea erosion,
carbon sequestration, and indirectly climate regulation (Díaz et al. 2007).

2.4.1 The Data Set

The five selected traits were leaf dry matter content (LDMC), leaf area (LA), leaf
tensile strength (LTS), specific leaf area (SLA), and leaf nitrogen content (LNC).
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In this survey, these leaf traits were evaluated according to Cornelissen et al.
(2003) in two leaves of ten individuals by species.

One aim of the study is to defined plant functional groups, and then compares
the abundance of each PFT in a gradient from the ocean coast. In Sect. 2.4.2 we
present the analysis to cluster the 22 species founded in the study area, the pro-
cedures to select final number of clusters, and the characterization of PFTs.

2.4.2 Plant Functional Types from a Restinga Vegetation

All foliar trait measures were in a continuous scale and then the Euclidean distance
is appropriate to evaluate the differences between species. We chose Ward as
linkage criterion because the resulted dendrogram has compact groups and take
into account the possible correlation among traits. We used InfoStat (Di Rienzo
et al. 2010) to perform the analysis but similar results may be obtained with other
statistical software.

From the dendrogram obtained (Fig. 2.1) it is clear that there are two main
groups, one with six species and the other with 16 species. If we explore the mean
trait values for each one (Table 2.1) we may recognize two plant strategies: group
one with species allowing rapid acquisition of resource that have higher values of
SLA, LA and LNC, and lower values of LTS and LDMC; and group two with
species that conserve resources within well-protected tissues.

It could be interesting to interpret changes from sea coastal having more than
two groups. Further inspection of the dendrogram of Fig. 2.1 allows differentiation
among the 16 species of second group (see vertical line showing distance at which
the dendrogram is splitting in Fig. 2.1). The resulting five clusters are character-
ized based on mean trait values (Table 2.2), and are referred as Plant Functional
Type (PFT).

Plant functional types are named according to the species attributes. One group
has three legume species with acquisitive attributes (Acq-Leg), other group has
three non-legumes species with acquisitive attributes (Acq-non Leg). There are
two groups of species with conservative attributes, one with six species in the
transition to forest (Con-Forest) and the other with nine species in the transition to
dunes (Con-Dune). The fifth PFT has only one species, Clusia criuva with high
leaf tensile strength and latex contain, having maximum investment of resources in
defense. Relationship among PFT and trait mean values are shown in a biplot
(Fig. 2.2) resulted from a principal component analysis.

The biplot allows to relate traits mean values and species groups. The first two
principal components explained 73.4% of the total variability; therefore the biplot
presents a good synthesis for the relation among traits, groups and the interrela-
tionships between PFT and traits.

The first principal component shows the maximum differentiation, in this case
acquisitive strategies in the right, with high values of LA, SLA and LNC, and
conservatives in the left, with low values for these traits. Between the both PFT
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Fig. 2.1 Plant functional types in a Restinga vegetation survey. Five groups of species were
defined using Euclidean distance and Ward linkage. Acq-Leg acquisitive legumes’, Acq-nonLeg
acquisitive non legumes’, Con-Dune conservative of dune transition, Con-Forest conservative of
forest transition, and Defense invested in defense

Table 2.1 Trait mean values when the species are splitting in two groups using Euclidean
distance and Ward linkage algorithm

Trait Cluster S Mean SD Min Max

LTS (N.mm) 1 6 0.63 0.21 0.36 0.95
2 16 1.07 0.47 0.67 2.62

LDMC (% dry weight) 1 6 36.05 9.50 26.25 47.20
2 16 43.21 6.25 27.30 52.49

SLA (mm2/mg) 1 6 9.28 1.09 7.70 10.63
2 16 5.82 1.13 3.90 7.63

LA (cm2) 1 6 67.76 63.24 9.02 153.24
2 16 33.08 23.66 6.88 75.88

LNC (mg/g) 1 6 22.72 3.84 18.08 26.81
2 16 12.35 3.35 8.49 19.83

S number of species in each group, SD standard deviation, Min minimum, Max maximum, LTS
leaf tensile strength, LDMC leaf dry matter content, SLA specific leaf area, LA leaf area, LNC leaf
nitrogen content
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with acquisitive strategy, the legumes are more acquisitive than the non legumes.
The acquisition of resources is relatively cheaper for legumes since they have
symbiosis with nitrogen fixers.

For the PFTs with conservative strategy, the second principal component allows
to separate between Con-Forest and Con-Dune through LDMC values, which are
higher on the Con-Forest group. The Defense PFT is defined by extremely high
values of LTS, associated to investments in defense against mechanical damage.

2.5 Functional Groups for Bird Species in Nicaragua

In this example we used a database with bird traits to define and characterize
functional groups in tropical landscapes in Nicaragua to assess patterns of func-
tional diversity in different land uses. We will define and characterize the

Table 2.2 Mean traits values for plant functional types (PFT) in a Restinga vegetation survey

PFT S LTS LDMC SLA LA LNC

Acq-Leg 3 0.60 41.55 9.81 123.22 24.41
Acq-nonLeg 3 0.66 30.54 8.75 12.30 21.03
Con-Dune 6 0.89 49.02 6.45 20.79 14.84
Con-Forest 9 1.02 41.11 5.49 38.56 11.05
Defense 1 2.62 27.30 5.04 57.53 9.24

S number of species in each PFT, LTS leaf tensile strength, LDMC leaf dry matter content, SLA
specific leaf area, LA leaf area, LNC leaf nitrogen content, Acq-Leg acquisitive legumes’,
Acq-nonLeg acquisitive non legumes’, Con-Dune conservative of dune transition, Con-Forest
conservative of forest transition, Defense invested in defense

Fig. 2.2 First and second
principal component using
five traits and five plant
functional types in a Restinga
vegetation survey. Acq-Leg
acquisitive legumes’,
Acq-nonLeg acquisitive non
legumes’, Con-Dune
conservative of dune
transition, Con-Forest
conservative of forest
transition, Defense invested
in defense. LTS leaf tensile
strength, LDMC leaf dry
matter content, SLA specific
leaf area, LA leaf area, and
LNC leaf nitrogen content
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functional groups, and after that we will study the relative frequency of each group
in six landscapes with different human intervention.

The concept of functional diversity links bird species diversity to ecosystem
processes through resource-use patterns (Petchey and Gaston 2002; Tscharntke
et al. 2007). In this case we are looking for patterns with respect to body mass,
beak measures, diet, habitat and status (resident or migratory).

2.5.1 The Data Set

Six land-uses were identifying, from forest to pastureland: secondary forest,
riparian forest, forest fallows, live fences, pastureland with high tree cover, and
pastureland with low tree cover. Data in riparian forest and life fence were col-
lected in four counting points every 100 m along linear transect, while data in
other land uses were collected in 1 ha plots following the methodology by Vilchez
et al. (2007). The data were collected for the project FRAGMENT (Developing
methods and models for assessing the impacts of tree on farm productivity and
regional biodiversity in Fragmented Landscapes).

The database used for this example comprises 56 species. Individuals of each
species were inspected to record beak features (nares, width, and depth), wing-
spread and body weights. After identification, diet source were classified as pri-
mary, secondary, tertiary and fourth preference. Each species was classified as
migratory or resident and the habitat in the study area were recorded using three
categories: generalist, open areas, and covered areas (forests). These traits are
associated to the provision of regulatory ecosystem services due to bird partici-
pation in biodiversity conservation and ecosystem services in fragmented
landscapes.

Foraging guild classifications of each species is also part of the important
information needed to interpret the role of functional groups. This variable was not
used in the cluster procedure, which is based on individual bird characteristics like
beak features that are associated with guilds.

To perform functional groups we used InfoStat software (website: http://
www.infostat.com.ar, Di Rienzo et al. 2010). File ‘Traits by bird sp Nicara-
gua.IDB2’ (available for download via Springer’s Extra Materials website: http://
extras.springer.com/) has trait information for 56 species recorded, including status
and feeding guild. The status variable is nominal with two exclusive categories,
and habitat variable is also nominal with three exclusive categories. We transform
them to dummy variables (see Sect. 2.2 and Box 2.2). For status we need one
column (status_R), and for habitat we need two columns (habitat_G and
habitat_OA). File ‘Res traits by bird sp Nicaragua.IDB2’ has extra columns with
these new variables (available for download via Springer’s Extra Materials web-
site: http://extras.springer.com/).

File ‘Bird sp by use Nicaragua.IDB2’ (available for download via Springer’s
Extra Materials website: http://extras.springer.com/) has the abundance (number of
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individuals) of each species in the six land uses. Double click the label of the
column ‘Land_use’ to see the codification used for land-use.

2.5.2 Bird Functional Types from Nicaragua

In this example we have three types of numerical variables, those derived from the
dummy transformation, those indicating the ordinal value of feeding preference
and those measures in a continuous scale. To perform cluster analysis we used the
same procedure as in previous example. We select Gower as a measure of simi-
larity because we have continuous and dummy variables. The software selects
automatically the appropriate transformation to distance measure and evaluate the
distance matrix between species. We also select Ward as the linkage algorithm and
ask for two clusters.

The resulted dendrogram has a clear difference between two main branches, but
heterogeneity among species within the groups is still high. We run again asking
for five groups and obtained the dendrogram shown the five groups left to the
vertical line in Fig. 2.3. File ‘Res traits by bird sp Nicaragua.IDB2’ (available for
download via Springer’s Extra Materials website: http://extras.springer.com/) has
the identification to which cluster each species belong.

2.5.3 Characterization of Bird Functional
Types of Nicaragua

Traits nares, wingspread and weight are important to differentiate functional types,
also the migratory species are cluster together and with the resource-use patterns
we complete the characterization of groups. Mean values for continuous variables
(Table 2.3), proportion of nominal categories and mean importance values for
feeding categories (Table 2.4) allows the full characterization of the bird func-
tional groups.

The functional groups are:

• Nectarivorous: Mainly nectar-feeding birds of the family Trochilidae (all
species of hummingbirds) with beak and body size very small with the largest
less nares.

• Migratory generalist (Migr-Gen): Birds of small and medium size, consisting
mainly of migratory species with the larger ratio wing/weight but Nectarivorous.
They prefer habitat generalist, these species that can live in forest edges,
secondary growths but not in open areas. They feeding mainly on insects.
All migratory species are in this group.

• Insectivorous specialists (Ins-Spec): Birds with small to medium sizes,
composed of birds only of covered habitat. Most of these species feed on insects
in the understory.
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• Granivorous and omnivorous (GranOmn): Bird species with the highest weight,
wing and beak measures, except the nares; they are resident species with
omnivorous feeding habits. This functional group has bird species foraging in
open areas like pastures and crops, or species foraging in cover areas like forest.

• Granivorous and carnivorous generalists (GranCar-Gen): The birds of this group
are generalist species of medium to large size, they can live in forest edges,
secondary growths and advanced youth and scattered trees. The species of this
group may be carnivores (fish), granivorous and insectivorous.

Fig. 2.3 Bird functional types in Nicaragua. Five groups of species were defined using Gower
similarity coefficient transform to distance as square root of one minus Gower and Ward linkage
algorithm. Ins-Spec insectivorous specialists, GranCar-Gen granivorous and carnivorous
generalists, GranOmn granivorous and omnivorous, Migr-Gen migratory generalists, and
Nectarivorous
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2.5.4 Relationship of Functional Types with Land Uses

We performed a correspondence analysis to explore relationships between five
functional types of birds with six land uses categories (Fig. 2.4). This analysis
allows showing bivariate observations in a plane and identify the heaviest
associations between patterns of two qualitative variables, in our case the func-
tional types with the land uses. Correspondence analysis evaluates which are the
combinations of modalities that have more inertia, which contributes most to reject
the hypothesis of independence between the two variables. Points on the graph
having a similar profile for land use are very close; those having similar functional
type profiles are also very close. The distances from the origin indicate the dis-
crepancy between the functional types from the average profile. The same applies
to land uses categories. The distances between functional types and land use
category’s has no direct interpretation, but points in the graph fall in the same
direction (relative to the origin) are positively correlated, while those that fall in
opposite directions are negatively correlated. To perform this analysis we have to
concatenate information from two data tables. The concatenated file ‘Concat bird
sp by use Nicaragua.IDB2’ (available for download via Springer’s Extra Materials
website: http://extras.springer.com/) has the information of the species present in

Table 2.3 Mean trait values of the five bird functional types in Nicaragua

Functional type Richness Wing Weight Nares Width Depth

Ins-Spec 9 64.72 20.97 12.35 5.53 4.97
GranCar-Gen 17 87.89 42.09 14.53 6.42 6.81
GranOmn 19 89.07 50.11 14.29 10.35 8.18
Migr-Gen 7 76.85 20.76 9.37 5.12 4.21
Nectarivorous 4 52.38 4.06 17.41 3.06 2.04

Ins-Spec insectivorous specialists, GranCar-Gen granivorous and carnivorous generalists,
GranOmn granivorous and omnivorous, Migr-Gen migratory generalists, and Nectarivorous.
Weights in grams, and beak measures and wing in millimeters

Table 2.4 Mean feeding preference for bird functional types in Nicaragua

FTypes Fish Invertebrates Seeds Small_fruits Amphibians Reptiles Nectar

Ins-Spec 0.00 4.00 0.00 0.00 0.00 0.00 0.00
GranCar-Gen 0.24 3.29 0.65 2.12 0.00 0.12 0.12
GranOmn 0.00 3.26 1.42 1.89 0.42 0.53 0.00
Migr-Gen 0.00 3.14 1.00 2.29 0.00 0.00 0.00
Nectarivorous 0.00 0.00 0.00 0.00 0.00 0.00 4.00

Ins-Spec insectivorous specialists, GranCar-Gen granivorous and carnivorous generalists,
GranOmn granivorous and omnivorous, Migr-Gen migratory generalists, and Nectarivorous.
Scale of mean feeding preference follows variable codification: the highest value is four, when all
the species of the functional type have the food category as first preference; lowest value is zero
when no species eat that food in the functional type
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each land use and the functional group to which the species belong. We used
abundance (number of individuals) to weight the presence of each species in the
land use categories.

The first two axes explain 97.15% (85.5% for axis one and 11.65% for axis
two). There is a strong association of group GranOmn with pastures having high
and low density of trees, and with live fences. Nectarivorous group has a strong
association with secondary growths vegetation like forest fallows because this
habitat provides pioneer plant species, increasing the availability of flowers for
bird species of this group. Species of the functional type frugivorous and insec-
tivorous specialists (Ins-Spec) are associated with secondary forests and riparian
forests as expected because these bird species need to forage at understory. The
GranCar-Gen type is mainly associated with riparian forests and species of
Migr-Gen functional type prefer forest than pasture lands.

References

Calinski RB, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27
Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries R, Díaz S, Dietz T, Duriappah A,

Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A
(2009) Science for managing ecosystem services: beyond the millennium ecosystem
evaluation. Natl Acad Sci USA 106:1305–1312

Fig. 2.4 First two axes from correspondence analysis between functional types of birds and land
uses conditions in Nicaragua. The first axis explains the 85.50% of total variability and the second
axis explains 11.65% of total variability. Five functional types: Ins-Spec insectivorous specialists,
GranCar-Gen granivorous and carnivorous generalists, GranOmn granivorous and omnivorous,
Migr-Gen migratory generalists, and Nectarivorous. Six land use conditions: RF riparian forest,
SF secondary forest, FF forest fallows, LF live fences, PH pastureland with high tree cover, PL
pastureland with low tree cover

References 23



Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust
J Ecol 18:117–143

Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB,
Ter Steege H, Morgan HD, Heijden MGA, van der Pausas JG, Poorter H (2003) A handbook
of protocols for standardised and easy measurement of plant functional traits worldwide. Aust
J Bot 51:335–380

De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP,
Cipriotti P, Feld CK, Hering D, Marins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J,
Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and
services via functional traits. Biodivers Conserv 19:2873–2893

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2010) InfoStat
versión 2009. Grupo InfoStat, FCA, Universidad Nacional de Córdoba

Díaz S, Lavorel S, Stuart Chapin F, Tecco PA, Gurvich DE, Grigulist K (2007) Functional
diversity—at the crossroads between ecosystem functioning and environmental filters. In:
Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world.
Springer, New York

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology
26:297–302

Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric
distances among DNA haplotypes: application to human mitochondrial DNA restriction data.
Genetics 131(2):479–491

Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density
estimation. J Am Stat Assoc 97:611–631

Fraley C, Raftery AE (2006) MCLUST Version 3 for R: normal mixture modelling and model-
based clustering, technical report no. 504. Department of Statistics, University of Washington,
Seattle, WA, USA

Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics
27:857–874

Hartigan J (1975) Clustering algorithms. Wiley, New York
Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat

44:223–270
Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis.

Wiley, New York
Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011)

Using plant functional traits to understand the landscape distribution of multiple ecosystem
services. J Ecol 99:135–147

MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being:
biodiversity synthesis. World Resources Institute, Washington

Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community
composition. Ecol Lett 5:402–411

Polania C, Pla L, Casanoves F (2011) Diversidad funcional y servicios ecosistémicos. In:
Casanoves F, Pla L, Di Rienzo JA (eds) Valoración y análisis de la diversidad funcional y su
relación con los servicios ecosistémicos. Serie Técnica 384, CATIE, Turrialba

Pollard KS, van der Laan MJ (2005) Cluster analysis of genomic data. In: Gentleman R, Carey V,
Huber W, Irizarry R, Dudoit S (eds) Bioinformatics and computational biology solutions
using R and bioconductor. Springer, New York

Pollard KS, van der Laan MJ, Wall G (2009) Hopach: hierarchical ordered partitioning and
collapsing hybrid (HOPACH). R-package version 2.4.0. http://CRAN.R-project.org/package=
hopach

Sarle WS (1983) The cubic clustering criterion. SAS technical report A-108. SAS Institute, Cary
Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ

Kansas Sci Bull 38:1409–1438
Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a dataset via the

gap statistic. J R Stat Soc B Methodol 63(2):411–423

24 2 Functional Groups

http://CRAN.R-project.org/package=hopach
http://CRAN.R-project.org/package=hopach


Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2007)
Landscape constraints on functional diversity of birds and insects in tropical agroecosystems.
Ecology 89:944–951

Valdano SG, Di Rienzo JA (2007) Discovering meaningful groups in hierarchical cluster analysis.
An extension to the multivariate case of a multiple comparison method based on cluster analysis.
Available via InterStat Journal. http://interstat.statjournals.net subordinate document http://
interstat.statjournals.net/YEAR/2007/articles/0704002.pdf. Accessed 13 May 2011

Vilchez S, Harvey C, Sánchez D, Medina A, Hernández B, Taylor R (2007) Diversidad y
composición de aves en un agropaisaje de Nicaragua. In: Harvey C, Sáenz JC (eds)
Evaluación y conservación de la biodiversidad en paisajes fragmentados de mesoamérica.
INBio, Heredia

References 25

http://interstat.statjournals.net
http://interstat.statjournals.net/YEAR/2007/articles/0704002.pdf
http://interstat.statjournals.net/YEAR/2007/articles/0704002.pdf


Chapter 3
Functional Diversity Indices

Abstract Functional diversity may be summarized using indices based on trait
values and species importance in the community, like abundance, cover and
biomass. This chapter includes taxonomy of the indices based upon the informa-
tion they used and the output they offer. For each index we have included its
definition, the information needed to estimate it, their statistical and ecological
properties, and some reference to explore its application to real cases. To facilitate
the comprehension of all indices and diversity measures we used homogeneous
notation.

Keywords Single-trait indices � Weighted diversity indices � Multiple-trait
indices � Taxonomic biodiversity indices � FDiversity software

3.1 About Functional Diversity Indices and Measures

In this chapter, several indices and their definitions will be introduced. To avoid
redundancy, Box 3.1 shows the notation used in this and other chapters. When
deviations from this notation occur, it will be made clear in the text. The code
name for the indices, as well as the author’s reference will be mentioned in each
definition. Even though we are focused on functional diversity and functional
diversity indices, Sect. 3.2 has a brief presentation and one example of species
diversity indices. We include the most commonly used indices and those that are
often compared with functional diversity indices.

L. Pla et al., Quantifying Functional Biodiversity, SpringerBriefs in Environmental
Science, DOI: 10.1007/978-94-007-2648-2_3, � The Author(s) 2012

27



Box 3.1: Notation

Variable Meaning

ij Used as subscripts to identify species; i, j = 1, …, S
t Used as subscript to identify traits; t = 1, …, T
S Number of species
T Number of traits
ai Absolute abundance of the ith species (with units; i.e. m2 for cover)
wi

Relative abundance of the ith species; wi ¼ ai

�PS
i¼1

ai

xti tth trait value of ith species; for single-trait indices the subscript t is not necessary

There are single-trait metrics and indices that include some measurement of
abundance to load the contribution of each species to the diversity aspect to be
summarized. For example, the community weighted mean (CWM) reflects the
functional mean of the trait, the functional divergence (FDvar) reflects the variance
of the trait, while the functional regularity index (FRO) measures the functional
evenness (Fig. 3.1). The classification criterion in Sects. 3.3 and 3.4 is if the metrics
are single-trait or multi-trait. CWM is included as single-trait measure, although
there is a fundamental difference between the CWM and the diversity indices: there
is not any ecological principle to propose that the CWM of one trait would
have any correlation with the functional diversity definition of the community.

Fig. 3.1 Index classification with reference to sections in this chapter
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Undoubtedly, CWM is a measure that allows knowing the best value to represent
the state of a trait in the community; it is a metric of functional composition.
Definitions and examples of single-trait indices are presented in Sect. 3.3.

The indices based on multi-trait profiles, may or may not take into account
species abundance. In the last decade of the twentieth century, Faith (1996) pro-
posed a functional diversity index based on the application of the index of envir-
onmental diversity (ED) to a functional space constructed using phylogenetic
information, and Walker et al. (1999) defined a functional diversity index by
identifying the number of different combinations of trait values (FAD1). Most of
the later approaches are based on dissimilarity among species in trait space, the
T-dimensional space defined by the T traits (Fig. 3.1). In Sect. 3.4 we define the
indices and present an example. The multi-trait indices that may be estimated
without abundance information are based only on presence/absence data; to esti-
mate the other multi-trait indices it is needed to incorporate species abundances.
There is some controversy in current literature about how the impact of summar-
izing functional diversity and its relationship with the variable is used to measure
abundance. Posed questions focus on the relative contribution of abundance upon
the functional diversity components, like the functional richness, the functional
evenness and the functional divergence (Schmera et al. 2009; Poos et al. 2009;
Mouchet et al. 2010).

To estimate an index we used abundance-trait profiles corresponding to the
species present at the community or assemblage. This profile includes one value
for each trait and one value for each variable used to quantify the relative con-
tribution of each species to the pool. At least values of one trait by species are
needed to compute single-trait indices and values for two or more traits to compute
multi-trait indices. Nevertheless, it is analytically possible to calculate some multi-
trait indices with values for only one trait. For example, the FD (Petchey and
Gaston 2002) diversity index (Sect. 3.3.1) may be calculating with species values
for one trait.

3.2 Species Diversity Indices

Richness (S): richness is the total number of species in a community. It is the most
simple biodiversity index and it does not take into account any characteristic of
species or their relative abundance. Several estimators to avoid bias due to unseen
or unrecorded species are currently used like those proposed by Chao et al. (for
details see for example Magurran 2004). In a functional diversity context it is
common practice to include enough species to account for near 80% of the
abundance (Grime 1998). This approach does not need to adjust observed species
number because functional diversity is not affected by rare species.

Shannon Index (H): this index assumes that heterogeneity depends on both, the
number of species in a community and their proportional abundances. Con-
ceptually, it is a measure of uncertainty degree related to a random selection of
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individuals from the community. In a homogeneous community with S species,
in which only one is dominant (highly abundant), the uncertainty degree of
selecting a given species is lower than if all species would have the same abun-
dance. When species abundances are uneven, the probability that a random indi-
vidual taken from the population belongs to the dominant species approximates
one; conversely, in a heterogeneous community any randomly drawn individual
has the same probability (1/S) to belong to any species. The Shannon index is one
of the biodiversity measures most widely used.

The Shannon index assumes that individuals are randomly sampled from an
‘‘indefinitely large’’ (i.e., an effectivelly infinite) population. The index also
assumes that all species are represented in the sample. It is calculated from the
equation (Shannon and Weaver 1949)

H ¼ �
XS

i¼1

wi ln wið Þ:

Eveness (E): the maximum of Shannon index is attended when all the species
has the same relative abundance, and it reduces to

Hmax ¼ ln Sð Þ:

Based on this maximum it is possible to derive an evenness index, using the
maximum as reference for the actual value (Pielou 1975) as the ratio

E ¼ H=Hmax;

where E is the evenness index.
Simpson Index (D): Simpson index of biodiversity equals the probability of

drawing without replacement two individuals of different species from a given
collection. There is more than one form to express the index. The expression
widely used offers the index as a measure of dominance

D ¼ 1�
XS

i¼1

w2
i ;

where w2
i is the squared of the proportion of the ith species (Simpson 1949).

3.3 Single-Trait Metrics and Indices: Properties
and Estimation

3.3.1 Community Weighted Mean

Community weighted mean (CWM) is a good indicator to represent the expected
functional value of one trait in a random community sample. Also defined as
aggregate values of plant traits by Garnier et al. (2004) it is extensively used as
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community weighted mean (Díaz et al. 2007; Lavorel et al. 2008). As CWM is
based on single-trait, each trait has its CWM value in the assemblage. To calculate
it we need one trait value to represent each species, so if we have 10 species and
we want to calculate CWM of specific leaf area (SLA) we need 10 SLA’s values
(xi in Box 3.1). We also need one variable representing the contribution of each
species to the community. Suppose that for each species we have evaluated the
cover in square meters (ai in Box 3.1) then we may express the cover in relative
form (wi in Box 3.1). The community weighted mean is

CWM ¼
XS

i¼1

wi xi: ð3:1Þ

It is strongly recommend following standard protocols to assign trait values to
species (Cornelissen et al. 2003). Depending on the trait variability it could be
necessary to measure 5–10 representative individual for each species. After having
the data set for the whole community the mean value for continuous variables or
median for discrete ones may represent each species in the index calculation.
There are several categories already defined in the literature for particular traits
like flammability (Cornelissen et al. 2003; Jaureguiberry et al. 2011), or nodule
type for nitrogen-fixing species (Cornelissen et al. 2003).

To apply the formula (3.1) to the example in Box 3.2 we have to calculate the
relative contribution of each species from the cover data in its original scale
divided by the total coverage, in this case it is 10,042 m2, doing so we obtained the
values of the relative cover column. Having all the data in the appropriate scale,
we multiply each SLA value by the corresponding relative value and sum all
results to obtain the CWM. In the example its value is 19.01 mm2 g-1. This value
is greater than the arithmetic mean (18.26 mm2 g-1) because it incorporates a
loaded factor that in this case favors the sp2 and sp8 with greater SLA values. To
summarize community performance related to ecosystem processes the CWM
represents the best single value to link with other variables and look for rela-
tionships with a given ecosystem service.

Box 3.2: Trait profiles for ten species used to estimate CWM

Species SLA
(mm2g-1)

Cover
(m2)

Relative
cover

Species SLA
(mm2g-1)

Cover
(m2)

Relative
cover

sp1 19.30 245 0.0235 sp6 13.81 312 0.0300
sp2 19.53 2540 0.2439 sp7 9.94 780 0.0749
sp3 15.64 34 0.0033 sp8 21.93 3545 0.3405
sp4 18.44 2045 0.1964 sp9 31.65 108 0.0104
sp5 17.37 35 0.0034 sp10 14.98 768 0.0738
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3.3.2 Functional Divergence

Functional divergence index (FDvar) is essentially the variance in the attribute
values of the species present at a site, with the squared residuals weighted by the
abundance of the species involved (Mason et al. 2003). It is defined as

FDvar ¼
2
p

arctan 5Vð Þ ð3:2Þ

where 5 is a scaling factor used to define the index over a range of 0–1; V is the
weighted variance of trait X, expressed as:

V ¼
XS

i¼1

wi ln xi � ln x
� �2

: ð3:3Þ

This index considers one trait at a time and used the relative abundance of each
species (wi) to load its contribution to the variability in the community (Box 3.1).
The mean of ln xi is weighted by the abundance as

ln x ¼
XS

i¼1

wi ln xi: ð3:4Þ

Using data from Box 3.2 the FDvar is 0.15 and this index has no units because
the trait values, originally expressed in squared millimeters of leaf area divided by
dry weight in grams has been transformed to a logarithm scale and expressed in the
range zero–one. So this value of 0.15 corresponds to a small variability for SLA.
If we interchange in Box 3.2 the cover of species sp7 and sp8 but keeping the SLA
values and recalculate the FDvar, we obtain FDvar = 0.30. This is twice the first
estimation, and it is the consequence of assigning a cover of 3,545 m2 to sp7 with
SLA = 9.94 mm2 g-1 (one of the smallest values for SLA). The variability of this
trait increases due to that more abundant species now bear the more extreme
values for SLA (9.94, 19.53 and 18.44 mm2 g-1).

This index has also been defined to handle more than one value of the trait by
species (Mason et al. 2003) using the character values (xi) and the abundance of
these values in all the species of the community. For this functional divergence
formulation the sum is over the total possible values of the trait under consideration.

3.3.3 Functional Regularity

Functional regularity index (FRO) has been defined for one trait with only one
value of the trait by species, like the mean or the median. FRO was introduced to
capture a neglected aspect of functional diversity as is the regularity or evenness of
the trait values in the observed range (Mouillot et al. 2005). As the other single-
trait indices it also used the relative abundance of each species. The procedure to
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calculate the index needs to sort the observations. It is as follows: (a) the species
are ranked by increasing values of the trait (xi); (b) we calculate the weighted
difference EWi;iþ1

� �
of trait values of two consecutive species loaded by the

abundance difference as

EWi;iþ1 ¼
xiþ1 � xij j
wiþ1 þ wij j ð3:5Þ

where wi is the relative abundance of the ordered ith species; (c) with these values,
we calculate the percentage of the weighted difference (PEWi;iþ1) in trait values
for the pair of species as

PEWi;iþ1 ¼
EWi;iþ1PS�1

i¼1 EWi;iþ1

; ð3:6Þ

and (d) the FRO index results from the summation of all S� 1 pair comparison,
choosing the minimum between the percentage of the weighted difference and the
equally probable space 1= S� 1ð Þ

FRO ¼
XS�1

i¼1

min PEWi;iþ1;
1

S� 1

� �
: ð3:7Þ

The maximum of FRO is obtained when each pair of nearest neighbors equals
1= S� 1ð Þ and each species has the same abundance, case of maximum functional
regularity and FRO = 1. In all other cases FRO is less than one; and quantifies how
the observed community differs from other communities with the same richness,
where all species have the same abundance, and its trait values are regularly dis-
tributed resembling to the outcome of the uniform probability distribution.

Using the data of Box 3.2 we obtained a FRO = 0.39 (Fig. 3.2a), approxi-
mately one third of a community where the ten species have equal abundance and
its trait values are uniformly distributed in the range of SLA (9.94 to
31.65 mm2 g-1). Suppose that due to human modification or to environmental
process the relative abundance of each species is near 0.10 (Fig. 3.2b). In this case
the FRO increase to 0.60. FRO may also increase if the trait values are more
evenly distributed. If we interchange abundance of species sp7 and sp8, and also
between sp9 and sp10, we obtained FRO = 0.47 (Fig. 3.2c).

All these changes in FRO have happened with the same set of trait values, but
with modifying the matching between trait value and the relative abundance. The
index may also be affected by changes in the trait values. For example, if the
species sp1, sp5 and sp10 change their values to 29.30, 27.37 and 24.98 mm2 g-1,
the FRO with the observed abundance would be 0.65; and if we considered all
species with the same abundance it would be 0.89, closer to one, due to a very
uniformly distribution of equally abundance trait values (Fig. 3.2d).

Even though FRO is defined for one trait at a time, the authors (Mouillot et al.
2005) suggested two options to extend the index to multiple traits. One is to
estimate FRO for each trait and then take the mean value to represent the
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community; this mean value may be weighted by trait importance if desirable. The
second one is to compute a Principal Component Analysis on the S� T matrix and
use the principal components to compute T values of FRO and then sum using
eigenvalues or standard deviation of eigenvectors as weights to compute the
overall functional regularity (OFRO)

OFRO ¼
XT

t¼1

SDt � FROt;

where SDt the standard deviation and FROt the functional regularity for each
principal component.

3.4 Multi-Trait Indices: Properties and Estimation

3.4.1 Functional Attribute Diversity

The index FAD (Functional Attribute Diversity, Walker et al. 1999; Walker and
Langridge 2002) has two expressions. FAD1 is the number of different attribute
combinations that occur in the community and it is always less than or equal to
richness. When traits are in a continuous scale it always coincides with richness

Fig. 3.2 Relative abundance for specific leaf area (SLA) trait values of species in Box 3.2.
a Original data, corresponding to FRO = 0.39; b species with the same abundance (relative cover
0.10), corresponding to a FRO = 0.60; c interchange abundance values between sp7 and sp8, and
between sp9 and sp10, corresponding to FRO = 0.47; d change the SLA values of sp1, sp5 and
sp10 to 29.30, 27.37 and 24.98 mm2g-1 with the same species abundance (0.10), corresponding
to a FRO = 0.89. Note y-axis scale in a and c is different from y-axis scale in b and d. Horizontal
line is at relative cover 0.10 in the four plots
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and its use is not recommended. When the traits are categorical, with few levels it
may resume a crude functional richness; even though, there are more appropriate
functional indices as further described.

The second expression (FAD2) is the sum of the standardized distance between
all pairs of species in the trait space. The authors recommend expressing the trait
values in a five-point scale. As an ecological distance (ED), they use the Euclidean
distance between two species. The sum over all pairs of species gives the FAD2.
The ecological distance between species ‘i’ and ‘j’ may be expressed as (Eq. 1a,
from Walker et al. 1999)

EDij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1

xtj � xti

� �2

vuut

where T is the total number of attributes, and xti and xtj are the values of the tth
trait of species ‘i’ and ‘j’. Using EDij; which is the Euclidean distance between two
species, FAD2 is defined as

FAD2 ¼
XS

i¼1

XS

j [ 1

EDij

in a community with S species.
In an attempt to make FAD2 comparable among communities with different

number of species, the authors propose to standardize the index dividing by the
number of interspecies comparisons. With S species the total number of distances
among a pair of species is S� ðS� 1Þ=2; and the index for each community to be
compared may be transformed to comparable scales using

FAD2 Zð Þ ¼
FAD2

SðS� 1Þ=2
;

being FAD2(Z), the standardize expression.
MFAD is another modified version of FAD2 proposed by Schmera et al. (2009)

to overcome the violation of monotonicity criteria. For a given assemblage with S
species and T traits they first defined the so called functional units. The number of
functional units results from combining the species with exactly the same trait
profiles into only one functional unit. The number of entities in the data matrix will
be reduced from S to N (N B S), and dimensions of the distance matrix will be
reduced from S 9 S to N 9 N. N itself is a measure of functional richness, already
proposed by Walker et al. (1999) as FAD1.

To calculate MFAD, the dissimilarity metric must be defined in the range [0; 1],
and the authors proposed the use of the Marczewski-Steinhaus index (Marczewski
and Steinhaus 1958) or a distance defined in the same interval, like Gower distance
(Gower 1971). The index is estimated as:
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MFAD ¼
PN

i¼1

PN
j [ 1 dij

N
;

where dij is the dissimilarity between functional units ‘i’ and ‘j’, and N is the
number of functional units.

MFAD measures the dispersion of species in the trait space in comparable
scales if the set of traits are the same. So it provides a simple numerical tool to
compare several communities. Several authors have claimed that its contribution
to functional diversity approach is not significant due to high correlation with
richness (Mouchet et al. 2010; Pavoine and Bonsall 2011).

3.4.2 Functional Diversity Based on Dendrograms

There is a family of functional diversity indices based on dendrograms. The first
one was proposed by Petchey and Gaston (2002) and has been used in functional
ecology as ‘the’ index. Even a decade later this index and its code name FD is one
of the most used in applied functional ecology. Several adjustments have emerged
from scientific controversy between Petchey and Gaston (2002, 2006, 2007) and
Podani and Schmera (2006, 2007); others from the inclusion of abundance to
weight the relative contribution of each branch tree to the index (wFD, Pla et al.
2008; Casanoves et al. 2008, 2011).

FD is the total length of the branches of the dendrogram constructed from
information on species functional traits (Petchey and Gaston 2002). Different
measures of dissimilarities, and different strategies used to define the dendrogram
lead to different values of FD. As in the hierarchical clustering algorithm several
linking strategies can be used and the number of distance measurement can be
calculated to quantify the distance between species, Mouchet et al. (2008) have
proposed iteratively select the best combination of linkage and distance to
reproduce the original distance between the species pool. The selection is based on
the cophenetic correlation and the index is known as generalized-FD (GFD).

The first definition of FD (Petchey and Gaston 2002) proposed to make a single
dendrogram for the so-called ‘regional community’, with all the species that have
been observed in any sample of the study area. Based on this maximum value for
FD, any particular sample of the study area will have its own FD resulting from the
sum of branch length of the species present at the considered sample, required to
connect these species to the root of the dendrogram. This expression was criticized
because the index does not equal zero when only one species is present. It is zero
only when no species is present (Podani and Schmera 2006).

These authors have proposed to recalculate the dendrogram for each sample,
but in doing so the desirable property of ‘set monotonicity’ does not hold. That is,
the index may be greater for a community after one (or more) species is lost; and
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conversely the FD may be smaller for a community which has gained one or
more species.

The second definition of FD as the sum of lengths of all branches of the
dendrogram made by Petchey and Gaston (2006) addresses the lack of mono-
tonicity that arises when using a particular dendrogram for each sample as Podani
and Schmera had proposed. To calculate FD in each sample of the community, this
version of FD sums the lengths of the branches on the dendrogram needed to
connect the present species, no including the length of the branch to get to the root
(Petchey and Gaston 2007).

Both versions of the FD are based on a single trait value per species. However,
it is possible to incorporate intraspecific variability in the estimation when trait
values are available at individual level. This functional diversity index incorpo-
rates intraspecific variability and it is less correlated with richness (iFD,
Cianciaruso et al. 2009). The authors claim that important ecosystem processes
operate at individual level, like competition for resources, niche occupancy and so
natural selection. A particular value taken by the trait is an attribute of the indi-
vidual; within a species the trait may show different attributes along environmental
gradients or through time, or among different land use practices.

One way to avoid subjectivity in the selection of the distance measurement and
the linkage strategy is to compare the ultrametric matrix computed to make the
dendrogram with the distance matrix calculate from the functional trait profiles.
Even though, no clustering procedure perfectly fits data distribution in multi-
dimensional space. Mouchet et al. (2008) propose a systematic procedure to cal-
culate combinations of distances (Euclidean and Gower) and several cluster
linkages: single linkage, complete linkage, UPGMA (unweighted pair group
method using arithmetic averages), WPGMA (weighted pair group method using
arithmetic averages), UPGMC (unweighted pair group centroid method), WPGMC
(weighted pair group centroid method) and Ward’s method; and then, build the
consensus tree that optimally represents the clustering methods.

This index is called Generalized FD (GFD) and the selection of the best
combination is based on the comparison between dissimilarity matrix and
cophenetic matrix. The cophenetic matrix is an S 9 S symmetrical matrix that
quantifies the distance between species in the dendrogram. The less difference
between the corresponding elements of these two matrices, the better the cluster
procedure resembles the diversity in trait space. The authors used the cophenetic
correlation (Pearson correlation computed from pairs of distances) to select the
combination that best fits. If the cophenetic correlation is large, the distance
portrayed in the dendrogram is a good representation of distances between species,
in the trait space. R script may be downloaded from Ecolag author’s site (http://
www.ecolag.univ-montp2.fr) and FDiversity software also calculates it from the
same information used for the other functional diversity indices.

Further discussion about dissimilarity measurements, cluster strategies and
comparison among communities can be found in Petchey et al. (2004) and Petchey
and Gaston (2007), the response of Podani and Schmera (2007) and Poos et al. (2009).
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FDiversity team1 (Pla et al. 2008; Casanoves et al. 2011) proposed using abun-
dance to quantify species contribution to the community when a hierarchical
clustering approach is used for functional diversity (wFD, Sect. 3.4.5).

3.4.3 Convex Hull Hyper-Volume

The dispersion of species in the trait space is a crude multivariate representation of the
functional diversity in a community. Cornwell et al. (2006) proposed to synthesize
this dispersion by quantifying the best shape hyper-volume with an appropriated
volume model. Among the candidates are hyper-cube or hyper-sphere models, but
these do not reduce the amount of empty space. A better option is to use the convex
hull, defined as the smallest convex set enclosing the points (Barber et al. 1996).

A convex hull hyper-volume (CHull) in a multivariate space is defined, based
on the irregular form yielded by species occupancy in the trait space. Taking two
species from one community, any third species with traits inside the range of traits
is included in the CHull. If only two traits are involved, the CHull may be
represented with a surface in 2D (Fig. 3.3a–c); when there are three traits the
CHull is a volume in 3D (Fig. 3.3d), and with four or more traits CHull is a
hypervolume. The convex hull is a multivariate measure of the range of trait space
(trait values that may be found in a given assemblage). The sequence from
Fig. 3.3a–c shows increasing trait ranges; the three graphs have the same units
because the trait values were standardized to have zero mean and unit variance.
T3, the third trait has the widest range, so the combination T3–T2 has the highest
surface, all expressed in standard deviations from the corresponding mean.

3.4.4 Quadratic Entropy

Functional diversity may be expressed as the average of the species differences
when some measurement of pairwise differences between species and relative
frequency data are available. The index proposed by Rao (1982) is derived from
entropy theory and is expressed as a quadratic form using the matrix of distances
among species and the vector of relative abundance of species. To compute the
index it is necessary to calculate the Euclidean distance between species in the trait
space as

dij ¼
XT

t¼1

xtj � xti

� �2

1 FDiversity team is integrated by the authors of this book and is the developer team of
FDiversity, statistical software to calculate functional diversity with extended capabilities
(Di Rienzo et al. 2008).
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and estimate Rao index as (Rao 1982)

Rao ¼
XS�1

i¼1

XS

j [ 1
dij wiwj ¼

1
2

w0 D w

where dij is the distance between species ‘i’ and ‘j’. In matrix notation, D is a
distance matrix with elements dij; and w is a column vector with the relative
abundances.

Botta-Dukát (2005) has suggested using Euclidean distance divided by the
number of traits used to define it. To be compared, functional diversity indices has
to be evaluated over the same set of traits, so all the distances are calculated over
the same number of traits and this adjustment has no effect for comparison among
samples or communities. The new expression is the original divided by a constant.

The Rao index may also be seen as the expected value of the conflict among
species (Ricotta and Szeidl 2006). As the species abundances are expressed as

relative values, it sums to one
PS

i¼1 wi ¼ 1 and the frequency of any species may

be expressed as 1�
PS

j6¼i wj: So, the conflict between species ‘i’ and the remaining
(Cd wið Þ) may be express as

Fig. 3.3 Convex hull (CHull) in two and three dimensions. The data are for three traits and five
species; a surface delimited by the outer species in plane T1-T2 (CHull = 1.140), b surface in
plane T1-T3 (CHull = 2.941), c surface in plane T3-T2 (CHull = 4.947), d volume in the three
dimensional space T1-T2-T3 (CHull = 0.462); sp5 has intermediate trait values and it is identify
within the surfaces and also within the volume. Data are standardized and CHull values showed at
the top of each graph. A similar limit for x–y axes of the first three graphs allows visual
comparison among CHull values. Trait values were standardized by trait
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Cd wið Þ ¼
XS

j6¼i

dijwj:

The functional diversity is then

Rao ¼
XS

i¼1

wi Cd wið Þ ¼
XS

i¼1

wi

XS

j 6¼i

dij wj

" #
;

the second summation equals
PS

j¼1 dij wi; since the distance of a species with itself

is zero, dii ¼ djj ¼ 0: This expression proves that the Rao index is also a measure
of the conflict among species (Ricota and Szeidl 2006).

The unbiased estimator of Rao when the abundance of species is expressed as
number of individuals is

Râo ¼ n
n� 1

2
XS

i [ j

dij

ninj

n2
; Râo ¼ 2

XS

i [ j

dij

ninj

n n� 1ð Þ;

where ni is the number of individuals of species ‘i’ and n ¼
PS

i¼1 ni is the total
number of individuals. If the sample is big enough the correction term n=ðn� 1Þ is
almost one and the index may be calculated without correction. The variance of
Râo may be estimated as (Shimatani 2001)

VarðRâoÞ ¼ 4
SðS� 1Þ

ð3� 2SÞ 2
XS

i [ j

dij

ninj

n2

 !2

þ

þ ðS� 2Þ
XS

i;j;k

dijdik

ninjnk

n2
þ
XS

i [ j

dij

ninj

n2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

The variance is useful with large samples and when differences between com-
munities have to be tested based on one sample for each community. The dis-
tribution model for Rao index is not known and depends on the distance measure
thus, non parametric estimation may be preferred to build confidence intervals and
to test hypothesis.

Useful information may be extracted from the symmetric matrix
Q ¼ diag wð ÞD diagð Þw; where ‘diag’ states for diagonal matrix with relative
abundances of each species. This matrix has dimension S 9 S and its ijth element
is qij ¼ dij wiwj; its main diagonal is zero, and it is known as the species con-
tribution matrix. The absolute species contribution for each species may be
evaluated summing along the columns of the contribution matrix, and a relative
expression of this contribution is obtained dividing these values by 29Rao index
(Box 3.3). The reference must be twice the index because each distance, between
two species, counts twice, one when sum is over the column for the first one of the
pair and the other when the sum is over the second.
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Box 3.3: Distance matrix and abundance vector used to estimate Rao index

Both, absolute and relative contributions of each species are highly related to
abundance. To explore the effect of species contribution upon the index, the partial
derivative of the species contribution matrix (Q) with respect to the ith species
contribution (nj) may be computed as

oQ�
onj
¼ 2

n

XS

i¼1

dij

ni

n
� Rao

 !
:
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If
PS

i¼1 dijni

.
n is greater than Q, a small increment of species ‘j’ increases the

Rao diversity index (Shimatani 1999). This is because the first term is the average
distance from an individual of species ‘j’ to all the others (see numerical example
in Box 3.4), and the second term is the average distance over all the pairs; so, if the
species ‘j’, has a greater average and its frequency increases, the overall average
increases accordingly. On the other hand, if a species with very small contribution
increases its relative abundance the index may decrease due to a negative differ-
ence between the species average distance and the overall average distance that is
the Rao index.

Box 3.4: Species relative abundance changes affect the Rao index

The partial derivative is useful for understanding graphics of changes in
diversity when one species is virtually removed from the assemblage. The index
may increase or decrease in relation to the average distance of the removed species
with the overall average distance.

The expression of quadratic entropy as an absolute value is not useful when the
comparisons have to be done between communities with very different numbers of
species or when different sets of traits were used to define the distance matrix.
To get a relative expression the maximum has to be estimated from the data. The
distance matrix does not depend on the abundance of species and is fixed for a given
set of species, but changes in the relative abundance of these species may lead to the
maximum diversity index (Raomax). There are two types of abundance vectors that
define two subclasses of maximum: (a) weak maximization, when some of the wi

abundances that maximize Raomax are zero; and (b) strong maximization, when all
the wi values that maximize Raomax are positives.
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The maximization process relies on the dissimilarity matrix and on any ultra-
metric matrix that belongs to the strong subclass (Pavoine et al. 2005). The
drawback arising from having only some species to maximize the Rao’s quadratic
index when dissimilarity between species are based on functional traits is the
absence of distance measures that guaranty the ultrametric condition and then
ecological meaningful expression of the functional diversity using relative Rao
index. Taxonomic or phylogenic dissimilarity trees may have ultrametric distances
and give a maximum value of Rao that relies on total abundance distributed among
all the species presents.

In the ade4 software, also available as an R library, the sentence ‘divc’ may be
used to calculate this index. The algorithm return Rao when absolute value is
required (scale = FALSE), and the relative value (scale = TRUE) in the range
[0, 1] when scaling is required. With FDiversity software both expressions may be
obtained simultaneously.

3.4.5 Extended FD

The FD proposed by Petchey and Gaston (2006) is based on a dissimilarity matrix
computed with one mean value by trait and species and no importance measure to
weigh the species abundance in the community. It is possible to load each entry of
this dissimilarity matrix with a relative measure of abundance (frequency, cover-
age, biomass, basal area, or other) before performing the dendrogram. If dij denotes
the dissimilarity measurement between species ‘i’ and ‘j’, and wi and wj denote the
relative abundance of each species, the weighted FD (wFD) is computed from a
matrix with entries d0ij ¼ dij

ffiffiffiffiffiffiffiffiffiffi
wi wj
p� �

: The resulting weighted dissimilarity matrix is
symmetric with zeros in the diagonal. The wFD is computed as the total branch
length of the functional dendrogram derived from this symmetric matrix (Pla et al.
2008, Casanoves et al. 2008, 2011). The scaled form of wFD multiplies the sum by
the total number of species to put it in the same metric as FD.

As in the FD case, the dendrogram may be computed only with the set of
species present in each plot (wFDp plot based), or may be derived from one
dendrogram including the species community pool (wFDc community based).
With equi-abundance wFD equals FD. In case study 1 in Sect. 4.2 we compare FD
and wFD to show how changes in these indices can be used to explore the rela-
tionship between functional diversity and changes in abundance and trait values.

3.4.6 Functional Richness, Evenness, Divergence
and Dispersion

Villéger et al. (2008) argued that functional diversity cannot be summarized by a
single number because it has to include components of richness, evenness and
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divergence taken into account the trait values and their abundance. They proposed
a framework where functional diversity comprises three components: functional
richness, functional evenness, and functional divergence. The three independent
components provide more detail in examining the mechanisms linking biodiversity
to ecosystem functioning. Mason et al. (2005) were one of the first to call the
attention about the importance of these three facets of functional diversity to
understand its relationship with ecosystem processes and ecosystem services.
Villéger et al. defined FRic (functional richness), FEve (functional evenness) and
FDiv (functional divergence) using multiple traits.

To complement these three measurements of functional component Villéger
et al. (2010) have proposed an index of functional specialization (FSpe) that
quantify the relative positions of species respect to the gravity center calculated
from the regional pool of species. The index is based on Bellwood et al. (2006)
relative distance of a species from the centroid of the principal component space
account for at least 85% of the variability observed.

Functional richness (FRic): FRic represents the trait space filled by the com-
munity. In the one trait case it is represented by the range (maximum–minimum),
but with more than one trait it is represented by the volume filled by the com-
munity in the trait space. The procedure is like the convex hull hyper-volume
(Cornwell et al. 2006). The algorithm identifies the extreme species and then
estimates the volume in the trait space. It is recommended to standardize the traits
to avoid scale effects. To calculate FRic the number of species must be greater
than the number of traits and the species must not relay on a line. The maximum
value of FRic in a T dimensional trait space is attained when 2T species have a
combination of extreme trait values.

An option to estimate FRic when the number of species is less than the number
of traits is to synthesize the trait space using a multivariate technic to reduce the
dimensions. If all the traits are in a quantitative scale principal component analysis
may be applied and the resulted component used as new ‘trait synthesis’. The
number of components retained depends on the proportion of variability explained
and are limited to the number of species minus one. With categorical or nominal
traits the reduction may be derived using principal coordinate analysis (also known
as classical multidimensional scaling) and retained the appropriate coordinate
values. In the R-scrip of FD-library written by Laliberté and Legendre (2010) to
perform this calculation, this procedure is used by default. In FDiversity, there are
two separate indices, one for Convex Hull (equal to FRic when S [ T, and no
values when S B T or at least two species are distributed in a line) and other for
FRic calculated using linear combination of traits resulted from ordination
technics.

Functional evenness (FEve): FEve measures the regularity of spacing between
species in the trait space as did the univariate FRO and also the evenness in the
distribution of the species abundance. The authors do not use the overall FRO
proposed by Mouillot et al. (2005, see Sect. 3.3.3) because the method depends on
ordination techniques and some information may be lost. Villéger et al. (2008)
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used the minimum spanning tree (MST) to transform a multidimensional space to a
distribution on a single axis. The MST links points in the T-dimensional space
with the minimum sum of branch lengths. As in FRO this new functional evenness
index measures both the regularity of branch lengths in the MST and the evenness
in species abundances. There are a total of S� 1 branches in the MST of S species
and each of the b branch length is divided by the sum of the abundances of the
species linked

EWb ¼
d ij

wi þ wj

;

where EWb is the weighted evenness, dij is the Euclidean distance between species
i and j, those involved in the branch b, and wi and wj are the relative abundance of
these species.

In case of perfect regularity of abundance all weighted evenness would be
equal, but otherwise it is useful to compute the partial weighted evenness PEWb

dividing by the sum of the EWb across the S� 1 branches

PEWb ¼
EWbPS�1

b¼1 EWb

:

When the PEWb value differs among branches, the final index will decrease.
To quantified the discrepancy they compared PEWb with 1=ðS� 1Þ; the index is

FEve ¼
PS�1

b¼1 min PWEb;
1

S�1

� �
� 1

S�1

1� 1
S�1

with an standardization similar to that suggested by Bulla (1994).
This index does not correlate with species richness and ranges from 0, complete

unevenness, to 1, complete evenness and it is independent of the convex hull.
At least three species have to be present in the sample to enable the calculation
because at least three points are needed to define the MST, no matter the number
of traits. The index value decreases when relative abundance of species is less
evenly distributed and when distances among species are irregular.

Functional divergence (FDiv): FDiv quantify how the trait values are spread
along the range of a trait space. For only one trait Mason et al. (2003) have defined
FDvar (see Sect. 3.3.2) but when there are more than one trait the linear range is
replace by a multidimensional range, like the convex hull. So functional diver-
gence is related to how abundance is distributed within the volume of functional
trait space. The first step in index calculation is defining the gravity center of the V
species that form the vertices of the convex hull Gv ¼ g1; g2; . . .; gTf g; being

gt ¼
1
V

XV

i2Sv

xti
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where Sv is the subset of all the V species forming the vertices of the convex hull,
xti is the coordinate (trait value) of species ‘i’ on the ‘t’ trait, T is the total number
of traits, and gt is the coordinate of the gravity center for trait ‘t’. Knowing the
coordinate of gravity center, we compute Euclidean distance of each species from
this point as

dGi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1

xti � gtð Þ2
vuut

and the mean distance dG of the S species to the gravity center is

dG ¼ 1
S

XS

i¼1

dGi:

These distances are computed only with trait values and do not include the
species abundance, so they reflect the shape and the volume of the convex hull. To
take the abundance into account it is necessary to compute the abundance-weighted
deviances Ddð Þ and the absolute abundance-weighted deviances D dj jð Þ as

Dd ¼
XS

i¼1

wi � dGi � dG
� �

and

D dj j ¼
XS

i¼1

wi � dGi � dG
		 		

being wi the relative abundance of species ‘i’. The functional divergence index is
then

FDiv ¼ Ddþ dG

D dj j þ dG
:

Adding dG to the numerator and denominator makes that the index belongs to
interval 0 to 1, because dGi are Euclidean distance and so are positive or zero, thus
Dd is bounded between dG and D dj j:

Functional dispersion (FDis): Functional dispersion (FDis) is a multi-
dimensional index based on multi-trait dispersion (Laliberté and Legendre 2010).
FDis is the average distance of individual species to the centroid of all species in
the community trait space taken into account the relative abundances of species by
computing the weighted centroid. It is calculated from the ‘species 9 trait’ matrix
as

c ¼ c1; c2; . . .; cTf g
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where the vector c has the coordinates of the weighted centroid in the
T-dimensional space, and ct for t ¼ 1; . . .;T, is estimated for each dimension (trait)
as

ct ¼
XS

i¼1

wi xti

being wi the relative abundance of species ‘i’, and xti the value of the ‘t’ attribute
of species ‘i’. This formulation implies that xð:Þ represent a quantitative trait, but
the authors generalize the distance measure to include semi-quantitative and
qualitative traits through principal coordinate analysis (PCoA).

FDis, the weighted average distance �z from each species to the weighted
centroid c, is then computed as

FDis ¼
XS

i¼1

wi zi

where wi is the abundance of species ‘i’ and zi is the distance of species ‘i’ to the
weighted centroid c. This procedure essentially shift the position of the centroid
towards the more abundant species and weigh distances of individual species to
this weighted centroid by their relative abundances. It has been suggested that
communities with only one species should have FDis = 0, but there is no upper
limit for this index.

Functional specialization (FSpe): Functional specialization is defined using the
multidimensional trait space of the regional pool of species and quantifying how
apart the species are from the gravity center. To estimate the index for each plot
the distance is loaded by the relative contribution of each species.

The first step in index calculation is defining the gravity center of the S species
in the T-dimensional space of the traits G ¼ fg1; g2; . . .; gTg; being

gt ¼
1
S

XS

i¼1

xti

where xti is the coordinate (trait value) of species ‘i’ on the ‘t’ trait, T is the total
number of traits, and gt is the coordinate of the gravity center for trait ‘t’. Knowing
the coordinate of gravity center, we compute Euclidean distance of each species
from this point as

dGi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS

i¼1

xti � gtð Þ2
vuut :
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If the traits are standardized the gravity center has coordinates (0, …, 0). The FSpe
is computed at plot level (or local level) as the weighted sum of the dGi of species
present at the plot using its relative abundance (wi) to load

FSpe ¼
XS

i2plot

dGi � wið Þ:

3.5 Ability of Indices to Detect some Ecological Processes

The assembly process is one of the ecological mechanisms that model the way how
species coexist in a community. Even though the set of species that form a given
community depends on available species, it is also strongly affected by the main
assembly process that operates during early stages. The pattern generated combine
environmental stress and biological competition that operates on interactions
among species and between species and the environmental conditions. The com-
bination may affect morphological, physiological and functional properties that
characterize the species in the community. These properties can be grouped to
associate with an environmental ecological service or process. Several authors
have studied patterns of assembling species assuming that the traits are phylo-
genetically conserved (Kraft et al. 2007; Mouchet et al. 2010): limiting similarity
(MacArthur and Levins 1967) to produce a uniform dispersion of traits values
(Stubbs and Wilson 2004), habitat filtering (Zobel 1997) to produce cluster of
traits values (Perez-Neto 2004) and neutral assembly (Gotelli and Graves 1996) to
produce random scattering.

The functional diversity indices have different abilities to reflect these pro-
cesses, and their dependence on species richness varies. Ideally, functional
diversity indices have to be able to reflect other aspect of community than crude
richness in order to be useful to link trait expression to functional performance.
Changes in trait community weighted mean may be used to associate community
function to a given ecological services; for example, wood density (wd) is
associate to carbon sequestration: as wd-CWM increases the expected amount of
carbon sequestered in vegetal tissues increases. Shifts in CWM for key traits may
be combining with functional diversity indices to trace changes in community
succession, for example restoration after fire events (Ricotta and Moretti 2011).

Mouchet et al. (2010) examined the performance of several functional diversity
indices using increasing richness (from 10 to 100 species with intervals of 10) and
simulation data set using three assembly processes (limiting similarity, environ-
mental filtering and neutral or random). They compared five indices that do not
include abundance (FAD2, MFAD, FD, GFD and FRic) and three indices
including abundance (Rao, FDiv and FEve). Spearman correlation coefficient was
not significant between FEve and FAD2, among the others the correlations were
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highly significant. Using this set of indices the authors identified four groups of
indices related to the three orthogonal functional components.

The functional components (Villéger et al. 2008) have also been referred as
facets of functional diversity in the single-trait approach (Mason et al. 2005) and
have to be interpreted as properties emerging of the set of species in a given
community. The facets or components of functional diversity are not associated to
species, it is not the sum of species attributes. They are community characteristics
that depend on the interaction among species, and between species pool and the
environment. The main facets or components of functional diversity are: functional
richness, functional evenness and functional divergence.

The four groups were identified using the algorithm K-means based on principal
component axes calculated with indices values in the communities. Two of these
groups were identified with functional richness and include FAD2, MFAD, FD,
GFD and FRic. The functional divergence is associated with FDiv and also with
Rao, and functional evenness is associated with FEve.

The ability of indices to differentiate assembly processes showed that FRic,
FEve, FDiv and Rao are much more sensitive than FAD2, MFAD, FD and GFD.
Indices with values higher than expected by chance are associated to limiting
similarity and with values lower than expected by chance are associated to
environmental filtering. Whichever the index selected, relationship of functional
diversity to community assemblage processes has to be investigated comparing the
observed value with that expected by random. When no evidence is found to reject
the random process, both environmental filtering and the competition may be
operated sequentially or simultaneously. The best subset of indices includes FRic,
FEve and FDiv because each is able to reflect one component of functional
diversity. We have to mention that in this work FDis, the one proposed by
Laliberté and Legendre (2010) to complement the other three was not included;
neither the FSpe proposed by Villéger et al. (2010).
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Chapter 4
How to Estimate Functional
Diversity Indices

Abstract There are several programs to estimate some subsets of functional
diversity indices, and only one integrated tool with a friendly interface capable to
estimate all indices here included: FDiversity. In the first part of this chapter we
present the user interface to handle and summarize data using one simple example
(Sect. 4.1, The FDiversity software: capabilities and data management). The other
three sections show how to estimate functional diversity indices using real data
sets with small random modification to allow data files availability for unpublished
databases. In Sect. 4.2 we study relationships of functional indices and plant
functional types with altitude; in Sect. 4.3 we study functional indices and test
changes in a chronological sequence after stopping human intervention; in the last
section (Sect. 4.4) we show how to use graphical tools to display results and
transmit findings.

Keywords Trait by species matrix � Species by plot matrix � Standardized traits �
Functional traits in a chronosequence � Functional traits in an altitude gradient

4.1 The FDiversity Software: Capabilities and Data
Management

4.1.1 How to Install FDiversity

FDiversity implements a user-friendly interface to open source routines for the
estimation and analysis of functional diversity indices. The open source platform is
R with an interface written in Delphi� using DCOM-R (a way to run R in the
background, due to Thomas Baier and Erich Neuwirth). DCOM-R is accessed via
Delphi routines written by Dieter Menne.

L. Pla et al., Quantifying Functional Biodiversity, SpringerBriefs in Environmental
Science, DOI: 10.1007/978-94-007-2648-2_4, � The Author(s) 2012
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To install FDiversity (Di Rienzo et al. 2008; Casanoves et al. 2011) you have to
access http://www.fdiversity.nucleodiversus.org and download the installer. From
this link the user may also be re-direct to CRAN-R site to download R or access
CRAN repository from (http://cran.r-project.org/) if it is not already installed in
your computer, and download DCOM version DCOM 3.1-2B7.

In order for FDiversity to have access to R, DCOM and R must be previously
installed in your system. Follow the following steps:

(a) Install DCOM 3.1-2B7 (for R versions R 2.12.x or later)
(b) Install R 13.0 or later
(c) Run R to verify its installation and quit (File-Exit)
(d) Install FDiversity using fdiversityinstaller.exe
(e) Run FDiversity and select Trying to connect to R from Help menu.

The program installs a library needed to make the link between FDiversity and
R, and other libraries needed to calculate functional diversity indices. After doing
these, a new icon in the upper toolbar appears ([R]) indicating that the connection
with R has been established. In case this procedure fails, repeat the procedure
from d) if R was successfully installed (step c), otherwise re-install R. In the User
Manual there are some additional instructions that may help this procedure.
The manual may be access from the web page or from the Help menu of FDiversity.

When FDiversity is open a blank window with a toolbar appears (Fig. 4.1).
Eight menus offer general tools to data management and specific options to cal-
culate functional diversity indices. The File menu has the common options to open
an empty data table (New), to load a saved data table (Open table), to save a data
table (Save table or Save table as …), to close or print the table (Close table,
Print) and an option to open tables from a Data folder installed with the program.
This folder has several files which may be used to test the program performance
(see User Manual for instructions).

Fig. 4.1 User interface of FDiversity showing options of file menu and help menu
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The User Manual was downloading and saved during installation process
(Casanoves et al. 2008). From the Help menu you may access the Manual,
a summary of what FDiversity may do (About FDiversity) and how to reference it
(Citing FDiversity). If you have access to internet you may Check for new
version, if you have the last version, a message will tell you that it is updated,
otherwise it offers to update and redirects to the web page. The News offers
information of the last changes that may be an update due to new indices added, to
any bugs corrected, to a new database, or to improve User Manual. If you have any
difficult to see the file or you only see texts and symbols, cut and past the link and
use other web browser. You may subscribe to receive alerts in your email.

The last two entries are options to install R, the first one is a link to a webpage
with instruction to do it manually (Installing R), and the last one is used to link R
and FDiversity automatically, after the DCOM and R have been installed. If you
have the [R] menu in the toolbar do not used these options.

Using the Edit menu it is possible to Cut, Copy, Paste and Undo changes in
the data table or in the result windows. The Windows menu has options:
Cascade, Align vertical, and Align horizontal, and additionally a list of the open
windows during current session as in many software.

4.1.2 Data Menu

To fully explore the options in this menu, a data table has to be opened. To do it,
go to File-Open test data folder and select DataSet01. The data file has 252
rows and 14 columns, this information is shown at the left-bottom corner of the
table (Records 252 * 14). With the data file opened, click Data menu and several
options are displayed (Fig. 4.2).

These procedures are intended to manage usual actions on a data sheets, such
as: inserting, adding and deleting rows, activating and deactivating cases to allow
or disallow participation in future calculations, and invert the selection (Actions
on rows); inserting, adding and deleting columns, editing labels, view or change
the data type, control alignment and number of decimals, categorize o re-cate-
gorize a variable, and generate a classification variable according cells color
(Actions on columns), arranging rows according to different sorting criteria
(Sort). Several transformations are implemented to make trait scales comparable,
and there is a formula option to define new variables from the combination of
those in the data base or from mathematical functions and constants (Formula).

It also contains links to more specialized procedures that allow to merge tables
side by side according to matching criteria (Merge horizontally) and on how to
merge tables appending one to the other (Merge vertically). This is very useful in
functional diversity analysis because it is a common practice to have one table or
spreadsheet with the list of species and its mean trait values and another table with
the information on sample or plot richness with some variable indicating the
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absolute or relative participation of each species in the assemblage (Merge
tables). We shall see an example later in this Chapter (Sect. 4.2).

Most statistical programs used a ‘clean’ data table, which is one with no
comments nor special warnings. The drawback of ‘clean’ data tables is that
important information about the set of data, where, when and how they were
collected or by whom are absent or has to be saved separately. FDiversity has a
special note pad to enter text useful to describe the data set. This note pad is
opened with F2. To add information about a variable, double clicking the label of
any variable, then its name may be edit, and double clicking again to open a note
pad to enter text; most useful information is related to measurement units or
meaning of levels for ordinal variables or nominal variables.

4.1.3 Statistics and Output Menus

The most important procedures of FDiversity are grouped in Statistics menu. The
Summary Statistics and the Functional diversity estimation and analysis

Fig. 4.2 User interface of FDiversity showing tool bar of data table and options for data menu
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sub-menus, allow exploiting the main tools. Open the data file DataSet01. FDDB
from test data folder (Fig. 4.3).

The file has information on species importance in each plot (Abundance in
column 4 or Basalarea in column 5) and on eight traits (T1 to T8 standardized
values with cero mean and unit variance). Each row represents a species (no names
are shown to emphasize that it is not necessary to identify the species) with the
trait value it bears in a given plot. Here, the trait values for the species are the same
whichever the plot considered. For example, row 2 and row 12 has the same trait
profile (-0.97, 0.33, …, -1.13) because they represent the same species, with
basal area of 2.63 in plot 1 and 3.37 in plot 3 (Fig. 4.3). In this case both plots
belong to level ‘1’ of Factor1 and level ‘a’ of Factor2.

Coexisting species were identified with the same combination of levels of
Factor1 with Factor2, and plot number. In this experiment there were three
repetitions for the combination of four levels of Factor1 with two levels of
Factor2. So, the study has eight conditions (4 9 2) with three repetitions each.
There are 24 plots with different richness. The functional diversity indices have to
be calculated using species growing together in a plot; in this case we will get 24
values for each functional diversity index.

4.1.3.1 Summary Statistics Sub-Menu

When Summary statistics is selected, a new window appears. We call this
window Selector of Variable. In the right sub-window appears the list of all

Fig. 4.3 User interface of FDiversity showing a data table
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variables in the data table plus one variable named Case, which identifies the row
(Fig. 4.4). To the right there are three sub-windows: Variables, Class variables
(optional) and Frequency (only one). Highlight the variables to analyze with the
mouse, and then move to the sub-window Variable using the arrow. If you want to
remove one, double click in its name, and the variable will return to the original
list; or highlight the desired set of variables and use the back arrow.

The classification variables are those used to identify the cases to analyze
together. Move there the three variables used for Factor1, Factor2, and Plot.
If you have no classification variable and want a summary for the whole database,
leave this clear. It is possible to incorporate the weight of each species (case)

Fig. 4.4 User interface of FDiversity showing options of summary statistics
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according to its contribution to the estimated value; in this file we may use
Abundance or Frequency, or both but sequentially because only one is accepted
at a time (Fig. 4.4). Classical statistics, confidence intervals for fixed probability
and for user defined using parametric or nonparametric bootstrap estimation may
be shown in two layouts at the result window. Field free to experiment and select
the best subset to fulfill what you need.

Results are shown in the Result window. Each time you perform an analysis
using FDiversity the results are shown in one page of the results window. This
window may be copied (click right mouse and select copy as usual), or saved as a
file with a desired name. If you have several analyses, one result page for each is
accumulated and you may see one of them clicking at the bottom tab. If you have
several tabs, and saved the result window, all of them will be saved together. The
name of each page may be change right clicking in the tab name (Fig. 4.5). The
table with the values for each class may be transform to a database for further
analyses; use the last button on the toolbar in the results window (Generate data
table from frames in results). Notice that when you slide the mouse over the
buttons in any toolbar, a legend with its function appears.

4.1.3.2 Functional Diversity Estimation and Analysis Sub-Menu

This is the main menu in the program. From the different windows it is possible to
select functional diversity indices to estimate, know the original reference to each

Fig. 4.5 User interface of FDiversity showing the results window
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one, do analysis of variance and covariance, and choose appropriate distance
measure (or similarity measure) to calculate distance matrices and decide which
algorithm use to build dendrograms.

To calculate an index is necessary to have a data table with one row for each
species in each plot (Fig. 4.6) and at least two types of variables. One to identify
the plot, and classification variables associate to the plot that will be used for the
post analysis. Here the scientific and common names of the species may be
included even though they are not used in index calculations. The second set are
the trait values that may be in its original units or with values standardized to avoid
scale effect assigning more importance to traits with higher variance.

Additionally, information on absolute or relative contribution of each species in
each plot allows the calculation of indices weighted by the abundance (like Rao,
wFD, FEve, FDis and FDiv), and the information on covariables may be used to
analyze dependence on plots characteristics that is not directly associated with the
levels of classification variable used to test hypothesis.

Using DataSet01.FDDB we are going to calculate functional diversity indices
and species indices. With FDiversity we can calculate 14 multi-trait indices, three
single-trait indices and four species indices (richness, Shannon–Weaver, Evenness
and Simpson). Select Statistics-Functional diversity estimation and analysis,
when the selector of variable is displayed (Fig. 4.7), at left side is the list of all
variables in the data table. To the right, the upper sub-window is the Traits window,

Fig. 4.6 Structure of a data table to calculate functional diversity indices using FDiversity
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move the variables T1 to T8 using the arrow; move one or more variables that
identify the levels of each condition to the sub-window Factors or conditions. For
example, variable may be ‘land use type’ with four levels (unused, forestry,
agroforestry, and forestry-livestock). The levels may be labeled with numbers, as in
this data base, and also with names; move Factor1 and Factor2 there. The con-
tribution of each species (each row) to the estimation of one value of the index goes
in the Weights sub-window; in this case we use Abundance. Remember that only
one weighted variable is accepted at a time. The bottom sub-window (Sampling
unit) is mandatory, is reserves for variable which labeled the species to be
considered together to estimate an index value, is the sample or plot identity. In our
case, Plot is moved there (Fig. 4.7). There is not covariable in this case.

When we accept, the Functional diversity index menu is activated. In this
dialogue, various tabs are shown: General, Model, and Comparisons (Fig. 4.8).
The general tab allows selecting the diversity index desired. When you select one,
reference to the original paper is showed and is copy to the clipboard in case you
want to paste it in a word file. As several indices are based on distance matrices, to
the right there are more than 25 distance measures (or similarity measures,
transformed to dissimilarity by the program before applying) and for linkage
procedures to form the dendrogram using by several indices. Only one distance
measure to build the distance matrix can be selected at a time. If you want to try
different distances, the analysis has to be run again with the second selection.
In this tab there is a check box to generate a table with all the results. Use it! It is
very helpful having a data table with all indices to use in further analysis and
graphics.

At the right side of the Model tab, there is a list of the classification variables
and the covariables; at the left side, in the window Fixed effects model terms
there is a list of main effects (classification variables and covariables). You may
include interactions in the model highlighting the desired variables and clicking

Fig. 4.7 Selector variable window use to calculate functional diversity indices
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the bar Generate interactions terms or using the ‘*’ (Fig. 4.9a). You may write a
hierarchical model of variance using the ‘[’ symbol, in case the levels of one
factor do not represent the same condition in every levels of the other. In this
example you may indicate that Factor2 is nested in levels of Factor1, writing the
fixed effects as: Factor1 [ Factor2. For nested models there is no interaction to
evaluate because Factor2 is nested in each level of Factor1. In the result window
appears the ANOVA results followed by the means. If there are one or more
covariables in the model, the mean values are adjusted.

In the Comparisons tab, you may choose mean comparison in the model main
effects (Fig. 4.9b). There are two methods of mean comparisons: pair-wise com-
parisons with no correction for multiple pairs, like Fisher’s LSD (based on t-
distribution), and DGC (Di Rienzo et al. 2002) that implements cluster-based
method for identifying groups of nonhomogeneous means. Significance level may
be adjusted at any level in LSD (to adjust for multiple comparisons using Bon-
ferroni approach), and to 0.05 or 0.01 with DGC. Select Dendrogram check box
and one graph for each mean comparison is shown in popup windows from R,
which may be copied.

Press Go and the software will calculate the indices, the analysis of variance for
each index, the mean comparisons and will generate the data table if you have asked
for it. The table may be saved with extensions *.FDDB to re-use with FDiversity or

Fig. 4.8 Functional diversity index window selector
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open it from InfoStat, or may be saved with several formats like *.xls or *.txt
extensions, allowing compatibility with other statistical or graphical software.

All the indices values are shown in the Results window. The results begin with
a list of the traits you used followed by information on the weighting variable, the
linkage algorithm for dendrogram based index, and the distance measure. The first
table is a list of the multi-trait indices for each plot with the levels of classification
variable and the mean values of the co-variables. The next table is a list of the
single-trait indices, trait by trait if you asked for FRO, CWM or FDvar, following
by a list of the taxonomic diversity indices. All these tables are merging together in
a new table called Diversity indices if you selected Generate table at the
General tab. Multi-trait functional diversity indices appear in the first’s columns,
then the single-trait indices and taxonomic indices at the last columns. After the
index tables, there are the ANOVA results for each index followed by the cor-
responding mean comparison.

4.2 Case Study: Changes in Functional Diversity
in an Altitudinal Gradient

4.2.1 Sample Design and Trait Evaluation

This example presents a subset of field data taken at a tropical region with
secondary forest formation. The sample units were located in an altitudinal gra-
dient from 653 to 2,810 masl. Woody vegetation, including all trees, palms and
ferns were identified and diameter at breast height (dbh) was evaluated. For a total
of 38 sample units with an area of 0.25 ha (50 m 9 50 m), the basal area of each
individual was calculated for trees, palms and ferns with more than 10 cm of dbh
(Bermeo 2010). Dominant species per plot which together accounted for 75% of
basal area (Grime 1998) were identified to produce the species list to determine
trait values.

Fig. 4.9 Model specification to analyze indices. a Model tab, to select fixed effects and
interactions; b Comparisons tab, to select the mean comparison method, the significant level and
the desired effects
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Six traits were selected to relate with impacts of climate change. They were:
specific leaf area (SLA mm2 mg-1), the leaf dry matter content (LDMC, mg g-1),
the concentration of nitrogen (LNC, mg g-1), the concentration of phosphorus
(LPC, mg g-1), and the physical strength of the leaves (tough, N mm-1) and wood
density (WD, g cm-3).

Measurements of functional traits in dominant species were made in the 106
species identified as dominant in the 38 sites evaluated. The sampling methods and
categories of allocation of functional traits were based on the protocols proposed
by Garnier et al. (2001) and Cornelissen et al. (2003).

4.2.2 The Database

The data were synthesized in two files, one with the information about traits
(Fig. 4.10) and the other with information about distribution of species in the
observational units. File trait by spp Altitudinal Gradient.IDB2 (available for
download via Springer’s Extra Materials website: http://extras.springer.com/) has
one row for each species which is identified by a code (species column) and the
mean values for the six traits considered (SLA, LDMC, Tough, WD, LPC and
LNC). The file spp by plot Altitudinal Gradient.IDB2 (available for download via
Springer’s Extra Materials website: http://extras.springer.com/) has information
about the presence of each species at each observational unit. It also has infor-
mation about the altitude of each plot. The importance of each species was
quantified with the frequency (freq) and the total basal area (ba). The data base
has 458 rows, one for each species present in each plot, by five columns.

Functional variation along the gradient included two main approaches, one to
identify and characterize plant functional types (see Chap. 2 for complete details
of statistical procedures) and the other to calculate functional indices and test its
relationship with altitude.

4.2.3 Changes of Plant Functional Types with the Altitude

To define functional types we performed cluster analysis using trait information in
the dominant species (trait by spp Altitudinal Gradient.IDB2). We used InfoStat
statistical software (Di Rienzo et al. 2010) which has an interface comparable to
FDiversity and databases that are interchangeable.

InfoStat may be downloaded from (www.infostat.com.ar), the free option has
complete analytical functionality with the only restriction that the result and the
graphic windows cannot be saved or copied. Open InfoStat and from the file menu,
open the data file, or after install InfoStat double click the file name. It should look
like in Fig. 4.10.
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As all the traits are quantitative, Euclidean distance is appropriate. We explore
two linkage algorithms: average linkage and Ward; and four to seven functional
groups. With each combination (two linkage algorithms and four functional plant
type partitions) we inspect the dendrogram looking for the functional explanations
of successive partitions, and also perform multivariate mean comparisons to ensure
that mean vector profiles are statistically different among plant functional types.

4.2.3.1 Formation of Plant Functional Types (PFT)
for Altitudinal Gradient Example

In InfoStat, select Statistics and then Multivariate Analysis, Cluster analysis
(Fig. 4.11). In the Cluster analysis window, select all the traits and move them to
the Variable sub-window using the arrow. Use species as a classificatory var-
iable (Fig. 4.12). Press Ok and in the next window select Average linkage (it is
checked by default) as the linkage method, and Euclidean as the distance, check
Standardize data (it is checked by default) and select 4 in the number of groups
(Fig. 4.13). This option has two effects: one is to identify the species of each group

Fig. 4.10 Trait data base for altitudinal gradient example. First column indicates the codes for
the 106 species. The study includes measurement of six traits: specific leaf area (SLA), leaf dry
matter contents (LDMC), leaf toughness (Tough), woody density (WD), leaf phosphorus and
nitrogen contents (LPC and LNC) respectively
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with different colors in the dendrogram, and the other is to add a new column at the
end of the data file called Cluster indicating the group that each species belongs.
Uncheck Overwrite classification if you want to save successive partitions cri-
teria and new columns named Cluster1, will be added to data file.

Results of multivariate mean comparison for all partition criteria were syn-
thesizing en Table 4.1. Size of species clusters using average linkage are very
heterogeneous (from 1 to 32 with seven groups) and become even more hetero-
geneous when four groups are considered, going from a small group with two
species to a big group with more than half the species present along the gradient
(70 species). This kind of dendrogram, where hierarchy shows a unique nested
structure is frequently obtained with average linkage (Fig. 4.14). On the other
hand, using Ward we obtained clusters more compact with more homogeneous
richness by cluster. Dendrogram has clear branches splitting the first two groups of
species at high distance (Fig. 4.15), and then alternative split each main branch,
which allows defining more compact plant functional types with species that has
overall less dispersion. It is important to remember (see Chap. 2) that Ward

Fig. 4.11 Selection of multivariate procedure to perform cluster analysis using InfoStat
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distance take into account variance and covariance between traits when calculate
the criteria to merge two species or two groups of species.

Using Ward and beginning the partition with 4 groups, we obtained two groups
very homogeneous. One of them with 19 species having high LNC and LPC and
low WD, plant attributes that allow rapid acquisition of resources (acquisitive
type) and other group with 26 species having low SLA, LPC and LNC but with
high WD, attributes that permit conservation of resources at plant tissues (con-
servative or retentive type). None of these two groups are split in successive
partitions.

The other two groups have 30 and 31 species. One has high SLA and low
LDMC, WD and Tough, with intermediate LPC and LNC; the other has high WD
but medium Tough, and very high SLA and very low LDMC. These two groups
were splitting in two when six clusters were defined: one with attributes supporting
conservative functions in the ecosystem and the other supporting acquisitive
functions. The best option is to consider the six clusters defined using Ward
algorithm because groups have significant differences among trait profiles

Fig. 4.12 Variable selector for cluster analysis to define plant functional groups for altitudinal
gradient example

4.2 Case Study: Changes in Functional Diversity in an Altitudinal Gradient 67



(Table 4.1), has almost similar richness, its mean profiles are interpretable and the
range of variation of traits within the cluster is small allowing the ecological
description of the group in the ecosystem.

Fig. 4.13 Cluster methods to define plant functional groups for the altitudinal gradient example.
When the number of clusters is fixed, the classification for each row is saved in a new column at
the end of the data file. Uncheck over-write classification box if you want to keep different
columns for each analysis you run
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4.2.3.2 Characterization of Plant Functional Types
for Altitudinal Gradient Example

Mean trait values for each plant functional type (PFT) where compared using
analysis of variance followed by Fisher LSD mean comparison (Table 4.2) using
the selected cluster method (file trait by spp Altitudinal Gradient with PFT.IDB2
is available for download via Springer’s Extra Materials website: http://
extras.springer.com/). The extreme PFT were Acquisitive 1 (ACQ1) with the
highest values for LPC and LNC, with high SLA and the smallest WD with tree
species with the smallest leaf toughness, and Conservative 1 (CON1) with the
highest Tough, intermediate WD and the smallest SLA. The other Acquisitive
PFT’s (ACQ2 and ACQ3) has small WD and high LPC and LNC; while inter-
mediate PFT (INT) has low values of LDMC and intermediate values for all the
other traits. The sixth group, Conservative 2 (CON2) has the highest WD with
intermediate Tough, with low values of LNC and LPC (Table 4.2).

4.2.3.3 Distribution of Plant Functional Types along the Gradient

We expect distributional changes along the altitudinal gradient. At low altitude
acquisitive groups may be dominant and at higher altitude those PFT with species
having conservative attributes would replace species with attributes associated to
acquisition like high SLA, and leaf content of N and P. Two variables to estimate
species abundance were recorded: basal area and number of individuals.

To study this relationship, we have to merge two data files: the trait by spp
Altitudinal Gradient.IDB2 we have used to define PFT with the spp by plot
Altitudinal Gradient.IDB2. This last file has information of frequency (freq) and
basal area (ba) for each species in each plot. It also has the variable altitude for
each observational unit (plot).

Table 4.1 Results of mean vector comparisons for successive cluster partitions with average
linkage and Ward methods using Hotelling test adjusted by Bonferroni and 0.05 significance level

Cl Seven clusters Six clusters Five clusters Four clusters

AvLin Ward AvLin Ward AvLin Ward AvLin Ward
1 A(2) A (26) A(2) A (26) A(2) A (26) A(2) A (26)
2 B(6) B (19) B(6) B (19) B(6) B (19) B(6) B (19)
3 C(6) C (13) C(6) C (13) C(6) C (13) C(28) C (30)
4 D(27) D (15) D(27) D (15) D(28) D (30) D(70) D (31)
5 DE(1) E (15) D(1) E (15) E(64) E (18)
6 E(32) F (12) E(64) F (18)
7 F(32) G (6)

AvLin average linkage. Means with a common letter are not significantly different (p B 0.05).
Number of species in each cluster in brackets
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To merge these files using InfoStat or FDiversity (FDdiversity version of these
databases with *.FDDB is available for download via Springer’s Extra Materials
website: http://extras.springer.com/), we have to open the file (or click in the last
file if it is already open) and select Data, Merge tables, and then Merge Hori-
zontal (Fig. 4.16). Then select the variable species as concatenation variable
and press OK, in the new window select the file with the trait values and the
classificatory variable used to define the PFT (variable PFT if you have assigned
this name). Rename this new file for subsequent use. We have saved it as Concat

Fig. 4.14 Dendrogram for the altitudinal gradient example obtained using average linkage and
Euclidean distance. Vertical lines indicate cutting distance to define 4–7 clusters. Dots were used
to show interception of cutting distance with dendrogram branches in each partition. Codes for
branches at the y-axis correspond to species
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Altitudinal Gradient with PFT.FDDB (available for download via Springer’s
Extra Materials website: http://extras.springer.com/).

The relative contribution of each PFT along the gradient may be study esti-
mating the total basal area by plot and PFT, or the total frequency. We calculate
these using InfoStat and selecting Summary statistics from Statistics menu,

Fig. 4.15 Dendrogram for the example altitudinal gradient obtained using Ward and Euclidean
distance. Vertical lines indicate cutting distance to define 4–7 clusters. Dots were used to show
interception of cutting distance with dendrogram branches in each partition. Codes for branches
at the y-axis correspond to species. Different widths for branch lines were used to improve visual
distinction among groups
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then select freq and ba as variables, plot and PFT_6ward as class variables,
press OK and check only for the sum in the next window, press Go.

We used these results to study changes in PFT with altitude. Regression of total
basal area with linear and quadratic altitude terms shows that basal area for PFT
CON1, the group with high WD and tough, has a quadratic significant relationship
with altitude (p \ 0.0001 for the model). The model indicates that the basal area
for this functional type decrease up to 1,186 masl where rich the minimum of
4.51 m2 per plot, and then increase up to the highest plot included in the study area
at 2,810 masl (Fig. 4.17). The relationships of total basal area were not significant
for the other functional groups.

When frequency was considered as a measure of abundance, we find signif-
icant relationship only in the distribution of ACQ3 PFT. At low altitudes as well
as high altitude the total number of individuals are lower than at intermediate
high (Fig. 4.18). No significant relationship with altitude was found for the other
PFT’s. There are some tendencies (Fig. 4.19), but the variability among plot is
very high.

Table 4.2 Trait summary statistics for plant functional types (PFT) in altitudinal gradient
example

PFT Summary SLA LDMC Tough WD LPC LNC

ACQ1 (S = 19) Mean 13.72b 431.87b 0.66a 0.31a 1.87c 32.59d
Minimum 9.90 216.77 0.25 0.16 1.24 24.99
Maximum 19.07 680.93 0.96 0.45 2.66 41.20

ACQ2 (S = 15) Mean 8.77a 490.00c 0.76ab 0.48b 1.47b 24.47b
Minimum 7.00 394.80 0.50 0.30 1.23 20.80
Maximum 12.29 657.07 1.10 0.64 1.93 32.42

ACQ3 (S = 18) Mean 16.56c 313.67a 0.82b 0.46b 1.44b 26.90bc
Minimum 10.11 224.53 0.34 0.29 1.04 22.26
Maximum 30.63 389.38 1.63 0.68 2.09 33.83

INT (S = 13) Mean 12.76b 337.24a 0.70ab 0.46b 0.84a 19.54a
Minimum 7.88 192.82 0.44 0.35 0.62 13.61
Maximum 20.56 468.86 0.90 0.63 1.19 24.45

CON1 (S = 26) Mean 9.32a 475.49bc 0.99c 0.58c 0.97a 18.84a
Minimum 5.68 342.82 0.75 0.42 0.56 14.61
Maximum 12.32 616.12 1.34 0.80 1.45 23.32

CON2 (S = 15) Mean 12.99b 463.20bc 0.83b 0.67d 1.30b 28.80b
Minimum 10.10 357.74 0.57 0.48 0.64 20.73
Maximum 15.85 661.57 1.23 0.98 1.93 35.82

S number of species in each PFT; SLA specific leaf area (mm2 mg-1); LDMC leaf dry matter
content (mg g-1); LNC concentration of nitrogen (mg g-1); LPC concentration of phosphorus
(mg g-1); Tough physical strength of the leaves (N mm-1); and WD wood density (g cm-3);
ACQ for acquisitive PFT; CON for conservative PFT and INT for intermediate PFT Means with a
common letter are not significantly different (p B 0.05) using Fisher LSD
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4.2.4 Changes of Functional Diversity Indices
with the Altitude

To calculate functional diversity indices we have to use the concatenated file with
information on species abundance and on functional traits. When the traits have
different variances or their measurement scales are different, standardization is
necessary because calculations involved in indices estimation are scale dependent.
Only single-trait indices like FRO and FDvar may be estimated from variables in

Fig. 4.16 Procedure to merge tables using InfoStat or FDiversity. Be aware and confirm that the
concatenation variable has the same name in both files and the variables are of the same type.
First step: select data, merge tables, merge horizontally. Second step: choose concatenation
criteria, in our case it is species. Third step: choose the table to merge with, in our case ‘trait by
spp Altitudinal Gradient’ and the variables in the right appears. In case you want to avoid
merging one of them, uncheck it

4.2 Case Study: Changes in Functional Diversity in an Altitudinal Gradient 73



the original scale. CWM always has to be estimated using original values because
the interpretation depends on the measurement scale.

The standardization must be done using a file with one row by species and as
much as needed columns to include all variables. In this example we only have
continuous variables, so no particular recodification is needed. In a given study we
may have more than one value for species determined following the protocols. For
example, if plasticity of species is to be investigated we would need to determine
one trait value for each condition. This must not be confounding with the repli-
cation of individuals or samples by individual needed to fulfill the Cornelissen
et al. (2003) protocol. In cases where more than one value is recorded, this could
be called populations and one species may have several populations (Lavorel et al.
2008).

4.2.4.1 Trait Values Standardization and Merging Files

Standardization of trait values has to be done according to the field design. If only
one value of each trait by species is calculated, the database to standardize the

Fig. 4.17 Linear relationship
of total basal area (ba) per
plot for plant functional type
conservative 1 with altitude.
The minimum of basal area is
at 1,186 masl

Fig. 4.18 Linear relationship
of frequency (freq) per plot
for plant functional type
acquisitive 3 with altitude.
The maximum frequency is
attended at 1,653 masl
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traits must be the one with the species list. See Box 4.1 for details and one
example of the possible options.

Box 4.1: Options to standardize trait values

Fig. 4.19 Smoothed quadratic adjustment for frequency changes with altitude. Tendencies for
acquisitive plant functional types (excluding acquisitive 3) show a maximum between 1,300 and
1,600 masl, and the relationship are not significant. One of the conservative plant functional
groups shows an increase in frequency from 1,300 m up, but the other has no presence in the plots
with more than 1,800 masl

Data table with four species (A, B, C, and D) in two conditions with two
samples by condition. In case1, there is only one trait value for each species,
in case2 there is one value of the trait for each condition, and in case3 there is
one value of the trait in each sample.
Data table for two conditions with 2 samples each

sp cond sample t1_case1 t1_case2 t1_case3 EST_t1_case3

A 1 1 5 5 5 -0.73
B 1 1 22 22 22 1.46
C 1 1 8 8 8 -0.34
A 1 2 5 5 4 -0.86
B 1 2 22 22 19 1.08
A 2 1 5 7 7 -0.47
B 2 1 22 18 18 0.95
D 2 1 4 4 4 -0.86
A 2 2 5 7 8 -0.34
B 2 2 22 18 24 1.72
C 2 2 8 12 6 -0.60
D 2 2 4 4 3 -0.99
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Trait values for case one in variable t1_case1, for case two in variable
t1_case2 and for case three in variable t1_case3.
Case 1: one value by species

sp t1_case1 EST_t1_case1 EST_wrong1

A 5 -0.57 -0.73
B 22 1.47 1.34
C 8 -0.21 -0.36
D 4 -0.69 -0.85

The standardization has to be done using the data set where each species
appears only one time, because there is only one value for each species. If the
transformation is doing with the complete data table, each different value
appears as many times as samples where the species is present. Calculating
the mean and variance of EST_wrong1, you get mean -0.15 and variance
1.03, instead of zero mean and variance of one, as it should be.
Case 2: one value by species for each condition

sp condition t1_case2 EST_t1_case2 EST_wrong2

A 1 5 -0.86 -0.85
B 1 22 1.63 1.55
C 1 8 -0.42 -0.42
A 2 7 -0.56 -0.56
B 2 18 1.04 0.99
C 2 12 0.17 0.14
D 2 4 -1.00 -0.99

The standardization has to be done using the data set where each species
appears with its different values, one for each condition. If we make the
standardization with the complete data table, we would obtain the values of
EST_wrong2, which has mean values of -0.02 and variance value of 0.97,
instead of zero and one.

Case 3: one value by species for each sample
This is the only case where the standardization is making from the whole

data table. The column t1_case3 has the different values of this trait in
different samples. The EST_t1_case3 column shows the standardized values;
this has zero mean and unit variance.

For this example we have one trait value for species and six trait measures in
a continuous scale with different units. Open the file trait by spp Altitudinal
Gradient.FDDB using FDiversity software (see Sect. 4.1 for details). The data
based has 106 species in rows and six traits in columns; it includes code for each
species.
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Open Data menu and select Transformation (or Ctrl-T), the Transformations
window appears. Select the six traits used in this study and transfer them to the
variable window, press OK. Another window appears to select the transformation
desired, select Standardize and press GO (Fig. 4.20). Six new columns were
added to data base, one for each trait with the prefix EST_, follow by the trait
name.

Then open the data file spp by plot Altitudinal Gradient.FDDB. Open the Data
menu and merge both tables as explained in Sect. 4.1 and Fig. 4.16 using the
species as concatenated variable. Merge original and standardized sets of traits
because the first will be used to estimate CWM and the second to estimate
functional diversity indices. Save the resulted file with the same or other name for
future analysis. You always may be able to open the file Concat spp by plot
Altitudinal Gradient.FDDB (available for download via Springer’s Extra
Materials website: http://extras.springer.com/).

Fig. 4.20 Procedure to standardize traits to have unit variance and zero mean using FDiversity
software
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4.2.4.2 Estimation of Functional Diversity Indices

We follow the same steps explained in Sect. 4.1.3.2 to estimate all the functional
diversity indices and obtained one new data table with 38 rows, one for each plot,
and 31 columns. The first column identifies the plot; the others are for the indices
selected. In our case there are 14 columns for multi-trait indices, six columns for
single-trait index FRO and other six columns for single-trait FDvar, and the last
four columns for the species biodiversity indices. We did a second run using the
traits in its original scales to calculate CWM for each trait and then merge both
resulted files to have all numerical results together. As we need the altitude of each
plot, we also used merge option to copy the variable altitude from the file spp by
plot Altitudinal Gradient.IDB2.

We have frequency and basal area to weigh the contribution of each species to
the community, so we calculate the set of indices and CWM for both variables
following the same procedure. At the end we should have two result files, one for
basal area and the other for frequency with 38 rows and 38 columns. These two
files have similar values for indices like FAD1, FAD2, FD (both versions), Convex
Hull and FRic because the abundance is not involved in their calculations (files
Res indices with freq.FDDB and Res indices with ba.FDDB are available for
download via Springer’s Extra Materials website: http://extras.springer.com/).

Note that Convex hull and FRic have no values for plots 37 and 38; this is due
to restrictions of these indices that need at least more species than traits to allow
estimation of the multivariate volume. These two plots have only four species and
the number of traits is six. The species must not be distributed in a line, in which
case the hull volume is zero, like in plots 19 and 20, that even though they have
seven species, the convex hull has no volume.

4.2.4.3 Changes of Functional Diversity Indices with the Altitude

Linear regression of trait community weighted means (CWM) using altitude as
independent variable (Table 4.3) show significant and positive relation of leaf dry
matter content (LDMC) when CWM is calculated using basal area or frequency.
Also wood density (WD) shows positive relation when CWM is calculated using
basal area but do not show significant tendency when frequency is used (Fig. 4.21).

Specific leaf area (SLA, Fig. 4.22) and leaf nitrogen content (LNC) has sig-
nificantly inverse relations with altitude, both when their CWM are calculate using
basal area or frequency (Table 4.3). The relationships reflect that communities at
low altitude are dominate by species with acquisitive attribute, and at higher
altitude species with conservative attribute are more frequent and have individuals
with larger basal area.

This type of results may be used to relate plant attribute and plant functional
diversity to other variables associated with altitude, like precipitation or tempera-
ture. Often these relations are useful to predict community composition variations
when climatic changes occur.
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We perform linear regressions for all functional diversity indices and using
basal area and frequency for those that include weighted variable to account for
relative importance of each species. We obtained significant relationship only for
FDiv, both with basal area and with frequency, and also for rRao when it was
estimated using frequencies.

Table 4.3 Fitted linear models and p-values for relationship of community weighted mean
(CWM) of traits values with altitude

CWM Weight p-value Linear model

SLA ba 0.0084 14.816 - 0.0014 9 altitude
freq 0.0317 14.881 - 0.0011 9 altitude

LDMC ba 0.0148 376.576 ? 0.023 9 altitude
freq 0.0206 362.199 ? 0.025 9 altitude

Tough ba 0.0929
freq 0.6710

WD ba 0.0055 0.36483 ? 0.00006 9 altitude
freq 0.0654

LPC ba 0.7723
freq 0.6964

LNC ba 0.0195 29.26044 - 0.00265 9 altitude
freq 0.0266 28.94511 - 0.0022 9 altitude

Weights of CWM are basal area (ba) and frequency (freq). SLA specific leaf area (mm2 mg-1);
LDMC leaf dry matter content (mg g-1); Tough physical strength of the leaves (N mm-1); WD
wood density (g cm-3); LNC concentration of nitrogen (mg g-1); and LPC concentration of
phophorus (mg g-1). Estimated linear models are shown only for significant relationships
(p \ 0.05)

Fig. 4.21 Fitted model for community weighed mean of wood density (WD) using basal area
(ba) and frequency (freq) as loaded variable. In both cases the WD increases as altitude increases
showing dominance of species with conservative attributes at high altitude
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Functional divergence, measure using FDiv (Villéger et al. 2008), quantify how
the trait values are spread in the multivariate range of the trait space. It varies between
zero and one being one the most evenly distributed abundance in the trait space. The
linear model using basal area (FDivba = 0.864166 – 0.000064 9 altitude) was
significant (p = 0.0319) and estimate a minimum of 0.684 at the highest altitude of
2,810 masl and a maximum value of 0.822 at the lower altitude of 653 masl. Both
values are closer to one showing that the abundance of trait values are well distributed
in the altitudinal gradient being significantly lower at highest altitude, this may be
due to differences in a few traits or an overall effect. We will investigate these options
using the single-trait index FDvar. Result with frequency is also significant
(FDivfreq = 0.85887 – 0.00007 9 altitude) with p = 0.0079. The estimated mini-
mum and maximum where similar: 0.662 at 2,810 masl and 0.813 at 653 masl.

Linear regression of relative Rao index was also significant (p = 0.0495) with
frequency as loaded variable. The model (rRaofreq = 0.59139 – 0.00008 9 alti-
tude) allows estimation of a maximum 0.54 at 653 masl and a minimum of 0.37 at
2,810 masl. These are relative values obtained as the ratio between observed
values (Rao index) and the highest value that may be obtained with the same set of
species, which implies with the same set of trait values, varying only the relative
abundance among species. As higher the rRao as closer the community is to the
best distribution of individual (frequency) or biomass (basal area) among the
species. In our case, as Rao do not change significantly with the altitude, we may
conclude that dominance of some species (or even only one species) is responsible
for the unbalance in the trait space.

Fig. 4.22 Fitted model for community weighed mean of specific leaf area (SLA) using basal
area (ba) and frequency (freq) as loaded variable. In both cases the SLA decreases as altitude
increases showing dominance of species with acquisitive attributes at low altitude
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Even more, we may say that at higher altitude relative abundance changes of
same species present may increase functional diversity in a 63% (1 – 0.37 = 0.63).
Arguments like this should be taken with care when the index is calculated using
values of traits. To interpret the ratio rRao = Rao/Raomax, the distance matrix
between species must be ultrametric. When phylogenetic trees are used instead of
traits, this condition is fulfilled. In some cases the use of continuous variables may
lead to maximum value of Rao index with only two species of contrasting traits. If
this happens the rRao has no functional ecological interpretation.

4.3 Case Study: Changes in Functional Diversity
in a Chronosequence

This example presents a subset of field data taken in the south of Mexico, where
the ‘roza-tumba-quema’ (RTQ) practice is widely used. The RTQ consists in clear,
cut the trees and burn them before use the land for cropping. After two or three
years the soil fertility decrease and the land is abandoned.

4.3.1 Sample Design and Trait Evaluation

The sample units were located in a chronosequence of 5 times of abandonment
(time 1 with average 5 years of abandon, time 2 with an average of 15 years, time
3 with an average of 20 years, time 4 with an average of 25 and time 5 is a natural
control. For a total of 20 sample units with an area of 0.25 ha (50 9 50 m), the
basal area of each individual was calculated for trees with more than 10 cm of
diameter at breast height (Chan-Dzul 2010). Dominant species per plot which
together accounted for 75% of basal area (Grime 1998) were identifying to pro-
duce the species list to determine trait values.

The objective was to determine and compare the functional diversity according
to age of abandonment of forests, based on four functional traits: height (Max-
Height, m), wood density (WD, g cm-3), leaf phenology (deciduous or evergreen),
dispersing agent (anemochory, autochory and zoochory) and reproductive system
(monoic, dioic and hermaphrodite).

Measurements of functional traits in dominant species were made in the 113
species identified as dominant in the 20 sites evaluated. The sampling methods and
categories of allocation of functional traits were based on the protocols proposed
by Cornelissen et al. (2003).

4.3.2 The Database

The data were synthesized in two files, one with the information about traits
(Fig. 4.23) and the other with information about distribution of species in the
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observational units (Fig. 4.24). The trait data base trait by spp Chronose-
quence.IDB2 (available for download via Springer’s Extra Materials web-
site: http://extras.springer.com/) has one row for each species which is identify by
a code (species column), the mean values for the two continuous traits considered
(MaxHeight and WD), one column for reproductive system (Reproduction) with
three categories, one column for phenology (Deciduous), and three other columns
to indicate seed dispersion (file trait by spp Chronosequence.FDDB is available
for download via Springer’s Extra Materials website: http://extras.springer.com/).

The second database spp by plot Chronosequence.IDB2 (available for
download via Springer’s Extra Materials website: http://extras.springer.com/) has

Fig. 4.23 Database of chronosequence example showing the traits by species information of file
‘Trait by spp Chronosequence’ using InfoStat

Fig. 4.24 Sequence to perform principal coordinate analysis to synthesize dummy and indicator
variables of file ‘Trait by spp Chronosequence’ using InfoStat
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information about the presence of each species at each observational unit (Plot),
and the time of abandonment (Time). The importance of each species was
quantified with the abundance (Abundance, number of trees) and with the total
basal area (BasalArea, m2). The database has 735 rows, one for each species
present in each plot, by five columns (file spp by plot Chronosequence.FDDB is
available for download via Springer’s Extra Materials website: http://
extras.springer.com/).

Functional variation in the chronosequence may be study defining functional
groups and interpreting the relative contribution of each functional group at dif-
ferent states (see Chap. 2 for complete details of statistical procedures). To com-
plement this approach we calculate functional indices and test its relationship with
age of abandonment to explore changes in different facets of functional diversity.

4.3.3 Changes of Plant Functional Types
in the Chronosequence

To define functional types we performed cluster analysis using trait information in
the dominant species (trait by spp Chronosequence.IDB2) using InfoStat
(Di Rienzo et al. 2010). Open InfoStat and from the file menu, open the data file, or
after install InfoStat double click the file name. The database should look like in
Fig. 4.23 with 113 rows and eight columns.

The traits used to link functional properties to ecosystem services are express in
different scales. Wood density (WD) and maximum height (MaxHeight) are con-
tinuous variables, while phenology (Deciduous) is a binary variable (1 = decid-
uous, 0 = evergreen), reproductive system is a nominal variable with three
categories, and the seed dispersion methods are indicative variables.

4.3.3.1 Formation of Plant Functional Types (PFT)
for Chronosequence Example

One option to take full advantage of information in the continuous variables when
there are also binary and nominal variables is to use principal coordinate analysis
(PCoA, also known as multidimensional scaling) to synthesize binary variables,
indicators and dummy variables in continuous indices called principal coordinates.
As PCoA use numerical variables, nominal variable has to be transformed pre-
viously to dummy variables (Reproduction_Hermaphrodite and Reproduc-
tion_Monoic). Two columns will be added at the end of the file shown in Fig. 4.23
(file trait by spp Chronosequence for PCoA.IDB2 is available for download via
Springer’s Extra Materials website: http://extras.springer.com/).

We run PCoA using InfoStat (Fig. 4.24) with distance measure Jaccard and
save the first five principal coordinates. The principal coordinates appear at the end
of the data file (Fig. 4.25). We use the first five axes accounting for 85% of the
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variability (see information on the result windows). Then, having all variables in
continuous scale we may use Euclidean distance to perform cluster analysis and
Ward as linkage algorithm.

We continuous with InfoStat following the same steps as in altitudinal gradient
example (see steps shown in Figs. 4.11 and 4.12). The dendrogram has six main
branches (Fig. 4.26). We re-run the cluster analysis asking for six groups and then
perform a multivariate analysis of variance with the same variables. Null
hypothesis of equal vector means is rejected (p \ 0.0001) and mean vector
comparison shows significant differences among all the clusters (Box 4.2).

Box 4.2: Result of multivariate mean comparison in the chronosequence

4.3.3.2 Characterization of Plant Functional Types
for the Chronosequence Example

To characterize the clusters we used average trait values. In this study there are
continuous and categorical variables transformed in continuous principal coordi-
nates. Mean values of woody density and maximum height are interpretable based
on mean values shown in Box 4.2, but the rest (PCO_1–PCO_5) even though may
be interpret through the coefficients loading the contribution of each original
variable to each axis, it is strongly recommend to use contingency tables with the
original variables to characterize clusters. Contingency table allows testing the null
hypothesis of no association between two categorical variables based on fre-
quencies of cross categories.

Fig. 4.25 Enlarged database of chronosequence example showing the traits by species
information and the new added variables
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Fig. 4.26 Dendrogram obtained using Euclidean distance with five principal coordinates and the
two continuous traits. Six plant functional types (PFT) were identified in the chronosequence,
species of each PFT are indicated by code name at left side. Species of PFT are characterized
as: deciduous-hermaphrodite-autochory (DecHerAut); perennial-hermaphrodite-high strata
(PerHerHigh); deciduous-hermaphrodite-middle strata-low wood density (DecHerMidLwd);
deciduous-dioic-high strata (DecDioHigh); monoic-autochory (MonLow); deciduous-hermaph-
rodite-middle strata-high wood density (DecHerMidHwd)
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Three contingency tables are needed for seed dispersion because it is an indi-
cator variable with three categories (categories of indicator variables are non-
exclusives). None of them are independent of plant functional types (p \ 0.0001 in
Box 4.3) so we may use the proportion of each category to explain differences
among plant functional types.

Box 4.3: Contingency table for PFT and seed dispersion methods
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Contingency tables for phenology (Box 4.4) and for reproduction system (Box
4.5) show significant differences among species proportion of each category in
plant functional types. Both original variables were transform to dummy variables
before clustering so the relative frequencies at the contingency table must be
interpret according codification: for phenology one column indicate deciduous
condition with one and evergreen with zero; for reproduction system two columns
were use in the clustering, but for contingency tables we may use the original
variable Reproduction with the three categories.

Box 4.4: Contingency table for PFT and Deciduous

Box 4.5: Contingency table for PFT and reproduction system
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The characterization is based on mean values for continuous variables (Box 4.2)
and on contingence tables for the rest of the variables (Box 4.3, 4.4 and 4.5). There
are three groups with high wood density (clusters 1, 4 and 6) and other three with
low wood density (clusters 2, 3, and 5).

Cluster 1 has deciduous species, hermaphrodite and autochoras, with some
of them zoochoras (DecHerAut). Cluster 4 has deciduous species, hermaph-
rodites and from the middle strata (DecHerMidHwd). Cluster 6 will be called
PerHerHigh, with all the perennial species, hermaphrodites from the highest
strata. Cluster 2 will be called MonLow, it has only monoic species and they
have autochory or zoochory. Cluster 3 has deciduous species hermaphrodite
with low wood density growing in the low strata (DecHerMidLwd). Cluster 5
has only dioic species, deciduous from the highest strata (DecDioHigh). File
trait by spp Chronosequence with PFT.IDB2 with the results of this analysis
is available for download via Springer’s Extra Materials website (http://
extras.springer.com/).

4.3.3.3 Distribution of Plant Functional Types
in the Chronosequence

We expect that distribution of plant functional types changes along the chron-
osequence. To study this relationship, we have to merge two data files: the trait
by spp chronosequence with PFT.IDB2 we have used to define PFT with the
spp by plot chronosequence.IDB2. To merge these files using InfoStat or
FDiversity, we have to open the file (or click in the last file if it is already open)
and select Data, Merge tables, and then Merge Horizontal. Then select the
variable species as concatenation variable and press OK, in the new window
select the file with the traits values and the classificatory variable used to define
the PFT. Rename this new file for subsequent use like you did with the previous
example. You should obtain a file like Concatenated Chronosequence.IDB2
(available for download via Springer’s Extra Materials website: http://extras.
springer.com/).

To show the relative contribution of each PFT to the total basal area we make a
stack bar plot (Fig. 4.27) using relative values. Total basal area increases as time
of abandoned increases: 6.76, 16.86, 17.58, 27.37, and 30.11 m2 from time 1 to
natural forest. Express the basal area of functional type using proportion to the
total allows avoiding the effect of differences in total basal area in the chronose-
quence. Plant functional type DecHerAut decrease its abundance with time of
abandonment while PerHerHigh clearly increase its abundance. This reflects the
successional tendency due to replacement of deciduous species with low wood
density (DecHerAut) by evergreen species of the highest strata with high wood
density (PerHerHigh). There is small contribution of the species growing in the
low strata and their contribution is almost constant in the chronosequence
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(MonLow). The two groups characterize by deciduous species (DecHerMidLwd
and DecHerMidHwd) contribute to the medium strata, while species with low
wood density are more important in the first stages of succession those with high
wood density increase with time. It is also clear that as time pass the proportion of
basal area in the highest strata decrease for deciduous species (DecDioHigh). If we
compare the distribution of plant functional types after 25 year of abandonment
(time 4) with that of the natural forest (time 5) we notice that there are no
important differences.

4.3.4 Changes of Functional Diversity Indices
in the Chronosequence

To calculate functional diversity indices we have to use the concatenate file with
information on species abundance and on functional traits. When the traits have
different scales we have to use an appropriate distance like Gower. When we use
Gower it is not necessary to standardize the traits because this similarity measure
use the range (difference between maximum and minimum) to put all variables in
the same scale avoiding effect of heterogeneity of variance and units). We used the

Fig. 4.27 Stack bar showing relative basal area of species in plant functional types of the
chronosequence. DecHerAut deciduous-hermaphrodite-autochory; PerHerHigh perennial-
hermaphrodite-high strata; DecHerMidLwd deciduous-hermaphrodite-middle strata-low wood
density; DecDioHigh deciduous-dioic-high strata; MonLow monoic-autochory; DecHerMidHwd
deciduous-hermaphrodite-middle strata-high wood density
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file Concatenated Chronosequence.IDB2, already obtained from InfoStat (file
Concatenated Chronosequence.FDDB is available for download from
Springer’s Extra Materials website http://extras.springer.com/).

4.3.4.1 Estimation of Functional Diversity Indices

We have abundance and basal area to weigh the contribution of each species to the
community. We follow the same steps explained in Sect. 4.1.3.2 to estimate all the
functional diversity indices using Gower distance and Ward linkage algorithm. We
obtained one new data table with 20 rows, one for each plot, and 36 columns. The
first column identifies the time, the second one the plot, columns 3–13 have all the
functional indices but rRao and Convex hull in the same order as FDiversity
provides. From columns 14 to 32 we obtained the eight single-traits FRO indices,
the eight CWM and the eight FDvar, but these single-trait indices only have
ecological meaning for continuous variables, so we delete those corresponding to
dummy and indicator variables retaining only six columns. The last four columns
are for the taxonomic indices. As result we have a file with 20 rows and 24
columns using basal area and other file using abundance (files Results Chron-
osequence with basal area.FDDB and Results Chronosequence with
abundance.FDDB are available for download via Springer’s Extra Materials
website: http://extras.springer.com/).

4.3.4.2 Changes of Functional Diversity Indices
in the Chronosequence

We have explored the changes of functional diversity using PFT relative distri-
bution, and in this section we explore the differences among stage of the chron-
osequence using continuous functional diversity indices. As has been shown in
Sect. 4.3.2 FDiversity performs analysis of variance and mean comparisons for
each index if we ask for in the Comparison tab (Fig. 4.9).

The output has the information that has been saved in a new table, results for
analysis of variance and mean comparisons. We select some functional indices to
show the software output (Box 4.5). There are statistical differences for FDp
(p = 0.0075) and the same index including the importance of each species to the
community (wFDp, using basal area) also shows differences (p = 0.0010).
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Box 4.5: FDiversity output for functional diversity indices in the chrono-
sequence using Gower distance and basal area
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The set of four functional indices that allows quantifying richness (FRic),
evenness (FEve), functional divergence (FDiv) and functional dispersion (FDis)
show significant differences in richness and evenness. The last two times differ
from the others in functional richness but the tendency is not so clear for evenness,
nevertheless all values are around 0.50, indicating that the species in the com-
munities has neither a clear dominance nor a complete uniform distribution. There
is no significant differences for FDiv or FDis which indicate that even though the
species composition changes the variability among plot of the same age of
abandonment is not different from the variability among times (p = 0.4128 and
p = 0.8751).

There were differences in CWM for MaxHeight (p = 0.0466) among times of
abandonment, times 1 and 3 show the maximum height. In case of wood density
(CWM_wd) there were differences among times (p \ 0.0001) with times 4 and 5
with the highest values (Box 4.6). Taxonomic indices show differences among
times (richness, p = 0.0114; Shannon, p = 0.0085). Times 5 and 4 have the
highest values for both indices (Box 4.7).

Box 4.6: FDiversity output for trait community weighted means in the
chronosequence using basal area
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Box 4.7: FDiversity output for taxonomic diversity indices in the chrono-
sequence using basal area

4.4 Multivariate Graphical Projection Methods

Principal component analysis is widely used to synthesize multivariate information
and project the observations in a plane with the first two principal components. The
scatter plot of observations in these two axes allows interpreting relationship among
observations. If the variables are added to this graph we obtained a combination of
spaces: one for the observations and the other for the variables plotting together,
called biplot. This join representation allows interpreting relationship among
variables, and also between variables and observations. This kind of graphical
representation was used in Chap. 2 in the example of Restinga vegetation.

It is possible to add another set of variables to this space; in this case it is called
triplot. The triplot results from the Partial Least Squares (PLS) multivariate
analysis (Wold 1985). Like in regression, we have two set of variables: one set
taken as response variables and the other as explanatory or regressor variables.
Both sets have to be measures in the same experimental or observation units.

We use the chronosequence database to show this technique. With the triplot we
may interpret relation among times (observational units), among functional
diversity indices (regressor variables) and among traits (response variables). Even
more, we may explore relationships between time and traits, between time and
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functional diversity indices, between functional diversity indices and traits, and
among time, traits and indices.

Using the example of the chronosequence we perform the PLS using InfoStat.
The first two factors in the triplot explain 70% of variability (41.7% Factor 1 and
28.6% Factor 2). CWM for wood density is more or less negatively correlated with
CWM of MaxHeight and with FDvar_wd, as CWM increases its variance
decreases. MFAD and FDc are highly positively correlated and both are positively
correlated with wFDc, FRic and Rao. FEve is not correlated with FRic nor with
FDiv; and has moderate correlation with FDis.

We also may interpret the position of 20 sample plots (five times by four
replicates) along the first axis. We put and envelop to show the four replicates
(points) in each time. The centroid of the envelopes resembles the time tendency;
from left to right we find the sequence of the abandonment age. This trend goes in
the direction of wood density CWM as expected, and in the direction of FRic and
wFDc showing maximum functional richness (Fig. 4.28).

Presenting the results using the triplot may be useful in same cases and could be
unnecessary in others. In functional diversity studies, when almost always we have
to interpret mean values of the traits (usually by the trait CWMs) jointly with
functional indices, and especially if we have also treatments, having all relations in
one graph that synthesize most of the variability (in the last example 70%) is very
useful.

Fig. 4.28 Triplot of CWM and FDvar single-trait indices, functional indices and times of
abandonment using partial least squares. MaxHeight maximum height; WD wood density; CWM
community weighted mean; FDvar functional variability; FDis functional dispersion; FDiv
functional divergence; FDc functional diversity base on community dendrogram; wFDc weighted
FD based on community dendrogram; FRic functional richness; Rao Rao index; FEve functional
evenness; MFAD modified functional attributes
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